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Ghost factors in Gauss-sum factorization with transmon qubits
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A challenge in the Gauss-sum factorization scheme is the presence of ghost factors, nonfactors that behave
similarly to actual factors of an integer, which might lead to the misidentification of nonfactors as factors or
vice versa, especially in the presence of noise. We investigate type II ghost factors, which are the class of ghost
factors that cannot be suppressed with techniques previously laid out in the literature. The presence of type II
ghost factors and the coherence time of the qubit set an upper limit for the total experiment time, and hence the
largest factorizable number with this scheme. Discernibility is a figure of merit introduced to characterize this
behavior. We introduce preprocessing as a strategy to increase the discernibility of a system, and demonstrate the
technique with a transmon qubit. This can bring the total experiment time of the system closer to its decoherence
limit, and increase the largest factorizable number.
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I. INTRODUCTION

Qubit interference plays an important role in quantum
algorithms, which can be used to solve some problems
more efficiently than classical algorithms [1–4]. However, on
present noisy intermediate-scale quantum (NISQ) era sys-
tems, noisy qubits are and will be prevalent, so arbitrarily
long operations might be impractical on currently available
architectures [5]. As such, quantum systems might lose their
advantage over their classical counterparts due to decoherence
effects.

A prime example on the impact of decoherence on
quantum systems is Shor’s algorithm, which relies on the
interference of superposed qubits in an intermediate step [6].
What on paper is a scheme that can outperform classical
algorithms requires more than 2 log2(N ) qubits for the fac-
torization of an integer N [7,8]. This can be challenging due
to the coherence times of present qubit technology, limiting
experimental implementations to two-digit numbers [9,10]. In
fact, for a fault-tolerant execution of Shor’s algorithm with
noisy qubits, the number of physical qubits needed greatly
exceeds the ideal value required [11].
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Therefore, textbook quantum schemes have to be tailored
for use with NISQ-era systems in order to boost their appli-
cability even in the face of noisy operations. In this paper,
we adapt an integer factorization technique, one that utilizes
the destructive interference of quantum phases, for use in a
transmon qubit, and we limit the scope of this work to a single
qubit.

Apart from Shor’s algorithm, other approaches to in-
teger factorization have been suggested and demonstrated,
including the use of quantum annealing [12–14], variational
algorithms [15,16], and Gauss sums [17–19]. In this paper,
we turn to the lattermost technique for two reasons. First,
Gauss-sum factorization has been demonstrated on many
architectures, including nuclear magnetic resonance (NMR)
systems [20,21], Bose-Einstein condensates [22], multipath
interferometers [23], with the optical Talbot effect [24,25],
and a variation has been proposed for Josephson phase qubits
[26]. Its widespread use means that our findings should be
applicable to a variety of systems. Second, while it does not
provide a speedup over the classical case on its own [27], there
are extended Gauss-sum schemes with the promise of bring-
ing together the robustness of Gauss sums with the speedup of
Shor’s algorithm [28,29]. As coherent control of entanglement
between a larger number of qubits become possible, although
not yet in the scale required for the direct implementation of
textbook schemes, these hybrid schemes can be immediately
useful.

The naive form of Gauss-sum factorization takes advantage
of the interference behavior of a quantum system, where the
number to be factorized and various trial factors are worked
into the parameters that govern the system’s evolution [30].
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The protocol is designed so that the system constructively
interferes when the trial factor is a factor, but destructively
interferes if the trial factor is a nonfactor.

For Gauss-sum factorization to be effective in NISQ-era ar-
chitectures, the challenge of ghost factors has to be addressed.
Ghost factors are nonfactors that behave similarly to actual
factors, whose presence might cause the misidentification of
factors as nonfactors or vice versa. Their scaling behavior has
been previously studied, and it is known that to subdue the
effect of ghost factors, the “truncation parameter,” the number
of unitary gates needed, has to be above a lower limit that
scales with N [31]. Monte Carlo methods to suppress ghost
factors have also been utilized [12,32].

However, as noted by Štefaňák et al. [31], these methods
only suppress a class of ghost factors, which we call type I
ghost factors. There is a gap in the examination of what we
designate as type II ghost factors, which are ghost factors not
suppressed with the aforementioned methods. These type II
ghost factors become prevalent when the total experimental
time is close to the coherence limit of the qubit. As the trunca-
tion parameter must be large for a large N , type II ghost factors
greatly restrict the size of the number that can be factorized.
As such, it is of importance to also subdue type II ghost factors
to push the utility of the quantum schemes, even in the present
NISQ era of noisy qubits and imperfect operations.

In this paper, we investigate the impact of type II ghost fac-
tors on the Gauss-sum factorization scheme, supplemented by
both theoretical arguments and experimental demonstrations.
The experiments are performed on a transmon qubit, and our
experimental setup is detailed in Sec. II. In Sec. III, we lay
out the theory of Gauss-sum factorization, the Bloch-Redfield
model to describe qubit decoherence, and the appearance of
ghost factors. We show that type II ghost factors limit the
effectiveness of the scheme even where type I ghost factors are
suppressed, and the decoherence when the time of the experi-
ment approaches the coherence time of the qubit sets an upper
limit to the computation. We introduce a figure of merit that
characterizes this upper limit, which we call discernibility, in
Sec. IV A.

In Sec. IV B, we introduce and experimentally demonstrate
preprocessing as a technique to improve the ability of a system
to discern factors and nonfactors in a Gauss-sum factorization
experiment, to push the utility of the scheme even as the
system approaches its decoherence limit. Finally, in Sec. IV C,
we address a discrepancy we encountered in our experimental
results which required a phenomenological adjustment to the
noise model, and suggest a possible direction for future works.

II. EXPERIMENTAL SETUP

In Fig. 1, the schematic diagram of the experimental setup
is shown. Two transmon qubits are located in a rectangular
copper three-dimensional (3D) cavity with a bare resonant
frequency of 4.517 GHz. The Q factor of the cavity is at 3050.
The two transmons are thermalized at 9–12 mK and have res-
onant frequencies ω(A)

q = 3.064 GHz and ω(B)
q = 3.266 GHz.

All experiments were performed with qubit A. The T1 time of
qubit A is 4.7 ± 0.5 μs. The T2 time of qubit A is 1.9 ± 0.2 μs.
For qubit A, using state tomography, we determine the |0〉 state
fidelity to be 99.3% and the |1〉 state fidelity to be 98.9%.
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FIG. 1. Block diagram of the experimental setup. The figure is
divided into two parts: The room-temperature electronics at the top,
and the cyrogenic electronics and the cryostat at the bottom. An arbi-
trary waveform generator (AWG) is used to synthesize the signals for
qubit control and readout. The readout signals are upconverted and
downconverted with an IQ mixer and a local oscillator. Both signals
are combined and sent through the cryostat. The readout signal is
then downconverted and parsed by an analog-to-digital converter
(ADC).

An arbitrary waveform generator (AWG5204 by Tektronix)
is used to synthesize the pulses for qubit control and readout.
Fixed amplitude single-qubit gate operations vary in duration
from 9 to 20 ns. Each experimental pulse sequence consists of
the pulse train, followed by a 5-μs readout pulse and a 20-μs
rest period for the qubit and cavity reset. This readout length
provides the best signal-to-noise ratio for readout.

