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Abstract

Quantum computing utilizes quantum mechanics to perform compu-
tations with superconducting qubits being the more mature technology
as of writing in realizing a quantum computer. In this thesis, we describe
an implementation of a Quantum Processor Unit (QPU), which is used
to execute instructions in the form of microwave pulses on a supercon-
ducting qubit device through the use of signal generators and to perform
qubit readout. We further extend the QPU as a platform to perform
qubit characterization tasks such as spectroscopy and decoherence mea-
surements in order to determine and optimize the working parameters to
perform quantum gate operations. We also demonstrate the use of the
QPU in performing qubit experiments such as Gauss Sum Factorization
in determining the factors of an integer and the Bell Inequality test in
examining the entanglement strength between a pair of qubits.

We bridge the divide of quantum computation and qubit hardware in
the compilation of quantum circuits into microwave pulse sequences for the
QPU to execute. The process of compilation, as well as hardware limita-
tions and pre-compilation optimization procedures are discussed. Finally,
we show an example of executing a variational quantum algorithm and
break down this example in all layers from the quantum circuit provided
by the user to the pulse sequence that will be executed on the QPU.
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1 Introduction

In the 17th century, Newton published the Principia, which became the founda-
tion for describing the motion of physical bodies. This is also known as classical
mechanics, where a physical body can be defined by its position in space and
momentum, the product of its mass and velocity. Today, classical mechanics
play an integral role in society being the cornerstone behind many fields. For
example, dynamics and motion drive architecture and space exploration. Fluid
dynamics are key in oil drilling and healthcare.

In the early 20th century, there were phenomena that could not be fully
explained by classical mechanics, such as the duality of wave and matter and
black body radiation. The theory of quantum mechanics was developed in this
time period to reconcile these differences. It proposed that the parameters of a
system are not continuous but discrete, the system experiences both wave and
particle characteristics and that there is a limit to the accuracy of measuring
these parameters.

Quantum chemistry is a field that uses quantum mechanics to understand
the behaviour of atoms and molecules. However, as the number of particles
increase, so too does the complexity of calculations that are needed to model
the system. The number of variables also scales exponentially with the size of
the system. To combat this, Feynman proposed the development of quantum
computers to model other quantum systems and aid in this task.

This has led to two tracks of development, in realizing a physical system
for quantum computation and the development of algorithms to harness the
power of quantum computation. In the former, different physical systems such
as ion traps, nuclear magnetic resonance (NMR), electron spins, semiconduct-
ing qubits and superconducting qubits have been used to implement a quantum
computer. In the latter, Shor’s algorithm [1] is an example of quantum comptu-
ation where integer factorization can be performed with higher efficiency than
classical algorithms, as it has polynomial time complexity compared to classical
algorithms with exponential time complexity.

As of writing, software packages such as Qiskit and CirQ [2–4] are readily
available to the general public and provide a high level abstraction for quantum
computing. These packages can be used to simulate or execute user-designed
programs on the physical hardware provided by Google and IBM. However, the
interface between user and experimental systems is often opaque. The processes
used to transpile the user’s code into an experimental sequence for quantum
hardware are usually not available to the user. These processes are required
in the implementation of a quantum computer. Hence, this thesis focuses on
my work in implementing the transpilation processes for quantum computing on
superconducting qubits as well as characterization and control methods required
for superconducting qubit operation.

In the first chapter, I cover an introduction to the quantum mechanics behind
qubits, the basic blocks of quantum computation, and provide an example of
how quantum computation is performed. The second chapter introduces the
underlying theory behind superconducting qubits. The third chapter describes

11



(a) (b) (c)

Figure 1: Bloch sphere representation of a qubit. By convention, qubits are
measured along the Z-axis. The positive Z-axis is taken to be |0⟩ and the
negative as |1⟩. (a) Qubit in the |0⟩ or |+Z⟩ state. (b) Qubit in the |1⟩ or |−Z⟩
state. (c) Qubit in the |+Y ⟩ state.

my work in designing the software abstraction and implementation of the QPU,
a system for calibrating and performing qubit experiments. Finally, I discuss
my current efforts in extending the QPU for use in quantum computation and
the future challenges in scaling up the QPU.

1.1 Qubits

Qubits or quantum bits are the building blocks of a quantum computer. Much
like how a classical bit is expressed as a binary state, 0 (false) or 1 (true), a
qubit is defined to be approximated as a two level quantum system and can be
expressed as |Ψ⟩ = α |0⟩ + β |1⟩, where α, β ∈ C, |α|2 + |β|2 = 1 and |0⟩ and
|1⟩ are the associated states. These complex numbers are known as probability
amplitudes. When the qubit is measured, the system collapses to one of its states
with a probability given by the square of the state’s probability amplitude.

|ψ⟩ = eiγ
(
cos

θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩

)
(1)

We can also represent the qubit in a Bloch sphere, shown in Figure 1 and
described by Equation 1, where θ describes the angle along the longitudinal axis
between |0⟩ and |1⟩, ϕ describes the relative phase and γ describes the global
phase. They are restricted by 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. When the qubit is
measured in the Z-axis, ϕ is ignored and cannot be observed. However, when
the qubit is measured in the X or Y -axes, ϕ has an effect on the measurement
result. This relation between measuring ϕ and θ simultaneously alludes to the
uncertainty principle and plays a larger role when we discuss the orthogonality
of states in the following sections.
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Gate Matrix

X

[
0 1
1 0

]
Y

[
0 −i
i 0

]
Z

[
1 0
0 −1

]

CNOT


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Table 1: Examples of quantum logic gates and their unitary matrix representa-
tions

Figure 2: Classical logic gates1

1.1.1 Quantum Logic Gates

Quantum logic gates on qubits are the analogue of classical logic gates on clas-
sical bits. These gates are the means by which the quantum states of the qubits
are manipulated. They can be represented as unitary matrices. Any n-qubit
computation can be broken down into single qubit and two qubit gates [5, 6],
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which we will use later.
It is possible to simulate classical logic using quantum logic gates. The

classical NOT gate is equivalent to the quantum X gate and the classical NAND
gate is equivalent to the quantum CNOT gate. With these gates we can simulate
other classical gates and thus classical logic circuits [7].

1.1.2 Superposition and Entanglement

As the number of qubits in the system increases, the number of possible states
also increases. The quantum system can be in a superposition of these states.
For example, in a two qubit system, the quantum system can be expressed as
|Ψ⟩ = α1 |00⟩ + α2 |01⟩ + α3 |10⟩ + α4 |11⟩. Like the single qubit case, αi ∈ C
and

∑
i |αi|2 = 1.

|Ψ⟩ = |Ψ1⟩ ⊗ |Ψ2⟩ = (α1 |0⟩+ β1 |1⟩)⊗ (α2 |0⟩+ β2 |1⟩)
= α1α2 |00⟩+ α1β2 |01⟩+ β1α2 |10⟩+ β1β2 |11⟩

(2)

A two qubit system can also be described from the tensor product of in-
dividual qubit states in equation 2. However, taking into consideration a Bell
state |ΨB⟩ = 1/

√
2(|00⟩+ |11⟩), the lack of |01⟩ and |10⟩ implies that either of

α1, β2 = 0 and either of β1, α2 = 0. This leads to a contradiction as the presence
of |00⟩ and |11⟩ implies that all of α1, β1, α2, β2 ̸= 0. In this case, the system
cannot be factored into a tensor product of individual qubits. This phenomena
is known as entanglement.

In quantum information, entanglement is useful as a resource. Taking the
example of the Bell state again, measurement collapses the system to either
|00⟩ or |11⟩. If one qubit out of the pair is present, it is possible to discern the
state of the other qubit from measurement. However, if one were to measure
the system in the X-axis instead (|+⟩ , |−⟩), where |0⟩ = (|+⟩ + |−⟩)/

√
2 and

|1⟩ = (|+⟩ − |−⟩)/
√
2, one would get an entangled pair

|ΨB⟩ =
1√
2
(|++⟩+ |−−⟩) (3)

If the two qubits are spread to different parties and they measure their indi-
vidual qubit in the same axis, there is a correlation between their measurement
results. However, if they measure in different axes, for example in Z and X, one
may get |0⟩ and the other (|+⟩+ |−⟩)/

√
2, which cannot be discerned on a single

measurement. This indistinguishable property in the orthogonality of states is
a cornerstone of quantum information and cryptography [7].

1.2 Quantum Computation

With qubits and quantum logic gates, one can construct a quantum circuit
to perform some computation. The Gottesman–Knill theorem shows that any

1Figure taken from https://instrumentationtools.com/logic-gates/
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quantum circuit that prepares and measures qubits in the computational basis
and only uses gates from the Clifford group (X, Y, Z, H, CNOT) can be effi-
ciently simulated on a classical computer [8]. Hence, we desire useful quantum
algorithms that are difficult to emulate classically and have an advantage over
classical algorithms. Here, we provide an example of such a quantum algorithm
and the methodology of how to apply it to a useful problem.

1.2.1 Grover’s Algorithm

As a quantum system can be expressed in the superposition of states, a gate
operation on the system affects all these states at once. An algorithm or compu-
tation can be broken down into logic gates and this means that we can perform
various operations in parallel with the superposed states.

An example to illustrate this is Grover’s algorithm [9]. It operates as a search
or inversion algorithm where given a function f and an output y, determine x
such that f(x) = y. We first prepare the system in a superposition of all possible
states Ψ. Next, we apply the oracle unitary based on f and y on the system.
This oracle inverts the phase if the input state is x and does nothing otherwise.
Then, we apply the Grover diffusion operator to the system. This operator
diminishes the probability amplitude of s′, the superposition of states excluding
state x, while amplifying the probability amplitude of x and inverts its phase
back to normal. By repeating the oracle and diffusion steps enough times, the
system will eventually reach state x. Grover’s algorithm is given by

Algorithm 1 GroverSearch(f, y,m)

Construct an oracle unitary Uw = I − 2 |x⟩ ⟨x|
Prepare the system Ψ as a superposition of all states s
for i in 1 to m do

Apply Uf on Ψ
Apply the diffusion operator 2 |s⟩ ⟨s| − I on Ψ

end for
return Measure(Ψ)

where m is the number of diffusion repetition steps and has upper limit
⌈(π/4)N⌉ [9], N is the number of qubits and x is determined from the frequency
of the output states of Ψ. The closer m is to the upper limit, the closer the
initial state s will eventually evolve to x. The loop requires O(

√
N) iterations,

where N is the size of the domain of f . The relaxation or diffusion operator uses
3 qubit Toffoli or CCNOT gates [10], which is not featured in the Clifford group
and hence not subject to the Gottesman–Knill theorem. If f is some classical
program, it can be compiled into a classical logic circuit and hence simulated
on qubits.

Grover’s algorithm is useful as a search algorithm. For example, in cryptog-
raphy, a hash function takes in an input of variable size and gives an output
of fixed size. This type of function is used in hiding or storing passwords or
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secret keys and it is typically difficult to invert. Hence, Grover’s algorithm can
be used to efficiently find various inputs that give the same output, otherwise
known as hash collision. One can describe it as a brute force approach with the
superposition of all possible inputs.

