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Abstract—EdgeML accelerators like Intel Neural Compute
Stick 2 (NCS) can enable efficient edge-based inference with
complex pre-trained models. The models are loaded in the host
(like Raspberry Pi) and then transferred to NCS for inference. In
this paper, we demonstrate practical and low-cost cold boot based
model recovery attacks on NCS to recover the model architecture
and weights, loaded from the Raspberry Pi. The architecture is
recovered with 100% success and weights with an error rate
of 0.04%. The recovered model reports maximum accuracy loss
of 0.5% as compared to original model and allows high fidelity
transfer of adversarial examples. We further extend our study
to other cold boot attack setups reported in the literature with
higher error rates leading to accuracy loss as high as 70%. We
then propose a methodology based on knowledge distillation to
correct the erroneous weights in recovered model, even without
access to original training data. The proposed attack remains
unaffected by the model encryption features of the OpenVINO
and NCS framework.

Index Terms—Cold Boot Attack, EdgeML, Intel Neural Com-
pute Stick 2, Model Recovery

I. INTRODUCTION

The tremendous success of Deep learning (DL) across
varied fields such as image recognition to natural language
processing has fuelled a new wave of artificial intelligence
(AI). Coupled with the exponential increase in the number of
sensor nodes in the internet of things (IoT), this has brought
about new requirements for AI hardware where computing is
done at the network edge close to the sensor [1]. Dubbed as
EdgeML, it is a growing research area that aims to deploy
models on computationally weak devices while still maintain-
ing model accuracy and performance requirements. Deploying
models on microcontrollers and other edge accelerators like
Intel Neural Compute Stick 2 (NCS) [2], ensures reduced
latency and data transmission requirements.

However, edge devices are exposed to many security con-
cerns due to the attacker having physical access to the device
[3]. The three major concerns relate to data privacy or safety
for end users, fault injection to induce misclassification and
IP theft for AI service providers. A lot of works have focused
on input manipulation to create ‘adversarial’ inputs that will
be misclassified with high probability [4] while others have
focused on injecting physical faults [5]. In this work, we
concern ourselves with the latter problem of IP theft. Due
to the usage of proprietary training data and expertise of
machine learning scientists in developing DNN models, these

are valuable IP that attackers are interested in acquiring [6].
Moreover, this knowledge can be leveraged by the attacker to
launch adversarial attacks as well.

Earlier works have demonstrated attacks exploiting phys-
ical access, enabled by EdgeML, such as side-channel [3],
faults [5] etc. However, these attacks have associated cost
owing to the required equipment. In this work, we demon-
strate practical and extremely low-cost method for model
recovery through cold boot attack on EdgeML devices. Cold
boot attacks [7] steal sensitive information like passwords,
encryption keys in SRAM by forcing memory to extreme low
temperatures. At such temperatures, the data persists in SRAM
even after power off for several minutes allowing malicious
recovery.

EdgeML device when executing model inference stores the
sensitive trained model in SRAM which becomes a target
of cold boot attack. The built in model encryption in NCS
tool flow does not protect this attack as the model must
be decrypted before execution1. The whole attack process is
illustrated in Fig. 1. The model recovered with cold boot attack
has certain errors. We then propose a methodology based on
knowledge distillation to correct the model errors in order to
achieve comparable accuracy.

A. Our Contributions

The main contributions of this work are as follows:

1) We propose first cold boot attack on EdgeML paradigm
enabling secret model recovery. The attack is low cost
and demonstrated on a EdgeML setup composed on
NCS as an AI accelerator and Raspberry Pi as the host,
where host becomes the primary target. The proposed
attack also bypasses the built in model encryption in
NCS tool flow.

2) With the achieved low error rate on our attack setup, we
report a 100% success in recovery of model architecture
and weights are recovered with a minor error of 0.04%.
The recovered model are comparable to original model

1The vulnerability was responsibly disclosed to Intel in March 2021.
Intel recommends use of secure hardware enclaves to mitigate such attack.
Availability of secure hardware enclaves is not always guaranteed on low-
cost host setup and must be carefully evaluated based on the sensitivity of
the application.
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Fig. 1: Attack Flow for Model Recovery on Commercial EdgeML Device.

and results in a relative accuracy drop of under 0.005
on 6 different models.

3) We achieve high-fidelity extraction of the model, accord-
ing to the taxonomy of [8], which provides advanced
capability to an adversary like transferring adversarial
examples with a high success rate.

4) As the errors in cold boot attack can increase drastically
with a minor disturbance in experimental environment,
we report model recovery at higher error rates as re-
ported in previous works [7] showing relative accuracy
drop as high as 0.7. We thus propose a novel model
correction approach based on dropout knowledge dis-
tillation bringing relative accuracy drop to under 10%.
The main advantage of the proposed approach is that it
works even without access to original training dataset.

