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ARTICLE

Perovskite metasurfaces with large superstructural
chirality
Guankui Long 1,2,5, Giorgio Adamo 1,3,5, Jingyi Tian1,3, Maciej Klein1,3, Harish N. S. Krishnamoorthy1,3,

Elena Feltri1,3,4, Hebin Wang2 & Cesare Soci 1,3✉

Recent attempts to synthesize hybrid perovskites with large chirality have been hampered by

large size mismatch and weak interaction between their structure and the wavelength of light.

Here we adopt a planar nanostructure design to overcome these limitations and realize all-

dielectric perovskite metasurfaces with giant superstructural chirality. We identify a direct

spectral correspondence between the near- and the far- field chirality, and tune the electric

and magnetic multipole moments of the resonant chiral metamolecules to obtain large ani-

sotropy factor of 0.49 and circular dichroism of 6350 mdeg. Simulations show that larger

area metasurfaces could yield even higher optical activity, approaching the theoretical limits.

Our results clearly demonstrate the advantages of nanostructrure engineering for the

implementation of perovskite chiral photonic, optoelectronic, and spintronic devices.
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Combining chirality with the remarkable optical1–3,
electrical4–7, and spintronic properties8–10 of perovskites,
chiral hybrid organic-inorganic perovskites are receiving

considerable attention for applications in chiral optoelectronics11–14

and spintronics15,16, such as spin transport and control15–18, cir-
cularly polarized light (CPL) detection and emission18–25, second-
harmonic generation26–28, and other linear and nonlinear chir-
optical effects29. Nonetheless, due to the weak chirality transfer
(limited degree of structural twisting) from chiral molecules to the
perovskite framework, optical activity, and distinguishability of
circularly polarization imparted on light passing through the sample
is rather poor. Together with circular dichroism (CD), the degree of
chirality of a medium can be quantified by the anisotropy factor
(gCD). While CD measures the difference in absorption of circularly
polarized light of opposite handedness30, which is proportional to the
rotational strength of the medium, gCD provides the degree of ellip-
ticity a linearly polarized light acquires after traversing the
chiral medium. The CD can therefore be defined as
CD ¼ TRCP � TLCP ¼ ALCP � ARCP, if RRCP ¼ RLCP(Supplemen-
tary Note 1). Expressed in millidegrees, the CD, θ (mdeg), can

alternatively be defined as: θ mdeg
� � ¼ 180000

π arctanð
ffiffiffiffiffiffiffi
TRCP

p
�

ffiffiffiffiffiffiffi
TLCP

p
ffiffiffiffiffiffiffi
TRCP

p
þ

ffiffiffiffiffiffiffi
TLCP

p Þ,
while the anisotropy factor31 is given by gCD ¼ 2ðlgTRCP�lgTLCPÞ

lgTRCPþlgTLCP
(Sup-

plementary Note 2). As shown in Fig. 1, the highest anisotropy factor
(gCD) of circularly polarized absorption reported to date in per-
ovskites with structural chirality obtained by “bottom-up” synthesis is
only 0.0425, far from the actual requirements of practical chiral
optoelectronic and spintronic devices11,32,33. Further increase of

chirality through molecular design is very challenging due to the
negligible and hardly tunable magnetic transition dipole moment
of chiral perovskites23. Thus, alternative strategies to produce
chiral perovskite structures with strong optical activity34 are in
high demand.

Nanostrucure engineering, through “top-down” fabrication of
metasurfaces with chiral shapes or arrangements, has proven to be
an effective strategy to impart strong superstructural chirality to
achiral media35–44. This approach can deliver chiral metasurfaces
with large optical activity using high-throughput screening of
metamolecule designs by electromagnetic wave numerical simula-
tions, thus saving significant time and reagent consumption needed
in bottom-up synthetic approach. At the same time, the high and
compositionally tunable refractive index (n > 1.9)2,3 of hybrid per-
ovskites has enabled the realization of dielectric metasurfaces45–48

and photonic crystals with high-resolution structural colors45,49,50,
enhanced photoluminescence48,51–55, anomalous reflection38,
optical phase control56, third harmonic generation and three-
photon luminecence57, and a variety of applications ranging
from optical encryption49 and encoding57 to THz emission58,
microlasers49,51,59–61, holography50,56, and ultrafast all-optical
switching62. Here we show that a combination of metasurface
design and perovskite nanostructuring45,55 can yield perovskite
metasurfaces with giant superstructural chirality.

