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Gradient-Free Nash Equilibrium Seeking in N-Cluster Games with
Uncoordinated Constant Step-Sizes

Yipeng Pang and Guoqiang Hu

Abstract— This work investigates a problem of simultaneous
global cost minimization and Nash equilibrium seeking, which
commonly exists in N -cluster non-cooperative games. Specifi-
cally, the players in the same cluster collaborate to minimize
a global cost function, being a summation of their individual
cost functions, and jointly play a non-cooperative game with
other clusters as players. For the problem settings, we suppose
that the explicit analytical expressions of the players’ local
cost functions are unknown, but the function values can be
measured. We propose a gradient-free Nash equilibrium seeking
algorithm by a synthesis of Gaussian smoothing techniques and
gradient tracking. Furthermore, instead of using the uniform
coordinated step-size, we allow the players across different
clusters to choose different constant step-sizes. When the largest
step-size is sufficiently small, we prove a linear convergence
of the players’ actions to a neighborhood of the unique
Nash equilibrium under a strongly monotone game mapping
condition, with the error gap being propotional to the largest
step-size and the smoothing parameter. The performance of the
proposed algorithm is validated by numerical simulations.

Index Terms— Nash equilibrium seeking, gradient-free meth-
ods, non-cooperative games.

I. INTRODUCTION

The research on cooperation and competition across multi-
ple interacting players has been extensively studied in recent
years, especially on distributed optimization and Nash equi-
librium (NE) seeking in non-cooperative games. Specifically,
distributed optimization deals with a cooperative minimiza-
tion problem among a network of players. On the other hand,
NE seeking in non-cooperative games is concerned with a
number of players, who are self-interested to minimize their
individual cost given the other players’ decisions.

To simultaneously model the cooperative and competi-
tive behaviors in networked systems, an N -cluster game
is formulated. This game is essentially a non-cooperative
game played among N interacting clusters with each cluster
being a virtual player. In each cluster, there are a group
of players who collaboratively minimize a cluster-level cost
function given by a summation of their individual local cost
functions. With these features, the N -cluster game naturally
accommodates both collaboration and competition in a uni-
fied framework, which motivates us to study and propose
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solutions to find its NE. In this paper, we consider such an N -
cluster non-cooperative game. Moreover, we further suppose
that the explicit analytical expressions of the players’ local
cost functions are unknown, but the function values can be
measured.

A substantial works on NE seeking algorithms for non-
cooperative games have been reported in the recent liter-
ature, including [1]–[8], to list a few. The focus of the
aforementioned works is mainly on the competitive nature
in the non-cooperative games. Different from that, the works
in [9], [10] considered two sub-networks zero-sum games,
where each subnetwork owns an opposing cost function to be
cooperatively minimized by the players in the corresponding
subnetwork. Then, an extension of such problems to N
subnetworks was firstly formulated in [11], which is known
as an N -cluster (or coalition) game. Then, this problem has
received a high research interest recently, which includes
[12]–[17]. Most of the above works focus on continuous-time
based methods, such as gradient play [12], [13], subgradient
dynamics [14], projected primal-dual dynamics [15], and
extremum-seeking techniques [16]. Our previous work in
[17] introduced a discrete-time NE seeking strategy based
on a synthesis of gradient-free and gradient-tracking tech-
niques. This paper revisits the N -cluster game, and aims to
extend the results to uncoordinated step-sizes across different
clusters.

Contributions: As compared to the aforementioned rele-
vant works, the contributions of this work can be summarized
as follows. 1) In contrast to the problem setups in [11]–
[15], we limit the players on the access to the cost functions:
no explicit analytical expressions but only the values of the
local cost functions can be utilized in the update laws. In
this case, no gradient information can be directly utilized in
the design of the algorithm. Hence, gradient-free techniques
are adopted in this work. 2) As compared to our prior
work [17], we extend the gradient-tracking method to allow
uncoordinated constant step-sizes across different clusters,
which further reduces the coordination among players from
different clusters. 3) The technical challenges of the con-
vergence analysis brought by gradient tracking methods in
games, and uncoordinated step-sizes are addressed in this
work. For the convergence results: we obtain a linear con-
vergence to a neighborhood of the unique NE with the error
being proportional to the largest step-size and a smoothing
parameter under appropriate settings.