The codes for the experiments reported in this work is made
publicly available at https://github.com/soham96/DeepFreeze.

II. PRELIMINARIES

In this section, we recall the background concepts that will
be used for the rest of the paper.

A. Cold Boot Attack

The cold boot attacks [7] exploit the data remanence prop-
erty of static random access memory (SRAM) memory cell
to recover sensitive data. SRAM which is considered volatile,
loses data instantly on power-off. However, if the memory is
forced into extreme cold temperatures, the data on the memory
will decay at a much lower rate, allowing enough time for
an adversary to recover it. The SRAM can contain sensitive
information like passwords, PIN, login credentials, encryption
keys etc. Unauthorised access to SRAM data through cold boot
attacks can lead to serious security breach in the target system.
The practicality of cold boot attacks have been widely demon-
strated on platforms like laptop [7], desktop [9], scrambled
RAM [10], smartphones [11] and IoT device [12]. Depending
on the temperature of the memory, the data stored in memory
can potentially retain even though losing the power. Hence,
an adversary can recover the data using these properties if
the sensitive/private data are stored in the memory. In terms
of adversary assumption, we can divide into two categories,
depending on the RAM separation from the main board.

If the RAM can be separated from the main board (e.g.
desktop and laptop), the adversary can remove the victim
memory and connect to another machine for recovering the

data. If the memory cannot be separated due physical con-
straints (like stacked memory in chip package), a vulnerable
boot sequence can be exploited to recover the sensitive data
from cold boot [12]. In this paper, we concentrate on the
vulnerability of Raspberry Pi against cold boot attack in order
to investigate the ML model recovery.

B. Model Extraction Attack

In machine learning, training a model requires lots of
resources with associated cost. As a result, a well trained
model has commercial importance. This has led to the rise of
Machine Learning as a Service (MLaaS) where big companies
like Amazon, Google, etc have trained efficient models owing
to their access to huge amount of training data. The models
are available on a pay per use basis. A theft/recovery of such
trained models by an adversary incurs direct losses to the
model owner.

Model recovery or model extraction is an active topic in
the area of machine learning. Tramer et al. [13] demonstrated
that it is possible to duplicate the functionality of a black box
model API, without any prior knowledge of model parameters
and training data. The adversary observes responses to known
queries and aims to estimate a model which is functionally
close or equivalent to the black box model. Later, with the
adoption of ML on edge devices (EdgeML), the use case
enabled physical access to the target inference device. Physical
access allowed new attack vectors like side-channels [3] and
faults [14]. Some of these attack exploit: power [15], elec-
tromagnetic [3], and timing [16] leakages to recover model
parameters. Faults attacks have also been shown to enable
model recovery [14]. To the best of our knowledge, using
cold boot attack for model recovery has not been investigated
before.

The idea is to recover the trained model. The first model
extraction attack was proposed by Tramer et al. [13]. In this
case, they assume black box model, with no prior knowledge
of the model parameter and training data. The aim is to du-
plicate the functionality of the target model, by observing the
output of the model. In [8], the author proposed a taxonomy of
the model extraction attacks on machine learning. Basically,
the attacks can be categorized as follow (with addition of exact
extraction in this work):

• Exact Extraction: when the extracted model have same
architecture and weights as the original,
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• Functionally Equivalent Extraction: a slightly weaker
assumption, where the output of both models only have
to agree to be the same for all the elements from the
domain,

• Fidelity Extraction: where the extracted model be the one
that maximise the similarity function with the original
model for a target distribution. The functionally equiva-
lent extraction is special case, where it achieves a fidelity
of 1 on all distributions and all distance functions, and

• Task Accuracy Extraction: where the extracted model
only has to match (or exceed) the accuracy of the target
model.

While task accuracy extraction is the most commonly seen
goal, exact extraction is observed in attacks leveraging phys-
ical means [3], [14] at the cost of high-end equipment. High
fidelity extraction was exploited in [8] to validate transfer of
adversarial examples and is considered a stronger extraction
as compared to task accuracy.

C. Knowledge Distillation

Knowledge Distillation (KD) was first introduced by Hinton
et al. [17] as a model compression technique where the authors
tried to distill the knowledge learned by a larger teacher
network into a smaller student network. The student learns
using the output class probabilities or the soft-outputs from
the teacher network. Hinton et al., also proposed the use of
a softmax temperature factor and later works have proposed
using intermediate layer outputs to increase the amount of
information available to the student for training [18]. KD has
also been combined with other techniques like pruning and
quantization to get further compression. KD has been used as
a method to increase the accuracy of the student network by
using a trained teacher model to generate pseudo labels for a
large unlabelled image dataset [18]. This has been shown to
improve the accuracy on ImageNet by 2%.

