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Abstract

Given a piece of audio recording, the task of speaker diarization can be summarized as an-

swering the question of “Who spoke when ?”. This thesis offers a review of the techniques

and issues relating to performing speaker diarization on broadcast news recordings, as

well as meeting recordings.

The broadcast news domain is generally regarded to be simpler because the turn

taking between speakers is better controlled and audio quality tends to be higher. The

typical approach used for this domain consist of two steps - speaker segmentation and

then speaker clustering. The Bayesian Information Criterion (BIC) has been a very

popular distance measure for both speaker segmentation and clustering. Experiments

were conducted that confirmed the effectiveness of this distance measure for segmentation

and clustering. Further speaker segmentation experiments were performed using the

Hotelling’s T2 statistic to augment the BIC. It was observed that while this does speed

up processing, the segmentation FScore obtained does not match up to that reported in

the literature. A novel speaker clustering approach was also introduced where polynomial

expanded feature vectors were used to compute the distance between clusters. It was

found that this approach could produce results comparable to that for the BIC.

In order to address the problem of speaker diarization for the meeting domain, a

diarization system was developed and submitted for the NIST Rich Transcription 2007

(RT-07) evaluation. This diarization system exploited the diversity of meeting recording

channels by performing Time Delay of Arrival (TDOA) estimation using a Normalized

Least Means Squared (NLMS) filter. Subsequent performance enhancements were deliv-

ered by adding a cluster purification module, as well as a Non-Speech & Silence Removal

(NS&SR) module. An overall Diarization Error Rate (DER) of 15.32% was obtained for

the RT-07 corpus. This score was found to be competitive against the other entrants in

the evaluation exercise.
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Chapter 1

Introduction

Ever since the invention of the first recording device, humans have been recording their

voices for posterity. There thus currently exists a large amount of recorded speech in audio

archives around the world. With this large amount of recorded speech, there will thus

be the need to better index this speech for retrieval and subsequent processing. Speaker

diarization partially fulfills this role by indexing the speech in recordings according to the

identities of the speakers present. It essentially answers the question of “Who spoke when

?”. Using the time transcriptions of speaker identities, further higher level processing

can then be performed. A user can use the speaker transcription to browse an archive

according to the identity of interest. This was done in [Kimber et al., 1995] where a

speaker-based graphical browsing interface was developed for the navigation of audio

recordings. The diarization of speaker identities in a recording can also be used to

produce better speech recognition results. This was done for the National Gallery of the

Spoken Word project [Hansen et al., 2001] where speaker adaptation was performed on

the acoustic models used in speech recognition. A word transcription of the audio archive

can consequently be created and navigation of the archive can be done by searching for

word phrases.

In the speaker diarization of any recording, good diarization quality can be charac-

terized by having

1
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Chapter 1. Introduction

• Accurate speaker start and stopping time stamps

• Accurate speaker identities

• Accurate identification of non-speech events

In the subsequent chapters, various performance measures will be introduced to quantify

these qualities.

Various papers have described speaker diarization techniques for different classes of

speech recordings. In [Gish et al., 1991], speaker segmentation and clustering was per-

formed on audio recordings of the radio dialogs between airport traffic controllers and

pilots. Papers such as [Ore et al., 2006; Deng et al., 2006] have addressed performing

diarization of mixed-channel telephone conversations as a first step to speaker verifica-

tion in the NIST 2006 Speaker Recognition evaluations [NIST, 2006b]. Two of the most

commonly researched domains is that of speaker diarization of broadcast news [Kubala

et al., 1998; Cook & Robinson, 1998; Pallett et al., 1998] and meeting recordings [Fiscus

et al., 2005; Anguera et al., 2005b; Hain et al., 2005]. This thesis will focus on performing

diarization on the domains of broadcast news and meeting recordings.

1.1 Speaker Diarization of Broadcast News and Meet-

ings Recordings

There are four key differences in the nature of the audio recordings for broadcast news

and meetings. The techniques used to perform diarization for the two recordings domains

will consequently be different as a result of these differences.

• The recording quality for meetings is generally poorer than the same for news

broadcasts.

The audio recordings used for meetings usually are recorded using distant micro-

phones while news broadcasts are recorded off-the-air. The signal-to-noise ratio

2
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Chapter 1. Introduction

(SNR) of meeting recordings are thus typically poorer. The average SNR for meet-

ing recordings of the RT-06s evaluation was estimated in [Anguera, 2006b] to be

about 20.77 dB. The same for news broadcasts from the NIST Rich Transcription

2004 Fall (RT-04f) evaluation [NIST, 2004] were estimated to be about 24.22 dB.

• There are potentially more speakers speaking concurrently in a meeting than in a

news broadcast.

The nature of meeting recordings is such that there will be many speakers ac-

tively contributing to a meeting. In the RT-06s and RT-07 recordings, there are

always four or more participants speaking in any meeting. Meeting participants can

sometimes also be heard debating over issues. The quick conversational exchange

between participants creates a lot more overlapping speech between speakers. News

broadcasts on the other hand typically have only one or two broadcasters actively

speaking within each time region. In the event where there are multiple broadcast-

ers, the broadcasters will usually speak in turns with little or no overlap between

the speech of different broadcasters. The detection and handling of overlapping

speech is thus a much lesser concern for broadcast news.

• Meeting recordings typically contain longer periods of silence than a news broad-

cast.

The conversational nature of meetings usually result in it having longer periods of

silence than the same for news broadcasts. These extended periods of silence can

occur when no participant is actively speaking. The same however is not true for

news broadcasts because there generally will always be a broadcaster busy speak-

ing. The extended silences present in meeting recordings thus makes it necessary

that a silence detection module be used to improve diarization performance.

3
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• Meeting recordings can have multiple recording channels corresponding to multiple

microphones while news broadcasts can only have one.

The proceedings of a single meeting can be recorded using multiple recording chan-

nels. In the context of the NIST RT-06s and RT-07 evaluations, each recording

channel will correspond to a single distant microphone placed in a different loca-

tion in the meeting room. This diversity of recordings thus creates opportunities

for algorithms that exploit the differences between channels.

1.2 The Goals of this Thesis

The goals of this thesis are to:

• Review literature about speaker diarization, and the steps of speaker segmentation

and speaker clustering.

• Repeat experiments representing the state-of-the-art for speaker segmentation in

the broadcast news domain.

• Investigate ways of improving the state-of-the-art for speaker diarization in the

meeting room domain.

As listed above, research is concentrated on processing audio from the broadcast news

and meeting room domains. The different nature of these two audio domains necessitates

the usage of different automatic algorithms.

Research into speaker diarization for the broadcast news domain will be focused on

the speaker segmentation step. The first objective for the broadcast news domain would

be to replicate the results obtained using the Bayesian Information Criterion (BIC) in

[Ajmera et al., 2004]. Using this BIC system as a base, the second objective is then to

repeat the results reported in [Zhou & Hansen, 2005] using a hybrid T 2 + BIC system.

4
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The meeting room domain is then explored using recordings from multiple distant

microphones. A speaker diarization system will be proposed and the key features of this

system would be that:

• It uses the Time Delay of Arrival (TDOA) between channels as a feature for speaker

segmentation and clustering.

• Acoustic features are used to refine the speaker segmentation and clustering deci-

sions made using TDOA.

This system will be evaluated in the context of the NIST RT-06s & RT-07 benchmarking

efforts. The objective of the experiments will be to obtain a system that can match the

overall Diarization Error Rates (DER) reported by other state-of-the-art systems.

1.3 Speaker Segmentation and Clustering

Figure 1.1: Speaker diarization consists of first performing speaker segmentation, then speaker
clustering.

5
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The first step in speaker diarization involves breaking up the continuous audio record-

ing into homogenous segments where only a single speaker is speaking. This is typically

done by finding locations in the audio recording where there is a speaker transition and a

speaker segmentation algorithm will be used to accomplish this automatically. Although

the goal in speaker segmentation is to find speaker transitions, segmentation algorithms

will usually also detect other acoustic changes such as a change in sampling rate or

introduction of background music.

Given a collection of segments resulting from the speaker segmentation process, the

next step in speaker diarization would involve clustering the speech segments into clusters

of common speakers. The objective when performing speaker clustering would be to

produce one, and only one, cluster for each speaker identity. The resultant clusters

should ideally be homogenous, i.e. not contain speech segments originating from other

speakers.

Chapter 2 examines well known segmentation and clustering techniques reported

in the literature for the diarization task. E.g., the Bayesian Information Criterion

(BIC)[Chen & Gopalakrishnan, 1998b; Tritschler & Gopinath, 1999; Kemp et al., 2000]

and Hotelling’s T2 [Zhou & Hansen, 2000; Zhou & Hansen, 2005; Huang & Hansen, 2004;

Huang & Hansen, 2006] approach for segmentation will be examined. The BIC is prob-

ably the most commonly cited distance measure for speaker segmentation and clustering

while the T2 has been reported in [Zhou & Hansen, 2000; Huang & Hansen, 2004] to

yield good results when combined with the BIC.

1.4 Organization of this Thesis

In Chapter 2, the process of speaker segmentation and clustering will be elaborated and

objective measures of segmentation and clustering quality will be introduced. The current

techniques for speaker segmentation and clustering will also be reviewed. Chapter 3 then

6

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 1. Introduction

reports on our experiments done using the Hub4-97 database for the broadcast news

speaker diarization task. Chapter 4 introduces a speaker diarization system for meeting

recordings that was uses the diversity of recording channels to localize the direction of

arrival speech. The performance of the system is quantified by performing experiments

upon the RT-06s & RT-07 corpora. Conclusions and future works are then summarized

in Chapter 5.
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Chapter 2

Segmentation and Clustering
Techniques for Speaker Diarization

This chapter reviews published techniques for segmentation and clustering used for the

speaker diarization task. The structure of this chapter will be as follows. Section 2.1

introduces the segmentation task with Section 2.1.1 discussing common measures used

to evaluate the segmentation quality of an algorithm. Section 2.2 then introduces the

task of speaker clustering along with the commonly used measures of clustering quality.

Sections 2.3, 2.4 and 2.5 will then give an overview of some commonly used speaker

segmentation and clustering approaches.

2.1 Speaker Segmentation

Speaker segmentation is the task of breaking up a continuous body of speech along the

lines of speaker transitions. This is often useful because it allows the various resulting

segments to be processed separately depending on the identity of the speaker present. The

technology of speaker segmentation has found widespread usage as an early processing

step in many applications. Examples of applications utilizing speaker segmentation are

broadcast news archival and indexing [Nishida & Ariki, 1999; Kemp et al., 2000; Wu

et al., 2003], speech recognition [Gish et al., 1991; Waheed et al., 2002] and meeting

diarizations [Fiscus et al., 2005; Fiscus et al., 2006].

8
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overlapping speech
 no speech


possible segmentation points


no speech


this    would    result      in


more errors


Speaker A

Speaker B


  so   there   were   five    more


      six          more       actually


. . .
 . . .


Figure 2.1: The speaker segmentation task. Transitions between speakers could be separated by
silence, or be overlapping between speakers.

In [Viswanathan et al., 1999], continuous broadcast news is segmented along speaker

transitions and the identity of the speaker in each segment is then identified. This thus

allows for convenient indexing of the news corpus according to the broadcaster who

reported the news. Subsequent retrieval of the news segment can be done using the

identity of the broadcaster. Speaker segmentation also plays a role in speech recognition

systems developed in [Meinedo & Neto, 2003b]. In that system, continuous audio is first

segmented and the person speaking in each resultant segment is then identified. Speaker

specific acoustic models are thereafter used to perform speech recognition. The resultant

recognition accuracy improves as a result of better match between the spoken audio and

the acoustic model used.

2.1.1 Evaluation measures for speaker segmentation

The measures used to quantify segmentation quality generally are concerned about

whether these audio transition points are correctly identified. One commonly used re-

porting measure would be the False Alarm Rate (FAR) and the Missed Detection Rate

(MDR). The FAR and MDR are defined in Eqn. 2.1 and Eqn. 2.2.

FAR =
# of incorrectly identified turn points

total # of turn points identified
(Eqn. 2.1)
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MDR = 1 −
# of correctly identified turn points

total # of true turn points
(Eqn. 2.2)

Papers such as [Chen & Gopalakrishnan, 1998b; Siu et al., 1992; Couvreur & Boite,

1999; Liu & Kubala, 1999] have previously reported their segmentation performance in

terms of FAR and MDR. The FAR and MDR values are always bounded between 0

and 1, i.e., a perfect system will yield results of FAR = 0 and MDR = 0.

Another set of commonly used reporting measure would be the Precision, Recall

and FScore. These measures have been used in such papers as [Kemp et al., 2000;

Nishida & Kawahara, 2003; Vandecatseye & Martens, 2003; Ajmera et al., 2004]. The

Precision is the fraction of turn points correctly identified, out of all the hypothesized

turn points. The Recall is the fraction of turn points correctly identified over the total

number of ground-truth turn points. It is thus a measure of the system’s ability to detect

or “recall” the turn points present. The Precision measure can be obtained from the

FAR, as is the Recall from the MDR. The advantage of reporting using these measures

is that the FScore serves as a single value summary of both the false positive and the

false negative error rates. It thus allows for convenient performance comparisons between

different systems.

Precision =
# of correctly identified turn points

total # of turn points identified
(Eqn. 2.3)

= 1 − FAR (Eqn. 2.4)

Recall =
# of correctly identified turn points

total # of true turn points
(Eqn. 2.5)

= 1 − MDR (Eqn. 2.6)

FScore =
2 · Precision · Recall

P recision + Recall
(Eqn. 2.7)
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Like the MDR and FAR, the values for Precision, Recall and FScore are also

bounded between 0 and 1. A perfect system will report values of Precision = 1, Recall =

1 and consequently, FScore = 1. There is usually a trade-off between the Precision and

Recall of a system. A system can achieve a high Recall by sacrificing its detection

Precision, resulting a larger number of turn points that are indeed not true turns (i.e.

higher FAR). High Precision can in turn also be achieved by being very conservative

about selecting turn points, thus having a low Recall and high MDR. Ideal systems are

thus those that can yield a high Precision, while having to sacrifice little or no Recall.

2.1.2 Factors influencing segmentation performance scoring

2.1.2.1 The evaluation corpus used

In the literature, segmentation results are reported on a multitude of different corpora.

[Nishida & Kawahara, 2003] for example reported segmentation Recall and Precision

scores of of 0.98 and 0.91 respectively, yielding a FScore of 0.94. The database used in

their experiment consisted of 10 hours of Japanese language current affairs discussions.

A different database consisting of 1 hour of German news recordings was used in [Kemp

et al., 2000]. In that paper, the best FScore achieved was 0.78 using a hybrid segmenta-

tion strategy. The corresponding Recall and Precision was 0.67 and 0.93 respectively.

While the difference in performance could be attributed to the merits of the algorithm,

one must be mindful that the scores were obtained on different corpora and thus it would

not be possible to directly compare both systems.

A brief listing of some commonly used standardized corpora that have been used

for segmentation reporting can be found in Table 2.1. The variety in reporting corpora

thus makes it hard to compare between the performance of different systems. Therefore

for the sake of having a fair performance comparison, the Hub4-97 Evaluation [Graff

et al., 2002] (Hub4-97e) was selected for the experiments to be reported in our work in
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Table 2.1: Standardized corpora that have been used for segmentation results reporting

Evaluation corpus Description Used in

Hub4-96 Evaluation 1 2.5 hours, English broadcast news, [Anguera, 2005],
Half consisting of anchored news [Siegler et al., 1997]
broadcasts, other half from
news magazines.

Hub4-97 Evaluation 2 3 hours, English broadcast news [Chen & Gopalakrishnan, 1998b],
Consists of anchored news shows, [Tritschler & Gopinath, 1999],
news magazines, hearings, news [Zhou & Hansen, 2000],
conferences and speeches. [Vandecatseye & Martens, 2003],

[Wu et al., 2003],
[Ajmera et al., 2004],
[Anguera, 2005]

RT-03s 3 3 hours, English broadcast news [Meignier et al., 2004],
Broken up into 6 x 30 minute shows. [Ajmera & Wooters, 2003],

[Tranter & Reynolds, 2004],
[Jin et al., 2004]

COST278-BN 4 30 hours, television broadcast news [Zdansky et al., 2004],
9 European languages [Zdansky & David, 2004],
from 14 television stations. [Zibert et al., 2005],

[Teleki et al., 2005]
1 NIST 1996 Broadcast News Recognition Evaluation database

http://www.nist.gov/speech/tests/bnr/1996
2 NIST 1997 Broadcast News Recognition Evaluation database

http://www.nist.gov/speech/tests/bnr/1997
3 NIST Rich Transcription Spring 2003 Evaluation database

http://www.nist.gov/speech/tests/rt/2003-spring
4 COST278 Broadcast News Interest Group multi-lingual database

https://speech.elis.ugent.be/s/index.php?Itemid=73

Chapter 3. This corpus has been frequently reported upon by various research teams for

the broadcast news diarization task.

2.1.2.2 Scoring tolerance

As illustrated in Fig. 2.1, the transitions between speakers are often not precise. There

may be some overlap between the speech of different speakers, or there may be an ex-

tended silence between them. This thus makes it impossible to put the turn point be-

tween two speakers down to an exact time-stamp. This problem is further exacerbated

by the fact that the ground-truth references are often transcribed by a human. Human

transcribers often have to exercise some judgment when determining exactly where a
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transition takes place. This judgment varies from transcriber to transcriber, and as such

will introduce an element of variability into the references.

When scoring a set of segmentation results against a reference ground-truth, the most

common way of coping with this issue is to use a scoring tolerance or “collar” around each

reference point. As such, a hypothesized turn point does not have to coincide exactly

with the ground-truth in order for it to be judged as correct. All it needs to do is to fall

within the scoring tolerance of the reference ground-truth.

Figure 2.2: A scoring collar, ∆tcollar, is used around each reference point. A hypothesized turn
point will be deemed correct if it falls within the shaded regions.

The width of this scoring tolerance will thus have an impact on the evaluated seg-

mentation performance. A larger tolerance will yield better performance measures than

a smaller tolerance. Tolerance values of 2 seconds (∆tcollar = 1 second) have been used in

papers such as [Chen & Gopalakrishnan, 1998b; Zhou & Hansen, 2000] while 3 seconds

i.e. ∆tcollar = 1.5 seconds was used by the paper [Kemp et al., 2000]. A more strin-

gent tolerance of 1 seconds (∆tcollar = 0.5 second) was adopted in [Ajmera et al., 2004;

Meinedo & Neto, 2003a]. The value of ∆tcollar = 0.5 second has been adopted as the scor-

ing standard for the COST278-BN Broadcast News evaluation exercises [Vandecatseye

et al., 2004].

13
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2.2 Speaker Clustering

The speaker segmentation’s objective was to break up a continuous recording into speaker

homogeneous segments. Given this collection of segments, speaker clustering would usu-

ally then be applied in order to group the segments into clusters of common speakers.

Application examples of the above include telephony mixed-channel speaker verifica-

tion [Ore et al., 2006; Deng et al., 2006] and acoustic model adaptation for speech recog-

nition [Pusateri & Hazen, 2002; Hain et al., 2006; Janin et al., 2006]. In the mixed-channel

speaker verification task, speaker specific models after training are used to perform verifi-

cation against a designated reference model. For the speech recognition task, the acoustic

models used for recognition are adapted using the pooled speech. This would yield models

specially tailored for the target speakers, thus translating into better overall recognition

accuracy than when using generic models.

