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Abstract:  Phase transitions are universal in solid-state matters, as well as in periodic 

electromagnetic metasurfaces -- the photonic analogues of crystals.  Although such transitions 

dictate the properties of active metasurfaces, universal ways to describe the structure transition 

of periodic metasurfaces have not yet been established.  Here, we report the strain-enable phase 

transition (or lattice deformation) of stretchable metasurfaces with the crystallographic 

description.  We analytically and experimentally demonstrate the phase transition of plasmonic 

lattices between two arbitrary two-dimensional (2D) Bravais lattices under certain strain 

configurations.  The strain-induced symmetry lowering of the structures gives rise to optical 

anisotropy upon polarization, namely, linearly and circularly polarized dichroism.  We further 

demonstrate the potential of phase transition in information decoding with applied strain.  

Interpreting the phase transition of metesurfaces from a standpoint of symmetry would 

accelerate the discovery of emergent properties, and provide a generalizable approach to 

designing active metasurfaces. 
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1 Introduction 

Electromagnetic metasurfaces offer ultrathin optical components (< the operating 

wavelength) essential for the miniaturization of photonic systems.[1-6]  Metasurfaces 

comprise subwavelength elements that can form the contrast of permittivity or 

permeability to their surroundings in a geometric configuration.  Such subwavelength 

elements are extracted as a model called meta-atoms, analogues of natural atoms, and 

metasurfaces operate like their analogues of solid-state matters.[2]  This understanding 

is incessantly nourishing the field of metasurfaces.  Among them, periodic metasurfaces, 

where meta-atoms are arranged in periodic lattices, are one of the most prevailing 

structures (Figure S1).[1, 7-12]  Like natural crystals, periodic metasurfaces support two-

dimensional (2D) Bragg modes due to long-range coherent interactions between meta-

atoms, leading to strong dispersion of the effective permittivity or permeability, 

dependent on the geometry of lattices.  As a result, metasurfaces with various 2D 

lattices offer a broad spectrum of interesting optical properties.  The engineered 

dispersion yields high-Q (quality factor) resonance reflection and/or absorption, and 

has enabled them to be ideal platforms for chemical sensing[11, 13] and the coupling with 

absorptive and excitonic materials.[11, 14-21]  Furthermore, the frequency of emerging 

resonance sensitively depends on lattices’ geometry and periodicity,[8, 13] offering 

accessible degrees of freedom to dynamically control the resonances of metasurfaces, 

and thus the regime of strong coupling.  These degrees of freedom form the design 

principle for active metasurfaces, crucial for the photonic and communication 

systems.[22-25] 
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Active metasurfaces are driven in various ways, including electrical gating, optical 

pumping, mechanical actuation, etc.[24, 26, 27]  Deformable metasurfaces, whose optical 

responses are directly tuned through spatially re-arrangement of meta-atoms by 

mechanical actuation, constitute a large category of active metasurfaces,[12, 28] which 

have benefitted from the maturation of micro-electro-mechanical (MEMS) systems.  

These optical responses result in functional mechanical reconfigurable metasurfaces, 

such as adaptive metalens,[28, 29] tunable holograms,[30] and variable gratings.[31]  In 

particular, periodic lattices, which are inherently sensitive to the spacing between meta-

atoms, have shown remarkable tuneability in structural colors and lasing wavelength 

under strains.[12, 32-35]  Although the deformation of periodic metasurfaces under strain 

has been reported frequently,[12, 32-34] there remain no universal ways to describe strain-

induced lattice deformation of periodic metasurfaces.  As a result, one may neglect the 

accessible structures, and fail to discover interesting optical properties of metasurfaces 

under mechanical actuation. 

Here, we report a universal way to access arbitrary phases of periodic metasurfaces 

by applying strains.  We introduce the crystallographic terminology of 2D Bravais 

lattices,[36] which reflect the lattice symmetry, to describe the arrangement of meta-

atoms.  Together with geometrical analysis, we experimentally demonstrate the phase 

transition between two arbitrary 2D Bravais lattices.  The strain-induced symmetry 

lowering of the structures gives rise to extinction anisotropy upon polarization, which 

agrees well with the symmetry of a lattice sum tensor[8] --a geometric factor of lattices.  

