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Abstract: The thesis proposes and applies a two-state hidden Markov-switching model for

fmancial time series featured with periodic structure breaks in volatility. The expected return,

volatility and state transition probability are determined by three link functions respectively,

whose coefficients are further governed by the hidden state. The proposed model particularly

emphasizes on the parallel structure of the two states. The parallel structure separates the

INTER-state and INTRA-state dynamics, enhances greater transparency, balances the

memory of both recent and distant history, provides more consistent economic implication,

and greatly simplifies and stabilizes the EM algorithm. We further discuss its estimation,

inference, standard errors of the parameter estimate, forecasting, model selection and

implementation, especially our innovations in those issues. The Monte Carlo experiments

suggest that the proposed estimation method is accurate and reliable, the choice of the initial

state probability has little effect on proposed model, and the information matrix calculated

numerically is stable and reliable.

We then apply the proposed model to forecast the conditional distribution of the weekly

return of the S&P 500 index. It is found that the volatility at the tranquil state is best

described as a constant while the volatility at the turbulent state is more closely correlated

with the lagged intraweek ranges. Eventually, we give the economic implication on the

clustered volatility and its interplay with the expected return.

KEYWORDS: HIDDEN MARI(OV-SWITCHING MODEL, PARALLEL STRUCTURE,

VOLATILITY, LINK FUNCTION, EM ALGORITHM, FORWARD-BACKWARD

ALGORITHM, RESCALING, INFORMATION MATRIX OF THE MISSING DATA,

SUPPLEMENTED EM ALGORITHM, RANGE.
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,LIST OF SYMBOLS

Vectors and matrices will be denoted with boldfaces (e.g. C and P); a parameter

vector is always a column vector; and sets and spaces will be denoted with calligraphic

letters (e.g. V).

I(x)

T

/'-.

P

Indicator function, which equals to 1 if the statement x is true and

oother wise

A vector of a time series indices, T ={t : t =1,· .. ,T}

The state at time t

An indicator function of the state variable 11(, S(i), ( := I (11( = i) ,

that is, the realization of a Bernoulli trial; S(i), ( =1 if 11, = i , and

The "true" rate of a successful Bernoulli trial

The estimated rate of a successful Bernoulli trial S(i)" ,

The m -dimensional Euclidean space.

Estimation of the parameter vector P

The estimate of the parameter fJ at the (1 +1)'h' iteration.

The distance between the two matrices, ~ and fi0, for the

12

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

DRD
Rectangle



oU+1
) =1Jl(OU) )

L

x'

x>O

°axb

diag(CI,···,Cm )

tr(S)

I

¢(-Ill, (}2)

<D (-Ill, (}2 )

sizes of two matrices are both i x j ,

A mapping from e(t) to e(t+l), where III is the rule

The lag operator

A matrix with the index T, T =1, ... ,T

Transpose of the vector x

All elements of vector x are positive elementwise

The zero matrix with size ax b

The unity matrix with size a x b

The diagonal matrix with diagonal elements (c1,···,cm )

The trace of the square matrix S

The identity matrix

All the available information up to, and including, time t

The expectation of the variable 8 at time t based on the

information x

The variance of the variable 8 at time t based on the information

x

Probability density function of the nonnal distribution N(,u,()2)

Cumulative density function of the nonnal distribution N (,£I, ()2 )

The information matrix of the complete data

The information matrix of the observable data
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.1. INTRODUCTION

Volatility, the most extensively used measure of uncertainty, is fundamental to much of

modem finance theory. Quantifying and forecasting volatility is essential to financial

asset pricing, portfolio optimization and risk management. Over the past two decades, a

diverse range of theoretical and empirical research has been carried out on modeling the

volatility of time series. Following the widespread popularity of a number of financial

instruments, whose values are intrinsically linked to their corresponding volatilities, the

development of volatility models and estimation frameworks has emerged as active

research areas.

The proposed model is a further extension of those presented in existing literature. It

uniquely emphasizes the parallel structure of the Markov states. This parallel structure

separates the INTER-state and INTRA-state dynamics, allows for greater transparency,

balances the memory of both recent and distant history, provides more consistent

economic implication as well as greatly simplifying and stabilizing the EM algorithm.

1.1. Volatility Observations

It is widely recognized that the volatilities of most financial asset returns are time-varying

and typically display, at least, the following six stylized characteristics:-
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(Obs. 1) Clustering: Mandelbrot (1963b) and Fama (1965), among the others,

found that large (small) variances tended to be followed by large (small) variances.

Statistically, the squared return has significant positive autocorrelations, as does

the absolute return.

(Obs.2) Structure breaks: The pattern of many financial asset returns often

exhibits dramatic and sudden changes. Those changes are often event-triggered.

They are often associated with financial crisis (Cerra, 2005; Hamilton, 2005) or

abrupt government policy changes (Hamilton, 1988; Sims and Tao, 2004; Davig,

2004). Therefore, given the same volatility functional form, different coefficients

can be used to describe the time series before and after a structure break.

(Obs. 3) Reoccurrence ofdistant history: Although the pattern of asset return is

likely to follow recent history, a seemingly unlikely scenario that resembles that of

distant history should not be considered irrelevant.

(Obs. 4) Long memory: Traditionally, long memory (long-term dependence)

has been defined in both the time domain, in terms of long lag linear

autocorrelation, and the frequency domain, in terms of the explosion of low

frequency spectra. An abundance of publications demonstrate the existence of

long memory in financial economics. Baillie, Chung and Tieslau (1996) found

long memory in the volatility of the Deutschemark to U.S. Dollar foreign

exchange rate; and long term dependence in the German DAX was found by Lux

(1996). While the typical research focus is on developed financial markets, there

are also numerous reported studies on smaller and less developed markets. For

example, the stock market in Finland was analyzed by' Tolvi (2003) ,

Madhusoodanan (1998) provided evidence of long memory on individual stocks

on the Indian Stock Exchange, similar evidence on the Greek financial market was
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given by Barkoulas and Baum (2000). It is worth noting that that for most long

memory studies, a linear auto-correlation is assumed1.

(Obs.5) Interplay between volatility and expected return: There is a realistic

probability that volatility and expected return are closely related. For example, in

the case of the stock market, Hamilton and Lin (1996) as well as Maheu and

Mccurdy (2000), documented that volatility is higher during a bear market (e.g.

during the great depression and the stagflation age in the 1970s, etc). Findings on

the relationships between volatility and return can also be found in credit spreads

(see Alexander and Kaeck, 2008), foreign exchange rates (see Engle and Hamilton,

1990), and other asset classes.

(Obs. 6) Leptokurtosis and asymmetry: The unconditional distribution of a

financial asset return has thicker tails than those of the normal distribution

(Mandelbrot, 1963a, 1993b). Compared to the classical normal distribution

assumption, the Leptokurtosis suggests greater upside and downside risks.

Significant skewness of a financial time series has been either inherently assumed

or declared by a number of researchers (e.g. Engle and Patton, 2001; Cont, 2001;

Chen, Hong and Stein, 2001).

As shown later in Section 5 of the thesis, following the results of an empirical study of the

S&P 500 stock index, two more additional observations are proposed:-

(Obs. 7) Asymmetric cycle and lasting tranquility: The tranquil regime is more

lasting and is related to the asymmetric business cycle.

(Obs.8) Time varying sensitivity to recent shocks: In a turbulent regime,

volatility is more sensitive to the recent shocks.

1 The assumed linear relationship could be a potential reason.
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While some of these observations have been intensively addressed in the literature, there

are a number of outstanding oversights which require further attention. This thesis aims to

address these observations and intently focus on the oversights exposed in the following

section.

1.2. Motivations and Oversights

This thesis proposes a parallel two-state hidden Markov-switching volatility (HMS-V)

model. The model is "parallel" in the sense that the dynamics of the two states are less

dependent on each other. The model is proposed to explicitly address the oversights of

both the existing single-regime and the Markov-switching volatility model. As exposed in

the literature review of Section 3, a linear autoregressive relationship in variance coupled

with various conditional distributions are commonly employed to describe the volatility

of asset returns. However, such a 'one-size-fits-all' model may prove unsatisfactory as,

for instance, it may be unable describe a time series with structure breaks.

For practitioners, if the parameters are to be adjusted according to recent and hence the

most relevant economic context, a popular compromise is to focus only on the most

recent observations. However, such a compromise is based on the assumption that only

recent history will repeat itself, and disregards distant history. This assumption is not

satisfactory since a seemly remote event has a finite probability of recurrence, the

consequences of which can often be far reaching2
• Popular wisdom commonly adopts a

2 This is an important lesson learned from the recent credit market turmoil: if a modeler assumes that the relevance of a
scenario dwindles linearly, then based on the post WWII nominal U.S. housing statistics, he/she would seek comfort
and preclude the possibility of a housing Armageddon that happened about seven decades ago. The preclusion of such
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rule that "the further backward you look, the further forward you can see.".3. It is therefore

dangerous to extrapolate the future based only on recent history. For example, in the case

of the S&P 500 stock index, based only on the tranquility from 2004 to 2006, the

volatility forecast can be downward biased. In this case, excessive emphasis has been

placed on the recent tranquility, resulting in a model that suggests a deceptive sense of

security.

This thesis proposes the consistent incorporation of longer history. The proposed parallel

Markov-switching model is able to estimate the changing volatility behavior through

explicit consideration of the long history. It is most suited to a time series, whose recent

behavior is dissimilar to its distant history, but whose distant history is still relevant.

Various Markov-Switching volatility models have been proposed (see Section 3.4) to

describe the changing behavior of volatility. This thesis emphasises that existing

regime-switching volatility models are not parallel, and possess the following oversights:-

(Oversight. 1) Same volatility link function (or both INTER-state and

INTRA-state dynamics: For some popular Markov-switching volatility model, a

same volatility link function is adopted to explain both INTER-state and

INTRA-state dynamics.4• This oversight is directly addressed by the proposed

model in which the INTER-state dynamics are better explained by the switching

of regimes and the volatility link function focuses only on the INTRA-state

dynamics.

an "impossible" scenario has led to the excessive credit expansion and mis-pricing of U.S. mortgage backed securities
in the mid 2000s.
3 Winston Churchill
4 For example, it assumes that volatility link function at the turbulent state should address: (1) the INTER-state jump of
volatility from the tranquil state to the turbulent state, and (2) the INTRA-state evolution of volatility form the turbulent
state to the turbulent state.
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(Oversight. 2) Less tractable dynamics:.5 Analytical tractability is reduced since

the two states are intertwined with each other in a complex manner.

(Oversight. 3) Possibly excessive sensitivity to recent observations: According to

classical non-parallel model specifications, it is not unlikely that the volatility link

functions of both states greatly absorb and adapt to recent observations.

(Oversight. 4) Passive adaptation and hence possibly missing memory: If both

states greatly adapt to recent history, the memory of the distant history may

diminish. Only when there is news resembling that of the distant history, will the

memory be passively invoked6
•

(Oversight. 5) Reduced appeal of regime-switching: The volatility at the two

states can be less distinguishable if there is excessive adaptation to recent history.

In this case, the clustering of volatility is unlikely to be explained by the clustering

of Markov states? and the regime-switching model becomes less appealing.

(Oversight. 6) Long memory not addressed by regime-switching: If the two states

are less identifiable, then volatility clustering and hence "long memory" are

primarily addressed by the volatility link function, instead of by the clustering /

switching of regimes.

(Oversight. 7) Possibly inconsistent economic implication ofregime switching: If

the scenarios described by the two states are homogeneous, the economic

implication of a regime-switching model is probably inconsistent.

(Oversight. 8) Excessive computational burden: As detailed in Section 4.1.3, the

non-parallel structure of the Markov-switching renders the estimation process

5 "Things should be made as simple as possible -- but no simpler." - A. Einstein
6 For example, both states may excessively adapt to the recent tranquility, and the volatilities at both states are very low.
In this case, the turbulent memory will only be invoked when there is a significant shock.
7 It may largely be explained by the volatility link function instead.
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non-parallel. It increases the computational burden and reduces the robustness of

the parameter estimation.

.1.3. Thesis Contributions

The proposed parallel Markov-switching model, as is outlined in this section, addresses

the empirical observations while simultaneously addressing the oversights of existing

models exposed in the previous section.

.1.3.1. Addressing the observations

(Obs. 1) Clustering: Statistically, it is assumed that the volatility of a time series

at different Markov states exhibits different patterns. Therefore, if the Markov

states are clustered, the volatility is also clustered.

(Obs. 2) Structure breaks: When the Markov state switches, the parameters of

the dominant state will describe the time series after the structure break.

(Obs. 3) Reoccurrence of distant history: Statistically, the distant history is

memorized and stored in a hidden and recessive Markov state, hence its relevancy

is consistently considered8
•

(Obs. 4) Long memory: The proposed model has the ability to describe a

periodic structure break. The long memory will be explained if the periodic

structure breaks is indeed in the data.

8 It is not dominant but the relevancy always exists.
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(Obs.5) Interplay between volatility and expected return: Apart from volatility,

for different Markov states, if the expected return also exhibits a different pattern,

the interplay between volatility and the expected return is also described.

(Obs.6) Leptokurtosis and asymmetry: Within each state, the volatility is

clustered. The Markov state is a latent variable and has to be estimated. In this

case, the unconditional distribution will be leptokurtosis, and possibly

asymmetric.

(Obs. 7) Lasting tranquility: If more observations are clustered in the tranquil

state than in the turbulent state, then the lasting tranquility is described. It is

related to the asymmetric business cycle.

(Obs.8) Time varying sensitivity to recent shocks: The proposed parallel model

suggests that a volatility link function adapts only to more recent shocks. As a

result, it is easy to compare the sensitivity of volatility to the recent shocks at

different Markov states.

1.3.2. Addressing the Oversights

The proposed model suggests that longer history be explicitly considered9
• With a longer

history, (i) recent history can be incorporated through the volatility function of the

dominant state; and (ii) the distant history can be stored in the recessive state.

The proposed model does not need to use a GARCH-type recursive volatility link

function. This is because (i) the Markov state is already a recursive process and able to

describe clustering; (ii) the GARCH-type recursive volatility link function may encourage

9 In a previous version, for the empirical study on the S&P 500, only the -data from the year 1990 is used. The current
version uses the data from 1983 onwards, as the range data prior to 1983 is somewhat inconsistent.
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both states to excessively emphasise very recent observations.

The parallel structure improves upon existing non-parallel Markov volatility models:-

(Addressing Oversight. 1) Volatility link function only (or INTRA-state

dynamics: According to the proposed model, the INTER-state dynamics are

addressed by the switching of regimes, and each volatility link function focuses

only on the INTRA-state dynamics.

(Addressing Oversight. 2) Greater tractability: Since the two states are less

intertwined, the proposed model is more tractable.

(Addressing Oversight. 3) Balanced adaptation to recent signals: Note that only

the most (not all) recent information (e.g. limited lag terms) is used for each

volatility link function, and according to the non-parallel model specification, it is

likely that one of the volatility link functions will focus on the volatility pattern of

recent history, while the other volatility link function will focus on the pattern of

distant history.!o•

(Addressing Oversight. 4) Distant memory still alive: The proposed model

emphasises the independence of the two states. One of the states is less affected by

the recent information, and keeps memorising the distant history. It reminds the

modeler of the danger of extrapolating the future based only on the recent history.

(Addressing Oversight. 5) Identifiable states: The parallel structure makes the

Markov model easier to identify, in particular if the volatility of one state is almost

always greater than the other state. A sufficient condition of identification is

discussed in Appendix 1.

10 Particularly if the recent history and distant history exhibit different pattern.
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(Addressing Oversight. 6) Long memory addressed bv regime-switching: The

long memory is considered more by the switching of regimes as opposed to by the

auto-regressive volatility link functions.

(Addressing Oversight. 7) More consistent economic implication of regime

switching: The parallel structure aims to emphasise the distinctive differences of

the two states. With consistently distinctive different state profiles, the economic

implications for the Markov states are likely to be more clear-cut and consistent.

(Addressing Oversight. 8) Reduced computational burden: According to section

4.1, the Expectation Maximization (EM) algorithm for the proposed model will be

more stable. Thos is because in the M step of EM algorithm, the coefficients for

each state can be independently estimated.

1.3. Thesis Outline

Inclusive of this introduction, this thesis is comprised of 7 chapters. Chapter 2 briefly

presents the proposed hidden Markov-switching volatility model framework. A model

overview is provided,. including model assumptions, setup, some special cases as well as

the proposed likelihood function.

Chapter 3 reviews existing literature on classical volatility models, including hidden

Markov switching models. Namely, the chapter shows:-

• that classical volatility models are the building blocks of the proposed hidden

Markov-switching volatility model

• a review and comparison of the proposed model with two popular Markov

switching volatility models
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• some special cases to illustrate the overviews and pitfalls of existing models

while highlighting the enhancements of the proposed model.

Chapter 4 formally discusses the proposed models identifiability condition, estimation

and forecasting, including:-

• a sufficient identifiability condition

• the estimation procedure and computational advantages (e.g. the Expectation,

Maximization and Quasi-Newton)

• various error estimation numerical methods to evaluate the accuracy of the

estimated parameters, in particular, the Supplemented Expectation Maximization

(SEM) algorithm

• Monte Carlo simulations, which show (i) the asymptotic normal property of the

maximum likelihood estimate (MLE) is reflected in a good finite-sample property

(Le., approximate normal and small bias); (ii) the numerical method is adequately

stable and accurate to obtain the standard errors of the MLE; (iii) the impact of

the initial state probabilities is negligible, given that the time series is long

enough and

• forecasting volatility with the proposed model.

Chapter 5 adopts the proposed hidden Markov-switching volatility model to measure and

forecast the weekly return of the S&P 500 stock index. The intraweek range is also used

to construct both the covariate of the Logit and volatility link functions. It is shown that

the proposed model demonstrates impressive performance under certain selection criteria

conditions.
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Chapter 6 presents a number of economic interpretations based on the empirical study:-

• Asymmetric business cycle: The business cycle and hence the velocity of

economic time are asymmetric. Therefore to scale the calendar time to economic

time, more than one set of parameters are required to describe the volatility. One

set of parameters is necessary when the economic time speeds up, while another

set is needed when the economic time slows down.

• Stll:prises: In the tranquil state, there are fewer surprises and challenges to the

bullish assumptions on asset pricing, while the opposite is true for the turbulent

state. Furthermore, volatile assumptions lead to a more volatile price.

• Sensitivities: In the turbulent state, the price is more sensitive to unexpected

surprises, while the opposite is true for the tranquil state. For a given amount of

surprise, greater sensitivity induces greater volatility.

• Correlations: In the turbulent state, the correlations of stock returns are higher,

thus the diversification benefit of a balanced portfolio is less pronounced. For the

tranquil state, the opposite is true. Greater correlations cause greater volatility for

a portfolio (hence a stock index).

• Risk Premia: For risk-averse investors, an unexpected increase in volatility must

be compensated with greater expected return. A lower current price is necessary

to achieve greater expected future returns.

Finally, Chapter 7 discusses some drawbacks and limitations of the proposed model, as

well as providing numerous interesting avenues of further research
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2. THE PROPOSED HIDDEN

MARKOV-SWITCHING VOLATILITY MODEL

2.1. Model Overview

The proposed hidden markov switching volatility (HMS-V) model analyses the time

series of financial asset return through the following assumptions:-

1) The model of return from a time series takes the following form:

Yt = Jl (a, If/t) + cr (P, Wt ).1] t
(2.1)

where a and p are vectors of unknown parameters, If/t is the information up

to time t, and 1]t 's are distributed according to

i.i.d
1]t ~ N(O,l), (2.2)

which represent independent and identically distributed (ij.d) Gaussians densities

of zero mean and unit variance.

Let ¢(-1ft, cr2
) be the probability density function (Pdf) of a normal distribution

with mean Jl and standard deviation cr, and let f/J (-Ill, cr2
) be its cumulative

density function (cdj), that is,

(2.3)
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(2.4)
-co

2) There are two hidden discrete states. At time, t, the observation of the time series

is generated by one of the states:

~t =1 or ~t =2 ,

where ~t is the state in which that the time series resides.

Therefore,

(2.5)

Yt = { Jl(I) (aW \V,) + 0"(1) (l:1w \V, ).111

Jl(2) (a(2)' 'If, ) + 0"(2) (1:1(2)' \v, ).1]t

if ~t = 1

if ~t = 2
(2.6)

where 11(/),t and (}(/),t are the mean and standard deviation of the time series in

state, i, respectively at time t11
•

It is worth noting that this section gives a very general model specification, since

If/t encompasses a broad range of potential model specifications. Given the

information set, If/t' the relevant information for the expected return and volatility

consists of covariates,12 c
t

and Zt:-

• c, is the covariate for the link function Jl(I) (aW \V,) and Jl(2) (a(2)' \V,),

which is either fixed or strictly exogenous, and

• z, is the covariate for the function 0"(1) (I:1W \V,) and 0"(2) (1:1(2)' \V,) ,which

is also either fixed or strictly exogenous.

11 For visual clarity, state notation is usually expressed at the lower-right side and embraced with angle brackets

12 If/t can also be allowed to consist of information other than covariates.
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The values ofJl(I),t' Il(2),t' (j(I),t and (j(2),t in equation .(2.6) are then determined

by the covariates (c t , Zt ) and the corresponding parameters.

Given the above framework, let ~i),t be the pdfof Yt. Given I1t = i , as well as

strictly exogenous ct and Zt' ~i),t can be calculated though a

function ~i) (-1-, -) ,

~I),t =~I) (Yt l.9w 'l/t)

=¢(Yt IJl(I),t , o-(;),t ),

(2.7)

where .9(1) =(a(i),p(i))' For notation convenience, the parameter vectors are

3) The dynamic sequence of the hidden states is described by a first-order

Markov-switching process, Le.,. the current state depends only on the previous

state and the transition probability. For clarity of exposition, higher order models

such as a Markov random field are not considered.

Let p(ij),t be the state transition probability:

p(ij),t =Pr (I1 t = j I l1t-l =i)

= PM (fJJW '1/,),

where 'P(i) is the parameter vector.

(2.8)
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When t =1, the probability that Yt resides in state i is determined by the initial

state probability:

(i =1,2), (2.9)

Suppose that for a given information set If/t' the relevant information for the state

transition probability p(ij),t consists of covariate W t • Let x t = (wt' ct ' Zt) be the

covariate of Yt and,

XT=(WT,CT,ZT)

WT ={Wt; t =2,.- -,T} ,.13

CT = {c t ; t = 1,. -. ,T} ,

and ZT = {Zt; t = 1,. _. ,T}.

(2.10)

(2.11 )

The dimensions of the covariate matrices, XT, WT, CT and ZT are therefore

(T-l)xDw TxDc ,an respectively, where

The HMS-V thus embeds three link functions, of which equation .(2.6) defines both the

link functions of the expected return and volatility, and equation .(2.8) defines the link

function of the transition probability. Each of the three link functions has two sets of

coefficients respectively_ If the covariate of a certain link function is only a column of 1s,

the corresponding link function refers to a constant at each state.

13 Note that w
t

is the covariate of the transition probability from time t -1 to t. Since the transition probability

from time 0 to time 1 is not needed, WI is void.

30

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

DRD
Rectangle

DRD
Rectangle



Let f)' =(a' ,P' ,tp~ Pr (~1 =1)), which denotes the entire set of parameters of the

two-state discrete HMS-V model. A finite possibility of a parameter being zero.14 is also

considered. Therefore, the above framework presents a general framework of hidden

Markov- switching volatility models (HMS-V).

2.3. Special cases and relationships with existing models

This section presents some special cases for the general form of the proposed HMS-V

model. While the covariate of the HMS-V model assumes that the covariate is either fixed

or strictly exogenous, this is not the case for some of the following cases.

• When the covariate matrices WT , CT and ZT contain only intercept tem1s, the

model is equivalent to that of Engel and Hamilton (1990) and Engle (1994), who use

the regime-switching model to describe the long swing of the U.S. Dollar. Note that if

the volatilities in both states are constants, then the switching of parameters is

equivalent to switching of the underlying processes.

• When both, WT and ZT' contain only intercept tenns, and the element of CT

equals to ct = {I, ads, ,Yt-l} . 15, the proposed model is equivalent to the

Markov-switching advertising model (e.g. Feichtinger, Hartl and Sethi, 1994; Naik

and Raman, 2003).

14 Examples can be found in chapter 5 of the thesis.

15 where ads, is the spending in advertising at time t, and Y
t

is the' brand sales at time t.
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• When both of the covariate matrices, WT and CT , are only intercept terms, and the

element of covariate ZT equals to z, = {I, (Y'-l - pt-lr} 16, it is equivalent to the

MS-ARCH model with only one lag term by Hamilton and Susmel (1994). However,

Hamilton and Susmel (1994) suggest that the volatility at each state is always

proportional to each other, which is different from our model.

• By imposing the following specific conditions on the covariate, the general form is

equivalent to Gray's (1996) and Klaassen's (2002) Markov-switching volatility

model,

&t = Y t - E (Ilt )

E CUt) =Pr (~t =1)-J.1(I),t +Pr (~t =2).J.1(2),t

(jLl =Pr(~H =1).((j(;),H + P0),H ) + Pr (~t-l =2).( (j~),'-l + P(~),H )

- [ Pr(~H = 1).P(l),t-l + Pr (~'-l = 2).P(2),HT

(2.12)

Note that in Gray/Klaassen's model, If/t includes the estimated volatility at time

t -1 , while the estimated volatility of a state is not used as the covariate of the other

state. This is discussed in detail later in section 3.4 and section 3.5.

• By imposing the following conditions on the covariate, the proposed model is

equivalent to Haas/ MittniklPaolella's (2004b) Markov-switching volatility model:-

(2.13)

16 Note that Hamilton and Susmel (1994) assume that the covariate is random.
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a(2), t = /12),0 + {3(2),1·&; + Oe( 0),t + /12),3 ea (2),t .

As discussed in the introduction, for the volatility link function, the proposed

approach differs in its use of a very limited lag term instead of the ARCH ( 00 ) process.

This is also discussed in section 3.4 and section 3.5.

2.4. The link/unctions

To limit the scope of this thesis, the proposed HMS-V model only adopts the following

specific link functions:

1) The logit function is a natural choice of the state transition link function17,

P(ii),t = P(ii) ( f/J(;)' If/t)

== LOGlT ( W tf/J(t) ) , (i = 1 2· t = 2 ...T)" ,
(2.14)

so that 0 < p(ij),t < I is always satisfied.

2) The expected return ofYt , given that J1. t = i , is a linear function,

(2.15)

3) The link function of the volatility of Yt' given that J1. t = i , takes an exponential

form,

(2.16)

so that a(i), t > 0 is always satisfied. No restriction on the parameter is therefore

required18•

17 Note that WI is void.

18 Such functional form also makes the numerical estimation method more robust.
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2.5. The likelihoodfunction

The log likelihood function of the two-state HMS-V model described in section 2.1 is.19

LLF:bs (0) =log (LF;;bS (0 IXT , YT ))

=109{tt"" t, [pr(A1 =i)·~').l·IT( P(L\_'~I).t"~I),t)]}

where

(2.17)

Pr(~l = i) is defined by equation .(2.9),

p(~ ~) t = p{~ ~) (ffJ(i)' If/t) is defined by equation .(2.8), and
1-1 l' 1-1 1

~i),t =~I) (Yt IlJw If/t) is defined by equation .(2.7).

2.6. Initial state probabilities

According to the above framework, the initial state probability, Pr (~1 =1), is an

unknown. However, with covariates, Wang and Puterman (1999a, 1999b, and 2001)

presented resul~s from some Monte Carlo experiments and showed that for a

Markov-switching Poisson regression, the effect of the initial state probability quickly

becomes negligible as the number of observations increases.

It is believed that this observation of the influence of the initial state probability is also

applicable to the proposed model. The sample size of a financial time series is typically

19 We use the notation LLF:bS because the log likelihood function is based on the observable information. Please refer

to section 4.1 for a more detailed explanation.
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far greater than that of the clinical data studied by Wang and Puterman20. Therefore, a

non-informative initial state probability is assumed,

Pr(L\1 = 1) = 0.5.

Given Pr (L\l = 1), the parameter vector (J reduces to

0' = (a' ,p',fJ').

(2.18)

(2.19)

However, due to the inherent differences between the proposed model and that of Wang

and Puterman, further studies the influence of initial state probabilities are carried out

through Monte Carlo experiments in section 4.5.

20 For example, chapter 5 presents studies ofa time series, whose in-sample number of observations is 989.
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.3. LITERATURE REVIEW AND MODEL

COMPARISONS

Following the brief introduction of the proposed framework presented in chapter 2, this

chapter reviews prominent literature related to hidden Markov-switching models (HMM)

and outlines how the HMM is adapted to econometrics and consequently used for

volatility modeling. This chapter introduces the primary building blocks of a HMM

volatility model, namely the classical normal distribution21 , the finite mixture model, the

.Generalized Autoregressive Conditional Heteroskedasticity (GARCH).22 model and the

Markov switching GARCH models. In particular, this chapter reviews the following:-

1) A history of HMM and its initial application to econometrics problems: This is

thoroughly addressed by the seminal work of Hamilton (1989, 1990).

2) The finite mixture model: A review of a two-component i. i. d. Inixture normal

distribution is presented, one whose state probabilities are fixed and one whose

volatilities at each state are also constant.

3) Volatility link function and appropriate [G1ARCH models: This includes the

classical GARCH model (BoIlerslev, 1986), the absolute return GARCH model

(Taylor, 1986), the Exponential GARCH model (Nelson, 1991), GARCH with

Student's t distribution (Bollerslev, 1987) and empirical works on the Integrated

GARCH model (Baillie, 1996).

4) GARCH-MixN: This is a GARCH model whose innovation is a two-component

mixture normal.

5) MS-[G1ARCH: Two classes of MS-[G]ARCH models are then specifically

21 or perhaps alternative distributions like the student's t distribution
22 The GARCH feature is optional.
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discussed, namely the approach of Hamilton/Gray/Klaassen and that of

HaaslMittniklPaolella (2004b).

6) Parallel vs. Non-parallel: The strengths and limitations of existing models are then

discussed in the context of the proposed parallel model.

3.1. Hidden Markov-switching model: A brie/history

The Hidden Markov-switching model (HMM) was introduced in its full generality in

1966 by Baum and Petire. Within the HMM framework, the observation sequence

depends on the Markov chain probabilistic structure. In 1970, Baum, Petrie, Soules and

Weiss developed forward-backward recursions for calculating the conditional probability

of a state given an observation sequence from a general HMM.

A HMM is a discrete-time finite-state Markov chain, observed through a discrete

memoryless channel. The channel is characterized bya finite set of transition densities

indexed by the states of the Markov chain. A HMM is comprised of a rich family of

parametric processes and has found uses in numerous econometrics applications.

3.2. Seminal work on HMM in Econometrics

In an economy, the states before and after a structure break tend to repeat themselves, that

is, if it occurs once, it is likely to recur. For example, a financiallnarket may shift from

the (relatively) turbulent state to a tranquil state, only to return to the turbulent state at a

later date. It is desirable to model these states as stochastic, dynamic, cyclical and
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unobservable processes in order to mimic real world time series. The regime-switching

model provides an excellent analytical framework to capture such assumed probabilistic

state transitions over time.

The regime-switching model was introduced to the econometrics mainstream by

Hamilton (1989), who proposed the model to investigate postwar u.s. real GNP growth23
•

According to the presented empirical results, it was shown that the growth rates of real

u.s. GNP are subject to autocorrelated discrete shifts. Furthermore, the results illustrated

that the business cycle is better characterized by a recurrent pattern of such shifts between

a recessionary state and a growth state, rather than by positive coefficients at low lags in

an autoregressive model.

In 1990, Hamilton formally generalized the idea of his 1989 paper and suggested that the

EM algorithm can also be employed to estimate the parameters of his models. An

attractive merit of the EM algorithm lies in its ability to simplify a complex

computational problem and stabilize the estimation process. The proposed HMS-V of this

thesis also adopts the EM algorithm, however it is used in a far more efficient manner

than in previous implementations (as presented later in section 4.1).

Since the 1990s, the regime-switching models based on Hamilton's framework have

gained in popularity. They have been adopted to study various economic time series as

well as to endogenize the ergodic structure breaks (e.g. the structure breaks ofvolatility).

23 Since then, Markov states are referred to as "regimes" in econometrics, and a HMNI is therefore also known as a
"regime-switching" model accordingly. In this thesis, the two words "regime" and "state" are often used
interchangeably.
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3.3. Prominent volatility models

A regime-switching volatility model is a complex mixture regression model. Apart from

the basic HMM model, to enhance the understanding of each building block, some

relevant volatility models are discussed here.

3.3.1. The i.i.d. mixture distribution

Researchers have used various unconditional and conditional fat-tailed/skewed

distribution assumptions, for example, the Student's t distribution, skewed-Student's t

distribution, general error distribution, hyperbolic approach, and the mixture normal

distribution amongst others.

The two-component mixture normal distribution is a natural evolution of the classical

normal distribution. The p.dj. of a mixture normal distribution is

(3.1)

where ¢(.I,u,(2
) is the p.dj of a normal distribution, A, is the probability that v is

generated by the first component, and A2 =(1-~) is the probability that v is

generated by the second component. For an i.i.d. two-component mixture normal

distribution with constant weight, the two variables (v, ~) are pair-wise independent.

