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Abstract—The wind is one of the major factors that may cause
unmanned aerial vehicles (UAVs) to crash and pose fatality risk
to the population and property damage risk to infrastructures.
This paper investigates wind patterns on temporal scales to
identify high-risk periods in terms of wind conditions for safe
UAYV operations in urban airspace. The research starts with the
historical wind speed data analysis using statistical approaches.
As the wind speed data does not follow normal distribution after
checking, a nonparametric approach of the Kruskal-Wallis test
is applied for hypothesis testing to see if there is a significant
difference in the median wind speed in different years. Regression
analyses are also performed for monthly wind speed data to
check any significant trends that could facilitate the predictions
of average wind speed in the long term. This study will contribute
to safe air traffic management for UAV operations in low-altitude
urban airspace by mitigating adverse wind effects.

Index Terms—UAYV, wind speed, operational safety, urban
airspace, nonparametric statistics

I. INTRODUCTION

UAVs can be used in a variety of applications in urban
airspace [1], such as cargo delivery and photography [2],
which bring opportunities to unlock the potential of the sky.
However, UAVs may not be able to operate under all types
of weather conditions [3]. The weather effects on UAVs may
reduce their reliability, causing safety issues and hindering
their widespread uses [4].

The weather conditions that may exert an adverse effect
on UAV operations can be strong winds (which may cause
UAVs loss of control [5,6]), precipitation (damage onboard
electronics and affect airworthiness [4,7]), and low tempera-
tures (reduce the battery performance [8]). Thus, weather data
is critical for UAV flight planning, forecasting, and overall
operations [9]. However, there are few published standards
and specifications that cover weather requirements for flight
operations of UAVs [4,9]. The American National Standards
Institute (ANSI) identified weather conditions related to UAV
operations as a gap that needed additional research and gave
this gap high priority [9].

Furthermore, as most UAVs are light and have small sizes,
they can be susceptible to wind [4,5,6]. Once UAVs are
out of control due to strong winds, they may crash to the
ground and pose risks to the population such as fatality risk to
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pedestrians [10,11], property damage risk to ground facilities
[12,13], and airborne collision risks [14,15,16]. To avoid such
incidents, analysis of wind patterns and enhancing the stability
of UAVs are therefore essential. Some researchers focused
on wind effects on UAV operations, and they modeled all
different kinds of wind including constant wind, turbulent
flow, wind shears, and propeller vortex. The models were then
implemented in simulation tests to show the effects of all sorts
of wind on UAV paths and flight states [6]. Another study
modeled the interaction between wind and a UAV from the
perspective of the UAV’s onboard sensors [17]. To implement
UAV operations in such windy urban environments, some
studies proposed a novel flight mode for UAVs to offset
the trajectory deviation [18] caused by side wind [5]. Novel
path-planning techniques were also investigated for UAVs
pursuing ground moving targets [19,20]. However, existing
models are heavily relied on mathematical models and may
not sufficiently consider the real-world wind data. Others
examined the impact of wind speed on UAV flyability at a
global scale with a given maximum wind speed tolerance of 10
m/s for common UAVs and 14m/s for weather-resistant UAVs
respectively [4]. However, wind speed variability has not been
investigated and localized wind pattern analysis is still lacking.
This paper will investigate the localized real-world wind speed
data.

Enhancing UAVs’ wind resistance ability is a good way to
improve its reliability and safety threshold [21]. To obtain a
reliable threshold, we analyze wind patterns in urban airspace
by answering three questions:

1) Do the wind patterns have any regularity or irregularity?
2) Do the wind patterns present yearly consistency?
3) Do the wind patterns follow any monthly trend?

By understanding the wind patterns in urban airspace, the
influence of wind on UAV operations can be reduced by
identifying and avoiding periods with severe wind conditions.
This study will contribute to future air way design [22]
considering wind-related risk source and improve the UAV
operational safety.



II. METHODOLOGY

The methodology of this study starts with the analysis of
historical wind speed data. Statistical approaches are used to
investigate the wind pattern, including the normality test, ho-
mogeneity of variance test, Kruskal-Wallis test, and regression
test.