This idea of strain-enabled phase transition is further extended to the meta-atoms of an 
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elliptic cylinder shape.  Considerable circular dichroism (ellipticity ~2 degree) is 

observed experimentally in the mirror-lacking oblique lattices obtained from stretching 

the hexagonal lattice.  Using the optical isotropic to anisotropic transition that relies on 

the initial orientation of lattices, we applied the strain-enabled phase transition of 

lattices to information decoding.  These results provide fundamental insights into strain-

induced symmetric control over periodic metasurfaces, which may offer design 

principles for mechanically active metasurfaces.  More importantly, interpreting the 

strain-induced lattice deformation from the standpoint of symmetry would accelerate 

the discovery of emergent properties of periodic metasurfaces and the establishment of 

theoretical frameworks by learning from matured crystallography, solid-state physics 

and materials science. 

2 Results and Discussion 

We began with predicting the lattice deformation under a uniaxial strain according 

to basic geometric relations, where we assumed the particles attached to the lattices are 

rigid and non-deformable.  As sketched in Figure 1a, after stretching the lattice along a 

certain direction, the coordinate of an individual particle embedded in an elastomer 

initially at position (𝑥, 𝑦)𝑇 is associated with a deformation gradient tensor[37] given by 

the following formula: 

                    (
𝑥′
𝑦′

) = 𝑅(𝜃)𝐹𝑅(−𝜃) (
𝑥
𝑦)                                    (1) 

where 𝑅(𝜃) = (
cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

)  is a rotational matrix, 𝜃  is the intersection angle 

between the stretching direction and the positive direction of the x-axis, and 𝐹 =

(
𝜆1 0
0 𝜆2

) is a deformation gradient tensor with the stretch ratio 𝜆1 = 1 + 𝜀  and 𝜆2 =
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1/√1 + 𝜀, here 𝜀 is the applied strain on the lattice and the elastomer is regarded as an 

ideal elastomer that conserves volume.  Here the matrix 𝑅(𝜃)𝐹𝑅(−𝜃)  is a linear 

operator on the coordinates of the particles, and therefore homogenously maps a 

periodic lattice (net) to another periodic one.  Intuitively, the uniaxial stress leads to 

elongation of the elastomer, as well as increased spacing of particles along the 

stretching direction and compression in the perpendicular direction.  Such difference 

gives rise to symmetry breaking. 

We examined the phase transition of metasurfaces featuring hexagonal lattices 

under strain.  The hexagonal lattice is basic among five 2D Bravais lattices, and 

ubiquitous in 2D natural crystals and artificial photonic crystals.  It is also the only 

lattice that allows for the closest packing of circular atoms or meta-atoms in a planar 

configuration.  Coincidentally, most 2D layered crystals, including graphene and MoS2, 

adopt a honeycomb structure, which essentially belongs to the hexagonal Bravais lattice.  

The hexagonal lattice has two kinds of non-equivalent 6-fold axes of rotation, i.e. x- 

and y-axis (Figure 1a, left).  Stretching the lattice along these rotational symmetric axes 

(corresponding to 𝜃 = 0o and 90o) forms centered rectangular lattices, where the lengths 

of b and c sides remain equal (Figure 1b).  Specifically, when stretching along the x-

axis, the intersection angle (α) between b and c sides increases from 60o to 90o at a 

strain of 44%, and to 120o when 𝜀 = 101%.  These two special cases correspond to the 

square and extended hexagonal lattices, respectively, which are higher in symmetry 

than trivial rectangular ones and were not emphasized elsewhere to the best of our 

knowledge.[12] 
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 Other accessible Bravais lattices can be obtained by stretching along 

nonsymmetric axes.  As a general case of a square lattice, rectangular lattices can be 

obtained around the stretching condition (𝜃, 𝜀) for the square lattice, i.e. 𝜀 > 44%, and 

each strain corresponds to 12 possible orientation angles that differ from one another 

by 60n degree (n is an integer) or are reflective about the rotational axes (Figure 1c).  

For example, a rectangular lattice is obtained when stretching along 𝜃 = 10o and with a 

strain of 49% (Figure 1d).  The oblique lattice, a general Bravais lattice with the least 

symmetric elements, can be obtained easily by stretching along non-symmetric axes of 

a hexagonal lattice with a trivial strain.  For example, when the hexagonal lattice is 

stretched along 𝜃 = 20o with a strain of 32%, the lattice turns oblique.  It is a special 

oblique lattice that forms a rectangular superlattice with three repeated cells (Figure S2).  

