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ABSTRACT

Three Essays on Empirical Study of the Term Structure of Interest Rates

Xiaoneng Zhu

The modeling of the term structure dynamics is important for a variety of reasons.

Forecasting is a �rst reason. The current yield curve contains information about future

economic activity. Monetary policy constitutes a second reason for the term struc-

ture modeling. The transmission mechanism of monetary policy is related with the

movements of the yield curves. The pricing and hedging of interest rate derivatives

is a third reason. The price of many securities, such as coupon bonds, swaps, futures

and options on interest rate is calculated based on some speci�cation of term structure

models. Bond portfolio diversi�cation provides a fourth reason. Bonds and securi-

ties are traded in well-organized international market, to diversify bond portfolios in

world market, we need the term structure models. This thesis is one more attempt to

contribute to this discipline.

Essay I (Chapter 2) reexamines the expectations hypothesis, which is a central

view of the term structure of interest rates. The empirical failure of the expectations

hypothesis has been well-documented. There are usually three interpretations for the

failure of the hypothesis. These are, respectively, the failure of the rational expec-

tations assumption and unlimited arbitrage assumption, the presence of time-varying

risk premiums, and poor properties of the statistical tests in �nite samples caused by
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ABSTRACT 8

peso problems. In this essay, I take into account peso problems and time-varying risk

premiums by assuming that the data generating process is a Markov-switching vector

autoregression model and investor�s decision is based on a larger information set. In so

doing, the testing of the expectations hypothesis is more robust. In particular, I �nd

that the deviations from the expectations hypothesis are insigni�cant with my testing

framework.

The term structure of interest rates and macroeconomic activity are closely related.

Hence, the term structure models should also be able to identify the economic forces

behind these movements. On the other hand, the yield curve contains important

information for forecasting the future path of the economy. Therefore, we should model

the yield curve and macroeconomic variables jointly. Essay II (chapter 3) attempts

to contributes to jointly modeling yield and macro factors. The model proposed in

this essay extends the dynamic Nelson-Siegel model by incorporating regime shifts.

To estimate the proposed model, A MCMC (Markov chain Monte Carlo) method is

presented. The main �nding is that there are signi�cant bidirectional linkages between

the yield curve and economic activity.

Government securities are traded in well-organized international markets. There-

fore, to what extent bond markets are integrated is a fundamental question in in-

ternational �nance. Furthermore, the degree of market integration is important for

international public policy coordination. Essay III (Chapter 4) tries to answer this

question. I propose a dynamic measure of bond-market integration based on the a¢ ne

arbitrage-free dynamic Nelson-Siegel model. It contributes to the extant literature in

several ways. First, my measure is consistent in both cross-section and time series.

Second, this measure is theoretically consistent with no-arbitrage theory. Third, it is

a dynamic measure. The empirical study demonstrates that global government bond

markets are integrated to some extent.



CHAPTER 1

Introduction

Term structure modeling has generated a large literature. Recently, we see that the

term structure models are evolving in some clear directions. First, the term structure

models should be able to identify bidirectional linkages between yield and macroeco-

nomic factor. Macro factors improve forecasting performance of the term structure

models. Meanwhile, the term structure models with macro factors are able to identify

the economic driving force behind the yield movements. Second, the term structure

models should be able to capture time-varying risk premiums and explain the empirical

failure of the expectations hypothesis. Third, the term structure models should have

good forecasting performance. My thesis is one more attempt to contribute to the term

structure modeling.

This thesis consists of three self-contained essays that conduct empirical analyses

on the term structure of interest rates. The �rst essay (chapter 2) connects the classic

expectations hypothesis and the modern term structure models. In essay II (chapter

3), I propose and estimate a macro-�nance model of the term structure. Essay III

(chapter 4) tries to measure the global government bond market integration.

Though three essays focus on the di¤erent aspects of the term structure of interest

rates, there are some methodological interconnections among three essays. The �rst

common emphasis is regime shifts. Nowadays regime shift stands as a stylized fact in

the term structure modeling. Some recent studies (see, for example, Bansal and Zhou

(2002), Dai, Singleton and Yang (2007)) show that the regime-switching term structure

models can account for some well-documented puzzles, for instance, the violation of the

9



1. INTRODUCTION 10

expectations hypothesis and the predictability of excess bond return. A second com-

mon emphasis is the dynamic Nelson-Siegel model (Nelson and Siegel (1987), Diebold

and Li (2006)). The a¢ ne arbitrage-free dynamic Nelson-Siegle term structure model

is a theoretically rigorous yield curve model that simultaneously displays empirical

tractability, good �t, and good forecasting performance.

Due to its simplicity and intuitive appeal, the expectations hypothesis remains

the benchmark model of determining long-term interest rates. Essay I shows that an

appropriate information set and regime switches can account for the empirical failure

of the expectations hypothesis of the term structure of interest rates. It indicates that

on a prior basis, time-varying risk premiums are second-order e¤ects of yield dynamics.

This contrasts with the in-sample predictability of time-varying risk premiums in the

literature. My results may suggest that the departures of the expectations hypothesis

are not pro�table in practice. Furthermore, two regimes are found to be intimately

related to business cycles.

Recently, evidence has accumulated that a few �nancial variables such as interest

rates and yield spreads have enduring power of predicting aggregate economic activ-

ity. This predictive usefulness of interest rates and spreads thereafter has been well-

established across countries. The countercyclical monetary policy, expectations and

time-varying risk premium are the main reasons accounting for the predictive power

of interest rates. On the other hand, the conduct of monetary policy transmits the

movements in macroeconomic factors into the dynamics of the short end of the yield

curve. Through the expectations hypothesis with the addition of a partially predictable

time-varying risk premium, it also moves the long end of the yield curve. Since the

interactions between the yield factors and macroeconomic factors are expected to be

bidirectional and simultaneous, understanding the joint dynamics of the macro and

yield factors is important for monetary policy-making and bond portfolio management.
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Essay II presents and estimates a regime switching macro-�nance model of the term

structure with latent and macroeconomic factors. The joint dynamics of the yield and

macro factors are examined simultaneously. Both the canonical yields-only model

and the macro-�nance model capture two regimes in the state equation that relate

to a turbulent period and a tranquil period. Statistically, the formal tests indicate

signi�cant bidirectional linkages between the yield curve and economic activity. I also

examine how the yield factors respond to shocks to the macro factors and the feedback

of the macro factors to the yield curve. Finally, I �nd that the theoretical level implied

by the expectations hypothesis is a good approximation of the actual level factor in

the regime-shifting macro-�nance model framework.

The main focus of the third chapter is the time-varying degree of government bond

market integration. If bond markets are not closely integrated, that implies investment

institutions can bene�t from further diversifying �xed income portfolios, otherwise

there must be costs of diversi�cation. From a monetary policy-making perspective,

policy-makers in an open economy need take into account the yield dynamics in another

market if there are interactions between markets. Policy coordination is therefore

necessary in such case as indicated by the theoretical model (Chang 1997).

Essay III proposes a dynamic measure of bond-market integration based on the

a¢ ne arbitrage-free dynamic Nelson-Siegel model (Christensen et. al. 2007). It con-

tributes to the existing literature in several ways. First, our measure is consistent

in both cross section and time series. So far, the empirical studies in this area have

mainly focused on the long-term bond yield or weighted bond yield index that neglects

the maturity structure of the term structure. However the cross-section spread of the

term structure has important information about the future path of interest rates and

economic activity. Further, we need to rule out arbitrage opportunities in the cross-

section of the term structure. It is therefore of great interest to investigate bond market
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integration in a yield curve model that takes into account the maturity structure of the

term structure. Second, the yield curve model employed has good in-sample and out-of-

sample �ts (Diebold and Li 2006). The generalizations of the Nelson-Siegel model are

extensively applied by �nancial institutions and central banks. This is hence an impor-

tant advantage. Third, the proposed measure allows time-varying partial segmentation

of national and global government bond markets. The measure also circumvents the

polar cases of completely segmented or integrated bond markets. In addition, it nests

the uncovered interest rate parity as a polar case given that the expected exchange

rate di¤erence is a martingale process.



CHAPTER 2

Information, Expectations Hypothesis and Regime Shift

2.1. Introduction

Simplicity and intuitive appeal make the expectations hypothesis (EH) a central

view of the term structure of interest rates. According to the EH, the long-term yield

is a weighted average of the expected future short-term yields plus a maturity-speci�c

constant risk premium. The EH has been intensively examined using a variety of

tests and data since it has long been recognized as a basic workhorse model of the term

structure of interest rates. Contrary to prior intuition, most empirical studies reject the

expectations hypothesis1. In addition to the statistical rejection, some recent studies

(for example, Campbell and Shiller (1991), Cochrane and Piazzesi (2005), Fama and

Bliss (1987)) found that yield spreads or forward rates have predictive power on future

excess bond returns. This appears to be the critical evidence on the empirical failure

of the expectations hypothesis since the EH implies that excess returns should be

unpredictable.

The standard tests of the EH have missing motivations. Bekaert and Hodrick (2001)

presented three main potential reasons for the usual rejections of the EH, respectively,

the failure of the assumption of rational expectations and unlimited arbitrage, the

presence of variable risk premiums, and the poor properties of the statistical tests in

�nite samples caused by peso problems. This article sticks to the assumption of ratio-

nal expectations and extends empirical tests along the second and third dimensions.

The omission of the variables capturing time-varying risk premiums might distort the

1There are some exceptions. For example, Longsta¤ (2004) found that the EH is valid at the very
short end of the yield curve. Sola and Dri¢ ll (1994) resurrected the EH in a Markov-switching vector
autoregression model.

13
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statistical inference. Thus, the conditional information set for testing the EH should

include the variables that are expected to capture time-varying risk premiums. Fur-

thermore, peso problems imply that the data generating process for testing the EH

should incorporate regime shifts.

Modern term structure models provide some guidance on the extension of the con-

ditional information set. Recently, Bansal and Zhou (2002), Dai and Singleton (2002),

Dai, Singleton and Yang (2007), among others, have accounted for the well-documented

violations of the expectations hypothesis within sophisticated no-arbitrage models of

the term structure. Researchers build these term structure model upon the standard

intuition of the current yield curve containing all information relevant to predicting

future bond yields. In particular, a few (usually three) factors that su¢ ciently cap-

ture the cross-section of yields can also capture the dynamics of yields. By specifying

the evolution of factors under both the physical and risk-neutral measures, these term

structure models describe the dynamics of the entire yield curve.

There are two key �ndings from the no-arbitrage term structure model analyses.

First, predictable time-varying risk premiums that can be generated from the depen-

dence of risk prices on risk factors are important for matching the EH. This �nding

has notable implications for the testing of the EH. The EH must be rejected if we

fail to use the information in yield factors. The non-inclusion of yield factors in the

conditional information set means that we miss important information in the market.

Even capital markets are e¢ cient in the sense that they fully and correctly re�ect all

relevant information in determining security prices, our testing procedure is �awed be-

cause we have missing information in the testing of the EH. Second, regime shifts play

an important role in explaining deviations from the EH. This �nding implies that we

should take into account regime shifts in the testing of the EH. This is consistent with

the conjecture of Bekaert and Hodrick (2001).
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Since aforementioned studies do not rule out the possibility that investor�s actual

historical predictions of risk premiums are not as accurate as those from the in-sample

predictions found in today�s statistical analysis (Piazzesi and Schneider, 2009)2, in

other words, the departures of the EH are not pro�table based on criteria of economic

signi�cance (Corte, Sarno and Thornton, 2008), it makes sense to reexamine the EH

with a larger information set and aMarkov-switching VAR as a data generating process.

The reexamination is also motivated by the theoretical consistency of the EH and the

capital asset pricing model as will be shown in section 2.

A larger information set has several advantages. First, the extension of information

set may alleviate simultaneity bias in the estimation (Carriero, Favero and Kaminska,

2006). One more reason for a larger information set is the improved power properties

of the extended testing procedure (Sarno, Thornton and Valente, 2007). Finally, yield

factors may partially capture time-varying risk premiums.

Another contribution of this paper is to show that regime shifts might contribute

to the predictability of excess bond returns in addition to risk premiums. The non-

recognition of this point might lead to single-regime term structure models overstate or

understate the volatility of risk premiums for understanding the predictability of excess

bond returns3. It has notable implications for the testing of the EH. It is possible that

within each regime variable term premiums are second-order e¤ects of yield dynamics

on a prior basis. In particular, the EH holds within each regimes, but the violation

of the EH is due to regime switches. This is one more motivation for reexamining

the EH after explicitly taking into account regime shifts. To net out risk premiums

e¤ect, I show that regime shifts can generate predictability in a discrete Vasicek (1977)

2Using survey data on interest rate forecasts, Piazzesi and Schneider (2009) found that subject premia
are less volatile and not very cyclical.
3Dai, Singleton and Yang (2007) found that a single-regime term structure model overstate the volatil-
ity of risk premiums during the tranquil times of yields.
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model. This is achieved with the introduction of regime-dependent heteroscedastic-

ity. Furthermore, economic agents in this model are assumed to be uncertain about

the prevailing regime. This assumption is reasonable for two reasons. In the extant

literature, regimes are usually related with economic recessions and booms. However,

it is well-known that the NBER�s Business Cycle Dating Committee announces an

economic contraction with a lag of several quarters to avoid major revisions4. This

provides a �rst reason for the assumption. Secondly, if regimes are associated with the

conduct of monetary policy, this assumption is still reasonable since the Fed does not

announce its targeting in advance. Usually, regime shift is a low frequency phenomena

and it is supposed to be persistent and partially predictable. The uncertainty about the

prevailing regime and the partial predictability of regimes generate the predictability

on excess bond returns.

I �nd that the EH cannot be rejected consistently. The results highlight the im-

portance of including yield factors in the conditional information set and taking into

account regime shifts. The results have two implications for risk premiums. On the

one hand, the empirical �ndings may suggest that within each regime variable term

premiums are second-order e¤ects of yield dynamics on a prior basis. On the other

hand, yield factors may partially account for time-varying risk premiums.

The remaining paper is organized as follows. Section 2 discusses the expectations

hypothesis in an arbitrage-free framework and derives the restrictions implied by the

EH. Without loss of generality, section 3 proves that regime shifts can generate the

predictability of excess bond returns. The data descriptions and summary statistics of

4For example, the November 2001 trough was announced July 17, 2003, and the March 2001 peak was
announced November 26, 2001. According to the NBER de�nition, contractions start at the peak of
a business cycle and end at the trough.



2.2. THE EXPECTATIONS HYPOTHESIS UNDER REGIME SHIFT 17

yields and yield factors are presented in section 4. The arbitrage-free dynamic Nelson-

Siegel model is brie�y introduced in this section, too. Section 5 applies the tests to the

data. Section 6 make up of concluding remarks.

2.2. The Expectations Hypothesis Under Regime Shift

This section introduces two approaches of testing the EH in an arbitrage-free frame-

work under regime shifts. One approach is the present value model of the expectations

hypothesis (Campbell and Shiller, 1987, CS1 henceforth). The employment of the

present value model attempts to shed light on the entire yield curve in the testing of

the EH. Instead of a pair of long- and short-term yields, we can use the level, the slope

and the curvature factors from the dynamic Nelson-Siegel model (DNS) (Diebold and

Li, 2007) to test the EH. The level factor from the DNS model is a long-term factor.

Empirically, the level factor is highly correlated with long-term yields. Furthermore,

the sum of the level and slope factors has a nice interpretation of short-term yield.

Using the yield factors, we need not test each pair of long- and short-term yields.

The second approach is a commonly cited statement of the EH, that a long-term

n-period yield is an equal weighted average of future short-term one-period yields in

addition to a maturity-speci�c constant risk premium (Campbell and Shiller, 1991, CS2

hereafter). This approach is an empirical benchmark so that my results are comparable

with other empirical studies. Both approaches can provide evidence on the economic

signi�cance of the EH in addition to a statistical rejection or non-rejection. Since the

focus of this article is to examine the EH under regime shifts, restrictions implied by

the EH are derived from a Markov-switching VAR framework.
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2.2.1. The Present Value Model

The present value model of the term structure of interest rates posits that the n-

period, continuously compounded yield, it;n equals a weighted average of the current

and expected short yields plus a maturity-speci�c constant risk premium.

(2.1) it;n = (1� �)
1X
j=0

�jEtit+j;1 + cn

where �, the discount factor, is a parameter that re�ects the impatience of economic

agents. cn denotes a constant maturity-speci�c premium. Et is the conditional expec-

tations based on the information set at time t. Due to its theoretical appeal, a class

of modern asset pricing models impose no-arbitrage restrictions. It is straightforward

to demonstrate that the EH in Eq.(2.1) is consistent with arbitrage-free conditions.

Let Mt+1 denote the pricing kernel, it is well-known that any gross return Rt+1 in an

economy that doesn�t admit arbitrage opportunities can be correctly priced by

(2.2) Et(Mt+1Rt+1) = 1

To be statistically tractable, it is assumed that returns and pricing kernels are condi-

tionally log-normal. Following Bekaert and Hordrick (2001), Eq.(2.2) implies that

(2.3) Et(mt+1) + 0:5Vt(mt+1) + Et(rt+1) + 0:5Vt(rt+1) + Covt(mt+1; rt+1) = 0

where Vt and Covt respectively represent conditional variance and covariance. The

lower letters denote the logs of the corresponding uppercase letters so for example,

mt+1 = log(Mt+1). it;1, the return of one-period yield, is observable at time point t, so
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the last two items on the left-hand side of Eq.(2.3) disappear. Thus the expression for

the one-period yield is

(2.4) it;1 = �[Et(mt+1) + 0:5Vt(mt+1)]

Now let rt in Eq.(2.3) represent the excess return of the holding period return (ht+1;n)

of a long-term bond over an one-period bond. Combined with Eq.(2.4), the expected

excess return can be given by the following equation:

(2.5) Et(ht+1;n)� it;1 = �[Covt(mt+1; ht+1;n) + 0:5Vt(ht+1;n)]

The right-hand side of Eq.(2.5) is a constant conditional on the time t information set.

Let an denote the constant, and Eq.(2.5) can be expressed as:

(2.6) Et(ht+1;n) = it;1 + an

The one-period holding return on a n-period bond can be approximated (Shiller (1979))

by a linear function in the neighborhood of it;n = it+1;n�1.

(2.7) ht+1;n =
it;n � �it+1;n�1

1� �

By taking expectations of Eq.(2.7) and using Eq.(2.4) and Eq.(2.5), after rearrange-

ment, we have

(2.8) it;n = (1� �)it;1 + �Etit+1;n�1 + (1� �)an
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Using recursive substitution and letting n �!1, combined with the terminal condition

it;0 = 0, we have the present value version of the expectations hypothesis in Eq.(2.1)

with cn = (1� �)
X1

j=0
�jan.

The nonstationarity of time series may invalid the statistical inference. The real-

ization that yields are usually persistent and integrated of order one motivates CS1

to test the EH using the yield spread St;n = it;n � it;1 and the �rst di¤erence of the

short-term yield. The stationarity of the yield spread imposes a restriction on the

long-run dynamics. It is clear by subtracting it;1 from both sides of equation (2.1), and

rearranging, that we have

(2.9) St;n =
1X
j=1

�jEt�it+j;1 + cn

The yield spread is a weighted average of a stationary variable � the �rst di¤erence

of the short-term yield. However, this is a necessary but not su¢ cient condition of

the EH since the validity of the EH also requires restrictions to be imposed on the

short-run dynamics.

Eq.(2.9) provides the testable restrictions implied by the present value model of

the expectations hypothesis. yt = [MSt;�LSt; Ct]
0 is a 3 � 1 vector of the state

variables. In particular, MLt is minus slope factor from the DNS model, it represents

St;n in Eq.(2.9)5. � is a �rst-di¤erence operator. LSt is the sum of the level and slope

factor from the DNS model and represents the short-term yield Eq.(2.9)6. Ct is the

curvature factor from the DNS model. I assume that the state vector yt follows a vector

5The ML is a good proxy of the yield spreads between a long-term yield, say, 10-year yield and a
short-term yield, such as, 3-month yield. Panel D of Table 1 shows that the correlation between the
slope factor and the spreads between 10-year yield and 3-month yield is 0.9928.
6Also refer to subsection "Yield Factors".
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autoregressive process of �nite order l

(2.10) yt = �+
Xl

j=1
�jyt�j + ut

For simplicity, the intercepts are removed from Eq.(2.10) since the EH doesn�t impose

any restriction on the constant risk premium. By expanding the state vector to the

companion form Yt = [yt:::yt�l], we can rewrite the state dynamics in a �rst-order

representation:

(2.11) Yt = �Yt�1 + Ut

The information set � = [MSt�i, �LSt�i, Ct�i, i � 0] is observed by econometri-

cians at time point t. Let g0 = [1; 0; :::; 0] and h0 = [0; 1; 0; :::; 0] be the selection vectors

with 3l elements such that MSt = g0Yt and �LSt = h0Yt. It is easy to show that the

i-period ahead optimal forecast is
^

�LSt+i = h0�iYt. Next, by projecting restrictions

Eq.(2.9) onto the data generating process, Eq.(2.11), we obtain7

(2.12) g0Yt = �h
0�(I � ��)�1Yt

The testable cross-equation restrictions implied by the EH of the term structure of

interest rate are

(2.13) g0 = �h0�(I � ��)�1

If the present value model of the expectations hypothesis is true, Eq.(2.13) hold for

sure and the selection of information set is not relevant. The intuitions is that given

7The details are given in Campbell and Shiller (1987).
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a constant term premium, all the relevant information of investors is embodied in the

yield spread, which is included in yt. However, any economic model is an approxi-

mation, in this sense, all economic model are false. The question is to what extent

an economic model approximates the truth. In this case, the selection of information

set is important. First, selected variables should have enough information about the

question being asked. Second, statistical tests based on selected variables should have

good power and size properties. These two criteria account for the selection of state

variables in yt.