Notations: 1m denotes the vector of dimension m with all
elements being 1, and Im denotes the m×m identity matrix.
For a vector u, we use [u]i for its i-th element, and diag(u)



for a diagonal matrix formed by the elements of u. For a
(square) matrix A, the spectral norm is denoted by ∥A∥, and
the spectral radius is represented by ρ(A).

II. PROBLEM STATEMENT

A. Problem Formulation

An N -cluster game is defined by Γ(N , {f i}, {Rni}),
where each cluster, indexed by i ∈ N ≜ {1, 2, . . . , N}, con-
sists of a group of players, denoted by Vi ≜ {1, 2, . . . , ni}.
Denote n ≜

∑N
i=1 ni. These players aim to minimize a

cluster-level cost function f i : Rn → R, defined as

f i(xi,x−i) ≜
1

ni

ni∑
j=1

f i
j(x

i,x−i), ∀i ∈ N ,

where f i
j(x

i,x−i) is a local cost function of player j in
cluster i, xi ≜ [xi⊤

1 , . . . , xi⊤
ni
]⊤ ∈ Rni is a collection of all

players’ actions in cluster i with xi
j ∈ R being the action of

player j in cluster i, and x−i ∈ Rn−ni denotes a collection of
all players’ actions except cluster i. Denote x ≜ (xi,x−i) =
[x1⊤, . . . ,xN⊤]⊤.

Definition 1: (NE of N -Cluster Games). A vector x∗ ≜
(xi∗,x−i∗) ∈ Rn is said to be an NE of the N -cluster non-
cooperative game Γ(N , {f i}, {Rni}), if and only if

f i(xi∗,x−i∗) ≤ f i(xi,x−i∗), ∀xi ∈ Rn, ∀i ∈ N .
Within each cluster i ∈ N , there is an underlying directed

communication network, denoted by Gi(Vi, E i) with an adja-
cency matrix Ai ≜ [aijk] ∈ Rni×ni . In particular, aijk > 0 if
player j can directly pass information to player k, and aijk =
0 otherwise. We suppose aijj > 0,∀j ∈ Vi. Regarding the
communication network, the following standard assumption
is supposed.

Assumption 1: For i ∈ N , the digraph Gi(Vi, E i) is
strongly connected. The adjacency matrix Ai is doubly-
stochastic.

Noting that σAi ≜ ∥Ai − 1
ni
1ni

1⊤
ni
∥ < 1 [18, Lemma 1],

we define σ̄ ≜ maxi∈N σAi and ς ≜ maxi∈N (1+σ2
Ai)/(1−

σ2
Ai).
Moreover, we consider the scenario where the explicit

analytical expressions of the players’ local cost functions are
unknown, but the function values can be measured, similar
to the settings in [7], [16], [17], [19]. Regarding the cost
function, the following standard assumption is supposed.

Assumption 2: For each j ∈ Vi, i ∈ N , the local cost
function f i

j(x
i,x−i) is convex in xi, and continuously dif-

ferentiable in x. The total gradient ∇f i
j(x) is L-Lipschitz

continuous in x, i.e., for any x,x′ ∈ Rn, ∥∇f i
j(x) −

∇f i
j(x

′)∥ ≤ L∥x− x′∥.
The game mapping of Γ(N , {f i}, {Rni}) is defined as

Φ(x) ≜ [∇x1f1(x)⊤, . . . ,∇xN fN (x)⊤]⊤.

The following standard assumption on the game mapping
Φ(x) is supposed.

Assumption 3: The game mapping Φ of game Γ is
strongly monotone with a constant χ > 0, i.e., for any
x,x′ ∈ Rn, we have ⟨Φ(x)−Φ(x′),x− x′⟩ ≥ χ∥x− x′∥2.

Remark 1: It is known that under Assumptions 2 and 3,
game Γ admits a unique NE.

B. Preliminaries

This part presents some preliminary results on gradient-
free techniques based on Gaussian smoothing [20].

For j ∈ Vi, i ∈ N , a Gaussian-smoothed function of the
local cost function f i

j(x) can be defined as

f i
j,µ(x) ≜ Eζ∼N (0n,In)[f

i
j(x+ µζ)], (1)

where ζ is generated from a Gaussian distribution N (0n, In),
and µ ≥ 0 is a smoothing parameter.

