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Abstract

Perfect quantum state transfer plays a crucial role in quantum information processing and
quantum computation. There have been extensive study of perfect quantum state transfer on
Cayley graphs over abelian groups. In this paper, we consider the existence of perfect quantum
state transfer on Cayley graphs over semi-dihedral groups which are nonabelian groups. Using
the representations of semi-dihedral groups, we provide some necessary and sufficient conditions
for Cayley graphs over semi-dihedral groups admitting perfect quantum state transfer. By those
conditions, we present examples of perfect quantum state transfer on Cayley graphs over semi-
dihedral groups. In addition, we propose results about whether some new Cayley graphs over
nonabelian groups admit perfect quantum state transfer.

Keywords: Perfect quantum state transfer, Cayley graph, spectrum, semi-dihedral group.

1 Introduction

In a physical quantum computing protocol, the accurate transfer of quantum states between pro-
cessers and registers of a quantum computer is a crucial ingredient for the short distance communi-
cation. Perfect state transfer (PST for short), introduced by Bose [10], addresses this task perfectly.
More precisely, the output state from the receiver at some time t is, with probability equal to one,
identical up to complex modulus to the input state of the sender at time τ = 0.
By modeling various quantum networks on finite graphs, one can solve the problem of quantum

networks in mathematical perspectives. Let G(V,E) be an undirected simple graph and A be the
adjacency matrix of G(V,E). The transfer matrix is given by

H(t) = HG(t) = exp(−itA) =
+∞∑
k=0

(−itA)k

k!
= (Ha,b(t))a,b∈V ,

where t ∈ R, i =
√
−1 and Ha,b(t) stands for the (a, b)-entry of the matrix H(t). Then, for a, b ∈ V ,

the graph G(V,E) is said to admit PST from a to b at time t(> 0) if the absolute value of Ha,b(t) is
equal to 1. When the previous condition holds for a = b, G(V,E) is termed periodic at a with period
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t(> 0). Furthermore, we say that G(V,E) is periodic if it is periodic at every vertex a with period
t(> 0).
Searching for graphs exhibiting PST is a significant work since it has wide utilization in quantum

information processing and cryptography [2–5, 9, 13, 17, 18, 30]. Consequently, much effort has been
undertaken to investigate the existence of PST on all sorts of graphs. Christandl et al. [17] proved
that paths and hypercubes admit perfect quantum state transfer. The existence of PST on certain
graph operations has been considered in [1, 11, 19]. Godsil [22–24] provided a survey on perfect state
transfer, which states the applications of algebraic combinatorics such as spectrum of adjacency matrix
and association schemes to the existence of perfect state transfer on certain graphs. Notably, Godsil
has completely characterized perfect state transfer using simple connected graphs. For some classes of
special graphs such as distance-regular graphs, complete bipartite graphs, Hadamard diagonalizable
graphs and so on, the problem of exhibiting PST was studied in [20, 21, 27, 30, 31]. Cayley graphs, as
a well known class of vertex transitive graphs, have employed frequently in quantum communication
networks since they possess marvelous algebraic structure. Research on which classes of Cayley graphs
admitting PST has been presented in [6–9, 14, 16, 22–24, 33]. In these results, Bašić [6–8], Cheung
et al. [16] and Bernasconi et al. [9] employed circulant graphs and cubelike graphs to study the
existence of PST. A more general result about the existence of PST on Cayley graphs over abelian
groups was provided in [33]. However, relatively little research has been carried out on Cayley graphs
over non-abelian groups having PST. Precisely speaking, the only construction of PST using Cayley
graphs over dihedral groups was proposed by Cao and Feng [14] very recently.
The semi-dihedral group, as a well-known non-abelian group, is a hot topic in group theory and has

applications in graph theory [28] and symmetry classes of tensors [25, 26]. In this paper, we consider
the existence of PST on Cayley graphs over semi-dihedral groups. Using semi-dihedral groups and
their representations, several necessary and sufficient conditions for Cayley graphs over semi-dihedral
groups admitting PST are carried out. We also prove that a Cayley graph over the semi-dihedral group
is periodic if and only if it is integral, i.e., the eigenvalues of the graph are integers. Furthermore, we
discuss the difference between the construction of PST on Cayley graphs over semi-dihedral groups
and that on Cayley graphs over dihedral groups introduced in [14]. As a result, we can indeed obtain
the existence and non-existence of PST on some new Cayley graphs.
An outline of this paper is as follows. Section 2 is devoted to some definitions and results about

the representations of semi-dihedral groups and spectrum of Cayley graphs. In Section 3, we present
necessary and sufficient conditions for the existence of PST on Cayley graphs over semi-dihedral
groups. In Section 4, we discuss the integrality of Cayley graphs over semi-dihedral groups. In
Section 5, we provide comparisons and examples of PST on Cayley graphs over semi-dihedral groups.
Section 6 concludes the paper.

2 Preliminaries

In this section, we recall some basic definitions and results about the representations of semi-dihedral
groups and spectrum of Cayley graphs.

2.1 The representations of semi-dihedral groups

For a finite group G and a complex vector space V with dimension r > 1, a homomorphism τ from
G to GL(V ) is called a representation of G and the degree of τ is r. Suppose that W is a non-zero
complex vector space with finite dimension and ς is a representation of G mapping G to GL(W ). If
there is an isomorphism T : V →W satisfying τ(a) = T−1ς(a)T for any a ∈ G, then τ and ς are said
to be equivalent. For any representation τ : G→ GL(V ) of G, we define the corresponding character
of χτ by

χτ : G→ C

2



such that χτ (a) = tr(τ(a)), where a ∈ G and tr(τ(a)) stands for the trace of the representation matrix
with regard to a basis of V .
For a subspace U of V , it is termed G-invariant subspace if τ(a)θ ∈ U for any a ∈ G and θ ∈ U .