The first four moments of the mixture normal distribution are:-

2

E(v}=ll= LA; .p; ,
;=1

2

Var (v) = (T2 = L Ai .[(Ti
2 +P;]- p 2

,

i=l

(3.2)

(3.3)
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(3.4)

(3.5)

These moments can take various values and the density function .(3.1) is capable of

describing a great spectrum of fat-tailed and/or skewed distributions?4, as shown infigure

1. The model is referred to as the "Normal Mixture Diffusion" (MixN).

f.1
1
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-2 -1.5 1.5

Figure 1 p.df ofMixN with different parameter settings

24 Please refer to McLachlan G and Peer D., Finite Mixture Models, 2000, New York: Wiley.
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3.3.2. Classic [G]ARCH models

Apart from leptokurtosis and skewness, the simple i. i. d. MixN still fails to account for

other stylized facts of financial returns, most notably, clustered volatility. Perhaps one of

the most popular models which explicitly address clustered volatility is the [generalized]

autoregressive conditional heteroscedasticity ([G]ARCH). The [G]ARCH family was

pioneered by Engle (1982), generalized by Bollerslev (1986) and subsequently extended

by a number of researchers. Furthermore, the model accounts for SOlne of the stylized

facts of financial time series returns outlined in the introduction, but from a significantly

differing perspective than that of the proposed model. For a GARCH model, the volatility

is a deterministic, continuous and smooth function of the past innovations. It is therefore

more suited to describe smooth and linear changes in variance. On the other hand, the

proposed HMS-V model, allows for radical and nonlinear structure breaks in variance.

[G]ARCH model, Bollerslev (1986)

The GARCH (k,h) model proposed by Bollerslev (1986) takes the following form,

U,d

&t = (Jt -lit, and 1]t ~ N (0,1) ,

k h

(JJ = flo +L fli e&J_i + L flk+j e(JLj

i=1 j=1

(3.6)

where fli 2 ° for i = 0,1,· .. ,k +h is the non-negative condition. The conditional

variance (Jj is thus linearly dependent on &Li and (JL j •

Since a vast number of alternative GARCH formulae exist in the literature, only those

most relevant to the proposed HMS-V model are discussed here.
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Modeling the absolute return

Taylor (1986), amongst others, suggests modeling the autocorrelation of absolute return

directly,

k h

CYt =130 +L /3; -I Gt-i 1+ L 13k+j -CYt _j ,

i=1 1=1

(3.7)

where /3; ~ 0 for i = 0,1,2. The functional form of equation .(3.7) is the same as

GARCH except that the linear relationship is imposed on the standard deviation instead of

the variance.

Standard deviation based model as opposed to variance-based the variance possesses

many potential advantages. One motivating factor for adopting standard deviation-based

models can be linked to the least absolute deviation versus least squared approach, of

which the former is more robust to the presence of outliers. Another factor could be that

the absolute return is a more direct lneasure of risk than the squared return, which was

studied by Granger and Ding (1993).

EGARCH (Exponential GARCH)

One of the difficulties encountered by the linear [G]ARCH model of equation .(3.6) is that

without non-negative restrictions, the MLE coefficients for the innovation terms are often

found to be negative. This same critic also applies to equation .(3.7).

To relax the non-negativity restriction and to emphasize asymmetry of volatility in

response to news, Nelson (1991) presented an exponential GARCH model (EGARCH),

l

k h

log((it ) =Po +L A·g(vt- i ) +LPk+1·log ( (it_j) ,
i=1 1=1

(3.8)
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where g(vt)= a-17t+b-[I17tl-EI1J,IJ. Note that due to the properties of the exponential

distribution, non-negative constraints are no longer required. Similarly, the proposed

HMS-V model also does not require non-negative constraints. A further consequence of

using an exponential form is that it is identical to direct standard deviation or variance

modeling (e.g. Taylor, 1986).25.

GARCH-T (GARCH with Student's t distributed innovation)

An attractive feature of the [G]ARCH process is that while the conditional distribution of

the error is normal, the unconditional distribution is fat-tailed. In spite of this attractive

feature, empirical results using high frequency data often indicate that the implied

unconditional distributions of the estimated [G]ARCH models are insufficiently

leptokurtotic to represent the returns distribution. Bollerslev (1987) therefore adopted a

conditional Student's t distribution,

k h

a-j = 130 +'LP-&Li + 'L13k+j·aLj
i=1 j=1

(3.9)

where 1], follows an i.i.d. Student's t distribution with unity variance and DoF degrees

of freedom, whose density function is,

(
DOF+l)r (2 J-(DOF+l)12

2 1 17
~JZ"(DOF-2).r( D~F)" + (DoF-2) .

25 Specifying O"{i},t =exp (ZtP{i}) is equivalent to specifying O"(;},t =exp (2.ZtP{i») .

(3.10)

43

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

DRD
Rectangle

DRD
Rectangle

DRD
Rectangle

DRD
Rectangle

DRD
Rectangle



IGARCH (Integrated GARCH)

According to the [G]ARCH model of equation .(3.6), the impact of current innovation on

future volatilities is measured by persistence where,

k h

persistence =LA + L/3k+J .
i=1 j=1

(3.11)

For a GARCH(I,I) model, equation .(3.11) can be simplified to /31 + /32. If /31 + /32=1,

the conditional variance grows linearly with the forecast horizon, in which case the

GARCH(I,l) model is referred to as the Integrated GARCH (IGARCH). The IGARCH

model assumes:

i.i.d

St = (J't -1]t' and 1]t"'" N (0,1) ,

Following a review of empirical results in the literature, it can be notices that the high

persistence level of GARCH is not at all ubiquitous (Baillie, 1996). These empirical

findings suggest that volatility is also perhaps fractionally integrated and has a long

memory. This observation was also reflected in the fractionally integrated GARCH model

(FIGARCH by Baillie, Chung and Tieslau, 1996).

3.3.3. [G]ARCH with mixture normal innovation

The volatility at each component of the MixN model discussed previously in section 3.3.1
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is fixed, however the volatility of a [G]ARCH model in section 3.3.2, with only one

component, is dynamic. MixN and GARCH can be integrated in such way that the

volatility of the MixN model is embedded in a GARCH process.

Vlaar and Palm (1993) are likely the first to suggest the use of a mixture nonnal

innovation in a GARCH context (GARCH-MixN). The model pennits non-zero skewness

by allowing the component means to be non-zero. Bauwens, Bos, and Dijk (1999)

considered a GARCH-MixN model with two components, where the component

varianc~s are proportional to each other. Wong and Li (2000, 2001) proposed a model that

allows for nonlinear dynamics in the mean.

Recently, Haas, Mittnik, and Paolella (2004a) also considered a GARCH-MixN for a

univariate time series coupled with a multivariate GARCH type structure. Employing

daily return data of the NASDAQ index, the GARCH-MixN generated a plausible

disaggregation of the conditional variance process in which a component's volatility

dynamics had a clearly distinct and meaningful behavior.

Unfortunately, as was the case for the GARCH-T model, the GARCH-MixN is unable to

account for the long memory of financial time series. The long memory behavior of

financial time series can be better incorporated by a regime switching volatility model.

3.3.4. Regime-switching volatility models

A more dynamic approach is to allow both the component weight of a MixN and each

components volatility to be time-varying. The proposed model and the MS-[G]ARCH
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models both belong to this category. Such enriched dynamics helps to explain the long

memory process of an IGARCH or an FIGARCH model reviewed in section 3.3.2. The

regime-switching model provides an alternative method of considering structure breaks

and the long memory of a financial time series.

The consistent observation of very large persistence in the variance of financial time

series is perplexing. Diebold (1986) suggested that the failure to accommodate shifts in

monetary policy regimes, reflected by changes in the constant term of the conditional

variance equation, might result in an erroneous estimate of the integrated interest rate

volatility. Diebold and Inoue (2001) showed analytically that stochastic regime switching

is easily confused with the long memory process. Granger and Hyung (1999) also

analyzed how high persistence can be incorrectly found in the presence of breaks.

To illustrate the above argument, a simple Monte Carlo experiment is carried out to

demonstrate an example of the relationship between the ergodic structure breaks, long

memory and a potentially mis-specified IGARCH process. Suppose that:-

• there are only occasional structure breaks and the differences between the two

regimes are "significant; the first states follows i.i.d. N(O,l) and the second state

follows i.i.d. N(0,2 2
);

• the sample size of the time series is 10,000 with two underlying states, and

• a regime shift takes place for every 1,000 observations.

Figure 2 plots the simulated time series and the sample autocorrelation functions (ACF)

of the squared return up to 700 lags. The sample ACF does not die down exponentially.26,

26 Theoretically, a short memory GARCH model indicates exponential de"caying ACF.
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and it diminishes to 0 only after a few hundred lags. Such a pattern of sample ACF is

exhibits similarities to an IOARCR or a FIOARCR process.

A. return

-10
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B. ACF of squared return
0.2

0.15

0.1

0.05

-0.05

100 200 300 400 500 600 700
Lag

Figure 2
Top panel: the simulated time series with 10,000 observations

Bottom panel: the sample ACFs (long memory) ofthe squaredreturn

Fitting the plotted data to the OARCR(l,l) -Normal model, an almost unity persistence

(IOARCR process).27 can be found,

a} =:= 4.46-10-3 +0.032-&Ll +0.967-uLI d
, an

(0.001) (0.003) (0.003)

LLF = -17868.2 .

27 0.032 + 0.967 = 0.999

(3.12)
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Figure 3
Top panel: the true standard deviation

Bottom panel: the estimated standard deviation by the GARCH(i, i)-Normal model.

In equation .(3.12), the coefficient of the ARCH tenn, which absorbs innovations, is close

to zero, while the GARCH tenn, which reserves the accumulated information, is close to

1. Note that a GARCH model can also be regarded as a state updating process on

volatility. In equation .(3.12), ()t-l can be regarded as the state variable at time t, and the

....-.
GARCH tenn, /32 =0.967, linearly disposes the state infonnation. The ARCH term,

..-..
/31 =0.032, then linearly learns the new innovations, &t •

Figure 3 suggests that:-

• when the underlying regime does not shift and the "true" volatility does not change,

the estimated volatility by the GARCH model fluctuates largely. This is due to the
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inability of the GARCH to cease absorbing the innovations in a linear speed, and

furthennore its inability to distinguish the importance (relevance) of the new shock

• when the underlying regime suddenly changes, the GARCH model also absorbs the

shock linearly, which is not sufficiently fast enough since the true volatility should

instantaneously switch to a completely different state.

In this example, the "long memory" indicated by sample ACF is caused by the periodic

structure breaks. The GARCH model tries to linearly fit the occasional abrupt changes

with continuous gradual changes, while the estimated parameters suggest an IGARCH

process. In order to rigorously address the non-linear structure breaks more, researchers

have developed models where the coefficients of the [G]ARCH process are dynamic and

governed by a hidden Markov process, Le., Markov-switching [G]ARCH models.

3.4. Two classes ofpopular Markov-switching [G]ARCH

approaches

3.4.1. The Hamilton/Gray/Klaassen approach

3.4.1.1. Model Overview

Hamilton and Susmel (1994) proposed that the spurious high persistence obtained by

classic GARCH models can be mitigated by a hidden Markov-switching ARCH process.

For a two-state Markov-switching GARCH (1,1) model, Hamilton and Susmel (1994)

assumed the following data generating process for {&t}:

i.i.d
771 ~ N(O, 1),
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2

a'i =L I (L1t-! = i)o(-0i}.O + -0;}.1 067_1 + -0i},2 oaL )
i=1

(3.13)

where I (I1 t = i) is an indicator function. Iteratively expanding equation .(3.13) yields

(3.14)

such that (J*1
2 depends on the entire regime history. The evaluation of the likelihood

function for a sample of length T requires the integration over all 2T possible

(unobservable) regime paths, rendering the estimation of equation .(3.14) computationally

intractable in practice. Therefore, Hamilton and Susmel (1994) restricted the model

specification to MS-ARCH models. Only the four most recent innovations were taken

into account (from to &i-4)' Le., an MS-ARCH(4) model. To avoid

over-parameterization, the volatilities at different regimes were assumed always

proportional,

The underlying ARCH (4) variable at IS then multiplied by the constant ,Jb;; if

111 = 1, and by .jb; if 111 = 2. As a result, crt
2 is a function of 4 lagged terms of state

probabilities,

cr; =E {&;II1 t , 11(_1'··· I1 t - 4,&(-1'··· &t-4}

=b(!J.I} {ao+ aloa(~'_I}" +'.·+a4 oa(~'-4}" },

= cr; (I1t , I1t-1,.·· Llt- 4 ).

(3.16)
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Gray (1996)

To circumvent the path dependence and generalize the Markov-switching ARCH

(MS-ARCH) model into a Markov-switching GARCH (MS-GARCH) model, Gray (1996)

proposed a simple non-path dependence collapsing scheme. The basic idea of the

collapsing scheme is to calculate the expected value of the volatility at time t based on

information up to t -1 ,

(3.17)

Note that equation .(3.17) is essentially derived from equation .(3.14) by taking the

following expectation,

=t {E[/).t =i!Vft-I}(E
2

[,u(I},t IVft-I J+ E[OAtIVft-I J)} (3.18)

-{tE[/).t = iIVft_I}E[,u(i},tIVft-IJr·
Gray (1996) used equation .(3.17) to replace equation .(3.16) with a GARCH process for

the volatility at both states,

equation .(3.19) suggests that:

i= 1,2 (3.19)
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o-(~},t =E[o-t},t/Vlt-l ]

= Pt.i},O + fJ(i}, 1
0 &(,),t-I + fJ(i},2 0 E [ E (o-J-ll Vlt-2 )1 VIt-1 ]

=Pt.;},O + Pt.i), 10 &(,),1_1 +Pt.i},2 0 E [ o-J-ll Vlt-2 ]

(3.20)

Gray therefore managed to obtain the expected volatility iteratively from equation .(3.18)

and equation .(3.20) and he generalized the ARCH structure in equation .(3.16) to the

GARCH structure. In addition, with the iterative collapsing scheme the proportional

relationship between the volatility at State 1 and the contemporary volatility at State 2.28

need not be assumed. Such model specification further enriches the dynamics of the

MS-GARCH model. According to Gray's empirical study on the US short-term T-bill rate,

when the interest rate is high, as in the case of an expected oil price shock and the Fed

experiment during 1979 and 1982.29
, the short-term US T-bill rate resembles the GARCH

model.

To gain a more intuitive understanding of Gray's approach, suppose there are only two

states and Ji = Jl(I) = Jl(2) = O. Equation .(3.18) and equation .(3.20) can then be simplified

to:

o-(~},t =E[ o-(~},tIVlt-l ]

=Pt.i},O + Pt.i}, 1
0 yLI +Pt.i},2 0 E [ E ( 0-J-ll VIt-2 )/ Vlt-I ]

=fJ(i},O + fJ(i},l oyLI + fJ(i},2 0E[ o-~llV1t-2 ]

The volatilities at the two states are intertwined because:-

(3.21)

(3.22)

28 The proportional relationship in volatilities at different states is specified by Hamilton and Susmel (1994)
29 The interested reader may refer to "The Incredible Volcker disinflation." by Goodfriend and Robert (2005) for a
detailed background ofthe Fed monetary experiments from 1979 to 1982..
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• in equation .(3.22), O"t-l is assumed to be equal to the volatility at time t -1 for

both states, since the estimated value of O"t-l is shared by both states to update

O"(I),t and 0"(2),t

• in equation .(3.21), 0":_1 explicitly depends on 0"0).1-1 and O"t2),t-l.

Therefore, by the above recursive relationships, such an intertwined model specification

reduces transparency.

Klaassen (2002)

Klaassen (2002) improved upon Gray's proposal by using more relevant information to

forecast volatility. It was discovered that if I1t is highly auto-correlated, then the

information at time t (e.g. the observation Yt), also provides valuable information for the

state probability at time t, whereas the approach of Gray only exploited the information at

time t-I ..

Again, let a simplistic scenario assume,

• J1 = 11(1) = 11(2) = 0, and

• that at time t, the volatilities at both states for both Gray's and Klaassen's model

are identical, that is, EGray [ (}"(~},t ] = EKlaassen [ (}"(~},t ] = EStarl [ (}"(:},t ] ·

The following table examines the primary differences between the approaches of Gray

and Klaassen.
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Gray (1996) Klaassen (2002)

simply use E[11, = illf/t-I] to estimate use all the information of If/t to calculate

a} E[I1t = illf/t ] first; then

EGray [ al Ilf/t ]

= t {E[I'.t = iIVt-I}Estart [o-t).t]}
1=1

Forecast a(i),t+l based on observations

EGray [ 0-(;),1+11 Vt ]

= !1i),O + P(i), 1-yl + P(i),2 -EGray [ al Ilf/t ]

EKlaassen [ a: Ilf/t ]

2

= L {E[I'.t = ilVt }EStarl [ o-t).t ]}
1=1

Note that EKlaassen [ at Ilf/t ] is now more

precise than Earay [ a} Ilf/t ] .

EKlaassen [ o-(;).t+IIVt ]

= !1i),O + !1i), 1-yl + P(i),2 - EKlaassen [ at Ilf/t ]

Forecast O"t+l based on observations

EGray [ 0-:+11Vt ]

=tEeI'.t+1 = ilVt}EGray [o-t),t+IIVt ]
1=1

with the realization of Yt+1' estimate

EKlaassen [ 0-:+11vt ]

=t E[I'.t+1 =ilVt }EKlaassen [ o-t),t+IIVt]

use ALL the information of 'l/t+1 to

calculate E[I1t+1 = illf/t+l] first; then

EKlaassen [ a:+11lf/t+l]

=t {E[I'.t+1 =iIVt+1}EKlaassen [o-(~).t+lIVt ]}
Table 1

This table shows a simplified comparison between Gray:S (1996) and Klaassen:S (2002)
Markov-switching GARCH model. Note that Klaassen:S approach uses more relevant information
to update the volatility.

As suggested by Klaassen (2002), the value of Yt provides highly valuable information

to estimate the state probability at time t..Table 1 summarizes how this is integrated into

the Markov-switching GARCH model of Gray (1996). ,However, despite the differences,
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the overall frameworks of the two Markov-switching GARCH models maintain some

similarity.

3.4.1.2. Non-parallel structure andpotential limitations

The Hamilton/Gray/Klaassen MS-GARCH models are elegant and versatile. Despite this,

a few oversights are notable:-

(Oversight. 1) Same volatility link function tor both INTER-state and INTRA-state

dynamics:

To portray this simplification, an analysis is performed where the Markov state transits

from the tranquil state to the turbulent state, then remains in the turbulent state. Figure 4

demonstrates an illustration of the oversight.

....••............

(J'(2), t-l :

(recessive)
................ ~

()(l), t-1

(dominant)

"Turbulent" state

(J(2), t
(dominant)

.................... .
~ (J'(l), t j
: (recessive) :. .
~ ~

(J'(2), t+l

(dominant)

..................

: (J'(l), t+l

(recessive)
~ .

"Tranquil" state

Figure 4
INTER-state and INTRA-state dynamics ofHamilton/Gray/Klaassen models (when the underlying
hidden state is known). Suppose it is known that state(t-l) is tranquil, state(t) is turbulent, and
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state(t+1) is turbulent. The textbox with the solid (dotted) boundary means the state is dominant
(recessive).

As shown in Figure 4:

• from time t -1 to t, the volatility link function for the turbulent state is

responsible for the INTER-state dynamics. It acts as a sprinter to describe the

jump in volatility from the low volatility state to a high volatility state. The shock

is completely absorbed by the volatility link function.

• from t to t +1, the volatility link function for the turbulent state is responsible

for the INTRA-state dynamics. It describes the evolution within the turbulent

state.

Therefore, the Gray/Klaassen model is more appropriate in the case of the INTER-state

dynamics being the same or similar to the INTRA-state dynamics.

(Oversight. 2) Less transparent dynamics:

Note that Figure 4 only depicts the situation where the underlying state is known,

whereas in reality the state probability has to be estiInated, thus further reducing the

tractability. Figure 5 illustrates a similar situation as that offigure 4, however in this case

the state is unknown and has to be estimated.
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if L\, = 1 if L\2 = 1

Hamilton
filter,

~ Pr(L\1 =1) ..
collapse Yz

Pr(L\1 = 2)

if L\! =2 if L\2 =2

Figure 5
Gray/Klaassen Model (the underlying process is unknown and has to be estimated)

(Oversight. 3) Possibly excessive adaptation to recent signals:

According to the non-parallel model specification, it is likely that the volatility link

functions of both states excessively absorb and adapt to recent history.

For example, to describe the dynamics of a stock index with the Gray/Klaassen model, a

modeler often refers to a "tranquil state" (say State 1) and a "turbulent state" (say State 2).

However, according to equation .(3.19), the volatility of both states, (j(l),t and (j(l),t' is

based on the same value of (jt-l.

(3.23)

In order for the volatility of the second state to always exceed that of the first state, it is

required that k(l) ~ k(2) , a(l) ~ a(2) , and b(l) ~ b(2). Otherwise, in the case of a prolonged

tranquil period, the volatility of the turbulent state could excessively adapt to the
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tranquility. The volatilities of the two states would hence become homogenous.

(Oversight. 4) Passive adaptation and potential missing memory:

If both states excessively adapt to recent history, the relevance of distant history could be

insufficiently represented. As the case study in chapter 5 shows, to invoke the memory of

distant history, the model must passively absorb new "shocks". Prior to the new "shock",

a long lasting tranquility can give the user of the model a deceptive sense of security.

In addition, as shown in Figure 4, the volatility link function at the turbulent state is

required to describe both the INTER-state jump and INTRA-state evolution. For the

INTER-state jump, the shock is completely absorbed by the volatility link function.

Therefore, it is possible that the distant turbulence is memorized not as turbulence, but as

a fast-adapting Gumping) process. This is explained in further detail in chapter 5.

(Oversight. 5) Reduced appeal ofregime-switching:

For the Gray/Klaassen model, according to equation .(3.19) and Figure 4, it is possible

that the volatility at the two states becomes less distinguishable and the clustering of

Markov states fails to account for the clustering of volatility. The clustered volatility

remains primarily explained by the volatility link functions instead of by the clustered

Markov states.

In addition, statistically, if P(ll) + P(22) ~ 1, then the Markov-switching model is similar to

a single-regime GARCH-MixN model. If this is the case, regime-switching is less

appealing, and the corresponding economic reasoning also becomes less relevant.
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(Oversight. 6) Long memory not addressed by regime-switching:

The volatility clustering and possibly long memory are primarily explained by the ARCH

( 00 ) recursive volatility link functions, not by the clustering and switching of regimes.

(Oversight. 7) Possibly inconsistent economic implication for some time series:

For some time series, the Gray/Klaassen may not provide a consistent economic

implication. In practice, both the INTER-state and INTRA-state dynamics, and hence the

economic implication may be significantly different, while Gray/Klaassen's approach

suggests that they are the same (see figure 4).

As previously analysed in section 3.6.4, for the stock market, Maheu and Mccurdy (2000)

and Bhar and Hamori (2004) amongst the others, suggested that the return data is

generated by either a high-return tranquil state (say State 1) or a low-return turbulent

state (say State 2). However, although such relationships are implicitly present in the data,

the empirical study using the Gray/Klaassen approach may indicate otherwise. If there is

prolonged tranquility, which has been excessively adapted to by the turbulent state, it is

not unlikely that the volatility at the "tranquil" state is higher than the volatility at the

"turbulent" state. Under such circumstances, the volatilities at the two states' are no

longer inline with the economic implication (e.g. "low volatility state" and 'high

volatility state"). In section 5.6.2, an example of this is provided. The induced

complication is more acute if it has been described that the "low volatility state" is

associated with higher return.

(Oversight. 8) Excessive computational burden:
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As detailed in section 4.1.3, the non-parallel structure of the Markov-switching makes the

estimation process non-parallel. With a non-parallel structure, it is difficult to decompose

the complex computational process into more straightforward steps, and all the

parameters for both the volatility link functions have to be simultaneously estimated. The

computational burden increases, while the robustness ofparameter estimation is reduced.

3.4.2. The Haas, Mittnik and Paolella approach

3.4.2.1 Model Overview

Haas, Mittnik and Paolella (2004b) are the first to propose a more parallel MS-GARCH

model for volatility (but not for the expected return). To simplify the deduction and

calculation, they initially fit the time series to an AR model, and then separated study the

residual of the AR process. In this approach, they assume that the first and third moments

of the adjusted time series equal to zero:-

(3.24)

It is further assumed that:-

2

y, =8, =L 1], ·0'(i),t·1 (11, =i) , and
i=l

i = 1,2;t = 2", ·,T. (3.25)

Equation .(3.25) indicates that volatility within each state does not explicitly depend on

the coefficients of the other state. The volatilities at both states interact with each other

implicitly through the shared innovation and shock, 8(. Hence the volatility link function

is only used for the INTRA-state but not the INTER-state dynamics (see Figure 6), which
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differs to that shown previously in Figure 4.

"Turbulent" state
...................· .
~ (J(2), t-1 ~:__...._ .....

: (recessive) :· .
~ ••.••.....••.•.. ~

(J(2), t

(dominant)

(J(2), t+1
(dominant)

(J(1), t-1

(dominant) •••
.................... .
~ (J(1), t ~
: (recessive» :. .
~ .••.•.•......... ~

.................... .
1 (J(l), t+1 ~
: (recessive» :. .
~ ..•......••.•••. ~

"Tranquil" state

Figure 6
INTER-state and INTRA-state dynamics ofHaaslMittniklPaolella (2004b), (when the underlying
hidden state is known). Suppose it is known that State(t-1) is tranquil, State(t) is turbulent, and
State(t+1) is turbulent. The textbox with solid (dotted) boundary means that the state is dominant
(recessive). Therefore, from t -1 to t and from t to t +1, the volatility link function for the
turbulent state describes the INTRA-state evolution.

As shown in Figure 6:-

• From time t -1 to time t, the switching of the regime is responsible for the

INTER-state dynamics. The sudden jump in volatility can be mostly absorbed by the

switching of the underlying process, as opposed to only by the switching of the

parameters.

• From time t to time t +1, the volatility link function for the turbulent state is

responsible for the INTRA-state dynamics.

Therefore, the Haas/MittniklPaolella (2004b) approach is more theoretically appropriate

than that of Gray/Klaassen if the INTER-state and INTRA-state volatility dynamics are

dissimilar.
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3.4.2.2. Improvements/Limitations

The improvements and limitations of HaaslMittniklPaolella's (2004b) approach are

discussed from two aspects: (1) the limitation imposed by assuming zero mean for each

state; (2) the improvements and limitations in addressing the oversights listed in section

1.2.

According to the assumptions of HaaslMittniklPaolella (2004b), the innovation Yt

always has zero mean implying that filtering of the residuals is unnecessary. However, to

obtain such a time series, they run an autoregressive (AR) regression independently

before using the MS-GARCH to study the residuals. Although such an approach greatly

simplifies the estimation, the AR parameter is not estimated together with the

MS-GARCH parameters by a MLE. Such an ad hoc treatment of the expected return is

yet to be justified. In addition, the approach does not address the different patterns of

expected return of a financial time series during a turbulent and tranquil state.

(Oversight. 1) Same volatility link function (or both INTER-state and INTRA-state

dynamics:

As illustrated In Figure 6, HaaslMittniklPaolella's (2004b) approach addresses this

shortcoming quite well: the INTER-state dynamics are addressed by the switching of the

regime, while the INTRA-state dynamics are addressed by the volatility link function of

each state. However, note that because HaaslMittniklPaolella's (2004b) assumes the same

mean for both states, there is no INTER-state dynamics for the mean.

(Oversight. 2) Less tractable dynamics:
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According to Haas/MittnikJPaolella's (2004b) approach, a volatility link function of each

state only describes the INTRA-state dynamics, and the complexity has been reduced.

Figure 6 depicts a scenario in which the underlying state is known. For the case of the

state probability being unknown, Figure 7 provides the illustration.

-
Jl(I),1 = 0 and 0"(1),1

if ~I = 1

if ~I = 2

-
J/(2),1 =0 and 0"(2),1

-
Jl(I),2 = 0 and 0"(1),2

if ~2 = 1

if ~2 = 2

--
J/(2),2 = 0 and 0"(2),2 -t-------..

Figure 7
The model proposed by Haas, Mittnik, and Paolella s (2004b) (when the underlying process is

unknown and has to be estimated)

(Oversight. 3) Possible excessive adaptation to recent signals:

HaaslMittniklPaolella's (2004b) approach remains insufficiently parallel and the

ARCH (00)?O volatility link function(s) is likely to let both state excessively adapt to

recent signals. There lacks an independent state to specifically address a scenario that

resembles the distant history, in particular if there is prolonged tranquility or turbulence.

30 Thus it is proposed to use only the most recent information instead of an ARCH ( 00 )process.
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(Oversight. 4) Passive adaptation and potential missing memory:

A relative independent state that emphasizes the distant history is also disregarded. Hence

the memory of the distant history may be discarded and will only be passively invoked by

new shocks.

(Oversight. 5) Reduced appeal ofregime-switching:

From comparison of Figure 4 and Figure 6, a regime switch indicates a process switch,

which increases the appeal of regime-switching when the jump in volatility is severe/

However, the Haas/MittniklPaolella's (2004b) model is insufficiently parallel due to the

ARCH ( 00 ) volatility link function. Note that according to the following equation:

O'(~),t = ~i),O +~i),I-&:-l + /1i),2 -O'(~),t-1;

O'(I),t > O'(2),t

for .(3.26) to be true, it is required that

i = 1,2;t = 2,.· ·,T.
(3.26)

(3.27)

However, the empirical study does not always satisfy .(3.27) or consequently.(3.26). For

example, Haas/MittniklPaolella (2004b) use their model to study the exchange rate of

JPY/uSDP:-

O'0),t = 0.003 +0.023-&:_1 + 0.945-O'(~),t_1;

Ut2),t =0.097 + 0.227-&:_1 + 0.818-ut2),t_1; (3.28)

P(ll) = 0.744; P(22) =0.285 .

In this case, it is not known which state has a higher volatility and which state has a lower

volatility. In addition, P(11) + P(22) = 1.029 ~ 1, which suggests that it is somewhat similar

to a GARCH-MixN model.
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(Oversight. 6) Long memory not addressed by regime-switching:

Similar to the Gray/Klaassen model, if the difference between the two states is less

distinctive, and P(I I) + P(22) ~ 1, it is most likely that the state transition probability matrix

is unable to address the clustering of hidden Markov states (see equation .(3.28)). In this

case, the volatility clustering and "long memory" is primarily addressed by the recursive

ARCH ( 00 ) volatility link functions, instead of the switching of regimes.

(Oversight. 7) Possible inconsistent economic implication for some time series:

If the MS-GARCH model is more similar to a GARCH-MixN than to a regime-switching

model, potential inconsistencies could be introduced in the economic implication of

"regime-switching", especially for the interplay between the volatility and mean.

(Oversight. 8) Excessive computational burden:

As shown in section 4.1.3, for HaaslMittnik/Paolella's (2004b) approach, if the mean of

the time series is zero, then the computational burden is far less than that of the

Gray/Klaassen model. However, if the mean is non-zero and must be estimated together

with other parameters, then the parameters of the two volatility link functions cannot be

solved in a parallel manner. Such structure increases the computational burden.

3.5. Strengths ofthe proposedparallel hidden

Markov-switching volatility model

To demonstrate the strengths of the proposed HMS .volatility model, the following
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discussion indicates how it specifically addresses some of the previously outlined

oversights ofprevious models.

(Addressing Oversight 1) Same volatility link function for both INTER-state and

INTRA-state dynamics:

Both the proposed model and Haas/Mittnik/Paolella's (2004b) approach address this

oversight quite well: the INTER-state dynamics are described by the switching of the

regime, while the INTRA-state dynamics are described by the volatility link function of

each state. The proposed model however, further improves upon Haas/Mittnik/Paolella's

(2004b) by addressing the INTER-state dynalTIics of the mean.

(Addressing Oversight 2) Less tractable dynamics:

As is the case with Haas/Mittnik/Paolella's (2004b) approach, the parallel structure

enhances tractability. Figure 8 plots the scenario when the hidden state has to be

estimated, where it is evident that it is more tractable than the reviewed MS-GARCH

lTIodel (see Figure 4 and Figure 6)
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if Ll
2

= 1

Figure 8
The proposed model (when the underlyingprocess is unknown and has to be estimated)

(Addressing Oversight 3) Possible excessive adaptation to recent signals:

The proposed parallel structure emphasizes a greater independency of the two regimes.

Note that instead of an ARCH (00) structure, the volatility link function only eluploys

limited recent information (e.g. limited lag terms), hence the turbulent state will not adapt

excessively to the observations at the tranquil state and the memory of turbulence is

maintained3
!.

(Addressing Oversight 4) Passive adaptation and hence possible missing memory:

The proposed model has an increased ability to capture the distinctive differences

between the two states. Despite one of the states aggressively ad",pting to recent history,

the other state remains relatively independent and stores the memory of the distant history.

31 There are a few alternative approaches based on MS-GARCH. One can impose constant volatility for the tranquil
state, which does not prevent the turbulent state excessively learning from the tranquility. One can impose constant
volatility for the turbulent state, but the description ofturbulence would be too rigid and also have a much lower
likelihood. One solution is a truncated GARCH model that was previously proposed by the author (not in this thesis) to
describe the daily S&P 500 return.
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The memory of the distant history will be always maintained, even without any shock.

The case study in Chapter 5 further illustrates this enhancement.

(Addressing Oversight 5) Reduced appeal ofregime-switching:

The proposed parallel structure emphasizes the independence and distinctive differences

of the two states. If the differences between two states are distinctive, a greater portion of

volatility clustering will likely be explained by the clustering of regimes, and regime

switching is more appealing.

