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Summary

This thesis addresses the classification of documents and questions to domain-agnostic

class labels. Domain refers to the subject matter with which the class labels are associ-

ated. Domain-specific document or question classification is commonly applied in articles

categorization or in factoid question answering with class labels being defined by subject

matter. For instance, considering digital signal processing (DSP) questions, the explicit

meaning of the questions will be reflected if the domain-specific class labels consist of

Fourier Transform or z-transform.

In contrast, applications for domain-agnostic document classification include classi-

fying job descriptions into generic skillsets, scientific statements into section types, and

sentences into argumentative zone functions. With questions possessing different char-

acteristics, domain-agnostic question classification is applied in information query or

dialogue interactions in which the class labels may comprise question types or reasoning

capabilities. To enhance the effectiveness of deliberate practice, questions are classified

into their respective cognitive complexities for instructors to determine learners’ profi-

ciencies. Quite often, in scenarios where the size of the question bank is limited, statistical

approaches are adopted for feature extraction. Since domain-agnostic classification takes

the implicit substance of a text into account (e.g., learning outcome of the same DSP

question irrespective of the content), it relies on a suitable feature extraction process.

This thesis explores the use of topic modeling techniques as feature extractors for ques-

tions due to its ability of offering linguistic insights into language patterns by grouping

associated words into topics and, thereafter, computing the probabilities of topics occur-

ring in each document. Considering the limitations of employing baseline topic modeling

algorithms for automatic question classification (AQC), an algorithm that observes the

xii



SUMMARY

effect of pre-processing procedures and word co-occurrence redundancy is proposed. How-

ever, the limitation of this method is that it is dataset-specific and requires hand-curated

word tagging. To address these shortcomings, a new holistic generalizable regularized

phrase-based topic modeling technique is proposed. This technique is driven by the fact

that phrases have been shown to be more effective than words to represent questions.

Further elements such as nested regular expressions and scaling parameters are being

employed to facilitate efficient mapping of questions to class labels.

For documents, the baseline algorithm of graph networks is adopted. This thesis

shows that graph networks are suitable since it is important to establish the relationships

between documents to better classify them into domain-agnostic categories. In addition,

graphs encompass a global perspective compared to conventional deep learning techniques

that are both localized and sequential. In the proposed quad-faceted feature-based graph

network, this thesis shows that the addition of a new topical layer is vital for observing

the impact of topic modeling on generating a meaningful set of features. It also highlights

that the use of regular expressions with a domain-agnostic nature is important for co-

occurrence statistics while the meaning of a document encapsulated via phrase nodes are

crucial for semantic relationships.
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Chapter 1

Introduction

Classification of documents, and in particular questions can be performed in either a

domain-specific or domain-agnostic manner. The former requires categories that are in

line with the content of the text (explicit relationship) while the latter requires categories

that convey the inner meaning of the text (implicit relationship). Classification of docu-

ments or questions according to domain-agnostic class labels relies on a suitable feature

extraction process. This thesis presents techniques for extracting appropriate features

using topic modeling and graph networks for domain-agnostic question and document

classification.

1.1 Motivation

Automatic question classification (AQC) has been proposed for several applications

and is achieved by defining domain-specific or domain-agnostic class labels. Domain-

specific AQC is commonly applied in factoid question answering [1–3] with class labels

being defined by subject matter (e.g., science, arts/humanities, business/finance) [4–6].

In contrast, domain-agnostic AQC is applied in information query or dialogue interactions

in which the class labels may comprise question types (e.g., true/false, procedural) [7]

or reasoning capabilities (e.g., multi-hop, comparison, algebraic) [8, 9]. To enhance the

effectiveness of deliberate practice [10], assessment questions are classified into their re-
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spective cognitive complexities (e.g., synthesis, evaluation) for instructors to determine

learners’ proficiencies [11–14]. Quite often, in scenarios where the size of the question

bank is limited, statistical approaches are adopted for feature extraction in AQC.

Existing AQC techniques that employ the bag-of-words (BoW) approach represent a

question with a vector constructed using syntactic, lexical or semantic features. This

feature vector is then classified into its respective class label via a machine learning

algorithm [10,15–18]. Since BoW features are highly sparse and lack diversity [19], topic

modeling approaches such as latent Dirichlet allocation (LDA) [20] have been developed.

These admixture approaches were originally employed for document classification as they

offer linguistic insights into language patterns by grouping associated words into topics

and, thereafter, computing the probabilities of topics occurring in each document [21,22].

The ability to capture a document’s semantic structure with reduced dimensionality [23–

25] has also been exploited for extracting distinct topics to retrieve similar domain-specific

questions [26–29].

In terms of sentence classification of which AQC is part of, deep learning has been

employed for sentiment analysis (combining topic models and neural networks) [30], ques-

tion answering [31], and domain-specific AQC [26,32, 33]. In these contexts, pre-trained

sentiment information or datasets with class labels containing details pertaining to the

subject matter are used. As shown in this thesis, domain-agnostic AQC requires features

not only related to the semantics/content, but also generic markers such as parts-of-

speech (POS) tags. One of the key advantages of a topic modeling-based AQC is the

consideration of global word co-occurrence patterns across questions that correspond to

each class label when the dataset is limited, such as often occurs in practice for questions.

The use of topic modeling will therefore allow one to incorporate the distribution of the

above occurrences for feature extraction, which is important in providing the degree of

association between topics and class labels for accurate AQC.

In domain-agnostic AQC, topics may overlap and comprise all word types; extract-

ing representative features is, therefore, a challenge. Although the use of probabilities

corresponding to the question-topic distribution as features may enhance AQC perfor-

mance, the presence of high-frequency words in questions results in topic homogeneity,
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where topics are assigned similar probabilities. While these high-frequency words can be

grouped via asymmetric priors [34] and suppressed via term weighting in weighted LDA

(W-LDA) [35], directly applying these techniques to AQC results in a similar question-

topic distribution being associated with different class labels [36], rendering these features

unsuitable for AQC.

Automatic document classification (ADC), on the other hand, is a broad spectrum

that consists of a wide range of structures. Despite the fact that any possible technique

would (in theory) be applicable for documents, in the context of domain-agnostic class

labels, existing deep learning techniques render themselves unsuitable. This is due to

the lack of considering the types of terminology being used in the documents that corre-

spond to the generic labels. For instance, mapping job descriptions to skillsets requires

the identification of types of phrases and patterns of co-occurrence (regexes) that could be

matched against skills such as Communication or Creative Thinking [37, 38]. Such skills

can be applicable to job roles from any industry, hence being domain-agnostic. Recently,

graph networks have gained popularity as opposed to the conventional sequence-based

or convolutional neural networks due to its ability to capture multi-dimension relational

information. However, majority of graph networks developed for text classification only

consider word nodes [39, 40] which are insufficient to encapsulate the meaning of a doc-

ument.

1.2 Main contribution of the thesis

Contributions made by the author are mainly described in Chapters 3, 4, 5, and 6.

In Chapter 3, the main contribution is to enhance the conventional term frequency-

inverse document frequency (TF-IDF) by proposing the sorted TF-IDF (s.TF-IDF) to

suit questions such that an alternative feature space is used to represent the questions.

This work has been published as S. Supraja, K. Hartman, S. Tatinati, and Andy W. H.

Khong, “Toward the automatic labeling of course questions for ensuring their alignment

with learning outcomes,” in Proc. 10th Int. Conf. Educational Data Mining (EDM),

2017, pp. 56–63.
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In Chapter 4, the main contributions are to highlight the importance of the choice of

stopwords for question classification and enhance the word network topic model (WNTM)

by proposing the customized question WNTM (q-WNTM) to suit questions such that

word co-occurrence redundancy is being addressed. This work has been published as

S. Supraja, S. Tatinati, K. Hartman, and Andy W. H. Khong, “Automatically linking

digital signal processing assessment questions to key engineering learning outcomes,” in

Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 2018, pp. 6996–7000.

In Chapter 5, a new phrase-based topic model that introduces the concept of nested

regular expressions for question classification. In this chapter, a new formulation and

scaling parameter for determining relevance of regexes, inter- and intra-class-based term-

weighting scheme, and a new topic regularization mechanism are described. This work

has been published as S. Supraja, Andy W. H. Khong, and S. Tatinati, “Regularized

phrase-based topic model for automatic question classification with domain-agnostic class

labels,” IEEE/ACM Trans. Audio Speech Lang. Proc., vol. 29, pp. 3604–3616, 2021.

In Chapter 6, a new quad-faceted feature-based graph network that encompasses four

different graphs with different types of nodes and corresponding unique edge weights is

presented. This new graph model is evaluated on various document classification datasets

that comprise domain-agnostic class labels. This work has been submitted to a journal

as S. Supraja and Andy W. H. Khong, “Quad-faceted feature-based graph network for

domain-agnostic text classification,” IEEE/ACM Trans. Audio Speech Lang. Proc.

1.3 Organization of the thesis

This thesis addresses the need to extract suitable features for classification of docu-

ments and questions according to domain-agnostic class labels.

Chapter 2 reviews baseline algorithms for both document and question classifica-

tion, including frequency-based methods, topic modeling, and deep learning approaches.

Chapter 3 presents the background of the need to classify questions according to cog-

nitive complexities, details of the proposed s.TF-IDF algorithm, and description of the

single course dataset used for subsequent evaluation. Chapter 4 presents the proposed
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q-WNTM algorithm and experiment results along with insights generated. Chapter 5

details the generalizability of AQC to domain-agnostic class labels, technicalities of the

proposed question LDA (Qu-LDA) phrase-based regularized topic modeling algorithm,

the new elements being proposed, followed by various comparison analyses with existing

topic modeling variants. Chapter 6 presents a new quad-faceted feature-based graph

network (QGN) that encompasses various graphs with different functionalities. Classi-

fication results with different datasets are shown. Chapter 7 concludes the thesis and

proposes directions of future work.
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Chapter 2

Review of Automatic Document and

Question Classification Techniques

This chapter reviews existing approaches used for automatic document classification

(ADC) and automatic question classification (AQC) as detailed in Figure 2.1. Frequency-

based and topic modeling feature extraction techniques are described, followed by various

machine learning algorithms that have been employed to process these feature vectors for

classification. In addition, the popularly and recently used deep learning techniques have

been explored. Notwithstanding that questions are a subset of documents and due to

differences in structure and properties of questions as opposed to long texts/documents,

topic modeling has been described for AQC and deep learning for ADC.

Conventional methods of AQC according to learning outcomes employ the primitive

rule-based approach. Such an approach combines parts-of-speech tagging, identifies verbs

associated with Bloom’s Taxonomy, and recognizes the presence of particular punctuation

marks to create features as inputs to machine learning algorithms. However, for a new or

updated set of questions, it is expected that some questions fail to activate any of these

rules [41, 42]. Hence, this thesis explores better techniques for feature extraction.
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Figure 2.1: Overview of ADC and AQC approaches.
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2.1 Frequency-based methods

A bag-of-words (BoW) approach is adopted in which each word in a question is as-

signed a term weight and a question is represented as a feature vector with dimension

corresponding to the total vocabulary size in a corpus.

2.1.1 Term frequency-inverse document frequency

Term frequency-inverse document frequency (TF-IDF) ascertains the nature of a word

in terms of uniqueness or rarity of a word in a set of questions. The importance of both

the local and global presence of words gives rise to the motivation of the term frequency

(TF) and inverse document frequency (IDF) respectively [43]. TF-IDF can be expressed

as

Ωwi,q =
Nwi,q

Nw

× log

(
NQ

Nwi + 1

)
, (2.1)

where Ωwi,q denotes the TF-IDF weight for the ith word wi in a question q, Nwi,q the

number of times wi occurs in q, Nw the number of words per question, NQ the total

number of questions, and Nwi the number of questions in which wi occurs. The first term

in (2.1) therefore models the frequency of a word within a question while the second term

models the concentration of words across all questions. The main objective is to make

rare words prominent and ignore common words. The higher the TF-IDF weight of a

word, the more it is unique to a question. This makes it easier to distinguish among

questions for subsequent classification into the various labels.

The obtained TF-IDF values are subsequently normalized by the Euclidean length of

each question [44]. To illustrate the above, the TF-IDF score for each word is divided

by the normalization constant
√

(Ω2
w1,q

+ Ω2
w2,q

+ . . .+ Ω2
wLq ,q

), where Lq denotes the

length of a question. TF-IDF scores are, in general, represented in the traditional BoW

manner such that a matrix is created with each row corresponding to a question and each

column corresponding to every single unique word in the corpus. Elements in this matrix

correspond to the TF-IDF scores for each word in each question. Hence, each question

is represented by a vector with dimension belonging to the length of the vocabulary [45].
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If a word is not present in a question, the TF-IDF value is zero.

By performing classification using the BoW vector representation, the main disad-

vantage is that the vector for each question is significantly sparse since the majority are

zeros corresponding to the absent words in each question. This implies that the machine

learning algorithm identifies the same trend of mostly zeros in all the questions and hence

is unable to distinguish among the various classes. From an alternative perspective, the

prevalence of zeros causes the lack of diversity among the various questions according

to the machine learning algorithm; the important non-zero weights are not sufficiently

prominent among the vast space of zeros.

To enhance the TF-IDF performance, the TF-IDF weights could be viewed as inter-

preting the feature space in terms of the distribution of the nature of words instead of

the actual nature of words. The proposed s.TF-IDF feature, which will be described in

Chapter 3, sorts the TF-IDF weights and compares the questions in terms of uniqueness

and commonality nature of words.

2.1.2 Class-based term weighting schemes

Considering that TF-IDF only takes the corpus-wide frequencies into account, it is

insufficient to estimate the significance of a word, therefore, class-based term weighting

schemes such as inverse class frequency have been employed for AQC [46, 47]. Other

class-based term weighting schemes for general text classification include the inverse

gravity moment [48,49]. Recently, a new term weighting scheme that incorporates inter-

and intra-class word distributions has been developed, such that a significant word is

determined based on its presence in fewer class labels and largely within a particular

class label. The modified distinguishing feature selector (MDFS) term weighting is given

by [50]

Ωwi =

NL∑
c=1

Ψwi,ycΩwi,yc , (2.2)
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where Ψwi,yc denotes the specific weighting factor imposed on wi for each class label yc

and Ωwi,yc the MDFS weight for that word in every class label such that

Ψwi,yc = log

(
1 +

Nwi,yc

max(1, Nwi,yc)

Nwi,yc

max(1, Nwi,yc)

)
, (2.3)

Ωwi,yc =
P (yc|wi)P (yc|wi)

P (wi|yc) + P (wi|yc) + 1
. (2.4)

The variable Ψwi,yc is computed based on the number of documents with wi as opposed

to those without that word wi, within a particular class label yc or in other class labels

yc. The variable Ωwi,yc in (2.4) denotes the conditional probabilities of the presence or

absence of a word and each class label that are computed based on (2.3) and a value of

1 is added to avoid division-by-zero error [50]. These formulations reflect the inter- and

intra-class attributes, where the former conforms to the criteria of the term weighting

being inversely proportional to the spread of frequencies across all class labels, i.e., a

word almost equally present in all class labels would receive a lower weight than that

concentrated to a particular class label. On the other hand, the intra-class term weighting

is proportional to the number of times a word occurs within a class label. These intricacies

are not reflected by corpus-wide term weighting which only consider frequencies across

all documents [35].

Nevertheless, both TF-IDF and class-based term weighting schemes are represented

via a BoW approach that is inefficient due to vector sparsity. To achieve a uniform

comparison across the questions by creating clusters of similar words with a common

property, topic modeling has been introduced. In topic modeling, the same set of words

are grouped together and a common weight is assigned to each group for each question

as will be described in the next subsection.

2.2 Topic modeling

Topic modeling aims to uncover hidden patterns of words and connects documents (or

questions) with similar patterns. While topic modeling has been proposed for document

classification, this technique has also been applied to question classification in this thesis.
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Topic modeling observes the correlations among words (occurrences together) and deter-

mines their relationship by linking these words across a corpus. However, it is important

to note that a topic in document classification implies a group of words which conveys

a collective meaning of the content of those words. The labels are not determined by

the model; but can be implicitly interpreted by human judgment [51]. Topics are hidden

relations that link words within a vocabulary and their occurrence in questions resulting

in topics being expressed as a probability distribution over the words. A topic is formed

by words which tightly co-occur with each other frequently. Similarly, questions model

the probability distribution over the topics based on the words present in each question in

comparison with other questions. Clusters formed by latent Dirichlet allocation (LDA)

are shared among all the questions, serving as a uniform way of comparing the types

of words used in various questions [52]. Each question will be represented by a vector

of probabilities assigned to each topic. Observing the combinations of how each topic

probability falls within a particular range of values, the machine learning algorithm will

be able to clearly differentiate among the three labels. With questions belonging to the

category of short texts, topic modeling is more appropriate than sophisticated techniques

to obtain accurate features.

2.2.1 Latent Dirichlet allocation

Among various approaches, latent Dirichlet allocation (LDA) is one of the well-known

techniques that performs topic modeling primarily for document classification. Questions

can be represented via topic modeling by first defining NQ as the total number of ques-

tions, NZ as the number of topics, and NV as the size of the word vocabulary. Topics are

then sampled from the questions’ multinomial distribution Θ ∈ RNQ×NZ with a Dirichlet

prior α and the corpus-wide topic-word multinomial distribution Φ ∈ RNZ×NV with a

Dirichlet prior β [20]. Posterior probabilities of each topic for a question P (zj|q̃) and of
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Figure 2.2: Plate diagram of LDA.

each word per topic P (wi|zj) are computed as

P (zj|q̃) =

∑NV
i=1N

(q̃)
wi,zj + α∑NV

i=1N
(q̃)
wi + αNZ

, (2.5)

P (wi|zj) =
Nwi,zj + β∑NV

i=1Nwi,zj + βNV

, (2.6)

where
∑NV

i=1 N
(q̃)
wi,zj denotes the total number of times each word wi occurs in q̃ for a given

topic zj,
∑NV

i=1N
(q̃)
wi the total number of words in that question, Nwi,zj the number of

times each wi occurs in that topic across all questions, and
∑NV

i=1Nwi,zj the total number

of words in that topic across all questions [20]. Each question consists of Nw words. The

plate diagram of LDA is shown in Figure 2.2.

With the objective of grouping words into topics, the first problem involves determin-

ing which words belong to which topics and to what extent [53]. The first step is to

assign each word in each question with a topic number randomly, based on a pre-defined

total number of topics that segregates these words into [54]. This random allocation is

performed according to a uniform distribution. Subsequently, two matrices will be for-

mulated: one for counts of words in each topic and another for counts of topics in each

question. However, since the initial assignment is performed randomly, it does not pro-

12



Chapter 2: Review of Automatic Document and Question Classification
Techniques

vide an accurate representation of the grouping of words into topics and the probabilities

of each topic occurring in a question. LDA employs Gibbs sampling inference techniques

to iterate through these topic assignments by re-assigning topics if the product of these

local and global analysis is better than the current assignment such that a steady state

is achieved eventually. Gibbs sampling is used to obtain a random sample from a poste-

rior distribution, and the eventual final sample serves as a discrete approximation to the

posterior distribution after several iterations [55].

In this case, a unique steady state distribution exists, independent of the initial state.

In the context of LDA, states refer to topic assignments to words. The requirement in

LDA is to design an optimal function that makes a probabilistic choice pertaining to

transiting to the next state (topic assignment) according to certain transition probabil-

ities. These transition probabilities ought to be governed by some conditions such that

visiting either the current state or transiting to another state will be as desired to obtain

the optimal set of topic assignments [56]. Therefore, although any random initialization

of topics is performed for the words in all the questions, the final set of topic-word and

question-topic proportions will be obtained after several Gibbs sampling iterations.

When scaling down from documents to questions however, there are insufficient num-

ber of instances to observe such tight word co-occurrences [57]. In this scenario, there

are fewer occurrences of rare words, hence these words are considered to be unimpor-

tant and are not taken into consideration. As a result, LDA tends to ignore rare topics

that are related to minority of questions in the corpus and identifies the relationships

among the remaining words since there are sufficient number of instances in the space

of questions to words. Due to this limited word co-occurrence information in questions,

this data sparsity results in a question-topic distribution that is not as distinct. Hence,

the resultant topics are of lower semantic coherence. If two words are strongly related

semantically but rarely co-occur in short texts, LDA is unable to completely capture

the semantic relation between these two words. Hence, due to the insufficient number

of common words/shared context, this results in the difficulty of determining similarity

among questions to perform classification if LDA is applied [58]. The inability of LDA

to perform well on questions prompted the development of other techniques to solve the

issue of short text topic modeling.
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Figure 2.3: Construction of word network diagram in WNTM.

One option to segregate the rare words without introducing new techniques is to in-

crease the number of topics NZ until the unique rare words belong to particular topics.

However, this increases the dimensionality of the vector representation for each ques-

tion. The grouping of similar words becomes diluted by further segregating the topics,

resulting in close to zero values for majority of the columns in the topic probability vec-

tor, increasing the sparsity back to the original BoW approach which failed in TF-IDF.

Hence, the feature space in which the questions are being analyzed can be changed since

there are fewer co-occurrences of words across questions in comparison to long docu-

ments. To this end, the feature space among words (reflected by a word-word matrix) is

denser compared to the space of questions versus words and hence, rare words can now

be made more visible by having relationships with other words. Out of the several meth-

ods, word network topic model (WNTM) examines the dense word-word space instead

of the question-word space to explore relationships among words [59]. The drawbacks of

applying LDA for questions lead to the application of WNTM to generate the feature

vector for AQC.
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Figure 2.4: Word network diagram and pseudo-questions in WNTM.

