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Learning Structural Representations for Recipe
Generation and Food Retrieval

Hao Wang, Guosheng Lin, Steven C. H. Hoi, Fellow, IEEE and Chunyan Miao

Abstract—Food is significant to human daily life. In this paper, we are interested in learning structural representations for lengthy
recipes, that can benefit the recipe generation and food cross-modal retrieval tasks. Different from the common vision-language data,
here the food images contain mixed ingredients and target recipes are lengthy paragraphs, where we do not have annotations on
structure information. To address the above limitations, we propose a novel method to unsupervisedly learn the sentence-level tree
structures for the cooking recipes. Our approach brings together several novel ideas in a systematic framework: (1) exploiting an
unsupervised learning approach to obtain the sentence-level tree structure labels before training; (2) generating trees of target recipes
from images with the supervision of tree structure labels learned from (1); and (3) integrating the learned tree structures into the recipe
generation and food cross-modal retrieval procedure. Our proposed model can produce good-quality sentence-level tree structures and
coherent recipes. We achieve the state-of-the-art recipe generation and food cross-modal retrieval performance on the benchmark
Recipe1M dataset.

Index Terms—Text Generation, Vision-and-Language.

F

1 INTRODUCTION

FOOD-related research with the newly evolved deep
learning-based techniques is becoming a popular topic,

as food is essential to human life. In this paper, we in-
vestigate the tasks of recipe generation [1] and food cross-
modal retrieval [2], where we enhance their performance
with the unsupervisedly learned recipe tree structures. To
be specific, in the recipe generation task, we aim to generate
the corresponding and coherent cooking instructions for the
given food images with a language decoder. In the food
cross-modal retrieval task, the goal is to retrieve the matched
food images given recipes as the query, and vice versa.

Both recipe generation and food cross-modal retrieval
models aim to produce the corresponding recipes from
given images. Since direct transforms from image to text
would be difficult [3], many recent methods [4], [5], [6] for
image captioning and cross-modal retrieval adopt the de-
tected object features to enhance image features. Moreover,
learning scene graphs from the detected objects can boost
the cross-modal task performance further [7], [8]. This de-
picts the significance of using the graph information for the
recipe generation and food cross-modal retrieval models.

In the food dataset Recipe1M [2], there have food images
and the paired text annotations including ingredients and
cooking instructions, where the food images are static and
contain all the mixed ingredients. Generally, the task settings
of the recipe generation and food cross-modal retrieval are
almost the same as those of image captioning and general
cross-modal retrieval. However, there still exist two differ-
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ences between them: (i) the given text length and (ii) the
annotations on the data structural information.

First, most popular image-text cross-modal datasets,
such as Flickr [9] and MS-COCO [10] datasets, only have
one sentence per caption. By contrast, cooking instructions
are paragraphs, containing multiple sentences to represent
the cooking process, which cannot be fully shown in a sin-
gle food image. Therefore, generating lengthy recipes with
traditional image captioning models [4], [5], [7] may hardly
capture the whole cooking procedure. Second, the lack of
structural information labeling is another challenge in our
researched food cross-modal tasks. For example, MS-COCO
[10] has precise bounding box annotations in images, giving
scene graph information for the caption generation or the
retrieval process. This structural information makes it easier
to represent the inner relationships of the image or text data.
While in food images, all the ingredients are mixed when
cooked, making it difficult to obtain the detection labeling
in the food images. Moreover, there are no existing works
attempting to learn the structure representations for the
cooking recipes. To address this limitation, we propose to
learn the recipe tree structures in an unsupervised manner,
integrate the learned trees into the recipe generation and
food cross-modal retrieval tasks and improve their perfor-
mance.

Specifically, benefiting from the recent advances in the
language parsing, some research works, such as ON-LSTM
[11], utilize an unsupervised way to produce word-level
parsing trees of sentences and achieve good results. Inspired
by that, we propose a novel recipe2tree module, where we
extend the ON-LSTM architecture to do sentence-level tree
structure generation. We propose to train the extended ON-
LSTM with the Quick Thoughts manner [12], to capture the
order information inside recipes. By doing so, we get the
recipe tree structure labels.

We then apply the obtained recipe structure information
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• spray a skillet with pam and put over medium high heat.
• add ground beef and cook until browned (5 minutes).
• transfer to crock pot and stir in the remaining ingredients.
• cover and cook on low for 6-8 hours.
• spoon mixture onto the hamburger rolls.

(a) Recipe Generation Framework
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(b) Food Cross-Modal Retrieval Framework

img2tree module

recipe2tree module

tree2recipe module

Fig. 1. The demonstration of our proposed frameworks. In the recipe generation model (a), we use the img2tree module to infer the recipe tree
structures, which are encoded with the graph attention networks to give tree embeddings in the tree2recipe module. Then we generate the recipes.
In the food cross-modal retrieval framework (b), we incorporate the tree structures from the recipe2tree module into the original recipe features,
which boosts food cross-modal matching performance.

on the recipe generation and food cross-modal retrieval
tasks. For the recipe generation, we propose a novel frame-
work named Structure-aware Generation Network (SGN)
to integrate the tree structure information into the training
and inference phases, as shown in Figure 1(a). SGN is
implemented to add a target structure inference module on
the recipe generation process. Specifically, we propose to
use a RNN to generate the recipe tree structures from food
images. Based on the generated trees, we adopt the graph
attention networks (GAT) to embed the trees, in an attempt
to giving the model more guidance when generating recipes.
With the tree structure embeddings, we make the generated
recipes remain long-length as the ground truth, and improve
the generation performance considerably.

We further demonstrate the efficacy of our
unsupervisedly-learned recipe tree structures in the
food cross-modal retrieval task, where we incorporate
the tree representations into the recipe features, as shown
in Figure 1(b). Specifically, we first produce the tree
structures from the cooking instructions with our proposed
recipe2tree module. Then we also use the GAT to give the
tree features, which are adopted to fuse with the recipe
representations. We conduct the cross-modal matching
between the enhanced image and recipe representations.

Our contributions can be summarized as:

• We propose a recipe2tree module to capture latent
sentence-level tree structures for recipes, which are
learned through an unsupervised approach. The ob-
tained tree structures are adopted to supervise the
following img2tree module.

• We propose to use the img2tree module to generate
the recipe tree structures from food images, where
we use a RNN for conditional tree generation.

• We propose to utilize the tree2recipe module, which
encodes the inferred tree structures. It is imple-
mented with graph attention networks, and boosts
the recipe generation performance.

• We show the tree structures learned in the recipe2tree
module can also help on improving the cross-modal
retrieval performance.

Figure 1 shows the concise demonstration on our pro-
posed frameworks for the recipe generation and food cross-
modal retrieval tasks. We have conducted extensive exper-

iments to evaluate the recipe generation and food retrieval
performance, showing our proposed method outperforms
state-of-the-art baselines on Recipe1M dataset [2]. We also
present ablation studies as well as the qualitative results of
the recipe generation and food cross-modal retrieval results.

Our preliminary research has been published in [13]. The
code is publicly available1.

2 RELATED WORK

2.1 Image captioning

Image captioning task is defined as generating the cor-
responding text descriptions from images. Based on MS-
COCO dataset [10], most existing image captioning tech-
niques adopt deep learning-based model. One popular ap-
proach is Encoder-Decoder architecture [5], [14], [15], [16],
where a CNN is used to obtain the image features along
with object detection, then a language model is used to
convert the image features into text.

Since image features are fed only at the beginning stage
of generation process, the language model may face van-
ishing gradient problem [17]. Therefore, image captioning
model is facing challenges in long sentence generation
[14]. To enhance text generation process, [4], [7] involve
scene graph into the framework. However, scene graph
generation rely heavily on object bounding box labeling,
which is provided by MS-COCO dataset. When we shift
to some other datasets without rich annotation, we can
hardly obtain the graph structure information of the target
text. Meanwhile, crowdsourcing annotation is high-cost and
may not be reliable. Therefore, we propose to produce tree
structures for paragraphs unsupervisedly, helping the recipe
generation task in Recipe1M dataset [2].

