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Abstract—In this paper, we propose TECO, a multi-dimensional pruning
framework to collaboratively prune the three dimensions (depth, width,
and resolution) of convolutional neural networks (CNNs) for better
execution efficiency on embedded hardware. In TECO, we first introduce
a two-stage importance evaluation framework, which efficiently and
comprehensively evaluates each pruning unit according to both the local
importance inside each dimension and the global importance across
different dimensions. Based on the evaluation framework, we present a
heuristic pruning algorithm to progressively prune the three dimensions
of CNNs towards the optimal trade-off between accuracy and efficiency.
Experiments on multiple benchmarks validate the advantages of TECO
over existing state-of-the-art (SOTA) approaches. The code and pre-trained
models are available anonymously at https://github.com/ntuliuteam/Teco.

I. INTRODUCTION

Over the past decade, the evolution of deep convolutional neural
networks (CNNs) has been benefiting many deep learning applications
[1]. Recently, there is a growing demand to deploy advanced CNNs at
the edge to address the concerns of network latency and data privacy
[2], [3]. However, modern CNNs are usually equipped with billions
of operations. For example, the most popular CNN model, ResNet50
[1], has 4.1 billion Multiply-Accumulate operations (MACs), which
are computationally prohibitive for embedded hardware [4].

To enable more edge deep learning applications, such as autopilot
and smart cameras, to be benefited from the advances of CNNs, efforts
have been made to compress CNNs for a better trade-off between
execution efficiency and accuracy. Neural network pruning [2], [5]–[9],
as one of the promising model compression techniques, reduces the
complexity of CNNs by removing redundant parameters and compu-
tation from the three dimensions (depth, width, resolution) of CNNs.
Specifically, width pruning [7]–[13] devotes to compressing models
by removing less important channels, while depth pruning [5], [9],
[14], [15] conducts pruning at a coarser granularity (i.e., layer). More
recently, resolution pruning [16]–[18] has been proposed to compress
the spatial redundancy in input images, which also effectively reduces
the computational complexity of CNNs. However, the aforementioned
approaches mainly focus on pruning a single dimension while ignoring
the redundancy in the other dimensions, which can only achieve a sub-
optimal trade-off between model accuracy and execution efficiency.

In this paper, we propose a multi-dimensional pruning framework,
TECO, to coordinately prune the three dimensions of CNNs. To
accurately identify redundant units in the three dimensions, we first
propose an inter-dimensional evaluation strategy (ITES) to compre-
hensively evaluate the importance of pruning units across different
dimensions. In ITES, we integrate the contribution of each pruning
unit to model complexity, accuracy, and inference latency into a unified
metric, global importance, according to which the unit with the lowest
global importance is considered redundant and can be safely removed.
However, as ITES needs to collect multiple metrics for comprehensive
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Fig. 1: Comparison of different methods in terms of model MACs,
accuracy, and inference latency. The baseline network is ResNet50
[1], which is trained on ImageNet. The latency is measured on AGX
Xavier with a power budget of 30W.

evaluation, directly applying ITES to traverse all units of the three
dimensions will be extremely time-consuming. To this end, we also
introduce an inner-dimensional evaluation strategy (INES) to first
quickly evaluate units within each dimension and identify the most
redundant unit of each dimension. By this means, ITES only needs to
be performed on the most redundant unit of each dimension for the
final pruning decision. INES reduces the pruning candidates for each
dimension from multiple to one, which reduces the evaluation cost
of ITES and enhances the pruning efficiency significantly. On top of
the two-step evaluation framework composed by INES and ITES, we
design a heuristic pruning algorithm, which utilizes INES and ITES
to progressively identify and prune redundant units. In this way, we
can efficiently search for the optimal tiny architecture for resource-
constrained embedded devices in the huge design space formed by
the three dimensions.

