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Abstract 

 

Obstructive sleep apnea (OSA) is a sleep-related breathing disorder that is common 

worldwide and potentially life-threatening; however, many affected individuals remain 

undiagnosed and untreated. This research aims to innovate on a simple, cost-saving, 

and reliable approach to diagnose OSA via the acquisition and analysis of snore 

signals, with an intention to mass screen for OSA. This thesis attempts to achieve the 

research aim through: (1) the implementation of a robust and user-friendly acquisition 

system for snore signals, along with recommendations for measurement standards; (2) 

the development of an advanced wavelet-driven preprocessing system that efficiently 

integrates both snore signal enhancement and snore activity detection; (3) the 

identification of effective snore-based OSA diagnostic markers, including formant 

frequencies (82.5–100% sensitivity, 82.0–95.0% specificity), wavelet bicoherence 

peaks (82.5–100% sensitivity, 83.3–100% specificity), and psychoacoustic metrics 

(72.0–78.0% sensitivity, 91.2–92.0% specificity), which accurately classify apneic and 

benign snores in same- and both-gender patient groups (p-value < 0.0001); (4) the 

formulation of regression models that are indicative of OSA severity; (5) the 

investigation of physiological-anatomical-acoustical relationships of snores via source-

filter modeling; and (6) the successful generation of natural-sounding synthetic snores 

using a novel snore source flow model. Results consistently reveal that snore signals 

carry rich information for OSA detection; therefore, the use of snore properties to 

distinguish between patients with and without OSA is promising. Continued 

exploration in this research area will certainly unfold the clinical value of snore signals 

in diagnosing OSA in the near future. 
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Summary 

 

Obstructive sleep apnea (OSA) is a common and potentially devastating sleep-related 

breathing disorder characterized by a cessation of respiratory for at least 10 s, 

corresponding to a complete upper airway (UA) occlusion despite continuous chest 

and abdominal movements. If left untreated, patients with OSA can suffer from many 

serious health issues including cardiovascular and cerebrovascular morbidity and 

mortality, excessive daytime somnolence and fatigue, and significant societal costs. 

The gold standard for diagnosing OSA is an overnight multichannel polysomnography, 

which is expensive, time-consuming, and labor-intensive to perform, leading to high 

undiagnosis and untreated rate. Hence, many researchers have attempted to explore 

other modalities (e.g., oxygen saturation regularity, nasal airflow pressure, heart rate 

variability, thoracic body movement, and snore acoustical properties) to detect OSA. 

Among these modalities, snore-based analysis has received growing interests as it can 

potentially provide simple, inexpensive, time- and labor-saving, safe, and rapid 

screening for OSA. 

Snoring is a typical and earliest symptom of OSA, affecting 70–95% of patients 

with OSA worldwide. It is caused by the vibrations of soft tissues and/or turbulence of 

airflow at constrictions in the UA. Therefore, any structural changes in the UA, which 

acts as an acoustic filter, may reflect in the acoustical properties of snores, facilitating 

the discrimination between apneic and benign patients. Based on this underlying 

hypothesis, several snore-based diagnostic methodologies (e.g., snore counting, sound 

intensity measurement, power spectrum estimation, and pitch calculation) have been 

presented in the literature. While these methodologies lend support to the hypothesis 
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that snore-based analysis has the potential to diagnose OSA, they produce inconsistent, 

contradictory, and unconvincing outcomes, which can be attributed to inappropriate 

instrumentation and measurement, as well as ineffective analysis algorithms. 

In this thesis, we proposed several robust and effective approaches on snore 

signal acquisition and analysis for the diagnosis of OSA. A high-fidelity and user-

friendly acquisition system for snore signals is developed and implemented in a sleep 

laboratory (Sleep Disorders Unit, Singapore General Hospital, Singapore). System 

components (microphone, preamplifier, data acquisition card, grounding layout, and 

graphical user interface) were carefully chosen and installed; consequently, 

background acoustical noise and electromagnetic interference are substantially 

reduced, yielding snore signals of better quality and integrity. A mouth-to-microphone 

distance of 0.3 m can also achieve a good tradeoff between signal quality and patient 

comfort, bringing more standardization and consistency to the acquisition process. 

To further improve signal quality and intelligibility, we devised a novel wavelet-

driven preprocessing system that elegantly incorporates both snore enhancement and 

detection in a translation-invariant discrete wavelet transform domain. The proposed 

level-correlation-dependent (LCD) threshold and snore activity detector within the 

preprocessing system are highly comparable to the conventional denoising techniques 

via level-dependent threshold and the segmentation methods via short-time energy and 

zero-crossing rate, capable of achieving the best outcome in the objective and 

subjective experiments conducted, with a snore signal-to-noise ratio improvement of 

3.02–38.22 dB and a snore activity detection accuracy of 50.63–97.47%. Statistical 

quality of the LCD threshold was also proven theoretically. Clinical efficacy of the 

preprocessing system was assessed, and results show that snores analyzed after 

preprocessing deliver higher OSA diagnostic accuracy than those before preprocessing. 
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Subsequently, the preprocessed snores from apneic and benign patients, 

correspondingly defined as apneic snores (AS) and benign snores (BS), were analyzed 

by means of linear prediction (LP), discrete all-pole modeling (DAP), wavelet 

bicoherence (WBC), and even psychoacoustic metrics. Useful acoustical 

characteristics of snore signals were extracted and identified as OSA diagnostic 

markers. These markers include the first formant (F1) in the LP or DAP spectrum, the 

peak frequency at f1 (PF1) and the peak sum frequency (PSF) in their respective WBC 

spectrum, as well as the loudness and the psychoacoustic annoyance.  

Diagnostic performance of F1, PF1, and PSF were appraised using 30 training 

and 10 test data from each of the 40 participating patients (30 apneic and 10 benign). 

Quantitative differences in F1, PF1, and PSF between AS and BS are found in all three 

patient groups (males, females, and both males and females combined), giving rise to 

high sensitivity (F1: 82.5–100%; PF1: 85.4–98.3%; PSF: 82.5–100%) and high 

specificity (F1: 82.0–95.0%; PF1: 85.0–100%; PSF: 83.3–100%) with statistical 

significance (p-value < 0.0001). These diagnostic results outperform those obtained 

from the widely used spectral peak frequency (PF) whose sensitivity and specificity 

are 62.5–91.7% and 70.0–97.5%, respectively. Relationship between apnea-hypopnea 

index (AHI, i.e., OSA severity measure) and the proposed diagnostic markers can 

possibly take the functional form of exponential or power, yielding a predictive AHI 

value (F1: 10.3–14.9 events/h; PF1: 8.0–9.8 events/h; PSF: 9.3–10.7 events/h) that is 

close to the ideal value of 10.0 events/h. 

Apart from the above, loudness and annoyance are found to be the best two 

among five psychoacoustic metrics (loudness, sharpness, roughness, fluctuation 

strength, and annoyance) in the classification of AS and BS. While both the metrics 

indicate statistically significant differences between the diagnostic classes (p-value < 
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0.0001), loudness achieves a higher sensitivity (78.0% versus 72.0%) but lower 

specificity (91.2% versus 92.0%) than annoyance. Nonetheless, both the metrics 

exhibit stronger correlation with AHI than with neck circumference (NC) or with body 

mass index (BMI); quantitatively, Pearson’s product-moment and Spearman’s rank 

correlation coefficients are respectively rp = 0.7182–0.7432 and rs = 0.7062–0.7162 

for AHI; rp = 0.5313–0.5564 and rs = 0.6638–0.6828 for NC; and rp = 0.4356–0.4963 

and rs = 0.5340–0.5878 for BMI, with p-values < 0.0001.    

To validate the reliability of the OSA diagnostic markers and to understand the 

mechanisms of snore production, we investigated the relationships between the snore 

source flow (SF, i.e., acoustic source in snore production), the UA anatomical 

structures, and the snore characteristics by means of an area perturbation study and a 

SF analysis. The former study examines the acoustical and perceptual impacts of 

changing the cross-sectional areas (CSA) of the pharynx (PX) and oral cavity (OC) on 

the generation of snores, whereas the latter analysis parameterizes and models SF and 

its derivative (SFD), along with the generation of synthetic snores using various SFD 

pulse shapes.  

Results reveal that alterations in the CSA of PX and OC have more implications 

on the acoustical than the perceptual aspect of snores. F1, but not PF, consistently 

increases with narrowing pharyngeal airway, being higher for a wider mouth opening. 

Accordingly, F1 is more capable of distinguishing apneic and benign patients than PF 

due to the close association of F1 with the UA anatomical structures, as evidenced in 

the earlier diagnostic results. In contrast, there are no substantial differences in snore 

sound perception after narrowing or widening the pharyngeal airway and mouth 

opening; however, these CSA alterations can indirectly affect the psychoacoustics of 

snore sounds by changing the SF waveforms. Adding weight to these findings, 
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changes in the shape of SF or SFD pulse can influence the acoustical and perceptual 

characteristics of snores. The SF pulse shapes are different among snores and can be 

related to the biomechanical properties (e.g., compliance and elasticity) of snore 

excitation source (ES), further suggesting that the temporal and spectral attributes of 

SF and SFD may possess important information about the dynamical behavior of ES. 

In addition, we proposed a SFD model derived from the second derivative of the 

Gaussian probability density function or the Mexican hat wavelet with effective 

compact support of [-5, 5] and fruitfully generated natural-sounding synthetic snores, 

thereby offering a greater understanding of physiological, anatomical, acoustical, and 

perceptual perspectives on snore production mechanisms. 

In conclusion, this thesis demonstrates that snore properties contain essential 

information for detecting OSA; the use of snore signals as a simple, inexpensive, safe, 

and reliable approach to diagnose OSA is feasible. Given these encouraging results 

from snore signal acquisition and analysis, we strongly believe that continuation in this 

research area will unveil the clinical value of snore signals in the near future. 
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The contents of this chapter are partly based on the author’s publication [A11]. 

Chapter 1 

 

Introduction 

 

This thesis focuses on the acquisition and analysis of snore signals for the diagnosis of 

obstructive sleep apnea (OSA), a common sleep-disordered breathing. The present 

chapter provides the background of this research work, including the pathophysiology 

and complications of OSA, the pathophysiology of snoring, as well as the current gold 

standard diagnostic tool for OSA, namely polysomnography (PSG). Motivations and 

objectives of the work are subsequently identified, together with the rationale for using 

snore signals to detect OSA. We concluded this chapter by summarizing the novel 

contributions of this work to both the engineering and medical fields.  

 

1.1 Background 

1.1.1 Obstructive Sleep Apnea 

OSA is the most prevalent condition among the sleep-related breathing disorders, 

affecting 9–24% of men and 4–9% of women in the United States population aged 30–

60 years [1], with no major discrepancies found between African-Americans and 

White people [2]. In Singapore, 21.1% of the middle-aged population are suspected of 

harboring OSA [3]. Among adults with OSA, the occurrence of OSA with daytime 

hypersomnolence in the United States is 4–5% and 2–3% in men and women, 

respectively [1], which is comparable to the affliction in Asian men and women that 

ranges from 4.1% to 7.5% and 2.1% to 3.2% , respectively [4].  

The pathophysiology of OSA relies on the balance of forces between the
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Figure 1.1   Pictorial illustrations of a normal airway (left) and an obstructed airway (right) [5]. 

 

upper airway (UA) dilator muscles (e.g., genioglossus and tensor palatini) that 

maintain airway patency and the negative pharyngeal intraluminal pressure created by 

thoracic expansion during inspiration [6,7]. When the tonic contraction and tension of 

the dilator muscles fail to counteract the negative intraluminal pressure, the soft 

pharyngeal walls collapse and occlude the UA, as illustrated in Figure 1.1. Explicitly, 

OSA is characterized by repetitive sleep-related posterior pharyngeal obstruction for at 

least 10 seconds (s) with attendant oxyhemoglobin desaturation of more than 3% and 

heart rate reduction in spite of continuous chest and abdominal movements [7,8]. 

Recurrent airway occlusion results in an increased corrective inspiratory effort, which 

often triggers a transient arousal with sonorous respirations.  

Far more than most people realize, OSA is a serious and potentially life-

threatening condition. Most patients with OSA have symptoms related to snoring, 

choking at night, and frequent arousals [8-10]. Attributed to the intermittent 

hypoxemia and arousal-associated sleep fragmentation, they also experience daytime 

hypersomnolence and fatigue, cognitive dysfunction, as well as psychological 

disturbances [11,12], increasing risks of industrial accidents and driving fatalities 

[13,14]. If left untreated, the pathophysiological consequence of OSA can lead to 

cardiovascular and cerebrovascular morbidity and mortality [15,16], such as 

Uvula 

Soft palate
Tongue base Epiglottis 

Tongue 

Nasopharynx Hypopharynx Oropharynx 
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hypertension [17], coronary artery disease [18], congestive heart failure [19], and 

cerebral vascular accidents [20]. Because of these symptoms and functional 

impairments, OSA patients frequently complain having a poor quality of life in 

emotional, physical, and social domains [21,22].  

 

1.1.2 Snoring 

Snoring, at the mild end of sleep-disordered breathing spectrum, is widespread in the 

general population, with a prevalence of 35–45% in men and 15–28% in women [1,23]. 

The incidence of snoring in both genders increases with age, being higher in men than 

women. In a 30- to 35-year-old population, 20% of men and 5% of women snore; by 

the age of 60 years, 60% of men and 40% of women snore habitually [24]. More than 

just a nocturnal nuisance, snoring is the earliest and most consistent symptom of OSA, 

occurring in 70–95% of patients with OSA worldwide [10]. In Singapore, 87.5% of 

106 adult habitual snorers studied have OSA [3], and correspondingly, 72% of them 

suffer from OSA with daytime hypersomnolence.  

Snoring is caused by the vibrations of soft tissues (e.g., soft palate, uvula, tonsils, 

tongue base, epiglottis, and lateral pharyngeal walls) and/or turbulence of airflow at 

constrictions in the UA [25]. According to the Bernoulli’s principle [26,27], when a 

constant airflow passes through the narrow pharynx, the airflow velocity increases 

because of mass conservation, while the intraluminal pressure decreases. This 

phenomenon further diminishes the pharyngeal airway size and promotes its occlusion. 

Any imbalance of forces between the UA dilator muscles and the negative 

intraluminal pressure will cause soft tissues in the UA to vibrate, which indicates a 

partial airway obstruction, and/or trigger an OSA attack. Figure 1.2 highlights the 

resemblance between the pharyngeal shape and the Venturi tube, where the effect of 
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Bernoulli’s principle can take place, for both nose and mouth breathers. 

A mathematical model of snoring was developed by means of airflow in an 

elastic tube [28]. When the geometry, resistance, compliance, elasticity, and airflow of 

the model are appropriately varied, the tube opens and closes repetitively, producing 

sound similar to snoring. When these variables are further altered, the tube completely 

collapses and blocks the flow of air, simulating OSA. This model further suggests that 

snoring is a hallmark of OSA [8,25], and anatomical and functional abnormalities in 

the UA (e.g., elongated soft palate, wide tonsillar pillars, redundant pharyngeal 

mucosa, increased pharyngeal airway narrowing, inadequate pharyngeal dilator muscle 

tone, and inflammation of pharyngeal walls) play important roles in the development 

and severity of OSA [29-31].  

 

1.1.3 Polysomnography 

Difficulties in the diagnosis of OSA based on patient’s clinical history and physical 

examination have led to the landmark development of PSG in 1974 to describe the 

recording and interpretation of multiple simultaneous physiological parameters 

Figure 1.2   Computed tomography images of upper airway highlighting Venturi tube shape of the

pharynx for a (a) nose breather and (b) mouth breather [27]. 

(b)(a) 
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associated with sleep [32]. Being a gold standard diagnostic tool, PSG provides a 

detailed assessment of biophysiological changes that happen during sleep. 

Consequently, a polysomnographic recording normally lasts for 6–8 hours (h) of 

regular nocturnal sleep and incorporates various electrophysiological and 

cardiorespiratory parameters, for instance, electroencephalogram, electroocculogram, 

electromyogram, electrocardiogram, thoracic and abdominal respiratory effort, nasal 

and oral airflow, snoring level, pulse rate, oxygen saturation, body position, as well as 

limb movement [33], as depicted in Figure 1.3.  

Interpretation of PSG is a tedious process as it engages in both qualitative and 

quantitative measures of sleep quality and respiratory effort. These measures include, 

but are not limited to, sleep onset latency, sleep stage time, sleep efficiency, number of 

arousals per hour, number of respiratory disturbances per hour, and rate of 

oxyhemoglobin desaturation. Among them, apnea-hypopnea index (AHI) is widely 

used as an indicator of OSA and a proxy measure of OSA severity; it is expressed as 

total number of apneas and hypopneas per hour of sleep (events/h), in which a 

hypopnea is defined as a 30–50% reduction in respiratory airflow for at least 10 s with 

Figure 1.3   Patient prepared for nocturnal polysomnography. 
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greater than 3% oxyhemoglobin desaturation [7,8,34]. Relative to a hypopneic event, 

an apneic event is more intense and dangerous because it involves complete stoppage 

of airflow into and out of the lungs. Clinically, a subject can be considered as suffering 

from OSA if AHI ≥ 10 events/h, which can be further classified into mild (AHI = 10–

15 events/h), moderate (AHI = 15–30 events/h), and severe (AHI > 30 events/h) [34]. 

A sample polysomnographic report of an apneic (AHI ≥ 10 events/h) and a 

benign (AHI < 10 events/h) patient who underwent nocturnal PSG at the Sleep 

Disorders Unit of Singapore General Hospital in Singapore, where we were 

collaborating with for this research, are included in Appendices A and B, respectively.  

 

1.2 Motivations 

Despite the detrimental effects of OSA, ranging from physical and emotional health to  

social functioning, nearly 82% of affected men and 93% of affected women in the 

United States remain undiagnosed and untreated [35,36], which augments the burden 

of this disorder. Case reports have asserted a high incidence of postoperative 

complications [37,38] and deaths [39,40] among patients with undiagnosed OSA. In 

addition, the severity of OSA is associated with the magnitude of medical costs; OSA 

confers an approximate two-fold increase in medical expenses in the years preceding 

the diagnosis, and treating the condition lowers the healthcare costs [41,42]. Therefore, 

untreated OSA can be both deleterious to the patients and expensive to the healthcare 

economics, amounting to billions of dollars per year [43]. The threats of OSA to 

patient health and global economy have fully justified the need for early recognition of 

subjects at risk of OSA. If patients are identified and treated at an initial stage of OSA, 

the adverse health effects will be substantially minimized and postoperative 

complications will be prevented [44,45].  

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 1 Introduction 7 
 ____________________________________________________________________________________________________________________________________________________________________________________________  

 

A dominating reason for the sky-scraping undiagnosis rate is the overnight 

multichannel PSG, which is not only time-consuming and inconvenient, but also labor-

intensive and costly. Patients are required to stay overnight in a sleep laboratory, away 

from family, tethered to a multitude of physiological instruments measuring 

electrophysiological and cardiorespiratory parameters, as pictured in Figure 1.3. 

Owing to its complex setup, recording, and scoring protocols, PSG can only be 

performed by trained polysomnographic technicians [33], which limits its applications. 

Besides that, the cost of a polysomnographic test, spanning from US$800 to US$1400, 

is hardly affordable for the general public [46,47]. In Singapore, it can cost between 

S$511 and S$1335, or an equivalent of US$340–US$887.  

The shortage of equipped sleep laboratories and qualified sleep physicians is 

another drawback of PSG and has resulted in lengthy waiting lists. The wait time can 

be as long as 10 weeks [48] or even longer in some areas (e.g., Veterans Affairs 

Medical Centers) [49,50], causing delays that heighten the risk of accidental injury or 

death to oneself and others [51-53]. Long waiting times also contribute to elevated no-

show rates that indirectly extend the waiting lists [54]. A study has noted that at least 

2310 PSGs per 100000 population per year are required to adequately alleviate the 

problem of undiagnosed OSA; this exceeds by a factor of 10 in most countries and a 

factor of 50 in the United Kingdom [50]. Apparently, PSG is not readily available to 

accommodate the growing demand for OSA diagnosis.  

It is these drawbacks of PSG that motivate us to explore other modalities that 

can potentially offer convenient, inexpensive, and rapid screening for OSA. Snoring 

sounds are readily available in most subjects with suspected OSA, and digital analysis 

of snore signals provides numerous benefits. First, snoring sounds can be easily 

recorded at the patient’s home or in a sleep laboratory via a portable audio tape 
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recorder, thereby providing cost-saving and non-invasive way of instrumentation and 

data measurement. No technical expertise is also required during system setup and 

recording. Second, the acquired snore signals can be either sent back to the laboratory 

or uploaded to an online system for processing, leading to time- and labor-saving. As 

signal analysis and classification can be automatically carried out by computer 

software packages (e.g., LabVIEWTM and MATLABTM), errors and inconsistencies 

caused by the technician’s subjectivity and fatigue during PSG scoring [55] will be 

minimized. Last but not least, with the aforementioned benefits of snore-based OSA 

diagnosis, large-scale and community-oriented screening for OSA is achievable, 

shortening the delays and allowing earlier treatment and better control of the condition.   