Nevertheless, it still falls in the oblique category according to the definition of Bravais 

lattice.  Furthermore, by varying the strain configurations, ones are able to obtain all 

other four types of 2D Bravais lattices, which are summarized in a phase diagram 

(Figure 1c) and a set of representative examples (Figure 1d). 

To experimentally demonstrate the phase transition of metasurfaces, we prepared 

hexagonal Au plasmonic lattices with a periodicity of 500 nm (the diameter of Au disks, 

~140 nm).  At this scale, surface lattice resonances (SLRs) dominate at the visible to 

near-infrared (NIR) region,[9, 12] allowing lattice deformation to be readily tracked via 

spectral evolution.  Plasmonic lattices of gold nanodisks were prepared by a standard 

electron-beam lithography procedure, and then transferred to a stretchable 

polydimethylsiloxane (PDMS) substrate (Figure 2a-b).  The field emission scanning 
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electron microscopy (FESEM) image of Au lattices (Figure 2c) on sacrificial nickel 

layers shows that Au nanoparticles are uniform in size and are arranged in a hexagonal 

lattice with few defects (missing Au meta-atoms, less than 1%).  Successful transfer 

from Si/Ni substrate to PDMS is confirmed by the optical micrograph of the transferred 

lattice (Figure S3), which reveals an almost defect-free structure over a large area. 

We followed the evolution of the strained lattice under a microscope with an oil-

immersion objective.  When the PDMS sample is stretched, the hexagonal lattices 

undergo deformation conformably regardless of the stretching orientation.  We tracked 

the lattice deformation when stretching it along the axes of symmetry.  The parameters 

of the strained lattices show excellent agreement with the calculated results (Figure 1b), 

indicating that the lattice experiences the deformation as predicted.  In this manner, four 

other types of 2D Bravais lattices were achieved under the appropriate strain 

configurations (Figure 2e-h).  The Au particles were found to fall precisely within the 

sites of the calculated lattices (yellow circles in Figure 2e-h).  The phase transition of 

the hexagonal metasurfaces is also reflected in the reciprocal space, which is revealed 

in the associated fast Fourier transform (FFT) patterns. 

We further examined the phase transition from a relatively low-symmetric lattice, 

i.e. an oblique lattice, to four other types of Bravais lattices with higher symmetry.  

Starting with an oblique lattice as described in Figure 1d and 2h, four other Bravais 

lattices were achieved experimentally (Figure S4).  In fact, one can obtain any other 

types of Bravais lattice from any kind of lattice simply by applying the uniaxial strain 

along a certain orientation (Table 1, Figure S5-7).  These results demonstrate that strain-
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enabled phase transition of metasurfaces can be achieved between any two different 

Bravais lattices.  This comprehensive library of possible phase transitions provides a 

guide for exploring strain-induced phases of their atomic analogues, natural 2D 

crystals.[38] 

Mechanical simulation using finite element methods (Figure S8) shows that Au 

nanoparticles embedded in the PDMS medium do not elongate or deform, and this is 

reasonable because of the significant difference in Young’s modulus between gold and 

PDMS (79 GPa vs. 1.5-2 MPa[39]).  We found that the upper surface plane of Au 

nanoparticles is protruded from the PDMS substrate by ~12 nm after applying a strain 

of 30%.  Fortunately, the extruded Au nanoparticles still lie within the same plane, and 

therefore the protrusion of Au particles would not significantly weaken the plasmonic 

surface lattice resonance. 

We tracked the spectral evolution during stretching along the rotational axes (𝜃 = 

0 and 90o), which produces centered rectangular lattices (Figure 3a-e).  The initial 

hexagonal lattice of Au nanoparticles shows a strong resonance peak at 683 nm upon 

normal incidence without polarization dependence, revealing the optical isotropic 

feature.  As identified by simulation previously, both reflection (R) and absorption (A) 

contribute to the extinction (E) at the resonance due to collective behavior.[9]  When the 

hexagonal lattice is stretched along 𝜃 = 90o, the resonance peaks of the resultant lattices 

are significantly red-shifted under horizontal polarization (H-pol, perpendicular to the 

stretching direction), while the resonance peaks broaden slightly and are blue-shifted 

under vertical polarization (V-pol).  The redshift of resonance peaks with the row 
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spacing of Au nanoparticles under V-pol resembles the case that 1D nanogratings 

support lower-energy mode at higher periodicities.[40]  In another case of stretching 

along 𝜃 = 0o, the peak shift is smaller than those along 𝜃 = 90o, and a similar trend is 

observed under both vertical and horizontal polarization.  It is worth mentioning that 

these spectra of stretched lattices are in excellent agreement with the simulation results 

(Figure S9) and predefined lattices that correspond to these strained lattices in geometry 

(Figure S10), suggesting that the stretched lattices are arranged exactly as calculated.  