2.2 Multimodal food computing

Food computing [18] has raised great interest recently, it
targets applying computational approaches for analyzing
multimodal food data for recognition [19], retrieval [2], [20],
[21] and generation [1] of food. In this paper, we choose
Recipe1M dataset [2] to validate our proposed method on
recipe generation and food cross-modal retrieval task.

1. https://github.com/hwang1996/SGN
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Recipe generation is a challenging task, it is mainly
because that recipes (cooking instructions) contain multiple
sentences. Salvador et al. [1] adopt transformer to generate
lengthy recipes, but they fail to consider the holistic recipe
structure before generation, hence their generated recipes
may miss some steps. In contrast, our proposed method
allows the model to predict the recipe tree structures first,
and then give better generation results. Food cross-modal
retrieval targets retrieving matched items given one food
image or recipe. Prior works [2], [20], [22], [23] mainly aim
to align the cross-modal embeddings in the common space,
we improve the retrieval baseline results by enhancing the
recipe representations with learned tree structures.

2.3 Image-to-text retrieval
The image-to-text retrieval task is to retrieve the corre-
sponding image given the text, and vice versa. Prevailing
methods [2], [21], [24], [25] adopt the deep neural networks
to give the image and text features respectively, and use
the metric learning to map the cross-modal features into
a common space, such that the alignment between the text
and images can be achieved. Specifically, Vo et al. [24] utilize
the image plus some text to retrieve the images with certain
language attributes. They propose to combine image and
text through residual connection and produce the image-
text joint features to do the retrieval task. Chen et al. [25]
conduct experiments with the same setting as [24], where
they use a composite transformer to plug in a CNN and
then selectively preserve and transform the visual features
conditioned on language semantics. In the domain of food
cross-modal retrieval, Salvador et al. [2] aim to learn joint
embeddings (JE) for images and recipes, where they adopt
cosine loss to align image-recipe pairs and classification loss
to regularize the learning. Zhu et al. [26] use two-level rank-
ing loss at embedding and image spaces in R2GAN. Wang
et al. [20] introduce the translation consistency component
to allow feature distributions from different modalities to be
similar.

2.4 Language parsing
Parsing is served as one effective language analysis tool,
it can output the tree structure of a string of symbols.
Generally, language parsing is divided into word-level and
sentence-level parsing. Word-level parsing is also known as
grammar induction, which aims at learning the syntactic
tree structure from corpora data. Some of the research works
use a supervised way to predict the corresponding latent
tree structure given a sentence [27], [28]. However, precise
parser annotation is hard to obtain. [11], [29], [30] explored
to learn the latent structure without the expert-labeled data.
Especially, Shen et al. [11] propose to use ON-LSTM, which
equips the LSTM architecture with an inductive bias to-
wards learning latent tree structures. They train the model
with normal language modeling way, at the same time they
can get the parsing output induced by the model.

Sentence-level parsing is used to identify the elementary
discourse units in a text, and it brings some benefits to dis-
course analysis. Many recent works attempted to use com-
plex model with labeled data to achieve the goal [31], [32].
Here we extend ON-LSTM [11] for unsupervised sentence-
level parsing, which is trained using quick thoughts [12].

2.5 Graph generation

Graph is the natural and fundamental data structure in
many fields, such as social networks and biology, and a tree
is an undirected graph. The basic idea of graph generation
model is to make auto-regressive decisions during graph
generation. For example, Li et al. [33] add graph nodes and
edges sequentially with auto-regressive models. The tree
generation approach we use is similar with GraphRNN [34].
They [34] first map the graph to sequence under random or-
dering, then use edge-level and graph-level RNN to update
the adjacency vector. While in our tree generation method,
we generate the tree conditioned on food images, and the
node ordering is fixed according to hierarchy, which releases
the complexity of the sampling space.

3 METHOD

Here we investigate two research tasks of 1) food recipe
generation from images and 2) food cross-modal retrieval.
We give the unified training flow demonstration for these
two tasks in Figure 2. In the following sections, we present
our proposed models for recipe generation and food cross-
modal retrieval, whose frameworks are shown in Figure 3
and Figure 5 respectively.

3.1 Overview

We show the concise training flows for recipe generation
and food cross-modal retrieval models in Figure 2, where
we first use image encoders to extract visual features and
use the recipe2tree module to give recipe tree structures.
Specifically, adopting the generated pseudo structures of the
recipe2tree module is the core component of recipe genera-
tion and cross-modal retrieval models, which is shared by
both models. We learn recipe sentence-level tree structures
in an unsupervised manner at the recipe2tree module. Then
in the recipe generation model, the generated pseudo trees
are used to supervise the tree generation from images; in the
cross-modal retrieval model, the tree structures are adopted
to enhance the recipe language features.

Technically, in the recipe2tree module we propose to
use the hierarchical ON-LSTM [11] to encode the cooking
instructions and train the ON-LSTM with quick thoughts
approach [12]. Then we can obtain the latent tree structures
of cooking instructions, which are used as the pseudo labels
to supervise the training of the img2tree module.

During the recipe generation training phase, as shown
in Figures 2 and 3, we input food images and ingredients to
our proposed model. We try two different language models
to encode ingredients, i.e. non-pretrained and pretrained
model, to get the ingredient features Fing . In the non-
pretrained model training, we use one word embedding
layer [1] to give Fing . Besides, we adopt BERT [35] for
ingredient embedding, which is one of the state-of-the-art
NLP pretrained models. In the image embedding branch,
we adopt a CNN to encode the food images and get the im-
age features Fimg . Based on Fimg , we generate the sentence-
level tree structures and make them align with the pseudo
labels produced by the recipe2tree module. Specifically, we
transform the tree structures to a 1-dimensional adjacency
sequence for RNN to generate, where the RNN’s initial
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Fig. 2. The concise training flow of our proposed models for recipe generation and food cross-modal retrieval, which are trained individually. In the
shared components, we extract the food image features and use the recipe2tree module to produce pseudo recipe tree structures. In the recipe
generation model, we generate trees with the img2tree module that is trained with Ltree. The predicted tree structures from the img2tree module
are used to generate the recipes in the tree2recipe module, which is supervised by Lgen. In the cross-modal retrieval model, we concatenate the
tree features and recipe features. The concatenated features are trained to match with the image features, which is supervised by Ltri.

state is image feature Fimg . To incorporate the generated
tree structure into the recipe generation process, we get the
tree embedding Ftree with graph attention networks (GAT)
[36], and concatenate it with the image features Fimg and
ingredient features Fing . We then generate the recipes con-
ditioned on the concatenated features of 〈Ftree,Fimg,Fing〉
with a transformer [37].

Our proposed recipe generation framework is optimized
over two objectives: to generate reasonable recipes given the
food images and ingredients; and to produce the sentence-
level tree structures of target recipes. The overall objective
is given as:

L = λ1Lgen + λ2Ltree, (1)

where λ1 and λ2 are trade-off parameters. Lgen con-
trols the recipe generation training with the input of
〈Ftree,Fimg,Fing〉, and outputs the probabilities of word
tokens. Ltree is the tree generation loss, supervising the
img2tree module to generate trees from images.

As shown in Figures 2 and 5, we propose to incorporate
the latent trees into the food cross-modal retrieval task to
further demonstrate the usefulness of our unsupervisedly-
learned tree structures and boost the retrieval performance.
In this task, given a food image, we want to retrieve the
corresponding cooking recipe including the ingredients and
the cooking instructions, or vice versa. To this end, we
also adopt a CNN to give image representations Fimg and
a language encoder to give the ingredient and cooking
instruction features Fing and Fins. We adopt the GAT to
encode the sentence-level tree structures and obtain the
tree representations Ftree. The recipe embeddings Frec are
constructed by the concatenation of 〈Ftree,Fins,Fing〉. We
use triplet loss Ltri to align image and recipe representa-
tions Fimg and Frec in the feature space and learn a joint
embedding for cross-modal matching.