When performing speaker clustering, the decision on whether two segments should

belong to the same cluster is often made using those algorithms also employed for speaker

recognition or speaker segmentation. The vector quantization and model-based classi-

fication approach for clustering uses modeling techniques that have been employed for

speaker recognition. The hierarchical clustering approach on the other hand uses diver-

gence measures that are the same as those used in speaker segmentation.

2.2.1 Evaluation measures for clustering quality

When performing speaker clustering, there are two key concerns to the clustering quality.

The following notations will be used when introducing the measures of clustering quality:

14

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 2. Segmentation and Clustering Techniques for Speaker Diarization

Nclusters : Number of clusters produced by the clustering algorithm.
Nspk : Actual number of speakers in the corpus according to the ground-truth

scoring reference.
ni,j : Number of audio frames in cluster i that is attributed to speaker j.
ni,• : Total number of audio frames in cluster i.
n•,j : Total number of audio frames attributed to speaker j across all clusters.
nall : Total number of audio frames within the corpus,

i.e. nall =
Nclusters

∑

i=1

ni,• =
Nspk
∑

j=1

n•,j

The first concern is the homogeneity of each resultant cluster. Every cluster should

ideally consists of only a single speaker and be free from other contaminants. This homo-

geneity is usually measured using the cluster Purity [Gauvain et al., 1998; Solomonoff

et al., 1998; Chen & Gopalakrishnan, 1998b; Tritschler & Gopinath, 1999; Cettolo, 2000].

The Purityi is defined as the proportion of audio frames in the ith cluster originating

from the most dominant speaker within that cluster. The dominant speaker is defined to

be the speaker that has contributed the largest number of frames to the cluster. A higher

Purity value thus represents greater homogeneity and the optimal will be Purity = 1.0

where every audio frame in the cluster is produced by a single speaker. For a given ith

cluster, the Purity is calculated by

Purityi =
1

ni,•
max

j∈{all speakers}
{ni,j} (Eqn. 2.8)

The second concern regarding clustering quality is that the speech utterances orig-

inating from a single speaker be concentrated within as few clusters as possible. The

extend of this speaker “concentration” is often measured using the Coverage. For a

given jth speaker, the Coverage is calculated across all clusters as

Coveragej =
1

n•,j

max
i∈{all clusters}

{ni,j} (Eqn. 2.9)

When calculating the Coveragej for speaker j, the cluster containing the most number

of frames for said speaker j is first identified. This is then expressed as a ratio of the total
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number of frames uttered by speaker j within the corpus. The optimal Coverage value

thus is 1. A high Coverage value will mean a low dispersion level (or high concentration

level) for the speaker.

2.2.2 Evaluation measures for the whole corpus

The Purity and Coverage measures that were described earlier measure the clustering

performance for a single cluster or a single speaker. When comparing the performance

between clustering systems, we are usually concerned about the performance across an

entire corpus. The Purity and Coverage measures will thus serve as building blocks of

the subsequent measures.

For a given corpus, given that there are Nclusters number of clusters generated by a

clustering system, the overall homogeneity of all clusters can then be represented using the

Average Cluster Purity (ACP ) [Gauvain et al., 1998; Solomonoff et al., 1998; Tritschler

& Gopinath, 1999; Meinedo & Neto, 2003a; Vandecatseye & Martens, 2003; Tsai et al.,

2004; Barras et al., 2006]. The ACP is the weighted mean of the Purity of every cluster.

As such, just like Purity, a high ACP value close to 1 is desirable.

ACP =
1

nall

Nclusters
∑

j=1

n•,j · Purityj (%) (Eqn. 2.10)

In the same manner, by doing a weighted mean across the Coverage of all speakers,

the Average Speaker Coverage (ASC) [Gauvain et al., 1998; Barras et al., 2006] can

then be found. The ASC measures the dispersion of speech frames for all speakers. A

high ASC value once again represents a low amount of dispersion and a better clustering

algorithm.

ASC =
1

nall

Nspk
∑

i=1

ni,• · Coveragei (%) (Eqn. 2.11)
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2.2.3 Estimating the number of speakers present

It is useful to bear in mind that in many clustering applications, the true number of

speakers Nspk present in the corpus is unknown. Nspk will therefore have to be estimated

and these clustering approaches often incorporate some means of determining Nspk. For

hierarchical clustering approaches, this would usually take the form of having a stopping

criterion, as is done in [Heck & Sankar, 1997; Betser et al., 2004; Black & Schultz, 2006].

The purity-based halting of clustering can also be employed. This is done in works like

[Siu et al., 1992; Solomonoff et al., 1998] where clusters that are deemed impure are split

to form additional initial clustering states. In these approaches, the number of resultant

clusters Ncluster will thus serve as an estimate for Nspk.

2.3 Approaches to Speaker Segmentation

Numerous approaches to speaker segmentation have been introduced over the years. In

this chapter and the next, these approaches have been roughly classified under 5 general

categories.

i. Segmentation using silence

ii. Segmentation using divergence measures

iii. Segmentation by performing frame-level audio classification (See Section 2.5)

iv. Segmentation (and clustering) using a HMM decoder (See Section 2.5)

v. Segmentation (and clustering) using Direction of Arrival (See Section 2.5)

Approaches (i) & (ii) breaks up the continuous recording to a collection of unidentified

segments. Speaker clustering will have to be used subsequently to identify and classify
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these segments into clusters. Approaches (iii)-(v) on the other hand performs speaker

segmentation and clustering in a single integrated step.

While the primary purpose of speaker segmentation algorithms is to segment audio

according to speaker identity changes, almost all of the segmentation methods that will be

reviewed also respond to acoustic changes other than a change in the speaker’s identity.

What this means is that the algorithms do not strictly perform only speaker segmentation.

Segmentation boundaries demarcating the introduction of music, or an acoustic transition

to events such as a sneeze or clap can also be detected.

2.3.1 Segmentation using silence

The energy-based approach is perhaps the most elementary of all segmentation algo-

rithms. It works by detecting parts of the continuous audio stream where the energy is

lowest. These locations of low energy represent a pause in the continuous speech and

thus can potentially indicate the transition between speakers. Segmentation is performed

at these locations and further speaker clustering can then be done so as to determine the

identity of the speakers present. This is the strategy that was used in papers such as [Siu

et al., 1992; Wegmann et al., 1999b; Kemp et al., 2000; Ore et al., 2006]. In [Wegmann

et al., 1999b], an amplitude based silence detector is used as a first pass to break up

continuous broadcast news recordings into segments.

The relative simplicity of the silence based segmentation approach also proves to be

its weakness. As is mentioned in [Montaci & Caraty, 1998], many false turns will be

generated. This can happen mid-sentence, when the speaker pauses in between words, or

sometimes in the middle of words. Certain consonant such as the unvoiced frictatives are

by nature usually of lower amplitude than others such as the vowels. An inopportunely

placed frictative can thus result in an incorrect segmentation occuring midway of a word.
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2.3.2 Segmentation using divergence measures

The basic idea underlying algorithms of this class is to run a sliding window across the

entire continuous recording while computing the acoustic dissimilarity within the win-

dow. The sliding window will be divided into 2 parts - a left and a right sub-window. In

between the sub-windows would be a hypothesized turn point. A divergence measure is

computed between both sub-windows. This produces a metric that indicates the acous-

tic dissimilarity between both sub-windows. A segmentation of the audio can then be

performed at locations where the divergence measure is at a maximum.

Figure 2.3: The sliding window used for divergence measure based algorithms.

overlapping speech
 no speech
 no speech


Figure 2.4: A time series plot of the divergence measure is obtained as the window is moved
across the entire corpus. Maxima in the plot represent likely speaker turns.

The divergence between the windows is typically computed using audio feature vec-
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tors. Line Spectral Pairs (LSP) were the feature of choice in works such as [Lu & Zhang,

2002b]. The Mel-Frequency Cepstrum Coefficient (MFCC) [Davis & Mermelstein, 1980]

however has been proven to be of the most popular feature for segmentation, as testified

by the large number of works using it: [Tritschler & Gopinath, 1999; Kemp et al., 2000;

Delacourt & Wellekens, 2000; Wu et al., 2003; Vandecatseye & Martens, 2003; Anguera,

2005; Doco-Fernndez & Garca-Mateo, 2005; Kim et al., 2005] and many others. The

Perceptual Linear Predictive Cepstral (PLPC) coefficients [Hermansky, 1990] is another

popular feature that was used in works such as [Meinedo & Neto, 2003b; Wegmann et al.,

1999a].

An illustration of the typical sliding window regime is shown in Fig. 2.3. The left

and right sub-windows of the sliding window will henceforth be denoted as L and R.

When this sliding window is moved across the entire corpus, a time-series plot of the

divergence measure will be produced. Since a large divergence value typically represents

a large acoustic difference between L and R, the segmentation of the continuous audio

can thus be done at the local maxima of the time-series. A threshold is usually also used

as a criteria when detecting the maxima. Segmentation will take place only when the

maxima exceeds the pre-determined threshold value.

In the computation of the divergence measures, it is usually assumed that the feature

vectors from the windows L and R both have Gaussian distributions. Given an arbitrary

segment O consisting of N audio feature vectors oi, {oi ∈ O : i = 1 . . . N}, the likelihood

probability that O belongs to either the L or R windows can thus respectively be defined:

20

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 2. Segmentation and Clustering Techniques for Speaker Diarization

Probability that O belongs to L, pL(O)

= p(O|ΘL)

=

N
∏

i

p(oi|ΘL) where ΘL ≡ N(µL,ΣL) (Eqn. 2.12)

Probability that O belongs to R, pR(O)

= p(O|ΘR)

=
N
∏

i

p(oi|ΘR) where ΘR ≡ N(µR,ΣR) (Eqn. 2.13)

µL and µR respectively are the mean vectors of the L and R windows, while ΣL and

ΣR are the covariance matrices. ΘL and ΘR respectively denote models of the L and R

windows. The above notation will be used in the following Sections 2.3.2.1 & 2.3.2.2.

Table 2.2 lists some of the divergence measures that have been employed to perform

speaker segmentation.

Table 2.2: A review of divergence measures used in speaker segmentation.

Divergence measure used
System summary

Undirected Kullback-Leibler distance (KL2)
[Siegler et al., 1997]
Reported that the KL2 could yield a Recall of 0.64, along with a FAR of 0.6. KL2 was found to be less likely of
making an erroneous decision about whether the windows L and R are from the same speaker.

[Couvreur & Boite, 1999]
Found that segmentation with the KL2 could yield a lower FAR than that for Mahalanobis and Bhattacharyya
distances, although the Recall for the latter two were better than that for KL2.

Divergence Shape Distance (DSD)
[Lu & Zhang, 2002a]
Reported that the means of the distributions used in the KL2 distance are easily biased by varying environmental
conditions. As such, the DSD is used as an improvement over the KL2 distance. The DSD measure was found
to minimizes the effect of environmental or channel variations, and emphasizes the difference between speakers.

Mahalanobis distance (MAH)
Bhattacharyya distance (BHA)

[Couvreur & Boite, 1999]
Compared the MAH and BHA against the KL2 divergence. It was found that the Recall was slightly better for
MAH and BHA i.e. 0.935 & 0.966 respectively, versus 0.934 for KL2 divergence

Continued on next page
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Table 2.2 - continued from previous page
Divergence measure used

System summary

[Hung et al., 2000]
Also reported that Recall was slightly better for MAH and BHA versus the KL2 divergence.

Weighted Euclidean distance (WED)
[Kwon & Narayanan, 2002]
Tested the WED against the MAH distance on a 1 hour recording of broadcast news. It was reported that the WED
could deliver a 37.7% reduction in segmentation errors relative to the same for MAH.

Cross-Likelihood Ratio (CLR)
[Doco-Fernndez & Garca-Mateo, 2005]
CLR was used after preliminary segmentation using the Bayesian Information Criterion (BIC). Reported that the
BIC tends to be sensitive to situations where the acoustic environment changes but not the speaker present, resulting
in a high number of false alarms. CLR was thus used as a confirmation step to ignore segmentations corresponding
to acoustic changes, while retaining only those true speaker transitions.

Cross-BIC distance
[Anguera, 2005]
Introduced as a simplification of the CLR distance as it was suggested that some terms in the CLR are redundant.
Performance of XBIC was compared with that of BIC on the Hub4-97e corpus. Reported achieving an FScore

of 0.637 versus 0.567 with BIC.

Generalized Likelihood Ratio (GLR)
[Bonastre et al., 2000]
Sliding windows are moved in fixed steps of 0.1 second, each half of the sliding window is 2 seconds. It was reported
that over-segmentation tends to occur resulting is a high FAR. At a FAR of 0.50, a MDR of 0.15 was obtained.

[Mori & Nakagawa, 2001]
Reported that while the GLR expresses good speaker segregation capabilities, its overall performance was still
slightly inferior to that of the BIC.

[Remes et al., 2007]
Used the GLR to perform segmentation before performing clustering (or “speaker tracking”). A FAR of 0.51 and
MDR of 0.16 was reported. The high FAR was not a problem because false speaker changes were resolved in the
clustering phase.

The Bayesian Information Criterion (BIC) and Hotelling’s T2 statistic will be de-

scribed to greater detail next as these two divergence measures will be used in Chapter

3 for speaker segmentation experiments.

2.3.2.1 Bayesian Information Criterion (BIC)

The divergence measure that is perhaps most often cited in speaker segmentation litera-

ture is the Bayesian Information Criterion (BIC) [Schwarz, 1978]. The BIC is a statistical

criterion for model selection that has been used in papers such as [Chen & Gopalakrish-

nan, 1998b; Tritschler & Gopinath, 1999; Kemp et al., 2000; Lopez & Ellis, 2000; Zhou

& Hansen, 2000; Nishida & Kawahara, 2003; Vandecatseye & Martens, 2003; Ajmera

et al., 2004]. It essentially performs model selection by answering the following question

about a window of speech surrounding a hypothesized turn point: “Is this window best
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modeled using two distributions, or one single distribution ?” The BIC equation penal-

izes a model’s likelihood by the its complexity. All other things being equal, the BIC

thus favours a model with lower complexity.

Fig. 2.3 illustrates the window notations used in the following derivation. Given that

a model M that is denoted by the statistical distribution Θ, the BIC for a window, W,

can be defined as

BIC(M) = ln P (OW |Θ) −
1

2
λD ln NW (Eqn. 2.14)

OW = [OL OR] = [oW ,1 . . .oW ,ttest
. . .oW ,NW

] is the the series of NW audio feature

vectors captured within W. D is the number of independent parameters present in Θ.

The second term in Eqn. 2.14 is commonly referred to as the penalty term and is what

penalizes the BIC score for its complexity. The model with the higher BIC(M) value

thus is the model that should be chosen. For the purpose of segmentation, two models

shall be defined:

• Model M0 models the scenario where ttest is not a turn point. As such, the feature

vectors for the left window (OL) and right window (OR) will belong a common

distribution, ΘW .

• Model M1 on the other hand models the scenario where ttest is a turn point. As

such, the feature vectors for the left window (OL) and right window (OR) will

belong to two different distributions, ΘL and ΘR.

It is assumed that the feature vectors OW follow a Gaussian distribution. As such,

the likelihood of OW , given Θ ≡ N(µ,Σ) would be

p(OW |Θ) =

NW
∏

i

[

1

(2π)
d
2 |Σ|

1

2

e−
1

2
(oW,i−µ)T Σ−1(oW,i−µ)

]

(Eqn. 2.15)
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BIC(M0) thus would be

BIC(M0) = lnP (OW |ΘW) −
1

2
D0 ln NW (Eqn. 2.16)

= −
d

2
NW ln 2π −

NW

2
ln |ΣW | −

NW

2

−
1

2
λ

(

d +
d(d + 1)

2

)

ln NW (Eqn. 2.17)

D0 = d + d(d+1)
2

is the number of independent parameters present in ΘW and is an

indication of the complexity for the model M0. It consists of the d elements in the mean

µW and the d(d+1)
2

unique elements in the covariance ΣW . The covariance matrix is

assumed to be diagonal in this case.

Similarly, the BIC value for M1 is

BIC(M1) = ln P (OL,OR|ΘL, ΘR) −
1

2
λD1 ln (NL + NR) (Eqn. 2.18)

= ln [P (OL|ΘL)P (OR|ΘR)]

−
1

2
λ (2d + d(d + 1)) ln (NL + NR) (Eqn. 2.19)

= −
d

2
(NL + NR) ln 2π −

NL

2
ln |ΣL| −

NR

2
ln |ΣR|

−
NL + NR

2
−

1

2
λ (2d + d(d + 1)) ln (NL + NR) (Eqn. 2.20)

The D1 independent parameters for this model consists of: d elements each in µL

& µR, and d(d+1)
2

elements in each covariance ΣL & ΣR. Putting both BIC(M1) and

BIC(M0) together, we can now formulate our hypothesis test using ∆BIC.

∆BIC = BIC(M1) − BIC(M0) (Eqn. 2.21)

= −
NL

2
ln |ΣL| −

NR

2
ln |ΣR| +

NW

2
ln |ΣW |

−
1

2
λ

(

d +
d(d + 1)

2

)

ln NW (Eqn. 2.22)

The null and alternate hypothesis for this model selection can be defined as

H0 : ∆BIC ≤ thpeak , there is not a turn point present at ttest

H1 : ∆BIC > thpeak , there is a turn point present at ttest
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thpeak is the threshold value that determines whether the null hypothesis is to be

rejected. A value of thpeak = 0 would be the fair threshold upon which to perform model

selection. This value however can be adjusted to lend a bias to one of the models or

hypothesis. The penalty factor λ is often tweaked in many papers so as to increase or

decrease the complexity penalty. It has been reported in numerous papers [Tritschler &

Gopinath, 1999; Lopez & Ellis, 2000; Vandecatseye & Martens, 2003; Ajmera et al., 2004]

that the ideal λ tends to be corpus dependent and λ thus is often selected by performing

validation on a separate corpus.

One of the earliest papers to use the BIC for the task of speaker segmentation and

clustering was [Chen & Gopalakrishnan, 1998b]. In that paper, the BIC was found to

better predict a prospective turn point than the KL2 and Gish distances. Analysis was

performed on the divergence time-series produced by sliding a window across a 77 second

speech recording containing a single speaker transition point. It was found that while the

KL2 and Gish distances showed local maxima peaks at the transition point, numerous

spurious peaks were also observed that did not correspond to acoustic transitions. The

BIC on the other hand produced only one single peak in the time-series plot and this

peak corresponds perfectly to the transition location.

2.3.2.2 Hotelling’s T2 statistic

In the papers by Zhou & Hansen [Zhou & Hansen, 2000; Zhou & Hansen, 2005] and Huang

& Hansen [Huang & Hansen, 2004; Huang & Hansen, 2006], a novel model selection

approach using Hotelling’s T2 statistic was proposed. This method of using the T2

statistic was meant to address one major shortcoming of the BIC algorithm, i.e. the BIC

algorithm is computationally more complex and slow. The T2 statistic on the other hand

computes much quicker. This speed however comes at a price, the T2 statistic method

generally is less precise and thus needs to be coupled with the BIC algorithm in order to

reduce its False Alarm Rate (FAR) and consequently improve its Precision.
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The Hotelling’s T2 statistic is in effect a multi-variate generalization of the Student’s

t-statistic. It was introduced in 1931 by Harold Hotelling [Hotelling, 1931] and has found

common usage in hypothesis testing. Given that a set of feature vector observations O

is of Gaussian distribution,

O ∼ N (µ,Σ) (Eqn. 2.23)

The T2 statistic to test if O indeed belongs to the distribution (i.e. whether µ̂ = µ)

can be stated as

T 2(O) = N(µ̂ − µ)TΣ−1(µ̂ − µ) (Eqn. 2.24)

µ and Σ are the true population means and covariance respectively, while µ̂ is the

estimated sample mean. T 2(O) measures the divergence of the sample observations from

the population distribution. The smaller the value of T 2(O), the closer the sample is to

the population. Much like that for the BIC, the T2 statistic can thus be used to formulate

the segmentation problem in terms of a hypothesis test. For the purpose of the test, the

feature vectors in the left and right windows are assumed to be normally distributed as

OL ∼ N [µL,ΣL] and OR ∼ N [µR,ΣR].