D. Related Works

Several model recovery attacks have been proposed in
literature [8], [13]. With the adoption of EdgeML, attacks tar-
geting the physical layer have emerged leveraging on physical
access through side-channel analysis, fault injection etc. The
approach based on side-channel attacks exploit physical leak-
ages, such as power and electromagnetic emanation (EM) [3],
[19], [20] to recover parameters like architecture, weights of
the target model2. Other attacks exploiting physical access
include faults [14], where the weights of last layers were
retrieved by precise fault injection. As per our knowledge,
using cold boot attack for model recovery has not been
investigated yet. In Tab. I we compare the common techniques
leveraging physical access for model recovery. The cost of
the attack is estimated based on equipment reported in the
respective paper. The extraction methods refers to taxonomy
of [8] as previously described, with the addition of exact

2Cache based and other remote side-channel attacks are not considered in
light of EdgeML devices.

TABLE I: Comparison with Related Works Leveraging Phys-
ical Access

Technique Recovered Parameters Extraction Method Cost($)
EM Side-Channel [3] Architecture + Weights Exact 10k-100k

Power Side-Channel [21] Weights Exact 1k-10k
EM Side-Channel [20] Architecture + Weights Task Accurate 10k-100k

Faults [14] Weights (last layer) Exact >100k
Cold boot [This Work] Architecture + Weights High Fidelity <10

Intel Neural Compute Stick 2 Main Processor
(Raspberry Pi)

Frozen RAM

(a) NCS on Main Processor (b) Air Duster
Fig. 2: Cold Boot Attack against EdgeML on Raspberry Pi.

extraction, which to our knowledge is specific to methods
leveraging physical access.

III. MODEL RECOVERY BY COLD BOOT ATTACK

In this section, we present the practical cold boot attack
for model recovery. We also present the threat model for the
attack.

A. Attack Target

OpenVINO is a Python framework provided by Intel to
interface with the NCS, load networks on it, run inference
and get results [22]. Before a model can be loaded on to
the NCS, it has to first be transformed into OpenVINO’s
IR format. Models in supported frameworks like TensorFlow,
Keras etc. can be converted into the IR format. Once converted,
the IR format models are stored as two files: one containing
the model architecture in XML format as a .xml file and
the other containing the weights of the model as little-endian
hexadecimal numbers in a .bin file. The weights are stored
sequentially with the first weight being the weight value of
the first neuron (or first filter in case of convolutional layer),
followed by the rest of the neurons in that layer and the bias.
This continues for all the layers sequentially.

As an edge accelerator, the NCS needs to be paired with a
host Linux microprocessor. The baseline setup uses Raspberry
Pi as the host computer. To load the model on to the NCS to
perform inference, the IR files need to be first read and parsed
by OpenVINO on the host device. Even if the .xml and .bin
are encrypted when saving, they have to be decrypted before
loading on to the RAM and parsed by OpenVINO [23]. This
means that the decrypted model weights and architecture can
be retrieved from the contents of the host RAM by performing
a cold boot attack.

B. Threat Model

The target victim is an edge device performing inference
with trained model M which is of proprietary nature. The
model inference is accelerated using NCS with Raspberry Pi as
the host device. We expect that the designer has implemented
standard security features, such as encryption of the SD card
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image, blocking unauthorised access to Raspberry Pi using
password protection, OpenVINO model encryption etc.

The adversary aims at recovering a model M’ comparable to
model M of the victim. The first objective for the adversary is
to achieve a task accuracy extraction based on the previously
stated taxonomy [8] as it allows omitting payments towards
pay per use licence. Possibility of a stronger extraction can
always benefit the adversary and is explored later in the paper.
The adversary has physical access of the victim device to
perform a cold boot attack in order to recover M’. The process
of cold boot attack is explained in next section. Due to the
nature of cold-boot attack, the recovered model will have
some errors and thus, the model errors must be corrected to a
desired threshold. Once the equivalent model M’ is recovered,
the victim device can be rebooted and restored to function
normally. The model M’ can be run on an independent device
without incurring any licensing cost to the adversary. With
regards to recovery of the parameter, we observed that in
most trained models, the values (such as weights) typically
fall in the range of [−5,+5]. This information could then be
utilized by the adversary when performing model correction.
This range can be suitably adapted if required.

C. Practical Details on Cold Boot Attack

As the OpenVINO framework runs on host computer, it
handles the decryption of the model, conversion of model
parameters to IR format and communicates with NCS. This
requires the model to be stored in the SRAM of host computer
in decrypted format. As stated earlier, the host computer
readily used with NCS is Raspberry Pi.