Evidently, V and {0} are G-invariant subspaces, which are named trivial subspaces. If V only has
trivial G-invariant subspaces, then τ and χτ are called irreducible representation and irreducible
character of G, respectively.
Assume that n ≥ 2 is an integer. Define the semi-dihedral groups by

SD8n = 〈u, v | u4n = v2 = 1, vuv = u2n−1〉
= {1, u, u2, · · · , u4n−1, v, vu, vu2, · · · , vu4n−1}.

Throughout this paper, let Q1, Q2 and Q3 be sets of integers such that

Q1 = {2, 4, · · · , 2n− 2}, (1)
Q2 = {1, 3, · · · , n− 1} ∪ {2n+ 1, 2n+ 3, · · · , 3n− 1}, (2)
Q3 = {1, 3, · · · , n− 2} ∪ {2n+ 1, 2n+ 3, · · · , 3n− 2}. (3)

Hormozi and Rodtes [25] deduced the representations and characters of SD8n in the following lemma.

Lemma 2.1. [25] Let n ≥ 2 be an integer and ω = exp( πi2n). If n is even, the representations
and characters of SD8n are provided in Table 1 and Table 2, respectively. If n is odd, we list the
representations and characters of SD8n in Table 3 and Table 4, respectively.

Table 1: Representations of SD8n for an even n

u` (0 ≤ ` ≤ 4n− 1) vu` (0 ≤ ` ≤ 4n− 1)

σ1 1 1

σ2 1 −1

σ3 (−1)` (−1)`

σ4 (−1)` (−1)`+1

ρh
h∈Q1∪Q2

(
ωh` 0

0 ω(2n−1)h`

) (
0 ω(2n−1)h`

ωh` 0

)

Table 2: Character table of SD8n for an even n

u` (0 ≤ ` ≤ 4n− 1) vu` (0 ≤ ` ≤ 4n− 1)

ϕ1 1 1

ϕ2 1 −1

ϕ3 (−1)` (−1)`

ϕ4 (−1)` (−1)`+1

χh
h∈Q1

2 cos(hπ`
2n

) 0

χh
h∈Q2

exp(hπi`
2n

) + (−1)` exp(−hπi`
2n

) 0

2.2 Cayley graphs basics

Suppose that G is a finite group and S is a non-empty subset of G such that 1G 6∈ S and S =
S−1 = {s−1 : s ∈ S}. The Cayley graph Cay(G,S) with the connection set S is the graph whose
vertex set is G in which two vertices u and v are adjacent iff uv−1 ∈ S. Here we consider the condition
G = 〈S〉, which says that Cay(G,S) is a connected graph. The adjacency matrix of Cay(G,S) is
given by A = (αu,v)u,v∈G, where

αu,v =

{
1, if uv−1 ∈ S,
0, otherwise.
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Table 3: Representations of SD8n for an odd n

u` (0 ≤ ` ≤ 4n− 1) vu` (0 ≤ ` ≤ 4n− 1)

σ1 1 1

σ2 1 −1

σ3 (−1)` (−1)`

σ4 (−1)` (−1)`+1

σ5 (i)` (i)`

σ6 (i)` (i)`+2

σ7 (−i)` (−i)`

σ8 (−i)` (−i)`+2

ρh
h∈Q1∪Q3

(
ωh` 0

0 ω(2n−1)h`

) (
0 ω(2n−1)h`

ωh` 0

)

Table 4: Character table of SD8n for an odd n

u` (0 ≤ ` ≤ 4n− 1) vu` (0 ≤ ` ≤ 4n− 1)

ϕ1 1 1

ϕ2 1 −1

ϕ3 (−1)` (−1)`

ϕ4 (−1)` (−1)`+1

ϕ5 (i)` (i)`

ϕ6 (i)` (i)`+2

ϕ7 (−i)` (−i)`

ϕ8 (−i)` (−i)`+2

χh
h∈Q1

2 cos(hπ`
2n

) 0

χh
h∈Q3

exp(hπi`
2n

) + (−1)` exp(−hπi`
2n

) 0

Clearly, A is a real symmetric matrix and the eigenvalues of A are real numbers. Furthermore, if the
eigenvalues of the adjacency matrix A are integers, then Cay(G,S) is called an integral graph.
In order to determine the eigenvalues and eigenvectors of the adjacency matrix A of the Cayley

graph Cay(G,S), we need the following lemma.

Lemma 2.2. [32, pp. 69-70] Assume that G is a finite group with order n. Let τ (1), · · · , τ (r) be a
complete set of unitary representatives of the equivalent classes of irreducible representations of G.
Let χj be the corresponding character of the representation τ (j) with degree dj. Suppose that S is a
non-empty subset of G satisfying S = S−1 and aSa−1 = S for any a ∈ G. Then the eigenvalues of
the Cayley graph Cay(G,S) are

λj =
1

dj

∑
h∈S

χj(h)

with multiplicity d2j , where 1 ≤ j ≤ r. Furthermore, the vectors v(j)xy (1 ≤ x, y ≤ dj) form an

orthonormal basis for the eigenspace Vλj , where v
(j)
xy =

√
dj
n

(
τ
(j)
xy (a)

)t
a∈G

, τ (j)xy (a) is the xy-th entry

of the matrix τ (j)(a).