The CS test is also motivated by the unsatisfactory of pure econometric tests that

may over-reject or under-reject the null hypothesis8. Furthermore, econometric tests

do not tell us the economic signi�cance (or adequacy) of the EH. If the EH can explain

most of the variations in actual yield spread St;n, economically, it is a good approxima-

tion regardless of the statistical rejection or non-rejection of the EH. It is also possible

that the observed sample contains little information about the expectations hypothesis.

Hence, many economists are reluctant to see the statistical rejection or non-rejection

of restrictions as a de�nitive answer. The economic signi�cance should also play an

important role in evaluating the EH. To shed light on how well the model explains

the economic signi�cance, instead of resorting only to statistical signi�cance, we can

evaluate the theoretical spread

(2.14) S�t;n = �h
0�(I � ��)�1Yt

8Bekaert and Hordick (2001) provide the Monte Carlo simulation results for the frquently used Wald
test and LM test. The Wald test is found to grossly overreject the EH in a small sample. In constrast,
the LM test slightly underrejects the null hypothesis.
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The theoretical yield spread in Eq.(2.14) is the optimal forecast given the information

set and the entertained model. If the present value model is a good enough approxima-

tion and our econometric model describes the joint dynamics of the yield factors well,

the theoretical spread would be observed in �nancial markets. The di¤erence between

theoretical and actual spreads contains information about the adequacy of the EH. We

can visually inspect the deviation by plotting both series in a diagram. The good �t

of the St;n and S�t;n indicates a good economic signi�cance. Another measure is to cal-

culate the correlation between St;n and S�t;n. The high degree of comovement suggests

that economic agents accurately forecast the future changes of spread. They hence

incorporate the predictions into present investment decisions, as a result, no pro�table

arbitrage opportunity is available in bond markets.

2.2.2. The CS2 Approach

In CS2, the expectations hypothesis states that a n-period yield it;n is an equal weighted

average of expected future 1-period yields,

(2.15) it;n =
1

n

Xn�1

j=0
Etit+j;1 + cn

The term premium cn may vary with n but is assumed to be constant through time.

Bekaert and Hodrick (2001) shows that this form of expectations hypothesis is consis-

tent with the captial asset pricing model. Now the VAR approach for evaluating the

present value model can be easily modi�ed to evaluate the expectations hypothesis in

Eq.(2.15). Let the yield spread St = it;n � it;1. By subtracting it;1 form both sides of

Eq.(2.15), Simple algebra shows that St is

(2.16) St;n =
Xn�1

j=0
(1� j

n
)Et�it+j;1 + cn
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Eq.(2.16) provides the testable restrictions implied by the expectations hypothesis

Eq.(2.15). Let yt = [St;n;�it;1; Ct]
0 be a 3 � 1 vector of the state variables. The

state vector yt is assumed to follow a VAR(l) process as in Eq.(2.10). Accordingly,

a more convenient VAR(1) form is given in Eq.(2.11). We have g0 = [1; 0; :::; 0] and

h0 = [0; 1; 0; :::; 0] be the selection vectors with 3l elements such that St;n = g0Yt and

�it;1 = h
0Yt. As a result, we have the i-period ahead optimal forecast

^
�it+i = h

0�iYt.

we can project Eq.(2.16) onto the data generating process Eq.(2.11). With tedious

algebra manipulation, we have the following expression9

(2.17) g0Yt = h
0�

�
I � 1

n
(I � �n)(I � �)�1

�
(I � �)�1Yt

Then, instead of directly testing the EH in Eq.(2.15), we can test the following cross-

equation restrictions

(2.18) g0 = h0�

�
I � 1

n
(I � �n)(I � �)�1

�
(I � �)�1

The theoretical spread implied by the EH in Eq.(2.15) can be computed with

(2.19) S�t;n = h
0�

�
I � 1

n
(I � �n)(I � �)�1

�
(I � �)�1Yt

2.2.3. The Expectations Hypothesis Under Regime Shift

The evidence has accumulated that regime-switching models describe the historical

yields better than single-regime models (e.g., Gray (1996), Hamilton (1988)). Regime

shifts usually relate to business cycles or monetary policy shifts. During economic

recessions and booms, there are asymmetric dynamics of the yield curve. Furthermore,

monetary policy shifts signi�cantly change the behavior of the yield curve. TheMarkov-

switching model captures these important features. Assuming that the dynamics of

9The details are given in Campbell and Shiller (1991).
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state variables can be described by a Markov-switching (MS) VAR model instead of

the VAR in Eq.(2.11):

(2.20) Yt = �ktYt�1 + Ukt

where the subscript kt = f1; 0g denotes the unobservable state variable, which is as-

sumed to be governed by a discrete-time Markov chain10. The speci�cation of a �rst-

order Markov chain is not as restrictive as it seems. The �rst order chain o¤ers a good

approximation to higher order Markov chain regime shift (e.g. Hamilton (1994), chap-

ter 22). In addition, it also provides an approximation to some continuous regime shifts.

The nonlinear process with regime shift may better characterize the yield dynamics of

the selected sample than a linear process. Thus, the regime switching speci�cation

provides a parsimonious way to express complicated dynamics, which might otherwise

require an ARIMA model with long lags. Alternatively, Eq.(2.20) can be rewritten as

(2.21) Yt = kt�1Yt�1 + (1� kt)�0Yt�1 + ktU1t + (1� kt)U0t

The restrictions in Eq.(2.13) and Eq.(2.18) can be projected onto aMarkov-switching

VAR model where the data generating process accommodates a regime shift. The

Markov chain that governs the state variable is

(2.22) P =

264 p 1� q

1� p q

375

10This is a general speci�cation, it allows regime-dependent coe¢ cients and heteroscedasticity. In
Krolzig (1997) terminology, this is a MSAH model. When testing the EH against data, the model
selection is an empirical issue.
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To simplify the projection, I de�ned a matrix M as

(2.23) M =

264 p�1 (1� q)�1

(1� p)�0 q�0

375
Now it is straightforward to produce the optimal forecasts given the Markov-switching

data generating process. If 0 is the prevailing regime, then

(2.24)
^
Yt+i = JM

iQ0Yt

Alternatively, if we start from the regime 1,

(2.25)
^
Yt+i = JM

iQ1Yt

where

(2.26) J = �
 I2l; � = (1; 1)

and

(2.27) Qi = ei 
 I2l

ei is the ith column of 2 � 2 identity matrix in association with the state we are in,

and I2l is 2l-dimension identity matrix.
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With the above well-de�ned notions, given the regime 0, we can project Eq.(2.9)

onto the data generating process Eq.(2.21)

(2.28) g0Yt = �h0JM(I � �M)�1Q0Yt

Starting from regime 1, the restrictions are

(2.29) g0Yt = �h0JM(I � �M)�1Q1Yt

Eqs. (2.28) and (2.29) are counterparts of Eq.(2.12) in a MS-VAR model. Thus,

In regime 0 the cross-equation restrictions implied by the present value model of the

expectations hypothesis in Eq.(2.1) are:

(2.30) g0 = �h0JM(I � �M)�1Q0

Starting from regime 1, the restrictions are

(2.31) g0 = �h0JM(I � �M)�1Q1

In CS1, the cross-equation restrictions can be transformed to linear restrictions, but in

the framework of Markov-switching VAR model, the restrictions are highly nonlinear.

Eqs.(2.30) and (2.31) deliver the testable restrictions implied by the EH in a matrix

tractable way and the test of restrictions become operational.

Accordingly, we can project Eq.(2.16) onto the data generating process Eq.(2.21).

In regime 0, we have

(2.32) g0Yt = h
0JM

�
I � 1

n
(I �Mn)(I �M)�1

�
(I �M)�1Q0Yt
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In regime 1, we have

(2.33) g0Yt = h
0JM

�
I � 1

n
(I �Mn)(I �M)�1

�
(I �M)�1Q1Yt

Eqs. (2.32) and (2.33) are counterparts of Eq.(2.17) in a MS-VAR model. Thus, in

regime 0 the restrictions implied by Eq.(2.15) are

(2.34) g0 = h0JM

�
I � 1

n
(I �Mn)(I �M)�1

�
(I �M)�1Q0

Given that the prevailing regime is 1, the restrictions implied by Eq.(2.15) are

(2.35) g0 = h0JM

�
I � 1

n
(I �Mn)(I �M)�1

�
(I �M)�1Q1

The maximum likelihood estimation of MS-VAR with nonlinear restrictions is com-

plicated. Instead of the likelihood ratio test, the Wald test is proposed to serve as an

alternative11. Because all restricted parameters are presented in matrix M , in regime

k, the �rst-order derivatives of the restrictions in Eqs.(2.30) and (2.31) with respective

to the parameters are

@C
(
^
�)

@
^
M ij

= �h0JM
dM

dMij

(I � �M)�1Qk +(2.36)

�2h0JM(I � �M)�1 dM
dMij

(I � �M)�1Qk

where dM
dMij

is the derivative of matrix M with respect to parameter Mij. With the

above derivatives, the Wald test statistics can be calculated easily. And the �rst-order

11Since the Monte Carlo simulation results show that the Wald test usually overrejects the EH in a
small sample, the statistical non-rejection of the EH in the empirical section is persuasive.
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derivatives of the restrictions in Eqs.(2.34) and (2.35) are

@C
(
^
�)

@
^
M ij

= h0JM
dM

dMij

(I �M)�1Qk +(2.37)

h0JM(I �M)�1 dM
dMij

(I �M)�1Qk+

1
n
h0JM dM

dMij
(I �Mn)(I �M)�2Qk�

1
n
h0JM

�Pn
�=1M

��1 dM
dMij

Mn��
�
(I �M)�2Qk+

1
n
h0JM(I �Mn)

hP2
�=1M

��1(I �M)�1 dM
dMij

(I �M)�1M2��
i
Qk

Given the well-de�ned restrictions and the data generating process, the Wald test is

operational now.

2.3. The Predictability of Excess Bond Return and the EH

Eq.(2.5) and the EH in Eq.(2.1) imply that excess holding period returns cannot

be predicted by current yields. Since forward rates can be recovered from the current

yields as implied by the no-arbitrage conditions, this is equivalent to the statement that

forward rates do not predict excess returns. This section shows that regime shifts might

contribute to the predictability of excess bond returns in addition to risk premiums. To

see the point, we begin with a Vasicek model discretized by Campbell, Lo and Mackin-

lay (1997, pp429-431). The Vasicek model is a fundamental term structure model,

which, like all other fundamental models, share two properties: a time-homogeneous

short rate process and an explicit speci�cation of the market prices of risk. It is a good

starting point because the Vasicek model is consistent with the expectations hypothesis.

Suppose that a single state variable forecasts the stochastic discount factor,



2.3. THE PREDICTABILITY OF EXCESS BOND RETURN AND THE EH 30

(2.38) �mt+1 = xt + �t+1

It is assumed that �t+1 is normally distributed with constant variance.

xt+1 is assumed to evolve according to a univariate AR(1) process with mean �,

persistence � and shock "t+1

(2.39) xt+1 = (1� �)�+ �xt + "t+1

The correlation between the innovations to mt+1 and xt+1 is captured by a time-series

process,

(2.40) �t+1 = �"t+1 + �t+1

where "t+1 is normally distributed with constant variance �2, �t+1 is also normally

distributed with constant variance and is uncorrelated with "t+1. Note that the shock

�t+1 does not a¤ect the slope or dynamics of the term structure although it does a¤ect

the average level of the yield curve. To simplify the notations, we accordingly drop it

and assume that �t+1 = �"t+1. Eq.(2.38) can then be rewritten as

(2.41) �mt+1 = xt + �"t+1

The only innovation that shocks the system now is "t+1.

From Eq.(2.2), we can solve for the log price of pt;n of an n-period nominal bond

at time t by recursively solving the relation
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(2.42) pt;n = Et(mt+1pt+1;n�1)

with the terminal condition pt;0 = 1. The resulting bond prices are linear functions of

the state variable

(2.43) �pt;n = An +Bnxt

The absence of arbitrage implies that the coe¢ cients can be calculated from the fol-

lowing di¤erence equations (refer to Campbell et. al. (1997))

An = An�1 + (1� �)�Bn�1 � (� +Bn�1)2�2=2(2.44)

Bn = 1 + �Bn�1 = (1� �n)=(1� �)

Bond yields are then a¢ ne functions of the state variable

it;n = �pt;n=n(2.45)

= An=n+Bn=nxt

The discrete Vasicek model is a homoskedastic bond pricing model. This salient

feature has several interesting implications. It is clear from the Eqs. (2.44) and (2.45)

that the coe¢ cient Bn measures the sensitivity of the n-period yield to the one-period

yield. Given that xt is a stationary process with j�j < 1, Bn increases at a decreasing

rate, accordingly, the impact of a shock in xt on bond prices rises but at a decreasing

rate. As n!1, Bn approaches the limit 1=(1� �).
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This feature is in accordance with the expectations hypothesis of the term structure.

The EH requires that the right-hand side of Eq.(2.5) is conditionally a constant, thus

the expected excess returns are unpredictable. This is exactly what is implied by

the model. The expected excess return on an n-period bond over a one-period bond

Et(ht+1;n)� it;1 = E[pt+1;n�1]� pt;n + pt;1, is given by

(2.46) Et(ht+1;n)� it;1 = �Bn�1��2 �B2n�1�2=2

This is a maturity-speci�c constant, so the EH holds. The derivation of Eq.(2.46) is

provided in the appendix A12.

Recently, strong evidence against the unpredictability of excess returns has accu-

mulated. It ruins the ground of the EH. However, this section shows that the EH can

be consistent with the predictive power of forward rates if parameters governing the

state variables�dynamics are regime-dependent. The EH is therefore defensible on a

theoretical ground. The validity of the EH is still an empirical issue.

A large literature has suggested that the conduct of monetary policy in the U.S.

has changed substantially. The yield movements respond to a discrete, but probably

long-lasting change in the monetary policy signi�cantly. Another source of discrete

regime shifts on the yield curve is business cycles, with asymmetric dynamics of the

yield curve in good or bad economic conditions. The term structure models with regime

shifts can explain a few puzzles, for example, the failure of the expectations theory. It

is therefore an important stylized fact in modeling yield dynamics.

Suppose there are two regimes kt = f1; 0g. Furthermore, economic agents in this

model are uncertain about the prevailing regime. They infer regimes from the observed

yields and macro factors through some econometric techniques, such as the Hamilton

12The derivation is a detailed version of that presented in Campbell et al. 1997. Because this is a key
point of the paper, I provide it in the appendix A. It is also for cross-reference.
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�lter (1989, 1990, 1994). Suppose the �ltered probabilities of being in state 0 �0t :=

Prt[k = 0] conditional on the time t information set, is a truncated normal distribution

(or any other distribution) in the interval [0; 1],

(2.47) �0t � TN(�t; �2t )

A speci�c expression for �2t is given in the Eq.(3.17) of appendix B. In regime k,

Eq.(2.46) implies that the expected holding period return is constant. The model also

implies that the forward rate ft;n is a constant as given in Campbell et al. (1997,

pp432). If there doesn�t exist a regime shift, we run such a regression as in Fama and

Bliss (1987)

(2.48) ht+1;n = a+ b � ft;n + wt

then the estimate of b shouldn�t be di¤erent with 0 signi�cantly becauseCovt(hkt+1;n; f
k
t;n) =

0 under rational expectations in which wt is a white noise process.

However, if regime shift is an important factor in yield movements, Covt(ht+1;n; ft;n)

is not equal to zero except for some pathological cases. Suppose there exists at least

one regime-dependent parameter13 in Eq.(2.46)) that determines the expected holding

period return. And let hkt+1;n denote the excess return in regime k. Assuming that we

are in regime k at time point t, we have

(2.49) hkkt+1;n =
1X

m=0

pkm � hkt+1;n, k = 0; 1

and

13It can be �2, �, or �.
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(2.50) fkkt;n =

1X
m=0

pkm � hkt;n, k = 0; 1

where pkm = p; 1 � p; q or 1 � q, are transition probabilities shown in Eq. (2.22). It

can be derived that

Covt(ft;n; ht+1;n) = (h00t+1;nf
00
t;n + h

00
t+1;nf

11
t;n + h

11
t+1;nf

00
t;n + h

11
t+1;nf

11
t;n)(2.51)

(1 + p� q)�2t

The derivation of the covariance between forward rates and excess returns is presented

in appendix B. The non-zero covariance have notable implications for the testing of the

EH. It is possible that within each regime variable term premiums are second-order

e¤ects of yield dynamics on a prior basis. In particular, the EH holds within each

regimes, but the violation of the EH is due to regime switches.

2.4. Data Issues and Yield Factors

2.4.1. The Data

The yield curve consists of the end-of-month observations of 1, 3, 6, 12, 24, 36, 60,

84, 120 months zero-coupon yields on treasury securities. The sample covers a period

from January 1983 to May 2009. The data source is econstatsTM . Figure 3.1 plots the

U.S. yield curves. One stylized fact of yields is that they tend to exhibit considerable

persistence and are thus believed to be nonstationary or better approximated by an

integrated process. This feature has profound implications for the estimation and the

statistical inference. The upper panel of Table 2.1 provides the evidence of persistence

of unit root tests. The classic CS regression requires that yield spreads are stationary.
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Figure 2.1. U.S. Yield Curves, 1983.01�2009.05

The middle panel of Table 2.1 is the Johansen cointegration analysis results14. The

cointegrations may explain another important stylized fact of the yield curve: spreads

are less persistent than yields.

2.4.2. Yield Factors

Yield factors are obtained by estimating the dynamic Nelson-Siegel model. Most term

structure models use three factors to capture stylized facts of yields in cross-section and

time series. By properly restricting the factor loadings in the statistical factor model,

Diebold and Li (2006) proposed the dynamic Nelson-Siegel model for the � -period yield

it(�) = Lt + St(
1� e��t�
�t�

) + Ct(
1� e��t�
�t�

� e��t� ) + "t

where Lt is the level factor, St denotes the slope factor and Ct represents the curvature

factor. The parameter �t is the rate of changes of factors loadings along the maturity

horizons. It also determines the maturity at which the curvature loading achieves its

maximum. Empirically, the level factor corresponds to the long-term interest rates,

the slope factor is associated with the di¤erence between the short-term yield and

long-term yield, and the curvature factor corresponds to two times of medium-term

14The pairwise cointegration test results are available upon request.
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Table 2.1: Summary Statistics of Yields and Yield Factors

Panel A: Yields

Maturity (months) Mean Std. Dev.
^
�(1)

^
�(12)

^
�(30) ADF

1 4.7161 1.5176 0.9785 0.6623 0.1708 -1.0878
3 4.9747 1.5576 0.9857 0.6807 0.2130 -1.2846
6 5.7164 1.5752 0.9857 0.6870 0.2234 -1.3507
12 5.3656 1.5877 0.9854 0.7002 0.2622 -1.4357
24 5.7606 1.6064 0.9848 0.7202 0.3340 -1.1759
36 5.9690 1.5950 0.9846 0.7296 0.3745 -1.2097
60 6.2964 1.5682 0.9848 0.7427 0.4268 -1.2274
84 6.5403 1.5522 0.9856 0.7557 0.4595 -1.2260
120 6.6908 1.5277 0.9859 0.7663 0.4812 -1.3084

Panel B: Johansen Cointegration Analysis

Trace Test:

Rank Test Statistics p_value
0 505.85 [0.000]
1 319.90 [0.000]
2 212.12 [0.000]
3 139.38 [0.000]
4 86.55 [0.001]
5 44.476 [0.100]
6 18.937 [0.508]
7 8.942 [0.378]
8 1.309 [0.253]

Panel C: Yield Factors

Mean Std. Dev.
^
�(1)

^
�(12)

^
�(30) ADF

Level 7.0027 1.4924 0.9854 0.7793 0.5039 -1.4655
Slope -2.2428 1.2430 0.9760 0.4289 -0.2388 -2.5387

Curvature -0.2290 1.4623 0.9250 0.4340 -0.0494 -3.2828

Panel D: Correlations
Level and Empirical Level 0.9817
Slope and Empirical Slope 0.9928
Curvature and Empirical Curvature 0.9743
Note: �(i) is autocorrelation with lag length i; ADF is the augmented Dickey-Fuller
test with lag length selected by AIC.

yields minus the sum of long and short-term yields. Therefore, the level factor is a

long-term factor, the slope factor is a short-term factor and the curvature is a medium-

term factor. The three factors contain information on the macroeconomic dynamics

and vice versa (Diebold, Rudebusch and Aruoba (2006), Zhu and Shahidur (2009)).
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Figure 2.2. Yield factors and empirical counterparts.