1.2.2 3SAT

The Boolean SATisfiability problem (SAT) is a constraint satisfaction problem.
Given a number of true/false (boolean) variables or literals and constraints or
clauses, one has to find an assignment of literals such that the clause equates to
true.

C = x1 ∧ x2 ∧ x3. (4)

In equation 4, the clause C is described by the three variables x1, x2, x3 and
the AND/OR operators ∧,∨. Specifically, we require x1, x2 and the negation of
x3 to all be true for C to be true. Hence, the assignment to satisfy C is x1, x2
as true and x3 as false.

φ = (x1 ∨ x2) ∧ (x1 ∨ x3). (5)

A formula in conjunctive normal form (CNF) φ is a propositional formula
in which all clauses have to be true and literals in clauses are joined together
by only OR operators.

Of interest is the 3SAT problem where every clause has exactly three literals.
By the Cook-Levin theorem, the 3SAT problem is NP-complete [11]. Nonde-
termistic Polynomial time (NP) problems are unlikely to be efficiently solvable
but have solutions that can be verified in polynomial time O(nk), where n is the
length of the input and k is a positive constant. NP-completeness implies that
the problem is in NP and has a polynomial time reduction to another problem
in NP. While 3SAT does not sound like a useful problem to solve, one can re-
duce an equally or less difficult useful problem to 3SAT to solve, such as Max
Cut, Knapsack and Partition as shown by Karp [12]. Hence, if one has a 3SAT
solver, one can use it to solve other difficult problems in NP.

φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4). (6)

Grover’s algorithm can be used to solve the 3SAT problem in O(1.414n)
time [13], where n is the length of the input. Given the CNF in equation 6, one
constructs the following quantum circuit.

For an assignment to be true, |φC1C2⟩ is required to be |100⟩. From simula-
tion the valid states for |φC1C2x4x3x2x1⟩ are |1000010⟩, |1000100⟩, |1000101⟩,
|1000110⟩, |1000111⟩, |1001001⟩, |1001010⟩, |1001011⟩, |1001100⟩, |1001101⟩,
|1001110⟩, |1001111⟩. These states do indeed fulfill φ.

While it may not be a significant advantage over classical 3SAT solvers, this
example shows the methodology of running a quantum algorithm.

16



Figure 3: The literals xi are prepared in a superposition of states s. Then, the
clause are checked. If all x1, x2, x3 are false, C1 is flipped. If x1 is true but
both x2, x3 are false, C2 is flipped. If C is false, then the clause is true. Next,
φ is flipped if both C1, C2 are false and Z gate is used to flip the phase. Then,
the clause checking is applied in reverse order followed by the Grover diffusion
operator. Finally, the clause checking is applied at the end.

2 Superconducting Qubits

From Grover’s algorithm, a sizable amount of qubits is required to span the
input space. The need to repeat the Grover relaxation step multiple times also
implies the need for qubits with long lifetime and high fidelity control gates for
the length of the algorithm. From DiVincenzo’s criteria [14], the following traits
in realizing a quantum computation system are desired.

• A scalable physical system with well characterized qubits

• The ability to initialize the state of the qubits to a simple fiducial state

• Long relevant decoherence times

• A “universal” set of quantum gates

• A qubit-specific measurement capability

To implement a qubit, we require a quantum mechanical system with two
energy levels. There are existing implementations in ion traps, nuclear magnetic
resonance (NMR), electron spins, semiconducting qubits and superconducting
qubits. As of writing, superconducting qubits are the more mature technology
with 50+ qubit implementations available by Google [15], IBM [16] and China
[17].

17



2.1 Superconducting LC Circuits

Figure 4: A simple LC circuit. Electrical energy in the circuit is stored in
the electric field through the capacitor and magnetic flux in the inductor. The
system forms a closed loop where energy oscillates between the capacitor and
the inductor.

Superconductors have no dissipation and are thus ideal for implementing
reversible quantum gate operations. The superconducting inductor-capacitor
(LC) electrical circuit serves as the basis of the superconducting qubit. The
energy T in the inductor is defined by

T = LQ̇2, (7)

where L is the inductance and Q is the amount of charge. The energy U stored
in the capacitor is given by

U =
Q2

2C
, (8)

where C is the capacitance. We can think of T as the kinetic energy of the
system and U as the potential energy. The Lagrangian is defined as

L(Q̇,Q, t) = T − U

=
LQ̇2

2
− Q2

2C
.

(9)

The Euler-Lagrange equation follows

∂L
∂Q

− d

dt

∂L
∂Q̇

= 0,

−Q
C

− LQ̈ = 0.

(10)

For a LC circuit, the resonant frequency is ω = 1√
LC

and thus

18



ω2Q+ Q̈ = 0,

Q̈ = −ω2Q,
(11)

which is consistent with Kirchhoff’s laws and shows simple harmonic oscillation.
If Q is the ‘position’ variable of the oscillation, then the conjugate ‘momentum’
is obtained from

∂L
∂Q̇

= LQ̇

= Φ,

(12)

where Φ is the amount of flux through the inductor. Hence, the Hamiltonian of
the system is defined as

H =
LQ̇2

2
+
Q2

2C
,

=
Φ2

2L
+
Q2

2C
.

(13)

Since Q and Φ are conjugate variables, they can be promoted to quantum
operators Q̂ and Φ̂. This gives the Hamiltonian

Ĥ =
Φ̂2

2L
+
Q̂2

2C
, (14)

and commutation relation
[Φ̂, Q̂] = iℏ. (15)

The reduced flux is defined as ϕ ≡ 2πΦ/Φ0, where Φ0 = h/(2e) is the
magnetic flux quantum, and reduced charge as n = Q/2e [18]. This establishes
a more common representation of the system as

Ĥ = 4ECn
2 +

1

2
ELϕ

2, (16)

where EC = e2/(2C) is the charging energy of an elementary charge and EL =
(Φ0/2π)

2/L is the inductive energy of an elementary charge. This Hamiltonian
follows that of a quantum harmonic oscillator (QHO), and so we can rewrite it
in raising and lowering operators a† and a

Ĥ = ℏωr

(
a†a+

1

2

)
(17)

where ωr =
√
8ELEC/ℏ = 1/

√
LC is the resonant frequency of the system.

Hence, this describes a quantum mechanical system with adjustable transition
energy through modifying the capacitance and inductance of the LC circuit.
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2.2 Transmon Qubit

The issue of using a QHO as a quantum computer is that the energy levels are
equidistant and we do not have a dedicated two level system. Hence, in order
to realize qubits, we need to introduce some anharmonicity to the system. This
is done by replacing the inductor with a Josephson junction (JJ) [19], governed
by the following Josephson relations

I = Ic sinϕ, (18)

V =
ℏ
2e

dϕ

dt
, (19)

where Ic is the critical current of the junction. The Hamiltonian is modified as
follows

Ĥ = 4ECn
2 − EJ cosϕ, (20)

where EC = e2/(2[Cs + CJ ]), Cs being the shunt capacitance, CJ is the self-
capacitance of the junction, and EJ = IcΦ0/2π is the Josephson energy. Hence,
the cosine term in equation 20 gives us some nonlinearity. The dynamics of the
system is then determined by the ratio EJ/EC . In the regime EJ < EC , the
system is sensitive to charge noise and hence the other regime where EJ ≫ EC

is desired, which is the current approach to superconducting qubits.
To achieve this regime, EC is made as small as possible by using a large

capacitor to increase Cs. This approach gives rise to the transmission line
shunted plasma oscillation qubit or transmon qubit [20].

The transmon has anharmonicity α = −EC typically in the range of 100
to 300 MHz and the transition frequency between the ground state and first
excited state given by [18]

ωq = (
√

8EJEC − EC)/ℏ, (21)

Typical values of ωq for transmon qubits range from 2 GHz to 10 GHz, which
means that the higher order transitions are well distanced from ωq. α also limits
the duration of qubit control pulses and hence higher anharmonicity is generally
desired for a qubit.

2.2.1 Tunable Qubit

Another approach is to replace the JJ with a loop of two identical junctions,
forming a direct current superconducting quantum interference device (dc-SQUID).
The Hamiltonian of the system becomes

Ĥ = 4ECn
2 − 2EJ | cosφe| cosϕ. (22)

where φe = πΦ0/Φext and Φext is an externally applied magnetic flux. With
this, the frequency of the qubit can be adjusted by varying the magnetic flux.
Hence, interactions between qubits can be allowed to happen by tuning them
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to the same frequency for them to exchange energy and disallowed by tuning
them far apart.

2.3 Qubit Driving

Figure 5: A microwave drive line capacitively coupled to a LC circuit. Rw is
the resistance of the line and Cd is a capacitor between the qubit and the drive
line.

To drive the qubit, the transmon is coupled to a microwave drive line in
the manner of Figure 5. Under the rotating wave approximation, the driving
Hamiltonian is as follows [18, 21].

H̃d = ΩV0s(t)[(− cosϕ cos (δωt)+sinϕ sin (δωt))σx+(cosϕ sin (δωt)−sinϕ cos (δωt))σy],
(23)

where Ω = Cd/(Cs +CJ +Cd)Qzpf , s(t) is the pulse envelope function, Qzpf =√
ℏ/2Z is the zero-point charge fluctuations and Z =

√
L/C is the impedance

of the circuit to the ground, V0, ϕ and ωd are the voltage, phase and frequency
of the voltage source, δω = ωq − ωd and σ are the Pauli matrices [18].

At the resonant frequency ωd = ωq, this becomes

H̃d = ΩV0s(t)(− cosϕσx + sinϕσy). (24)

To drive the qubit about the X-axis, ϕ is set to 0

H̃d = −ΩV0s(t)σx, (25)

and ϕ = π/2 for the Y-axis.

H̃d = ΩV0s(t)σy. (26)

The Rabi frequency ΩR is the frequency of driving the qubit about the Bloch
sphere and is given by the following equation.
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ΩR =
CdV0Qzpf

Cs + CJ + Cd
. (27)

The parameters V0, s, t, ϕ are externally controlled while the other parame-
ters are designed at qubit fabrication. Hence, one can determine the parameters
needed to drive the qubit transition between the ground state and the excited
state from the Rabi period. This pulse is known as the π-pulse.

2.4 Qubit Readout

Current realizations of qubit readout involve capacitive coupling of the qubit to
a resonator such as a microwave cavity or a coplanar waveguide. The Jaynes-
Cummings Hamiltonian describes the interaction of the qubit and the resonator
[18]

HJC = ℏωr

(
a†a+

1

2

)
+ ℏ

ωq

2
σz + ℏg(σ+a+ σ−a

†), (28)

where ωr is the frequency of the resonator, a†, a are the creation and annihilation
operators for photons in the resonator, ωq is the frequency of the qubit and
σ+, σ− represent the operators for exciting and de-exciting the qubit and g is
the coupling strength between the resonator and the qubit.