III. THEORY

A. Gauss-sum factorization

Factorization using Gauss sums is motivated by the obser-
vation that the term exp(i2πm2 N

l ) is one for a sequence of
m = 0, 1, . . . when N/l is an integer, but oscillates widely
around the origin if not. Hence, for a number N and a trial
factor l , the average of the terms add up to unity when l is a
factor of N , but otherwise destructively interferes to a value
less than one.

Furthermore, recognizing that these terms are akin to the
phase factors that accumulate when operating a qubit in the
equatorial plane of the Bloch sphere, a particular choice of
pulse sequences can generate states whose phases are the
Gauss-sum terms. We adopt the pulse sequence laid out by
Mehring et al. [21], given as a sequence of π pulses about the
axis cos(φk )x̂ + sin(φk )ŷ, with

φk (l ) =
{

0 for k = 0,

ak (N )/l for k > 0,

ak (N ) = [−1]kπN[2k − 1],

(1)
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FIG. 2. Pulse sequence used in Gauss-sum factorization. Most
operations are π rotations around cos(φk )x̂ + sin(φk )ŷ, where φk

parametrizes the axis of rotation. The initialization pulses are π/2
rotations about φi and φ f , respectively. In our experiment, φi = φ f =
π/2, and the measurement returns the probability of finding the
system in the state |1〉. There is a wait time of τ between successive
pulses.

where N is the number to be factorized, and l is the trial factor.
This sequence, as shown in Fig. 2, gives

Pr(m; l, N ) = 〈+|
0∏

k=m

R̂(π, φk )|+〉

= 1

2

[
1 + c(m)

N (l )
]
, (2)

〈Pr(l, N )〉(M ) = 1

M + 1

M∑
m=0

Pr(m; l, N )

= 1

2

[
1 + C(M )

N (l )
]
, (3)

where M is the maximum number of pulses used for each
trial factor. The details are worked out in Appendix A. The
averaged probability 〈Pr(l, N )〉(M ) acts as the signal of each
trial factor in a Gauss-sum factorization, and the magnitude of
the signal indicates whether or not the trial factor is a factor
or a nonfactor. Here, c(m)

N (l ) and C(M )
N (l ) are the real Gauss

summands and sums:

c(m)
N (l ) = cos

(
2πm2 N

l

)
, (4)

C(M )
N (l ) = 1

M + 1

M∑
m=0

c(m)
N (l ). (5)

The sum C(M )
N (l ) = 1 if l is a factor of N , while C(M )

N (l ) < 1 if
l is not a factor of N . By performing the sum with trial factors
1 � l �

√
N and seeking out the peaks, we can work out the

factors of a large number.
However, in practice, the presence of noise makes it diffi-

cult to discern between factors and nonfactors, as fluctuations
and decays would make the Gauss sum of a factor less than
1. Furthermore, there are ghost factors, nonfactors with Gauss
sums that are very close to one, which might cause a misiden-
tification of a ghost factor as a factor or vice versa. Therefore,
in the experimental implementation of Gauss sums, the effect
of noise must be considered.

B. Bloch-Redfield theory

To study the effect of decoherence on Gauss sums, we
turn to the Bloch-Redfield master equation that describes the
evolution of an initial state ρ̂ = |ψ〉〈ψ |, where |ψ〉 = α|0〉 +
β|1〉, that is weakly coupled to a noisy environment [33]:

ρ̂BR =
(

1 + [|α|2 − 1
]
e−
1t αβ∗eiδωt e−
2t

α∗βe−iδωt e−
2t |β|2e−
1t

)
. (6)

Here, δω = ωq − ωd is the difference between the qubit and
driving frequency 
1 = 1/T1 with the relaxation time T1, and

2 = 1/T2 with the dephasing time T2.

A density operator ρ̂ can also be vectorized into a column
vector |�〉 as

|�〉 = vec(ρ̂) ≡ 1√
2

⎛⎜⎜⎝
1

αβ∗ + α∗β
i[αβ∗ − α∗β]
|α|2 − |β|2

⎞⎟⎟⎠ ≡ 1√
2

(
1
�r
)

, (7)

where �r = (〈σ̂x〉, 〈σ̂y〉, 〈σ̂z〉)T with 0 � |�r|2 � 1.
In this vectorized form, a unitary operator R̂(θ, n̂) acting

on a density operator R̂ρ̂R̂† is simply a matrix multiplication
R(θ, n̂)|�〉 = (1 0

0 R(θ, n̂))|�〉, where R(θ, n̂) is a 3D rotation
matrix that acts on the Bloch vector �r.

Performing the same treatment on the Bloch-Redfield den-
sity operator,

|�RB〉 = 1√
2

⎛⎜⎜⎝
1

(αβ∗eiδωt + α∗βe−iδωt )e−
2t

i(αβ∗eiδωt − α∗βe−iδωt )e−
2t

(1 − e−
1t ) + (|α|2 − |β|2)e−
1t

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 0 0 0
0 cos(δωt )e−
2t sin(δωt )e−
2t 0
0 − sin(δωt )e−
2t cos(δωt )e−
2t 0
1 − e−
1t 0 0 e−
1t

⎞⎟⎟⎠|�〉

=

⎛⎜⎜⎝
1 0 0 0
0

√
e−
1t 0 0

0 0
√

e−
1t 0
1 − e−
1t 0 0 e−
1t

⎞⎟⎟⎠
︸ ︷︷ ︸

amplitude damping with factor e−
1t

⎛⎜⎜⎝
1 0 0 0

0 e−(
2− 
1
2 )t 0 0

0 0 e−(
2− 
1
2 )t 0

0 0 0 1

⎞⎟⎟⎠
︸ ︷︷ ︸

pure dephasing with factor e−(
2− 1
2 
1 )t

⎛⎜⎝1 0 0 0
0 cos(δωt ) sin(δωt ) 0
0 − sin(δωt ) cos(δωt ) 0
0 0 0 1

⎞⎟⎠
︸ ︷︷ ︸

z rotation of angle δωt

|�〉

(8)

≡ A
(
e−
1t

)
P
(
e−(
2− 1

2 
1 )t)R(δωt, ẑ)|�〉.

The operation R(π, φ), a π rotation around
the axis cos(φ)x̂ + sin(φ)ŷ, commutes with both

the amplitude damping and pure dephasing pro-
cesses, while its commutation relation with a z
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rotation is R(δωt, ẑ)R(π, φ) = R(π, φ)R(−δωt, ẑ).
So,

. . .R(π, φk−1)APR(δωt, ẑ)R(π, φk )APR(δωt, ẑ) . . .

= . . .R(π, φk−1)R(π, φk )A2P2 R(−δωt, ẑ)R(δωt, ẑ)︸ ︷︷ ︸
1

. . .

= . . .R(π, φk−1)R(π, φk )A2P2 . . . .