This large and monotonous peak shift under vertical polarization can be regarded as a 

measure of strains (Figure 3e), forming the basis for ultrasensitive strain sensors,[41] as 

well as tunable lasers.[19, 32] 

To reveal the role of lattice structures in the extinction properties of plasmonic 

lattices, we use the coupled dipole approximation (CDA) method to extract the 

geometric factor of the strained lattices undergoing deformation.[42]  The effective 

polarizability of the Au nanoparticle in a periodic lattice is expressed with a lattice sum 

tensor according to 

                                                 𝛂eff =
1

1/𝛼NP−𝐆(0)
                                                            (2) 

where 𝛼NP is the polarizability of the individual Au nanoparticle,𝐆(0) is the lattice sum 

tensor in the case of normal incidence.  In the case of isotropic Au nanodisks, the 

contribution of the geometrical factor, 𝐆(0), which reflects dipole-dipole interaction, 

shapes the symmetry of effective polarizability, as well as the extinction properties (see 

Supporting Information).  Specifically, when the lattice sum 𝐆(0) is diagonal, the 

effective polarizability is simplified as a diagonal tensor as follows: 
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𝛂eff = (

1

1/𝛼NP−𝐺𝑥𝑥
0

0
1

1/𝛼NP−𝐺𝑦𝑦

)  

The lattice sum of the hexagonal lattice has been extensively investigated;[12] it is 

degenerated as a scalar because of the isotropic feature of the hexagonal lattice.  Figure 

3e shows that the real parts of the diagonal components, 𝐺𝑥𝑥 and 𝐺𝑦𝑦, reach their equal 

maxima at the wavelength of √3𝑎𝑛m/2, where a (= 500 nm) is the lattice constant and 

𝑛m = 1.4 is the refractive index of the surrounding medium.  Their imaginary parts 

(Figure S11) also show their maxima at around √3𝑎𝑛m/2 , and the off-diagonal 

components identically equal 0.  Importantly, the lattice sum shows extraordinarily 

steep dispersion near its peak, in contrast to the inverse of polarizability for the 

individual Au nanoparticle that shows weak dispersion over the entire vis-NIR region 

(see Figure S12).  This striking difference between 𝐺 (𝐺𝑥𝑥 and 𝐺𝑦𝑦) and 1/𝛼NP at some 

specific frequency suggests the decisive role of lattice geometry in tuning the resonance 

frequency of lattices. 

By stretching the hexagonal lattice along rotational axes (Figure 3a), the anti-

diagonal elements the lattice sum vanish (Figure S13), but the two diagonal components 

no longer coincide (i.e. 𝐺𝑥𝑥 ≢ 𝐺𝑦𝑦   iigure ff-g), with the lattice becoming centered 

rectangular.  Such tensor property is responsible for the optical anisotropy upon 

polarization, shown spectrally in Figure 3f-g.  Furthermore, the evolution of lattice 

sums shows a strong dependence on the stretching orientation.  Stretching along 𝜃 = 

90o (Figure 3e) shows significantly redshift in wavelengths for 𝐺𝑥𝑥 maxima and slightly 

blue-shifts for those of 𝐺𝑦𝑦, and reduces the peak intensity, whereas the maxima of both 
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𝐺𝑥𝑥 and 𝐺𝑦𝑦 exhibit a moderate redshift during stretching along 𝜃 = 0o (Figure 3g).  The 

considerable wavelength shift of 𝐺𝑥𝑥 for the stretching along 𝜃 = 90o roughly reflects 

the significant distance increase of the Au rows that lines along the x-axis. 

We correlated the resonance peaks of lattices with the geometrical factor of lattices, 

lattice sum.  Lorentz oscillator model suggests that the resonance occurs when the real 

part of electric susceptibility vanishes, which is equivalent to Re(𝜶eff) = 0 

approximately in combination with the Clausius–Mossotti relation (see Supporting 

Information).[43]  The condition can further be rephrased as the real part of (1/𝛼NP −

𝐆(0))  vanishing (i.e., Re(1 𝛼NP)⁄ = Re(𝐆(0)) ), visually corresponding to the 

intersection point of the 1/𝛼NP curve with the 𝐺 plot.  Here the components 𝐺𝑥𝑥 and 

𝐺𝑦𝑦 are associated with the horizontally and vertically polarized excitation, respectively.  