2.2.2 Word network topic model

Word network topic model (WNTM) models the distribution over topics for each

word instead of directly learning the topics for each question. It observes the word co-

occurrence information throughout the corpus. The semantic density of data is enriched

and the global contextual information is made available through the word-word space.

WNTM enables the identification of groups of words that correspond to rare topics as

it dwells in the space among words instead of among questions. WNTM operates by

firstly creating a word network graph in which the nodes correspond to each unique word

present in the corpus. For example, assuming that there are three questions in the corpus

as follows:

Question 1: Describe frequency response.

Question 2: Sketch the frequency response.

Question 3: Describe the frequency response of a microphone.

As will be described in Chapter 3, standard text pre-processing is first performed. The

unique words are represented as nodes in Figure 2.3 (left). Subsequently, for every co-
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occurrence of two words within the same question, the weight between every two nodes of

this undirected graph is being incremented. After processing Questions 1 and 2, WNTM

determines the partial set of updated weights as illustrated in Figure 2.3 (right). The

purpose of having an undirected graph is due to WNTM being a BoW model in which

the order of words is not taken into consideration. Instead, the presence of words along

with each other in each question is of importance.

The process of updating the edge weights in the word network graph is repeated for

every question and Figure 2.4 (left) shows the completed network. After the completed

network has been determined, for each word, the neighboring words along with the num-

ber of times they have co-occurred are used to generate a set of pseudo-questions (also

referred to as the adjacent word list) which constitutes the global set of co-occurrence

information for each word as seen in Figure 2.4 (right). Depending upon the edge weight

between two nodes, words in the pseudo-question will be repeated accordingly. However,

WNTM does not consider the order of words in the pseudo-questions.

After forming the pseudo-questions for every unique word present in the corpus, these

pseudo-questions are treated as a new set of questions and the standard LDA Gibbs

sampling is applied to iterate through the topic-word allocation counts and pseudo-

questions-topic allocation counts. With reference to Section 2.2.1, each topic zj gen-

erated in WNTM is also a multinomial distribution over the vocabulary of words, with a

symmetric Dirichlet prior β. However, each new pseudo-question generated by WNTM,

denoted by P, is a multinomial distribution over the topics, with a symmetric Dirichlet

prior α. After obtaining the topic probabilities for each pseudo-question corresponding

to the global set of co-occurrence relationships for each word, the topic probabilities for

each original question based on every individual word w
(q̃)
i are inferred as

P (zj|q̃) =
Nw∑
i=1

P (zj|w(P)
i )× P (w

(q̃)
i |q̃), (2.7)

where P (zj|q) refers to the probability of the jth topic zj in each question q̃, P (zj|w(P)
i )

refers to the jth topic probability in each pseudo-question P belonging to each word

w
(q̃)
i , and P (w

(q̃)
i |q̃) refers to the frequency of each unique word in the original question in
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Table 2.1: Highlighting rare words through WNTM.

Word Pseudo-question
A B C B C D
B A C A C
C A B B A D
D A C

relation to the total number of words present in that question. The sum of this expression

is taken for all the words in a question.

The purpose of taking the topic probability represented by each word (first term in

(2.7)) is to show how globally that particular word is linked to that topic based on the

surrounding words, as well as, to serve as an impact of the repetition of words present

in the pseudo-questions. Unlike LDA, WNTM considers each pseudo-question as an

extended context that depicts one particular word itself. While constructing the pseudo-

questions, repetition of words according to the weights between the edges in the word

network graph increases the emphasis for each word in each question, which relates to

the higher probability of that particular topic to occur in that question. This concept is

similar to TF-IDF with reference to how the more number of times the same word occurs

in a question relates to a higher TF value making that word more unique towards that

question.

The purpose of taking the frequency of each word in the second term of (2.7) is again

similar to the computation of term frequency in TF-IDF in which, within the bound

from 0 to 1, a higher value denotes higher emphasis given to the term which occurs

more number of times. The intuition behind the creation of pseudo-questions can be

interpreted as extending the original question based on the global set of surrounding

words according to the word network diagram. It can be interpreted as each word being

replaced with the remaining surrounding words to provide the full context of how that

word could have occurred in a regular long document. Instead of altering the original

question, WNTM considers each word as a separate entity. Based on the surrounding

words, it identifies the extent of that word being related to a topic.

In addition, WNTM can identify rare words since implicit connections exist between
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these rare words and other words in the word network. Apart from the rare words,

implicit connections among all other commonly occurring words are highlighted in the

pseudo-questions. To explain how the rare words become prominent in WNTM compared

to LDA, an example case can be illustrated with four questions and four unique words

A, B, C, and D as follows:

Question 1: A B C

Question 2: A B

Question 3: B C

Question 4: A C D

“D” is a rare word compared to the rest of the words, and hence it becomes ambiguous to

which topic “D” should belong to if LDA is being applied to these questions. However,

in WNTM, while constructing the pseudo-questions as shown in Table 2.1, “D” can be

seen co-occurring not only with “A” and “C”, but with “B” as well. This is because the

implicit connections among words are emphasized in WNTM due to the pseudo-questions,

which represent the global word network relationships, unlike in LDA which considers

word co-occurrences only within each question. The final vector of topic probabilities

for each question generated through WNTM serves as a better feature vector than LDA.

However, directly applying WNTM to the questions may not be appropriate since WNTM

generates the word network, which contains the entire set of connections among all the

words in the vocabulary. This prompts the need to analyze the types of word connections

that are important versus redundant for classifying the questions into the three categories

“K,” “A,” and “T,” respectively.

2.2.3 Asymmetric LDA

A hypothetical set of topics with high-probability words and their corresponding topic

probabilities for each LDA variant is tabulated in Table 2.2. With symmetric variables

α and β, both LDA and WNTM suffer from topic homogeneity described by having

all topics comprising high-frequency words (e.g., the and of ) that result in equal topic

probabilities P (z1) = P (zj) = P (zNZ ) = 0.02. This implies that feature vector q is, to a
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Figure 2.5: Plate diagram of A-LDA.

Figure 2.6: Plate diagram of W-LDA.
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large extent, agnostic to the class label resulting in poor AQC performance.

To group these high-frequency words into a topic, asymmetric LDA (A-LDA) [34]

incorporates asymmetric α priors. With NZ number of different asymmetric α values

being used across all topics, maximizing the likelihood estimate of the Dirichlet distribu-

tion to determine an appropriate α value per topic is achieved via the Newton-Raphson

method [60–62]. The plate diagram of A-LDA is shown in Figure 2.5.

2.2.4 Weighted LDA

While the use of asymmetric priors in LDA mitigates the homogeneity problem, A-

LDA constructs topics based solely on word frequencies. This results in emphasizing the

topic associated with high-frequency words as seen in Table 2.2, where P (zNZ ) = 0.3,

thereby suppressing the prominence of other relevant topics. Weighted LDA (W-LDA)

employs term weighting [35] and assigns low probabilities to high-frequency words by

replacing Nwi and Nwi,zj in (2.5) and (2.6) with a pre-computed corpus-wide weight Ωwi

for each wi and Ωwi,zj for each word in each topic, respectively. This results in the topic

probability associated with high-frequency words being suppressed as seen via P (zNZ ) =

0.04 in Table 2.2. The plate diagram of W-LDA is shown in Figure 2.6.

More importantly, the lack of incorporating class label distribution of each word results

in topic probabilities being almost uniform across the remaining topics as seen via P (z1) ≈
P (zj). This implies that such feature vectors do not discriminate well across the different

class labels, rendering poor AQC performance. While phrase-based topic models have

recently been proposed to encapsulate the contextualization of words [63–65], application

of such models to AQC requires the incorporation of word-based elements (asymmetric α

priors and term weighting). Consequently, these phrase-based topic models (denoted by

P-LDA) will result in a question-topic distribution similar to W-LDA, with the exception

of topics consisting of phrases in lieu of only single words, as shown in Table 2.2.
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2.2.5 LDA-based phrase topic model

To generate more meaningful topics, LDA-based phrase topic model (LPTM) first

extracts noun phrases (NPs) [66–68] (e.g., dangerous aspects—a combination of an ad-

jective and a noun as seen in Table 2.2). It then represents a phrase-extracted question

consisting of Np phrases as q = {p1, p2, . . . , pNp}, where pk = {wk,1, . . . , wk,Lpk} is defined

as the kth NP that is made up of Lpk words. The parts-of-speech (POS) tags of all

words within the phrase are then grouped together to form a regular expression (regex)

rk = {POS(wk,1), . . . , POS(wk,Lrk )} of length Lrk . With reference to the above danger-

ous aspects example, this regex will be denoted by ADJ NOUN. Subsequently, q is now

re-defined as a regex-extracted question q = {r1, r2, . . . , rNp}.

Such POS-guided phrasal segmentation [69] is employed in LPTM to construct a

topic-regex multinomial distribution η ∈ RNZ×NR with a Dirichlet prior λ [70], where NR

denotes the regex vocabulary size. The posterior probability of each regex per topic is

then given by

P (rk|zj) =
Nrk,zj + λ∑NR

k=1 Nrk,zj + λNR

, (2.8)

where Nrk,zj is the number of times each regex rk occurs in zj and
∑NR

k=1 Nrk,zj the total

number of regexes in that topic.

21



C
h
a
p
t
e
r
2
:
R
e
v
ie
w

o
f
A
u
t
o
m
a
t
ic

D
o
c
u
m
e
n
t
a
n
d

Q
u
e
st

io
n
C
l
a
ssif

ic
a
t
io
n

T
e
c
h
n
iq
u
e
s

Table 2.2: Hypothetical set of topics and their corresponding topic probabilities using LDA, A-LDA, W-LDA, and P-LDA.

Method z1 P (z1) . . . . . . zj P (zj) . . . . . . zNZ P (zNZ )

LDA
the

0.02 . . . . . .
the

0.02 . . . . . .
the

0.02
a a a

A-LDA
what

0.0005 . . . . . .
find

0.007 . . . . . .
the

0.3
provide express a

W-LDA
what

0.08 . . . . . .
find

0.1 . . . . . .
the

0.04
provide express a

P-LDA
dangerous aspects

0.1 . . . . . .
basic facts

0.09 . . . . . .
find

0.04
this problem one advantage express
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Figure 2.7: AQC framework with frequency-based or topic modeling algorithms for fea-
ture extraction and ELM, SVM, or GP machine learning classifiers.

2.3 Machine learning algorithms

The main motivation of Sections 2.1 and 2.2 is to develop feature extraction techniques

which are subsequently used by machine learning techniques for AQC. Hence, to provide a

comparison analysis, this thesis covers three machine learning techniques – the extreme

learning machine (ELM), support vector machine (SVM) and Gaussian process (GP).

The AQC framework is shown in Figure 2.7. After generating the feature vector for each

question using either frequency-based or topic modeling algorithms, the machine learning

techniques utilize the vectors to perform supervised learning and thereafter evaluate the

classification performance for the testing dataset [71]. This multi-class classification is

performed to compare the performance of the various feature extraction techniques to

segregate the class labels.

2.3.1 Extreme learning machine

Extreme learning machine (ELM) is a learning algorithm for a single hidden layer feed-

forward neural network (SLFN). The key concept of ELM is that the weights connecting

the input and hidden layers are randomly generated while the weights connecting the

hidden and output layers are analytically determined using a regularized least squares

solution [72]. Given a set of input samples xk with the respective target/output given by

tk, with an activation function (e.g., sigmoid, sine, radial basis, hard-limit) for the hidden

nodes and by specifying the number of hidden neurons L, the weight matrix is computed

using the Moore-Penrose generalized inverse [73]. The final predicted class label is based
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on the output with the largest value [74].

The SLFN is formulated as

L∑
j=1

γjfj(xk) =
L∑
j=1

γjf(wj · xk + bj) = ok, k = 1, . . . , L, (2.9)

where wj denotes the weight vector that stores the weights between the input and hidden

nodes, γj the weight vector that stores the weights between the hidden and output

nodes, and bj the threshold of the jth hidden node. The objective is to achieve ok →
tk, i.e., output is close to the target value. ELM learning algorithm differs from the

traditional backpropagation in that one only needs to set the number of hidden neurons

and the activation function. It avoids learning epochs that exist in the gradient-based

backpropagation method. It uses a small number of resources and the parameters are

free of tuning [75].

It has been shown that high reliability is achieved for classification tasks using ELM

as opposed to SVM when comparing in terms of the standard deviation of training and

testing root-mean-square values, time taken, network complexity, as well as performance

comparison in actual medical diagnosis applications [72].

2.3.2 Support vector machine

The concept of the support vector machine (SVM) is based on structural risk min-

imization. SVM maps data in the input space to a feature space using a nonlinear

mapping function. Subsequently, a separating hyperplane maximizes the margins of two

classes in the new feature space. This process separates the data into groups that have

large gaps between them. If the original data is not linearly separable, a kernel func-

tion (e.g., radial basis, sigmoid, linear or polynomial) is used to transform these samples

into a high-dimensional space [76]. In the case of a multi-class classification, either a

one-versus-all (construction of many binary classifiers) or a one-versus-one (classifier for

every two classes) approach can be taken [77]. The C-support vector classification type
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is used in this thesis. Given a set of inputs and targets, the cost function is given by

min
p,K,ε

1

2
pTp + C

k∑
j=1

εj (2.10)

subject to yj(p
Tφ(vj) + K) ≥ 1 − εj, εj ≥ 0, j = 1, . . . , k, where C > 0 denotes the

regularization parameter, K a constant, p the vector of coefficients, εj the parameters

that handle the inputs, v the independent variables, φ the kernel used that transforms

data from the input to the chosen feature space, and y the class labels.

2.3.3 Gaussian process

Since GP is a random process in which any point is assigned a random variable g, the

predicted class label is computed via

P (gc|Q) = N (gc|0,KQQ), c = 1, 2, . . . , NL,

P (yc|gc) = N (yc|gc, κ−1I), c = 1, 2, . . . , NL, (2.11)

where 0 denotes the mean function, KQQ ∈ RQ×Q the GP covariance matrix for the set

of feature vectors in a corpus Q = {q1, . . . ,qNQ}, and κ the noise covariance. The radial

basis function (RBF) given by [78]

k(ql,ql′) = exp

(
− 1

2σ2
||ql − ql′ ||22

)
(2.12)

is commonly chosen as the kernel function. Here, σ2 denotes the kernel bandwidth and

||ql − ql′ ||22 the squared Euclidean distance between two question feature vectors ql and

ql′ .

For multi-class AQC, the one-versus-all strategy is adopted such that NL binary clas-

sifiers are trained [79]. Each classifier will separate questions of the current class la-

bel being considered against the rest and the class membership of an unknown test

set question’s feature vector q∗ is determined by the class label corresponding to the

most confident classifier. The classifier Fc is then trained on the training set Q =
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{(q1, y
1
c ), (q2, y

2
c ), . . . , (qNQ , y

NQ
c )}, where ylc denotes the corresponding class label yc for

the lth question. Defining F(q∗) as the posterior mean according to classifier Fc that

the new input q∗ belongs to that particular class label, the class label of q∗ is predicted

via

ŷ∗ = argmax
c∈{1,2,...,NL}

Fc(q∗). (2.13)

Therefore, among the probabilities generated for each pair of class labels, the class label

that achieves the highest predictive posterior mean is assigned to that unseen (test)

question.

2.4 Deep learning approaches

This section reviews the formulations of well-known deep learning architectures such

as the long short-term memory network (LSTM), convolutional neural network (CNN),

and graph networks that have been widely employed for ADC. Several works that design

deep learning based architectures to perform AQC or ADC employ the basic building

blocks of CNN or recurrent neural networks (RNN) (LSTM or gated recurrent units

(GRU)) in various ways to serve different purposes [33, 80]. Recently, graph networks

have been developed for text classification [39,40].

Techniques that employ deep learning algorithms for documents or AQC utilize word

embeddings which convert words into a semantic space such that any unseen word with

a similar meaning in the semantic vector space could be used. Words are represented

as vectors, i.e., word embeddings, before being used as inputs for the encoder. Each

original document is converted to a vector matrix in which the rows represent the vector

corresponding to each word. These embeddings are trained instead of obtaining pre-

trained word2vec or GloVe vectors as the terminology are significantly different in the

collected dataset and might not have appropriate pre-trained vectors.

After applying any of the algorithms that will be presented in the subsequent subsec-

tions, the feature vector output is passed to a fully connected softmax layer with dropout
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whose output is the probability distribution over the labels given as

y = W · r + by, (2.14)

where W denotes the weight matrix, by the bias term and r ∈ RNL is a masking vector

of multinomial random variables (corresponding to the class labels the documents are to

be classified into) with total probability of 1.

2.4.1 Recurrent neural networks

One of the most popular sequence encoders in the RNN family that is used for text

representation is the LSTM, and particularly the bi-directional LSTM (Bi-LSTM) that

can be viewed as a combination of two unidirectional LSTMs, i.e., forward and backward.

The forward LSTM computes the current state of the original document’s word sequence

based on the current embedding and the previous sequence state. The backward LSTM

computes the sequence state in the reverse order from the last word to the first. The

concatenation of two hidden representations is taken as the representation of the source

document [81]. Hence, Bi-LSTM enhances the hidden representation of each word in

a document by incorporating contextual information from the surrounding words (right

and left). With each word in a document represented by embeddings, the encoder obtains

a hidden representation of a document hd = [hd1, h
d
2, . . . , h

d
Ld

], where Ld denotes the length

of a document d. With j being an individual time step, the hidden representation for a

particular word wdj is computed by concatenating the hidden states of both the forward-

direction
−→
h wdj

and backward-direction
←−
h wdj

LSTMs, given as

hwdj = [
−−−−→
LSTM(wdj ,

−→
h wdj−1

);
←−−−−
LSTM(wdj ,

←−
h wdj+1

)]. (2.15)

Since the attention mechanism is analogous to how humans place emphasis on differ-

ent segments of a document that exhibit important clues to understand the meaning of

that document, an attention layer is applied on top of the encoded vectors to identify key

segments of the documents while performing the decoding by assigning different weights

to each word in the original document. A non-linear transformation is first applied on
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the encoded vectors hwdj = tanh(Whwdj + b), where W and b are the transformation

weights and bias respectively. Each encoded vector interacts with a parameterized at-

tention vector uwdj , producing an attention coefficient adj = hT
wdj
uwdj which is subsequently

normalized through the softmax operation [82]. The vector representation for a document

d is obtained via a weighted average of the word hidden representations, given by

d =
∑
j

hwdj
exp(adj )∑
j exp(adj )

. (2.16)

The attention distribution is used to compute the context vector which can be considered

as a fixed dimensional representation of the document. This representation is then fed

through a fully-connected layer.

2.4.2 Convolutional neural networks

Although sequence encoders encompass the longitudinal representation of a docu-

ment, the latitudinal and dense neighbouring elements are considered by CNNs. Follow-

ing sequential CNNs, one dimensional convolutions operate the convolutional kernel in

sequential order, given as

xi,j = xi
⊕

xi+1

⊕
. . .
⊕

xi+j, (2.17)

where xi ∈ Re represents the e dimensional word representation for the i-th word in the

document, and
⊕

is the concatenation operator. Therefore, xi,j refers to the concate-

nated word vector from the ith word to the (i+ j)-th word in a document.

A convolution operates a filter w ∈ Rn×e to a window of n words xi,i+n with bias

term b′ by ai = σ(w · xi,i+n + b′) with non-linear activation function σ to produce a new

feature. The filter w is applied to each word in the sentence, generating the feature

map a = [a1, a2, . . . , aLd ] where Ld is the document length. The entire feature map is

represented as â = max{a} after max-pooling.

To capture different aspects of patterns, CNNs are often initialized randomly via a

set of filters with different sizes and values. Each filter will generate a feature as de-
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scribed above. To take all the features generated by N different filters into account,

z = [â1, . . . , âN ] is used as the final representation. In conventional CNNs, vector z will

be directly fed into the classifiers after the document representation is obtained, e.g.,

fully-connected neural networks [83, 84]. From an architecture perspective, conventional

sequence-based or convolutional neural networks that are often utilized for text classifi-

cation are limited by their nature to prioritize sequentiality and locality [85, 86]. While

these deep learning models capture semantic and syntactic information in the Euclidean

space and in local sequences well, they do not account for global word co-occurrences in

a corpus that carries non-consecutive and long-distance semantics [39,87].

2.4.3 Graph networks

This section reviews the graph convolutional network (GCN). In recent years, fea-

tures for text classification have been generated from non-Euclidean domains and are

represented in the form of graphs [87]. These techniques preserve diverse global struc-

tural information and capture multi-dimension relational information as meaningful fea-

tures [88]. In TextGCN, a single graph based on word co-occurrence and document-word

relations serves as the input to subsequent convolutional layers for feature extraction

and classification [39]. As an extension to sequential-based graphs [89], a TensorGCN

triple-graph model has been developed to describe syntactic, semantic, and sequential

information among word nodes [40]—in line with SynGCN and SemGCN in terms of

the need to incorporate embeddings beyond sequentiality [90]. More recently, the graph

fusion network (GFN) addresses the limitation of transductive methods [91] in adapting

to new documents by discarding document nodes and constructing four homogeneous

graphs [87]. Since the majority of graph models for text classification only consider word

nodes [39, 40], direct application of these methods is not suitable for domain-agnostic

text classification—they lack representations associated with additional textual features

such as phrases, regexes, or topics.