The aim of the cold boot attack is to recover the model
from SRAM of the Raspberry Pi (Model B+). To perform the
attack, we need to identify the boot sequence of Raspberry Pi.
Won et al. [12] showed an attack on Raspberry Pi for recovery
of memory content which was image data in their use case.
We use a similar approach in the following.

The boot sequence starts with turning on the GPU and first
stage bootloader is executed from the ROM. The first stage
boot loader writes second stage boot loader to L2 cache and
executes it to enable SRAM. The L2 cache is initialized by
the bootloader preventing cold boot attack but this is not the
case with SRAM which remains uninitialised. An adversary
with physical access to device executing inference with the
loaded model, freezes the RAM mounted on the host CPU.
The RAM can be frozen using an air duster as shown in Fig. 2.
The adversary then swaps the victim SD card with his own
SD card to run a malicious image. The malicious image runs
the boot sequence until second stage bootloader and dumps
the uninitialised SRAM content. Once the RAM content is
dumped, the device can be restored to allow normal operation
with victim’s SD card. The attack is extremely low cost.

We perform the cold boot attack with OpenVINO frame-
work and model inference on NCS. The target of the attack is
to recover the decrypted model parameters which exist in the
Raspberry Pi SRAM, while the inference is requested on the
NCS.

−30 −25 −20 −15 −10 −5 0

60

80

100

Temperature (℃)

R
e
co

v
e
ry

R
a
ti
o
(%

)

1 2 3 4 5

1

2

3

4

5

Trial

T
ri
a
l

Cross-Correlation Result

0

0.2

0.4

0.6

0.8

1

Ratio

0.75 0.77 0.69 0.76 1.00

0.85 0.80 0.71 1.00 0.77

0.67 0.73 1.00 0.71 0.69

0.74 1.00 0.72 0.80 0.78

1.00 0.74 0.67 0.85 0.75

Fig. 3: Impact of temperature on the recovery Ratio for cold
boot attack (left) and Cross-Correlation for 5 trials (right).

To measure the effectiveness of the attack, we compute the
recovery ratio of the RAM data. This is measured in terms
of decay models [7] where ρ0 measures the probability of
a original bit value 1 flipping to 0 and ρ1 measures vice
versa. We observe (ρ0 and ρ1) as (0.0000027 and 0.00000009)
respectively. Compared to previous works like [7], our model
is recovered with a very low error rate. Previous reported
numbers for ρ0 and ρ1 at 1% and 0.1% respectively or orders
of magnitude higher than our case.

We further investigate the robustness of our proposed cold
boot attack. The air duster used in our experiments can take
down the temperature to levels as low as −30 °C. However,
while operating under standard laboratory temperature (24 °C),
the chip temperature starts to rise up fast. In Fig. 3a, the
recovery ratio is plotted against temperature. At −30 °C, we
could achieve a recovery ratio about 99.96%. This degrades
quickly to 99% at −20 °C and 62% at −10 °C.

Another interesting parameter for the proposed attack is the
position of bit errors in the victim memory dump. If the error
occur in random position, a simple repetition of the attack
more than twice (when threat model allows) followed by a
majority voting can reduce the error rates. To investigate this,
we repeated the same attack 5 times under same conditions
(−30 °C). We quantify this in form of a 5 cross-correlation
similarity matrix for the 5 trials as shown in Fig. 3b. A high
correlation indicates that error often affect the same bit po-
sitions across multiple trials, thus preventing error correction
by majority voting. This could be linked to the memory chip
hardware properties. The error rate with and without majority
voting was reported at ≈ 0.04%, indicating that repetition does
not help much.

IV. BASELINE MODEL RECOVERY

Once the RAM dump is retrieved, the next step is to recover
the model from the RAM dump. Due to errors in extraction,
the recovered weights can be different from the weights of the
original model.

A. Recovering Model from RAM Dump (.xml + .bin)

The RAM dump as recovered with the cold boot attack must
be interpreted to recover the target model M’. Due to the error
introduced in RAM dump during the process of cold boot
attack, the exact model M cannot be directly recovered. In the
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following, we explain the method to perform a first stage error
correction to recover M’ from the RAM dump.