The dynamic Nelson-Siegel model is �exible enough to match the changing shape of

the yield curve, but it is still parsimonious and easy to estimate. I stick to the tradition

of Diebold and Lin (2006) and estimate the DNS model by OLS with �xed � = 0:0603.

In so doing, the yield factors at time point t only depend on the observable yields at

time t. Thus, adding the yield factors in the information set will not lead to the use of

posterior information. The summary statistics for the extracted factors are presented

in panel C of Table 2.1. Panel D of Table 2.1 is the pairwise correlations among the

yield factors and empirical countparts. Figure 2.2 plots three yield factors15 from the

DNS model and their empirical counterparts. The proxy for the empirical level factor

is 10-year interest rate. The proxy for the empirical slope factor is the yield spreads

between 10-year and 3-month yields. The curvature factor is proxied by the average of

10-year, 2-year and 3-month yields.

2.5. Empirical Analysis

The present value model of the expectations hypothesis circumvents the pairwise

investigation of yields, but still shed light on the accuracy of the expectations hypothe-

sis. The curvature factor is a missing factor in CS1. It contains information about the

15Instead of plotting the slope factor, I plot the minus slope factor.
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middle section of the yield curve that are not captured by the level and slope factors.

The omission of the curvature factor means that we do not use market information

e¢ ciently. The inclusion of the curvature factor also help identify two regimes.

The standard Hamilton (1989, 1994) algorithm can be used to estimate the model

in Eq.(2.20). The smoothed probabilities that are usually parameters of interest can be

calculated from the Kim (1996) �lter. The entertained model is a MSH-VAR(1) model.

MSH means a Markov-switching heteroscadasticity model with a VAR lag length 1.

The model is selected by speci�cation analysis on the error terms. The recursive tests

are conducted since January 2001 because this is the point after which the transition

probabilities p and q are usually signi�cant. The recursive Wald statistics of testing

the present value model are plotted in Figure 2.3 (marked as CS1 in the �gure). The

asymptotic distribution of the test statistics is a �2(6) distribution. The bold straight

bold line is ten percent critical value. The validity of the expectations hypothesis

cannot be rejected consistently16.

A large body of empirical evidence suggests that regime shifts are important for

explaining stylized facts of the yield curve. These studies usually relate regimes with

business cycles. The upper panel of Figure 2.4 graphs the regime classi�cations17

from the present value model of the term structure. They are smoothed probabilities

of being in regime 1 that are extracted by the Kim �lter. Because the only regime-

dependent parameters vector is the variance-covariance matrix, regimes here have clear

interpretation of high and low volatility states. For identi�cation, regime 1 is labeled

as the high volatility regime. As indicated in the plot, regime shifts relate to business

cycles. The sample covers a monetary policy shift. Before 1988, the Fed takes a

borrowed-reserves operating procedure. Since 1988, It is well-known that the Fed has

been targeting the funds rate directly. The monetary policy shift may contaminate the

regime identi�cations. Thus, two regimes do not have a clear interpretation of being

economic booms and recession.

16In the conduction of empirical tests, the discount rate � is set to equal to 1/(1+L=12), L is the
mean of level factor abstracted from the AFDNS model. It is equal to 0.9926.
17Both the regime classi�cations and below the computation of theoretical spreads are based on the
full-sample estimation.
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Figure 2.3. Recursive tests for the validity of the cross-equation restric-
tions implied by the expectations hypothesis. The bold straight line
is 10 percent critical values. CS1 is the Wald statistics of testing the
present value model of the EH. CS2_1 is the Wald statistics of testing
CS2 model of the EH with 10-year and 3-month yields. CS2_2 is The
Wald statistics of testing CS2 model of the EH with 5-year and 3-month
yields.
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Figure 2.4. The probabilities of being in a tranquil regime. The shaded
bars indicate NBER recessions.
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The consistent non-rejection of the EH implies that both the variables relating to

time-varying risk premiums and peso problems play a role in the failure of the expec-

tations hypothesis. Bekaert and Hodrick (2001) summarized three potential reasons

for the rejection of the EH. The second interpretation is omitted variables that might

capture time-varying risk premiums. The extension of the information set for testing

the EH might provide an insight on this issue if time-varying risk premiums can be

captured by the yield factors. This testing framework explicitly takes regime shifts

into account, thus it also sheds light on the peso problems or learning. Although the

rational expectations assumption is made in the testing, the extension along the sec-

ond and third lines in Bekaert and Hodrick (2001) can resurrect the EH. In contrast,

Bekaert, Hodrick and Marshall (2001) considered peso problems, but they did not �nd

evidence in favor of the expectations hypothesis. They stick to Campbell and Shiller

(1991) single-equation regression that may lead to simultaneous bias. Furthermore,

the regression also neglects the information in the yield factors.

The CS2 form of the EH in Eq.(2.15) is a commonly cited form of the expectations

hypothesis. The evaluation of the EH based on Eq.(2.15) makes my results comparable

with other related empirical works. Furthermore, it can serve as a robustness check

on the present value model of the expectations hypothesis. yt = [St;n;�it;1; Ct] is the

conditional information set at time point t for testing Eq.(2.15). Since Ct, the curvature

factor, is a medium-term factor, St;n and �it;1 are supposed to contain information

about the short- and long-end of the yield curve. In the empirical tests of the EH, 3-

month yield is commonly used short-term interest rate, and 10-year yield is frequently

used long-term interest rate Thus, I choose 3-month yield as the short-term interest

rate. For the long-term interest rate, two candidate yields are 10-year yield and 5-year

yield. So I test Eq.((2.15) based on two pair of interest rates. One pair is 10-year yield

and 3-month yield, and the other pair is 5-year yield and 3-month yield.

The line CS2_1 and CS2_2 in Figure 2.3 are the Wald statistics of testing the

Eq.(2.15) based on a pair of 10-year and 3-month yields and a pair of 5-year and 3-

month yields. Likewise, the EH are usually not rejected. The results provide new

evidence on the non-rejection of the EH. All results together imply that an appropriate

information set and regime switches can account for the empirical failure of the EH.



2.6. CONCLUDING REMARKS 41

The regime classi�cations for the pair of 10-year and 3-month yields are plotted in

the middle panel of Figure 2.4. The lower panel of Figure 2.4 is a plot of the regime

classi�cations for the pair of 5-year and 3-month yields. Since both the present value

model and the CS2 form of the EH use information in the level, slope and curvature

factors, it is reasonable that a similar regime identi�cation is generated.

The empirical results indicate that within each regime time-varying risk premi-

ums are second-order e¤ects of the term structure of interest rates. This contradicts

to a large literature of the term structure modeling that concludes that time-varying

risk premiums are predictable. My interpretation for the discrepancy is that the pre-

dictability of variable risk premiums are based on the posterior analysis. However,

it is possible that on a prior basis, risk premiums are less predictable. For example,

using survey data on interest rate forecasts, Piazzesi and Schneider (2009) found that

subject premiums are less volatile and not very cyclical. Furthermore, Corte, Sarno

and Thornton (2008) found that though the EH is statistically rejected, the departures

of the EH are not pro�table based on criteria of economic signi�cance in the context

of a simple trading strategy.

Figure 2.5 is a plot of the theoretical and actual spreads. The upper panel plots the

MS factor and the theoretical MS factor computed from Eqs. (2.28) and (2.29). The

MS and theoreticalMS factors are highly correlated with a correlation coe¢ cient 0.90.

The middle panel draws the actual yield spreads between 10-year and 3-month yields

and the theoretical spreads calculated from Eqs. (2.32) and (2.33). The correlation

between the actual and theoretical spreads is 0.89. The lower panel is a plot of the

yield spreads between 5-year and 3-month yields and the corresponding theoretical

spreads18. The correlation coe¢ cient is 0.71.

2.6. Concluding Remarks

This paper has reexamined the expectations hypothesis of the term structure of

interest rates. The empirical results indicate that the expectations hypothesis cannot

be rejected. The non-rejection of the expectations hypothesis is achieved through using

the yield factors to capture time-varying risk premiums and taking into account regime

18The theoretical spreads are smoother than the actual spreads. I plot two times of the theoretical
spreads with the actual spreads.
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Figure 2.5. Theoretical and actual spreads.

switches. Furthermore, the regimes relate to business cycles. My interpretation for the

resurrection of the expectations hypothesis is the use of an appropriate information set

and a Markov-switching VAR model as the data generating process for testing the EH.

The above results indicate a promising direction for future research. The inter-

pretation of the empirical results are based on the argument that time-varying risk

premiums are not very predictable on a prior basis. Using survey data on interest rate

forecasts, Piazzesi and Schneider (2009) found that subject premiums are less volatile

and not very cyclical. However, a large literature �nds that time-varying risk premi-

ums are predictable on a posterior basis. It seems interesting to further investigate the

prior predictability of variable risk premiums.

Appendix A

As implied by Eq. (2.5),

(A1) Et(ht+1;n)� it;1 = �Covt(mt+1; ht+1;n)� 0:5Vt(ht+1;n)]

By combining Eq. (2.44) and (2.45), the holding period return is
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ht+1;n = pt+1;n�1 � pt;n (A2)

= An�1 +Bn�1xt+1 � An �Bnxt

= Bn�1xt+1 + (An�1 � An �Bnxt)

Since the item in the parenthesis is in the time t information set,

Covt(mt+1; ht+1;n) = Bn�1Covt(mt+1; xt+1) (A3)

Vt(ht+1;n) = Bn�1Vt(xt+1)

Eqs. (2.39) and (2.41) implies a ARMA process for mt+1,

(A4) mt+1 = (�� 1)�+ �mt � �"t+1 � (��+ 1)"t

Obviously, the only shock for mt+1 and xt+1 is "t+1, then Covt(mt+1; xt+1) = ���2 and
Vt(xt+1) = �

2. It comes naturally

(A5) Et(ht+1;n)� it;1 = �Bn�1��2 �B2n�1�2=2

Appendix B

Assume the regimes follow a discrete Makov chain process. As in Hamilton (1994,

chapter 22), a useful representation is obtained by letting �t denote a random 2 � 1
vector de�ned as

(B1) �t =
(1; 0)0 if kt = 0

(0; 1)0 if kt = 1

Thus, the Markov chain is a vector AR(1) process

(B2) �t+1 = P�t + vt
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with P given in Eq.(2.22). For some speci�c element i of the vector �t, we have

(B3) V ar(�itjYt) =
^
�it(1�

^
�it)

Where
^
�it is from the Hamilton �lter. Because regimes are latent variables, Eqs. (2.47)

and (2.49) gives

ht+1;n = �0t+1 � p � h0t+1;n + �0t+1 � (1� p) � h0t+1;n + (B4)

(1� �0t+1) � q � h1t+1;n + (1� �0t+1) � (1� q) � h1t+1;n

= �0t+1h
00
t+1;n + (1� �0t+1)h11t+1;n

Moreover, Eqs.(2.47) and (2.50) gives

ft;n = �0t � p � f 0t;n + �0t � (1� p) � f 0t;n + (B5)

(1� �0t ) � q � f 1t;n + (1� �0t ) � (1� q) � f 1t;n

= �0tf
00
t;n + (1� �0t )f 11t;n

By combining Eqs.(3.18) and (B5), we �nd the covariance between forward rates

and excess returns implied by the discrete Vasicek model is given by

Covt(ft;n; ht+1;n) = (h00t+1;nf
00
t;n + h

00
t+1;nf

11
t;n + h

11
t+1;nf

00
t;n + h

11
t+1;nf

11
t;n) (B6)

�Cov(�0t+1; �0t )

While from Eq. (3.16), we know

(B7) �0t+1 = p � �0t + (1� q) � (1� �0t ) + v1t

Because cov(Rt; vt1) = 0, then,
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(B8) Covt(�
0
t+1; �

0
t ) = p � V ar(�0t ) + (1� q) � V ar(�0t )

Eqs. (B5), (B7) and (2.47) imply

(B9) Covt(ft;n; ht+1;n) = D(1 + p� q)�2t

with

D = (h00t+1;nf
00
t;n + h

00
t+1;nf

11
t;n + h

11
t+1;nf

00
t;n + h

11
t+1;nf

11
t;n)

Except some pathological case where D = 0, the covariance is not equal to zero. This

has clear implication: the predictive power of forward rates is consistent with the

expectations hypothesis of the term structure. In Eq. (B8), (1 + p � q)�2t is positive-
de�nitive. In Eq. (B4), clearly ft;n can�t be negative (nominal interest rate). Only if

the excess return in Eq. (B3) is positive, as usually it is, then Eq. (B8) provides a

positive correlations. While it provides no indication on the forecasting structure as

maturity n changes. Yet this can be done by simulation.



CHAPTER 3

A Regime Switching Macro-�nance Model of the Term

Structure

3.1. Introduction

Understanding the joint dynamics of macroeconomic and yield factors is impor-

tant for monetary policy-making and bond portfolio management. The yield curve

contains important information about future economic activity (e.g., among others,

Estrella and Hardouvelis (1991), Estrella and Mishkin (1998)). For example, investors

require higher risk premia on long-term bonds in economic recessions (bad times).

This implies that premia on long bonds are countercyclical. Meanwhile, it has been

well-documented that yield spread is a leading indicator of economic recessions. On

the other hand, the conduct of monetary policy, according to the Taylor (1993) rule,

transmits the movement in macroeconomic factors into the dynamics of the short end

of the yield curve. Through the expectations hypothesis with the addition of a par-

tially predictable time-varying risk premium, it also moves the long end of the yield

curve. Since interactions between yield and macroeconomic factors are expected to be

bidirectional and simultaneous, they should be investigated in one system. The joint

system, labeled as the �macro-�nance�model, implicitly implies a monetary policy rule.

Recently, an extensive literature focuses on examining the linkages between the

yield curve and the economic driving forces in the term structure models with macro

factors1. Ang and Piazzesi (2003) imposed no-arbitrage restrictions on a VAR model

with latent yield factors derived from an a¢ ne term structure model and found that

macroeconomic factors explain up to 85% of the variation in bond yields in addition

to improved forecasting performance. Diebold, Rudebusch and Aruoba (2006) (DRA

henceforth) provided some strong evidence of dynamic interactions between the yield

1See, among others, Ang, Piazzesi and Wei (2006), Dewachter and Lyrio (2003), Kozicki and Tinsley
(2001), Rudebusch and Wu (2008)

46
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curve and economic activity in a framework of the Nelson-Siegel (1987) type term

structure model.

The macro-�nance model proposed in this paper extends the DRA dynamic Nelson-

Siegel model by incorporating regime shift into the joint dynamics. Nowadays regime

shifts stand as a stylized fact in the term structure modeling. Statistically, the term

structure models with regime switches describe the historical yield curves better than

single-regime models2. From an asset pricing perspective, the term structure models

with regime switches can account for some well-documented puzzles of the term struc-

ture (see, for example, Bansal and Zhou (2002), Dai, Singletion and Yang (2007)), for

instance, the violation of the expectations hypothesis and the predictability of excess

bond returns. From the central bank�s perspective, it is important to understand the

role of the yield curve in the monetary transmission mechanism in di¤erent regimes. In

addition, regimes are typically interpreted as low and high volatility states and are inti-

mately related to business cycles. Neglecting the regime shift might lead to an in�nite

VAR speci�cation instead of a VAR model with a short lag length. In this sense, the

regime-switching term structure models represent a parsimonious way to capture non-

linear interactions between the term structure dynamics and business cycle e¤ects. The

proposed macro-�nance model includes latent yield factors and unobserved regimes, to

estimate the macro-�nance model, I introduce a Markov Chain Monte Carlo (MCMC)

algorithm that allows us to simultaneously �t the yield curves and �lter out regimes.

The DRA dynamic Nelson-Siegel model with regime shifts has several advantages.

First, the DRA dynamic Nelson-Siegel model provides more accurate forecasting (Diebold

and Li (2006)) of the dynamics of the yield curve over time in contrast to the typi-

cally no-arbitrage models in �nance literature (Du¤ee (2002)). Second, it allows a

bidirectional feedback mechanism with which the entire yield curve responds to the

macroeconomic information, and vice versa. The bidirectional feedback mechanism

allow us to answer some important questions, such as, how empirically relevant is the

feedback from the yield curve? In contrast, to be statistically tractable, many a¢ ne

term structure models with macroeconomic variables disregard the feedback from the

yield curve to economic activity. Third, the macro-�nance model with regime switches

2See, for example, Cecchetti, Lam and Mark (1993), Gray (1996), Garcia and Perron (1996), and Ang
and Bekaert (2002).
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allow us to investigate bidirectional feedbacks in each regime. Since regimes are in-

timately related with business cycles, using regime shifting model may shed light on

the monetary policy transmission and market expectation formation mechanism dur-

ing economic recessions and booms. Finally, the model is �exible enough to match the

changing shape of the yield curve, and it is still parsimonious and easy to estimate.

The disadvantage of the DRA dynamic Nelson-Siegel model is that the model

doesn�t explicitly impose no-arbitrage restrictions. DRA makes a defense on this the-

oretically unappealing feature. If the arbitrage opportunities are hedged away imme-

diately in �nancial markets, the data should re�ect this matter of fact. Empirical

evidence (Du¤ee, 2008) indicates that the no-arbitrage restrictions have no practical

e¤ect on forecast accuracy. Therefore the dynamic Nelson-Siegel model approximately

does not admit arbitrage opportunities. In addition, the arbitrage-free model might be

subject to misspeci�cation if there exist some transitory arbitrage opportunities in the

market.

In my empirical analysis of the macro-�nance model, I �nd that both regime

switches and bidirectional interactions between macroeconomic and yield factors are

important components of the term structure model. In the turbulent regime, the pro-

portion of the forecast variance of yields attributable to macro factors is stable along

the maturity spectrum of yields. Around 40% of the forecast variance is attributable to

macro factors at a 1-month forecast horizon3. At a 60-month forecast horizon, around

50% of the forecast variance is due to macro factors. In the tranquil regime, the pro-

portion of the forecast variance of yields attributable to macro factors increases along

the forecast horizon. Furthermore, the short-end of the yield curve is less subject to the

shocks of macro factors. At a 60-month forecast horizon, 20% of the forecast variance

is attributable to macro factor for 3-month yields. In contrast, 45% of the forecast

variance is attributable to macro factors for 5-year yield. In the tranquil regime, the

level factor dominates the forecast variance at a long forecast horizon. At a 60-month

forecast horizon, the level factor can account for 66%, 55%, 64% of the forecast variance

for CU, in�ation and FFR. In contrast, at a 1-month forecast horizon, only 5%, 0%

and 12% of the forecast variance are explained by the level factor. Interestingly, in the

3The macroeconomic factors include the capacity utilization, in�ation, and the federal fund rate.
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high volatility regime, the feedback from yield factors to macro fact seems break down

in the sense that the forecast variance of macro variables is not attributable to yield

factors. However, the impulse responses and statistical tests con�rm the interactions

between yield and macro factors in both regimes.

The rest of this paper is organized as follows. In section 2, I present and estimate

the benchmark �yields-only�model4 subject to regime shifts. Section 3 proposes and

estimates the regime switching macro-�nance model. The implications and relationship

between the yield curve and macro factors are analyzed. Furthermore, I examine

the implication of the expectations hypothesis in the framework of the macro-�nance

model. Section 4 is concluding remarks.

3.2. Yields-only model

Principal component analysis shows that a few factors can explain over 97% (Pi-

azzesi (2004)) of the variability of yields in the cross-section and time series. These

factors are usually labeled as �level�, �slope�and �curvature�according to their e¤ect on

the yield curve. Because the interpretation of yield factors seems to be stable across

di¤erent speci�cations and sample selections, most term structure models use three

factors to capture stylized facts of yields. In order to achieve parsimony, cross-section

restrictions are usually imposed on these term structure models.