Given the word vocabulary size as NV and the total number of documents as ND,

V = {w1, . . . , wi, . . . , wNV , d1, . . . , dm, . . . , dND} is defined as the set of nodes. Here, wi

refers to the ith word node and dm refers to the mth document node. The set of edges
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is given by E = {e(wi, wj), e(dm, wi)}, where e(wi, wj) denotes the edge between every

ith and jth word nodes and e(dm, wi) denotes the edge between every mth document

and ith word nodes [92]. A graph G = (V,E) consisting of word and document nodes

is constructed after performing conventional text pre-processing as will be described for

questions in Section 3.3. Defining the feature matrix as F ∈ R(NV +ND)×f , where the total

number of nodes is (NV + ND) and f denotes the feature vector dimension, embedding

feature vectors of the nodes are constructed. In addition, the adjacency matrix that

encompasses edge weights between all nodes in G is denoted by A ∈ R(NV +ND)×(NV +ND).

Hidden layer representations of the node embeddings and edge weights are subse-

quently obtained by traversing convolutional layers initialized with F. This hidden layer

matrix H then serves as the input to a softmax classifier. Defining NL as the total

number of class labels, the classification task is formulated as estimating the mapping

between H and each class label yc such that the predicted class label is

ŷ = argmax
c∈{1,2,...,NL}

softmax(yc|H). (2.18)

Achieving good classification performance, therefore, relies on the types of nodes (to

construct F) and the computation of edge weights among the same type of nodes (i.e.,

word-word) and in relation to document nodes to construct A.

GCN is a multi-layer neural network that operates on a graph with nodes embed-

ded based on properties of their neighborhoods. Figure 2.8 shows the process flow of

TextGCN in which all nodes are initialized using a one-hot representation before the

joint optimization of embeddings for both words and documents given the class labels

to obtain F [39]. Hidden layer representations are then obtained by encoding the graph

structure that comprises the node feature vectors and relationships among nodes (i.e.,

edge weights) with a layer-wise propagation rule

H(l+1) = γ
(
D−

1
2 AD−

1
2 H(l)W(l)

)
, l = 0, 1, . . . ,L, (2.19)

with the non-linear activation function γ defined as a rectified linear unit (ReLU ) for

0 ≤ l < L and softmax for the last layer l = L. In (2.19), H(l) ∈ R(NV +ND)×fl denotes
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the feature matrix of the lth layer, fl denotes the number of features for each node in the

lth layer (with fL = NL), L denotes the number of layers in GCN, and W(l) ∈ Rfl×fl+1

denotes the layer-specific trainable weight matrix with weight parameters trained via

gradient descent. Elements in the degree matrix D are defined as Dij =
∑

j Aij, where

Aij denotes each element in A, and the input layer is initialized as H(0) = F. A fixed-size

sliding window is conventionally applied to obtain co-occurrence statistics and PMI (a

measure of association between the occurrence of two words) is employed to compute

the weights between every pair of word nodes [39]. The document-word edge weight is

computed based on the TF-IDF value of each word in a document. The loss function of

TextGCN is defined as the cross-entropy error over all labeled documents in the training

set to obtain ŷ for an unseen document in the test set.

As an extension to TextGCN, TensorGCN introduces three graphs with different prop-

erties for the same set of word nodes comprising edge links computed via dependency pars-

ing, word embedding cosine similarities, and PMI as shown in Figure 2.9. These graphs

are synthesized into a graph tensor (i.e., multiple graphs sharing the same nodes) [40]

defined as T = (G1, G2, G3). The corresponding adjacency matrices are similarly syn-

thesized into a graph adjacency tensor A = (A1,A2,A3) with a graph feature tensor

H = (H1,H2,H3). To derive the representations via the triple graphs in TensorGCN,

two types of propagation learning methods have been performed on T . The intra-graph

method aggregates information from neighboring nodes within a single graph while the

inter-graph method harmonizes heterogeneous information among graphs as illustrated

in Figure 2.9. For instance, given the lth layer of GCN, these propagation methods are

employed consecutively on the graph feature tensor giving

H(l) pintra−−−→ H(l)
intra

pinter−−−→ H(l+1). (2.20)

Here, pintra and pinter denote the application of each learning method and H(l)
intra denotes

the graph feature tensor after performing intra-graph propagation by applying (2.19) on

A and H. Unlike (2.19), the trainable weight matrix W
(l,g)
intra is designed to be graph-

specific with g denoting the gth graph. To achieve inter-graph propagation, on the other

hand, a series of virtual graphs are constructed by duplicating the same set of nodes and
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connecting them across the graphs in the tensor. This results in a new graph adjacency

tensor which, along with H(l)
intra and W

(l,g)
inter, constitutes the process pinter. A mean pooling

operation is applied over the graphs in the last layer to obtain the final representation of

nodes for classification.

In contrast to TensorGCN, GFN [87] consists of four homogeneous word graphs

with edge links comprising word embedding cosine similarities and Euclidean distances,

PMI, and co-occurrence statistics. To generate document embeddings without document

nodes, GFN implements the late fusion paradigm (i.e., the logit-level fusion of word em-

beddings) [87]. However, removing document nodes is not ideal in this context since

the unique relationships between texts and the observable and latent features are vital

in determining an accurate graph representation with respect to domain-agnostic class

labels. In addition, the use of cosine similarity between embedding vectors for the se-

mantic graph is advantageous when compared to the use of Euclidean distance. This

is due to the possibility of two document vectors achieving a smaller cosine angle (i.e.,

higher similarity) despite being far apart (i.e., lower similarity) by the Euclidean distance

that is based on size. Therefore, the proposed QGN that will be presented in Chapter 6

adopts the TensorGCN framework.
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Figure 2.8: Process flow of TextGCN for text classification.

Figure 2.9: Architecture of TensorGCN.
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2.4.4 Pre-trained models

Pre-trained language models have been frequently utilized for text classification tasks

in recent years. The bidirectional encoder representations from transformers (BERT)

model [93] achieves superior performance in various natural language processing appli-

cations in comparison to word2vec [94] or GloVE [95] word embeddings as it provides a

deeper sense of language context. BERT is a transformer-based architecture—the latter

uses a self-attention mechanism suitable for language understanding. The transformer

comprises an encoder-decoder architecture with modules that contain feed-forward and

attention layers. BERT, on the other hand, is a multi-layered encoder that reads and

processes the input text. The decoder separately achieves prediction for a particular task.

BERT achieves bidirectional pre-training mainly via masked language modeling. In

this process, the weights are initialized based on the pre-trained English Masked Language

Model (MLM), a 12-block decoder-only transformer model trained to predict masked-out

words on the Toronto Books Corpus and Wikipedia [96]. In the MLM objective, masking

of some words in a sentence is performed, i.e., replacing a word with the token [MASK],

randomly swapping/replacing with another word, or leaving it unchanged. To perform

masking, words are first being split into subwords, and a certain percentage of words are

randomly sampled to be masked [97–101]. By altering the word order of input sentences

(noisy input), the shared encoder will be able to learn about the internal structures of a

sentence and recover the correct word order (denoising autoencoder).

After the MLM, training is performed simultaneously with the denoising and back-

translation objectives. For denoising, a noisy input is produced by randomly masking,

dropping, and locally shuffling tokens in the target text, and the model is trained to

maximize the probability of the correct word being the output. Similarly, the probabil-

ity of the output text to be generated is maximized when masking is applied to obtain

the predicted text. For back-translation, an original form of a text is generated for the

predicted text, and the probability of the original text given the predicted text is max-

imized. Such language tasks are conventionally evaluated with the bilingual evaluation

understudy (BLEU) [102], where BLEU measures the overlap of words between the pre-

dicted text and the ground truth (actual text). Hence, the training of BERT is ceased
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without supervision when a round-trip BLEU achieves the highest score.

2.5 Chapter summary

In this chapter, various methods have been described to extract features of questions

or documents before being utilized by the machine learning algorithms to perform classi-

fication. Rule-based methods involve the creation of specific conditions and counting the

presence or absence (binary) of those conditions which is not universally applicable to

any datasets. TF-IDF or class-based term weighting schemes provide weights to words

based on the frequency and concentration. The disadvantage of these schemes is the

sparsity of the BoW vector representation. LDA can be described as the clustering of

words into topics with a common meaning. However, it does not consider rare word oc-

currences and fails for short texts (in this context, questions) since questions, in general,

do not have sufficient instances of tight word co-occurrences. WNTM, on the other hand,

performs topic modeling by considering co-occurrences among words in the corpus. It

provides importance to rare words and all word connections but fails to generalize since

it contains all connections among words, including possible irrelevant connections. The

use of symmetric priors prompted the development of A-LDA and the presence of high-

frequency words lead to W-LDA. Nevertheless, word-based approaches are inefficient in

encapsulating the meaning of a question unlike a phrase-based approach (in particular,

LPTM). However, the under-representation of regexes is a limitation. On the other hand,

with the prevalence of deep learning approaches such as LSTM and CNN that have been

applied for text classification, the recently emerging graph networks possess the ability

of representing a document holistically. However, there is more scope for incorporation

of further heterogeneity and diversified graph tensors.

35



Chapter 3

The Sorted TF-IDF for Enhanced

Frequency-based Question Feature

Representation

Expertise in a domain of knowledge is characterized by a high fluency for solving

problems within that domain and a greater facility for transferring the structure of that

knowledge to other domains. Deliberate practice and the feedback that takes place

during practice activities serve as gateways for developing domain expertise [103, 104].

However, there is a difficulty in consistently aligning feedback about a learner’s prac-

tice performance with the intended learning outcomes of those activities —particularly

in situations where the person providing feedback is unfamiliar with the intention of

those activities [105]. To address this problem, this chapter proposes a sorted TF-IDF

(s.TF-IDF) model to automatically label opportunities for practice (assessment ques-

tions) according to the learning outcomes intended by the course designers. As a proof of

concept, a reduced version of Bloom’s Taxonomy has been designed to define the intended

learning outcomes. This chapter describes the proposed s.TF-IDF algorithm for feature

extraction and the associated single course dataset used for evaluation. The detailed

Part of this chapter has been published as S. Supraja, K. Hartman, S. Tatinati, and Andy W. H.
Khong, “Toward the automatic labeling of course questions for ensuring their alignment with learning
outcomes,” in Proc. 10th Int. Conf. Educational Data Mining (EDM), 2017, pp. 56–63.
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Figure 3.1: Length distribution of questions in the DSP dataset.

analysis of experiment results will be presented in Chapter 4 to facilitate its comparison

with the algorithm that will be presented in that chapter.

3.1 Single course dataset for evaluation

The corpus of 150 digital signal processing (DSP) questions underlaying this work

aggregates questions published in well-known textbooks [106–108], obtained from online

question banks and generated by an instructor of an undergraduate DSP course. The pool

of course questions are extracted from a repository of assignment, homework, quiz and

exam questions presented to students. All these questions prompt students for a range

of answer types, i.e., open-ended, multiple-choice, short-structured and essay. The mean

length of the questions was 16.2 words (standard deviation (SD) = 8.01). The frequency

distribution of question length in terms of number of words is shown in Figure 3.1.

When looking at every question presented to students over a semester, the subject

matter expert identified the number of questions corresponding to Knowledge, Applica-

tion, and Transfer as shown in Table 3.1. Just by labeling the course questions, the
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Table 3.1: Frequency of questions aligned to cognitive complexities

Cognitive complexity Frequency (number of questions)
Knowledge 62
Application 131

Transfer 23

subject matter expert realized how misaligned the course’s learning outcomes were with

its assessment practices. A significant emphasis on Application questions was expected,

but the absence of Transfer questions was surprising. Of those 23 Transfer items, most

were presented during the final exam. One of the stated learning outcomes of the course

was to prepare students to flexibly transfer course content to novel problems and new

situations. However, waiting until the final exam to present students with such op-

portunities denied them actionable feedback during the semester. In response to the

pre-processing labeling efforts, the subject matter expert then added 42 new Transfer

questions throughout the course for the next semester.

Feature extraction procedures were implemented for all 150 questions. 105 questions

(70%) were randomly selected to train the machine learning algorithms while the remain-

ing were used to test the model. Questions used for testing the model is a fixed set that

has been held out once due to the small size of the entire dataset. This practice will be

followed in the experiments of the remaining Chapters 4, 5, and 6. A subject matter

expert manually labeled all of the training questions. To obtain a ground truth when

evaluating the classification performance of the testing set, the same instructor manu-

ally labeled the test set. Although the questions covered a range of DSP topics such as

discrete-time signals and z-transform, the labeling was done solely based on the learning

outcome the instructor intended to measure with each question without any analysis of

the content.

3.2 Design of customized taxonomy

To comply with the Accreditation Board for Engineering and Technology’s (ABET)

accreditation criteria and prepare students for the workforce, all engineering programs
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Figure 3.2: Overview of categories for question classification.

must ensure students complete courses that collectively develop eleven categories of learn-

ing outcomes [109]. To facilitate students in achieving these outcomes by the end of a

program, courses implement learning activities that rely on remembering concepts, ap-

plying existing knowledge to tackle problems, and generating viable solutions to real-life

scenarios [110]. As a required course in many electrical engineering programs, the design

of DSP courses is crucial for achieving compliance with ABET’s educational standards.

The best practices of outcome-based teaching and learning suggest that course designs

should identify the learning outcomes and the assessments that measure those learning

outcomes before designing the course’s learning activities [105]. For DSP courses, learning

activities can include building circuits [111], Matlab programming [112] and laboratory

experiments [113] which can be implemented to fulfill a set of learning outcomes. For

a host of historical, structural, and policy reasons, the design of DSP courses often de-

viates from the best practices. Many courses were originally designed decades ago and

incrementally updated with new content and assessment items. This slow evolution often

translates to the measurement of student outcomes being grafted onto a course that was

originally designed for its coverage of content [114].

Integrating Bloom’s Taxonomy into ABET’s accreditation criteria creates a space that

maps the assessment items to the learning outcomes. To this end, this thesis focuses on

the space that deals with knowledge facts (K), applying a learned concept (A), and
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transferring the learnt concept to another domain (T ) as seen in Figure 3.2. Hence,

a customized version of Bloom’s Revised Taxonomy has been developed in this work

to stratify the content related outcomes. The taxonomy starts with the recollection

of information at the lowest level, ascends to the application of knowledge, and peaks

with creative outcomes [115]. The reduction to Bloom’s Revised Taxonomy reflects the

philosophy of the DSP course instructor who viewed the different levels of reasoning

about course content as pertaining to knowledge, application and transfer. These three

categories form the basis of the subsequent analysis and are consistent with ABET’s

engineering education accreditation criteria. The Biggs’ structure [116] maps the Bloom’s

Taxonomy for formative assessments to the final grades of the summative assessment.

Figure 3.2 provides an overview of the customized design of learning outcomes along with

sample questions under each category. AQC is performed according to these categories,

independent of the actual content or subject matter.

In particular, K-type questions, in general, require students to recall DSP facts, e.g.,

“How does FFT differ from DFT?” However, A-type questions require students to apply

their DSP knowledge to solve a closely related problem, e.g., “Determine the step re-

sponse of an LTI discrete-time system characterized by the following impulse response.”

On the other hand, T -type questions require students to transfer their understanding of

DSP principles to analyze, evaluate, and generate real-life situations not in the learning

materials, e.g., “Why is DSP a natural choice for processing voice information in a digital

radio telephony system?” At this juncture, there is a need for an algorithm to automati-

cally label formative assessment questions so that the right set of practice opportunities

can be provided throughout the course and prepare them for the final summative as-

sessment. Indeed, there will be a negative impact resulting from the misalignment of

formative assessment questions since this can undermine both student motivation and

learning [117]. Therefore, there is a need to prevent such misalignment by minimizing

misclassifications of formative assessment questions into the various learning outcome

categories.
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3.3 Question pre-processing

Given a question, conventional pre-processing includes the removal of symbols, di-

agrams, equations, numbers, and punctuation marks. All characters are set to lower

case [118]. While document classification and domain-specific AQC require the removal

of stop-words, it has been shown that these words, along with their various forms, pos-

sess crucial information pertaining to a sentence’s structure [119] that are useful for

domain-agnostic AQC [12, 120]. Therefore, conventional stop-word removal, stemming,

and lemmatization are not performed. The pre-processed question consisting of Nw words

is then defined as

q̃ = {w1, w2, . . . , wNw}, (3.1)

where wi denotes the ith word.

3.4 The proposed s.TF-IDF algorithm

To address the limitation of the large feature space in the conventional TF-IDF BoW

method, the proposed sorted TF-IDF (s.TF-IDF) algorithm aims to determine a suitable

feature space that is being fed into the machine learning techniques by simulating the

grouping of words into clusters. Figure 3.3(a) depicts the conventional TF-IDF weights

per question in the order of the vocabulary. For illustrative purpose, only a few values

have been plotted instead of all NV values, where NV denotes the word vocabulary size.

Alternatively, the feature space could be viewed in terms of the distribution of the nature

of the words which is reflected by the TF-IDF scores. A high TF-IDF score indicates

that the word belongs to one or few questions and occurs many times within those

few questions, implying uniqueness. Conversely, a low TF-IDF score indicates that the

word is significantly common among the corpus of questions. Hence, there are several

alternatives in re-arranging and interpreting the TF-IDF weights in each question.

Since a zero weighted word implies no significance of that word in a question, the

importance lies in the non-zero weighted words. By ignoring all the zero weighted words,

one option is to consider the remaining words according to the order of how they appear
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Figure 3.3: Illustration of (a) TF-IDF, (b) s.TF-IDF, and (c) the limitation of s.TF-IDF.

in each question. An alternative option is to consider the remaining words according

to the BoW order. The vector length for each question can be based on the question

with the largest non-zero vector length by padding zeros if the question length is lesser

than the longest question. Alternatively, if there is a need to reduce the dimension of

the vector to a fixed smaller size, the concept of max pooling or average pooling can be

applied [121]. This can be achieved by gathering the non-zero terms for each question

using either the question word order or the BoW order and computing the maximum

value or average value for every group of words, which will be considered as a feature.

However, both these methods yield a much lower classification performance than the

conventional BoW method. In addition, this random order does not indicate a uniform

way of comparison across the various questions which have different order of words, as

well as, different presence of words according to the vocabulary listing.
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Figure 3.4: Heatmap of sorted TF-IDF weights (above) and Top 10 TF-IDF weights
zoomed in (below).

To reflect the changes from highly unique to most common type of words in each

question, the proposed s.TF-IDF sorts the non-zero weights of each question in ascend-

ing order which indicates the increasing degree of the concentration of word weights.

Figure 3.3(b) depicts the sorted TF-IDF weights per question. The data points that

have been plotted can be visualized in terms of a triangle with increasing level of unique-

ness of words in each question. The top portion of Figure 3.4 illustrates the sorted weights

in each question through the heat map with increasing colour gradient. For analysis, an

arbitrarily selected top 10 weights have been chosen as the average number of significant

non-zero weights in each question. The bottom portion of Figure 3.4 depicts the heat

map for the top 10 weights in each question. The column in the extreme right represents
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Algorithm 1: Formulation of s.TF-IDF

Input: Matrix B of TF-IDF values
Output: Sorted TF-IDF matrix A with top 10 weights
for i ∈ NQ do

Sorted B ← a
(i)
1 < a

(i)
2 < . . . < a

(i)
n using (3.2)

a(i) ← [a
(i)
1 , . . . , a

(i)
n ], n = 1, . . . , 10

end

the highest weight for each question corresponding to the feature of high uniqueness of

terms such that with decreasing (sorted) word index, each feature indicates decreasing

degree of uniqueness or increasing degree of commonality of terms. Compared to TF-

IDF, the feature space has been transformed from the nature of words according to the

BoW representation to the distribution of the nature of words.

Algorithm 1 outlines the formulation of s.TF-IDF for AQC. The heatmap in the

bottom panel of Figure 3.4 is represented by an m × n sorted matrix A where m =

1, . . . , 150 denotes the question index since there are 150 questions while n = 1, . . . , 10

denotes the word index since the top 10 weights are taken compared to the entire set of

vocabulary (NV ) as depicted in Figure 3.4. Defining a(i) = [a
(i)
1 , . . . , a

(i)
n ] as the ith row

in A, the sorted values require the condition

a
(i)
1 < a

(i)
2 < . . . < a(i)

n . (3.2)

On the other hand, if a heatmap is plotted for the conventional TF-IDF, it can be

represented by an m × r matrix B where r = 1, . . . , NV denotes the word index for the

whole vocabulary of unique words in the corpus since the BoW representation is being

adopted. The DSP dataset consists of a total of 546 unique words, hence NV = 546. In

comparison with matrix A in which each element a could correspond to any particular

word, for any row in B, the individual elements b contain values based on a fixed set of

column names. For instance, considering the ith row in B as b(i) = [b
(i)
1 , . . . , b

(i)
r ] and

the jth row in B as b(j) = [b
(j)
1 , . . . , b

(j)
r ], both b

(i)
1 and b

(j)
1 refer to the TF-IDF weight

assigned to the same word in two different questions. Performance of the proposed s.TF-

IDF algorithm will be presented in Chapter 4 for comparison with that of topic modeling
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Table 3.2: Comparing s.TF-IDF with TF-IDF

Method K A T Macro-average
ELM SVM ELM SVM ELM SVM ELM SVM

TF-IDF 0.421 0.400 0.537 0.364 0.200 0.250 0.386 0.338
s.TF-IDF 0.857 0.800 0.513 0.596 0.333 0.174 0.583 0.585

approaches in that chapter.

One of the limitations of this proposed approach is that although the feature space

is equivalent in terms of comparing the gradient reduction from unique to common, the

actual gradient being reflected across various questions is not equivalent. Figure 3.3(c)

shows the various top 10 TF-IDF weights that can be present in three questions, which

are represented by the three triangles in dotted, dashed, and solid lines. For instance, the

most unique TF-IDF weight in one question can be as high as 0.9 while another question

only achieves 0.4. This particular 0.4 weight may represent a common word in the former

question. The ambiguity is due to same words having different weights; such discrepancy

exists since each question has its own scale of uniqueness or commonality of words that

appear in it. Although s.TF-IDF considers the distribution of the nature of words as the

feature space, it fails to consider the actual words that belong to each feature.