3 Perfect state transfer on the graph Cay(SD8n, S)

In this section, some necessary and sufficient conditions for the graph Cay(SD8n, S) having PST
are presented. We begin with a basic result about Hermitian matrices.
Assume that S is a subset of SD8n such that 1SD8n 6∈ S and S = S−1 = {s−1 : s ∈ S}. Let A

be the adjacency matrix of Cay(SD8n, S) and λj (1 ≤ j ≤ 8n) its eigenvalues. Then there exits an
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unitary matrix Q = (q1, · · · , q8n) to make the matrix A diagonal, where qj is an eigenvector of A
corresponding to λj (1 ≤ j ≤ 8n). So we obtain the following spectral decomposition of A:

A = λ1E1 + · · ·+ λ8nE8n,

where Ej = qjq
∗
j (1 ≤ j ≤ 8n) satisfy

E`Ej =

{
E`, if ` = j,
0, otherwise.

It is apparent from the spectral decomposition of A that the transfer matrix of Cay(SD8n, S) has the
following decomposition

H(t) = exp(−iλ1t)E1 + · · ·+ exp(−iλ8nt)E8n. (4)

Since Cay(SD8n, S) is vertex-transitive, one can get that H(t) = ξP for a unit norm number ξ and a
permutation matrix P . Thus, Cao et al. [15] and Godsil [22] presented the following result.

Lemma 3.1. [15, 22] Let S be a non-empty subset of SD8n satisfying gSg−1 = S for any g ∈ SD8n.
Let Cay(SD8n, S) be a simple connected Cayley graph with the connection set S. If Cay(SD8n, S)
exhibits PST from x to y(6= x), then yx−1 lies in the center of SD8n and the order of yx−1 is 2.

Clearly, the centers of SD8n are {1, u2n} if n is even and {1, un, u2n, u3n} if n is odd. Hence, PST
occurs on Cay(SD8n, S) between any two distinct vertices x, y such that y−1x = u2n.
To describe the necessary and sufficient conditions for the existence of PST on the graph Cay(SD8n, S),

we introduce the 2-adic exponential valuation of rational numbers. Let

υ2 : Q→ Z ∪ {∞},

such that υ2(0) =∞, υ2(2k ab ) = k, where a, b, k ∈ Z and 2 - ab. Suppose that ∞+∞ =∞+ k =∞
and ∞ > k for any k ∈ Z. Then, for any α, β ∈ Q, υ2 has two properties as follows:

• υ2(αβ) = υ2(α) + υ2(β);

• υ2(α+ β) ≥ min{υ2(α), υ2(β)} and the equality holds if υ2(α) 6= υ2(β).

Note that

SD8n = 〈u, v | u4n = v2 = 1, vuv = u2n−1〉
= {1, u, u2, · · · , u4n−1, v, vu, vu2, · · · , vu4n−1}.

For simplicity, we view the element ua of SD8n as a if 0 ≤ a ≤ 4n − 1 and the element vua of SD8n

as a if 4n ≤ a ≤ 8n− 1 in the sequel. Below, we will discuss the graph Cay(SD8n, S) admitting PST
in the following two cases.

3.1 The case that n is odd

In this subsection, we study the case where n is odd. From the irreducible representations of SD8n

and Lemma 2.2, we obtain the main result as follows.

Theorem 3.2. Suppose that n > 1 is an odd number and S is a subset of SD8n such that the cardinality
of S is d > 0 and gSg−1 = S for any g ∈ SD8n. Let Cay(SD8n, S) be a simple connected Cayley
graph with the connection set S. Let Q1 and Q3 be the sets defined by (1) and (3), respectively. Then
Cay(SD8n, S) has eight (not necessarily distinct) eigenvalues λ1 = d, λ2, · · · , λ8 which correspond to
the representations σ1 to σ8 of degree one, respectively, and 2n − 2 eigenvalues δj (j ∈ Q1 ∪ Q3)
with multiplicity 4 corresponding to the representations ρj of degree two, respectively. Furthermore, if
κ = gcd(λ− d : λ ∈ Spec(Cay(SD8n,S)) \ {λ1}), then
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(1) the graph Cay(SD8n, S) is periodic with minimum period 2π
κ if and only if it is an integral graph.

(2) the graph Cay(SD8n, S) has PST from a to b at time t if and only if

(2i) the graph Cay(SD8n, S) is integral;
(2ii) a− b = 2n or a− b = −2n with 0 ≤ a, b ≤ 4n− 1 or 4n ≤ a, b ≤ 8n− 1;
(2iii) For each j ∈ Q3 and z = 5, 6, 7, 8, υ2(δj − d) = υ2(λz − d) = r and υ2(λ− d) > r for any

other eigenvalues λ 6= δj with j ∈ Q3 and λ 6= λz with z = 5, 6, 7, 8.

In addition, the minimum time t = π
κ .

Proof. Since gSg−1 = S for any g ∈ SD8n, it follows from Lemma 2.1 and Lemma 2.2 that the
eigenvalues of the adjacency matrix A of Cay(SD8n, S) are λ1 = d, λ2, · · · , λ8 having multiplicity 1

and δj (j ∈ Q1∪Q3) with multiplicity 4. Let ω = exp( πi2n). The vectors q1, q2, · · · , q8, q(1)j , q
(2)
j , q

(3)
j , q

(4)
j

(j ∈ Q1 ∪Q3) form an orthonormal basis for C8n, where

q1 = 1√
8n

(1, 1, · · · , 1)t, q3 = 1√
8n

(1,−1, 1,−1, · · · , 1,−1)t,

q2 = 1√
8n

(1, · · · , 1,−1, · · · ,−1)t, q4 = 1√
8n

(1,−1, · · · , 1,−1,−1, 1, · · · ,−1, 1)t,

q5 = 1√
8n

({ik}4n−1k=0 , {i
k}4n−1k=0 )t, q6 = 1√

8n
({ik}4n−1k=0 , {−i

k}4n−1k=0 )t,

q7 = 1√
8n

({i3k}4n−1k=0 , {i
3k}4n−1k=0 )t, q8 = 1√

8n
({i3k}4n−1k=0 , {−i

3k}4n−1k=0 )t,

and for j ∈ Q1 ∪Q3,

q
(1)
j = 1√

4n
({ωjk}4n−1k=0 , 0)t, q

(2)
j = 1√

4n
(0, {ω(2n−1)jk}4n−1k=0 )t,

q
(3)
j = 1√

4n
(0, {ωjk}4n−1k=0 )t, q

(4)
j = 1√

4n
({ω(2n−1)jk}4n−1k=0 , 0)t.