(9)
The expected measurement under this decay model is

〈�+x̂|
0∏

k=m

R(π, φk )Am+1Pm+1|�+x̂〉, (10)

where |�+x̂〉 = (1, 1, 0, 0)T /
√

2 is the state in the +x̂ axis,
which comes from our choice of the initialization pulses. If
the delay between pulses is τ and the π -pulse time is tπ , this
gives

P̃r(m; l, N ) = 1

2

[
1 + cos

(
2πm2 N

l

)
e−(m+1)
2 (τ+tπ )

]
(11)

with the tilde indicating the presence of decoherence due to
noise in the Bloch-Redfield model. Hence, the noisy Gauss-
sum result is

C̃(M )
N (l ) = 1

M + 1

M∑
m=0

cos
(

2πm2 N

l

)
e−(m+1)
2(τ+tπ ). (12)

This is exactly the phenomenological fit used in an earlier
Gauss-sum experiment [21].

C. Ghost factors

Equation (5) with M = l − 1 includes every unique sum-
mand since subsequent summands m = k to kl − 1 for k =
1, 2, . . . are repetitions of the first sum. M also corresponds
to the maximum number of pulses used for each trial factor.
Since the factorization of large N requires large trial factors,
it can be impractical to perform a complete Gauss sum due to
decoherence limits. In practice, the truncated Gauss sum with
some constant M < lmax − 1 is used.

The choice of M is important as choosing a low number
of pulses might not allow the summands to interfere enough
to reduce the signal of a nonfactor adequately. This is espe-
cially true for larger trial factors, where many terms might be
needed before it converges to a value close to its full sum.
These appear as ghost factors: Nonfactors whose signals are
close to that of a factor, which makes it difficult to differen-
tiate the two. Previous theoretical work on truncated Gauss
sums sets a lower limit for the number of pulses required as

4
√

N/4 � M [31].
As it turns out, this only addresses a subset of ghost factors.

Here, it is useful to categorize the types of trial factors as
follows:

(1) factors that divide N , which includes both prime fac-
tors of N and their products;

(2) “well-behaved” nonfactors that decay quickly within
a few pulses;

(3) type I ghost factors that take a large number of pulses
to decay;

(4) type II ghost factors that plateau at some value.

While type I ghost factors can be suppressed by increasing
the number of pulses M used, the same cannot be done for type
II ghost factors, even with a large M. As such, we consider the
effects of type II ghost factors in the cases where type I ghost
factors are already suppressed (that is, the lower limit for M is
already met).

Any rational number can be reduced to the form N
l =

integer + p
q , where p < q, p and q are coprime. Explicitly,

q = l/ gcd(N, l ) and p = (N/ gcd(N, l )) mod q. Then,

C(M )
N (l ) = C(M )

p (q) = 1

M + 1

M∑
m=0

cos

(
2πm2 p

q

)
, (13)

so p and q completely determine its behavior. Treating the
cosine as the real part of a point in the complex plane, it is
clear that the points traversed by this sum are the qth roots of
unity.

Type II ghost factors occur when the terms oscillate within
a smaller subset on the right half of the complex plane. An
example is with N = 3 × 7 × 83 × 151 and l = 12. The re-
duced fraction of N/l gives p = 3 and q = 4, which alternates
between 1 and i in the complex plane, so the measurement
outcome oscillates between 1 and 0.5 for each k, resulting in
Pr(m) ≈ 0.75 overall.

Another example, with the same N and l = 15, 35, 105,
1245, gives the reduced fraction with coprimes q = 5 and p =
1, 4, 3, 2. The p = 1 branch always ends up being on the right
side of the plane as the first step involves a single rotation
2π/q away from the starting point. Hence, the p = 1 branch
gives the worst ghost factor for a given q.

The sum of the form
∑q−1

m=0 e−i2πm2/q has been previously
worked out by Gauss [34,35], and by taking the real compo-
nent of the result, we find

〈Pr(p = 1, q)〉(q−1) = 1

2

[
1 + 1

q

q−1∑
m=0

cos

(
2πm2

q

)]
(14)

=
{

1
2

[
1 + 1√

q

]
if q mod 4 = 0, 1,

0 otherwise.

A trial factor meets this condition when it is of the form l =
(4k + λ) × n where λ = 0, 1, integer k � 1, and n divides N .

From Eq. (14), type II ghost factors get smaller with larger
q. Note that this involves the full sum from m = 0 to q − 1.
However, since the worst-case scenarios occur at small q, the
problematic factors of interest will have gone through several
complete cycles after the lower limit of M has already been
met, so the final average 〈Pr(p = 1, q)〉 will be approximated
by this sum.

We reiterate that type II ghost factors cannot be improved
with large M since increasing the number of pulses only
duplicates the above sum several times with some extra terms
coming from incomplete cycles of (0, q − 1). In fact, as M →
∞, the contributions of these extra terms become negligi-
ble, and 〈Pr(p = 1, q)〉 becomes exactly the value given by
Eq. (14).

A consequence of the above is that the type II ghost fac-
tors limit the ability for us to discern between factors and
nonfactors. The presence of q = 4 ghost factors means that
〈Pr(factor)〉 − 〈Pr(nonfactor)〉 � 1

2 (1 − 1/
√

4) = 1
4 , which can be
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FIG. 3. Simulated example of Gauss sum with T2 = 500 ns and
Gaussian random measurement noise added to Eq. (12). Factors are
labeled above the corresponding bars. If the usual cutoff of 3

4 is
chosen, some of the factors, due to decoherence causing them to fall
below the chosen cutoff, might be misidentified as nonfactors. We
suggest a new cutoff based on the expected decay of the trial factors,
and choosing it to be between the expected values of the factor and
the worst ghost factor. This provides leeway for fluctuations without
misidentification of the factors as nonfactors or vice versa.

a narrow margin in the presence of noise. This value also
determines where we would place the cutoff between factors
and nonfactors, as setting it too low (and close to the worst
nonfactor) would cause us to misidentify nonfactors as fac-
tors, while the converse would cause us to misidentify factors
as nonfactors.

Furthermore, this difference becomes zero after a long time
due to decoherence, whether it is because both states relax
to the ground state or because both dephase to a completely
mixed state. As such, the study of this worst-case scenario
is an important practical consideration when implementing
Gauss-sum factorization experimentally. To that end, we will
take a closer look at this in the next section.

IV. RESULTS

A. Discernibility

As we have seen, the signal difference between factors and
nonfactors is bounded above by type II ghost factors. Practi-
cally speaking, given the result of a Gauss-sum factorization
experiment, we wish to choose a 〈Pr〉cutoff to identify all l
such that 〈Pr(l )〉 > 〈Pr〉cutoff to be factors, and all l such that
〈Pr(l )〉 < 〈Pr〉cutoff to be nonfactors. Previous work suggests
the use of the worst nonfactor as the cutoff [26], which is
〈Pr〉cutoff = 0.75 in our case, but this does not take into account
decoherence, which might cause the signal of a factor to fall
below that threshold.