3.5 Results and discussion

The effectiveness of s.TF-IDF is compared against TF-IDF for the DSP dataset. Ta-

ble 3.2 shows the F1 scores (individually for each class label, as well as macro-average)

for the above methods. It can be seen that the choice of the top set of weights achieves

better classification performance due to the filtering of important words.

The desired expectation is that s.TF-IDF should simulate a grouping of words such

that each grouping has a weight pertaining to a fixed set of words. However, this is not

achieved as the groupings are not uniquely defined across all the questions. As will be

seen in Chapter 4, while s.TF-IDF achieves a higher classification performance compared

to TF-IDF through the alteration of the feature space and consequently the reduction

of vector dimension, the distribution of weights still does not guarantee that a question
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uniquely belongs to either class label K, A, or T .

3.6 Chapter summary

The s.TF-IDF algorithm has been proposed to determine a feature space that is more

suitable than TF-IDF weighting. This is achieved by sorting the weights in ascending

order according to the spread of the nature of words. By selecting the top 10 weights, this

in turn reduces the dimension of the vector. While the proposed s.TF-IDF outperforms

that of TF-IDF, the concentration of the nature of words is unrelated to the actual words

themselves. To achieve a uniform comparison across the questions by creating clusters

of words that are similar, topic modeling will be explored in the next chapter.
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The Customized Question WNTM

Considering Word Co-occurrence

Redundancy in Topic Modeling

To deliver on the potential of outcome-based teaching and learning for engineering

education, it is important for engineering courses to provide students with various types

of deliberate practice opportunities that are aligned with the program’s learning out-

comes. Working from these requirements, the design and measurement intentionality of

a DSP course has been increased. To align the course’s learning outcomes more construc-

tively with its assessment measures, the process of classifying DSP questions has been

automated by introducing a model that integrates topic modeling and machine learning.

In this chapter, the effect of pre-processing procedures in terms of stop-word selection

and word co-occurrence redundancy issue in question classification inferences has been

explored. A customized variant of the word network topic model (WNTM), which is

able to use its pre-classified DSP questions to reliably classify new questions according to

the course’s learning outcomes has been proposed. This chapter describes the technicali-

ties of the proposed q-WNTM algorithm that considers word co-occurrence redundancy.

Part of this chapter has been published as S. Supraja, S. Tatinati, K. Hartman, and Andy W. H.
Khong, “Automatically linking digital signal processing assessment questions to key engineering learning
outcomes,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), 2018, pp. 6996–7000.
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The experiment results of q-WNTM along with s.TF-IDF described in Chapter 3 will be

presented. The same DSP dataset has been used in both chapters.

4.1 Problem formulation for AQC with topic mod-

eling

Classification of the pre-processed question q̃ (defined in (3.1)) via topic model-

ing can be achieved by first generating a feature vector of topic probabilities q =

{P (z1), P (z2), . . . , P (zNZ )}, where P (zj) and NZ are the probability of the jth topic

zj and the total number of topics, respectively. Defining NL as the total number of class

labels, AQC is formulated as estimating the relationship between q and each class label

yc such that the predicted class label for that question is given by

ŷ = argmax
c∈{1,2,...,NL}

P (yc|q). (4.1)

The probability P (yc|q) is estimated based on the ten-fold cross-validation performed

by the machine learning algorithm during the training process. The argmax operation

is applied to compare among the class labels and select the class label that appears

as the prediction for the maximum number of validation runs. Achieving good AQC

performance, therefore, relies on the computation of suitable P (zj) for the construction

of q.

4.2 Customized stop-word selection

AQC is a unique domain of interest in comparison to conventional document or short-

text classification applications due to the unique structure of questions, thus necessitating

a careful selection of words to represent a question. Common practice of pre-processing

in text classification requires the sieving of content-based words to convey an explicit

meaning (i.e., movie genre, news articles topic, subject or type of questions, e.g., loca-

tion/numerical), in turn, removing stop-words [32, 122]. However, stop-words could be
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Figure 4.1: Comparison of conventional versus customized stop-word removal.

vital to maintain the intended meaning of a question. From a linguistics perspective of

analyzing question structures, the main verbal cues in a question are question words (i.e.,

why, what, when, where, which, who, how) and with verbs (e.g., explain, describe, state)

that differentiate among question types such as probing, rhetorical, leading/reflective,

true/false or those that express different levels of cognitive complexities [123,124]. There-

fore, a question is best represented by various types of word feature set combinations such

as an action verb followed by an object, content, or subject and which concludes with

a context [125]. Alternatively, the presence of a question word either as the headword

(start of a question) or as part of a question that is identified through a parse tree could

characterize a typical question [126–128] and detects the type, as well as, focus of a

question [129].

Topic models have been used to classify general short texts by sieving out the con-

tent words in a document. However, these topic models cannot be directly applied to

question classification with respect to stop-word removal. In conventional document

classification, stop-words include question words, prepositions, articles, conjunctions and

action verbs [130, 131], which are generally defined as high-frequency words that do not

contribute to a document’s subject matter. However, when performing question clas-

sification according to learning outcomes, commonly identified stop-words become key

to determining the proper category. There is a need to reduce the list of stop-words

for removal to only those words which functionally do not contribute to classifying the

questions [132,133].

The dataset described in Section 3.1 is used for analysis after basic data cleaning

49



Chapter 4: The Customized Question WNTM Considering Word
Co-occurrence Redundancy in Topic Modeling

is performed. To preserve the essence of a question, a pre-defined stop-word list was

generated. For this particular dataset, only four words the, and, a, and an were removed

from the corpus. The rationale behind the specific choice of these words is that these

words do not affect the ability to decipher the label of the question. To elaborate on the

impact of the specific choice of stop-words in an illustrative example of a question “what

does the frequency response of a system comprise of”, the phrase what does serves as a

signifier of its class label Knowledge (K) as seen in Figure 4.1. The words in red refer to

the key terms to define the class label of this question. Assuming that the conventional

stop-word removal [130] is being applied, the question will appear as “frequency response

system”, resulting in the difficulty of identifying its class label. Conversely, the specific

choice of stop-word removal transforms the question into “what does frequency response

of system comprise of” which does not limit the ability of the algorithm to categorize it

as a K-type question.

4.3 The proposed q-WNTM algorithm

There is a need to differentiate between the objective of AQC according to domain-

agnostic learning outcome categories versus conventional document classification accord-

ing to the subject matter. Hence, by applying WNTM, it includes a combination of all

word types without considering any possible redundancy of certain word combinations.

In this work, inspired by the pseudo-corpus scaling down procedure into topical and gen-

eral words [58], two different word types have been identified. One type can be defined as

content-agnostic words which refer to general words such as verbs and conjunctions (e.g.,

what, explain, how, and state). The second type can be defined as content words. In the

context of the DSP dataset in Section 3.1, these words include filter, DTFT, Fourier, and

signal.

With the above example, it becomes possible to identify the label of a question based

on the combinations of content words and content-agnostic words. Using examples of

pairs of content-agnostic words, the phrase explain what signifies a lower level of thinking

compared to the phrase explain why which requires a detailed explanation. With respect
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Algorithm 2: Formulation of q-WNTM

Input: Set of unique words U in a question
Output: Pseudo-question P ignoring content-content word combinations
for wi ∈ U do

U\{L}
P\{X} if wi ∈ X
P if wi ∈ C

end

to combinations of content-agnostic and content words, the phrase find DTFT requires a

straightforward computation while prove DTFT requires, in general, a more complicated

derivation. However, when comparing the phrases phase response and magnitude response

which both consist of content word combinations, there is less significance in observing

the co-occurrence of content words when determining the level of thinking expressed by

a question. Hence, there is a possible redundancy of content word combinations which

could potentially affect the model’s classification performance.

Generally, the top set of words in a topic are the words that are informative of that

topic and uniquely associated with that topic. The inclusion of content-content word

combinations implies that the presence of the groups of content words could constitute a

topic without the need for relationships among content-agnostic words. Removing these

content word combinations will dampen the dominating nature of the content words un-

der each topic. The proposed q-WNTM model is built upon the framework of WNTM

with the difference being the pre-processing procedure of removing word redundancy

specifically in the context of question classification during the implementation. To rep-

resent the q-WNTM procedure via a set-theory notation, suppose the set C refers to the

content-agnostic words and the set X refers to the content words. If a word wi ∈ X, in

the corresponding pseudo-question P (refer to Figure 2.4(right) for examples of pseudo-

questions), these content words are excluded which can be denoted by P\{X}. No

changes are made if wi ∈ C.
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Figure 4.2: Procedure of q-WNTM for question feature extraction.

Figure 4.3: Construction of word network diagram in q-WNTM.

4.3.1 Implementation of q-WNTM

Figure 4.2 summarizes the procedure of q-WNTM for question feature extraction. A

separate list of content-agnostic words was constructed for the dataset. The corpus’s

remaining words are considered as content words. With this procedure, there were a

total of 109 unique content-agnostic words and 437 unique content words in the dataset.

Since q-WNTM complies with the similar procedure of WNTM, the word co-occurrence

network diagram as shown in Figure 2.4 (left) is first constructed. After generating

the weighted word co-occurrence network diagram, pseudo-questions for every unique

word present in the corpus are formulated. Unlike the conventional WNTM algorithm,
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for every content word present in the corpus, the other co-occurring content words in

the corresponding pseudo-questions are removed. This removal ensures that there will

only be combinations of content-agnostic with content-agnostic words, content-agnostic

with content words and content with content-agnostic words. This procedure is outlined

in Algorithm 2. Subsequently, similar to (2.7), LDA is applied to generate the topic

probabilities for each word in the pseudo-question, which are then summed up for the

dependent word to then obtain the topic probability vector for the original question.

To highlight this procedure, and with reference to exampler questions in Figure 4.3,

words in boldface (i.e., prove and describe) denote the pre-defined set of content-agnostic

words while the remaining are content words. With respect to the words in the pseudo-

questions corresponding to each content word, it can be observed that the content words

have been removed (reflected by the struck out words). By implementing q-WNTM, the

topics are now more coherent with respect to the grouping of words. This refers to the

clear cut distinction between the grouping of content and content-agnostic words. The

top words from each topic now consist of either content-agnostic or content words. On

the other hand, LDA and WNTM generated topics which were made up of a mixture

of both types of words resulting in poor classification performance as will be shown in

Section 4.4.3. As an illustrative example, ten topics were extracted for all the topic

models, and the top 10 words were observed to gain insights on the grouping of words

under each topic. Table 4.1 highlights the top 10 words in each topic for q-WNTM, with

zj referring to the jth topic. Topics 6, 9 and 10 consist purely of content words while the

remaining seven topics consist of content-agnostic words. Subsequent machine learning

algorithms would then interpret the range of probabilities assigned to the various topics

to perform the question classification according to the three categories. The removal

of content-content word combinations in the word network diagram results in mutually

exclusive topics. Hence, it facilitates the model in emphasizing Topics 1-5 and 7-8 and

allocate the topic probabilities respectively.
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Figure 4.4: Process flow of AQC comparing frequency-based versus topic models for
feature extraction passed onto ELM or SVM machine learning classifiers.

4.4 Experiment results and discussion

Figure 4.4 illustrates the process flow of AQC comparing frequency-based versus topic

models for feature extraction passed onto ELM or SVM machine learning classifiers.

4.4.1 Performance metric

To evaluate the reliability of classifiers with the subject matter expert’s labels, the F1

measure is being used [134,135]. The F1 measure defined by

F1 =
2PR
P +R

(4.2)

is a harmonic mean of two other metrics: precision and recall. Defining TP , FP , FN

as true positive, false positive, and false negative, precision P refers to the correctness of

questions that have been selected as a particular category and can be expressed as

P =
TP

TP + FP
, (4.3)

while recall R refers to the correctness of selection of the correct category given all the

questions that were supposed to be correctly classified and is given as

R =
TP

TP + FN
. (4.4)
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Since the minimization of the number of false positives and false negatives was important

for accurately assigning questions to the correct labels, the F1 measure is used as the

basis for the algorithm comparisons.

4.4.2 Hyperparameter selection

The hyperparameters that require optimal initialization for topic models include the

number of topics, prior for questions/pseudo-questions to topic probabilities α, and prior

for topic to word probabilities β. An empirically determined α = 0.1 and β = 0.01 were

selected as the optimal hyperparameters for this dataset. The number of Gibbs sampling

iterations was confined to 2000. The choice of 10 topics is based on an evaluation on

the number of topics with a step size of five ranging from 5 to 20. The classification

performance was found to be lower with fewer number of topics since most of the words

are being clustered together, preventing better segregation. However, having an excessive

number of topics results in a sparse matrix as the topics are loosely distributed, resulting

in poor classification performance. For this dataset, 10 was chosen as the optimal number

of topics for all topic models.

70% of the questions were randomly selected to train ELM. The remaining 30% were

used to test the model. A 10-fold cross validation was performed on the training dataset

to initialize ELM optimally. A grid search was performed to determine the parameters

in ELM and SVM. It was determined that 27 hidden nodes and the sigmoid activation

function achieves the best performance for ELM. For SVM, the parameters that achieved

the best results corresponded to the sigmoid kernel with a coefficient value of 0.1 and

regularization value C = 1 according to (2.10).
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Table 4.1: Top 10 words for each of the 10 topics in q-WNTM.

z1 z2 z3 z4 z5 z6 z7 z8 z9 z10

is of to of of magnitude of in system signal
of in of is in filter how you output frequency

what can is by for applications be with input sampling
if by would given your response to his response domain

which your what consider how frequencies describe of impulse transform
following to in find you real used one time fourier

this out if for may useful can using signal analog
find be be where explain application is your sequence discrete
as will by to is dft in that ztransform image

when using do in one features discuss about equation audio

Table 4.2: Comparison of F1 scores for the four methods using both ELM and SVM.

Method K A T Macro-average s.d.
ELM SVM ELM SVM ELM SVM ELM SVM ELM SVM

s.TF-IDF 0.857 0.800 0.513 0.596 0.333 0.174 0.583 0.585 0.218 0.261
LDA 0.444 0.381 0.941 0.733 0.737 0.718 0.707 0.618 0.204 0.163

WNTM 0.545 0.353 0.800 0.882 0.848 0.821 0.744 0.686 0.133 0.236
q-WNTM 0.700 0.609 0.903 0.909 0.923 0.765 0.848 0.775 0.101 0.123
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Table 4.3: p-values after performing a two-tailed t-test for comparison of topic modeling
methods against s.TF-IDF

LDA WNTM q-WNTM
0.0277* 0.0277* 0.000426**

* significant at p < 0.05 and ** significant at p < 0.01

4.4.3 Results and discussions

The F1 scores are compared to evaluate the performance of question classification using

various combinations of feature extraction (LDA, s.TF-IDF (described in Chapter 3),

WNTM and q-WNTM) and machine learning classifiers (ELM and SVM). Given a model,

an individual F1 score for each class label is computed. As described in Chapter 3, these

class labels include Knowledge K, Application A, and Transfer T . The macro-average

F1 score aggregates the mean of the model’s precision and recall values across these

class labels and thereafter computes the harmonic mean between them. Table 4.2 shows

the F1 measure values (for each individual class label and macro-average) pertaining to

the test set for the four combinations with “s.d.” denoting the standard deviation. The

standard deviation is computed among the three individual F1 scores (pertaining to the

three-class labels) for each method using either ELM or SVM.

The aim of computing F1 scores is to differentiate the extent to which each model

falsely identifies the true category of a question, thereby hindering the appropriate cog-

nitive level of practice opportunity provided to a student. To provide an example of the

impact of misclassification, assuming that an actual A or T -type question is misclassified

as K-type, this misestimates a course’s prioritization of memorization. The converse im-

plies that students who merely memorized material demonstrated more outcomes than

they should have.

Since ELM has shown to outperform SVM for classification in several applications [136],

Figure 4.5 illustrates the confusion matrices only for ELM in a grid format with a colour

gradient. The actual versus predicted numbers of questions under each category can

be seen for the four methods. The TP is reflected via the diagonal elements in each
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Figure 4.5: Confusion matrices for the four methods using ELM.

confusion matrix. The cells in red indicate good classification if they are present in the

diagonal, while the color blue in the diagonal indicates a high rate of misclassification for

that class label. It can be seen that q-WNTM, WNTM, LDA, and s.TF-IDF correctly

classify 39, 34, 34, and 24 questions out of the total 45 test set questions. In addition,

q-WNTM achieves the lowest rate of misclassification as seen via the lowest FP and FN

for each class label by summing up the remaining values apart from the diagonal. The

cells in red indicate poor classification if they are present as the non-diagonal elements

with blue indicating otherwise.

To further evaluate the statistically significant differences, Table 4.3 shows the p-

values after performing a two-tailed t-test to compare topic modeling methods against

s.TF-IDF. It can be seen that all topic modeling methods achieve statistically significant

improvement over s.TF-IDF. In particular, the p-value comparing s.TF-IDF with q-

WNTM is significant at p < 0.01, indicating the effectiveness of q-WNTM.
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Figure 4.6: Scatter plot for the s.TF-IDF approach.

With respect to the four techniques, results shown in Table 4.2 suggest that the pro-

posed q-WNTM model links assessment questions to learning outcomes more accurately

than the alternative models. The proposed s.TF-IDF model achieves the lowest macro-

average F1 score of 0.583 using ELM and 0.585 using SVM as shown in Table 4.2. To

gain insights into s.TF-IDF, Figure 4.6 depicts the data points corresponding to each

question. The red, blue, and green dots refer to A-type, K-type, and T -type questions,

respectively. For illustration purposes, the 10-dimensional vector described in Chapter 3

is reduced to a three-dimensional space by taking the average of three or four columns

of word weights using the average pooling method. The vector of weights ranges from

low (corresponding to common words) to high (corresponding to unique words) for each

question. The three axes in Figure 4.6 refer, respectively, to the top few weights in each

question (high concentration words), followed by the next few weights (moderate con-

centration) and the bottom few weights (low concentration). From Figure 4.6, it can be

seen that since the groupings of words in the feature space are not defined clearly by

the s.TF-IDF approach, the three labels cannot be sufficiently discriminated by ELM or

SVM. Although all the questions are represented in an increasing degree of uniqueness,
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the features are only in place for the distribution of the nature of words without taking

into account that different sets of words could belong to each distribution. This implies

that the comparison of word distribution is not performed in the same manner for each

question due to the ambiguity of how each question interprets the uniqueness versus

commonality of words.

In addition, it can be observed that the K-type questions exhibit better segregation

compared to A or T . This correlates with a high individual F1 score for K-type (given

by the F1 score of 0.857 using ELM and 0.800 using SVM in Table 4.2) but low F1 values

(given by the F1 score of 0.513 and 0.333 using ELM and 0.596 and 0.174 using SVM

in Table 4.2) for A and T types respectively which are misinterpreted. One possible

reason for the above is that since K-type questions are exceptionally short, this results

in several zeros in the vector of the top 10 weights for these questions. Hence, in line

with the previous explanation regarding sparsity for the BoW approach, most of the

K-type questions consist of the same sparsity trend and thus are easily discriminated

against A and T . In addition, the term frequency ratio of each word according to (2.1)

in a K-type question is generally higher as the denominator (length of the question) is

smaller. Hence, there is a similar pattern of the degree of uniqueness and commonality

of words reflected in almost all the K-type questions.

It can also be noted that higher performance in terms of macro-average F1 is achieved

by LDA (given the macro-average F1 score of 0.707 using ELM and 0.618 using SVM in

Table 4.2) compared to s.TF-IDF (given the macro-average F1 score of 0.583 using ELM

and 0.585 using SVM in Table 4.2). However, in terms of class-level individual F1 score,

LDA achieves the lowest F1 score of 0.444 using ELM and 0.381 using SVM for K-type

questions as seen in Table 4.2. LDA classifies the other two categories of question types

more accurately with F1 scores of 0.941 and 0.737 using ELM and 0.733 and 0.718 using

SVM as shown in Table 4.2 for A and T types respectively. This modest improvement

of LDA over s.TF-IDF underscores the limitations of using LDA for short texts. From

the scatter plot in Figure 4.7, it can be seen that A and T types are significantly more

segregated while K-type questions are scattered across the feature space. To construct

this diagram for illustration purposes, the ten-dimensional topic vectors per question is

reduced to a three-dimensional space. Hence, instead of representing each question as a
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vector of ten topics, each question is represented as a vector of three topics instead.

The reason for the inability of K-type question being clearly distinguished is due to

the short questions lacking question-to-word co-occurrences to a greater extent compared

to A and T question types which are longer. Nevertheless, compared to long documents

for which LDA was developed, all questions are considered as short text. With reference

to the top words under each topic generated by LDA, each topic contains a mixture of

both content and content-agnostic words, especially when content words such as fourier,

system and signal dominate as the top few words. Due to overlapping topics occurring

in LDA, LDA is unable to segregate the words and form clearly defined topics with a

common meaning/interpretation reflected by each topic.

The inability of LDA to perform well for questions and the improvement in classifi-

cation performance by applying WNTM can be seen in Table 4.2. WNTM as a feature

extractor achieves a higher macro-average F1 score of 0.744 with ELM and 0.686 with

SVM classifier compared to the macro-average F1 score for LDA (0.707 using ELM and

0.618 using SVM), suggesting the importance of using features derived from word level

co-occurrences when modeling topics associated with short texts. Figure 4.8 depicts the

scatter plot for WNTM with reduced number of topics, in a similar manner to that for

LDA in Figure 4.7. Better segregation of data points are exhibited for WNTM compared

to LDA. In LDA, since the rare words are being ignored, the words in each topic are

the reflection of the commonly occurring words. Many questions have significantly high,

i.e., close to 0.95 probability given to one topic and the remaining topics are assigned

probabilities that are close to zero, increasing the sparsity within the 10-dimensional vec-

tor. This implies that each question is made up of only one or two topics, defeating the

purpose of establishing that a question consists of a mixture of topics. LDA is unable to

capture this mixture as it does not take the rare words into account.