3.2 ON-LSTM revisit
Ordered Neurons LSTM (ON-LSTM) [11] is proposed to
infer the underlying tree-like structure of language while
learning the word representation. It can achieve good per-
formance in unsupervised parsing task. ON-LSTM is con-

structed based on the intuition that each node in the tree
can be represented by a set of neurons the hidden states of
recurrent neural networks. To this end, ordered neuron is an
inductive bias, where high-ranking neurons store long-term
information, while low-ranking neurons contain short-term
information that can be rapidly forgotten. Instead of acting
independently on each neuron, the gates of ON-LSTM are
dependent on the others by enforcing the order in which
neurons should be updated. Technically, Shen et al. [11]
define the split point d between two segments. dft and dit
represent the hierarchy of the previous hidden states ht−1
and that of the current input token xt respectively, which
can be formulated as:

dft = softmax(Wf̃xt + Uf̃ht−1 + bf̃ ), (2)

dit = softmax(Wĩxt + Uĩht−1 + bĩ), (3)

where f̃ and ĩ are defined by the ON-LSTM as the master
forget gate and the master input gate. W , U and b are
the learnable weights of ON-LSTM. As stated in [11], the
information stored in the first dft neurons of the previous cell
state will be completely erased, and a large dit means that the
current input xt contains long-term information that needs
to be preserved for several time steps. The model weights
are updated based on the predicted f̃ and ĩ.

The ON-LSTM model is trained through word-level lan-
guage modeling, where given one token in the document
they predict the next token. With the trained ON-LSTM,
Shen et al. attempt to do the unsupervised constituency
parsing. At each time step, they compute an estimate of dft :

d̂ft = E
[
dft

]
=

Dm∑
k=1

kpf (dt = k), (4)

where pf denotes the probability distribution over split
points associated to the master forget gate andDm is the size
of the hidden state. Given d̂ft , the top-down greedy parsing
algorithm [30] is used for unsupervised constituency pars-
ing. As described in [11], for the first d̂fi , they split the
sentence into constituents ((x<i), (xi, (x>i))). Then, they
recursively repeat this operation for constituents (x<i) and
(x>i), until each constituent contains only one word.
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linguine, red bell pepper,

vinegar, garlic cloves, salt, 

olive oil, fresh basil leaves

saute bell pepper in

…
img2tree

module

Recipe Decoder
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F𝑖𝑚𝑔
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Fig. 3. Our proposed framework for recipe generation. The ingredients and food images are embedded by a pretrained language model and
CNN respectively to produce the output features Fing and Fimg . Before language generation, we first infer the tree structure of target cooking
instructions. To do so, we utilize the img2tree module, where a RNN produces the nodes and edge links step-by-step based on Fimg . Then in
tree2recipe module, we adopt graph attention networks (GAT) to encode the generated tree adjacency matrix, and get tree embedding Ftree. We
combine Fing , Fimg and Ftree to construct a final embedding for recipe generation, which is performed using a transformer.

Therefore, ON-LSTM is able to discern a hierarchy be-
tween words based on the model neurons. However, ON-
LSTM is originally trained by language modeling way and
learns the word-level order information. To unsupervisedly
produce sentence-level tree structure, we extend ON-LSTM
in the recipe2tree module.

3.3 Recipe2tree module
In this module, we propose to learn a hierarchical ON-
LSTM, i.e. word-level and sentence-level ON-LSTM. Specif-
ically, in the word-level ON-LSTM, we input the cooking
recipe word tokens and use the output features as the
sentence embeddings. The sentence embeddings will be fed
into the sentence-level ON-LSTM for end-to-end training.

Since the original training way [11], such as language
modeling or seq2seq [38] word prediction training, cannot
be used in sentence representation learning, we incorporate
the idea of quick thoughts (QT) [12] to supervise the hierar-
chical ON-LSTM training. The general objective of QT is a
discriminative approximation where the model attempts to
identify the embedding of a correct target sentence given
a set of sentence candidates. In other words, instead of
predicting what is the next in language modeling, we pre-
dict which is the next in QT training to capture the order
information inside recipes. Technically, for each recipe data,
we select first N − 1 of the cooking instruction sentences
as context, i.e. Sctxt = {s1, ..., sN−1}. Then sentence sN
turns out to be the correct next one. Besides, we ran-
domly select K sentences along with the correct sentence
sN from each recipe, to construct candidate sentence set
Scand = {sN , si, ..., sk}. The candidate sentence features
g(Scand) are generated by the word-level ON-LSTM, and
the context embeddings f(Sctxt) are obtained from the
sentence-level ON-LSTM. The computation of probability
is given by

p(scand|Sctxt, Scand) =
exp[c(f(Sctxt), g(scand))]∑

s′∈Scand
exp[c(f(Sctxt), g(s′))]

, (5)

where c is an inner product, to avoid the model learning
poor sentence encoders and a rich classifier. Minimizing
the number of parameters in the classifier encourages the

encoders to learn disentangled and useful representations
[12]. The training objective maximizes the probability of
identifying the correct next sentences for each training
recipe data D: ∑

s∈D
log p(s|Sctxt, Scand). (6)

We adopt the learned sentence-level ON-LSTM to give
the neuron ranking for the cooking instruction sentences,
which can be converted to the recipe tree structures T
through the top-down greedy parsing algorithm [30]. T are
adopted as the pseudo labels to supervise the training of
img2tree module.

3.4 Recipe generation

3.4.1 Img2tree module
In the img2tree module, we aim to generate the tree struc-
tures from food images. Tree structure has hierarchical
nature, in other words, “parent” node is always one step
higher in the hierarchy than “child” nodes. Given the prop-
erties, we first represent the trees as sequence under the hi-
erarchical ordering. Then, we use an auto-regressive model
to model the sequence, meaning that the edges between
subsequent nodes are dependent on the previous “parent”
node. Besides, in Recipe1M dataset, the longest cooking
instructions have 19 sentences. Therefore, the sentence-level
parsing trees have limited node numbers, which avoids the
model generating too long or complex sequence.

In Figure 3, we specify our tree generation approach.
The generation process is conditioned on the food images.
According to the hierarchical ordering, we first map the tree
structure to the adjacency matrix, which denotes the links
between nodes by 0 or 1. Then the lower triangular part
of the adjacency matrix will be converted to a vector V ∈
Rn×1, where each element Vi ∈ {0, 1}i, i ∈ {1, . . . , n}. Since
edges in tree structure are undirected, V can determine a
unique tree T .

Here the tree generation model is built based on the food
images, capturing how previous nodes are interconnected
and how following nodes construct edges linking previous
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Fig. 4. The demonstration of the transformer training for the recipe gen-
eration. The concatenated features are composed of the image features
Fimg , ingredient features Fing and tree structure representations Ftree.
In the training phase, we take the ground truth recipes x as the input.
The predicted token and the output probability are denoted as x̂ and
p(x̂ = x) respectively. We set the transformer layer number N = 16.

nodes. Hence, we adopt Recurrent Neural Networks (RNN)
to model the predefined sequence V . We use the image
encoded features Fimg as the initialization of RNN hidden
state, and the state-transition function h and the output
function y are formulated as:

h0 = Fimg, hi = ftrans(hi−1, Vi−1), (7)

yi = fout(hi), (8)

where hi is conditioned on the previous generated i − 1
nodes, yi outputs the probabilities of next node’s adjacency
vector.