Then the first eight corresponding projective matrices E` = q`q
∗
` (1 ≤ ` ≤ 8) of order 8n are

E1 =
1

8n
J8n, E2 =

1

8n

(
J4n −J4n
−J4n J4n

)
, (5)

E3 =
1

8n
((−1)a+b)0≤a,b≤8n−1, E4 =

1

8n
(f4(a, b))0≤a,b≤8n−1, (6)

E5 =
1

8n
(ia−b)0≤a,b≤8n−1, E6 =

1

8n
(f6(a, b))0≤a,b≤8n−1, (7)

E7 =
1

8n
(i3(a−b))0≤a,b≤8n−1, E8 =

1

8n
(f8(a, b))0≤a,b≤8n−1, (8)

where Jm is the all-one matrix of order m and

f4(a, b) =

{
(−1)a+b, 0 ≤ a, b ≤ 4n− 1 or 4n ≤ a, b ≤ 8n− 1,
(−1)a+b+1, otherwise,

f6(a, b) =

{
ia−b, 0 ≤ a, b ≤ 4n− 1 or 4n ≤ a, b ≤ 8n− 1,
−ia−b, otherwise,

f8(a, b) =

{
i3(a−b), 0 ≤ a, b ≤ 4n− 1 or 4n ≤ a, b ≤ 8n− 1,

−i3(a−b), otherwise.

For j ∈ Q1 ∪Q3, the other corresponding projective matrices E(k)
j = q

(k)
j q

(k)∗
j (1 ≤ k ≤ 4) of order

8n are

E
(1)
j =

1

4n

(
e
(1)
j (a, b)

)
0≤a,b≤8n−1

, E
(2)
j =

1

4n

(
e
(2)
j (a, b)

)
0≤a,b≤8n−1

, (9)

E
(3)
j =

1

4n

(
e
(3)
j (a, b)

)
0≤a,b≤8n−1

, E
(4)
j =

1

4n

(
e
(4)
j (a, b)

)
0≤a,b≤8n−1

, (10)
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where

e
(1)
j (a, b) =

{
ωj(a−b), 0 ≤ a, b ≤ 4n− 1,
0, otherwise,

e
(2)
j (a, b) =

{
ω(2n−1)j(a−b), 4n ≤ a, b ≤ 8n− 1,
0, otherwise,

e
(3)
j (a, b) =

{
ωj(a−b), 4n ≤ a, b ≤ 8n− 1,
0, otherwise,

e
(4)
j (a, b) =

{
ω(2n−1)j(a−b), 0 ≤ a, b ≤ 4n− 1,
0, otherwise.

Hence, we deduce the following spectral decomposition

A =
8∑
z=1

λzEz +
∑

j∈Q1∪Q3

δj(E
(1)
j + E

(2)
j + E

(3)
j + E

(4)
j ),

and the transfer matrix

H(t) =

8∑
z=1

exp(−iλzt)Ez +
∑

j∈Q1∪Q3

exp(−iδjt)(E(1)
j + E

(2)
j + E

(3)
j + E

(4)
j ). (11)

If we plug (5) to (10) back into (11), then we derive the (a, b)-th entry of the transfer matrix as
follows:

(i) if 0 ≤ a, b ≤ 4n− 1 or 4n ≤ a, b ≤ 8n− 1,

(H(t))a,b =
1

8n

(
exp(−iλ1t) + exp(−iλ2t) + (−1)a+b (exp(−iλ3t) + exp(−iλ4t))

)
+

1

8n

(
ia−b(exp(−iλ5t) + exp(−iλ6t)) + i3(a−b) (exp(−iλ7t) + exp(−iλ8t))

)
+

1

4n

∑
j∈Q1∪Q3

(
ωj(a−b) exp(−iδjt) + ω(2n−1)j(a−b) exp(−iδjt)

)
; (12)

(ii) if 0 ≤ a ≤ 4n− 1, 4n ≤ b ≤ 8n− 1 or 4n ≤ a ≤ 8n− 1, 0 ≤ b ≤ 4n− 1,

(H(t))a,b =
1

8n

(
exp(−iλ1t)− exp(−iλ2t) + (−1)a+b (exp(−iλ3t)− exp(−iλ4t))

)
+

1

8n

(
ia−b(exp(−iλ5t)− exp(−iλ6t))

)
+

1

8n

(
i3(a−b) (exp(−iλ7t)− exp(−iλ8t))

)
. (13)

Obviously, in the case (ii), PST cannot occur due to |H(t))a,b| ≤ 1
n . It suffices to prove the theorem

in the case that 0 ≤ a, b ≤ 4n− 1, and the case that 4n ≤ a, b ≤ 8n− 1 can be proved similar to the
previous comment. It follows from (12) that

|H(t)a,b| ≤
8

8n
+

4n− 4

4n
= 1.