In comparison, for WNTM, rare words are presented in the pseudo-questions whenever

a co-occurring word is seen, implying a greater emphasis on the rare words when applying

WNTM. It is not possible to directly co-relate the words present in each topic to the actual

questions as WNTM calculates the topic probabilities per question based on the inference

from the pseudo-questions. However, it is possible to note that rare words appear much
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Figure 4.7: Scatter plot for the LDA approach.

more prominently than in LDA. Words such as advantage and useful have low frequency

of occurrence in the corpus of questions but are visible in the top word listing of WNTM

unlike in LDA. Hence, by observing the topic probabilities per question, they are more

widely distributed as each question now covers more topics due to the coverage of rare

words. Nevertheless, to further avoid overlaps in the data points as reflected in Figure 4.8,

there is a need to clearly separate the grouping of words.

The solution to this lies in the approach to eliminate redundant word co-occurrences.

With reference to results shown for q-WNTM in Table 4.2, the impact of excluding

co-occurring content words achieves a high macro-average F1 score of 0.848 and a low

standard deviation of 0.101 by using the ELM classifier and 0.775 macro-average F1 score

with the low standard deviation of 0.123 by using the SVM classifier. q-WNTM promotes

the prevalence of content words to be represented by the surrounding content-agnostic

words only and prevents the presence of other content words. With this approach, it is

possible to segregate content words into three topics and the remaining content-agnostic

words into seven topics as seen in Table 4.1. For instance, to interpret how the top words

in each topic could be linked to the original questions, an example of a particular topic
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Figure 4.8: Scatter plot for the WNTM approach.

(Topic 7) which consists of top words such as describe, how, discuss, can and used is

taken. This topic can be interpreted as words related to questions that require students

to perform inferences. The general trend of questions which gain a high probability for

this topic has the structure of “describe/discuss how can be used for ”. This trend

is closely related to T -type questions.

The improvement in the results of q-WNTM over WNTM is due to the relative propor-

tion of word occurrence for a question being held as constant since words in the original

question are not deleted. However, the major difference is due to the computation of

the topic probabilities in the pseudo-question for every content word. Considering that

there are 437 content words compared to 109 content-agnostic words, if the co-occurring

content words were not excluded, topic probabilities in the pseudo-question for each of

the 437 content words would be skewed towards the mixture of majority of content words,

resulting in a content-based representation instead of representing each question by the

words related to the learning outcome it exhibits. However, in q-WNTM, topics which

contain only the content words are assigned low probabilities since for a content word,

higher probability is allocated towards the surrounding content-agnostic words. Hence,
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Figure 4.9: Scatter plot for the q-WNTM approach.

the importance for combinations related to solely content words are diminished. As seen

in the confusion matrix of q-WNTM in Figure 4.5, almost all questions in the test dataset

are correctly classified (diagonal values). Results obtained with q-WNTM highlight that

for this dataset, the proposed stop-words list and the consideration of word combination

redundancy is necessary for enhancing the question classification performance. Figure 4.9

illustrates the scatter plot for q-WNTM. Since there is an enhanced segregation of words,

significant words that identify the categories are mentioned beside each label. However,

unlike how LDA and WNTM were plotted based on three topics and since q-WNTM is

able to filter out the content words, the three topics containing only content words were

not taken into consideration for the plotting. The remaining seven topics were taken and

average values for every two or three topics were taken for plotting purpose; only the

columns with content-agnostic words contain significant probabilities.

4.5 Chapter summary

A different set of stop-word selection for removal has been proposed for question clas-

sification. The proposed q-WNTM algorithm incorporates the impact of irrelevant word
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combinations. Although content-agnostic words contribute largely to a question’s class

label in the context of domain-agnostic AQC, the content words cannot be completely

removed as they establish the relationships between content and content-agnostic words.

However, since question classification is not based on the subject matter (i.e., pertaining

to domain-specific class labels), content-content word combinations have been removed

to reduce ambiguity of topics.

The F1 scores have been compared for all four methods of feature extraction along

with ELM and SVM classifiers. As one method improves over the other to generate mean-

ingful features to represent the questions, the corresponding improvement of classification

results can be observed from s.TF-IDF to LDA to WNTM and finally to q-WNTM. The

purpose of plotting scatter plots is to provide a form of visualization of how each question

can be represented by a data point in the respective feature spaces for each method. The

clustering of data points using the same colour denotes the segregation of the various

classes performed through the feature extraction procedures. Subsequently, when ELM

or SVM classifies the questions into the various class labels, the features extracted by

q-WNTM achieve the best performance.

The main limitation of q-WNTM is that it is dataset-specific such that the list of

content-agnostic words requires manual effort of hand-curation based on observation of

each question. Chapter 5 introduces a generalized topic model that is not only appli-

cable for a single dataset (i.e., DSP dataset) or a single type of class labels (i.e., cog-

nitive complexities), but instead performs well for several datasets with different types

of domain-agnostic class labels. While the algorithm in Chapter 5 has been verified for

K,A, T class labels, formulation of the algorithm has not been confined to within such

class labels.
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Chapter 5

Regularized Phrase-based Topic

Model for Domain-Agnostic

Question Classification

This chapter describes the use of phrases that is more effective than using words

to represent questions. The proposed phrase-based topic modeling technique employs

asymmetric priors that are scaled with a new C-value for nested regular expressions.

The original C-value for nested phrases identifies the relevancy of phrases by computing

a value for each phrase according to whether it is a nested phrase (i.e., sub-phrase within

a longer phrase). In addition, to suppress high-frequency words in phrases, term weights

computed using the modified distinguishing feature selector are deployed. The proposed

approach also incorporates a new topic regularization mechanism to facilitate efficient

mapping of questions to class labels. Performance of the above approach is validated

via four datasets across different domain-agnostic class labels comprising question types,

reasoning capabilities, and cognitive complexities. Results obtained highlight that the

proposed technique outperforms existing methods in terms of macro-average F1 score.

Part of this chapter has been published as S. Supraja, Andy W. H. Khong, and S. Tatinati, “Regu-
larized phrase-based topic model for automatic question classification with domain-agnostic class labels,”
IEEE/ACM Trans. Audio Speech Lang. Proc., vol. 29, pp. 3604–3616, 2021.
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5.1 Importance of phrases for domain-agnostic AQC

Notwithstanding that techniques such as WNTM, A-LDA or W-LDA rely on word-

based representations, phrases are, in general, multi-word terms with contextual infor-

mation that can achieve meaningful and coherent text representation via a constituency

structure [137–139]. In this regard, the embedding of nouns and verbs have shown to

yield good representations of grammatical phrases for question retrieval [140]. In recent

years, topical phrase mining has been proposed for document summarization and rec-

ommendation systems. Such models extract high-quality phrases from documents and

dynamically assign a topic to each phrasal word [141]. The LDA-based phrase topic model

(LPTM) [70] extends topical phrase mining by constructing a topic-regular expression

(regex) distribution akin to LDA’s topic-word distribution. Each phrase-generalizable

regex is formed by concatenating the parts-of-speech (POS) tag corresponding to each

phrasal word.

In the context of this thesis, and exploiting the domain-agnostic nature of POS tags,

LPTM may be applied for AQC to identify groups of regexes corresponding to a class

label. Utilizing regexes is vital for effective question representation as they contribute to

a question’s syntax, capture long range dependencies between function words, and are as-

sociated with the labeling taxonomy [142–145]. It is useful to note that, for the clustering

of keywords extracted from documents, LPTM utilizes regexes formed from only noun

phrases (NPs) since these NPs carry significant information about a document [146]. In

addition, placing equal emphasis on all regexes in the computation of LPTM results in

bias toward high-frequency regexes, leading to improper topic assignment.

This thesis presents the newly proposed phrase-based question-LDA (Qu-LDA) algo-

rithm that pre-extracts both NPs and verb phrases (VPs) for AQC, where the latter has

been shown to convey the intention of a question [147]. Inspired by the ability of nested

phrases to differentiate among phrase decomposition [148], the concept of nested regex

for AQC which considers subsets of regexes based on POS tag combinations has been

introduced. Besides identifying such sub-regex structure, a degree of relevance to each

regex that, in turn, defines the class label, has been assigned. This assignment is based

on corpus statistics and linguistic heuristics [68,149] and is achieved by formulating a new
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C-value that was originally developed for nested phrases, i.e., sub-phrases that appear

within other longer phrases [148]. The proposed C-value is then incorporated into LPTM

by replacing the prior for the topic-regex distribution with asymmetric values, such that

unique nested regexes appear with higher probabilities in the derived topics. Since NPs

and VPs contribute differently to the semantics of a question, a scaling parameter that

suppresses NP-based regexes taking the relative importance between NP- and VP-based

regexes into account is introduced. This parameter is designed to vary inversely with the

frequency of occurrence of each regex, thereby suppressing any abnormalities caused by

frequently-occurring short regexes.

In spite of the above relevance-based topic assignment to the regexes, determining the

importance of words to form suitable phrases (and, in turn, regexes) is not a trivial task.

Due to the presence of high-frequency words (e.g., articles such as the) in phrases and to

overcome W-LDA’s inability to encapsulate the importance of a word in relation to the

class labels, the modified distinguishing feature selector (MDFS) [50] technique has been

employed. MDFS encompasses both inter- and intra-class word distributions to compute

term weights that constitute the phrases before generalizing the NPs and VPs to regexes.

Using these term-weighted regexes, a term-weighted topic-regex distribution influenced

by the topic-word distribution (that includes label-relevant words) is constructed.

Finally, the question-topic distribution is computed from the above proposed term-

weighted topic-regex distribution scaled by the new C-value. The dependency between

topics and class labels is exploited by introducing a topic regularization mechanism.

This mechanism takes the label distribution of each word within a topic into account

when determining that topic’s label proportion. This allows the question-topic distri-

bution to consider the impact of class labels on words, in turn, affecting the POS tags

that constitute the regexes. The resultant regularized vector of topic probabilities per

question obtained with Qu-LDA are then used as features for the Gaussian process clas-

sifier (GPC) [78] to achieve AQC. Performance of AQC algorithms is evaluated via four

datasets comprising questions categorized according to various domain-agnostic class

labels. Results obtained highlighted that Qu-LDA achieves significant performance im-

provement compared to existing techniques for the above datasets.
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5.2 Nested phrase mining

Nested phrases have been used for the retrieval [141, 150] and removal of irrelevant

phrases in collocation or contextual word extraction tasks [63]. Nested phrases are defined

as sub-phrases [151] that appear within other longer phrases. The C-value is defined as

Cpk =


Npk log2Lpk , if pk is not a nested phrase;(
Npk −

∑
pk

(s) N
(s)
p

Ns

)
log2Lpk ,

if pk is a nested phrase.

(5.1)

The variable Npk denotes the number of times phrase pk occurs within a corpus, s the

set of Ns phrases that contain pk as a nested phrase, and N
(s)
p the number of times each

of the phrases in that set s occurs in the corpus. Defining
∑

pk(s)
as the summation

across all longer phrases in the set s in which pk occurs, (5.1) implies that high-frequency

nested phrases are assigned a higher C-value. This is viable given that the larger number

of longer phrases that a phrase appears as nested in, the higher is the certainty about

that phrase being a strong building block upon which other phrases depend on, thus

exhibiting independence [148].

5.3 The proposed phrase-based question-LDA (Qu-

LDA)

The proposed AQC framework with Qu-LDA is shown in Figure 5.1. Unlike design-

ing a customized set of stop-words as described in Chapter 4, no stop-words are being

removed to avoid ambiguity. After pre-processing a question to obtain q̃, regexes of both

NPs and VPs are extracted to achieve q before being used for the computation of the

regularized phrase-based topic probabilities. The obtained feature vector q is then fed to

the Gaussian process classifier (GPC) [78] for predicting a class label ŷ. Computation of

features with Qu-LDA is illustrated via the plate diagram of Qu-LDA in Figure 5.2 with

the shaded boxes and dotted arrows denoting the newly introduced elements and links,
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respectively.

To determine the phrase-based topic probabilities, Qu-LDA incorporates asymmetric

λ priors computed with the proposed C-value Crk for each regex. Computation of this

C-value is achieved via a scaling parameter ϕrk that takes both the relative importance

of regexes associated with NPs to VPs and the frequency of occurrence defined with

respect to the length of each regex Lrk into account. Since the weighting of the words

that constitute the phrases influence the importance of phrases (and, in turn, regexes),

Qu-LDA also incorporates asymmetric α priors and the MDFS term weighting per word

Ωwi . As seen in Figure 5.2, distributions Θ, η, and Φ are associated with the term-

weighted topic, term-weighted regex, and term-weighted words, respectively. Qu-LDA

finally employs a topic regularization mechanism that relies on the word-label association.

This mechanism regularizes the probability computed for each topic zj and representing

it as P (ẑj,yc) for each class label yc.

5.3.1 Extraction of NP- and VP-based regexes

Both NPs and VPs are extracted based on the POS tag syntactic structure [94]. A

predominant predicate that is selected heuristically in questions is verbs, especially if

a particular verb attains the highest level of embedding in a constructed dependency

tree [152–155]. This is due to the ability of verbs paraphrasing a question accurately as

opposed to nouns. Therefore, although the baseline identifies key phrases corresponding

to both NPs and VPs for questions, more emphasis is placed on VPs [147].
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Figure 5.1: Process flow of the proposed AQC framework with Qu-LDA.
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Figure 5.2: Plate diagram of the proposed Qu-LDA with the shaded boxes and dotted arrows denoting the newly introduced
elements and links, respectively. Asymmetric λ priors are computed with the new C-value Crk that incorporates a scaling
parameter ϕrk . To address the high frequencies of words that constitute the phrases, asymmetric α priors are used and the
term weight Ωwi for each word is computed with MDFS. The topic regularization mechanism is based on the word-label
association.
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Figure 5.3: Illustration of nested regex (e.g., VERB within AUX AUX VERB) with new C-values. Phrases in bold refer to
NPs while those in italics refer to VPs.
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The combinations and order of words belonging to different POS tags are used to

represent NPs and VPs. The unique amalgamation of a word (e.g., the) belonging to

a particular POS tag (e.g., DET, i.e., determiner) with one or more word(s) belonging

to associated POS tag(s) constitutes a phrase pk being either an NP or a VP. The POS

tags corresponding to the NPs and VPs are then clustered into generalizable regexes.

The above can be implemented by the textacy software package, where a model was pre-

trained on a randomized and stratified subset of approximately 375,000 texts extracted

from various sources that include Wikipedia, crowd-sourced sentences, and journal ar-

ticles. The character n-grams that have been extracted from the lower-cased text are

embedded into a vector of a hundred dimensions. The resulting feature vectors are then

concatenated into a single embedding layer, before being fed into a dense layer that uses

the ReLu activation and a softmax output layer. Such a trained model has shown to

achieve an average F1 score of 0.97 over several languages [156].

The combination of POS tags, i.e., the patterns follow

µN = <DET>?<NUM>∗

(<ADJ><PUNCT>?<CONJ>?)∗

(<NOUN>|<PROPN><PART>?)+, (5.2)

µV = <AUX> ∗<ADV> ∗<VERB>, (5.3)

for NP- and VP-based regexes, respectively. The punctuation marks ?, *, and + denote

zero or one, zero or more, and one or more occurrences of the preceding POS tag, respec-

tively. A corresponding regex rk for an NP (denoted by µN) and for a VP (denoted by

µV) is then defined as any suitable combination of POS tags according to (5.2) or (5.3).

5.3.2 Computation of term-weighted topic-regex and question-

topic distributions

Algorithm 3 provides a formal description of Qu-LDA. Due to the skewed nature of

high-frequency regexes brought about by the general structure of questions (i.e., pres-

ence of several NPs and standalone verbs), different regexes are emphasized through the
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Algorithm 3: Proposed Qu-LDA algorithm.

Input: Pre-processed and regex-extracted question q
Output: Feature vector with regularized topic probabilities q for each question
for label yc ∈ NL do

P (yc|wi)← Nwi,yc , Nwi using (5.13)
P (wi|zj)← P (wi|rk, zj)
P (yc|zj)← P (yc|wi), P (wi|zj) using (5.12)
P (ẑj,yc)← P (yc|zj)P (zj|q) using (5.11)
q← P (ẑj,yc) using (5.10)
for topic zj ∈ NZ do

P (zj|q)← Θ(Ωwi , α, tj) using (5.6)
for regex rk ∈ NR do

ϕrk ← NµN , NµV , Lrk using (5.5)
Crk ← ϕrk , Lrk , Nrk using (5.4)
P (rk|zj)← η(Ωwi , λ, Crk) using (5.7)
for word wi ∈ NV do

Ωwi ← MDFS(wi) using (2.2)
P (wi|rk, zj)← Φ(Ωwi , β) using (5.8)

end

end

end
P (zj|wi, rk, z−j)← P (wi|rk, zj)P (rk|zj)P (zj|q)
Assign zj to each rk and wi based on (5.9)

end

nested regex concept, where regexes are divided into their sub-structure. This allows the

algorithm to discern among regex decomposition, which, as a consequence, better defines

the distribution of regexes within each topic. This, in turn, facilitates the representation

of topic distribution for a question to achieve better association of that question with its

corresponding class label.

The anatomy of nested regex in Qu-LDA is highlighted in Figure 5.3 using an exemplar

question belonging to one of the datasets to be described in the section on domain-

agnostic question datasets. Phrases in bold refer to NPs while phrases in italics refer to

VPs. An instance of a nested regex is shown by VERB ⊂ AUX AUX VERB, where ⊂
indicates that the former is a subset of (embedded within) the latter. To compute the

relevance of regex decomposition, a new C-value has been proposed, defined for each rk,
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as

Crk =


ϕrkLrkNrk , if rk is not a nested regex;

ϕrkLrk

(
Nrk −

∑
rk

(S) N
(S)
r

NS

)
,

if rk is a nested regex,

(5.4)

where the scaling parameter is defined by

ϕrk =


(

1

10×
NµN
NµV

)(
1− exp(−10(Lrk−3))

)
, if rk ∈ µN;

1− exp(−10(Lrk−3)), if rk ∈ µV .
(5.5)

In (5.4), Nrk denotes the number of times regex rk occurs in the entire corpus, S the set

of NS regexes that contain rk as a nested regex, and N
(S)
r the number of times each of

the regexes in that set S occurs in the corpus. The proposed Crk values are, therefore,

based on the occurrences of all phrases that belong to each regex. Defining
∑

rk(S)
as the

summation over all longer regexes in the set S in which rk occurs, the above formulation

implies that high-frequency nested regexes are assigned a higher Crk similar to nested

phrases. As opposed to (5.1), where Cpk has been defined for phrases that only considers

bi-grams and beyond [148], the logarithmic function has been removed in (5.4) since

regex may also be derived from a single-word phrase if it is a constituent in a sentence’s

syntax [63,69]. Removing this logarithmic function, therefore, prevents these single-word

regexes (e.g., NOUN or VERB) that are vital for the construction of NPs and VPs from

receiving a null value.

To appreciate the effect of ϕrk in (5.4), it can be noted from Figure 5.3 that, without

ϕrk , a high C-value is exhibited for NP-based regexes (e.g., DET NOUN ) and regexes

with Lrk = 1 (e.g., VERB), both which have the highest frequencies. Defining NµN and

NµV as the number of times NP- and VP-based regexes occur, respectively, the proposed

formulation in (5.5) results in higher emphasis of a regex if rk ∈ µV . Figure 5.4 illustrates

the variation of ϕrk with regex length Lrk for an illustrative case of NµN/NµV = 2.05. It

can be seen that regexes corresponding to NPs are significantly suppressed compared to

VPs. In addition, ϕrk increases with Lrk such that shorter regexes are de-emphasized. For

Lrk ≥ 4, no de-emphasis is required since long regexes are generally absent from a corpus
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Figure 5.4: Variation of scaling parameter ϕrk with Lrk for the suppression of NP-based
and shorter regexes. The dotted curve refers to a VP-based regex while the solid curve
refers to an NP-based regex.

of questions; the number of words within a phrase (phrase length) generally follows a

long-tailed distribution, indicating that most phrases have relatively short lengths [141].

Further experiments show that the ratio NµN/NµV obtained for the datasets described

in the subsequent section ranges from 1.26 to 2.05 with a modest difference of 0.04

< 4ϕrk < 0.08 across the datasets. Hence, the value of ϕrk does not vary significantly

across datasets.

Besides scaling the importance of regexes appropriately, term weights and asymmetric

α priors pertaining to words that constitute the phrases are incorporated. This allows

the algorithm to take the prevalence of words across and within class labels into account.

With reference to Figure 5.2, Qu-LDA incorporates inter- and intra-class word distribu-

tions by employing the MDFS term weighting per word Ωwi which, in turn, influence the

word probabilities.