At the dispersive limit where the resonator and qubit frequencies are far
apart and compared to the resonator linewidth κ, ∆ = |ωq − ωr| ≫ g, κ, in this
regime, the bare frequencies to ’repel’ each other. We can approximate in first
order the dispersive Hamiltonian to be

Hdisp = (ωr + χσz)

(
a†a+

1

2

)
+
ω̃q

2
σz, (29)

where χ = g2/∆ and ω̃q = ωq + χ. This means that resonant frequency of
the resonator will be shifted by 2χ when the qubit is excited, which allows us to
discern the state of the qubit by probing the resonator. The further away the
frequency is shifted, the easier it is to discern the qubit state as seen in Figure
6. Hence, higher values of χ are desired to improve the readout fidelity.

However, in practice we do not observe a shift of exactly 2χ in the frequency
of the cavity as seen in Figure 6 where χ = 3.65 MHz. This is due to the effect
of higher order transitions neglected in Equation 29 since the superconducting
qubit is an anharmonic oscillator and not a two level system. Additionally, there
is a decrease in transmission at the resonant frequency from the ground state to
the excited state. This is because the cavity mode is hybridized with the qubit
and the excitation of the qubit causes a decrease in the quality factor of the
cavity.

Furthermore, Equation 29 only holds when the photon occupation in the
cavity is low. This is due to the nonlinearity of the hybridised cavity mode
[22]. At high photon number n = a†a ≥ nc ≡ ∆2/(4g2), where nc is the critical
photon number, the approximation breaks down. We will discuss how this is
characterized in the next chapter.
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Figure 6: Signal transmission through a 3D microwave cavity versus signal
frequency. The cavity is coupled to a transmon qubit. When the qubit is
excited from the ground state (blue) to the excited state (orange), the signal
transmission at the resonant frequency of 5.1398 GHz decreases, allowing for
the determination of the two qubit states.

2.5 Qubit Decoherence

The Bloch-Redfield density matrix of the qubit is given by [18]

ρBR =

[
1 + (|α|2 − 1)e−Γ1t αβ∗eiδωte−Γ2t

α∗βe−iδωte−Γ2t |β|2e−Γ1t

]
(30)

where α, β are the probability amplitudes, e−Γ1t describes the longitudinal decay
Γ1 = 1/T1 and e−Γ2t descibes the transverse decay Γ2 = 1/T2 and δω = ωq−ωd.
The T1 decay is also known as the fluorescence lifetime where the qubit decays
from |1⟩ to |0⟩ while T2 is also known as the spin-spin relaxation time. These
decay times are the limiting factor in the number of gate operations that can
be performed.

Typical T1, T2 values of superconducting qubits are in the order of microsec-
onds to tens of microseconds. With typical Rabi periods of 40 ns to 100 ns,
there is a reasonable number of gate operations before qubit decoherence.

At time t≫ T1, T2, all terms except the top left fall to zero with the ground
state reaching unity. Hence, this provides a method to initialize the qubit in
the ground state after measurement. Another method for qubit reset involves
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tuning the qubit frequency to a coupled resonator frequency and returning the
qubit back to its idle frequency position after a period of time [23]. When the
qubit is at the same energy of the resonator, energy exchange occurs and we
move the qubit frequency when the qubit energy has been fully transferred to
the resonator. The energy is then dissipated from the resonator and the qubit
returns to the ground state. An additional method of qubit reset involves fast
ring-up and ring-down processes in a readout cavity using microwave pulses [24].

In this chapter, we have shown how a superconudcting qubit forms the basis
of a qubit with the JJ introducing anharmonicity and how the circuit parame-
ters can be engineered to affect the qubit energies. We have also explained how
the qubit is driven and measured. As mentioned at the start of the chapter, the
current state of the art superconducting qubit processers have a capacity of 50+
qubits. For fault tolerant quantum computing, we require qubits in the order
of 103 or higher. Hence, the road ahead lies in scaling up the number of qubits,
which is a fabrication and engineering challenge in packaging qubits closer to-
gether on a chip while minimizing microwave crosstalk. Additional challenges
for an increasing number of qubits includes providing a refrigeration solution at
10 mK and qubit control hardware and logic. In the next chapter, I discuss how
I have implemented qubit calibration and control on superconducting qubits in
the NTU-CQT lab.

24



3 Quantum Processing Unit (QPU)

From the previous section, we have covered the theory behind superconducting
qubits, which form the the quantum registers of a quantum computer. Here, we
describe the QPU, a central platform for executing instructions on the quantum
registers. This platform is also used to calibrate the gate operations and readout.

3.1 Infrastructure

The infrastructure needed to realize a superconducting qubit platform is divided
into the cryogenic equipment and the room temperature electronics. Figure 7
describes the experimental setup in the NTU-CQT lab, which was initially set
up by Alessandro Landro, Rangga Budoyo and Long Nyugen. In this section,
I will discuss how I programmed and used the radio frequency (RF) electronics
for qubit control and readout. The superconducting qubits used in this section
were fabricated by Rangga Budoyo and Long Nyugen.

3.1.1 Signal Generation

As superconducting qubit and readout resonators used are typically in the 2-
10GHz regime, we require microwave synthesis in that regime. Most conven-
tional AWGs or Digital-to-Analog Converters (DACs) have sampling rate in the
1-6 GS/s regime and cannot produce the required frequencies directly. Field
Programmable Gate Arrays (FPGAs) and Radio Frequency System on a Chip
(RFSoC) platforms house DACs for signal generation. Similarly, ADCs or os-
cilloscopes typically do not have the sampling rate to sample the readout pulse
directly.

Mixers are a popular approach to upconvert low frequency signals to high
frequency and downconvert high frequency signals to low frequency [25].

Band-pass filters are used to filter out the LO leakage and unnecessary side-
bands. The amplitude and phase for maximizing our desired sideband drift over
time and thus require periodic calibration [25]. This is performed in our lab by
running a Nelder-Mead optimization on the amplitude and phase of each I and
Q sideband signal and maximizing the output power of the desired frequency
through a spectrum analyzer as seen in Figure 8

Another approach is to use the Nyquist zones of a signal generator [26]. A
discrete signal produced has higher frequency aliases in its Nyquist zones and
we can use that to generate the high frequency pulses we desire.
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Figure 7: Qubit control and measurement setup in NTU-CQT. At the top-
left, a Tektronix AWG5204 Arbitrary Waveform Generator (AWG) is used to
synthesize the readout and qubit control pulses. The readout IQ pulses are
upconverted by a mixer with a National Instruments QuicSyn Lite serving as
a local oscillator (LO), which is marked as the RF source in the figure. The
pulses are then sent into a Bluefors XLD dilution refrigerator. The refrigerator
is seperated into five stages: 50K stage, 3K stage, still, cold plate and mix-
ing chamber, where the qubit sample is mounted. The readout signal exiting
the sample is amplified by a High-Electron-Mobility-Transistor (HEMT) am-
plfiier before being downconverted into IQ signals for readout by an AlazarTech
ATS9371 Analog-to-Digital Converter (ADC). The same LO is used for readout
upconversion and downconversion as a reference to reflect the phase change of
the readout signal as it interferes with the readout resonator on the sample.
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Figure 8: Frequency spectrum of a LO at 2.52 GHz and an IF frequency of
150 MHz. The amplitude and phase of the IQ signals are optimized to give the
target upconversion at 2.67 GHz while minimizing the other sidebands and LO
leakage.
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Figure 9: Signal power versus signal frequency for a Tektronix AWG5204. The
black dotted lines separate the Nyquist zones. (a) The points in blue represent
the Return to Zero (RZ) DAC mode, while the orange represent Non Return to
Zero (NRZ) mode and the green represents the mix mode. We first select which
frequency range we want to operate at and then select the corresponding DAC
mode for maximum power.(b) After we have selected the DAC mode, we use
band-pass filters to isolate the intended working range in red.
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3.1.2 Signal Readout

After the readout signal passes through the resonator, it is recorded in order
to determine the change of the qubit. The high frequency readout signal is
downconverted to lower frequency IQ signals through a mixer. These signals
are recorded and parsed by the following function.

Algorithm 2 ParseReadoutIQ(I,Q, T, fIF )

Initialize It = Qt = 0
for i in 1 to |T | do

t = T [i]
It = It + I[i] cos (2πfIF t)
Qt = Qt +Q[i] cos (2πfIF t)

end for
return It, Qt

The amplitude is calculated by A =
√
I2t +Q2

t and phase ϕ = atan2(Qt, It).
With either of these two values, we can infer the state of the qubit. From
Figure 6, if we send the readout signal at the resonant frequency of the cavity,
we expect the resultant amplitude value to be high in state |0⟩ and low in state
|1⟩.

3.1.3 Pulse Description

A pulse p has the following attributes

• Amplitude

• Duration

• Frequency

• Start Time

• Phase

• Envelope

With regards to equation 22, V0 corresponds to the amplitude, ωd corre-
sponds to the driving frequency, ϕ corresponds to the phase and s corresponds
to the envelope function. This pulse representation will be used in the next
chapter in the quantum circuit transpilation process.
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3.1.4 Execution Workflow

An algorithm to use the hardware goes as follows

Algorithm 3 RunExperiment(P,N)

Initialize an array M of size N .

Load pulses P into the AWG/DAC
for i in 1 to N do

Arm the ADC/oscilloscope
Play the pulse sequence
Store the readout signal data in M [i]

end for
return M

where P is the pulse sequence containing the experiment pulses and N is the
number of shots or averaging. The repetition rate of the loop depends on how
fast we can reset the qubit system to the ground state and also the hardware
logic. In our experiments in the NTU-CQT lab we typically use a rest period
of 5T1 for the qubit to relax to the ground state.

To reduce the overhead, we can process the readout signal asynchronously
while waiting for the next pulse sequence to execute and incoming readout
signal. Typically, the readout signal duration is much shorter than the full
pulse sequence and qubit reset protocol.

Algorithm 4 RunExperimentWithAsync(P,N, treadout)

Prepare a N × 2 measurement vector M
Generate sampling time array T based on treadout and ADC sampling rate
Prepare an array of buffers B based on N and T
Prepare pointers pB for B, pb for B[pB ] and pM for M
Initialize counter m = 0
Set ADC to sample for |T | samples
Set ADC to run OnSignalAsync when a signal is received
Let the AWG/DAC repeat pulses P for N times
Wait for pM to reach the end of M
return M

In this approach, we store the measurement data in a buffer b until it is
full. Once it is full, we move on to the next buffer and process b in the free
time between readout signals. Then, we extract and process I and Q for each
measurement in b. The processed results are stored in M . Once we are done
with all measurements in b, we clean it to be used for later measurements. We
do this for all shots N . This allows us to avoid storing the large signal data
S with size |T | for a total of 2N |T | and instead store the final measurement
with size 2N . This also allows us to make use of the free intervals between
measurements.
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Algorithm 5 OnSignalAsync(S)

Extract I and Q from S
Select buffer B[pB ] as b
Store I and Q in b starting from pb
Move pb to the end of the new data in b
m = m+ 1
if b is full or m = N then

Move pB to the next available buffer
Reset pb to the start of the new buffer
Remove b from B
Run asynchronously OnBufferFullAsync(b)

end if

Algorithm 6 OnBufferFullAsync(b)

Let k = 0
while k < |b| and b[k] is not null do

Extract I and Q from b[k : k + 2|T |]
Store ParseReadoutIQ(I,Q, T, fIF ) in M [pM ]
k = k + 2|T |
Move pM to the next entry in M

end while
Clean b and add it back to B

This approach in algorithms 5 and 6 can be implemented on programmable
PCI ADCs, FPGAs and RFSoCs with sufficient memory but not oscilloscopes
as they do not support programmable asynchronous logic. Since ParseRead-
outIQ has time complexity scaling linearly to the number of samples, one can
further extend this procedure on single measurements to translate the It and Qt

values into qubit states for further memory reduction, if the downtime period
is sufficiently long enough. This step is necessary for quantum error correction
in identifying qubit states during the pulse sequence with the latency being
dependent on processor speed and computation complexity.