This evolution of lattice sum with strain explains the redshift of resonance peaks in the 

transmission spectra, especially the considerable redshift for that stretched along 𝜃 = 

90o under horizontally polarized excitation. 

To further reveal the symmetry of optical properties, we correlated it with the 

symmetry of lattice sum tensors, which directly reflect the symmetry of lattices.  

According to the Clausius–Mossotti relation, the extinction properties of materials are 

determined by their macroscopic electric susceptibilities, which are ultimately 

determined by the microscopic electric polarizability, yielding the extinction coefficient 

𝐾 = √𝜖𝑚𝑁Im(𝜶eff)/2  (see Supporting Information).  This formula implies the 

symmetric similarity between the extinction property of a lattice and the corresponding 

lattice sum.  As shown in Figure 4a and summarized in Table 2, there is only an 
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independent component (𝐺𝑥𝑥 = 𝐺𝑦𝑦, 𝐺𝑥𝑦 = 𝐺𝑦𝑥 = 0,) in the lattice sum tensor for both 

the hexagonal and stretched square lattices.  These tensors are therefore degenerated 

into a scalar, since the off-diagonal components always vanish no matter which 

principal axes are chosen, indicating an isotropic feature of the optical properties.  It is 

also evident in the polarization-dependent transmission spectra and the corresponding 

polar plots of extinction (Figure 4e-f). 

The lattice sums of rectangular lattices, both simple rectangular and centered 

rectangular, are diagonalizable over the entire visible frequency range, but with 

different diagonal entries (Figure S14-15).  In the centered rectangular case, the 

candidates of the principal axes are exclusively the axes of symmetry, which are exactly 

along the sides of the rectangles (Figure 3a and S14).  This diagonalizability feature 

and the choice of principal axes are indeed imposed by the symmetry of lattice structure 

according to Neumann's principle.[44]  It is the same for simple rectangular lattice.  

Considering the scalar nature of polarizability for the circular nanoparticles, the 

effective polarizability would inherit such a diagonal feature of lattice sums.  As a result, 

this symmetric feature of these tensors renders these rectangular lattices linearly 

polarized dichroism, which we discussed above (Figure 3c-d).  For the centered 

rectangular lattices that are subject to strain along the axes of symmetry, the 

polarization-dependent transmission spectra (Figure 4f and i) show a two-fold 

symmetric profile with polarization, displaying the extinction maxima under the 

horizontally and vertically polarized excitation.  A similar spectral feature is seen in the 

simple rectangular lattice (Figure S15).  We can now conclude that stretching a 
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hexagonal plasmonic lattice induces property anisotropy by supporting two distinct 

surface lattice resonant modes of linear cross-polarization, which can be used to control 

the polarization of incident light and tune birefringence dynamically. 

The oblique structure, which has the lowest symmetry among the five 2D Bravais 

lattices, was rarely employed in metasurfaces.  In fact, the low symmetry is sometimes 

the physical origin of some extraordinary properties that are absent in materials and 

devices with high-symmetry structures.[44]  As a property tensor, lattice sum is 

symmetric (𝐺𝑥𝑦 = 𝐺𝑦𝑥) and diagonalizable in principle.  Our calculation indicates that 

the lattice sum tensors of oblique lattices are exactly diagonalizable at any a specific 

wavelength, but fail to diagonalize over the entire frequency range (Figure S17), in 

strong contrast to other Bravais lattices.  As a result, such an oblique structure supports 

two distinct resonance modes that are not linearly cross-polarized as the other four 

lattice types.  This unique property may allow for polarization control more flexibly 

than other phases of higher symmetry. 