Instead, an improved cutoff would be halfway between the
expected signal of the factor and the worst nonfactor

〈Pr〉cutoff = 1

2

[̃
c(m)

N (worst nonfactor) + c̃(m)
N (factor)

]
. (15)

This not only accounts for the decoherence of the qubit, but
also allows for some leeway for fluctuations and measurement
errors. An illustration of this is shown in Fig. 3. We multiplied
the value of each Gauss-sum term with a random number
sampled from a normal distribution with a standard deviation
of 0.04 to simulate the presence of measurement noise. The
cutoff calculated using Eqs. (12) and (15) is placed where the

signal of the factors can fluctuate without crossing over the
threshold.

To study this in more detail, we define the discernibility
of an experimental implementation of a Gauss-sum factoriza-
tion:

D(M, N ) ≡ 2(〈Pr(factor, N )〉(M )

− 〈Pr(worst ghost factor, N )〉(M ) )

= C̃M
N (factor) − C̃M

N (worst ghost factor).

(16)

At this point, the definition does not prescribe the worst
ghost factor, to allow for experimenters to skip past known
nonfactors to improve the signal. This can be done by prepro-
cessing the number to be factorized, which will be covered in
Sec. IV B.

The factor of 2 sets the discernibility within the range
[0,1] when factors can be discerned from nonfactors. The
former holds when the qubit completely decoheres, while the
latter holds when all ghost factors are eliminated, leaving only
“well-behaved” ghost factors such that D = 2[1 − 0.5] = 1.
Meanwhile, D < 0 means that the signal of the nonfactor
exceeds the factor, so a misidentification will occur with cer-
tainty.

We juxtapose this to the contrast V used in other Gauss-
sum factorization experiments [21,36], which is an adaptation
of the Michelson contrast [37] to the Gauss-sum factorization
scheme. Contrast is given by

V = Imax − Imin

Imax + Imin
= 1 − a

1 + a
,

a = 1

no. of nonfactors

∑
nonfactors l

∣∣C(M )
N (l )

∣∣
= 1

no. of nonfactors

∑
nonfactors l

∣∣2〈Pr(l, N )〉(M ) − 1
∣∣

(17)

with a, the average over the absolute values of the Gauss sums
of nonfactors, playing the role of the minimum intensity. The
contrast reflects the overall performance of the system, and is
a useful gauge of the effectiveness of a particular Gauss-sum
factorization.

On the other hand, the discernibility quantifies the system
at its worst behavior. It does not supplant contrast as a descrip-
tor of the system’s overall performance, but rather serves to
indicate the limits of the Gauss-sum factorization where noise
might render the scheme ineffectual. This is useful as an indi-
cator when pushing a system to its decoherence limits, while
achieving a target discernibility to maintain the effectiveness
of the factorization scheme.

We apply the results from the Bloch-Redfield equation to
investigate the behavior of discernibility in the presence of
noise. If all trial factors are present, the worst type II ghost
factor occurs for q = 4, and the summands of the factor and
ghost factor follow a T2 decay given by

c̃(m)
N (factor) = c̃(m)

N (q = 1) (18)

= e−(m+1)
2 (τ+tπ ),

c̃(m)
N (worst ghost factor) = c̃(m)

N (q = 4) (19)

=
{

e−(m+1)
2 (τ+tπ ) for even m,

0 for odd m.
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This gives the Gauss sums

C̃(M )
N (q = 1) = 1

M + 1

M∑
m=0

e−(m+1)
2(τ+tπ )

= 1 − e−(M+1)
2 (τ+tπ )

(M + 1)(e
2(τ+tπ ) − 1)
, (20)

C̃(M )
N (q = 4) = 1

M + 1

�M/2�∑
m=0

e−(2m+1)
2 (τ+tπ )

= 1 − e−(2�M/2�+2)
2 (τ+tπ )

(M + 1)(e
2(τ+tπ ) − e−
2(τ+tπ ) )
(21)

≈ 1 − e−(M+2)
2(τ+tπ )

(M + 1)(e
2(τ+tπ ) − e−
2(τ+tπ ) )
.

In the last step, we approximate �M/2� ≈ M/2 as M is gen-
erally large when the lower limit for the M for suppressing
type I ghost factor is met. The discernibility is the difference,
given by

D(M, N ) = 1 − e−M
2[τ+tπ ]

[M + 1][e2
2[τ+tπ ] − 1]
. (22)

At large M, D → 0, which is the statement that it gets in-
creasingly difficult to discern the factors and nonfactors as the
number of pulses increase.

The discernibility of a system can be thought of as the
tolerance of the Gauss-sum factorization to measurement un-
certainty. This is illustrated in Fig. 4, where we have plotted
the experimental behavior of a factor and a ghost factor with
the cutoff calculated with Eq. (15), and the experimental and
theoretical discernibility from Eq. (22). We applied a long
sequence of pulses for a factor (l = 21) and the worst ghost
factor (l = 28, which has q = 4) with pulse delay τ = 30 ns
and π -pulse time tπ = 25 ns. We performed a fit shown in
Fig. 4(b) to find T2 = 3.6 ± 0.5 μs. Graphically, the D plotted
in Fig. 4(d) is twice the gap between the factors (upper solid
line) and nonfactors (lower solid line) shown in Fig. 4(c). The
discernibility is reduced at very small M, where the nonfac-
tor is not yet sufficiently suppressed, and at large M, where
the decoherence of both the factor and nonfactor causes the
separation between the two to close. We can tolerate a much
smaller discernibility in a system where measurement uncer-
tainty is low, but a larger discernibility would be needed in a
noisy system for a bigger allowance for fluctuations without
the misidentification of factors or nonfactors.

In that sense, for a target Dtarget, we require M < Mmax,
with Mmax given by inverting Eq. (22) and taking the principal
branch of the Lambert W function to find

Mmax = M0W

⎡⎣−e
− 1

M0

[
1

μDtarget
−1
]

M0μDtarget

⎤⎦+ 1

μDtarget
− 1, (23)

where μ = e
2

M0 − 1 and M0 = T2/(τ + tπ ). M0, the ratio be-
tween the coherence time and pulse duration, is a naive
estimate of the maximum circuit depth.

Hence, type II ghost factors provide an upper bound for
M by taking into account the decreasing discernibility with
an increasing number of pulses. Together with a lower bound

FIG. 4. Gauss-summand decay behavior, cutoffs, and discerni-
bility. (a) Expected behavior of Gauss summands from theory. The
signal from the factor (l = 21, upper solid line) decays exponentially
with a characteristic time T2, while the signal from the ghost factor
(l = 28, lower solid line) oscillates between within the envelope
formed by the factor. (b) Experimental measurements of signals
from the factor (upper solid line) and ghost factor (lower solid
line, oscillating). The dashed line is an exponential fit to yield T2.
(c) Decay behavior of the Gauss sum of the factor (upper solid line)
and nonfactor (lower solid line), together with the cutoff (dashed
line) calculated from the measured T2. Our suggested cutoff always
lies between the factor and the ghost factor, so misidentification is
unlikely as long as the fluctuations are smaller than the separation
between the two. (d) Experimental (black) and theoretical (gray)
discernibility of the two factors. At very small M the nonfactor is
not sufficiently suppressed while at large M decoherence closes the
gap between the factor and the nonfactor, so both extremes result in
a reduced discernibility.

due to type I ghost factors, this sets a limit to the largest
factorizable number at 4

√
N/4 ∼ Mmax.