In �nance literature, the cross-section restrictions are typically derived from no-

arbitrage conditions. This is consistent with the reasonable assumption that a riskless

arbitrage opportunity should be hedged away immediately in liquid and deep mar-

kets. Unfortunately, the theoretically consistency doesn�t provide a good forecasting

performance (Du¤ee (2002)). Another strand of literature employs empirical appeal-

ing models, for example, Nelson and Siegel (1987), Diebold and Li (2006). Although

these models are not theoretically well-grounded, they show good predictive power in

time-series and �t in the cross-section. The empirical �t makes this type of models

widely applied in central banks and investment banks. This article follows DRA and

goes along this strand of literature.

4A model of the yield curve without macroeconomic variables.
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3.2.1. Model representation

By properly restricting factor loadings in a statistical factor model, Diebold and Li

(2006) propose the dynamic Nelson-Siegel model for the yield with maturity � ,

(3.1) it(�) = Lt + St(
1� e���
��

) + Ct(
1� e���
��

� e��� ) + "t

where Lt is the level factor, St denotes the slope factor and Ct represents the curvature

factor. Empirically, the level factor is corresponding to long-term interest rate, the

slope factor is associated with the di¤erence between the short-term yield and long-

term yield, and the curvature factor corresponds to two times of medium-term yields

minus the sum of long- and short-term yields. Therefore, the level factor is a long-

term factor, the slope factor is a short-term factor and the curvature is a medium-term

factor. � is the rate of changes of factors loadings along the maturity horizons, it also

determines the maturity at which the curvature loading achieves its maximum.

For the entire yield curve with di¤erent maturities, the observation equation is

(3.2)

26666664
it(�1)

it(�2)
...

it(�N )

37777775 =
26666664
1 1�e���1

��1
1�e���1
��1

�e���1

1 1�e���2
��2

1�e���2
��2

�e���2
...

...
...

1 1�e���N
��N

1�e���N
��N

�e���N

37777775
26664
Lt

St

Ct

37775+
26666664
"t(�1)

"t(�2)
...

"t(�N )

37777775
with "t ~ N(0;
). The dynamic Nelson-Siegel has superior out-of-sample forecasting

performance, especially at long horizon. In contrast, some a¢ ne term structure models

that impose no-arbitrage restrictions give poor forecasting performance. Although the

dynamic Nelson-Siegel is neither general equilibrium model nor no-arbitrage model, it

provides empirical �t, simplicity and parsimony.

To identify possibly turbulent and tranquil periods in the term structure of in-

terest rates, the latent yield factors are assumed to follow a Markov-switching vector

autoregression process5

5This speci�cation allows regime-dependent heteroscedasticity, but autoregression coe¢ cients are not
regime-dependent.
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(3.3)

26664
Lt � �L
St � �S
Ct � �C

37775 =
26664
�11 �12 �13

�21 �22 �23

�31 �32 �33

37775
26664
Lt�1 � �L
St�1 � �S
Ct�1 � �C

37775+
26664
��t;1t

��t;2t

��t;3t

37775
where �t = H;L indicates a high or low volatility regime prevailing at time t and

��t = (��t;1t; ��t;2t; ��t;3t)
0 allows regime-dependent heteroscedasticity,

�H s N(0;�H)(3.4)

�L s N(0;�L)

For optimality of the Kalman �lter, I assume the disturbances �t and "t are uncorrelated

with each other, and initial state X0 is orthogonal to the realization of ��t and "t

E("t��t) = 0 for t = 1; 2; ::::::; T ; �t = H;L(3.5)

E("tX0) = 0 for t = 1; 2; ::::::; T

E("tX0) = 0 for t = 1; 2; ::::::; T

If we stack the state variables in a 3 � 1 vector Xt = (Lt; St; Ct) and stack the yields

in yt = (it(�1); :::; it(�n)). The state space model can be succinctly written in matrix

notation as

yt = �Xt + "t(3.6)

Xt = �Xt�1 + ��t ; �t = H or L

A discrete Markov chain governs switches between the two regimes, the transition

matrix being given by

P =

24 p 1� q
1� p q

35
Now the standard Hamilton (1989, 1994) and Krolzig (1997) algorithms can be used

to extract the probabilities of staying in each regime.
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I build this model upon a growing literature suggesting that regime-shifting models

describe yields dynamics better than single regime model (Ang and Bekaert (2002),

Garcia and Perron (1996), Gray (1996)). Nowadays regime shifts stand as a stylized fact

in the term structure modeling. From an asset pricing perspective, the term structure

models with regime switches can account for some well-documented puzzles of the term

structure (see, for example, Bansal and Zhou (2002), Dai, Singletion and Yang (2007)),

for instance, the violation of the expectations hypothesis and the predictability of excess

bond returns. From the central bank�s perspective, it is important to understand the

role of the yield curve in the monetary transmission mechanism in di¤erent regimes.

In addition, regimes are typically interpreted as low and high volatility states and

are intimately related to business cycles. Neglecting the regime shift might lead to an

in�nite VAR speci�cation instead of a VARmodel with a short lag length. In this sense,

the regime-switching term structure models represent a parsimonious way to capture

nonlinear interactions between the term structure dynamics and business cycle e¤ects.

The coe¢ cient matrix � in Eq.(3.6) plays three roles in our analysis. Three yield

factors and two regimes are unobserved components in the system (3.6). As usual,

there are some identi�cation conditions that must be imposed to estimate a model with

latent factors. The matrix � provides such identi�cation restrictions. Since three yield

factors explain most of variations of yield dynamics, they are supposed to be highly

correlated with three principal components (Zhu (2008)). The matrix � also gives

three latent yield factors a nice interpretation, respectively, the level, the slope and the

curvature factor. These factors have empirical counterparts and are related to economic

activities. In contrast, an unrestricted vector autoregression doesn�t provide us such

a clear interpretation. In addition, the restricted DRA dynamic Nelson-Siegel model

seems to be stable over sample selection and set of yields chosen. This is the second role

played by the matrix �. Admissibility (Dai and Singleton (2002)) constitutes a third

role of the matrix �. As discussed in DRA, the Nelson-Siegel form avoids a negative

forward rate at all horizons.

The entertained model achieves parsimony by a diagonal 
 assumption. Since

three underlying latent factors explain a large fraction of yield variation6, the diagonal

6The model can explain over 98% of the variance of yield changes (Diebold and Li (2006), Diebold,
Rudebusch and Aruoba (2006)).
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 is expected to be a good approximation. Thus, the e¢ ciency loss from diagonal

restrictions shouldn�t be signi�cant. This is an usual strategy, for example, Christensen,

Diebold and Rudenbush (2008) show that this diagonal covariance model has good

forecasting performance, it o¤ers a more accurate prediction than non-diagonal model

in many cases. For a¢ ne term structure model with no-arbitrage conditions, Ang

and Piazzesi (2003) assume some yields are measured with errors. Computational

tractability is a second reason for the diagonal covariance matrix assumption.

3.2.2. Yields

The yield curve consists of the end-of-month observations of 1, 3, 6, 12, 24, 36, 60, 84,

120 months zero-coupon yields on treasury securities. The sample covers a period from

January 1983 to May 2009. The data source is econstatsTM . Figure 3.1 plots the U.S.

yield curves. It is clear from the �gure that the yield curves have many di¤erent shapes.

One stylized fact of yields is that they tend to exhibit considerable persistence and are

thus believed to be nonstationary or better approximated by an integrated process.

This feature has profound implications for the macro-�nance model estimation. Table

3.1 provides the evidence of persistence of yields and the summary statistics of yields.

A long sample makes statistical inference more reliable. However, the relationships

between the yield curve and macroeconomic factors have changed in last decades. In

1982, the Fed operating procedure has shifted from a non-borrowed-reserves targeting

to a borrowed-reserves targeting (Walsh (2003), Chapter 9). This may contaminate

the relationships between the yield curve and macroeconomic factors. Thus, I choose

January 1983 as the starting point of our sample.

3.2.3. The MCMC algorithm

The state-space system Eq.(3.6) is estimated by the Markov chainMonte Carlo (MCMC)

method, speci�cally, a Gibbs sampling algorithm combined a random walk Metropo-

lis step (see Appendix A for details). Three main reasons account for our choice of

a Bayesian method instead of the classical maximum likelihood estimation. First, in

classical estimation, inference on the latent factors is conditional on the estimated

parameters. In contrast, the Bayesian method describes the joint distribution of the
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Figure 3.1. U.S. Yield Curves, 1983.01�2009.05

Table 3.1: Summary Statistics of Yields and Yield Factors

Maturity (months) Mean Std. Dev.
^
�(1)

^
�(12)

^
�(30) ADF

1 4.7161 1.5176 0.9785 0.6623 0.1708 -1.0878
3 4.9747 1.5576 0.9857 0.6807 0.2130 -1.2846
6 5.7164 1.5752 0.9857 0.6870 0.2234 -1.3507
12 5.3656 1.5877 0.9854 0.7002 0.2622 -1.4357
24 5.7606 1.6064 0.9848 0.7202 0.3340 -1.1759
36 5.9690 1.5950 0.9846 0.7296 0.3745 -1.2097
60 6.2964 1.5682 0.9848 0.7427 0.4268 -1.2274
84 6.5403 1.5522 0.9856 0.7557 0.4595 -1.2260
120 6.6908 1.5277 0.9859 0.7663 0.4812 -1.3084
Note: �(i) is autocorrelation with lag length i; ADF is augmented
Dickey-Fuller test with lag length selected by AIC.

latent yield factors, unobserved regimes and other parameters. It thus incorporates the

parameters�variability.

Second, the reliability of the Bayesian inference is less dependent on the sample

size of the data. Even in a single equation regime-shifting regression, Monte Carlo

experiment indicates (Psaradakis and Sola (1998)) that the conventional asymptotic

approximations to the distribution of the maximum likelihood estimator are not good

until the sample size approaches 800. For regime-shifting vector autoregression with
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a large number of parameters, the reliability of asymptotic theory is problematic with

our sample size. With the Bayesian method, however, the size of the sample is under

the control of researcher.

Third, one shortcoming of the maximum likelihood estimation inspires the use of

the MCMC. Kim (1994) and Kim and Nelson (1999) provide an approximation method

and make the maximum likelihood estimation of the state-space models with regime

switching feasible. However, the properties of the approximation method is unknown.

In some cases, the accuracy provided by the approximation method is probably not

good enough. Furthermore, for a high dimensional model like the macro-�nance model

in next section, the likelihood function may be subject to multiple local optima.

3.2.4. Convergence checks

Some diagnostics are available on the reliability of our estimation method. The basic

idea of most convergence statistics is to compare moments of the sampled parameters.

A visual check on the plot of sampled parameters can provide information about the

convergence. For a converged MCMC implementation, the drawings shouldn�t deviate

from some mean for a long period, although this is subjective in the sense that there

is no clear measure of deviation and duration. To further assess the convergence of

the MCMC-Gibbs algorithm, I implement another three practical statistics. First, the

MCMC-Gibbs drawings allow us to compute the Raftery and Lewis (1992) minimum

burns and minimum runs of required to estimate the 0.025 quantile to within �0.025
with probability 0.95. For all the parameters, the minimum required burn-in is only

several hundred and the minimum number of runs is several thousand.

The second statistic is the Yu and Mykland (1998) plot of CUSUM path, for a

speci�c parameter � with sample variance �2� and mean �� for the sample up to iteration

t,

CUSUMt =
1

t��

Xt

i=1
(�i � ��); t = 1; 2; : : : ; T

If CUSUM diverges from zero for a prolonged period, it is an indication of non-

convergence. Therefore a visual check on the CUSUM plot provides us information

about the convergence of Gibbs sampling.
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The third criterion for the convergence is the relative numerical e¢ ciency (RNE)

proposed by Geweke (1992). As the drawings for the latent factors and unobserved

regimes are from a serially correlated distribution, the RNE shed light on the e¢ ciency

of the Gibbs sampling since the RNE measures the quality of a correlated sample. The

rationale of the RNE is to compare the empirical variance with the Newey-West (Newey

and West 1987) heteroscadasticity and autocorrelation consistent variance �2NW;q,

RNE =
�2�
�2NW;q

where q is the length of the Barlett window for the Newey-West estimator.

3.2.5. Empirical results

Diebold and Li (2006, 2008) �x the � and set it equal to a value that maximize the

loading on the curvature factor at 30 months. As three yield factors are time-varying,

the dynamic Nelson-Siegel model can generate a variety of yield curve shapes, such as,

upward-sloping, inverted, hump, and S shapes. The estimated model explains the main

stylized facts regarding the yield curve. Yield forecasts based on the entertained model

produce encouraging results, especially at long horizon. The dynamic Nelson-Siegel

model beats various benchmark models in terms of predictive power. Instead of �xing

� at a constant, in this paper I use a random walk Metropolis step to draw � as guided

by Johannes and Polson (2004). The relaxation allows the dynamic Nelson-Siegel model

�t the yield curves more �exible and increases the e¢ ciency of the estimation.

For a large-scale dynamic factor model, the Bayesian method is preferred to the

classical maximum likelihood due to the aforementioned reasons. There is a large

number of parameters from the Bayesian approach perspective because the latent yield

factors and unobserved regimes are all seen as parameters in a Bayesian estimation.

Given the yield factors and regimes, there are thirty-three parameters to estimate:

a parameter re�ecting the change rate of factor loadings �, 9 parameters in diagonal

variance-covariance matrix 
; for each regime, 6 parameters in non-diagonal covariance

matrix ��t; 9 parameters in autoregressive coe¢ cient matrix �; and 2 regime transition

parameters.
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Table 3.2: Yields-only Modela,b

The rate of factor loading changes �:
0:0516
(0:00002)

� Lt�1 St�1 Ct�1 �

Lt
0:900
(0:0001)

�0:022
(0:0001)

0:067
(0:0003)

7:780
(1:634)

St �0:053
(0:0001)

0:938
(0:0001)

0:088
(0:0004)

�1:958
(1:344)

Ct 0:001
(0:0001)

�0:008
(0:0001)

0:946
(0:0004)

�0:321
(1:452)

Estimated Covariance matrix �L
Lt St Ct

Lt
0:089
(0:013)

St
0:029
(0:013)

0:221
(0:036)

0:034
(0:018)

Ct
0:034
(0:018)

�0:044
0:027

0:381
0:042

Estimated Covariance matrix �H
L St C

Lt
0:463
(0:129)

0:641
(0:235)

St
0:641
(0:235)

2:192
(0:614)

Ct
0:073
(0:241)

�0:014
(0:511)

3:621
(1:166)

Transition Probabilities p and q
p q
0:63

(0:0053)
0:76

(0:0055)
Test for Diagonality of � Matrix

Wald statisticc P-value
Regime L 16.155 0.001
Regime H 7.847 0.049
Test for no Regime-dependent Heteroscadasticiyd

Wald statistic P-value
19.514 0.0034

aBold entries indicate 5% signi�cance. Standard errors are in the parentheses.
bL denotes low volatility regime and H is high volatility regime.
cWald statistics are asymptotically Chi-square with 3 degrees of freedom.
dWald statistic has a Chi-square distribution with 6 degrees of freedom.



3.2. YIELDS-ONLY MODEL 58

The details of the MCMC algorithm are presented in the Appendix A. Three yield

factors are drawn based on the multi-move Gibbs sampling algorithm (Carter and Kohn

1994) where the entire conditional posterior distributions are from other parameters

and the Kalman �lter. This method simpli�es the MCMC simulation because we can

draw yield factors jointly by a recursive method. Speci�cally, I use the Kalman �lter

to process yields forward, then I take random draws of the posterior distributions

backward. This forward �ltering and backward sampling (FFBS) method make the

simulation more e¢ cient because this scheme draws serially correlated yield factors

jointly. Using the FFBS scheme combined with the Hamilton (1989, 1994) �lter, we

can also generate the unobserved regimes prevailing at each time point t. The smoothed

regimes are usually parameters of interest, the FFBS scheme combined with the Kim

(1994) �lter produces drawings of the smoothed regimes.

To facilitate the convergence of the MCMC iterations, I initialize the MCMC by a

two-step estimation. The �rst step runs the OLS to estimate yield factors by �xing �

at 0.0598. With estimated yield factors, the state equation (3.3) can be estimated by

the Gaussian maximum likelihood method where we get the autoregressive parameters,

regime probabilities and transition probabilities. These parameters from the two-step

estimation are catered to the MCMC scheme. This initialization makes the MCMC

converged quickly. I also try other initials for yields-only model, they produce similar

results.

The two-step estimation indicates that the state equation is stationary since all

roots of the autoregressive coe¢ cient matrix are smaller than one. However, the

MCMC drawings are usually nonstationary after dozens of iterations. I don�t drop

nonstationary iterations. On average, the entertained state equation is stationary7.

In contrast, drawings of the macro-�nance model are usually stationary. Thus, for

the macro-�nance model, I control the nonstationary iterations by dropping them to

facilitate the calculation of impulse response functions. I simulate 15000 iterations

with an initial burn-in period of 5000 observations. All three measures of convergence,

respectively, visual plot of parameters, CUSUM and NW, indicate that the sampled

parameters are converged.

7The largest eigenvalue of the coe¢ cient matrix A is 0.9464.
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Figure 3.2. Level, slope, curvature factors and the empirical counterparts.

Table 3.2 presents the parameter estimates of the yields-only model. The estimates

of the autoregressive coe¢ cient matrix � contain much information. First, the value

of � is consistent with our prior belief that it maximizes the curvature factor in the

medium-term8. Second, three latent yield factors are highly persistent. This is consis-

tent with typical results found in the term structure modeling. Third, there is some

di¤erence in the time-series properties of the yield factors. It seems that Ct is the

most persistent factor, and St is the least persistent factor. This contrasts to the evi-

dence typically found in empirical studies where Lt is most persistent and Ct is least

persistent. Fourth, cross-correlations across yield factors are small but still signi�cant.

The extracted level, slope and curvature are plotted in �gure 3.2. For the purpose

of comparison, the empirical counterparts of three yield factors are depicted in the

same �gures. The empirical level factor is de�ned as the 10-year yield. The proxy

for the empirical slope factor is the di¤erence between the 10-year yield and 3-month

yield. The empirical curvature is twice the 2-year yield minus the sum of the 10-year

and 3-month yields. The correlation among the extracted factors and the empirical

factors are respectively 0.98 for the level, 0.98 for the slope and 0.97 for the curvature.

8The scaling factor & in the Random Walk Metropolis steps (see Appendix A) for generating � is set
to be 0.000295. The acceptance rate of the Random Walk Metropolis steps is 0.2504.
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Figure 3.3. Probabilities of being in a tranquil regime.
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Figure 3.4. Probabilities of being in a tranquil regime. The shaded bars
indicate the NBER economic recessions.

The correlation analysis indicates why the latent factors are labeled as �level�, �slope�,

and �curvature�.

Table 3.3 reports the �ts of the yields-only model and macro-�nance models. For

each model, We present the estimated means and standard deviations of the measure-

ment equation residuals. It seems that both models �ts the yield curve well. Meanwhile,

it is important to note one salient feature of the model that it �ts the middle region of

the yield curve best. In particular, the �tting errors at the short end of the yield curve

is signi�cant.

The upper panel of Figure 3.4 plots the smoothed probabilities of being in low

volatility regime. In a¢ ne term structure models, regimes are typically labeled as

high and low volatility. In this analysis the �ltered regimes still have such a clear

interpretation as is clear from �L and �H in Table 3.2. The regime classi�cations

con�rm the well-documented observation that regime H tends to be associated with

economic recessions in the sense that the probabilities of being in regime L is close to 0.

Meanwhile, it seems that the regime classi�cations have plentiful information content

beyond only signaling economic recessions.
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Table 3.3: Summary Statistics for Measurement Errors of Yields
Maturity Yields-only model Macro-�nance model

Mean Std. Dev. Mean Std. Dev.
1-month -23.84 10.03 -22.48 6.86
3-month -7.08 1.39 -4.41 0.64
6-month 0.35 0.08 4.27 0.18
12-month -3.28 0.58 1.53 0.56
24-month 0.71 0.15 4.71 0.15
36-month -4.41 0.12 -1.43 0.09
60-month -5.40 0.17 -2.47 0.21
84-month -0.72 0.17 3.55 0.08
120-month 2.47 0.38 3.84 0.07
Note: as usual, all means and stand deviations of the yield measurement errors are
expressed in basis points.

3.3. Macro-�nance model

This section tries to shed light on the joint dynamics of the yield curve and economic

activity that incorporates an implicit monetary policy rule. For modeling interest

rates, the yields-only model provides a good description of the yield curve on the cross-

section and time series. For other purposes, for example, monetary policy modeling and

economic activity forecasting, we need relate yield factors to macroeconomic variables.