1) Architecture Recovery: The errors are distributed over
the .xml file and the .bin file, which must be corrected.
The .xml can be corrected easily due to its well-defined
structure. The .xml file or the architecture of the model
starts and ends with a <net> tag. Other tags include the
<layer> and <edges> tags which contains information
about each layer and how they are connected. There is also
a <cli parameters> tag that contains metadata about
the model and framework specific information. Recovering
the xml can be done by searching for the starting and
ending <net> tags and extracting everything in between.
The recovery can be verified by making sure that all opened
tags were closed. This can be helpful in case a part of the
architecture is present in a different part of the RAM dump.
Fig. 4 shows an example of recovered model architecture with
errors highlighted in red. These errors can be fixed using the
previous approach and implemented by a combination of XML
syntax checker and a dictionary.

<net name="simpla_ffnn" wers)on="7>
<layerS>
<layer id="0" name="sequantiah[1_input"
type="I.put">

<mutput>
<port iD="0" precisioN="FP32">
<dim>14/diM>
<dim>3</dim>

<.port>
</output>

</layer:
</layers>

</net>

Fig. 4: Sample Erroneous XML Snippet

2) Weight Recovery: Next, the weights must also be re-
covered from the .bin file. The number of weight values
can be calculated from the recovered architecture. As stated
before, the weights are stored sequentially from input to
output, neuron by neuron. To recover the weights from the
RAM dump, we search for consecutive little-endian floating
point values which are not valid UTF-8 characters in Alg. 1.
We perform the check for every two floating point values or 8
potential UTF-8 characters. If those 8 characters do not form
a valid UTF-8 sequence, then we consider those two weight
values as a part of the model and appended to our model. The
search for weights is terminated when the number of recovered
weights matches the expected number of weights from the
architecture recovery. Some errors can render the weights out
of range like infinity or NaN, leading for model inference to
fail returning a NaN output. To counter such errors, the out of
range weights must be corrected to bring them in acceptable
ranges. The IEEE-754 floating point standard allocates the first
bit for the sign, the next 8 bits for the exponent and the final
23 bits for the mantissa. Usually, a change in the mantissa of
the weight will result in a small magnitude change and will
be difficult to identify. Similarly, a change in the sign bit will
also be difficult to spot. However, a single bit change in the
exponent can result in a large magnitude change of the weight

that can be easily identified.
As described in threat model, we consider weights that are

not in the range of -5 to +5 as incorrect [3]. In addition to that,
we also consider weights with an absolute value less than 10−5

to also be incorrect. Once the erroneous weights are identified,
large weight values are divided by 2 until its value is within
the range of [−5,+5] and small weights are multiplied by 2
until their absolute value is more than 10−5.

Note that, the recovered weights are still erroneous. For
our experiments, the weights are affected by an error rate of
0.04%. In next subsection, we investigate the impact of this
erroneous model recovery on model accuracy.

Algorithm 1: Weight Recovery Procedure
Input: RAM Dump(D), Total Weights(T);
Initialization: count = 0, weight array=[];
while bit in D do

while count ≤ T do
bits = Read next 64 bits from D;
if not valid UTF8(bits) then

count=count+2;
weight array.append(bits);

else
count=0;
weight array=[];

end
end
range count=Count(weight array in Range(-5, 5));
range percent=range count/Length(range count);
if range percent ≥ 0.9 then

break;
else

count = 0;
weight array=[];

end
end

B. Target Models & Attack Metrics

We perform this attack on models trained on CIFAR10. We
use the Base, Base (Wide), Base (Dropout), Base (PReLU),
LeNet5 and LeNet5 (Dropout) architectures from [24] and
train them on CIFAR10. The error rate during our cold
boot attack is ρ0 (1 → 0) = 0.00027% and ρ1 (0 → 1)
= 0.000009%. We study the impact of such error rates on
model accuracy.

We use the Relative Accuracy Drop (RAD [24]) to quantify
the drop in performance of the model:

RAD =
AccM −AccM ′

AccM
, (1)

where M and M’ are original and recovered models respec-
tively.

C. Experimental Results

The baseline attack was performed 100 times for each
model. The architecture and weights are recovered sequen-
tially. First the architecture is recovered from the RAM
dump followed by error correction as described earlier. The
correction process is trivial and we were able to recover
the architecture every time, leading to a 100% success.
The recovery of the architecture provides information on the
number of weights. The weight recovery follows Algo 1 and
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Fig. 5: RAD for recovered model with low error rates.

contain errors at a rate of 0.04%, which corrects the out of
range errors previously mentioned. The errors are not further
corrected for this experiment. Fig. 5 shows the result for the
models trained on CIFAR10. It reports that the recovered
model M’ performs very closely to original model M, with
a maximum RAD of 0.005. in some cases, the induced error
results in a slight improvement of accuracy.