Firstly, a proper statistics approach is determined based
on the feature of obtained data by testing their normality
and homogeneity of variance. If the data follow a normal
distribution and have equal variance, a parametric statistic test
will be performed; otherwise, a nonparametric statistic test will
be conducted.

The next step is to check if the wind patterns from different
years present statistical consistency. The null hypothesis in
this section is defined as no significant difference between
the wind speed in different years. If failed to reject the null
hypothesis, it means that the wind speed presents statistical
consistency. If the null hypothesis is rejected, we analyze the
causation and remove outliers that cause the inconsistency of
the sample data.

After analysis, if the wind patterns have yearly consistency,
we test their monthly trends. Tests for linearity and quadratic
trends will be conducted, respectively. The purpose of this
section is to find the monthly regularity and obtain a reliable
regression equation for forecasting wind speed.

The research findings are discussed in the last section of this
paper, and the possible applications of this study to weather-
based air way design for safe UAV operations is also discussed.

The overall workflow of this study is shown in Figure 1.

A. Hypothesis testing for yearly consistency

The independent variable is each particular year (e.g., the
years 2011, 2012, ..., and 2020). They are between factors.
The dependent variable is the weekly mean wind speed of the
corresponding year.

We define the mean and variance of the ith group as pu;
and o; respectively for the parametric test. In nonparametric
statistics, we use median as a measure instead of mean. Hy-
potheses we take for checking yearly consistency are defined
as follows.

i) Hypothesis for sampled population means/medians

Ho: p1 = p2 = -+ =p10
H;:: Not all means/medians are the same
ii) Hypothesis for sampled population variances
H()I 01 =09 =
H;: Not all variances are the same

e :0’10

B. Regression analysis of monthly trends

The independent variable is each month (e.g., January (1),
February (2), ..., December (12)) in a year. They are between
factors. The dependent variable is the monthly mean wind
speed.

We conduct regression analysis on linear and quadratic
trends, respectively.

i) The linear trend model and hypothesis are given as

y = Bo+ Bix )
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Fig. 1. Workflow of the study

Assuming that the null hypothesis is there is no linear
relationship between the independent and dependent variables,
presented as Hy: $1=0. And the alternative hypothesis is as Hj :

B1# 0.

ii) The quadratic trend model is presented as

y = Bo+ Brx + Bor? 2

Departure from linearity is represented by 22. Thus, to test
a significant departure trend from linearity, the null hypothesis
is Hy: B2=0. And the alternative hypothesis is as Hy: B2 0.
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Fig. 2. Example of sample data in a group (Year 2020)

III. PRELIMINARY ANALYSIS FOR HYPOTHESIS TESTING
ON YEARLY CONSISTENCY

A. Data description

To analyze the wind patterns in urban airspace, we collect
the amount of wind speed in a station named Marina Bar-
rage in Singapore from the official meteorological website of
Singapore [23].

The features of the samples are described below:

o Group: there are ten groups of sample data (i.e., years
from 2011 to 2020, ten years in total).

« Sample size: 520 in total, as each group has 52 samples
(i.e., each year has 52 full weeks).

o Value: the value of each data is the amount of weekly
mean wind speed (km/h).

« Independence: the samples are independent of each other.

An example of one group of sample data (the year 2020)
is given in Figure 2. The means, medians, and standard
deviations of all groups’ samples are listed in Table 1.

TABLE I
MEANS, MEDIANS, AND STANDARD DEVIATIONS OF SAMPLES FROM
YEARS 2011-2020

Group Count Mean Median | Standard Deviation

(Year) (Weeks)
1 52 6.3489 5.8357 1.5477
2 52 5.8025 5.3429 1.4639
3 52 6.0165 5.3714 1.6962
4 52 6.2896 5.1929 2.3294
5 52 6.2812 5.5179 2.0368
6 52 10.6588 | 10.5143 3.6208
7 52 9.4958 8.0500 4.4974
8 52 6.4596 5.7586 1.8845
9 52 6.8759 6.0786 2.4198
10 52 6.6429 54214 2.6184

B. Determine a proper statistics approach

a) Two categories of statistics approaches: Statistic
approaches include parametric statistics and nonparametric
statistics. Parametric statistics are robust and can measure
sample data accurately, while they have a stringent assumption
that the data must follow the normal distribution and are
subject to outliers. As there is only one factor and more than
two groups of sample data in this study, one-way ANOVA, a
typical parametric statistics approach, is expected to conduct
if parametric statistics are appropriate for this study. There are
three basic conditions for one-way ANOVA: i) the dependent
variables are statistically independent of each other; ii) the
variances of each sample are assumed equal; iii) the residuals
are normally distributed.