The null and alternate hypothesis for the T2 test can be stated as

H0 : ÔL = ÔR, there is not a turn point present at ttest

H1 : ÔL 6= ÔR, there is a turn point present at ttest

ÔL and ÔR respectively are the sample means for the observations OL and OR. The

estimate of the sample means will thus have the distributions

ÔL ∼ N

(

µL,
ΣL

NL

)

(Eqn. 2.25)

ÔR ∼ N

(

µR,
ΣR

NR

)

(Eqn. 2.26)
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The difference, ∆ = ÔL − ÔR, will be distributed according to

∆ ∼ N

(

µL − µR,
ΣL

NL

+
ΣR

NR

)

(Eqn. 2.27)

Assuming that OL and OR are from the same distribution,

Σ = ΣL = ΣR (Eqn. 2.28)

µL = µL (Eqn. 2.29)

Eqn. 2.27 thus becomes

∆ ∼ N

(

0,
Σ

NL
+

Σ

NR

)

(Eqn. 2.30)

The T2 statistic used to test whether OL and OR are of the same distribution (i.e.

whether µL − µR = 0) will be

T 2(∆) = [(µL − µR) − 0]T
(

Σ

NL
+

Σ

NR

)−1

[(µL − µR) − 0] (Eqn. 2.31)

=
NLNR

NL + NR
(µL − µR)TΣ−1(µL − µR) (Eqn. 2.32)

The critical region will be

T 2(∆) >
Df − d + 1

Df · d
Fd,Df−d+1(α) (Eqn. 2.33)

where Df = NL+NR−2 is the number of degrees of freedom used in the test, d is the

dimensionality of the observation vectors, and α is the significance level of the test. F•,•

denotes a F-distribution [NIST, 2006a] with parameters as indicated in the sub-script.

In other words, if Eqn. 2.33 is fulfilled, we shall reject H0 and conclude that a turn point

is present.

In the papers [Zhou & Hansen, 2000; Zhou & Hansen, 2005], the T 2(∆) values is

used as a first stage distance measure. The task of finding turn points will then become

one of identifying peaks in the time-series curve of T 2(∆). Hypothesized turn points
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from the first stage are then passed on to a second stage where the BIC measure is

used to determine if the turn-points are false-positives. This T2+BIC approach was

reported to yield better FAR and MDR. A BIC-only system used for contrast produced

FAR = 10.8% and MDR = 29.3%. The two stage system on the other hand produced

FAR = 16.5% and MDR = 22.6%∗. These results were reported upon the Hub4-97e

corpus. Beyond the FAR and MDR results, the key performance difference between

both system lies in the computational time required. The BIC-only system was timed

to take 2160 minutes to complete segmentation while the T2+BIC system took only 21

minutes. This works out to be a computational efficiency of about 100x faster for the

two stage system.

2.4 Approaches to Speaker Clustering

For the task of clustering speech according to their speaker identities, the papers in the

literature have mainly focused on the following 5 approaches:

i. Clustering using vector quantization

ii. Clustering using iterative model training and classification

iii. Clustering in a hierarchical manner using divergence measures

iv. Clustering (and segmentation) using a HMM decoder (See Section 2.5)

v. Clustering (and segmentation) using Direction of Arrival (See Section 2.5)

Approaches (i)-(iii) perform speaker clustering upon a set of unidentified speech seg-

ments. These approaches have their roots in speaker identification and indeed the prob-

lem underlying speaker clustering can be reduced to one of deciding whether two given

speech utterances were made by a common speaker.

∗The FAR and MDR results for the single stage BIC-only system, and the two stage T2+BIC
system have been converted to Precision, Recall and FScore measures in Table 3.1. It can be seen that
the two stage system is better with a FScore of 0.803. The same for the single stage system is 0.789.
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Approaches (iv) & (v) are combined segmentation and clustering approaches. Algo-

rithms of these classes perform speaker segmentation and clustering together at the same

time i.e. there are no distinct segmentation and clustering steps within the algorithms.

2.4.1 Clustering using Vector Quantization

Vector Quantization (VQ) has been explored for speaker clustering in papers such as [Co-

hen & Lapidus, 1995; Mori & Nakagawa, 2001; Akita & Kawahara, 2003; Rodrguez &

Torres, 2004; Grebenskaya et al., 2005; Haubold & Kender, 2006]. In the VQ based

clustering approach, feature vectors from an unknown speaker are typically mapped to

the known template vectors in a code-book. Each of these template vectors will repre-

sent a certain speaker identity. The mapping of feature vectors is performed using some

distance measure and a decision about whether the speaker matches that in the template

can be made by using the distance measure.

VQ clustering typically starts off with the creation of the code-book. This usually re-

quires speech samples from every speaker and thus is not suited for applications requiring

unsupervised clustering of the speakers. The most common way of initializing the code-

book is probably using the Linde, Buzo & Gray (LBG) algorithm [Linde et al., 1980].

This was done in works such as [Cohen & Lapidus, 1995; Akita & Kawahara, 2003; Rodr-

guez & Torres, 2004]. Self-Organizing Maps (SOM) [Kohonen, 1990] were also proposed

in [Lapidot et al., 2002; Lapidot, 2003] as a means of creating the code-book.

Each feature vector is then clustered to a speaker identity using some form of a

distance measure. For this, the Vector Quantization distortion (VQD) measure is a

commonly used measure of distance. The VQD was used in [Mori & Nakagawa, 2001;

Kinnunen et al., 2006; Haubold & Kender, 2006] and is defined using the Euclidean

distance. A small VQD value thus represents greater similarity between the speech

segment and a code-book template vector. It was observed in [Mori & Nakagawa, 2001]

that the VQD exhibits robustness and reliability even for short speech utterances.
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One key shortfall to the VQ-based clustering approach is the need for supervised

training to create the code-book. This would mean that the method will not be able

to performing clustering for speakers that were not enrolled in the training phase since

these speakers will not have a corresponding template vector.

2.4.2 Clustering using iterative model training and classifica-
tion

Model-based clustering approaches involving repeated training and classification were

used with good results in papers such as [Deng et al., 2006; Anguera et al., 2006a]. The

ability of the Gaussian Mixture Model (GMM) to model the identity of speakers is what

underlies the algorithms of this class. The GMM has previously showed to be effective

for speaker recognition in works such as [Reynolds & Rose, 1995; Scheffer & Bonastre,

2006]. By measuring the likelihood of speech segments against GMM speaker models,

segments with high likelihoods can be assigned the identity of the GMM and those

segments with similar identities can be clustered together. GMMs representing speakers

are bootstrapped by iteratively re-training and re-classifying. Over many iterations,

the segment assignments will stabilize to yield accurate representations of the different

speaker clusters.

In [Anguera et al., 2006a], an approach termed “Friends versus Enemies” was used

for a meeting diarization system. A GMM ΘALL is first trained using all the feature

vectors in the entire meeting i.e. where ALL =
{

O1 . . .ONsegments

}

represents the set

of all segments in the meeting recording. The cross-likelihood for every segment is then

obtained against ΘALL. A set of segments, F0, with the highest score are selected and

termed as “friends” since they have a high level of similarity with ΘALL. A model ΘF0

is then trained using the segments from F0.

The remaining segments {ALL− F0} are then scored against ΘF0
. The set of seg-

ments, E0, most dissimilar from ΘF0
will be termed as “enemies”. A new model ΘE0
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is then trained from E0 and whatever segments that remain are then scored against

ΘE0
. The algorithm reiterates and once again those segments with the highest similar-

ity will be termed as “friends” and will belong to set F1. The same is repeated for set

E1 to create yet another set of “enemies”. This process of creating “friends” and “ene-

mies” is repeated until all segments have been assigned to a set. The resultant GMMs

ΘF0
, ΘE0

, ΘF1
, ΘE1

, . . . will then each represent a single speaker identity. This algorithm

was reported to yield a good set of initial models for subsequent re-segmentation using

HMM, especially when the number of speakers in the corpus is unknown.

2.4.3 Hierarchical clustering using divergence measures

As evidenced by the large amount of work that has been performed using it, hierarchical

methods are a popular way of performing speaker and acoustic clustering. Hierarchical

clustering in essence is a “Divide-and-conquer” algorithm [Webb, 2002]. It divides the

task of clustering the speakers within a recording into a series of clustering sub-tasks.

Each sub-task works upon a sub-set of the segments in the corpus.

Hierarchical methods can be divided into bottom-up methods or top-down methods.

The difference between the two approaches are illustrated in Fig. 2.5. The methods

essentially differ in whether they are agglomerative or partitional [Duda et al., 2000].

Agglomerative algorithms start out with many segments. Segments are then successively

clustered together, resulting in a few speaker clusters at the end point. Partitional

clustering on the other hand start out with a single cluster containing every segment

from the corpus. This big cluster is then successively broken up into smaller clusters. In

both agglomerative or partitional clustering, the goal is the same i.e. to stop clustering

where the number of clusters Ncluster corresponds to the correct number of speakers Nspk

present in the corpus.
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top-down,
 partitional
  clustering


bottom-up, agglomerative clustering


N
clusters
 =
N
spk


N
clusters
 = 1


N
clusters
 =
N
segments


Figure 2.5: Hierarchical clustering in a bottom-up or top-down fashion. The objective is to
obtain a cluster number Nclusters corresponding to the correct number of speakers Nspk.

2.4.3.1 Agglomerative bottom-up clustering

Agglomerative bottom-up clustering works by using a divergence measure to quantify the

acoustic similarity between clusters of audio segments. A similarity matrix is typically

constructed between all clusters under consideration for merging. The clusters that are

most similar are then iteratively merged until when the stopping criterion is fulfilled. This

criterion is often defined in the form of a threshold. In the event that the divergence

measure exceeds or falls below the threshold value, clustering will halt and proceed to

the next level in the hierarchy.

Table 2.3 lists some of the divergence measures that have been employed to perform

bottom-up clustering. Included in the list are divergence measures such as the Kullback-

Leibler (KL) distance, undirected Kullback-Leibler distance (i.e. KL2 distance), Cross

Likelihood Ratio (CLR), Generalized Likelihood Ratio (GLR) and Bayesian Information

Criterion (BIC) are distance measures which have been introduced previously for the
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purpose of segmentation in Section 2.3.2. Amongst these measures, the BIC is perhaps

the most popular and commonly cited divergence measure. It has been used in papers

such as [Tritschler & Gopinath, 1999; Zhou & Hansen, 2000; Vandecatseye & Martens,

2003] and has been reported to be capable of consistently yielding ACP measures above

95% on the Hub4-97e corpus.

Table 2.3: A review of agglomerative bottom-up clustering divergence measures and correspond-
ing works.

Divergence measure used
Systems description Stopping criterion

Kullback-Leibler distance (KL)
[Rougui et al., 2006]
Online indexing of speakers. Speakers are represented by GMMs, Not specified
KL divergence is used to compute similarity between GMMs.
[Harris et al., 1999]
Segments are weighted by proximity to each other. Segments Not specified
near each other have priority.

Undirected Kullback-Leibler distance (KL2)
[Betser et al., 2004]
GMMs adapted for each segment from a background model, KL2 used Squared Euclidean distance
to estimate distance between GMMs. between representative feature

vectors falls below thstop.

Euclidean distance
[Couvreur & Boite, 1999]
Segments are mapped to a code-book using K-means, clustering is Not specified
performed using code-book vectors.

Cross-Likelihood Ratio (CLR)
[Sankar et al., 1995]
Single, complete and average linkage results are examined. Not specified
[Heck & Sankar, 1997]
Average linkage is used where CLR score is an average of scores between Stop when CLR < thstop

all segments in both prospective merging candidates.
[Barras et al., 2004; Zhu et al., 2006; Zhu et al., 2005]
CLR uses 3 GMMs - 2 to model each clustering candidate segment, Stop when CLR < thstop

1 for a Universal Background Model (UBM). Score is normalized
by size of candidate segments.
[Nishida & Kawahara, 2005; Nishida & Kawahara, 2004]
Clusters are modeled using GMM and VQ Stop when CLR < thstop

Generalized Likelihood Ratio (GLR)
[Solomonoff et al., 1998]
Multi-level hierarchy was found to yield better clustering Threshold chosen where Average
than a single-node hierarchy. Cluster Purity (ACP ) peaks.
[Lopez & Ellis, 2000]
Distance measure used is a weighted combination of GLR and BIC. Not specified
[Black & Schultz, 2006; Jin et al., 2004; Jin & Schultz, 2004]
GLR is used to compute distance, BIC is used to determine Stop when ∆BIC < 0
the stopping point.

Bayesian Information Criterion (BIC)
[Chen & Gopalakrishnan, 1998a]
Clustering speakers for speech recognition model adaptation. Stop when ∆BIC < 0

Continued on next page
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Table 2.3 - continued from previous page
Divergence measure used

Systems description Stopping criterion

[Tritschler & Gopinath, 1999]
“Online” clustering where clustering hierarchy depends on segment order. Stop when ∆BIC < 0
[Zhou & Hansen, 2000]
Gender classification is done first. Hierarchical clustering is then done Stop when ∆BIC < 0
within gender.
[Meinedo & Neto, 2003a]
BIC clustering results compared against the same when using KL2 were found Stop when ∆BIC < 0
to be slightly superior.
[Moraru et al., 2003]
Segments are represented using GMMs MAP adapted from a background model, Stop at a pre-defined
BIC compute distance between GMMs. number of clusters
[Vandecatseye & Martens, 2003]
∆BIC score is normalized by the size of the candidate Stop when
merging clusters. normalized ∆BIC < 0
[Kim et al., 2005]
HMM re-segmentation/clustering is done after BIC clustering Stop when ∆BIC < thstop

Gish distance
[Gish et al., 1991]
Clustering is performed on airport traffic control recordings. Not specified
[Jin et al., 1997]
Heavier weighage were given to consecutive segments. Observations made Clustering tree pruned to yield
that consecutive segments had higher likelihood of being from same speaker. a pre-defined number of clusters.

Log-likelihood variant
[Meignier et al., 2002]
Clustering results were compared against traditional CLR and found Supervised clustering where
to do better. dendrogram is pruned using a

ACP based measure.

Speaker triangulation
[Moh et al., 2003]
The similarity between each merger candidate speaker and all other Not specified
speakers is found. This when summed together yields a measure that
approximates to the GLR.

Cosine distance
[Tsai et al., 2004]
Feature vectors are projected onto a different dimensional space, Not specified
cosine distance then used upon projected vectors.

Earth Mover’s distance (EMD)
[Stadelmann & Freisleben, 2006]
EMD is used in a MIXMAX framework, where a second GMM is used to Not specified
model additive background noise.

2.4.3.2 Partitional top-down clustering

Judging by the lesser amount of literature that is written about it, the partitional top-

down hierarchical approach is much less popular than the agglomerative bottom-up

speaker clustering method. The top-down hierarchical clustering technique starts by

utilizing the speaker segments generated from an audio segmentation step. The seg-

ments are taken to form a single cluster at the start of the clustering hierarchy. This

single cluster is then iteratively split into multiple clusters. Once clustering is complete,
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the end point will consist of clusters each corresponding to a speaker identity.

The Arithmetic Harmonic Sphericity (AHS) distance measure was proposed as a

divergence measure for top-down clustering in [Bimbot & Mathan, 1993]. This distance

measure was used in papers such as [Johnson & Woodland, 1998; Johnson, 1999]. In

these systems, the division of segments within each clustering node occurs by iterating

two steps. The first step is one where all segments are randomly assigned to one of 4

clusters. In the second step, the AHS distance of each individual segment with all 4

clusters is computed. The segment will then be assigned to the cluster in which it is

deemed to be closest. The second step is iterated until such a point where the cluster

assignments for all segments have stabilized. A minimum occupancy criterion is defined

such that each of the 4 clusters must have a minimum number of segments assigned to

it upon stabilization. Should this minimum occupancy be violated, the algorithm will

re-start and repeat, this time working with only 3 clusters, as opposed to 4.

2.5 Joint Segmentation and Clustering Approaches

2.5.1 Segmentation by performing frame-level audio classifica-

tion

Classifier-based approaches segment the continuous audio by performing some form of

audio classification on the audio stream. The audio stream is classified in a frame-wise

manner into various acoustic classes. Segmentation of the audio will then be done at

the boundaries between audio of different classes. This ”segmentation-by-classification”

approach is very similar to the decoder based approach that will be described in Section

2.5.2. It differs in that classifiers such as decision rules, Gaussian Mixture Models (GMM)

or Support Vector Machines (SVM) [Burges, 1998] are used instead, as opposed to HMMs.
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Table 2.4: A review of literature performing segmentation by frame-level audio classification.

Classifier used
System summary

Decision rules
[Zhang & Kuo, 1999]
Classification is performed by applying decision rules on the characteristics exhibited by various acoustic features
such as the signal zero crossing rate (ZCR), short-time energy, fundamental frequency and spectral peak track. The
audio stream will be classified into one of eight classes: silence, harmonic environmental sound, non-harmonic
environmental sound, pure speech, pure music, songs (i.e. speech sung along with music), speech against a music
background, and environmental sound with music.

Nearest neighbour classifier
[Lu et al., 2001b]
Division of audio into speech and non-speech categories done using a K-nearest neighbour (KNN) classifier, then
cascaded into a Linear Spectral Pair vector quantization (LSP-VQ) classifier for refinement. In the latter step, for
each audio frame that is to be classified, the LSP distance of that frame is computed against template vectors in a
codebook. The templates in this codebook represent speech vectors. Classification into speech and non-speech is
then done depending on whether that LSP distance exceeds certain thresholds.

Gaussian Mixture Models (GMMs)
[Siu et al., 1992]
The subject of this paper was to label the speaker identities present in audio recordings between airport traffic
controllers and pilots. The first step was to separate speech from noise. In this step, audio is first divided regularly
into segments 200 milliseconds long. Each segment is then classified into speech or noise using a GMM classifier
consisting of a speech and noise model. Noise boundaries are then used to segment the continuous audio and GMM
models representing the speakers are then used to score each segment, providing speaker identities.

[Tranter & Reynolds, 2004]
Four GMM models were trained, one each for wide band speech, telephony speech, speech with music or noise, and
pure music or noise. Speaker clustering was then performed using the models, scoring in a maximum likelihood
manner. Comparisons were made between the GMM classifier based method and a traditional BIC-based
segmentation and clustering. Holding all other things equal, the GMM based approach could yield better diarization
error rates (DER). Tested upon the NIST Rich Transcription 2003 Spring (RT-03s) corpus, a DER of 32.2% was
obtained with the GMM based approach while the BIC based approach yielded 33.91%.