Our main contributions are three-fold:
1) We introduce an inter-dimensional importance evaluation strat-

egy (ITES) to evaluate the importance of units across different
dimensions. We integrate the contribution of each unit to model
complexity, accuracy and latency into a comprehensive metric,
global importance, which enables us to accurately identify
redundant units in the three dimensions.

2) We also propose an inner-dimensional importance evaluation
strategy (INES) to quickly evaluate the local importance of units
within each dimension, which reduces the pruning choices for
each dimension from multiple to one, alleviating the evaluation
overhead of ITES and improving the pruning efficiency of our
framework.

https://github.com/ntuliuteam/Teco
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Fig. 2: The overview of TECO, where INES evaluates the local importance of units inside each dimension and ITES evaluates the global
importance of units across different dimensions. The inner-dimensional evaluation is skipped for the resolution dimension (See Section III-B
for the detailed reason).

3) Based on ITES and INES, we design a heuristic pruning
algorithm to progressively prune the three dimensions of CNNs.
By iteratively identifying and removing redundant units with
INES and ITES, our pruning algorithm can efficiently find the
optimal tiny model for edge devices in the huge design space
of multi-dimensional pruning.

As shown in Fig. 1, our TECO obtains 3.97% higher top-1 accuracy
on ImageNet than HRank [8] with similar MACs. For on-device
acceleration, TECO is 1.91× faster than GAL [9] while still achieving
1.12% higher accuracy.

II. RELATED WORK

Single-dimensional pruning: Computational redundancy widely
exists in CNNs [2]. To compress CNNs for a better trade-off between
accuracy and execution efficiency, efforts have been made to remove
redundancy from different dimensions of CNNs. Depth pruning [1],
[14] devotes to compressing layer-level redundancy by pruning less
important layers. Width pruning [7], [8], [10], [11], [19] conducts
pruning at a finer granularity (i.e., channel), which yields compact
models by removing channels with low sensitivity. Both depth pruning
and width pruning focus on compressing the network architecture,
while resolution pruning [16], [17], [20] optimizes the spatial redun-
dancy in input images by shrinking images to a smaller resolution
[16], [20] or selectively cropping images for inference [17]. However,
all of the aforementioned pruning techniques only remove redundancy
in a single dimension, which inevitably results in significant accuracy
degradation as the compression rate increases.

Multi-dimensional pruning: Some works combine the pruning
of different dimensions to achieve a higher compression rate while
maintaining the accuracy. SSS [5] and GAL [9] introduce additional
regularization terms into the training process to learn a sparse archi-
tecture mask, according to which the layers and channels with higher
sparsity will be removed. However, both approaches only combine
the pruning of depth and width dimensions and fail to reduce the
redundancy in input images, which loses the opportunity to further
optimize the trade-off between model overhead and accuracy.

Discussion: Existing pruning frameworks mainly focus on com-
pressing a single dimension or jointly compressing part of the three
dimensions of CNNs. Instead, our method couples the compression
of all dimensions, which is able to achieve a better result in terms of
model efficiency and accuracy.

III. MULTI-DIMENSIONAL PRUNING

In this section, we first outline the design of TECO, and then
introduce each sub-component in detail.

As demonstrated in Fig. 2, Given a CNN model N , we first quickly
evaluate the local importance of each unit inside each dimension with
INES. Subsequently, the unit with the lowest local importance in
each dimension is selected to perform ITES, where the three units of
different granularities are fairly compared according to their global
importance, and then the unit with the lowest global importance
score is pruned safely. Afterwards, the model is fine-tuned to restore
accuracy for the next pruning iteration. Finally, INES and ITES are
executed iteratively to progressively prune the three dimensions of the
given CNN model N for a better trade-off between model accuracy
and execution efficiency.