There are two options to increase the largest factorizable
number: Increase the discernibility of the system so that we
can achieve Dtarget with a larger M, or increase the ratio
T2/(τ + tπ ). For the former, we introduce the technique of
preprocessing in Sec. IV B. For the latter, this involves fitting
a larger number of pulses within the coherence time of the
qubit, which we explore in Sec. IV C.

B. Preprocessing

From Eq. (14), the two worst ghost factors occur when the
trial factors are certain multiples of 4 or 5. Hence, if we avoid
trial factors that are multiples of either 4 or 5, we can eliminate
these ghost factors and increase the discernibility. To do so,
we can reduce N to another number N (2) that does not have
4 or 5 as a factor. This is easily done as the divisibility tests
for 2 and 5 are simple, and the integer division of a number is
computationally cheap.

The exact steps are as follows:
(1) If N is even, divide N by 2 until an odd number N (1) is

obtained. Store the number of divisions as n2.
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FIG. 5. Experimental results for the Gauss-sum factorization of
263 193 = 3 × 7 × 83 × 151 with the total number of pulses M =
17. The factors are labeled above the corresponding bar without
arrows, and the cutoff from Eq. (15) is marked out with a dashed
line. The qubit drive is on resonance in (a) and (c) and with detuning
noise in (b) and (d). The noise is introduced by randomly detuning
the qubit drive to ωd = ωq − δ, where δ is sampled from a uniform
distribution in the range [0, 2π × 250 MHz]. The results are shown
without preprocessing [(a) and (b)] and with preprocessing [(c) and
(d)]. In (a), ghost factors l = 28 and 56, labeled with arrows, are
close to the cutoff, although there is no misidentification of factors
and nonfactors. In (b), the ghost factor l = 4 exceeds some of the
factors, so there will be misidentification regardless of how the cutoff
is adjusted. In addition, the ghost factors l = 15 and 36, labeled with
arrows, exceed the chosen cutoff, so there is a risk of misidentifying
these nonfactors depending on the choice of cutoff. In (c) and (d),
there is a clear separation between factors and nonfactors, and there is
no longer any misidentification of either. The worst nonfactors after
preprocessing are l = 27 and 91, labeled with arrows, which are the
next worst ghost factors with q = 9 and 13.

(2) If the last digit of N (1) is 5, divide N (1) by 5 until a
number N (2) without 5 as the last digit is obtained. Store the
number of divisions as n5.

(3) Perform Gauss-sum factorization on N (2) with odd trial
factors that are not multiples of 5. The prime decomposition
of N is 2n2 × 5n5 × {prime decomposition of N (2)}.

With this approach, the worst remaining type II ghost factor
is at q = 9, which brings the upper limit of the discernibility
up to D � (1 − 1/

√
9) = 0.67, an improvement over the un-

processed case D � 0.5. This improvement can make it far
easier to discern between factors and nonfactors, especially
when the total time of the pulse train approaches the decoher-
ence limit of the qubit.

We consider such a situation in our experimental setup.
First, we performed the Gauss-sum factorization with M =
17, with and without preprocessing, and the qubit and driving
frequency on resonance. On resonance, the coherence time
is T2 = 3.5 ± 0.5 μs, and the results are shown in Fig. 5(a).
Then, we intentionally introduced noise by randomly detuning

the driving frequency of the qubit away from resonance, such
that ωd = ωq − δ, where δ is sampled from a uniform distri-
bution with δ ∈ [0, 2π × 250 MHz], reducing the coherence
time of the system to T2 = 0.4 ± 0.2 μs. Hence, when noise
is intentionally introduced, the qubit is operating in a region
where the total experiment time 17 × (τ + tπ ) = 0.94 μs ex-
ceeds the coherence time. The results of the qubit operated at
this region are shown in Fig. 5(b).

Type II ghost factors like those at l = 4 and l = 36 (q =
4), l = 15 and l = 145 (q = 5) are eliminated, leaving a
clear separation between the actual factors and the nonfac-
tors. Quantitatively, the discernibility increases from D =
0.198 ± 0.006 to D = 0.402 ± 0.006 on resonance, and D =
−0.032 ± 0.008 to D = 0.240 ± 0.008 detuned, where the
uncertainties are calculated by propagating the standard error
of the signal of the factors through Eq. (16). The drastic
improvement in discernibility can be verified visually when
comparing panels (a) with (c), and (b) with (d), in Fig. 5.
Note also that D < 0 before preprocessing, which is because
the nonfactor 4 will be misidentified as a factor no matter the
choice of cutoff. This shows that preprocessing can improve
the utility of the Gauss-sum factorization scheme, allowing it
to be used even when the unmodified version would result in
an incorrect result.

In addition, preprocessing also improves the overall con-
trast of the system. The on-resonance contrast increases from
V = 0.750 ± 0.010 to 0.780 ± 0.012, while the detuned con-
trast increases from V = 0.765 ± 0.009 to 0.792 ± 0.012,
where the uncertainties are calculated by propagating the stan-
dard error of the signal of the nonfactors through Eq. (17). We
note that the detuned contrast is larger than the on-resonance
contrast, which makes it seem like the detuned case provides a
better separation between the factors and the nonfactors. This
is not the case, but is rather due to the definition of the contrast
in Eq. (17), where the “maximum intensity” is taken to be 1,
which does not account for decoherence of the factors. This is
easily fixed by replacing 1 with the experimentally measured
signals of the factors, but we elected to keep the definition
consistent with the literature [21,36].

While the increase of both figures of merit reflect the
improved separation between the factors and the nonfactors,
we would not have guessed the presence of the misidentified
factor from the reported contrast. This is, however, reflected
by the negative discernibility of the detuned case before pre-
processing, which reiterates the differing purposes of either
figures of merit. Here, the increased D means that we can
increase the maximum M, so preprocessing can increase the
upper limit of N that can be factorized with Gauss sums.

C. Fitting more pulses within coherence time

Another method to increase the largest possible N is to
increase the ratio T2/(tπ + τ ), which corresponds to fitting
more pulses within the T2 time of the qubit. One approach is
to increase T2 or decrease tπ , which is mostly an engineering
challenge with regards to the the experimental equipment
used. On the other hand, we can also decrease the delay τ

between successive pulses. However, in doing so, we observed
a behavior that will require an extension of the noise model
beyond the Bloch-Redfield theory.
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FIG. 6. Experimental Gauss summand and discernibility for fac-
tor (l = 21, upper lines) and nonfactor (l = 28, lower lines) [similar
to Figs. 4(b) and 4(d)] with pulse delay τ = 1 ns � tπ . The dashed
lines are the fits used to find the T2 times. We found that in this
regime, the T2 time of the factor was much larger than the T2 time
of the nonfactor. This required an adjustment of the discernibility,
which is shown in (b). The adjusted discernibility agrees better with
the experimental results.