Support Vector Machines (SVM)
[Lu et al., 2001a]
First pass segmentation was performed by detecting silence using the Short Time Energy (STE) feature. SVMs were
then used to classify the non-silence portions into either music, speech or background noise. Experiments conducted
upon a 2 hour corpus found that a classification accuracy of between 92% to 98% was obtained for the various audio
classes. Also reported that the SVM based approach is computationally more efficient than the KNN method
[Lu et al., 2001b] previously described.

2.5.2 Segmentation and Clustering using a HMM decoder

Segmentation and clustering using a HMM decoder has proven to be a popular approach,

especially when the final application is a speech recognition system. A HMM is typically

used to decode the audio stream into acoustic classes. Recognition can then be carried

out using models specific to that particular acoustic class. There however are variations

in the decoder strategies used and Table 2.5 will give a summary of these strategies.
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Table 2.5: A review of literature reporting segmentation and clustering using a HMM decoder.

System summary

[Hain et al., 1998; Hain & Woodland, 1998]
Classifies audio into the categories, with the added emphasis on determining if the speech is bandlimited (like
telephony) or unlimited. Recognition is then carried out using acoustic models that matches the speech segment’s
acoustic quality, thus leading to better speech recognition results.

[Liu & Kubala, 1999]
A HMM decoder is trained to detect gender changes and portions of non-speech in the continuous audio recording.
This frame-by-frame information is then used to augment a Generalized Likelihood Rate (GLR) based segmenter
where a dynamic threshold is used to decide if a segmentation should be done. The threshold is lowered at points
where there the audio is deemed by the HMM decoder to be non-speech. Segmentations are also made where the
decoder detected a change in the speaker gender. Results were obtained upon the Hub4-97e corpus
[Graff et al., 2002]. The ground-truth reference used had 483 turns, resulting in a FAR of 25% and a MDR of 30%.
This would translate into Recall, Precision and FScore values of 0.7, 0.75 and 0.724 respectively.

[Meignier et al., 2001]
Because the number of speakers present in the corpus is unknown, a “top-down” approach was taken where the
HMM starts off with 1 state (representing 1 speaker) and progresses towards having more states. The decoding
process is repeated until where the number of speakers present is deemed to be optimal. During the decoding for
each iteration, the HMM emission probability for each frame is stored. The frames that result in the highest
occurrence likelihood within any single state are then taken to create a new HMM state. This process of adding a
new state (each state representing a speaker) is repeated until when no more suitable frames are found.

[Ajmera & Wooters, 2003]
The number of speakers present in the corpus is unknown and a “bottom-up” fashion is used with the HMM

decoder. The number of speakers present in the speech is first hypothesized to be N̂spk. To initialize the decoder, the

K-means algorithm is used to do a rough cluster of the audio frames into N̂spk acoustic classes. A corresponding
HMM state is trained for every acoustic class. Decoding is then performed and the two classes that are deemed to be
most similar are merged. This is done using the GLR as the measure of similarity. The algorithm then reiterates.
This is repeated until when the Viterbi decoding score is highest. This system tends to “under-cluster”, i.e. the final
number of speakers is greater than the actual number.

2.5.3 Segmentation and Clustering using Time Delay of Arrival

Given any time duration where an arbitrary speaker is speaking, since the multiple dis-

tant microphones (MDM) are placed in different locations within the room, the spatial

distance between that speaker and each microphone will be different. The speed of sound

is a constant and this would thus lead to differences in the times in which a sound arrives

at each of the different microphones. This time differences would thus be the Time Delay

of Arrival (TDOA) between the channels.

The general direction of arrival (DOA) of the speech signal can be interpreted using

the TDOA, and consequently the location of speakers can be determined. The contin-

uous audio recording can then be segmented when there is a change in the direction.

Speaker clustering can also be performed by grouping together speakers originating from
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a common location. Table 2.6 offers a review of systems where the TDOA is used to

perform segmentation and clustering of speech. It is notable that while all these systems

performed TDOA estimation, there was no effort in any of them to accurately determine

the direction of arrival in terms of the azimuth (i.e. the angle indicating the direction

of arrival). To do so will require information about the microphone geometry and lay-

out (information such as the exact microphone separation and orientation) and this is

information that is not disclosed in the NIST Rich Transcription evaluation corpora.

Table 2.6: A review of literature performing segmentation and clustering using Direction of
Arrival.

Method used for Time Delay of Arrival (TDOA) estimation
System summary

Generalized Cross-Correlation
[Ellis & Liu, 2004]
250 millisecond cross-correlation windows were used but larger windows were reported to yield more robust TDOA
estimates. The TDOA estimates were then clustered to determine whether there was a change in speaker. An
important finding in this paper was that some microphone pairs yield more reliable TDOA results and a process of
microphone pair selection will be useful. The issue of “good peak” selection was also raised and the authors
purposed applying spectral clustering on the audio signal to help remove spurious peaks. Diarization results were
reported upon the NIST RT-04 Spring corpus - a DER of 62.3% was obtained.

[Wooters et al., 2004]
The TDOA estimates were used only to enhance audio recordings from multiple distant microphones (MDM). For
every discrete utterance, the cross-correlation is used to estimate the delays between channels. Delay-and-summing
was then performed to yield a single enhanced channel which was used for speech recognition. A 6.6% speech
recognition word error rate improvement was observed between the enhanced channel and the best MDM recording.

Generalized Cross-Correlation using Phase Transform (GCC-PHAT)
[Cheng et al., 2005]
The cross-correlation and GCC-PHAT methods of obtaining TDOA were compared in a speaker segmentation task.
It was reported that cross-correlation worked better than the GCC-PHAT. The authors acknowledged that this
finding goes against the findings of numerous other works [Anguera et al., 2005b; Chen et al., 2006] suggesting that
the GCC-PHAT works better than the cross-correlation method in reverberant environments, and offered that this
contradiction occurred because the GCC-PHAT algorithm requires a larger window size than the 32 millisecond
that was used.

[Anguera et al., 2005b]
TDOA estimates were used as a feature alongside acoustic features for used in a traditional segmentation and
clustering algorithm using the BIC divergence measure. The TDOA was first estimated using the GCC-PHAT
algorithm. The TDOA features were then weighted and combined with acoustic features, forming common feature
vectors. Segmentation was then performed on these feature vectors using the BIC measure, and the resultant
segments likewise were clustered using BIC. It was found that the appropriate weighting of the TDOA features were
essential because when correctly weighted using an automatic process, a DER improvement of 18.2% could be
obtained against that using manual weights.

[Pardo et al., 2006]
TDOA estimates are used in the paper to perform speaker segmentation and clustering, in lieu of regular acoustic

Continued on next page
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Table 2.6 - continued from previous page
Method used for Time Delay of Arrival (TDOA) estimation

System summary

features. A speech versus non-speech detector was first used to remove portions of the audio recordings that are
non-speech. TDOA estimation was then done using GCC-PHAT on the portions labeled speech. The sliding windows
used were 500 millisecond long. The TDOA estimates from the many MDM pairs were then fed into a HMM
decoder. The HMM decoder was initialized by equally dividing the continuous audio into K segments, each segment
was used to train a HMM state. K is selected to be larger than the actual number of speakers present. An iterative
process of decoding and merging then ensues. Diarization results were reported upon the NIST RT-04 Spring corpus
- a DER of 33.67% was obtained.

The Normalized Least Means Squared (NLMS) filter is another method that can be

used to estimate the TDOA across channels. This method was first proposed in [Reed

et al., 1981] and has been used in various forms in papers such as [Youn et al., 1982; Chen

et al., 2006]. To the best of our knowledge however, this method of estimating TDOA

has never been used in the context of performing speaker diarization, segmentation or

clustering. It was reported in [Chen et al., 2006] that a key advantage of this method

would be its low computational complexity. The NLMS filter method however tends to

perform poorly in the presence of reverberations, or when the signal is especially noisy.

This method will nevertheless be employed in the system detailed in Section 4.3 because

of its ease of implementation.

2.6 Summary of this chapter

This chapter reviewed published techniques for segmentation and clustering in the speaker

diarization task. The Bayesian Information Criterion (BIC) was explored to a greater

detail because it is perhaps the divergence measure that is most often used for the pur-

pose of speaker segmentation and hierarchical clustering. The BIC is still used in current

literature as a reference algorithm and experiments will be conducted in the next Chap-

ter repeating the results reported in [Ajmera et al., 2004] on the Hub4-97 Evaluation

Broadcast News corpus.

The Hotelling’s T2 divergence measures was also explored to a greater detail as it

appears to be a promising complement for the BIC. It was reported in works primar-

ily by Zhou & Hansen [Zhou & Hansen, 2000; Zhou & Hansen, 2005] and Huang &
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Hansen [Huang & Hansen, 2004; Huang & Hansen, 2006] to be good for performing a

first pass shortlisting before applying BIC because it is computationally less complex.

An attempt shall be made in the next chapter to replicate the experiments carried out

in [Zhou & Hansen, 2005].

A review of the GMM-based iterative model training and clustering technique was

conducted with a particular interest in [Anguera et al., 2006a]. The iterative GMM-based

clustering approach would be implemented later in Chapter 4 for the purpose of “cluster

purification”.

This Chapter finally ends with a review of the literature describing where Direction

of Arrival has been used specifically for the purpose of performing speaker segmentation

and clustering. A Normalized Least Means Squared (NLMS) filter based Time Delay of

Arrival (TDOA) estimation module will be developed as the front-end for the diarization

system in Chapter 4
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Chapter 3

Experiments on the Hub4-97 Corpus

In this chapter, we describe experimental results conducted using the Hub4-97 broadcast

news corpus to evaluate both segmentation and clustering performance. We first describe

the database, then report on results presented by other researchers for this database, and

finally presented our own experimental work repeating published works on segmentation.

3.1 The Hub4-97 Evaluation Broadcast News Cor-

pus

The 1997 Hub4 English Evaluation corpus [Graff et al., 2002] (Hub4-97e) was originally

released by NIST in 1997 for the evaluation of speech recognition technology on English

broadcast news. It consists of almost 3 hours of English broadcast news, has 555 seg-

ments of which 91 of these segments contained non-speech audio such as advertisement

consisting of sound effects and music, or background noise. The average segment length

is 19.1 seconds and 93 of these segments are of length 2 seconds or less. There are 117

unique speakers in the corpus, of which 31 are female and 86 are male.

3.1.1 Segmentation Results Reported on the Hub4-97e Corpus

One of the earliest papers to report speaker segmentation on the Hub4-97e was [Chen &

Gopalakrishnan, 1998b]. That paper introduced the idea of performing segmentation and
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clustering using the BIC model-selection approach. The authors reported a false alarm

rate (FAR) of 4.1% and a Missed Detection Rate (MDR) of 33.4%. In 1999, [Tritschler

& Gopinath, 1999] introduced a variable window scheme for the BIC segmentation ap-

proach. Their experiments were also conducted upon the Hub4-97e and they reported a

FAR of 9.2% with a MDR of 24.7%. This paper also performed clustering using BIC

as the distance measure. Their system was capable of producing 149 clusters of 98.58%

purity.

As the BIC’s computational complexity is high, [Zhou & Hansen, 2000] introduced

a two-pass hybrid approach which first analyzed the data using the computationally

simpler Hotelling’s T2 statistic followed by BIC. Their hybrid approach ran 100 times

faster than using just plain BIC and they reported a FAR of 16.5% with a MDR of

22.6%. Clustering was also done and the reported cluster Purity was 99.3%.

A more recent work citing the Hub4-97e corpus is [Ajmera et al., 2004] in 2004. In

that paper, log-likelihood ratios (LLR) between GMMs models were used to perform seg-

mentation. Performance comparisons between this LLR approach and the BIC approach

were made and it was shown that while the BIC could potentially outperform the LLR,

this required the tuning of the BIC penalty factor λ. The LLR approach however has

the advantage that it did not require any explicit thresholds and as such no tuning was

required. The Recall and Precision results reported were 0.65 and 0.68 respectively were

reported for the LLR approach, and the best BIC performance had a Recall of 0.71, with

a Precision of 0.66.

Table 3.1 summarizes those segmentation scores that have been reported on the Hub4-

97e corpus. Note that column 2 of the table indicated the number of turn points specified

by each author. In summary, we note that different authors have chosen different scoring

tolerances and different number of speaker turn points. As such, it is difficult to draw

concrete conclusions from the reported experimental results. We will hence conduct our
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own implementation of reported algorithms in order to measure their performance in the

following section.

Table 3.1: Segmentation results reported on the Hub4-97e corpus

Turn points Scoring tolerance
System considered ∆tcollar (seconds) FAR (%) MDR (%) Precision Recall FScore

[Chen & Gopalakrishnan, 1998b]
BIC 620 1 4.1 33.4 ( 0.959 ) ( 0.666 ) ( 0.786 )

[Tritschler & Gopinath, 1999]
BIC not stated not stated 9.2 24.7 ( 0.908 ) ( 0.753 ) ( 0.823 )

[Liu & Kubala, 1999]
BBN 1 620 not stated 56.3 49.2 ( 0.437 ) ( 0.508 ) (0.470)
CMU 1 620 not stated 64.1 42.8 ( 0.359 ) ( 0.572 ) (0.441)
normalized GLR 620 not stated 25.0 30.0 ( 0.750 ) ( 0.700 ) (0.724)
ditto, speech turns only 482 not stated 20.0 29.5 ( 0.800 ) ( 0.705 ) (0.750)

[Zhou & Hansen, 2000]
BIC only 548 1 10.8 29.3 ( 0.892 ) ( 0.707 ) ( 0.789 )
T2+BIC 548 1 16.5 22.6 ( 0.835 ) ( 0.774 ) ( 0.803 )

[Vandecatseye & Martens, 2003], normalized BIC

speaker turns only 515 not stated ( 25.8 ) ( 20.9 ) 0.742 0.791 0.766
all acoustic changes 624 not stated ( 34.6 ) ( 17.6 ) 0.654 0.824 0.729

[Wu et al., 2003]
DSD 2 not stated not stated 33.8 10.8 ( 0.662 ) ( 0.892 ) ( 0.760 )

[Ajmera et al., 2004]
BIC 515 0.5 ( 29.0 ) ( 34.0 ) 0.710 0.660 0.684
GMM-LLR 515 0.5 ( 35.0 ) ( 32.0 ) 0.650 0.680 0.665

[Anguera, 2005]
BIC 512 not stated 39.0 47.0 ( 0.610 ) ( 0.530 ) ( 0.567 )
XBIC 512 not stated 35.0 37.0 ( 0.650 ) ( 0.630 ) ( 0.637 )

( · ) Figures enclosed in brackets were not provided by the respective authors and were thus calculated.
1 These are not results directly reported by BBN & CMU per se. Rather, they were reported in

[Liu & Kubala, 1999] but attributed to BBN & CMU.
2 DSD: Divergence Shape Distance

3.2 Speaker segmentation experiments on the Hub4-

97e corpus

This section describes the speaker segmentation experiments that were carried out to

replicate results reported in the literature. The BIC and T2 model-selection based dis-

tance measures were selected for testing. The BIC model-selection approach was selected

because of the large number of publications reported using it, as well as the good perfor-

mance results reported in those publications. It has been reported to be superior to the

GLR in [Mori & Nakagawa, 2001], and was observed in [Chen & Gopalakrishnan, 1998b]
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to have better turn point discriminating characteristics than the KL2 and Gish distances.

We will also examine the BIC segmentation system and the effect of the penalty factor

λ.

The T2 was also selected for experimentation on the basis of results reported in [Zhou

& Hansen, 2005]. In those papers, the T2 with its high Recall (low MDR) and speed

was reported to be a good complement for the BIC. The low Precision (high FAR) can

then be improved by using BIC in a second pass to reduce the number of false turns.

The following experiments will thus be conducted upon the T2 segmentation system:

(i) Finding the optimal thpeak for T2.

(ii) Examining the results from the fusion of T2 with BIC.

3.2.1 Experimental setup

The system used for the experiments was developed in Matlab. This system can be

divided into three modules - the Feature Extraction module, the Segmentation module

and then the Scoring module.

Feature Extraction


Scoring


segmentation points


reference


Precision

Recall

FScore


audio recording


or


BIC


T

2


Segmentation


canned
...                           ...


13
MFCC

+ 13
 MFCC


Figure 3.1: Block diagram of the speaker segmentation system used in the experiments.

In the Feature Extraction module, the system reads in the input Hub4-97e audio in

the form of Microsoft PCM .wav files. The input audio was sampled at a 16kHz rate,
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with a sample resolution of 16-bits. 13 Mel-Frequency Cepstrum Coefficient (MFCC)

features [Davis & Mermelstein, 1980] and their deltas were extracted from each audio

frame. Each resultant feature vector thus is 26 dimensional. A frame size of 30 ms was

used and the frame hop is 30 ms. There is thus no overlapping between consecutive

frames. In order to reduce signal discontinuities at the boundary between frames, the

samples within each frame are weighted using a Hamming window [Hamming, 1989]. The

generated features are then stored and passed on to the Segmentation module. Both the

BIC and T2 segmentation algorithms thus share a common feature input in the form of

the stored data.

The Segmentation module then performs turn point detection using a two-part sliding

window algorithm as described in Section 3.2.2. The parameters specific to the BIC or

T2 algorithms were varied and the effect of their variation on the resultant segmentation

was studied. With each variation in the parameters, a time series plot of the ∆BIC or

T2(∆) score for the whole corpus will be obtained. The determination of turn points is

done by detecting local maxima in the plot.

The turn point detection results from the Segmentation module are then passed onto

the Scoring module for evaluation. In the Scoring module, the detection results are com-

pared against a set of ground-truth turn points for scoring. A scoring tolerance of 2

seconds (∆tcollar = 1.0 seconds) is used to determine if a turn point is correct. Each

hypothesized turn point is then deemed to be either correctly identified, or an insertion

error (false alarm). This depends on whether it falls within the scoring region correspond-

ing to a ground-truth turn point. In the event that two or more hypothesized turn points

fall into the region corresponding to a ground-truth, only the most accurate hypothesized

points will be taken to be correct. The others will be deemed as insertion errors. After

all the hypothesized turn points have been scored, the ground-truth reference is then

evaluated for deletion errors. Ground-truth turn points that do not have a hypothesized

point coinciding with them will be regarded as deletion errors.
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Figure 3.2: The scoring criteria for correctly detected turns, insertion errors and deletion errors.

With the number of correct turns, insertion and deletion errors determined, the perfor-

mance of the system will be presented using the Recall, Precision and FScore measures.

3.2.2 The windowing algorithm used

The windowing algorithm used is adapted from [Ajmera et al., 2004]. The key idea

behind the algorithm is to keep growing the window until a prospective turn point is

found (Fig. 3.3). When a prospective turn point is found, the window resets by sliding

itself to start at said turn point.

In the following algorithm description, divergence(tstart, ttest, tend) represents the com-

putation of the divergence between the L and R sub-windows of an instance of the sliding

window at time ttest. This divergence can be computed using any algorithm, be it the

BIC or the T2. v[t] will be the variable used to store the divergence measure computed

and thus contains the time-series plot of the divergence.
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Figure 3.3: The windowing algorithm used for divergence computation. Although the BIC is
illustrated here, the same algorithm is also used for the T2.
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Windowing algorithm for both the BIC and T2 systems:

(i) Initialize v[t] = 0, ∀t = 0 · · · trecording seconds

(ii) Let
tstart = 0 seconds
tend = tstart + tminimumWindow seconds

(iii) For ttest = tstart + tminimumLeft to tend - tminimumRight

v[ttest] = max [v[ttest], divergence(tstart, ttest, tend)]
end

(iv) If max [v[t] : ∀t = tstart · · · tend] > thpeak then
tstart = arg max [v(t) : ∀t = tstart · · · tend] − tminimumLeft seconds
tend = tstart + tminimumWindow seconds

else
tend = tend + tstep seconds
if tend - tstart > tmaximumWindow then

tstart = tstart + tstep seconds
end

end

(v) Repeat from (iii) until tend > trecording

3.2.3 Detecting local maximums in the divergence time-series

After passing the sliding window across the entire recording, the divergence measured at

every point t can be plotted using the time-series v[t] (Fig. 3.4). The detection of the local

maximums (and correspondingly acoustic turn points) is done by using a second sliding

window scheme. This sliding window is moved across v[t] and each time the contents

of the window fulfills the following criteria, a segmentation is made. The span of this

second sliding window is tspan.