Nonparametric statistics do not involve population param-
eters and can be used for more general distributions by
reducing data to an ordinal ranking and testing sample median,
which reduces the impact or leverage of outliers. One of the
main disadvantages of nonparametric statistics is the important
feature of actual data might be lost.

Therefore, parametric statistics is preferred to be used in
this study. We check the underlying assumptions of one-
way ANOVA first. If these assumptions are violated, we then
consider a nonparametric statistics approach.

b) Normality distribution and homogeneity of variance
tests: A MATLAB Lillietest function is used for the normality
test. We first take one group sample (the year 2020) as
an example. The obtained histogram and Quantile-Quantile
plot for the normal distribution of this group are shown in
Figure 3. The Quantile-Quantile plot is a graphic technique
and is commonly applied in the comparison of distributions
[24]. In this section, we use the Quantile-Quantile plot to
compare the distribution of obtained sample with the standard
normal distribution. If the distribution of obtained sample data
is similar to the standard normal distribution, the points in the



Quantile-Quantile plot will approximately lie on the 45°-line
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Fig. 3. Example of a normality test (Year 2020)

The “S” shaped Quantile-Quantile plot in Figure 3 indicates
that the sample for the year 2020 is more skewed than the sym-
metric standard normal distribution. This skewed distribution

2011

feature can also be seen in other groups, as shown in Figure 4.

We can see from Figure 4 that the plots on each subplot
generally do not follow the 45° line, except for the year 2016.
To verify with accuracy the sample distribution is not with
normal distribution, we compute the P-value of each group,
summarized in Table 2. If a P-value is larger than 0.05,
its corresponding sample follows a normal distribution at the
significance level of 5%.

TABLE II
P-VALUES OF NORMALITY TEST FOR PARAMETRIC STATISTICS
Testing year | 2011 2012 2013 2014 2015
P-value 0.001 | 0.001 | 0.001 | 0.001 | 0.001
Testing year | 2016 2017 2018 2019 2020
P-value 0.189 | 0.001 | 0.001 | 0.001 | 0.001

We can see from Table 2 that 9 out of 10 groups’ sample
data are not with normal distribution at a 5% significance level
(P-value<0.05).

Moreover, the p-value of the homogeneity test for variance
is also smaller than the significance level of 0.05 after check-
ing, which means that the variances of all groups of sample
data have a difference at a 5% significance level.

Both normality distribution and equal variance assump-
tions are violated. As the parametric statistics (e.g., one-
way ANOVA) is premised on the two assumptions, we can
conclude that the parametric statistics is not suitable for the
data used in this study.

Since nonparametric statistics do not rely on any underlying
assumptions about the probability distribution of the sampled
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Fig. 4. Quantile-Quantile plot of sample data versus standard normal distribution (Years from 2011-2019)



population, we choose the nonparametric statistics for wind
patterns analysis.

IV. NONPARAMETRIC STATISTICS FOR IDENTIFYING THE
CONSISTENCE OF WIND DATA

A. Skewed distribution feature

According to the outcomes of the Quantile-Quantile plot in
Figure 3 and Figure 4, the distribution of wind speed pattern
is skewed rather than symmetrical. To better demonstrate their
patterns, the box-plots are produced and shown in Figure 5.
The box-plot is a graphical method reflecting dispersion and
skewness of data by displaying the maximum, minimum,
median, and quartiles.
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Fig. 5. Data distribution of each testing year

The interquartile ranges in Figure 5, presented by blue rect-
angles, cover the range between the 25" and 75! percentile
(i.e., the middle 50%) of corresponding groups of sample
data. The red lines are medians, and the upper and lower
black lines are maximum and minimum scores, respectively.
If a distribution is symmetrical, the interquartile range and
median will lie in the middle of each box-plot; conversely, the
interquartile range and median of skewed distribution skew
towards either side. The interquartile ranges and medians in
Figure 5 are more skewed towards the left side, indicating
that wind speed patterns are positively skewed. In skewed
distributions, the median is a more appropriate measure. Thus,
the null hypothesis made in this section is based on medians.