1. Decreasing pulse delay

In the previous sections, we have performed the pulse
sequences with a delay τ = 30 ns, which is in the order of
the π -pulse time tπ = 25 ns. The results in Fig. 4 show that
the experiments agree with the theoretical predictions, and the
system does dephase with a characteristic time T2 independent
of the pulse sequence.

However, when performing the pulse sequence with a
much shorter pulse delay, we found the qubit to decay at
different rates: T (1)

2 for the factors and T (4)
2 for the q = 4

ghost factor with T (4)
2 < T (1)

2 . This is shown in Fig. 6(a).
We repeated the procedure performed in Fig. 4(b) but with
τ = 1 ns, and fitted the graph to find T (1)

2 = 8.2 ± 0.5 μs for
the factor and T (4)

2 = 1.2 ± 0.3 μs for the nonfactor.
In lieu of these findings, the discernibility was adjusted for

the two T2 times as

D(M, N ) = C̃M
N (q = 1)

∣∣
T (1)

2
− C̃M

N (q = 4)
∣∣
T (4)

2
, (24)

where C̃M
N for both cases are given by Eqs. (20) and (21).

When the decay times are different, there are no equivalent
closed-form expressions for Eqs. (22) and (23), but they can
be calculated numerically using the same procedure. This is
done in Fig. 6(b), where we compare the adjusted discernibil-
ity in Eq. (24) against the unadjusted discernibility in Eq. (22)
with the averaged decay rate T (avg)

2 = (T (1)
2 + T (4)

2 )/2. We
found Eq. (24) to better reflect the behavior of the experimen-
tal data.

2. Filter function formalism

Where we have made a phenomenological adjustment to
the discernibility from our observation that T2 is different
for factors over ghost factors, we also set out to understand
why there is such a difference in decoherence behaviors. We
offer some preliminary qualitative explanations by using the
filter function approach, more commonly seen the study of
quantum control in the presence of universal noise [38].

In the filter function formalism, qubit dephasing is de-
scribed by the factor e−χ (t ), where χ (t ) is the coherence

FIG. 7. Filter functions of a factor [(a), (b)] and the worst ghost
factor [(c), (d)], with constant τ0 = τ + tπ . For all four subfigures,
the values of tπ/τ0 of each line are marked out on the color scale in
the same order, with tπ/τ0 = 1 for the uppermost lines and tπ/τ0 = 0
for the lowermost lines. For the factor, assumption of instantaneous
pulses (here tπ = 0) in noise spectroscopy is lifted, resulting in some
deviations to the peak height and location. For the ghost factor, the
pulse sequence filters out a large range of frequencies of the noise
spectrum.

integral given by [38]

χ (t ) = 1

π

∑
i j

∫ ∞

−∞
dω Si j (ω)gi j (ω; t ), (25)

where gi j (ω; t ) is the filter function, so named as it filters out
the power spectral density Si j (ω) of the noise present in the
i, j = {x, y, z} component of the qubit control. gi j is purely
determined by the control pulses

gi j (ω) = 1

ω2
[Rω(ω)R†

ω(ω)]i j, (26)

Rω(ω) = −iω
∫ t

0
dt ′R(ctrl)(t ′) eiωt ′

. (27)

Here, R(ctrl) is the control unitary written as a 3 × 3 rotation
matrix.

In this context, the control pulses specify a filter function
in the frequency domain, which filters out certain frequency
ranges of the noise. Since the control pulses are determined
by the trial factors in the Gauss-sum calculations, there is a
corresponding filter function for each trial factor. They are
worked out in Appendix B, and the filter functions for a factor
and the worst ghost factor are shown in Fig. 7.

Two comments are in order. First, our pulse sequences
are built as a spin-echo-like pulse train, initially with the
intention to remove the decoherence effect of detuning within
the Bloch-Redfield model [see Eq. (9)]. As such, the pulse
sequence for a factor happens to be a Carr-Purcell-Meiboom-
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FIG. 8. Decoherence of factor and worst ghost factor in the filter
function formalism in the presence of white noise (a) and 1/ f noise
(b). The dephasing behavior is found by using Eqs. (25) to (27) with
S(ω) = constant for white noise and S(ω) ∝ 1/ω for 1/ f noise. In
both cases, the nonfactor (lower lines) decays more rapidly than the
factor (upper lines). Note that only the envelope is plotted, so the
rapid oscillation of the nonfactor is not shown.

Gill (CPMG) pulse train, which in the limit of instantaneous
pulses results in a Dirac-delta approximation ∝ sinc(ω −
π
τ

) ≈ δ(ω − π
τ

) in the frequency domain centered around a
target frequency that depends on the delay time between
each pulse [39]. The instantaneous pulse assumption approxi-
mately holds when τ � tπ .

The benefit of the filter function approach is that we are
able to incorporate finite pulse time effects so that the delay
time between each pulse can be reduced. This allows us to fit
more operations within the coherence time of the qubit, like in
our experimental implementation in the preceding discussion,
where τ � tπ . As we can work out the filter function without
the instantaneous pulse assumption, we can predict the region
of the noise spectrum that will contribute to the decoherence
of the qubit. Importantly, we see that the peak of the filter
function is roughly the same as in the instantaneous case, so
long as we calculate the filter function using τ + tπ for the
“pulse delay,” that is, δ(ω − π

τ
) → δ(ω − π

τ+tπ
). Increasing

the number of pulses m still brings the filter function closer
to the Dirac delta function, as it does in noise spectroscopy.

Second, the filter function caused by the q = 4 ghost factor
spreads out over a wide range of frequencies. As the filter
function is integrated over the spectrum, a broad portion of the
environmental noise will contribute to the decoherence of the
qubit. For this reason, it is likely that the qubit will decohere
faster for a ghost factor, compared to a factor where only a
narrow region contributes. Whether or not this is true depends
upon the actual noise spectrum.

For a sense of how this might be so, we use S(ω) =
constant (white noise) and S(ω) ∝ 1/ω (1/ f noise) to cal-
culate Eq. (25). These noise statistics are ubiquitous in
electronics, and their presence and mechanism in super-
conducting qubits have been widely studied [40,41]. The
constants and proportionality factors are chosen so that the
standard deviation for both noises is the same, but otherwise
arbitrary, as we only wish to explore the qualitative properties
of the filter functions shown in Fig. 7.

The resulting behavior is plotted in Fig. 8. For both types
of noise, the nonfactor always decays faster. This could be
an explanation for the phenomenological adjustment made in
Eq. (24), where the T2 time of a factor is an order of magnitude
larger than worst ghost factor.

Undoubtedly, a quantitative comparison of this decoher-
ence model with the experimental data can only be done with
knowledge of the spectrum of the environmental noise, which
is beyond the scope of this experiment. A possible approach
to this is offered in Sec. V C.

V. DISCUSSION

A. Type II ghost factors

We have shown that type II ghost factors can affect a
Gauss-sum factorization computation even in regimes where
type I ghost factors might be suppressed. This is a drawback to
the scheme, especially when pushing the limits of the number
of digits of N to be factorized.