A segmentation occurs if v[t], the divergence result at time t fulfills

(i) v[t] > thpeak

(ii) v [t − 1] < v [t]

(iii) v [t] > v [t + 1]
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(iv) t = arg max
t−

tspan

2
≤i≤t+

tspan

2

{v[i]}

The purpose of criterion (ii) & (iii) is to ensure that v[t] is a peak in its immediate

vicinity i.e. that the values immediately left and right of v[t] are both smaller than v[t].

Criterion (iv) ensures that there can only be one peak found within the locality defined

by tspan. A value of tspan = 1 second is used in the subsequent experiments.
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Figure 3.4: The criteria used for finding turn points in divergence time series.

3.2.4 Segmentation using the Bayesian Information Criterion

The ∆BIC equation used is stated again as follows. This is similar to what was derived

earlier in Eqn. 2.22.

∆BIC = −
NL

2
ln |ΣL| −

NR

2
ln |ΣR| +

NW

2
ln |ΣW |

−
1

2
λ

(

d +
d(d + 1)

2

)

ln NW (Eqn. 3.1)

Since 13 MFCC features and their corresponding ∆MFCC are used, each feature

vector would be d =26 long. In the subsequent experiments, the value of the turn

detection threshold thpeak will be held constant at thpeak = 0. The parameter λ will then

be used as a performance tuning parameter.
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3.2.4.1 The effect of the penalty factor λ

The fact that the optimum penalty factor λ for ∆BIC varies from corpus to corpus has

been mentioned in numerous papers such as [Tritschler & Gopinath, 1999; Lopez & Ellis,

2000; Vandecatseye & Martens, 2003; Ajmera et al., 2004]. A value of λ that yields a

good score on one corpus thus may not have the same positive effect on a second corpus.

Fig. 3.5 shows the ∆BIC curves for values of λ = 0.5 and λ = 1.0. These two curves will
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Figure 3.5: For a segment of audio from Hub4-97e, time series plot of ∆BIC computed using
λ = 0.5 versus λ = 1.0. Square markers (2) indicate speaker turns detected. Notice the plots
are almost identical, apart from an vertical offset.

be referred to respectively as L0.5 and L1.0. L1.0 appears to be similar to that of L0.5,

but with a negative offset downwards. Closer examination however reveals that while

the two curves are very similar, they are not identical. The cross-correlation coefficient

between the two curves was 0.98. This suggests a very strong positive correlation.

The λ value thus functions very much like the threshold value thpeak. It has the effect
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of shifting the ∆BIC curve up or down. The further effect of λ on the segmentation

Recall, Precision and FScore is shown in Fig. 3.6.
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Figure 3.6: The Recall, Precision and FScore obtained obtained for the BIC system as λ is
varied. Results obtained using the Hub4-97e corpus.

It can be seen that the variation of λ leads to a trade-off between the Recall and

Precision. A small λ leads to a very good Recall but poor Precision. This can be

explained by the fact that a small λ results in a ∆BIC curve that is higher. As such, the

peak detection algorithm detailed in Section 3.2.3 will detect more peaks, resulting in a

higher Recall. A large portion of those peaks detected however will be spurious. This

thus explains the lower Precision.

As is shown in Fig. 3.6, The best λ value for the Hub4-97e corpus was found to be

λ = 0.5. The FScore at that point was found to be 0.697. The parameter configurations

for the experiment is tabulated in Table 3.2.
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Table 3.2: Parameters resulting from experiment to find the optimum λ for the BIC system

(a.) Parameters:

Segmentation system : BIC
optimal λ : 0.5

thpeak : 0
∆tcollar used : 0.5 second

(b.) Results:

Recall : 0.639
Precision : 0.766

FScore : 0.697
# of turns detected : 462

# of turns deemed correct : 354
# of deletion errors : 200

# of insertion errors : 108

3.2.5 Segmentation using Hotelling’s T2 statistic

The T2 equation used for the subsequent experiments is that from Eqn. 2.32.

T 2(∆) =
NLNR

NL + NR
(µL − µR)TΣ−1(µL − µR) (Eqn. 3.2)

These experiments are meant to reveal the differences between the T2 and BIC algo-

rithms, as well as to explore if a fusion of T2 and BIC yields better results than using

either singularly. Good results have previously been reported in [Zhou & Hansen, 2005]

for a fusion of the T2 and BIC algorithms. The experiments will be carried out as follows.

(i) Finding the optimal thpeak for T2.

(ii) Examining the results from the fusion of T2 with BIC.

To allow for a fair comparison, the feature vectors and windowing algorithm used are

similar to that used in Section 3.2.4 for the BIC experiments. Unlike the BIC algorithm,

the T2 does not have an inherent performance tuning penalty factor λ. The trade-

off between the Recall and Precision will thus be explored using the peak detection

threshold thpeak.
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3.2.5.1 The optimal peak detection threshold (thpeak) for T2

Fig. 3.7 shows the T2 curve against that of the ∆BIC for the same segment. It can

be seen that the T2 curve is somewhat less accurate and more spurious turn points are

found. As will be shown next, this thus translates to a higher turn point sensitivity

(higher Recall), at the expense of lower Precision.

Unlike the computation of ∆BIC, the T 2(∆) does not have an inherent penalty

factor that can be adjusted. The peak detection threshold thpeak is thus used instead

for the T 2(∆) curve. The peak detection algorithm (See Section 3.2.3) that will be used

in this section is the same as that used for BIC. thpeak will be adjusted to determine

its effect on peak detection performance. A lower thpeak can be used to detect more

turns points at the expense of Precision while a higher thpeak will improve Precision

but reduce Recall. A Recall versus Precision trade-off point can thus be found where

the algorithm’s performance as measured by FScore is at its optimum.

Fig. 3.8 shows the Recall versus Precision trade-off curves for the T2 algorithm. The

windowing algorithm used in this experiment is the same as that used for the BIC. The

results showed that the best FScore performance was worst than the BIC.

The T2 method however was capable of yielding a maximum Recall of 0.83 at a thpeak

threshold of 60. This fares better than the maximum Recall obtained by the previous

BIC experiment. The higher Recall for the T2 method was however achieved with a

very poor Precision of 0.0851. Nevertheless, the high Recall suggests a potential use for

the T2 as a compliment to the BIC, as was done in [Zhou & Hansen, 2005] and will be

explored in the next section.

3.2.5.2 Fusion of T2 and BIC

In view of the high Recall potential of the T2 algorithm, an experiment was thus done

to determine the merits of fusing T2 and BIC. A 2-stage fusion strategy similar to that
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Figure 3.7: For a segment of audio from Hub4-97e, time series plot of (a.) T2 using thpeak = 190
(b.) ∆BIC using λ = 0.5, thpeak = 0. Vertical lines indicate actual speaker turns. Square
markers (2) indicate speaker turns detected. 54
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Figure 3.8: The Recall, Precision and FScore obtained for the T2 system as thpeak is varied.
Results obtained using the Hub4-97e corpus.

in [Zhou & Hansen, 2005] was used. The first stage involved using T2 to identify a set of

all probable turn points. This is where the relatively faster speed and higher Recall of

the T2 algorithm is used to perform a quick selection of likely turn locations. Portions of

the corpus with low potential of containing turn points can thus be skipped over in the

second stage of testing.

T
2
 BIC

13 MFCC


+ 13     MFCC

segmentation


points


Figure 3.9: Block diagram of the T2 and BIC fusion.

In the second stage, each of those points identified in the first stage are then evaluated

using the BIC algorithm. By restricting the BIC testing to only locations short-listed

in the first stage, unnecessary computation is avoided and the relatively slower BIC
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segmentation stage is sped up. The relatively higher Precision of the BIC algorithm is

important here since it will result in a more stringent turn point selection than using the

T2 alone, effectively reducing the number of False Alarm turns.

In our experiment, we have chosen a value of thpeak = 90 as the Recall at this point

is 0.802 and is not far off from the maximum Recall of 0.826 obtained at thpeak = 60.

At this setting, only 2568 points have to be tested in the second stage, compared to the

5253 if the second stage was performed at thpeak = 60.

The ∆BIC testing of the hypothesized turn points from the first stage uses the

following algorithm:

Windowing algorithm for the BIC stage of the T2+BIC system:

(i) Initialize BIC = {∅}, pRecent = ∅

(ii) For each point p1 in T 2

(a) Let
tp1 = time at point p1
tpRecent = time at point pRecent

tstart = max [tpRecent, tminimumLeft] seconds
i = 1, tend = tp1+i seconds
b[tp1] = 0

(b) do
b[tp1] = max [b[tp1], ∆BIC(tstart, tp1, tend)]
i = i + 1, tend = tp1+i seconds

repeat while tend − tp1 < max {tp1 − tstart, tmaximumRight}

(c) If b[tp1] > thpeak2 then
BIC = {BIC ∪ p1}
pRecent = p1

end

end
The second stage of the experiment takes in the set of potential turn points from the

first stage and performs a ∆BIC test at every point. Let T 2 represent the set of all turn

points detected by the T2 algorithm of the first stage. BIC will represent the set of all
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turn points detected by the BIC algorithm in the second stage.

The value of λ in the ∆BIC equation (See Eqn. 3.1) once again is used as the perfor-

mance tuning parameter. It is varied in order to adjust the trade-off between the Recall

and Precision of the system. This trade-off curve is plotted in Fig. 3.10. It can be seen

that an optimal value of λ would be 0.54 and the best F-Score was 0.622.
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Figure 3.10: The Recall, Precision and FScore of the combined T2+BIC system as λ is varied.

3.3 Discussions about the Speaker Segmentation Ex-

periments

Table 3.3 reproduces the best segmentation performances of the systems examined in

the earlier experiments. It can be seen that the BIC produced the best overall FScore.

This result is better than the 0.637 reported in [Anguera, 2005] using XBIC, while being

comparable to the FScore of 0.67 reported in [Ajmera et al., 2004] for a BIC-based

system. There however are systems such as [Chen & Gopalakrishnan, 1998b; Tritschler
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& Gopinath, 1999; Liu & Kubala, 1999; Zhou & Hansen, 2000; Vandecatseye & Martens,

2003; Wu et al., 2003] which reported better FScore results (See Table 3.1). At the

optimal functioning point of BIC, the Recall and Precision were somewhat balanced at

0.639 & 0.766 respectively.

Table 3.3: Optimal segmentation performance for the BIC, T2 & T2+BIC algorithms. This
table compares the best performance obtained from each separate system. The time taken for
each algorithm is also listed.

(a.) Common parameters:

∆tcollar used : 0.5 second

(b.) Results:
System: BIC 1 T2 2 T2 3 T2+BIC 4

thpeak = 0 thpeak = 190 thpeak = 90 thpeak = 90
λ = 0.5 λ = 0.54

thpeak2 = 0

Recall 0.639 0.556 0.802 0.641
Precision 0.766 0.563 0.169 0.604
FScore 0.697 0.560 0.279 0.622
FAR (%) 23.4 43.7 83.1 39.6
MDR (%) 36.1 44.4 19.8 35.9
# of turns detected 462 547 2627 588
# of turns deemed correct 308 301 444 355
# of deletion errors 200 246 110 199
# of insertion errors 108 239 2183 233
Computational time required (minutes) 32 20 21 23
Computational factor (× real time) 0.18 0.11 0.12 0.13

1 Optimal performance for BIC only system.
2 Optimal performance for T2 only system.
3 T2 first stage for the optimal T2+BIC performance.
4 Optimal performance for T2+BIC two-staged system.

The best performance delivered by the T2-based system was worst than the same for

BIC. At its best, the T2 detected 547 turns while the same for BIC detected only 462.

While the T2 detected more turns, its Recall was still lower than that for BIC.

It was discussed earlier in Section 3.2.5.1 that by sacrificing the Precision and

FScore, it was possible for the T2 to yield a higher maximum Recall than that for

BIC. At the point where the thpeak for T2 was 90, the Recall was 0.802. This is still

higher than the maximum Recall of 0.77 at λ = 0.2 achievable for the BIC. The value
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of thpeak = 90 was thus adopted for a fusion system combining the T2 with the BIC. A

caveat to note about using the Recall of 0.802 for the first step is that this would serve

as an upper bound for the Recall of the fused system. In other words, turn points that

missed shortlisting by the T2 would not be considered for testing in the second stage.

The fusion experiment carried out in Section 3.2.5.2 unfortunately did not yield results

comparable to that reported in [Zhou & Hansen, 2005]. In that paper, a similar T2+BIC

fusion was pursued and a FScore of 0.803 was obtained. It was also reported in that

paper that the fused system could yield a better FScore than a system that used only

BIC. Unlike what was reported in the paper, the fused system implemented in Section

3.2.5.2 did not yield better results than the BIC only system. The possible reason for

the difference between the experimental results and what is reported in [Zhou & Hansen,

2005] would probably lie in the windowing algorithm used for the second stage. [Zhou

& Hansen, 2005] does not report in detail the windowing algorithm they used when

integrating BIC together with the T2 front-end.

The computation time required for each of the segmentation methods is also listed

in Table 3.3. It can be seen that while the T2+BIC algorithm is faster than the BIC,

the time savings was not on the order of 100× as cited in [Zhou & Hansen, 2005]. The

system using T2+BIC was observed to be about 1.4× faster than a comparable system

using BIC. The time measurements were all taken off Matlab experiments conducted

upon a 2GHz Pentium IV computer.

3.4 Clustering Results Reported on the Hub4-97e

The clustering problem addresses the issue of grouping the segments found into individual

speaker class. The following are some clustering results that have been reported upon

the Hub4-97e database.
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Table 3.4: Clustering results reported on the Hub4-97e database.

# clusters at Average number Speakers
System end point, Nclusters ACP (%) Per Cluster, ANSpC

[Harris et al., 1999]
KL distance not stated 89.10 non stated

[Tritschler & Gopinath, 1999]
∆BIC “offline” 172 96.70 non stated
∆BIC “online” 149 98.58 non stated

[Zhou & Hansen, 2000]
∆BIC non stated 96.30 1.13
Gender classification + BIC not stated 99.30 1.06

[Vandecatseye & Martens, 2003]
normalized ∆BIC 160 89.00 non stated

In comparing the clustering performance across different systems, it is important to be

mindful that the resultant ACP is dependent on the number of clusters at the stopping

point (Nclusters). A system that terminates clustering earlier (higher Nclusters) typically

will have a better ACP than a similar system where clustering is terminated later. For

the Hub4-97e corpus, there should ideally be 117 clusters (speakers) upon termination.

Most systems will terminate clustering before 117 clusters are obtained (i.e. to under-

cluster). This is to prevent the resultant cluster ACP from becoming too poor. In the

papers [Tritschler & Gopinath, 1999; Zhou & Hansen, 2000], the clustering is reported

to terminate at 149 (for “online” clustering) and 160 clusters respectively. High ACP of

98.58% and 89.00% were correspondingly obtained.

[Zhou & Hansen, 2005] also employed the BIC in their clustering algorithm. They

however introduced an improvement by performing clustering as a 2 step process. The

first step would be to classify each segment according to its gender. Gender classification

is performed using a pair of GMMs - one for male and another for female. Good gen-

der classification accuracy was reported. 96.4% of male speech segments were correctly

classified while the same for female segments was 99.1%. The second step would then

be to carry out hierarchical clustering using the BIC within each gender pool. The idea
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underlying this two step approach is that since gender classification can be performed to

a very high level of accuracy, this will thus have a positive knock-on effect for subsequent

speaker clustering. ACP of 99.30% was reported along with a ANSpC of 1.06.

3.5 Summary of this chapter

This chapter evaluated the BIC and T 2 divergence measure when performing segmen-

tation on the Hub4-97 broadcast news corpus. The BIC divergence measure was first

evaluated with the objective of repeating the results obtained in [Ajmera et al., 2004].

The results we obtained were close to that reported in the paper.

An experiment was then performed to evaluate segmentation where T 2 is used as a

first pass before BIC (i.e. the T 2 + BIC system as was reported in [Zhou & Hansen,

2005]). The results obtained for this experiment were unfortunately not as successful and

did not prove to be better than that for the BIC only system. The experiment however

did show that a two-stage system had the potential to perform faster than using just the

BIC.

All experiments conducted so far have been done on the broadcast news domain and

the following chapter will now focus on performing diarization on meeting recordings.

This would be a scenario quite different from that of broadcast news recordings because

multiple recording channels will now be available and the speaking characteristics of

people in the meeting environment will differ from that in broadcast news. A system for

performing automatic speaker diarization will be proposed, along with results obtained

using the RT-06s and RT-07 audio corpora.
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Chapter 4

Speaker Diarization of Meeting
Recordings

4.1 Speaker Diarization for Meeting recordings

In this chapter, we will examine the speaker diarization task for meeting recordings.

Specifically, we will use the US National Institute for Science and Technology (NIST)

Rich Transcription (RT) diarization evaluations for meeting proceedings recorded across

multiple distant microphones (MDM).

Given the nature of meeting recordings, the speaker diarization of meetings requires

processing steps beyond the speaker segmentation and clustering that is performed for

broadcast news. The audio recordings are less controlled and contain more non-speech

events such as breathing noises, coughs or lip-smacks. It also contains longer segments

of silence where nobody speaks. The issue of overlapping speech also represents an-

other challenge. The meeting recordings domain as compared to broadcast news however

has the benefit of having multiple recording sensors. This thus provides a diversity of

perspectives from the different channel recordings.

Much of the recent research on speaker diarization of meetings concentrates on ex-

ploiting the differences in the diversity of microphone recordings. These approaches can

be generalized into 3 categories - generating an enhanced channel out of the multitude of
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channels [Istrate et al., 2005; Anguera et al., 2005a; Fredouille & Evans, 2007], perform-

ing diarization on each channel and then fusing the diarization results [Meignier et al.,

2000; Moraru et al., 2003; Fredouille et al., 2004; Fredouille & Senay, 2006], or using the

multitude of channels to perform some form of speaker localization using the time delays

between channels [Ellis & Liu, 2004; Wooters et al., 2004; Anguera et al., 2005b; Wooters

& Huijbregts, 2007; Koh et al., 2007a].

This chapter is organized as follows. It begins with Section 4.1 giving an introduction

to existing speaker diarization systems employed in the meeting room domain. This is

followed by Section 4.2 which describes the NIST Rich Transcription audio corpus and

evaluation rules. Section 4.3 then describes a system developed for participation in the

NIST RT-07 evaluation. The diarization performance of this system on the NIST RT-06s

and RT-07 corpora are then examined in Section 4.4 and Section 4.5.1 then concludes

with a discussion of some issues affecting the quality of speaker diarizations.