For each cluster i ∈ N , the randomized gradient-free
oracle of f i

j(x) for player j with respect to player k, j, k ∈
Vi, i ∈ N at time step t ≥ 0 is developed as

gijk(xt) ≜
f i
j(xt + µζij,t)− f i

j(xt)

µ
[ζij,t]

i
k, (2)

where [ζij,t]
i
k denotes the (

∑i
l=0 nl + k)-th element of ζij,t

with n0 = 0, and ζij,t being player j’s own version of ζ
at time step t, and µ > 0. The oracle (2) is useful as it
can correctly estimate the partial gradient of the Gaussian-
smoothed cost function ∇xi

k
f i
j,µ(xt).

We define a Gaussian-smoothed game associated with the
N -cluster game Γ, denoted by Γµ(N , {f i

µ}, {Rni}), having
the same set of clusters and action sets as game Γ, but the
cost function is given by

f i
µ(x

i,x−i) ≜
1

ni

ni∑
j=1

f i
j,µ(x

i,x−i), ∀i ∈ N ,

where f i
j,µ is a Gaussian-smoothed function of f i

j defined in
(1). Similar to the game mapping of Γ, we define the game
mapping of Γµ by

Φµ(x) ≜ [∇x1f1
µ(x)

⊤, . . . ,∇xN fN
µ (x)⊤]⊤.

The following lemma shows the strong monotonicity condi-
tion of Φµ(x), and quantifies the distance between the NE
of the smoothed game Γµ and the NE of the original game
Γ in terms of the smoothing parameter µ.

Lemma 1: (see [17, Lemma 1]) Under Assumptions 2 and
3, for ∀µ ≥ 0, the smoothed game Γµ(N , {f i

µ}, {Rni})
holds that

1) The game mapping Φµ(x) is χ-strongly monotone.
2) The smoothed game Γµ admits a unique NE (denoted

by x∗
µ) satisfying that

∥x∗
µ − x∗∥ ≤ n(n+ 3)

3
2Lγ

2(1−
√
1− γχ)

µ,

where x∗ is the unique NE of the original game Γ, and
γ ∈ (0, χ

n2L2 ] is a constant.
It follows from Lemma 1 that x∗

µ is the unique NE of the
smoothed game Γµ(N , {f i

µ}, {Rni}), and hence holds that
Φµ(x

∗
µ) = 0n. We define G ≜ maxj∈Vi,i∈N ∥∇f i

j,µ(x
∗
µ)∥.



III. NE SEEKING ALGORITHM FOR N-CLUSTER GAMES

A. Algorithm

In this part, we present an NE seeking strategy for the
N -cluster game. Specifically, each player j ∈ Vi, i ∈ N
needs to maintain its own action variable xi

j , an auxiliary
variable yijk and gradient tracker variables φi

jk for ∀k ∈ Vi.
Let xi

j,t, y
i
jk,t, φ

i
jk,t denote the values of these variables at

time-step t. The update laws for each player j ∈ Vi, i ∈ N
are designed as

yijk,t+1 =

ni∑
l=1

aijly
i
lk,t − αiφi

jk,t, (3a)

xi
j,t+1 = yijj,t+1, (3b)

φi
jk,t+1 =

ni∑
l=1

aijlφ
i
lk,t + gijk(xt+1)− gijk(xt), (3c)

with arbitrary xi
j,0, y

i
jk,0 ∈ R and φi

jk,0 = gijk(x0), where
gijk(xt) is the gradient estimator given by (2), and αi > 0 is a
constant step-size sequence adopted by all players in cluster
i ∈ N . Denote the largest step-size by αmax ≜ maxi∈N αi

and the average of all step-sizes by ᾱ ≜ 1
n

∑
i∈N niα

i. De-
fine the heterogeneity of the step-size as the following ratio,
ϵα ≜ ∥α− ᾱ∥/∥ᾱ∥, where α ≜ [α11⊤

n1
, . . . , αN1⊤

nN
]⊤ and

ᾱ ≜ ᾱ1n.

B. Main Results

This part presents the main results of the proposed algo-
rithm, as stated in the following theorem. Detailed proof is
given in Sec. IV-B.