B. Kruskal-Wallis test and outliers removal

There are various approaches for nonparametric statistics,
such as the Sign test, Wilcoxon signed-rank, Wilcoxon rank-
sum test, and Kruskal-Wallis test. Among them, the Kruskal-
Wallis test is used with three or more groups of sample data.
Thus, we conduct the Kruskal-Wallis test in this study and the
obtained results are shown in Table 3.

As the P-value 2.2300 x 1078 <0.05, we can reject the null
hypothesis that all medians are the same and conclude that

TABLE 111
RESULTS OF THE KRUSKAL-WALLIS TEST IN NONPARAMETRIC
STATISTICS
Source SS2 dfP MS® Chi-sq P-value
Columns | 2.35 x 10° 9 | 261357.6 | 104.19 | 2.23 x 10~18
Error 9.36 x 108 | 510 | 18362.6
Total 1.17 x 107 | 519

aSum of squares. PDegree of freedom. “Mean of squares.

there is at least one group have different sampled population
distribution. It probably results from outliers, which can be
reflected in a line graph, shown in Figure 6.

According to Table 1, Figure 5, and Figure 6, we can see
the data for the years 2016 and 2017 are different from the
other years in aspects of mean, standard deviation, median,
and appearance. There are inaccuracies in these two groups of
data. The outliers are removed to improve the quality of the
data used in the testing. To verify the rationality of outliers
removal, we conduct the Kruskal-Wallis test again to test if
there is any consistency presented in the other eight years’
wind patterns. The results are shown in Table 4.

TABLE IV
KRUSKAL-WALLIS TABLE (REMOVE YEARS 2016 AND 2017)
Source SS df MS Chi-sq | P-value
Columns 171286.7 7 24469.5 11.85 0.1056
Error 5827761.3 | 408 | 14283.7
Total 59990438 415

The P-value (0.1056) of the hypothesis test is higher than a
significance level of 5% after we remove these two groups
of outliers. We can conclude that the other eight groups
(years 2011-2015 and 2018-2020) follow a similar population
distribution at a significance level of 5% and perform yearly
consistency. Thus, it makes sense to only use these eight
groups of sample data in the following studies.

V. REGRESSION ANALYSIS FOR MONTHLY TRENDS OF
WIND SPEED

So far, a yearly regularity has been proved to exist in the
amount of wind speed. We now investigate if there is any
regularity in a length of time shorter than a year. Therefore, the
next step of our study is monthly trends analysis. The purpose
is to identify severe wind condition and low-risk period for
safe UAV operations.

The amount of monthly mean wind speed of each group is
presented in Figure 7.

From Figure 7, a temporal trend appears in a monthly
pattern. To verify the regularity and obtain a numerical ex-
pression, we then conduct regression analysis.

The independent variable for monthly trend analysis is each
month within a year and its corresponding monthly mean wind
speed of eight groups is the dependent variable. The value of
independent and dependent variables is listed in Table 5.

Firstly, we test for linearity. According to Eq. (1), a MAT-
LAB regress function is used to compute the two parameters
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(Bo, B1), we have [y=8.1011 and (,=-0.2679. The linear
regression equation is therefore presented as

y = 8.1011 — 0.2679x )

To test if the linear trend is significant, we con-
duct a hypothesis test and the obtained results are R?=
02876, FObS:4'O374<FCTit(O.O5;1,10):4'967 and P-value
0.0723>0.05. Thus, we fail to reject the null hypothesis at a
5% significance level and conclude that the linear regression
model is not acceptable.

We then test if the sample data follow a quadratic trend.
According to Eq. (2), a MATLAB polyfit function is used

to compute the three parameters (8y, (1, [2), we have
B0=11.9229, 51=-1.9058, and B3=0.1260. Thus, the quadratic
regression equation is presented as

y = 11.9229 — 1.9058z + 0.12602> )

Also, to test if the quadratic trend is significant,
we conduct a hypothesis test. The obtained results are
Fops=2048.41> Fri4(0.05;1,0)=5.12. Hence, we reject the null
hypothesis and conclude that the quadratic model is accept-
able. The predicted quadratic trend is presented in Figure 8.