Specifically, we identify a previously unrecognized spectral
correspondence between near- and far-field chirality, and use it to
fine tune the electric and magnetic multipole moments of the
resonant chiral metamolecules via high-throughput screening of
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Fig. 1 Approaching theoretical limits with superstructural chirality. In 2017, Moon et al. first investigated the chiroptical properties of 2D chiral perovskite
film, reporting CD of 155 mdeg and gCD of 0.00514. In 2018, Sargent et al. achieved CD of 200mdeg and gCD of 0.006 in a 2D bromide chiral perovskite
film. In 2019, Tang et al. reported circularly polarized photodetectors based on a 1D chiral perovskite film with CD of 200mdeg and gCD of 0.0219. In 2020,
Miyasaka et al. reported an encouraging CD of 3200mdeg and gCD of 0.04 after morphology optimization of the 1D chiral perovskite film25. Switching from
structural to superstructural chirality, this work reports high CD of 6350mdeg and large gCD of 0.49 in a perovskite chiral metasurface obtained by
nanostructure engineering. Numerical simulations predict CD of 18900mdeg and gCD of 1.1 in large area samples, coming closer to the theoretical limits of
both parameters. The diamonds and 4-point stars indicate representative studies where metasurface with strong chirality were obtained using
conventional optical materials like Au40 and TiO2

37. The theoretical limits for CD ( ± 45000 mdeg) and gCD (±2) are obtained using the formulas defined in
the introduction and correspond to the case of one circular polarization (e.g. LCP) being fully absorbed and the other (e.g. RCP) fully transmitted.
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the nanostructure design. We experimentally demonstrate a
20 µm × 20 µm planar-chiral perovskite metasurface with large
anisotropy factor of gCD= 0.49 and circular dichroism of CD=
6350 mdeg, and predict by simulations that gCD= 1.11 and
CD~18900 mdeg would be achievable in larger area metasurfaces.
The methodological transition from chemical structure engi-
neering to optical design of the metamolecules ensures continuity
of the exponential improvement of perovskite circular dichroism
and anisotropy factor, taking them closer to their theoretical
limits (Fig. 1). We argue that superstrucural chirality opens new
opportunities to couple optical chirality with compositional
engineering, light-emission and detection, structural phase
change, and spin-dependent transport properties of hybrid
perovskites.

Results
Perovskite metasurfaces with high optical activity. For a proof-
of-principle demonstration, we selected the methylammonium
lead iodide perovskite, CH3NH3PbI3 (MAPbI3), a reliable high
refractive index achiral platform for all-dielectric perovskite
metasurfaces45,56. Thin perovskite films (~315 nm) were spin-cast
on quartz substrates and used for fabricating the chiral meta-
surface. The dielectric functions of MAPbI345 and quartz were
used to design metasurfaces comprising of planar chiral meta-
molecules of mirror twist (Supplementary Fig. 1), with both unit
cell size and period of 730 nm, targeting optical resonances in the
low-loss, sub-band edge region of the perovskite.