Theorem 1: Suppose Assumptions 1, 2 and 3 hold. Gen-
erate the auxiliary variables {yijk,t}t≥0, the player’s action
{xi

j,t}t≥0 and gradient tracker {φi
jk,t}t≥0 by (3) with the

uncoordinated constant step-size αi satisfying ϵα < χ
2
√
nL

and

0 < αmax < min

{
α1, α2, α3,

1

χ− 2
√
nLϵα

, 1

}
,

where α1, α2 and α3 are defined in Sec. IV-B. Then, all
players’ decisions xt linearly converges to a neighborhood
of the unique NE x∗, and

lim sup
t→∞

E[∥xt − x∗∥2] ≤ O(αmax) +O(µ).

Remark 2: Theorem 1 shows that the players’ actions
converge to a neighborhood of the NE linearly with the error
bounded by two terms: one is proportional to the largest step-
size, and the other is proportional to the smoothing parameter
due to the gradient estimation.

IV. CONVERGENCE ANALYSIS

Let Ht denote the σ-field generated by the entire his-
tory of the random variables from time-step 0 to t − 1.
We introduce the following notations for easy presentation.
ns ≜

∑N
i=1 n

2
i and nc ≜

∑N
i=1 n

3
i . For ∀k ∈ Vi, i ∈ N ,

yi
k,t ≜ [yi1k,t, . . . , y

i
nik,t

]⊤ ∈ Rni , ȳik,t ≜ 1
ni
1⊤
ni
yi
k,t ∈

R, ȳi
t ≜ [ȳi1,t, . . . , ȳ

i
ni,t]

⊤ ∈ Rni , ȳt ≜ [ȳ1⊤
t , . . . , ȳN⊤

t ]⊤ ∈

Rn, φi
k,t ≜ [φi

1k,t, . . . , φ
i
nik,t

]⊤ ∈ Rni , φ̄i
k,t ≜

1
ni
1⊤
ni
φi
k,t ∈

R.
The convergence analysis of the proposed algorithm

will be conducted by: 1) constructing a linear system of
three terms

∑N
i=1

∑ni

k=1 ∥yi
k,t − 1ni

ȳik,t∥2, ∥ȳt − x∗
µ∥2

and
∑N

i=1

∑ni

k=1 ∥φi
k,t − 1ni

φ̄i
k,t∥2 in terms of their past

iterations and some constants, 2) analyzing the convergence
of the established linear system.

A. Auxiliary Analysis

In this part, present the results on
∑N

i=1

∑ni

k=1 ∥yi
k,t −

1ni
ȳik,t∥2, ∥ȳt − x∗

µ∥2 and
∑N

i=1

∑ni

k=1 ∥φi
k,t − 1ni

φ̄i
k,t∥2

in the following three lemmas, respectively. Due to limited
space, their proofs are extended to the online version [21].

Lemma 2: Under Assumptions 1, 2 and 3, the total con-
sensus error of the auxiliary variables

∑N
i=1

∑ni

k=1 ∥yi
k,t −

1ni ȳ
i
k,t∥2 satisfies that

N∑
i=1

ni∑
k=1

E[∥yi
k,t+1 − 1ni

ȳik,t+1∥2|Ht] ≤ (1 +m2α
2
max

−m1)

N∑
i=1

ni∑
k=1

∥yi
k,t − 1ni

ȳik,t∥2 +m2α
2
max∥ȳt − x∗

µ∥2

+m3α
2
max

N∑
i=1

ni∑
k=1

E[∥φi
k,t − 1ni

φ̄i
k,t∥2|Ht] +m12α

2
max,

where m1 ≜ 1−σ̄2

2 , m2 ≜ 24(n + 4)ncςL
2, m3 ≜ 2ς , and

m12 ≜ 24(n+ 4)ncςG
2 + 6(n+ 4)3ncςB

2.
Lemma 3: Under Assumptions 1, 2 and 3, the gap be-

tween the stacked averaged auxiliary variable and the NE of
game Γµ, ∥ȳt − x∗

µ∥2 holds that

E[∥ȳt+1 − x∗∥2|Ht] ≤ (1−m6ᾱ+m5α
2
max)∥ȳt − x∗

µ∥2

+ (m5α
2
max +m4αmax)

N∑
i=1

ni∑
k=1

∥yi
k,t − 1ni ȳ

i
k,t∥2

+m13α
2
max,

where m4 ≜ n2L2/χ, m5 ≜ 12n(n + 4)L2, m6 ≜ χ −
2
√
nLϵα, and m13 ≜ 12n(n+ 4)G2 + 3n(n+ 4)3B2.