(Addressing Oversight 6) Long memory not addressed by regime-switching:

A long melnory can be caused by the switching of a regime (e.g. see Figure 2), and/or an

ARCH (00) process with near unity persistence (see section 3.3). Since an ARCH (00)

link function is not adopted by the proposed model, the long memory will be primarily

addressed by regime-switching. This form is comparable to portions of the ARCH (00)

structure ofa GARCH-MixN model.

(Addressing Oversight 7) Possible inconsistent economic implication (or some time

Compared with the reviewed MS-GARCH models, the proposed model gives a more

consistent economic implication. This is because (i) the INTER-state and INTRA-state

dynamics, and hence their economic implication, have been described by the switching of

regimes and the volatility link functions respectively; (ii) the volatility link function is

more parallel and the two states are more likely to describe different volatility dynamics

as well as economic implications; and (iii) the two states need not share the same mean,
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and the economic implication of both the mean and volatility within different economic

contexts can be investigated.

(Addressing Oversight 8) Excessive computational burden:

As detailed in section 4.1.3, a parallel structure suggests independent optimization for

parameter estimation, which requires less computational effort and provides greater

stability.

Finally, few published articles on the MS-GARCH models discuss the parameter

identifiability condition. A Student's t distribution possesses great advantages in modeling

fat-tailed financial time series, but the identifiability condition for the mixture Student's t

distribution within such a complex context is more challenging than for a mixture normal.

For generality, only a normal distribution is considered in this work, and more complex

conditional distributions are not analyzed. Appendix I analyses a sufficient condition of

the model identifiability condition.

3.6. HMM empirical studies

In recent years, the HMM has been widely for solving problems in applied econometrics,

in particular the Markov- switching volatility models. The model has been applied to

describe the dynamics of business cycles, interest rates, yield curves, foreign exchange

rates, stock index returns, credit and default, and commodity price.
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3.6.1. Business Cycles

The notion that business cycles exhibit asymmetries is well established in economics.

Recessions tend to be more pronounced and of a shorter duration than expansions, and

recoveries appear to take a more moderate course than contractions.

Following the work by Hamilton (1989) on applying the Markov-switching model to

non-linear business cycles, Clements & Krolzig (2003) proposed parametric tests for

asymmetries based on Markov-switching processes, which are widely regarded as suitable

for the investigation ofvariables subject to business cycle fluctuations.

Krolzig (2001) addressed the issue of identification and dating of the Euro-zone business

cycle with the Markov-switching approach innovated by Hamilton (1989). Regime shifts

in the stochastic process of economic growth in the Euro-zone were identified by fitting

Markov-switching models to aggregated and single-country Euro-zone real GDP gr~wth

data over the last two decades. The models were found to be statistically congruent and

economically meaningful and the resulting evidence of the presence of a common

Euro-zone cycle was convincing.

3.6.2. Interest Rates and Yield Curves

Gray's (1996) work examined the short-term u.s. treasury interest rate. Christiansen

(2004) used the MS-GARCH to study the yield curve. A bivariate two-state MS-GARCH

model was proposed to investigate the relationship between the short rate changes and the

yield curve slope. The two states were characterized by the variance of the short-rate

changes, into low and high variance states. In the high-variance regime the yield curve
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became steeper with the interest-rate variance whereas in the low-variance regime the

slope was independent thereof.

3.6.3. Foreign Exchange Rates

Engle and Hamilton (1990) discovered that the value of the US Dollar (USD) appeared to

move in one direction (resides in one regime) for long periods of time. Therefore they

used a Markov-switching approach to model the segmented time trends. They rejected the

null hypothesis that exchange rates follow a random walk behavior in favor of a

regime-switching model.

Bollen, Gray and Whaley (2000) examined the ability of regime-switching models to

encapsulate the dynamics of foreign exchange rates. They reported that a

regime-switching model with independent shifts in mean and variance exhibited a closer

fit and more accurate variance forecasts when compared to a range of other models. They

also established that a simulated trading strategy based on regime-switching option

valuation generated higher profits than standard single-regiIne alternatives.

The relationship between the exchange rate and central bank interventions was

investigated by Beine, Laurent and Lecourt (2003). They used the MS-GARCH process to

investigate whether official interventions can account for the observed volatility

regime-switches. They determined that depending on the prevailing volatility level,

coordinated central bank interventions can result in either a stabilizing or a destabilizing

effect.
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Dueker and Neely (2007) merged the literature on technical trading rules with the

literature on Markov switching to develop economically useful trading rules. The Markov

modes' out-of-sample returns modestly exceeded those of standard technical rules and

were profitable over the most recent subsample.

3.6.4. Stock Index

Turner, Startz and Nelson (1989) investigated the risk and learning of market participants

when the heteroskedasticity is caused by a hidden Markov process. They examined a

variety of models in which the variance of a portfolio's excess return depended on a state

variable generated by a first-order Markov process. Firstly, a model in which the state was

known to the economic agent was estimated. It suggested that the mean excess return

moved inversely to the level of risk. They then estimated a model in which agents are

uncertain of the state. The model indicated that agents are consistently surprised by

high-variance period, there is consequently a negative correlation between movements in

volatility and excess returns.

Hamilton and Lin (1996) investigated the joint time series behavior or monthly stock

returns and growth in industrial production. They found that economic recessions were

the primary factor that drove fluctuations in the volatility of stock returns.

Maheu and Mccurdy (2000) studied the duration of different stock market sentiment.

They developed a Markov-switching model that incorporated duration dependence to

capture the non-linear structure in both the conditional mean and the conditional variance

of stock returns. They assumed that the return data was generated by either a high-return
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tranquil state or by a low-return turbulent state, which were labeled as bull and bear

markets respectively. Their method identified all major stock-market downturns in over

160 years of monthly data. According to their findings, the best market gains come at the

start of a bull market, which also has a declining hazard function. Furthermore, it was

observed that volatility increases with the duration of the bear market.

Similarly to the duration argument, Bhar and Hamori (2004) used the hidden

Markov-switching model to decompose stock returns into permanent and transitory

components. According to their empirical study of four major economies, there was a

substantial variation in the duration of the volatility states of the transitory component in

these markets. The U.S. market was also reported to have a positive correlation with other

markets for the permanent cOlnponent, whereas it displayed a negative correlation with

the temporal component.

Marcucci (2005) compared different GARCH models in terms of their ability to describe

and forecast volatility of stock indices. To take into account the excessive persistence

usually found in GARCH models (implying too smooth and too high volatility forecasts),

he studied the MS-GARCH models and found that its parameters were allowed to switch

between a low and high volatility regime. The empirical analysis demonstrated that

MS-GARCH models substantially outperform standard GARCH models in forecasting

volatility at short horizons.
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3.6.5. Default probabilities and credit spread

Recently, Reinhart and Rogoff (2008) studied the history of financial crises dating from

England's fourteenth-century default to the current United States sub-prime financial

crisis. They found that major default episodes are typically spaced some years (or decades)

apart, creating an illusion that "this time is different" among policymakers and)nvestors.

Although the Markov-switching model was not mentioned, the authors qualitatively

articulated two distinctively differing episodes, Le., an episode with high and low serial

default.

A number of researchers have been using the hidden Markov concept to model the default

rate time series. Giampieri, Davis and Crowder (2005) modeled the occurrence of defaults

within a bond portfolio as a hidden Markov process. The hidden variable represented the

risk state, which was assulned to be common to all bonds within one particular sector and

region. After describing the model and recalling the basic properties of hidden Markov

chains, it was shown how to apply the model to a simulated sequence of default events.

They also addressed the issue of global versus industry-specific risk factors. By extending

their model to include independent hidden risk sequences, they were able to disentangle

the risk associated with the business cycle from that specific to the individual sector.

Banachewicz, Lucas and Vaart (2007) extended this Hidden Markov model for defaults to

include covariates. Using empirical U.S. default data, it was found that GDP growth, the

term structure of interest rates and stock market returns, impacted the state transition

probabilities. The impact, however, was not uniform across industries.

The expected default rate plays a pivotal role not only i!1 the price of credit, but also in the
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insurance against the credit, for example, the credit default swap (CDS) spread. Alexander

and Kaeck (2008) investigated the determinants of the iTraxx CDS Europe indices and

observed strong evidence of regime dependence. It was found that during volatile periods

credit spreads become highly sensitive to stock volatility whereas during tranquil periods

they are more sensitive to stock return.

3.6.6. Commodity Prices

Fong and Kim (2002) examined the temporal behavior of the volatility of daily returns on

crude oil futures using a Markov switching model that allowed for abrupt changes in

mean and variance, GARCH dynamics, basis-driven time-varying transition probabilities

and conditional leptokurtosis. They showed that regime shifts were clearly present in the

data and dominated GARCH effects. It was seen that within the high volatility state, a

negative basis was more likely to increase regime persistence than a positive basis, which

is consistent with previous empirical research on the theory of storage. The volatility

regimes identified by their model correlated well with major events affecting supply and

demand for oil. It was concluded that regime switching models provide a useful

framework for the financial historian interested in studying factors behind the evolution

of volatility and to oil futures traders interested short-term volatility forecasts.

Alizadeh, Nomikos and Pouliasis (2008) used a Markov regime switching vector error

correction model to estimate constant and dynamic hedge ratios in the New York

Mercantile Exchange oil futures markets and examine their hedging performance. They

linked the concept of disequilibrium to that of uncertainty across high and low volatility
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regimes. Overall, in and out-of-sample tests indicated that state dependent hedge ratios

were able to provide a significant reduction ofportfolio risk.
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4. MODEL ESTIMATION AND FORECAST

This chapter firstly discusses estimation methods for the proposed HMS-V model,

including comparisons with the reviewed MS-GARCH model. The application of the

proposed model to forecasting time series is then presented.

The complete proof of the consistency of the Maximum Likelihood Estimator (MLE) is

beyond this thesis. A theoretical consistency study on the exact MLE is a difficult

problem and has been investigated in the following cases. For stationary Markov chains,

Leroux (1992) proved the consistency of the MLE when the unobserved Markov chain

had a finite state space, with the asymptotic normality being proven by Bickel, Ritov and

Ryden (1998). In the case of the Markov chain being time-varying, with both the

transition kernel of the hidden chain and the conditional distribution of the observations

depending on a parameter vector (), Douc and Matias (2001) gave the identifiability

condition as well as proving the consistency and asymptotic nonnality of the MLE. Their

proof was shown to follow from the exponential memorylessness properties of the state

prediction filter and geometric ergodicity of suitably extended Markov chains. LeGland

and Mevel (2000) proved the consistency and asymptotic normality of the MLE for

hidden Markov models with a finite hidden state space. This work was based on the

observation that the likelihood could be expressed as an additive function of an extended

Markov chain. The key to the proof resided in the fact that, under appropriate conditions,

the extended Markov-chain was shown to be geometrically ergodic.
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.4.1. The EM algorithm

.4.1.1. Overview

Despite the complexity of the log likelihood function of equation .(2.17), tractable

solutions can be obtained using the well-known EM algorithm (Dempster, Laird, and

Rubin, 1977). Wang and Puterman (2001) provided detailed steps in applying the EM

algorithm to estimate a hidden Markov-switching Poisson regression model with

time-varying transition probabilities and fixed covariate. For the proposed model, the EM

algorithm is applied by treating the hidden binary random state variables t1. t as the

missing information and representing a complete data set for the model. The complete

data is,

and the hidden states are the missing data,

where,

ST =hi),t; i=I,2;t=I,. .. ,T},

IBT = {s(ij),t; i,j = 1,2; t = 2", .,T},
(4.1)

if I1 t = i;

otherwise;
(4.2)

and t1. t = j;

otherwise.
(4.3)

For convenience of matrix operation notation, we also define

(4.4)
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Each 5(i),t is the realization of a Bernoulli trial at time t, whose rate of success is,

E(S(i},t) ==;; == Pr(~t == i); S(I},t +~ == 1;

s/ ==[~,~l i==1,2.
(4.5)

Equipped with the information of the hidden state, the log-likelihood function LL~om of

the complete data can be written as,

LL~om(8)= logPr(DATA com 1 8)

= log Pr(YT,XT,sT,ST 10)
= logPr(~l = i)

T

+L[$ (II},I olog P(II},I + $ (I2},I olog P(I2},t ]
1=2

T

+L [$ (22},I 010g P(22},t + $ (2I},I olog P(2I), t ]
t=2

T T

+L5(1),t -log ~l),t +L 5(2),f -log ~2),t
1=1 1=1

= log Pr(~l = i)

+t [$(lI},I olog p(lI) (fJ(1)' If/t ) + $(I2},t olog (1- p(lI) ( fJ(1)' If/t ))]
t=2

+t [$ (22},t olog P(22) (fJ(2)' If/t) + $ (2I},I 010g (1- P(22) ( fJ(2)' If/t ) ) ]
1=2

T

+L S(I},t olog ~I} (Yt 18(1)' If/t )
1=1

+t S(2},t olog ~2} (Yt 18(2} , If/t ) (4.6)
1=1

== log Pr(~l == i) + LLE; (fJ(I}) + LLE; (fJ(2}) + LLE; (8(I}) + LLFt (8(2})'

where,

LLE; (fJ(I) ) ==~ [ $ (1I},t" log P(ll) (fJ(1)' If/t )

+$ (I2},I olog (1-log P(ll) (fJ(1)' If/t ))J.
(4.7)
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LLE; (9'(2) ) = ~ [ $(22), t .log P(22) (9'(2)' lfIt )

+$(21),t ·10g ( I-log P(22) (9'(2)' lfIt))J,
T

LL~ (8(1) ) =~>(I),t .log ~I) (Yt 18 (1)' lfIt), and
1=1

(4.8)

(4.9)

(4.1 0)

The EM algorithm iteratively finds the MLE through two steps: the E-step (expectation)

and theM-step (maximization). If 0(/) and 0(1+1) are the parameter estimates at the Fh

and (I +1yh step respectively, then the function can be recursively written,

0(1+1) =III(0(1)), where III is the mapping function consisting of an E step and an M step

(see section 4.1.2 to section 4.1.3 for further details).

.4.1.2. The E-Step

Given the observable data (YT , xT ) and the estin1ated parameters at the f1h iteration,

0(1) , the value of {Pg;,t; i, j =1,2; t =2",' ,r} and {(,ug;" ,ag;,,); i =1,2; t =1,. .. ,r}

can be obtained. Re-obtaining these values again at the beginning of the (I + lyh iteration

may sound redundant, as they are readily available at the end of the M-step at the

f1h iteration, however, it is very important for the later introduced Supplemented EM

(SEM) algorithm.

The essential operation of the E-step is to replace the missing data ST and ST by the
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A (/+1) '" (/+1)
conditional expectations ST and ST respectively where,

(4.11 )

(4.12)

Therefore, the log-likelihood function of the complete-data can be found at the zth step

by treating (}(l) as (},

The estimation of the missing information of the proposed model relies on the following

backward and forward recursive algorithm.

Forward and backward algorithm

Given the link functional form, the covariates and the parameters, the forward and

backward algorithm is used to estimate the state probabilities. The forward and backward

algorithlTI was firstly proposed by Baum, Petrie, Soules and Weiss (1970) resulting in

impressive simplification the computation. Furthermore, the forward recursion also

provides the value of the log likelihood function of the observed data defined previously

by equation .(2.17).

The forward algorithm

The forward probability is defined as,

Initialization:

(4.13)
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(4.14)

Induction:

A(i),t+l =[±~j},t.P0;},t+l].~i),t+l; (i,j=I,2; t=I,. .. ,T-I). (4.15)
]=1

Termination:

2 2

Pr(YT I XT,(}(l)) =Lf(YT'~T = i IXT,(}(l)) =L A(i),T ' (4.16)
1=1 1=1

and,

(4.17)

where LLFobs (O(l») is the log likelihood function of the observed data at the l'h

iteration..

The backward algorithm

The backward probability is defined as

Initialization:

Induction:

(i = 1,2). (4.19)
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2

B(i),t = LP&),t·B(j),t+l·~j),t+l; (i,j = 1,2;1 = 1,. .. ,T-1).
j=1

(4.20)

Using the forward and backward probabilities, A(i),t and B(i),t' the Markov state

probabilities can be estimated according to,

"'{1+1) (.1 (/) )S(i),t = f ~t = 1 YT , XT,B

f( YT'~t = iIXT,B(/»)
=-~-:------:..----:--~

f(YT IXT,B(l))

f(Yl' ...,Yt,~t =iIXT,B(l) )·f(Yt+l' ...'YT I~t = i,xT,B(l»)
=-----------:-------:--------

f (YTIXT,B(l»)

= A(i),t •B(i),t

A(I),T + A(2),T

and,

"'-(1+1) ( . ., (I»)
$(ij),t = f ~t-l = 1,l1t =) YT,XT,B

= f(YT ,l1t- 1 = i,l1 t = j)
f(YT )

A .p(l) • .t: .B
_ (i),t-l (ij),t I (j),t (}),t

A(l),T +A(2),T

Further details are outlined in Appendix 1.

Numerical instability

(4.21)

(4.22)

Both the forward and backward routines are susceptible to either overflow or underflow

as the sample size grows. Leroux and Puterman (1992) documented the underflow and

recommended a rescaling solution. In the work of this these, overflow of the

forward-backward probabilities for financial time series data was also observed. The

possibility of overflow and appropriate numerical solutions are discussed in Appendix III.
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4.1.3. The parallel M-Step

(

"'(/+1) -,,(/+1))
Given the observed (YT , XT ) and missing ST ,ST data, parameter estimates can

be readily obtained by maximizing each one of the following four functions

independently,

and,

T
(/+1) ( ) ~ A (/+1) .[" ( )LLF; 8(1) = L...J 5(1),t -log J (1) Yt 1 8 (1)' If/t ,

1=1

(/+1) ( ) ~ A (/+1) .[" ( )
LL~ 8(2) = L...J 5(2),t -log J (2) Yt 18 (2)' If/t .

1=1

(4.23)

(4.24)

(4.25)

(4.26)

For clarity of exposition, let the above four sub-M steps be referred to as sub-Ml, sub-M2,

sub-M3, and sub-M4 respectively. The implementation of sub-Ml and sub-M3 are

selected as examples and outlined here. The implementation of the remaining sub-M steps

follows a similar process.

To maxImIze LLF;(I+I) (q1(I}) with respect to q1(I} , the estimated value q1gt) should

satisfy the following equation,

84

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

DRD
Rectangle

DRD
Rectangle

DRD
Rectangle

DRD
Rectangle

DRD
Rectangle

DRD
Rectangle



8LLR(l+I) m )
1 '1'(1)

m(l+I)
'1'(1)

=0. (4.27)

If the state transition probability function P(ll) (9'(1)' \LIt) is a constant, equation (4.27)

has the following closed form solution,

m(l+I) = LOGIT-1
'1'(1),0

where fJJg)~~) is the first element of fJJ(~+1) •

~ A (l+I)
LJ $(ll),t
1=2

~ "'-(1+1)
LJ 5(1),t
t==2

(4.28)

In the case of a non-constant state transition probability, the solution can be obtained

using the quasi-Newton algorithm in the MatLab 7.0 Optimization Toolbox. The closed

form gradient and Hessian of .(4.27) are provided in Appendix IV and Appendix V.

Similarly, to maximize LLF}I+I) (8(1)) with respect to 8(1)' the estimated value 8(;)+1)

should satisfy the following equation,

aLLF~I+l)(8(1))

88(1) 8(/+1)
(I)

=0. (4.29)

If volatility at the first state is a constant, equation .(4.29) has a closed form solution

through the general least square (GLS) formula,

a(/+I) - 11 {(Y C (/+1»)' n (Y C (I+l»)/"~ }P(I),0 - 2" og T - Ta(l) ':':i(I),T T - Ta (l) U (I) ,

(4.30)

(4.31)
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8(1+1) _ (a(l+I) R(l+I»)'
(1) - (1) 1 P(I) ,

(

A(/+I) A(/+I»)
where !l(I),T = diag 5(1),1 ,,",5(1),1' ,

(intercept term) of p(;)+l). Again, for a non-constant volatility, the quasi-Newton

algorithm can be used.

Let 11' 12 , 13 and 14 be defined as the independent information matrices of the four

sub-M-steps respectively. Therefore, the information matrix. of the complete data has the

following block diagonal form,

11 0 0 0

1(1+1) = 0 12 0 0
(4.32)com 0 0 13 0

0 0 0 14

where the bold 0 stands for a matrix whose elements all equal to o. Given the closed

form Hessian of all the sub-M steps, it is straight forward to obtain the infonnation matrix

of the complete data. Therefore, when applying the EM algorithln to the proposed model,

instead of dealing with all the elements of I~~~) simultaneously, each of the four

diagonal blocks 11' 12 , 13 and 14 are dealt with independently. Such a novel

decomposition of the M-step further reduces the tractability and enhances the

computational stability.

It is worth noting that the parallel structure of the proposed model enables a parallel

solution for each sub-M step. Although both the proposed and MS-GARCH models can

be estimated through the EM algorithm, the outlined simplification of the M-step plays a

vital role in the superiority of the proposed algorithm. In practice, the M-step often
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becomes a computational bottle neck, whose complexity is detennined by the following

three factors: (1) the availability of closed form solutions of the sub-M-steps; (2) the

dimensions and sparse structure of the complete data information matrix; and (3) the

availability of the closed form gradient and Hessian for a numerical algorithm.

Because of the parallel structure, the proposed model possess the following three merits:

(1) a increased likelihood of having a closed form solution for a sub-M-step; (2) the

diagonal structure of the information matrix of the complete data is easier to handle and

each block has a lower dimensions; (3) each sub-M-step can be solved independently (and

thus in parallel); and (4) both the closed form gradient and Hessian of the M-step are

trivial and available. Previous MS-[G]ARCH models, generally do not display such

simplicity and flexibility.

If the two GARCH processes are not paralle132
, the information matrix of the completed

data is far more complex, and the two sets of GARCH coefficients have to be jointly, as

opposed to independently, estimated. With such a complex M-step, the practical

applicability of the EM algorithm is questionable.

.4.1.4. Algorithm Summary

The following summarizes the implementation of the EM algorithm for the proposed

HMS-V model.

32 The two GARCH processes of Gray/Klaassen are naturally intertwined (non-parallel). The two GARCH link
functions at the two Markov states ofHaas, Mittnik and Paolella (2004) are also intertwined through the shared mean.
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INPUT: a set of intuitive?3 starting values (j(O) and a tolerance level for the EM iteration,

.... (1+1) "'(1+1)
Step 1.(E-step) At the (I + lyh iteration, compute 5(;),t and $(ij),t for t = 2,.· ',T

and i,j =1,2; where LLF:~; (the observed log likelihood at the Fh step) is

a by-product (Appendix II);

Step 2.(M-step) Find the value of (j(l+I) by the four parallel sub-M-steps, where the

closed form solution should always be used if possible; otherwise, use the

quasi-Newton algorithm;

Step 3. If 1I(j(l+I) - (j(l) 112 E EM' go to step 1, and start the (I + 2yh iteration;

Otherwise, terminate.

OUTPUT: 0, ;T, leam (0) and the convergence path (0(0) ,0(1),. . . ,0).

Despite its elegancy and numerical stability, the EM algorithm has a few limitations.

Limitation 1: Like most other iterative numerical methods, the EM algorithm

converges to a local maximum, which mayor may not be the global optimum. For the

proposed model, LL~~,:1)((}(l+I) I(j(l») and its first order partial derivatives are

continuous both in (j(l+l) and (j(l). Applying Wu's general result (1983), the sequence of

the observed log likelihood function .(4.17) converges to a local maximum or saddle point

regardless of the starting values. Note that .(4.17) needs not be globally concave.

Therefore, one needs to carefully choose sets of starting values to increase the chance of

converging to the global maximum.

33 It can be an educated guess or a random guess.
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Limitation 2: The EM algorithm does not quantify the MLE error, such as for other

Bayesian estimation techniques.

Limitation 3: The EM algorithm always converges linearly, therefore compared with

the Newton type method, convergence is much slower in the vicinity of a local maximum.

This drawback is further compounded when the M-step has no closed form solution. If

speed of convergence is critical requirement, the quasi-Newton algorithm is a better

alternative. Section 4.2 discusses the implementation of the quasi-Newton algorithm to

optimize the log likelihood function of the observed data.

.4.2. The quasi-Newton algorithm

The likelihood function of the observed data, written in the form of equation .(2.17), is

highly complex. Fortunately, the forward algorithm provides a simplified and tractable

method of reformulating the log likelihood function, which is also used as the target

function of the quasi-Newton algorithm. In addition, the same rescaling treatment

developed for the E-step must be adopted to prevent underflow or overflow.

A

To maximize LLFobs (0) with respect to 8, the estimate 0 must satisfy

(4.33)

for which neither a closed form gradient nor Hessian is available and should be obtained

numerically. The quasi-Newton algorithm uses the obs~rved behavior of LLF;;bs(O) and
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VLL~bs (8) to establish curvature infonnation to formulate a new quadratic probleln. In

this work, the routine of MatLab 7.0 Optimized Toolbox is followed, and the popular

BFGS symmetric rank 2 update is used to approximate the Hessian.

The quasi-Newton algorithm converges superlinearly, while the EM algorithm converges

linearly. Therefore, if the initial estimates are in the vicinity of the global maximum, the

quasi-Newton often converges significantly faster than the EM algorithm. However,

quasi-Newton also possesses complications which need to be carefully considered.

Limitation 1 and the solution: The quasi-Newton algorithln is far more sensitive to

the initial conditions than the EM algorithm, whereas the later is more robust to poorly

chosen the initialisation parameters. There are two solutions to mitigate this "sensitivity".

The first is to increase the number of sets of starting values. For example, Cheung and

Erlandsson (2005) used up to 250 sets of starting values, which were randomly sampled

from a uniform distribution. However, as the dimension of the parameter vector grows,

increasing the number of starting values can lead to tractability problems. The other

solution is to exploit an a priori data analysis to provide more intuitive initial values. This

is further addressed in the second solution of section 4.3.

Limitation 2 and the solution: Due to the complexity of the target function, the

recursive iteration often displays instability, which easily leads to underflow or overflow

and potential crashing of the optimization process for various reasons. In practice, brute

force methods are typically employed and estimation bounds are imposed. The technical

details are overlooked here as this issue does not constitute a contribution of this thesis.
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.4.3. A hybrid approach

The EM algorithm is robust to poorly chosen starting values and commonly reports the

local maximum after just a small number of iterations. On the other hand, in the vicinity

of the local maximum, with some brute force methods, the quasi-Newton algorithm is

often adequately stable and converges to the global maximum with greater speed. Various

authors, including Redner and Walker (1984), proposed a hybrid approach to the

computation of the MLE that would dually adopt the EM algorithm and a

Newton-Raphson or some quasi-Newton algorithm.

In this work, a lenient convergence criterion is chosen for the EM algorithm, whose

converged estimate may not be global optimum but instead provides the starting values

(assumed to be well-chosen) to the quasi-Newton algorithm. The quasi-Newton algorithm

then continues the estimation process and converges to the global (or a local) optimum.

The EM algorithm hence is well suited as a preliminary data analysis tool for the

quasi-Newton algorithm. Following the convergence of the quasi-Newton method, the

EM algorithm is again applied to estimate the state probabilities ;T. Figure 9

summarizes the process of the proposed hybrid approach.
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INPUT: starting value of OCO) and a lenient tolerance level EEM

1=0

,

E-step

A (1+1) A (1+1)

ST and ST

(missing information)

....

...
M-step

Sub-Ml tpg)+I)

Sub-M2 m(l+I)
'1'(2)

Sub-M3 8(1+1)
(1)

Sub-M4 8(1+1)
(2)

And O(l+I)

I
(}(I+1) is now likely to be in the vicinity of the global maximum

"

I

Use O(l+l) as the stating values, employ a rescaling scheme, use the quasi-Newton

algorithm to maximize LL~bs (0) ,and obtain 1J.

~ A

Using (J, run the E-step and M-step once again to estimate the state probabilities ST

(E-step)..

"

Figure 9
A summary a/the hybrid EMand quasi-Newton approach.

92

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

DRD
Rectangle

DRD
Rectangle

DRD
Rectangle



.4.4. Standard errors ofthe estimatedparameters

One of the main drawbacks of the EM algorithm is that the standard errors of the

parameters are not estimated. Unfortunately, the quasi-Newton algorithm, which can be

used as the last step for the MLE, also skips the calculation of the "true" Hessian.

Therefore, the estimation of the standard MLE errors must be addressed.

4.4.1. Information matrix by numerical difference

Section 4.3 suggests using the EM algorithm to provide suitable starting values, and the

quasi-Newton algorithm to obtain the MLE. After optimization, the one-sided

approximation of the Taylor series expansion can be adopted to calculate the "true"

Hessian. Numerical approximation of the information matrix and the standard errors of

the MLE can then be obtained accordingly. According to the Monte Carlo study of section

4.5 and empirical study in chapter 5 of the thesis, the majority of the estimated

information matrices by the numerical difference method are positive definite.

Despite its convenience, the numerical difference method may be unstable, especially

when the Hessian is not smooth. However, as a consequence of the recursive structure,

the gradient and Hessian are both continuous and bounded. The following gives a very

brief discussion.

Inserting the global maximizer (} into the last step of the forward recursion,

2 2

f(YT IXT~8) = Lf(YT ,L1T = i IXT~(}) = LA(i),T '
~1 ~1

the observed log likelihood function of the whole sample becomes,
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The gradient is then,

where,

ologf(YT I XT,O)
00

= 1 of(YT I XT"O)
f(YT I XT,O) 00

(4.34)

2

af(YT IXvO) = a~~i)'T
00 00

a(~1),T-I·P(ll),T·~I),T) a(~2),T-I·P(21),T·~I),T )
= 00 + 00 (4.35)

a(A(I),T-I • P(12),T •~2),T ) a(~2),T-I • P(22),T •~2),T )
+ + .

00 80

Expanding the first element at the right hand side of .(4.35),

(4.36)

Therefore, oA(i),T IS a function of O~i),r-l i = 1,2. Theoretically, 8A(I),r_1 can be
80 80 ' 00

8AOIfurther expanded and recursively traced all the way back to -'-' . If the number of
80

observations is finite, the gradient implied by equation .(4.35) is a polynomial with finite

terms, whose components are all finite products of the elements of the following vectors,

op(ij),t 8 ~l),t---ail' 88' for i,j = 1,2; and t = l.···,T. (4.37)

As shown in Appendix IV and Appendix V, all of the elements of ap(ij),t and a~I),t are
, 80 ao
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continuous and bounded. In addition,

gradient is continuous and bounded.

The Hessian matrix is

1
IS positive. Therefore, the

a2 10gf(YTIXT,O)
ae ao'

=_[ 1 ]2 8f(YT IXTJO) 8f(YT IX1"0)
f(YTIXT,O) ao 00'

1 02f(YTIXT,O)+ ----_._---:---_..:...
f(YT IXT,O) ao ae'

(4.38)

0
2
A(i),T a2

A(i),T-I
Similarly, is a function of , i =1,2. Recursively, the second order

002 a02

02f(YTIXT,O)
derivative is also a polynomial with finite terms, whose components

aooo'

are finite products of the elements of the following matrices,

a2p(ij),t a2~1),t ~or
II i,j' = 1,2; and t = 1.·· ·,T

0000" ao00' ,
(4.39)

1
which are also all continuous and bounded. Because is positive, the

f(YT IXT,O)

Hessian matrix is also almost completely smooth and continuous. In section 4.5 and

section 5.3, Monte Carlo experiments are carried out to investigate the reliability of the

numerical difference.

4.4.2. The Supplemented EM algorithm

The supplemented EM (SEM) algorithm was proposed by Meng and Rubin (1991). It
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provided a deep insight and peculiar numerical method to obtain the information matrix

through a forced EM algorithm.

Section 4.1.2 to section 4.1.3 gave the details of a mapping process from O{l) to O{l+l) ,

(4.40)

Suppose that O{l) converges to some point 0 and 1Jl(0) is continuous, then 0 maps

to itself,

(4.41)

'"
Meng and Rubin noticed that in the neighborhood of 0, a Taylor series expansion yields,

where,

0(1+1) -0"" (0(1) -O).DM (4.42)

(4.43)

is the Dx x Dx Jacobian matrix for !Jl(O) = (!Jll(0),. ° o,!JlDJ0)) evaluated at

Ao=0 . According to the factorization,

it follows that the information matrices satisfy,

I com = lobs + I miss

(4.44)

(4.45)

which implies that the information matrix of the complete data equals the summation of

the information matrix of the observed data and the information matrix of the missing

data.

34 Refer to section 4.1 for the definition of the mapping function Ill.
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Smith (1977) developed the following simple relationship between V, the asymptotic

variance of the observed data, and Veorn ' the asymptotic variance of the complete data:

(4.46)

where r is the rate of convergence of the EM algorithm. Meng and Rubin (1991) further

observed that a more statistically appealing representation of equation .(4.46) is:

where,

V=~orn+~V,

~V =[r/{l-r )J·~orn

(4.47)

(4.48)

is the increase in variance due to missing data. Meng and Rubin's SEM suggests:

or,

1 { )-1~VSEM =I~om·DM. I-DM

(4.49)

(4.50)

(4.51)

where leorn is readily available from the M step of the previous EM iteration. The

difficulty lies in calculating the DM matrix.

Computation ofthe DM matrix

SEM indicates that each element of DM is the component-wise rate of convergence of a

"forced" EM iteration. Let If} be the (i,Jyh element of the DM and define O/') to

be,

0 (1) - (2)>1 ••• n. 1 0(1) 0""· 1 ••• O""D )i - (7, ,(7,-, i , 1+, , X (4.52)

where only the th component in O/') is replaced, whi~e the other components are fixed
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at their MLE's. From the definition of 'i},

(4.53)

SEM is required to store all the iteration history of the EM algorithm, which leaves the

footprint of the element-wise convergence rate. The following gives the detailed

implementation steps.