We have sufficient clinical and technical evidences to support our hypothesis 

that acoustical properties of snore signals contain essential information to discriminate 

between patients with and without OSA. As mentioned in Section 1.1.2, fluttering 

vibrations of soft tissues and/or noise-like turbulent airflow at constructions in the UA 

produce acoustic waves [25]. While these waves propagate through the UA, they are 

spectrally modified by the UA anatomical structures (e.g., airway cross-sectional areas 

and airway length) to create distinct sounds of snoring before reaching the listener. It 

is well-recognized that patients with OSA usually possess smaller and more 

collapsible UAs than those without OSA because of enlarged soft tissues and 

decreased muscle tone [29-31,56,57]. The presence of abnormalities in the UA may 

alter the acoustical characteristics of simple or benign snores, just as the existence of 

laryngeal pathology changes normal vibratory patterns of the vocal folds and 

influences the quality of speech signals [58-67], thereby yielding distinctive acoustical 

signatures in snore signals that helpfully facilitate the classification between apneic 

and benign patients.   
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1.3 Objectives 

The overall aim of this research is to innovate on a simple, low-cost, safe, and reliable 

approach to diagnose OSA through the acquisition and analysis of snore signals, with 

an intention to mass screen for OSA. In order to achieve the aim, several objectives 

have to be met:  

(a) to develop and set up an acquisition system for snore signals; 

(b) to improve snore signal quality and detect snore activity; 

(c) to identify useful acoustical characteristics of snore signals as OSA 

diagnostic markers; 

(d) to classify snores produced by apneic and benign patients using the 

diagnostic markers; 

(e) to ascertain the correlation between AHI and the diagnostic markers; and 

(f) to investigate physiological-anatomical-acoustical relationships of snores 

for validation of the diagnostic markers and for understanding the 

mechanisms of snore production. 

The block diagram in Figure 1.4 displays an overview of the workflow of this research 

process.  

Instrumentation 
and             

signal acquisition 

Signal enhancement 
and               

activity detection 
Feature extraction 

and 
characterization 

Feature 
classification 

Upper airway 
modeling 

Synthetic snore 
generation 

Feature 
validation 

Patient Benign 
patient

Apneic 
patient 

Figure 1.4   Research workflow. 
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1.4 Major Contributions of the Thesis 

In this research on snore-based diagnosis for OSA, we have made the following 

contributions:  

(a) We designed and implemented a high-fidelity and user-friendly 

acquisition system for snore signals in a sleep laboratory (Sleep Disorders 

Unit, Singapore General Hospital, Singapore) [A13]. 

(b) We proposed standardization measures in the acquisition of snore signals, 

in particular the optimal mouth-to-microphone distance [A6]. 

(c) We developed an efficient preprocessing system that simultaneously 

enhances snore signal-to-noise ratio in the range of 3.02–38.22 dB and 

detects snore activity with an accuracy of 50.63–97.47% within a 

translation-invariant discrete wavelet transform domain [A4,A10,A12]. 

(d) We proposed several effective and reliable snore-based OSA diagnostic 

markers including formant frequencies [A2,A5,A14,A15,A16], wavelet 

bicoherence peaks [A3,A8], and psychoacoustic metrics [A2,A7,A9]. 

These diagnostic markers indicate statistically significant differences (p-

value < 0.0001) between apneic snores (AS, i.e., snores produced by 

apneic patients) and benign snores (BS, i.e., snores produced by benign 

patients) in same-gender (i.e., males and females separately) and both-

gender (i.e., males and females combined) patient groups, with sensitivity 

(i.e., the ability to correctly identify AS) and specificity (i.e., the ability to 

correctly identify BS) between 82.0% and 100% for the objective markers, 

and between 72.0% and 92.0% for the subjective markers. 
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(e) We formulated regression models that can competently predict AHI cutoff 

value within 8.0–14.9 events/h, which is close to the ideal value of 10.0 

events/h [A2,A3,A5,A8,A14,A15,A16]. 

(f) We parameterized (both time- and amplitude-based parameters) and 

devised snore source flow model that successfully generates natural-

sounding synthetic snores [A1].  

 

1.5 Organization of the Thesis 

This thesis is organized as follows: 

Chapter 1 – Introduction [A11] 

This chapter provides the background of the present research on snore-based 

OSA diagnosis, including the pathophysiology and complications of OSA, the 

pathophysiology of snoring, and the applications and drawbacks of PSG. 

Motivations and objectives of this work are identified, along with justifications 

for the research hypotheses. Novel contributions of this work are also 

highlighted.  

Chapter 2 – Review of Snore-Based Diagnostic Methodologies [A11] 

This chapter presents an in-depth literature review on the methodologies adopted 

for analyzing snore signals to distinguish between apneic and benign patients. 

The review compares and contrasts four main methodology categories, 

describing the methodologies and evaluating their advantages and disadvantages. 

Furthermore, gaps and omissions in the literature are outlined, and the emerging 

issues on the need for effective approaches to acquisition and analysis of snore 

signals for diagnosing OSA are addressed.    
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Chapter 3 – Snore Signal Acquisition System [A6,A13] 

This chapter discusses the design and implementation of an acquisition system 

for snore signals in a sleep laboratory. Various aspects on the selection and 

installation of the system components (microphone, preamplifier, data 

acquisition card, grounding layout, and graphical user interface) are described, 

with experiments to appraise the robustness of the proposed acquisition system. 

The influence of microphone positioning on signal quality and patient comfort 

are also reported.   

Chapter 4 – Snore Signal Preprocessing System [A4,A10,A12] 

This chapter proposes an advanced preprocessing system that concurrently 

enhances signal quality and detects snore activity via translation-invariant 

discrete wavelet transform. Detailed formulations of the system algorithms 

(level-correlation-dependent threshold and snore activity detector) are shown, 

and the comparison methods and evaluation metrics are outlined. Experimental 

results, in terms of theoretical statistics quality, signal-to-noise ratio, mean 

opinion score, and clinical efficacy, are also presented and discussed.  

Chapter 5 – Parametric Analysis and Classification of Snores [A2,A5,A14,A15,A16] 

This chapter introduces a parametric approach to analyze snore signals and 

classify AS and BS in same- and both-gender patient groups. Formant 

frequencies, extracted from both linear prediction and discrete all-pole spectra, 

are proposed. Diagnostic accuracy of this approach is discussed using receiver 

operating characteristic curves and notched box plots. Moreover, linear and 

nonlinear regression models illustrating the relationship between AHI and the 

proposed markers are identified.     
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Chapter 6 – Nonlinear Analysis and Classification of Snores [A3,A8] 

This chapter examines the feasibility of using nonlinear coupling between 

frequency modes in snore signals for classifying AS and BS in same- and both-

gender patient groups. Two diagnostic markers derived from frequency modes 

with high nonlinear coupling strength in their respective wavelet bicoherence 

spectrum are proposed. Diagnostic accuracy of this approach is discussed, 

together with regression models explaining the relationship between AHI and the 

proposed markers.   

Chapter 7 – Psychoacoustic Analysis and Classification of Snores [A2,A7,A9] 

This chapter explores the application of psychoacoustic metrics (loudness, 

sharpness, roughness, fluctuation strength, and annoyance) to snore sounds for 

the classification of AS and BS. Experimental conditions, including the listening 

test procedure and the rating scale, are described. Results are quantitatively 

presented using receiver operating characteristic curves and notched box plots, 

as well as Pearson’s product-moment and Spearman’s rank correlation 

coefficients to valuate the association between the psychoacoustic metrics, body 

mass index, neck circumference, and AHI.        

Chapter 8 – Snore Physiological-Anatomical-Acoustical Relationships [A1,A2] 

This chapter investigates the acoustical and perceptual impacts of changing the 

cross-sectional areas of the pharynx and oral cavity on the production of snores. 

Besides that, it parameterizes and models snore source flow, with application to 

synthetic snore generation. Both objective and subjective experimental results 

for the area perturbation study and the snore source flow analysis are presented 

and discussed with graphical illustrations. 

 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 1 Introduction 14 
 ____________________________________________________________________________________________________________________________________________________________________________________________  

 

Chapter 9 – Conclusions and Recommendations 

This chapter revisits the overall aim and objectives of this work. The research 

findings are summarized and related to the specific objectives. The limitations of 

this work are also highlighted with recommendations for future research.  

The patient studies performed in this thesis were approved by the local Institutional 

Review Board. Written informed consent was obtained from all 40 participating 

patients, with their demographic and clinical data listed in Table 1.1, between January 

2006 and January 2007. PSG recordings were manually scored following the 

internationally accepted Rechtschaffen and Kales criteria [68]. All analysis in this 

research work was performed within MATLABTM (version 2006a, MathWorks 

Incorporated), unless otherwise stated.  

 

Table 1.1   Demographic and clinical data of patients participated in research. 

Type Sample size Age (years) BMI (kg/m2) NC (cm) AHI (events/h)

Males : Apneic 24 41 ± 12 
(23–77) 

28.9 ± 5.9 
(18.2–42.8) 

41.3 ± 3.7 
(32.0–51.0) 

52.8 ± 24.7 
(11.6–101.9) 

Males : Benign 6 36 ± 11 
(20–52) 

28.1 ± 6.2 
(21.6–37.4) 

40.3 ± 2.7 
(37.0–44.0) 

5.3 ± 3.5 
(0.2–8.9) 

Females : Apneic 6 54 ± 14 
(32–75) 

30.7 ± 10.5 
(21.5–50.4) 

36.7 ± 4.7 
(33.0–46.0) 

23.6 ± 15.1 
(12.0–50.8) 

Females : Benign 4 50 ± 6 
(45–59) 

25.3 ± 4.7 
(22.2–32.3) 

36.8 ± 2.8 
(34.0–40.0) 

3.4 ± 3.2 
(0.6–7.9) 

Combined : Apneic 30 44 ± 13  
(23–77) 

29.3 ± 6.9 
(18.2–50.4) 

40.4 ± 4.3 
(32.0–51.0) 

46.9 ± 25.7 
(11.6–101.9) 

Combined : Benign 10 41 ± 12 
(20–59) 

26.9 ± 5.6 
(21.6–37.4) 

38.9 ± 3.1 
(34.0–44.0) 

4.6 ± 3.4 
(0.2–8.9) 

Values are presented as mean ± standard deviation and range within brackets. BMI refers to body 
mass index in kg/m2; NC, neck circumference in centimeters; AHI, apnea-hypopnea index in 
events/h; Combined, both males and females combined. 
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The contents of this chapter are partly based on the author’s publication [A11]. 

Chapter 2 

 

Review of Snore-Based Diagnostic 

Methodologies 

 

As discussed in Section 1.2, OSA negatively influences one’s quality of life in both 

health and socioeconomic factors, yet more than 80% of the affected individuals are 

undiagnosed and untreated [35,36]. This high undiagnosis rate can be attributed to the 

drawbacks of PSG (e.g., time-consuming, cumbersome, laborious, expensive, long 

waiting times, and limited availability). As a result, many researchers have attempted 

to search for other modalities to detect OSA. The modalities include oxygen saturation 

regularity [69-72], nasal airflow pressure [73-76], heart rate variability [77,78], and 

thoracic body movement [79,80]. Although these modalities can achieve a significant 

diagnostic accuracy of more than 80%, they require physical contact sensors, which 

may cause discomfort to the sleeping patients, especially for the pediatric patients. In 

addition, technical expertise is needed at the test site for correct placement of sensors 

and to monitor physiological data. Snore signals, on the other hand, can be non-

invasively captured, and processing of snore signals can offer numerous benefits (e.g., 

convenient, inexpensive, time- and labor-saving, as well as readily suitable for mass 

screening).  

Allured by the benefits of processing snores, various methodologies adopting 

acoustical properties of snore signals to distinguish between apneic and benign 

patients have been proposed over the past decade. These methodologies can be 
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grouped into four main categories: snore counting, sound intensity measurement, 

power spectrum estimation, and pitch calculation. This chapter presents a critical 

review of the literature. Throughout the review, we scrutinized each of the categories, 

describing the methodologies and evaluating their advantages and disadvantages. 

Furthermore, we pointed out gaps and omissions in the literature, and subsequently, 

we underscored the need for effective approaches to acquisition and analysis of snore 

signals for the diagnosis of OSA.  

 

2.1 Snore Counting 

The simplest methodology to quantify snoring is by recognizing its presence and 

counting the number of snores over a given time period. Snoring index, defined as 

average number of snoring events per hour, is implemented in a portable sleep-

monitoring gadget for diagnosing OSA [81-83]. With the aid of the gadget, Brietzke et 

al. [81] examined 456 subjects with suspected OSA. Snoring sounds were captured by 

an electret microphone, which was attached to a cannula placed on the subject’s upper 

lip with extensions to the nasal and oral apertures. A snoring event was characterized 

as any breath sound with non-uniform spectral pattern. Results demonstrated that the 

snoring index was poorly correlated with AHI (Spearman’s rank correlation 

coefficient = 0.21, p-value < 0.0001). As mentioned in Section 1.1.1, snoring is 

interrupted by respiratory arrests when the UA dilator muscles fail to counteract the 

negative intraluminal pressure. Reestablishment of the UA patency often requires a 

transient arousal, accompanied by rapid sonorous respirations as the sufferer gasps for 

air [8-10]. In such a circumstance, the snoring index may only provide quantitative 

description of snoring frequency during sleep, but not fully reflect the pre- and post-

apneic phases. Most importantly, it has no relation to the underlying pathophysiology 
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of OSA, thus lacking discriminatory power to determine the severity of OSA.  

Apart from the snoring index, intermittent snoring is another predictive indicator 

of OSA. Penzel et al. [84,85] developed an ambulatory recording device that picks up 

snoring sounds using a laryngeal microphone. They interpreted a snore as any sound 

whose power within 50–800 Hz exceeded 50% of the total sound power, an 

intermittent snoring as any time interval of 5–60 s between two detected snores, and an 

intermittent snoring index (ISI) as number of intermittent snoring. Analysis of the ISI 

was performed on 68 patient datasets, and correlation between the ISI and AHI was 

found to be moderate (Pearson’s product-moment correlation coefficient = 0.51). 

Reliability of the ISI was also validated by different researchers [86-88], and they 

noticed that the ISI could deliver high sensitivity (92–96%) but low specificity (16–

27%). The statistical findings apparently imply that while most apneic patients are 

correctly diagnosed, many benign patients are falsely diagnosed as having OSA, 

causing them to receive unnecessary treatment and lengthening the delay into 

treatment for those who are in need.   

 

2.2 Sound Intensity Measurement 

Unlike counting number of snores, the methodology on sound intensity measurement 

stems from the fact that AS are louder and hoarser than BS. Wilson et al. [89] 

investigated the snoring sound intensity generated by 1139 subjects with sleep 

symptoms. Snoring sounds were recorded via a microphone suspended 0.6 metres (m) 

above the bed and subjectively assessed by technical personnel. Results highlighted 

that apneic patients produced significantly higher snoring sound intensity (> 5 dBA, 

A-weighted decibels) than benign ones (p-value < 0.0001), with a cutoff value of 38 

dBA for an average sound intensity level to discriminate between the two diagnostic 
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classes. Moreover, the snoring sound intensity levels were associated with AHI, even 

after controlling for demographic and clinical factors. The study results are in 

agreement with those reported on pharyngeal function and snoring characteristics in 

apneic and benign patients [25,30]. Nonetheless, it is noteworthy to comment that 

sound intensity depends upon the distance between the subject’s mouth and the 

microphone; if the distance is doubled, sound intensity will reduce by a factor of 4, or 

correspondingly, a 6 dB decrement in sound intensity level, according to the inverse 

square law [90]. Besides that, sound intensity measurement is susceptible to unwanted 

background acoustical noise, in particular, when the study provides no means of 

canceling the noise prior to further analysis and interpretation.      

Utilizing both the snoring sound intensity and time interval for OSA screening, 

Brunt et al. [91] introduced an acoustical signature event (ASE) that was termed as 

any signal with peak above 100 µV, preceded by 10–90 s of silence. Snoring sounds 

were detected by a hanging microphone centered about 0.6 m above the head of the 

bed. Snore signals were amplified and channeled to an integration/rectification device 

before plotting them on a polygraph. The ASEs were manually scored, and an ASE 

index was formulated as total number of ASEs per hour of sleep. A total of 69 patients 

participated in the study; 63.8% of them were correctly classified into their diagnostic 

classes, with a sensitivity of 100% and a specificity of 19.3%, erring on the side of 

excessive false positives. The ASE index supports the anecdotal reports of AS and 

might potentially be an inexpensive screening tool for OSA. Conversely, determining 

the ASE index necessitates an overnight in-laboratory study and manual scoring; 

therefore, it is time-consuming and labor-intensive.  

To improve the diagnostic accuracy of OSA, Issa et al. [92] additionally 

incorporated arterial oxygen saturation (SaO2) data into the analysis of snore sound 
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intensity. They designed a digital recorder that collects snoring sounds from a 

transducer fastened to the patient’s chest and SaO2 from an ear oximeter. The collected 

data were transferred to a computer workstation and automatically analyzed. A snore 

was defined as any sound exceeding 0.8 V for more than 0.26 s, and an OSA attack 

was considered when two snores were separated by a silence of 10–120 s, along with a 

3% decline in SaO2. Based on 129 patient datasets, the recorder could diagnose OSA 

with a sensitivity of 84–90% and a specificity of 95–98%, exhibiting high predictive 

power in OSA diagnosis. Errors arising from subjective bias are also avoided since the 

analysis was automatically executed. In contrast, the chest transducer is sensitive to 

noise originated from chest movements, heart beats, and coughs. Furthermore, the 

additional use of oximetry increases both labor and medical costs.       

 

2.3 Power Spectrum Estimation 

A more technical methodology for detecting OSA is the use of spectral signatures in 

snore signals; the signatures are peak frequency (PF, i.e., frequency of highest peak in 

power spectrum), as well as frequency distribution of signal power. Hara et al. [93] 

employed a commercially available multidimensional voice program to examine 

acoustical characteristics of snoring sounds acquired from 58 subjects with symptoms 

suggestive of OSA. Sound recordings were done by a portable minidisc recorder 

through an omni-directional electret condenser microphone situated at 0.2 m above the 

subject’s mouth. A snore was interpreted as any inspiratory breath sound. For each 

subject, 30 snores were windowed using the Hanning window function and 

transformed into frequency domain by the fast Fourier transform (FFT). Results 

indicated that AS have more high-frequency peaks than BS, with a mean PF of 408 Hz 

and 160 Hz for AS and BS, respectively, reaching a statistical significance of 0.012 
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(Mann-Whitney test).            

Correlation between the PF and AHI was further explored by Michael el al. [94]. 

In their study, 60 patients were evaluated. An air-coupled microphone was positioned 

0.3 m above the patient’s head to pick up snoring sounds. Audio signals were 

processed via the FFT with a Hanning window of 16384 samples. The PF was 

measured for 3–5 inspiratory snores, and the mean value was computed for 

classification. Results showed that the PF significantly correlated with AHI 

(Spearman’s rank correlation coefficient = 0.63, p-value < 0.0010). Spectral analysis 

of AS also revealed a non-harmonic noise pattern with high-frequency components 

above 1000 Hz, whereas BS were low-frequency patterns with harmonics occupying 

100–300 Hz.     

The abovementioned results for spectral analysis of AS and BS are consistent 

with the study outcomes of Perez-Padilla et al. [95]. In their study, snoring sounds 

were captured from two microphones, one attached to the patient’s manubrium sterni, 

while the other was hung 0.15 m above the patient’s head. A snore was described as 

any noise with audible low-frequency vibratory components. A sample of 19 patients 

was studied, and 10 snores from each patient were analyzed through the FFT. Results 

outlined that the PF is higher in AS than BS, with a cutoff value of PF = 500 Hz. To 

enhance the discrimination between AS and BS, they superimposed the power spectra 

of the 10 snores and inspected the frequency distribution of signal power. They 

observed that AS had relatively more power at high frequencies, and the ratio of power 

above 800 Hz to power below 800 Hz could be a predictive indicator of OSA. Given a 

power ratio of 0.3, it achieved a sensitivity of 40–88% and a specificity of 100%, 

depending on the snore selection; first post-apneic snore delivered better sensitivity 

than pre-apneic snores.   
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Despite the evidence that apneic patients generate snores with a higher 

frequency band than benign patients, the reliability of PF and power ratio in 

diagnosing OSA seems questionable because the work of Fiz et al. [96] yielded 

contradictory findings. Fiz et al. [96] examined the spectral signatures in snore signals 

of 17 subjects with suspected OSA. Snoring sounds were recorded using a miniature 

microphone placed on the subject’s neck, 1 cm lateral to the midline at the level of the 

cricoid cartilage. Snores were recognized by listening, and power spectra of three 

consecutive snores from each subject were computed by means of the Welch’s 

averaged modified periodogram algorithm with a 1024-sample Hanning window and a 

50% overlap. Results illustrated that AS had a low PF with energy concentrated on a 

narrow frequency band (PF = 157 ± 136 Hz), while BS had a high PF with a 

fundamental frequency and harmonics (PF = 264 ± 107 Hz). Besides that, a negative 

correlation was noted between the PF and AHI (Spearman’s rank correlation 

coefficient = -0.70, p < 0.0016), with a cutoff value of PF = 150 Hz to differentiate AS 

from BS.  

The methodology on power spectrum estimation favorably reduces 

computational cost as only a certain number of snores are required for analysis and 

classification. Nevertheless, the diagnostic accuracy relies on the selection of snores, 

and there appears to be little consensus on the findings, weakening the impact of the 

methodology for the diagnosis of OSA.   

 

2.4 Pitch Calculation 

Instead of looking at the whole power spectrum to determine the PF or power ratio, 

recent researchers focused on the fundamental frequency or pitch of snore signals to 

screen for OSA. Abeyratne et al. [97] suggested an intra-snore-pitch-jump (ISPJ) 
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probability, which was expressed as the percentage of snoring episodes with pitch 

discontinuities, to distinguish AS from BS. A pair of hypercardioid microphone was 

sited at roughly 0.5 m above the patient’s mouth to capture snoring sounds from the 

front, while rejecting sounds from 120º to the rear. Audio signals were high-pass 

filtered, and subsequently, snoring episodes and silent segments were estimated. A 

snoring episode was interpreted as a breath epoch containing a voiced-snoring segment, 

an unvoiced-snoring segment, and a silent segment, analogous to voiced and unvoiced 

speech [98]. The voiced- and unvoiced-snoring segments were processed through a 

pitch detector based on the center-clipping autocorrelation algorithm, and then the 

ISPJ probability were calculated from the voiced-snoring segments. A total of 45 

patients took part in the study, and 25 snoring episodes from each patient were 

investigated. Depending on the pitch threshold setting and the number of pitch 

discontinuities exceeding a preset pitch threshold, the ISPJ probability could attain a 

sensitivity of 86–100% and a specificity of 50–80%. The ISPJ probability of snore 

signals might potentially be a predictor for OSA, if and only if, snore signals are 

inherently periodic, thereby limiting its applications.  