4.2 The NIST RT Evaluation Environment

Since 2004, the National Institute for Standards and Technology (NIST) has been con-

ducting yearly evaluations for meeting room speaker diarization systems. These evalua-

tions are held under the Rich Transcription (RT) [NIST, 2007; NIST, 2006c] framework.

The RT evaluations have since become the defacto platform upon which teams would

evaluate and report their speaker diarization system.

The NIST RT evaluation corpora for each year typically consists of about 3 hours of

meeting recordings (Table 4.1). This is divided into 8 parts, each part the recording is

that of a different meeting. The recordings would have been made in various meeting

rooms. The meeting rooms vary in their sizes, microphone positions, microphones used∗,

∗Data is collected using multiple distant microphones but the model of the microphones used for the
different meeting rooms is not revealed.
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as well as the general acoustic properties. This would thus mean that parameters often

have to be tailored for individual meeting rooms and some meeting rooms tend to yield

better diarization results than others.

Table 4.1: Characteristics of the tasks in the RT-06s & RT-07 evaluations.

Task name duration # channels possible pair meeting topic
(minutes) available permutations

RT-06s tasks
CMU 20050912-0900 17.8 2 2 Transcription team meeting
CMU 20050914-0900 18.0 2 2 Transcription team meeting
EDI 20050216-1051 18.0 16 240 Remote control design
EDI 20050218-0900 18.2 16 240 Remote control design
NIST 20051024-0930 18.1 7 42 Project planning meeting
NIST 20051102-1323 18.2 7 42 Data resource planning
VT 20050623-1400 18.0 4 12 Problem solving scenario
VT 20051027-1400 17.7 4 12 Candidate selection

RT-07 tasks
CMU 20061115-1030 22.5 3 6 Discussion group
CMU 20061115-1530 22.6 3 6 Transcription team meeting
EDI 20061113-1500 22.6 16 240 Remote control design
EDI 20061114-1500 22.7 16 240 Remote control design
NIST 20051104-1515 22.4 7 42 Planning meeting
NIST 20060216-1347 22.5 7 42 SWOT analysis meeting
VT 20050408-1500 22.4 4 12 Problem solving scenario
VT 20050425-1000 22.6 7 42 Problem solving scenario

The rules for the NIST RT evaluations have been consistent since 2004. The goal of

each speaker diarization system is to answer the question of “Who Spoke When ?”. This

consists of indicating the start and end times for every utterance in the recording and

attributing each utterance to a speaker identity. Background segments where nobody

speaks do not have to be explicitly indicated. Non-speech sounds should be regarded as

background segments and excluded from the diarization. These non-speech sounds can be

vocalized sounds such as laughter, coughs, sneezes and breathing noises, or environmental

sounds like knocks and claps. A 0.5 seconds (± 0.25 seconds around the ground truth)

forgiveness collar is applied to each start and stop time stamp.
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4.2.1 Evaluation measures for speaker diarization in meetings

Diarization systems performing speaker diarization upon the NIST RT evaluation cor-

pora will usually report their performance using the Diarization Error Rate (DER). It

essentially is the ratio of all diarization times that are in error, against the sum total of

all speaker time. As such, the perfect DER score will be 0% while 100% would be the

worst possible result. Fig. 4.1 illustrates the various types of errors considered in the

DER equation.

DER =
sum of all diarization time that is erroneous

sum of all speaker time
(Eqn. 4.1)

=
SE + MS + FA

SPK
(%) (Eqn. 4.2)

Speaker A
 � Speaker B
 � Speaker A
 Speaker B
�����Speaker 2
 Speaker 2
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����Speaker 1
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 SE
 MS
 MS


Ground-truth reference


Diarization


Error
��Silence segments
 FA
 MS
 SE
 Speaker error
Missed Speaker error
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Figure 4.1: The time components that contribute to the DER.

• Speaker Error time (SE): Total time that is attributed to the wrong speaker.

This refers to speech segments belonging to an arbitrary Speaker A that has been

assigned incorrectly to Speaker B.

• Missed Speaker time (MS): Total time in which less speakers are detected than

what is correct. An example of such an error is where there are two speakers talking

simultaneously, but only one speaker is detected in the meeting.
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• False Alarm Speaker time (FA): Total time in which more speakers are detected

than what is correct. An example of such an error is where there is only one speaker

talking but multiple speakers are erroneously detected, or where no one is talking

but the system detects at least one speaker.

• Scored Speaker time (SPK): Sum of every speaker’s utterance time as indicated

in the reference. The SPK can be longer than the duration of the entire corpus

because segments containing multiple overlapping speakers will be counted once for

each speaker.

Meeting recordings tend to contain segments of overlapping speech. As such, the

DER reported for a meeting diarization system will thus usually define as to whether it

included overlapping speech in the scoring. In systems that have not been designed to

cope with overlapping speech, results are sometimes reported excluding those overlapping

segments.

Another commonly reported diarization result would be the “Speaker as Speech Ac-

tivity Detection” DER, or SAD DER. This performance measure reports the Speech

Activity Detection (SAD) performance of the system. The task underlying SAD would

be to accurately determine all the time spans where at least one or more speakers are

speaking. Time instances were no one is speaking should also be correctly indicated as

such. The SAD DER is not concerned about the identity of the speakers present, nor

about the presence of overlapping speakers. Where more than one speaker is speaking

at a time instance, the SAD result only needs to indicate that a speaker is speaking. It

does not need to specify the number of concurrent speakers, or the speaker identity.

The SAD DER can thus be defined to be

SAD DER =
MSs + FAs

SPKs

(%) (Eqn. 4.3)
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MSs, FAs and SPKs respectively denote the amount of missed speaker time, false

alarm speaker time and total scored speaker time, ignoring the presence of overlapping

speakers. Unlike the previous definitions of MS, FA and SPK, segments containing

multiple speakers will only be counted once. A lower SAD DER would thus suggest

better SAD performance and SAD DER = 0% would mean the perfect detection of all

time instances where someone is speaking.

4.2.2 Results reported for NIST RT-06s & RT-07

Table 4.2 and 4.3 shows some of the best diarization results reported on the NIST RT-06s

and RT-07 evaluation corpora.

Table 4.2: List of speaker diarization results reported on the NIST RT-06s evaluation corpora

System official reference word-aligned reference †

System DER (%) SAD DER (%) DER (%)

[Rentzeperis et al., 2006]
AIT 70.70 11.00 -
[Leeuwen & Huijbregts, 2006]
AMI 44.80 4.30 -
[Fredouille & Senay, 2006]
LIA 38.80 4.70 -
[Janin et al., 2006]
ICSI 35.80 23.50 21.19
[Koh et al., 2007b]
I2R/NTU 31.02 6.65 25.83

†: These results were obtained using the word-aligned references that [Anguera, 2006a] produced using

the ICSI-SRI speech recognition system.

Some of the results for the NIST RT-06s evaluation were scored against a revised

word forced-aligned reference generated by the ICSI [Anguera, 2006a]. This reference

was generated using the ICSI-SRI Speech-to-Text recognition system [Stolcke et al., 2005].

The time stamps used in the diarization scoring are aligned to the time boundaries of the

words resulting from the speech recognition system. The reason for the revised reference
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is to address issues regarding the lack of consistency in human annotated references. This

variability of human transcriptions is not an issue for results reported on the NIST RT-07

corpus because the official references released by NIST by default had word-alignment

applied.

Table 4.3: List of speaker diarization results reported on the NIST RT-07 evaluation corpora

System official reference Average # % tasks with correct
DER (%) SAD DER (%) speakers ‡ number speakers ‡

[Zhu et al., 2007]
LIMSI 26.07 3.23 12.3 12.5
[Fredouille & Evans, 2007]
LIA 24.16 3.69 4.9 12.5
[Luque et al., 2007]
UPC 22.70 5.39 3.9 25.0
[Leeuwen & Konecny, 2007]
AMIDA 22.03 6.73 7.1 0.0
[Koh et al., 2007a]
I2R/NTU 15.32 8.65 4.4 75.0
[Wooters & Huijbregts, 2007]
ICSI 8.51 3.33 4.5 87.5

‡: These results were obtained from [Fiscus et al., 2007]

4.3 Proposed Speaker Diarization System for Meet-

ing Room Recordings

This section discusses in detail the speaker diarization system submitted by the I2R &

NTU∗ for the NIST RT-07 evaluation. The system was submitted for benchmarking in

the NIST RT-07 evaluation exercise and obtained an overall second placing. This work

also resulted in two conference papers by the author and the I2R & NTU team. Said

papers are listed in Appendix A.

The diarization system can be divided into 4 main modules:

∗The system described is a joint effort between the Institute for Infocomm Research (I2R) and
Nanyang Technological University (NTU). The author is a member of the team that developed said
system.
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(i) Segmentation using TDOA estimation

(ii) Bootstrap clustering of TDOA estimation

(iii) Speaker cluster purification

(iv) Non-speech & silence removal

Meeting

diarization


:
 initial

clusters


microphone 1


microphone
 K


DOA

estimation


Bootstrap

clustering


Cluster

purification


Non-speech &

silence removal


Figure 4.2: The block diagram of the proposed speaker diarization system.

This system was designed to utilize the diversity of the multiple directional micro-

phone recordings in two ways - by performing speaker localizations using the Time Delay

of Arrival (TDOA) estimates and by using delay-and-sum beamforming to produce an

enhanced signal channel. The TDOA estimates across the various microphone pair per-

mutations is first computed and a histogram-based quantization technique is then used

to perform segmentation and bootstrap clustering. The initial speaker clusters from the

bootstrap clustering process are then subjected to a purification process. In this step, the

feature vectors used are extracted from the enhanced channel. The clusters are purified

using an iterative GMM adaption and classification process. This process is repeated

until such a point when the cluster assignments have stabilized. The final diarization

step would then be to perform non-speech & silence removal. This is done to reduce the

amount of false alarm (FA) speaker time in the diarization.

The following sections will now elaborate on each module to a greater detail.
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4.3.1 Time Delay of Arrival (TDOA) Estimation using a NLMS
filter

The time delay of arrival (TDOA) of speech between each microphone pair is estimated

using a Normalized Least-Means Squared (NLMS) filter [Haykin, 2001]. Given an ar-

bitrary microphone pair, this involves designating one audio channel as the source s[t],

and the other as the reference r[t]. The purpose of the filter is to converge the source

signal with the reference by way of a stochastic gradient descent algorithm. The filter

coefficients are continuously being updated whenever the signal Teager energy [Kaiser,

1990] of the reference channel is deemed to be sufficiently high. An estimate of the Time

Delay of Arrival (TDOA) can then be obtained by seeking the highest weight in the filter

coefficients.
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Figure 4.3: The block diagram of the NLMS filter used to perform TDOA estimation.

The filter adaptation is performed by sliding a L-sample long sliding window across

two audio channels of the corpus. The L samples within the window will constitute a

frame. The window is shifted by L samples in each step and this shifting is done in unison

for both the source and reference channels. There are thus no window overlaps between

consecutive frames. The filter coefficients at an instance of the NIST 20051104-1515

corpus is shown in Fig. 4.4. A filter length of L = 250 was used for that corpus. The

TDOA estimate at that time instance will be the index of the peak coefficient.
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Figure 4.4: ŵ[t] = [ŵ0[t] · · · ŵn[t] · · · ŵL−1[t]]
T values where a single peak is observed at n =

158.

A single peak can be observed at the 158th coefficient. Given that L = 250, the delay

between the two channels can be found to be 158 − L
2

= 28 samples. A sampling rate

(fs) of 16000 samples per second is used in the recording. This thus translate to a time

delay of 1.75 ms.

For a recording consisting of Nrecording frames and having K different microphone pair

permutations, the TDOA across time can be represented as

TDOA[t, k] = arg max
j=1..L

{wj[t, k]} (Eqn. 4.4)

where t = 1..Nrecording and k = 1..K. wj [t, k] is the jth filter coefficient for the kth

microphone pair at time t. A plot of the TDOA[t, k] across time t for an arbitrary kth

microphone pair is shown in Fig. 4.5. This is a plot for 200 seconds of the CMU 20061115-

1030 task. It can be observed that there are 4 horizontal “tracks” in the plot. Each

“track” is denoted by a horizontal dotted line. The identity of the speaker talking at a

particular time instance can thus be inferred from the “track” closest to the peak filter

coefficient.
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Figure 4.5: Plot of TDOA[t, k] in a meeting where there are 4 speakers present.

4.3.1.1 Choosing the NLMS filter length

The NLMS filter length L is chosen to ensure that L is capable of showing peaks at the

largest extend of the TDOA dynamic range. Assume that we let TDOAmax to be the

maximum inter-channel delay present between all possible microphone pairs in a corpus.

Using the filter setup that was described in the previous section, the TDOA range that is

detectable can be represented centered around 0 as [−TDOAmax · · ·0 · · ·+ TDOAmax].

The value L can thus be selected to be

L =
TDOAmax

fs

+ tolerance (Eqn. 4.5)

where fs is the sampling rate of the microphone recordings and tolerance is some tol-

erance value to allow for estimation inaccuracies. The value of TDOAmax unfortunately is

not one that can be readily estimated by examining the signals. Another way of choosing

L will be to select it using the maximum inter-microphone separation, max separation.

72

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 4. Speaker Diarization of Meeting Recordings

Where separationi,j is the distance separating the ith microphone from the jth,

max separation = max
∀i,j∈{set of all microphones},i6=j

{separationi,j} (Eqn. 4.6)

For the RT-06s and RT-07 tasks, L = 250 was found to be a suitable value. Given

that the sampling rate fs is 16000 samples/sec, and assuming the speed of sound c to

be 330m/sec, the length L = 250 is able to accommodate a maximum microphone pair

separation of 2.7 metres.

4.3.1.2 Teager energy estimation

The audio recorded by each microphone will be corrupted by additive noise and the power

of the speech signal |s[t]|2 will fluctuate throughout the meeting, depending on who and

what is being spoken.

In the event that the power of s[t] is low, the noise energy will dominate in the

recording. TDOA estimations at such instances are highly unreliable. Spurious TDOA

values tend to occur at such instances and will result in poor TDOA based segmentation.

One way to mitigate such a problem would be to estimate the energy of the signal

while doing TDOA estimation. In the event that the signal energy is low, the TDOA

is not estimated. Rather, the TDOA value for the present time t retains the previously

estimated value, i.e.

TDOA[t, k] = TDOA[t − 1, k] (Eqn. 4.7)

The energy of a signal at a time instance can be estimated using the Teager energy

[Kaiser, 1990] as defined by

TE(r[t]) = r2[t] − r[t + 1]r[t − 1] (Eqn. 4.8)
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4.3.1.3 Microphone pair selection

In cases where many microphone recordings are available, the number of possible micro-

phone pair permutations may be large. In recordings such as the NIST 20051104-1515

where there are 7 distant microphones, the number of potential microphone pairs is

72−7 = 42. Under such circumstances, we ought to judiciously choose pairs that exhibit

characteristics typical of good TDOA estimation. The inclusion of microphone pairs with

poor estimation capabilities will serve to deteriorate the TDOA estimation potential of

the system.

The following three criteria were used to select microphone pairs for use:

(i) High Signal-to-noise ratio (SNR).

Given many microphones to choose from, the choice of those with the highest SNR

is an obvious one. High SNR recordings allow better estimation of DOA from these

signals.

(ii) Large average highest-peak to next-highest-peak ratio on w[t].

As will be elaborated in the subsequent Section 4.5.1, the coefficients of the NLMS

filter can have multiple peaks. These peaks may correspond to the presence of signal

reverberations, or the presence of frequency specific coloured noise. The presence

of multiple peaks makes the estimation of TDOA difficult since these peaks will

compete with each other to be the largest values. In the event that the wrong peak

prevails, an incorrect TDOA estimate will be made.

This problem of competing peaks can thus be minimized by selecting only the

microphone pairs which have a large average difference between the highest-peak

and the next-highest-peak. A large difference between peaks will mean a greater

margin for error and as such more accurate TDOA estimations.
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(iii) Large TDOA dynamic range.

The dynamic range of the TDOA values has a direct relationship with the inter-

microphone separation separationi,j & the azimuth θ (i.e. the angular orientation

of the microphone). The TDOA values will have a large dynamic range when the

microphones are positioned such that θ is small and separationi,j [t] is large [Varma,

2002]. A large dynamic range is desirable because it suggests that this will yield

better resolution when performing bootstrap clustering.

Information about the positions of the microphones and human participants in

each meeting unfortunately is not available for the RT-06s and RT-07 evaluations.

The TDOA dynamic range of microphone pairs in such a scenario can thus be

determined by doing actual TDOA estimation on the recordings. An excessively

large filter length L can be used to perform exploratory TDOA estimations between

microphone pairs. Given an arbitrary kth microphone pair, the dynamic range will

be [min TDOAk · · ·max TDOAk] where

min TDOAk = arg min
t=1..Nrecording

TDOA[t, k] (Eqn. 4.9)

max TDOAk = arg max
t=1..Nrecording

TDOA[t, k] (Eqn. 4.10)

Nrecording is the length of the meeting recording. The microphone pairs with the top

{max TDOAk − min TDOAk} values can thus be chosen for further evaluation.

4.3.2 Bootstrap clustering using TDOA estimates ∗

Bootstrap clustering uses location information from Eqn. 4.4 to form initial clusters.

This approach performs segmentation and clustering in a single joint step. This differs

from the more traditional approach introduced in Chapter 3 where segmentation and

∗It is to be noted that the bootstrap clustering module described in this section was developed by
Dr. Sun Hanwu of the Institute for Infocomm Research (I2R), Agency For Science, Technology And
Research (A*STAR), Singapore.
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clustering are done separately. The method works by building histograms in a two step

process. The first step is that of within-pair quantization of the TDOA estimates for each

microphone pair (the columns of TDOA[t, k]) to commonly occurring locations. The

second step is that of inter-pair quantization to fuse information from all K microphone

pairs (the rows of TDOA[t, k]), forming a single decision about the likely speaker origins

and thus effectively clustering the speakers. The number of unique clusters resulting

basically equates to the number of speakers. These speaker clusters are then used as

seeds in the cluster purification step.

It is important to note that the clustering that is performed in this stage forms

speaker clusters using only spatial location information (i.e. speaker localization using

TDOA estimates). As such, impure segments and clusters containing multiple different

speakers will result if speakers move or change places during the meeting. This is one

of the key shortcomings of this method and it will be discussed in a greater detail in

Section 4.5.1.1. Iterative cluster purification using location independent acoustic features

thus has to be performed subsequently in order to mitigate the presence of impurities in

the post-quantization clusters.

4.3.2.1 Within-pair quantization

Within-pair quantization is applied to every combination of microphone pairs under

consideration. The purpose of this is to quantize the TDOA estimates into a small set

of commonly occurring values. In doing so, this will yield a set of segmentation and

clustering hypotheses specific to the microphone pair.

Given an arbitrary kth microphone pair consisting of two different channels, a his-

togram is first built using the TDOA[t, k], t = 1..Nrecording values. Nrecording is the length

of the meeting recording. Centroids are identified in the resulting histogram. These cen-

troids refer to TDOA positions corresponding to peaks in the histogram. Every peak in
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Figure 4.6: Within-pair quantization. (a.) Plot of one column of TDOA[t, k]. Horizontal
dotted lines correspond to histogram centroids. (b.) Histogram of TDOA values for selected kth

microphone pair. (c.) TDOA[t, k] values after within-pair quantization.

the histogram indicates that there is a significant amount of speech originating from that

particular location. An assumption is made that speech originating from a single location
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will very likely belong to a single homogenous speaker. As such, the number of peaks

can be used as an estimate of the number of speakers present. Using a nearest-neighbour

approach, all values in the histogram are thus quantized into their respective nearest

centroids (Fig. 4.6).

thwithin =
Nrecording

Nbins

(Eqn. 4.11)

The decision as to what constitutes a peak is made using a threshold value thwithin.