Therefore, |H(t)a,b| = 1 if and only if

exp(−iλ1t) = exp(−iλ2t),
exp(−iλ1t) = (−1)a+b exp(−iλ3t),
exp(−iλ1t) = (−1)a+b exp(−iλ4t),
exp(−iλ1t) = ia−b exp(−iλ5t),
exp(−iλ1t) = ia−b exp(−iλ6t),
exp(−iλ1t) = i3(a−b) exp(−iλ7t),
exp(−iλ1t) = i3(a−b) exp(−iλ8t),
exp(−iλ1t) = ω(a−b)j exp(−iδjt),
exp(−iλ1t) = ω(2n−1)j(a−b) exp(−iδjt),

(14)
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for all j ∈ Q1 ∪Q3.
On one hand, if Cay(SD8n, S) has PST from a to b (b 6= a), from Lemma 3.1, we have |a− b| = 2n.

Let t = 2πT for T ∈ R. Then |H(t)a,b| = 1 if and only if

(λ2 − λ1)T ∈ Z,
(λ3 − λ1)T ∈ Z,
(λ4 − λ1)T ∈ Z,
(δj − λ1)T ∈ Z, for any j ∈ Q1,
(λ5 − λ1)T − 1

2 ∈ Z,
(λ6 − λ1)T − 1

2 ∈ Z,
(λ7 − λ1)T − 1

2 ∈ Z,
(λ8 − λ1)T − 1

2 ∈ Z,
(δj − λ1)T − 1

2 ∈ Z, for any j ∈ Q3.

(15)

Since the graph Cay(SD8n, S) is a simple graph, we get that
∑8

z=1 λz + 4
∑

j∈Q1∪Q3
δj = 0. It follows

from (15) that

T

 8∑
z=2

λz − 7λ1 + 4
∑

j∈Q1∪Q3

(δj − λ1)

 ∈ Z,

which is equivalent to 8nλ1T ∈ Z. Note that λ1 = d is a positive integer. Then T is a rational number.
According to (15), λz (z = 2, · · · , 8) and δj (j ∈ Q1 ∪Q3) are rational numbers. By Lemma 2.2 and
the definition of characters over finite groups, we know that λz (z = 2, · · · , 8) and δj (j ∈ Q1∪Q3) are
algebraic integers which implies that λz (z = 2, · · · , 8) and δj (j ∈ Q1 ∪Q3) are integers. Using the
same argument as in the proof of Theorem 2.4 in [33], we can derive that υ2(δj − d) = υ2(λz − d) = r
for each j ∈ Q3, z = 5, 6, 7, 8 and υ2(λ − d) > r for any other eigenvalues λ 6= δj with j ∈ Q3 and
λ 6= λz with z = 5, 6, 7, 8.
One the other hand, applying the conditions (2i), (2ii) and (2iii) to (14), it is easy to check that (14)

holds which implies that Cay(SD8n, S) admits PST from a to b at time t ∈ {πκ + 2π
κ s : s = 0, 1, 2, · · · }.

If a = b, proceeding as in the proof above, we can show that the graph Cay(SD8n, S) is periodic
with minimum period 2π

κ if and only if it is an integral graph. The proof of the theorem is now
completed.

3.2 The case that n is even

In this subsection, we prove the existence of PST on the graph Cay(SD8n, S) for the case that n is
even.

Theorem 3.3. Assume that n > 0 is an even number and S is a subset of SD8n such that the
cardinality of S is d > 0 and gSg−1 = S for any g ∈ SD8n. Let Cay(SD8n, S) be a simple connected
Cayley graph with the connection set S. Let Q1 and Q2 be the sets defined by (1) and (2), respectively.
Then Cay(SD8n, S) has four (not necessarily distinct) eigenvalues λ1 = d, λ2, λ3, λ4 corresponding to
the representations σ1 to σ4 of degree one, respectively, and 2n − 1 eigenvalues δj (j ∈ Q1 ∪ Q2)
with multiplicity 4 which correspond the representations ρj of degree two, respectively. Furthermore,
if κ = gcd(λ− d : λ ∈ Spec(Cay(SD8n, S)) \ {λ1}), then

(1) the graph Cay(SD8n, S) is periodic with minimum period 2π
κ if and only if it is an integral graph.

(2) the graph Cay(SD8n, S) has PST from a to b at time t if and only if

(2i) the graph Cay(SD8n, S) is integral;

(2ii) a− b = 2n or a− b = −2n with 0 ≤ a, b ≤ 4n− 1 or 4n ≤ a, b ≤ 8n− 1;
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(2iii) For each j ∈ Q2, υ2(δj − d) = r and υ2(λ − d) > r for any other eigenvalues λ 6= δj with
j ∈ Q2.

Additionally, the minimum time t = π
κ .

Proof. This theorem can be proved in a similar method as shown in Theorem 3.3 and we omit the
proof here.

From Theorem 3.2 and Theorem 3.3, we see that the graph Cay(SD8n, S) is an integral graph if
it exhibits PST. Hence, we will discuss characterizations of Cay(SD8n, S) being integral in the next
section.

4 The integrality of Cay(SD8n, S)

The integrality of graphs has attracted a great deal of attention in the past four decades. For general
graphs, characterizing the integrality is extremely hard. Bridges and Mena [12] gave a complete
characterization of Cayley graphs over abelian groups. Some necessary and sufficient conditions were
presented for the integrality of Cayley graphs over dihedral groups in [29]. In order to construct
PST on Cayley graphs over semi-dihedral groups by Theorem 3.2 and Theorem 3.3, we carry out a
characterization of Cay(SD8n, S) being integral under the case that gSg−1 = S for any g ∈ SD8n.
Now we recall some basic definitions on cyclotomic fields. Let ω = exp( πi2n) and denote byK = Q(ω)

the cyclotomic field. Then the Galois group of K/Q is

Gal(K/Q) = {εm : m ∈ Z∗4n} ∼= Z∗4n,

where Z∗4n = {m ∈ Z4n : gcd(m, 4n) = 1} is the unit group of the ring Z4n = Z/4nZ and εm is defined
by εm(ω) = ωm. Basing on the parity of n, we divide the study of the integrality of Cay(SD8n, S)
into the following two cases.