31



(a)

(b)

Figure 10: (a) Synchronous experiment procedure and (b) asynchronous exper-
iment handling. In (a), the readout data is only parsed at the end of N shots.
In (b), the readout data is being processed in the waiting time between readout
pulses until all N shots are completed.
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3.2 Qubit Calibration

After describing how the QPU is used to carry out a qubit experiment, we move
on to the experiment procedures of using the QPU to characterize and calibrate
the qubit system.

3.2.1 Resonator Spectroscopy

First, the readout resonator coupled to the qubit is characterized. As discussed
in Section 2.4, the resonant frequency of the resonator depends on the photon
occupation and the state of the qubit. We want to determine the dispersive
frequency of the cavity and the dispersive shift and the power where we enter
the dispersive regime n < nc. This is typically done with a Vector Network
Analyzer (VNA).
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Figure 11: Transmission (S21) for input signal power versus signal frequency for
a microwave cavity coupled to a transmon qubit. At higher powers of > −20
dBm, we find the cavity resonant frequency at 5.1361 GHz. At lower powers of
< −30 dBm, the resonant frequency is dispersively shifted to 5.1398 GHz.

In Figure 11, we sweep across a range of driving powers for a microwave
cavity coupled to a transmon qubit and notice that we enter the dispersive
regime when the input power is roughly less than −30 dBm. For qubit readout,
we use signal driving power in this regime and position the frequency of the
readout signal at the dispersive resonant frequency. As seen from Figure 6, this
frequency provides good contrast between the two states of the qubit. Algorithm
7 describes the methodology of how this is performed in calibration.
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Algorithm 7 ReadoutSpectroscopy(fcenter, fspan)

Set the VNA to scan about fcenter with span fspan
Scan the resonator at high power and fit the peak
Initialize the high power cavity resonant frequency ωrbare as the center fre-
quency of the peak fit
Scan the resonator at low power and fit the peak
Initialize the dispersively shifted cavity resonant frequency ωr as the center
frequency of the peak fit
χ = |ωr − ωrbare|
return ωr, χ

3.2.2 Qubit Characterization

Next, we want to determine the frequency of the qubit. We drive the qubit for
qubit for an extended period of time (t≫ T2) where the qubit decoheres to the
mixed state and sweep the driving frequency to find large transmission changes
which will correspond to a transition.
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Figure 12: Transmission of a microwave cavity at its dispersive resonant fre-
quency versus qubit drive frequency performed with a VNA. We observe the
first excited state transition at 3.518 GHz. We also observe the two photon
process |0⟩ to |2⟩ at 3.368 GHz.

If enough power is used, we may observe the two photon transition from |0⟩
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to |2⟩ as seen in Figure 12.

ω02 ≈ ω01 + ω12

≈ 2ω01 − α,
(31)

where α is the anharmonicity. Then the two photon frequency would be ap-
proximately

ω′
02 ≈ ω01 − α/2, (32)

Hence, this allows us to identify the |0⟩ to |1⟩ transition in Figure 12 as
3.518 GHz since it will have the higher frequency. As discussed in the previous
chapter, the state of the qubit causes a shift in the resonant frequency, which
results in the decrease of transmission in the readout signal. Here, we can
observe the higher energy transition pulling the cavity frequency further away,
which leads to further drop in transmission. Finally, the experiment procedure
with the QPU is described in Algorithm 8.

Algorithm 8 QubitSpectroscopy(fstart, fend, fstep, preadout, N)

Initialize result array R
Initialize pulse sequence P and add preadout to P
for fQ in fstart to fend with step fstep do

Drive the qubit at frequency fQ
M = RunExperiment(P,N)
Average and convert M into amplitude A
Append R with A

end for
Choose the peak based on the anharmonicity
Fit the peak and obtain qubit frequency ωQ

return ωQ

We perform QubitSpectroscopy with the QPU instead of the VNA in
Figure 13. There is a shift in transition frequencies between the two setups
as the the QPU uses short readout pulses while the S21 measurement from
the VNA continuously drives the cavity and causes an AC Stark shift in the
transition frequencies. Now that we have identified the qubit frequency at 3.538
GHz, we can use it to characterize the π-pulse.
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Figure 13: QubitSpectroscopy performed with the QPU while varying the
driving attenuation of the qubit. We observe the first excited state transition at
3.538 GHz and the two photon process |0⟩ to |2⟩ at 3.423 GHz. As the driving
power decreases, the linewidth of each transition decreases. This phenomenon
is known as power broadening.

3.2.3 Rabi Spectroscopy

Figure 14: Pulse sequence of a Rabi experiment. We send the qubit drive pulse
and the readout pulse and vary the duration of the qubit drive pulse.

After we have determined the approximate qubit frequency from the above
spectroscopy methods, we can adjust the following parameters: readout drive
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power, qubit drive power, readout drive frequency, qubit drive frequency in the
Rabi sequence, assuming we keep the readout duration constant. From each
sequence, we obtain the Rabi frequency and the separation between the ground
and excited state. We desire the set of parameters that give us the greatest
separation between the two states of the qubit for readout fidelity. This can be
done with a classical optimization approach [27].

Algorithm 9 RabiSpectroscopySweepTime(ωQ, AQ, Tend, Tstep, preadout, N)

Initialize result array R
Generate array T from 0 to Tend evenly spaced by step Tstep
for t in T do

Initialize pulse sequence P
Prepare driving pulse p with amplitude AQ, frequency ωQ and duration t.
Set readout pulse preadout to play at time t
Add p and preadout to P
M = RunExperiment(P,N)
Average and convert M into amplitude A
Append R with A

end for
ΩRabi, AR = FitRabi(T,R)
return ΩR, AR

In RabiSpectroscopySweepTime, we sweep pulse duration from 0 to
Tend and record the amplitude for each duration step. We then fit the amplitude
versus pulse duration sweep curve to a sine wave and extract the fit amplitude
and frequency. The state separation is given by ARabi and Rabi frequency given
by ΩRabi.

In Figure 15, we perform the Rabi sequence on the qubit used in Figures 6,
11 and 12 using a guessed frequency of 3.538 GHz and 20 dB of attenuation.
This gives a Rabi frequency of 17.2 MHz and π-pulse duration of 29 ns in Figure
15b. The chevron pattern in Figure 15a is obtained from repeating the Rabi
sequence across different frequencies. However, it is difficult to estimate the
qubit resonant frequency from the broad linewidth of the chevron pattern.
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Figure 15: (a) Rabi chevron pattern with qubit driving frequency versus pulse
duration. As the driving frequency tends towards the resonant frequency, the
Rabi oscillation frequency decreases. (b) Rabi oscillation at the resonant fre-
quency. The oscillation is fitted to a sine wave and the π-pulse duration is
determined from the period of the oscillation.
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3.2.4 Ramsey Spectroscopy

Ramsey spectroscopy is a technique to determine the actual qubit frequency
[28]. Typically, the linewidth of the qubit from earlier spectroscopy is too broad
to determine the exact qubit frequency. Hence, this method is used to find the
detuning ∆ between the driving frequency ωd and qubit frequency ωq. Two π/2
pulses are sent to the qubit separated by a flight time τ before the system is
measured.

Algorithm 10 RamseySpectroscopy(pπ/2, preadout, τend, τstep, N)

Initialize result array R
Generate array T from 0 to τend evenly spaced by step τstep
for τ in T do

Initialize pulse sequence P
Initialize p1 = p2 = pπ/2
Set pulse p2 to play after p1 and τ
Set pulse preadout to play after p2
Add p1, p2, preadout to P
M = RunExperiment(P,N)
Average and convert M into amplitude A
Append R with A

end for
∆ = FitRamsey(T,R)
return ∆

From the Rabi frequency, we get the π-pulse duration as tπ = 1/2ωRabi.
Then, we generate the π/2-pulse with amplitude AQ, frequency fQ and duration
tπ/2. An approximate value of half the duration of the π-pulse is used for the
π/2-pulse. Then, we use this pulse and sweep the flight time τ to obtain ∆
through fitting with a sine curve. We correct for the resonant frequency with
fQ and ∆.

Figure 16: Pulse sequence of a Ramsey experiment. We send two π/2-pulses
separated by a delay τ and readout pulse to the system and vary τ .

By using a frequency detuning ∆ in the Ramsey sequence, we obtain an
oscillation with frequency close to ∆. This can be seen in Figure 17, where we
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Figure 17: Ramsey oscillation with a detuning of 10 MHz. The qubit driving
frequency was estimated at 3.538 GHz and the Ramsey oscillation has a fre-
quency of 10.02 MHz. Hence, the new qubit frequency is set as 3.53798 GHz.

use a detuning of 10 MHz and obtained a Ramsey frequency of 10.02 MHz. The
difference between the frequency and the detuning gives us a better estimate of
the qubit frequency at 3.53798 GHz. Afterwards, we run the Rabi procedure
again to get the π-pulse at the resonant frequency. Hence, a fresh calibration
procedure proceeds as follows

Algorithm 11 FreshCalibration(Rguess, Qguess, N)

ωr, χ = ReadoutSpectroscopy(Rguess, N)
Initialize the readout pulse preadout with default settings and frequency ωr

ωQ = QubitSpectroscopy(Qguess, preadout, N)
ωR, AR = RabiSpectroscopySweepTime(ωQ, Rabidefault, preadout, N)
Initialize the π-pulse with duration 1/2ωR and frequency ωQ

Generate the π/2-pulse pπ/2
∆ = RamseySpectroscopy(pπ/2, preadout, Ramseydefault, N)
Determine the qubit frequency ω′

Q from ωQ and ∆
Optimize preadout, AQ with ω′

Q using RabiSpectroscopySweepTime
Obtain the new π-pulse pπ from the optimization
return preadout, pπ

With repeated calibration, we can simply repeat the last optimization as
we already have knowledge of the qubit frequency, readout pulse and driving
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amplitude.