The knowledge of crystal physics regarding structure-property relation leverages 

all periodic structures, and thus offers the common design principles for photonic 

structures with on-demand properties or stain-induced property evolution.  To reveal 

new possibilities that the increased complexity of meta-atom offers, we used an elliptic 

cylinder-shaped Au nanoparticle as the basis of the hexagonal lattice (Figure S18 and 

Figure 5) to induce circular dichroism (CD) by applying strain on the initially hexagonal 

lattice.  The purpose of using an elliptic cylinder instead of the circular disk is to further 

lower the symmetry of the resulting lattices.  In this case, the initial hexagonal structure 
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no longer has six symmetric mirrors but two mirrors.  The presence of a mirror indicates 

that there are no CD signals in the initial hexagonal lattice, which is reflected in the 

identical transmission spectra under both right-handed circular polarization (RCP) and 

right-handed circular polarization (LCP) incidence (Figure 5b).  The lattice turns 

oblique (free of reflection symmetry) when it is stretched along 𝜃  = 20o.  We 

investigated the spectral evolution experimentally, and found distinct spectral 

differences between RCP and LCP when 𝜀 = 10%, which leads to an obvious CD signal 

at 640 nm (Figure 5b-c).  The CD signals become stronger and are extended to the NIR 

region when strain increased, with the largest ellipticity of ~ 2 degree.  Such strong CD 

responses are well consistent with the simulated results (Figure S19), while the 

discrepancy between experimental and simulated results could be attributed to the 

fabrication accuracy of Au nanoparticles.  However, as expected, no significant CD 

responses are observed for the lattices under the uniaxial strain along these symmetric 

axes, e.g. along 𝜃 = 0 or 90o.  The occurrence of significant CD can be interpreted as 

the synergetic interplay between asymmetric lattice and elliptical nanoparticles (basis) 

that ultimately determines the effective electric/magnetic polarizability.  The peak shift 

of CD signals of lattices with various periodicity indicated a crucial role in the 

emergence of CD response (Figure S20).  To the best of our knowledge, the circular 

dichroism induced by lattices without reflection symmetry was not reported elsewhere. 

 Metasurfaces have been explored for encryption under various external 

activation.[45, 46]  In our case, the unique strain-induced absorption and reflection 

evolution promise to decode with the mechanical strains.  The isotropic optical 
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properties of the hexagonal lattice ensure the domains with various orientations to be 

indiscernible macroscopically in the initial state, no matter under natural light or a 

certain polarization, allowing to encode information pattern within the background.  

Upon stretching, the hexagonal lattices undergo a phase transition to other types of 

lattices, which depend on the initial orientation, leading to the difference in absorption 

and reflection.  Such strain-induced difference forms a strong contrast between 

information and the background, and the information is decoded.  For example, we 

embedded a pattern of ‘NTU MSE’ characters in a 100×100-μm2 region of the 

hexagonal lattice, where the background is with horizontal rows but the embedded 

pattern with vertical rows (with an orientation difference of 90o, Figure 6a-b).  We 

recorded the image evolution of the square area while stretching the sample; 

considerable contrast in both the reflection and extinction was observed (Supporting 

Video 1 and 2) once the strain reaches around 15%.  Specifically, the green pattern is 

observed against the brownish background in a transmission mode under the vertical 

polarization, whereas the pattern is unclear under horizontal polarization.  Although the 

spectra between the pattern and background are radically different, the observed slight 

contrast results from the resonance occurring in the red to NIR region, which is not 

sensitive to the naked eye and common cameras.  Fortunately, strong contrast forms 

after stretching with a strain >15% under the reflected and reflected differential 

interference contrast (DIC) mode (Figure 6d, S21), offering a practical way to decipher 

the hidden information by applying strain. 
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Finally, we evaluated the stability of the lattices during stretch-release cycling.  

As shown in the transmission spectra (Figure S22), the peak wavelengths for the 

resonance of the plasmonic lattices almost remain after repetitive strain with the 

maximal strain = 20% or 40% both for the released or the stretched states.  However, 

the resonance strength (corresponding to the transmittance) turns a little weaker after a 

relatively large repeated strain of 40%, which is more evident for the strained lattice 

(Figure S22b-c).  The spectral evolution can be attributed to the inhomogeneous 

extrusion of Au nanoparticles, which is reflected in the topographic images of atomic 

force microscopy (AFM).  In Figure S23, the Au nanoparticles in the as-prepared 

sample are slightly extruded from the PDMS substrates uniformly, while 

inhomogeneous topography of nanoparticles is observed after repeated stretch-release 

cycling.  In this case, the stability of stretchable metasurface could be further improved 

by covering an additional PDMS layer on the Au lattices so that the Au nanoparticles 

are well confined in the PDMS substrate. 