The conduct of monetary policy shifts the short-end of the yield curve, through risk-

adjusted expectations, it further shift the long-end of the yield curve. According to the

Taylor (1993) rule, the Fed sets short interest rates by responding to the output gap

and in�ation. The key intersection of macroeconomic dynamics and the yield dynamics

is short-term interest rate. The yields-only model has a missing motivation that the

Fed ignores the information from economic activity or investors ignores the information

from the Fed. This section extends the yields-only model by including macroeconomic

variables. The extended macro-�nance model is estimated using the MCMC and result

analysis is reported.
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3.3.1. Macroeconomic factors

Three proxies for economic activity are the capacity utilization (CU), the federal fund

rate (FFR) and in�ation. The CU, FFR and consumer price index (CPI)9 are retrieved

from the economic database, Federal Reserve Bank of St. Louis. The year-over-year

in�ation rate is de�ned by taking the yearly percentage change in the CPI index,

�t = 100 � (lnCPIt � lnCPIt�4)

The capacity utilization is a measure of the deviation of economic activity from its

natural level. For modeling business cycles and monetary policy, quarter is a typical

frequency. At a quarterly frequency, the GDP is an obvious proxy for economic activity.

Alternatively, this study exploits the availability of monthly data. In so doing, we try

to characterize the relationship between the yield curve and economic activity at a

higher frequency. In�ation is included in the extended macro-�nance model because it

is a key variable in shaping the nominal yield curve through the level of in�ation and

in�ation risk premia (Ang, Bekaert and Wei (2008)) and in making monetary policy,

such as the Taylor principle (Taylor (1993)). The federal fund rate is a monetary policy

instrument that moves the yield curve. The selection of macroeconomic variables is

consistent with the DRA model that is the foundation of regime-shifting macro-�nance

model. We consider several other variables, such as average weekly hours at a monthly

frequency, they have similar implications for regime identi�cation purpose.

3.3.2. The macro-�nance model and estimation

It is straightforward to extend the yields-only model by adding macroeconomic vari-

ables to the information set. Let the 6 � 1 vector XMF
t = (Lt; St; Ct; CUt; �t; FFRt)0

be factors in the macro-�nance model, then the state equation is

9On the database, three variables are labeled, respectively, as "the total industry capacity utilization",
"the e¤ective federal fund rate" and "consumer price index for all urban consumers: all items"
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Figure 3.5. Macro factors and level, slope, curvature factors from the
macro-�nance model.
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where subscript �t = H or L, denote high and low volatility regimes10. And distur-

bances in regime L and H follow the Gaussian distribution.

(3.8)
�L s N(0;�MF

L )

�H s N(0;�MF
H )

The observation equation is the same as in the state-space system Eq.(3.2)11. The

macro-�nance model maintains the assumption of a diagonal covariance matrix 
.

10This intuitive label is a little abuse in notation. However our empirical results justify two regimes
with high and low volatility.
11In DRA�s representation [Eq.(6�) in DRA], the state vector is a 6� 1 vector for their yields-macro
model, but they set the three rightmost columns all equal zeros. This setting implies that the yields
are still priced only by three yield factors.
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The state equation Eq.(3.7) is subject to regime switches, and the standard Hamilton

�lter can be used to extract regimes. The state-space model for the macro-�nance

model can be succinctly represented by

yt = �XMF
t + "t(3.9)

XMF
t = �MFXMF

t�1 + ��t ; �t = L or H

This is a large-scale dynamic model. Even if we don�t take into account the latent

yield factors and unobserved regimes, there are still 90 parameters: the rate of change

of factor loadings �, the autoregressive coe¢ cient matrix includes 36 parameters; the

covariance matrix �L and �H respectively have 21 parameters; 2 parameters in tran-

sition matrix P ; and 9 parameters in the diagonal matrix 
. The MCMC method is

a preferred method for estimating the state-space system Eqs.(3.9). The initial val-

ues are provided by the two-step estimation: the OLS regression of the observation

equation and the Markov-switching regression of the state equation. In MCMC, we

drop all non-stationary drawings to ensure that the estimated system is stationary.

In particular, our implementation consists of 15000 stationary iterations, the number

of burn-in iteration is 5000. The CUSUM and RNE indicate the convergence of the

estimation.

Three latent factors are all persistent although the degree of persistence di¤ers.

The autoregressive coe¢ cient is 1.089 for the most persistent level factor12, while for

the least persistent slope factor it is 0.839. These results are consistent with those

typically found in the empirical term structure models. This �nding contrasts to the

yields-only model where the curvature factor is most persistent. The value of � is

0.0752, it is still consistent with our prior belief that it maximizes the curvature factor

in the medium-term13.There are signi�cant cross-correlations among the yield factors

and the macro factors. Three yield factors play an important role in accounting for the

macroeconomic dynamics, and vice versa. It is also important to note that in�ation is

not signi�cant for explaining the dynamics of other factors.

12The state equation is stationary because the largest eigenvalue of the coe¢ cient matrix A is 0.9804.
13The scaling factor & in the Random Walk Metropolis steps (see Appendix A) for generating � is set
to be 0.0003. The acceptance rate of the Random Walk Metropolis steps is 0.3319.
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Table 3.4: Macro-�nance Modela,b

The rate of factor loading changes �:
0:0752
(0:00005)

Autoregressive coe¢ cient matrix �MF

Lt�1 St�1 Ct�1 CUt�1 �t�1 FFRt�1

Lt
1:089
(0:023)

�0:102
(0:022)

0:436
(0:041)

0:239
(0:020)

�0:018
(0:046)

0:276
(0:016)

St 0:102
(0:023)

0:839
(0:024)

0:384
(0:043)

0:126
(0:024)

�0:022
(0:045)

0:221
(0:016)

Ct 0:007
(0:009)

0:078
(0:010)

0:937
(0:022)

0:030
(0:015)

�0:001
(0:013)

0:084
(0:008)

CUt �0:009
(0:005)

0:009
(0:006)

0:030
(0:011)

0:999
(0:008)

0:012
(0:008)

0:002
(0:004)

�t �0:004
(0:011)

0:006
(0:012)

�0:030
(0:288)

�0:061
(0:020)

0:939
(0:017)

�0:013
(0:009)

FFRt �0:089
(0:021)

0:057
(0:020)

�0:373
(0:038)

�0:181
(0:019)

0:030
(0:043)

0:714
(0:015)

Estimated Covariance Matrix �MF
L

Lt St Ct CUt �t FFRt

Lt
0:051
(0:007)

St �0:048
(0:008)

0:071
(0:001)

Ct 0:037
(0:011)

�0:053
(0:014)

0:312
(0:046)

CUt 0:009
(0:007)

�0:003
(0:009)

0:036
(0:019)

0:154
(0:010)

�t 0:003
(0:005)

0:002
(0:006)

0:001
(0:014)

0:010
(0:010)

0:073
(0:011)

FFRt 0:001
(0:002)

0:008
(0:003)

0:011
(0:005)

0:004
(0:004)

0:005
(0:002)

0:011
(0:002)

Estimated Covariance Matrix �MF
H

Lt St Ct CUt �t FFRt

Lt
0:109
(0:018)
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Table 3.4 (continued)
Lt St Ct CUt �t FFRt

St �0:064
(0:016)

0:120
(0:010)

Ct 0:054
(0:027)

0:012
(0:015)

0:455
(0:088)

CUt 0:058
(0:022)

�0:017
(0:009)

0:020
(0:048)

0:361
(0:079)

�t 0:044
(0:019)

�0:026
(0:006)

�0:004
(0:039)

0:054
(0:032)

0:244
(0:041)

FFRt 0:041
(0:013)

0:036
(0:003)

0:101
(0:029)

0:044
(0:021)

0:031
(0:017)

0:115
(0:019)

Transition Probabilities p and q
p q

0:693
(0:054)

0:820
(0:040)

Test for Diagonality of �MF

Wald Statisticc P-value
Regime L 75.13 0.000
Regime H 53.27 0.000

Test for no Regime-dependent Heteroscadasticiyd

Wald Statistic P-value
51.605 0.0002

aBold entries indicate signi�cant at 5 percent level,standard deviations are in parentheses.
bL denotes low volatility regime and H is high volatility regime.
cWald statistics are asymptotically Chi-square with 3 degrees of freedom.
dWald statistic has a Chi-square with 21 degrees of freedom.

Two regimes continue to be labeled as L and H regimes according to the estimation

results. It is clear that the residual variances of the yield and macro factors in regime

L are signi�cantly less than those in regime H. Statistically, the Wald test in the table

4.4 rejects the null hypothesis of equal variance in two regimes. The Wald statistics

also indicate that neither the covariance matrix �MF
L nor the matrix �MF

H are diagonal.

The lower panel of Figure 3.4 plots the smoothed probabilities of being in regime L.

We see that the macro-�nance model have advantage in terms of regime identi�cation.
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It is not surprising because the macroeconomic variables contain information about

economic recessions. The regime classi�cations indicate that the high volatility regime

is associated with economic recessions. This is consistent with the widely documented

observation in the literature.

Although the autoregressive coe¢ cient matrixes are di¤erent14, similar �ltered time

series of the level, slope and curvature factors are obtained form the yields-only model

and the macro-�nance model. The correlations round to 1 for pairs of levels and slopes,

for curvatures, it is 0.99. Figure 3.5 depicts the yield factors from the macro-�nance

model with three macroeconomic factors. It is clear from the graph that the yield

factors are closely linked to the FFR with the highest correlation 0.72 between the

curvature and FFR. The level factor is correlated with the in�ation with a correlation

0.46. To a less extent, the correlation between the slope and the capacity utilization is

0.42.

3.3.3. Testing interactions across the yield and macro factors

There are three interesting null hypothesis about interactions across the yield and

macro factors. The �rst hypothesis is totally no interaction among the yield factors

and the macroeconomic variables. A less strong assumption is the dynamics of the

yield factors do a¤ect the dynamics of the macro factors, but not vice versa. Opposed

to the second assumption, the last hypothesis postulates that the unidirectional linkage

is from the macro factors to the yield factors.

Following DRA, three hypotheses can be formalized by zero restrictions on the au-

toregressive matrix and the variance-covariance matrix of the state equation. Speci�-

cally, we partition the (6 � 6) matrix �MF into four (3 � 3) blocks

(3.10) �MF =

24�MF
1 �MF

2

�MF
3 �MF

4

35
and similarly partitioning the covariance matrixes �MF

H and �MF
L

14The matrix � in Table 1 and the upper-left (3�3) sub-matrix of �MF in Table 3.
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Table 3.5: Tests of Interactions among Yield and Macro Factorsa,b,c

No Interaction
�MF
2 = 0;
�MF
3 = 0
�MF
2 = 0

No Macro to Yields
�MF
2 = 0

No Yields to Macro
�3 = 0,
�MF
2 = 0

Restrictions No. 27 9 18

Regime L
3300
(0:000)

131:1
(0:000)

691
(0:000)

Regime H 3293
(0:000)

131:1
(0:000)

703
(0:000)

aL denotes low volatility regime and H is high volatility regime.
bReported statistics are based on the Wald test that is asymptotically �2 distribution.
cP-values appear in parentheses.

(3.11) �MF
�t
=

24�MF
1 �MF

2

�MF
3 �MF

4

35 ; �t = L or H

where �MF
3 is the transpose of the �MF

2 . Given the prevailing regime, �MF
2 = �MF

3 =

�MF
2 = 0 is the equivalence of the �rst null hypothesis. The second hypothesis can be

rewritten as �MF
2 = 0. The restrictions for the third hypothesis are �MF

3 = �MF
2 = 0.

TheWald test is easily implemented for testing these hypotheses. Table 3.5 displays the

Wald statistics for three hypotheses in regime L and H. All hypotheses are overwhelm-

ingly rejected, thus we can�t exclude the bidirectional linkages. Overall, this �nding

is consistent with a growing literature that relates the term structure of interest rates

with economic activity.

3.3.4. Variance decompositions

Variance decompositions can tell us the relative contributions of the macroeconomic

and yield factors to forecast errors. The detail of variance decomposition computation

is in Appendix C. Table 3.6 summarizes the variance decomposition results for the high

volatility and low volatility regimes. The variance decompositions also tell us something

about the interactions between the yield curve and economic activity. In the turbulent

regime, the proportion of the forecast variance of yields attributable to macro factors is

stable along the maturity spectrum of yields, but slightly increases along the forecast
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horizon. Around 40% of the forecast variance is attributable to macro factors at a

1-month forecast horizon. At a 60-month forecast horizon, around 50% of the forecast

variance is due to macro factors. In contrast, the forecast variance of macro factors are

not attributable to yield factors in volatile ages, though the statistical tests and the

impulse responses support interactions between yield and macro factors.

In the tranquil regime, the proportion of the forecast variance of yields attributable

to macro factors increases along the forecast horizon. Furthermore, the forecast of

the short-end of the yield curve is less subject to the shocks of macro factors. At a

60-month forecast horizon, 20% of the forecast variance is attributable to macro factor

for 3-month yields. In contrast, 45% of the forecast variance is attributable to macro

factors for 5-year yield.

In the tranquil regime, however, the forecast of macro factors is subject to the shocks

of yield factors. Actually, the level factor dominates the variance decomposition of

forecast error at a long horizon. Only 7% of the capacity utilization forecast variance is

explained by the level factor at a 1-month forecast horizon, but 55% of the CU forecast

variance is attributable to the level at a 60-month forecast horizon. Likewise, Less than

1% of the in�ation forecast variance is attributable to the level factor at a 1-month

forecast horizon, but 57% of the in�ation forecast variance can be explained by the level

factor. For the Federal Fund Rate, the proportion of the forecast variance attributable

to the level factor increases from 12% to 64% at a 1-month or 60-month forecast

horizon. Combined with the impulse responses and statistical tests, we conclude that

there is a strong feedback from yield factors to macro factors. In conclusion, We �nd

that both regime switches and bidirectional interactions between macroeconomic and

yield factors are important components of the term structure model.

3.3.5. Impulse responses

It is intuitive and interesting to examine the factor impulse responses. Appendix

B derives the computation of the impulse responses. Figure 3.6 and 3.7 report the

impulse responses of the yield and macro factors on each other in regime L and H15.

The Cholesky decomposition of the non-diagonal covariance matrixes �MF
L and �MF

H is

15The bootstrapping-based error bands are available upon request.
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Table 3.6: Variance Decompositions for the Macro-Finance Modela,b

Horizon Level Slope Curvature CU In�ation FFR

3-month yield

1
L
H

0:3325
0:2070

0:3286
0:2018

0:3245
0:1975

0:0080
0:1405

0:0047
0:1324

0:0018
0:1208

12
L
H

0:3408
0:1747

0:3290
0:1661

0:3197
0:1595

0:0037
0:1745

0:0035
0:1676

0:0032
0:1578

60
L
H

0:2775
0:1629

0:2684
0:1561

0:2613
0:1509

0:0668
0:1835

0:0645
0:1775

0:0616
0:1691

12-month yield

1
L
H

0:1566
0:1557

0:1674
0:1669

0:1781
0:1781

0:1848
0:1854

0:1689
0:1695

0:1443
0:1445

12
L
H

0:1945
0:1948

0:1896
0:1901

0:1821
0:1826

0:1674
0:1677

0:1423
0:1418

0:1241
0:1230

60
L
H

0:1920
0:1933

0:1866
0:1879

0:1791
0:1802

0:1656
0:1660

0:1452
0:1439

0:1315
0:1288

60-month yield

1
L
H

0:2567
0:4091

0:2285
0:2257

0:1944
0:0733

0:1472
0:0004

0:0979
0:1005

0:0753
0:1904

12
L
H

0:1880
0:1903

0:1838
0:1856

0:1777
0:1788

0:1664
0:1662

0:1483
0:1464

0:1357
0:1327

60
L
H

0:1900
0:1903

0:1844
0:1846

0:1769
0:1771

0:1645
0:1645

0:1474
0:1472

0:1368
0:1363

CU

1
L
H

0:0517
0

0:0150
0

0:0008
0

0:0940
0:9999

0
0

0:0284
0

12
L
H

0:4160
0

0:0716
0

0:0029
0

0:2905
0:9981

0:0269
0:0009

0:1921
0:0010

60
L
H

0:6591
0

0:0377
0

0:0034
0

0:1023
0:9943

0:0435
0:0036

0:1540
0:0021

In�ation

1
L
H

0
0

0:0002
0

0
0

0:0002
0

0:9957
1

0:0039
0

12
L
H

0:0384
0

0:0070
0

0:0020
0

0:0100
0

0:9371
1

0:0053
0

60
L
H

0:5648
0

0:0715
0

0:0049
0

0:0231
0

0:2236
0:9979

0:1121
0:0021
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Table 6 (continued)

FFR

1
L
H

0:1185
0

0:0762
0

0:0111
0

0
0

0:0003
0

0:7940
1

12
L
H

0:5600
0

0:2842
0

0:0515
0

0:0007
0

0:0012
0

0:1023
1

60
L
H

0:6365
0

0:1759
0

0:0268
0

0:0024
0

0:0023
0

0:1562
1

a.Each entry is the proportion of the forecast variance (at speci�ed forecast horizon) for
level, slope,curvature, FFR, in�ation and CU that is explained by the particular factors.
b. L in column two means a low volatility regime, H means a high volatility regime.
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Figure 3.6. Impluse responses of yield and macro factors on each other
under regime L.

based on the ordering (Lt; St; Ct; CUt; �t; FFRt). Each response is measured in terms

of one percentage point shock to residuals. We consider two classi�cations of the

impulse responses. One focus of the macro-�nance model is regime shift. Thus, the

�rst classi�cation is to compare the impulse responses in regime L and H. According

to another focus of the macro-�nance model, that is, linkages among the yield and

macro factors, we split the impulse responses into four groups as in DRA: macro-to-

macro responses, macro-to-yield responses, yield-to-yield responses and yield-to-macro

responses.
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Figure 3.7. Impluse responses of yield and macro factors on each other
under regime H.

Figure 3.6 and Figure 3.7 plot the impulse responses of yield and macro factors on

each other in regime L and H. From the top left to bottom right in Figure 3.6 and

Figure 3.7, the sub-�gures respectively plot the impulse response of the level, slope,

curvature, CU, in�ation and FFR to shock on all factors. As is clear in �gures, the

IRs only have marginal di¤erence in two regimes in terms of the shape of impulse

responses curves, but they are di¤erent in terms of magnitude. There are volatile

and stable periods in �nancial markets, and the economy goes through booms and

recessions. Yet these �uctuations don�t signi�cantly change the relationship of factors

on each other. The macro factors usually respond to shocks to the yield factors in both

regimes, to a less extent, the yield factors respond to shocks to the macro factors. In

turbulent periods, the IRs are more signi�cant as indicated by the scale of y-axis.

In the group of the yield factors, there is no initial response of the level factor to

the slope factor. On subsequent periods, this response rises and keeps persistently at

that level. We can see that the level factor is the most persistent factor with respect

to the IR. The slope and curvature factors respond to shocks to the yield factors, but

they usually decays to near zero quickly.

At the initial stage, the FFR and the capacity utilization strongly respond to shocks

to the level. As time lapses, the capacity utilization responses fall down rapidly to a
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lower level. It implies that the yield level mainly a¤ect the capacity utilization in

the short-run. Similarly, the e¤ect of the slope on the capacity utilization disappears

quickly. Contrary to our intuition, the in�ation doesn�t respond signi�cantly to three

yield factors.

On the other hand, there are consistently weak responses of the yield factors to

shocks to in�ation and capacity utilization. This is not surprising since three factors

can explain most of variation of yields. As a Fed instrumental variable, the FFR has

e¤ect on the yield factors on the medium-run. In the group of the macro factors, all

macro factors respond to shocks to the FFR. The monetary policy hence has e¤ects on

the in�ation and economic activity. In�ation shocks a¤ect two factors: the in�ation

own and the capacity utilization. To a least extent, all other factors don�t signi�cantly

respond to shocks to the capacity utilization.

3.3.6. Implication of the expectations hypothesis

The expectations hypothesis states that the long-term yield equals to a weighted aver-

age of future expected short-term yields plus a constant term premium. It is a bench-

mark model of determining long-term yields. For example, in modern term structure

models long-term yields are usually a risk-adjusted average of future short-term yields16.

It is interesting to relate the regime-shifting macro-�nance model to the expectations

hypothesis and see what is implication for the expectations hypothesis.