The tree generation objective function is:

p(V ) =
n∏

i=1

p(Vi|V1, . . . , Vi−1), (9)

Ltree =
∑
V ∈D

log p(V ), (10)

where p(V ) is the product of conditional distributions over
the elements, D denotes all the training data.

3.4.2 Tree2recipe module
In the tree2recipe module, we utilize graph attention net-
works (GAT) [36] to encode the generated trees. The input
of GAT is the generated sentence-level tree adjacency matrix
A and its node features. Since the sentence features are
not available during recipe generation, we produce node
features with a linear transformation W, which is applied
on the adjacency matrix A. We then perform attention
mechanism on the between connected nodes (zi, zj) and
compute the attention coefficients

eij = (Wzi)(Wzj)
T
, (11)

where eij measures the importance of node j’s features to
node i, the attention coefficients are computed by the matrix
multiplication.

It is notable that different from most attention mecha-
nism, where every node attends on every other node, GAT
only allows each node to attend on its neighbour nodes.
The underlying reason is that doing global attention fails to
consider the property of tree structure, that each node has
limited links to others. While the local attention mechanism
used in GAT preserves the structural information well. We
can formulate the final attentional score as:

αij = softmaxj(eij) =
exp(eij)∑

k∈Ni
exp(eik)

, (12)

where Ni is the neighborhood of node i, the output score
is normalized through the softmax function. Similar with
[37], GAT employs multi-head attention and averaging to
stabilize the learning process. We get the tree features by the
product of the attentional scores and the node features, and
we perform nonlinear activation σ on the output to get the
final features:

Ftree = σ(
∑
j∈Ni

αijWzj). (13)

3.4.3 Recipe generation from images
The demonstration of the transformer [37] structure for
language generation is presented in Figure 4. We adopt
a 16-layer transformer [37] for recipe generation, which is
the same setting as [1]. We use the teacher forcing training
strategy, where we feed the previous ground truth word
x(i−1) into the model and let the model generate the next
word token x̂(i) in the training phase. In the transformer
attention mechanism [37], we have query Q, key K and
value V , the attentional output can be computed as

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V, (14)

where dk denotes the dimension of K . Here in the Multi-
Head Attention module of Figure 4, we use the concatenated
features of previously obtained Fimg , Fing and Ftree as K
and V , and the processed recipe embeddings are used as the
Q .

The training objective of the recipe generation is to
maximize the following objective:

Lgen =
M∑
i=0

log p(x̂(i) = x(i)), (15)

where Lgen is the recipe generation loss, and M is the
maximum sentence generation length, x(i) and x̂(i) denote
the ground truth and generated tokens respectively. In the
inference phase, the transformer decoder outputs x̂(i) one
by one.

3.5 Food cross-modal retrieval

The training framework for the food cross-modal retrieval
task is shown in Figure 5. We follow the same food cross-
modal retrieval setting as [2], [20], [21], where given a food
image we aim to find the corresponding cooking recipe, and
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In a food processor, process garlic to a rough 
mince, add dill and olive oil and pulse a few 
times to combine. ... 

salmon fillets, garlic, fresh dill, olive oil, salt 
and pepper

images

ingredients

cooking instructions

tree structures

F!"#

F!$#

F!$%

F&'((

concatenation

triplet loss

Fig. 5. The training flow of food cross-modal retrieval. We first produce the sentence-level tree structures from the cooking instructions, where we
use the sentence features as the node features. The tree structure, cooking instruction and ingredient features are denoted as Ftree, Fins and Fing

respectively. We use the concatenation of Ftree, Fins and Fing as the recipe features. The triplet loss is adopted to learn the similarity between
the recipe features Frec and image features Fimg .

vice versa. To this end, we first obtain the feature representa-
tions of food images and recipes respectively, then we learn
the similarity between the food images and cooking recipes
through the triplet loss. Technically, we get the food image
representations Fimg from the output of CNN directly, and
get the recipe representations Frec from the concatenation
of the ingredient features Fing , instruction features Fins and
recipe tree structure representation Ftree. We project Fimg

and Frec into a common space and align them to realize
cross-modal retrieval.

3.5.1 Ingredient embedding
Regarding the ingredient embedding process, we imple-
ment LSTM and transformer [37] respectively as the encoder
to produce ingredient features Fing . We first follow [2],
[20] to use the ingredient-level word2vec representations
y ∈ {y1, . . . , yn} for ingredient token representations. For
example, ground ginger is regarded as a single word vector,
instead of two separate word vectors of ground and ginger.
Then the processed word2vec representations y are fed into
the ingredient encoder, where we experiment with both the
bidirectional LSTM and the transformer. Specifically, we fol-
low [21], [37] and implement the self-attention mechanism
on the LSTM to boost the performance for the fair compar-
ison with the transformer. The transformer is constructed
with 4 layers. We use the final state output of the ingredient
encoder as the ingredient features Fing .

3.5.2 Cooking instruction embedding
To obtain the cooking instruction features Fins, we also
follow previous practice [2], [20] to extract the sentence
features for fair comparisons. We first obtain the fixed-
length representation r ∈ {r1, . . . , rn} for each cooking
instruction sentence with the skip-thoughts [39] technique.
Then we feed r into the instruction encoder to get the
sequence embeddings Fins for cooking instructions. Here
we also experiment with both the LSTM and the transformer
as the instruction encoder, where the LSTM is enhanced
with the self-attention mechanism [37] and the transformer
has 4 layers.

3.5.3 Tree structure embedding
We further newly introduce the sentence-level tree structure
representations to improve the cooking instruction features.

To this end, we produce the tree structures T from the given
cooking instruction sentences, which are generated by the
recipe2tree module introduced in Section 3.3. T is converted
into the adjacency matrix A, such that we can use GAT to
emb sentence-level trees T and obtain structure representa-
tions Ftree for cooking instructions. It is notable that here
tree representation Ftree construction method is different
from that in Section 3.4.2, where the cooking instruction
sentence representations are not available during generation
phase, in the retrieval setting we can use sentence embed-
dings as node features. Technically, we denote the cooking
instruction sentence embeddings from the skip-thoughts
[39] as r ∈ {r1, . . . , rn}. The child node representations
are set as r, and the parent node representation are set
as the mean of its child node representations. Hence the
node representations with the sentence embeddings can be
denoted as fsennode. Moreover, since the learned tree structures
have the hierarchical property, we incorporate additional
embeddings fdepthnode on the node depth, such that the learned
tree representations include both the node relationships and
the node hierarchy. The node input node features fnode are
constructed by the concatenation of fnodesen and fnodedepth.

Therefore, we can compute the attention coefficients as
below:

enodeij = fnodei fnodej

T
, (16)

where we use the matrix multiplication to measure the
relationships between the node features (fnodei , fnodej ). Eq.
(12) is further adopted to give the attentional scores αij .
With αij , we can formulate Ftree as

Ftree = σ(
∑
j∈Ni

αijf
node
j ), (17)

where Ni denotes the neighborhood of node i, and σ is the
nonlinear activation used in GAT.

3.5.4 Retrieval training
The recipe representations Frec is obtained from the concate-
nation of the ingredient features Fing , instruction features
Fins and recipe tree structure representation Ftree. We uti-
lize the triplet loss to train image-to-recipe retrieval model,
the objective function is:

Ltri =
∑[

d(Fa
img,F

p
rec)− d(Fa

img,F
n
rec) +m

]
+
∑[

d(Fa
rec,F

p
img)− d(F

a
rec,F

n
img) +m

]
,

(18)
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where d(•) denotes the Euclidean distance, superscripts
a, p and n refer to anchor, positive and negative samples
respectively and m is the margin. We follow the practice of
previous works [20], [21] to use the BatchHard idea proposed
in [40], to improve the training effectiveness. Specifically, we
dynamically construct the triplets during training phase. In
a mini-batch, we select the most distant positive instance
and the closest negative instance, given an anchor sample.