INPUT: iJ and 0(1)

Step 1. Run the usual E- and M-steps to obtain 0(1+1).

Repeat step 2-3 for i =1,· .. , Dx .

Step 2. Calculate OP) from .(4.52), and treating it as the current estimate of 0,

run one EM iteration to obtain ~.
1

Step 3. Obtain the ratio,

OUTPUT:

OM 0"'"
(I) -; -}.(:'. 1 D

If) - (I) "'" , lor j = ,. .. , X

0; -OJ

0(1+1) d { (l).. . 1 D}; an rij ,l,j= ".', x .

(4.54)

Note that theoretically, the closer 0(1) is to the global optimum, 8, the better the

estimate of DM. In practice, if it is too close, the round-off errors would dominate and
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influence the precision of DM. Therefore, Meng and Rubin (1991) suggested obtaining

(7) (i+i). A

rij when the sequence of r;j ,lfj " .. IS stable for some I.

The SEM algorithm exposes the underlying relationship between the rate of convergence,

the observed information, the missing information and the cOITIplete information matrices.

The amount of missing information is determined primarily by the greatest Eigen-value of

the DM matrix35
• The SEM algorithm has a superior theoretical appeal but can be

computationally intensive if the M-step has no closed form solution. In practice, when the

M-step has to be obtained numerically, and when the rate of convergence is slow, the

SEM is becomes excessively expensive. In addition, if high speed of convergence is

highly desired and the quasi-Newton algorithm is used, there is no footprint left for the

SEM to trace. An illustration of the SEM algorithm and comparison with other widely

adopted methods in presented in section 5.3.

4.4.3. Parametric bootstrap

When the covariate of the HMS-V model is fixed36, YT E J.? x ... x J? can be simulated

and the standard errors of the MLE can be determined by parametric bootstrap. Note that

the input to the Monte Carlo experiment is the "true" parameter vector, whereas the input

to the parametric bootstrap is the parameters MLE. Although conceptually different, they

are implemented in the same way. The following section outlines the implementation of

the parametric bootstrap.

35 When the M-step has an analytical solution and the amount ofmissing infonnation is moderate, the SEM provides an
excellent algorithm to calculate the variance-covariance matrix of the MLE. The lack of (numerical) symmetry in

~V
SEM

also helps to highlight some programming mistake.

36 Note that this does not apply when the covariate is random, the series then pas to be simulated according to the joint
probability.
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.4.5. Monte Carlo experiments

4.5.1. Objectives

This section outlines two separate Monte Carlo experiments, which simulate a time series

with the fixed flat initial state probabilities, a second with stochastic initial state

probabilities. Through the Monte Carlo experiments, it is desired to establish:

• if the asymptotic properties are reflected in good infinite-sample properties.

Experimentation is chosen to demonstrate the presence of this property, since its full

proof is beyond the scope of this thesis. This aids in understanding the limitations and

pitfalls of the MLE.

• the stability of the Hessian matrix by one-sided finite numerical difference,

• the impact of the initial state probabilities, and

• the reliability of the proposed algorithm along with the computational code.

4.5.2. The choice ofcovariate and "true" coefficients

It is assumed that there is such a time series whose hidden state probabilities are governed

by a homogeneous two-state Markov chain. At both states, the volatility is a function of

the lagged daily VIX index37 by CBOE froin Jan 02, 1990 to September 15, 2006; the

state transition probability is a function of the lagged daily Fed target rate. Figure 10 and

Figure 11 provide a visual summarization of the VIX and Fed target rate respectively.

37 VIX is the ticker symbol for the Chicago Board Options Exchange Volatility Index, a popular measure of the
implied volatility of S&P 500 index options. Referred to by some as the feqr index, it represents one measure of the
market's expectation ofvolatility over the following 30 day period. http://en.wikipedia.org/wiki/VIX
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50 .--------,.------,r------,-------,-----,------,-----,...------,.--,

45

40

35

30

25

20

15

10

5

~,
o L--__--L-__-----''---- ---'---__----' --'-__---'- ---'----__--'----'

1990 1992 1994 1996 1998 2000 2002 2004 2006
Date

Figure 10
The VIX index by CBDEfrom Jan 02, 1990 to Sep 15, 2006

Fed target rate
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Figure 11
The Fed Target rate from Jan 02, 1990 to Sep 15, 2006

The covariate and the "true" parameter vector of the HMS-V model are designed as

follows:-

Ct =[1] ; , so that the expected return at each state is a constant: P(i),t =P(i); i =1,2 ;

Zt = [1, log VIXt _1]; (4.55)
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To closely align with real world scenarios?8, the covariate and coefficient are designed as

follows:

There are two Markov states. The first state is tranquil, the volatility is less sensitive to

the lagged VIX index, and the expected return is higher:

0'"{1},I =exp (ZtP{I) )

= exp (P{I},O + P{l},l·VIXt_1)

= exp(-1.8 + 0.8 .VIXt _I ).

(4.56)

The second state is turbulent, the volatility is more sensitive to the lagged VIX index, and

the expected return is lower:

a(2),O = 11(2) = -0.5 ;

O'"{Z},t = exp (Z tI)(Z) )

=exp (p{Z},O + !1Z},I·VIXt-l)
= exp(-2.0 + 1.2 .VIXt_I ).

(4.57)

38 Please refer to chapter 5 of this thesis for the result and explanation of the empirical result using the S&P 500 stock
index. Similar findings are also observed using other famous stock indice~, namely, the FTSE 100, NASDAQ, and the
Hang Seng Index.
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"True" standard deviation at State 1 and State 2
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Figure 12
The "true" standard deviations at each state

Given that at time t -1 , the time series resides at state 1 (Le. ~t-l = 1), if the FED target

rate at time t -1 is lower, then the time series at time t is more likely to reside at state

1. The paralneters for the staying probability at state 1 are derived as:

Pill) = LOGIT(WtiP(I))

=LOGIT (iP(l), 0 + iP(I),l°1000Fedt_I)

=LOGIT(2 -0.4 .100-Fedt _1).

(4.58)

On the other hand, given that at time t -1 , the time series resides at state 2 (Le. ~t-l = 2 ),

if the FED target rate at time t -1 is lower, then the time series at time t will be less

likely to reside at state 2. The parameters for the staying probability at state 2 are derived

as:

P(22) = LOGIT (W tiP(2) )

=LOGIT ( iP(2),O + iP(2),101 000Fedt_1)

= LOGIT(-4 +0.8 -100.Fedt _1).

(4.59)
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Staying probability at State 1
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Figure 13
The H true" state transition probabilities at each state

1,000 Monte Carlo simulated time series, YT E Ji x··· x J? are generated for both

experiment 1 and experiment 2. Figure 14 plots a sample simulated time series with real

world series being shown in Figure 15 for comparison purposes. The aptly chosen

parameters result in a pattern of simulated time series that realistically resemble actual

real time series.

A representive time series
30 ,..-------r------,-----,------r-------,r----~---.,_--____r____,

2006200420021998 2000
Date

199619941992

o

10

20

-30 '------'-----'-------'-----'-------'------'-----'-----~----'
1990

-10

-20

Figure 14
A representative time series simulated according to the model specified in equations .(4.55)- .(4.59)
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Figure 15
Some real world time series

Note that the representative simulated time series shown in Figure 14 resembles the volatility
clustering pattern ofreal world time series.

Upper-left panel: the return data ofDOW upper-right panel: the return data of HANG
IJONES INDUSTRIAL AVERAGE INDEX (ADJI, SENG INDEX (AHSI)
Diamond)
lower-left panel: the return data ofNASDA Q-l00 lower-right panel: the return data of FTSE 100
IINDEX tWDX, 0000) INDEX (AFTSE)

4.5.3. Experiment 1: Flat initial state probabilities

Experiment design

INPUT: "True" parameters (J and covariate XT , simulate hidden state for

t = 1.

i.i.d
Step 1. Salnple a random variable from a uniform distributionvl --- UNIF[O,l], if

VI :s; Pr(~l =1), then ~I =1, else, ~I =2. Repeat step 2 for t =2,.··,T, and

simulate the hidden states.
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Step 2. Suppose ~t-l = i, sample a random variable from a uniform distribution

i.i.d ( )
vt ,...... UNIF [0,1], if vt S P(ii),t = LOOfT W tfJJ(i) ,then it remains at its current state

Le. ~t = i, else, the state switches to ~t = j and i =J:. j. Repeat step 3-4 for

t = 1" .. ,T, and simulate the time series

Step 3. Suppose ~t = i , (which is simulated by step 2), gets the following values of

the expected return and the standard deviation respectively,

i.i.d
Step 4. Simulate a random variable, 17 t ,...... N(O, 1) , and obtain the value of Yt E J? ,

Yt = J1(i), t +(T(i),t -17 t .

EstiInate the simulated time series using MLE

Step 5. Use f) as the starting values, set the initial state probability at 0.5 and use

the quasi-Newton algorithm to obtain the MLE of the simulated time series, O.
"'-

Step 6. Using f) as the initial paralneters, run one E-step of the EM algorithm, and

..........

obtain ST' Estimate the standard errors of the estimated parameters by numerical

difference.

Step 7. Obtain the Hessian of the MLE by one-sided numerical difference through a

-Taylor series expansion and calculate the standard errors of the MLE, Vnum '

Using the same inputs, the above process is repeated 1,000 times to obtain 1,000 sets of

outputs.
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.4.5.4. Experiment 2: Stochastic initial state probabilities

Without covariate, as previously outlined, Leroux and Puterman (1992) showed that the

effect of the initial state probability on a hidden Markov-switching Poisson model

diminished quickly as the sample size grew. With covariate, Wang and Puterman (1999a,

1999b, and 2001) discovered the same behaviour in an MS-Poisson regression. This

experiment investigates whether such a phenomenon also holds true for the proposed

HMS-V model by simulating stochastic initial state probabilities.

Experiment design

INPUT: {} and XT

i.i.d
Step o. Sample a random variable va ,...... UNIF[O, 1] , replace the non-informative

initial state probability Pr(~1 = i) in {} by va.

Steps 1-8 are the same as the previous experiment.

1,000 sets of outputs are obtained.

-Further extensive study on the resulting sets of Vnume is also carried out. To verify that

the numerical method is reliable, the standard errors provided by each set of v:: are

required to be similar to the standard errors from the Monte Carlo study.
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.4.5.5. Results and Observations

The influence ofthe initial state probabilities

.Table 2 to .Table 5 show that the asymptotic property of MLE is well reflected in good

finite-sample properties (Le., small bias and approximate normality). Both the mean and

median of the MLE parameters of the simulated time series closely track the true

parameters. The standard errors of the parameter estimate obtained by the two Monte

Carlo studies are almost identical. It can be seen that the initial state probability has little

impact on the model inference.

The numerical stability ofthe calculated information matrix

The standard errors estimated by the one-sided numerical difference for each obtained

parameter estimate are also analyzed. For experiment 1, the 1,000 sets of standard errors

calculate by numerical difference are compared with the distribution of the 1,000 sets of

MLE. It can be concluded that the nUlnerical difference is stable and adequately precise.

The same conclusion can be drawn from the section experiment.

The asymptotic property ofMLE

If it can be confirmed that the asymptotic property of MLE is well reflected in good

finite-sample properties, the parametric bootstrap in section 4.4.3 can also be

implemented in a similar manner. The only significant difference is that for the Monte

Carlo simulation, the input is the true parameter 8, while for the bootstrap, the input is

"
the estimated parameters, 1J. Therefore 1,000 sets of 1J are obtained as opposed to 1,000

"'-

sets of 1J. According the variance-covariance matrix of 1J, the standard errors of the

parameter estimate can be accordingly determined.
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Results of Monte Carlo study 1 (fixed flat initial state probabilities) (to be continued)

Parameter True value Mean Median Standard deviation

f.J(I) 2.00 2.041 2.040 (0.295 )

/11),0 MOAO MOAI0 MOA08 (0.076 )

13<.1),1 M4.00 M4.174 M4.065 (0.889 )

f.1(2) 0.80 0.830 0.813 (0.164 )

fJ(2),0 0.20 0.199 0.199 (0.046 )

/12),1 Ml.80 M1.795 M1.795 (0.204 )

CfJ(I),O 0.80 0.798 0.800 (0.070 )

CfJ(l),1 MO.50 MO.503 MO.504 (0.106 )

rp(2),0 M2.00 M1.995 ~1.993 ( 0.168 )

CfJ(2),1 1.20 1.198 1.197 (0.057 )
For the ith simulation, for the expected return at the first state,

the MLE estimate = Jl(I), i

1000_

The mean of the estimate f.1(I) = Lfl(I),i .
j=i

Median and standard deviation can be derived in the same manner. Note that to calculate the standard error,

the true parameter value f.1(I) is used.
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(continued) Stability of the standard errors by numerical difference
Standard error of the 1,000

estimates The summary of the 1,000 numerical differences
Mean Median Standard error

of the standard of the standard of the standard
Standard error of the estimates error error error

STD(P;;;)
(0.295 ) 0.293 2.040 « 0.0177 »

STD(.B;)
(0.076 ) 0.074 -0.408 « 0.0059»

STD(~)
(0.889 ) 0.837 -4.065 « 0.2060»

STD(~)
( 0.164 ) 0.155 0.813 « 0.0376»

STD(~)
(0.046 ) 0.045 0.199 « 0.0017»

STD(~)
( 0.204 ) 0.199 -1.795 « 0.0093 »

STD(q;;)
(0.070 ) 0.068 0.800 « 0.0032»

STD(~)
(0.106 ) 0.106 -0.504 « 0.0054 »

STD(~)
(0.168) 0.170 -1.993 « 0.0065»

STD(~)
(0.057 ) 0.057 1.197 « 0.0022 »

Given the ith simulation, for the expected return at the first state,

the standard error of the estimates with numerical estimate is STDi (~ )

1000 ...-

The mean of the standard error = LSTDi (11(1) ) .
j=i

Similarly, the median of the standard error and standard error of the standard error can be derived.

Table 2
This table summarizes the results ofMonte Carlo study 1 withfixedflat initial state probabilities.
The upper panel gives a summary ofthe 1,000 MLEs ofthe 1,000 simulated time series.
The lower panel gives a summary of the 1,000 standard errors of each of the MLEs by numerical
difference, including comparison with the standard errors estimatedfrom the 1,000 MLEs.
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Property of (0; -OJ)!SE(o;)
Monte Carlo study 1 (fixed flat initial state probabilities)

Standard deviation
Mean Skewness Kurtosis

0.14 1.01 0.11 3.66

-0.13 1.03 -0.23 3.76

-0.21 1.06 -0.85 4.86

0.20 1.06 0.82 4.77

-0.03 1.03 -0.10 3.04

0.02 1.03 0.19 3.40

-0.03 1.02 -0.18 3.29

-0.03 1.00 -0.05 2.87

0.03 0.99 -0.10 2.89

Parameter

f.1(1) - f.1(1)--
fJ(l),O - ~l),O-
fJ(l),l - ~l),l

11(2) - 11(2)--
P(2),O - ~2),O

--
fJ(2),1 - ~2),1

--
rp(I),O - rp(l),O

-
rp(l),l - rp(l),l

--
rp(2),O - rp(2),O--
rp(2),1 - rp(2),1 -0.04 0.99 0.09 2.84

Table 3
This table summarizes the results ofMonte Carlo study 1 with fixed flat initial state probabilities.

This is to check whether the t-statistic (OJ - OJ)/ SE(OJ) using different standard errors are

approximately standard normal and, in particular, whether they have a unit variance.
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Results of Monte Carlo study 2 (random initial state probabilities)

Parameter True value Mean Median Standard deviation

J1(1) 2.00 2.025 2.023 (0.297 )

13(1),0 -0.40 -0.406 -0.407 (0.077 )

~1),1 -4.00 -4.165 -4.095 (0.868 )

J1(2) 0.80 0.830 0.815 (0.160 )

13(2),0 0.20 0.198 0.198 (0.046 )

13(2),1 -1.80 -1.790 -1.790 (0.197 )

qJ(l),O 0.80 0.796 0.796 (0.068 )

qJ(l),l -0.50 -0.502 -0.501 (0.108)

qJ(2),0 -2.00 -1.996 -1.998 (0.168 )

qJ(2),1 1.20 1.198 1.198 ( 0.056 )

Stability of the standard errors by numerical difference
Standard error of
the 1,000 MLEs A summary of the 1,000 numerical difference

Standard error of Standard error
NILEs Mean Median of the standard error

STD(.u;)
(0.297 ) 0.292 2.023 « 0.0174 ))

STD(P;)
( 0.077) 0.074 -0.407 « 0.0058 ))

STD(~)
( 0.868) 0.829 -4.095 «0.1801 ))

STD(.u;))
( 0.160 ) 0.153 0.815 « 0.0325 ))

STD(,q;)
(0.046 ) 0.045 0.198 « 0.0016 ))

STD(P;)
(0.197 ) 0.199 -1.790 « 0.0093 ))

STD(9J;)
(0.068 ) 0.068 0.796 «0.0032 ))

STD(~)
(0.108) 0.106 -0.501 « 0.0054 ))

STD(~)
(0.168 ) 0.170 -1.998 « 0.0063 ))

STD(q;;)
(0.056 ) 0.057 1.198 « 0.0021 ))

Table 4
The results ofMonte Carlo study 2 with random initial state probabilities (following a

similar legend to that oftable 2). Note that the two tables give almost identical results.
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Property of (~-Oi)/SE(~)

Monte Carlo study 2 (random initial state probabilities)

Mean Standard deviation Skewness Kurtosis

0.09 1.02 0.15 3.27

-0.08 1.04 -0.15 3.15

-0.20 1.05 -0.68 4.30

0.20 1.04 0.59 3.94

-0.05 1.01 -0.01 3.01

0.05 0.99 -0.06 3.16

-0.06 0.99 0.05 3.16

-0.02 1.02 -0.11 3.08

0.02 0.99 0.00 2.87

Parameter

11(1) - 11(1)

-----
13(1),0 -/11),0---
13(1),1 - 13(1),1
.-

/1(2) - /1(2)

-
13(2),0 - 13<,2),0
.-

fJ(2),1 - 13<,2).1-
CfJ(I),O - ((J(I),0

----
CfJ(I),1 - ((J(1),1-

((J(2),0 - {(J(2),Q

--
rp(2),1 - rp(2),1 -0.03 0.98 0.02 2.88

Table 5
This table summarizes the result of Monte Carlo study 2 with random flat initial state

probabilities. This is to check whether the t-statistic (8,-0,)/ SE(8,) using different standard

errors are approxilnately standard normal and, in particular, whether they have a unit variance.
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.4.6. Forecasting with HMS-V

According to the derivation of the proposed HMS-V model, if the covariate is strictly

exogenous, the value of S(l),t' Jl(l),t' (j"(~),t, Jl(2),t and (j"(~),t can be forecasted, where

the probability that Yt is generated by the first component is ;;, which is the

probability of success ofthe Bernoulli trial, ;; =E (5 (1),t) =E (Il, =1) =Pr (Ill =1) .

Given the observed (NOT hidden) inform~tion up to time t, If/t' that is (Yt,Xt :

t == {I, ... , t}) and the parameter, (), the conditional distribution of Yt+T' T == 1,2" .. , can

be forecasted as follows,

Stepl. Using (), run a single E-step of the EM algorithm and estimate the state

probabilities at time t, (~lfII,)=E(~lfllt)=E(5(i),tl yt,Xt,O) , i =1,2.

Step2. Obtain the value of the covariate, X h == (wh'Ch , Zh) ; h == {t + 1" .. ,t+ T} ?9.

Step3. With the covariate (W h; h = {t +1,. · ., t+ r}), and the parameter fJ' =(fJ(I)' fJ(2) ) ,

forecast the state transition probabilities (P(ii),h; i =1,2; h ={t + 1,· · . ,t+ r}) , and

arrange them in matrix format to obtain (Ph; h == {t +1,· .. ,t+ r}).

Step4. Forecast the state probability vector. Let,

(4.60)

39 Note that x
h

does not contain any lagged terms of Y
h

•

114

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

DRD
Rectangle

DRD
Rectangle



Then,

(4.61)

StepS. With the covariate ct+r and the parameters a =(a W a(2) ) , forecast the expected

-return at each state, f.1(i}.t+T '

Step6. With the covariate Zt+r and the parameters fJ =(fJW fJ(2)) ' forecast the

-volatility at each state, CJ'(i),t+T'

~ = Pr(~t+r = Il lJft+r-l){E( (J"(~),t+r IlJft+r-l) +E2 (.u(~),t+rllJft+r-l)]

+ Pr (~t+r =2!lJft+r-l){E ((J"&),t+r IlJft+r-l )+ E
2 (.u(~),t+r !lJft+r-l )]c4.62)

- £2 (f.1:+T Ilft+T-l)'

The above steps are trivial except for step 2, where the value of the covariate

( Xh ; h ={t + 1" ." t +T}) should be obtained according to different model specifications.
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5. APPLICATION & EMPIRIAL STUDY

Chapter 1 to Chapter 4 proposed a parallel hidden Markov-switching volatility model.

This chapter applies the parallel hidden Markov-switching volatility model to analytically

study the S&P 500 stock index. The results of this study suggest two additional

observations:-

(Obs. 7) Asymmetric cycle and lasting tranquility: It is observed that the tranquil

state is lnore lasting than the turbulent state. The duration of tranquility (boom) and

turbulence (bust) is thus asymmetric. The economics implications of this are outlined

in section 6.1.

(Obs. 8) Time varying sensitivity to recent shocks: According to the empirical study

carried out, at the turbulent state, volatility is more sensitive to recent shocks, while

the opposite is true for the tranquil state.

In this chapter the empirical study is compared with the single regime GARCH and the

MS-GARCH Gray/Klaassen models. The chapter closes by summarizing the study and

comparing how different models describe the findings and address the oversights

respectively. The elnpirical study follows the model inference, estimation, and forecast

methodology given previously in chapter 2 to chapter 4. In order to provide a benchmark

comparison for the weekly volatility estimation and forecast, the daily return data is used

to obtain the "integrated weekly volatility".40. The mean squared error (MSE) and mean

absolute deviation (MAD) suggest that the HMS-V model has greater precision in

volatility forecasting. It is observed that the HMS-V model can capture some interesting

phenomena of the stock index volatility. For example, it shows that the volatility at the

40 Please refer to section 5.2.3
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tranquil state is best modeled as a constant, while the volatility at the turbulent period is

more significantly correlated with the lagged ranges.

5.1. Choice ofcovariate

Ideally, the chosen covariate should be efficient. The following discusses the rationale

behind choosing the lagged observed "range" to construct the covariate of the proposed

HMS-V mode1..41

5.1.1. Range vs. observable range

To model the volatility of S&P 500 weekly return, the observed intraweek range is used to

construct the covariate of the Logit link functions and the volatility link functions. The

"range" is the difference between the log of the highest and lowest price within a certain

period of time.42
• According to the literature reviewed in Appendix XIII, the "range" has

been proven as an efficient variable to estimate volatility.

Let the time interval be 1 and suppose that the price from t -1 to t is continuously

observable, then the "true" high price, low price, and percentage range from time t -1 to

t are:-

• (high) . (high) ( . )pricet := prIce = max prIcer'
[t-I, tJ rE[t-I, tJ

price}t°w) := price[(;o:i tJ = min (pricer)' and
, Te[t-I, tJ

~ '- ~ -100 [1 ( . (high») 1 ( . (low»)JUt .- U[t-I,t] - • og prICe[t_l, t] - og prICe[t_l, t] ,

(5.1)

(5.2)

(5.3)

41 In Appendix X, a simple method is also provided to forecast the observable "range", so that the covariate of the
HMS-V model can be estimated, which enables the multiple-step volatility forecasting.
42 Note that only the range is used as the covariate of the regression, rather ~han regarding the range as the volatility of
the time series.
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respectively.

If the price of the security from time t -1 to t is not continuously observable, then let

Rt be defined as the percentage observed range:

• (high) ( b ) . (high) ( b ) (. (b))prlcet 0 s :== prlceCt_I tJ 0 s == max prlceT 0 s ,
, TE[t-I,t]

priceYow) (obs) :== priceC(;O:{ tJ (obs) == min (price" (obs)) , and
, TE[t-I, tJ

~ := RrH,tj = IOO{log (price&~fh]] (obs)) -log(priceN:?t] (obs))J,

The close to close percentage return is defined as,

Yt := lOO{log (price}close) ) -log (price}~ose) )J

(5.4)

(5.5)

(5.6)

(5.7)

Note that according to the definition of range given in equation .(5.1) to equation (5.3), the

"true" weekly range 8t differs from the observed intraweek range Rt defined by

equation (5.4) to equation .(5.6). A detailed discussion and case study of the stock price of

Citigroup Inc. are outlined in Appendix IX.

Parkinson (1980) suggested that if the price of a security follows a normal diffusion

process, then a closed fonn relationship between range and volatility exists. Further

details are provided in Appendix VIII. Unfortunately, for an equity index, the price is not

continuously observable, which is attributed to the missing price information when the

stock exchange is closed. As a result, the observed daily high (low) price is a downward

(upward) biased estimate of the "true" high (low) price. Thus, the assumption exploited
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by Parkinson (1980) should be modified (or rescaled) for.43 stock indices. In this thesis,

the closed form relationship will not be applied. Despite the imperfections, due to the

high value information provided by the observed range, the lagged observable range is

proposed as covariate for the HMS-V model.

5.1.2. Forecasting range

Based on the relationship between the current volatility and the lagged observable range,

given that the range can be forecasted then the lllultiple-step-ahead volatility may also be

for~casted. Further details are available in Appendix X.

5.2. Data

The raw data for the empirical study is the S&P 500 daily close, high and low prices from

January 05, 1983.44 to November 21,2007. The data source is finance.yahoo.com.

Let Thursday morning45 be the beginning of the week, and the following Wednesday

afternoon46 be the end of the week. The daily closing price of all trading days of a given

week is then used to construct a more reliable benchmark of the "true" volatility (see

Appendix X). A total number of 1297 observations for Yt and Rt are thus obtained.

.Table 6 gives a statistical summary of the data. The available sample has been divided

into two parts. The first 989 observations, corresponding to the period from January 05,

1983 to December 26, 2001, will be used for estimation whereas the remaining 308

43 If Parkinson's result were to be applied, some rescaling would be required to reflect the amount ofmissing
information.
44 Data prior to 1983 is not used because the S&P 500 modified the compilation method of the high and low prices
around April, 1982.
45 09:30 ET
46 16:00 ET
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observations will be employed for out-of-sample evaluation purposes.47
•

Statistical summary for the percentage returns and observed ranges ofweekly S&P500
index from January 05, 1983 to November 21,2007

0.17 1.58 2.97

0.30 1.27 2.52

10.18 16.66 34.37

-16.66 0.00 0.69

2.13 1.43 1.89

-0.6 2.5 5.0

7.6 16.3 66.0

Mean
Median
Maximum
Minimum
Standard deviation
Skewness
Kurtosis

Return Absolute return Observed range
Log observed

range
0.95

0.92

3.54

-0.37

0.50

0.3

3.4

ACF (1)

ACF (2)

ACF (3)

ACF (4)

ACF (5)

ACF (6)

Sample auto-correlation functions (lags)
-0.06 0.23 0.51

0.01 0.17 0.43

0.02 0.1 I 0.36

-0.04 0.16 0.33

-0.02 0.13 0.32

0.07 0.11 0.34

0.54

0.50

0.45

0.42

0.40

0.41

Table 6
Descriptive statistics of the weekly percentage returns and the percentage observed intraweek
ranges

Figure 39 to Figure 43 provide visualizations of the data, including volatility clustering,

fat tails and the long memory of the time series consists of absolute return.

5.3. Model selection criteria

This section discusses SOine statistical model selection criteria in order to:-

• study the goodness offit of the in-sample estimate,

• study the accuracy of out-of-sample forecasting,

• choose the functional form, and

• compare different model specifications.

47 The percentage log return and percentage log range because ofthe rescaling convenience mentioned in Appendix III.
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.5.3.1. Likelihood ratio test

Likelihood-based methods play a central role in parametric testing problems, among

which the likelihood ratio (LR) test is perhaps the most popular. Under standard regularity

conditions, a LR test has a simple and elegant asymptotic theoretical outline. However,

the asymptotic null distribution of the ordinary LR test is violated in a mixture regression

model. Therefore, the conventional LR test should not be used to test models with

different number of states or non-nested link functional forms. However, the LR test may

be applicable in the case of two models which have exactly the same number of states and

link functional forms. This is equivalent to testing if one of the models is nested in the

other (e.g. regression 02 and regression 03, .Table 8, section 5.4).

.5.3.2. AIC and RIC

The Akaike information criterion (AIC) and Bayesian information criterion (BIC) are

among the most popular Inodel selection methods (see Box, Jenkins, and Reinsel, 1994,

pp 200-201). AIC was developed by Akaike (1973) as a decision-making strategy based

on the Kullback-Leibler (1951) infonnation measure. It provides a natural criterion for

ordering alternate statistical models,

AlC =-2LLF;,bs (0) + 2K, (5.8)

"
where e is the MLE and K is the number of parameters. BIC (Schwartz, 1978) finds

its roots in the context of Bayesian model choice,

BlC = -2LLF"bs (0) + K.log(T) (5.9)

It is well known that BIC favors more parsimonious models than AIC due to its harsher
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penalization. They may serve as additional (informal) assessments of (relative) model

fitness .

.5.3.3. MSE, MAD and integrated volatility

From examination of relevant literature, the practice of minimizing a statistical loss

function, such as the mean square error (MSE) or the mean absolute deviation (MAD) is

widespread. For the in-sample goodness-of-fit, the loss functions assume the following

form48
:

where,

T

~=(Yt-y)2; y=T-1LYt; t=l,.··,T;
1=1

(5.1 0)

(5.11)

(5.12)

If the out-of-sample size is T*, for a one-step-ahead forecast, the loss functions are,

where,

T+T*

TT* ( -*)2 d - T* 1L TIT T*r.-y-y 'an y- - y·t= + ... +1 - 1 , - I' "

I=T+I

(5.13)

(5.14)

(5.15)

48 MSE = T·-'.I (v,' -E ( ~'I '1/,-. ) ) , is not used as some outliners of the square tenn <J",' (e.g. the Black
t=T+l

Monday, 1987) may greatly skew the result.
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The MAD criteria are generally more robust to the possible presence of outliers (e.g. the

Black Monday in Oct 1987) than the MSE criteria.

However, as pointed out by Anderson and Bollerslev (1998) as well as others, for time

series reflecting the return of a closing price to the following closing price, its square

provides an unbiased but very noisy.49 measurement of the true volatility. Hence for the

more reliable use MSE and MAD, a more efficient measurement of the true volatility is

required. As pointed out by Anderson and Bollerslev (1998), to obtain a more efficient

measurement of volatility, the square return of higher frequency time series can be pooled.

Such a pooled volatility using higher frequency data is defined as "integrated volatility",

which will be used as the "true" volatility for benchmarking purposes.

To obtain the "true" intraday volatility, Andersen, Bollerslev and Diebold (2003)

discretely sampled a number of prices at regular intervals throughout the day, which

lasted from time t to t +1. They then obtained the intraday returns and determined the

variance of the discrete-time returns over the one-day interval on the sample path

-2 1

O"t+1 = fO"i+rdT .
o

(5.16)

-2
The integrated volatility, O"t+1, thus provides a canonical and natural measure of

volatility. However, the daily integrated volatility is inherently difficult to measure,

especially for the stock price since:-

• the weights that are assigned to the opening and closing hours are hard to

determine. Qualitatively, it is probable that the prices at the open have richer

49 For example, if the intraday price jumps up by 10% and jumps down by 10%, the squared return is 0, which is not an
efficient benchmark of the true volatility.

123

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

DRD
Rectangle

DRD
Rectangle

DRD
Rectangle



information than other trading hours, thus greater weights are allocated to them.

However it is very hard to quantify; also

• the integrated intraday price data is of very high frequency and sensitive to

variations in the bid-ask bounce.

In order to obtain a relatively robust "true" weekly volatility as a benchmark, the weekly

volatility is "modeled" by the pooling the square of daily close to close returns,

T = {.!. ~ ... I}.5' 5' , (5.17)

where Y'f-tT is the squared daily return in the week as defined by equation .(5.7). Since

the expected daily return is usually much smaller than the standard deviation, E (Y:+T )

injects only a small amount of bias to a-;+T. The integrated volatility (j7+1 is thus a

more efficient representation. In addition, it is insensitive to the rich information of the

opening and closing hours as well as the bid-ask bounce. Using the same definition of a

week defined in section 5.1.3, the daily closing price of all trading days is adopted to

construct a more reliable benchmark of the "true" weekly volatility.

The estimated in-sample weekly volatility can then be compared with the realized

integrated volatility:-

(5.18)

(5.19)

If the out-of-sample size is T*, for a one-step-ahead forecast, the loss functions are,
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T+T* ( (--I ))2MSE2 ( out-of-sample) = T*-l. L U t - E ut If/t-l ,

t=T+l

MAD2 (out-of-sample) = T*-I I'lUt -E(~IV!t-l)l.
t=T+l

(5.20)

(5.21)

Since "integrated volatility" is more efficient, only the MSE2 and MAD2 defined by

equation .(5.18) to equation .(5.21) are reported instead of MSE} and MAD} defined by

equation .(5.10) to equation .(5.14).