The representative unit of the perovskite chiral superstructure
is shown in Fig. 2a. The gammadion metamolecule design was
chosen based on the better performance compared to other
possible designs (Supplementary Fig. 2). Optimal design para-
meters, bound by state-of-the-art nanofabrication tolerances and
limits, were obtained by high-throughput superstructure screen-
ing via full wave electromagnetic Finite-Difference Time-Domain
(FDTD) simulations (Supplementary Fig. 3), yielding s= 120 nm,
r= 305 nm, w= 120 nm, l= 500 nm, h= 315 nm, and p= 730 nm.
The FDTD simulations predict this resonant perovskite chiral
metasurface design could generate a giant CD of 45% (Supple-
mentary Fig. 4) at 767 nm under normal incidence, around the
band edge of the MAPbI3, on-par with the best performing
conventional planar dielectric nanostructures to date37. Two planar-
chiral nanostructured perovskite metasurfaces of opposite handed-
ness were carved on the MAPbI3 perovskite film by focused ion
beam (FIB) milling, in arrays of about 20 µm × 20 µm area
(Supplementary Fig. 5). The CD of perovskite chiral metasurface of
both handedness and unpatterned MAPbI3 films was measured in
transmission at quasi-normal incidence, using a microscope
objective with NA= 0.1 (solid angle ϕ ~ 5.74°). The spectra were
collected across the entire visible region, under both right- and left-
handed circularly polarized light illumination, and detected using a
grating spectrometer, as shown in Fig. 2b. Consistent with the
simulation results (Supplementary Fig. 6), distinct peaks were
observed in the experimental transmission spectra around 747 nm
(Supplementary Fig. 7), leading to a remarkable circular dichroism
experimental value of 16% (as shown in Fig. 2c). As expected,
mirror symmetric left-handed (LPCM) and right-handed perovskite
chiral metasurfaces (RPCM) exhibit opposite CD, whereas the
unpatterned area of MAPbI3, or metasurfaces with achiral
metamolecules (Supplementary Fig. 8), exhibit negligible CD
through the entire visible region. When expressed in millidegrees,
θ (mdeg), the CD of perovskite metasurface with superstructural
chirality reaches a peak value of 6350mdeg at 747 nm (Supple-
mentary Fig. 9), an almost two-fold increase over the highest
reported CD for “bottom-up” perovskite with structural chirality
(3200 mdeg)25. At the same time. the gCD= 0.49 of the perovskite

metasurface with superstructural chirality (Supplementary Fig. 10)
is almost 12 times higher than the best value for “bottom-up”
perovskite with structural chirality reported so far (gCD= 0.0425).
Note that, while losses induced by the FIB milling process may
affect the circular dichroism of the perovskite metasurfaces, it
should be safe to neglect them in structures where the exposed
regions are completely removed (see discussion in Supplementary
Note 3 and Supplementary Fig. 18).

Angle-dependent numerical simulations allow examining the
difference between predicted and experimentally measured CD
spectra at incidence angles off the normal. The color map in
Fig. 2d illustrates the dependence of CD spectra on incidence
angle: the CD intensity decreases and broadens rapidly away from
normal incidence, becoming almost featureless for ϕ > 7°. Within
a ϕ ~ 5.74o (corresponding to a numerical aperture of NA= 0.1)
solid angle of incidence, the numerically simulated CD is in
excellent agreement with the experimental results. This confirms
that the role of optical losses induced by the FIB fabrication
is negligible. Circular dichroism values well exceeding 40% (θ
(mdeg)~18,900 mdeg) and anisotropy factor values higher than 1
(gCD= 1.11), as shown in Supplementary Fig 11), are expected in
large area devices illuminated at quasi-normal incidence, which
could be realized by high-throughput nanofabrication techniques
like nanoimprint lithography.

Spectral correspondence of optical chirality and circular
dichroism. The origin of the giant CD generated by the per-
ovskite chiral metasurfaces can be understood by investigating the
near-field interaction of the metamolecules with the incident light
and how this relates to the chiral response observed in the far-
field. The chirality of the optical near-field can be gauged by the
optical chirality, OC63, while the combination of electromagnetic
multipoles can be employed to predict how the near-field mode
distribution radiates into the far-field. OC is a time-even pseu-
doscalar, introduced as a measurement of field chirality, that
describes the rate to which, at each point in space, electric and
magnetic field vectors coil around a helical axis64. This is parti-
cularly interesting in the near-field of nanostructures where so-
called superchiral fields65 are generated by the complex interac-
tion with circularly polarized light. The analytical expression for
the OC, proposed mathematically in 196466, and recently corre-
lated to the chiral asymmetry of the rate of excitation of a small
chiral molecule67, can be approximated by