Snores, especially AS, are generally produced by quasi- or non-periodic 

vibrations of soft tissues, together with a certain degree of noise created by turbulent 

airflow at constrictions in the UA [25,99,100]. Hence, snores with clear harmonics in 

the frequency domain are not commonly seen, as justified in the literature on power 

spectrum estimation of AS and BS [93-96]. The presence of irregularities in snore 

periodicity, as well as the incompetence of pitch-derived parameters for OSA 

screening are further evidenced in the work of Sola-Soler et al. [101].     

Sola-Soler et al. [101] derived three parameters to quantify the pitch of snore 

signals, including mean value, standard deviation, and density of pitch, which the 
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latter was characterized as the fraction of snoring time where pitch was perceived over 

total snore duration. Snoring sounds were collected from 16 subjects at risk of OSA, 

with a piezoelectric contact sensor taped on the subject’s neck beside the crycothyroid 

notch. The collected signals were amplified and band-pass filtered. Snores were 

detected by an automatic sound detector and subjectively assessed by a physician. 

Pitch detection was conducted on 683 snores via the center-clipping autocorrelation 

algorithm. Results highlighted that AS had higher pitch mean (19.55 Hz versus 14.30 

Hz) and standard deviation (4.96 Hz versus 4.89 Hz) but lower pitch density (36.44 

versus 39.21) than BS; however, these differences were not significant enough to 

separate between AS and BS by using one pitch-derived parameter due to large 

variability in snore frequency content. A linear discriminant analysis was also carried 

out with the parameters; it obtained a sensitivity of 58–59% and a specificity of 58–

64%, depending on the number of independent variables. A monotonic decrease in the 

pitch density of AS with increasing AHI was found, which implies a greater 

irregularity in periodicity of AS. The statistical findings affirm that the pitch-derived 

parameters provide little usefulness towards the screening for OSA.  

 

2.5 Discussion 

The present chapter reviews four main categories of methodologies for identifying 

patients with and without OSA by means of snore signals. These methodology 

categories are: snore counting, sound intensity measurement, power spectrum 

estimation, and pitch calculation. Among them, the snore counting and the sound 

intensity measurement are the most straightforward methodologies since they can be 

easily implemented based on the temporal features of snore signals. No advanced 

signal processing algorithms is needed to analyze snores. The basic premise of these 
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two methodologies relies heavily on the definition of ‘snore’ and the acquisition of 

snore signals. To our best knowledge, there is neither an objective definition of 

snoring nor a standard protocol for measuring snoring sounds [25]. Consequently, as 

can be seen in the literature, different researchers adopted different interpretations for 

‘snore’ and acquisition techniques for snore signals. The cutoff values and indices 

driven by these temporal features of snore signals are therefore restrained to the 

instrumentation and data acquisition techniques, lacking the robustness and the 

attributes for OSA detection. Although the incorporation of an arterial oxygen 

saturation data into snore sound intensity could boost the OSA diagnostic accuracy, 

the additional costs of having extra physiological sensors and technical expertise may 

defeat the purpose of exploring cheaper alternatives to PSG. 

Unlike snore counting and sound intensity measurement, the methodologies on 

power spectrum estimation and pitch calculation apply the frequency information of 

snore signals in the detection of OSA. They involve only a handful of snores for 

analysis and classification, encouraging time-saving and computational efficiency. 

Moreover, no technical expertise is demanded at test site because the sound recording 

can be simply done through a non-contact microphone. Thus, these frequency-driven 

methodologies also promote labor-saving, community-oriented screening for OSA, 

and even home-based sleep studies. In spite of their advantages, the methodologies 

yield mixed, conflicting, and inconclusive results, diminishing its reliability and 

accuracy for diagnosing OSA.  

There are two possible reasons leading to diagnostic failure for the frequency-

driven methodologies. First, the FFT for power spectrum estimation may not 

completely reflect the UA acoustical features that capture the underlying 

pathophysiology of OSA, which is of supreme importance in the development of an 
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effective diagnostic predictor for OSA. Second, the autocorrelation algorithm with 

center clipping for pitch calculation is tailored for periodic signals, which may not be 

applicable to snore signals that are mostly quasi- or non-periodic [25,99,100].  

The review of the literature accentuates the need for effective approaches, 

ranging from instrumentation and signal acquisition to snore analysis and 

classification, for the diagnosis of OSA. We attempted to fill the gaps and omissions in 

the literature and fulfill the need in several important ways:  

(a) by designing and implementing a high-fidelity snore signal acquisition 

system that reduces noise embedded in snore signals and adds 

standardization and consensus in the signal acquisition literature;   

(b) by devising an efficient preprocessing system that improves snore signal 

quality and detects snore activity; 

(c) by identifying effective OSA diagnostic markers that can reveal the UA 

acoustical features and nonlinear dynamical behavior, as well as correlate 

with AHI; and     

(d) by investigating physiological-anatomical-acoustical relationships of 

snores to validate the reliability of the diagnostic markers and to 

comprehend the mechanisms of snore production.  

For any snore-based diagnostic methodologies, it is well-known that the OSA 

diagnostic accuracy depends on the acquired snore signal quality. Hence, it is essential 

to properly develop an acquisition system, which minimizes noise and ensures the 

integrity of data, even in a highly controlled setting of a sleep laboratory. The next 

chapter of this thesis discusses a robust system design and implementation for snore 

signal acquisition.   
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The contents of this chapter are partly based on the author’s publications [A6,A13]. 

Chapter 3 

 

Snore Signal Acquisition System 

 

The quality of snore signals plays a vital role in achieving accurate diagnostic results. 

Despite of a well-controlled sleep laboratory setting, the recorded snore signals are 

usually contaminated by background acoustical noise and electromagnetic interference 

(EMI) [102], lowering the diagnostic accuracy. Therefore, it is crucial to appropriately 

set up a snore signal acquisition system that reduces extraneous noise and interference. 

This chapter describes the development of a robust system for acquiring snore 

signals in a clinical environment; the system minimizes noise pickup and interference, 

while providing user-friendly graphical interface with analytical tools for real-time 

signal evaluation. Details on the various functional elements in the acquisition system 

are systematically explained. Different aspects on the selection and installation of the 

system components (microphone, preamplifier, data acquisition card, grounding layout, 

and graphical user interface) are also discussed, with experiments to appraise the 

effectiveness of the proposed system in the reduction of background acoustical noise 

and EMI. Subsequently, we examined the effects of microphone position on snore 

signal quality and patient comfort, in terms of sleep laboratory impulse response 

analysis, signal quality evaluation, and patient feedback survey.               

 

3.1 Instrumentation Setup 

In this research work, we designed and implemented a high-fidelity and user-friendly 

acquisition system for snore signals in a sleep laboratory (Sleep Disorders Unit,
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Singapore General Hospital, Singapore), as pictured in Figure 3.1. The patient is 

bedded in the examination room, while the polysomnographic technicians are 

monitoring the acquisition process in the control room without interrupting the 

patient’s sleep. The room setting gives the patient more comfort and privacy, which 

are essential for the reduction of first-night effect and to ensure an unbiased recording 

[103].   

In the examination room, a non-invasive unidirectional condenser microphone 

(20–20000 Hz, model SM81, Shure Incorporated) is hung from a microphone boom 

stand about 0.3 m above the patient’s mouth to capture snoring sounds. The 

Figure 3.1   Snore signal acquisition system setup in a sleep laboratory. 
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microphone is connected to a low-noise preamplifier (20–22000 Hz, model FP23, 

Shure Incorporated) with the output linked to a data acquisition card (model NI4552, 

National Instruments Corporation) in the control room through a double-shielded 

coaxial cable to minimize EMI during transmission. Snore signals are sampled at 

44100 Hz with 16-bit resolution (compact disc quality) to record good quality snore 

signals and other sleep sounds.    

 

3.2 Design Considerations 

In the following, an overview of the various functional elements in the acquisition 

system is provided, before detailing the features of each system component. The 

measurand (sound) is picked up by a sensor (microphone) to produce an output, which 

is then converted from one energy form (pressure) to another (voltage) by a transducer. 

The transducer normally generates small electrical signals that require an additional 

signal conditioning unit (preamplifier) to boost its strength before transmission, so as 

to reduce any extraneous noise pickup and improve signal-to-noise ratio (SNR) at the 

output. Subsequently, the pre-amplified signals are transmitted via a double-shielded 

coaxial cable and converted to its equivalent digital form by an analog-to-digital 

converter (data acquisition card) for data storing and processing. Eventually, these data 

are analyzed and displayed in a form perceivable by users on a graphical user interface.  

  

3.2.1 Microphone 

The microphone is the first sensing element for snoring sounds. It transduces sound 

pressure variations into relative variations of electrical signal with a correct polar 

pattern, dynamic range, frequency response, and installation. 

The microphone implemented in the acquisition system has a unidirectional 
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polar pattern rather than an omni- or a bi-directional pattern. A unidirectional 

microphone (pressure-gradient operated) has the highest response to sounds arriving 

from the front, with smoothly declining response to zero at the rear and sides of the 

microphone. This polar pattern enables most snoring sounds to be acquired while 

reducing background acoustical noise (e.g., sound from air conditioner and/or patient’s 

movements) embedded in the snore signals. In contrast, an omni-directional 

microphone (pressure operated) has a uniform response to sounds from all directions, 

whereas a bi-directional microphone (pressure-gradient operated) mainly responses to 

sounds from the front and rear of the microphone [104].  

Within a microphone, there is a transducer (dynamic or condenser type) that 

converts acoustic energy into electrical energy [104]. A dynamic microphone relies on 

the principle of electromagnetic induction, which the output is proportional to the 

velocity of a moving element within a magnetic field.  Conversely, a condenser 

microphone detects sounds using an electrically charged diaphragm, which forms a 

sound-sensitive capacitor. A condenser microphone is typically more expensive and 

complex than a dynamic microphone because it consists of an additional active 

circuitry that requires batteries or phantom power to operate. Nevertheless, a 

condenser microphone is widely used for vocal recording due to its high sensitivity 

and ability to deliver a broad range of tonal variations with a dynamic range more than 

120 dB. Moreover, a condenser microphone has an extended frequency range with flat 

frequency response and an excellent transient response. 

Snoring sounds, created by soft tissue vibrations and/or turbulent airflow at the 

narrowed UA, has a wide dynamic range of more than 90 dBA and a frequency range 

of 0–5000 Hz that fully characterizes the sound spectrum of snoring [99,105]. In order 

to acquire snore signals of high integrity, we chose a unidirectional condenser 
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microphone. 

The unidirectional condenser microphone (20–20000 Hz, model SM81, Shure 

Incorporated) is positioned roughly 0.3 m away from the patient’s mouth, where 

snoring sounds of low intensity can be captured, and patient can toss and turn 

comfortably without hitting the microphone (see Section 3.4 regarding the 

determination of mouth-to-microphone distance). Unlike a trachea microphone 

commonly used in PSG, the placement of a hanging microphone allows non-contact 

measurement, hence avoiding the use of lead wires around the patient and lessening 

the possibility of electrical shock hazards from contact. Thus, the proposed acquisition 

approach can increase patient safety and comfort during signal acquisition, reducing 

biased readings and achieving more reliable diagnostic results. In addition, an air-

coupled microphone can better detect snore signals of frequency up to 4000 Hz, 

whereas a body-contact microphone is insensitivity to frequencies above 1000 Hz 

[106].  

 

3.2.2 Preamplifier 

The basic function of a preamplifier is to intensify the input differential signals while 

rejecting any existing common-mode signals. This is important especially during 

shallow breathing, where snoring sounds are usually soft and are easily distorted by 

stray noise during transmission. The suggested preamplifier (20–22000 Hz, model 

FP23, Shure Incorporated) for the acquisition system has low noise and a large 

common-mode rejection ratio of approximately 100 dB to diminish the effect of 

common-mode voltages. Furthermore, it has a selectable gain setting, which facilitates 

optimum amplification gain without signal clipping. Similar to the microphone, the 

preamplifier has a constant frequency response within the audio range of 20–20000 Hz. 
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Besides snore signals, somniloquous speech can also be clearly collected to optimize 

the classification of snore signals. 

The preamplifier is installed in the examination room before the long coaxial 

cable, as rendered in Figure 3.1. This arrangement is supported and justified by the 

Friis’ formula [107], popularly adopted in telecommunications engineering to compute 

noise factor (i.e., a measure of SNR degradation) consisting of several cascaded stages. 

Consider the preamplifier p and the cable c as two cascaded stages, having noise factor 

F and gain G denoted as (Fp, Gp) and (Fc, Gc), respectively. Since the low-noise 

preamplifier has a higher gain than the cable, it is reasonable to assume that Fp < Fc, 

and Gp > Gc. Therefore, based on the Friis’ formula 
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where F is the overall noise factor of two cascaded stages, x placed before y, the 

overall noise factor is expected to be smaller when the preamplifier is sited in the 

examination room before the cable, as compared to positioning the amplifier in the 

control room after the cable, i.e., 
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3.2.3 Data Acquisition Card 

The data acquisition card (model NI4552, National Instruments Corporation) 

implemented in this acquisition system has the ability to register signals with a 

bandwidth up to 95000 Hz, which entirely covers the bandwidth of snore signals. 

Moreover, the data acquisition card is configured to sample the input signals at 44100 

Hz with 16-bit resolution. This configuration provides an analog-to-digital conversion 
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with a good precision of 305.18 µV for the following optimal selections: amplification 

gain = 66 dB and data acquisition card input range = ±10 V. Under these settings, most 

acquired signals are found to utilize the input range without any clipping. 

 

3.2.4 Grounding Layout 

A circuit diagram of the snore signal acquisition system is illustrated in Figure 3.2. It 

is recognized that one of the major undesirable disturbances when recording snore 

signals is the EMI, originated from the proximity of the power lines and the electrical 

or electronic devices via electromagnetic radiation [108-110]. Thus, it is advised to 

reduce EMI and harmful signal pickup to an insignificant level through the use of 

proper grounding and shielding techniques. Grounding offers reference for signals and 

safety for patients and clinicians, whereas shielding minimizes the effects of disruptive 

charge dissipation. 

As can be seen in Figure 3.2, signals from the microphone are tapped to form a 

balanced output, which is applied to the preamplifier operating in a differential mode 

that responds to the voltage difference between the signals but ignores the common 

noise embedded in both the signals. Connections between the microphone and the 

Figure 3.2   Circuit diagram of snore signal acquisition system. 
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preamplifier are made with a double-shielded coaxial cable to lower signal 

interference from external sources, yielding greater capacity to carry larger amount of 

undistorted signals. Furthermore, both signal and return wires are twisted and kept 

away from any potential magnetic-field regions to minimize electromagnetic coupling 

and extraneous cross-talk between neighboring wire pairs. 

At the preamplifier, the output signals are fed into the data acquisition card, 

through a shielded coaxial cable, in an unbalanced form. These signals are not easily 

influenced by the EMI since it is largely amplified by a gain of 66 dB. Nonetheless, 

they are subjected to various fluctuations of the ground signals attributed to its single-

ended configuration. To alleviate this problem, we integrated a pseudo-differential 

input circuit [111], comprising of a 50Ω resistor between the negative input and the 

ground, into the circuit. The pseudo-differential input is analogous to a differential 

input that minimizes ground noise; however, unlike a differential input, the negative 

input does not change much with time but rather serves as a reference point for the 

signals at the positive terminal. With this, snore signal integrity is well-preserved even 

with an unbalanced output at the preamplifier. 

 

3.2.5 Graphical User Interface 

To allow easy communication between the polysomnographic technicians and the 

computers in the control room, as well as the instruments in the examination room, we 

developed a graphical user interface using LabVIEWTM (version 7.1, National 

Instruments Corporation). The user-friendly graphical user interface enables the 

technicians to effortlessly control the parameters of the instruments by means of 

interesting graphics models in the computer, with minimum typing. The graphical user 

interface design is based on the clinical documentation of patient biodata for PSG, 
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together with additional analytical tools for evaluating snore signals, as presented in 

Figure 3.3.  

The pop-up window allows the technicians to enter the patient biodata, such as 

name, identification number, gender, age, body mass index, neck circumference, as 

Figure 3.3   Graphical user interface of snore signal acquisition system including a program

flowchart (top left), a pop-up window (top right), and a main window (bottom). 
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well as type of snorer (apneic or benign) based on the patient’s clinical history. In 

contrast, the front panel displays the patient biodata, real-time display of acquired 

signals and its corresponding power spectrum, along with selectable buttons and 

controllers for signal acquisition and analysis.  

 

3.3 Acquisition System Appraisal 

To appraise the robustness of the proposed acquisition system and assure that high 

quality snore signals are collected, two experiments were carried out to comparatively 

study the outcome of background acoustical noise and EMI before and after the 

implementation of the system. In order to perform a fair experiment, a segment of pre-

recorded snoring sounds, which comprises of 10 similar snoring episodes with clear 

audible vibratory modes at the inspiratory phases, lasting about 60 s, was played back 

Figure 3.4   Temporal and spectral features of a snoring episode comprising of an inspiratory

snore, an expiratory snore, and a silence segment. 
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via a speaker that simulated the patient’s mouth, in the setup depicted in Figure 3.1. In 

this research work, we defined a snoring episode as an inspiratory and an expiratory 

snore segment with a short silence between them. Figure 3.4 shows both temporal and 

spectral features of a snoring episode. To add more realism, the experiments were 

conducted in the night when PSG usually commences. 

 

3.3.1 Background Acoustical Noise 

The effect of background acoustical noise was investigated with the preamplifier at 

different amplification gains, namely 50 dB, 54 dB, 58 dB, 62 dB, and 66 dB. For each 

gain setting, power spectral density (PSD) of the detected inspiratory snore signals was 

estimated using the Welch’s averaged modified periodogram method [112,113], 

accompanied by a 1024-sample (≈ 23 ms) Hanning window [113-115] with 75% 

overlap to avoid spectral leakage. As the name implies, the Welch’s method computes 

PSD by averaging M periodogram estimates, i.e., 
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is the power of the temporal window w(k), which removes the windowing effect from 

the total signal power in order to lessen the variance of the estimated PSD, providing 
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more control over the PSD bias/resolution properties [112,113]. The Hanning window 

function, on the other hand, is equated as 
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and it is preferred over other window functions (e.g., rectangular, triangular, Hamming, 

Blackman, and Kaiser) because of its popularity, easy implementation, and relatively 

good sidelobe behavior (-31 dB sidelobe level) [113-115].  

In addition, SNR of the snore was also calculated. Due to the difficulties in 

obtaining the power of snore signals and the power of additive noise separately in the 

recording, the SNR was approximated by measuring the snore signal power Psignal+noise 

during inspiratory snoring period and the noise power Pnoise during noise-only period. 

Since the snore signal and noise processes are independent, 

 
noise

noisenoisesignalSNR
P

PP −
= + . (3.7) 

Figure 3.5 illustrates the PSD of the detected snore signals under various 

amplifications: 50 dB, 54 dB, 58 dB, 62 dB, and 66 dB, with their respective mean and 

standard deviation SNR = 8.12 ± 0.27 dB, 8.81 ± 0.48 dB, 9.31 ± 0.34 dB, 9.72 ± 0.25 

Figure 3.5   Power spectral densities of snore signals under different amplification gains: 50 dB,

54 dB, 58 dB, 62 dB, and 66 dB. 
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dB, and 10.46 ± 0.44 dB. These results demonstrate that the preamplifier plays a key 

part in the acquisition system. SNR increases with increasing amplification gains, 

implying that the amplified signals exhibit clearer snoring sounds as they are less 

likely to be distorted by background acoustical noise. Moreover, frequency contents 

are stronger for signals of higher amplification, favoring the masking of ambient noise. 

Correspondingly, snoring sounds with high intensity level are not easily affected by 

noise pollution relative to snoring sounds of low intensity.  

 

3.3.2 Electromagnetic Interference 

The influence of the suggested grounding and shielding measures taken for EMI was 

examined in the similar setup highlighted in Figure 3.1, with the same segment of pre-

recorded snoring sounds under the amplification gain of 66 dB for three different 

conditions: (a) before grounding and shielding; (b) after grounding and shielding with 

fluorescent lights on; and (c) after grounding and shielding with fluorescent lights off. 

PSD of the captured signals under these three conditions were computed and 

compared. 

PSD of the captured snore signals before and after implementation of the 

suggested grounding and shielding measures, are rendered in Figure 3.6. Magnitudes 

of the PSD are very similar in the lower frequency range for all three conditions. 

However, at about 12.5 kHz, 15.5 kHz, and 18.8 kHz, unwanted spikes are spotted 

under the ungrounded and unshielded condition. Signals acquired under this condition 

are directly exposed to the electromagnetic radiation emitted from the central air 

conditioner duct and power lines above the false roof, leading to signal corruption and 

errors. Undesired harmonics and intermodulation products of the power lines may also 

add to the existence of the spike. On the contrary, under good grounding and harness 
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shielding techniques in instrumentation, the high-frequency spikes are suppressed even 

when the fluorescent lights are on. 