5.3.4. The auto-correlation ofthe forecasting error

If the forecasted volatility, E [ at Ilf/t-l ] ' were unbiased then the difference between the

"true" volatility and the forecasted volatility, O't (error) = E [ O't Ilf/t-l ] - O't ,.50 should

have zero auto-correlation. If the forecasted volatility tends to continuously over-forecast

or under-forecast volatility, then O't ( error) would display significant autocorrelations.

As documented in chapter 3, forcefully fitting a Markov-switching model to a linear

single regime model like GARCH, the GARCH parameter would likely suggest a long

memory process. As suggested by Hamilton and Susmel (1994), amongst others, the high

persistency of long memory could be spurious. As a result of the linear learning and

dis-learning of information, the forecasted volatility can be rendered too "smooth".

Therefore, apart from MSE and MAD studies of the forecasting error, the auto-correlation

of O't ( error) is also investigated as a more significant auto-correlation suggests greater

complication.

50 In this test the integrated volatility at is used as a proxy for the "true" volatility at.
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.5.3.5. The c.d.f. ofout-of-sampleforecast

If the model is appropriately specified then the c.df of the one-step-ahead forecast should

be uniformly i. i. d. This is a universal rule that applies to any model with any distribution

assumption. Let the information up to time t be If/t' the probability density function of

Yt+l be f (y t+l Ilf/t) and the associated cumulative distributional function be

F(Yl+l I\VI) = t' f(v I\V,)dv. Assuming an appropriate model specification, then

F (Yt+l IV/t) should follow an independent and identical uniform distribution. Following

the work of Berkowitz (2001), a second transformation can be performed as,

(5.22)

and test if 17t+l is i.i.d. normal, N(0,1). According to Berkowitz (2001), the series

{~} inherits all the bias of {CDF (Y1+1 I\VI )} .A similar and but more intuitive method

of the Berkowitz test is to study the skew and kurtosis of {~}.

To implement the test, {~} needs to be initially detennined. Note that according to the

'"HMS-V model and estimated parameters B, given If/t and Yt+l' the conditional

one-step-ahead c.df is,

(5.23)
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where,

(5.24)

Note tha an E-step must be performed based on the information 'l/t to obtain

~ =E {S(I},t!VI"e} before forecasting S(l},t+!. More thorough details were previously

outlined in section 4.6.

.5.4. HMS- V without covariate: Bull vs. bear, a qualitative

assessment

The HMS-V model without covariate is the simplest and also most robust hidden

Markov-switching model. Simple as it is, this model merits investigation as it is the most

transparent, tractable and thus intuitively understandable. Although from a statistical

perspective, the performance of HMS-V without covariate may not exceed that of

GARCH Inodels, economIcally, it does provide some basic but differing economic

implications. For example, as reviewed in chapter 3, for stock indices, some literature

suggests that the bull is associated with tranquility and the bear with turbulence.

Without covariate, everylink function at each state refers to a constant. .Table 7 gives the

parameter estilnate and model performance metrics listed in section 5.3.
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HMS- V model without covariate
Model index

First state

Jl(l)

0"(1)

P(ll)

Second state

HMSReg.Ol
Standard error

Estimate.51
Standard error Standard error Numerical

SEM Bootstrap difference

0.301 (0.0648 ) ( 0.0673 ) ( 0.0648 )

1.564 (0.0597 ) (0.0548 ) (0.0595 )

0.988 (0.0074 ) (0.0060 ) (0.0073 )

0.035 (0.1661 ) (0.1738) (0.1663 )

2.937 (0.1440 ) (0.1391 ) (0.1444 )

0.980 ( 0.0145 ) (0.0127 ) ( 0.0146 )

Log likelihood
AlC
BIC

MSE2
MAD2

In-sample fit
-2091.4
4194.7
4224.1

1.36
0.69

MSE2
MAD2

out-of-sample forecast (one-step-ahead)
0.82
0.65

Skewness of· 17t 0.02

Kurtosis of 17t

ACFofthe
first 4 lags of

E[o-tlV/t_J --;;.

3.6

0.39

0040
0.28
0.21

Pr (l1 t = 1)

Pr (l1 t = 2),

W.p.

W.p.

Table 7
The regression results ofthe HMS- V model without covariate. The standard errors are calculated
through the SEM algorithm, the parametric bootstrap and one-sided numerical difference
respectively. For any model, thec.df ofthe out-of-sampleforecast should be i.i.d. uniform;

A

therefore, the transformed 17, shouldfollow i.i.d. normal with zeromean, unit variance, zero

skewness and kurtosis=3.

I {
N (,u(l) , O"(l})

Yt 'l/t- 1 ....., ( )
N J1(2} , 0"(2}

51 The standard errors obtained by the numerical difference and SEM algorithm are closely matched but the standard
errors obtained by the parametric bootstrap are dissimilar. This is likely to be caused by two reasons:
• this particular time series under study has only 989 observations, which is less than the 4213 observations used

previously for the Monte Carlo study in section 4.5; and
• the staying probabilities for both states is very high (0.988 for State 1 and 0.98 for State 2).
As a result, the parametric bootstrap may not give an accurate estimation of the standard errors, since for the simulated
time series, the hidden state may only transit for a very limited number of times.
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The standard errors of the transition probabilities and the standard deviation at each state

are relatively small, indicating the existence of two states with distinctly different

volatilities. State 1 describes a tranquil market coupled with higher expected weekly

return, 0.30, and lower volatility, 1.57; on the contrary, state 2 describes a turbulent

market characterized with lower expected return 0.036, and higher volatility, 2.94.

If the risk free interest rate were 0.0%.52, the shape ratios holding the stock indices return

at the two states are:-

Shape ratio at State 1 (tranquil state)

= 0.30- RateFree ~ 0.19
1.56

Shape ratio at State 2 (turbulent state)

= 0.036- RateFree = 0.012
2.94

Therefore, during a turbulent period, to hold this stock index, an investor suffers not only

from greater uncertainty but also lower return. Chapter 6 provides some mutually

reciprocal mechanisms in volatility and return to determine the economic implication.

-The high staying probabilities are determined as P(ll} = 0.988, P(22) = 0.980. It can be

- .-
seen that P(ll) > P(22} , thus a tranquil state is on average more lasting than a turbulent

state. The economic implications of a longer lasting tranquility will be discussed later in

chapter 6.

Based on Regression 01 (see Figure 16 to Figure 17),

• the following periods are tranquil: Year 1983 to 1986, 1988 to early 1990, 1992 to

52 For ease ofpresentation, this is an over-simplification.
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early 1998, and 2004 to early 2007.

• The other periods are turbulent, often associated with stock market crashes and/or

economic recessions. During a turbulent regime, volatility traders and short sellers

often thrive.53
•

As indicated by Figure 17, since August 2007, the market has most likely switched to a

turbulent regime. The U.S. ho~sing slump is affecting growth, the credit problems in the

U.S. have spread to other parts of the world, the global economy faces downside risks

from the rout of capital markets and at the same time, inflation is above the comfort level

of most major central banks. Hence simple as the model is, it does give a qualitative

assessment of the question: "is the volatility considered high or low"?

Probability that Yt is generated by State 1

2002
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19991995

1995

Date

Volatility

1991

1991

1987

1987
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0.6
0:
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0
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OJ
l'n

2

1
1983

Date

Figure 16
Regression 01, in-sample (HMS-Vwithout covariate). The upper panel plots

(~ IV!T ), T = { 1"",T} , that is, the in-sample state 1 probability, the lower panel

plots the corresponding (~IV!T)'

53 During such turbulent times, one simple strategy is to trade the VIX index by CBOE. Since the volatility of the stock
market is mean reverting (see Dueker, 1997), during a turbulent age, one can long the VIX index when it is below the
long-term equilibrium and short the VIX index when it is above the long-tenn equilibrium.
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Probability that y t is generated by State 1
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Figure 17
Regression 01, out-aI-sample (HMS-V without covariate). The upper panel plots

{5:;t Ilf/t-l}" t = T, T + 1,"" T + T*, that is, the one-step-ahead out-aI-sample state 1

probability. The lower panel plots the corresponding {;;'t /If/t-l}'

.5.5. HMS- V with covariates: Quantitative fine-tuning

Regression 01 qualitatively accesses volatility and Regression 02 to Regression 05

quantitatively fine-tune it, where the volatility link functions and logic link function are

used54
• It is further observed that compared to the tranquil state, the turbulent state is far

more reactive to recent shocks.

.5.5.1. Linkfunctions and covariates

The link functions are:-

1) The transition probability is determined by the Logit link function,

54 Actually, six link functions can be used to replace each ofthe six parameters ofRegression 01, but ofthe six
parameters, the means of two states are still assumed constant. .
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P(ii},t '= LOGIT(WlP(i}); (i =1,2; t =2,·· .T). (5.25)

If the current intraweek range has a homogeneous impact on the transition

probabilities within the next n weeks, then the row vector W t has only two

n

Wt,l =n-1:LRt_k
k=l

is the average of the last n intraweek ranges.55
•

(5.26)

Alternatively, if a more recent intraweek range has greater impact on the transition

probability, an exponential weighted form can be specified as,

<X)

Wt,l = LA; (I-A)Rt_k
•

k=!

(5.27)

One can let A = 0.94 according to RiskMetrics™. 56 (although A = 0.94 is

probably not the optimal parameter, it is used only to illustrate the potential

improvement of such an exponentially-weighted method).

2) The expected return of Yt' given that I1t = i, is assumed constant,

(i = 1,2; t = 1, ...T).

This assumption based on the following two reasons:-

• the autocorrelations (or clustering) of the weekly rerun are addressed by

the clustering feature of the Markov-switching model; and

1 n

55 Previous versions proposed by the author imposed the condition, 'Wt =- L log Rt- k
' however recent investigations

n k=l

1 n

show that, 'Wt = - L Rt_k is a slightly better specification.
n k=l

00

56 'T' b f: . hfi 1 TM 1 "" '1; (1- '1) R 2

t
_

k
•.1 0 e more att u to RiskMetrics ,one can et W t! = L...J A /l..

k=!
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• the clustering of bullish or bearish market sentiments are ofmore interest.

3) Volatility is determined by an exponential function: given that f1 t = i, the

standard deviation of Yt is,

(5.28)

volatility link functionS7 and assume that the volatility of Yt is correlated with

the m lagged observable ranges. For the parameterP(i) =(P(i}.O ,P(i},I' ... 'P(I},m ) ,

P(i},O is the intersection tenn and {P(i}.k; k =1", " m} describes the impacts of the

lagged observable ranges on U(i),t.

,5.5.2. Time varying sensitivity to recent shocks

The regression results of Regression 02 to Regression 05 are presented in this section.

Regression 02 and Regression 03 both assume Wt =~f: Rt- k • According to the fmdings
26 k=l

of Regression 02, compared to the turbulent state, at the tranquil state, volatility is far less

sensitive to recent shocks. Therefore, Regression 03 imposes the

condition, 13(1),1 =13(1),2 =0 to test the hypothesis that volatility at the tranquil state is

00

constant. Regression 04 and Regression 05 both assume w t,1 = L Ai (1- A) R
t
_

k
, so that a

k=!

more recent observation has greater impact on the transition probability. Regression 05

57 Previous work adopted, Zt = (1, Rt_1,···, Rt- m ) , however the obt,ained results were slightly inferior to those

obtained when using log range.
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also imposes that [3(1),1 = [3(1),2 = 0, [3(2),2 = 0, that is, the volatility at the tranquil state is

constant and volatility at the turbulent state is only correlated with one lag of the

intraweek range. Regressions 02 with 03 are then compared (see .Table 8), as are

Regressions 04 with 05 (see .Table 9 ).
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Model index
ill and n value

First state

Reg_ 02
m=2; n=26

Estimate Standard error s+,c

Reg_ 03
m=2; n=26

Estimate Standard error

Jl(I)--
13(1),0-
13(1),1

--
~1),2

Logit link

rp(I),O

-
rp{I),l

Second state

Jl(2)-
13(2),0--
~2),1-
13(2),2

Logit link

rp(2),0--
rp(2),1

Log Likelihood
AlC
BlC

MSE2
MAD2

MSE2
MAD2

ACFofthe
first 4 lags of

E[(JtIVJt_rl-~

Skewness of 17t

Kurtosis of 17t

0.44 (0.10)

0.02 (0.13)

0.15 (0.13)

0.13 (0.14)

4.18 (1.83)

-1.39 (0.67)

-0.24 (0.23)

0.51 (0.13)

0.31 (0.10)

0.14 (0.09)

-2.92 (2.91)

0.84 (0.97)

In-sample fit
-2059.3
4142.7
4201.4

1.12
0.59

out-of-sample forecast (one-step-ahead)
0.60 '
0.57 k'

0.11
0.19
0.12
0.06

0.02

2.77

0.48 (0.11)

0.20 (0.09)

4.93 (2.58)

-1.92 (1.15)

-0.15 (0.15)

0.45 (0.12)

0.32 (0.09)

0.14 (0.08)

-4.04 (2.06)

1.26 (0.60)

-2061.1
4142.2
4191.2

1.15
0.60

0.61
0.58
0.13
0.22
0.13
0.07

0.03

2.85

Table 8
The regression results ofthe HMS- V model with covariate.

{

N(J.L(!),t ,aN,t) W.p. Pr(~t = 1)
ytIVlt- I "'" () ()'

N Jl(2),t ,a(2),t W.p. Pr ~t = 2

a(i),t = exp (P(i),O + p{i),l-log Rt_1 +P(i),2 -log Rt- 2 ),

p(ij),t = Pr(~t = j I ~t-l = i) .
1 26

P(ii),t = LOGIT ("(i),O + 'P{i),l-Wt ):. where Wt =- L Rt_k
26 k=l
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Model index Reg_ 04
00

W t ,1 = LA; (I-A)R
t
_

k
, ..1,=0.94

k=l

Reg_ 05
00

W t,l=LAi (I-A)R
t
_

k
, ..1,=0.94

k=1

First state

Estimate Standard error !t';T; Estimate Standard error

9.07 (3.08) 19.03 (15.52)

-3.31 (1.40) -7.05 (5.80)

-0.15 (0.21) -0.03 (0.17)

0.65 (0.13) 0.64 (0.11)

0.29 (0.09) 0.35 (0.09)

0.07 (0.09)

/1(1)--
13(1),0

----
fJ(l),1--
~1),2

Logit link

qJ(I),O----
qJ(I),l

Second state

/1(2)-
13(2),0--
~2),l-
~2),2

Logit link

qJ(2),O--
qJ(2),1

Log Likelihood
AIC
BIC

MSE2
MAD2

MSE2
MAD2

ACFofthe
first 4 lags of

E [ at /If/t-I] --;;

Skewness of 17t

Kurtosis of 17t

0.37 (0.08)

0.13 (0.12)

0.16 (0.12)

0.01 (0.11)

-8.62 (3.99)

2.28 (1.02)

In-sample fit
-2044.7
4113.4
4172.2

1.12
0.58

out-of-sample forecast (one-step-ahead)
0.60
0.57
0.15
0.25
0.13
0.07

-0.04

2.90

0.33 (0.08)

0.31 (0.06)

-9.02 (3.23)

2.45 (0.91)

-2045.9
4109.8
4153.9

1.14
0.60

0.61
0.57
0.18
0.29
0.16
0.08

-0.12

3.09

Table 9
The regression result ofthe HMS- V model with covariate.

{

N(I1(I},t ,U(l},t) W.p. Pr(,1,t = 1)
ytIVl t- I "" () ()'

N 11(2},t, u(z},t W.p. Pr ,1,t = 2

a(i),t = exp (P(i),O + p(i),l-log Rt- 1 + P(i),2 -log Rt- 2 ) ,

p(ij}.t = Pr(,1,t = j I .1 t_1 = i).
00

P(ii),t = LOGIT ('(i),O + '(i),l-Wt ), where L Ai (~- A) Rt _ k , A::; 0.94.
k=l
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The Regression 02, which does not impose any constraint on the parameters, is analyzed

here. tp(l),l = -1.39 is negative and statistically significant, which indicates that given

that the previous observation is at the first state (Le. tranquil state), there is an increased

likelihood that the next observation will switch to the turbulent state with increasing

lagged intraweek ranges. The converse is true for tp(2),1 = 0.84 . Furthermore, the volatility

at the turbulent state is significantly positively correlated with the lagged intraweek

ranges,58. At the turbulent state, ~ = 0.31, If;; =0.14, with the t-statistics also being

significant. On the other hand, the (-statistics of ~ and li;); are far less significant59

at the tranquil state. Therefore, compared to the tranquil state, volatility at the turbulent

state is much more sensitive to the lagged observed range. Further insights are evident

from the raw data.

According to fFigure 16 and Figure 17 most of the observations, Yt , from the period

May/13/1992 to Dec/06/1995, Le., from the 487th observation to the 673rd observation,

are likely to have been generated by the tranquil state..Table 10 describes the sample

ACFs of Yt2 , and the sample cross-correlation function (XCFs) betweenYt2 and the

lagged terms of log (Rt ) • The sample ACFs are clearly not significant, indicating very

weak auto-regressive [G]ARCH effect, if any at all. The sample XCFs of the first 5

lagged terms are all less than 0.10, indicating relatively weak correlations of the lagged

intraweek ranges and volatility at the tranquil state.

---
58 For P(2),1 , the t-statistic is 0.31/0.1 0=3.1 ; and for P(2),2' the t-statistics is 0.14/0.09=1.5 .

59 For P(l),I' the t-statistic is 0.15/0.13=1.1; and for P(1).2' the t-statistic~ is 0.13/0.14=0.9.
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Weekly observations from May/13/1992 to Dec/06/1995
Sample Auto-Correlation function of squared return (left)
Sam Ie Cross-Correlation function between s uared return and 10

Auto-Correlation
ACF (1)

ACF (2)

ACF (3)

ACF (4)

ACF (5)

ACF (6)

ACF (7)

ACF (8)

-0.03

-0.03

-0.04

0.05

-0.11

0.06

0.19

-0.01

Cross-Correlation
XCF (1)

XCF (2)

XCF (3)

XCF (4)

XCF (5)

XCF (6)

XCF (7)

XCF (8)

0.09

0.02

0.08

0.06

-0.13

0.07

0.14

-0.06

Table 10
This table gives the sample ACFs of y: and the sample XCF between y: and the lagged term

of log(Rt ) from May/13/ 1992 to Dec/06/1995.

Sample ACF of squared weekly return
from May/13/1992 to Dec/06/1995

Sample XCF petween squared weekly return and
intraweek range from May/13/1992 to Dec/06/1995
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Figure 18
The left panel plots the sample autocorrelation function (sample ACFs) of y; from 13th May

1992 to 6th December 1995. The right panel plots the sample cross correlation function (XCFs)

between y: and the lagged term of log (Rt ) in the same period.

A similar finding for the period Jan/07/2004 to Jun/27/2007 is shown in .Table 11 and

Figure 19.
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Weekly observations from Jan/07/2004 to Jun/27/2007
Sample Auto-Correlation function of squared return (left)
Sam Ie Cross-Correlation function between s uared return and 10

Auto-Correlation
ACF (1)

ACF (2)

ACF (3)

ACF (4)

ACF (5)

ACF (6)

ACF (7)

ACF (8)

-0.02

-0.06

0.06

0.05

-0.05
-0.03

0.06
-0.01

Cross-Correlation
XCF (1)

XCF (2)

XCF (3)

XCF (4)

XCF (5)

XCF (6)

XCF (7)

XCF (8)

0.03

0.11

0.04

0.18

0.01

-0.04

0.04

0.01

Table 11

The table gives the sample ACFs of the Yt2 and the sample XCF between Yt2 and the lagged

term of log (Rt ) from Jan/07/2004 to Jun/27/2007.

Sample ACF of sqaured weekly return
from Jan/07/2004 to Jun/27/2007

Sample XCF between squared weekly return
and intraweek range from Jan/07/2004 to Jun/27/2007

0.8

0.6

0.4

0.2

I
I
1

1

1 1 1

-----~------~-----~------

1 1 I
1 1 I
1 1 1
1 I 1
1 I 1

-----~------r-----~------

I 1 I
I 1 1
1 I 1
1 I 1
1 I 1

- - - - - -I - - - - - - T - - - - - -I - - - - - -

I I 1
I I 1
I 1 I
I 1 1
I 1 1

- - - - - -I - - - - - - T - - - - - -I - - - - - -

1 1 1
I I 1
I I 1
1 I 1
I 1 1

1

1

1

I
1 1 1

0.8 - - - - - ~ - - - - - - t- - - - - - ~ - - - - - -
I 1 1
1 I 1
1 1 1
I 1 I
I 1 I

0.6 - - - - - ~ - - - - - - r - - - - - 1-- - - - -

1 I 1
I I 1
I I I
I I I

0.4 - - - - - -: - - - - - - ~ - - - - - ~ - - - - - -
1 I
I I
1 I
I I

0.2 - - - - - -: - - - - - - - - - - - ~ - - - - - -
I I
I I
I I
I I

I

201510
Lag

5
-0.2 IL-__-'--__--'-,

o201510
Lag

5
-0.2 IL-__....l.-.__-'-__----L__---'

o

Figure 19

The left panel plots the sample autocorrelation function (sample ACFs) of Y~ from Jan/07/2004

to Jun/27/2007. The right panel plots the sample cross correlation function (XCFs) between Y;

and the lagged term of log(Rt ) during the same period.

- -Conversely, the estimated value and t-statistics of 13<.2),1 and ~2),2 in Regression 02

indicate that at the turbulent period, the lagged intraweek range has significant
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explanatory power of volatility. According to the top panel of Figure 16 and the top

panel of Figure 17, the vast majority of observations from Jan/08/1997 (the 730th

observation) to Jun/02/2003 (the 1068th observation) are likely to reside at the turbulent

state.

.Table 12 and Figure 20 describe the sample ACFs of y: as well as the sample XCFs

between y: and the lagged terms of log (Rt ). Both the sample ACFs and XCFs are

much more statistically significant than those at the tranquil periods (e.g. May/13/1992 to

Dec/06/1995), indicating obvious structure breaks.

Weekly observations from Jan/08/1997 to Jun/02/2003
Sample Auto-Correlation function of squared return (left)
Sam Ie Cross-Correlation function between s uared return and 10

Auto-Correlation
ACF (1)

ACF (2)

ACF (3)

ACF (4)

ACF (5)

ACF (6)

ACF (7)

ACF (8)

0.13

0.04

0.05

0.15

0.10

-0.04

0.06

0.01

Cross-Correlation
XCF (1)

XCF (2)

XCF (3)

XCF (4)

XCF (5)

XCF (6)

XCF (7)

XCF (8)

0.22

0.24

0.12

0.12

0.09

0.05

0.05

0.00

Table 12
The table gives the sample ACFs of Yt2 and the sample XCF between y; and the lagged term

of log(Rt ) from January 08,1997 to June 02,2003.
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Sample ACF of squared weekly return
from Jan/08/1997 to Jun/02/2003

Sample XCF between squared weekly return and
intraweek range from Jan/08/1997 to Jun/02/2003
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Figure 20
The left panel plots the sample autocorrelation function (sample ACFs) of Yt2 from January 08,

1997 to June 02, 2003. The right panel plots the sample cross correlation function (XCFs)

between y: and the lagged term of log ( Rt ) during the same period.

The analysis of the raw data is inline with the parameter estimate carried out for

Regression 02. Hence, as opposed to using only a single set of one-size-fit-all parameters,

different sets of parameters are adopted to describe the differing volatility patterns.

Further study is merited if volatility at the tranquil state can be specified as a constant.

Imposing restrictions on the two parameters (P(l),l' P(I),2)' Regressions 03 and 02 are

compared to examine the hypothesis:-

Do: P(I),1 = 0 and P(I),2 = O.

Defining the parameter space that satisfies P(l),l =0 and /11),2 =0 as eo, the LR test

suggests:

(
SUP{LF (O):OE@}J

-2 log {ObS ( ) o} =-2(-2061.1 + 2059.3) ~ 3.6,
sup LFobs (J :(J E e

(5.29)
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where the P value is 1-X~ (3.6) = 16.5% and the null hypothesis, (} E eo, is not

rejected at a 90% confidence interval. In addition, according to .Table 8, the BIC values

for Regression 02 and Regression 03 are 4201.4 and 4191.2 respectively, which favor

Regression 03. Similarly, the LR test prefers Regression 05 to Regression 04, that is, the

volatility at the tranquil state cannot be specified as a constant. As shown in .Table 8 and

.Table 9, if the BIC were to be used as the yardstick, Regression 05 would demonstrate the

best performance among the 5 regressions. The in-sample estimation of Regression 05 is

depicted in Figure 21 to Figure 23, with its out-of-sample forecast shown in Figure 24 to

Figure 26.
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Volatility at State 1
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Figure 21

Regression 05, in-sample (13<.1),1 =~1),2 =0, ~2),2 =0).

This figure plots (0:;; IIfIT) and (0:;; IIfIT ); T == {l, ... ,T}.. T == 989.

Staying probability at State 1

Staying probability at State 2

20021999199519911987
o '----- -'--- -'-- --1- ---'- ---'

1983

0.8

0.6

0.4

0.2

Figure 22

Regression 05, in-sample (13<.1),1 =13<.1),2 =0, ~2),2 =0)

This figure plots (~11fIT) and (P;; IlflT),. T == {l,. ·.,T} .. T == 989 ·
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Probability that y t is generated by State 1

20021999199519911987
o L-- -'--- --'- -L- --L ---'

1983

0.8

0.4

0.6

0.2

Volatility
8.------,----------.---------.--------.-----,

20021999199519911987

4

6

2

OL--------'----------'-------L-- --L ---'

1983

Figure 23

Regression 05, in-sample (/11),1 = /11),2 = 0, /12),2 = 0)

This figure plots (;;;; lifT) and (;;:; lifT); T:= {I,"" T}, T:= 989.

Volatility at State 1
8,----------,----------,--------,.-----..,------..,------,

6- -

4 -

2- -

2007200620052004
o L-- ---l1 ---l --'- ---'- --'- ---'

2002 2003

Volatility at State 2
8.------------,--------,.--------,.-----..,-------,-------,

20072006200520042003

4

6

2

0"----------'---------'---------1.------'-------'--------'
2002

Figure 24

Regression 05, out-of-sample (/11),1 = 13(1),2 = 0, /12),2 = 0)

This figure plots {0:;1If'-I} and {0;; 11ft-!} , t:= T, T +1, ... ,T + T* ,

T = 989, T* = 1297 .
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Staying probability at State 1

Staying probability at State 2

20072006200520042003
o '-----------'--------'-------"------'-------'---------'
2002
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0.2

Figure 25
Regression 05, out-of-sample (~1),1 = [3(1),2 = 0, [3(2),2 = 0)

This figure plots {p;;;, 1\II'-I} and {p;;./\IIt-l} , t =: T, T +1",' ,T +T' , ,

r = 989, r* = 1297 .

Probability that y t is generated by State 1

20072006200520042003
o '---- ----' ----' ---L -L. -L. ----'
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Volatility
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20072006200520042003

4

6

2
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Figure 26
Regression 05, out-aI-sample (13(1),1 = ~1),2 = 0, ~2),2 = 0)

This figure plots {;; 1\II1-1} and {~I\III-1}; t =: T, T +1,. .. , T +T' " T =: 989 ,

r* =1297.
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.5.6. Model Comparisons (empirical study)

.5.6.1. Comparison with single regime models

5.6.1.1. Comparison using statistical loss fun ctions

Using the same data described in section 5.2,

Table 13 reports the results of other popular models amongst the research community,

namely the GARCH-Normal and GARCH-T. The results of Reg. 03 and Reg. 05 are also

provided. It is evident that GARCH-T significantly out-perfonns GARCH-Normal in

terms of likelihood based criteria such as AIC, BIC. This is expected as the student's t

distribution is a far more potent conditional distribution for fat-tailed returns. Amongst all

the regression samples, that of 05 has the most favorable performance in terms of AIC

and BIC. However, when the "integrated volatility" is used as the proxy for the "true

volatility"; the GARCH-N and GARCH-T model have very similar performance in terms

of in-sample and out-of-sample MSE and MAD. From these results the merits of the

proposed model are compounded as it out-performs both single regime GARCH models.
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Reg. 03 Reg. 05

GARCH(l,l) GARCH(l,l) Model index
W t ,1 =

Model index
Normal Student's t m=2; n=26 LA i (I-A)Rr_k

,

k;:!

,,1=0.94

Est. Std. Est. Std. Est. Std. Est. Std.
Error Error Error Error

Ii 0.25 (0.0064) 0.32 (0.057)
/1(1)

0.48 (0.11) 0.33 (0.08)

-
P -0.06 (0.036) -0.08 (0.033) ~1),0 0.20 (0.09) 0.31 (0.06)

---- -
flo 0.075 (0.025) 0.067 (0.036) ~1),1
..-. --
fll 0.08 (0.013) 0.06 (0.017) fl(I),2

---- --
fl2 0.91 (0.017) 0.92 (0.020)

9(1),0
4.93 (2.58) 19.03 (15.52)

--
DoF 6.67 (1.143) lJJ(I),1 -1.92 (1.15) -7.05 (5.80)

Jl(2)
-0.15 (0.15) -0.03 (0.17)

-
[3(2),0 0.45 (0.12) 0.64 (0.11)

--
~2),1 0.32 (0.09) 0.35 (0.09)

-
~2),2 0.14 (0.08)

lJJ(2),0
-4.04 (2.06) -9.02 (3.23)

lJJ(2),1
1.26 (0.60) 2.45 (0.91)

In-smnple fit

Log Likelihood -2097.3 -2067.0
Log Likelihood

-2061.1 -2045.9

AlC 4204.7 4146.1 AlC 4142.2 4109.8
BlC 4229.1 4175.5 BlC 4191.2 4153.9

MSE2 1.41 1.41 MSE2 1.15 1.14
MAD2 0.71 0.70 MAD2 0.60 0.60

Out-of-sample forecast

MSE2 0.79 0.79 MSE2 0.61 0.61
MAD2 0.63 0.63 MAD2 0.58 0.57

0.35 0.36 ACFofthe 0.13 0.18

ACFofthe 0.35 0.36 first 4 lags of 0.22 0.29

first 4 lags of 0.22 0.24
E [ crtIV/t-J -;

0.13 0.16

E [crt IV/t-J -; 0.12 0.14 0.07 0.08

Skewness of 17t -0.45 -0.20 Skewness of 17t 0.03 -0.12

Kurtosis of 17t 4.05 2.85 Kurtosis of 17t 2.85 3.09

Table 13
Comparison between single regime GARCHand the proposed model
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For GARCH-Nonnal, the persistence level is 0.076+ 0.911 = 0.988, indicating that the

half life time of a shock is, log(O·Xg(O.988) =57 weeks. For GARCH-T, the

persistence level is 0.064 + 0.923 = 0.987 , which is similar to that of GARCH-Normal.

According to Hamilton and Susmel (1994), the persistence level suggested by

GARCH-Nonnal (1,1) is suspiciously long. As discussed previously in section 3.3, if the

persistence level were spurious, the model will then either continuously over-forecast and

under-forecast volatility, and as a result, (it (error) will exhibit positive auto-correlation.

This is indeed the case for both GARCH models, as the positive auto-correlations of

(it ( error) are far more significant than those of the proposed model. Finally, as the

skewness and kurtosis of ~ show, the proposed model is far more capable of addressing

both the negative skewness and the excess kurtosis of S&P 500 return, when compared

with both GARCH models.

5.6.1.2. Comparison by closer examinations oftwo episodes

Apart from the statistical superiority in volatility forecast demonstrated by the proposed

HMS-V model, a superior economic implication is also provided. For comparison

faimess.6o
, the realistic volatility forecasting process is mimicked for all models. For

example, (it is forecasted based on the parameters and the infonnation up to If/t-l.

Figure 27 and Figure 28 plot the in-sample estimate and out-of-sample forecast using

both the HMS-V and GARCH-T models. The weekly integrated volatility (equation

60 Note that for the Markov models, the values of E [ (J't Ilf/T ,e] and E [ (J't llf/t-1' e] are different for the

proposed model, while they are the same for GARCH models. Therefore we will use E[(J'tllf/t_1,e] as the yardstick.

This also applies to the expected return.
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.(5.16)) is also plotted as the benchmark for the "true" volatility. According the figures,

HMS-V is more capable of describing the change in volatility when a tranquil state

transits to a turbulent state and the forecasted volatility also decreases in a more timely

manner when the real volatility (proxied by "integrated volatility") calms down. Hence, in

this aspect, HMS-V out-performs GARCH-T.

Volatility estimation comparison
10.0

1.0

IntVol

.. - .. GARCH-

- - Hl.\IIS-V

0.1

Figure 27

Volatility forecasting E[O"t IV/t-l'e] using different methods from Jan/05/1983 to Dec/26/2001.

The solid line plots the weekly Uintegrated volatility", the dashed line plots the volatility
forecasted by the proposed HMS- V model, and the dotted line plots that ofthe GARCH-T model.
Note: the y-axis of this figure is log scaled. This is due to the broad volatility range caused by
Black Monday, 1987.
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Volatility forecast comparison
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Figure 28

Volatility forecasting E[O"tl'l/t-1'8J using different methodsfrom Dec/26/2001 to Nov/21/2007

The solid line plots the weekly "integrated volatility", the dashed line plots the forecasted
volatility by the proposed HMS- V mode, and the dotted line plots that ofthe GARCH-T model.

It can be seen that HMS-V suggests that the mean is lower at the turbulent state and

higher at the tranquil state. On one hand, at the tranquil state, the expected return of Yt

should be higher but not unrealistically high. However, on the other hand, GARCH

models suggest a dramatically different situation: Yt is negatively correlated with Yt-l

(see .Table 13). To closely compare HMS-V with GARCH-T, two chosen periods are

examined in details: Jan/ 07/1987 to Dec/28/1988 and Jan/03/2007 to Nov/21/2007.