OC ¼ � ε0w
2

Im E� � B½ �; ð1Þ

where ε0 is the permittivity of free space, w is angular frequency, E
and B are the complex amplitudes of the electric field and mag-
netic field, respectively. Simulated OCs induced by light waves of
opposite helicity were integrated on the output surface of the
perovskite chiral metasurface, and their difference was derived as
a function of excitation wavelength. The differential OC and the
numerically calculated CD reveal a remarkable spectral corre-
spondence (Fig. 3a), thus providing a direct link between far- and
near-field chirality. The near-field chiral interaction opens the
possibility to tune the perovskite intrinsic optical properties such
as Purcell enhancement leading to luminescence increase45 and
lasing68 and modification of optical selection rules through the
creation of virtual optical states69. Figure 3b–e show the optical
chirality maps for a metamolecule of the left-handed chiral
metasurface at the differential OC peak wavelengths, 767 nm and
821 nm, under both left- and right-handed circularly polarized
incident light. As expected for gammadion metamolecules63, the
optical chirality maps exhibit strong hotspots and distinct anti-
clockwise twists at both wavelengths, yet with some notable dif-
ferences. While the color maps for 767 nm-LCP (Fig. 3b) and
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RCP (Fig. 3c) incident light exhibit both positive OC, with dif-
ferent spatial distribution, the color maps for 821nm-LCP
(Fig. 3d) and RCP (Fig. 3e) incident light have opposite OC
values. These differences suggest that the strong CD of the per-
ovskite metasurface at 767 nm and 821 nm shall be attributed to
different combinations of electromagnetic modes of the
metamolecule.

Contribution of scattering multiples to circular dichroism.
Decomposition into multipoles of the metamolecule scattering
cross sections, under both left- and right-handed circularly
polarized illumination, allows identifying the electromagnetic
modes responsible for the giant CD. The modes are expected to
have components of electric and magnetic moments parallel to
each other (i.e., resulting electric fields aligned perpendicularly),
which induce polarization rotation and optical activity. This is a
generalization of the so-called Rosenfeld criterion30,70, which
requires a non-null cross-product of the net electric and magnetic
dipole moments, pm≠0, as condition to observe chiro-optical
activity (see Supplementary Figs. 12–15). The total scattering
dichroism can be defined as CDCS

¼ ðCSL
� CSR

Þ, where CSL
and

CSR
are the total scattering cross sections of a metamolecule of

chosen handedness under left-handed and right-handed circu-
larly polarized light, respectively. The spectral response of CDCS

follows closely that of CD, with a distinct peak around 767 nm
and dip around 821 nm (Fig. 4a). The small discrepancy between
the curves can be attributed to the different definitions of total
scattering cross section and transmission (see Methods). Since the
total scattering cross-section is proportional to the sum of scat-
tering intensities of the multipoles, CS / ∑iCSi

(see Methods for
exact formulation), the total scattering dichroism can be expres-
sed as the sum of individual multipoles scattering dichroisms,
CDCS

¼ ∑iCDCE
ið Þ þ CDCM

ið Þ, where CDCE=M
ið Þ is the dichroism

of the scattering cross section of the electric/magnetic multipole
of order i. This makes it possible to quantify the contribution of
each multipole to the dichroism.

The multipoles mainly responsible for the chiral response of
the perovskite gammadion metamolecules are the electric and
magnetic dipoles (ED, MD), quadrupoles (EQ, MQ), and
octupoles (EO, MO); their scattering dichroisms are shown in
Fig. 4b–d. Other modes such as electric and magnetic hexadeca-
poles (EH, MH) are negligible (Supplementary Fig. 16). It is

Fig. 2 Giant circular dichroism of perovskite chiral metasurfaces. a Schematic of a left-handed perovskite chiral metamolecule on quartz substrate
(s= 120 nm, r= 305 nm, w= 120 nm, l= 500 nm, g= 70 nm, h= 315 nm, p= 730 nm). b Micro-spectrometer setup for the measurement of circular
dichroism on small area metasurfaces. c Experimental circular dichroism of unpatterned MAPbI3 film, right- and left-handed perovskite chiral metasurfaces
(RPCM and LPCM), illuminated over a solid angle with NA of 0.1. The insets show scanning electron microscope images of 3×3 unit cells of LPCM and
RPCM. d Color map of simulated circular dichroism of the LPCM as a function of wavelength and incidence angle ϕ. e Spectra of the simulated circular
dichroism of the RPCM and LPCM for an incidence angle ϕ= 5.74o.
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worth noting that the spectral distribution of the CD does not
correlate with high-intensity multipoles, rather with their
individual scattering dichroism. For example, while the magnetic
dipole is the strongest scattering multipole at wavelengths longer
than 800 nm (Supplementary Fig. 17), the high circular dichroism
at 821 nm is mainly caused by the difference in scattering
strengths of the electric and magnetic quadrupoles for LCP and
RCP excitation (Fig. 4c), not of the magnetic dipoles. On the
other hand, the chiral response of the strong circular dichroism at
shorter wavelengths (767 nm) stems from the cooperative effect
of all electric and magnetic multipoles up to the third order
(Fig. 4b–d).