 

3.4 Mouth-to-Microphone Distance Determination 

Apart from background acoustical noise and EMI, mouth-to-microphone distance 

(MMD, i.e., distance between the patient’s mouth and the microphone) plays an 

important role in the quality of snore signals, together with the level of human comfort 

and safety. When MMD is too short, snore signals of good quality can be simply 

collected, but the patient may feel uneasy and find it hard to fall asleep. Conversely, 

when MMD is too long, it undoubtedly boosts the human’s level of comfort and safety 

while at the expense of degrading signal intelligibility owing to increased pickup of 

surrounding noise and interference. We attempted to examine the impact of 

microphone positioning on snore signal quality and patient comfort by means of sleep 

laboratory impulse response analysis, signal quality evaluation, and patient feedback 

survey. In doing so, we hope to determine the appropriate MMD that can establish a 

good tradeoff between signal quality and patient comfort, refining the standards and 

Figure 3.6   Power spectral densities of snore signals under different grounding and shielding

conditions: (a) before grounding and shielding, (b) after grounding and shielding with fluorescent

lights on, and (c) after grounding and shielding with fluorescent lights off. 
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consensus for the measurement of snore signals. 

 

3.4.1 Sleep Laboratory Impulse Response Analysis 

Impulse response modeling is widely studied for room acoustical design [90]; it 

provides a reference calibration for an enclosed environment, allowing one to recreate 

or even optimize the auralization of the original impulse. The room impulse response 

was modeled using the image-source method attributable to its remarkable accuracy in 

identifying reflection paths [116,117]. The impulse response can be a function of 

sound source location rs = [xs ys zs], receiver or microphone location r = [x y z], room 

dimensions (length Lx, width Ly, and height Lz), and reflection coefficients of the six 

walls (βx1, βx2, βy1, βy2, βz1, and βz2). Explicitly, it can be expressed as 
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where 
c

pu RR +
=τ  (3.9) 

denotes the arrival time of the reflected sound ray relative to any image source 

traveling at a velocity of c ≈ 345 m/s in a room with temperature at 23ºC, and 

 pud RR +=  (3.10) 

defines the distance between any image source and the microphone. The vector 

 [ ]kzzzjyyyqxxx sssp 222 +−+−+−=R  (3.11) 

links the microphone location to the positions of the images at the first level. There are 

eight images at the first level, as each element of p = (q, j, k) can hold the value 0 or 1. 

For higher image levels, the vector Ru = 2[nLx  lLy  mLz] is added to Rp, where each 

element of u = (n, l, m) takes values between –N and +N, depending on the number of 

image levels one prefers. Consequently, Ru delivers (2N + 1)3 possible 
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combinations, giving a total of 8(2N + 1)3 different paths. 

To accurately simulate the received echo arrival time even at low sampling 

frequency, we replaced each impulse in Equation (3.8) by a low-pass-filtered impulse 

generated by the Hanning-windowed ideal low-pass filter [118] 

 ( ) ( )
⎪
⎩

⎪
⎨

⎧
<<−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

otherwise,0
22

,2sinc2cos1
2
1 WW

C
W

t
t

t
tf

t
t

tw ππ
 (3.12) 

where tW is the window width, and fC is the filter cutoff frequency. As advised in [116], 

we set tW = 8 ms, and fC = Nyquist frequency of snore signals sampled at 44100 Hz.  

Besides persevering the true echo arrival time, reverberation time RT60, which 

defines the time required for sound to decay by 60 dB, is another main factor to model 

a room impulse response. The RT60 relies on the volume of the room V, surface area Si, 

and reflection coefficient βi of the ith wall, given by [90] 
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Putting the sleep laboratory dimensions (Lx = 4.74 m, Ly = 3.44 m, and Lz = 2.67 m) 

and walls composition, for instance, smooth concrete, gypsum board, and light drapery, 

along with their respective absorption coefficients [90] = 0.08–0.10, 0.09–0.29, and 

0.03–0.35, into Equation (3.13), the average RT60 ≈ 1.0838 s at 125–4000 Hz. 

 

3.4.2 Signal Quality Evaluation 

To evaluate the quality of snore signals in relation to the MMD, we collected snoring 

sounds in the similar setup depicted in Figure 3.1, with the same segment of pre-

recorded snoring sounds under various MMDs beginning from 0.1 to 0.5 m at 0.1 m 

intervals. A digital sound level meter (30–130 dBA, Mastech MS6701, Precision 
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Mastech Enterprises Company) was mounted beside the microphone to quantify mean 

sound pressure level of each inspiratory snore.  

The collected signals were processed within MATLABTM and a digital audio 

software package (Cool Edit ProTM, version 1.2, Adobe Systems Incorporated). 

Similar to the earlier experiments for background acoustical noise and EMI, we 

estimated the PSD, SNR, and average root-mean-square power of the recorded snores. 

To facilitate easy comparison and discussion, we averaged each of the three evaluation 

metrics (sound pressure level, SNR, and root-mean-square power) for every 

microphone position. 

 

3.4.3 Patient Feedback Survey 

Apart from the objective measures, subjective analysis is equally essential, because if 

the patient does not feel comfortable throughout the night of signal acquisition, the 

recording can be severely biased, and eventually it may lead to inaccurate diagnostic 

results. 

Feedbacks were obtained from the 40 patients listed in Table 1.1. In the sleep 

laboratory, as shown in Figure 3.1, we requested the patient to lie in the bed, raised the 

microphone distance at 0.1 m intervals starting from 0.1 m, and asked the patient to 

determine the minimum acceptable distance of the microphone from his or her mouth, 

with the consideration of possible tossing and turning during sleep. 

 

3.4.4 Results and Discussion 

Figure 3.7 illustrates the finite impulse responses of the sleep laboratory for different 

microphone positions. A close inspection of the first impulse of every position agrees 

with its corresponding distance. For example, the first impulse of 0.1 m is at a delay of 
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Figure 3.7   Impulse responses of a sleep laboratory for various mouth-to-microphone distances:

0.1 m, 0.2 m, 0.3 m, 0.4 m, and 0.5 m. 
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Figure 3.8   Power spectral densities of (a) simulated reverberant snore signals, and (b) on-site

acquired snore signals for various mouth-to-microphone distances: 0.1 m, 0.2 m, 0.3 m, 0.4 m, and

0.5 m. 
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14 samples (≈ 0.3175 ms), which is the traveling time taken by sound in a direct path. 

Furthermore, the strength of the impulses gradually declines with increasing distance 

and time, yielding a decreased power magnitude of the reverberant snoring sounds 

produced by convolving the segment of snoring sounds with the sleep laboratory 

impulse response, as clearly displayed in Figure 3.8a.  

The attenuation of signal power is also noted in Figure 3.8b, where PSD of the 

on-site acquired snore signals are plotted. Inasmuch as the simulated reverberant 

snores and the on-site acquired snores exhibit the same spectral dynamics below 5000 

Hz (snore maximum frequency-of-interest [99,105]), it is obvious that the latter ones 

contain undesired noise and artifacts due to the nature of non-invasive sound 

measurement, being more severe for MMD = 0.5 m. 

Interestingly, we observed that short MMD does not always amount to good 

signal quality; instead, it enhances the likelihood of triggering a proximity effect and 

capturing explosive breath sounds, especially when the patient recovers from an OSA 

attack. The blast of explosive air slams into the microphone diaphragm, causing 

overload and impairing the sound intelligibility, as evidenced by the presence of strong 

Table 3.1   Quality of snore signals for different mouth-to-microphone distances. 

MMD (m)  SPL (dBA)  SNR (dB)  RMS power (dBFS) 

0.1  75.09 (75.09)  20.27 (21.91)  -13.06 (-20.86) 

0.2  68.80 (69.07)  13.54 (17.22)  -19.93 (-25.73) 

0.3  66.66 (65.55)  10.46 (15.67)  -23.07 (-27.46) 

0.4  65.05 (63.05)  7.79 (14.99)  -24.92 (-28.23) 

0.5  64.36 (61.11)  7.14 (14.71)  -25.92 (-28.56) 
Values are presented as mean. Values within brackets were computed from the inverse distance 
law for SPL, and from reverberant snores for SNR and RMS power. MMD refers to mouth-to-
microphone distance in metres; SPL, sound pressure level in A-weighted decibels; SNR, signal-to-
noise ratio in decibels; RMS power, root-mean-square power in decibels relative to full-scale sine 
wave.  
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fluctuating high-frequency modes for MMD = 0.1 m in Figure 3.8b.  

Table 3.1 summarizes the quality of the captured snores by means of sound 

pressure level, SNR, and root-mean-square power. We comparatively evaluated the 

quantitative results with those computed from the inverse distance law [90] for sound 

pressure level, as well as from reverberant snores for SNR and root-mean-square 

power, marked within brackets. Results consistently indicate that the intelligibility of 

snore signals degrades with increasing MMD. When MMD rises from 0.1 to 0.4 m, the 

three evaluation metrics drop more than 10 dB (sound pressure level from 75.09 to 

65.05 dBA; SNR from 20.27 to 7.79 dB; and root-mean-square power from -13.06 to -

24.92 dBFS).   

On the contrary, the patient feedback score, plotted in Figure 3.9, apparently 

highlights that majority (62.5%) of the patients feel comfortable and secure when 

MMD = 0.3 m, followed by 30.0% when MMD = 0.2 m. As compared to 0.2 m, the 

MMD = 0.3 m enables the patients to toss and turn without any worries of hitting the 

microphone during sleep. Such worries are certainly understandable, especially for 

patients with OSA as they frequently experience repetitive transient arousals from 

sleep [8-10].  

Figure 3.9   Patient feedback score for different mouth-to-microphone distances: 0.1 m, 0.2 m, 0.3 

m, 0.4 m, and 0.5 m. 
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Taking into account the signal quality and human comfort and safety, we 

recommended a MMD of 0.3 m. This value of MMD is also put forward by the Union 

of European Phoniatricians for measuring the human voice (e.g., speaking and singing) 

[119].  

 

3.5 Summary 

This chapter discusses the design and implementation of a high-fidelity and user-

friendly system for acquisition of snore signals in a sleep laboratory, highlighting 

various considerations for the selection and installation of system components 

(microphone, preamplifier, data acquisition card, grounding layout, and graphical user 

interface). Experiments were performed to warrant the robustness of the proposed 

acquisition system by investigating the effect of background acoustical noise, EMI, 

and MMD. Results reveal (a) a reduction in background acoustical noise after 

appropriate selection of the amplification gain; (b) the removal of high-frequency 

spikes associated with EMI after proper grounding and shielding; (c) a decrement in 

signal intelligibility and an increment in human comfort with increasing MMD; and (d) 

a microphone setting of 0.3 m from the patient’s mouth can achieve a good tradeoff 

between signal quality and patient comfort.  

Besides developing a robust snore signal acquisition system to minimize 

unwanted noise and EMI, the non-contact nature of data measurement is often 

susceptible to external noise distortion, which must be eliminated prior to signal 

analysis and interpretation. The next chapter of this thesis devises a novel wavelet-

driven preprocessing system that further improves snore signal quality and detects 

snore activity.   
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The contents of this chapter are partly based on the author’s publications [A4,A10,A12]. 

Chapter 4 

 

Snore Signal Preprocessing System 

 

Appropriate instrumentation and measurement techniques are essential for achieving 

snore signals of high integrity while lessening patient discomfort. Nonetheless, owing 

to the fact that snore signals are acquired via a non-invasive microphone, additive 

background acoustical noise can inevitably degrade signal fidelity, reducing SNR and, 

most importantly, yielding inaccurate diagnostic results. Thus, it is always vital to 

eliminate and discern snore signals from any undesired noise before subsequent 

analysis and classification. Unfortunately, such issues on snore signal enhancement 

and snore activity (SA) detection in a clinical environment have not been specifically 

addressed in the literature (see Chapter 2).       

This chapter proposes an efficient preprocessing system for snore signals, which 

comprises of a level-correlation-dependent (LCD) threshold to suppress background 

acoustical noise, and a SA detector to simultaneously identify snore segment 

boundaries in a translation-invariant discrete wavelet transform (TIDWT) domain. 

Environmental condition of a sleep laboratory is highlighted, focusing on the 

characteristics of environmental noise (i.e., background acoustical noise embedded in 

snore signals). Subsequently, we provided a detailed overview of the LCD threshold 

and SA detector in the proposed preprocessing system, as well as a brief discussion on 

the comparison methods and evaluation metrics. Experimental conditions, including 

the dataset for analysis and the selection procedures for optimal parameters, are also 

outlined. Finally, experimental results, in terms of theoretical statistics quality, SNR,
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mean opinion score (MOS), and clinical usefulness of the system, are presented and 

discussed. 

 

4.1 Snore Signal Enhancement 

4.1.1 Environmental Noise Properties 

In order to understand the inherent noise in snore signals and develop a robust noise 

suppression algorithm, we studied the environmental noise in the sleep laboratory 

where the acquisition system for snore signals is implemented.  

Based on the setup rendered in Figure 3.1, we comparatively evaluated the 

spectral behavior of the noise captured with that of fractal noises (e.g., white, pink, and 

brown). Through observations and consensus among polysomnographic technicians in 

the Sleep Disorders Unit, the air conditioner in the laboratory is the most possible 

source of noise. Hence, we recorded the environmental noise via the unidirectional 

microphone sited above the patient bed, without the patient’s presence, for the three 

available air conditioner settings (low, medium, and high). We further modeled the 

power spectral density S(f) of the noise as a function, which is inversely proportional 

to the signal frequency with an exponent β, 

 ( ) βf
fS 1
∝  (4.1) 

where β = 0, 1, and 2, for white, pink, and brown noise, respectively [120].  

In the acquired environmental noise, we noted that β ≈ 1.9801, 2.0520, and 

2.1069 for the low, medium, and high air conditioner setting, correspondingly, as 

illustrated in Figure 4.1. Since β is constantly close to 2, one can infer that the 

background acoustical noise embedded in the captured snore signals is colored, and 

wavelet-like bases are the best functions to represent these signals as the role of 
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wavelet basis is a Karhunen-Loeve-type expansion for 1/f processes [121,122].  

 

4.1.2 Translation-Invariant Discrete Wavelet Transform 

During the last decade, wavelet thresholding for denoising signals has evolved 

extensively because of its capability to optimize both temporal and spectral 

information, thereby better preserving the desired signals while removing unwanted 

noise. Two initial considerations for a wavelet thresholding scheme include the type of 

wavelet transform and the choice of denoising threshold. 

A TIDWT is a non-orthogonal, undecimated variant of the classical (orthogonal, 

maximally-decimated) discrete wavelet transform (DWT). The key motivation behind 

developing TIDWT is to overcome the visual artifacts attributable to translation 

variance of DWT, for instance, pseudo-Gibbs phenomena in the neighborhood of 

discontinuities [123,124]. Two typical schemes for TIDWT implementation are the à-

trous and the cycle-spinning [125,126]. The à-trous scheme, in essence, relinquishes 

downsampling operator from DWT but upsamples filter responses. Conversely, the 

cycle-spinning scheme applies DWT to all circular shifts of an N-element input vector 

and averages over all these shifts. Due to periodic time-varying property of the rate-

Figure 4.1   Power spectral density log-log slopes for various noise types: white, pink, brown, and 

environmental noise for low, medium, and high air conditioner settings. 
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change operators in the decomposition filter banks, the number of operations for cycle-

spinning scheme reduces from O(N2) to O(N log2 N) [124,127]. In other words, instead 

of performing all N circular shifts, the output is now computed for the original input 

and its shift-by-one. Nevertheless, for both schemes, TIDWT yields redundant 

coefficients that offer momentous advantages in noise reduction, for example, better 

root mean squared error properties (10–20%) than classical DWT denoising [123,124]. 

In this work, we considered the cycle-spinning scheme owing to its popularity and 

flexibility [125]. 

Figure 4.2 depicts a block diagram of the proposed snore signal preprocessing 

system in TIDWT analysis/synthesis filterbank for two scale levels. Let { }N
kkx 1==x  be 

a finite-length desired snore signal that is contaminated by an additive colored 

Gaussian noise { }N
kkz 1==z  with a standard deviation σ. The resulting noisy snore 

signal at the receiving end is { }N
kky 1==+= zxy σ . Under TIDWT, the transformed 

noisy signal becomes zWWxWy σ+= , where 

 T
JJj ],,,,,[ 11 += WWWWW KK  (4.2) 

is an (J+1)N × N matrix, and J is the maximal level of decomposition. Each Wj is an N 

× N sub-matrix whose columns are circularly shifted versions of the impulse response 

of wavelet filters { }Ζg ∈= kgk :  that produces wavelet coefficients at scale level j, or 

likewise, scaling filters { }Ζh ∈= khk :  that produces scaling coefficients for WJ+1. 

Since the scaling filters and wavelet filters are normalized, 

 ( ) [ ]1;1,1diag +∈∀ℜ∈= JjN
j

T
j WW  (4.3) 

perfect reconstruction MW = I can be attained, where 

 ]
2
1,

2
1,,

2
1,,

2
1[ 11 += JJJJjj WWWWM KK  (4.4) 
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is the pseudoinverse matrix of the TIDWT, and the division by powers of two 

compensates for the increasing  redundancy  of  the  transformation [128]. Similar to 

TIDWT, the pseudoinverse TIDWT takes O(N log2 N) operations [128,129]. 

As discussed earlier, the output for the even and the odd shifts in cycle-spinning 

scheme are obtained by computing DWT for the original input and its shift by one, 

respectively. For convenience, these recursive computational procedures can be 

simplified by introducing a sequence reordering operator Rm [129], which competently 

arranges the coefficient sequences to substitute the downsampling operators without 

Figure 4.2   Snore signal preprocessing system in translation-invariant discrete wavelet transform 

analysis/synthesis filterbank for two scale levels. ĥ  and ĝ  denote the complex conjugate of the 

scaling filters h and wavelet filters g, respectively. tLCD denotes level-correlation-dependent 

threshold, while dSA and tSA denote snore activity (SA) detector and SA threshold, respectively. Rm

denotes the sequence reordering operator with a list of elements of an m × N/m matrix by rows, 

where N is the input vector length. 
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affecting the redundancy, and therefore, the shift invariance. Consider an N-element 

input vector { }N
kky 1==y  and m divides N, the sequence reordering operator 

 ( ) ( )NmmmNmm yyyyyyR ,,,,,,,, 2)1(11 KKK −−+=y  (4.5) 

is a list of elements of an m × N/m matrix by rows. The inverse of Rm is RN/m, 

( )( ) yy =mmN RR . 

 

4.1.3 Level-Correlation-Dependent Threshold 

TIDWT denoising can be summarized in the following four steps: (a) performs 

TIDWT on the time-domain signal; (b) identifies an appropriate threshold; (c) 

implements a suitable thresholding rule to shrink or retain the effects of certain 

wavelet coefficients; and (d) inverts the resulting coefficients to reconstruct the 

denoised time-domain signal. Explicitly, the denoised signal can be given by 

 ( ){ } [ ] [ ]NkJjwx jjjkk ;1,1;1,,ˆ ∈∀+∈∀= λσηM  (4.6) 

where η can either denote a soft-thresholding rule [130] 

 ( ) ( )( )jjjkjkjjjk www λσλση −= sgn,S  (4.7) 

or a hard-thresholding rule [131] 

 ( ) [ ]jjjkwjkjjjk ww
λσ

λση
≥

⋅= 1,H  (4.8) 

or some compromise between the two rules. The terms σj and λj represent the noise 

variance estimate and the threshold at scale level j, correspondingly. To improve the 

finite sample properties of the threshold, we set λJ+1 = 0 [131,132]. 

Many thresholds have been proposed in the wavelet literature. Three popular 

ones are the VisuShrink universal threshold [131], the Stein’s unbiased risk estimator 

[133], and the level-dependent (LD) threshold [134]. The former two thresholds are 

commonly implemented with the soft-thresholding rule for suppressing additive white 
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Gaussian noise, whereas the latter is for removing correlated noise. Although these 

thresholds achieve remarkable denoising performances (e.g., better convergence rate 

and optimal in the minimax sense [130]), there are two inherent shortcomings: (a) 

white noise is useful as a conceptual entity, but it seldom occurs in reality; and (b) 

these thresholds are tailored for DWT, which has lesser impact in denoising 

applications than TIDWT. Consequently, these thresholds are not suitable for this 

research work, where the acquired snore signals are corrupted by colored noise in the 

sleep laboratory environment, and the chosen wavelet transform is translation 

invariance. To address this concern, we proposed a LCD threshold that can optimally 

enhance snore signals in the presence of colored noise while providing translation 

invariance.  

The LCD threshold 

 [ ]JjNjt jjjjj ;1,))1((log)1(2 e
LCD ∈∀++== φσλσ  (4.9) 

consists of a correlation limit 

 1max <=
≠ kllkj rφ  (4.10) 

where ( )lkklr ξξ ,Cov=  (4.11) 

describes the correlation between random variables { }( ) Wz=+
=

Nj
kk
1

1ξ  produced at scale 

level j, and a conditional factor (1 + j) in the log-term that accounts for redundant 

information introduced at j [135]. To further maximize noise suppression, the LCD 

threshold is accompanied with a noise variance estimator calculated from the median 

absolute deviation (MAD) of the wavelet coefficients at each scale level and a factor 

0.6745 for calibration with the Gaussian distribution [134] 

 
( ) [ ] [ ]NkJj
w jk

j ;1,;1,
6745.0

MAD
∈∀∈∀=σ . (4.12) 
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The LCD threshold is formulated based on the properties of the TIDWT 

decomposition of the colored background acoustical noise. To demonstrate these 

properties, a length of 212 points (≈ 93 ms) was extracted from each of the three 

environmental signals mentioned in Section 4.1.1 and decomposed into 12 levels using 

TIDWT with Daubechies compactly supported filter of length 4 [136,137]. Results are 

tabulated in Table 4.1, with the following observations. 

(a) Coefficients in the same scale are mostly correlated, not independent. 

Within-scale (i.e., both are related with same scale level, j) correlation was 

analyzed via the normalized autocorrelation function [138]. To facilitate 

easy comparisons, we attempted to fit the normalized autocorrelation 

values verse the lag sample to a logarithmic function c = a + b log10(s) 

that interprets as follows: c is the squared of the auto-correlation value, a 

is the correlation value at a unit lag sample s = 1, and b is the declining 

rate in s-1. The parameters a and b for each j are listed in Table 4.1. For all 

the environmental noisy signals, results consistently reveal that the 

correlation values of coefficients within each scale not only increase but 

also fade away rapidly as we move towards the coarsest scale. 