4 EXPERIMENTS

4.1 Dataset and evaluation metrics
We evaluate our proposed method on Recipe1M dataset [2],
which is one of the largest collection of cooking recipe data
with food images. Recipe1M has rich food related informa-
tion, including the food images, ingredients and cooking
instructions. In Recipe1M, there are 252, 547, 54, 255 and
54, 506 food data samples for training, validation and test
respectively. These recipe data is collected from some public
websites, which are uploaded by users.

For the recipe generation task, we evaluate the model
using the same metrics as prior works [1], [13]: perplexity,
BLEU [41] and ROUGE [42]. Perplexity is used in [1], it mea-
sures how well the learned word probability distribution
matches the target recipes. BLEU is computed based on the
average of unigram, bigram, trigram and 4-gram precision.
We use ROUGE-L to test the longest common subsequence.
ROUGE-L is a modification of BLEU, where ROUGE-L score
metric is measuring recall instead of precision. Therefore,
we can use ROUGE-L to measure the fluency of generated
recipes.

Regrading the image-to-recipe retrieval task, we evaluate
our proposed framework as the common practice used in
prior works [2], [20], [22], [23], [26]. To be specific, median
retrieval rank (MedR) and recall at top K (R@K) are used.
MedR measures the median rank position among where
true positives are returned. Therefore, higher performance
comes with a lower MedR score. Given a food image,
R@K calculates the fraction of times that the correct recipe
is found within the top-K retrieved candidates, and vice
versa. Different from MedR, the performance is directly
proportional to the score of R@K. In the test phase, we first
sample 10 different subsets of 1,000 pairs (1k setup), and 10
different subsets of 10,000 (10k setup) pairs. It is the same
setting as in [2]. We then consider each item from food image
modality in subset as a query, and rank samples from recipe
modality according to L2 distance between the embedding
of image and that of recipe, which is served as image-to-
recipe retrieval, and vice versa for recipe-to-image retrieval.

4.2 Implementation details
We adopt a 3-layer ON-LSTM [11] to output the sentence-
level tree structure, taking about 50 epoch training to get
converged. We set the learning rate as 1, batch size as
60, and the input embedding size is 400, which is the
same as original work [11]. We select recipes containing
over 4 sentences in Recipe1M dataset for training. And we
randomly select several consecutive sentences as the context
and the following one as the correct one. We set K as 3. We
show some of the predicted sentence-level tree structures
for recipes in Figure 6.

We use two different ingredient encoders in the ex-
periments, i.e. the non-pretrained and pretrained language
model. Using non-pretrained model is to compare with
the prior work [1], where they use a word embedding
layer to give the ingredient embeddings. We use BERT [35]
as the pretrained language model, giving 512-dimensional
features. The image encoder is used with a ResNet-50 [45]
pretrained on ImageNet [46]. And we map image output
features to the dimension of 512, to align with the ingredient
features. We adopt a RNN for tree adjacency sequence
generation, where the RNN initial hidden state is initialized
as the previous image features. The RNN layer is set as 2
and the hidden state size is 512. The tree embedding model
is graph attention network (GAT), its attention head number
is set as 6. The output tree feature dimension is set the
same as that of image features. We use the same settings in
language decoder as prior work [1], a 16-layer transformer
[37]. The number of attention heads in the decoder is set
as 8. We use greedy search during text generation, and the
maximum generated instruction length is 150. We set λ1 and
λ2 in Eq. (1) as 1 and 0.5 respectively. The model is trained
using Adam [47] optimizer with the batch size of 16. Initial
learning rate is set as 0.001, which decays 0.99 each epoch.
The BERT model finetune learning rate is 0.0004.

In the retrieval model training, we use the pretrained
ResNet-50 model to give image features. We then adopt
an one-layer bi-directional LSTM with the self-attention
mechanism [37] and a 4-layer transformer respectively to
encode the recipes, to show the difference between using
LSTM and transformer in the food retrieval task. An 8-head
GAT is used to encode the sentence-level tree structures
to give the tree features, which are concatenated with the
recipe features. We map the image and recipe features to a
common space to do the retrieval training, with the feature
size of 1024. We set the batch size and learning rate as 64
and 0.0001 respectively. We decrease the learning rate 0.1 in
the 30th epoch.

In terms of the computation cost, we observe our in-
troduced components do not add too much burden to the
original model. We use a single V100 for all experiments.
The recipe2tree module is shared by the recipe genera-
tion and cross-modal retrieval models, where its training
phase costs about 4 hours and inference time is about 0.01
second for each sample. For the recipe generation model,
the baseline model [35] takes around 1.5 hours per epoch
for training and 0.04 second per sample for inference; the
baseline model [35] with structural representations takes
around 1.7 hours per epoch for training and 0.05 second
per sample for inference. For the food cross-modal retrieval
model, the baseline model (LSTM) takes around 0.5 hour per
epoch for training and 0.02 second per sample for inference;
the baseline model (LSTM) using structural representations
takes around 0.6 hour per epoch for training and 0.02 second
per sample for inference.

4.3 Baselines

4.3.1 Recipe generation
Since Recipe1M has different data components from stan-
dard MS-COCO dataset [10], it is hard to implement some
prior image captioning models in Recipe1M. To the best
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TABLE 1
Food cross-modal retrieval evaluation. We show results of baseline models and our proposed method. The models are evaluated on the basis of

MedR (lower is better), and R@K (higher is better).

Size of Test Set Image-to-Recipe Retrieval Recipe-to-Image Retrieval

Methods medR ↓ R@1 ↑ R@5 ↑ R@10 ↑ medR ↓ R@1 ↑ R@5 ↑ R@10 ↑

1k

CCA [43] 15.7 14.0 32.0 43.0 24.8 9.0 24.0 35.0
SAN [44] 16.1 12.5 31.1 42.3 - - - -
JE [2] 5.2 24.0 51.0 65.0 5.1 25.0 52.0 65.0
AM [22] 4.6 25.6 53.7 66.9 4.6 25.7 53.9 67.1
AdaMine [23] 1.0 39.8 69.0 77.4 1.0 40.2 68.1 78.7
R2GAN [26] 1.0 39.1 71.0 81.7 1.0 40.6 72.6 83.3
ACME [20] 1.0 51.8 80.2 87.5 1.0 52.8 80.2 87.6
Ours 1.0 53.5 81.5 88.8 1.0 55.0 82.0 88.8

10k

JE [2] 41.9 - - - 39.2 - - -
AM [22] 39.8 7.2 19.2 27.6 38.1 7.0 19.4 27.8
AdaMine [23] 13.2 14.9 35.3 45.2 12.2 14.8 34.6 46.1
R2GAN [26] 13.9 13.5 33.5 44.9 11.6 14.2 35.0 46.8
ACME [20] 6.7 22.9 46.8 57.9 6.0 24.4 47.9 59.0
Ours 6.0 23.4 48.8 60.1 5.6 24.6 50.0 61.0

of our knowledge, [1] is the only recipe generation work
on Recipe1M dataset, where they use the Encoder-Decoder
architecture. Based on the ingredient and image features,
they generate the recipes with transformer [37].

The SGN model we proposed is an extension of the base-
line model, which learns the sentence-level tree structure of
target recipes by an unsupervised approach. We infer the
tree structures of recipes before language generation, adding
an additional module on the baseline model. It means that
our proposed SGN can be applied to many other deep
model architectures and vision-language datasets. We test
the performance of SGN with two ingredient encoders, 1)
non-pretrained word embedding model and 2) pretrained
BERT model. Word embedding model is used in [1], trained
from scratch. BERT model [35] is served as another baseline,
to test if SGN can improve language generation perfor-
mance further under a powerful encoder. We use ResNet-50
in both two baseline models. The recipe generation results
are shown in Table 2.