3.2.5 Two Qubit Interaction

With superconducting qubits, one can engineer interactions between coupled
qubits either with magnetic flux [29] or with microwave pulses [30, 31]. With
magnetic flux, an interaction is formed by having qubits of similar energy level
interact and exchange energy. This action forms a SWAP operation. On
Google’s Sycamore processor, this is done by with fixed-frequency bus resonator
between qubits and biasing flux tunable transmon qubits to the bus resonator
frequency [15]. IBM does the opposite with fixed frequency transmon qubits
and flux tunable bus resonators [32].
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Figure 18: Flux versus qubit frequency in a system of a fixed frequency qubit and
flux tunable qubit coupled to a microwave cavity. The fixed qubit has resonant
frequency 2.605 GHz while the maximum frequency of the tunable qubit is at
3.145 GHz. As the flux increases, the frequency of the tunable qubit decreases
to near that of the fixed qubit, where we observe an avoided level crossing.

An example of the microwave approach is the Speeding up Wave forms by
Inducing Phases to Harmful Transitions (SWIPHT) gate, which functions as
a reversed Controlled-NOT (CNOT) gate [30, 31].

Premaratne [31] defines the pulse time for the SWIPHT gate as

τg =
5.87

2|χqq|
, (33)
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Input Output
Control Target Control Target
0 0 0 1
0 1 0 0
1 0 1 0
1 1 1 1

Table 2: Truth table of the SWIPHT gate. This gate functions as a reversed
CNOT as it flips the target qubit if the state of the control qubit is |0⟩ instead
of |1⟩ and does nothing otherwise.

χqq =
g2qq
∆q

, (34)

where χqq is a coupling term between qubits, gqq is the two qubit coupling
strength and ∆q is the frequency difference between the two qubits. and the
pulse shaping as

Ω =
γ̈√

χ2
qq − γ̇2

− 2
√
χ2
qq − γ̇2 cot 2γ, (35)

where

γ(t) = 138.9

(
t

τg

)4 (
1− t

τg

)4

+
π

4
. (36)

We then calibrate the amplitude of the SWIPHT gate pulse. From Figure
20, we choose an amplitude of 0.55 V at which state inversion happens for |00⟩
and |01⟩. Unfortunately, due to the high qubit-qubit coupling of 66 MHz, there
was leakage acting on the state |01⟩, which caused the amplitude to shift. Later,
we will introduce and use Quantum State Tomography to characterize a Bell
state created with this gate.
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Figure 19: SWIPHT Pulse Envelope for a two qubit system with frequencies
3.0636 GHz and 3.2840 GHz coupled to a microwave cavity. This pulse envelope
aims to drive the intended transition in Table 2 while inducing a phase shift in
the undesired transitions. With a coupling strength of 66 MHz, the SWIPHT
gate duration is 148.5 ns.
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Figure 20: Transmission through the cavity versus amplitude of the SWIPHT
gate with duration 46 ns applied at different states of the system in Figure 19.
The first qubit is the target qubit while the second is the control. The blue
data corresponds to the system initialized at |00⟩, orange corresponds to the
system at |01⟩ and green corresponds to the system at |10⟩. At low pulse power,
the system remains in their initial states. We aim to select the pulse amplitude
where |00⟩ inverts with |10⟩ while |01⟩ remains the same.
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3.3 Qubit Measurements

3.3.1 Quantum State Tomography

Quantum state tomography (QST) can be used to reconstruct the density matrix
of a system [33, 34]. Given an arbitrary density matrix ρ for a single qubit, where

ρ =

(
p1 p2
p3 p4

)
,

and an arbitrary measurement operator M1, where

M1 =

(
m11 m13

m12 m14

)
,

one obtains the expectation value P1 = Tr(M1ρ) = p1m11 + p2m12 + p3m13 +
p4m14. By constructing three other operators, one has

A =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

 , X =


p1
p2
p3
p4

 and B =


P1

P2

P3

P4

 ,

to construct the linear equation AX = B. Since Mi is known and Pi can
be determined, one can obtain ρ by solving the set of linear equations. The
probability of each state is obtained from the diagonal terms of the density
matrix.

For two qubits, the set G of 16 measurement operatorsMi is listed in Figure
21. Before applying the readout pulse, the corresponding prerotation is applied.
Maximum Likelihood Estimation (MLE) can be used to find the best fit for ρ
[35]. By applying further tensor products, one can extend state tomography to
a n-qubit system.

For systems with low readout signal to noise ratio (SNR), resolving the
state of the system may be difficult for a single shot. Hence, the readout signals
are averaged in this scenario to improve the SNR. However, when the result
is averaged, any correlation between qubits cannot be recovered. QST can be
used in this scenario to recover the correlation from the reconstructed density
matrix. However, the number of prerotations requires scales by O(4n), where
n is the number of qubits, which increases the time required to determine the
qubit state.

The QST analysis in the NTU-CQT lab was implemented by Long Nyu-
gen while I implemented the prerotation procedure. In Figure 22, we per-
formed QST on a two-qubit system used in Figure 20 initialized in the Bell
state 1/

√
2 (|10⟩+ i |01⟩) and obtained a state fidelity of 85.9%. This state was

prepared using a −X/2 gate on the second qubit to form 1/
√
2 (|00⟩+ i |01⟩),

followed by the SWIPHT gate using the second qubit as control and first as tar-
get. This flips the |00⟩ state to |10⟩ while leaving the |01⟩ unperturbed. Since
we have demonstrated the use of QST in identifying entangled states, we will
use it in a later part to explore entanglement correlation.

45



Figure 21: A set of measurement operators and prerotations that can be used
in two qubit state tomography

3.3.2 Decoherence

As the relaxation times impact the number of operations, it is essential to deter-
mine them in order to understand the impact on the quantum circuit. The T1
time is measured by applying a π-pulse to the qubit, waiting for time τ before
measurement.

Algorithm 12 T1Characterization(pπ, preadout, τend, τstep, N))

Initialize result array R
Generate array T from 0 to τend evenly spaced by step τstep
for τ in T do

Initialize pulse sequence P
Set pulse preadout to play after pπ and τ
Add p and preadout to P
M = RunExperiment(P,N)
Average and convert M into amplitude A
Append R with A

end for
T1 = FitT1(T,R)
return T1
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Figure 22: QST of the Bell state 1/
√
2 (|10⟩+ i |01⟩). A −X/2 gate with dura-

tion 56 ns followed by the SWIPHT gate was used to intialize the state before
the sequence of 16 prerotations in Figure 21 was applied. The top plot repre-
sents the real component of the density matrix ρ while the bottom represents
the imaginary component. The state fidelity is 85.9%.
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Figure 23: Pulse sequence of a T1 experiment. A π-pulse and readout pulse is
sent to the system and the delay τ is varied between the two pulses.
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Figure 24: Transmission versus τ for T1 of a transmon qubit. The data before
0 µs is the transmission at the |0⟩ state for reference. As τ increases, the qubit
decays from the excited state to the ground state. The data is then fit with an
exponential decay to determine a T1 time of 27.4 µs.
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Ramsey spectroscopy can also be used to find the transverse relaxation of
the qubit. The relaxation time in this case is commonly referred to as the T ∗

2

time. We use a small detuning in MHz in order to create a Ramsey oscillation
with periods in the µs regime. We fit this decay to the following equation

A = B + C sin (2π∆τ + ϕ) exp

(
− τ

T ∗
2

)
(37)

,
where A is the readout signal amplitude, B is the oscillation offset, C is the

oscillation amplitude, ∆ is the detuning and ϕ is a phase offset.
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Figure 25: Ramsey spectroscopy with a small detuning of 0.5 MHz and long τ
in µs. In this case, the oscillation is fit to a sine wave with an exponentially
decaying envelope to obtain a T ∗

2 time of 7.73 µs.

As seen from Figure 26, the system T2 value can drift over time [36]. With
current superconducting qubits, T2 is often the limiting factor in the maximizing
the gate depth. This may be due to internal factors such as quasiparticle tun-
nelling [37] or external environmental factors [38]. To reduce this detrimental
effects, some remedies include increasing the EJ/EC ratio in qubit design and
fabrication to reduce tunnelling rates, quantum error correction schemes [39]
and using RF filters to filter out infrared radiation [40].

For the single junction transmon qubit discussed so far, the T1 time of 27.4
demonstrated is up to par with conventional qubits reaching 10 to 30 µs while the
T2 time is lacking at 7.73 µs compared to an average of 20 µs [41]. The coherence
times of these qubits can vary greatly in fabrication, as seen from the variance
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Figure 26: T ∗
2 time obtained over a period of 40 hours through Ramsey spec-

troscopy. The mean is 7.49 µs and the standard deviation is 1.47 µs. From the
moving average with a 25 sample window, we can observe the variation of T ∗

2

over time.
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in IBM’s single junction transmon samples [41] with some T1 times exceeding
100 µs. Nonetheless, in relation to the short π-pulse length of 29 ns, we are able
to perform single qubit algorithms such as the Gauss Sum Factorization, which
will be discussed in the following part.

3.3.3 Gauss Sum Factorization

A quadratic Gauss sum has the form [42],

G(a, p) =

p−1∑
n=0

e2πian
2/p (38)

where a is an integer and p is a prime number. It is possible to use a qubit
to compute this sum, with the phase ϕ in Equation 1. Cold atoms [43] and
superconducting qubits [44] have used Gauss sums to factorize numbers, through
the truncated reciprocal Gauss sum

G(N, l,M) =
1

M + 1

M∑
m=0

e2πim
2 N

l , (39)

where N is the number that we want to factorize, l is the trial factor and M
is the number of pulses. Instead of summing to p, it is truncated at a smaller
number m, The reciprocal sum comes from flipping the fraction a/p. We can
see that if l is not a factor of N , the fraction N/l will not be a positive integer.

Figure 27: Pulse sequence for a Gauss summand. ϕi = ϕf = −π/2. ϕm =
(−1)mπ(2m− 1)N/l. We send a π/2 pulse with phase −π/2 to rotate the qubit
to the mixed state. Then, we send a series of π-pulses with phase (−1)mπ(2m−
1)N/l where m is the pulse number. Finally, we send a π/2 pulse phased shifted
by −π/2 before measurement.

From the pulse sequence, if l does not divide N , the system will experience
some arbitrary rotation during the series of π-pulses. However, if l is indeed a
factor of N , the qubit will stay in the superposition state during the sequence
and the final π/2 pulse will rotate the qubit from the superposition state to the
excited state.