V. MODEL RECOVERY WITH HIGHER ERROR RATES:
KNOWLEDGE DISTILLATION

In the previous sections, we reported a successful cold boot
base model recovery attack where the accuracy of recovered
model M’ was fairly close to M, leading to a task accurate ex-
traction. The recovery was performed on our experimental test
bed where we achieved extremely low error rates. However, if
we compare to the previously reported cold boot attacks the
error rates can be as high as 1% [7]. This is also seen in our
experiments when recovery is done at −20 °C. To assess the
feasibility of cold boot attacks in a much general scenario, in
this section, we work with higher error rates as reported in [7]
i.e. ρ0 (1→ 0) = 1% and ρ1 (0→ 1) = 0.1%. As shown later,
higher error rates result in higher RAD. Thus we propose a
methodology based on knowledge distillation to correct M’.

The baseline model recovery method can help to identify
and fix bit flips in the exponent of the weights. However, as
there are 23 mantissa bits, they are more prone to errors.
Changes in the mantissa results in a very small change in
the magnitude of the weight. This makes it hard to identify
and correct those weights using the baseline approach. Further,
even though the changes are small, as shown in Fig. 6, RAD
can be as high as 0.7 (compared to 0.005 with low error rates).

We investigate several scenarios. The first scenario is where
the original dataset is available to the attacker. Next, we also
investigate a setting when original dataset is secret and not
available but a dataset similar to what the teacher model would
have been trained with is used for training. Furthermore, to
limit compute power of the attacker, we limit our training
samples to only 10% of the total samples in the dataset.

To improve the model accuracy, we adopt a two-step train-
ing approach to recover the accuracy of the student model.
First, weights outside the range [−5,+5] and weights with
absolute value less than 10−5 are converted to zero. This

Fig. 6: RAD for recovered model with higher error rates.

initial error correction was chosen since it was simpler and in
our experiments it lead to comparable results as the previous
method (division of weights until in range). Following that,
the model is trained using two different KD techniques.

1) Traditional Knowledge Distillation: Traditionally, KD
uses softmax temperature and intermediate outputs to train
models. The extra information helps the student better learn
from the teacher and improves student performance. However,
in our application, since intermediate outputs and non-softmax
outputs are not available to the attacker, these methods are not
used. Instead, only the softmax outputs from the teacher model
is used to train the student model, referred to as D1.

2) Dropout Knowledge Distillation: In addition to improve
accuracy, intermediate outputs and softmax temperature act as
regularizers and prevents the student model from overfitting
[18]. However, due to our constrained training setting, these
techniques cannot be used. Additionally, since we use a
smaller sample of recovery data different from the original
training set, regularization is needed to prevent the model from
overfitting. To counter these problems, we introduce Dropout
KD as a regularization method, where random gradients of
each layer are dropped out during the training of the student
model (referred as D2). Weights whose gradients have been
dropped are not updated.

KL-Divergence loss between the softmax outputs of the
teacher and student model is used as the loss function for both
D1 and D2. For models trained on MNIST, we use the letters
subset from the EMNIST dataset as the recovery dataset. For
CIFAR10 and ImageNet models, the unlabelled subset from
the STL10 dataset is used.

To recover the accuracy of the original MNIST models,
training was done using Adam optimizer with a batch size of
32 and a learning rate of 10−3 for 30 epochs. The learning rate
is halved every 10 epochs. For the CIFAR10 trained models,
Adam with a batch size of 128 and a learning rate of 10−4 is
used. The learning rate is reduced by a factor of 0.9 every 10
epochs and the models are trained for 50 epochs.

3) Experimental Results: We report the model recovery
results for all the models in Tab. II. We first report the RAD
when the attacker has access to the original training dataset.
In this case, only 10% of the original training data is used for
recovery. In addition to that, we also perform recovery using
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TABLE II: KD Based Model Recovery on Different Datasets From [24] with Higher Error Rate

Data
Models Base BaseWide BaseDropout BasePReLU LeNet5 LeNet5Dropout

Training Recovery D1 D2 D1 D2 D1 D2 D1 D2 D1 D2 D1 D2

MNIST
MNIST 0.002956 0.0009176 0.004581 0.00101 0.001424 0.004884 0.003776 0.004286 0.002442 0.002238 0.002953 0.003361

EMNIST
(12k) 0.008666 0.004078 0.033594 0.01211 0.025132 0.008445 0.009899 0.006531 0.00661 0.006003 0.00682 0.007027

EMNIST
(6k) 0.01009 0.007952 0.02046 0.026977 0.02319 0.01058 0.01765 0.02061 0.007834 0.006919 0.01028 0.009064

CIFAR10
CIFAR10 0.081696 0.09497 0.13403 0.1091 0.09066 0.077327 0.06794 0.06726 0.05269 0.04236 0.05515 0.045448

STL10
(10k) 0.056496 0.05283 0.099543 0.08153 0.08217 0.055503 0.055001 0.05244 0.05864 0.03642 0.04907 0.030558