4.3.2 Food cross-modal retrieval

Canonical Correlation Analysis (CCA) [43] is one of the
most widely-used classic models for learning a common em-
bedding from different feature spaces, which learns linear
projections for images and text to maximize their feature
correlation. Salvador et al. [2] aim to learn joint embed-
dings (JE) for images and recipes, where they adopt cosine
loss to align image-recipe pairs and classification loss to
regularize the learning. In SAN [44] and AM [22], they
introduce attention mechanism to different levels of recipes
including food titles, ingredients and cooking instructions.
AdaMine [23] is an adaptive learning schema in the training
phase, helping the model perform an adaptive mining for
significant triplets. Later, adversarial methods [20], [26] are
proposed for retrieval alignment. Specifically, Zhu et al.
[26] use two-level ranking loss at embedding and image
spaces in R2GAN. ACME [20] introduce the translation
consistency component to allow feature distributions from
different modalities to be similar. The evaluation results are
shown in Table 1.

TABLE 2
Recipe generation evaluation. We give results of baseline models

without and with the proposed SGN for comparison. We also present
ablative results of the pretrained model performance without the image
and ingredient (ingr) features respectively. The model is evaluated with

perplexity, BLEU and ROUGE-L.

Methods Perplexity ↓ BLEU ↑ ROUGE-L ↑

Non-pretrained Model [1] 8.06 7.23 31.8
+ SGN 7.46 9.09 33.4

TIRG [24] 7.83 7.95 32.4
+ SGN 7.56 9.24 34.5

VAL [25] 7.61 8.83 34.2
+ SGN 7.05 10.43 35.6

Pretrained Model [35] 7.52 9.29 34.8
- ingr 8.16 3.72 31.0
- image 7.62 5.74 32.1
+ SGN 6.67 12.75 36.9

4.4 Evaluation results

4.4.1 Recipe generation

Language generation performance. We show the perfor-
mance of SGN for recipe generation against the baselines in
Table 2. In both baseline settings, our proposed method SGN
outperforms the baselines across all metrics. In the method
of non-pretrained model, SGN achieves a BLEU score more
than 9.00, which is about 25% higher than the current state-
of-the-art method. Here we directly concatenate the image
and text features. To compare the impact of different image-
text features fusion methods, we also give results of TIRG
[24] and VAL [25]. Specifically, TIRG [24] adopts an LSTM
and a ResNet CNN to encode the text and the images
respectively, then with the gating and residual connections
the image-text fused features can be obtained. In VAL [25],
Chen et al. also use an LSTM and a ResNet-50 to get the text
and image features respectively. They feed the concatenation
of the image and text features into the transformer, where
the concatenated features are further processed with the
attention mechanism to produce the fused features. We
observe there is a margin between the performance of TIRG
and VAL, since VAL use the composite transformers that are
plugged into different convolution layers to compose the
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TABLE 3
Generated recipe average length for recipe generation. We compare

the average length between recipes from different sources.

Methods Recipe Average Length

Pretrained Model [35] 66.9
+ SGN 112.5

Ground Truth (Human) 116.5

TABLE 4
Ablation studies on the composition of tree features for cross-modal
retrieval. We adopt different tree node embeddings and report the

results on rankings of size 1k, with the basis of R@K (higher is better).
Here we use the LSTM to encode the recipes.

Node Features R@1 ↑ R@5 ↑ R@10 ↑

Adjacency matrix projection 52.7 81.3 88.4
fsennode 53.3 81.5 88.5
fsennode + fdepthnode 53.5 81.5 88.8

vision and language contents, obtaining more fine-grained
features than TIRG.

When we shift to the pretrained model method [35],
we can see that the pretrained language model gets com-
parable results as “TIRG + SGN” model. We also show
the ablative results of models trained without ingredient
(ingr) and image features respectively, where we observe
the ingredient features help more on the generation results.
When incrementally adding SGN to the pretrained model,
the performance of SGN is significantly superior to all the
baselines by a substantial margin. Although we only use the
concatenation method to fuse the image and text features,
we utilize the pretrained BERT model to extract the text
features, which gives better results than “VAL + SGN”. This
may indicate the significance of the pretrained language
model. On the whole, the efficacy of SGN is shown to be
very promising, outperforming the state-of-the-art method
across different metrics consistently.
Impact of structure awareness. To explicitly suggest the
impact of tree structures on the final recipe generation, we
compute the average length for the generated recipes, as
shown in Table 3. Average length can reflect the text struc-
ture on node numbers. It is observed that SGN generates
recipes with the most similar length as the ground truth,
indicating the help of the tree structure awareness.

4.4.2 Food cross-modal retrieval
Cross-modal retrieval performance. In Table 1, we compare
the results of our proposed method with various state-
of-the-art methods against different metrics. Specifically,
ACME [20] takes triplet loss and adversarial training to
learn image-recipe alignment, which gives superior results
over other state-of-the-art models. ACME mainly focuses
on improving cross-modal representation consistency at the
common space with the cross-modal translation. Here we do
not use the adversarial training of ACME and implement
the self-attention mechanism on the LSTM to train the
retrieval model. We add the tree structure representations
on the baseline, it can be observed that we further boost
the performance across all the metrics. It suggests that our

TABLE 5
Ablation studies of different recipe encoders for cross-modal retrieval,

where the LSTM and transformer are used respectively as the
backbone to encode the cooking recipes. We experiment with various

methods to fuse the tree and recipe features, where cat represents the
concatenation method, TIRG [24] and VAL [25] are the existing

cross-modal feature learning methods. The results are reported on
rankings of size 1k, with the basis of R@K (higher is better).

Method R@1 ↑ R@5 ↑ R@10 ↑

baseline (LSTM) 52.5 81.1 88.4
+ tree (cat) 53.5 81.5 88.8
+ tree (TIRG [24]) 54.2 81.9 88.6
+ tree (VAL [25]) 54.0 82.0 89.0

baseline (transformer) 53.4 81.5 87.8
+ tree (cat) 54.3 81.6 88.4
+ tree (TIRG [24]) 54.7 81.9 89.1
+ tree (VAL [25]) 54.4 81.8 88.7

TABLE 6
Ablation studies of incorporating the img2tree module into the

cross-modal retrieval model. recipe2tree indicates using the tree
structure for recipe features only. img2tree represents we also learn to

generate the tree structures from the images during the retrieval
training phase. The coefficient λ indicates trade-off parameter on the

tree generation loss Ltree. The results are reported on rankings of size
1k, with the basis of R@K (higher is better).

Method coefficient λ R@1 ↑ R@5 ↑ R@10 ↑

recipe2tree only 53.5 81.5 88.8

+ img2tree 1 52.5 81.1 88.4
+ img2tree 0.1 53.4 81.4 88.5
+ img2tree 0.01 52.9 81.3 88.4

unsupervisedly-learned tree structures also can be applied
on the retrieval task and have positive value to the whole
model.
Ablation study of different compositions of tree features.
In Table 4, we adopt the LSTM as the recipe encoder. We
first directly use the projection of the adjacency matrix as
the node features, and further construct the tree embeddings
with GAT. We then adopt the sentence features fsennode and the
concatenation of fsennode and fdepthnode respectively to be the node
features. We can see that the including more information
into the tree features helps on improving the food cross-
modal retrieval performance.
Ablation study of different recipe encoders. We show the
results of using LSTM and transformer respectively as the
recipe embedding backbone in Table 5. We adopt the self-
attention based LSTM [37] and transformer to encode the
recipes. It can be seen that since the attention mechanism
is implemented on the LSTM, the LSTM model achieves
similar performance to the transformer model. And the
learned tree features can boost the retrieval performance in
both settings.
Ablation study of different feature fusion methods. Since
we use the concatenation of the ingredient features Fing ,
cooking instruction features Fins and recipe tree structure
features Ftree as the recipe representations, here we also
adopt TIRG [24] and VAL [25] respectively to replace the
concatenation method and produce the fused features of
Fing , Fins and Ftree. The experiment results are shown in
Table 5. Technically, TIRG [24] utilized the gating and resid-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