Proposition 4.1. Let S be a non-empty subset of SD8n = 〈u, v | u4n = v2 = 1, vuv = u2n−1〉 such
that gSg−1 = S for all g ∈ SD8n, where n > 1 is even. Put S1 = S ∩ 〈u〉, S2 = S ∩ v〈u〉. Suppose
that Cay(SD8n, S) is a simple connected Cayley graph with respect to S. Then Cay(SD8n, S) is an
integral graph if and only if Sm1 = S1 for all m ∈ Z∗4n, where Sm1 = {am : a ∈ S1}.

Proof. According to Lemma 2.1 and Lemma 2.2, the eigenvalues of Cay(SD8n, S) are λz (z = 1, 2, 3, 4)
and δj (j ∈ Q1 ∪ Q2), where λz =

∑
a∈S ϕz(a) and δj = 1

2

∑
a∈S1

χj(a). Evidently, λz are integers
and δj are algebraic integers. Therefore, Cay(SD8n, S) is an integral graph if and only if χj(S1) =∑

a∈S1
χj(a) ∈ Q for all j ∈ Q1 ∪Q2. For j ∈ Q1 and m ∈ Z∗4n, we get that

εm(χj(S1)) =
∑
a∈S1

εm(ωjlogua + ω−jlogua) =
∑
a∈S1

(ωmjlogua + ω−mjlogua) = χj(S
m
1 ).

For j ∈ Q2 and m ∈ Z∗4n, we get that

εm(χj(S1)) =
∑
a∈S1

εm(ωjlogua+(−1)loguaω−jlogua) =
∑
a∈S1

(ωmjlogua+(−1)mloguaω−mjlogua) = χj(S
m
1 ).

Thus χj(S1) ∈ Z if and only if χj(S1) = χj(S
m
1 ) for all m ∈ Z∗4n. Hence the Cayley graph Γ =

Cay(SD8n, S) is integral if and only if S1 = Sm1 for all m ∈ Z∗4n, which follows from the inverse
formula for the group ring C[SD8n]. The desired result follows.

Proposition 4.2. Let S be a non-empty subset of SD8n such that gSg−1 = S for any g ∈ SD8n and
n > 1 is odd. Assume that Cay(SD8n, S) is a simple connected Cayley graph with respect to S. Then
Cay(SD8n, S) is an integral graph if and only if Sm = S for all m ∈ Z∗4n.
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Proof. According to Lemma 2.1 and Lemma 2.2, the eigenvalues of Cay(SD8n, S) are λz (z =
1, 2, 3, 4, 5, 6, 7, 8) and δj (j ∈ Q1 ∪ Q3), where λz =

∑
a∈S ϕz(a) and δj = 1

2

∑
a∈S1

χj(a). Since
S is a conjugate-closed subset of SD8n, we assume that S1 = {u±k1 , u±k1(2n−1), . . . , u±kr , u±kr(2n−1)}
and S2 is an empty set or a set consisting of an element belonging to

{[v], [vu2], [vu] ∪ [vu3], [v] ∪ [vu2], [v] ∪ [vu] ∪ [vu3], [vu] ∪ [vu2] ∪ [vu3], v〈u〉}.

Then λz(z = 1, 2, . . . , 8) are integers and δj are algebraic integers. Proceeding as in the proof of
Proposition 4.1, we can get the desired results.

5 Comparisons and examples

In this section, we compare our constructions of PST with those in [14] and indicate that our
constructions can generate PST on new Cayley graphs.
Cao and Feng [14] investigated the existence of PST on Cayley graphs over dihedral groups D2m =
〈a, b | am = b2 = 1, bab = a−1〉. If m is odd, they pointed out that these is no PST on Cayley graphs
over D2m between any two distinct vertices. If m is even, the following fact was deduced.

Lemma 5.1. [14, Theorem 3.2] Assume that k > 1 is an integer and m = 2k. Let Cay(D2m, S) be a
connected Cayley graph with regard to S satisfying xSx−1 = S for each x ∈ D2m. Then Cay(D2m, S)
has four (not necessarily distinct) eigenvalues λ1, λ2, λ3, λ4 and some multiple eigenvalues µh(1 ≤ h ≤
m− 1). Furthermore,

(1) If k is even, Cay(D2m, S) has PST between two distinct vertices α and β iff

(1i) Cay(D2m, S) is an integral graph;

(1ii) αβ−1 = ak;

(1iii) υ2(µ2j′−1 − λ1) = r for any 1 ≤ j′ ≤ k/2 and υ2(λz − λ1) > r, υ2(µ2j̃ − λ2) > r for all
z = 1, 2, 3, 4 and 1 ≤ j̃ ≤ (k − 2)/2.

(2) If k is odd, Cay(D2m, S) has PST between two distinct vertices α and β iff

(2i) Cay(D2m, S) is an integral graph;

(2ii) αβ−1 = ak;

(2iii) υ2(λ3 − λ1) = υ2(λ4 − λ1) = υ2(µ2h′−1 − λ1) = s and υ2(λ2 − λ1) > s, υ2(µ2h′ − λ1) > s
for all 1 ≤ h′ ≤ k−1

2 .

Next, we consider the dihedral group D8n. For a finite group G and γ ∈ G, define the conjugacy
class of γ ∈ G by

[γ] = {gγg−1 : g ∈ G}.

Then, it is easy to check that D8n has 2n+ 3 conjugacy classes as follows:

• [1D8n ] = {1D8n}, [a2n] = {a2n};

• [as] = {as, a−s}, s = 1, 2, · · · , 2n− 1;

• [b] = {ba2e : e = 0, 1, · · · , 2n− 1}, [ba] = {ba2e+1 : e = 0, 1, · · · , 2n− 1}.