(b) Coefficients between scales are generally correlated. The degree of 

correlation for between-scale (i.e., both are related with successive levels, 

j and j + 1) can be expressed by the Spearman’s rank correlation 

coefficient rs [139,140], a non-parametric measure of correlation. This 

statistical test is better than the standard correlation coefficient because 

the latter will only operate when variables are related in a linear relation. 

In real situations, assuming a linear relation is often unpractical. An alpha 

of 0.05 was used. For a significance level of p-value < 0.05, there is a 
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95% chance that an association exists between the coefficients. Besides 

that, the strength of an association can be signified by |rs|. As |rs| → 1, the 

Table 4.1   Statistical properties of noise coefficients in detail scale levels of translation-invariant 

discrete wavelet transform for low, medium, and high air conditioner settings. 

Scale level  Low air conditioner setting       

j  a b rs p-value      

1  0.0181 -0.0055 0.0280 0.0736      

2  0.0185 -0.0056 -0.0105 0.5019      

3  0.0415 -0.0126 -0.1228 <0.0001      

4  0.0685 -0.0207 -0.1352 <0.0001      

5  0.1246 -0.0373 -0.1996 <0.0001      

6  0.2093 -0.0620 -0.1338 <0.0001      

7  0.4200 -0.1228 -0.2778 <0.0001      

8  0.6119 -0.1771 -0.1467 <0.0001      

9  0.7546 -0.2227 0.0031 0.8433      

10  1.1340 -0.3305 -0.0061 0.6973      

11  1.3887 -0.3887 0.0090 0.5633      

12  1.3891 -0.3957 - -      

           

Scale level  Medium air conditioner setting  High air conditioner setting 

j  a b rs p-value  a b rs p-value 

1  0.0173 -0.0053 0.0353 0.0237  0.0174 -0.0053 0.0340 0.0296 

2  0.0186 -0.0057 -0.0419 0.0073  0.0186 -0.0057 0.0442 0.0047 

3  0.0379 -0.0115 -0.1327 <0.0001  0.0458 -0.0139 -0.1735 <0.0001 

4  0.0647 -0.0196 -0.1474 <0.0001  0.0718 -0.0216 -0.0797 <0.0001 

5  0.1043 -0.0314 0.0158 0.3132  0.1266 -0.0380 -0.1758 <0.0001 

6  0.2138 -0.0636 -0.2141 <0.0001  0.1970 -0.0591 -0.0667 <0.0001 

7  0.3880 -0.1149 -0.2998 <0.0001  0.3803 -0.1131 -0.3522 <0.0001 

8  0.5897 -0.1736 -0.0751 <0.0001  0.7048 -0.2066 -0.0987 <0.0001 

9  0.7643 -0.2260 -0.0419 0.0073  0.8578 -0.2484 -0.0185 0.2375 

10  1.1775 -0.3383 0.0656 <0.0001  1.3028 -0.3674 -0.0325 0.0377 

11  1.3953 -0.3923 0.0181 0.2473  1.2635 -0.3579 0.0266 0.0884 

12  1.3425 -0.3835 - -  1.5963 -0.4524 - - 
a refers to correlation value at a unit lag sample; b, declining rate in the logarithmic function c = a
+ b log10(s) for within-scale correlation measure; rs, Spearman’s rank correlation coefficient; p-
value, level of significance for between-scale (j and j+1) correlation measure. A p-value < 0.05 
was considered statistically significant.         
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strength of the monotonic relationship increases. However, when rs = 0, 

no monotonic relationship is present. Both rs and p-value for each pair of 

scale levels (j and j+1) are summarized in Table 4.1. These results 

advocate that the coefficients possess certain degree of correlation 

between scales, regardless of the air conditioner settings. 

Based on the above two observations, one can confirm that correlation between 

noise coefficients exists in TIDWT, both within- and between-scale. The most likely 

explanation for the existence of correlation is the inherent spectral features of the noise 

and the non-orthonormality of TIDWT. This unique interaction property between 

coefficients and TIDWT is perhaps one of the contributions to the success of wavelet-

domain motion estimation [141,142]. Here, for denoising applications, we 

incorporated a correlation limit in the LD threshold to handle this association 

characteristic between coefficients, with the aim to optimize noise cancellation in 

translation invariance domain. 

To determine the correlation limit in the proposed LCD threshold, we examined 

all the possible correlations in the TIDWT domain. A number of formulas have been 

previously derived that highlighted the relationship between the covariance rkl in 

Equation (4.11) and the set of all translations and dilations in both the scaling function 

and wavelet function at dyadic rationals [135]. Among these formulas, the one that can 

best approximate the rkl is the correlation between scaling coefficients. To illustrate 

this, let j
kc  be the scaling coefficients at scale j, and { }N

kkz 1
i.i.d.i.i.d.

==z  be the 

independent identically distributed (i.i.d.) random variables input. Then the 

covariances between j
kc  satisfy the following formulas: 
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are the à-trous filter coefficients in the scaling equation [127] for the autocorrelation 

function Ф of the compactly supported scaling function. 

The autocorrelation function Ф is the fundamental function of the symmetric 

iterative interpolation scheme referred in [143]. The outcome of repeating the 

Lagrange iterative interpolation process converges to the values of Ф at dyadic 

rationals as j → ∞, and Ф(2-j) → 1 as j → ∞. Analogously, when the same process is 

applied to the orthogonal Daubechies scaling function, an approximation of the scaling 

function values can be obtained [135]. Several researchers [127,144] have further 

explored the applications of Ф for compactly supported wavelets. They demonstrated 

that Ф(2-j) can possibly dominate the correlation terms of scaling and wavelet 

coefficients at scale level j, as well as the cross-correlation terms. For instance, the 

inequality in [144], 

 ( ) ( ) ( )xxx Φ−Φ=Ψ 22  (4.13) 

suggests that Ф(2-j) > Ψ(2-j). Attributed to these properties of Ф, one can presume that 

Ф(2-j) is the best estimate of the covariance rkl at j. Table 4.2 indicates the correlation 

limit in Equation (4.10) for different length of Daubechies filters at different j. 
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As the noise variance for colored noise can change from one frequency band to 

another, the LCD threshold is not a constant but varies with scale levels owing to 

threshold dependency on the noise variance. The increasing LCD threshold is 

consistent with the phenomenon that denoising via TIDWT requires slightly larger 

threshold than denoising via DWT [135,145]. When the wavelet transform is 

orthogonal (i.e., DWT where correlation coefficients and redundant information 

vanish), the LCD threshold functions like the LD threshold [134] 

 )(log2))01((log)01(2 ee
LD NNt jjj σσ =++= . (4.14) 

 

4.2 Snore Activity Detection 

Apart from signal enhancement, SA detection (i.e., the process of discriminating snore 

presence and silence or background noise) is another essential preprocessing stage 

before analyzing the acoustical properties of snores to distinguish between patients 

with and without OSA. Several studies [98,146,147] on segmentation and 

classification of snores have been published recently. Conventional measures, such as 

Table 4.2   Correlation limit for different length of Daubechies filters at different scale levels. 

  Scale level 

Daub  1 2 3 4 5 6 

2  0.5000 0.7500 0.8750 0.9375 0.9688 0.9844 

4  0.5625 0.8438 0.9492 0.9844 0.9954 0.9987 

6  0.5859 0.8709 0.9639 0.9904 0.9975 0.9993 

        

  Scale level 

Daub  7 8 9 10 11 12 

2  0.9922 0.9961 0.9980 0.9990 0.9995 0.9998 

4  0.9996 0.9999 1.0000 1.0000 1.0000 1.0000 

6  0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 
Daub refers to length of Daubechies filter. 
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short-time energy and zero-crossing rate, were adopted in these studies to determine 

snore segment boundaries. While providing sufficient cues for boundary detection, 

these measures are based on averages over windows of fixed length and allow only a 

limited flexibility in the selection of the time-frequency resolution. Wavelet transform, 

on the other hand, are well-localized in both time and frequency. Coarse scale 

wavelets are localized in frequency, whereas detail scale wavelets are localized in time. 

As a consequence of this localization property of wavelet decomposition, the detection 

of signals through wavelet transform may be accomplished more accurately. Here, we 

proposed a SA detector via TIDWT to explore the feasibility of using TIDWT for SA 

detection. 

 

4.2.1 Snore Activity Detector 

As pointed out in Section 3.3, a snoring episode can be characterized as an inspiratory 

and an expiratory snore segment with a brief silence between them. Attributable to the 

background noise, the desired snore signals are contaminated and the noise spectrum 

profile can be estimated in the silence region. In the proposed preprocessing system, 

where snore signals are enhanced and SA are identified, the snoring episode is first 

decomposed into several scale levels using TIDWT.  

As an illustrative example in Figure 4.2, the wavelet coefficients in each level 

are thresholded based on the LCD threshold, and subsequently manipulated within a 

SA detector to construct a SA envelope. Because of the multiresolution analysis 

property of wavelet transform, the envelope for each scale level provides useful cues 

for determining snore segments correctly. The envelopes for all levels, including the 

one formed by the scaling coefficients, are eventually summed up to obtain a dynamic 

SA feature for segment boundary detection. Figure 4.3 exemplifies SA detection for 
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two scale levels on the snoring episode shown in Figure 3.4. We noticed that the 

magnitudes of the SA feature in both the inspiratory and expiratory snore segments are 

always greater than those in the silence regions.  

The SA detector has a working principle quite similar to the shifted delta 

cepstrum widely used in speech recognition [148]. It is the mean absolute value of the 

delta coefficients defined as 

 ∑
=

∆=
K

k

j
ki

j
i c

K
d

1
,

1  (4.15) 

Figure 4.3   Envelopes for (a) detail scale level 1, (b) detail scale level 2, (c) coarse scale level 2,

and (d) snore activity feature of a snoring episode undergoing snore activity detection, with snore

activity threshold and segment boundaries indicated by green solid line and dotted lines,

respectively.   
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denotes the kth delta coefficient in the ith frame at jth level. The delta coefficient is 

obtained by a first-order polynomial over a size of (2N+1) coefficients, centered on the 

current coefficient. Unlike the delta cepstrum that uses cepstrum coefficients from 

neighboring frames (interframe processing), the SA detector uses coefficients within a 

particular frame (intraframe processing). In a nutshell, the SA detector measures the 

local variation of each coefficient and emphasizes the dynamic aspects of the snore 

signals spectrum. 

Since snore signals are almost noise-free after wavelet thresholding, only a 

simple SA threshold is needed to establish the endpoints of snore segments. This 

threshold is derived from the statistics of the SA feature, i.e., 

 SS
SA 3σµ +=t  (4.17) 

where µS and σS are the mean and standard deviation within the silence regions, 

respectively. SA decision is made when the SA threshold is exceeded. Considering a 

Gaussian probability density function [139], the threshold can reject up to 99.7% of 

the silence samples, thus accepting mostly the snore signal samples.  

 

4.3 Preprocessing System Appraisal 

4.3.1 Experimental Conditions 

4.3.1.1 Patient Dataset 

Snoring sounds of the 40 patients (30 apneic and 10 benign) tabulated in Table 1.1 

were captured in parallel with PSG via the snore signal acquisition system (see 

Chapter 3) in the sleep laboratory. 10 snoring episodes of length 218 points (≈ 6 s) for 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 4 Snore Signal Preprocessing System 62 
 ____________________________________________________________________________________________________________________________________________________________________________________________  

 

each episode (equivalent to at least a complete breathing cycle) were randomly 

extracted from each patient with segment boundaries marked out by a group of 8 

normal-hearing polysomnographic technicians from the Sleep Disorders Unit and 8 

normal-hearing signal processing specialists from our institution using Cool Edit 

ProTM, giving a total of 400 snoring episodes for analysis. 

 

4.3.1.2 Optimal Parameter Selection 

At the core of any wavelet-based denoising method, apart from the type of wavelet 

transform and the thresholding methodology as discussed previously, there are other 

decisions to be made regarding the selection of the mother wavelet function and the 

optimal level of decomposition. The nature of the mother wavelet defines the 

functional basis which the signal of interest is decomposed. The more a wavelet 

resembles the signal, the better it denoises the signal. It is often desired that the 

wavelet has properties, such as regularity, vanishing moments, and symmetry. In this 

work, we chose the Daubechies family of wavelets due to their outstanding 

fundamental vanishing moment property, or equivalently, the capability of the scaling 

functions to reproduce maximal degree of polynomials with minimal support 

[136,137].  

Within the Daubechies wavelet family, we adopted filter length 4 (Daub4) and 

its corresponding 17 decomposition levels for snore signal enhancement via the LCD 

threshold. Figure 4.4 renders the average SNR across the existing dataset for each 

possible length of Daubechies filter and level of decomposition.  It can be clearly seen 

that Daub4 with 17 decomposition levels delivers higher SNR improvement than the 

other possibilities. A probable reason is that as a lower order wavelet, it can better 

replicate the fast variations in snore signals. Furthermore, the hard-thresholding rule 
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Figure 4.4   Signal-to-noise ratio (SNR) for (a) different length of Daubechies filters at

decomposition level = 17 and (b) different level of decomposition at filter length = 4, under soft-

and hard-thresholding rules.   
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Figure 4.5   Snore segment boundary detection accuracy for (a) different neighboring coefficients 

at overlapping size = 75% and (b) different overlapping sizes at neighboring coefficient = 1, given

by several tolerance degrees: ±25 ms, ±50 ms, ±75 ms, ±100 ms, and ±125 ms.  
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outperforms the soft-thresholding rule. 

Immediately after thresholding, the wavelet-based SA detector operates on a 

frame-by-frame basis at each scale level j. The preferred frame size is 1024 sample (≈ 

23 ms) because the usual fundamental frequency of snore signals can be as low as 50 

Hz (≈ 20 ms) [25,149,150]; hence, snore signals are likely to be quasi-stationary in 

such a time period, as in speech signal processing [151,152]. To prevent smearing, the 

successive frames were 75% overlapped using a Hanning window [113-115], equated 

in Equation (3.6). Moreover, the intraframe neighboring coefficient N = 1 is 

recommended as it can yield a higher accuracy for boundary detection relative to the 

other possibilities. The justifications for selecting these parameters are revealed in 

Figure 4.5, which highlights the results for detecting snore segment boundaries given 

by the various tolerance degrees (±25 ms, ±50 ms, ±75 ms, ±100 ms, and ±125 ms) 

through the SA detector and for different overlapping sizes and neighboring 

coefficients. 

 

4.3.2 Snore Signal Enhancement 

4.3.2.1 Theoretical Statistics 

Theoretical investigations were carried out to assess the effectiveness of the proposed 

LCD threshold based on statistical theorems mentioned in [135,153]. Assuming that 

the noise coefficients in TIDWT domain follow a Gaussian distribution (a property 

that is preserved during wavelet transformation [154]), then the difference between the 

probability of correlated random variables below a threshold and the probability of 

independent identically distributed random variables below the same threshold can be 

expressed as 
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with an error term and a constant K. The objective is to determine a threshold 

 [ ]JjNj ;1,))1((log2 e ∈∀+≥λ  (4.19) 

to account for the maximal size of random variables at level j, and that the error term 
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By fulfilling the previous criteria, it also implies that { }( )Nj
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kkP +

=
≤ 1

1
max λξ → 1 as N → ∞, a similar analytical approach used for deriving the 

universal threshold with soft-thresholding rule [130,131]. A possible threshold that 

fulfills the previous criteria is the proposed LCD threshold in Equation (4.9). A proof 

is presented in the following lemma. 

Consider the maximal level of decomposition j = J, ( )lkklr ξξ ,Cov= , where 

{ }( ) Wz=+
=

NJ
kk
1

1ξ  is the correlated random variables with zero mean and a unit standard 

deviation, as well as 1max <=
≠ kllk

rφ . The proposed LCD threshold 
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Proof: Owing to the orthogonal properties of scaling and wavelet filters, several 

number of covariance rkl are zero [135]. The total number of nonzero terms for 1 ≤ k < 

l ≤ (1+J)N can be approximated as follows: 
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where D = (length of Daubechies compactly supported filter)/2. Accordingly, the error 
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The correlation limit plays a significant role in the LCD threshold, especially 

when J = log2 N as shown next. If 0=φ , then  

 ))1((log2 e
LCD NJt +=  

and 
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The LCD threshold without the correlation limit still works well for J < log2 N. On the 

contrary, it may not function properly for J = log2N as the error term does not 

approach zero as N → ∞, i.e., 
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From the previous derivation, one may reasonably infer that the proposed LCD 

threshold is suitable for denoising application in TIDWT domain for all cases. 

However, to avoid overthresholding, we utilized the LCD threshold at two critical 

scale levels: (a) the finest level of decomposition (j = 1), where most noise coefficients 

are present with minimum useful signal coefficients; and (b) the optimal level of 

decomposition (j = J) to guarantee that error term approaches zero. At the remaining 

scale levels (1 < j < J), a smaller LCD threshold can be employed by setting 0=φ . 
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4.3.2.2 Objective Measures 

Besides the theoretical assessment, the LCD threshold was comparatively evaluated 

with the LD threshold under the soft- and the hard-thresholding rules for DWT and 

TIDWT by means of SNR equated in Equation (3.7).  

The improvement in average SNR of the denoised snoring episodes is illustrated 

in Figure 4.6. Results are provided as net improvement so that relative effectiveness 

can be observed from the six comparison methodologies, namely LD threshold with 

DWT, LD threshold with TIDWT, and LCD threshold with TIDWT, for both soft- and 

hard-thresholding rules. The proposed LCD threshold under the hard-thresholding rule 

performs much better (0.96–7.50 dB) than the other methodologies, with an SNR 

improvement of 3.02–38.22 dB over noisy snore signals. Conversely, when the LCD 

threshold is applied with the soft-thresholding rule, the SNR improvement is slightly 

smaller (0.27–0.70 dB) than that of the LD threshold for both thresholding rules, 

which may be attributed to oversmoothing of the denoised signals, causing 

unnecessary reduction in signal amplitude. These results are in agreement with the 

Figure 4.6   Signal-to-noise ratio (SNR) comparison for various wavelet thresholding

methodologies with soft thresholding (red) and hard thresholding (blue): discrete wavelet

transform (DWT) and level-dependent (LD) threshold, translation-invariant discrete wavelet 

transform (TIDWT) and LD threshold, and TIDWT and level-correlation-dependent (LCD) 

threshold. 
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earlier discussions. Firstly, translation-invariant denoising is found to be superior to 

classical DWT in denoising. Secondly, because of redundancy and correlation between 

coefficients, translation-invariant denoising requires slightly higher thresholds than 

orthogonal DWT denoising. Nonetheless, careful implementation of the threshold for 

TIDWT denoising is crucial to alleviate the effects of overthresholding. Finally, hard 

thresholding may be more appropriate for translation-invariant denoising than soft 

thresholding. 

 

4.3.2.3 Subjective Measures 

A subjective perceptual MOS measure [151,152] was utilized to augment the objective 

SNR measure for accessing the naturalness and intelligibility of the enhanced snore 

signals. MOS was yielded by having the group of polysomnographic technicians and 

signal processing specialists rate the quality of the enhanced snore signals on a 5-point 

scale where 5 indicates excellent quality and 1 indicates bad quality with annoying and 

objectionable distortion. The scores were then averaged, giving a single evaluation 

metric for each comparison methodology. 

Subjective outcomes using MOS for the same comparison methodologies are 

depicted in Figure 4.7. The quality rating ranges from 1 (bad) to 5 (excellent). There is 

an interesting difference between the MOS and SNR results. While the relative MOS 

for hard thresholding are in line with the corresponding SNR value, soft thresholding 

for LCD threshold receives higher rating than LD threshold in TIDWT. The net result 

is that the LD threshold with soft thresholding did not perform as well as the LCD 

threshold with soft thresholding for TIDWT. This difference between the MOS and 

SNR results may be a consequence of the presence or absence of short-term spurious 

oscillations in the denoised signals that are known to have stronger influences in one’s 
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perception than SNR value. Limited listeners for the MOS evaluation may also be a 

contributing factor. Nevertheless, it is evident from these results that the proposed 

LCD threshold with hard-thresholding rule under TIDWT setting performs best among 

the tested wavelet thresholding schemes for snore signal enhancement, both in SNR 

and MOS measures. 

 

4.3.3 Snore Activity Detection 

The robustness of the SA detector was comparatively evaluated with the segmentation 

subsystem developed in [147] for snoring episodes. In the subsystem, short-time 

energies and zero-crossing rates of signal frames of length 100 ms with 50% overlap 

were computed. Activity frames were marked when the energy and zero-crossing rate 

values of those frames were simultaneously above the recommended energy threshold 

and zero-crossing rate threshold. Boundaries of episodes were determined by 

continuities of activity frames, and episodes separated below certain duration were 

Figure 4.7   Mean opinion score (MOS) comparison for various wavelet thresholding

methodologies with soft thresholding (red) and hard thresholding (blue): discrete wavelet 

transform (DWT) and level-dependent (LD) threshold, translation-invariant discrete wavelet 

transform (TIDWT) and LD threshold, and TIDWT and level-correlation-dependent (LCD) 

threshold. 
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merged. To access the effectiveness in identifying the snore segment boundaries, we 

compared the detected endpoints to the hand-labeled ones, with tolerance of ±25 ms, 

±50 ms, ±75 ms, ±100 ms, and ±125 ms. For example, a snore segment was deemed 

‘correct’ if the time difference between the detected endpoints and the manually 

labeled ones were within ±25 ms. 

Figure 4.8 compares the performance of the conventional energy and zero-

crossing rate approach adopted in [147] and the proposed SA detector in TIDWT 

domain. Within the tolerance of ±25 ms, 50.63% of the snore segments are correctly 

detected by the wavelet-based approach, whereas 7.46% by the conventional approach. 