ual connections to obtain the cross-modal fused features.
VAL [25] applied spatial and channel attention transform
on the image-text features. Note that here we do not fuse
the image and text features together, but the tree and text
features instead. That means we cannot apply the spatial
self-attention transformation on the tree-text features as the
original implementation in VAL [25]. Therefore, we only
conduct the channel attention of VAL [25]. The results show
TIRG [24] gives more improvements over the baseline than
VAL [25]. We also observe that adding tree features or using
better feature fusion methods mainly brings improvements
on the R@1, which means better top-ranking results can be
obtained.
Ablation study of using the img2tree module. In Table 6,
we aim to evaluate the performance of incorporating the
img2tree module into the retrieval framework. Specifically,
we learn to generate the trees from food images, which is
supervised by the pseudo ground truth from the recipe2tree
module. train the model with loss of Ltri + λLtree, where
λ is the trade-off parameter. The inferred tree structures are
also encoded with the GAT and concatenated with the food
image features, which are used as the query to retrieve
the corresponding recipes. We conduct experiments with
various λ. However, we observe there is no performance im-
provement of adding the img2tree module on the image fea-
ture learning, which may indicate the differences between
the recipe generation and food cross-modal retrieval tasks.
Technically, in the retrieval setting, we attempt to do precise
matching between the image and recipe features, where the
image features contain the generated tree representations
and recipe features contain the pseudo ground truth tree
representations. If the predicted tree structures from the
images are not accurate enough, i.e. fail to produce the
same node numbers and the same node relationships as the
pseudo ground truth, then the tree embeddings will also be
different, which decreases the retrieval performance. While
in the recipe generation task, the extra guidance of plausible
tree structures can help the model capture the preliminary
cooking procedure, thus giving better performance than
the model without inferred structures. Nevertheless, better
results can also be expected if the prediction performance of
img2tree module can be improved further. We leave it for
the future work.

4.5 Qualitative results

4.5.1 Sentence-level tree parsing results
In Figure 6, we visualize some parsing tree results of our
proposed recipe2tree module. Due to there is no human
labelling on the recipe tree structures, we can hardly provide
a quantitative analysis on the parsing trees.

We show some examples with varying paragraph length
in Figure 6. The first two rows show the tree structures of
relatively short recipes. Take the first row (calico beans) as
example, the generated tree set the food pre-processing part
(step 1) as a separate leaf node, and two main cooking steps
(step 2&3) are set as deeper level nodes. The last simmer
step is conditioned on previous three steps, which is put
in another different tree level. We can see that the parsing
tree results correspond with common sense and human
experience.

brown beef and bacon; drain.

add onion cook until transparent.

add the rest of the ingredients and heat.

simmer 10 minutes and serve.

brown meat in large, deep skillet.
drain meat and add onions and garlic and cook until tender.
add pasta, water and spaghetti sauce.
bring to boil then cover and reduce heat to low.
simmer for 12 minutes, stirring occasionally.
add mushrooms and zucchini, cook for 5 minutes.
add both types of cheese and cook for 2 minutes.
enjoy.

Saucy Pasta

Calico Beans

combine all ingredients in a high powered blender.
it should be steaming when done.
you can also combine all ingredients in a blender.
once pureed, transfer to a large pot and heat on medium.
stir every 12 minutes while heating.
serve immediately, garnished with pumpkin seeds.
bacon would be lovely too, if you are a meat eater.

Pumpkin Soup

spray a skillet with pam and put over medium high heat.
add ground beef and cook until browned (5 minutes).
transfer to crock pot and stir in the remaining ingredients.
cover and cook on low for 6-8 hours.
spoon mixture onto the hamburger rolls.

Beef Hamburger

Fig. 6. The visualization of predicted sentence-level trees for recipes.
The latent tree structure is obtained from unsupervised learning. The
results indicate that we can get reasonable parsing tree structures with
varying recipe length.

In the last two rows of Figure 6, we show the pars-
ing results of recipes having more than 5 sentences. The
tree of pumpkin soup indicates clearly two main cooking
phases, i.e. before and after ingredient pureeing. Generally,
the proposed recipe2tree generated sentence-level parsing
trees look plausible, helping on the inference for recipe
generation.

4.5.2 Recipe generation results
We present some recipe generation results in Figure 7. We
consider three types of recipe sources, the human, models
trained without and with SGN. Each recipe accompanies
with a food image. We can observe that recipes generated
by model with SGN have similar length with that written by
users. It may indicate that, instead of generating language
directly from the image features, allowing the deep model
to be aware of the structure first brings benefits for the
following recipe generation task.

We indicate the matching parts between recipes pro-
vided by users and that generated by models, in red words.
It is observed that SGN model can produce more coherent
and detailed recipes than non-SGN model. For example,
in the middle column of Figure 7, SGN generated recipes
include some ingredients that do not exist in the non-SGN
generation, but are contained in users’ recipes, such as onion,
lettuce and tomato.

However, although SGN can generate longer recipes
than non-SGN model, it may produce some redundant
sentences. These useless sentences are marked with yellow
background, as shown in the first column of Figure 7. Since
Cream is not supposed to be used in the chicken soup, in
the future work, we may need to use the input ingredient
information better to guide the recipe generation.

4.5.3 Tree generation results
There are some graph evaluation metrics proposed in [34],
however, these metrics are used for unconditional graph
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In a greased oval 5-6 quart slow cooker, 
combine the vegetables and broth. Place 
drumsticks over vegetables. Sprinkle 
remaining ingredients over all. Cover and 
cook on low for 5-5 1/2 hours, or until meat 
thermometer registers 180* f.

In a large pot, combine potatoes, carrots, celery, 
onion, and garlic. Add chicken broth, salt, 
pepper, and thyme. Bring to a boil, reduce heat 
and simmer for 20 minutes. Add potatoes and 
simmer for another 10 minutes. Add cream and 
simmer for another 10 minutes. Serve with 
crusty bread. Enjoy! 

Place all ingredients in crock pot. Cook on low 
for 8 hours.

In a large bowl, combine the ground chicken, bread 
crumbs, egg, milk, lemon juice, oregano, mint, salt and 
pepper. Mix well. Shape into 4 patties. In a large skillet, 
heat oil over medium heat. Cook patties for 5 minutes on 
each side or until cooked through. Serve with lemon 
wedges.

Combine chicken, bread crumbs, egg, milk, lemon juice, 
oregano, mint, salt and pepper in a large bowl. Shape into 4 
patties. Heat oil in a large nonstick skillet over medium-high 
heat. Cook patties until golden brown, about 5 minutes per 
side. Transfer to a plate. Add tomato slices to skillet and 
cook until lightly browned, about 1 minute. Add onion and 
cook until tender, about 2 minutes. Stir in tomato sauce and 
cook until heated through, about 1 minute. Serve with 
lettuce, tomato slices, and burgers. Note: you can substitute 
any combination of the tomato slices, onion, and garlic.

In medium bowl, gently mix together chicken, bread 
crumbs, egg, milk, lemon juice, mint, oregano, salt and 
pepper until well combined. Shape into 4 patties each 
about 3/4 inch thick. In a large nonstick skillet heat oil 
over medium-high heat. Cook patties about 8 minutes 
turning once, until golden brown and no longer pink 
inside. Meanwhile, cut pitas in half crosswise to make 4 
pockets. Warm pitas in 300 degree oven wrapped in 
aluminum foil for 5 minutes or in the microwave for 1 
minute. Spread inside of pita with mayo then place 
cooked patty inside with a slice of red onion, tomato, and 
some lettuce. Enjoy.

In a medium saucepan, bring water to a boil. Stir in rice, 
reduce heat to low, cover, and simmer until rice is 
tender, about 20 minutes. Stir in black beans, lemon 
juice, garlic powder, and cilantro.