As mentioned before, we truncate the sum at a smaller number m instead of
p−1. Figure 28 shows that using more pulses causes the system to be more vul-
nerable to decoherence. However, using too few pulses causes the effect of ghost
factors, non-factors that appear close to actual factors, to be more predominant.
Hence, a trade-off is needed in the number of pulses m. Techniques to treat the
effect of ghost factors are discussed in [44]. Finally, the full algorithm for integer
factorization is as follows
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Algorithm 13 GaussSummand(N, l,m, pπ, pπ/2, preadout, S)

Initialize pulse sequence P
Initialize p1 = p2 = pπ/2
Set p1 to play at the start with phase −π/2
Set pulse pπ to play after p1
for i in 0 to m− 1 do

Initialize p = pπ with phase (−1)i(2i− 1)Nl π
Set p to play after the previous pulse
Add p to P

end for
Set p2 to play after the previous pulse with phase −π/2
Add p1, p2, pπ, preadout to P
M = RunExperiment(P, S)
return M

Figure 28: Excited state probability versus the number of pulses m for N =
263193 and trial factors l = 21 (red) and l = 28 (blue)2. 21 is an actual factor
while 28 is a non-factor. (a) represents a simulation and (b) represents the
experiment results carried out on a transmon qubit. The actual factor stays at
the excited state while the non-factor moves randomly. As the number of pulses
increases, so too does the experiment time and hence the impact of decoherence
on the measurement results. l = 28 shows the behaviour of a ghost factor [44].

Algorithm 14 GaussSumFactorization(N, l,M, pπ, pπ/2, preadout, S)

Prepare measurement counter MG

for m in 0 to M do
R = GaussSummand(N, l,m, pπ, pπ/2, preadout, S)
Append MG with R

end for
Get the excited state probability p from MG

return p
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Figure 29: Excited state probability versus trial factors for the Gauss sum
factorization of N = 47293565, with M = 15. The actual factors are l =
1, 5, 11, 19, 167 with composites 55, 95 have higher probability than the other
non-factors.

While this algorithm currently does not have practical applications due to
needing to determine the phase N/l, it serves as a good test of single qubit
control and measurement over the number of pulses needed M and the discern-
ability σ between factors and non-factors.

3.3.4 Bell Inequality

In 1935, Einstein, Podolsky and Rosen published the EPR paradox which sug-
gests that the results from measuring a quantum state are pre-determined by
local hidden variables [45]. 29 years later, Bell’s theorem showed that for systems
with multiple axes of measurement, it is possible to violate the Bell’s inequal-
ity and show that local hidden variable theory is incompatible with quantum
mechanics [46].

The Clauser-Horne-Shimony-Holt (CHSH) inequality is a generalization of
the Bell inequality [47]. Given two qubits A and B, the entanglement correlation
E is given by

E(x, y) = Psame(x, y)− Pdiff(x, y)

= P00(x, y)− P01(x, y)− P10(x, y) + P11(x, y),
(40)

where x is an axis of which qubit A is measured along and y is likewise for qubit
B. The Bell signal is defined as

S = E(a, b)− E(a′, b) + E(a, b′) + E(a′, b′), (41)

2Figure taken from [44]
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where a, a′ ∈ x and b, b′ ∈ y. Local variable theory predicts a limit of |S| is 2
while the quantum limit is 2

√
2. Hence, if a value of |S| > 2 is obtained, for the

set {a, a′, b, b′}, this system violates the inequality.
The CHSH inequality is used to determine how entangled a system is based

on how close the Bell signal S is to the Tsirelson’s bound 2
√
2. [48].

Figure 30: Quantum circuit for violating the Bell inequality. The superposition
state |00⟩ − |01⟩ is generated by applying a −Y/2 rotation on the second qubit.
Next, the entangled state |10⟩− |01⟩ is obtained by applying the SWIPHT gate
as a CNOT gate with the second qubit as the control and the first as the target.
The first qubit is rotated by θ = π/2, ϕ = a and the second by θ = π/2, ϕ = b
to change the measurement axes. A prerotation from Figure 21 is then applied
to the system before measurement. This sequence is repeated for each of the
sixteen measurement operators.

We apply the circuit in Figure 30 to a system of two flux tunable trans-
mon qubits with frequency 3.0636 GHz and 3.2840 GHz respectively capactively
coupled to a 3D microwave cavity with resonant frequency 4.51721 GHz. The
SWIPHT gate gate is used at the entangling CNOT gate between the two qubits
to create a Bell state with fidelity 74.12%.

We sweep a and b from 0◦ to 360◦ with steps of 5◦ using 10000 shots per
measurement and select a′ = a+90 and b′ = b+90. From state tomography, we
can obtain the values of P00 − P01 − P10 + P11 for each set of a, b to determine
E.
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(a) Experiment Results

(b) Simulation

Figure 31: (a) Bell signal S from the experimental data for angles a, b from 0◦

to 360◦ with an angle difference of 90◦. The red area represents the maxima of
S while the blue area represents the minima. (b) Simulation of the experiment.
The results agree with the simulation in the alternating pattern of maxima
and minima and there are two regions where |S| > 2, which violates the Bell
inequality. However, there is an offset in b and difference in the gradient from
the actual results compared to the simulation. The angle offset is due to a
phase shift of about 240◦ in the control qubit by the SWIPHT gate, which
has also been reported by Premaratne [31]. The gradient shift could be due to
the permanent capacitive coupling and low energy separation between the two
qubits.

The experiment results suggest a S maximum at a = 170◦, b = 275◦ of
2.388 and minimum at a = 215◦, b = 135◦ of −2.035 in Figure 31. Other
superconducting qubit setups have reported Bell signal values of 2.629 ± 0.028
and 2.07326 ± 0.0003 [49, 50]. Hence, we have demonstrated the capability of
the QPU to control two qubits at the same time.
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To conclude, we have shown how the RF components function in the QPU
to drive pulses for qubit control and readout and the analysis of the readout
pulses for qubit state determination. We have also shown how a qubit is char-
acterized by determining the readout frequency of the readout resonator, the
frequency of the qubit, the pulse length and amplitude needed for qubit control
and the decoherence times. Finally, we have demonstrated the use of the QPU
in carrying out a single qubit experiment in Gauss Sum Factorization and a two
qubit experiment in violating the Bell Inequality.
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4 Software Stack

In this section, I describe my implementation of the interface between a quantum
computing user and the quantum computer and the circuit to pulse transpilation
processes.

At the top layer controlling the QPU to execute instructions on the qubits
is the software stack. With this stack, a conceptual quantum circuit is compiled
into a sequence of microwave pulses to be executed on a qubit device. This
stack also streamlines the running of quantum algorithms.

4.1 Quantum Software Development Kit (QSDK)

A QSDK is a software suite for a quantum programmer to design the control
sequence for a quantum computer. Commonly used QSDKs are Qiskit [2] and
Cirq [3]. These allow users to design quantum circuits where qubits are con-
trolled with quantum logic gates. Formally, we can describe a quantum circuit
as an ordered pair QC = (Q,G) where Q is the set of qubits and G is the list
of gates. Typically, quantum circuits are defined with the number of qubits at
initialization and have the following operations.

• Add(g): Adds a quantum logic gate g to G.

• Set-Parameter(p): Sets the parameter of parameterized gates gp1
, gp2

, ..., gpk

in G based on the tuple p = (p1, p2, ..., pk) for some k ∈ N.

• Measure(QM ): Set the measure gate M at the end of G acting on QM

qubits where QM ⊆ Q.

For the Add operation, the input qubits for g are defined in the initialization
of g in some QSDKs. In others, the input qubits are also arguments for this
operation.

Algorithm 15 Set-Parameter(p)

Let k = 1
for g in G do

if g is a parametric gate then
Set the parameter of g as p[k]
k = k + 1

end if
end for

Parametric quantum logic gates such as rotation gates like RX, RY and RZ,
the rotation operators about the Bloch sphere, have adjustable parameters, such
as the the axis rotation angle. They are used in variational quantum comput-
ing [51] where the system is prepared in some ansatz and classical optimization
techniques are used to find the optimum parameters for the ansatz. This ap-
proach is used in various areas such as quantum chemistry [52] in simulating the
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Hamiltonian of various molecules. Set-Parameter is used by the optimizer
to adjust the ansatz.

Another way this is implemented is that in the Add operation, if g to be
added is a parametric gate, it is also added to a subset Gp of parametric gates.
Set-Parameter then iterates through Gp instead of G,

Finally, Measure sets the measure gate at the end of the gate sequence
with information on which qubits are to be measured. Since this is the final
step of the quantum computation, certain simulation-based QSDKs omit this
operation.

4.2 Circuit Compilation and Execution

To run a quantum circuit on an actual quantum computer, we need to be able
to translate it into instructions that can be executed on hardware. From Section
3.2, we have calibration methods to obtain a set of pulses for controlling each
qubit in Q. Hence, a basic idea of compiling the gates into pulses is as follows.

Algorithm 16 CompileCircuitToPulses(Q,G)

Let P = ∅
for g in G do

Find input qubits Qg for gate g
Lookup the pulses p that represent gate g from Qg

Set pulses p to play at the earliest available opportunity
Merge p into P

end for
return P

Algorithm 17 ExecuteCircuitOnHardware(Q,G,N)

Initialize qubit state measurement counter MQ

P = CompileCircuitToPulses(Q,G)
M = RunExperiment(P,N)
Parse M into qubit states and record the statistics in MQ

return MQ

In CompileCircuitToPulses, we have a method to generate a sequence of
pulses P from gates G and qubits Q and in ExecuteCircuitOnHardware,
we have a method to fire P over N shots and return the frequency of the result
states to the user.

4.2.1 Pulse Timing Considerations

In compiling the circuit to pulses, we have a step Set pulses p to play at the
earliest available opportunity, which is ambiguous. If we play the gate pulses
one after another, the depth of the quantum circuit becomes the total number
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of gates, which is the worst case scenario. As each device has limited number of
operations in qubit lifetime, we want to arrange the pulses in a way that reduces
the circuit depth.

Algorithm 18 CompileCircuitToPulsesWithTiming(Q,G)

Let P = ∅
Let T be a |Q|-sized array of all 0s.

for g in G do
Find input qubits Qg for gate g
Lookup the pulses p that represent gate g from Qg

if g is a two-qubit gate then
s = max(T [qg1 ], T [qg2 ])
T [qg1 ] = s+ duration(p)
T [qg2 ] = T [qg1 ]

else
s = T [qg]
T [qg] = s+ duration(p)

end if
Set pulses p to play at starting time s
Merge p into P

end for
return P

In this modified algorithm, we initialize a counter array T for each qubit to
track its availability in time. For each gate g ∈ G, if g is a single-qubit gate,
we start the pulse sequence p at T [qg], where qg is the target qubit of the gate.
Then, we advance T [qg] by the duration of p. If g is a two-qubit gate, we start
p based on which qubit has a larger value in T (the qubit that has experienced
longer operations thus far). Afterwards, we set T for both qubits to be the
ending of P .

Essentially, we run single qubit operations in parallel until two-qubit gates
are required. If we have a two-qubit gate, we start the gate pulse after the
latest pulse that involves either qubit and continue.With this, the circuit depth
may be reduced from the worst case scenario. This approach works well when
the qubits in the system are well isolated and crosstalk is minimal. However,
the dynamics of the system may require additional steps or correction pulses in
addressing gate errors.

4.3 Cloud-based Quantum Computing

Quantum computers are expensive to set up and so the primary approach to
make them accessible to researchers and other users in the industry is to host
them for cloud access. This approach is used in supercomputer centers to rent
and distribute computing power. From the earlier section, we can see that to
run a quantum circuit, we only need to specify the number of qubits to use Q, a
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list of quantum logic gates G and the number of shots N . Hence, a cloud-based
platform needs to be designed to accept the same set of parameters.