With words weighted by Ωwi and relevance of the regexes defined by Crk , the proposed

Qu-LDA employs a new term-weighted topic-regex distribution that considers all the

phrase weights constituting each regex. These phrase weights are, in turn, the sum of

the MDFS term weighting of the words that each phrase consists of. Accordingly, the
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three posterior probability distributions of Qu-LDA are computed, respectively, as

P (zj|q) = Θ(Ωwi , α, tj)

=

∑Np
k=1

∑Lrk
i=1 Ω

(q)
wi,rk,zj + tjα∑Np

k=1

∑Lrk
i=1 Ω

(q)
wi,rk +

∑NZ
j=1 tjα

, (5.6)

P (rk|zj) = η(Ωwi , λ, Crk)

=

∑
rk

∑Lrk
i=1 Ωwi,zj ,rk + Crkλ∑NR

k=1

∑Lrk
i=1 Ωwi,zj ,rk +

∑NR
k=1 Crkλ

, (5.7)

P (wi|rk, zj) = Φ(Ωwi , β)

=
Ωwi,zj + β∑NV

i=1 Ωwi,zj + βNV

, (5.8)

while the probability for the optimal topic allocation to each phrase after removing the

particular phrase of interest in each Gibbs sampling iteration conforms to the relationship

P (zj|wi, rk, z−j) ∝ P (wi|rk, zj)P (rk|zj)P (zj|q). (5.9)

The variable tj in (5.6) denotes the unique value for each topic that is derived from the

Newton-Raphson optimization. The term
∑Np

k=1

∑Lrk
i=1 Ω

(q)
wi,rk,zj denotes the sum of term

weights for all regexes in a question for a topic zj,
∑Np

k=1

∑Lrk
i=1 Ω

(q)
wi,rk the sum of term

weights for all regexes in a question across all topics, and
∑NZ

j=1 tjα the sum of asymmet-

ric prior values for the question-topic distribution. In (5.7), the term
∑

rk

∑Lrk
i=1 Ωwi,zj ,rk

denotes the sum of term weights for all phrases under the same regex for that topic,∑NR
k=1

∑Lrk
i=1 Ωwi,zj ,rk the sum of all term weights for all regexes for that topic, and

∑NR
k=1 Crkλ

the sum of asymmetric prior values for the topic-regex distribution. The term
∑NV

i=1 Ωwi,zj

in (5.8) is defined as the sum of term weights for all words belonging to all regexes in

that topic.

With reference to notations used in LPTM [70], z−j in (5.9) denotes the exclusion

of the corresponding existing topic assignment of that phrase, implying the negation

of the words belonging to it and the regex associated with it. The topic zj is, there-

fore, assigned to each rk and wi based on (5.9) in each iteration. In addition, since

P (wi, rk, zj|q) = P (wi|rk, zj)P (rk|zj)P (zj|q) and that P (zj|wi, rk, z−j) ∝ P (wi, rk, zj|q),
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the topic assignment is dependent on the term weights and the scaling of regexes. This,

in turn, affects the question-topic distribution that the classification depends upon. The

vector of topic probabilities corresponding to the question-topic distribution Θ can, there-

fore, be considered as the set of intermediate features that represent each question as

shown in Figure 5.1.

5.3.3 Topic regularization mechanism

Despite establishing the mapping between the question-topic distribution and class

labels via a rigid topic-label dependency based on available prior information, such an

approach is suitable for domain-specific class labels directly associated with their top-

ical information. For domain-agnostic class labels, a topic regularization mechanism

that incorporates the impact of each class label on the topic probabilities has been pro-

posed. This dependency is modeled via the word-label association since a word may

occur in different class labels with different proportions. This is akin to the construction

of domain-independent lexicons via statistical co-occurrence information between candi-

dates and sentiment labels [157]. The proposed mechanism regularizes the question-topic

distribution based on the relationship between words that each topic consists of and the

respective class labels. As seen in Figure 5.2, this is achieved via the class label infor-

mation yc ∈ NL in relation to each word that regularizes each topic’s probability into

P (ẑj,yc).

The regularized topic probabilities are computed for each class label and concatenated

into

q = {P (ẑ1,y1), . . . , P (ẑNZ ,y1),

P (ẑ1,y2), . . . , P (ẑNZ ,y2), . . .

P (ẑ1,yNL
), . . . , P (ẑNZ ,yNL )}, (5.10)

which denotes a regularized vector of topic probabilities with length NLNZ based on each

class label. The regularized probability of the jth topic belonging to each class label yc
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is defined as

P (ẑj,yc) = P (yc|zj)P (zj|q), (5.11)

where P (zj|q) is computed using (5.6) and

P (yc|zj) =

NV∑
i=1

P (yc|wi)P (wi|zj) (5.12)

denotes the probability of each class label for that topic. It is useful to note that

P (wi|zj) = P (wi|rk, zj) since word probabilities in a topic can be considered without

that of regexes based on which each word belongs to; the presence of each word and each

regex are conditionally independent given that the topic is assigned to each phrase (in

turn, the corresponding regex and each word within the phrase). With Nwi denoting the

total number of questions in which each word occurs in and Nwi,yc the number of times

word wi occurs in a class label yc for a given training dataset, the word-label association

which denotes the probability of each class label yc for that word is given by

P (yc|wi) =
Nwi,yc

Nwi

. (5.13)

The formulation in (5.10) implies that the class label that obtains the maximum number

of high regularized topic probabilities based on the corresponding word-label proportions

would most likely be assigned to that question.

In conventional binary classification, the set of Qu-LDA feature vectors Q = {q1, . . . ,qNQ}
will be fed into a Gaussian process (GP) regressor as the input [78]. Here, ql (derived

from (5.10)) denotes the lth question’s feature vector in the training corpus.

5.4 Domain-agnostic question datasets and labeling

taxonomies

Datasets corresponding to various domain-agnostic class labels have been used to

evaluate the performance of the proposed Qu-LDA model against baseline AQC feature

extraction techniques. Details of these datasets, along with examples of NPs and VPs
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for each domain-agnostic category are tabulated in Table 5.1.

The gradual evolvement of cognitive complexity required for solving questions involves

recalling previously taught materials (Knowledge (K)), examining new materials (Appli-

cation (A)), or drawing connections between old and new learning materials by means

of mental processes (Transfer (T)) [120,158,159]. Two datasets of questions across var-

ious disciplines from six Nanyang Technological University (NTU) courses and Najran

University (NU) have been labeled by course instructors according to this taxonomy [44].

Questions have also been labeled according to reasoning abilities. The ARC dataset

of the AI2 Reasoning Challenge has been annotated by subject-matter experts according

to several knowledge and reasoning types [8, 9]. Due to overlapping categories, ques-

tions belonging to three mutually exclusive class labels (Basic facts, Linguistic matching,

Hypothetical) have been selected.

An alternative approach to labeling questions is via question types. The middle school

science classroom educational questions dataset published in LREC [7] has a total of

sixteeen categories. Since multi-label classification is outside the scope of this thesis,

questions with single labels (Very short answer, Context sensitive, Answers will vary)

have been extracted.
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Table 5.1: Details on the various datasets used for AQC performance evaluation

NTU dataset NU dataset [44]
Source Nanyang Technological University (NTU) Najran University (NU)

Number of questions 1023 596
Domain-agnostic category Cognitive complexities

Class labels
Knowledge (K) (46.9%) and (33.5%)
Application (A) (37.7%) and (16.8%)

Transfer (T) (15.4%) and (49.7%)

Examples of NPs
the main purpose

plausible explanations
a true representation

Examples of VPs
briefly describe

can be characterized
would be required

ARC dataset [8, 9] LREC dataset [7]
Source AI2 Reasoning Challenge Middle schools

Number of questions 279 345
Domain-agnostic category Reasoning capabilities Question types

Class labels
Basic facts (28.0%) Very short answer (41.6%)

Linguistic matching (47.0%) Context sensitive (36.0%)
Hypothetical (25.0%) Answers will vary (22.4%)

Examples of NPs
the same amount an acceptable answer
a cold air mass experimental group
a plastic bottle the two data tables

Examples of VPs
carefully measure being transferred

has been most affected might be directly related
most likely caused give examples
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Table 5.2: Macro-average F1 scores for each dataset. LDA+ denotes appropriate combinations of existing LDA variants

Method type Feature extraction technique NTU NU ARC LREC

BoW
TF-IDF [44] 0.509 0.585 0.554 0.342
TF-ICF [47] 0.462 0.409 0.674 0.344

LDA
variants

LDA [20] 0.487 0.336 0.499 0.386
A-LDA [34] and W-LDA [35] 0.329 0.213 0.491 0.165

A-LDA and W-LDA (with MDFS [50]) 0.567 0.410 0.542 0.478
Modified LPTM [70] (with word-based elements) 0.597 0.655 0.719 0.575

Proposed Qu-LDA (phrase-based) 0.628 0.759 0.803 0.710
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Table 5.3: Impact of different distributions on degree of word probabilities for exemplar
question shown in Figure 5.3

Word K A T Corpus-wide Inter-class Intra-class
advise 0 1 2 High Low Low

associate 0 3 0 High High Low
ltd 1 20 3 Low High High

Table 5.4: Comparing position of regexes in topics with symmetric λ priors as opposed
to asymmetric λ priors

Method Many topics Many topics

Symmetric λ
NOUN VERB

DET NOUN ADV VERB

Method A topic Another topic

Asymmetric λ
DET NOUN VERB

DET ADJ NOUN AUX AUX VERB

5.5 Hyperparameter selection

Each dataset was divided into 70/30 training/testing split. The number of topics was

evaluated from 5 to 60 in intervals of 5 with the optimal number being one that achieves

the highest macro-average F1 score. The optimal number of topics for the NTU dataset

was found to be 50 while it was 20 for the remaining datasets; the higher number of

topics found in the NTU dataset was due to the large number of questions. In this work,

symmetric α = 0.1 and β = 0.01 values have been employed for LDA while a symmetric

value λ = 0.1 is used in LPTM. 1000 Gibbs sampling iterations have been used for both

training and testing.

For the Gaussian process classifier (GPC), the RBF kernel was used and bandwidth/

smoothness values were determined by a grid search from 0.25 to 1.0 with an interval of

0.25. The identified optimal value was 1.0.
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Figure 5.5: Impact of the topic regularization mechanism as reflected in (b) which is
based on the word-label association illustrated in (a).

5.6 Comparison analysis

Similar to Chapter 4, given a model, an individual F1 score for each label and the

macro-average F1 score are computed to evaluate its efficacy for AQC. A high macro-

average F1 score indicates a large number of questions that are predicted to belong to

the correct label (true positives) and a large number of questions that are predicted not

to belong to the incorrect label (true negatives). The macro-average F1 is preferred over

micro-average F1 for AQC to avoid bias against the class label that consists of the largest

number of questions.

Table 5.2 illustrates performance achieved by BoW methods with feature vectors
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Figure 5.6: Box-plots to incorporate standard deviation information for individual F1
scores pertaining to each class label for all datasets. The mean values among the class
labels are denoted by the dots in each box-plot.

extracted using term frequency-inverse document frequency (TF-IDF) [44] and term

frequency-inverse class frequency (TF-ICF) [47]. As can be seen, these techniques achieved

a low macro-average F1 score for each dataset ranging from 0.342 to 0.585 for TF-IDF

and a modest increase for TF-ICF. These results underpin that prediction capabilities

of these methods are limited by the use of word frequencies. While LDA addresses the

sparsity limitation of the above approaches, it suffers from poor AQC performance due

to topic homogeneity. Although the use of asymmetric α priors and term weighting in A-

LDA and W-LDA address the homogeneity problem of LDA, the macro-average F1 scores

of between 0.165 and 0.491 are lower than that of LDA due to the use of corpus-wide

term weighting.

It is useful to note that employing MDFS term weighting in W-LDA increases the
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Figure 5.7: Performance of Qu-LDA for the NTU and NU datasets (a) via precision and
recall scores and (b) via the confusion matrices.

macro-average F1 score significantly since MDFS encapsulates both inter- and intra-class

word distributions that is suitable for AQC. To highlight the importance of considering

inter- and intra-class word distributions in the computation of word probabilities, words

corresponding to the pre-processed exemplar question highlighted in Figure 5.3 are tab-

ulated in Table 5.3. The number of times these words appear in each class label (K,

A, or T ) along with their respective degree of weights (High or Low) for corpus-wide,

inter-class, and intra-class distributions has also been shown. A High corpus-wide term

weight implies that the word occurs rarely in the entire corpus. For instance, for the word

ltd which occurs mainly in class label A (Application-type question), a High inter-class

weight is assigned, implying concentration toward a particular class label. The same word

occurs twenty times in class label A, indicating a High intra-class weight for high fre-

quency in that class label. However, ltd exhibits a Low corpus-wide weight. This shows

that relying on word frequencies alone is not sufficient to determine the importance of a

word given the class label information; the corpus-wide method is, therefore, incapable

of providing accurate term weights for AQC. Incorporating MDFS term weighting ac-

cording to (2.2) addresses this bias in W-LDA and is numerically verified by an increase

in macro-average F1 scores to 0.567, 0.410, 0.542, and 0.478 for the respective datasets
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Figure 5.8: Sensitivity of the macro-average F1 score with respect to the weight ratio ρ
of NP- and VP-based regexes.

as seen in Table 5.2.

Although the modified LPTM (that extracts both NP- and VP-based regexes and

incorporates word-based elements) adopts a phrase-based approach, the classification

performance is significantly lower than Qu-LDA due to the lack of any emphasis given to

different types of regexes. This can be seen from the macro-average F1 scores of 0.597,

0.655, 0.719, and 0.575 achieved by the modified LPTM for the respective datasets. The

proposed Qu-LDA algorithm achieves improved performance by incorporating the nested

regex concept with the new scaled C-value. In addition, with asymmetric λ priors, the

topic-regex distribution results in an almost unique set of regexes per topic which, in

turn, provides higher association to each class label. This effect can be seen in Table 5.4,

where many topics consist of high-frequency regexes for the case of symmetric λ priors.

The impact of the topic regularization mechanism in Qu-LDA described by (5.11) is

illustrated in Figure 5.5 for the same question listed in Figure 5.3.The number of topics

was determined via the hyperparameter selection process as described in Section 5.5.
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Once the topics were generated, the same order of topics was maintained while applying

the topic regularization mechanism. Taking the word-label distribution within a topic

into account is important for AQC to determine the likelihood of that topic belonging a

particular class label. For this exemplar question, the high-probability words for the most

representative topic z5 is depicted in Figure 5.5(a). With reference to (5.13), the bar-plots

highlight the probability of each word belonging to each class label P (yc|wi), with the

length of each bar representing the degree of belongingness. It can be inferred that almost

all words (except advise) belong to the class label A. This implies that z5 is associated

toward class label A, described via (5.12). Since z5 achieves the highest probability for

this question, the topic regularization mechanism suggests that the class label is likely

to be A for this question. This is illustrated by the scatter plot in Figure 5.5(b), where

the concatenated vector of regularized topic probabilities is plotted for this question

according to (5.10). The dotted lines indicate the separation of the fifty regularized

topic probabilities corresponding to each class label. It can be seen that the number of

significant points are three in K, four in A, and three in T , resulting in the question being

classified as class label A. With the above characteristics, Qu-LDA achieves the highest

macro-average F1 scores of 0.628, 0.759, 0.803, and 0.710 for the respective datasets as

seen in Table 5.2.

The F1 scores across three algorithms implemented specifically for AQC have also

been compared as seen in Figure 5.6. The mean values among the class labels (macro-

average F1 scores) are denoted by the dots in each box-plot. It can be noted that

Qu-LDA achieves an average of approximately 62% improvement in macro-average F1

scores over TF-IDF [44] and LDA [20] across all datasets. It can be inferred from the

length of the box-plots that Qu-LDA achieves a low standard deviation of individual

F1 scores pertaining to each class label. The short box-plots of Qu-LDA highlight an

approximately 51% average reduction in standard deviation over the longer box-plots

of TF-IDF and LDA across all datasets. This implies almost equal F1 scores for each

class label in comparison to skewed classifications for TF-IDF and LDA. In addition,

it can be inferred that TF-IDF and LDA are sensitive to the datasets while Qu-LDA

is less sensitive. This is verified through the approximately 17% average reduction in

standard deviation among the macro-average F1 scores for the four datasets for Qu-LDA
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in comparison to TF-IDF and LDA.

It can be seen from Figure 5.6 that the proposed Qu-LDA algorithm achieves a lower

performance for the NTU dataset compared to the other three datasets. This is due to the

structure of questions in the NTU dataset that is different from the others. Figure 5.7

shows the precision and recall scores achieved by Qu-LDA along with the confusion

matrices for the NTU and NU datasets. The other two datasets are not considered in

this discussion since the class labels are different—the context of the questions differs

from the cognitive complexities class labels of both NTU and NU datasets. It can be

noted from Figure 5.7(a) that while the precision scores are consistent across the class

labels, the NTU dataset suffers from a low recall score of 0.4 for the T class label. On the

other hand, the NU dataset achieves consistently high precision and recall scores across

all class labels, resulting in a higher macro-average F1 score than the NTU dataset. Upon

further investigation via the confusion matrices shown in Figure 5.7(b), it can be seen that

24 questions belonging to the T class label were incorrectly classified as K for the NTU

dataset. Upon further examining questions within the NU dataset, it was noted that

they comprise a distinguishable question structure for each class label that is represented

by the choice of words, i.e., class-specific Bloom’s Taxonomy verbs. On the contrary,

for the NTU dataset, similar question structure results in the model facing difficulty in

discriminating between appropriate class-specific co-occurrence patterns. This results in

a lower macro-average F1 score for the NTU dataset.

To examine the importance of different weight ratios (applied to NP- and VP-based

regexes) on the macro-average F1 score, the ratio ρ = (ϕrk if rk ∈ µN)/(ϕrk if rk ∈ µV) is

first defined such that a high value of ρ implies more emphasis given to NP-based regexes.

Figure 5.8 shows the variation of the macro-average F1 score with ρ for the four datasets.

It can be seen that Qu-LDA suffers from poor performance if NP-based regexes are not

sufficiently emphasized (as seen when ρ = 0.001) as opposed to the formulation of ϕrk in

(5.5). In addition, if the emphasis is instead placed on NP-based regexes given by

ϕrk =


1− exp(−10(Lrk−3)), if rk ∈ µN;(

1

10×
NµN
NµV

)(
1− exp(−10(Lrk−3))

)
, if rk ∈ µV ,

(5.14)
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Table 5.5: Comparison with deep learning methods

Method NTU NU ARC LREC
LSTM 0.680 0.650 0.740 0.560
CNN 0.680 0.700 0.730 0.620
BERT 0.304 0.337 0.303 0.194

Qu-LDA 0.628 0.759 0.803 0.710

the macro-average F1 score reduces in particular when there is an over-emphasis on NP-

based regexes with larger ρ values beyond the formulation in (5.14). This experiment,

therefore, validates the computation of ϕrk in (5.5) and the importance of VP-based

regexes for achieving high AQC performance with Qu-LDA.

To compare the effectiveness of Qu-LDA over deep learning techniques, experiments

with a long short-term memory network (LSTM) and convolutional neural network

(CNN) that employ embeddings trained on each dataset, as well as the bidirectional

encoder representations from transformers (BERT) model were performed. Table 5.5

shows results for the above methods with the AQC performance verified via the same

four datasets. It can be seen that LSTM and CNN achieve higher performance than

BERT. This is due to the embeddings being trained on the words in each dataset—rare

technical words may not be found in the conventional dictionary of pre-trained models

such as BERT. In addition, it can also be noted that the proposed Qu-LDA achieves the

highest performance for the smaller NU, ARC, and LREC datasets, while Qu-LDA suf-

fers modest performance degradation for the larger NTU dataset. This is because, with

a larger dataset, the deep learning algorithms are able to extract semantic information

by prioritizing locality and sequentiality [160] that topic modeling algorithms fail to do.

5.7 Chapter summary

In this chapter, the proposed phrase-based topic modeling approach to represent a

question for AQC is being described. In addition to pre-extracting both NPs and VPs,

the concept of nested regex is introduced and a new C-value is proposed to assess the

relevance of each regex. This C-value scales the regexes according to their type (via
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the suppression of NP-based regexes) and frequency of occurrence in relation to regex

length (via the suppression of short regexes). Term weights that incorporate both inter-

and intra-class distributions are then employed to suppress the weights of high-frequency

words. The resultant term-weighted topic-regex distribution, therefore, offers a set of

feature vectors that represent a question. The dependency between topics and class labels

is then taken into account by incorporating a topic regularization mechanism based on

the word-label association for the words under each topic. Experiment results show that

the proposed approach outperforms existing AQC techniques across four datasets.

92



Chapter 6

Quad-faceted Feature-based Graph

Network for Domain-Agnostic

Document Classification

This chapter presents a new quad-faceted feature-based graph network that incorpo-

rates four types of graphs that operate on different set of nodes with unique computations

of edge weights. The benefits of term weighting from Chapter 3, topic modeling from

Chapter 4, and phrases, as well as, regexes, from Chapter 5 particularly for domain-

agnostic classification will be used as the foundation for the development of a diverse

heterogeneous graph for document classification. Various types of documents including

scientific statements, journal articles, and job descriptions that correspond to the domain-

agnostic class labels of nature of statements, argumentative zones, and general skillsets,

respectively are used for performance evaluation of the proposed model. Experiment

results show that when compared with other conventional deep learning techniques such

as LSTM and CNN or with graph models such as TextGCN [39] and TensorGCN [40],

the proposed model outperforms due to its ability of encompassing different node types

with appropriate edge weights.