In last decades, a lot econometric methods and techniques for evaluating the ex-

pectations hypothesis have been developed and applied. Among these methods, one

in�uential framework is a bivariate model (Campbell and Shiller (1987)) based on the

present value model that links the � -period yield yt(�) with the expected one-period

yield yt(1),

(3.12) yt(�) = (1� �)
X��1

i=0
�iEtyt+i(1) + c�

where c� is a maturity-dependent constant, � is the discount factor that re�ects the

impatience of economic agents and Et is the conditional expectation based on the

information set at time t. From section 2.2, the level factor has the interpretation of

16For survey, refer to Piazzesi 2004.
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Figure 3.8. The level from the macro-�nance model and the theoretical
level implied by the expectations hypothesis.

the long-term yield, on the other hand, minus slope factor represents the yield spread

between 3-month and 10-year yields. To shed light on the expectations hypothesis as

an approximation on the entire yield curve, we do not use a pair of long- and short-term

yields. Alternatively, the short rate is de�ned equal to Lt + St as in Carriero, Favero

and Kaminska (2006), and the long yield is Lt. Then, we have

(3.13) Lt = (1� �)
X��1

i=0
�iEt(Lt+i + St+i) + c�

Suppose that the data generating process is given by the state-space system Eqs.(3.9),

the implication of the Eq.(3.13) is

(3.14) Lt = (1� �)h0(I � ��MF )�1XMF
t

where h0 = [1; 1; 0; :::; 0] is a (6 � 1) selecting vector such that Lt + St = h0XMF
t .

Eq.(3.14) is the theoretical level factor implied by the expectation hypothesis. This

section concentrates on the comparison of the actual17 and theoretical level factors.

This tells us how well the expectations hypothesis approximates the observed yield

17The actual level is the level factor from the macro-�nance estimation.
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curve, or in terminology of Campbell and Shiller (1987), the economic signi�cance18.

Figure 3.8 plots two series of the theoretical and actual levels19. The theoretical level

frequently predicts the directions of the actual level factor with a correlation of 0.92,

but it is less volatile than the actual level with a volatility ratio of 0.45.

3.4. Conclusions

We have presented and estimated a macro-�nance model subject to regime shifts.

This approach is inspired by a stylized fact of the term structure of interest rates, that

is, the existence of turbulent and tranquil periods in �xed-income securities markets.

The DRA state-space representation of the model facilitates the estimation and extrac-

tion of the latent yield factors. The proposed macro-�nance model allows bidirectional

feedback across yield factors and macro factors. The formal tests provide strong evi-

dence in favor of interactions among yield and macro factors. This conclusion is robust

across both high volatility and low volatility regimes.

In future research, we plan to extend our macro-�nance model to allow for more

than two regimes. The Fed changed to target the federal funds rates in 1988. It seems

that a two-regime model may not be enough to capture business cycles and monetary

policy shifts. This necessitates a three-regime model (Garcia and Perron (1996)) to

describe the term structure of interest rates. Thus, it constitutes an interesting future

research agenda.

Appendix A. The MCMC Algorithm

(1) Generation of coe¢ cient matrix �; Assume the prior distribution of vec(�) is

a normal distribution N(a0;
0), conditional on all observed yields (and macro factors

for the macro-�nance model) YT and other parameters 	��, the posterior distribution

18I do not test the expectations hypothesis in this study since the focus in this study is the adequacy
of the expectations hypothesis, not the statistical rejection or non-rejection. Carriero, Facero and
Kaminska (2006) conducted the recursive and rolling-window tests of the expectation hypothesis
based on a simulation method. Zhu (2009) took into account the regime shift and provided some
supporting evidence on the expectation hypothesis.
19The discount rate is set to equal to 1=(1 + Lt=12). We plot TLt + 1:8 in the �gure (6), TLt is the
theoretical level.
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of vec(�) is also a normal distribution N(a1;
1), with

a1jYT ;	�� = a0[

�1
0 a0 + U

0W ]


1jYT ;	�� = 
�10 + U 0U

For simplifying the expressions of U and W , we de�ne

Vi = (IT 
 ��1=2�t
)

with �t = H;L represents a high or low volatility regime and I is identity matrix with

dimension T . Furthermore, let Z be

Zi = � 
 �k

where �k is a column vector of 1s, � is a matrix from the Hamilton �lter consisting of

the probabilities in each regime. Moreover,

U = V0(YT 
 Ik)� Z0 + V1(YT 
 Ik)� Z1

and

W = V0vec(YT )� Z0 + V1vec(YT )� Z1

As usual, 
 is Kronecker product and � is element-by-element multiplication. This

derivation is based on multivariate least squares.

(2) Generation of regimes �; We use the multimove Gibbs sampling method to

generate regimes. Based on Carter and Kohn (1994), Kim and Nelson (1999) partition

the joint distribution of regimes � conditional on YT and other generated parameters

	��,

g(�jYT ;	��) = g(�T jYT ;	��)
YT

t=1
g(�tj�t+1; Yt;	��)

The forward �ltering and backward sampling (FFBS) approach therefore can be applied

in two steps. The �rst step is to run Hamilton�s (1989) �lter to get �ltered probabilities

g(�tjYt;	��). The last iteration of the �lter is exactly g(�jYT ;	��), from which �T is

generated with a uniform distribution generator. The second step is to generate �t

conditional on �t+1 and Yt. We can make use of the following result:
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g(�tj�t+1; Yt;	��) _ g(�t+1j�t)g(�tjYt;	��)

combined with the matter of fact that g(�t+1j�t) is the transition probability and
g(�tjYt;	��) has been provided by the Hamilton �lter, we have

g(�t = 1jYt) =
g(�t+1j�t = 1)g(�t = 1jYt;	��)X1

j�0
g(�t+1j�t = j)g(�t = jjYt;	��)

Then we can generate all regimes recursively.

(3) Generation of state variables Xt; For generating the state vector, we still employ

the FFBS approach. Kim and Nelson (1999) employ Carter and Kohn�s multimove

Gibbs sampling method and provide the partition of joint distribution. There are also

two steps like in the generation of regimes �t, but we run the Kalman �lter instead

of the Hamilton �lter. Given the measurement equation (3.2) and the state equation

(3.3), the XT have a conditional normal posterior distribution:

XT jYT � N(xT jT ; PT jT )

where XT jT is the conditional expectation of XT from the last step of the Kalman �lter.

PT jT is the covariance matrix of XT jT . For simpli�cation, I suppress the 	�x in the

conditional information set. Consequently, we have

Xt�1jXt; Yt�1 � N(Xtjt;Xt+1 ; Ptjt;Xt+1)

with

Xtjt;Xt+1 = Xtjt + Ptjt�
0(�Ptjt�

0 + �t)
�1(Xt+1 � �� �Xtjt)

and

Ptjt;xt+1 = Ptjt � Ptjt�0(�Ptjt�0 + �t)�1�Ptjt

as shown in Kim and Nelson (1999, pp. 193). In this case, �t is a weighted average of

�0 and �1. Speci�cally

� = Pr(�t = 0)�0 + Pr(�t = 1)�1
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(4) Generation of the rate of factor loading changes �; We use a Random Walk

Metropolis step to draw �.

�m = �m+1 + &v

where � � N(0; 1), & is the scaling factor used to adjust the acceptance rate. The

acceptance probability � for � is given by

� = minfg(�m+1jYT ;	��)q(�mj�m+1)
g(�mjYT ;	��)q(�m+1j�m)

; 1g

= minfg(�m+1jYT ;	��)
g(�mjYT ;	��)

; 1g

where q() is a symmetric proposal distribution in the Metropolis step. Furthermore,

the posterior g(�mjYT ;	��m+1) is given by

g(�mjYT ;	��) _ g(YT j	)g(�m)

Thus, in case of the draw of �, the acceptance rate is the posterior ratio of the new

and old draws of �.

(5) Generation of diagonal covariance matrix 
; Since R is diagonal, it can be

generated element-by-element. Assume �2i , the i-th element in the diagonal of R, has

an inverted Gamma prior distribution, �2i � IG(v0=2; �0=2), the posterior distribution
of �2i is still an inverted Gamma distribution, �

2
i � IG(v1=2; �1=2), with

v1 = v0 + T

and

�1 = �0 + (yi � xi�i)

where yi, xi and �i are the appropriate columns of YT , Xt and �.

(6) Generation of non-diagonal covariance matrix �0 and �1; The covariance ma-

trix is sampled from the inverted Wishart distribution. With an informative prior, the

posterior distribution of covariance matrix (Chib and Greenberg 1996) follows

��tjYT ;	�� = IW (Ti;
Xti

t=0
�0t�t)

where i denotes two regimes.
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(7) Generation of transition probabilities p and q; The conjugate prior distribution

for p and q is a beta distribution.

p � beta(u11; u10)

q � beta(u00; u01)

as discussed in Kim and Nelson (1999, pp. 214-215), the posterior distributions are

p � beta(u11 + n11; u10 + n10)

q � beta(u00 + n00; u01 + n01)

with nij referring to the transitions from state i to j, which can be calculated by

counting the generated regimes �T .

Appendix B. Impulse Responses

To derive the regime-dependent impulse responses (IRs) of the yield and macro-

economic factors on each other, consider the state equation in Eqs.(3.9), simpli�ed

here,

(3.15) Xt = �Xt�1 + ��t ; �t = L or H

where Xt is a 6�1 vector of endogenous variables (factors). The innovations ��t follow

(3.16)
�L s N(0;�L)

�H s N(0;�H)

In order to �nd IRs, we can use the Choleski decomposition to transform the inno-

vations so that the resulting components are uncorrelated. From now on, we show

the computation of the IRs for the high volatility regime, for IRs in the low volatility

regime, we just need replace �H with �L in the following derivation. Speci�cally, there

exist a lower-triangular matrix PH that satis�es �H = PHP 0H , Let vt = P
�1
H �H;t, then
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the variance-covariance matrix of vt is an identity matrix. The MA(1) representation
for Eq.(3.15) is

(3.17) Xt = 	0 +	1vt�1 +	2vt�2 + ::: =
X1

i=1
	ivt�i

where 	i = �iPH . Then, the response of the ith element of Xt to a one unit shock on

j-th element vt�k is

(3.18) @X i
t=@v

j
t�k = (	k)ij

where (	k)ij is the (i; j) element of 	k. Standard bootstrapping techniques can be

employed to estimate the standard errors of the IRs.

Appendix C. Variance Decomposition

Following the notation20 in Appendix B, We can compute the regime-dependent

variance decompositions. As in Appendix B, the derivation here are for the high

volatility regime, by simply replacing vt = P�1H �H;t with vt = P�1L �L;t, it is easy to

calculate the variance decompositions for the low volatility regime. The error of the

optimal h-step ahead forecast at time t,
^

X t+hjtis

^

X t+hjt �Xt+h =
Xh�1

i=0
	ivt+h�i

the ith element of forecast error is,

^
X
i

t+hjt �X i
t+h =

X6

j=1

h
(	0)ij v

j
t+h + :::+ (	h�1)ij v

j
t+1

i
So the mean squared error of

^

Xit+hjtis

MSE(
^
X
i

t+hjt) =
X6

j=1

h
(	0)

2
ij + :::+ (	h�1)

2
ij

i
Therefore, the contribution of the jth variable to the mean squared error of the h-

period-ahead forecast is,

20For computing the variance decompostions of yields, we have the following MA(1) representation
for the observation equation: yt =

X1
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CHAPTER 4

Global Yield Curves and Sovereign Bond Market Integration

4.1. Introduction

Is the global government bond market integration time-varying? What are the im-

pediments to government bond market integration after �nancial deregulation? Under-

standing the dynamic evolution of bond market integration is important for investors

and policy makers for a variety of reasons, such as diversifying the risk in the world

market, reducing the cost of capital, forecasting the future macroeconomic dynamics

and interest rates, pricing the interest rate derivatives, making monetary policy and

�scal policy. The endeavor of understanding the yield curve dynamics has produced

a large literature and a lot of models. However little attention has been directed to

the integration dynamics of world government bond market. The di¢ culty associated

with de�ning and measuring the integration is one reason. Another possible reason

is bond markets are expected to be closely integrated. A few studies have focused

on looking for the driving forces of the comovements (Engsted and Tanggard (2007),

Ilmanen (1995), Sutton(2000)).

There are many reasons in favor of a closely integrated global bond market, for

instance, big institution age, �nancial deregulation, �nancial networks , free capital

�ow, among many others. Nevertheless, given the impediments in the global bond

markets, we can�t argue a priori that the global bond market is completely integrated.

Home bias might exist in the bond market because of the information asymmetry

about the real activity (Barr and Priestley 2004, hereafter BP). The hedging strategy

of institutions with liabilities denominated in domestic currency is usually to manage

domestic bond portfolio instead of global portfolio. Tax treatment di¤erence provides

one more reason for global bond market segmentation. Local currency denominated

government bonds also constitutes a reason. In addition, liquidity and exchange rate

risk play a signi�cant role in accounting for the failure of complete integration.

82
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In the literature, the investigation of international linkages of yield curves can be

broadly classi�ed in three categories. The �rst line is the testing of uncovered interest

rate parity (UIRP). The market e¢ ciency hypothesis of UIRP is too restrictive and

the testing just tells the failure or success of the null hypotheses, but the dichotomy

doesn�t show how well the model �ts as an approximation and the probable time-

varying dynamics of bond market integration. Furthermore the focus of the test is on

the long-term interest rates parity di¤erentials, so these studies neglect the information

contained in the maturity structure of yield curves. As is well-known, the maturity

spread helps forecast the real economic activity and interest rates (Ang, Piazzesi, and

Wei (2006), Campbell and Shilller (1991), Diebold, Rudebusch, and Aruoba(2006),

Estrella and Hardouvelis (1991), Hamilton and Kim (2002)).

The second line uses the one-factor asset pricing framework. The model is the-

oretically consistent and has �rm micro-foundations. However, the one-factor model

is di¢ cult to interpret and the omitted factors might change the degree and trend of

the market integration. Empirical econometric analysis constitutes the third line, but

these models are not theoretically rigorous. Just like the �rst line literature, the second

and third line studies don�t pay much attention to the cross section of yield curves that

are important for bond portfolio management and economic forecasting. Although the

maturity structure is not considered, Sutton (2000) tries to relate the comovement of

long-term and short-term yields by the expectation hypothesis of the term structure.

In this paper we apply the a¢ ne arbitrage-free dynamic Nelson-Siegel (1987) model

(AFDNS) (Christensen, Diebold and Rudebusch(2007)), hereafter CDR) to modeling

yield curves. The Nelson-Siegel model has good performance in �tting maturity struc-

ture of yield curves, and it is extensively employed by �nancial institutions and central

banks. Diebold and Li (2006) generalized the model to a dynamic speci�cation that

is consistent with the main stylized facts of yield curves. Forecasts based on the dy-

namic model are satisfactory, and three factors of the model, respectively level, slope

and curvature, have close interactions with macroeconomic fundamentals (Diebold,

Rudebusch and Aruoba (2006), Tam and Yu (2008)). CDR developed the no-arbitrage

Nelson-Siegel model, the a¢ ne speci�cation make it also a general equilibrium model

(Du¢ e (2001), Chapter 10, Piazzesi (2003)). The price of risk is determined by the
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marginal utility process that links the risk-neutral measure and data-generating mea-

sure. The AFDNS model shows theoretical consistency and inherits the empirical �t

of the Nelson-Siegel model.

There is strong evidence of cross-country bond market interactions (Barr and Priest-

ley (2004), Diebold, Li and Yue (2007), DLY hereafter). In addition to the idiosyncratic

factors, there are global yield curve factors driving the bond market in each individ-

ual country. We use latent factors for Germany, Japan, the U.K. and the U.S. to

extract the global latent factors with the Kalman �lter. As expected, the world factors

are highly correlated with the country-speci�c factors by DCC-GARCH (Engle 2001)

analysis. The idiosyncratic factors are given by the di¤erence of the country-speci�c

factors and the global factors.

De�ning market integration is clearly challenging. There is no consensus. The

bond market integration is de�ned here as movements in world factors determining

movements in interest rates. This measure of integration is consistent with the uncov-

ered interest rate parity if the expected exchange rate change is a martingale process,

therefore uncovered interest rate parity is a polar case of our model. Following the idea

of Bekaert and Harvey (1995), our speci�cation, the Markov-switching Nelson-Siegel

model, allows time-varying segmentation of world bond markets, it hence circumvents

the polar cases of complete segmented or integrated market and �xed integration. The

interactions of global bond markets in this framework are more complicated because of

the asymmetry and heterogeneity of three factors. The macroeconomic interpretation

of factors hints at the potential impediments in the economic fundamentals. Our con-

jecture is the segmetation comes from the dynamics of the real economy rather than

the nominal dynamics.

The integration is very volatile with our measure. It switches frequently between

perfect integration and complete segmentation. This is no suprise since our measure

requires markets to �uctuate together, and the �rst moment is employed for measure-

ment purpose. In constrast, in the international CAPM model the second moment

(volatility) is used to interpret the di¤erence in expected return. From the perspective

of making investment decisions and policy ex ante, the predicted integration is more

of our interest. Therefore we suggest applying the expected integration as the measure
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instead of the �ltered or smoothed integration of the Markov-switching Nelson-Siegel

model. It also avoids the volatile situation. Our �nding is interesting based on the ex-

pected integration measure. The relatively stable integration is consistent with results

in BP. But our measure shows lower integration than in BP due to the asymmetry and

heterogeneity of factors that are not captured by models not taking into account the

maturity structure.

The article proceeds as follows. In section 2, the AFDNS model is presented and

the empirical results of country local factors are reported. The global yield curve model

is speci�ed in section 3 and the global factors are extracted, then the nature of global

factors and country factors are analyzed. In section 4, we present the Markov-switching

Nelson-Siegel model for measuring the integration degree of the bond markets, results

are interpreted, and the potential impediments are considered. The �nal section o¤ers

some concluding remarks and some conjectures deserving further exploration.

4.2. Country-speci�c yield curve factors

4.2.1. A¢ ne arbitrage-free dynamic Nelson-Siegel model

Yield factors are obtained by estimating the a¢ ne arbitrage-free dynamic Nelson-Siegel

model (AFDNS). Most term structure models use three factors to capture stylized facts

of yields in cross-section and time series. By properly restricting the factor loadings in

the statistical factor model, Diebold and Li (2006) proposed the dynamic Nelson-Siegel

model for the � -period yield

it(�) = Lt + St(
1� e��t�
�t�

) + Ct(
1� e��t�
�t�

� e��t� ) + "t

where Lt is the level factor, St denotes the slope factor and Ct represents the curvature

factor. The parameter �t is the rate of changes of factors loadings along the maturity

horizons. It also determines the maturity at which the curvature loading achieves its

maximum. Empirically, the level factor corresponds to the long-term interest rates,

the slope factor is associated with the di¤erence between the short-term yield and

long-term yield, and the curvature factor corresponds to two times of medium-term

yields minus the sum of long and short-term yields. Therefore, the level factor is a
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long-term factor, the slope factor is a short-term factor and the curvature is a medium-

term factor. The three factors contain information on the macroeconomic dynamics

and vice versa (Diebold, Rudebusch and Aruoba(2006), Tam and Yu(2008)).

For the entire yield curve with di¤erent maturities (�) at time t, the model can be

speci�cd as:
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The dynamic Nelson-Siegel model has superior out-of-sample forecasting performance,

especially at long horizons. In constrast, the a¢ ne term structure models, which is

important for pricing interest rate derivatives, provide poor forecasts (Du¤ee 2002).

Although the dynamic Nelson-Siegel has the advantage in forecasting, it is neither a

general equilibrium model nor a no-arbitrage model, hence it is theoretically inconsis-

tent.

To achieve the theoretical rigor and keep the �t of the model, CDR develops the

a¢ ne abritage-free class of Nelson-Siegel models. The three-dimensional state variable

Xt is assumed to be given by a stochastic di¤erential equation (SDE)

dXt = K
Q(t)[�Q(t)�Xt]dt+ �t

0BBB@
q
1(t) + �1(t)Xt ::: 0

...
. . .

...

0 :::
q
3(t) + �3(t)Xt

1CCCA dWQ
t

where Q is risk neutral-measure, WQ
t is standard Brownian motions in R

3 under mea-

sure Q. The relationship between the data-generating measure P and the risk-neutral

measure Q is given by the following equation:

dWQ
t = dW

P
t + �tdt

with
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Then the SDE for the state variables Xt under data-generating measure P is given as

follows:

dXt = K
P (t)[�P (t)�Xt]dt+ �tdW

P
t

This speci�cation preserves the a¢ ne dynamics under the data-generating measure.

The connection between the two measures determines the price of the risk. The above

equation corresponds to the A0(3) model in Dai and Singletion (2000). This type of

model allows the volatility of state variables to be independent of the state variables.