We can see from Figure 8 that the wind speed on the
monthly scale represents a general concave trend, meaning that



TABLE V
INDEPENDENT AND DEPENDENT VARIABLES OF THE REGRESSION TEST
Independent Variable | Dependent Variable
(Month) (Mean, km/h)
Jan (1) 9.59
Feb (2) 9.77
Mar (3) 7.53
Apr (4) 5.62
May (5) 4.71
Jun (6) 5.00
Jul (7) 5.25
Aug (8) 5.40
Sep (9) 5.15
Oct (10) 5.18
Nov (11) 5.54
Dec (12) 7.58
12
‘\ O Averages from eight years for each corresponding month
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Fig. 8. Quadratic fit of data with 95% prediction interval

the minima wind speeds are most likely to occur in mid-year
while the maxima exist in early and late years. The regression
result is expected to be used as an environmental safety guide
for the flights of UAVs, as we prefer UAV operations in a
safer period where wind speed is relatively low rather than
in unsafe windy environments. To identify windy weather, we
further introduce prediction intervals.

Prediction intervals are a common tool for regression anal-
ysis, and they help express the potential value of a new
observation. In Figure 8, the quadratic fit curve represents
the predicted values of regression, and the prediction interval
provides the lower and upper boundaries of prediction. For
instance, we calculate the expected mean wind speed in
January as 10.14 km/h according to the regression Eq. (4).
The lower limit of the prediction interval is approximately 8.47
km/h, and the upper limit is approximately 11.82 km/h, thus
we can be 95% confident that the mean wind speed in a future
January will fall to this range of [8.47, 11.82] km/h. In other
words, a UAV should have the ability of wind resistance of at
least 11.82 km/h to keep its operational safety if it operates
in January.

Compared to the 95% prediction interval, the 90% predic-
tion interval is narrower, and the 99% prediction interval is
wider, as shown in Figure 9.

14
90% Prediction Interval
— — —95% Prediction Interval
12 B 99% Prediction Interval

Mean Wind Speed (km/h)

10 12

[
.
o F
e

Month

Fig. 9. 90% and 99% Prediction Intervals Comparison to 95% Prediction
Interval

We also take the monthly mean wind speed in January as
an example. The 90% prediction interval means that we can
be 90% confident that the new observation will be between
8.74 km/h and 11.54 km/h, and the 99% prediction interval
indicates that there is a 99% probability that the new ob-
servation will fall within the interval of 7.94 km/h to 12.35
km/h. The wider the prediction interval, the more potential
observations will be covered. Since individual observation
is subject to circumstance and is likely to deviate from the
predicted regression value, it is liable to omit extremes of wind
conditions that might act as risk sources for UAV operations
if we use a narrow 90% prediction interval as a guide. If
we treat the 99% prediction interval as a guide, it can cover
more severe windy conditions and improve UAV operational
safety. However, this strict guide will scarify UAV flyability
and damage the utility of limited urban airspace, as extreme
windy days are not frequent after all. Therefore, it is more
reasonable to take a 95% prediction interval into account for
predicting wind conditions. Which benefits UAV flyability to
a significant degree as well as guarantees UAV operational
safety in generality.

VI. CONCLUSIONS

We investigate wind patterns in this study and find their
regularity from the aspects of yearly consistency and monthly
trends. The key research findings are concluded below:

1) The wind speed feature does not follow symmetric dis-
tributions such as normal distribution but rather presents
positive-skewed distribution.

2) Wind patterns show yearly consistency, meaning that
wind speed patterns in different years statistically follow
a similar distribution.



3) A quadratic trend of monthly wind speed is presented
within a year. The maximum mean wind speed occurs in
the beginning and at the end of a year while the wind
speed from May to September is relatively lower, which
is a safer period for UAV operations.

By investigating the wind patterns in urban airspace, the
adverse effect of wind can be mitigated by avoiding high-
risk windy periods and the safety of UAV operations can be
improved. This study can also contribute to weather-based
air route network design for safe UAV operations in urban
airspace.
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