On the other extreme, where the tolerance degree is ±125 ms, the wavelet-based 

approach yields an accuracy of 97.47%, while the conventional approach yields only 

86.57%. A close inspection of Figure 4.8 shows that the wavelet-based SA detection is 

at least 10% more effective the conventional approach. This result lends support to our 

earlier hypothesis that good localization property in both the time and frequency 

domain of TIDWT may effectively aid SA detection.  

 

Figure 4.8   Accuracy comparisons between conventional (energy and zero-crossing rate) and 

wavelet-based (translation-invariant discrete wavelet transform (TIDWT) and snore activity (SA)

detector) approaches in snore segment boundary detection at several tolerance degrees: ±25 ms

(red), ±50 ms (green), ±75 ms (blue), ±100 ms (cyan), and ±120 ms (magenta). 
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4.3.4 Clinical Efficacy 

To examine the clinical usefulness of the proposed preprocessing system, we ran a 

simple trial comparing the diagnostic results from frequency analysis of the existing 

400 inspiratory snores before and after preprocessing. The diagnostic performance was 

statistically assessed through the receiver operating characteristic (ROC) curve 

analysis [155-157] programmed in MATLABTM, and the results were confirmed by 

means of a statistical software package (MedCalcTM, version 9.3.6.0, MedCalc 

Software). An optimal threshold value was determined based on maximum sum of 

sensitivity and specificity, along with an area under ROC curve (AUC), standard error 

of AUC (SE), sensitivity, specificity, and statistical significance (p-value). The p-value 

was calculated from a two-tailed z-test [139,140,157], with a null hypothesis for AUC 

= 0.5. The lower the p-value (< 0.05), the greater is the AUC difference from 0.5, and 

therefore, the better is the ability to differentiate between apneic and benign patients. 

Following the analytical procedures in the study by Michael el al. [94], power 

spectrum of each snore before (as in [94]) and after preprocessing was generated from 

the FFT [113,114] with a Hanning window of 16384 samples (≈ 372 ms). The FFT is 

primarily formulated as  

 ( )( ) [ ]Nn
N

nkjxX
N

k
kn ;1,112exp

1

∈∀⎟
⎠
⎞

⎜
⎝
⎛ −−−

= ∑
=

π  (4.21) 

Table 4.3   Diagnostic performance of spectral peak frequency (PF) using the fast Fourier 

transform of apneic and benign snores before and after preprocessing. 

Condition Thre (Hz) AUC SE Sens (%) Spec (%) p-value 

Before preprocessing 232 0.6485 0.0424 45.3 86.0 0.0005 

After preprocessing 240 0.8080 0.0311 76.7 82.0 < 0.0001
Thre refers to threshold in hertz; AUC, area under receiver operating characteristic curve; SE, 
standard error of AUC; Sens, sensitivity in percentage; Spec, specificity in percentage; p-value, 
value of statistical significance which was considered to be present when p-value < 0.05. 
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where { }N
kkx 1==x  is a snore signal with power-of-two length N, and 1−=j . Spectral 

PF was subsequently extracted to classify AS from BS. Diagnostic results for snores 

analyzed before and after preprocessing are listed in Table 4.3. While both produce 

evidences that PF of snore signals carry valuable information for OSA detection (p-

value ≤ 0.0005), preprocessed snores deliver a higher diagnostic accuracy (AUC = 

0.8080, SE = 0.0311, sensitivity = 76.7%, specificity = 82.0%, and p-value < 0.0001).  

Apart from removing unwanted background noise and identifying snore segment 

boundaries, the proposed system can also helpfully mark out the endpoints of other 

sleep sounds due to somniloquy and body movements, as displayed in Figure 4.9, 

without influencing the above diagnostic outcomes. 

 

Figure 4.9   Snore signals of an apneic patient (a) before and (b) after preprocessing; a benign

patient (c) before and (d) after preprocessing, and sleep sounds due to somniloquy and body

movements (e) before and (f) after preprocessing. Segment boundaries are indicated in green. 
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4.4 Summary 

This chapter proposes an advanced preprocessing system for snore signal enhancement 

and SA detection in a sleep laboratory environment. The proposed system 

concurrently performs two important tasks in a TIDWT domain: (a) wavelet-based 

denoising via a LCD threshold that tailors for colored noise embedded in snore signals; 

and (b) wavelet-based endpoint identification via a SA detector. Enhancement results 

demonstrate that the LCD threshold outperforms the LD threshold, both in terms of 

SNR and MOS, with an SNR increment between 3.02 dB and 38.22 dB over noisy 

snore signals. The robust statistical quality of the LCD threshold can be verified 

theoretically. In addition, results for detection of snore segment boundaries suggest 

that the proposed SA detector in TIDWT domain performs better than the 

conventional short-time energy and zero-crossing rate approaches in time-domain, 

with an accuracy of 50.63–97.47%, depending on the degree of tolerance. The 

proposed wavelet-driven system elegantly combines both enhancement and detection 

of snore signals in a TIDWT domain, resulting in lower computation costs and higher 

efficiency; this is the first reported in the literature. Diagnostic results also emphasize 

the clinical efficacy of the proposed preprocessing system, with higher accuracy for 

discriminating between AS and BS. 

Upon preprocessing, snore signals can be readily subjected to further analysis 

and classification. The next chapter of this thesis presents a parametric approach for 

analyzing snore signals and to classify snores produced by apneic and benign patients.   
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The contents of this chapter are partly based on the author’s publications 
[A2,A5,A14,A15,A16]. 

Chapter 5 

 

Parametric Analysis and Classification of 

Snores 

 

As mentioned in Section 1.1.2, snoring is generated by the vibrations of soft tissues 

and/or turbulence of airflow at constrictions in the UA. Similar to the vocal tract in 

speech production [152,158-161], the UA acts as a variable acoustic filter in the 

generation of snoring sounds: attenuating the transfer of sound energy at certain 

frequencies, while allowing maximal energy through at the resonant frequencies, also 

known as formant frequencies. Depending on the shape and physical dimensions of the 

UA, different snore sounds with diverse formant frequencies may be produced. 

This chapter introduces a parametric approach to extract vital information about 

the UA anatomical structures through the estimation of formant signatures in snore 

signals. We hypothesize that formants of AS and BS may occupy different frequency 

ranges since patients with and without OSA have distinct differences in the UA 

anatomy [29-31,56,57]. Two popular techniques based on the parametric approach, 

namely linear prediction (LP) and discrete all-pole (DAP) modeling, are described, 

together with the algorithm for identifying formants in their respective spectrum. 

Experimental conditions, such as patient dataset and parameter selection procedures, 

are also highlighted. Subsequently, we presented and discussed the diagnostic 

accuracy of this approach for same- and both-gender patient groups through ROC 

curves and notched box plots. Besides that, linear and nonlinear regression models, in 
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terms of linear, quadratic, logarithmic, exponential, and power functions, are defined 

to illustrate the correlation between AHI and the proposed diagnostic markers. 

 

5.1 Source-Filter Theory for Snore Production 

The source-filter theory [158,159], proposed in 1960, is a basic principle for 

interpreting speech phenomena and to develop speech technology applications 

[152,160,161] . The source-filter model works on an assumption that the sound 

excitation source and the filter are linearly separable [152,158-161]. In other words, 

the model obeys the superposition principle, meaning that the response of the system 

to a sum of inputs is the sum of the responses to each individual input. Owing to the 

fact that the biophysics of speech production and the generation of snoring sounds 

share many similarities (e.g., both speech and snore acoustic waves transmit through 

the same upper respiratory tract, and both have their spectral characteristics modulated 

by the respiratory tract anatomy [99,162]), it is reasonable to presume that the source-

filter model may also apply to the generation of snoring sounds. 

Figure 5.1 presents a source-filter model of snore production. As can be seen, the 

model comprises of an excitation source un, which can be excited by an impulse train 

(soft tissue vibrations) and/or a random sequence (noise-like turbulent airflow); a gain 

Figure 5.1   Source-filter model of snore production. un and G denote excitation source and gain,

respectively.  H(z) denotes the transfer function of the upper airway filter, while sn and xn denote

snore before and after lip radiation, respectively. 
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G that provides flexibility in the acoustic output level; a time-varying acoustic filter 

H(z) for the UA; and a 1st-order differentiation filter for lip radiation [152,158-161]. 

In this representation, a snore xn is generated by passing a scaled excitation source 

through the variable UA filter and the lip radiation filter. Because the UA filter 

changes with time to simulate the effect of changes in the UA shape, it is the main 

ingredient in producing various snore sounds.   

 

5.2 Linear Prediction 

LP is a powerful parametric technique for estimating coefficients of a linear time-

varying autoregressive filter [163-166], grounded in the source-filter theory. It is 

widely used in speech analysis, where coefficients are computed to define a vocal tract 

filter describing the speech signals [152,158-161,163-166] .   

Figure 5.2 depicts a LP model for the UA. Consider a continuous-time signal s(t) 

= s(n∆t) = sn, where n is an integer variable referring to the sample number and ∆t is 

the sampling period, LP works on the premise that adjacent signal samples are highly 

Figure 5.2   Linear prediction model for the upper airway. H(z), p, and ak denote model transfer

function, order, and coefficients, respectively.  
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correlated, allowing the signal sn to be a linear combination of past outputs and scaled 

input [163-166], i.e.,  

 n

p

k
knkn Gusas +−= ∑

=
−

1
 (5.1) 

where p is the order of the LP model, whose transfer function is 

 ( ) ( )
( ) ∑

=

−+
== p

k

k
k za

G
zU
zSzH

1
1

 (5.2) 

and coefficients are { }p
kka 1= . Since the input is usually unknown, the signal sn can only 

be approximately predicted, as follows: 

 ∑
=

−−=
p

k
knkn sas

1

ˆ . (5.3) 

Thus, the prediction error is given by 

 ∑
=

−+=−=
p

k
knknnnn sassse

1

ˆ  (5.4) 

which implies that the smaller the error, the closer is the approximation, and hence, the 

better is the LP model representing the UA.  

In accordance with the least-mean-square algorithm, commonly applied in 

adaptive filters to determine the filter coefficients [114,167], the LP coefficients 

{ }p
kka 1=  can be found by minimizing the total squared error with respect to each of the 

coefficients. Explicitly,  

 pi
a
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i
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is the total squared error over an infinite duration. 

In practice, we are interested in a finite-length signal. This is frequently achieved 

by multiplying the signal sn by a window function wn to obtain a windowed signal  

 
⎩
⎨
⎧ −≤≤

=
.otherwise,0

10,' Nnws
s nn

n  (5.7) 

By constraining the analysis interval to the range [0, N-1] and assuming the values are 

zero outside the range, the total squared error will be non-zero over the range [0, N-

1+p] and can be expressed as 
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Applying Equation (5.5) to Equation (5.8),  
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It can be recognized that the term ∑ −−
n

knin ss ''  is the covariance of '
ns ,  
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Since the right-hand side of Equation (5.10) is identical to the short-time 

autocorrelation function evaluated for ( )ki − , ( ) ( ) ( )kiRkiRki −=−=,ϕ  is an even 

function. Under these conditions, Equation (5.9) can be written as the Yule-Walker 

equations [168,169] 

 ( ) ( ) pikiRaiR
p

k
k ≤≤−=− ∑

=

1,
1

 (5.11) 

and in matrix notation as 
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This formulation corresponds to an autocorrelation method, which is preferred over 

the covariance method for estimating the LP coefficients because it is computationally 

more efficient with O(p2) operations and guarantees a stable filter. The autocorrelation 

method yields a p × p symmetric Toeplitz matrix [170] that facilitates the applicability 

of Levinson-Durbin’s recursive procedures [171] to solve the LP coefficients without 

direct matrix inversion, as specified below. 
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21 −−= iii EkE . (5.13e) 

Equations (5.13b)–(5.13e) are recursively solved for i = 1, 2,…, p, and the coefficients 

of the pth-order LP model are  

 ( ) pjaa p
jj ≤≤= 1, . (5.14) 

In addition, the minimum total squared error Ep is related to the gain G as the total 

energy in the input 

 ( ) ( )∑
=

+==
p

k
kp kRaREG

1

2 0 . (5.15) 

Even though the estimation of autoregressive filter using LP has extensively 

employed in various speech processing applications (e.g., speech modeling and 
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recognition), the LP technique has its limitations: it inadequately models the vocal 

tract filters for high-pitched sounds and voices [165,172,173]. Consequently, the LP 

envelope fails to match the signal spectrum, and its peaks (formants) tend to drift 

towards the pitch harmonics, causing substantial inaccuracies in formant frequencies. 

This is attributed to (a) the aliasing occurring in the autocorrelation method, which 

grows with increasing fundamental frequency of the excitation source; and (b) the 

error cancellation property inherent in the LP error criterion [172,173].  

As highlighted earlier, the error criterion for LP is based on the least squares 

distance between the actual and the predicted values. In the frequency domain, the LP 

error criterion for discrete spectra is equivalent to minimizing [172,173] 
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where  
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is the spectrum of LP envelope, whereas ( )wP  is the spectrum of the signal. The term 

N is the number of a set of discrete frequencies nw  with the range ππ ≤≤− nw , and 

1−=j . The gain G is included in the coefficients of the denominator; therefore, a0 

is not confined to 1. Minimization of ELP with respect to the LP coefficients { }p
kka 1=  

yields the Yule-Walker equations 

 ( ) pikiRa
p

k
k ≤≤=−∑
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where 
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is the autocorrelation of the discrete signal spectrum ( )nwP . The minimization process 

sets the autocorrelation of the continuous LP envelope  

 ( ) ( ) ( )∫−=
π

ππ
dwjwiwPiR expˆ

2
1ˆ

LPLP  (5.21) 

to that of the discrete signal spectrum, i.e., 

 ( ) ( ) piiRiR ≤≤= 0,ˆ
LP . (5.22) 

Substituting the spectrum of the signal  

 ( ) ( ) ( )∑
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−=
l

jwllRwP exps  (5.23) 

where 

 ( ) ( ) ( )∫−=
π
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dwjwiwPiR exp

2
1

s  (5.24) 

is the autocorrelation of the signal spectrum into Equation (5.20) yields the 

relationship between R and Rs: 
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For a periodic excitation source, ( ) Nnwn 12 −= π , where N denotes the period of 

excitation, Equation (5.25) reduces to  

 ( ) ( ) ilNiRiR
l

∀−= ∑
∞

−∞=

,s  (5.26) 

which indicates the presence of aliasing in the autocorrelation domain whenever a 

spectral envelope is sampled at a set of discrete frequencies. By further examining the 

above equations, one can also deduce that    

 ( ) ( ) ( ) ( ) piiRlNiRiRiR
l

≤≤≠−== ∑
∞

−∞=

0,ˆ
ssLP . (5.27) 
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In essence, LP fails to compensate for the aliasing effect since the 

autocorrelation corresponding to the LP envelope will always equal an aliased version 

of the signal spectrum rather than the original signal spectral envelope. The 

autocorrelation aliasing becomes more severe when the pitch increases as there are 

fewer harmonics, thereby degrading the LP modeling accuracy for high-pitched 

sounds and voices. Another explanation for the inadequacy of LP envelope in 

matching the original envelope is the error cancellation property [172,173] possessed 

by the LP error criterion in Equation (5.16). The errors due to poor fitting when 

( ) ( )wPwP LP
ˆ>  are cancelled by those errors when ( ) ( )wPwP >LP

ˆ , resulting LP to 

select an envelope other than the ideal one passing through all the spectral points.    

 

5.3 Discrete All-Pole Modeling 

The drawbacks of LP have led to the introduction of DAP modeling [173], with an 

objective to resolve the aliasing problem faced by LP, and hence, to correctly estimate 

the autoregressive filter. This objective is achieved by employing a discrete version of 

the Itakura-Saito error measure [174,175]  
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where ( )nwP  is the discrete signal spectrum defined at N discrete frequencies wn with 

the range ππ ≤≤− nw , and ( )nwPDAP
ˆ  is the DAP model spectrum. Unlike ELP in 

Equation (5.16), EDAP has the prefect-fit property that is always non-negative and 

gives a minimum value (zero) only when ( ) ( )nn wPwP DAP
ˆ= . Moreover, this error 

measure does not forgo any of the advantages of LP (e.g., perfect modeling for low 

periodic and random excitation sources) [173]. 
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To satisfy the condition for minimizing EDAP, Equation (5.17) is rewritten as  
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Substituting Equation (5.29) into Equation (5.28), and then setting  

 pi
d

E

i

≤≤=
∂
∂ 1,0DAP  (5.32) 

yields  

 ( ) ( ) piiRiR ≤≤= 0,ˆ
DAP  (5.33) 

which appears deceptively identical to Equation (5.22). The main different is that 

( )iRLP
ˆ  is the autocorrelation of the continuous LP spectrum ( )wPLP

ˆ , whereas  

 ( ) ( ) ( )∑
=

=
N

n
nn ijwwP

N
iR

1
DAPDAP expˆ1ˆ  (5.34) 

is the autocorrelation of the DAP spectrum sampled at the same discrete frequencies as 

the signal spectrum. Accordingly, DAP modeling can suitably match the aliased 

autocorrelation of the discrete signal spectrum to the autocorrelation of the DAP 

model aliased in the same way. Thus, it is superior to LP in analyzing periodic 

excitation source; however, at the price of increased computational costs and 

algorithmic complexity because there is no closed-form solution for the DAP 

coefficients and an iterative method [173] must be implemented, as detailed below.   

DAP coefficients are obtained by using the definition in Equation (5.17) and 

setting  
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This produces a set of nonlinear equations 
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For simplicity, a property of autoregressive filter, formulated as    
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is applied to compute the DAP coefficients { }p
kka 0= . The term 
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is the time-reversed impulse response of the discrete frequency sampled autoregressive 

model and a function of the coefficients, which yields  

 ( ) ( ) piihkiRa
p

k
k ≤≤−=−∑

=

0,ˆ
0

 (5.39) 

when substituting Equation (5.37) into Equation (5.36). The DAP coefficients are 

eventually solved by the following steps [173]:  

(a)  perform peak picking on the signal spectrum to yield the locations nw , the 

magnitudes ( )nwP , and the number N of peaks;  

(b) calculate ( )iR  based on Equation (5.20);  

(c) find an initial estimates of { }p
kka 0=  using ordinary linear prediction;  

(d) determine ( )ih −ˆ  using Equation (5.38);  

(e) solve Equation (5.39) for new { }p
kka 0=  estimates; 

(f) examine EDAP using Equation (5.17) and Equation (5.28); 
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(g) return to step (d) if the reduction of EDAP from previous iterations is 

greater than some threshold value (e.g., 0.0001); else continue 

(h) normalize { }p
kka 0=  so that the energy in the residual spectrum 

( )
( )

1ˆ
1

1 DAP

=∑
=

N

n n

n

wP
wP

N
; and 

(g) stop. 

 

5.4 Formant Extraction 

Formants are resonances in the UA. They manifest as energy peaks (maxima) at the 

formant frequencies in both LP and DAP spectra. Frequencies at which the formants 

occur rely upon the shape and size of the UA; therefore, it is important to 

appropriately identify formants, especially the first three formants, in order to better 

describe the UA configuration. Two typical algorithms for formant extraction are the 

root-finding and the peak-picking [152,160,176,177].  

The root-finding algorithm approximates formant frequencies by means of 

solving the poles of the autoregressive filter modeling the UA. This is achieved by 

setting the denominator of the filter to zero and determining the roots of the pth-order 

polynomial. The denominator polynomial can be expressed as a product of basic terms 

( 11 −− zzi ), where ( )iii jrz θexp=  is a pole in the z-domain with frequency  

 ii
f

F θ
π2
S=  (5.40) 

and a 3 dB bandwidth 

 ( )ii r
f

B e
S log
π

−=  (5.41) 

where ri is the magnitude of the pole, θi is the phase, and fs is the sampling frequency 
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[152,160,176,177]. The root-finding algorithm is an obvious approach towards 

formant extraction, yet it suffers from several shortcomings. Firstly, it is 

computational burdensome to obtain roots of the pth-order polynomial [176] despite 

the aids of numerical methods (e.g., Laguerre method and Muller method [178]). 

Secondly, it is difficult to tell whether an obtained root contributes to a true formant 

since the poles are susceptible to pole interaction [179], which often arises when poles 

are close together. Finally, selection of pole pairs can be tedious as it takes into an 

account the formant frequency location, bandwidth, and continuity [177].  

The peak-picking algorithm, on the other hand, merely chooses the peaks in the 

LP or DAP spectrum as formants: the first peak as first formant (F1), the second as 

second formant (F2), and the third as third formant (F3), beginning with the lowest 

frequency, with an assumption that a pole is capable of manifesting itself as a peak in 

the spectrum. Although this assumption holds most of the time, errors can still occur 

when (a) two poles appear as a single peak when they are close to one another in 

frequency; and (b) a pole attributable to frequency shaping emerge as a spurious peak, 

which would be mistakenly identified as a formant [177]. Conversely, the algorithm is 

simple and requires less computation. A study has reported that, for up to 90% of the 

time, the first three peaks of the spectrum can be truly interpreted as the first three 

formants [180], thereby augmenting the reliability of peak-picking approach. 

Furthermore, the algorithm is tractable as spurious peaks are rare [177].  

Due to these advantages of peak picking, we chose the peak-picking rather than 

the root-finding algorithm for extracting the first three formant frequencies (F1, F2, 

and F3) from both LP and DAP spectra. To accomplish this task, we developed a 

peak-picking program that successfully tracks the gradient of the spectral envelope and 

recognizes a peak when there is a change of gradient from positive to negative.  