Fig. 4.7 illustrates how the application of thwithin generates “islands” in the histogram.

Peaks are consequently selected to be the highest point within each “island”. The number

of “islands” detected would be the number of speakers deemed present in the recording.

"waterline", i.e.
 th
within


"islands" are histogram

bins with counts above


the "waterline"


Centroids are

are highest bin counts


within "islands"


Figure 4.7: The application of a threshold or “waterline” forms “islands” of histogram bins that
are above the threshold. Centroids are the highest bins within the “islands”.

A fixed number of Nbins = 40 was used in the subsequent evaluations on the RT-06s

and RT-07 corpora. This number was found to yield fairly accurate estimates of the
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number of speakers present when the actual number of speakers present is less than or

equal to 6.
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Figure 4.8: Histograms of TDOA[t, k] for pair consisting of 2nd & 4th microphones from
NIST 20060216-1347 . The histogram reflects 4 centroids when there are 6 unique speakers.
A Nbins of 40 is used.
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Figure 4.9: Histograms of TDOA[t, k] for pair consisting of 1st & 2nd microphones from
CMU 20061115-1030 . The histogram reflects 4 centroids corresponding to 4 unique speakers.
A Nbins of 40 is used.
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The results of performing quantization to the TDOA[t, k] can be seen in Fig. 4.8

& 4.9. In cases where the number of centroids misjudge the number of speakers, the

subsequent inter-pair quantization step may still be able to recover from the error if the

other microphone pairs for the task can give good estimations. In Fig. 4.8, 4 centroids

are visible but there are 6 speakers. Fig. 4.9 shows a microphone pair yielding good

quantization results. 4 clear and distinct centroids can be seen within the histogram.

By quantizing the TDOA[t, k] values (See Fig.4.6a) to the nearest centroid, a time-

series plot (See Fig 4.6c) is obtained. This quantized value can then be passed on to the

next inter-pair quantization stage.

4.3.2.2 Inter-pair quantization

The previous subsection discusses quantization along the columns of TDOA[t, k]. The

second step of this module is to perform quantization along the rows of TDOA[t, k],

i.e., to identify centroids across K microphones pairs. Using the quantized results from

within-pair quantization, a K-dimension histogram is built across all microphone pairs.

Centroids can be readily identified within this high dimensional histogram. Like what is

done in Within-pair Quantization, these centroids are selected by virtue of their relatively

high bin counts. An illustration of this is shown in Fig. 4.10.c where 4 centroids can be

observed by quantizing across 2 microphone pairs. The remaining histogram bins with

low counts will then be clustered into the nearest centroid.

Experiments conducted on the RT-07 corpus showed that segments found after apply-

ing the bootstrap clustering were mostly of short durations - almost 90% of the segments

are less than 3 seconds long and 71% of all the segments are shorter than 1 second. It

is interesting to note that apart from VT 20050408-1500 , the initial clusters resulting

after this module were observed to yield reasonably low Speaker Error times SE (See

Table 4.4). The subsequent step of cluster purification only serves to improve the DER
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Figure 4.10: For part of task CMU 20061115-1030 (a.) quantized TDOA[t, k] values for an
arbitrary kth microphone pair (b.) quantized TDOA[t, l] values for an arbitrary lth microphone
pair (c.) 2-D histogram of quantized TDOA values for both kth and lth microphone pairs. 4
peaks are visible.

by between 0% to 3.64% absolute. This thus shows the effectiveness of the clustering

method when the TDOA estimations are accurate.

81

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 4. Speaker Diarization of Meeting Recordings

4.3.3 Further Processing∗

4.3.3.1 Cluster purification using GMM

Clustering using only TDOA information will not be robust towards situations where the

speakers move significantly during a meeting, or where the room is highly reverberant. In

such situations, after bootstrap clustering, speech from a single speaker might span across

multiple clusters. The resultant clusters will therefore be impure. Cluster purification

using acoustic features will help to reduce erroneous clustering.

The cluster purification algorithm used in this system is inspired by the GMM-based

speaker verification technique that was introduced in [Reynolds, 1995] and [Reynolds

et al., 2000]. This algorithm can be divided into two phases - the initialization phase and

the iteration phase. The iteration phase tries to assign each audio segment to the speaker

cluster that best represents the speaker. This is repeated until such a point where the

cluster assignment is found to have stabilized between successive iterations. This process

of iterative re-clustering has the effect of increasing the speaker homogeneity of each

cluster.

• Initialization phase

Step 1: Beamforming & MFCC feature extraction

Beamforming is first performed using all the available source audio so as to

generate an enhanced recording as described in [Anguera et al., 2005a]. A

voice activity detector (VAD) is then applied to retain only the high energy

frames. MFCC acoustic features are then generated from the enhanced audio

signal. These MFCC acoustic features will be used in Steps 2 to 5.

∗It is to be noted that the modules in this section were developed by Dr. Sun Hanwu & Dr. Nwe
Tin Lay of the Institute for Infocomm Research (I2R), Agency For Science, Technology And Research
(A*STAR), Singapore. Dr. Sun was responsible for the cluster purification module, while Dr. Nwe was
responsible for the Non-speech and silence removal modules.
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Figure 4.11: An illustration of the cluster purification process.
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Step 2: Initial model training

All the MFCC vectors resulting from acoustic feature extraction are then used

to train a root Gaussian Mixture Model (GMM), ΘRoot. The ΘRoot has 40

Gaussian components with full covariance matrices and was trained using the

Expectation Maximization (EM) algorithm as described in [Reynolds et al.,

2000].

Segments resulting from bootstrap clustering are then pooled together accord-

ing to their cluster assignments. Individual GMMs are adapted from ΘRoot for

every cluster. Adaptation is performed on the weights, means and variances

using the Maximum a Posteriori (MAP) approach [Reynolds et al., 2000].

Thus if there are Q speaker clusters resulting from bootstrap clustering, there

will be Q GMMs. We denote these Q GMMs as Θi,q, where i indicates the

iteration number and q = 1..Q indicates the qth speaker cluster. For the

initialization step, i = 0.

• Iteration phase

Maximum Likelihood assignment

Step 3: Let Oj denote the set of feature vectors extracted from the jth segment. Let

clusteri[j] ∈ {1..Q} denote the cluster assignment of Oj for iteration i.

Every segment Oj is scored against models Θi,q. Each segment is then re-

labeled by

cluster(i+1)[j] = arg max
q=1..Q

{p(Oj|Θi,q)} (Eqn. 4.12)

Model adaptation
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Step 4: The GMMs Θ(i+1),q are MAP adapted from Θi,q using the segments Oj corre-

sponding to labels cluster(i+1)[j] = q.

Step 5: i = i + 1; Repeat from Step 3, until the cluster assignments have stabilized

and do not vary for successive iterations. The cluster assignment for segments

were found to converge typically within 20 iterations.

4.3.3.2 Non-Speech and Silence Removal (NS&SR)

A typical meeting recording will contain periods of silence where nobody is speaking. The

duration of these periods of silence constitute about 7% of the total durations for the RT-

06s and RT-07 meeting recordings. It is thus necessary to identify these periods of silence

and remove them from the diarization. The same would apply to non-speech events such

as coughs, laughter or breathing noises. These noises are present intermittently within

speech segments and should not be included in the speaker diarization transcript.

• Non-speech removal

The acoustic features used in this stage are the Log Frequency Power Coefficients (LFPC)

[Nwe et al., 2003]. A total of 10 coefficients are extracted from each 20 ms frame with a

10 ms overlap between frames. A model based approach was then used to evaluate every

segment. Speech and non-speech were modeled by two separate GMMs, ΘS and ΘN . A

classification decision can be made for the jth segment, Oj as follows.

p(ΘS|Oj) ≥ p(ΘN |Oj) → speech (Eqn. 4.13)

p(ΘS|Oj) < p(ΘN |Oj) → non − speech (Eqn. 4.14)

When expressed as a likelihood ratio, Eqn. 4.13 and Eqn. 4.14 become
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p(Oj |ΘS)

p(Oj |ΘN)
≥ th1 → speech (Eqn. 4.15)

p(Oj |ΘS)

p(Oj |ΘN)
< th1 → non − speech (Eqn. 4.16)

where th1 = p(ΘN )
p(ΘS)

is a threshold that is trained on an external corpus.

• Silence removal
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...
 ...

1
st
 layer: compute energy

                 across 30 ms window


2
nd
 layer: sum computed energy

                 across 300 ms window


test against threshold
 th
2


Figure 4.12: The “Double-Layer Windowing” method of removing silence.

Silence was removed using a “Double-Layer Windowing” method. In the first layer,

audio is divided into frames of 20 ms with 10 ms overlapping. The energy for each frame

is computed. In order to remove silences that are longer than the 300 ms tolerance

specified for the evaluation, a second layer window is applied. This 300 ms long window

shifts in 10 ms steps. The energy across all the frames in the window is summed. When

this energy is found to cross a threshold, th2, the region covered by the window will be

deemed as silence and dropped.
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4.4 System Performance

4.4.1 Results on RT-06s

Table 4.4 presents the system’s performance for experiments conducted upon the RT-06s

evaluation corpus. The system’s performance was evaluated by computing the Diarization

Error Rate (DER) against the official references released by NIST.

Table 4.4: DER for evaluations on the RT-06s corpus

† After
bootstrap cluster non-speech
clustering purification & silence

RT-06s removal
Task DER (%) DER (%) % ∆ DER (%) % ∆

CMU 20050912-0900 32.62 33.05 1.3 33.09 0
CMU 20050914-0900 27.85 27.05 -3 27.05 0
EDI 20050216-1051 25.75 26.09 1 25.62 -2
EDI 20050218-0900 22.60 22.94 2 22.93 0
NIST 20051024-0930 36.19 35.50 -2 35.50 0
NIST 20051102-1323 30.46 29.33 -4 29.32 0
VT 20050623-1400 59.49 40.05 -33 37.89 -5
VT 20051027-1400 44.55 43.59 -2 38.06 -13
Overall 34.19 31.87 -7 31.02 -3

†: These results were obtained using the official NIST RT-06s reference.

It was found that the DER improved after every successive processing stage. The

overall DERs obtained were 34.19% after bootstrap clustering, 31.87% after cluster pu-

rification, and 31.02% after non-speech & silence removal (NS&SR). This overall DER of

31.02% was found to be better than other state-of-art systems reporting using the official

NIST reference. As was listed in Table 4.2, the closest performing system [Janin et al.,

2006] achieved a DER of 35.80%.

Further observation of DERs for individual tasks indicates that cluster purification

generally had a beneficial effect. DER improvements were observed for all tasks except

those of EDI ( EDI 20050216-1051 & EDI 20050218-0900 ) and CMU 20050912-0900 .
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These tasks had absolute DER deteriorations of less than 1
2
%. In the tasks that showed

improvements, most of these DER gains were of less than 1 absolute %. The biggest

gains were obtained for VT 20050623-1400 . Cluster purification gave that task an

absolute DER boost of over 19 % points. The biggest DER gains for cluster purification

can be seen for the VT 20050623-1400 task. We concluded that the initial clustering

using DOA for this task was unreliable as compared to the other tasks. Hence cluster

purification using acoustic features was able to produce better clustering.

Marginal DER improvements were also obtained for the stage of Non-Speech & Si-

lence removal (NS&SR). The overall DER dropped by 0.85% as a result of this stage.

4.4.2 Results on RT-07

This section examines the performance of the diarization system on the RT-07 evaluation

corpus.

The DER for every task was found to improve after each processing step. The final

DER of 15.32% was found to be competitive versus the other systems submitted for the

RT-07 evaluation.

Table 4.5: DER for evaluations on the RT-07 corpus

After
bootstrap cluster non-speech
clustering purification & silence

RT-07 removal
Task DER (%) DER (%) % ∆ DER (%) % ∆

CMU 20061115-1030 22.75 22.84 +0.4 19.48 -15
CMU 20061115-1530 17.81 17.51 -2 12.46 -29
EDI 20061113-1500 24.29 22.91 -6 20.69 -10
EDI 20061114-1500 30.59 28.45 -7 15.00 -47
NIST 20051104-1515 23.34 22.45 -4 12.66 -44
NIST 20060216-1347 22.13 18.35 -17 13.36 -27
VT 20050408-1500 46.38 19.77 -57 11.32 -43
VT 20050425-1000 27.36 25.41 -7 18.45 -27
Overall 27.02 22.13 -18 15.32 -31

88

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 4. Speaker Diarization of Meeting Recordings

It was observed that after bootstrap clustering, the VT 20050408-1500 task had the

worst DER of 46.38%. A clue to its poor performance can be seen in the Speaker Error

time (SE) component of the DER. It made up almost two-thirds of the diarization

errors. It was observed that the TDOA estimation for this task was highly inaccurate.

This resulted in many speech segments being incorrectly attributed to the wrong speaker.

It is hypothesized that the cause of the TDOA inaccuracy is the high reverberation of the

VT meeting room. The effect of reverberations on accuracy and diarization performance

will be discussed in greater detail in Section 4.5.1.2. The DER for VT 20050408-1500

improves considerably to 19.77% after performing cluster purification. This suggests

that the cluster purification method is capable of redeeming speaker assignment errors

introduced by inaccurate TDOA estimation.

It is noteworthy that after cluster purification, the improvements for most other

tasks were marginal. This is because the Speaker Error time for these tasks were already

rather low after bootstrap clustering and hence cluster purification thus had little room

to improve upon.

Finally, the NS&SR stage also helped to produced big improvements of 31% DER

reduction in the DER scores.

4.4.3 Number of speaker detected on RT-06s & RT-07

In an ideal clustering scenario, every speaker should be represented by one and only one

cluster. Experimental results showed that our proposed system was capable of correctly

estimating the number of speakers present in most of the RT-06s and RT-07 tasks. How-

ever when there were a larger number of speakers present, the system was observed to

identify fewer speakers than in actual case. Amongst the RT-06s tasks, 2 tasks had their

number of speakers present under-estimated. There are 9 and 8 speakers respectively

in NIST 20051024-0930 & NIST 20051102-1323 . The system could identify only 5
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and 6 speakers. Analysis showed that the missing speakers were those that spoke for the

shortest durations. These missing speakers spoke for between 147 to 39 seconds.

Table 4.6: Actual number of speakers vs. number of speakers detected on the RT-06s & RT-07
corpora

Actual # of speakers # speakers detected

RT-06s tasks
CMU 20050912-0900 4 4
CMU 20050914-0900 4 4
EDI 20050216-1051 4 4
EDI 20050218-0900 4 4
NIST 20051024-0930 9 5
NIST 20051102-1323 8 6
VT 20050623-1400 5 5
VT 20051027-1400 4 4

RT-07 tasks
CMU 20061115-1030 4 4
CMU 20061115-1530 4 4
EDI 20061113-1500 5 4
EDI 20061114-1500 4 4
NIST 20051104-1515 4 4
NIST 20060216-1347 5 6
VT 20050408-1500 5 5
VT 20050425-1000 4 4

Inaccurate estimations in the number of speakers present were also observed for two

tasks in the RT-07 corpus. The 8 tasks that made up RT-07 all had either 4 or 5

speakers present in the recordings. The NIST 20060216-1347 task further confirmed

the observations found for RT-06s, i.e. that speakers with short durations tend to be

omitted from the speaker count. Only 5 speakers were detected when there should be 6.

The speaker who spoke the least (59 seconds of speech) was found merged with another

speaker who spoke for 128 seconds. In the case of EDI 20061113-1500 , the system

found 5 speakers when there should be 4. The speech of the longest speaker was found to

be divided into two clusters, one containing 441 seconds of speech and other 86 seconds.
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The under-estimation of the number of speakers for NIST 20051024-0930 ,

NIST 20051102-1323 & NIST 20060216-1347 was observed to be due to a shortage

of resolution in the histograms used to perform quantization in the bootstrap clustering

process. An illustration of this problem can be seen in Fig. 4.8 for a pair of microphones

from NIST 20060216-1347 . 4 peaks representing 4 speakers were present when there

were 6 speakers in actual fact. When a large number of speakers is present, the resolution

of the histogram becomes inadequate. Adjacent speaker distributions tend to overlap.

Those speakers who spoke the least had small bin counts and therefore did not register

as a clustering centroid. They thus had a tendency to be absorbed into their neighbours.

It is noted that the tasks exhibiting under-estimation happened to be from the NIST

conference room. This is an interesting observation that would warrant future study to

see if the conference room perhaps had a bearing on the mis-estimation of the number

of speakers.

4.5 Discussions about the Speaker Diarization Ex-

periments

The experiments conducted earlier this section have shown that the Time Delay of Arrival

(TDOA) is a viable source of information for use in the speaker diarization of meetings.

The system previously described earlier in Section 4.3 was capable of producing results

on the RT-06s & RT-07 corpora that are comparable to that reported by other state-

of-the-art systems. For the RT-06s corpus, an overall Diarization Error Rate (DER) of

31.02% was obtained. This compares favourablely with the best result of 35.80% that

was reported in [Janin et al., 2006] (See Table 4.2 for other results). The DER of 15.32%

obtained on the RT-07 corpus was also competitive versus that reported in the literature.

The best reported result was 8.51% in [Wooters & Huijbregts, 2007] (See Table 4.3).
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A further examination of the diarization performance reveals that while using the

TDOA alone can yield fairly good diarization decisions, additional DER gains are ob-

tained by the cluster purification step. This step was capable of producing a 7% and

18% relative performance gain respectively on the RT-06s & RT-07 (See Table 4.4 &

4.5). The subsequent step of non-speech & silence removal was also capable of produc-

ing additional improvements. Further relative DER improvements of 3% & 31% were

respectively observed for the two corpora.

The system described was submitted for evaluation in the NIST RT-07 benchmarking

exercise and obtained an overall second placing. This work also resulted in two conference

papers by the author and the NTU/I2R team. Said papers are listed in Appendix A.

There were numerous issues that affected the diarization performance of the system.

These issues will be discussed in the following section.

4.5.1 Issues affecting system performance

4.5.1.1 Number of detected speakers

As was noted earlier in Section 4.4.3, the diarization system exhibited a tendency to mis-

judge the number of speakers present when there are a large number of speakers. There

are a number of reasons why the number of speakers may be detected incorrectly during

the bootstrap clustering step. In the NIST 20051024-0930 , NIST 20051102-1323 &

NIST 20060216-1347 tasks from the previous section, it was found that the number of

speakers present tends to be under-estimated when there is insufficient resolution in the

histogram used for quantization. When this happens, multiple adjacent speakers can

become merged into a common centroid.

As our current system in the bootstrap approach only utilizes Time Delay of Arrival

(TDOA) estimates, we may be able to improve its performance by also using acoustic

features. The use of acoustic features has been demonstrated to be effective in [Anguera

et al., 2006b; Anguera et al., 2007].
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4.5.1.2 The effect of audio multi-paths

As was noted earlier in Section 4.4, the VT tasks VT 20050623-1400 , VT 20051027-

1400 & VT 20050408-1500 were noted to yield performance that is much poorer

than average. Further analysis of the recordings for these tasks suggest that the poor

performance could be due to the presence of reverberations or audio multi-paths.