Part of this chapter has been submitted to a journal as S. Supraja and Andy W. H. Khong, “Quad-
faceted feature-based graph network for domain-agnostic text classification,” IEEE/ACM Trans. Audio
Speech Lang. Proc.
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Figure 6.1: Architecture of the proposed quad-faceted feature-based graph network.
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6.1 Diversity in heterogeneity

Direct application of existing machine learning techniques may not be suitable for

domain-agnostic classification since these methods do not consider the impact of ob-

servable and latent features (beyond words) on deriving appropriate representations for

accurate classification. Observable features include phrases [161] and their associated reg-

ular expressions (regexes) with the latter formed by the concatenation of parts-of-speech

(POS) tags [162]. The use of phrases (as elaborated in Chapter 5) is beneficial since

these multi-word terms contain contextual information that can achieve meaningful and

coherent text representations via a constituency structure [137–139]. Utilizing symbolic

rules such as regexes, on the other hand, is important for effective text representation

as they are domain-agnostic (as highlighted in Chapter 5), interpretable, contribute to

a text’s syntax, and provide pattern matching capability [163–165]. As opposed to ob-

servable features, latent features can be derived via topic modeling techniques that have

shown to provide a global perspective by assigning probability values to word groupings

(topics). Such distribution of word co-occurrences across texts offers linguistic insights

into language patterns and is important in providing the degree of association between

topics and class labels [22]. From an architecture perspective, conventional sequence-

based or convolutional neural networks that are often utilized for text classification are

limited by their nature to prioritize sequentiality and locality [85]. While these deep

learning models capture semantic and syntactic information in the Euclidean space and

in local sequences well, they do not account for global word co-occurrences in a corpus

that carries non-consecutive and long-distance semantics [39,87].

Inspired by the use of multiple aspects such as topic, sentence, mention, and entity

for relation extraction [166] and information retrieval [167], a quad-faceted feature-based

graph network (QGN) is proposed. Similar to the heterogeneous graph convolutional net-

work (GCN) in HeteGCN [168] or SHINE [162], QGN incorporates word, phrase, regex,

and topic nodes for domain-agnostic text classification, with each type of node being

activated to achieve a different representation. As shown in Figure 6.1, the proposed

QGN first comprises a syntactic graph that considers the dependency parsing between

word nodes similar to TensorGCN [40]. Unlike the semantic graph applied to word nodes
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in TensorGCN and GFN, motivated by the ability of phrases to encapsulate the seman-

tics of a document [141, 169] for information retrieval [69], phrase nodes are employed.

The second graph (i.e., semantic graph), therefore, employs cosine similarities between

vector representations [170] of phrases derived from bidirectional encoder representations

from transformers (BERT) [93] for the edge weights. To further account for regex co-

occurrences that contribute to a domain-agnostic class label and similar to the sequential

graph employed by TensorGCN and GFN, QGN incorporates the point-wise mutual infor-

mation (PMI) between all regex nodes in the third graph. The fourth graph (i.e., topical

graph) considers the average Kullback–Leibler (KL)-divergence between the word and

regex probability vectors across topics for the edge weights between topic nodes. These

vectors are derived from the respective co-occurrence frequencies in texts that are used

to construct the topic-word and topic-regex distributions. The KL-divergence measure

identifies topics that are convergent to each other based on their distributions [171] (e.g.,

two topics containing noun phrase (NP)-based regexes). This work shows that beyond

the previous three graphs based on observable features, this topical graph is also impor-

tant to generate a meaningful set of latent features for classification via the modeling of

topics.

Since observable (words, phrases, and regexes) and latent (topics) features from a

text (i.e., document or question) are concatenated, a document node (defined in existing

works) is defined as a text node in QGN. With the above quad-faceted graphs, the

relationships between the text nodes and the word, phrase, regex, or topic nodes are

established. As opposed to the term frequency-inverse document frequency (TF-IDF)

value according to (2.1) for the document-word edge weights in TensorGCN, the text-

word edge weights in QGN are computed via the modified distinguishing feature selector

(MDFS). This allows the model to incorporate both the inter- and intra-class term weights

of each word [50] such that a significant word is determined based on its presence in

fewer class labels and largely within a particular class label. The text-phrase and text-

regex edge weights are computed from the C-value of nested phrases [148] and nested

regexes [172], respectively, with the addition of parameters that depend on the inverse

frequency of phrase or regex usage across texts to consider the corpus-wide significance.

QGN uses the text-topic distribution that signifies the probability of each topic occurring
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in a text to compute the text-topic edge weights in QGN. A scaling parameter is then

formulated to regularize the range of these text-topic edge weights in line with the other

edge weights that are related to the text nodes. The selection of threshold values to

determine whether two phrases are similar or a pair of topics are convergent has also

been formulated based on the distribution of cosine similarity or KL-divergence values

in a given dataset.

6.2 Formulation of the quad-faceted feature-based

graph network

QGN, as shown in Figure 6.1, comprises five types of nodes such that

V = {w1, . . . , wi, . . . , wNV , p1, . . . , pk, . . . , pNP ,

r1, . . . , rk, . . . , rNR , z1, . . . , zj, . . . , zNZ ,

d1, . . . ,dm, . . . ,dND}, (6.1)

where NP and NR denote the phrase vocabulary and regex vocabulary sizes, respectively.

The nodes wi, pk, rk, zj, and dm are defined as the ith word, kth phrase, kth regex,

jth topic, and mth concatenated text, respectively. A phrase pk = {wk,1, . . . , wk,Lpk}
is defined as the kth noun or verb phrase that is made up of Lpk words. The POS

tags of all words within the phrase are then grouped together to form a regex rk =

{POS(wk,1), . . . , POS(wk,Lrk )} of length Lpk = Lrk [156] and the same index k is used

for each phrase and regex. The index j is based on a suitable (pre-defined) number of

topics NZ per dataset. With reference to (6.1),

dm = {wm,1, . . . , wm,i, . . . , wm,Ld , pm,1, . . . ,

pm,k, . . . , pm,NP , rm,1, . . . , rm,k, . . . ,

rm,Nr , zm,1, . . . , zm,j, . . . , zm,NZ} (6.2)
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is defined as the mth text with length Ldm = Ld + (2×NP) + NZ , where Ld is defined

as the length of the original text containing only words and NP denotes the number of

extracted phrases. Here, since the number of regexes in a text Nr = NP (due to the POS-

guided phrasal segmentation [69],) the number of phrases and regexes are considered as

2×NP .

To determine A, QGN encompasses

E = {esyn(wi, wj), esem(pi, pj), eseq(ri, rj), etop(zi, zj),

e(dm, wi), e(dm, pk), e(dm, rk), e(dm, zj)}, (6.3)

where the subscripts “syn,” “sem,” “seq,” and “top” denote for the syntactic, semantic,

sequential, and topical graphs, respectively. The corresponding edge weights between

similar nodes are for the ith and jth word nodes, phrase nodes, regex nodes, and topic

nodes. On the other hand, the corresponding edge weights with reference to text nodes

are between every mth text node and ith word, phrase, regex, or topic node.

As opposed to TensorGCN that considers bi-grams of words for computing word-

word edge weights, QGN employs bi-terms that are irrespective of adjacency or order

of appearance [173] that allow for cross-referencing against different terms across a text.

For instance, a term could refer to a phrase (e.g., quantitatively oriented) or a regex (e.g.,

ADV VERB that is the concatenation of an adverb and a verb) conjoined by underscore

symbol(s). Adopting bi-terms is beneficial for the computation of KL-divergence per topic

pair [171], similarities among various phrases in a text, and capturing domain-agnostic

relationships between every two regexes. Algorithm 4 provides a formal description of

edge weight computations between similar nodes and in relation to text nodes in QGN.

98



Chapter 6: Quad-faceted Feature-based Graph Network for
Domain-Agnostic Document Classification

Algorithm 4: Formulation of edge weights in the proposed quad-faceted feature-
based graph network.

Input: Concatenated text dm using (6.2)
Output: A
for wi ∈ Ld do

esyn(wi, wj)← N(wi, wj) using (6.4)
e(dm, wi) ← Ωwi(dm) using (6.14)

end
for pk ∈ NP do

esem(pi, pj)← N
(

cos
(
θ(pi, pj)

)
> ρsem

)
using (6.6)

ρsem ←
(
µcos(θ) − σcos(θ)

)
using (6.7)

e(dm, pk) ← C(G)
pk (dm) using (6.16)

end
for rk ∈ Nr do

eseq(ri, rj)← log
P (ri,rj)

P (ri)P (rj)
using (6.8)

e(dm, rk) ← C(G)
rk (dm) using (6.18)

end
for zj ∈ NZ do

etop(zi, zj)← N
(
KLave(zi, zj) < ρtop

)
using (6.12)

ρtop ←
(
µKLave + σKLave

)
using (6.13)

e(dm, zj) ← Θscl(zj,dm) using (6.19)
end

6.2.1 Edge weight computations between similar nodes for syn-

tactic, semantic, sequential, and topical graphs

The syntactic graph G1 that activates only the word nodes and the corresponding

edges employs dependency parsing to compute the word-word edge weight

esyn(wi, wj) = N(wi, wj), (6.4)

where i 6= j and N(wi, wj) denotes the number of times dependent word pairs occur

in the corpus. Following the assumption made in TensorGCN, although the extracted

dependency is directed, it can be treated as an undirected relationship. Each pair of

words is considered to be dependent on each other unless they have the same parse

(including root) tags [40]. Syntactic structures such as dependency trees have been
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shown to accurately encode the correlation between words, in particular with graph

neural networks [174].

The semantic graph G2 activates only the phrase nodes and the corresponding edges.

Graph G2 employs BERT to generate an embedding vector for each phrase node [175].

In comparison to word2vec [94] or GloVE [95] used in GFN, BERT possesses the ability

to better depict the contextual information (i.e., semantics) of a text. Discovering rela-

tionships through the use of phrases is more effective than words since phrases convey

a more holistic meaning [175, 176]. With the above phrase nodes, the cosine similarity

value between vector representations of each pair of phrases pi and pj is then computed

via [161]

cos
(
θ(pi, pj)

)
=

vpi · vpj
||vpi ||||vpj ||

, (6.5)

where vpi denotes the BERT embedding vector corresponding to pi. With 0 ≤ cos
(
θ(pi, pj)

)
≤

1, a value of 1 implies an almost semantically similar pair of phrases. The edge weight

of each pair of phrase nodes in G2 is then computed as

esem(pi, pj) = N
(

cos
(
θ(pi, pj)

)
> ρsem

)
, (6.6)

where i 6= j and N
(

cos
(
θ(pi, pj)

)
> ρsem

)
denotes the number of times cos

(
θ(pi, pj)

)
exceeds a threshold ρsem, implying the co-occurrence frequency of phrases deemed similar.

The threshold for semantic similarity ρsem is estimated based on the distribution of co-

sine similarity values among all phrase pairs cos(θ) = {cos
(
θ(p1, p2)

)
, . . . , cos

(
θ(pNP−1

, pNP )
)
}

in a given corpus. Figure 6.2 shows, for an illustrative corpus extracted from the Argu-

mentative (Arg.) Zones dataset described in Section 6.3, the probability density function

of cos
(
θ(pi, pj)

)
estimated using parametric density function [177]. In addition, the skew-

ness and kurtosis of the distribution have been measured. The skewness is a measure of

symmetry, i.e., a distribution is symmetric if it is the same to the right and left of the

center point and has a skewness value close to zero. The skewness of the distribution

in Figure 6.2 is 0.06, implying that the distribution is almost symmetric. The kurtosis,

which measures whether the distribution is heavy-tailed (positive value) or light-tailed

(negative value) relative to a normal distribution, has a value of -0.15 for this distribu-
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tion. This value implies that the distribution is light-tailed and moderately close to a

normal distribution.This corpus consists of approximately 1000 documents with mean

value of µcos(θ) = 0.61 and standard deviation of σcos(θ) = 0.13. A threshold value

ρsem =
(
µcos(θ) − σcos(θ)

)
(6.7)

is proposed implying that phrase pairs with a cosine similarity value higher than one

standard deviation away from the mean are considered as being similar and will be used

to compute the phrase-phrase edge weights according to (6.6). This computation is in

line with the effectiveness of semantically similar phrases contributing to a higher text

classification performance [178].

The sequential graph G3 computes the co-occurrence between various regex nodes

in each text dm via the PMI [85]. The PMI of a pair of of regex nodes quantifies the

discrepancy between the probability of their coincidence given their joint distribution

and their individual distributions, assuming independence. The objective of G3 is for

the subsequent classifier to determine whether resemblance among patterns of regex co-

occurrences constitute a class label. The edge weight of each pair of regex nodes ri and

rj in G3 is computed as

eseq(ri, rj) = log
P (ri, rj)

P (ri)P (rj)
, (6.8)

where i 6= j. The variable P (ri) denotes the marginal distribution of occurrence for ri

and

P (ri, rj) =
N(ri, rj)

Ldm

. (6.9)

denotes the joint probability of the regex node pair co-occurring in the same text. Here,

N(ri, rj) denotes the number of co-occurrences between every pair of regexes within

the length of the mth concatenated text Ldm . The proposed QGN model does not

take a sliding window length into account since the objective is to consider all possible

combinations of regex occurrences within the entire text.

The topical graph G4 activates only the topic nodes and the corresponding edges

to compute the topic-topic edge weights. These weights are computed from the KL-

divergence between the vectors of regex and word probabilities across topics derived
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Figure 6.2: Estimated probability density function of pairwise cosine similarity values
(phrase pairs) across a corpus. The distribution fit values are 0.61 for the mean and 0.13
for the standard deviation.

from the topic-regex distribution η ∈ RNZ×NR and the topic-word distribution Φ ∈
RNZ×NV , respectively. The framework of Qu-LDA [172] is adopted in this work such that

η considers the weights of all phrases constituting each regex. These phrase weights are,

in turn, the sum of the MDFS term weighting of the words that each phrase consists

of. Similarly, Φ takes the importance of each word based on class label information

into account. Given the efficiency of these distributions for domain-agnostic question

classification, they are employed in G4 for comparing between topics.

The KL-divergence, which quantifies how one probability distribution differs from

another, is applied for η and Φ, and is computed between topics zi and zj as

KL(ηzi ||ηzj) =

∫ ∞
−∞

ηzi log

(
ηzi
ηzj

)
dηzi (6.10)

for the topic-regex distribution and similarly for the topic-word distribution by replacing

instances of η with Φ. In (6.10), ηzi corresponds to the vector of all regex probabilities

for topic zi. Hence, (6.10) is integrating over the distribution of regex occurrences in each

topic from (5.7) and similarly, the distribution of word occurrences in each regex present

in each topic from (5.8) to obtain KL(Φzi||Φzj). It can be noted from the above that
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the KL-divergence is computed in both directions since the relationships between topics

is considered irrespective of the order of appearance. Subsequently, the average of both

KL-divergence values

KLave(zi, zj) =
KL(ηzi ||ηzj) +KL(Φzi ||Φzj)

2
(6.11)

is computed to consider the impact of both word and regex occurrences in a topic. The

edge weight of each pair of topic nodes in G4 is determined via

etop(zi, zj) = N
(
KLave(zi, zj) < ρtop

)
, (6.12)

where i 6= j and N
(
KLave(zi, zj) < ρtop

)
denotes the number of times each topic pair has

converging (i.e., low) average KL-divergence values below the threshold ρtop in a corpus.

Similar to G2, the threshold for convergence consideration ρtop is estimated based

on the distribution of average KL-divergence values among all topic pairs (KLave) =

{KLave(z1, z2), . . . , KLave(zNZ−1
, zNZ )} in a given corpus. In contrast to cosine similar-

ities that favor larger values, KL-divergence favors smaller values that correspond to

converging/similar distributions. Hence, a threshold value

ρtop =
(
µKLave + σKLave

)
(6.13)

is proposed, where µKLave denotes the mean and σKLave denotes the standard deviation

of the average KL-divergence values. Therefore, (6.13) implies that topic pairs that are

assigned an average KL-divergence value less than one standard deviation away from the

mean are considered as being similar and will be used to compute the topic-topic edge

weights according to (6.12). This low or convergent KL-divergence value highlights that

the similar distribution of either words or regexes, or both words and regexes between

two texts is analogous to these two texts likely being classified into the same class label.
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6.2.2 Edge weight computation with reference to text nodes

With reference to Figure 6.1, the text-word edge weight between the mth text node

and ith word node in G1 is given by the class-based term weighting scheme MDFS [50]

(as discussed in Chapter 2)

e(dm, wi) = Ωwi(dm). (6.14)

The intricacies of inter- and intra-class attributes are not reflected by the use of TF-

IDF (in TextGCN or TensorGCN) which only considers corpus-wide frequencies. Hence,

MDFS is suitable to compute e(dm, wi) in QGN for representing the relation of words to

class labels.

The text-phrase edge weight between the mth text node and kth phrase node in G2

is given by

e(dm, pk) = C(G)
pk

(dm). (6.15)

The modified C-value for nested phrases is formulated as

C(G)
pk

(dm) =



(
ND
Npk

)
log2Lpk , if pk is not a nested phrase;((

ND
Npk

)
−

∑
pk

(s) N
(s)
p

Ns

)
log2Lpk ,

if pk is a nested phrase.

(6.16)

This C-value is modified from the original (Cpk computed using (5.1)) by replacing the

frequency of occurrence Npk with the inverse frequency (1/Npk) extracted partially from

the TF-IDF computation in (2.1). This replacement is necessary to take the importance

of each phrase across the corpus into account such that a rare phrase obtains higher

significance. The above formulation also considers whether each phrase is a nested phrase

before assigning a high C-value to a phrase.
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Figure 6.3: (a) Variation of scaling parameter and impact of scaling parameter on topic probabilities comparing the cases
(b) for output Θ(zj,dm) (without scaling) versus (c) for output e(dm, zj) (with scaling).
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The C-value for nested regexes [172] evaluates the relevance of regexes. The text-regex

edge weight between the mth text node and kth regex node in G3 given by

e(dm, rk) = C(G)
rk

(dm) (6.17)

is computed via the modified C-value for nested regexes

C(G)
rk

(dm) =



(0.01)ϕrkLrk

(
ND
Nrk

)
,

if rk is not a nested regex;

(0.01)ϕrkLrk

((
ND
Nrk

)
−

∑
rk

(S) N
(S)
r

NS

)
,

if rk is a nested regex.

(6.18)

As opposed to Qu-LDA which employs a different ϕrk for regexes associated with verb

phrases [172], the formulation of (6.18) computes the scaling parameter ϕrk = 1 −
exp(−10(Lrk−3)) by only considering the regex length into account. It is worth noting

that the variable ϕrk is not applied in favor of verb phrase-based regexes since texts do

not require a specific conditioning toward verb phrase-based regexes. This allows equal

importance to be given to both noun and verb phrase-based regexes for determining com-

binations of regexes that represent a text. In addition, instead of frequency Nrk , 1/Nrk

similar to (6.16) has been employed, implying the significance of a rare regex toward

identifying a class label. The scaling constant 0.01 that serves as a substitute for the log-

arithmic function in (6.16) is in place for e(dm, rk) to conform to the range of other edge

weights in relation to text nodes for compatibility reasons. Following the formulation

of Qu-LDA [172], (6.18) does not contain the logarithmic function to consider regexes

derived from single-word phrases that aid more accurate classification.

For topical graph G4, the text-topic edge weight between the mth text node and jth

topic node is computed via a scaled topic probability Θscl(zj,dm) that has a logarithmic

relationship with its original topic probability and can be modeled as

e(dm, zj) =
(
Θ(zj,dm)

)
(NZ)(−0.5)log

(
Θ(zj ,dm)

)
, (6.19)
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where Θ(zj,dm) denotes the probability of topic zj for the mth text. Each topic proba-

bility forms the vector of topic probabilities per text (conventionally used as features for

classification) that is obtained from the text-topic distribution Θ ∈ RND×NZ constructed

based on asymmetric priors [34] due to stop-words not being removed. However, with

direct application of these topic probability values, the range of Θ(zj,dm) is incompatible

when compared to e(dm, wi), e(dm, pk), and e(dm, rk). This is because, topics that are

insignificant in representing a text obtain low probabilities close to zero; these values

are being ignored albeit having an impact (to a smaller extent.) Hence, a new scaling

formulation has been employed such that the insignificant values are better represented

while the higher probabilities that correspond to the most relevant topics are being less

emphasized. Despite scaling the values for better compatibility and comparison, the

desired differences between the high and low topic probabilities are still maintained to

discriminate among the class labels.

The relationship between Θscl(zj,dm) and Θ(zj,dm) is illustrated in Figure 6.3(a).

Figure 6.3(b) illustrates the range of probabilities across topics (with indices of length

ND×NZ) before performing the proposed scaling operation while Figure 6.3(c) highlights

the probabilities after applying (6.19) for a given corpus. Once the topics were generated,

the same order of topics was maintained while plotting these figures. From the scatter

plot in Figure 6.3(b), it can be noted that majority of Θ(zj,dm) are low; only topics with

prominent values are seen as anomaly points. This is highlighted via the histogram (in the

bottom panel) that exhibits a heavy-tailed distribution. The scatter plot in Figure 6.3(c),

on the other hand, exhibits a less skewed set of points based on the scaling in (6.19) and

is reflected via the histogram with a lighter-tailed distribution. The above implies that

moderate emphasis is given to less significant topic probabilities which is subsequently

shown to result in better feature representation for classification.

With all quad-faceted graphs, the graph tensor in QGN that consists of text, word,

phrase, regex, and topic nodes is then defined as T = (G1, G2, G3, G4). Similar to the Ten-

sorGCN architecture as described in Section 2.4.3, the edge weights computed from Sec-

tions 6.2.1 and 6.2.2 serve as inputs to the graph adjacency tensor A = (A1,A2,A3,A4).

The corresponding graph feature tensor is then defined as H = (H1,H2,H3,H4).
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6.3 Domain-agnostic document datasets and label-

ing taxonomies

Two different document datasets with class labels that do not depend on the do-

main have been used for evaluation. Details of the datasets, along with examples of

statements/extracts corresponding to each domain-agnostic category are tabulated in

Table 6.1. Although these datasets have not been widely used in document classification

tasks, this thesis adopts the domain-agnostic properties of the class labels belonging to

the respective documents for analysis. In addition, three of the question datasets (NU,

ARC, and LREC) as described in Chapter 5 are used for performance evaluation.