STL10
(5k) 0.07600 0.076818 0.135556 0.136063 0.08810 0.09214 0.0796710 0.07899 0.04701 0.04533 0.03224 0.03703

TABLE III: Comparison of Knowledge Distillation (D2) vs.
Re-Training. Results are in the form of Epochs/RAD

Knowledge Distillation Training Training from Scratch
Recovery Data STL10 CIFAR10 CIFAR10

Data Split 0.1 0.5 1 0.1 0.5 0.1 0.5
Base 10/0.04 13/0.01 6/0.003 10/0.036 7/0.017 14/0.34 7/0.29

BaseWide 14/0.09 7/0.03 3/0.01 12/0.05 15/0.018 16/0.34 14/0.16
BaseDropout 20/0.047 11/0.01 4/0.01 9/0.07 8/0.025 11/0.36 9/0.22
BasePReLU 11/0.03 7/0.008 2/0.003 8/0.04 6/0.006 12/45.11 26/0.04

LeNet5 16/0.02 10/0.01 4/0.01 9/0.028 5/0.0018 40/29.32 17/48.27
LeNet5Dropout 9/0.01 7/0.001 2/0.001 4/0.034 3/0.014 53/27.07 11/44.24

EMNIST (6k) and STL10 (5k) having same dataset size as the
original dataset. Here 6k and 5k refer to randomly chosen 6000
and 5000 samples in training dataset. Next, we also investigate
the scenario when attacker has access to larger dataset which
is different from original dataset. In this case, we use 10%
EMNIST(12k) and STL10(10k). The RAD is calculated on
the test set of the teacher model.

Not to surprise, access to original dataset, gives the best
results. Fortunately, using more training samples also results
in a decrease in the RAD irrespective of the recovery set used
pointing to practical possibility of model recovery. This can
be seen in Fig. 7 where D1 was used as the training approach.

Further, using D2 with a dropout value of 0.5, in general,
results in lower RAD especially when using more data to train.
In addition, we also see that our method is not affected by the
use of Dropout or PReLU during training and the depth of the
network does not impact accuracy recovery.

On MNIST, the best result is on the Base model using 10%
of unlabelled EMNIST data as the recovery set and D2 as the
training paradigm. The LeNet5 and LeNet5 Dropout models
have the second and third best recovery results using the same
data and training paradigm.

On the other hand, on CIFAR10, the best RAD are on the
LeNet5 and LeNet5 Dropout models using STL10 with 10k
samples as the recovery set and D2 as the training method.

4) Comparison With Re-training: To justify the use of
distillation, it is compared with retraining the model from
scratch using the same dataset. We report with CIFAR 10
only being harder than MNIST. As shown earlier, we can
recover the architecture with 100% success, which is now
retrained from scratch as recovered weights are ignored. The
results comparing the proposed distillation method (D2) with
retraining (with successful architecture recovery) at different
dataset splits can be seen in Tab. III.

When training the same architecture from scratch with a
smaller percentage of the training data, the accuracy recovery

Fig. 7: RAD for CIFAR10 LeNet5 for Different Percentages
of Training Dataset using D1 Training Paradigm

is worse overall as compared to training with D2 as can be
seen from the higher values of RAD. The epochs taken for the
model to converge (loss not decreasing for more than 2 epochs)
when training from scratch is also more in general compared
to KD. When training with KD, a higher percentage of either
the same training data or a similar unlabelled training data
(STL10) results in a better RAD as well as fewer epochs to
converge in general, with models trained on same data getting
better results. Thus, KD provides advantage over recovering
just the architecture and retraining.

5) On Transfer Learning: Most deployed models do not
have a custom architecture. Instead transfer learning on pop-
ular pre-trained ImageNet models is done to increase the
accuracy on a separate dataset. In this case, the adversary has
to only recover the fully connected (FC) layers.

We train three models: AlexNet, VGG16 and ResNet18
on Tiny ImageNet and try to recover the original accuracy
using 50% (or 50k images) of the training set from Tiny
ImageNet as well as the unlabelled set from STL10. The
results are in Tab. IV. Here, the accuracy recovery works
better when the same dataset that was used for training the
model is used during recovery. However, the magnitude of
RAD is comparable to when training the whole model. This
could be attributed to fully connected layers where weights

TABLE IV: Model Recovery on Pretrained Models

Data
Models AlexNet VGG16 ResNet18

Training Recovery D1 D2 D1 D2 D1 D2

Tiny
ImageNet

Tiny
ImageNet 0.08246 0.08366 0.08532 0.09834 0.0289 0.09163

STL10
(unlabelled) 0.08488 0.08717 0.09427 0.09892 0.0935 0.09220
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(a) With low error rates (b) With higher error rates

Fig. 8: Layer Norm After Training to Recover Original
Weights of CIFAR10 Models

are recovered with higher error (as shown in next section).