A. Inter-Dimensional Importance Evaluation (ITES)

Compared to single-dimensional pruning [8], [14], [17], a major
challenge faced by multi-dimensional pruning is to effectively eval-
uate and compare the importance of the pruning units of different
dimensions. Intuitively, the pruning units of different dimensions (layer
for depth, channel for width, pixel for resolution) are at different
granularities, and pruning them can lead to diverse model complex-
ity and accuracy. Moreover, for edge computing, pruning different
dimensions also results in different run-time latency on embedded
devices. However, single-dimensional pruning [7], [8], [14] mainly
considers model accuracy as the only metric to evaluate the importance
of pruning units, which is inapplicable for evaluating units of different
dimensions. To this end, we propose an inter-dimensional evaluation
strategy (ITES) to comprehensively evaluate the importance of units
across different dimensions according to their impacts on accuracy,
model complexity, and on-device inference latency.

Accuracy: We quantify the contribution of a unit to accuracy as
the increase in the cross entropy loss of the model prediction when
removing this unit from the model. The cross entropy loss of image
classification tasks can be defined as:

LCE (N ) = −
n∑

i=1

ti log(pi) (1)

where ti is the ground truth probability for class i, pi is the predicted
probability of model N , and n is the number of classes. Let u be
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Fig. 3: Latency distributions obtained by separately pruning the three
dimensions. The low mean squared errors (MSE) reveal that the
proposed latency model well fits the sampled data.

an arbitrary pruning unit of the three dimensions, the impact of u on
accuracy is formulated as:

A(u) = LCE

(
N ′)− LCE (N )

=

n∑
i=1

ti log(p
′
i)−

n∑
i=1

ti log(pi) =

n∑
i=1

ti log(
p′i
pi

)
(2)

where N ′ is the pruned model by removing u from N .
Model Complexity: We use model MACs to quantify the complex-

ity of CNNs as all three dimensions can affect model MACs while
parameters are only related to depth and width. Therefore, the impact
of u on model complexity can be efficiently measured by calculating
the MACs reduction achieved by removing u, which is represented
as:

M(u) =
∣∣MACs(N ′)− MACs(N )

∣∣ (3)

On-Device Latency: The most intuitive way to evaluate the impact
of u on latency is to measure the latency reduction. However, directly
measuring the latency reduction on embedded devices during pruning
will incur a huge time cost and reduce the pruning efficiency. To this
end, we introduce a dimension-wise latency model to efficiently esti-
mate the latency reduction according to the MACs reduction of each
dimension. To build the dimension-wise latency model, we vary the
three dimensions of ResNet50 to sample models with different MACs
and measure their latency on the target device. The sampling results
are summarized in Fig. 3, which demonstrates a linear relationship
between the latency and MACs. Therefore, we formulate the latency
model for each dimension as follows:

ls = as ·m+ cs (4)

where ls is the predicted latency for dimension s ∈ {d,w, r} and m
is the model MACs. as and cs are dimension-wise hyperparameters,
which are fitted by Least Squares Method with the sampled data.
Since the residual network architecture of ResNet50 is widely utilized
in many advanced CNNs, the established latency model can be well
generalized to other advanced CNNs. Let s be the dimension of unit
u, the impact of u on latency (i.e., the latency reduction) is derived
as:

T (u) = |l′s − ls| = as(
∣∣m′ −m

∣∣) = asM(u) (5)

where m′ and l′s are the MACs and estimated latency of the pruned
model N ′. Through Equation 5, we can quickly evaluate the impact
of u on latency using the MACs reduction and the dimension-wise
latency hyperparameter as. As shown in Fig. 3, the value of the latency
hyperparameter as varies across dimensions, which reveals that, for
different dimensions, the same reduction on MACs can lead to diverse
latency reduction.
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Fig. 4: The architecture of the fully gated residual bottleneck block
with channel gates and a layer gate.