Figure 32: A schematic of cloud based execution of quantum circuits3. The user
submits a quantum circuit to the Application Protocol Interface (API) hosted
on a cloud server with a desired number of shots. The server will place this job
in a database and return the user a job number for tracking. At the QPU, a
program checks the database for new jobs and runs them with ExecuteCir-
cuitOnHardware. After successful execution, the measurement statistics is
uploaded to the database for the user to retrieve.

After the user constructs the quantum circuit, it has to be exported to an
external service for execution. A common representation for quantum circuits
is the Open Quantum Assembly Language (OpenQASM) [53]. QSDKs usually
support a conversion of quantum circuits to the OpenQASM format.

1 from qiskit import assemble , QuantumCircuit

2

3 circuit = QuantumCircuit ()

4 payload = assemble(circuit , shots =1024)

Listing 1: Qiskit code to assemble a circuit for execution with 1024 shots

The job payload is then sent to the cloud server. Qiskit natively supports
this function via their Backend class. On the server, an application needs to
handle job requests from users. For development-level deployment, frameworks
like Flask [55] and Django [56] can be used to host the API. Given the nature
of the job queue, an in-memory database like Redis [57] is recommended for job
and result storage and retrieval.

This approach can also be extended to be used in qubit calibration or testing
arbitrary waveform sequences for qubit control [54, 58, 59].

3Figure taken from [54]
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4.4 Circuit Pre-compilation

In the cloud-based execution of quantum circuits, the user is able to specify an
arbitrary amount of qubits, gates to use and number of shots. With the former
and latter, restrictions have to be put in place to avoid failure and lengthy
operations. The number of gates is also a concern for the room temperature
electronics. The duration limit of the sequence of gate pulses is determined by
storage capacity of the signal generator and must be regulated.

Another concern is that while the QPU supports a number of logic gates,
the user may request an arbitrary gate not defined in the calibration. Hence,
we need a mapping from arbitrary logic gates to control pulses.

Hence, before the execution of a quantum circuit, certain modifications have
to be made to the circuit for it to be executed on the hardware. In Cirq, the
user is able to inspect these modifications or adjust them but in Qiskit, these
adjustments are performed by the QPU and hidden from the user.

4.4.1 Qubit Connectivity

The user may request a two-qubit gate between qubits that have no direct
connection with each other. To address this, we introduce SWAP gates to bring
the state of one of the gate qubits to a connecting qubit and then perform the
two-qubit gate between the connecting qubit and the other qubit. Next, we use
SWAP gates to bring the state back.

If a gate g is a single qubit gate or is a two-qubit gate between connected
qubits, we do not need to make any adjustments. Otherwise, we have to find a
path between the two qubits and introduce SWAP gates. We want a path that
involves as few SWAP gates as possible and hence less qubits and higher fidelity
of SWAP gates. An algorithm to find such a path is described in the appendix.

61



Algorithm 19 PreCompileSWAP(Q,G)

Initialize G′ as an empty list

for gate g in G do
if g is not a two-qubit gate then

Add g to G′

else
Let qg1 and qg2 be the input qubits of gate g
if qg1 and qg2 are connecting qubits then

Add g to G′

else
Select a path p between qg1 and qg2 with maximum SWAP gate

fidelities.
for i in 1 to |p| - 2 do

Add a SWAP gate between qubits p[i] and p[i+ 1] to G′

end for
Add a gate g′ that is identical to g but with input qubits p[|p| − 1]

and qg2 to G′

for i in to |p| - 1 to 2 do
Add a SWAP gate between qubits p[i] and p[i− 1] to G′

end for
end if

end if
end for
return G′

4.4.2 Gate Decomposition

To execute arbitary gates, we require a decomposition to known gates. Each
gate has a unitary matrix representation and the product of unitary matrices is
also unitary.

Algorithm 20 DecomposeSingleQubitGatesToUnitary(Gs)

Initialize identity matrix R
for gate g in Gs do

Fetch the unitary matrix representation U of g
R = U ×R

end for
return R

Now that we have a unitary matrix representation R of a set of single qubit
gates to be applied, we decompose this into single qubit rotations U3. This has
the form

U3(θ, ϕ, λ) =

[
cos θ

2 −eiλ sin θ
2

eiϕ sin θ
2 ei(ϕ+λ) cos θ

2

]
(42)
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where θ, ϕ, λ are Euler angles. From Section 3.2, we have calibrated rotations
about the X and Y axes of the qubit and so we use these representations here
[2].

U3(θ, ϕ, λ) = eiγRX(ϕ) ·RY (θ) ·RX(λ) (43)

where γ is a phase parameter, RX , RY are the rotation operators on the X
and Y axes respectively on the Bloch sphere in Figure 1. Decompositions to
other rotation bases are also possible. Then, we solve the linear equations

R00 = cos
θ

2

R01 = −eiλ sin θ
2

R10 = eiϕ sin
θ

2

R11 = ei(ϕ+λ) cos
θ

2

(44)

for θ, ϕ, λ and to determine γ. In doing so, we reduce a single qubit gate
sequence of arbitrary length to 3 gates, which improves the gate depth.
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4.5 Variational Quantum Computing

A popular use of current generation quantum computers is variational quantum
algorithms. Here, we describe an example of running a simple example through
the software stack, namely the Bell test in Section 3.2.8 using the same system
using a different circuit. In this example, I have implemented an early prototype
of the circuit to pulse transpilation procedure on the Qibo QSDK [4] and ran
the algorithm on the NTU-CQT QPU.

Figure 33: Quantum circuit to violate the Bell inequality [4]. We adjust θ1
and θ2 to vary the entanglement and measurement axis respectively. Then, we
measure the system in the ZZ, XZ, ZX and XX basis to compute the Bell
signal S.

Algorithm 21 CHSHObjectiveFunc(p)

Set parameters p onto the Bell circuit
Measure the system in the ZZ basis
Measure the system in the XZ basis
Measure the system in the ZX basis
Measure the system in the XX basis
Compute S from the measurements
return 2

√
2− |S|

We copy four circuits from the circuit in Figure 33 and add Hadamard gates
to rotate the measurement basis of each qubit accordingly. Then, we use Set-
Parameter to adjust the rotation angles of θ1 and θ2. Next, we execute each
circuit. This operation causes the gate to pulse compilation to be executed. Fi-
nally, the pulses are played on the signal generator and readout signals recorded.
The readout signals are parsed into qubit states and returned to the user. As a
value as close as possible to the Tsirelson bound is desired, a classical optimizer
is employed to find the parameters p that minimizes the objective function.

The full angle scan took 14 hours while the classical optimizer can take
between 1.4 to 4 hours per execution. The three valid values in Table 3 are
better than or comparable to the full scan value of 2.388. This is due to the
angle step size of the full scan being relatively large and caused the critical
positions to be skipped in order to save on measurement time. Hence, while a
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Run CHSH Value Time (h)
1 -2.74 -
2 -2.44 -
3 -1.81 2.19
4 -1.99 1.41
5 -1.58 3.91
6 -1.75 3.73
7 -2.38 3.56

Table 3: Table of CHSH values from a classical optimizer using CHSHObjec-
tiveFunc for different runs on the setup in Section 3.2.8 and the time taken
for each run. The first two runs did not have their time recorded. Runs 1, 2
and 7 surpass the classical limit of 2. However, the other runs fall short. As the
initial parameters are randomly chosen, they may have caused the optimizer to
stagnate in the sink regions of Figure 22 below 2.

classical optimizer may be able to achieve better values in a shorter period of
time, it can be subject to bad initial parameters and give undesirable results as
seen in the bad values.

In this objective function, the circuit has to be executed four times. On a
typical cloud based platform, circuit jobs are executed in a queue, which means
that the circuits here may not be executed back to back or in a short enough
time frame. This leads to concerns about qubit parameters drifting with time
[60]. Hence, there is a need to repeat qubit calibration periodically.

Overall, this example highlights how the circuit abstraction layer interacts
with the pulse compiler to obtain instructions for the QPU. We convert a con-
ceptual quantum circuit into electromagnetic microwave pulses that manipulate
the states of physical superconducting qubits. Then, we are able to readout
these qubits and parse the electronic signals into qubit states to get a quantum
comptuation result. Thus, we have a workflow of a quantum computation from
user to hardware.
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5 Conclusion

With superconducting qubits, it is possible to realize a two level quantum system
for quantum computation that fulfills DiVincenzo’s criteria. These qubits are
controlled and measured with the QPU, comprising of signal generators and sig-
nal digitalizers. We have documeted various qubit characterizations algorithms
using the QPU such as resonator spectroscopy, qubit spectroscopy, Rabi spec-
troscopy and Ramsey spectroscopy. These algorithms are then used in concert to
fully characterize a superconducting qubit device for basic qubit operations. We
have also shown methods to induce two-qubit interactions, through flux biasing
of tunable qubits and microwave control in the SWIPHT gate. Furthermore,
we explained how the QPU is used to carry out qubit experiments, demonstrat-
ing single qubit control through integer factorization with Gauss sums and two
qubit control and entanglement with the Bell inequality.

Lastly, we linked the QPU with quantum computation, by detailing the pro-
cess of which arbitrary quantum gates on a quantum circuit are compiled into
microwave pulses for superconducting qubit control. Compiler optimization such
as introducing SWAP gates and gate decomposition were also discussed. With
this, a quantum circuit provided can be executed on an actual superconducting
qubit device and the resulting qubit states measured and returned to the user.
We further extend this to a cloud based service. Finally, we demonstrated an
example of executing a variational quantum algorithm using the circuit compi-
lation process and a classical optimizer.

We have used the architecture in this paper to control a two qubit device
and are looking to further develop it for a ten qubit device. As we increase
the number of qubits, we also have to expand the circuit compilation capabil-
ities in Chapter 4 to accomodate n-qubit computation. While the single qubit
gate decomposition is sufficient in the current setup, we will need n-qubit gate
decomposition to single qubit and two qubit gates. In Chapter 3, we have de-
scribed qubit control using the pulse architecture which is sufficient for XY-axis
control lines, but may require a different type of logic for Z-axis control lines in
flux control.

In conclusion, we have established a platform for implementing quantum
computing on superconducting qubits. While further refinement has to be done
for computations with more qubits, the platform has demonstrated the essential
concepts for executing quantum computation and serves as the basis for further
iteration and development.
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Jaroslav Řeháček. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 113–145. isbn: 978-3-540-44481-7. doi: 10.1007/978-3-540-44481-
7_4. url: https://doi.org/10.1007/978-3-540-44481-7_4.

[35] J. Shang, Z. Zhang, and H. K. Ng. “Superfast maximum-likelihood re-
construction for quantum tomography”. In: Phys. Rev. A: At. Mol. Opt.
Phys. 95.6 (2017). issn: 2469-9934. doi: 10.1103/physreva.95.062336.
url: http://dx.doi.org/10.1103/PhysRevA.95.062336.