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 5 Parametric Analysis and Classification of Snores 88 
 ____________________________________________________________________________________________________________________________________________________________________________________________  

 

5.5 Experimental Conditions 

5.5.1 Patient Dataset 

Snoring sounds of the 40 patients (30 apneic and 10 benign) listed in Table 1.1 were 

simultaneously recorded with PSG through the snore signal acquisition system (see 

Chapter 3) in the sleep laboratory. The acquired snore signals were preprocessed via 

the wavelet-based preprocessing system (see Chapter 4) to enhance the signal quality 

and intelligibility, along with the detection of snore sounds onset.  

The preprocessed snores were further analyzed by Cool Edit ProTM. For each 

patient, 40 inspiratory snores of an average root-mean-square power of -26.95 ± 6.34 

dBFS were selected over 6.58 ± 0.96 h continuous recording. The first 30 snores were 

designated as training data for computing the formant frequencies (F1, F2, and F3) and 

to derive optimal threshold values using the ROC curve analysis [155-157] elaborated 

in Section 4.3.4. AUCs and their corresponding standard errors, together with p-values 

(two-tailed z-test [139,140,157]) were also calculated. A p-value < 0.05 was 

considered statistical significant.  

In addition, the training dataset was evaluated by means of notched box plot 

[139,140,181,182], a useful graphical method for exploratory data analysis. In a 

notched box plot, the central box specifies the values from 25 to 75 percentile. The 

notched area is the 95% confidence limits for the median indicated by a middle line, 

while the whiskers show the rest of the data that are within 1.5 times the interquartile 

range from the lower or upper quartile values. Outlines are also highlighted by crosses. 

The remaining 10 snores were designated as test data to assess the sensitivity 

and specificity of the derived threshold values. In total, the dataset contains 900 AS 

and 300 BS for training, and 300 AS and 100 BS for testing. Naturalness of these 

snores was also subjectively validated by the group of polysomnographic technicians 
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and signal processing specialists [25,183].  

To increase computational efficiency in the subsequent analysis, the snores were 

first low-pass filtered at a cutoff frequency of 5000 Hz via an 8th-order Butterworth 

anti-aliasing filter [114] with a zero-phase filtering function [184] that eliminates the 

nonlinear phase distortion inherent in the infinite impulse response Butterworth filter, 

and then downsampled by a factor of 4, yielding a new sampling frequency fs = 11025 

Hz. This new sampling frequency fulfills the Nyquist criterion [113,114] since the 

maximum frequency of interest for snore signals is about 5000 Hz [99,105].  

 

5.5.2 Optimal Parameter Selection  

Prior to LP or DAP analysis, several issues concerning preemphasis and windowing, 

as well as the autoregressive filter order, are to be addressed [164]. Figure 5.3a 

illustrates the FFT spectrum of a frame size snore signal and its corresponding LP and 

DAP spectral envelopes. The signal exhibits a high-frequency roll-off. This 

phenomenon, which is commonly seen in speech signals, is likely attributed to the 

combined effect of -6 dB/octave of the excitation source (-12 dB/octave) and the lip 

radiation (+6 dB/octave). Hence, it is desirable to flatten the spectrum before LP or 

DAP analysis. Compensation for the high-frequency loss is often achieved by applying 

a preemphasis filter 

 ( ) 0.19.0,1 1 ≤≤−= − bbzzg  (5.42) 

with a familiar choice of b = 15/16 = 0.9375 [164,185-187]. Accordingly, if xn is the 

input denoised snore signal, the preemphasized signal is  

 19375.0 −−= nnn xxs  (5.43) 

where n is an integer variable. The plots of the same frame size signal after 

preemphasis are illustrated in Figure 5.3b. As can be seen, the preemphasized signal 
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spectrum is equalized; magnitudes of high-frequency components are boosted to be on 

par with the low-frequency ones. Preemphasized signals are also less subjected to 

finite-precision effects [186,187], such as underflow and overflow. 

Windowing is essential in the autocorrelation method of LP and DAP modeling. 

Application of windowing segments a signal into small finite-length frames that are 

quasi-stationary, and it avoids rapid changes of signal at the window edge, ensuring a 

smooth transition between the successive frames. We selected the Hanning window 

function given in Equation (3.6) because it is well-liked, simple to execute, and has an 

acceptable sidelobe behavior [113-115]. Since the usual fundamental frequency of 

snores can be as low as 50 Hz (≈ 20 ms), we decided on a frame size of 256 samples 

(≈ 23 ms) with an overlap of 75% between consecutive frames. These selections are 

also highly recommended for speech analysis, where the frame size normally spans in 

Figure 5.3   Spectra from fast Fourier transform (FFT), linear prediction (LP), and discrete all-

pole (DAP) modeling of a snore signal (a) before and (b) after preemphasis.  
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the range of 20–30 ms with 50% or 75% overlap [164,188,189]. Moreover, the 

selections are consistent with those in Chapters 3 and 4.  

Besides the abovementioned issues, a major consideration prior to LP or DAP 

analysis is the order of the autoregressive filter representing the UA. In other words, 

the order of LP or DAP model defines the UA resonances, which is not possibly 

known due to the complexity of the UA configuration. Nevertheless, the model order p 

can be reasonably estimated as follows [166]:  

 ( ) ( )3to22 F +≈ Np  (5.44) 

where  ( )nn FF
f

N
−

=
+1

S
F 2

 (5.45) 

denotes the number of formants in the spectrum. The extra 2 to 3 poles account for 

spectral tilt and provide spectral balance. The term fs is the sampling frequency in 

hertz, whereas  

 
l

cFF nn 21 ≈−+  (5.46) 

is the approximate spacing between neighboring formant frequencies  

 ( )
Ν∈

−
= n

l
cnFn ,

4
12  (5.47) 

where c denotes the speed of sound and l denotes the UA length. Since fs = 11025 Hz, 

c ≈ 35400 cm/s for moist air at 37ºC, the possible model orders for (a) UA length of 

18.7 cm (from larynx to lips in adults [99]) are 14 to 15; (b) UA length of 19.6 cm 

(from mid-trachea portion to upper incisor in males [190]) are 14 to 15; and (c) UA 

length of 17.7 cm (from mid-trachea portion to upper incisor in females [190]) are 13 

to 14. Based on these outcomes, we configured the UA by LP or DAP model with p = 

14, which is also a favorable opinion for the autoregressive filter describing the speech 

signals or breath sounds [160,166,191].   
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5.6 Diagnostic Results and Discussion 

Figure 5.4 exemplifies the LP and DAP spectral envelopes of a typical apneic snore 

and benign snore. It is obvious from the plots that formants of the apneic snore (F1 = 

840–861 Hz, F2 = 2347–2390 Hz, F3 = 4027–4070 Hz) have higher frequencies than 

that of the benign snore (F1 = 150–151 Hz, F2 = 711–754 Hz, F3 = 2283–2304 Hz).  

Based on the existing training dataset, mean and standard deviation of the 

formant frequencies (F1, F2, and F3) extracted from LP and DAP spectra are 

summarized in Table 5.1 and Table 5.2, respectively. Results consistently demonstrate 

quantitative differences in the formant frequencies of AS and BS for all three patient 

groups (males, females, and combined), with AS occupying higher frequency ranges 

than BS. These discrepancies can be explained by the differences in UA anatomical 

Figure 5.4   Spectra from fast Fourier transform (FFT), linear prediction (LP), and discrete all-

pole (DAP) modeling of a typical (a) apneic snore and (b) benign snore.  
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Table 5.1   Diagnostic performance of formant frequencies (F1, F2, and F3) computed using linear 

prediction of apneic (A) and benign (B) snores for males (M), females (F), and both males and 

females combined (C). 

 F1 

Type AHI Value (Hz) Thre (Hz) AUC SE Sens (%) Spec (%) p-value 

M:A 52.8 ± 24.7 750 ± 204 
(239–1425) 545 0.8977 0.0088 82.5 91.7 < 0.0001

M:B 5.3 ± 3.5 425 ± 157 
(155–852) 

F:A 23.6 ± 15.1 623 ± 150 
(299–1120) 298 0.8969 0.0088 100 95.0 < 0.0001

F:B 3.4 ± 3.2 263 ± 187 
(133–854) 

C:A 46.9 ± 25.7 724 ± 201 
(239–1425) 470 0.8992 0.0087 88.3 82.0 < 0.0001

C:B 4.6 ± 3.4 360 ± 187 
(133–854) 

         

 F2 

Type AHI Value (Hz) Thre (Hz) AUC SE Sens (%) Spec (%) p-value 

M:A 52.8 ± 24.7 1842 ± 238 
(1062–2629) 1808 0.6860 0.0164 58.3 55.0 < 0.0001

M:B 5.3 ± 3.5 1670 ± 271 
(837–2268) 

F:A 23.6 ± 15.1 1676 ± 303 
(1080–2288) 1380 0.5894 0.0183 83.3 55.0 < 0.0001

F:B 3.4 ± 3.2 1564 ± 294 
(898–2366) 

C:A 46.9 ± 25.7 1809 ± 261 
(1062–2629) 1740 0.6820 0.0165 65.0 53.0 < 0.0001

C:B 4.6 ± 3.4 1627 ± 285 
(837–2366) 

         

 F3 

Type AHI Value (Hz) Thre (Hz) AUC SE Sens (%) Spec (%) p-value 

M:A 52.8 ± 24.7 3008 ± 266 
(2036–3880) 2705 0.6117 0.0179 88.8 31.7 < 0.0001

M:B 5.3 ± 3.5 2858 ± 405 
(1319–3751)

F:A 23.6 ± 15.1 2739 ± 282 
(2272–3492) 2439 0.4160 0.0194 96.7 37.5 2.0000 

F:B 3.4 ± 3.2 2813 ± 297 
(2210–3987)

C:A 46.9 ± 25.7 2955 ± 290 
(1062–3880) 2798 0.5964 0.0182 77.3 49.0 < 0.0001

C:B 4.6 ± 3.4 2840 ± 366 
(837–3987) 

Values are presented as mean ± standard deviation and range within brackets. AHI refers to apnea-
hypopnea index in events/h; Thre, threshold in hertz; AUC, area under receiver operating 
characteristic curve; SE, standard error of AUC; Sens, sensitivity in percentage; Spec, specificity
in percentage; p-value, value of statistical significance which was considered to be present when p-
value < 0.05. 
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Table 5.2   Diagnostic performance of formant frequencies (F1, F2, and F3) computed using 

discrete all-pole modeling of apneic (A) and benign (B) snores for males (M), females (F), and 

both males and females combined (C). 

 F1 

Type AHI Value (Hz) Thre (Hz) AUC SE Sens (%) Spec (%) p-value 

M:A 52.8 ± 24.7 650 ± 103 
(377–1002) 541 0.8457 0.0112 83.8 85.0 < 0.0001

M:B 5.3 ± 3.5 454 ± 154 
(144–835) 

F:A 23.6 ± 15.1 620 ± 98 
(291–1006) 375 0.9231 0.0074 100 92.5 < 0.0001

F:B 3.4 ± 3.2 253 ± 171 
(106–816) 

C:A 46.9 ± 25.7 644 ± 103 
(291–1006) 493 0.8768 0.0098 89.0 82.0 < 0.0001

C:B 4.6 ± 3.4 374 ± 189 
(106–835) 

         

 F2 

Type AHI Value (Hz) Thre (Hz) AUC SE Sens (%) Spec (%) p-value 

M:A 52.8 ± 24.7 1706 ± 202 
(1138–2285) 1528 0.5280 0.0190 79.6 38.3 0.1419 

M:B 5.3 ± 3.5 1677 ± 246 
(817–2224) 

F:A 23.6 ± 15.1 1668 ± 273 
(1142–2356) 1380 0.6099 0.0180 86.7 47.5 < 0.0001

F:B 3.4 ± 3.2 1538 ± 331 
(703–2261) 

C:A 46.9 ± 25.7 1698 ± 218 
(1138–2356) 1405 0.5718 0.0185 91.7 32.0 < 0.0001

C:B 4.6 ± 3.4 1621 ± 290 
(703–2261) 

         

 F3 

Type AHI Value (Hz) Thre (Hz) AUC SE Sens (%) Spec (%) p-value 

M:A 52.8 ± 24.7 2797 ± 278 
(2132–3512) 2374 0.4543 0.0194 95.0 16.7 1.9813 

M:B 5.3 ± 3.5 2841 ± 377 
(1292–3777)

F:A 23.6 ± 15.1 2668 ± 291 
(2274–3581) 2250 0.3813 0.0193 100 15.0 2.0000 

F:B 3.4 ± 3.2 2777 ± 330 
(2166–3886)

C:A 46.9 ± 25.7 2771 ± 285 
(1138–3581) 2374 0.4587 0.0194 95.0 21.0 1.9665 

C:B 4.6 ± 3.4 2815 ± 360 
(703–3886) 

Values are presented as mean ± standard deviation and range within brackets. AHI refers to apnea-
hypopnea index in events/h; Thre, threshold in hertz; AUC, area under receiver operating 
characteristic curve; SE, standard error of AUC; Sens, sensitivity in percentage; Spec, specificity
in percentage; p-value, value of statistical significance which was considered to be present when p-
value < 0.05. 
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structures in patients with and without OSA. Patients with OSA usually have narrower 

and unstable UAs that collapse easily than those without OSA [29-31,56,57]. 

Apart from that, we observed that the formant frequencies for male patients are 

generally higher than female patients in their respective groupings. This is perhaps 

owing to (a) an anatomically less stable UA, which is more prone to OSA in males 

than females [192-196], or (b) simply that the sample size for female subjects (6 

apneic and 4 benign) is too small to be conclusive. 

For each patient group, the potential diagnostic value of formant frequencies was 

further examined through ROC curves displayed in Figure 5.5 to determine threshold 

values, along with their corresponding AUCs, SEs, and p-values, as presented in Table 

5.1 and Table 5.2. To facilitate easy interpretation, the classification results are 

graphically depicted in Figures 5.6 and 5.7 via notched box plots. The plots for both 

males and females combined clearly indicate that the threshold of F1 (LP; DAP) = 

(470; 493) Hz can best classify AS from BS, with a resultant AUC (LP; DAP) = 

(0.8992; 0.8768), SE (LP; DAP) = (0.0087; 0.0098), and p-value (LP; DAP) = (< 

0.0001; < 0.0001). This threshold value is also found to lie between the threshold for 

males, which is F1 (LP; DAP) = (545; 541) Hz, and for females, which is F1 (LP; 

DAP) = (298; 375) Hz.  

Each of the derived threshold values was applied to the corresponding test 

dataset to assess its sensitivity and specificity. Table 5.1 and Table 5.2 reveal that, for 

both-gender patient group, the yielding sensitivity and specificity are (LP; DAP) = 

(88.3%; 89.0%) and (LP; DAP) = (82.0%; 82.0%), respectively. In all three groupings, 

the thresholds for F1 constantly achieve higher sensitivity (LP: 82.5–100%; DAP: 

83.8–100%) and specificity (LP: 82.0–95.0%; DAP: 82.0–92.5%) than F2 and F3. 

Therefore, one can infer that F1 of snore signals contain rich information to detect 
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Figure 5.5   Receiver operating characteristic curves of formant frequencies (F1, F2, and F3)

computed using linear prediction (left column) and discrete all-pole modeling (right column) of

apneic and benign snores for males, females, and both males and females combined. 
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Figure 5.6   Notched box plots of formant frequencies: (a) F1, (b) F2, and (c) F3, computed using

linear prediction of apneic and benign snores for males (M), females (F), and both males and

females combined (C). Threshold values are marked on the right-hand side of the plots. 
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Figure 5.7   Notched box plots of formant frequencies: (a) F1, (b) F2, and (c) F3, computed using

discrete all-pole modeling of apneic and benign snores for males (M), females (F), and both males

and females combined (C). Threshold values are marked on the right-hand side of the plots. 
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OSA, and it can be a potential diagnostic marker for OSA. 

Previous studies in speech and voice analysis have demonstrated that F1 is 

associated with the degree of constriction in the pharynx; F2 is related to the degree of 

advancement of the tongue relative to its neutral position; and F3 is correlated with the 

degree of lip-rounding [152,160,197-199]. For instance, a study in acoustic 

characteristics of voice after the UA surgery for snoring has shown a significant 

reduction in F1 of the vowel /i/ and in F2 of the vowel /o/ and /u/ attributable to the 

enlargement of the oropharyngeal cavity volume resulted from the anterior-posterior 

advancement of the tongue and the widening of the palatal arch caused by the 

uvulopalatopharyngoplasty and/or the tonsillectomy [197].  

In this research work, the F1 of AS is significantly higher than of BS for same- 

and both-gender patient groups (p-value < 0.0001). Relating this to the 

pathophysiology of OSA, it is recognized that a higher AHI is associated with more 

collapsible pharynx [6,7], which is consistent with a higher degree of constriction of 

the UA, and thus, the increase in F1 of the snores. On the contrary, F2 and F3, which 

are related to the degree of advancement of the tongue and rounding of the lips, 

respectively [152,160,197-199], are noted to be not critical in the classification of 

apneic and benign patients.  

To further appraise the diagnostic power of F1, we comparatively evaluated its 

performance with those obtained from the spectral PF – an extensively adopted 

indicator for identifying apneic and benign subjects [93-96], as discussed in Section 

2.3, and to locate snoring sites [200-203]. For a fair test, PF was extracted by means of 

peak picking the PSD spectrum produced by the Welch’s averaged modified 

periodogram method [112,113] under the same experimental conditions (900 AS and 

300 BS for training, 300 AS and 100 BS for testing, and a 256-sample Hanning 
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window with 75% overlap). Results in Table 5.3 confirm that F1 can deliver better 

diagnostic accuracy than PF. For both genders combined, the threshold of PF = 275 Hz, 

with a resultant AUC = 0.8411, SE = 0.0114, sensitivity = 79.7%, specificity = 72.0%, 

and p-value < 0.0001. In all three patient groups, the thresholds of PF attain a 

sensitivity of 71.7–91.7% and a specificity of 70.0–97.5%.         

 

5.7 Diagnostic Marker Regression Models 

To illustrate the possible relationship between AHI and F1, we attempted various types 

of regression models [204-207] for fitting the scatter plot of AHI versus F1. These 

models include linear, quadratic, logarithmic, exponential, and power functions, as 

rendered in Figures 5.8 and 5.9. Parameter estimates for the regression equations, as 

well as goodness-of-fit statistics, such as coefficient of determination (R2) and residual 

Table 5.3   Diagnostic performance of spectral peak frequency (PF) computed using the Welch’s 

method (frame size = 256 samples or 23 ms) of apneic (A) and benign (B) snores for males (M), 

females (F), and both males and females combined (C). 

Type AHI Value (Hz) Thre (Hz) AUC SE Sens (%) Spec (%) p-value 

M:A 52.8 ± 24.7 652 ± 417 
(97–2341) 

336 0.8122 0.0125 71.7 70.0 < 0.0001
M:B 5.3 ± 3.5 287 ± 175 

(96–1041) 

F:A 23.6 ± 15.1 577 ± 556 
(99–2600) 

220 0.9091 0.0082 91.7 97.5 < 0.0001
F:B 3.4 ± 3.2 211 ± 218 

(88–1753) 

C:A 46.9 ± 25.7 637 ± 449 
(97–2600) 

275 0.8411 0.0114 79.7 72.0 < 0.0001
C:B 4.6 ± 3.4 257 ± 196 

(88–1753) 
Values are presented as mean ± standard deviation and range within brackets. AHI refers to apnea-
hypopnea index in events/h; Thre, threshold in hertz; AUC, area under receiver operating 
characteristic curve; SE, standard error of AUC; Sens, sensitivity in percentage; Spec, specificity
in percentage; p-value, value of statistical significance which was considered to be present when p-
value < 0.05. 
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Figure 5.8   Regression models of (a) linear, (b) quadratic, (c) logarithmic, (d) exponential, and

(e) power functions for apnea-hypopnea index (AHI) in events/h and first formant frequency (F1)

computed using linear prediction in hertz (Hz). 
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Figure 5.9   Regression models of (a) linear, (b) quadratic, (c) logarithmic, (d) exponential, and

(e) power functions for apnea-hypopnea index (AHI) in events/h and first formant frequency (F1)

computed using discrete all-pole modeling in hertz (Hz). 
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standard deviation (RSD), are tabulated in Table 5.4 and Table 5.5 for F1 computed 

using LP and DAP modeling, respectively. The present equations are derived based on 

the mean F1 of the training data from each patient and their corresponding AHI. Based 

on each type of regression equation, one can surmise a predictive AHI corresponding 

to the F1 threshold of 470 Hz for LP and 493 Hz for DAP modeling.  

Results suggest that the possible relationship between AHI and F1 can likely 

take the functional form of exponential (LP: R2 = 0.4602, RSD = 0.4614 events/h, 

predicted AHI = 10.3 events/h; DAP: R2 = 0.5784, RSD = 0.4077 events/h, predicted 

AHI = 11.3 events/h) or power (LP: R2 = 0.5334, RSD = 0.4290 events/h, predicted 

Table 5.5   Regression models for apnea-hypopnea index (AHI) in events/h and first formant 

frequency (F1) computed using discrete all-pole modeling in hertz (Hz). 

Regression Equation R2 RSD AHI†  

Linear AHI = 0.1138 (F1) – 29.2159  0.3580 23.5344 26.9 

Quadratic AHI = 0.0001 (F1)2 + 0.0571 (F1) – 16.8990 0.3613 23.4732 25.2 

Logarithmic AHI = – 249.6060 + 104.3999 Log (F1) 0.3119 24.3632 31.5 

Exponential Log (AHI) = – 0.4728 + 0.0031 (F1) 0.5784 0.4077 11.3 

Power Log (AHI) = – 6.7838 + 2.9547 Log (F1) 0.5465 0.4229 14.9 
†Predictive AHI corresponding to derived thresholds for both males and females combined (F1 = 
493 Hz). Ideally, AHI = 10.0 events/h. R2 refers to coefficient of determination; RSD, residual 
standard deviation in events/h; Log, logarithm function with base 10.   