Lemma 4: Under Assumptions 1 and 2, the total gradient
tracking error

∑N
i=1

∑ni

k=1 ∥φi
k,t − 1ni

φ̄i
k,t∥2 satisfies

N∑
i=1

ni∑
k=1

E[∥φi
k,t+1 − 1ni

φ̄i
k,t+1∥2|Ht] ≤ (1−m1

+m11α
2
max)

N∑
i=1

ni∑
k=1

E[∥φi
k,t − 1ni

φ̄i
k,t∥2|Ht]

+ (m7 +m8αmax +m9α
2
max)

N∑
i=1

ni∑
k=1

∥yi
k,t − 1ni

ȳik,t∥2

+ (m9α
2
max +m10)∥ȳt − x∗

µ∥2 +m14 +m15α
2
max,

where m7 ≜ 12(n + 4)nsςL
2(3 + σ̄2), m8 ≜ 24(n +

4)nsςL
2m4, m9 ≜ 24(n + 4)nsςL

2(m2 + m5), m10 ≜
48(n + 4)nsςL

2, m11 ≜ ςm10, m14 ≜ 48(n + 4)nsςG
2 +

12(n+4)3nsςB
2 and m15 ≜ 24(n+4)nsςL

2(m12 +m13).



B. Proof of Theorem 1

Now, we proceed to the proof of Theorem 1. Based on
the results in Lemmas 2, 3 and 4, we can construct a linear
system by taking the total expectation on the corresponding
relations.

Ψt+1 ≤ MΨt +Υ, (4)

where

Ψt ≜

 ∑N
i=1

∑ni
k=1 E[∥yi

k,t−1ni
ȳi
k,t∥

2]

E[∥ȳt−x∗
µ∥

2]∑N
i=1

∑ni
k=1 E[∥φi

k,t−1ni
φ̄i

k,t∥
2]

 ,

M ≜

[
1−m1+m2α

2
max m2α

2
max m3α

2
max

m4αmax+m5α
2
max 1−m6ᾱ+m5α

2
max 0

m7+m8αmax+m9α
2
max m10+m9α

2
max 1−m1+m11α

2
max

]
,

Υ ≜

 m12α
2
max

m13α
2
max

m14+m15α
2
max


For the linear system (4), we aim to prove ρ(M) < 1

such that each component of Ψt can linearly converge to a
neighborhood of 0 [22].

We adopt the following result to guarantee ρ(M) < 1:
Lemma 5: (see [22, Cor. 8.1.29]) Let A ∈ Rm×m be a

matrix with non-negative entries and ν ∈ Rm be a vector
with positive entries. If there exists a constant λ ≥ 0 such
that Aν < λν, then ρ(A) < λ.

To apply Lemma 5, each element of M should be non-
negative. Hence, we may set m6 > 0 and αmax < 1

m6
, i.e.,

αmax <
1

m6
, ϵα <

χ

2
√
nL

.

Next, based on Lemma 5, it suffices to find a vector ν ≜
[ν1, ν2, ν3]

⊤ with ν1, ν2, ν3 > 0 such that Mαν < ν, i.e.,

(1−m1 +m2α
2
max)ν1 + (m2α

2
max)ν2 + (m3α

2
max)ν3 < ν1,

(m4αmax +m5α
2
max)ν1 + (1−m6ᾱ+m5α

2
max)ν2 < ν2,

(m7 +m8αmax +m9α
2
max)ν1 + (m10 +m9α

2
max)ν2

+ (1−m1 +m11α
2
max)ν3 < ν3.

Without loss of generality, we may set ν3 = 1. It remains to
find ν1 and ν2 such that the following inequalities hold

(m2ν1 +m2ν2 +m3)α
2
max < m1ν1, (5a)

(m5ν1 +m5ν2)αmax <
m6ν2
n

−m4ν1, (5b)

(m9ν1 +m9ν2 +m11)α
2
max < m1

− (m7 +m8)ν1 −m10ν2, (5c)

where we have applied ᾱ
αmax

> 1
n in (5b), and forced αmax <

1 in (5c).
To ensure the existence of αmax, the RHS of (5) has to

be positive. Hence, we may set

ν1 =
m1m6

4nm4m10 + 2m6m7 + 2m6m8
,

ν2 =
nm1m4

2nm4m10 +m6m7 +m6m8
.