VI. FURTHER DISCUSSIONS

In this section, we explore the extent of our extracted model
against various advanced attacks.

1) Exact Extraction: The adversary model presented before
aims at task accuracy extraction. However, for some applica-
tions exact extraction may be desirable. The use of KD in
model recovery causes the weights in M’ to take a different
distribution as compared to M. We conducted experiments and
observed that it is possible to recover the original weights by
training the models slower, with a smaller learning rate. To
see how similar the weights of a layer in M’ are as compared
to the weights in M, we calculate the Relative Layer Norm
defined as:

LayerNorm =
Norm(M −M ′)
Norm(M)

, (2)

where a lower Layer Norm means that weights are similar.
When low error rates are encountered, the norm stays close to
1 in general (see Fig. 8a), which indicates that the distribution
has minor impact.

For higher error rates, we perform the layer activation
recovery by training with an Adam optimizer for 500 epochs
with a learning rate of 10−5. We reduce the learning rate by
0.5× every 50 epochs. The recovery was done with the full
unlabelled subset of the STL10 dataset on 4 models trained
on CIFAR10 at high error rates. The results are in Fig. 8b. In
general the weights in the first and last layers can be recovered
better than the weights in the middle layers. In addition, layers
with more parameters like the FC layer are harder to recover
and in some cases, even with slower training, the layer norm
becomes greater than 1 meaning that the weights take on a
different distribution. The higher error rates in FC layer also
confirms the poor RAD of transfer learning.

2) High Fidelity Extraction: High-fidelity extraction is
weaker than exact extraction but still enables advanced adver-
sary capabilities. We follow the approach of [8] and test the
fidelity of the retrieved model by assessing the transferability
of adversarial examples. High-fidelity models ensure maximal
transfer of adversarial examples. Here, we use the Fast Gra-
dient Signed Method (FGSM) attack [25], to investigate the
transferability of adversarial example on the recovered model.

We investigate LeNet-5 model trained on CIFAR-10 dataset.
For low error rates, the recovered model achieved averaged
RAD of 0.002. The average fidelity, when computed over
multiple runs, is around 97.66% on adversarial examples, with
ε = 0.01 and 0.1, where ε denotes degree of perturbations. in
other words, 97.66% of the adversarial examples transfer from
M to M’. For high-error rates (followed by model recovery by
distillation), the average fidelity is around 81.78% and 89.20%
on adversarial examples, with ε = 0.01 and 0.1 respectively.
This matches previous results where weights after distillation
deviate from the original model, thus degrading fidelity.

3) Application to Model Inversion: Model inversion (MI) is
a technique which enables an adversary to recover the training
data from model parameters. We investigated the potential of
MI on M’ following the approach of Maximum a Posterior
(MAP) principle was suggested in [26]. We generated training
samples from M’ using the methodology and code proposed
by [27] and error rates as used in Sec. IV. The generated
samples are then classified using the original model M to
measure the accuracy. While M could achieve an accuracy
of 0.91 originally, the samples generated from M’ resulted in
lower accuracy, leading to a RAD of 0.47 on average. We
observed the worst case and best case accuracy to be 0 and
0.87 respectively, which depends on the position of the errors.
As the RAD with low error rates is already high, we do not
repeat it for higher error rate. In conclusion, model inversion
is difficult on erroneous model, even when error rates are low.

4) Mitigation: To mitigate this attack two approaches can
be adopted. From the hardware side, the boot sequence can
be fixed to initialize the SRAM at each boot-up. However, an
advanced adversary can disable such initialization by semi-
invasive means. Alternatively, secure hardware enclaves can
be adopted for sensitive model execution, which may result in
some performance overheads. At the software level, compu-
tation over encrypted model can be adopted to counter such
attacks, at the cost of performance.

VII. CONCLUSIONS

We demonstrate practical cold boot attack and model re-
covery on a commercial EdgeML device setup with minimal
accuracy loss and high fidelity. Considering higher error
rates in the previous papers, we propose a methodology
for model correction based on KD. Moreover, with dropout
KD, the model can be recovered with comparable accuracy,
even without access to original training datasets, by using
similar unlabeled dataset. We test our method on 6 different
architectures from [24] as well as on 3 pre-trained models
trained on MNIST, CIFAR10 and Tiny ImageNet. Future work
will focus on scalability to larger networks and other network
parameters like pruning, choice of activation function.
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