Global Importance: Finally, we combine the impact of u on
accuracy, model complexity, and latency as a unified metric coined
global importance, which is formulated as:

I(u) = A(u)

αM(u) + (1− α)T (u)
(6)

where α ∈ [0, 1] is a hyperparameter to control the contribution of
M(u) and T (u), which provides ITES with enough flexibility to ac-
commodate different design considerations. Specifically, by increasing
the value of α, ITES will focus more on the reduction of model
complexity (i.e., MACs). Otherwise, the on-device latency will be
the main consideration of ITES. In our experiments, we empirically
set α = 0.5 to equalize their contribution to the global importance.
According to Equation 6, unit u is considered less important if pruning
it can bring more significant reduction in model MACs and latency
with less increase in prediction loss.

B. Inner-Dimensional Importance Evaluation (INES)

ITES effectively evaluates units across different dimensions using
global importance. However, obtaining the global importance of a
unit is relatively time-consuming due to the calculation of A(u),
M(u), and T (u), and thus directly using ITES to traverse the
three dimensions will lead to an expensive evaluation cost, thereby
degrading the efficiency of our pruning framework. Therefore, we
further propose an inner-dimensional evaluation strategy (INES) to
cooperate with ITES to efficiently evaluate all units. INES first quickly
evaluates the local importance of units inside each dimension, and then
only the unit with the lowest local importance in each dimension will
be selected to perform ITES for its global importance. In this way,
ITES will be performed only on three units and thus the evaluation
overhead is reduced significantly. Finally, the unit with the lowest
global importance will be considered redundant and removed. Through
such a two-step evaluation mechanism, we are capable of accurately
and efficiently identifying the redundant units in the three dimensions.

To efficiently evaluate the local importance of units inside each
dimension, we design a fully gated residual bottleneck block. The
block architecture is demonstrated in Fig. 4, where each channel is
followed by a channel gate (CG). Meanwhile, there is a layer gate
(LG) at the end of the block. These gates are introduced for two
reasons: (1) to control the pruning of each channel or the whole
layer by setting the gate’s weight to 0 (pruned) or 1 (preserved);
(2) to quickly calculate the local importance for inner-dimensional
evaluation.

Local Importance: Inspired by the channel pruning approach
proposed in [7], we approximate the local importance of a channel
with the gradient of the corresponding channel gate, which can be
formulated as follows:

Iw
i =

(
∂LCE

∂CGi

)2

(7)



Algorithm 1: Heuristic Architecture Descent
Data: overparameterized CNN N , training dataset Dt, evaluation

dataset Dv , pruning iterations n
Result: pruned network Np

iter ← 0;
while iter < n do

/* Inner-dimensional evaluation */
(d∗, w∗, r∗)← INES(N , Dv)
/* Inter-dimensional evaluation */
dim← ITES(N , Dv , d∗, w∗, r∗)
if dim is depth then

Prune(N , d∗) /* Prune the layer */
else if dim is width then

Prune(N , w∗) /* Prune the channel */
else if dim is resolution then

Prune(N , r∗) /* Prune the image */
end
Fine-tune(N , Dt)
iter ← iter + 1

end
Np ← N

where Iw
i is the local importance of the i-th channel and CGi is the

gate of the i-th channel. Further, we extend this idea to the depth
dimension, where we add a layer gate at the end of each layer to
collect the layer-level gradients and utilize the layer-level gradients to
quantify the importance of each layer:

Id
i =

(
∂LCE

∂LGi

)2

(8)

where Id
i and LGi represent the local importance and the gate of the

i-th layer, respectively. Thanks to our fully gated block architecture,
we are able to simultaneously obtain the gradient of all channel
gates and layer gates by only performing backpropagation once,
and thus the evaluation cost of INES is reduced significantly. In
practise, we randomly select multiple images from the training set
to perform backpropagation and average their gradients to obtain a
more consistent and accurate estimation for the local importance of
each unit. In our test, we empirically observe that 5,000 images are
adequate to produce an accurate estimation. Using more images brings
only negligible accuracy improvement at the expense of larger time
overhead, degrading the efficiency of our approach. The backpropa-
gation of 5,000 images only takes about 2.94 seconds on a RTX3090
GPU, which validates the efficiency of INES.