Then, the three inequalities in (5) can be solved, which gives

αmax < α1, αmax < α2, αmax < α3,

where

α1 ≜

√√√√√√ m2
1m6

m1m2m6 + 2nm1m2m4

+ 4nm3m4m10 + 2m3m6m7 + 2m3m6m8

,

α2 ≜
m1m4m6

m1m5m6 + 2nm1m4m5
,

α3 ≜

√√√√√√ m1(2nm4m10 +m6m7 +m6m8)

m1m6m9 + 2nm1m4m9

+m11(4nm4m10 + 2m6m7 + 2m6m8)

.

Therefore, the range of the step-size is given by

0 < αmax < min

{
α1, α2, α3,

1

m6
, 1

}
, ϵα <

χ

2
√
nL

.

Furthermore, taking the limsup on both sides of (4),

lim sup
t→∞

Ψt ≤ M lim sup
t→∞

Ψt +Υ,

which gives

(I3 −M) lim sup
t→∞

Ψt ≤ Υ.

where I3 −M is given by[
m1−m2α

2
max −m2α

2
max −m3α

2
max

−m4αmax−m5α
2
max m6ᾱ−m5α

2
max 0

−m7−m8αmax−m9α
2
max −m10−m9α

2
max m1−m11α

2
max

]
.

It can be obtained that

det(I3 −M) ≜ (m1 −m11α
2
max)[(m1 −m2α

2
max)

· (m6ᾱ−m5α
2
max)−m2α

2
max(m4αmax +m5α

2
max)]

> (m1 −m11α
2
max)[(m1 −m2α

2
max)(

m6αmax

n

−m5α
2
max)−m2α

2
max(m4αmax +m5α

2
max)]

= αmax(m1 −m2α
2
max)[

m1m6

n −m1m5αmax

−m2(m4 +
m6

n )α2
max],

adj(I3 −M)11 ≜ (m1 −m11α
2
max)(m6ᾱ−m5α

2
max)

≤ αmax(m1 −m11α
2
max)(m6 −m5αmax),

adj(I3 −M)12 ≜ α2
max[m2(m1 −m11α

2
max)

+m3(m10 +m9α
2
max)],

adj(I3 −M)13 ≜ m3α
2
max(m6ᾱ−m5α

2
max)

≤ m3α
3
max(m6 −m5αmax),

adj(I3 −M)21 ≜ αmax(m1 −m11α
2
max)(m4 +m5αmax),

adj(I3 −M)22 ≜ (m1 −m2α
2
max)(m1 −m11α

2
max)

−m3α
2
max(m7 +m8αmax +m9α

2
max),

adj(I3 −M)23 ≜ m3α
3
max(m4 +m5αmax).



Then, we have

lim sup
t→∞

N∑
i=1

ni∑
k=1

E[∥yi
k,t − 1ni

ȳik,t∥2] ≤ [(I3 −M)−1Υ]1

=
adj(I3 −M)11[Υ]1

det(I3 −M)
+

adj(I3 −M)12[Υ]2
det(I3 −M)

+
adj(I3 −M)13[Υ]3

det(I3 −M)
= O(α2

max),

and

lim sup
t→∞

E[∥ȳt − x∗
µ∥2] ≤ [(I3 −M)−1Υ]2

=
adj(I3 −M)21[Υ]1

det(I3 −M)
+

adj(I3 −M)22[Υ]2
det(I3 −M)

+
adj(I3 −M)23[Υ]3

det(I3 −M)
= O(αmax).

Thus,

lim sup
t→∞

E[∥xt − x∗
µ∥2]

≤ 2 lim sup
t→∞

E[∥xt − ȳt∥2] + 2 lim sup
t→∞

E[∥ȳt − x∗
µ∥2]

≤ O(α2
max) +O(αmax) = O(αmax).