With two ingredients of the a¢ ne term structure models at hand, the third ingredient,

the risk-free short interest rate is given by

it(1) = �
X
0 + (�

X
1 )

0Xt

CDR follows the Du¢ e and Kan (1996) framework where the zero-coupon bond

prices are exponential-a¢ ne functions of the state variables. With appropriate as-

sumptions in SDE of Xt speci�ed in CDR, the zero-coupon bond yields are given by

it(�) = X
1
t +

1� e���
��

X2
t + (

1� e���
��

� e��� )X3
t �

C(�)

�

where (X1
t ; X

2
t ; X

3
t ) is the state variables vector corresponding the (Lt; St; Ct) in the

dynamic Nelson-Siegel model. This is the closest a¢ ne no-arbitrage approximation to

the dynamic Nelson-Siegel model as discussed in CDR. The di¤erence between these

types models is the yield-adjustment term �C(�)
�
(see CDR). The AFDNS model rules

out the arbitrage opportunities in the �nancial market, that is, arbitrage opportunties

are immediately traded away in modern well-organized markets. Furthermore, the

model inherits the good empirical �t of the dynamic Nelson-Siegel model. Therefore,

the AFDNS is theoretically rigorous and empirically appealing.



4.2. COUNTRY-SPECIFIC YIELD CURVE FACTORS 88

4.2.2. Data and summary statistics

The U.S. data consist of end-of-month observations of 1, 3, 6, 12, 24, 36, 60, 84, 120

months zero-coupon yields on treasury securities covering the period from January 1985

to March 2008. The data source is econstatsTM . The U.K. zero-coupon yields with

maturities of 6, 9, 10, 11, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120 months are retrieved

from econstatsTM . It covers the same period as the U.S sample and all data are end-

of-month observations. For the Germany zero-coupon government bond yields, the

month-end observations with maturities 12, 24, 36, 48, 60, 72, 84, 96, 108, 120 months

are retrieved from Deutsche Bundesbank, the central bank of Germany.

The Japanese dataset has two sources. The �rst sample covering the period from

January 1985 to December 1991 is from the Key Economic Statistics Files of the

PACAP Database-JapanTM compiled by the Sandra Ann Morsilli Paci�c-Basin Capital

Markets Research Center at the University of Rhode Island. The end-of-month yields

consist of government bond interest rates with maturities of 12, 24,36, 60, 84, 120

months. The second sample covers the period from January 1992 to March 2008. The

dataset is downloaded from Bloomberg. The maturities are 6, 12, 24, 36, 48, 60, 72,

84, 96, 108, 120 months.

The summary statistics including skewness and kurtosis of yields for each maturity

and for each country is presented in Table 4.11. The 3D plot of term structure of interest

rates for each country is graphed in Figure 4.1. One stylized fact of interest rates is

they tend to exhibit considerable persistence and are believed to be nonstationary or

better appromixated by the integrated process. This feature has profound implications

for estimation and statistical inference.

The autocorrelation coe¢ cients and augumented Dickey-Fuller tests in Table 3.1

provide evidence of persistence and non-stationarity2. However, the yields are usualy

cointegrated, as implied by the rational expectation hypothesis. The Johansen cointe-

gration analysis presents evidence of common trends in yields3. The cointegration may

explain another important stylized fact of the yield curve: spreads are less persistent

1The statistics for Japan are based on the sample retrieved from Bloomberg. This applies to results
for the DNS estimates in Table 2 and the AFDNS estimates in Table 4.
2The ADF test rejects the unit root in the 6-month yield of Japan. Because of the low power of the
ADF test, we also conduct the PP test, KPSS test, Ng-Perron tests, the results are mixing.
3The analysis results are available upon request.
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than yields. The skewness and kurtosis show yields don�t deviate considerably from

the normal distribution. The standard deviations in Table 4.1 tells us that short-term

yields usually are more volatile than long-term yields with the exception of Japan. In

Figure 4.9, we plot average yield curves, for Germany, Japan and U.S., the average

yield curves are upward-sloping for the time period under analysis, in constrast, the

U.K. average yield curve has S-shape.

Table 4.1 About Here

Figure 4.1 About Here

4.2.3. Country local factors

Non-linear least squares can be employed to estimate the dynamic Nelson-Siegel model

in the �rst equation of section 1.4.2 in chapter 1. In Diebold and Li (2006), they

�x the �t and set it equal to the value that maximizes the loading on the curvature

factor at 30 months. In so doing, one can estimate the dynamic Nelson-Siegel model

by ordinary least squares and make the numerical optimization more reliable. We

follow this approach to estimate the DNS model and results are presented in Table 4.2

with �t �xed at value of 0.0600. The DNS model is capable of replicating a variety

of yield curve shapes. Both the three-factors model and two-factors model (without

curvature factor) �t yield curves across countries well, but three-factors model has

higher explanatory power according to the average R2.

Table 4.2 About Here

In order to estimate the AFDNS model, we �x the �t at 0.0600. The Kalman �lter

estimation is initialized by using the unconditional covariance matrix of the state vector

and mean vector from the DNS estimates. The starting transition matrix parameters

are also from OLS regression of factors extracted by the DNS model. Yield adjustment

term4 of the AFDNS model bridges the connection betweeen the state variables dy-

namics under data-generating measure and the volatility matrix � under risk-neutral

measure. This makes the AFDNS model theoretically consistent and hence di¤ers from

4The last item on the right side of equation (49), chapter 2.
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the DNS model. The conditional mean-reversion matrix (exp(�KP�ti)) determines

the mean-reverting rate of state variables. We present the mean-reversion matrix and

yield adjustment terms in Table 4.3. In CDR, the yield adjustment terms are trivial

for all maturities. However, in our estimation, the yield adjustment terms is signi�cant

for long-term interest rates. This may come from the �rst item on the right hand side

of the last equation in section 2.4.2.

Table 4.3 About Here

The extracted level, slope and curvature factors across countries are plotted in �gure

4.2-4.4, respectively. For the purpose of comparison, factors from the DNS model and

AFDNS model are depicted together in �gure 4.5 and �gure 4.6 for each country. The

dynamics of factors from the AFDNS model mimic the dynamics of factors from the

DNS model, the small di¤erence may be induced by yield adjustment terms. The level

factor dynamic is homogeneoues across countries. In contrast, the curvature evolution

over time is heterogeneous across country. The principal component analysis in section

4.2.3 supports the conclusion.

Figure 4.2 About Here

Figure 4.3 About Here

Figure 4.4 About Here

Figure 4.5 About Here

Figure 4.6 About Here

The summary statistics of factors from AFDNS model is presented in Table 4.4.

The level factor is more persistent than the slope and curvature factors. The ADF

tests show curvature factors across countries may be stationary except Germany, but

level factors are nonstationary except U.S. level factor. As to the volatility feature, the

level factor can be more or less volatile than the slope and curvature factors. We note

that the slope factors are more correlated with curvature factors than level factors.

Although the Pearson and likelihood ratio tests reject the independence of level factor

and slope factor, in empirical macro-�nance model (Diebold, Rudebusch and Aruoba

(2006), Tam and Yu (2008)), one factor contains little extra information about other

factors or macro-variables. Diebold and Li (2006) provides the empirical evidence of
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the interpretation of level, slope and curvature factors as long-term, short-term and

medium term factors. Figure 4.7 plots the 10-year yield, 3-month yield minus 10-year

yield, and two times 2-year yield minus 10-year and 3-month yeilds with the level, slope

and curvature factors5.

Table 4.4 About Here

Figure 4.7 About Here

The �t of the AFDNS model is good. The error terms of the estimation is plotted

in �gure 4.8. To faciliate the comparison, the scale of the �gure is set to be the same

as in �gure 4.1. Figure 4.9 plots the average �tted yield curves along with the obseved

yield curves. The AFDNSmodel replicates the upward sloping yield curves of Germany,

Japan and the U.S. and the S-shape of the U.K.. It is important to note that the model

�ts the middle region of the yield curves better than the end regions. This might be

a matter of fact of the model, as pointed out in Diebold and Li (2006): "......because

the maturities are not equally spaced, we implicitly weight the most "active" region of

the yield curve most heavily when �tting the model".

Figure 4.8 About here

Figure 4.9 About Here

4.3. Global yield curve factors

4.3.1. Model speci�cation

A number of studies have focused on the international linkages of bond markets. There

seems to be a concensus that the bond yields and returns are highly correlated across

countries. Hafer et. al. (1997) found that long-term yields seem to be cointegrated

across countries, hence there is comovement of international bond markets. Later,

Sutton (2000) tried to relate the cointegration in long-term yields with comovement

of short-term yields by rational expectation hypothesis. The conclusion is that the

comovement of long-term yields come out of the comovement in term premia. Ilmanen

(1995) found that a small set of global instruments can forecast a signi�cant fraction

of monthly yields variation, and the author concludes that the predictability of global

5For other countries, the 3-month yield is not available.
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bond returns come from a few global factors. The empirical study of Driessen et. al.

(2003) �nd that world bond markets are correlated by using a linear factor model and

principal component analysis, the driving force of the comovement is the level of yields

in each country, this is consistent with the matter of fact that the level factor dominates

the term structure of interest rates. Engsted and Tanggard (2007) found that in�ation

news drive the comovement between the U.S. and Germany bond markets. Barr and

Priestley (2004) applied the international CAPM model allowing time-varying market

segmentation to investigate global market integration, and they found almost 70%

of the variation can be explained by world dynamic beta, and the degree of market

integration is stable during the period covered by the sample.

Recently, DLY focused on the entire term structure of interest rates. They used

the latent factor dynamic Nelson-Siegel model to �t the yield curve. For a set of

country yield curves, they �t them by allowing common global factors and country-

speci�c factors. There are interactions between global factors and country-speci�c

factors, and the loading of country-speci�c factor on global factors is allowed to vary

across countries. The �nding is that global factors explain a big fraction of country

yield curve. In this paper I use country-speci�c factors from the AFDNS model to

extract the global yield curve factors. The speci�cation is di¤erent with DLY. DLY

use two-factors model, while the dynamic Nelson-Siegel model estimation6 shows that

three-factors model signi�cantly improve the goodness-of-�t according to the R-square.

Secondly, the level, slope and curvature factors seem to be independent as presented

in the macro-�nance model of Tam and Yu (2008). CDR shows that the forecasting

performance of the independent factors model is no worse than the correlated factors

model. Taking into account above points, we use a three-factors model, but assume

that the global level (slope, curvature) factor only depends on the domestic level

(slope, curvature) factor.This simpli�es the estimation and alleviate the local maximum

problem associated with the numerical optimization.

For extracting the common factor, principal component analysis is a popular method,

although it is di¢ cult to interpret. In this paper, we use Kalman �lter to extract global

6The OLS estimation of Diebold and Li (2006) model is applied by �xing the � equal to 0.0600.
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factors, and principal component is an interesting benchmark for comparision. First,

we decompose the country-speci�c factors:

(4.1)
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where lit, sit, cit are country-speci�c factors from the independent AFDNS estimation,

Lt, St, Ct are global level, slope and curvature factors. The ulit, u
s
it, u

c
it are country

idiosyncratic level, slope and curvature factors. The i denotes one of four countries:

the U.S., the U.K., Germany and Japan. As aforementioned, the assumption of inde-

pendent level, slope and curvature dynamics are reasonable, therefore, we extract three

global factors independently. we assume country idiosyncratic factors follow an AR(1)

process:

(4.2)
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k is number of countries. The speci�cation assumes the country idiosyncratic factors

are independent, with the diagonal variance-covariance matrix. This make sense eco-

nomically if there are no regional factors in the hierachical model. The global factor

dynamics are given by an AR(1) process:

(4.3) Lt = �+ �Lt�1 + �t

The Eqs.(4.2) and (4.3) can be used to extract the global factors.

4.3.2. Global factors and idiosyncratic factors

The Kalman �lter estimation of system equation (4.2) and (4.3) is applied to extract the

global factors of yield curves. The unrestricted vector autoregression (VAR) estimation
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shows that one factor has little extra information about the dynamic of other factor,

plus empirical evidence from Diebold and Li (2006), Tam and Yu (2008), therefore

we extract the global level, slope and curvature factors by independently iterating the

Kalman �lter. This simpli�es the extraction of global factors signi�cantly. We initilize

the Kalman �lter with the unconditional covariance matrix and a mean vector from

the average of country-speci�c factors. The estimated parameters are reported in the

upper panel of Table 4.5.

Table 4.5 About Here

The global factors essentially are one common component of country-speci�c fac-

tors. Two interesting questions before we scrutinize the global factors are: what is the

explanatory power of one common component at most? What is the relationship of the

components extracted by the Kalman �lter and components from principal component

analysis? To answer questions, the principal component analysis results are presented

in the lower panel of Table 4.5. As we mentioned, the cross-correlation of level factors

is higher than slope and curvature factors. The �rst principal component can explain

91% of variation of the country-speci�c level factors. For slope and curvature factors,

only 57% and 48% of variation can be interpretated by the �rst principal component.

There is strong interactions between global factors from the Kalman �lter and the �rst

principal component. The adjusted �rst principal component and global factors are

plotted in the �gure 4.12. The correlations of level, slope and curvature factors and

the correspoding �rst principal components are respectively 0.99, 0.87 and 0.75. Ta-

ble 4.6 gives the descriptive statistics of global factors. As in the country model, the

level factor is more persistent than the slope and curvature factors. The skewness and

kurtosis of curvature factor is not in favor of the normality distribution.

Figure 4.12 About Here

Table 4.6 About Here

To investigate the correlation and explanatory power of global factors on country

speci�c factors, we run the following regression:
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fit = �+ �fwt + "it; i = GM;JP; UK;US;

f = level; slope; curvature; fwt : global factor

Table 4.7 presents the results. All country-speci�c factors have positive loadings on

global factors. The global level factor has the most signi�cant explanatory power

judged by R2 of the regression. The global slope and curvature factors have lower but

still signi�cant power of explanetion. The regression implies that the level factor has

the highest degree of integration.

Table 4.7 About Here

The previous analysis provides the static correlation of global factors and country-

speci�c factors. The purpose of the paper is to investigate the time-varying bond

markets integration, hence the dynamic correlation is our interest. Engle (2002) pro-

poses the dynamic conditional correlation (DCC-GARCH) model, and it is appropriate

for the purpose here. The model is extensively applied because it preserves the simplic-

ity of univariate model in a multivariate setting. The DCC-GARCH model for factors

is as follows:

ftj
t s N(0; Ht)

Ht = DtRtDt

ft is the vector of the level, slope or curvature factors (Germany, Japan, The U.K,

the U.S., world). The maximum likelihood method can be used to estimate the DCC-

GARCHmodel. Figures 4.13, 4.14 and 4.15 present the dynamic conditional correlation

of level, slope and curvature factors across countries. In general, the global level factor

is positively correlated with the country-speci�c factors. The dynamic conditional

correlations of slope and curvature factors shift more frequently. Anyway, all factors

are highly correlated, although the correlation may be postive or negative.

Figure 4.13 About Here
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Figure 4.14 About Here

Figure 4.15 About Here

4.4. Global market interactions and integration

4.4.1. The integration model

There are interactions and linkages of the government bond markets across countries.

However, market integration is a stricter restriction in the sense that it implies the

comovement or interaction in the bond markets across countries, but not vice versa.

Interactions are empirical phenomena, the market integration should be theoretically

consistent in addition to being empirically correlated. In the international CAPM

model (Barr and Priestley (2004)), government bond markets are integrated if the

world beta price the excess return. In constrast, the AFDNS model is for describing the

yield curve level dynamics, therefore we de�ne bond market integration as a situation

in which the movement in global yield factors determines the movement in yields with

di¤erent maturities in each country�s market. Otherwise, the markets are segmented

if the movement of yields is determined by the movement of idiosyncratic factors.

The notion of integration is challenging and controvertial. The de�nition here

requires bond markets to �uctuate together. The accuracy of the measure relies on

the performance of underlying yield curve models. Once the AFDNS is called into

question, so is the dynamic measure of integration. Empirically, the AFDNS model

provides the necessary accuracy.

The de�nition focuses on the change of interest rates instead of the levels. Because

the level factor dominates the yield curve dynamics, the change of factors eliminates

the level-factor dominance e¤ect. This allows a stable interest rate di¤erential be-

tween two markets that is consistent with the e¢ cient market hypothesis if there is

also a stable in�ation wedge. With this de�nition, more attention is directed to the

interactions of three latent factors from the AFDNS model. These interactions have

important information about the market integration. For example, Sutton (2000) �nds

that the comovement of long-term yields can�t be explained by the interactions of short-

term yields. This is the evidence of heterogeneous factor dynamics. The cross-section
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maturity structure of the sterm structure contains useful information for forecasting

future interest rates and the macroeconomic dynamics (Ang, Piazzesi, and Wei (2006),

Campbell and Shilller (1991), Diebold, Rudebusch, and Aruoba(2006), Estrella and

Hardouvelis (1991), Hamilton and Kim (2002)). Tan and Yu (2008) o¤ers the further

evidence of heterogeneous factors dynamics using the dynamic conditional correlation

analysis. Most of previous studies focus on the time series properties of comovement,

with above de�nition, the properties of yield curves in cross-section are investigated.

According to our decomposition of country-speci�c factors in (4.1), even the world fac-

tors are constant, they still play a role in explaining the yields in each market, while

the change of factors circumvent the problem. This provides another reason.

In completely segmented markets, the change of yields in each market is determined

by the country idiosyncratic factors

(4.4)
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where i = Germany, Japan, UK, US, and N is the the observations in cross-section at

each point of time, and
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In a completely integrated global market, the change of yields in each market is deter-

mined by global factors
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(4.6)
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This equation is consistent with uncovered interest rate parity and the AFDNS model

if the expected change of exchange rate is a martingale process. Given the uncovered

interest rate parity is

(4.7) Et(ext+1 � ext)=ext = y1t(�j) � y2t(�j)

where ex is the exchange rate, yit(�j) is the yield for country 1 with maturity � j. Because

the expected change of exchange rate is zero (martingale process), the yields di¤erential

should be zero for all maturities according to the law of one price. Since the yield curve

is given by the AFDNS model, the zero di¤erential holds in time series when

(4.8)

l1t

s1t

c1t

=

=

=

l2t

s2t

c2t

therefore the uncovered interest rate parity is a polar case of our model.

In the real world, government bond markets across countries are expected to be

neither perfectly integrated nor completely segmented. The degree of segmentation

might be time-varying, it is even expected there is a trend of increasing degree of

integration due to deregulations. The switch of regimes may be caused by common

shocks in both �nancial markets and real economy. It could be a surprise or partially

expected. The Markov-switching Nelson-Siegel model allows time-varying dynamic

evolution of market integration,
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(4.9)
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where �t is the probabilityof the market integration. �t = 1 implies the perfect market

integration, �t = 0 means markets are completely segmented. The regime probability

�t follows a Markov chain process and the EM algorithm is an e¢ cient estimator

(Hamilton 1994), the optimal inference and forecast of regime is given by iterating the

following equations

^
�tjt =

(
^
�tjt�1 � �t)

10(
^
�tjt�1 � �t)

and
^
�t+1jt = P

^
�tjt

with P being the transition probability matrix. Moreover, the disturbance vector is

given by
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This allows regime-dependent heteroskedasticity.

4.4.2. Integration mearsure and interpretations

The starting point of time of the sample used for integration analysis is January 1985.

It is then that �nancial deregulation has become a global phenomenon. Based on prior

knowledge, one might expect that the global bond markets are close to full integration.

However, in the last two decades world �nancial market has gone through a turbulent

age, so bond market integration may be subject to the turbulences. It is reasonable to

postulate ex ante that market integration is time-varying. We are also suspicious about
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the full integration due to the reasons enumerated in the introduction, such as, home

bias, tax treament di¤erence, exchange rate risk, liquidity risk, among many others.

The Markov-switching Nelson-Siegel model allows us to measure the dynamic evolu-

tion of the government bond market integration. The estimated transition probabilities

and the log likelihood are presented in Table 4.8. Here state 1 has natural interpreta-

tion of market integration and state 2 represents market segmentation. In this model,

the transition probabilities are �xed to be constants. As the Markov-switching model

is highly nonlinear, it may be subject to local maximum and corner solution. In es-

timation, we use the parameter vector from the regression of country-speci�c yields

on global yields as the intial parameters for state 1. For state 2, the parameters vec-

tor from regression of country-speci�c yields on the idiosyncratic yields is used as the

starting parameters. The global yields are de�ned as the �rst item on the right hand

side of Equation (4.9), they are plotted in �gure 4.16, and the idiosyncratic yields are

the second item on the right hand side of the same equation.

Table 4.8 About Here

Figure 4.16 About Here

4.4.2.1. Germany. Two major changes may a¤ect the government bond market in

Germany for the period covered by the sample. One is the monetary union marked by

the Deustche mark becoming legal tender in East Germany, this rise the government

funding needs. The other is the introduction of the Euro. There are also some structural

changes in the Germany bond market, for example, issuing technique changes from the

underwritng procudure to combined with auctions in July 1997, introduction of Bund

futures and options on Bund futures in late 1980s. The estimated result for Germany

is plotted in upper panel of Figure 4.17. The market integration is quite volatile by the

Markov-switching Nelson-Siegel model. This is not surprising because we use the �rst

moment to measure the integration, as long as world yields are rising (falling) while

Germany yields are falling (rising), market is segmentated. In constrast, the second

moment (volatility) is applied in the capital asset pricing model. Instead of �ltered

probabilities, we may look at the predicted probabilities (�t+1jt), that is the expected
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degree of market integration ex ante, the expected integration is stable and between

the interval of 0.3 and 0.45.