The effect of the type II ghost factor can be characterized
by the discernibility D, which can be found after measuring
the T2 time of the system when performing the pulse sequence
for just the factor if the pulse delay is not much shorter than
the π -pulse time. This determines the maximum number of
pulses M possible by requiring that the measurement errors
should be smaller than D, which in turn sets a limit on the
maximum factorizable number N .

As discernibility is a figure of merit tailored to Gauss-sum
factorization, a better estimate of this upper limit can be ob-
tained, given that the tolerances of the experimental setup are
known. For example, in the setup used in Fig. 4, the maximum
number of pulses without considering the specifics of the
Gauss-sum factorization scheme is given by M0 = T2/(τ +
tπ ) = 56. The lower bound of the coherence time is taken
to provide a conservative estimate. Together with the lower
limit 4

√
N/4 < M0, we find log10(N ) < 7.6. Meanwhile, from

the residual standard error in Fig. 4(b), the uncertainty in the
signal is δ Pr = 0.06. That means that Dtarget = 0.12 would
be sufficient to separate factors from nonfactors with certainty.
From Eq. (23), we find Mmax = 225. With 4

√
N/4 < Mmax, this

implies log10(N ) < 10.0.
Therefore, by incorporating the tolerances of the setup, the

experimentalist can perform more pulses to factorize 10-digit
numbers instead of 8-digit numbers, which is a large improve-
ment. Importantly, because discernibility is operationally
twice the signal difference between the worst nonfactor and
the factors, the chosen target discernibility guarantees that
they are operating in a regime where the factorization scheme
is still effective. Furthermore, with preprocessing, which
increases the discernibility for a given coherence time, the
maximum number of pulses can be further increased.

The same procedure can also be done when the pulse
delay is much shorter than the π -pulse time, except with a
phenomenological adjustment that requires the measurement
of T2 of the worst ghost factor. While it seems problematic that
we can only predict the decay behavior of a trial factor after
actually performing the measurement to obtain its coherence
time, this worry can be alleviated with Eq. (13), which shows
that the property of the trial factor in relation to N , which
category it belongs to and the resulting coprimes p and q,
determines the resulting filter function of the pulse sequences.
Hence, we can measure the T2 time of all factors by measuring
the T2 time for a known factor (l = 1), and likewise for the
worst type II ghost factor by measuring the system using a
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smaller N and a known type II ghost factor. These T2 times
can be fed back into Eqs. (15) and (24) to calculate the dis-
cernibility and the cutoff. The discernibility can be inverted to
work out the upper limit for the number of pulses, and hence,
the largest possible N .

B. Preprocessing

A strategy to improve the discernibility would be to reduce
N to another number N (k) that is coprime to the worst few type
II ghost factors. In Sec. IV B, we provided the steps to remove
the first two ghost factors to improve the discernibility from
to D � 0.5 to D � 0.67.

This method is easily extendable. For example, the next
worst ghost factor q = 9 can be removed by performing a
division test for 9 (by checking if the sum of digits of N (2)

is a multiple of 9), and dividing N (2) by 9 until the division
test fails to obtain N (3). The number of divisions by 9 is stored
as n9. Finally, Gauss-sum factorization is performed on N (3)

with trial odd trial factors that are neither multiples of 5 nor 9.
The prime decomposition of N is N = 32n9+1 × · · · if N (3) is a
factor of 3 and N = 32n9 × · · · otherwise. This would improve
the discernibility further to D � 0.72.

C. Noise spectroscopy

The filter function formalism potentially explains the dif-
fering T2 times between factors and nonfactors in the presence
of common types of environmental noise when shortening the
pulse delay to a value much smaller than the pulse time. How-
ever, this claim has to be checked with experiment, which can
only be done if we can reconstruct the actual noise spectrum
of the environment.

One possibility to do so is to perform spectroscopy ex-
periments on the qubit to measure the spectrum of the
environmental noise, which will allow us to predict the decay
of the nonfactors by numerically integrating Eq. (25) to find
the associated T2 times. This will lead us to a better estimate
of the discernibility, and predict the behavior of the qubit at
large m, which is required when factoring larger numbers.

VI. CONCLUSION

We investigated the effects of decoherence and ghost fac-
tors in a Gauss-sum factorization scheme. We found that type
II ghost factors limit the effectiveness of the computation,
even in regimes where type I ghost factors are suppressed.
We introduced discernibility as a measure of these limitations,
which with the measurement uncertainty sets an upper limit to
the number of pulses that can be used. It also informs us about
the cutoff choice, which sets the threshold that discriminates
factors against nonfactors.

Furthermore, we introduced the use of preprocessing as
a strategy to improve the discernibility between factors and
nonfactors, and demonstrated its use by experimentally im-
plementing the scheme in a transmon qubit. Our experimental
results corresponded well with the theory. Importantly, we
showed that preprocessing enabled the Gauss-sum factoriza-
tion scheme to be useful even when the imperfect execution of
the scheme in a NISQ device of the unmodified scheme gave
the wrong results.

In the case where the pulse delay is much shorter than the
pulse time, we required a phenomenological adjustment of the
decoherence times as we discovered that the qubit decoheres
at a different rate for different trial factors. We offered a likely
explanation for this differing decoherence time with the filter
function approach by demonstrating that the control pulses of
a factor filter out a narrower range of the noise spectrum than
that of a nonfactor, and that the nonfactor decohered faster
than the factor for two common noise statistics.

However, we noted that the exact noise spectrum would
be needed to confirm this quantitatively, and identified that
a possible avenue of future research would be to perform
noise spectroscopy on the environment to reconstruct the
noise spectrum. This can lead to a better understanding of the
system behavior when τ � tπ , which would allow us to fit
more operations within the coherence time of the qubit, and
hence increase the upper limit to the number of digits that can
be factorized.

The data that support the findings of this study are available
from the corresponding authors on reasonable request [42].
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APPENDIX A: RESULTANT ROTATIONS

With the pulse sequence shown in Fig. 2, the overall
operation on the qubit is the resultant rotation R̂(γm, n̂m) =∏k=m

k=0 R̂(π, φk ). We find the final rotation using the Rodriguez
formula for the product of two rotations [43] R̂(γm, n̂m) =
R̂(π, φm)R̂(γm−1, n̂m−1) with

cos
(γm

2

)
= cos

(γm−1

2

)
cos

(π

2

)
− sin

(γm−1

2

)
sin
(π

2

)
n̂φm · n̂m−1

= − sin
(γm−1

2

)
n̂φm · n̂m−1, (A1)

sin
(γm

2

)
n̂m = sin

(γm−1

2

)
cos

(π

2

)
n̂m−1

+ cos
(γm−1

2

)
sin
(π

2

)
n̂φm (A2)

+ sin
(γm−1

2

)
sin
(π

2

)
n̂φm × n̂m−1

= cos
(γm−1

2

)
n̂φm + sin

(γm−1

2

)
n̂φm × n̂m−1,

where n̂φm = cos(φm)x̂ + sin(φm)ŷ. This works out to be

R̂(γm, n̂m) =
{

cos
(
πm2 N

l

)
1̂ + i sin

(
πm2 N

l

)
σ̂z m even,

cos
(
πm2 N

l

)
σ̂x + sin

(
πm2 N

l

)
σ̂y m odd.