 

3 Conclusions 

In summary, we demonstrated the strain-induced phase transition of periodic 

metasurfaces theoretically and experimentally.  With a hexagonal lattice embedded in 

elastomer, we obtained all five types of 2D Bravais lattices simply under an appropriate 

strain configuration.  We further showed that this approach works for transition between 

any two 2D Bravais lattices, which forms a comprehensive crystallography library for 

exploring strain-induced phases of natural atomic 2D crystals.[46]  The strain-induced 



18 

 

symmetry lowering of the structures gives rise to linear and circular dichroism.  Notably, 

the correlation between structure and optical properties is governed by lattice sum 

tensors, facilitating the structure design and property prediction of periodic 

metasurfaces.  We anticipate that strain-induced symmetry control over metasurfaces 

would provide a dynamic platform for local electromagnetic field control, which is 

essential to exploring the coupling between metasurfaces and low-dimension materials. 
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Figure 1. Lattice deformation under strain. a) Schematic of hexagonal lattice deformation 

under strain.  The coordinate transformation of a point mass embedded in an ideal elastomer is 

given by (
𝑥′
𝑦′

) = 𝑅(𝜃)𝐹𝑅(−𝜃) (
𝑥
𝑦), where (

𝑥′
𝑦′

) is the coordinate of a certain point mass located 

at (
𝑥
𝑦) after stretching along the angle of 𝜃.  b) Cell constants of lattices stretched along 0o and 

90o with strains (𝜀).  The parameters are defined in (a).  Cross, experimental data; line, 

calculated.  c) Phase diagram of an initially hexagonal lattice under strain configuration (in the 

orientation-strain plane) shows 6-fold symmetry about the stretching orientation angle of 𝜃.  d) 

Representative examples experiencing phase transition from the hexagonal lattice.  Four other 

types of 2D Bravais lattices are achieved from the hexagonal one simply by stretching the 

elastomer.  Note that the cell parameters in (d) are re-defined according to the symmetry of 

Bravais lattices.  
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Figure 2. Experimental realization of strain-enabled phase transition of plasmonic lattices. 

a) Photo and (b) micrograph of Au nanoparticle lattices embedded in the elastic PDMS substrate, 

and (c) zoom-in FESEM image and (d) micrograph of Au hexagonal lattice (a = 500 nm) 

imaged using an oil-immersion objective.  e-h) Representative micrographs of four types of Au 

lattices obtained by stretching the hexagonal lattice in (d).  i-m) Corresponding FFT patterns 

for micrographs in (d-h).  FFT was performed on the grayscale micrographs (26×26 nm2, 

1200×1200 pixel2). 
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Figure 3. Lattice deformation under strain along symmetric axes.  a-d) Schematic 

arrangement of Au nanoparticles under strains along 𝜃  = 90o (a) and 𝜃  = 0o (b), and the 

corresponding experimental transmission spectra (c, d).  e) Wavelength evolution of the 

strongest resonance peaks for plasmonic lattices under various strain configurations. f, g, Real 

parts of the diagonal components of lattice sums that are subject to strains along 𝜃 = 90o (f) and 

𝜃 = 0o (g).  The subscripts of lattice sum tensors are defined by the frame of axes shown in (a-

b).  The coincidence between lattice sum and the inverse of the polarizability of Au 

nanoparticles yields surface lattice resonances. 

  



24 

 

 

Figure 4. Correlating the symmetry of lattice sum tensor with experimental spectra.  a-d) 

Real parts of the components of lattice sum tensors for hexagonal lattice (a) and other types of 

Bravais lattices derived from stretching (b-d).  Inset: the lattices and corresponding coordinate 

systems.  The structures of lattice sum tensors are summarized in Table 2.  e-h) Polarization-

dependent transmission spectra and (i-l) the corresponding polar plots of extinction for the 

hexagonal and stretched lattices, where extinction E= 1-T, here T represents the transmittance. 
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Figure 5. Circular dichroism induced by the breaking of reflection symmetry. a) 

Geometry of Au lattices with elliptic cylinder shape under various strain configurations. 