In Lemma 5.1, since the subset S satisfies gSg−1 = S for all g ∈ D8n, the set S must be one of
the conjugacy classes or some union of conjugacy classes of D8n. Thanks to the connection set of
the graph Cay(D8n, S), i.e., D8n = 〈S〉, S is consisted of at least one of the conjugacy classes [b] and
[ba]. Therefore, the cardinality of S is greater than 2n− 1. That is to say, Cay(D8n, S) is a d-regular
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graph, where d > 2n − 1. According to Lemma 5.1, Cao and Feng [14] explored the existence of
PST on d-regular graphs Cay(D8n, S). However, for d ≤ 2n− 1, there is no result about the problem
whether Cay(D8n, S) admits PST due to the limitation of the set S.
Now we turn to our constructions of PST on the graph Cay(SD8n, S). All conjugacy classes of

SD8n are introduced in the following proposition.

Proposition 5.2. [25] Assume that n > 1 is an integer. Let Q1, Q2 and Q3 be the sets defined by
(1), (2) and (3), respectively.
(1) If n is even, then SD8n has 2n+ 3 conjugacy classes which are given by

• [1SD8n ] = {1SD8n}, [u2n] = {u2n};

• [us] = {us, u(2n−1)s}, s ∈ Q1 ∪Q2;

• [v] = {vu2e : e = 0, 1, · · · , 2n− 1}, [vu] = {vu2e+1 : e = 0, 1, · · · , 2n− 1}.

(2) If n is odd, then SD8n has 2n+ 6 conjugacy classes as follows:

• [1SD8n ] = {1SD8n}, [un] = {un}, [u2n] = {u2n}, [u3n] = {u3n};

• [us] = {us, u(2n−1)s}, s ∈ Q1 ∪Q3;

• [v] = {vu4e : e = 0, 1, · · · , n − 1}, [vu] = {vu4e+1 : e = 0, 1, · · · , n − 1}, [vu2] = {vu4e+2 : e =
0, 1, · · · , n− 1}, [vu3] = {vu4e+3 : e = 0, 1, · · · , n− 1}.

The above proposition shows that the numbers of conjugacy classes of SD8n are greater than those
of D8n if n is odd. It follows from Proposition 5.2, Theorem 3.2 and Theorem 3.3 that we have more
choices of the connection set S than those in Lemma 5.1. Notably, one can check out the existence
of PST on k-regular graphs Cay(SD8n, S) for some k > n − 1. Leaving the possible isomorphisms
between Cay(SD8n, S) and Cay(D8n, S) aside, the existence of PST on some new Cayley graphs can
be determined by Theorem 3.3. Below, we present several examples by designing the connection set
S from Theorem 3.2 and Theorem 3.3.

Example 1. Let n > 1 be an odd number. Assume that S = {un, u3n} ∪ {vu4e : e = 0, 1, · · · , n− 1}.
Then Cay(SD8n, S) is a simple connected graph and exhibits no PST between any two distinct vertices.
Furthermore, Cay(SD8n, S) is periodic with minimum period 2π.

Proof. By the definition of S, it is easy to verify that Cay(SD8n, S) is a simple connected graph. It
follows from Proposition 4.2 that Cay(SD8n, S) is integral. Applying Lemma 2.1 and Lemma 2.2, we
obtain the spectrum of Cay(SD8n, S) as follows:

Spec(Cay(SD8n, S)) =

(
λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 δj
1 1 1 1 1 1 1 1 4

)
,

where

λ1 = n+ 2, λ2 = 2− n, λ3 = n− 2, λ4 = −2− n,
λ5 = λ7 = n, λ6 = λ8 = −n,

δj =


2, j ∈ Q1, j ≡ 0 (mod 4),
−2, j ∈ Q1, j ≡ 2 (mod 4),

0, j ∈ Q3.

Since υ2(δj − λ1) 6= υ2(λ5 − λ1) for any j ∈ Q3, the desired result follows from Theorem 3.2.
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Remark 1. The graph Cay(SD8n, S) defined in Example 1 is (n+2)-regular. Note that the existence
and non-existence of PST on the d-regular graphs Cay(D8n, S) have been proved in [14] for any
d ≥ 2n. Therefore, Example 1 has given the non-existence of PST on a new Cayley graph. In general,
by Theorem 3.2, one can obtain the existence and non-existence of PST on more new Cayley graphs.

Example 2. Assume that n > 1 is an odd number. Let S = {un, u3n} ∪ {vue : e = 0, 1, · · · , 4n− 1}.
Then Cay(SD8n, S) is a simple connected graph and admits PST from v`uj to v`uj+2n with the
minimum time t = π

2 for all ` = 1, 2 and j = 0, 1, · · · , 4n− 1. Furthermore, Cay(SD8n, S) is periodic
with minimum period π.

Proof. From the definition of S, Cay(SD8n, S) is a simple connected graph. It follows from Proposi-
tion 4.2 that Cay(SD8n, S) is integral. By Lemma 2.1 and Lemma 2.2, the spectrum of Cay(SD8n, S)
is

Spec(Cay(SD8n, S)) =

(
λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 δj
1 1 1 1 1 1 1 1 4

)
,

where

λ1 = 4n+ 2, λ2 = 2− 4n, λ3 = λ4 = −2,

λ5 = λ7 = λ6 = λ8 = 0,

δj =


2, j ∈ Q1, j ≡ 0 (mod 4),
−2, j ∈ Q1, j ≡ 2 (mod 4),

0, j ∈ Q3.