For the resolution dimension, selectively pruning the millions of
images in large-scale datasets (e.g., ImageNet) is unpractical for our
framework due to the enormous overhead [16]. Instead, we implement
resolution pruning by uniformly shrinking all images, which eliminates
the evaluation cost of INES for the resolution dimension, enhancing
the efficiency of our method.

C. Heuristic Architecture Descent

To efficiently find the optimal architecture for a given resource
budget, we further propose a heuristic pruning algorithm, which
progressively executes INES and ITES to prune redundant units from
the three dimensions. Inspired by gradient descent, we coin this
algorithm heuristic architecture descent as the architecture is gradually
descending along the direction that achieves the best efficiency-
accuracy trade-off.

The proposed heuristic architecture descent is defined in Algorithm
1. Given a baseline network N , a training dataset Dt, and an
evaluation dataset Dv that consists of 5,000 randomly selected images

TABLE I: Comparison with SOTA pruning approaches on ImageNet.
The baseline network is ResNet50. {d, w, r} indicate the pruned
dimensions in different methods.

Method d w r MACs (B) Acc@1 (%) Acc@5 (%)

ResNet50 [1] 4.10 76.80 93.38

DECORE-4 [10] ✓ 1.19 69.71 89.37
ResNet18 [1] ✓ 1.80 69.76 89.08
GAL-1 [9] ✓ ✓ 1.58 69.82 89.75
Bilinear [20] ✓ 1.10 69.97 89.19
HAP [11] ✓ 1.34 71.18 -
Taylor [7] ✓ 1.34 71.69 -
HRank [8] ✓ 1.55 71.98 91.09
DBP-0.5 [14] ✓ 2.05 72.44 -
TECO-S (ours) ✓ ✓ ✓ 1.05 73.07 91.18

SSS-26 [5] ✓ ✓ 2.33 71.82 90.79
GAL-0.5 [9] ✓ ✓ 2.33 71.95 90.94
ResNet34 [1] ✓ 3.70 73.31 91.42
Bilinear [20] ✓ 2.53 73.40 91.30
RANet [17] ✓ 2.30 74.00 -
Taylor [7] ✓ 2.25 74.50 -
DBP-0.4 [14] ✓ 2.56 74.74 -
HRank [8] ✓ 2.30 74.98 92.33
DR-ResNet50 [16] ✓ 2.30 75.30 92.20
TECO-M (ours) ✓ ✓ ✓ 2.24 75.68 92.79

SSS-32 [5] ✓ ✓ 2.82 74.18 91.91
Bilinear [20] ✓ 3.00 74.30 91.90
HAP [11] ✓ 2.71 75.12 -
C-SGD70 [22] ✓ 2.60 75.30 92.50
Taylor [7] ✓ 2.66 75.48 -
PFP-A [19] ✓ 3.70 75.90 92.80
DECORE-8 [10] ✓ 3.54 76.31 93.02
TECO-L (ours) ✓ ✓ ✓ 2.87 76.34 93.20

from Dt, we perform the pruning operation for n iterations. For each
iteration, we first conduct INES for N on Dv to obtain the local
importance of each unit within each dimension. Based on the local
importance, we select the least important unit of each dimension (d∗

for depth, w∗ for width, and r∗ for resolution) to perform ITES for
their global importance, according to which the unit with the lowest
global importance score will be pruned. Subsequently, the model is
fine-tuned on Dt for 1 epoch to retain its accuracy for the next pruning
iteration, where the optimizer for fine-tuning is SGD with a learning
rate of 1e-4. The completely pruned model Np will be generated after
n iterations. The value of n depends on the resource budget. The
smaller the budget, the larger the value of n. In practise, 10 iterations
are adequate to obtain a compact model, which indicates that the time
cost of pruning is much smaller than the main training of CNNs.
Finally, the completely pruned model will be trained from scratch as
described in Section IV-A for the final accuracy. Compared to global
search algorithms [21] that directly search the huge design space for
the optimal solution, our heuristic pruning algorithm greatly reduces
the exploration overhead.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to validate the
superiority of TECO over other SOTA approaches in terms of accuracy,
model complexity, and run-time latency. In our experiments, we select
three widely utilized embedded platforms: 1) Jetson Nano, 2) Jetson
TX2, and 3) AGX Xavier, to deploy pruned models obtained from
different approaches and measure their actual inference latency. Also,
we perform ablation experiments to validate the efficacy of each
component.