The lattices stretched along the orientation 𝜃 = 20o are oblique without reflection (or 

mirror) symmetry, while the lattices remain reflection symmetric when they are 

stretched along the symmetric axes. b) Experimental transmission spectra upon LCP 

and RCP light incidence, and (c) circular dichroism spectra evolution of plasmonic 

lattices during stretching. 
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Figure 6. Deciphering embedded domain of different orientation by strain. a) FESEM 

image of hexagonal lattices embedded with an ‘NTU MSE’ pattern having domains of different 

orientations.  The blue shadow indicates the region of the pattern rather than a physical entity.  

b) Zoom-in image shows the orientations.  c) Micrographs of initial and stretched lattices under 

horizontal and vertical polarization.  The presence of slight traces of the characters on the left 

panels can be attributed to the interruption of periodic structure of Au lattice at the domain 

boundary, which can be deliberately designed randomly (corresponding to amorphous phase) 

to alleviate or eliminate the effect.  d) Experimental transmission spectra of stretched lattices 

(𝜀 =30%).  Transmittance difference under vertical polarization yields the contrast.  e) Reflected 

DIC images of the hexagonal lattice with the embedded domain during stretching.  The 

surrounding brightening is caused by the light scattering of the patterns.  The arrows indicate 

the stretching direction. 
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Table 1. Lattice constants for strain-enabled Bravais lattice deformationa 

Type of 

initial lattice 

Lattice parameters Deformation condition 

Type of 

obtained lattice 

Lattice parameters 

Designed Measured 

Stretching 

orientation (o) 

Strain 

(%) 

Calculated Measured 

Lattice 

constant 

(nm) 

𝛼 (o) 
Lattice constant 

(nm) 
𝛼 (o) 

Lattice constant 

(nm) 
𝛼 (o) 

Lattice constant 

(nm) 
𝛼 (o) 

Hexagonal 
a = b = 

500 
60 

a = 501 

b = 505 
60 

0 44 Square a = b = 510 90 a = 511, b = 512 90 

10 49 Rectangular a =573, b = 462 90 a = 572, b = 462 89 

90 20 Centered rectangular a = 1039, b = 456 90 a = 1036, b = 463 90 

20 31 Oblique a = 633, b = 575 43 a = 632, b = 581 43 

Square 
a = b = 

500 
90 

a = 500 

b = 507 
90 

45 44 Hexagonal a = b= 588 60 a = 597, b = 586 60 

0 20 Rectangular a = 600, b = 456 90 a = 600, b = 461 90 

45 16 Centered rectangular a = 820, b = 657 90 a = 826, b = 661 89 

70 26 Oblique a = 684, b = 471 61 a = 689, b = 473 61 

Rectangular 
a = 600 

b = 400 
90 

a = 600 

b = 407 
91 

65 59 Hexagonal a = b = 591 60 a = 585, b = 600 60 

90 31 Square a = b = 524 90 a = 526, b = 529 90 

57 36 Centered rectangular a = 1134, b = 493 90 a = 1142, b = 499 90 

60 21 Oblique a = 657, b = 596 42 a = 665, b = 599 42 

Centered 

rectangular 

a = 1092 

b = 480 
90 

a = 1103 

b = 483 

 

91 

90 20 Hexagonal a = b = 576 60 a = 569, b = 573 60 

90 72 Square a = b = 586 90 a = 584, b = 584 89 

45 37 Rectangular a = 560, b = 548 90 a = 557, b = 547 90 

102 52 Oblique a = 718, b = 508 62 a = 708, b = 509 63 

Oblique 
a = 636 

b = 445 
62 

a = 638 

b = 451 
62 

76 32 Hexagonal a = b = 574 60 a = 571, b = 577 61 

32 27 Square a = b= 530 90 a = 523, b = 540 90 

20 20 Rectangular a =565, b = 481 90 a = 564, b = 477 90 

84 54 Centered rectangular a =1187, b= 520 90 a = 1192, b = 522 90 

a Parameters are defined in iigure 1d and iigure S4-7. 

 



1 

 

 

Table 2. Components of lattice sum tensors for various Bravais lattices. 

 

Lattice type Component of 𝐆(𝟎) 

Hexagonal 
𝐺𝑥𝑥 = 𝐺𝑦𝑦;  𝐺𝑥𝑦 = 𝐺𝑦𝑥 = 0 

Square 

Rectangular 
𝐺𝑥𝑥 ≠ 𝐺𝑦𝑦;  𝐺𝑥𝑦 = 𝐺𝑦𝑥 = 0 

Centered rectangular 

Oblique 𝐺𝑥𝑥 ≠ 𝐺𝑦𝑦;  𝐺𝑥𝑦 = 𝐺𝑦𝑥 ≢ 0 a 

 

a Note 𝐺𝑥𝑦 and 𝐺𝑦𝑥 are not identically vanishing. 
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