(A3)
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In our setup, we have used φi = φ f = π/2, and measure the
probability of finding the system in the |1〉 state,

Pr(m; l, N ) = ∣∣〈0|R̂(π
2 , ŷ

)
R̂(γm, n̂m)R̂

(
π
2 , ŷ

)|1〉∣∣2
= |〈+|R̂(γm, n̂m)|+〉|2

=
[

cos

(
πm2 N

l

)]2

= 1

2

[
1 + cos

(
2πm2 N

l

)]
. (A4)

APPENDIX B: GAUSS-SUM FILTER FUNCTION

The filter function is defined as

gi j (ω) = 1

ω2

[
Rω(ω)R†

ω(ω)
]

i j, (26 in main text)

Rω(ω) = −iω
∫ t

0
dt ′R(ctrl)(t ′) eiωt ′

. (27 in main text)

For the Gauss-sum sequence we have defined, for a particular
value of m, given that the qubit rotates at a frequency � and
takes tπ = π/� time for a π pulse,

Rω(ω; m) = −iω
∫ t

0
dt ′ R(ctrl)(t ′)eiωt ′

= −iω

{
1

[ ∫ τ
2

0
dt ′ eiωt ′ +

∫ τ
2 +tπ

τ
2

dt ′ R
(
�(t ′ − τ

2 ), φ0
)
eiωt ′ + R(π, φ0)

∫ τ+tπ

τ
2 +tπ

dt ′eiωt ′
]

+ R(π, φ0)

[ ∫ (τ+tπ )+ τ
2

(τ+tπ )
dt ′ eiωt ′ +

∫ (τ+tπ )+ τ
2 +tπ

(τ+tπ )+ τ
2

dt ′ R
(
�(t ′ − ((τ + tπ ) + τ

2 )), φ1
)
eiωt ′

+ R(π, φ1)
∫ (τ+tπ )+τ+tπ

(τ+tπ )+ τ
2 +tπ

dt ′eiωt ′
]

+ R(π, φ0)R(π, φ1)

[ ∫ 2(τ+tπ )+ τ
2

2(τ+tπ )
dt ′ eiωt ′ +

∫ 2(τ+tπ )+ τ
2 +tπ

2(τ+tπ )+ τ
2

dt ′ R
(
�(t ′ − (2(τ + tπ ) + τ

2 )), φ2
)
eiωt ′

+ R(π, φ2)
∫ 2(τ+tπ )+τ+tπ

2(τ+tπ )+ τ
2 +tπ

dt ′eiωt ′
]

+ · · ·
}

= −iω

{
1

[
eiω τ

2 − 1

iω
+ eiω τ

2

∫ tπ

0
dt ′ R(�t ′, φ0)eiωt ′ + eiω( τ

2 +tπ ) eiω τ
2 − 1

iω
R(π, φ0)

]

+ R(γ0, n̂0)eiω(τ+tπ )

[
eiω τ

2 − 1

iω
+ eiω τ

2

∫ tπ

0
dt ′ R(�t ′, φ1)eiωt ′ + eiω( τ

2 +tπ ) eiω τ
2 − 1

iω
R(π, φ1)

]

+ R(γ1, n̂1)eiω2(τ+tπ )

[
eiω τ

2 − 1

iω
+ eiω τ

2

∫ tπ

0
dt ′ R(�t ′, φ2)eiωt ′ + eiω( τ

2 +tπ ) eiω τ
2 − 1

iω
R(π, φ2)

]
+ · · ·

}

=
m∑

k=0

R(γk−1, n̂k−1)eikω(τ+tπ )

[[
1 − eiω τ

2
][
1 + eiω( τ

2 +tπ )R(π, φk )
]− iωeiω τ

2

∫ tπ

0
dt ′ R(�t ′, φk )eiωt ′

]
.

Here, R(γ−1, n̂−1) ≡ 1 for the m = 0 case to hold. From Eq. (1), φ0 = 0 for m = 0 independent of the trial factor,

Rω(m = 0) = [1 − e−ω τ
2
]⎛⎜⎜⎜⎝1 + eiω[ τ

2 +tπ ] 0 0
0 1 − eiω[ τ

2 +tπ ] 0
0 0 1 − eiω[ τ

2 +tπ ]

⎞⎟⎟⎟⎠ + e−ω τ
2

1 + eiωtπ

ω2 − �2

⎛⎜⎜⎝
ω2−�2

1+eiωtπ [1 − eiωtπ ] 0 0
0 ω2 −iω�

0 iω� ω2

⎞⎟⎟⎠.

(B1)

For the factors, φk = 0,

Rω(q = 1, m > 0) =

⎛⎜⎝
1−ei(m+1)ω(τ+tπ )

1−eiω(τ+tπ ) 0 0

0 1+(−1)mei(m+1)ω(τ+tπ )

1+eiω(τ+tπ ) 0

0 0 1+(−1)mei(m+1)ω(τ+tπ )

1+eiω(τ+tπ )

⎞⎟⎠Rω(m = 0). (B2)
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Meanwhile, the q = 4 ghost factor gives

Rω(q = 4, m > 0) = Rω(m = 0) +
m∑

k=1

eiωk(τ+tπ )(Ak + Bk ),

Akeven =
⎛⎝eiω[ τ

2 +tπ ] 1 − eiω τ
2 0

1 − eiω τ
2 eiω[ τ

2 +tπ ] 0
0 0 −[1 − eiω τ

2 [1 + eiωtπ ]
]
⎞⎠,

Akodd =
⎛⎝1 − eiω τ

2 eiω[ τ
2 +tπ ] 0

eiω[ τ
2 +tπ ] 1 − eiω τ

2 0
0 0 1 − eiω τ

2 [1 + eiωtπ ]

⎞⎠,

Bk = eiω τ
2 1+eiωtπ

ω2−�2

⎛⎜⎜⎜⎜⎝
− 1

2

[
ω2−�2

1+eiωtπ [1 − eiωtπ ] − (−1)kω2
] − 1

2

[
ω2−�2

1+eiωtπ [1 − eiωtπ ] + (−1)kω2
] qk√

2
iω�

− 1
2

[
ω2−�2

1+eiωtπ [1 − eiωtπ ] + (−1)kω2
] − 1

2

[
ω2−�2

1+eiωtπ [1 − eiωtπ ] − (−1)kω2
] − qk√

2
iω�

− qk√
2
iω�

qk√
2
iω� −ω2

⎞⎟⎟⎟⎟⎠

where qk =
{

1 if (k − 1) mod 4 = 0, 1,

−1 if (k − 1) mod 4 = 2, 3.

(B3)

While the analytical expressions for gi j (ω; m) =
1
ω2 [Rω(ω; m)R†

ω(ω; m)]i j become cumbersome to work
out, they can be calculated numerically with ease by using the

above formulas. In practice, the noise we measure will be data
which might not follow the spectrum of a simple distribution,
so the integration will be done numerically in any case.
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