Figure 4.17 About Here

4.4.2.2. Japan. The deregulation beginning in 1970 has reconstructed the Japanese

�nancial markets, up to 1985, restrictions, for instance, interest rate ceiling, capital

moving to and from overseas, have been removed. The �nancial markets are freed

of strict regulations. After that, in 1997 the Bank of Japan Law was revised and the

Bank of Japan acquired a more independent legal statue. The ongoing �nancial reform,

"Japanese Big Bang", has far-reaching consequences in �nancial markets. These events

may change the state of integration of the Japanese government bond market with the

world bond market. The middle panel of �gure 4.17 presents the results for Japan. The

market integration is also volatile. If we look at the expected degree of integration, it

is relatively stable and in the interval 0.25 � 0.50.

4.4.2.3. U.K.. Our prior expectation is the UK would have high degree of integration

because �nancial market in the UK are free of regulations. The results for the UK is

in the lower panel of �gure 4.17. The volatile integration is all the same as Germany

and Japan. However, the dynamic degree of integration is in the interval 0.225 � 0.3,

it is the lowest among four countries investigated.

4.4.2.4. U.S.. The US is the single biggest and most important market in the world.

The dynamic expected degree of integration is in the interval 0.2 � 0.5, it is more

volatile than other marekets. Measured by the mean, it has the highest degree of

integration. The �ltered probabilities are still volatile due to the aforementioned reason.

The upper panel of �gure 4.18 plots the �ltered and predicted probabilities of being in

the integration state.

Figure 4.18 About Here

4.4.2.5. World. The integration of world bond market as a whole is main interest.

The Markov-switching model allow us to measure the world market integration dy-

namically. We choose one long-term yield and one short-term yield for each country

(Germany: 2-year, 9 year, Japan: 1-year, 10-year, the UK: 6-month, 8-year, the US:

3-month, 7-year ), it consists of the dependent variables. The world factors and cor-

responding idiosyncratic factors are independent factors. We can�t include all yields,
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otherwise, the coe¢ cient matrix for the global factors is singular. The results are in

the lower panel of �gure 4.18. The expected dynamic integration is in the interval

0.1 � 0.4. This is not suprising given the degree of integration for each country. The

world integration is a stricter restriction because it requires the global factors to explain

yields across countries at the same time.

Figure 4.18 About Here

The stable dynamic predicted probabilites of integration implies that the market

expectation of integration is stable. This is consistent with the �nding in BP where

the authors reject the time-varying bond market integration. However, our results

imply a lower degree of integration. It is not suprising because we take into account

the maturity structure of the yield curve in cross-section. Combined with the results

of the principal component analysis, the idiosyncratic regression and DCC-GARCH

analysis, the market segmentation stems mainly from low degree of integration on

slope and curvature factors. Another reason is that the heterogeneous dynamics of the

factors, the integration of one factor may accompany the segmentation of some other

factor. Because the level factor represents the long-term factor, the long end of the

term structure is more likely to be integrated than short end of the term structure that

are represented by the curvature factors. This �nding is consistent with Sutton (2000).

This may suggest that the short end of the bond market is the impediment to market

integration.

Empirically, the level factor is highly correlated with in�ation. The slope factor is

associated with real activity (Diebold et. al (2006)), and curvature is associated with

uncertainty (Zhu 2008). In previous macro-�nance model (Ang and Piazzesi 2003), the

macro factors are found to a¤ect the short end of the yield curve, but leave the long

end not accounted for. Therefore, the segmentation is more likely coming from the

dynamics of real economy than from the nominal dynamics.

4.5. Conclusions

It is di¢ cult to measure the integration of the government bond market into the

world bond market. Some previous studies investigate the long end integration of

yield curves, while others investigate the short end integration of yield curves. In this
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paper, we propose a measure that take into account the maturity structrure of bond

yields. This measure also allows for time-varying conditional market integration. We

use a theoretically consistent latent factors model, the AFDNS model, to describe

the dynamics of the yield curves in both time series and cross-section. Then the

global factors are extracted from the country factors. Finally, the market integration

is measured by the Markov-switching Nelson-Siegel model.

Some results are consistent with previous studies, but we shed new light on bond

market integration. The new �nding is that market segmentation are from two aspects,

one is the integration asymmetry of bond markets. The level factor is more integrated

than the global slope and curvature factors. The other reason is the heterogeneous

dynamics of latent factors. The integration of factors are not simultaneous. This tells

us that market integration is from the short- and medium end of yield curves.

A number of extensions deserve further exploration. Why is the short end of the

market more segmented than the long end of the market? It is widely believed that

the central banks can take control of the short-term interest rates. However, can

monetary policy shocks explain partially the short end segmentation of the market?

This question is associated with the monetary policy transmission mechanism. The

rational expectations hypothesis plays a pivotal role in the term structure of interest

rates. Sutton (2000) hence tried to relate the market integration with the rational

expectation hypothesis. In this framework of integration, what role do the rational

expectations play?

From a �nancial economics perspective, does this imply gain of portfolio diversi-

�cation? If not, what is the risk of portofolio diversi�cation. There are a number of

risks, such as exchange rate risk, liquidity risk, but which one is the dominant one?

Associated with the risk, one also has to explain the price of risk. These are some

possible future extensions.
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Table 4.1: Summary Statistics for Bond Yields
Germany

maturity Mean Std. skew- kurto-
^
�(1)

^
�(12)

^
�(30) ADF

(months) Dev. ness sis
12 4.6981 1.9934 0.8865 2.8322 0.9925 0.8239 0.4654 -1.482
24 4.8881 1.9001 0.8248 2.7951 0.9911 0.8091 0.5000 -1.623
60 5.4378 1.6805 0.4953 2.4366 0.9908 0.8245 0.6302 -1.476
120 5.9188 1.4821 0.1114 2.0354 0.9903 0.8484 0.7597 -1.126

Japan

maturity mean Std. skew- kurto-
^
�(1)

^
�(12)

^
�(30) ADF

(months) Dev. ness sis
6 0.6474 0.9599 1.7709 4.9275 0.9636 0.5883 0.2093 -3.183
12 0.7299 0.9855 1.6646 4.5191 0.9639 0.6016 0.2462 -1.366
60 1.4694 1.1333 1.2654 3.4682 0.9648 0.6535 0.3677 -1.757
120 2.2334 1.1761 1.0684 2.9223 0.9692 0.7132 0.4459 -1.405

U.K.

maturity mean Std. skew- kurto-
^
�(1)

^
�(12)

^
�(30) ADF

(months) Dev. ness sis
6 7.1674 2.9581 0.8249 2.4826 0.9635 0.5883 0.2093 -1.972
12 7.1004 2.7671 0.7402 2.3789 0.9878 0.8186 0.6054 -1.438
60 7.1984 2.3906 0.3329 1.7688 0.9878 0.8602 0.7724 -1.435
120 7.2003 2.3584 0.2000 1.5532 0.9893 0.8968 0.8223 -1.450

U.S.

maturity mean Std. skew- kurto-
^
�(1)

^
�(12)

^
�(30) ADF

(months) Dev. ness sis
6 4.9810 2.0397 -0.1685 2.4790 0.9929 0.6960 0.2327 -1.711
12 5.1507 2.0483 -0.1063 2.4441 0.9911 0.7047 0.2952 -1.712
60 6.0391 1.9105 0.3038 2.5432 0.9811 0.7164 0.6114 -2.416
120 6.4194 1.8052 0.5292 2.6213 0.9907 0.8443 0.7225 -2.692

Notes:
(1)The summary statistics for Japan is based on Bloomberg sample.

(2)
^
�(�)is the � -th autocorrelation coe¢ cient.

(3) The lag length of ADF test is selected by SIC.
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Table 4.2: OLS Estimates of Dynamic Nelson-Siegel Model

Germany
model R2 level t-value Std.Dev. slope t-value Std.Dev

three factors 0.9823 6.4474 2396 1.4431 -1.7399 -433.7 1.6689
curvature t-value Std.Dev.
-2.2329 -143.8 2.3655

two factors 0.8426 6.1004 867.8 1.5138 -2.1903 -75.52 1.9845

Japan
model R2 level t-value Std.Dev. slope t-value Std.Dev

three factors 0.9804 2.9365 170.3 1.8958 -2.0608 -117.7 1.1887
curvature t-value Std.Dev.
-3.5256 -45.8 1.8454

two factors 0.8287 2.1938 80.63 1.2506 -2.1318 -34.63 0.7634

U.K
model R2 level t-value Std.Dev. slope t-value Std.Dev

three factors 0.9425 7.3024 1231 2.4339 -0.1741 -41.63 2.0108
curvature t-value Std.Dev.
-0.3378 -4.226 1.9574

two factors 0.7958 6.1004 1094 2.3130 -2.1903 -6.27 2.0090

U.S.
model R2 level t-value Std.Dev. slope t-value Std.Dev

three factors 0.9183 6.7331 488.5 1.7350 -2.1327 -193.8 1.6050
curvature t-value Std.Dev.
-0.3017 -22.24 2.0716

two factors 0.8387 6.6523 507.1 1.9768 -2.0859 -83.46 1.4816

Notes:

(1) Statistics for Japan are based on the sample retrieved from Bloomberg.
(2) The two-factors model doesn�t have curvature factor.
(3) The reported statistics are mean of cross-section OLS estimation.
(4) For regression details, refer to Diebold and Li (2006); Here �= 0.0600.
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Table 4.3: Estimates of the Diagonal AFDNS Model Parameters

Germany

exp(�KP 1
12
) =

0@0:9905 0 0
0 0:9681 0
0 0 0:9579

1A
Yield-term -0.0250 -0.0795 -0.1476 -0.2183 -0.2857 -0.3480

-0.4054 -0.4590 -0.5101 -0.5600
Japan

exp(�KP 1
12
) =

0@0:9796 0 0
0 0:9645 0
0 0 0:9164

1A
Yield-term -0.0020 -0.0076 -0.0293 -0.0619 -0.09976 -0.1390

-0.1781 -0.2167 -0.2553 -0.3341
U.K.

exp(�KP 1
12
) =

0@0:9887 0 0
0 0:9705 0
0 0 0:9213

1A
Yield-term -0.0086 -0.0180 -0.0218 -0.0259 -0.0303 -0.1032

-0.2009 -0.3070 -0.4113 -0.5100 -0.6028 -0.6912
-0.7769 -0.8617

U.S.

exp(�KP 1
12
) =

0@0:9820 0 0
0 0:9828 0
0 0 0:9481

1A
Yield-term -0.0001 -0.0008 -0.0032 -0.0119 -0.0428 -0.0868

-0.1885 -0.2908 -0.4467

Notes:

(1)Reported parameters for Japan based on Bloomberg sample.
(2)Yield-term: yield-adjustment terms in equation (??) associated
with corresponding maturities (CDR for details),
(3) exp(�KP 1

12
): one-month conditional mean-reversion matrix
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Table 4.4: Summary Statistics for factors across countries (AFDNS Estimates)

Germany

factor mean Std.Dev. skewness kurtosis
^
�(1)

^
�(12)

^
�(30) ADF

level 7.2674 1.4346 -0.1706 1.8273 0.9886 0.8175 0.7692 -1.1929
slope -2.139 1.6749 0.0154 2.2248 0.9694 0.5380 -0.087 -2.2305
curv -3.974 2.6487 0.2730 2.3342 0.9516 0.3440 -0.034 -2.6392

Japan

factor mean Std.Dev. skewness kurtosis
^
�(1)

^
�(12)

^
�(30) ADF

level 4.6381 2.1103 0.2006 1.5152 0.9967 0.9101 0.8250 -1.2063
slope -1.879 0.9093 0.0561 3.2731 0.9666 0.6060 0.1854 -2.1107
curv -4.650 1.6599 0.2252 3.2175 0.9184 0.2012 -0.352 �3.6357

U.K.

factor mean Std.Dev. Skewness Kurtosis
^
�(1)

^
�(12)

^
�(30) ADF

level 8.5185 2.4518 0.1324 1.4582 0.9881 0.8995 0.8300 -3.0653
slope -1.196 2.0116 0.0602 3.4697 0.9704 0.5371 0.0178 �3.0490
curv -2.378 1.9584 0.2813 3.0086 0.9177 0.0313 0.3752 -3.3258

U.S.

factor Mean Standard Skewness Kurtosis
^
�(1)

^
�(12)

^
�(30) ADF

level 7.4470 1.7460 0.6574 2.9736 0.9817 0.8029 0.8607 -1.711
slope -2.606 1.6344 -0.1147 1.8272 0.9828 0.4660 -0.270 -1.712
curv -1.930 1.8439 -0.7676 2.9917 0.9545 0.4319 -0.079 -2.416

Notes:
(1) Factors are from AFDNS estimation.

(2)
^
�(�)is the autocorrelation coe¢ cient with lag length � periods.

(3)The lag length of ADF test is selected by SIC.
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Table 4.5: Extraction of Global Yield Curve Factors

Kalman Filter*

^
�

^
�

^
�1

^
�2

^
�3

^
�4

level
0:0190
(0:036)

0:9953
(0:005)

0:9408
(0:024)

0:9803
(0:008)

0:9606
(0:021)

0:9998
(0:003)

slope
�0:045
(0:063)

0:9735
(0:032)

0:9874
(0:010)

0:9694
(0:014)

0:9677
(0:016)

0:9643
(0:019)

curv
�0:303
(0:183)

0:9276
(0:046)

0:9822
(0:014)

0:9557
(0:024)

0:9510
(0:019)

0:9314
(0:023)

Principal Component Analysis

eigenvalue 3.6536 0.2150 0.1025 0.0288
level variance Prop. 0.9134 0.0537 0.0256 0.0072

cumulative Prop. 0.9134 0.9172 0.9928 1.0000

eigenvalue 5.9135 2.6078 1.5672 0.2611
slope variance Prop. 0.5714 0.2520 0.1514 0.0252

cumulative Prop. 0.5714 0.8233 0.9748 1.0000

eigenvalue 8.1583 4.4534 2.6453 1.7494
curv variance Prop. 0.4797 0.2619 0.1555 0.1029

cumulative Prop. 0.4797 0.7416 0.8971 1.0000

Notes:

(1) *: Equation system (4.2) and (4.3) in the text body.
(2)The statistic in the parentheses is Std. Error.
(3)The Japan factors used for extracting global factors consist of estimates
of two samples from the PACAP and Bloomberg.

Table 4.6: Summary Statistics for Global Factors

mean Std.Dev. skewness kurtosis
^
�(1)

^
�(12)

^
�(30)

level 7.3025 1.4169 0.2342 1.9836 0.9901 0.8029 0.8607
slope -1.9008 0.3899 0.1629 2.3144 0.9701 0.4762 -0.0159
curv -3.9876 0.6066 1.3589 6.3131 0.9278 0.2208 -0.1473

Note:
^
�(�)is the autocorrelation coe¢ cient with lag length � periods
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Table 4.7: Idiosyncratic Regression

fit = �+ �fwt + "it; i = GM;JP; UK;US;
f = level; slope; curvature; fwt : global factor

Germany
^
� Std. Error R2

Level 0.5837 0.1936 0.8171
Slope 0.3348 0.1827 0.4990

Curvature 2.7673 0.2030 0.4016

Japan
^
� Std. Error R2

Level 1.4114 0.0286 0.8980
Slope 1.3795 0.1130 0.3499

Curvature 1.9063 0.1180 0.4853

U.K.
^
� Std. Error R2

Level 1.6501 0.0313 0.9093
Slope 3.7154 0.2151 0.5186

Curvature 0.7813 0.1882 0.0586

U.S.
^
� Std. Error R^2

Level 1.1945 0.0182 0.9395
Slope 2.4012 0.2065 0.3281

Curvature 1.2116 0.1675 0.1588
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Table 4.8: Bond Market Integration:
Estimates of Markov-switching Nelson-Siegel Model

Germany

transition matrix t-values of transition matrix Log Likelihood�
0:4202 0:3321
0:5798 0:6679

� �
1:3662

�3:5387

�
2024.08

Japan

transition matrix t-values of transition matrix�
0:4689 0:2630
0:5311 0:7364

� �
0:3332

�3:4716

�
636.70

U.K.

transition matrix t-values of transition matrix�
0:2977 0:2149
0:7023 0:7851

� �
2:6776

�6:5729

�
1697.70

U.S.

transition matrix t-values of transition matrix�
0:4956 0:2141
0:5044 0:7859

� �
0:9600

�6:2117

�
1524.11

World

transition matrix t-values of transition matrix�
0:4178 0:0896
0:5822 0:9104

� �
0:8397

�8:3693

�
1059.62

Notes:
(1) The model is given in equation (9) in the text body
(2) The State 1 represents the market integration.
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Figure 4.1. Yield Curves Across Countries
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Figure 4.2. AFDNS Model Estimates of Level Factor Across Countries
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Figure 4.3. AFDNS Model Estimates of Slope Factor Across Countries
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Figure 4.4. AFDNS Model Estimates of Curvature Factor Across Countries
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Figure 4.14. Dynamic Conditional Correlations: Slope Factor

1990 2000

0.5
0.0
0.5
1.0 CORR_g_curv_j_curv

1990 2000

0

1 CORR_g_curv_uk_curv

1990 2000

0.5
0.0
0.5
1.0 CORR_g_curv_us_curv

1990 2000

0.5
0.0
0.5
1.0

CORR_g_curv_w_curv

1990 2000

0

1 CORR_j_curv_uk_curv

1990 2000

0.5
0.0
0.5
1.0 CORR_j_curv_us_curv

1990 2000

0.5
0.0
0.5
1.0

CORR_j_curv_w_curv

1990 2000

0

1 CORR_uk_curv_us_curv

1990 2000

0.5
0.0
0.5
1.0

CORR_uk_curv_w_curv

1990 2000

0.5
0.0
0.5
1.0

CORR_us_curv_w_curv
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Figure 4.17. Filtered and Predicted Probabilities of Integration for Ger-
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CHAPTER 5

Conclusions and Recommendations for Future Study

I have examined the dynamic evolution of interest rates with an emphasis on bidi-

rectional and simultaneous linkages between the term structure of interest rates and

macroeconomic factors. In essay I, I allow a role for both macroeconomic factors and

regime-switching in the testing of the expectations hypothesis. I found some evidences

in favor of the expectations hypothesis. My interpretation for the new �ndings is that

the yield factors at least partially capture the time-varying risk premiums. Essay II

provided some new evidences on the close relationship between the term structure of

interest rates and macroeconomic factors. Furthermore, the macroeconomic factors

are important in identifying regimes that are related to business cycles. Essay III ex-

plored the integration and interaction of global government bond markets employing

an arbitrage-free dynamic model. My contribution includes developing an economet-

ric model to empirically support the expectations hypothesis of the term structure

and examine the joint dynamics and feedback mechanism between the yield curve and

macroeconomic factors.

There are several di¤erent directions future research might take. Empirical macro-

economic research has not been able to establish if and how government de�cits a¤ect

the term structure dynamics. However, this is a question of crucial importance for

policy making and for academic research. On the other hand, recent theoretical and

empirical research in �nance has led to a better understanding of the dynamic prop-

erties of the term structure of interest rates. I feel that the modern term structure
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models provide us a good framework to incorporate �scal policy variables and identify

the e¤ects of �scal policy shocks. Furthermore, a more fundamental model, such as a

general equilibrium term structure model, will highlight the transmission mechanism

between the yield curve and �scal policy.

Perhaps the most natural extension of Essay II is to develop a arbitrage-free regime-

switching macro-�nance model of the term structure. Because nominal bonds are

traded in well-organized markets, the theoretical restrictions that rule out riskless ar-

bitrage opportunities across maturities hold a powerful appeal, and they provide the

foundation for a large �nance literature on arbitrage-free models. The extension that

rule out arbitrage opportunities will be interesting.

From the perspective of bond portfolio diversi�cation, understanding the dynamic

correlation structure of international bond markets is a high priority question. It also

relates to a fundamental question of international market e¢ ciency. An integrated

world capital market implies increased cross-country correlations in the sense that in-

vestors respond to any new information throughout the world. If international markets

are not perfectly correlated, we need both world and local factors in international asset

pricing models. At the practical level, the bene�t of international diversi�cation will

be nil in a perfectly correlated international market.

Another approach is to consider more macroeconomic fundamentals. Bond returns

are found to be predictable in the long-run by yield spreads and previous excess bond

returns. However, we are not clear about the macroeconomic fundamentals where the

predictability stems from. This is an important question for bond portfolio manage-

ment and monetary-policy making.
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