1 51 101 138 201 250
−0.1

−0.05

0

0.05

0.1

ŵn[t] values for VT 20050425-1000 at t = 43.12s

ŵ
n
[t
]

n

Figure 4.13: ŵ[t] = [ŵ0[t] · · · ŵn[t] · · · ŵL−1[t]]
T values at an instance of reverberant speech.

Three peaks can be observed at n = 127, 138 and 149. Triangle markers (▽) indicate peaks,
the circle marker (©) marks the highest coefficient.

Fig. 4.13 shows a plot of the TDOA filter weights during a reverberant segment. There

typically will be a small primary peak for the main path and numerous shorter peaks

corresponding to the other multi-paths. Reverberations are the result of speech from the

source being reflected off a solid surface, thus taking an indirect route to the microphones.

Since the speech made by a speaker will travel to the microphones along many different

paths, the distance traveled by the speech from the source to the microphones will vary

for each path. The corresponding time delay of arrival (TDOA) between the two channels

will thus be affected. This results in multiple TDOA values being found, as indicated
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by multiple peaks in the filter weights. Erroneous TDOA estimation results because the

primary peak is weak. This thus allows secondary peaks to sometimes overwhelm the

correct primary location.

4.5.1.3 The presence of noise

As is indicated in 4.3.1, when performing TDOA estimation using the NLMS filter, the

source and reference channels ( s [t] & r [t]) may be corrupted by additive noise. This

noise will reduce the accuracy of the TDOA estimations. Fig. 4.14 shows a series of

TDOA[t, k] plots for a segment of CMU 20050912-0900 . White Gaussian noise is

added in the s [t] and r [t] for plots (b.) and (c.). It can be seen that the presence of

noise thus is detrimental to the estimation of TDOA.

The noise corrupting the microphone channels do not necessary have to be white and

gaussian. In the paper [Brayda et al., 2005], it was documented that frequency specific

noise will also be of detriment to TDOA estimation. The NIST MarkIII [Rochet, 2005]

microphone array setup was examined and it was found that frequency specific noise

may be introduced by way of the microphone system collecting the recording. When

the microphones are powered using alternating current running at 60Hz, noise may be

introduced at the 60Hz frequency band. Noise pollution at other frequency bands can

also be possible depending on the electronic circuitry used.

Frequency specific noise noise can be observed in the audio spectrogram as “lines”

present at specific frequency bands. An analysis of the NIST RT audio recordings also

suggest the presence of such frequency specific noise. Fig. 4.16 shows a spectrogram of

the recording made by the 1st distant microphone of CMU 20061115-1030 . In it, a “line”

can be observed at the 1.25 kHz, 3.3 kHz, 5.25 kHz and 6 kHz frequency bands. Similar

artifacts can also be found in the recordings for the 2nd and 3rd distant microphones.

This phenomena was observed to be not specific to the CMU meeting room as it was

also present in the recordings for other meeting rooms, albeit at other frequency values.
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(b.) Corrupted with AWGN, noise power is 0.1× original signal
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(c.) Corrupted with AWGN, noise power is 2× original signal

Figure 4.14: For a segment of CMU 20050912-0900 , the TDOA[t, k] determined between the
1st and 2nd microphone pairs using the (a.) original recordings, (b.) corrupted with AWGN,
noise power 0.1× that of original signal, (c.) corrupted with AWGN, noise power 2× that of
original signal.
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(b.) Corrupted with 4kHz sinusoidal noise, noise power is 0.1× original
signal
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(c.) Corrupted with 4kHz sinusoidal noise, noise power is 2× original
signal

Figure 4.15: For a segment of CMU 20050912-0900 , the TDOA[t, k] determined between
the 1st and 2nd microphone pairs using the (a.) original recordings, (b.) corrupted with 4kHz
sinusoidal signal, noise power 0.1× that of original signal, (c.) corrupted with 4kHz sinusoidal
signal, noise power 2× that of original signal.
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Figure 4.16: Spectrogram showing frequency specific noise inherent in CMU 20061115-1030 .
Corruption can be found at 1.25 kHz, 3.3 kHz, 5.25 kHz and 6 kHz.

A simple experiment was done to confirm that frequency specific noise can indeed

reduce diarization quality. Using the CMU 20050912-0900 task from the RT-06s corpus,

a sinusoidal signal was added at the 4 kHz band. Fig. 4.17 shows spectrograms of

the audio recording before the addition of the sinusoid, and after the addition of the

sinusoidal.

TDOA estimation when conducted upon the corrupted recording produces TDOA[t, k]

time series plots as shown in Fig 4.15. It can be seen that there is a gradual deteriora-

tion in the quality of the estimation as the power of the corrupting signal is increased.

When the corrupting signal power is increased to 2 times that of the original signal,

the TDOA[t, k] value deteriorates to form a straight line at 38. This happens because

when the power of corrupting signal is greater than that of the original signal and the

corrupting signal becomes the dominant signal. The corrupting signal is sinusoidal and

has the same phase delay for both channels. As there is no phase difference between the

sinusoids added to both channels, no time delay is observed between the channels and

the TDOA will reflect a value of L
2

= 38. It is to be noted that a filter length L of 75

97

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 4. Speaker Diarization of Meeting Recordings

(a.) Before adding sinusoidal signal

(b.) After adding 4kHz sinusoidal signal

Figure 4.17: Spectrogram of a segment of CMU 20050912-0900 (a.) before adding sinusoidal
signal (b.) after adding 4kHz sinusoidal signal.

was used in this experiment.
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4.5.1.4 The effect of simultaneous overlapping speakers

The diarization system proposed in this thesis is not capable of handling segments con-

taining simultaneous overlapping speakers. This however is a problem that will have to

be addressed because it was found in [Shriberg et al., 2001] that between 31% to 54% of

sentence “spurts”∗ in meeting recordings contain some form of overlap between two or

more speakers. A more recent study in [Leeuwen & Konecny, 2007] also found that the

added step of addressing overlaps was capable of reducing the DER for their system by

about 3.5% when evaluated upon the RT-07 corpora.
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Figure 4.18: ŵ[t] = [ŵ0[t] · · · ŵn[t] · · · ŵL−1[t]]
T values at an instance where two speakers speak

simultaneously. Two peaks can be observed at n = 74 and 145. Triangle markers (▽) indicate
peaks, the circle marker (©) marks the highest coefficient.

An overlapping speech detection module can be used to determine if the voices of

more than one speakers are present. Speech can then be properly attributed to the

multiple individuals, thus reducing the SE component of the DER. Examples of such

detection modules have been described in [Pfau et al., 2001; Yamamoto et al., 2006;

∗A “spurt” is defined in [Shriberg et al., 2001] to be a contiguous spoken sentence sub-set that is
uninterrupted by pauses longer than 500 ms.
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Fredouille & Senay, 2006] In the event that multiple speakers are present, multiple TDOA

estimations can be made of the multiple peaks in ŵ[t]. These TDOA estimates when used

in the quantization steps described in Section 4.3.2 can lead to better speaker clustering

decisions.

4.5.1.5 Inadequately long filter length

As was described in Section 4.3.1.1, a filter length L = 250 was used in the experiments

on the RT-06s and RT-07 corpus. This value of L translates into a maximum microphone

pair separation of 2.7 metres.

In cases where the microphone pair separation is greater than 2.7 metres, the TDOA

estimation will fail. This is because the resultant delay of arrival between the two input

channels will be greater than 7.8 ms. This delay will be out of the range detectable since

the filter weights will not be able to register a corresponding primary peak. In such a

situation, erroneous TDOA estimations will occur.

The following set of plots illustrates the problem described. Filter length of L = 250,

150 & 75 were used to estimate the TDOA for a segment of the NIST 20051024-0930

task. Fig. 4.19 shows the TDOA(t, k) for the respective values of L. It can be seen

that when the L used is inadequate, the TDOA estimations will be poor as values tend

saturate at the limits of the dynamic range.

4.6 Summary of this chapter

This chapter proposed a speaker diarization system for meeting recordings that used

a Normalized Least Means Squared (NLMS) filter to perform Time Delay of Arrival

(TDOA) estimation. Bootstrap clustering then followed where the TDOA estimates

were used as features to perform speaker segmentation and initial speaker clustering.

This entailed performing two quantization steps (“within-pair” and “inter-pair”) using
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Figure 4.19: For a segment of NIST 20051024-0930 , the TDOA[t, k] determined between 1st

and 3rd microphone pairs for (a.) L = 250, (b.) L = 150 and (c.) L = 75.
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histograms of the TDOA estimates and assigning audio frames to a number of initial clus-

ters. These initial clusters were then purified using an iterative GMM-based approach,

before Non-speech & Silence Removal (NS&SR) is performed.

The experiments conducted have shown the effectiveness of the TDOA as a source

of information for speaker diarization. Results were obtained on the RT-06s & RT-07

corpora and the respective Diarization Error Rates (DERs) of 31.02% and 15.32% com-

pares favourably against that reported by other state-of-the-art systems. Issues affecting

the diarization performance of the system were also discussed and these issues will serve

as room for future development of the system.

The next chapter will conclude this thesis and suggest some avenues for future work.
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Chapter 5

Conclusions

5.1 Summary of results

In this thesis, the process of speaker diarization was explored. Investigation for the

broadcast news domain concentrated on the speaker segmentation step while an inte-

grated speaker diarization system was developed for the meeting room domain.

Speaker segmentation experiments were first carried out in Chapter 3 on the broadcast

news domain in order to repeat the results reported in [Ajmera et al., 2004] and [Zhou &

Hansen, 2005]. In Section 3.2.4, the BIC was used as the divergence measure of choice.

An optimal operating point was found where λ = 0.5 and experiments on the Hub4-

97 corpus using said operating point produced Recall, Precision and FScore values of

0.639, 0.766 and 0.697 respectively. These results were comparable with that in [Ajmera

et al., 2004] which reported an FScore of 0.67.

Section 3.2.5 then carried out segmentation experiments using the T2 divergence

measure. A comparison of the resultant BIC and the T2 time-series plots was done in

Fig. 3.7. It can be seen that the T2 curve identifies more spurious turns and is thus

somewhat less accurate at detecting true turn points. This would translate to a higher

turn point sensitivity (i.e. higher Recall) and lower Precision on the Hub4-97 corpus.

The Recall, Precision and FScore at the optimal operating point for the T2-based

system was 0.556, 0.563 and 0.560 respectively.
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The higher turn point sensitivity of the T2 divergence measure was then used in

Section 3.2.5.2 to complement the higher precision of the BIC divergence measure. A two-

stage approach was used where the faster T2 would shortlist points for re-evaluation by

the BIC. This approach was first suggested in [Zhou & Hansen, 2000] and the combined

system should have the advantage of being faster. The overall system developed for this

thesis yielded Recall, Precision and FScore results of 0.641, 0.604 and 0.622 on the

Hub4-97 corpus. These results were poorer than the FScore of 0.803 claimed in [Zhou &

Hansen, 2005] and one reason for the poorer performance could be that the windowing

algorithm used in the second stage of the combined system differed from that used in

[Zhou & Hansen, 2005]. The experiments however did show the run time for the combined

T2+BIC system to be 1.4 times faster than the same for the BIC-based system.

Speaker diarization experiments were also conducted upon the NIST RT-06s & RT-

07 meeting room corpora in Chapter 4. A speaker diarization system for meeting rooms

was proposed where a Normalized Least Means Squared (NLMS) filter is used to perform

Time Delay of Arrival (TDOA) estimation across different microphone pairs. The viabil-

ity of performing diarization using the TDOA was shown. Using only this information,

overall Diarization Error Rates (DER) of 31.02% & 15.32% were respectively obtained

for the RT-06s & RT-07.

Diarization using only the TDOA however suffered from shortcomings resulting from

inaccuracies when computing TDOA. Section 4.5.1 discussed some issues complicating

this task. These limitations usually were due to sub-optimal meeting recordings (e.g.:

when the recordings are corrupted by noise, when there are reverberations in the record-

ings), or otherwise due to the speaker locations in the room (e.g.: when speakers move

about in the room, when multiple speakers are in close proximity to each other). Cluster

purification was introduced to help overcome those clustering inaccuracies. It was found

that with this step, the overall DERs for RT-06s & RT-07 could be improved by 7% &

18% respectively relative to the DERs without purification.
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The additional steps of Non-Speech & Silence Removal (NS&SR) were then performed

after cluster purification. These steps were done in order to better handle the nature of

meeting recordings. Meeting recordings are usually characterized by having durations

in which no participants are actively speaking, as well as the presence of non-speech

events such as coughs, breathing noises or lip-smacks. A model based non-speech removal

technique was employed along with an energy based silence removal step. This was found

to further reduce the DERs by 3% & 31%.

5.2 Contributions

The contributions of this thesis are summarized as follows.

A speaker segmentation experiment was performed as described in Section 3.2.4 using

the BIC divergence measure. A FScore of 0.697 was obtained upon the Hub4-97e corpus

and this score is comparable to the FScore of 0.67 reported in [Ajmera et al., 2004].

This experiment confirmed our implementation of the work described in [Ajmera et al.,

2004] and also showed the effectiveness of the BIC as a divergence measure for speaker

segmentation.

A subsequent speaker segmentation experiment was carried out in Section 3.2.5.2

using a two-staged T2+BIC algorithm. The results obtained however did not match that

reported in [Zhou & Hansen, 2005] but timed runs of the experiment did show that a

faster computational time could be achieved for such a fused system.

A speaker diarization system was proposed in Chapter 4 and experimental results

were reported on the NIST RT-06s & RT-07 meeting room corpora. The diarization

system used a Time Delay of Arrival (TDOA) based front-end with subsequent audio

feature vector based cluster purification and non-speech & silence removal (NS&SR)

steps. A NLMS filter was used to perform TDOA estimation for the specific purpose of

speaker diarization. Results showed that the NLMS filter could effectively estimate the
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TDOA between audio channels and that the TDOA is a viable source of information for

use in estimating the location of speakers. A Diarization Error Rate (DER) of 31.02%

was obtained on the RT-06s corpus and this compares favourably with the best result of

35.80% that was reported in [Janin et al., 2006]. A DER of 15.32% was subsequently

obtained on the RT-07 corpus and this result was found to be competitive versus the

best reported result of 8.51% from [Wooters & Huijbregts, 2007]. Two conference papers

resulted from this diarization system and said papers are listed in Appendix A.

A further analysis of issues affecting speaker diarization using the TDOA was done in

Section 4.5.1. It is suggested that since the TDOA method estimates the spatial location

of speakers in a meeting room, movements of individuals within the meeting room would

lead to poor DERs. The presence of reverberations were also proposed to be detrimental

to TDOA estimation, as are the presence of Gaussian and frequency specific noises in

the meeting recordings.

5.3 Suggestions for future work

5.3.1 Adaptive peak detection threshold for BIC-based segmen-

tation

The importance of the λ value to the segmentation performance of BIC was shown in

Fig. 3.6. As the value of λ was varied, the segmentation performance would change

abruptly. The performance “sweet spot” where the FScore was above 0.6 was decidedly

narrow (between λ = 0.36 to 0.6). The corpus specificity of the λ has also been reported

in numerous papers [Tritschler & Gopinath, 1999; Lopez & Ellis, 2000; Vandecatseye &

Martens, 2003; Ajmera et al., 2004].

One way of overcoming this reliance on the λ might be to use an adaptive peak

detection threshold thpeak. The current thpeak used is 0 and was held constant so that

investigations into the performance of λ could be carried out. This form of an adaptive
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threshold had previously been explored in [Lu & Zhang, 2002b] for segmentation using

the Divergence Shape Distance (DSD). In that paper, the threshold was set to be a

running average of the DSD value. The same could also be done for the BIC or the T2

divergence measures.

5.3.2 Using a first divergence measure to threshold another
during segmentation

It has been concluded earlier in Section 3.2.5.1 that the T2 tends to yield more spurious

peaks while the BIC is more selective. One way of harnessing the relative strengths of

these two divergence measures would be to use BIC to threshold the T2 divergence curve.

The relative scale of both divergence curves can be tweaked such that the T2 curve will

surpass that of the BIC when a true turn is encountered. The KL2 has also been reported

in [Siegler et al., 1997; Kemp et al., 2000] to be an algorithm that is more selective than

the Mahalanobis or Bhattacharyya distances. This thus suggest possibilities of combining

the T2 or BIC with the KL2 in order to make use of the relative strength of each method.

5.3.3 Improving the Non-Speech & Silence Removal (NS&SR)
module for speaker diarization

As can be seen in Table 4.3, the meeting diarization system developed for this thesis

performs worse than other reported systems when the SAD DER is compared. The

SAD DER measures the Speech Activity Detection (SAD) performance of the system.

This thus highlights a shortcoming of the system developed i.e. much non-speech &

silence durations are not recognized by the NS&SR module. The current NS&SR module

is only capable of reducing the SAD DER from 14.45% to 8.65%.

A better silence detection module can thus be developed using other methods. One

possibility is to perform silence detection using the signal entropy as opposed to energy. It

was reported in [Waheed et al., 2002] that entropy works better than energy for recordings
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made in a noisy environment because entropy tends to be more robust towards amplitude

fluctuations.

Further gains may also be obtained by moving the NS&SR module to be ahead of

the cluster purification step. The merit of doing so would be that cluster purification

will be performed on segments that are free from silence and non-speech. The resultant

speaker assignments may be more accurate, and this could be a way of further reducing

the Speaker Error (SE) time component of the DER.

5.3.4 Better handling of multiple speaker instances in speaker
diarization

It was described earlier in Section 4.5.1.4 that the TDOA estimation was difficult because

instances of multiple concurrent speakers registered filter coefficients with multiple peaks.

The filter coefficients at these instances appeared similar to the same for recordings made

in an reverberant environment.

It would thus be beneficial to employ some form of multiple speaker detection in the

system. Some of these techniques have been reported in works such as [Pfau et al., 2001;

Yamamoto et al., 2006; Fredouille & Senay, 2006]. Instances with multiple concurrent

speakers can be indicated as such and this would reduce the amount of Missed Speaker

(MS) time in the DER.

5.3.5 Normalized Least Means Squared (NLMS) filter adapta-
tion step size

An interesting avenue for future research would be to study the effect of the adaptation

step size on the TDOA estimates produced by the NLMS filter. It is conceivable that

a larger step size will serve to provide faster filter convergence and thus result in more

accurate speaker segmentations, because speaker transitions are detected quicker.
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A possible disadvantage of a larger step size however would be that it introduces

greater fluctuations in the TDOA estimates. This could have ripple effects on the subse-

quent bootstrap clustering steps because both quantization steps (within-pair and inter-

pair quantization) yield their best results when the TDOA estimates are stable.
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Appendix A

List of Publications

• Koh, E. C. W. and Sun, H. and Nwe, T. L. and Nguyen, T. H. and Ma, B. and

Chng, E. S. and Li, H. and Rahardja, S. ,“Speaker Diarization Using Direction of

Arrival Estimate and Acoustic Feature Information: The I2R-NTU Submission for

the NIST RT 2007 Evaluation”. In: Rich Transcription 2007 Meeting Recognition

Evaluation Workshop, Baltimore, MD, USA: Springer LNCS 4625, 2007.

• Koh, E. C. W. and Sun, H. and Nwe, T. L. and Nguyen, T. H. and Ma, B. and

Chng, E. S. and Li, H. and Rahardja, S. ,“Using Direction of Arrival Estimate

and Acoustic Feature Information in Speaker Diarization”. In: Interspeech’2007 -

ICSLP - 10th International Conference on Spoken Language Processing , Antwerp,

Belgium, 2007.
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