Hence, we deduce that

υ2(δj − λ1) = υ2(λz − λ1) = 1, for any j ∈ Q3 and z = 5, 6, 7, 8,
υ2(λ2 − λ1) = 3, υ2(λ3 − λ1) = υ2(λ4 − λ1) ≥ 3,

υ2(δj − λ1) = 2, for any j ∈ Q1, j ≡ 0 (mod 4),

υ2(δj − λ1) ≥ 3, for any j ∈ Q1, j ≡ 2 (mod 4).

Thanks to Theorem 3.2, Cay(SD8n, S) has PST from v`uj to v`uj+2n with the minimum time t = π
2

for all ` = 1, 2 and j = 0, 1, · · · , 4n− 1.

Example 3. Suppose that n > 1 is an integer. Let S = {u2n} ∪ {vue : e = 0, 1, · · · , 4n− 1}. If n is
even, then Cay(SD8n, S) has PST between from v`uj to v`uj+2n with the minimum time t = π

2 for
all ` = 1, 2 and j = 0, 1, · · · , 4n− 1. If n is odd, then Cay(SD8n, S) exhibits no PST between any two
distinct vertices.

Proof. Case 1: When n is even, according to Lemma 2.1 and Lemma 2.2, the spectrum of Cay(SD8n, S)
is

Spec(Cay(SD8n, S)) =

(
λ1 λ2 λ3 λ4 δj
1 1 1 1 4

)
,

where

λ1 = 1 + 4n, λ2 = 1− 4n, λ3 = λ4 = 1,

δj =

{
1, j ∈ Q1,
−1, j ∈ Q2.

Hence,

υ2(δj − λ1) = 1, for all j ∈ Q2,

υ2(λ2 − λ1) ≥ 4,

υ2(λ3 − λ1) = υ2(λ4 − λ1) = υ2(δj − λ1) ≥ 3, for all j ∈ Q1.
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From the definition of S, Cay(SD8n, S) is a simple connected graph. Then the desired result follows
from Theorem 3.3.

Case 2: When n is odd, using Lemma 2.1 and Lemma 2.2, the spectrum of Cay(SD8n, S) is

Spec(Cay(SD8n, S)) =

(
λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 δj
1 1 1 1 1 1 1 1 4

)
,

where

λ1 = 4n+ 1, λ2 = 1− 4n, λ3 = λ4 = 1,

λ5 = λ7 = λ6 = λ8 = −1,

δj =

{
1, j ∈ Q1,
0, j ∈ Q3.

Observe that υ2(δj − λ1) 6= υ2(λ5 − λ1) for any j ∈ Q3. Then it follows from Theorem 3.2 that
Cay(SD8n, S) has no PST between any two distinct vertices.

Remark 2. Note that D8n = 〈a, b | a4n = b2 = 1, bab = a−1〉. Assume that W = {ak : k ∈
W1} ∪ {ba` : ` ∈ W2} is a subset of D8n and Y = {uk : k ∈ Y1} ∪ {vu` : ` ∈ Y2}. We say that W
and Y have similar structures if W1 = Y1 and W2 = Y2. Cao et al. [14] has verified that the graph
Cay(D8n, Ŝ) admits PST, where Ŝ = {a2n} ∪ {bae : e = 0, 1, · · · , 4n − 1} (see Example 5.3 in [14]).
Observe that the set S defined by Example 3 and Ŝ have similar structures. However, Cay(SD8n, S)
admits PST if n is even and has no PST if n is odd. By Proposition 5.2, besides the conjugacy classes
[as] of D8n and [us] of SD8n for any odd s, the conjugacy classes of D8n and conjugacy classes of
SD8n have similar structures for an even n. If n is odd, SD8n and D8n have different conjugacy
classes. Therefore, we conjecture that Cay(SD8n, S) admits PST if and only if Cay(D8n, Ŝ) has PST
if n is even and the sets S and Ŝ have similar structures. Note that Cay(D8n, Ŝ) of Example 5.3 in
[14] has PST and Cay(SD8n, S) of Example 4 admits no PST. In addition, the graph Cay(SD8n, R)
defined by Example 2 admits PST and Cay(D8n, R̂) defined in Example 5.1 of [14] has PST, where
R and R̂ have similar structures. Consequently, we are more convinced that the existence of PST on
Cay(SD8n, S) has no direct link to the existence of PST on Cay(D8n, Ŝ) if n is odd and the sets S
and Ŝ have similar structures.

Since the dihedral groups and semi-dihedral groups can be decomposed as semi-direct products of
two cyclic groups, an interesting question is raised.

Open question 1. Let Gi be a finite group which can be decomposed as semi-direct products of
two cyclic groups Gi1 and Gi2, where i = 1, 2. Suppose that G1j and G2j have the same order for
j = 1, 2. Assume that S1 and S2 with the similar structures are subsets of G1 and G2, respectively.
If the conjugacy classes of G1 and G2 have similar structures, determine whether Cay(G1, S1) admits
PST if and only if Cay(G2, S2) has PST.

6 Concluding remarks

By determining the eigenvalues and corresponding eigenvectors of Cay(SD8n, S), we deduced some
necessary and sufficient conditions for Cay(SD8n, S) exhibiting PST. With those conditions, we pro-
vided some examples about the existence and non-existence of PST on Cay(SD8n, S). A comparison
between PST on Cayley graphs on dihedral groups and PST on Cayley graphs on semi-dihedral groups
has been made. Notably, basing on our necessary and sufficient conditions for PST on Cay(SD8n, S),
we can provide the existence and non-existence of PST on some new Cayley graphs that has never
been considered in [14]. By setting a subset S of SD8n and a subset Ŝ of D8n with similar structures,
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we conjecture the link between the existence of PST on Cay(SD8n, S) and the existence of PST on
Cay(D8n, Ŝ). A challenge question (Open question 1) is posed and our future work will focus on this
question.
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