Invoking Lemma 1 yields

lim sup
t→∞

E[∥xt − x∗∥2] ≤ 2 lim sup
t→∞

E[∥xt − x∗
µ∥2]

+ 2∥x∗
µ − x∗∥2 = O(αmax) +O(µ),

which completes the proof.

V. NUMERICAL SIMULATIONS

We illustrate the proposed NE seeking strategy on a
connectivity control game [23], played among a number of
sensor networks. Specifically, there are N sensor networks,
where each sensor network contains ni sensors. Let xi

j =
[xi

j,1, x
i
j,2]

⊤ ∈ R2 denote the position of sensor j (referred
to as an player) from a sensor network i (referred to as a
cluster). Then, this sensor aims to seek a tradeoff between
a local cost, lij(x

i) (e.g., source seeking and positioning)
and the global cost, hi

j(x) (e.g., connectivity preservation
with other sensor networks). Hence, the cost function to be
minimized by this sensor is given by

f i
j(x) = lij(x

i) + hi
j(x),

where

lij(x
i) = xi⊤aijx

i + bi⊤j xi + cij ,

hi
j(x) =

∑
k∈Ni

dij∥eijkxi
j − xk∥2,

and aij , b
i
j , c

i
j , d

i
j , e

i
jk are constant matrices or vectors of ap-

propriate dimensions, and Ni stands for the set of neighbors
of sensor network i in a connected graph characterizing
their position dependence. Specifically, if k ∈ Ni, then the
corresponding term ∥eijkxi

j−xk∥2 represents the intention of
sensor j from a sensor network i to preserve the connectivity
with the sensors from sensor network k.

In this simulation, we consider N = 3 and ni = 4. The
local and global costs are set as lij = i[∥xi

j∥2 + 1⊤
2 x

i
j + j]

for j = 1, . . . , 4, i = 1, 2, 3 and h1
j = ∥x1

j − x2
j∥2, h2

j =
∥x2

j − x3
j∥2, h3

j = ∥x3
j − x1

j∥2 for j = 1, . . . , 4. Then, it is
readily verified that Assumptions 2 and 3 hold. The directed
communication graph for each sensor network i is as shown
in Fig. 1. For the algorithm parameters, we let the smoothing
parameter be µ = 10−4, and the constant step-sizes for
sensors of network i be αi = 0.1, 0.08, 0.06, respectively.
Thus, ϵα = 0.2041. We initialize the algorithm with arbitrary
xi
j,0, yijk,0 and φi

jk,0 = gijk(x0). The trajectories of the
sensors’ positions for the three sensor networks are plotted
in Fig. 2. It can be seen that the positions of all sensors
can almost converge to the NE. Also, more ‘zigzags’ can be
observed for the case of a larger step-size, since the update
is more aggressive.

Next, we illustrate the convergence rate results. First,
we set the constant step-sizes for sensors of network i be
αi
j = 0.1a, 0.08a and 0.06a, respectively, and let a = 1.2,

1 and 0.6, respectively. Hence, we fix the heterogeneity of
the step-size ϵα = 0.2041, and set the largest step-size to
αmax = 0.12, 0.1 and 0.06, respectively. The trajectories of
the error gap ∥xt − x∗∥ with these settings are plotted in
Fig. 3a. Then, we fix the largest step-size to αmax = 0.1 and
the averaged step-size ᾱ = 0.06, and set the heterogeneity
of the step-size ϵα = 0.2041, 0.4714, 0.4907 and 0.5443,
respectively. The trajectories of the error gap ∥xt−x∗∥ with
these settings are plotted in Fig. 3b. As can be seen from
both figures, the error gap descends linearly for all cases.
Moreover, the convergence speed is faster with larger step-
sizes and smaller heterogeneity, which verifies the derived
results in Theorem 1.

VI. CONCLUSIONS

In this work, we have studied an N -cluster non-
cooperative game problem, where the players’ cost functions
are possibly non-smooth and the explicit expressions are
unknown. By integrating the Gaussian smoothing techniques
with the gradient tracking, a gradient-free NE seeking al-
gorithm has been developed, in which the players across
different clusters are allowed to select their own preferred
constant step-sizes. We have shown that, when the largest
step-size is sufficiently small, the players’ actions approxi-
mately converge to the unique NE under a strongly monotone
game mapping condition, and the error gap is proportional to
the largest step-size and the smoothing parameter. Finally, the
derived results have been verified by numerical simulations
on a connectivity control game.