The first chosen episode

Jan/07/1987 to Dec/28/1988 includes the infamous Black Monday, 1987. The S&P 500

was relatively stable before Oct/1987, dropped by 22.9% on Oct/19/1987, and remained

very turbulent for the subsequent few months. In the wake of the Black Monday, the Fed

and other central banks pumped liquidity into the system to prevent further downdrift.

The integrated weekly volatility from Oct/14/1987 to Oct/21/1987 (refer to equation

.(5.1 7)) was 25.71%, which is much higher than the average of integrated volatility of
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1.89% from Jan/05/1983 to Nov/21/2007. Partially due to the effort by the central banks,

the market calmed down from Mar/1988 onwards and the average integrated weekly

volatility from Mar/02/1988 to April/20/1988 decreased to 2.3%.

.Table 14 and Figure 29 compare the differences of the volatility forecasted by HMS-V

and GARCH-T.61
• The first impression is that the forecasted volatility by HMS-V peaks in

Oct/28/1987 (the immediate week following Black Monday) whereas the forecasted

volatility by GARCH-T peaks at Nov/04/1987 (two weeks after Black Monday).

Therefore, it is clear that HMS-V is more capable of capturing sudden spikes in volatility.

According to HMS-V, at the shock of Black Monday, the state probability

Pr(~t = 11lf/t-l) immediately lowered to 0.55%, indicating a high likelihood of residing

at the turbulent state. Consequently, the forecasted volatility (the week ended on

Oct/28/1987) rose to 6.44% immediately after the shock, which is quite a dramatic

increase from 2.32% on Oct/7/1987. As shown in Figure 29, a few weeks after Black

Monday, the market calmed down and the forecasted volatility by HMS-V eased to 2.95%

on Feb/17/1988. In this case, at the outset of the turbulent state, the HMS-V obtained an

immediate higher volatility forecast through its two processes: (i) the underlying process

switched to the turbulent state, (ii) the volatility link function at the turbulent state

absorbed the shock with great speed. The joint effect of the two processes describe the

demonstrated spike in volatility.

The results from the GARCH-T differ from that of HMS-V. It reacts linearly and too

61 Given the estimated parameters, we proxy the forecasting process in reality61, that is, forecasting (J"t based on

information If/t-l'
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sluggishly. According to GARCH-T, the forecasted volatility (the week ended on

Oct/28/1987) only rose to 4.96% after Black Monday. Compared with the estimation from

HMS-V, this is a relatively small increment from 2.28% on Oct/711987. The forecasted

volatility by GARCH-T only peaks on Nov/04/1987, while the forecasted volatility by

HMS-V peaks immediately on Oct/28/1987. In addition, after a few months following

Black Monday, the forecasted volatility by GARCH-T eased only to 3.89% on

Feb/17/1988, which is persistently and substantially greater than the contemporary

integrated volatility. Therefore, when structure breaks take place, a one-size-fit-al1linear

model is inferior to the proposed model. Note that GARCH-T reacts to the shock through

only a single process: the volatility link function absorbs the shock with high speed and is

hence less capable than that dual processes ofHMS-V.

Therefore, not only is HMS-V is more capable of forecasting volatility, the forecasted

return is also more sensible. .Table 14 and Figure 31 summarize the mean estimated by

HMS-V and GARCH-T from Oct/07/1987 to Mar/02/1988. On the shock of Black

Monday, according to HMS-V, the forecasted mean was low for a few months, which is

not suggested by GARCH-T. On the shock of Black Monday, the expected return shot up

to 1.67% and the expectation of the mean for the period Oct/07/1987 to Mar/02/1988

fluctuated widely.
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HMS-V GARCH-T

Return Int Vol
Pr(~t = 1 E(at Ilfit-l) E(/1t IlJIt-l) crt Ilt

Date
% % IlJIt-l) HMS-V HMS-V GARCH-T GARCI-I-T

HMS-V % % % %

7-0ct-1987 -1.03 3.23 21.45% 2.32 0.05 2.21 0.301

14-0ct-1987 -4.27 3.86 46.94% 2.44 0.14 2.16 0.401

21-0ct-1987 -16.66 25.71 1.71% 3.22 -0.02 2.41 0.665

28-0ct-1987 -10.22 9.82 0.55% 6.44 -0.03 4.96 1.674

4-Nov-1987 6.51 6.16 0.33% 4.64 -0.03 5.64 1.150

ll-Nov-1987 -2.88 4.52 0.25% 4.09 -0.03 5.59 -0.212

18-Nov-1987 1.50 3.50 0.35% 3.88 -0.03 5.42 0.552

25-Nov-1987 -0.59 2.96 0.41% 3.00 -0.03 5.22 0.196

2-Dec-1987 -4.46 4.64 0.31% 3.31 -0.03 5.03 0.366

9-Dec-1987 2.30 5.26 0.23% 3.87 -0.03 4.99 0.681

16-Dec-1987 3.77 4.31 0.23% 3.93 -0.03 4.82 0.130

23-Dec-1987 2.03 3.51 0.30% 3.56 -0.03 4.73 O.OlO

30-Dec-1987 -2.12 2.98 0.43% 3.11 -0.03 4.58 0.153

6-Jan-1988 4.35 3.69 0.40% 2.96 -0.03 4.44 0.490

13-Jan-1988 -5.18 7.30 0.28% 3.64 -0.03 4.39 -0.037

20-Jan-1988 -1.30 3.82 0.32% 3.95 -0.03 4.42 0.740

27-Jan-1988 2.74 2.86 0.36% 3.33 -0.03 4.29 0.424

3-Feb-1988 1.13 2.65 0.52% 3.36 -0.03 4.17 0.094

lO-Feb-1988 1.75 2.38 0.72% 2.93 -0.02 4.02 0.226

17-Feb-1988 0.99 1.13 1.15% 2.95 -0.02 3.89 0.175

24-Feb-1988 1.99 2.17 1.50% 2.58 -0.02 3.75 0.237

2-Mar-1988 1.33 2.35 2.15% 2.93 -0.02 3.64 0.155

Table 14

Comparison between HMS-Vand GARCH-T forecasted volatility E[crt/¥/t-l] and mean

E[Jlt/¥/t_l] usingS&P 500 weekly data from Oct/07/1987 to Mar/02/1988.
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Volatility estimation comparison
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Figure 29

Forecasting E[O"tllft-l] by HMS-V and GARCH-T.from Oct/07/1987 to Mar/02/1988.

The solid line plots the weekly "integrated volatility ", the dashed line plots the HMS- V and the
dotted line plots the GARCH-T model.
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Figure 30

Forecasting E[O"tllft-l] by HMS-Vmodelfrom Oct/07/1987 to Mar/02/1988.

The solid line plots E [ O"tIlft-l] (left scale of the y-axis) and the dashed line plots

Pr( /1t = 1Ilft-l) (right scale ofthe y-axis).
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Expected return comparison
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Figure 31

Forecasting mean E[Jltllf/t-lJ with the proposed HMS-V and GARCH-Tfrom Oct/07/1987 to

Mar/02/1988. The solid line plots HMS-Vwith the dotted line plotting GARCH-T.

The second chosen episode

The second period of examination is from Jan/03/2007 to Nov/21/2007, which includes

the period of the US subprime implosion which may lead the US into recession in 2008 or

2009. Before mid Jul/2007, the S&P 500 was relatively stable and showed little sign of

stress but the price fluctuated and dropped from 1553 on Jul/19/2007 to 1440 on

Nov/23/2007. The first wave of the subprime crunch hit in early Aug/2007 as the weekly

integrated volatility shot up from 1.9% in mid Jul/2007 to 3.9% in early Aug/2007. The

S&P 500 rebounded from Sep/2007 to Oct/2007 on the hope that the credit crunch was

short-lived, but it plummeted again in Nov/2007 as the credit crunch spread to the rest of

banking industry and the real economy. Some unconventional measures have been taken

by the u.S. government agencies to avoid the systematic collapse of the financial system.

As shown in .Table 15 and Figure 33, according to HMS-V, prior to the subprime

implosion, on Ju1l25/2007, the forecasted tranquil state probability Pr (L1t= Illf1t-l) was
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as high as 99.0%. Immediately after the shock of early August, Pr(L\ = 1/'1/1-1) drops to

60.3%. As a result, on Aug/15/2007, the forecasted volatility immediately shoots up to

2.38%.This compares favourably to the linear and slow reaction of GARCH-T, whose

forecasted volatility at 151Aug/2007 remained at 1.72%.

.Table 15 and Figure 34 also summarize the forecasted mean by HMS-V and GARCH-T

from Ju1l25/2007 to Nov/21/2007. HMS-V suggests that from 15/Aug/2007 onwards, the

market was relatively bearish and the mean was below 0.30%. GARCH-T- suggests

otherwise, for example, the forecasted mean for y, shot up as high as 0.715% on

Nov/14/2007. This could be due to the AR-GARCH-T model attempting to describe the

nonlinear pattern in mean with a linear model specification, which is also the case for

volatility.
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HMS-V GARCH-T
..-. ..-.

Return IntVol Pr (I1 t = lilflt-l)
E((5't IlJIt-l) E(pt IlJIt-l) (jt Jlt

Date
% % HMS-V

HMS-V HMS-V GARCH-T GARCH-T
% % % %

18-Jul-2007 1.79 1.93 99.5% 1.37 0.32 1.34 0.35

25-Jul-2007 -1.83 2.48 99.0% 1.38 0.32 1.36 0.17

1-Aug-2007 -3.50 3.37 96.3% 1.45 0.31 1.43 0.47

8-Aug-2007 2.14 3.93 90.4% 1.67 0.29 1.72 0.60

15-Aug-2007 -6.25 3.79 60.3% 2.38 0.19 1.72 0.14

22-Aug-2007 4.00 2.71 87.2% 1.82 0.28 2.33 0.83

29-Aug-2007 -0.02 3.52 54.3% 2.68 0.16 2.39 -0.01

5-Sep-2007 0.58 1.96 33.8% 2.46 0.09 2.31 0.32

12-Sep-2007 -0.05 2.22 50.4% 2.20 0.15 2.23 0.27

19-5ep-2007 3.83 3.10 34.2% 2.37 0.09 2.16 0.32

26-Sep-2007 -0.24 1.11 79.8% 1.89 0.25 2.28 0.01

3-0ct-2007 0.92 1.48 . 31.2% 2.00 0.08 2.20 0.34

10-Oct-2007 1.48 1.32 66.0% 1.75 0.21 2.14 0.24

17-0ct-2007 -1.37 1.29 45.2% 1.96 0.13 2.09 0.20

24-0ct-2007 -1.66 2.78 60.3% 2.09 0.19 2.07 0.43

31-0ct-2007 2.19 1.97 49.3% 2.31 0.15 2.07 0.45

7-Nov-2007 -4.88 4.21 45.6% 2.34 0.13 2.05 0.14

14-Nov-2007 -0.34 3.44 82.2% 1.85 0.26 2.36 0.71

21-Nov-2007 -3.73 2.81 12.6% 2.83 0.02 2.30 0.35

Table 15

Comparison between HMS-V and GARCH-T forecasting volatility E[(jtllflt-l] and mean

E[Jltllflt-I]' using S&P 500 weekly datafrom Jul/i8/2007 to Nov/21/2007.
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Volatility forecast comparison with the integrated volatiltiy
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Figure 32

Forecasting volatility E[O"t/lJIt-l] from Jul/25/2007 to Nov/21/2007. The solid line plots the

"integrated volatility ", the dashed line plots HMS- V and the dotted line plots GARCH-T.

Volatility and State Probability
3.0

2.5

2.0

l' 1.5
~

1.0

0.5

--.------~_._-~---- -- ~-••••-.- -.-.--.~ - ••----._ • m ••_~ _ ••~_ _ ••••• __ -.---- -- - ..-----.. 1.1

1.0

0.9

0.8

0.7 .~ --Vol

0.6 J HMS

§.
0.5 ~ - - Pr

~ State 1
0.4

0.3

0.2

0.1

0.0

Figure 33

Forecasting E[O"tIVlt-l] using the HMS-Vmodelfrom Jul/25/2007 to Nov/21/2007. The solid

line plots E[O"tIVlt-l] (left scale of the y-axis), with the dashed line plotting Pr(~t =IllJIt-l)

(right scale ofthe y-axis).
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Expected return comparison
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Figure 34

Forecasting mean E [Ilt llf/t-1 ] by HMS- V and GARCH-Tfrom Jul/25/2007 to Nov/2]/2007.

The solid line plots HMS- V, whereas the dotted line plots GARCH-T.

Therefore, the performance of the proposed HMS-V model during Black Monday in 1987

and the Credit Crunch in 2007 illustrates how regime-switching helps to explain the

sudden jump of volatility.

.5.6.2. Comparison with MS-GARCH

For a fair comparison, the same time series is used to fit the MS-GARCH Klaassen

(2002)62 model. The MLE suggests:

/1(1) = 0.33;

(0.054)

/1(2) = -3.69;

(0.301)

0'"0),t =0.14 + 0.034.sLI + 0.834-O'"t
2
_1

(0.052) (0.020) (0.026)

62 Computational code and results for the thesis can be made available upon request. The computational code for
MS-GARCH Klaassen is adapted from the original code written by Marcucci (2005). Marcucci's (2005) used the
MS-GARCH Klaassen model to study the S&P 100 stock index. Marcucci's (2005) article and MatLab code can be
found through the following urI: http://www.bepress.com/snde/voI9/iss4/art6/
1,000 randomly generated starting values are used to obtain the result. This is because when compared to the proposed
model, the MS-GARCH is more sensitive to the choice of starting values. .
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(J'l2),t =0.00 + 0.406e&LI + 0.594e (J':_1
(1.04) (0.020) (0.411)

(5.30)

P(ll) = 0.960;

(0.008)

...-
P(22) = 0.054;

(0.008)

LLF = -2063.4

Note that according to equation .(5.30), for the volatility link function at the second

regime, two boundary conditions are hit and it is essentially an Exponentially Weighted

Moving Average (EWMA) process.63
• Equation .(5.30) suggests that:-

• State 2 has negative expected return, Le., bearish; State 1 is bullish.

• State 1 (State 2) is far less (more) sensitive to the latest shock, eLl' Thus State 1

can be referred to as the "jogging state", and State 2 as the "sprinting state".64•

•
•

In some cases, (J'(2),t ~ (J'(l),t ' and in others, (J'(2),t < (J'(l),t •

As a result, higher volatility is sometimes associated with bullish markets and

sometimes with bearish markets. It is difficult to find convincing economic

implications.

Again, for comparison fairness, E[(it Ilf/t-I Jis examined for both models65
. The two

chosen periods of data are again: Jan/07/1987 to Dec/28/1988, and Jan/03/2007 to

63 For the volatility link function of Gray/Klaassen MS-GARCH model, it is required that
2 2 2

0'(2),t = 13(2),0 + 13(2),1-6(2),1_1 + 13(2),2 -O't-1

13(2),0 ~ 0; 13(2),1 + fJ(2),2 :::; 1

64 On one hand, if the time series transits from a tranquil state to a turbulent state, then the volatility at State 2 will

shoot up faster than State 1, and (J'(2).t > (J'(l),t . On the other hand, if the time series transits from a turbulent state to

a tranquil state, then the volatility at State 2 will also calm down faster than State 1, that is, (J'(2),t < (J'(l),t .

65 Note thatto avoid confusion, the comparison using E [ (it Ilf/t ] or E [ (it Ilf/T ] is not presented.
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Nov/21/2007.

The first chosen episode

Both models absorb the sudden shock induced by Black Monday with high speed, but

through different mechanisms (see .Table 16).

• For HMS-~ the forecasted turbulent state probability increases from 53.1% on

Oct/14/1987 to 99.5% on Oct/28/1987. As before, at the outset of the turbulent

period, the shock of Black Monday is absorbed by two engines: (i) greater

turbulent state probability; (ii) the volatility link function at the turbulent state

reacts to the turbulence. Note that E[~IVft-l ] peaks on Oct/28/1987 (the week

immediately following Black Monday).

• The MS-GARCH model of Gray/Klaassen (2002) suggests otherwise. The

forecasted turbulent state probability only fluctuates within a small range (about

from 4% to 6%). Although immediately after Black Monday, E[~IVft-lJ

peaks at 11.05, E[;;1Vft-l ] only peaks two weeks later. Therefore, at the outset

of the turbulent period, the shock of Black Monday is absorbed by only one engine:

the volatility link function of the second state, which describes the INTER-state

dynamics from the tranquil state to turbulent state, and the INTRA-state dynamics

from the turbulent state to the turbulent state.
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3.77 4.31

5.72

4.26

6.19

5.26

2.72

4.84

6.63

3.35

4.61

5.08

3.70

3.50

2.10

2.03

3.99

3.29

3.09

3.52

2.87

2.67

2.49

5.20

4.03

8.64

3.55

1.76

3.84

4.53

1.86

6.53

4.82

3.33

4.13

3.81

3.28

4.45

2.49

3.04

2.94

2.45

2.15

11.05

5.74

4.51

5.28

4.87

2.11

4.27

2.68

3.99

2.04

6.17

4.60

6.53

3.71

3.33

3.48

3.51

3.30

3.09

2.88

2.68

2.50

MS-GARCH (1,1)

(J(l),t
Ilf/t-l)

%

95.5%

95.9%

95.9%

94.6%

95.6%

95.9%

95.9%

95.9%

95.9%

95.9%

95.9%

95.9%

95.9%

95.9%

95.9%

95.9%

95.9%

95.8%

95.9%

95.9%

95.9%

3.88

3.11

2.32

4.09

3.22

6.44

4.64

3.93

2.44

3.64

3.31

3.56

3.95

3.87

3.00

2.93

2.95

2.96

3.33

3.36

2.58

E((J't I

If/t-l)

%

3.24

6.46

3.93

2.52

3.09

4.10

3.01

3.89

4.65

3.56

3.87

3.31

3.64

2.93

3.96

3.12

3.33

3.37

2.96

2.96

2.60

1.36

1.36

1.36

1.36

1.36

1.36

1.36

1.36

1.36

1.36

1.36

1.36

1.36

1.36

1.36

1.36

1.36

1.36

1.36

1.36

1.36

HMS-V

0.5%

1.7%

1.1%

0.3%

1.5%

0.4%

0.4%

0.3%

0.3%

0.3%

0.7%

0.3%

0.4%

0.3%

0.4%

0.4%

0.2%

0.2%

0.5%

46.9%

21.4%

Int
Vol
%

4.35 3.69

2.30 5.26

1.50 3.50

1.99 2.17

2.74 2.86

6.51 6.16

1.13 2.65

1.75 2.38

2.03 3.51

0.99 1.13

-1.03 3.23

-4.27 3.86

-2.88 4.52

-2.12 2.98

-1.30 3.82

-5.18 7.30

-0.59 2.96

-4.46 4.64

-16.66 25.71

-10.22 9.82

Return
%

2-Dec-1987

6-Jan-1988

27-Jan-1988

7-0ct-1987

13-Jan-1988

4-Nov-1987

3-Feb-1988

20-Jan-1988

9-Dec-1987

Date

28-0ct-1987

14-0ct-1987

21-0ct-1987

1O-Feb-1988

17-Feb-1988

24-Feb-1988

ll-Nov-1987

16-Dec-1987

23-Dee-1987

30-Dee-1987

18-Nov-1987

25-Nov-1987

2-Mar-1988 1.33 2.35 2.1 % 1.36 2.95 2.93 96.0% 2.35 2.26 2.34

Table 16
Comparison between HMS-V and MS-GARCH, using S&P 500 'weekly data from Oct/07/1987 to
Mar/02/1988.

The second chosen episode

The second episode is from Jan/03/2007 to Nov/21/2007, which includes the beginning of

the US subprime implosion (see .Table 17). As of Jul/18/2007, the market had been
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tranquil for a long duration. As HMS-V suggests, the volatility at the turbulence state is

--relatively independent of the recent tranquility, and it remained as high as (J(2),1 = 2.35 ,

hence the turbulence of distant history is always been respected. Gray/Klaassen's model

- --suggests otherwise since both 0"(1),1 = 1.03 and 0"(2),1 = 0.88 are very low. The memory

of turbulence has been under-represented.

HMS-V MS-GARCH (1,1)

Return
Int Pr(L~t =1 E((5"t I Pr(dt =1 E((5"t I

Date
%

Vol
Ilf/t-l)

0"(1),t (J{2),1
If/t-l ) Ilf/t-l )

0"(1),1 0"(2),t
If/t-l )

% % %
%

% %
%

18-JuI-2007 1.79 1.93 99.5% 1.36 2.35 1.37 96.0% 1.03 0.88 1.02

25-JuI-2007 -1.83 2.48 99.0% 1.36 2.58 1.38 96.0% 1.06 1.30 ., 1.07

l-Aug-2007 -3.50 3.37 96.3% 1.36 2.89 1.45 95.8% 1.54 1.83 1.55

8-Aug-2007 2.14 3.93 90.4% 1.36 3.39 1.67 95.4% 2.50 3.09 2.53

15-Aug-2007 -6.25 3.79 60.3% 1.36 3.37 2.38 95.9% 2.38 2.34 2.37

22-Aug-2007 4.00 2.71 87.2% 1.36 3.61 1.82 95.3% 3.09 4.73 3.19

29-Aug-2007 -0.02 3.52 54.3% 1.36 3.66 2.68 95.9% 3.00 3.48 3.02

5-Sep-2007 0.58 1.96 33.8% 1.36 2.86 2.46 95.9% 2.83 2.38 2.81

12-Sep-2007 -0.05 2.22 50.4% 1.36 2.80 2.20 95.9% 2.63 2.22 2.62

19-5ep-2007 3.83 3.10 34.2% 1.36 2.74 2.37 95.9% 2.46 2.07 2.45

26-Sep-2007 -0.24 1.11 79.8% 1.36 3.19 1.89 96.0% 2.38 3.01 2.41

3-0ct-2007 0.92 1.48 31.2% 1.36 2.22 2.00 95.9% 2.27 1.92 2.26

10-0ct-2007 1.48 1.32 66.0% 1.36 2.31 1.75 95.9% 2.12 1.82 2.11

17-0ct-2007 -1.37 1.29 45.2% 1.36 2.33 1.96 96.0% 1.99 1.84 1.98

24-0ct-2007 -1.66 2.78 60.3% 1.36 2.85 2.09 95.9% 1.97 1.91 1.97

31-0ct-2007 2.19 1.97 49.3% 1.36 2.94 2.31 95.9% 2.00 2.03 2.00

7-Nov-2007 -4.88 4.21 45.6% 1.36 2.91 2.34 96.0% 1.91 2.01 1.91

14-Nov-2007 -0.34 3.44 82.2% 1.36 3.24 1.85 95.2% 2.74 3.85 2.81

21-Nov-2007 -3.73 2.81 12.6% 1.36 2.98 2.83 95.9% 2.63 2.24 2.61

Table 17
Comparison between HMS- V and MS-GARCH, forecasting volatility based on information lfIt-l'

using S&P 500 weekly datafrom Jul/i8/2007 to Nov/2i/2007.
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.5.6.3. Summary

As discussed in chapter 1, the proposed model aims to address empirical observations and

address the oversights found in the literature.

(Obs. 1) Clustering:.

• HMS-V

Volatility is clustered through two channels: (i) the first (also primary) channel is

through the clustering of Markov states. For example, S&P 500 from early 2004 to

mid 2007 had a low volatility and was explained by the clustering at the tranquil

state; (ii) the second channel is the volatility link function, .for example, the

volatility at the turbulent state has higher correlation with the lagged intraweek

range.

• GARCH

The only source of volatility clustering is the ARCH ( 00 ) volatility link function.

• MS-GARCH

As equation .(5.30) suggests, for the MS-GARCH model of GraylI(laassen,

-- --P(ll) + P(22) = 1.014 ~ 1, therefore, the model resembles a single regime GARCH-

MixN. As a result, volatility clustering is primarily explained by the ARCH (00)

volatility link functions and the clustering of Markov regimes plays a much weaker

role.

(Obs. 2) Structure breaks:.

• HMS-V

A structure break takes place when the Markov state switches from one state to the

other. Using Regression 05 as the example, volatility was low from mid 1992 to

mid 1996, and from early 2004 to mid 2007, hence it is likely that the
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contemporary state is the tranquil Markov state. Volatility becomes high from 1998

to 2003, hence it is more likely that the contemporary Markov state is the turbulent

state. Also note that when the time series remains in the turbulent state, volatility is

more correlated with the lagged range, while the tranquil state suggests otherwise.

• GARCH

GARCH uses a one-size-fits-all parameter to describe the dynamics and is hence

unable to capture non-linear structure changes.

• MS-GARCH

Volatility clustering is primarily explained by the ARCH (00) volatility link

functions and the clustering of regimes plays a much weaker role. Hence, it barely

explains the structure breaks.

(Obs. 3) Reoccurrence ofdistant history:

• HMS-V

According to .Table 17 on Jul/I8/200?, lJ(l) = 1.36 was low, which reflects the

--recent history; lJ(2) = 2.35 was still high, which keeps the memory of the distant

history. The reoccurrence of distant history has therefore not been ruled out.

• GARCH

""'-

On Jul/I8/2007, the single regime GARCH-T model suggests that lJ =1.34 ,

therefore the memory of the distant turbulent history has faded away.

• MS-GARCH

On Jul/I8/2007, lJ(l) = 1.03 and lJ(2) = 0.88 , which are both low. The

reoccurrence of distant turbulences has clearly not been reflected.

(Obs. 4) Long memory:.

• HMS-V
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Volatility exhibits distinctively differing patterns at different states, and volatility

clustering has primarily been explained by Markov-state clustering. The long

memory is a consequence of structure breaks.

• GARCH

GARCH addresses long memory by a near unity persistence, which is probably

spuriously high.

• MS-GARCH

Long memory is primarily explained by the ARCI-I (00) volatility link function,

and the clustering of regimes plays a much weaker role.

(Obs. 5) Interplay between volatility and expected return:.

• HMS-V

At the volatile state, the expected return is lower, while the opposite is true for the

turbulent state. This finding is consistent with the reviewed literature and the

economic implication given later in chapter 6.

• GARCH

GARCH hardly suggests the clustering of bearish and bullish market.

• MS-GARCH

As shown in .Table 16 and .Table 17, for the Gray/Klaassen model, it may be

difficult to relate the bearish / bullish markets to volatility

(Obs. 6) Leptokurtosis and asymmetry:

All three models are able to model Leptokurtosis and the asymmetry of time series.

(Obs. 7) Asymmetric cycle and thus lasting tranquility:.

• HMS-V

For the forecasted state 1 probability (pr (~t =1)11fIt-1)' of 1297 0 bservatiOTIS,
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only 499 observations were less than 0.5. Therefore, more observations are likely

to reside at the tranquil state, which is consistent with the asymmetric business

cycles discussed next in chapter 6.

• GARCH

The same persistence level is imposed on all observations, hence it is not known if

the tranquility / turbulence lasts longer.

• MS-GARCH

As shown in equation (5.30), regardless of the current regime, the forecasted

regime is similar.

(Obs. 8) Time varying sensitivity to recent shocks:.

• HMS-V

As suggested by equation (4.61), at the tranquil state, volatility is less sensitive to

recent shocks.66
; the opposite is true for the turbulent state. Hence the sensitivity is

also clustered (seefigure 18}figure 19 andfigure 20 for validation using raw data)

• GARCH

It is unable to describe the change of sensitivity.

• MS-GARCH

As shown in table 16 and table 17, if the volatilities at the two states are less

distinctly different, the change of sensitivity is significant.

(Oversight. 1) Same volatility link function (or both INTER-state and

INTRA-state dynamics:.

• HMS-V

Using Regression 05 as an example, the volatility link function only caters for the

66 This is further justified by the LR test between Regression 02 and Regression 03.
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INTRA-state dynamics, with the INTER-state "jump" being explained by the

switching of the regimes.

• GARCH

This oversight is not addressed by the single-regime GARCH model.

• MS-GARCH

According to equation .(5.30), the volatility link functions manage both the

INTER-state and INTRA-state dynamics. The regime switching only indicates the

switching of coefficients, instead of the underlying process.

(Oversight. 2) Less tractable dynamics:.

• HMS-V

The two states are more independent, and the parallel structure makes the

dynamics of the Markov-switching process more tractable.

• GARCH

A single regime GARCH is most tractable.

• MS-GARCH

The dynamics of the MS-GARCH suggest the intricately complex relationship

between the two states. Tractability is reduced and there are more ambiguous

economic implications.

(Oversight. 3) Possibly excessive adaptation to "less valuable" signals:.

• HMS-V

Even when one regime adapts excessively to the recent history, the other regime

remains relatively independent. For example, the memory of distant turbulent

history is maintained even though the S&P 500 had been tranquil from early 2004
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to mid 2007.

• GARCH

This oversight cannot be addressed by a single regime model.

• MS-GARCH

The non-parallel structure suggests a less independent dynamics. As shown in

.Table 16 and .Table 17, it is difficult to tell which state is turbulent and which is

tranquil. In this case, the economic implication can be confusing, in particular the

interplay between the volatility and expected return.

(Oversight. 4) Passive adaptation and hence missing memory:

• HMS-V

As of Jul/I8/2007, the market had been tranquil for a long duration. For the

HMS-V model, the volatility at the tranquil state adapted aggressively to recent

-history, ()(l),t = 1.36; but the volatility at the turbulence state was relatively

---independent and remained as high as ()(2),t = 2.35 .

• GARCH

Using GARCH-T as an example, as of Jul/I8/2007, ()t =1.34 is low, since it

excessively adapted to the recent tranquility.

• MS-GARCH

The estimated MS-GARCI-I does no better in memorizing the distant but still

important history. For example, as shown in .Table 17, as of Jul/I8/2007, for the

MS-GARCH GrayIKlaassen model, 0:; == 1.03, 0:;;; == 0.88 · Hence, both states

have been adapting aggressively to the recent tranquility.
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(Oversight. 5) Possibly un-identifiable states:.

• HMS-V

For example, for Regression 02, despite the market being volatile or tranquil,

volatility at the second state is always significantly greater than the first. It is easier

to identify the two different states.

• GARCH

This is not applicable to a single regime GARCH model.

• MS-GARCH

Firstly, the model identifiability condition is lacking in the literature. Secondly,

according to table 16 and table 17, it is difficult to tell which state is turbulent and

which is tranquil.

(Oversight. 6) Long memory not addressed by regime-switching:

• HMS-V

As shown by Figure 23 and Figure 25, the Markov state exhibits significant

autocorrelation and the long memory can be explained by the periodic shift of

regimes.

• GARCH

The long memory is explained by a near unity persistence.

• MS-GARCH

As indicated by equation .(5.30), volatility clustering and hence long memory are

largely explained by the ARCH (00) volatility link function, but not by the

clustering and switching of regimes.

(Oversight. 7) Possibly inconsistent economic implication ofregime switching:
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• HMS-V

For Regression 02 to Regression 05, there are distinct economic implications of the

two Markov states: one is turbulent with bearish return and the other is tranquil

with the bullish return. Such a distinct implication is consistent with the literature

reviewed in chapter 3 and the following detailed discussions of chapter 6.

• GARCH

This does not apply for a single-regime GARCH model.

• MS-GARCH

It is not known which state is turbulent and which is tranquil. In this case, State 1

is a jogger, who reacts slowly to news; State 2 is a sprinter, who reacts rapidly to

news. To the authors knowledge, such an explanation has not been previously

given in the literature. In addition, it is difficult to understand the implication that a

higher return is associated with the jogger while the opposite is true for the

sprinter.

(Oversight. 8) Excessive computational burden:.

This issue has been intensively discussed-previously in chapter 4.
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.6. Economic Implication ofthe empirical studies

According to the empirical results using S&P 500 stock index, the HMS-V suggests at

least two different regimes, namely, a boom regime (bullish and tranquil) and a bust

regime (bearish and turbulent). The S&P 500 has a long period of large positive returns

with low volatility that is cast into a sharp profile by a crash with large negative return

and excessive volatility. In this chapter, the following economic implications of the

statistical findings are discussed:-

• Asymmetric duration of different states: Section 6.1 discusses the asymmetric

business cycle and its relation to the Markov-switching volatility model.

• Reason for the clustering of Markov states: Section 6.2 discusses the

self-reinforcing process of a tranquil and bull market, which explains why the

Markov states are clustered, in particular for the long lasting tranquility.

• Reason for the interplay between volatility and mean: Section 6.3 gives the

economic implications why the tranquil (turbulent) state is associated with bullish

(bearish) return.

.6.1. Asymmetric business cycle, velocity of time and

alternative time scales

Regarding the price of commodities, Clark (1973) suggested that the time scale for the

evolution of commodity prices was one based on information flows rather than the

calendar time. If a similar argument is applicable to a wider range of asset prices,
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including the stock indices, then in the turbulence of 2008.67
, a fast-forwarding time scale

exists. For example, in one single day in Mar/2008, the information flow (and hence the

velocity of economic time) was much greater within one single day in Mar/2004.