Discussion
We demonstrated a dielectric perovskite metasurface with giant
chirality. Circular dichroism of 6350 mdeg and anisotropy factor
of 0.49 were achieved experimentally, with simulations showing
that larger area metasurfaces could yield anisotropy factor of 1.11
and circular dichroism of ~18900 mdeg, close to their theoretical
limits. The remarkably strong chiroptical behavior results from
the fine tuning of geometrical parameters and electromagnetic
multipole moments competition, following the newly recognized
spectral correspondence between near- and far-field chirality.
These results show that the change in methodology, from che-
mical to superstructural engineering can perpetuate the expo-
nential improvement of perovskite circular dichroism and
anisotropy factor. The nanostructure engineering approach, aided
by high-throughput screening of metamolecule shapes and
parameters via electromagnetic wave numerical simulations, can
extend this paradigm to the entire visible and near infrared
spectrum, while saving considerable time and use of reagents

needed in bottom-up synthesis. Furthermore, as circular dichro-
ism may also be imprinted onto the light emitted by perovskite
metasurfaces, this approach may open the way to new types of
polarization-encoding light emitting devices. Overall, the con-
currence of high refractive index, strong optical activity, excellent
radiative properties, and large area manufacturability, makes
hybrid perovskite metasurfaces a truly unique platform for chiral
photonic, optoelectronic and spintronic devices.

Methods
Thin-film fabrication. MAPbI3 solution was prepared by predesigned amount of
PbI2 (165.96 mg, TCI, 99.99%) and methylammonium iodide (57.2 mg, Dyesol) in
stoichiometric ratio dissolved in 0.3 mL DMF (anhydrous, Sigma Aldrich). The
1.2 M solution was stirred overnight at room temperature in a N2 filled glovebox,
then filtered by a polyvinylidene fluoride (PVDF) syringe filter (0.45 μm) and left
stirring at 100 °C for one hour before spin coating. The resulting solution was then
spin coated with a one-step process at 3500 rpm for 30 s onto pre-cleaned 1 × 1 cm2

quartz substrates in N2 atmosphere. After 6 s from the beginning of the spin
coating process, 500 μL of toluene (anhydrous, Sigma Aldrich) was poured onto the
spinning sample. The resulting films were then annealed at 100 °C for 15 min to
improve crystallization. The thickness of the perovskite film is ca. 315 nm.

Metasurface fabrication. The 20 × 20 µm arrays of gammadion metasurfaces, of
opposite handedness, were patterned on the perovskite film, spin-coated on a
quartz substrate, with a Helios 650 NanoLab Focused Ion Beam system, using a
nominal beam current <5 pA.

FDTD simulations. The circular dichroism of the perovskite chiral metasurface was
simulated by finite difference time-domain method (Lumerical FDTD Solutions). The
representative unit of the perovskite chiral superstructure is shown in Fig. 2a, with
design parameters s= 120 nm, r= 305 nm, w= 120 nm, l= 500 nm, h= 315 nm and
p= 730 nm, respectively. Right (Left) circularly polarized light is incident along z-axis.
Perfect Matched Layers (PML) are used in the propagation direction of the incident
light and periodic boundary conditions are used in the directions normal to the
propagation direction. The optical chirality is calculated according to Eq. 1 based on
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the electromagnetic field at the bottom surface of the superstructure. For the angle-
dependent CD, the Bloch boundary conditions are applied to the directions normal to
the light propagation direction.