Fig. 1. Communication network.
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Fig. 2. Trajectories of sensors’ positions in different networks.
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Fig. 3. Trajectories of the error gap ∥xt − x∗∥.

REFERENCES

[1] S. Grammatico, F. Parise, M. Colombino, and J. Lygeros, “Decen-
tralized Convergence to Nash Equilibria in Constrained Determinis-
tic Mean Field Control,” IEEE Transactions on Automatic Control,
vol. 61, no. 11, pp. 3315–3329, 2016.

[2] S. Liang, P. Yi, and Y. Hong, “Distributed Nash equilibrium seeking
for aggregative games with coupled constraints,” Automatica, vol. 85,
pp. 179–185, nov 2017.

[3] K. Lu, G. Jing, and L. Wang, “Distributed Algorithms for Search-
ing Generalized Nash Equilibrium of Noncooperative Games,” IEEE
Transactions on Cybernetics, vol. 49, no. 6, pp. 2362–2371, 2019.

[4] P. Yi and L. Pavel, “An operator splitting approach for distributed
generalized Nash equilibria computation,” Automatica, vol. 102, pp.
111–121, 2019.

[5] D. Gadjov and L. Pavel, “A Passivity-Based Approach to Nash Equi-
librium Seeking Over Networks,” IEEE Transactions on Automatic
Control, vol. 64, no. 3, pp. 1077–1092, 2019.

[6] C. De Persis and S. Grammatico, “Continuous-Time Integral Dynam-
ics for a Class of Aggregative Games With Coupling Constraints,”
IEEE Transactions on Automatic Control, vol. 65, no. 5, pp. 2171–
2176, 2020.

[7] Y. Pang and G. Hu, “Distributed Nash Equilibrium Seeking with
Limited Cost Function Knowledge via A Consensus-Based Gradient-
Free Method,” IEEE Transactions on Automatic Control, vol. 66, no. 4,
pp. 1832–1839, 2021.

[8] L. Pavel, “Distributed GNE seeking under partial-decision information
over networks via a doubly-augmented operator splitting approach,”
IEEE Transactions on Automatic Control, vol. 65, no. 4, pp. 1584–
1597, 2020.

[9] B. Gharesifard and J. Cortes, “Distributed convergence to Nash
equilibria in two-network zero-sum games,” Automatica, vol. 49, no. 6,
pp. 1683–1692, 2013.

[10] Y. Lou, Y. Hong, L. Xie, G. Shi, and K. H. Johansson, “Nash Equilib-
rium Computation in Subnetwork Zero-Sum Games With Switching
Communications,” IEEE Transactions on Automatic Control, vol. 61,
no. 10, pp. 2920–2935, 2016.

[11] M. Ye, G. Hu, and F. Lewis, “Nash equilibrium seeking for N-coalition
noncooperative games,” Automatica, vol. 95, pp. 266–272, 2018.

[12] M. Ye, G. Hu, F. L. Lewis, and L. Xie, “A Unified Strategy for
Solution Seeking in Graphical N-Coalition Noncooperative Games,”
IEEE Transactions on Automatic Control, vol. 64, no. 11, pp. 4645–
4652, 2019.

[13] X. Nian, F. Niu, and Z. Yang, “Distributed Nash Equilibrium Seeking
for Multicluster Game Under Switching Communication Topologies,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021.

[14] X. Zeng, J. Chen, S. Liang, and Y. Hong, “Generalized Nash equilib-
rium seeking strategy for distributed nonsmooth multi-cluster game,”
Automatica, vol. 103, pp. 20–26, 2019.

[15] C. Sun and G. Hu, “Distributed Generalized Nash Equilibrium Seeking
of N-Coalition Games with Full and Distributive Constraints,” arXiv
preprint arXiv:2109.12515, sep 2021.

[16] M. Ye, G. Hu, and S. Xu, “An extremum seeking-based approach
for Nash equilibrium seeking in N-cluster noncooperative games,”
Automatica, vol. 114, p. 108815, 2020.

[17] Y. Pang and G. Hu, “Nash Equilibrium Seeking in N-Coalition Games
via a Gradient-Free Method,” Automatica, vol. 136, p. 110013, 2022.
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