Therefore, measured by the economic time scale, one single calendar day in Mar/2008

could be equivalent to a few calendar days in Mar/2004, and one day (calendar) volatility

in Mar/2008 could be equivalent to a few days (calendar) volatility in Mar/2004.68
•

It is noticed that the boom and bust of stock indices are usually closely related to the

business cycle. The turbulent period is often associated with lower expected return and a

sluggish econolny with the reverse being true for the tranquil state. This could because

there are more intense information flows during the turbulent period (when the business

cycle is down).69 . The asymmetric boom and bust business cycle suggests a more

intensive information flow at the bust state. The asymmetric business cycle is well

documented in the literature (e.g. Keynes 1936 and Hicks 1950). Sichel (1993) used the

following graph to describe the asymmetry of the business cycles in terms of steepness

and deepness:

67 The information flows in 2007 and 2008 were most intensive such as the crash of excessive credit expansion, the
failure of some major financial institutions, the housing bubble burst in the U.S. (probably also U.K.), a bank run in the
U.K., the freeze of inter-bank lending, and some unconventional measures taken by the central banks.
68 This is only a very rough illustration.
69 In chapter 3, some Hidden Markov models were reviewed for the business cycle featured with structural breaks,
which were documented by Hamilton (1989) and Hamilton and Lin (1996):
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Figure 35
Asymmetric business cycle, velocity oftime and alternative time scales. This graph
is taken from Sichel (1993) 's paper.

As shown in Figure 35, compared with expansions, recessions tend to be more

pronounced but shorter lived. Similar to Clark's (1973) idea, Stock (1987) studied

cyclical time scale transformations. Suppose that:
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• Stock's (1987) thesis in transforming the time scale is valid and the thesis is

applicable also to the stock market.

• Using the economic time scale, one set of parameters is sufficient to model the

volatility dynamics of the time series.

Therefore, for time series sampled according to the calendar time. 70, two sets of

parameters would be required. The hidden 'Markov model can also be understood as an

alternative approach to rescale the calendar time scale into the economic time scale?!: (i)

when the time series resides at the tranquil state, the information flow carries fewer

surprises (is less intensive or business as usual) and the economic time slows down; (ii)

when the time series resides at the turbulent state, the information flow carries more

surprises and the economic time speeds up. As a result, two sets ofparameters are needed:

one to describe the time series when time slows down (tranquil state) and another when

time speeds up (turbulent state).

Interestingly, according to the plot of Figure 35, if the business cycle were asymmetrical,

the expansionary state lasts longer than the contraction state. If the stock market is a

reasonably good indicator of the business cycle, the tranquil state should also be more

lasting, which has been validated by the empirical study carried out previously in chapter

5.

70 That is, one set ofparameters for the turbulent state while the volatility is evolving fast-forwardly, and another set of
parameters for the tranquil state while the volatility is evolving slow-forwardly.
71 Of course, economic modeling is always more or less subjective, and th~ proposed model out-performs previous
algorithms in capturing and mimicking some real world economic observations.
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.6.2. Recursive loop of expectation and realization,

self-reinforcing or self-correcting

The proposed model attempts to strike a balance between the influence of recent and

distant history. However, in reality, economic agents often make decisions based only on

the most recent history, which is one of the key reasons that recent history is most likely

to repeat and that Markov states are clustered. For example, at the expansionary and

tranquil state, an economic agent has a relatively exuberant expectation based on recent

history. The agent will be forward testing his/her hypothesis by observing the realizations

in the near future. This section discussed how exuberant expectations are repeatedly

validated by the near future realizations:-

• Economic agents have relatively exuberant expectations based on recent history.

• Collectively, economic agents make economic decisions that influence the

realization of the experiment, which is the key to a self-fulfilling process. For

example, based on the passive exuberant expectation, agents positively promise

greater investments72 or releases loans?3. Due to short-term pressure, some

economic agents are forced to be more "upbeat,,?4.

• The positive decisions by the agent boost the asset price.

• The exuberant expectation of the agent has been self-fulfilled and strengthened.

Therefore, during an expansionary state, even though the self-fulfilling process is further

72 based on the expectation ofhigher earnings and/or the existence ofmore bullish investors
73 based on the expectation ofhigher collateral value and/or lower default probability
74 Quote from "The New York Time", Jull10/2007
Citigroup's chief executive, Charles O. Prince, says his bank hasn't pulled back from making loans to provide funds for
private equity deals, despite a skittish credit market and concerns that the recent run ofbig buyout deals could be losing
steam. But Mr. Prince used an interesting metaphor to describe his company's situation as a major provider offinancing
for leveraged buyouts. "As long as the music is playing, you've got to get l:lP and dance," he told The Financial Times
on Monday, adding, "We're still dancing."
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and further away from the long-run equilibrium (fundamental), it needs not revert to the

equilibrium until a much later stage. As a result, the bullish sentiment and tranquil states

are more likely to be clustered. In addition, some economic agents may be forced to take

more optimistic75 outlooks, since being less exuberant may results in a loss during the

expansionary regime.

If the ex-post realization of the future contradicts the ex-ante forecast, a self-correcting

process will begin. Figure 36 describes the binomial outcome of the self-fulfilling and

self-defeating process. Due to the agent's positive decision, the self-fulfilling scenario is

far more likely to occur then the self-correcting scenario.

75 A less "bullish" corporate executive or fund manager may be fired because of short-term peer pressure.
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A self-reinforcing or a self-defeating tranquil state

Low expectation of
uncertainty (greater
expectation of
tranquility)

Credit expands;
Greater investment;
Lax regulation;

Realization ofthe
fact in the near
future, which can be
influenced by the
exuberant expectation

Higher asset price;
Tranquil market;

Expectation reinforced
by learning the recent
history.
It needs not be reversed
until much later.

IfYES
(with high
probability)
Self-reinforcing

Does the
realization
seem to justify
the
assumption?

IfNO
(with small probability)
Self-correcting

Figure 36

A self-reinforcing or a self-defeating tranquil state

.6.3. Asymmetric surprises, sensitivities, correlations and

riskpremia

This section explains why the tranquil state is associated with higher return, while the
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reverse is true for the turbulent state:-

• Surprises, and the "uncertainty of assumptions": At the tranquil state, there are

fewer surprises and less challenges on the assumptions of asset pricing, the reverse

is true for the turbulent state.

• Sensitivities, and the leverage ratios: The leverage ratios of financial institutions

•
and / or households are higher at the turbulent state and the price is more sensitive

to shocks. The reverse is true for the tranquil state?6.

• Correlations, and the diversification benefit: The correlations of equity returns

increase during the turbulent state and hence the diversification effect is reduced.

The reverse is true for the tranquil state;

• Time varying risk premia demanded by the investors: The unexpected rise of

volatility leads to an unexpected rise of risk premia in the future, which can only

be compensated by an immediately lowered current price. This is how a

disappointing return and turbulence are associated.

.6.3.1. Fewer surprises at the tranquil state

During the boom regime, the economic outlook and government policy are considered

more visible and stable. It is then easier to reach a "consensus" on the bullish asset pricing

assumptions. Less volatile assumptions lead to less volatile asset prices:

1) Greater consensus on revenue forecasting: At the expansionary state, higher

consumer confidence and more active investment activity boost the sale and

revenue of a firm. Based only on recent history, there could be greater

"consensus" on the extrapolating recent corporate revenue trend to the future.

76 Please note that due to length considerations, sometimes this thesis only ~rticulates the scenarios for a turbulent state
as the scenario at the tranquil state is often simply the opposite.
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2) Greater consensus on forecasting central bank's policy, inflation and hence

associated cost: During a tranquil state, the monetary and regular policies might

also be either unable to identify or unwilling to rein in the asset price boom. Note

that it is a somewhat judgmental call to determine whether an asset price

appreciation is "excessive", and a common objection against proactive monetary

policies is that it requires the authorities to outperform market participants in

assessing the fundamental values of asset prices (Bernanke and Gertler, 2001).

The authorities Inay lack the intelligence to identify the "excessiveness", and it is

not the mandate of central banks and thus politically inconvenient to intervene.

Hence regulation has been lax77. It is easy to forecast the relevant policies (e.g.

Fed target rate, regulation on non-deposit financial institutions).

3) Greater consensus on forecasting the cost of fund: Besides the monetary policy,

the uncertainty in the cost of fund greatly depends on credit. Sometimes, a bullish

stock market is also fueled by a credit expansion78. During such a bullish state,

expectation of the future earnings and collateral values are more certain and credit

could be abundant. Nobuhiro and Moore (1997) built an elegant model to explain

the interaction between the credit limit and collateral price. The dynamic

interaction turns out to be a powerful transmission mechanism by which the

effects of shocks persist, amplify, and spill over into other sections, especially the

stock market. Increasingly risky investments (often, over-investment) are thus

financed. The cost of fund is low and can be forecasted with reasonable certainty,

as it is easy to raise capital.

77 The regulator may have an idealistic mentality on the effectiveness of the market and thus prefer lax regulation. A
quote from "The age ofturbulence" by Greenspan A (2007)
"Since markets have become too complex for effective human intervention, the most promising anti-crisis policies are
those that maintain maximum market flexibility-freedom ofaction for key market participants such as hedge fimds,
private equityfunds, and investment banks. "
78 It is more so for the financial crisis in the mid 2000s but less so for the tech bubble in the late 1990s.
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4) Lack of credible challenges to the above consensus: To challenge and

"surprise" bullish assumptions?9, a credible action is for investors to pull out their

money and/or short sell the stock. Only by doing so, will the firmly believed

bullish assumption be shaken. Market participants are defined as an investor who

hold or short-sells stock80
• During such a tranquil and bullish state, the market

favors the optimists. One who believes a stock is too high can short it, borrowing

shares and selling them in the hopes of replacing them later at a cheaper price.

This can be costly however, both in the fees and in the risk of huge losses should

the stock price keep rising.81
• According to Abreu (2003), if all the rational

investors could agree to bet against an unrealistic assumption, they could make big

profits. Without coordination, it's risky for anyone of them to individually bet

against the rising price. Many big investors rarely short stocks. Most investors like

fund managers have tremendous short-term performance pressure, and thus have

to follow the collectively mis-parameterized bullish assumptions. 82. When

differences between bullish and bearish investors are extreme, many of the bears

simply move to the sidelines, that is, they are no longer market players and lose

the ability to change the bullish assumptions. The optimists are unchecked, and

the bullish assumptions are left un-surprised. Catalysts to credibly challenge the

79 Those who have positions on the shares are considered as the market players.
80 Note that short-sell interests are only a few percentages of the total shares.

8\ Short Sales Risk: The short sale position will suffer if a security that it has sold short appreciates in value. The short
seller position may also suffer if it is required to close out a short position earlier than it had intended. This would occur
if the securities lender requires it to deliver the securities that short seller bOl1"oWS at the commencement of the short
sale and the short seller is unable to borrow the securities from other securities lenders.

82 Quote from the "Bubbles and Crashes" by Abreu and Markus (2003):
"when Stanley Druckenmiller, who managed George Soras's $ 8.2 million Quantum Fund, was asked why he didn't get
out ofinternet stocks earlier even though he knew that technology stocks were overvalued, he replied that he thought
the party wasn't going to end so quickly. In his words "We thought it was the eighth inning, and it was the ninth. "
Another example is Pequot Capital Management, Pequot Capital Management boarded the Internet bandwagon early,
investing in America Online in 1994. It was heavily invested in tech stocks through the late 1990s. When they started
falling in March 2000, Pequot got hurt. But it was agile enough to take bearish positions on the stocks, and its funds
posted strong performances for the year. Mr. Brunnermeier saw the bubble, too. He thought people were crazy for
buying tech stocks. But as both the hedge funds' gains and his theoretical work suggest, even ifyou know there's a
bubble, it might be smart to go along.
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bullish assumptions are lacking. Although articles or speeches by conscious

economists express rational "challenge", they do not hold massive short positions

to move the market and the "challenge" is not potent. Although truth might be

with the minority, money and hence voting power is with the majority. Irrational

money talks louder than articles.

As illustrated in Figure 36, an optimistic expectation and benign realization of the

economic reality is likely to be self-reinforcing for a prolonged period of time, and the

hidden danger of the economy need not reveal itself until a much later stage.

.6.3.2. More surprises at the turbulent state

At the end of the tranquil state, problems are likely to "build up" (e.g. elevated earning

expectation and hence elevated share price, elevated collateral value expectation and

hence elevated debt83
). There could be two possible outcomes: (i) the cumulative

problems remain hidden, the bullish assumptions remain un-challenged and the market

remains calm; (ii) the long-run level of productivity and a more realistic discounted value

of the earning will be revealed. Note that the arrival of news on long-run equilibrium can

come as a great surprise to both policy makers.84 and the buoyant market85
• Greater

83
Quote from "The age of turbulence" by Greenspan A. (2007)

"For the US alone, ofthe nearly $3 trillion ofhome mortgage originations in 2006, a fifth were subprime and another
fifth were so-called AIt-A mortgages. "

84 For example, the Fed's stance on the U.S. housing bubble as ofOct/2005
Quote from "The economic outlook" by B. Bemanke at October 20,2005:
"House prices have risen by nearly 25 percent over the past two years. Although speculative activity has increased in
some areas, at a national level these price increases largely reflect strong economic fundamentals, ... "
http://www.whitehouse.gov/cea/econ-outlook20051020.html

8S For example, the collapse of LTCM in 1998 was beyond the imagination ofmost market players:
Quote from the LTCM Confidential Memorandum, Jan/1999
"The result was a downward spiral whichfed upon itselfdriving market positions to unanticipated extremes well
beyond the levels incorporated in risk management and stress loss discipline."
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uncertainty in the asset pricing assumptions immediately translates into more volatile

asset (e.g. equity) prices:-

1) It is harder to forecast revenue: The consumer confidence and hence company

revenue may be low and volatile.

2) It is harder to forecast the interest rate: Depending on the central bank's policy,

both inflation and deflation are possible, hence there is greater uncertainty on the

future discount rate. The central bank may be forced to take some radical actions

that are unthinkable to most market players.86
, which disrupts the expectation of

future interest rate, future inflation and hence future discount rate.

3) It is harder to forecast the cost of fund: This is because the banking system may

also be stressed and banks have to hoard cash to reserve capital. Therefore,

besides a risk free interest rate, it is also hard to forecast the credit spread

chargeable. An overly leveraged firm may find that its funding unexpectedly dries

up. If the money market dries up because of the toxic combination of credit and

liquidity crunch, and it will impact those who rely too heavily on short-term

funding. In addition, the bust in the collateral value restricts the firms' ability to

self-finance their operations. Hence some promising projects have to be aborted87
•

4) It is harder to forecast the future cost: Inflation is a wildcard following the

dilemlna of central banks.

5) Greater challenges on asset pricing assumptions: As volatility attracts short

sellers, both bullish and bearish assumptions will be constantly challenged, there

is a greater diversity of market participants and the stock market is a classic battle-

field.

86 For example, in Mar/2008, the Fed took a move with no precedent since the Great Depression-that it would extend
unlimited credit for six months not only to commercial banks, but also to investment banks and brokerage houses
87 "A bank is a place where they lend you an umbrella in fair weather an4 ask for it back when it begins to rain." 
Frost R.
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The hidden turbulent state thus takes over the volatility dynamics within a short period of

time. Note that it is hard to time when the asset bubble will burst and turbulence may

remain hidden and undetected for long periods of time. Therefore, although the stock

market only violently reacted to the burst of credit bubble since Aug/2007, the hidden

cumulative danger could have burst earlier when the market was still tranquil. This hidden

danger should be incorporated into models, as discussed previously in section 5.6.2.

Note that during the turbulent regime, surprises are often clustered. For example, the near

collapse of Bear Steams in 2008 raised the fear of the crash of the inter-connected

banking system, which is a downside surprise for the stock market. The Fed's ensuing

bail out and loosened monetary policy shocked the market again at the upside. However,

the aggressive moves by the Fed erode the value of the USD, lifted commodity prices,

and increased the fear of inflation, which was the downside surprise. As one surprise

leads to another, the greater uncertainties of the asset pricing assumptions are also

clustered. This corresponds to the empirical finding that volatility is more sensitive to

recent shocks during a turbulent regime.

.6.3.3. Greater sensitivity at the turbulent state

In economics, leverage (or gearing) magnifies the potential positive or negative outcome.

Unfortunately, leveraging of financial institutions may have been accumulated during the

tranquil state, which then peaks at the beginning of a turbulent state. I-Ience there is

greater sensitivity at the turbulent state.
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For a financial institution, leverage takes the fonn of aggressive lending / borrowing or

using margin to increase the potential return in a trading position. A greater leverage ratio

leads to magnified profit and loss. Thus leverage is considered an important driver of how

much (i.e. volatility) reaction there is to news. As of early 2008, it is believed that the

leverage ratios of major US brokerage finns had gone up to over 30 times.88
• Therefore, at

the end of the tranquil state, although the volatility of stock indices is temporarily low,

there has always been a hidden danger lurking, and once the crisis is triggered, volatility

can shoot up in a very short period of time.

The possible credit and liquidity crisis during the turbulent period also contributes greatly

to higher volatility. With a stressed and volatile collateral value, financial institutions may

become reluctant to provide liquidity to each other. To the anguish of the market,

creditors (or trade counterparty) would also demand a greater haircut89 and thus more

collateral as compensation. When those adverse conditions simultaneously motorize,

financial institutions would have no other choice but to de-leverage. This usually means

raising capital, selling assets (often in the fonn of fire-sale), and/or hoarding cash

(reluctance to lend). Fire-sales often lead to volatile and bearish stock markets. Figure 37

shows how the sharp decline in price and rising volatility feed on themselves during such

a turbulent period,

88 Source: "The Financial Times" Apri1l2008

89 Note that for most financial institutions, a haircut is a function ofvolatility.
Quote from Basel II Accord, 156:
"In calculating the haircuts, a 99th percentile, one-tailed confidence interv{ll is to be used"
Therefore, the greater the value-at-risk (VaR), the greater the haircut is required.
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De-leverage process for the long position is a vicious cycle of falling price and
rising volatility.
The scenario is not unusual for most fmancial institutions during turbulent
periods.

I •Counterparties ask for Price goes lower; Financial institutions
greater amount of volatility (asset prices de-leverage in a hurry
haircut to cover any correlations) goes by fire-sales of the
possible loss. ...... higher. ...... stocks at a deep

...... ""'IIIIIl discount, to meet the
higher haircut
required by the
counterparties.

Figure 37
The sharp decline in price and rising volatility are self-reinforcing.

At the same time, the n1arket is also more sensitive to upside shocks. This is because to

some short-sellers and speculators, bear market and volatility represents opportunity.9o.

Short-selling usually involves the usage of margin and hence leverage. Those short-sellers

are not long-term passive investors and they tend to get in and out of the market

frequently. Short-sellers help to push the price downward in a faster manner, however

they are also prone to losing money when market moves against them. If the market

moves against short-sellers, to meet the margin call, they tend to get out in a hurry,

buying back the shorted shares at a higher price and thus pushing the price up further. In

addition, short-selling involves stock-lending and the standard stock-lending practice is

that the loan must be repaid on demand. This practice exposes short-seller to the risk of

being "squeezed." A short squeeze occurs when the lender of the borrowed share refuses

to lend the shares anymore. If the short-seller is unable to find an alternative lender, the

90 The New York Stock Exchange (NYSE) says I6bn NYSE-listed shares were sold short as of Mar/3112008. On
Mar/2007, this number is only IO.Sbn.
http://www.nyxdata.com/nysedata/asp/download.asp?s=xls&prod=shortint
Essentially, ifthe volatility is low, the price movements are insufficient to. provide a level ofexpected profit in excess of
transaction costs.
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short-seller must repurchase the share in the open market to repay the loan and close the

position, Le., short-covering. Short-covering is likely to let the market enjoy a sharp rally

in a short period of time and aggrandize the volatility. Note that "short-covering" can be

understood as a de-leveraging process of the short position. The magnitude of the market

rebound could be far beyond the imagination of the market player who uses leverage. As

a result, during the turbulent state, short-selling is also more active, and it contributes to

higher volatility.

De-leverage process for a short position is also self-reinforcing process of rising price
and rising volatility.

The scenario is less usual compared to the de-leveraging of long positions.

I •Counterparties ask for Price goes higher; To meet the margin
greater amount of volatility (asset prices call, short-sellers have
haircut to cover any correlations) goes to square part of the
possible loss. ..... higher. positions.

...... ..... The short-covering
...... forces those

speculators to exit by
buying back stocks at
an increasingly higher
price.

Figure 38
The de-leverage process for the short position is also a self-reinforcing process ofsharply rising

price and volatility.

The activities of short-selling, profit taking, portfolio insurance and buying on dips are

often also clustered. As trend following speculators try to profit from the volatility of the

market, the expectation of volatility becomes self-fulfilling. This also corresponds to the

previous empirical finding that volatility is more sensitive to more recent shocks during a
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turbulent regime.

.6.3.4. Increased equity return correlation at the turbulent state

The increased volatility of the stock indices can be partially attributable to the increased

correlation of equity returns during the turbulent state. The S&P 500 is a well balanced

U.S. Large-Cap portfolio, and lower correlations between the individual stock returns

reduce the portfolio risk. However, the benefit of diversification may be materiality

damaged during the turbulent state, as the correlation of equity returns is likely to shoot

up substantially.

These asymmetric correlations were tested by Hong, Tu and Zhou (2008). Their empirical

study suggested stocks tend to have greater correlations with the market when the market

goes down than when it goes up. Hong, Tu and Zhou (2008) also provided such tests for

asymmetric betas and covariances. Andrew and Chen's (2002) empirical study also

suggested that correlations between U.S. stocks and the aggregate U.S. market are much

greater for downside moves, especially for extreme downside moves, than for upside

moves. Longin and Solnik (2001) plotted downside and upside correlations of the U.S.

equity market and showed that downside correlations were much larger than upside

correlations. The correlation breakdowns weaken the benefit of diversification during the

turbulent state and the volatility of the S&P 500 is more likely to go up.
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.6.3.5. Greater risl, premia requested by the investor at the

turbulent market

Turner, Startz and Nelson (1989) constructed a Markov switching volatility model in

which agents are uncertain of the state and their findings indicated that agents are

consistently surprised by high-variance period. Thus there is a negative correlation

between movements in volatility and in excess returns (Le., a turbulent state is often

associated with a bear market). If the regime unexpectedly switches from the tranquil

state to the turbulent state, the investors would immediately ask for higher risk premia.

The expected higher risk prelnia immediately requires a lower current stock price.

Therefore, a surprise often causes both higher volatility and a sharp decline in stock price.
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.7. Thesis Summary

Chapter 1 to chapter 4 proposed a hidden Markov-switching volatility model. The most

unique feature of the proposed model is the parallel structure, which separates the

INTER-state and INTRA-state dynamics, enhances greater transparency, balances the

memory of both recent and distant history, provides more consistent economic

implication and greatly stabilizes the subsequent EM algorithm.

Chapter 5 gave an empirical example of the HMS-V using the S&P 500 weekly return.

The proposed model identified two regimes with distinctly different patterns both in

volatility and mean. The expected return at the tranquil state was higher, while the

expected return at the turbulent state was lower. It was also observed that the tranquil

state lasted longer than the turbulent state.

Chapter 6 explored the economic implication of the empirical findings. The long lasting

tranquility was related to the asymmetric business cycle and a self-reinforcing mechanism

during an expansionary state. The reasoning behind an often bullish tranquil state was

also discussed, with the reverse often being true for the turbulent state.

However, this thesis only discussed a two-state hidden Markov-switching model based on

the parsimonious principal, while a model with more states could better describe the time

series. In addition, while the time series discussed is only univariate, the proposed

framework can be readily extended to a time series with higher dimensions. The

identifiability condition for the mixture multinomial distribution is also well established,
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and the hidden Markov-switching process can be used to model the dynamic correlation

matrix. The semi-positivity condition of the variance-covariance matrices often requires a

simpler covariance link function, especially within a hidden Markov-switching

framework. The logit link function can then be utilized to realize some interesting

dynamics. For example, for the foreign exchange rates of the EUR to the u.s. dollar

(EURJUSD) and the Icelandic Krona to the U.S. dollar (ISK/USD), the dynamics of

EURJUSD would be expected to have a greater impact on the ISK/USD whereas the

inverse would not be expected due to the different sizes of their economies. In order to

describe the dynamics, the sum of historical squared return of EURJUSD can be used to

construct the covariate for the Logit link function. As a result, the· dynamics of the

EURJUSD would have a higher impact on the state transition probability. The covariate

for the Logit link function with historical square return of both the EURIUSD and the

ISKIUSD can also be constructed but give the former a greater weight according to some

economic factors.
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ADDITIONAL TABLES
SEM algorithm of the HMS-V model without covariate for (to be continue)

Starting value Global optimum
//(0) //131)
r(l) 0.000 r{l) 0.301
0"(0) 0"(131)

(I) 1.075 (1) 1.564
//0) //131)
r(2) 0.000 r(2) 0.035
0"(0) 0"(131)

(2) 4.301 (2) 2.937
(0) (131)

P(ll) 0.800 P(ll) 0.988
(0) (131)

P(22) 0.800 P(22) 0.980

LLF:bs -1266.5

DMmatrix

0.0733 -0.0077 -0.1426 0.0192 -0.0022 -0.0048
-0.0153 0.3505 -0.1707 0.4311 0.0160 0.0066
-0.0218 -0.0130 0.0577 -0.0503 0.0003 0.0026
0.0062 0.0659 -0.1 014 0.2835 -0.0001 -0.0106

-0.4706 1.7129 0.4835 -0.0882 0.3638 0.6344
-0.3260 0.2267 1.1782 -2.3948 0.2017 0.4806

Eigen-value ofDM matrix
0.84 0.55 0.11 0.09 0.02 5.78E-08

Corresponding Eigen-vectors
0.007 -0.007 -0.235 -0.131 -0.002 0.873

-0.027 -0.283 0.197 -0.240 0.017 0.117
-0.002 0.020 0.071 0.028 -0.001 0.458
0.008 -0.098 -0.052 0.112 0.013 0.118

-0.835 -0.816 -0.843 0.944 -0.894 0.002

-0.549 0.495 -0.432 0.143 0.448 -0.001

Information matrix ofthe complete data learn (0)
263 -l.08E-13 0 0 0 0

-1.08E-13 526 0 0 0 0

0 0 40 -5.73E-15 0 0
0 0 -5.73E-15 80 0 0
0 0 0 0 58085 0

0 0 0 0 0 18520

Information matrix ofthe missing data I
rniss

(0)
19 -4 -6 2 -125 -89
-4 184 -7 35 930 122

-6 -7 2 -4 19 49

2 35 -4 23 -7 -197
-124 901 19 -7 21133 11749

-86 119 47 -192 11714 8901
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SEM algorithm of the HMS-V model without covariate (continued)
A

Information matrix ofthe observable data lobs f) .by SEM

244 4 6 -2

4 342 7 -35

6 7 38 4
-2 -35 4 57

124 -901 -19 7

86 -119 -47 192

Variance-covariance matrix by V parametric bootstrap

125

-930

-19

7

36952

-11714

89

-122

-49

197

-11749

9619

4.53E-03 -2.49E-04 -1.00E-03 -2.04E-04 1.71E-05

-2.49E-04 3.00E-03 -3.18E-04 1.15E-03 4.92E-05

-1.00E-03 -3.18E-04 3.02E-02 -4.40E-05 -1.60E-05

-2.04E-04 1.15E-03 -4.40E-05 1.93E-02 8.47E-07

1.71E-05 4.92E-05 -1.60E-05 8.47E-07 3.57E-05

-1.88E-05 3.38E-05 -1.11E-04 -2.45E-04 1.68E-05

The inverse ofthe Variance-covariance matrix .byparametric bootstrap

224 21 8 2 -154

21 352 4 -21 -468

8 4 33 0 -5

2 -21 0 54 -14

-154 -468 -5 -14 30200

46 -52 24 88 -3087
Information matrix ofthe observable data by numerical difference

244 4 6 -2 124

4 342 7 -35 -902

6 7 38 4 -20

-2 -35 4 57 8

124 -902 -20 8 36411

88 -119 -47 191 -11367
Standard errors ofMLE by different methods

-1.88E-05

3.38E-05

-1.11E-04

-2.45E-04

1.68E-05

1.61E-04

46

-52

24

88

-3087

6681

88

-119

-47

191

-11367

9351

SEM

0.0648

0.0597

0.1661

0.1440

0.0074

0.0145

Bootstrap Numerical difference

0.0673 0.0648

0.0548 0.0595

0.1738 0.1663

0.1391 0.1444

0.0060 0.0073

0.0127 0.0146

Table 18
The SEM algorithm and comparison with previous models for Regression 01
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ADDITIONAL FIGURES

Weely close price ofS&P 500
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Figure 39
The historical price ofthe S&P500 stock indexfrom Jan/05/1983 to Nov/21/2007.

Weekly percentage return of S&P 500
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Figure 40
The historical weekly percentage return on S&P500 from Jan/05/1983 to Nov/21/2007.
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Weekly absolute percentage return
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Figure 41
The historical absolute weekly percentage return ofS&P 500from Jan/05/1983 to Nov/21/2007.
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Figure 42

The historical weekly percentage return on the The ACF ofweekly return
S&P500 index and a normal distribution.
The ACF ofsquared weekly return. The ACF qfsquared weekly return ( 800 laRs).
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Return, in-sample
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Figure 43
Spited return data: the first 989 observations are for the in-sample inference and the rest 308
observations are for the out-of-sample inference.
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APPENDIX I

The appendix gIves a sufficient identifiability condition of the proposed model.

Appl.l. The property ofthe mixture regression

The p.dj of a mixture normal distribution as

(AppI.l)

For a mixture regression, the underlying state is hidden, and Yt follows a

two-component mixture normal distribution. The weight on the component i at time t

is the rate of the successful Bernoulli trail I1 t =i. Let ~ be the p.dj of such

conditional mixture normal distribution with covariate,

~ =f (Yt Ict ' Zt'O)

=Pr(Yt IXT,B)

= Pr( I1 t = 1)·~1),t +Pr( I1 t = 2)·~2),t

=Pr(~t =1).~l) (Yt Ict' Zt ,~t = l,aWP(1))

+Pr(~t =2).~2) (Yt Ict' Zt,~t = 2,a(2)'~2))

=Pr (~t =1).¢ (Yt 1,u(I),1' 0"(;),1 ) + Pr (~t =2).¢ (Yt 1,u(2),1' 0"(~),1 )

(AppI.2)

According to Equation .(2.17), the log likelihood function of the proposed HMS-V is

LL~bs(B) = log(f(YT IXT,B))

=log{ttl···tl [pr(~1 =i).~i).l·TI(P(dt-ldt}.t ·~i).t )]} .

Note that the sample likelihood function is NOT simply the products of ~ , because the

two variables (Yt, I1t ) are not pair-wise independent. .
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Appl.2. A sufficient identifiability condition

Identifiability condition is a prerequisite for a mixture distribution or a regression

involves with a mixture distribution. A sufficient identifiability condition for the proposed

model will be given in this appendix.

The proposed model is only identifiable if there exists a unique global maximizer 0 for

LLF:bs (B). Without covariate, Teicher (1961, 1963) shows that all mixture normal

distributions are identifiable. With covariate, Hennig (2000) proves that in theory the full

rank of the covariate is still not strict enough to guarantee the model identifiability,

although in practice the full rank of the covariate is usually good enough. He points out

that the problems lies in a label switching scenario, and gives two counterexamples as

illustrations. We will incorporate his discovery, and give a sufficient condition for the

identifiability for the proposed HMS-V model. Note that the log likelihood function of the

proposed I-IMS-V model is:-

LLF:bs(O) = 10g(f(YTIXT,B))

=IOg{t ~I'" tl [pr(A j =i).~i)'I·D(P(At-IAt).t ·~i),t )]} (AppI.3)

Definition. Consider the class of probability models, Pr(YTIXT, B), with Pr (Yt IXT, B)

defined by Equation (App!.3), parameter space 0, sample space }i x··· x J? , and strictly

exogenous covariate X T=(WT,CT,ZT)' The number of states of () is ILt(B)/ =2.

We also require the parameters set in the space 0 be sorted according to the following

labeling rules.

• For ((a{1}'~I) ,91(1) ) ,. .. ,(a(lA(O)~ ,PqLl(0)1) ,91(IA(o~) )) E e, the 1st labeling criterion is
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(AppI.4)

• If the relationship in .(AppI.4) are all "<", then we are already able to differentiate

them. If there is any" =" in .(AppI.4), sort the parameter according the 2nd criterion:

(AppI.5)

• Similarly, if for all the previous t labeling criteria, :3 P(i) and P{l)'

(i:f;J; i,J=l,.··,IL1(0)1) such that P(i)Z'( =P{l)zr for r=l,.··,t, then sort them

according to the (t +1yh labeling criterion,

(AppI.6)

until t = T .

according to the (T +1yh criterion:

(AppI.7)

until the (T + Tyh criterion,

(AppI.8)

If the relationships between all the above T + T criteria are all "==", then the two

components are not identifiable.

The class of probability model is identifiable if for 0, O~ E 0 , we have that

(AppI.9)

Note the above labeling rule indicates that the two models are identical should they agree
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up to the permutations of parameters. In practice, the first criterion .(AppI.4) usually

provides enough information to label the parameters. We now provide a sufficient

condition for the identifiability.

Sufficient condition. The HMS-V regression model is identifiable up to ILtI states if it

satisfies both of the following two conditions

(AppI.10)

where

• the dimension of c, IS Dc' and the first element of c, IS an intercept

term;

• the last Dc -1 terms of Ct are denoted as c~;

• the last Dz -1 terms of Zt are denoted as z~;

• T is a vector of time series index, T = 1,2" . " T ; and

• HDC+DZ-3 denotes the space of Dc + Dz -3 = (Dc -1)+(Dz -1)-1

dimensional hyperplanes of 9{Dc +Dz -2 ?1.

2) All of the three covariates, WT , CT and ZT' are full rank.