Circular dichroism spectra. The circular dichroism spectra were obtained by
measuring the optical transmission of right- and left-handed chiral metasurfaces,
under right- and left-handed circularly polarized illumination, in a Nikon inverted
optical microscope, equipped with a halogen lamp (as shown in Fig. 2b). The
polarizations of the incident light were prepared by sending the light through a
polarizer and a broadband λ/4 waveplate (Thorlabs AQWP05M-580) with nearly
achromatic transmission, 0.95 < T < 0.98, and retardance, 0.24 < ρ < 0.26, in the
spectral region investigated. The light was focused on the sample using a Nikon
LWD Achromat Condenser, with 10 mm working distance and adjustable NA. To
ensure light collection from a spot smaller than the metasurface array, we used a
Nikon ×100 objective with 0.7 NA and a multimode optical fiber, acting as pinhole.
The spectra were recorded using an Acton SpectraPro 2300i monochromator and
spectrograph.

Multipole decomposition. To identify the electromagnetic modes responsible for
the giant CD, a multipole decomposition of the scattering cross sections of a single
gammadion metamolecule in the arrays under both left-handed and right-handed
circularly polarized illumination is first conducted using FDTD71. The origin of the
coordinate of multipole decomposition is chosen to be at the center of the meta-
molecule to minimize unnecessary high-order multipolar contributions.

The electric field E(r) inside the metamolecule is extracted from the simulation
to define the polarization current J rð Þ ¼ �iωε0½εr rð Þ � 1�EðrÞ. The electric

aE l;mð Þ and magnetic am l;mð Þ spherical multipole coefficients can then be
calculated as follows71,

aE l;mð Þ ¼ ð�iÞl�1k2ηOlm

E0½πð2l þ 1Þ�1=2
Z

exp �imφ
� �f Ψ l krð Þ þ Ψ 00

l krð Þ� �
Pm
l cosθð Þ̂r � J rð Þ

þ Ψ 0
l krð Þ
kr

½τ lmðθÞθ̂ � J rð Þ � iπlmðθÞϕ̂ � J rð Þ�gd3r
ð2Þ

am l;mð Þ ¼ ð�iÞlþ1k2ηOlm

E0½πð2l þ 1Þ�1=2
Z

exp �imφ
� �

jl krð Þ½τ lmðθÞϕ̂ � J rð Þ þ iπlmðθÞθ̂ � J rð Þ�d3r ð3Þ

where η is the impedance of free space; Ψ l krð Þ ¼ krjl krð Þ are the Riccati-Bessel
functions and Ψ 0

l krð Þ and Ψ 00
l krð Þ are their first and second derivatives with respect

to the argument kr; Pm
l are the associated Legendre polynomials;

Olm ¼ 1
½lðlþ1Þ�1=2 ½

2lþ1
4π

l�mð Þ!
lþmð Þ!�

1=2
; τ lm θð Þ ¼ d

dθ P
m
l ðcosθÞ; πlm θð Þ ¼ m

sinθ P
m
l ðcosθÞ.

The total scattering cross section Cs of the metamolecule can be written as the
sum of contributions from these multipoles,

Cs ¼
π

k2
∑
1

l¼1
∑
l

m¼�l
2l þ 1ð Þ½ aEðl;mÞ

�� ��2 þ aM ðl;mÞ
�� ��2� ð4Þ

These equations allow to calculate the scattering cross sections from spherical
multipoles of arbitrarily order l.
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Fig. 4 Scattering cross section dichroism of the electromagnetic multipoles in perovskite chiral metasurfaces. a Closely matching response of total
scattering dichroism, CDCS

(black curve), and circular dichroism, CD (yellow curve), as functions of the wavelength. b–d Contribution of individual
multipoles to the strong dichroism of the perovskite chiral metasurface: b electric (red curve) and magnetic (blue curve) dipole scattering dichroisms,
CDCED

and, CDCMD
, as function of the wavelength; c electric (red curve) and magnetic (blue curve) quadrupole scattering dichroisms, CDCEQ

and, CDCMQ
, as

function of the wavelength; d electric (red curve) and magnetic (blue curve) octupole scattering dichroisms, CDCEO
and, CDCMO

, as function of the
wavelength. The vertical black dotted lines indicate the peaks of the CD spectrum, while the pink dotted lines correspond to the peaks of the CDCS
spectrum.
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