A. Experiments on ImageNet

Setup: On the most representative large-scale dataset, ImageNet,
we train all models from scratch for 120 epochs using SGD optimizer
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Fig. 5: Comparison of inference latency on Jetson Nano and Jetson
TX2. For the consistency of results, all models are executed for 30
iterations to get the average inference latency.

with a momentum of 0.9. The batch size for training is 1024.
Correspondingly, the initial learning rate is set to 1.6 and decayed
by cosine annealing scheduling [23]. In addition, the learning rate for
fine-tuning is 1e-3. To prevent overfitting, we also use label smoothing
with ϵ = 0.1.

The results are summarized in TABLE I, which shows that our
approach achieves the highest accuracy across a wide spectrum of
model MACs. Specifically, in the low compute regime, our TECO-
S achieves 3.36% higher top-1 accuracy with about 12% less MACs
compared to DECORE-4 [10]. In comparison with GAL-1 [9], TECO-
S also improves the top-1 accuracy by 3.25% while reducing the
MACs by 33.5%. In the highest MACs regime, TECO-L outperforms
SSS-32 [5] with 2.16% higher top-1 accuracy.

B. Comparison of On-Device Acceleration

In this experiment, we evaluate the run-time latency of models
pruned by different frameworks on three widely used edge platforms:
AGX Xaiver, Jetson TX2, and Jetson Nano. The corresponding results
are shown in Fig. 1 and Fig. 5, respectively. We observe that our
approach surpasses all competitors on all devices. Specifically, our
method achieves 3.7% higher accuracy (75.68% v.s. 71.98%) than
HRank [8] with a similar latency (13.59 ms v.s. 13.12 ms) on Jetson
TX2. On Jetson Nano, a more resource-economic edge device, our
TECO-S observes 1.12% higher accuracy (73.07% v.s. 71.95%) than
GAL [9] with only 50% latency budget (15.78 ms v.s. 31.56 ms).
Similar results are also observed on Xavier. The experiment validates
the efficacy of our method in optimizing the execution efficiency of
CNNs on various embedded devices.

C. Experiments on CIFAR-10

To validate the efficacy of TECO in extremely resource-constrained
environments (e.g., TinyML), we conduct experiments to further
compress small models for edge devices.

TABLE II: Experiments on CIFAR-10. ”-” means no source code is
provided for reproducing the experiment.

Method MACs (M) Params (M) Latency (ms) Acc@1 (%)

ResNet110 [1] 252.89 1.72 4.98 93.50

GAL-0.5 [9] 130.20 0.95 2.96 92.55
HRank-2 [8] 79.30 0.53 3.49 92.65
HRank-1 [8] 105.70 0.70 3.92 93.36
DECORE-300 [10] 96.66 0.61 - 93.50
DECORE-500 [10] 163.30 1.11 - 93.88
TECO-Tiny (ours) 108.60 0.98 2.94 93.94

Fig. 6: The class activation map (CAM) for different pruning methods.
The region in red is the most contributing part of the image. The
images are randomly selected from ImageNet.

Setup: We use ResNet110 [1] as the baseline network and use
CIFAR-10 as the dataset. ResNet110 is a lightweight CNN specially
designed for tiny images, which only contains 1.7M parameters and
252M MACs. All models are trained for 200 epochs using SGD
optimizer. The batch size is 128 and the initial learning rate is 0.1,
which is decayed by cosine annealing [23]. The latency of all models
are measured on Jetson Nano.