Proof Suppose that (} and O· both satisfy Equation .(AppI.9), where their number of

states are ILl (0)1 and ILl (0")1 respectively. Without loss of generality, assume,

(AppI.11)

According to Hennig (2000, pp 290-291), we can preclude the existence of some {}, such

that

91 Interested reader please refer to Hennig (2000) for mathematical details.
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U{(c-,z-): c'fi=c'fi40 and z'a=z'a40}~{(c;,Z;):tET}
9=0""

(AppI.12)

Because then g::::; ILl(040 )1 ::::; ILl (0)1 ' which leads to contradiction of condition 1.

If so, integrating both sides of Equation .(AppI.9) for Yz"", Yr , respectively,

f f··· ff(YT IXT,O)dYr ···dY3dyz
Yz Y3 Yr

= f f··· ff(YT IXT,O"'")dYr···dY3dyz
Yz Y3 Yr

which yields

(AppI.13)

(AppI.14)

for all YI E )1. Since each side of Equation .(AppI.14) can be regarded as a finite normal

mixture without covariates, Teicher (1961) classifies the mixture normal as the an

"additively closed family" and his theorem (pp 245) indicates that

Pr(~l =i) = Pr(~t = i) > 0,
(AppI.15)

With covariates, according to the non-existence of .(AppL12), .(AppL15) is also true.

Similarly to .(AppI.13), integrating both side of Equation .(AppI.9) for Y3"", Yr ,

respectively, yields,

2 2

L:L: Pr(~l = i).P(i;).2.¢(Yl IJl(i).I' 17(~}.1).¢(Y2IJl(J}.2 ' 17(~).2 )
1=1 ]=1

2 Z

=L:L:Pr(~7 =: i).P0).2 .¢ (Yl IJl(~}.1' 17(~}~1 ).¢ (Y2IJl0}.2' (70).2 ),
1=1 ]=1

(AppI.16)

for all (Yl' Y2) E Ji x~. Without covariates, so that the parameter permutation rule is

imposed directly on the mean and/or standard deviation of the mixture normal distribution,
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Teicher's (1963) result indicates that

ILt(0)1 =/Lt(0" )1, Pr(~l =i)·P(ii},2= Pr(~t =i)·P(y},2'
... ...

Jl(i),2 = Jl(i),2 ' (j(i),2 = (j(i),2'

(AppI.17)

With covariates, according to the non-existence of .(AppI.12), .(AppI.17) is also true.

For each t> 2, integrating both size of Equation .(AppI.9) for Yl"", Yt-l' Yt+l ,"",Yr

yields

(AppI.18)

for all Yt E)1. According to the non-existence of .(AppI.12), Equation .(AppI.18) also

indicates that

for i,j =I,.·· ,IAI; t =2,.· ',T

(AppI.19)

(AppI.20)

According to Equation .(AppI.15) , .(AppI.17) and .(AppI.19), we can recursively conclude

that

p(ij),t = P(u),t; for i, j =1,2; t =2,.··, T

Therefore,

LOGIT(WlP(i}) =LOGIT(wlPt}); i =1,2; t =2,.· ·,T

and because of the monotonic property of the logit function,

(AppI.21)

(AppI.22)
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Wt'P(i) =wt'Pt); i =1,2; t =2,.· ·,T.

This is equivalent to

(9'(;) - 9'tJ w, =0 ,for i =1,2; t =2, .. ·,T ,

or to

(AppI.23)

(AppI.24)

Thus, a sufficient condition for tp == tp~ is WT is full rank. Similarly, the full rank of

CT and ZT guarantee that a == a~ and p == p~ respectively.

Because Pr(~l = i) =Pr(~t =i) , the sufficient identifiability condition is proved. In case

the given sufficient condition is violated, we need to reparameterize the model

accordingly. In practice, if the value of the covariate is continuous, the two-state

Markov-switching model is usually identifiable.
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APPENDIX II

This appendix discusses the mathematical details of the forward and backward recursive

program at the Estep of the EM algorithm.

The E-step of the EM algorithm is an important step of the mapping froln 0' --)- 0'+1 . The

following forward and backward recursive program will be adopted. Note that for

convenience of notation, we will omit most of the iteration subscripts.

Define

_ ( 0)P(ii),t ~ A.li) W t, f/J(i) for i =1,2; t =2,. · .,T ,

_ (0)1- p(ij),t -1- Iiij) W t , f/J(i) for i = 1,2 and i if:. j ,

;; =/(l1t =iIXT,YT)

_ f(YT'~t = iIXT )

- Pr I(YTIXT)

f(YT'~t =iIXT )
=_---:......--_---:.....-----:....-

2

Lf(YT'~t = ilxT )
i=1
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;;;;;; =Pr(t1 t-1 = i,t1t = jl XT , YT )

f(YT,Ll t - 1 =i,t1t =jIXT)
=

f(YTIXT)

where

f(YT,t1t-1 =i,t1t =jIXT )

= f(Yl'''.' Yt-l' Llt-1 =ilXT )·f(YP.·.'YT,L\t = j IYl'···,Yt-l'L\t-l =iIXT )

= Pr(Yl' ,Yt-1't1t-1 =ilXT )·f(Yt"..'YT'~t = j It1t-1 = i,XT )

= f(Yl' ,Yt-l'Llt-1 =ilXT ).Pr(t1t = j/L\t-l = i)·f(Yt'· ..'YTIL\t-l = i,t1t = j,XT)

= f(Yl' ,Yt-1't1t-1 = il XT )·p(ij),t· f(Yt,··.,Yrl t1t = j,XT)

= f(Yl' ,Yt-1't1t-1 = iIXT)·P(ij),t·~j),t·f(Yt+l' ...,Yr/t1t = j,XT),

We can therefore express the estimated state transition probability as:

--- f(Yl' ...,Yt-1't1t-1 = ilXr )·p(tj),t·~j),t·f(Yt+l' ...'YT It1t = j,XT)
$(ij).1 = f(Vr!Xr ) .

Using the following forward and backward recursive formula, we define:

A(i),t = f (Yl' ... ,Yt,t1t = il XT ),

A(i),l = f (t11 = i)·~i),t'

B(i),t = f(Yt+l' ...,Yrl t1t =i,XT),

B(i),T =1

for t =2,.··,T,i =1,2,

for i =1,2,

for t =1,2,. · . ,T -1, i =1,2,

for i =1,2.

We can therefore express the estimated state transition probability as:

- f(Yl' ...'Yt-l'~t-l =iIXT )·p(ij),t·~j),t·f(Yt+l'...,Yr I~t =jIXT )

$("') t = I
lj, f(Yl,···,Yr XT )

=A(i),t-l·p(ij),t ·~j),t· B(j),t

A(l), T + A(2), T

and the estimated probability that Yt is generated by state is:
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With above setup, the following is the detailed recursive formula to compute ai (t) and

For the forward recursive program, we have:

A(j),t == f(Yl"'.'Yt'~t == jIXT )

2

=Lf(Yl'""Yt'~t == j'~t-l == iIXT )

i=l
2

== Lf(Yl""'Yt'~t = j'~t-l = ilXT )·f(Yt'~t == j IYl'···'Yt-l'~t-l = i,XT )

i=l
2

== Lf(Yl"."Yt'~t == j'~t-l == ilXT )·f(Yt'~t = j I~t-l = i,XT )

i=l
2

== Lf(Yl" ..'Yt'~t == j'~t-l == i/XT)·f(~t == j I~t-l == i).Pr(Yt I~t-l == i'~t == j,XT)
i=l
2

== Lf(Yl""'Yt-l'~t-l == iIXT )·p(ij),t·f(Yt I~t == j,XT )

i=l
2

== L A(i),t-l·p(ij),t ·~j),t'
i=l

and

For the backward recursive program, we have:

2

== LPr(Yt+l'Yt+2""'YT'~t+l =jl~t ==i,XT )
j=l
2

== LPr(Yt+ll ~t = i'XT )·f(Yt+2'···'YT'~t+l = j IYt+l'~t == i,XT )

j=l
2

= LPr(Yt+l I~t = i,XT )· f( ~t+l = j IYt+l'~t == i, X T )

j=l

where
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f (Yt+1 1.1.( = i, XT ).Pr (.1.t+1 = j 1Yt+1'.1.( = i, XT)

= f ( 1.1. = i X ) f (.1. t+1= j, Yt+1' .1.( = iIXT)
Yt+l ( 'T f( .1. = ·IX )Yt+1' ( 1 T

_ f (.1.( = j, Yt+l' .1.( = iIXT)

- Pr(.1.( = iIYT , XT)

_ Pr(.1.( =iIYT,XT)· f (.1.( = j, Yt+l IL\t = i, XT)

- Pr(.1.( = iIYT,XT)

=Pr( .1.t+l = j 1.1.( =i). f (Yt+l 1.1.( = i, .1.t+l = j, XT)

= p(ij),( ·~j),t+l'

therefore

2

L f (Yt+ll.1.( = i, XT).Pr (.1.t+l = j IYt+1'.1.( = i, XT). f (Yt+2' ... ,Yr IYt+1'.1.( = i, .1.(+1 = j, XT)
j=1

2 .

= LP(ij),(·~j),t+l·f(Yt+2'''.,Yr 1L\t+l = j,XT )
}=1

2

= L p(ij),( ·~j),t+l·B(J),t+l'
}=1

and

2

B(i),( =L p(ij),( ·~j),t+l· B(J),t+l .
j=1

In addition, the likelihood function for the observable data is the by-product of the

forward program:

LL~bs (B) = Pr(YTIXT,B)

=Pr(YT,.1.r =lIXT,8) + Pr(YT,.1.r =2IXT,B)

= A(I),r + ~2),r·
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APPENDIX III

The appendix discusses the possibility of both numerical overflow and underflow of the

forward and backward programming at the Estate of the EM algorithm.

Consider a time series, V;, whose data generating processes is defined by the HMS-V

model. Define another time series V; == GV; , where G is a positive scaler. Consequently,

Let their parameters be

Then

(i = 1,2).

and

Given their parameter estimates at the t h step, 0°(1) and 0·(1) ,of which a~~l) = Ga(~r) ,

and P(~f6 =p(~r~ + log G , if we implement the E-step of both time series V; and V; in

exactly the same way, then

0(1) - .(1) .. 1 2 t 2 T
p(ij),t - p(iJ),t' l,j = , ; = " ",

i,j == 1,2; t == 1,.· ·,T
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° • (1 )T-tB(i),t = B(i),te ogG ,

1'.0(/+1) 1'..(/+1) ...... 0(1+1) .......(1+1)
ST =ST ,and lBT = lBT •

Therefore, for a continuous and scalable distribution, given a value G very close to zero,

the forward-backward probabilities of V; will overflow, which corresponds to a positive

log likelihood function.

The difficulty of the above recursive algorithm is that as t grows, a and b may converge

either to 0 or diverge to infinity very quickly (depends on the value of ~i),t). Therefore

we need to rescale the forward and backward probabilities; otherwise the system will

either underflow or overflow. We express the value ofN by the following vector,

N ~{num,power}

so that

N =num*exp(-power) , 1:::; num < e,

The transformation converts a lot of the unnecessary power calculation (including the

density function of normal distribution) into addition and subtraction. We suggest

rescaling all the values of ~i),t' A(i),t' B(i),t and some other relevant functions if

necessary.
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APPENDIX IV

This appendix gives the closed form Gradient and Hessian of the FIRST sub-M step of

the EM algorithm for the HMS-V model. The second sub-M step follows accordingly.

Given the estimate of the state probabilities, ~g~~), i = 1, the sub-M step will obtain the

~ . For visual clarity of notation, we drop most of the state and iteration subscripts.

The log likelihood function of the Logit link is

(/+1) ( ) ~["'(/+1) ( )
LL~ rp(l) = LJ $(ll),t log All) w t,rp(l)

t=2

A. (/+1) ( )]
+$(12),t log 1-All) (w t,rp(l)) ,

drop some subscripts, and it simplifies to

LLF(tp) = f[~logLOGIT(Wttp)
t=2

+~ log(l- LOGIT(Wttp))].

Let -EifP-t = exp (W lP)

-EifP-t
then P(ll) t = ., l+-EXP-t

t =2,3,.· ·,T

The first order derivative of LLE; w.r.t. rp can be obtained by chain rule,

aLLE; $(11), t
--=
Bp(ll),t P(11),t

$(12),t •

1- P(ll),t '
t = 2,3,.··,T

t =2,3,.··,T
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t =2,3,.··,T ,

and the Gradient is

BLLF =±BLLp, BBp(Il}" B-EXP-, .

atp 1=2 ap(Il),1 a-EXP-, alp

With the closed form Gradient, we apply the chain rule to obtain the second order

derivative of LLE; W.r.t. tp,

thus the Hessian is
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APPENDIX V

This appendix gives the closed form Gradient and Hessian of the THIRD sub-M steps of

the EM algorithm for the HMS-V model. The forth sub-M step follows accordingly.

Given the estimate of the state probabilities,;g).:), i = 1, the sub-M step will obtain

~ ={~,P(!+l~}. For visual clarity of notation, we drop most of the state and

iteration subscripts.

At time t, given that Yt resides at State i=1, then

i.i.d
1]t r--.J N(O, 1),

Drop the state subscript i, we have

T

LLF (8) =LLLF; (8)
t=l
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The first order derivative of LLE; w.r.t. 8 ={a,p} can be obtained by chain rule,

aLLF -- y -II__t=5 t rt

a I 2
Ilt (J'I

a'l
_I'_t =c' andaa t'

The Gradient is

aLLF = [aLLF aLLF]'.
a8 aa ' ap

The Hessian equals to

a2LLF; a aLLF;
=---

aaaa' aa' 8a

= ~(; YI - III c')
8 ' I 2 Ia (J'I
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T 82LLF T 82LLFL 1 L 1

82LLF 1=1 8a8a' 1=1 8a8 R 'and com _ fJ

88a8' T a2LLF T a2LLFL 1 L 1

1=1 apaa' 1=1 apap'

The information matrix follows accordingly.
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APPENDIX VI

This appendix briefly discusses the choice of the starting values for the EM algorithm.

Despite of its relative stability and simplicity, a set of poorly chosen starting values may

still spoil the EM algorithm, which increases the number of iterations and reduce the

chance of converging to the global optimum.

With fixed covariate, Wang and Puterman (1999a) discuss the choice of starting values for

a Markov-switching Poisson regression in details. Due to the property of financial time

series, the thesis primary adopts the "Just Added" strategy. The principle idea is to start

with a simpler model with no covariate, using the optimized parameter values,

parsimoniously add new columns of the covariate, and optimize again. We also skip the

technical details since it is also remotely related to the core idea of the thesis.
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APPENDIX VII

This appendix briefly discusses if the Gradient and Hessian of the log likelihood function

of the observed data are both continuous and bounded. It helps to explain the stability of

the numerically obtained Hessian.

Section 4 suggests using the EM algorithm to provide comfortable starting values, and

employ the quasi-Newton algorithm to obtain the MLE. Most software packages routinely

calculate the "true" Hessian by numerical difference once the quasi-Newton converges.

For example, after optimization, the MatLab 7.0 Optimization Toolbox automatically

perturbs each element of the optimized parameter vector by a tiny amount in turns, and

obtains the corresponding increment on the log likelihood. Using only the one-sided

approximation of the Taylor series expansion, it calculates the second order derivatives.

We can then obtain the numerical approximation of the information matrix and the

standard errors of the MLE accordingly. Note that the default perturbation value for any

coefficient by the optimization toolbox of MatLab 7.0 is fixed at 10-10 irrespective to its

value. Therefore, when the relative magnitudes of the parameters differ greatly, the

estimated information matrix is less precise. We solve such problem by rescaling the data

to enhance stability. For example, if a return series has the true parameters, a(I),O = 0.002

and a(I),1 =0.8 , we can simply multiply all the element of YT by 100, and estimated the

new time series again, whose true parameters are now more balanced, atl),O =0.2 and

a(~),l =0.8 . According to Section 4.2.1, the property of the original data should be well

kept. Of course, one can only use the rescaling method for a continuous distribution.

Partly because of the above reason, we always use the pe!centage log return instead of the
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log return in practice. According to our empirical study, the dominating majority· of the

estimated information matrices by the numerical difference method are positive definite

and invertible.
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APPENDIX XIII

This appendix reviews some literature on the relationship between the range and volatility

based on a few key assumptions. One of the key assumptions is that the price is

continuously observable within the specified time interval.

Parkinson (1980) makes the following assumptions, and he also concludes in terms of

measuring volatility, range carries far more efficient information then the close to close

return.

The problelTI to be solved may be stated as follows: Suppose a point particle undergoes a

one-dimensional, continuous random walk with a diffusion constant D. Then, the

probability of finding the particle in the interval (&,&+ d&) at time t, if it started at point

Co at time t = 0, is (dc/J2/TDt )exp[-(c - co)2 /2/TDtJ. By comparison with the

normal distribution, Parkinson sees that D is the variance of the displacement & - &0

after a unit time interval. This suggests the traditional way to estimate D: Parkinson

measures & (t) for t = 0,1,2,· .. ,n. Then, defining d, = displacement during the ith

interval, di =& ( i) - & (i -1), i =1,2,. .. ,n , then

1 n 2

D. =---=-I(d i-d)
n 1 '=1

is an estimate for D; where

- 1 n

d =- L dm =mean displacement.
n m=1
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However, instead of measuring B (n), for n=0,1,2"", suppose we have measured only

the difference I between the maximum and minimum position during each time interval.

These differences should be capable of giving a good estimate for D, for it is intuitively

clear that the average difference will get larger or smaller as D gets larger or smaller.

Defining P(I, t) to be the probability that (Bmax - Boon ) ~ I during time interval t, we

have

P(l,t) =f(-ItI n{eljc[(n+ 1)1j ,)2Dt]
n=l

-2eljc(nil,)2Dt )+erfc[(n-I)lj,)2Dt]}

where erfc (& ) = 1-erf (& ) and erf (& ) is the error function.

Parkinson then proves that

Computing the variance of DE and D" Parkinson finds that

and

(AppIX.1)

(AppIX.2)

(AppIX.3)

where N is the number of observations. Thus, to obtain the same amount of variance using

the two methods, we need N, ~ 5N,. Clearly, the range is far more informative than the

close to close return in terms of estimating volatility.
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In addition, data on the ranges are widely available for most currencies and futures

contracts, and data on the observable ranges are also abundant for individual stocks and a

lot of exchange-traded securities, not only at present but over a long historical spans.

However, it is only until recently that researchers further develop the insight of Parkinson

(1980) and incorporate it with other volatility models, such as the GARCH model.

Andersen and Bollerslev (1998), Christoffersen (2003), Alizadeh, Brandt and Diebold

(2002), Brandt and Jones (2002), Chou (2005), .Brandt and Diebold (2006) and Martens

and Dijk (2006), among the others, also conclude that the range is an efficient proxy of

the volatility.
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APPENDIX IX

This appendix discusses the reason that for some securities, there is missing price

information when exchange is closed. We give an example using the stock price of

Citigroup Inc (NYSE:C) during the trading day Dec 26, 2007 to Dec 28, 2007.

Note that according to the definition of range by Equation .(5.3), the "true" weekly range

0t is different from the observed intraweek range Rt described by Equation .(5.6).

The statement "from time t to time t +1" strictly imposes the sampling period. For

example, in order to get the daily range according to the definition, we can collect the

prices from a precise time point to exactly the same time point 24 hours later. For

currencies or future contracts traded around the clock, the fluctuation of price is usually

available during the defined time interval, and the observed ranges are basically inline

with the fundamental definition. But for securities traded only during specific hours in a

day, it is complicated.

Some articles ignore the difference of the "true" next day's range and observable range,

and assume that the underlying price is unchanged until today's opening hour.

The proxy, however, comes with a cost. A lot of relevant information arrives between the

last closing hour to the next opening hour. For example, (1) some very important news is

released when the market is closed; (2) while the domestic exchange is closed, the price

fluctuation of related securities traded in a foreign exchange located at· a different time

zone is likely to let the domestic players drastically cha~ge their expectations; (3) some
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trading activity of a relevant security continues during the closing hours of the stock

exchange, for example, the OTC (over-the-counter) traded S&P 500 index futures

contracts. Therefore, before the market opens, everyone updates the expectation and there

is often a significant jump of the price at the opening hour. The expected size of the jump

implies missing information when the market is closed. Thus, for stock indices,

conceptually, the observed intraday range is NOT the daily range. The missing prices

should have been the candidates for the high (low) price and the observed intraweek price

is only a subset of the complete price information. As a result, the observable high (low)

price is downward (upward) biased and the observed range is also downward biased.

To illustrate how the observed range is less than the "true" range for stock indices, we

study the stock price of Citigroup Inc (NYSE:C) during the trading day Dec 26, 2007 to

Dec 28, 2007. Figure 44.92 plots the price fluctuation of NYSE:C during the official

trading hour, which is from 9:30 to 4:00 ET. We noticed that the price jumps significantly

at the opening hours. To further i.nvestigate the reason of those jumps, Figure 45 includes

the price of NYSE:C during the extended trading hours. The price of the extended trading

hours gives a more complete picture. For example, during the official trading hours at

Dec/27/2007, the highest price of NYSE:C is USD30.06, while the extended hour reveals

that the highest price should be at least USD30.60.

92 Source: Finance.google.com
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Dec 26 - OtC 28. 20071 -1.69 (-5.46%)

30.0

Figure 44
The price ofCitigroup Inc at the official trading hours from Dec/26/2007 to Dec/28/2007

After hoursl Dec 28. 2007 181321 Prlcel 29,18

:31.0

Figure 45
The price of Citigroup Inc at the official trading hours and extended hours.93 Dec/26/2007 to
Dec/28/2007

In conclusion, because of the discrepancies in the definitions of sampling period of

"range", the close-form relation between the range and volatility explored by Parkinson

(1980) is more appropriate for currencies and 24 hours traded futures, but not for stock

indices.

93 U.S. exchange after-hour markets
The NYSE and ASE provide crossing sessions in which matching buy and sell orders can be executed at 5:00 p.m.
based on the exchanges' 4:00 p.m. closing prices. The BSE and PSE have post-primary sessions that operate from 4:00
to 4:15. CHX and PCX operate their post-primary sessions until 4:30 p.m:. Additionally CHX has an "E-Session" to
handle limit orders from 4:30 to 6:30p.m.
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APPENDIX X

This appendix proposes a simple model to forecast the range based on the lagged

observed ranges.

Chou proposes the Conditional AutoRegressive Range (CARR) model in 2005; CARR

models directly on the observable range instead of the volatility and Chou views the range

as an alternative measure for volatility.

In the spirit of CARR, we find that we can also fit the log observable range with a very

simple ARMA(l, 1) model,

(AppX.1)

where L is the lag operator. The long-term (unconditional) value of log observable

range is

The implied autocorrelation function is given by

and for displacement k greater than 1,

(AppX.2)

The data used to empirically test the ARMA (1,1) model is the same dataset used for the

hidden Markov-switching volatility model.
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range.

.Table 19 gives the summary statistics of the 1297 observations on Rt

Summary statistics for the percentage observed ranges of weekly S&P500 index, from
January 05, 1983 to November 21, 2007

Mean
Median
Maximum
Minimum
Standard deviation
Skewness
Kurtosis
J-B test
P value ofJ-B test

Observed range

2.97

2.52

34.37

0.69

1.89

5.0

66.0

219790

0.000

Log observed range

0.95

0.92

3.54

-0.37

0.50

0.3

3.4

36

0.000

ACF (1)

ACF (2)

ACF (3)

ACF (4)

ACF (5)

ACF (6)

Sample auto-correlation functions (lags)
0.51

0.43

0.36

0.33

0.32

0.34

0.54

0.50

0.45

0.42

0.40

0.41

Table 19
Descriptive statistics ofthe percentage observed intraweek ranges

Notice that in .Table 19, the J-B test indicates that the unconditional distribution of the log

observed intraweek range is close to a normal distribution and the sample ACFs are more

significant than the autocorrelations of the squared return. Figure 46 plots the sample

ACFs, PACFs and histogram of the log observed intraweek range. The sample ACFs and

PACFs are both decaying, which resemblance an ARMA (1,1) process.

Notice that in .Table 6, the J-B test94 indicates that the unconditional distribution of the

94 The test statistic J-B is defined as:-

n ( 2 (Kurtosis - 3)2 J
J - B = - Skewness +-----

6 4

225

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

DRD
Rectangle

DRD
Rectangle



log observed intraweek range is relatively closer to a normal distribution and the sample

ACFs are statistically significant..95

Log intraweek range

2007200319991995
Date

19911987

3,.-------.-----,------,---------,r-------,-------r---r

2

1
o

-1 '-- ---1- -l-- -'- ---.J ---1- -L---l

1983

Sample ACFs

0.:
, .. .
o

o 5 10 15 20
Lag

Sample PACFs

Sample ACFs

10080604020
Lag

Histogram of log intraweek range

: :A:: j
-2 -1 0 1 2

o

1 1 I I
I I 1 I

O. 5 - - - - T - - - - 1" - - - - -I - - - - -1- - - - -

I

I

o

150

1

[

100

50
II:

o
201510

Lag
5o

Figure 46
The log observed intraweek range and some preliminary data analysis (Sample ACFs and PACFs)

The available sample is divided into two parts. The first 989 observations, corresponding

to the period from January 05, 1983 to December 26, 2001, will be used for estimation.

The remaining 308 observations will be employed for out-of-sample evaluation purpose.

Assuming that the residuals of the regression .(AppX.l) follow i.i.d. normal distribution,

fit the in-sample log observed intraweek range to the ARMA(l,l) process,

where n is the degrees of freedom.
The statistic J-B has an asymptotic chi-square distribution with two degrees of freedom and can be used to test the null
hypothesis that data are from a normal distribution.
95 Figure 46 plots the sample ACFs, PACFs and histogram of the log observed intraweek range. The sample ACFs and
PACFs are both decaying, which resemblance anARMA (1,1) process.
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(1- 0.9577L)(log(Rt)- 0.41) = (1 +0.7460L)St;

(0.0132) (0.013) (0.0300)

v;. (St) = 0.1606.

(0.00595)

LLFARMA (r) = -499.08,

and

- ~log Roo =~ = 0.97.
1-r1

(AppX.3)

(AppX.4)

The bottom panel of Figure 48 plots the residual of the above regression, which does not

exhibit any trend or clustering. Figure 48 also diagnoses the residuals, whose sample

ACFs and PACFs are not significantly different from zero. The QQ plot suggests that the

normal distribution is reasonable. The LM test also indicates that there is no significant

correlation of the squared residuals (not shown). We also try higher AR or MA orders, but

the likelihood ratio (LR) test prefers ARMA (1,1) process at the 90% confidence

interva1.96
•

96 results not shown
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Log intraweek range in-sample
4,--------,--------.---------,--------,.-------,

:~~~~~
200219991995

-2 '-----------'-I--------'I~-------'--------'---------'
1983 1987 1991

Fitted value

: ~ !

1983 1987 1991 1995

Residual

1999 2002

4,--------,--------.--------.,--------.---------.

20021999199519911987
-2'-----------'--------'---------'--------'---------'
1983

Figure 47
The top panel plots the in-sample Log intraweek range Rt ;

the mid panel plots the in-sample fitted Log intraweek range Rt ; and

the bottom panel plots the in-sample residuals Rt - Rt ;

SampleACF Sample PACF

150 .---,----....------.--~---~---,

-0.5 '-----'------'-----'-------'
o 5 10 15 20

Lag

Histogram of in-sample residual
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I
I
I

I I I
_____ J L I _

I I I
I I I
1 I I

___.i .__~ . 1 _

---r'--"'-
I
I
I

1

1

I
I I I

0.5 - - - - - ~ - - - - - - ~ - - - - - -: - - - - - -
1 I I
1 I 1

..~--- ...-.._ ...I-.----_-I.-__1__.._----..--

o ------=-_•...~., .... • ••
I
I
I

-0.5 '--__--'--__---''-__--'-__--l
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QQ plot of residual \IS Normal distribution
3,.-----.----,----..------,

4

+

-2 0 2
Standard Normal Quantiles

2

o

-2 '----'------'-----'------'
-4

-1

2o-1-2
o '--'------

50

100

Figure 48

upper-left panel: the sample ACF of in-sampleupper-right panel: the sample PACF ofin-sample
residuals residuals
lower-leftpanel: the histogram ofin-sample lower-right panel: the QQ plot of in-sample
residuals against the normal distribution residuals against the normal distribution
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Based on the estimated parameters, we obtain E {~Ilf/t-l'r}, for t = 990,. ",1297 and

the out-of-sample forecast errors.

Figure 49 plots the out-of-sample observations and the forecast errors. Figure 50

diagnoses the forecast errors (sample ACFs, PACFs, QQ-plot), and there is no significant

evidence that the residuals are not i.i.d. normal.

Log of intraweek range (out-of-sample)

20062004

3.---------------.------------.---------------.

2

o
-1 '--- '--- '--- -----l

2002

Forecast (out-of-sample)

20062004

3.---------------.------------.---------------.

2

1

o
-1 '--- '--- --' ----1

2002

Error of forecast (out-of-sample)

o

-1

2002 2004 2006

Figure 49

The top panel plots the out-of-sample Log intraweek range Rt ;

the mid panel plots the out-of-sample fitted Log intraweek range Rt ; and

the bottom panel plots the out-of-sample residuals Rt - Rt ;
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Sample ACF Sample PACF
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QQ Plot of residual \IS Normal Distribution
2,----r-------,----r------,

+
~,'1

0

-1

-2
-1 0 2 -4 -2 0 2 4

Standard Normal Quantiles
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50 r-----r-------,----r------,
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o'----------
-2

I
I
I
I
1

I 1 1
0.5 - - - - - - -l- - - - - - - -l - - - - - - -1- - - - - - -

I 1 1
I 1 1
I I 1
I J J

I J I
I J

o • •I

-0.5 '--------"------'-----'--------'
o 5 10 15 20

Lag

Histogram of residual (out-of-sample)

Figure 50
upper-left panel: the sample ACF ofout-of-sampleupper-rightpanel: the sample PACF ofout-of-
residuals sample residuals
lower-left panel: the histogram ofout-of-sample lower-right panel: the QQ plot of out-of-sample
residuals against the normal distribution residuals against the normal distribution

In summary, the ARMA(I, 1) with normal residuals provide both adequately reasonable

goodness of fit and out-of-sample forecast for the log intraweek range. Either the least

square or the MLE can be used to estimate the parameters.
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APPENDIX XI

This appendix studies a simple causality test between the intraweek range and weekly

return using the S&P 500 stock index historical data from January 05, 1983 to

November 21, 2007.

We define Thursday as the first day of the week, and the next Wednesday, as the last day

of the week. Let price~c1ose) be the close price at the end of week t, price~high) be the

observable highest price during week t; let Yt:= Ioo{log (price~clo..)) -log (price~~ose) )]

be the weekly percentage log return, and Rt := 1oo{log (price~high) ) -log(pricefow) )] be

the observed weekly percentage range.

Considering the following two regression??:

(AppXI.l)

(AppXI.2)

In Equation .(AppXI.l), we first attempt to forecast Rt using past terms of Rt (Rt- 1 to

Rt- 4 ). Then in Equation .(AppXI.2), we try to forecast Rt using past terms of Rt (Rt- 1

to Rt- 4) and yt (Y:-l to Y:-4) . If the second forecast is found to be much more

successful, then the past of yt appears to contain information helping in forecasting Rt

that is not in past Rt • If this were the case, Y:-l to Y:-4 "Granger cause" Rt+1•

97 Note that we do not use Rt as the independent variable, because there is strong evidence that the residuals do not

follow normal distribution and we can not use simple OLS and F-test to study the causality.
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Fit the above two equations using the intraweek range and weekly return data from

Jan/05/1983 to Nov/21/2007, using OLS estimator, we find that neither the residuals

snull nor s;" deviates significantly from the normal distribution98
• Therefore, we use

the simple OLS and F-test to study if the past of y; contain information helping in

forecasting Rt that is not in past Rt .

According to the regression result exhibited in .Table 20, none of the t-statistic for the

-... -...
parameters estimate bs ' b6 , b7 and bg is significantly from zero. In addition, the F

test fails to reject the hypothesis bs = b6 = b7 = bg = O. Therefore, the past of yi appears

to contain information helping in forecasting Rt that is not in past Rt , and y; does not

"Granger cause" ~+1'

98 Please refer to the QQ plot at Figure 51.
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using only the lagged terms ofRt
using only the lagged terms of both

Rt and Yt

a(~)
A a(b)a b

.-.
ao 0.023 ( 0.0285 ) bo 0.021 (0.0314)

""-

a l
0.319 (0.0276 ) bI

0.302 (0.0322 )

.-.
a2

0.204 (0.0288 ) b2
0.210 ( 0.0332 )

a3
0.121 ( 0.0288 ) b3

0.135 (0.0332 )

a4
0.115 (0.0277 ) b4

0.144 (0.0319 )

.-.
bs 0.005 (0.0063 )

.-.
b6

-0.002 (0.0065 )

b7
-0.005 (0.0065 )

bg -0.012 ( 0.0063 )

a(?) 0.1584 a(?) 0.1581

SSRnull 204.6 SSR alt 203.6

F-test 1.5742

P value ofF-test

Table 20

This table shows that adding lagged terms of y 2 hardly improves the goodness-of-fit of

log(Rt )
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QQ Plot of Sample (Null Regression) QQ Plot of Sample (Alternative Regression)
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Figure 51

The left and right figure are the QQ plot ofthe residuals (S;Ull and s;lt) respectively. There is no

strong evidence that the residuals S;Ull or s;lt does not follow normal distribution, therefore, it

is probably reasonable to use an F-test to test the hypothesis.
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