In the Argumentative (Arg.) Zones dataset, documents have been labeled into argu-

mentative zones by extracting sentences from the abstract and introduction of more than

3000 articles from biology, machine learning, and psychology journals [179–181]. This

thesis selects 1257 documents with class labels Aim, Own, Contrast, and Miscellaneous.

These labels correspond, respectively, to a specific research goal of the paper, description

of own work presented in the paper, statements of comparison with other works along

with the limitations of existing works, and scientific background along with descriptions

of other researchers’ works.

The SkillsFuture Singapore (SSG) dataset involves the mapping of 610 job descriptions

across various industries to skills. These skills are general competencies expected of

employees across several job scopes [37]. Thirty-four sectors with several sub-roles that

have been mapped to critical core skills (Thinking critically, Interacting with others, and

Staying relevant) [38] have been used in this thesis.

6.4 Hyperparameter selection

The same intra- and inter-propagation methods established in TensorGCN according

to (2.20) have been employed in QGN. Hyperparameters for the embeddings and con-

volutional networks are, therefore, adopted from the TensorGCN implementation. Two

layers of TensorGCN are used with the first layer dimension of node embedding being
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defined as 200 and the second equal to NL. During training, the dropout rate is set as

0.8 and the L2 loss weight is set as 1e-4. Seventy percent of each dataset is used for

training with the remaining thirty percent for testing. Ten percent of the training set

is randomly selected as the validation set. The Adam optimizer with a learning rate of

0.002 is used along with a maximum of 1000 training epochs. The window size in QGN

is equivalent to the length of each concatenated text Ldm .

Phrase embeddings are trained using BERT with a vector dimension of 768. The

remaining topic modeling-related hyperparameters are obtained from Qu-LDA [172]. The

number of topics was evaluated from 5 to 60 in intervals of 5 with the optimal number

being one that achieves the highest macro-average F1 score. The optimal number of

topics for the Arg. Zones and SSG datasets was found to be 50 while it was 20 for the

remaining two datasets; the higher number of topics found in the first two datasets was

due to the relatively longer documents. Since questions in the NU, ARC, and LREC

datasets are shorter, these datasets require a lower number of topics to avoid over-fitting.

Symmetric β = 0.01 values are employed while the asymmetric α values were derived via

Newton-Raphson optimization [60]. The asymmetric priors λ for η were computed via

the original C-value for nested regexes in Qu-LDA [172]. 1000 Gibbs sampling iterations

for both training and testing have been used.
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Table 6.1: Details of datasets used for ADC performance evaluation (the abbreviation “Arg.” refers to Argumentative)

Arg. Zones dataset [179–181] SSG dataset [37,38]
Source University of California SkillsFuture Singapore

Number of documents 1257 610
Type of documents Journal articles Job descriptions

Domain-agnostic category Argumentative zones Generic skillsets

Class labels

Aim (15.4%) Thinking critically (37.2%)
Own (34.8%) Interacting with others (53.4%)

Contrast (13.5%) Staying relevant (9.4%)
Miscellaneous (36.3%)

Examples of NPs
our contribution good time management

traditional approaches the initiative
the mechanism technical feasibility

Examples of VPs
are estimated also perform

experimentally show practice change
identically distributed is required
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Table 6.2: Macro-average F1 scores for each dataset

Deep learning technique Arg. Zones SSG NU ARC LREC
Bi-LSTM 0.481 0.387 0.680 0.687 0.689

CNN 0.498 0.384 0.700 0.663 0.651
TextGCN [39] 0.496 0.395 0.693 0.703 0.651

TensorGCN [40] 0.533 0.373 0.748 0.706 0.701
QGN 0.586 0.373 0.758 0.742 0.756

6.5 Quantitative analysis

Performance of the proposed QGN is compared against baseline deep learning methods

for text classification such as bidirectional long short-term memory network (Bi-LSTM),

convolutional neural network (CNN), TextGCN [39], and TensorGCN [40]. GFN is not

used for comparison since it does not incorporate text nodes that are required for domain-

agnostic classification. To evaluate the classification reliability of the above methods with

the actual class labels, the F1 measure is used to observe the extent of how each technique

minimizes false positives and false negatives. The macro-average F1 scores for the five

datasets are shown in Table 6.2.

The Arg. Zones dataset highlights the efficacy of employing graph networks for

domain-agnostic document classification. The overall classification performance is com-

parable for Bi-LSTM, CNN, and TextGCN due to the lack of incorporating unique fea-

tures for domain-agnostic classification. This is reflected by the macro-average F1 scores

of 0.481, 0.498, and 0.496, respectively in Table 6.2. The increase in performance of Ten-

sorGCN (with a macro-average score of 0.533) is due to the consideration of syntactic,

semantic, and sequential computation methods of word-word edge weights. QGN aug-

ments TensorGCN by extending word nodes to other observable and latent nodes such

as phrases, regexes, and topics that holistically represent a text. The use of specific com-

putations between similar node types based on unique properties (e.g., KL-divergence

between topics since they are represented as probability distributions) and for the re-

lationships with text nodes beyond TF-IDF (e.g., C-value for nested regexes) allows

better discrimination of class labels since it accounts for distinguishable features being

extracted. This is reflected by an approximate 10% increase in the macro-average F1
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Figure 6.4: Performance of QGN for the Arg. Zones and ARC datasets via precision and
recall scores.

score from 0.533 for TensorGCN to 0.586 for QGN as seen in Table 6.2.

Similar performance improvement is observed for the other three question datasets.

For the ARC and LREC datasets, the proposed QGN model achieves approximately

5-8% increase (from 0.706 to 0.742 and from 0.701 to 0.756, respectively) in the macro-

average F1 scores in comparison to TensorGCN. It is also useful to note that the models

exhibit higher performance for these datasets compared to the Arg. Zones dataset. This

is due to the existence of overlapping content between the description of an author’s own

work across other class labels resulting in mis-classification for the Own class label. This

effect can be observed in Figure 6.4(a), where the Arg. Zones dataset suffers from a low

precision score of 0.16 for the Own class label when processed via QGN. As opposed

to the Arg. Zones dataset, the ARC dataset achieves consistently high precision and

recall scores across all three class labels due to distinguishable class labels as seen in

Figure 6.4(b), resulting in a higher macro-average F1 score than the Arg. Zones dataset.

It is useful to note that poor classification performance is exhibited across all mod-

els for the SSG dataset. On further investigation, it was determined that this poor

performance is attributed to the nature of the job descriptions in relation to the domain-

agnostic class labels. Since there exist overlaps with multiple skills being involved in each

job role, confining a job description to one skill achieves low macro-average F1 scores.
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Dependency parsing of non-consecutive words

(a) Syntactic graph (word nodes)

quantitatively_oriented… risk_compliance… different_stakeholders

High cosine similarity value = 0.729

Low cosine similarity value = 0.544

NOUN_NOUN ADJ_NOUNADV_VERB PMI of regexes not adjacent to each other

(b) Semantic graph (phrase nodes)

(c) Sequential graph (regex nodes)

Topic 11 Topic 17 Topic 48 Topic 49

handle audits detail supervisor

mentor class researches managing

overseas journals cuts needs

AUX_VERB ADJ_NOUN_NOUN ADJ_NOUN_NOUN DET_NOUN

AUX_ADV_VERB NOUN_NOUN NOUN_NOUN DET_ADJ_NOUN

(d) Topical graph (topic nodes)

Low average KL-divergence value = 2.45 

(convergent distributions)

High average KL-divergence value = 9.88 

(divergent distributions)

Figure 6.5: Illustrative examples of the four types of graphs in the proposed quad-faceted feature-based graph network for
the SSG dataset. The syntactic graph comprising word nodes is shown in (a), the semantic graph made up of phrase nodes
is depicted in (b), the sequential graph consisting of regex nodes is shown in (c), while the topical graph that constitutes
topic nodes can be seen in (d).
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Dependency parsing of non-consecutive words
(a) Syntactic graph (word nodes)

create…

Higher cosine similarity value
Lower cosine similarity value

DET_ADJ_NOUN DET_NOUNVERB PMI of regexes not adjacent to each other

(b) Semantic graph (phrase nodes)

(c) Sequential graph (regex nodes)

Topic A Topic B Topic C Topic D

weakness think construct state

inspect solve specify strikes 

defend create examine illustrate

AUX_VERB ADJ_NOUN_NOUN ADJ_NOUN_NOUN DET_NOUN

AUX_ADV_VERB NOUN_NOUN NOUN_NOUN DET_ADJ_NOUN

(d) Topical graph (topic nodes)

Low average KL-divergence value 

(convergent distributions)

High average KL-divergence value

(divergent distributions)

a_storyboard…
a_sequelthe_same_characters…

DET_NOUN

create

VERB

a

DET

storyboard

NOUN

for

ADP

det

dobj

prep

Figure 6.6: Illustrative examples of the four types of graphs in the proposed quad-faceted feature-based graph network for
the NU dataset. The syntactic graph comprising word nodes is shown in (a), the semantic graph made up of phrase nodes
is depicted in (b), the sequential graph consisting of regex nodes is shown in (c), while the topical graph that constitutes
topic nodes can be seen in (d).
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Table 6.3: Examples of phrases and cosine similarity values within and across class labels in the ARC dataset

Phrase pi Class label Phrase pj Class label cos
(
θ(pi, pj)

)
the least likely way Basic facts which layer Basic facts 0.705

her thinking Hypothetical an investigation Hypothetical 0.749
the following Linguistic matching the best prediction Hypothetical 0.577

what part Basic facts the best explanation Linguistic matching 0.568

Table 6.4: Examples of edge weights in relation to text nodes using TF-IDF versus QGN computations for the Arg. Zones
dataset

Node type Node name TF-IDF value Computation in QGN New value

Regex NOUN NOUN 0.466 e(dm, rk) = C(G)
rk (dm) using (6.18) 2.216

Topic Topic 36 10.122 e(dm, zj) = Θscl(zj)(dm) using (6.19) 2.262
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6.6 Qualitative analysis

To gain further insights on the reasons for QGN achieving the highest classification

performance, the impact of unique edge weights between similar types of nodes, as well

as, the difference in edge weights with reference to text nodes if TF-IDF was instead being

employed have been examined. Such node interaction patterns have shown to provide

informative components associated with the class labels [182].

With reference to the computations as described in Section 6.2.1, illustrative examples

of the quad-faceted graphs are shown in Figure 6.5 and Figure 6.6 using an exemplar

document that describes the job description of a risk compliance and legal credit risk

officer/manager from the SSG dataset and an exemplar pre-processed question “create

a storyboard for a sequel to your book use the same characters” from the NU dataset,

respectively. The syntactic graph comprising word nodes, the semantic graph made up

of phrase nodes, the sequential graph consisting of regex nodes, and the topical graph

that constitutes topic nodes are depicted in Figure 6.5(a)-(d), respectively. The impact

of each graph highlights the need to consider the unique properties of each node type and

the corresponding relationships, particularly in a bi-term context. From Figure 6.5(a)

and Figure 6.6(a), it can be seen that by considering bi-terms, the dependency parsing

of non-consecutive words is extracted (highlighted via the rectangle). If bi-grams were

instead extracted, only adjacent relationships will be identified. However, the use of bi-

grams has been shown to only be suitable for long texts but ineffective for short texts

such as questions since the frequency of bi-grams is low; this leads to inefficient modeling

of word co-occurrence and dependency for subsequent classification [183].

In Figure 6.5(b), three different phrases (two noun phrases and one verb phrase) from

the document are shown. In Figure 6.6(b), four different phrases (three noun phrases

and one verb phrase) from the question are shown. In Figure 6.5(b), the BERT cosine

similarity has a relatively high value of 0.729 between the phrases risk compliance and

different stakeholders as both are noun phrases referring to a common context on per-

forming a real-life application that deals with people involved in it. On the other hand,

the BERT cosine similarity has a lower value of 0.544 between the phrases quantita-

tively oriented and different stakeholders since the former is a verb phrase that requires
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an ability while the latter is a noun phrase stating an object. Similarly, in Figure 6.6(b),

the BERT cosine similarity has a relatively high value between the phrases a storyboard

and a sequel as both are noun phrases referring to a common context. On the other

hand, the BERT cosine similarity attains a lower value between the phrases create and

the same characters since the former is a verb phrase that requires an ability while the

latter is a noun phrase with reference to an object. Hence, relationships that are strongly

built among such similar pairs of phrases are important in determining the features of a

document that contribute toward the classification into respective class labels.

To further substantiate Figure 6.5(b), the effect of bi-terms in providing more con-

textual information has been investigated. Applying cosine similarities between BERT

vectors of phrases is shown to be effective in differentiating among class labels. Examples

of phrases and cosine similarity values within and across class labels in the ARC dataset

are shown in Table 6.3. It can be seen that phrases that are strongly indicative of a class

label (e.g., the least likely way and which layer belonging to Basic facts) achieve high

cos
(
θ(pi, pj)

)
values according to (6.5), whereas phrases in different class labels (e.g.,

the following that is strongly toward Linguistic matching and the best prediction that

is highly associated with Hypothetical) achieve low cos
(
θ(pi, pj)

)
values. As opposed to

the use of bi-grams and word nodes in the semantic graph of TensorGCN, considering

bi-terms and phrase nodes in QGN enables a wider range of co-occurrences and more

meaningful relationships that result in good classification performance.

Using the same set of phrases in Figure 6.5(b) and Figure 6.6(b), Figure 6.5(c) and

Figure 6.6(c), respectively highlight that the PMI is computed for regexes not adjacent

to each other. For PMIs computed between every regex pair derived from bi-terms,

meaningful collocation pairs that are discriminative features (e.g., NOUN NOUN and

ADJ NOUN ) achieve high PMI since the probability of co-occurrence is only modestly

lower than the marginal probabilities of occurrence of each regex within the text. Con-

versely, a pair of regexes whose marginal probabilities of occurrence are considerably

higher than their probability of co-occurrence achieves a low PMI. For instance, verb

phrase-based regexes and noun phrase-based regexes do not necessarily occur together.

Similar to the identification of dependent pairs of words, the use of bi-terms allows for

detection of specific regex pairs across a text that achieve high PMI to distinguish such
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features apart from other class labels.

Figure 6.5(d) and Figure 6.6(d) show tables of four sample topics from the respec-

tive datasets that combine the outputs from the topic-word (unshaded) and topic-regex

(shaded) distributions. It is worth noting that the words and regexes within each topic

might not have a direct relationship with each other; the algorithm groups these items

into topics based on frequencies of co-occurrence determined by the two distributions.

From Figure 6.5(d), it can be noted that Topic 11 and Topic 49 achieve a high average

KL-divergence value of 9.88 (divergent distributions). This is mainly due to verb phrase-

based regexes largely belonging to the former topic while the latter topic consists of noun

phrase-based regexes although the presence of the words in both topics (e.g., “mentor”

and “supervisor”) suggests similar contextual information. In contrast, Topic 17 and

Topic 48 achieve a low average KL-divergence value of 2.45 (convergent distributions)

since both topics comprise noun phrase-based regexes and words with similar contextual

information (e.g., “audits” and “researches”.) From Figure 6.6(d), it can be noted that

Topic A and Topic D achieve a high average KL-divergence value (divergent distribu-

tions). This is due to verb phrase-based regexes largely belonging to the former topic

while the latter topic consists of noun phrase-based regexes. In addition, the presence

of the words in both topics suggests dissimilar contextual information. For instance,

words such as inspect and defend are of higher cognitive complexities in comparison to

state or illustrate in the NU dataset. In contrast, Topic B and Topic C achieve a low

average KL-divergence value (convergent distributions) since both topics comprise noun

phrase-based regexes and words with similar contextual information such as create and

construct. Given the combinations of highly associated topics in a text reflected via low

KL-divergence values, QGN can differentiate among the topical patterns corresponding

to each class label.

In terms of the edge weights computed with respect to text nodes described in Sec-

tion 6.2.2, Table 6.4 shows examples of edge weights using TF-IDF compared to unique

computations for the Arg. Zones dataset. For instance, a particular regexNOUN NOUN

achieves a text-regex TF-IDF edge weight of 0.466, indicating a commonly used regex

that receives a low weight. In contrast, the modified C-value C(G)
rk (dm) = 2.216 computed

using (6.18) suggests a higher importance given to nested regexes. This higher C-value in
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Table 6.5: Ablation test results (macro-average F1 scores)

Removal of graph ARC LREC
Syntactic (G1) 0.702 0.714
Semantic (G2) 0.705 0.690
Sequential (G3) 0.668 0.699

Topical (G4) 0.710 0.717
None (proposed model) 0.742 0.756

a text indicates better discriminability against other texts with respect to G3. Similarly,

Topic 36 achieves an exceptionally high edge weight of 10.122 via TF-IDF while a rela-

tively similar value of Θscl(zj,dm) = 2.262 is obtained for QGN. Therefore, a significantly

overemphasized topic probability via TF-IDF leads to an incorrect representation of G4,

in turn, resulting in inaccurate classification. The above illustrates that the relevance of

edge weights with respect to text nodes according to each node type is important in de-

termining meaningful feature representations of a text in QGN compared to TensorGCN

or TextGCN that utilize an undesirable one-size-fits-all approach.

6.7 Ablation test

An ablation study was performed to analyze the impact of each type of graph when it

was removed from the QGN architecture. The macro-average F1 scores for each scenario

of QGN without each graph type for two of the datasets (ARC and LREC) are tabulated

in Table 6.5. It can be seen that the sensitivity of each graph varies for different datasets.

For instance, the removal of G3 results in an approximate 10% drop in classification

performance compared to the proposed model for the ARC dataset. It is worth noting

that G3 seems to be the most important graph for the ARC dataset since the structure

of questions (i.e., regexes) are different across the reasoning capability class labels. For

example, the Basic facts class label tends to have more noun phrase-based regexes than

the other two class labels. The sequential presence of regexes, therefore, has the most

significant contribution toward the classification performance.

However, removing G2 achieves the lowest performance for the LREC dataset. This
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could be due to the semantic information that differentiates among the question types.

For instance, phrases such as many situations, two examples, and many reasons contain a

common meaning related to the Answers will vary class label. On the other hand, phrases

such as the right, the room, this picture, and this mini lab, which refer to a particular

situation, belong to the Context sensitive class label. This observation is in line with

the importance of semantic similarity in knowledge-driven graphs for text classification

applications beyond domain-agnostic class labels such as sentiment analysis that is based

on sentence polarity [184]. Nevertheless, it is worth noting that all four graphs are

required for good classification performance due to the advantages of each dimension.

6.8 Chapter summary

This chapter introduces four graphs with different features to accurately represent

a text for classification according to domain-agnostic class labels. The proposed QGN

augments TensorGCN by incorporating term weighting, nested phrases and regexes, and

topic modeling for domain-agnostic text classification. With observable and latent node

types along with the corresponding edge weights between the same type of nodes and

in relation to text nodes, the proposed model outperforms state-of-the-art graph-based

methods for text classification.
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Conclusions and Recommendations

7.1 Conclusions

The developed question classification models in this thesis are able to effectively map

assessment questions to domain-agnostic class labels such as learning outcomes, question

types, or reasoning capabilities as long as the course designers or subject matter experts

provide enough examples that are explicitly aligned to the intended learning outcomes

when training the model.

To assist instructors match their assessment questions to learning outcomes, the pro-

posed q-WNTM model in Chapter 4 is compared with previously implemented methods

and the proposed s.TF-IDF model presented in Chapter 3. The q-WNTM algorithm aug-

ments the performance of question classification beyond the previously described work by

addressing issues concerning the selection of stopwords and considering redundant edges

in the network of word co-occurrences. Beyond a single dataset and a single taxonomy,

the proposed Qu-LDA algorithm in Chapter 5 surpasses such restrictions and generalizes

to other dataset and class labels being considered in this thesis.

Hence, with the reliability of the proposed techniques presented in this thesis, the pro-

cess for calibrating the algorithm could be used in both academic or industrial settings

to provide the right set of formative assessment opportunities to students (for enhanc-

ing subject knowledge) or employees (for professional development). Once the learning
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outcomes of assessment questions are labeled reliably, it is easier to engage learners in

deliberate practice to reach those learning outcomes and develop their expertise. Once

opportunities for deliberate practice that align to the course learning outcomes are im-

plemented into a course, it facilitates the provision of appropriate feedback based on the

performance of students in the various categories of questions.

On the other hand, the developed quad-faceted feature-based graph network in Chap-

ter 6 for document classification poses benefits in areas such as recommendation of suit-

able job roles based on skillsets acquired by employees, opportunities for skills upgrade

when transferrable skills are required, or analyzing different types of scientific articles

based on their structures.

7.2 Recommendations for future research

The following are some suggestions for future research:

• Dependencies among topics is a potential area that could provide more in-depth

knowledge on why certain words or regexes are grouped together and how the

presence of one topic affects another.

• Exploring the suitability of other datasets with class labels of a domain-agnostic

nature would be useful for extensive comparison analysis in Chapter 6.

• Having different weights for each graph in QGN can be considered instead of having

equal importance for each of the four graphs. This could be naturally determined

by a learnable parameter via a weighted fusion layer. In addition, heterogeneity

within each graph in QGN could be further explored beyond the use of GCN.

• The work on question classification is part of the research ecosystem for skill sets

identification. Beyond question classification, an additional step of evaluation of

a learner’s knowledge in the summative assessment is important to determine the

level of proficiency attained. Based on the existing mastery level of the learners,

appropriate measures can be established to guide learners in their journey towards
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gaining new relevant skills sets for their education or to climb up the career ladder.

Hence, after identifying the learning outcome label of questions, knowledge tracing

can be applied to track students’ answering skills in the different types of questions

using their scores or results. It would subsequently be less challenging to pinpoint

where a learner lies in the various levels of cognitive development.
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