The results in TABLE II show that our method achieves the best
latency-accuracy trade-off. For instance, compared to HRank-2 [8],
we achieve 1.29% higher accuracy with only 84.2% inference latency.
Interestingly, our method reduces the MACs of the baseline ResNet110
by 57% while still achieving 0.44% higher accuracy, which is because
CNNs usually overfit on CIFAR-10 [10], and our approach greatly
mitigates the overfitting by comprehensively reducing the redundancy
in the three dimensions, thereby improving the accuracy.

D. Ablation Study

We introduce two novel evaluation strategies, INES and ITES in
TECO to enable efficient and accurate multi-dimensional pruning. To
validate the efficacy and efficiency of each component, we perform
comprehensive ablation experiments on ImageNet. First, we perform
multi-dimensional pruning with both INES and ITES removed from
TECO. The results in TABLE III show that, without INES and ITES,
the multi-dimensional pruning only achieves comparable accuracy to
single-dimensional pruning. It is worth noting that, for resolution
pruning, we directly shrink the resolution of images and do not
evaluate the pruning units of the network, thus the pruning cost is
negligible. Then, we separately retrieve INES and ITES, and both of
which observe a remarkable accuracy gain. When only using ITES to
evaluate all units, the pruned model achieves the best performance
in terms of MACs, inference latency, and accuracy, which proves
that ITES is able to accurately identify the redundancy in the three
dimensions. However, this strategy also results in an unbearable time
cost. In contrast, by collaboratively using INES and ITES, we achieve
competitive model performance while reducing the pruning cost by
83.21% compared to using ITES alone, which greatly increases the
efficiency of our framework. The ablation study reveals that both INES
and ITES contribute to our pruning framework.

E. Interpretability Analysis

To gain insight into the advantages of our approach, we visualize the
class activation map [24] for TECO and single-dimensional pruning.
The results are demonstrated in Fig. 6, where we observe that single-
dimensional pruning approaches only focus on part of the foreground
object of input images, which may overlook important features and



TABLE III: The results of ablation experiments. The baseline network
is ResNet50 and the latency is measured on Xavier. We quantify the
pruning cost of different methods as the time consumed on a single
RTX3090 GPU for pruning.

Method MACs (B) Latency (ms) Acc@1 (%) Cost (hour)

ResNet50 4.10 10.60 76.80 -

Depth only 2.30 6.60 72.39 7.52
Width only 2.30 8.20 74.65 26.44
Resolution only 2.50 6.70 73.40 0.00
w/o INES + w/o ITES 2.17 7.34 74.67 20.77
INES + w/o ITES 2.30 6.84 75.28 21.26
w/o INES + ITES 2.12 6.42 75.71 179.42
Ours (INES + ITES) 2.24 6.51 75.68 30.12

consequently lead to wrong predictions. In contrast, our TECO uti-
lizes the whole foreground object for prediction, which effectively
addresses the aforementioned problem of single-dimensional pruning,
significantly improving model accuracy.

V. CONCLUSION

In this paper, we present a multi-dimensional pruning framework,
TECO, to jointly prune the three dimensions of CNNs for embedded
devices. First, we introduce an inter-dimensional evaluation strategy
(ITES), which enables comprehensive evaluation of units across
different dimensions with a novel metric named global importance,
thereby accurately identifying the redundancy in the three dimensions.
Meanwhile, we also propose an inner-dimensional evaluation strategy
(INES) to efficiently evaluate units inside each dimension with local
importance. By collaboratively using ITES and INES, we accurately
and efficiently identify the redundancy in the three dimensions. Based
on INES and ITES, we further propose a heuristic pruning algorithm,
which utilizes INES and ITES to progressively identify and prune
redundant units in the three dimensions. By this means, our pruning
framework efficiently explores the huge design space formed by the
three dimensions and finds the optimal tiny model for embedded
devices. Extensive experiments validate the efficacy and efficiency of
our approach.
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