[36] J. J. Burnett et al. “Decoherence benchmarking of superconducting qubits”.
In: npj Quantum Inf. 5.1 (2019). issn: 2056-6387. doi: 10.1038/s41534-
019-0168-5. url: http://dx.doi.org/10.1038/s41534-019-0168-5.

[37] G. Catelani et al. “Decoherence of superconducting qubits caused by
quasiparticle tunneling”. In: Physical Review B 86.18 (2012). doi: 10.
1103/physrevb.86.184514. url: https://doi.org/10.1103%2Fphysrevb.
86.184514.

[38] L. Cardani et al. “Reducing the impact of radioactivity on quantum cir-
cuits in a deep-underground facility”. In: Nature Communications 12.1
(2021). doi: 10.1038/s41467-021-23032-z. url: https://doi.org/
10.1038%2Fs41467-021-23032-z.

[39] N. Ofek et al. Demonstrating Quantum Error Correction that Extends the
Lifetime of Quantum Information. 2016. doi: 10.48550/ARXIV.1602.
04768. url: https://arxiv.org/abs/1602.04768.

[40] S. Krinner et al. “Engineering cryogenic setups for 100-qubit scale su-
perconducting circuit systems”. In: EPJ Quantum Technology 6.1 (2019).
doi: 10.1140/epjqt/s40507-019-0072-0. url: https://doi.org/10.
1140%2Fepjqt%2Fs40507-019-0072-0.

[41] H.J. Mamin et al. “Merged-Element Transmons: Design and Qubit Perfor-
mance”. In: Physical Review Applied 16.2 (2021). doi: 10.1103/physrevapplied.
16.024023. url: https://doi.org/10.1103%2Fphysrevapplied.16.
024023.

[42] K. F. Ireland and M. I. Rosen. A classical introduction to modern number
theory. Springer, 2011.

[43] M. Gilowski et al. “Gauss Sum Factorization with Cold Atoms”. In: Phys.
Rev. Lett. 100.3 (2008). issn: 1079-7114. doi: 10.1103/physrevlett.
100.030201. url: http://dx.doi.org/10.1103/PhysRevLett.100.
030201.

[44] L. H. Zaw et al. “Ghost factors in Gauss-sum factorization with trans-
mon qubits”. In: Phys. Rev. A 104 (6 2021), p. 062606. doi: 10.1103/
PhysRevA.104.062606. url: https://link.aps.org/doi/10.1103/
PhysRevA.104.062606.

70

https://doi.org/10.1007/978-3-540-44481-7_4
https://doi.org/10.1007/978-3-540-44481-7_4
https://doi.org/10.1007/978-3-540-44481-7_4
https://doi.org/10.1103/physreva.95.062336
http://dx.doi.org/10.1103/PhysRevA.95.062336
https://doi.org/10.1038/s41534-019-0168-5
https://doi.org/10.1038/s41534-019-0168-5
http://dx.doi.org/10.1038/s41534-019-0168-5
https://doi.org/10.1103/physrevb.86.184514
https://doi.org/10.1103/physrevb.86.184514
https://doi.org/10.1103%2Fphysrevb.86.184514
https://doi.org/10.1103%2Fphysrevb.86.184514
https://doi.org/10.1038/s41467-021-23032-z
https://doi.org/10.1038%2Fs41467-021-23032-z
https://doi.org/10.1038%2Fs41467-021-23032-z
https://doi.org/10.48550/ARXIV.1602.04768
https://doi.org/10.48550/ARXIV.1602.04768
https://arxiv.org/abs/1602.04768
https://doi.org/10.1140/epjqt/s40507-019-0072-0
https://doi.org/10.1140%2Fepjqt%2Fs40507-019-0072-0
https://doi.org/10.1140%2Fepjqt%2Fs40507-019-0072-0
https://doi.org/10.1103/physrevapplied.16.024023
https://doi.org/10.1103/physrevapplied.16.024023
https://doi.org/10.1103%2Fphysrevapplied.16.024023
https://doi.org/10.1103%2Fphysrevapplied.16.024023
https://doi.org/10.1103/physrevlett.100.030201
https://doi.org/10.1103/physrevlett.100.030201
http://dx.doi.org/10.1103/PhysRevLett.100.030201
http://dx.doi.org/10.1103/PhysRevLett.100.030201
https://doi.org/10.1103/PhysRevA.104.062606
https://doi.org/10.1103/PhysRevA.104.062606
https://link.aps.org/doi/10.1103/PhysRevA.104.062606
https://link.aps.org/doi/10.1103/PhysRevA.104.062606


[45] A. Einstein, B. Podolsky, and N. Rosen. “Can Quantum-Mechanical De-
scription of Physical Reality Be Considered Complete?” In: Phys. Rev. 47
(10 1935), pp. 777–780. doi: 10.1103/PhysRev.47.777. url: https:
//link.aps.org/doi/10.1103/PhysRev.47.777.

[46] J. S. Bell. “On the Einstein Podolsky Rosen paradox”. In: Phys. Phys. Fiz.
1 (3 1964), pp. 195–200. doi: 10.1103/PhysicsPhysiqueFizika.1.195.
url: https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.
1.195.

[47] J. F. Clauser et al. “Proposed Experiment to Test Local Hidden-Variable
Theories”. In: Phys. Rev. Lett. 23 (15 1969), pp. 880–884. doi: 10.1103/
PhysRevLett.23.880. url: https://link.aps.org/doi/10.1103/
PhysRevLett.23.880.

[48] B. S. Cirel’son. “Quantum generalizations of Bell’s inequality”. In: Lett.
Math. Phys. 4 (1980), pp. 93–100.

[49] Y. P. Zhong et al. “Violating Bell’s inequality with remotely connected
superconducting qubits”. In: Nat. Phy. 15.8 (2019), 741–744. issn: 1745-
2481. doi: 10.1038/s41567-019-0507-7. url: http://dx.doi.org/10.
1038/s41567-019-0507-7.

[50] M. Ansmann et al. “Violation of Bell’s inequality in Josephson phase
qubits”. In: Nat, 461 (Sept. 2009), pp. 504–6. doi: 10.1038/nature08363.

[51] M. Cerezo and others. “Variational quantum algorithms”. In: Nat. Rev.
Phys. 3.9 (2021), 625–644. issn: 2522-5820. doi: 10.1038/s42254-021-
00348-9. url: http://dx.doi.org/10.1038/s42254-021-00348-9.

[52] J. R. McClean et al. “The theory of variational hybrid quantum-classical
algorithms”. In: New Journal of Physics 18.2 (2016), p. 023023. issn:
1367-2630. doi: 10.1088/1367-2630/18/2/023023. url: http://dx.
doi.org/10.1088/1367-2630/18/2/023023.

[53] A. W. Cross et al. Open Quantum Assembly Language. 2017. arXiv: 1707.
03429 [quant-ph].

[54] K. H. Park et al. ICARUS-Q: A scalable RFSoC-based control system for
superconducting quantum computers. 2021. arXiv: 2112.02933 [quant-ph].

[55] Pallets. Flask. 2021. url: https://flask.palletsprojects.com.

[56] Django Software Foundation.Django. 2021. url: https://www.djangoproject.
com.

[57] Redis Ltd. Redis. 2021. url: https://redis.io/.

[58] P. Gokhale et al. Optimized Quantum Compilation for Near-Term Algo-
rithms with OpenPulse. 2020. arXiv: 2004.11205 [quant-ph].

[59] D. C. McKay et al. Qiskit Backend Specifications for OpenQASM and
OpenPulse Experiments. 2018. arXiv: 1809.03452 [quant-ph].

71

https://doi.org/10.1103/PhysRev.47.777
https://link.aps.org/doi/10.1103/PhysRev.47.777
https://link.aps.org/doi/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195
https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.23.880
https://link.aps.org/doi/10.1103/PhysRevLett.23.880
https://link.aps.org/doi/10.1103/PhysRevLett.23.880
https://doi.org/10.1038/s41567-019-0507-7
http://dx.doi.org/10.1038/s41567-019-0507-7
http://dx.doi.org/10.1038/s41567-019-0507-7
https://doi.org/10.1038/nature08363
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
http://dx.doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1088/1367-2630/18/2/023023
http://dx.doi.org/10.1088/1367-2630/18/2/023023
http://dx.doi.org/10.1088/1367-2630/18/2/023023
https://arxiv.org/abs/1707.03429
https://arxiv.org/abs/1707.03429
https://arxiv.org/abs/2112.02933
https://flask.palletsprojects.com
https://www.djangoproject.com
https://www.djangoproject.com
https://redis.io/
https://arxiv.org/abs/2004.11205
https://arxiv.org/abs/1809.03452


[60] A. R. R. Carvalho et al. “Error-Robust Quantum Logic Optimization
Using a Cloud Quantum Computer Interface”. In: Phys. Rev. Appl. 15.6
(2021). issn: 2331-7019. doi: 10.1103/physrevapplied.15.064054. url:
http://dx.doi.org/10.1103/PhysRevApplied.15.064054.

[61] E. W. Dijkstra. “A Note on Two Problems in Connexion with Graphs”.
In: Numer. Math. 1.1 (1959), 269–271. issn: 0029-599X. doi: 10.1007/
BF01386390. url: https://doi.org/10.1007/BF01386390.

Appendices

A Path finding algorithm for swapping qubits

We run a modified version of Dijkstra’s algorithm [61] where Q is the set of
all qubits, qs is the source qubit, qt is the target qubit and g is the intended
two qubit interaction gate. First we initialize the set of reached qubits R, the
distance function dist and the array of previous qubits P . On each step of the
loop, we first select the qubit with the maximum SWAP fidelity thus far as q.
We add this qubit to R and then iterate through the neighbouring qubits of q.
If a neighbouring qubit u is not in R, we fetch the fidelity of the gate between q
and u as f. Then, we calculate the fidelity of the sequence from qs to q and then
from q to u as d = dist(q) + log f . If this new path has greater fidelity than
an existing path, we set the new fidelity of qs to u as d and set the previous
qubit of this path as q. We do this for all qubits until we select qt. In that
case, the loop ends and we iterate through P starting from qt to find the path
of maximum fidelity from qt to qs.

The worst case running time of this is O(n log n+m), where n is the number
of qubits and m is the number of connections between qubits.
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Algorithm 22 PathFinding(Q, qs, qt, g)

Initialize dist(q) = −∞ for q in Q
Set dist(qs) = 0
Initialize P as an empty array with length |Q|
Initialize R = ∅
while R ̸= Q do

Select q in Q−R with max dist(q)
Add q to R
if q = qt then

Exit the while loop
end if
for u in the neighbouring qubits of q do

if u is not in R then
Fetch the SWAP gate fidelity between u and q as f
if u = qt then

Set f to be the fidelity of g for q and u instead
end if
d = dist(q) + log f
if d > dist(u) then

dist(u) = d
P [u] = q

end if
end if

end for
end while
Let p = P [Qt]
Initialize S = [Qt]
while p is not undefined do

Add p to S
p = P [p]

end while
Reverse S
return S
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