Bring rice and water to a boil in a saucepan. Reduce 
heat to low, cover, and simmer until rice is tender, 20 to 
25 minutes. Stir black beans, lemon juice, garlic 
powder, and cilantro into rice; cook until heated through, 
about 5 more minutes. Serve warm. Enjoy!

Bring a medium size pot of water to a boil, add rice. 
Bring back to a boil, then reduce heat to simmer. Let 
rice simmer 15-20 minutes, until tender. Place beans 
and rice in a medium size saucepan. Heat over a 
medium heat, stirring frequently. Stir in reserved bean 
liquid as needed. Remove pan from heat and stir in 
lemon juice, garlic powder and cilantro. Let sit a 
moment, and stir in fresh oregano. Serve immediately.

User

Model 
without SGN

Model 
with SGN

Fig. 7. Visualization of recipes from different sources. We show the food images and the corresponding recipes, obtained from users and different
types of models. Words in red indicate the matching parts between recipes uploaded by users and that generated by models. Words in yellow
background show the redundant generated sentences.

boil chicken with just enough water to cover garlic powder.
add homestyle noodles two garlic water.
in separate pot cook onions celery carrots garlic in broth until almost done.
add vegetables broth and chicken and noodles together.
desired thickness I like mine the consistency of egg drop soup.
add with grilled cheese sandwich and enjoy.

saute onion in olive oil until just beginning to brown.
add tomato and cook until tender.
add chicken broth and beans (do not drain).
cook for 20 minutes or until to desired temperature.
place in serving bowls and dust with grated cheese.

combine coffee, almond milk, ice cubesand cottage cheese in a blender.
blend for about 25 seconds or until ice cubes are no longer chunky.
pour into cup of choice and drink!

Images Ground Truth RNN Generation Cooking Instructions

Fig. 8. The comparison between the pseudo ground truth trees (produced by recipe2tree module) and img2tree generated tree structures.

Baked chicken
Ingredients: cornish hens, sorghum 
molasses, chicken bouillon, canned chicken 
broth ...
Instructions: rinse the hens and place in a 
large non-metallic bowl. mix the marinade 
with a blender ... 

Ham and swiss melt
Ingredients: marbled rye bread, mustard, 
smoked ham, cheese slice
Instructions: spread bread slices with 
mustard; fill with all remaining ingredients 
except dressing. spread outside of 
sandwich with dressing ... 

Spaghetti squash salad
Ingredients: spaghetti squash, cherry 
tomatoes, bell peppers, garlic clove...
Instructions: mix all veggies with the 
squash. add dressing and toss to coat well.
mix all veggies with the squash. Add 
dressing and toss to coat well.

Fig. 9. The visualization of recipe-to-image retrieval results. For each recipe query, we show the top-3 retrieved food images, where the yellow ticks
suggest the correctly retrieved samples.
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Crunchy onion potato bake

Ingredients: milk, water, butter, 
mashed potatoes, whole 
kernel corn, cheddar cheese, 
French-fried onions

Instructions: preheat oven to 
350 degrees fahrenheit. spray 
pan with non stick cooking 
spray. heat milk, water and 
butter to boiling; stir in 
contents of both pouches of 
potatoes; let stand one minute. 
stir in corn. spoon half the 
potato mixture in pan. sprinkle 
half each of cheese and 
onions; top with remaining 
potatoes. sprinkle with 
remaining cheese and onions. 
bake 10 to 15 minutes until 
cheese is melted. enjoy! 

Picnic party potato salad

Ingredients: red potatoes, 
green onions, Italian dressing, 
mayonnaise, mustard, salt, 
celery, dill pickle relish

Instructions: dice potatoes. 
cook until tender; drain. put 
into large bowl. add onions and 
italian dressing; toss to coat. 
cover and chill at least 1 hour. 
combine mayonnaise, mustard 
and salt in small bowl; pour 
over potatoes; toss to coat. add 
celery, eggs and relish; toss 
lightly. slice remaining eggs. 
garnish top of salad. sprinkle 
with paprika. 

Chicken wellingtons

Ingredients: chicken thigh 
fillets, basil and parmesan 
tapenade, puff pastry, egg, 
dried basil leaves, vegetables

Instructions: preheat oven to 
180c/160c fan forced. line a 
baking tray with baking paper. 
place thighs on a work surface, 
open out and generously 
spread tapenade inside each. 
fold fillets back into shape. cut 
pastry sheets in half. place 
chicken at one end of the sheet 
fold edges in, fold pastry over 
chicken and roll to make a neat 
parcel. pinch sides to seal. 
brush with egg to glaze. 
sprinkle with basil. bake for 25-
30 minutes or until chicken is 
cooked through and pastry is 
golden brown. 

Fig. 10. The visualization of image-to-recipe retrieval results. The top
row indicates the image query, the bottom row shows the corresponding
retrieved recipes, which are correctly matched with the ground truth.

evaluation. How to evaluate the graph similarities for condi-
tional generation remains an open problem. Here we show
some examples of generated recipe tree structures in Figure
8 for qualitative analysis. Tree generation results from image
features are by-product of our proposed SGN framework.
They are used to improve the final recipe generation perfor-
mance.

It is notable that only the leaf nodes in the tree represent
the sentences of recipe. We can observe that the overall
img2tree generated structures look similar with the ground
truth trees, which are produced by recipe2tree module. And
the generated trees have some diversity. However, it is hard
to align the number of generated nodes with the ground
truth. For example, in the last row of Figure 8, the generated
tree has one more node than the ground truth. Nevertheless,
the generated trees along with the tree embedding network
can improve the final recipe generation performance based
on the quantitative results.

4.5.4 Food cross-modal retrieval results
We show the visualizations of recipe-to-image and image-
to-recipe retrieval in Figure 9 and 10 respectively, where we
apply 1k setup. In Figure 9, we conduct the recipe-to-image
retrieval. Specifically, we also select three different recipes
and take them as queries, the right column lists the top-3
retrieved results. The results demonstrate that our model
not only has good performance on cross-modal retrieval,
and also helps to discover similar samples from the same
modality. For example, in the top row all of our top-3
ranked food images contain chicken, which share semantic
similarity. In Figure 10, we randomly select images from
three different food classes, i.e. potato cake, salad and chicken
wellingtons. Based on the image queries, we can see that
our model retrieves the cooking recipes across various food
classes correctly. This also indicates some potential applica-

tions, for example, the model can automatically produce the
corresponding cooking recipes given users’ uploaded food
images.

5 CONCLUSION

In this paper, we have proposed a novel unsupervised learn-
ing approach to generate the sentence-level tree structures
for the cooking recipes, which can benefit the recipe genera-
tion and food cross-modal retrieval tasks. To be specific, we
propose effective ways to address some challenging prob-
lems, including unsupervisedly extracting the paragraph
structures, generating tree structures from images and using
the tree structures for recipe generation and food cross-
modal retrieval models. Technically, we extend ON-LSTM to
label recipe tree structures using an unsupervised manner.
In the recipe generation model, we propose to use RNN to
generate the tree structures from food images, and adopt the
inferred trees to enhance the generation. In the cross-modal
retrieval model, we integrate the tree structural information
into the cooking recipe representations. We demonstrate our
learned tree structures improve both of the recipe generation
and cross-modal model performance. We have conducted
quantitative and qualitative analysis for both tasks, the
results show that models with our proposed tree structures
outperform various baseline models.

However, since the food image semantic structures can
hardly be obtained, we attempt to learn the structural in-
formation for text only in our proposed framework, while
we fail to build the inner semantic relationships for visual
data. In the future work, we can try to construct the struc-
tural representations for the visual data. We may extend
our current work to cooking video datasets, where the
relationships between video frames and the correspondence
between recipes and frames can be built.
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