Table 5.4   Regression models for apnea-hypopnea index (AHI) in events/h and first formant 

frequency (F1) computed using linear prediction in hertz (Hz). 

Regression Equation R2 RSD AHI†  

Linear AHI = 0.0738 (F1) – 10.4067 0.3449 23.7718 24.3 

Quadratic AHI = – 0.0001 (F1)2 + 0.1778 (F1) – 39.2095 0.3824 23.0811 26.3 

Logarithmic AHI = – 212.4891 + 89.9464 Log (F1) 0.3553 23.5832 27.9 

Exponential Log (AHI) = 0.1545  + 0.0018 (F1) 0.4602 0.4614 10.3 

Power Log (AHI) = – 5.2100 + 2.3565 Log (F1) 0.5334 0.4290 12.2 
†Predictive AHI corresponding to derived thresholds for both males and females combined (F1 = 
470 Hz). Ideally, AHI = 10.0 events/h. R2 refers to coefficient of determination; RSD, residual 
standard deviation in events/h; Log, logarithm function with base 10.   
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AHI = 12.2 events/h; DAP: R2 = 0.5465, RSD = 0.4229 events/h, predicted AHI = 

14.9 events/h). The corresponding predicted AHI values for these regression models 

are consistent with the AHI cutoff value of 10.0 events/h for AS and BS.  

 

5.8 Summary 

This chapter introduces a parametric approach via LP and DAP modeling to 

investigate the feasibility of using formant frequencies of snore signals for diagnosing 

OSA. Quantitative differences in formant frequencies between AS and BS are found in 

same- and both-gender patient groups, lending support to our hypothesis that snore 

signals of apneic and benign patients may have distinguishable formant features due to 

differences in their UA shapes and physical dimensions. AS exhibit higher formant 

frequencies than BS, especially F1, which can be related to the pathophysiology of 

OSA. Regardless of the techniques (LP or DAP modeling) used for computing F1, the 

diagnostic performance of F1 for all three patient groups is superior to that of PF, with 

a sensitivity of 82.5–100% versus 71.7–91.7% and a specificity of 82.0–95.0% versus 

70.0–97.5%. Furthermore, the relationship between AHI and F1 can best describe by 

the exponential or the power regression model, with a predictive AHI of 10.3–14.9 

events/h. 

While the parametric approach of analyzing snore signals has shed light on the 

detection of OSA, it is tailored to the framework of classical linear models and ergodic 

Gaussian random processes. Consequently, it may not adequately characterize snore 

signals that are generally nonstationary, nonlinear, and non-Gaussian in nature 

[99,149,208-212]. The next chapter of this thesis attempts to study and assess 

nonlinearities in snores using a wavelet-driven nonlinear approach, and subsequently, 

classify the snores generated by apneic and benign patients.     
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The contents of this chapter are partly based on the author’s publications [A3,A8]. 

Chapter 6 

 

Nonlinear Analysis and Classification of Snores 

 

Linear approximations are frequently adopted to model nonlinear phenomena due to 

their simplicity. Mathematical and structural models of the UA as a collapsible tube 

for studying snore production have been introduced according to linear acoustic theory 

[28,150,213-216]. Although these models shed light on the pathology of snoring, there 

are strong evidences for the occurrence of nonlinear fluid dynamics (airflow) 

phenomena during snoring that cannot be easily represented by linear models 

[149,208-212]. The UA is a highly complex, three-dimensional system involving 

irregular geometric structures and tissues with different biomechanical properties and 

functions. Soft tissues are generally governed by nonlinear viscoelastic behavior. 

Owing to their nonlinear properties, interactions between fundamental modes of 

oscillation in snore production can lead to certain phase relations among frequency 

components [146,162], just like those in speech production  [61-67,217,218]. Hence, 

we hypothesize that phase-coupled interaction modes may usefully classify AS from 

BS since patients with OSA have anatomical and functional abnormalities associated 

with their UA [29-31,56,57].   

This chapter examines the feasibility of employing a nonlinear dynamics 

perspective in the analysis of snore signals by means of wavelet bicoherence (WBC). 

Quadratic phase coupling (QPC), a signature of nonlinear interactions, between 

frequency modes in snore signals is highlighted. Two novel diagnostic markers, 

namely peak frequency at f1 (PF1) and peak sum frequency (PSF) in their respective
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WBC spectrum, are proposed to discriminate AS from BS in same- and both-gender 

patient groups. In the same fashion as Chapter 5, we comprehensively presented and 

discussed the experimental considerations prior to signal analysis, diagnostic 

performance of the proposed markers, and regression models between AHI and the 

proposed markers. 

 

6.1 Wavelet Higher-Order Statistics 

Wavelet polyspectral techniques have received wide acceptance in the analysis of 

nonstationary and nonlinear signals because of their ability to simultaneously 

decompose a signal into both time and frequency, unveiling possible evolutionary 

phenomena hidden in the signal. The pth-order wavelet polyspectral [219,220] relative 

to an admissible wavelet 

 ( ) ( ) ( )tjtgt ηψ exp=  (6.1) 

where g(t) is a real-valued symmetric function, η is the central frequency of the 

wavelet, and 1−=j can be defined as 
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is the continuous wavelet transform (CWT) [136,221] of a time series signal x(t) 

whose process over an interval [t0-T/2, t0+T/2] at time instant t0 for localized time 

window T is assumed to be quasi-stationary, with an inverse sum rule 
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1
1

1
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−
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that establishes a correlation between scale a0 and instantaneous frequency 
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Consider a continuous-time denoised snore signal x(t) = x(n∆t) with n as an 

integer referring to the sample number and ∆t as the signal sampling period, a time-

discretized pth-order wavelet polyspectral [219,220] at t0 = L∆t for an interval [(L-

K)∆t, (L+K)∆t] can be formulated as 
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is the CWT estimator, Ν∈k , K =  T/(2∆t), and  

 1210 −+++= pffff K . (6.8) 

 

6.2 Wavelet Bicoherence 

6.2.1 Quadratic Phase Coupling 

The normalized 3rd-order wavelet polyspectrum, also known as WBC, offers a 

quantitative measure of the presence and strength of QPC induced by nonlinearities in 

the signal production mechanism [219,220,222]. It encompasses both wavelet and 

higher-order statistics for monitoring phase coupling and nonlinear interactions. The 

robustness of WBC analysis has been demonstrated in previous studies of wind-wave 

and wave-wave interactions [223-225], dynamics of inhomogeneous electron-plasma 

systems [226,227], as well as characteristics of asthmatic wheezes [228]. 

Based on the earlier discussion in Equation (6.6), the squared WBC can be 

expressed as 
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symbolize the wavelet power spectrum and the wavelet bispectrum, correspondingly.  

QPC is often characterized to occur when two frequency modes at f1 and f2 with 

their corresponding phases θ1 and θ2 are concurrently present in a signal with a 

frequency at f = f1 ± f2 with θ = θ1 ± θ2.  The value of WBC is limited between 0 and 1, 

where 0 indicates absence of QPC, and 1 indicates complete occurrence of QPC 

between f1 and f2. One of the key advantages of WBC over Fourier-based bicoherence 

is that it can better identify short-lived quadratic interactions for both with and without 

phase coupling [222,229].  

To exemplify the concept on QPC, consider the UA as a quadratic acoustic 

system of the form  

 ( ) ( ) ( )tututx += 2  (6.12) 

where x(t) is the output of the system, and  

 ( ) ( ) ( )222111 coscos θθ +++= twAtwAtu  (6.13) 

is the input to the system with Ai, wi = 2πfi, and θi as the amplitude, angular frequency, 

and phase of the ith excitation source waves, respectively. Then,  
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where 213 www += , 214 www −= , 213 θθθ += , and 214 θθθ −= .  

Apparently, the system output contains the input frequency components, 

harmonics at (2w1, 2θ1) and (2w2, 2θ2), as well as intermodulation components at (w3, 

θ3) and (w4, θ4), which arise from nonlinear interactions between the primary 

frequency modes, w1 and w2, or equivalently, f1 and f2. Thus, applying WBC analysis 

to the output will yield a peak, whose value is close to unity, at the bifrequency (f1, f2). 

On the other hand, in the absence of nonlinearities within the acoustic system, there 

will be no phase-coupled interactions between the fundamental modes. Consequently, 

no QPC peak will exist at the bifrequency; the corresponding WBC value will be 

approximately zero. 

 

6.2.2 Feature Extraction 

A squared WBC spectrum measures the fraction of power at a given frequency 

attributed to nonlinear mode interactions [219,220,222]. To facilitate easy 

interpretation, the squared WBC is normally plotted on a bifrequency (f1, f2) plane 

shown in Figure 6.1 using its values in the principal domain, which comprises of an 

inner triangle (0 ≤ f1 ≤ Nyquist frequency fN, 0 ≤ f2 ≤ fN, 0 ≤ f1+ f2 ≤ fN) and an outer 

triangle (0 ≤ f2 ≤ f1, fN ≤ f1+ f2 ≤ 2fN -f1) [222,230].   

Two metrics are proposed to distinguish between AS and BS. Both metrics rely 

on the summation of squared WBC in the principle domain: one measures the relative 

coupling strength contributed by the frequency mode at f1, 

 ( ) ( )∑=
1

21
2
WBC1

PF1 ,ˆ
f

ffbfb , (6.15) 
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whereas the other measures the total coupling strength to a sum frequency f = f1 + f2  

owing to interactive coupling at f1 and f2,  
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Frequency component that possesses the highest coupling strength in Equation (6.15) 

and in Equation (6.16) was extracted by peak peaking and denoted as PF1 and PSF, 

respectively.  

Because wavelet coefficients of nonorthogonal wavelets (e.g., Morlet-Grossman) 

are not statistically independent, they may give rise to statistical noise level [222,228] 

in the estimation of WBC, with an upper limit given by  

 ( )[ ] ( ) ( )2121
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By inspecting the Equation (6.17), one sees that the statistical noise level is frequency 

f2 

f1 
fN  0.5fN 

0.5fN 

fN 

f1 = f2

f1 + f2 = fN

f1 + f2/2 = fN = fS/2 

IT 

OT 

Figure 6.1   A bifrequency (f1, f2) plane with principal domain comprising an inner triangle (IT)

and an outer triangle (OT). fN and fS denote Nyquist frequency and sampling frequency,

respectively. 
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dependent and dominates the bicoherence at low frequencies but declines rapidly with 

increasing frequency. For reliability of this research work, we determined PF1 and 

PSF only when their corresponding metrics were above the noise level. 

 

6.3 Experimental Conditions  

6.3.1 Patient Dataset 

The patient dataset is exactly the same as those described in Section 5.5.1. In a 

nutshell, snoring sounds were captured from 40 patients (30 apneic and 10 benign) 

tabulated in Table 1.1 via the snore signal acquisition system (see Chapter 3), and 

subsequently preprocessed using the preprocessing system within a TIDWT domain 

(see Chapter 4). From each patient, 40 inspiratory snores (30 as training and 10 as test 

data) were evaluated. Diagnostic accuracy of the proposed markers was quantified by 

means of ROC curves [155-157] and notched box plots [139,140,181,182], with a 

statistical significance of p-value < 0.05.        

  

6.3.2 Optimal Parameter Selection 

In the analysis of WBC, we selected the Morlet-Grossman wavelet  

 ( ) ( )tjtt η
σ

ψ exp
2

exp 2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=  (6.18) 

as the mother wavelet due to its excellent localization properties in both time and 

frequency [136,219-221]. Even though this wavelet is not strictly admissible since the 

average of its function over the entire space is not equal to zero, i.e., 

 ( ) 0≠∫
∞

∞−
dttψ , (6.19) 

appropriate considerations of the wavelet standard deviation σ2 and central frequency η 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 6 Nonlinear Analysis and Classification of Snores 112 
 ____________________________________________________________________________________________________________________________________________________________________________________________  

 

can yield ψ(0) ≈ 0 [136,231]. For instance, if σ2 = 1 and ( ) 3364.52log2 21
e ≈≥ πη , 

then ψ(0) < 10-33, which can be deemed as numerically admissible. In this work, we 

employed σ2 = 1.5 and η = 6. Figures 6.2a and 6.2b highlight the maximum magnitude 

of squared WBC in Equation (6.9), which was computed at a time instant t0 located at 

the center of each snore segment, for each possible value of the standard deviation (σ2 

= 0.5: 0.5: 3) and central frequency (η = 5.5: 0.5: 8). It can be noted that the magnitude 

levels almost settle down at σ2 = 1.5 and η = 6 for both AS and BS. Furthermore, these 

recommended wavelet parameters satisfy the condition of admissibility.  

Figure 6.2   Maximum magnitude of squared wavelet bicoherence for different values of (a)

wavelet standard deviation σ2 at wavelet central frequency η = 6, (b) η at σ2 = 1.5, and (c) frame

size at σ2 = 1.5 and η = 6 for apneic and benign snores. Error bars indicate one standard deviation. 
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Besides tuning the wavelet parameters for better localization, the selection of 

frame size of snore signals is equally crucial for WBC analysis because this parameter 

recognizes the competence of the estimated WBC to account for alterations in the 

signal properties [228]. Similar to the earlier computational procedures, Figure 6.2c 

depicts the maximum magnitude of squared WBC for various frame sizes (128, 256, 

512, 1024, and 2048 samples, or equivalently, about 12 ms, 23 ms, 46 ms, 93 ms, and 

186 ms). As can be seen, the magnitude fluctuation of squared WBC for AS and BS 

are rarely significant as the frame size increases beyond 512 samples, implying a 

favorable frame size of 512 samples (≈ 46 ms) for the analysis. 

 

6.4 Diagnostic Results and Discussion 

For an illustrative example of WBC analysis of snore signals, Figure 6.3 presents an 

approximated magnitude of the squared CWT of a typical apneic snore and benign 

snore, along with its temporal counterpart. It is apparent from the plots that spectral 

peaks of the apneic snore sweep across a larger frequency band (200–1200 Hz) in an 

unpredictable manner, while the peaks of the benign snore uniformly focus on a 

smaller band (50–250 Hz). The discrepancy in the time-frequency properties of snores 

accentuates the importance of wavelet polyspectral analysis in detecting short-lived 

nonlinear interactions that are veiled by the stationary assumption of the Fourier-based 

approach. 

Figure 6.4 illustrates the squared WBC spectra, bPF1(f1), and bPSF(f) of a frame 

size of the same snores.  Apart from a wider frequency band, the apneic snore exhibits 

nonlinear couplings in higher frequency range (200–1000 Hz) than that of the benign 

one (50–500 Hz), as evidently displayed on the contour plots in Figures 6.4a and 6.4b. 

Explicitly, the QPC peaks of the apneic and the benign snore are located at (f1, f2) ≈ 
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Figure 6.3   Temporal and wavelet time-frequency features of a typical (a) apneic snore and (b)

benign snore.  
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Figure 6.4   Squared wavelet bicoherence spectra of a typical (a) apneic snore and (b) benign

snore, and their corresponding (c) bPF1(f1) and (d) bPSF(f) plots. Dots in (c) and (d) denote the peaks

of PF1 and PSF, respectively.  
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(441, 419) Hz with a sum frequency at fAS = f1 + f2 ≈ 860 Hz, and (f1, f2) ≈ (172, 162) 

Hz with a sum frequency at fBS = f1 + f2 ≈ 334 Hz, respectively. A close inspection of 

the contour plots justifies the existence of fAS and fBS. Moreover, by examining the 

WBC analytical outcome of each frame of a snore in the existing dataset, we noticed 

that QPC can occur over different bands of frequencies, and this band can differ from 

one frame to another, in particular for AS, as evidenced in the CWT plots. As 

discussed in Section 1.1.1, patients harboring of OSA experience recurrent episodes of 

UA narrowing and collapse during sleep. The instable UA, together with structural 

anomalies and anatomical lesions, often generate loud chaotic snoring sounds from 

increased turbulence of airflow, which may lead to complex dynamic extension of 

frequency patterns in nonlinear interactions. 

To facilitate easy comparisons between the representative apneic and benign 

snore in the degree of nonlinearity, we qualitatively summarized the above WBC 

information by the metrics, bPF1(f1) and bPSF(f), as rendered in Figures 6.4c and 6.4d, 

respectively. Both plots consistently suggest that mode-mode interactions in the apneic 

snore are spanned in the region of higher frequencies between different components, 

whereas interactions in the benign one are in lower region with high self-coupling (f1 = 

f2) tendency, thereby manifesting themselves as distinctive peaks that resemble 

harmonic series. Accordingly, the proposed markers of the snores are PF1(apneic; 

benign) ≈ (485; 183) Hz, and PSF(apneic; benign) ≈ (861; 345) Hz, which are closely 

related to the earlier findings. These markers are good estimations of the frequency 

modes that extensively contribute in the nonlinear phase coupling, and they are 

reliable as their corresponding metrics are much above the statistical noise level. 

Further analysis of the dataset shows that AS are roughly 20% less self-coupled 

than BS. This can be elucidated by the fact that AS are commonly composed of non-
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rhythmic, high-frequency patterns with spectral PF above 400 Hz attributable to the 

vibrations of tissues at tongue base level, which is a prevailing occlusion site for OSA, 

and/or at other non-palatal snoring sites (e.g., epiglottis and supraglottic larynx), 

accompanied by turbulent noise. Conversely, BS are likely originated from soft palate 

and/or uvula, resulting in simple, low-frequency harmonics with PF below 400 Hz 

[93-95]. The PF of snores produced from soft palate, tonsils, epiglottis, and base of 

tongue can lie in the range of 105–189 Hz, 85–201 Hz, 331–510 Hz, and 1215–1277 

Hz, respectively [201]; the fundamental frequency of palatal snores and tongue base 

snores can be of 103 ± 35 Hz and 332 ± 145 Hz, respectively  [202].  

Clinical usefulness of PF1 and PSF were also assessed. Diagnostic outcomes 

contained in Table 6.1 and Table 6.2 reveal that PF1 and PSF can potentially serve as 

diagnostic markers to distinguish apneic patients from benign ones, with significant 

quantitative differences between AS and BS (p-value < 0.0001) for all three patient 

groups (males, females, and combined). For both genders combined, the thresholds of 

PF1 = 285 Hz and PSF = 492 Hz yield resultant AUC (PF1; PSF) = (0.9694; 0.9652), 

SE (PF1; PSF) = (0.0044; 0.0047), and p-value (PF1; PSF) = (< 0.0001; < 0.0001). 

These threshold values fall between those derived from the same gender patients, 

being higher for males (PF1 = 325 Hz; PSF = 551 Hz) than females (PF1 = 210 Hz; 

PSF = 368 Hz).   

A probable contributing factor for females having relative small threshold values 

in their respective groupings, apart from the modest sample size of 6 apneic and 4 

benign female subjects, is the elevated degree of UA stability in females than males 

due to either better UA anatomy or increased UA dilator muscle activity [192-195]. 

This is also the rationale why the female UA is more susceptible to partial than 

complete obstruction [196]. Nonetheless, in all three groupings, the thresholds of PF1 
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Table 6.2   Diagnostic performance of peak sum frequency (PSF) computed using wavelet 

bicoherence analysis of apneic (A) and benign (B) snores for males (M), females (F), and both 

males and females combined (C).  

Type AHI Value (Hz) Thre (Hz) AUC SE Sens (%) Spec (%) p-value 

M:A 52.8 ± 24.7 1334 ± 715 
(249–3439) 

551 0.9431 0.0062 82.5 83.3 < 0.0001
M:B 5.3 ± 3.5 432 ± 193 

(233–1265) 

F:A 23.6 ± 15.1 1253 ± 755 
(363–3358) 

368 0.9998 0.0004 100 100 < 0.0001
F:B 3.4 ± 3.2 256 ± 53 

(172–425) 

C:A 46.9 ± 25.7 1318 ± 723 
(249–3439) 

492 0.9652 0.0047 90.3 86.0 < 0.0001
C:B 4.6 ± 3.4 361 ± 176 

(172–1265) 
Values are presented as mean ± standard deviation and range within brackets. AHI refers to apnea-
hypopnea index in events/h; Thre, threshold in hertz; AUC, area under receiver operating 
characteristic curve; SE, standard error of AUC; Sens, sensitivity in percentage; Spec, specificity
in percentage; p-value, value of statistical significance which was considered to be present when p-
value < 0.05. 

Table 6.1   Diagnostic performance of peak frequency at f1 (PF1) computed using wavelet 

bicoherence analysis of apneic (A) and benign (B) snores for males (M), females (F), and both 

males and females combined (C).  

Type AHI Value (Hz) Thre (Hz) AUC SE Sens (%) Spec (%) p-value 

M:A 52.8 ± 24.7 908 ± 508 
(170–2347) 

325 0.9501 0.0058 85.4 85.0 < 0.0001
M:B 5.3 ± 3.5 256 ± 112 

(139–705) 

F:A 23.6 ± 15.1 765 ± 487 
(235–2302) 

210 1.0000 0.0000 98.3 100 < 0.0001
F:B 3.4 ± 3.2 164 ± 24 

(110–210) 

C:A 46.9 ± 25.7 880 ± 507 
(170–2347) 

285 0.9694 0.0044 90.7 85.0 < 0.0001
C:B 4.6 ± 3.4 219 ± 99 

(110–705) 
Values are presented as mean ± standard deviation and range within brackets. AHI refers to apnea-
hypopnea index in events/h; Thre, threshold in hertz; AUC, area under receiver operating 
characteristic curve; SE, standard error of AUC; Sens, sensitivity in percentage; Spec, specificity
in percentage; p-value, value of statistical significance which was considered to be present when p-
value < 0.05. 
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Figure 6.5   Receiver operating characteristic curves of peak frequency at f1 (PF1) and peak sum

frequency (PSF) of apneic and benign snores for males, females, and both males and females

combined.  
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Figure 6.6   Notched box plots of peak frequency at f1 (PF1) of apneic and benign snores for

males (M), females (F), and both males and females combined (C). Threshold values are marked

on the right-hand side of the plots.  
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and PSF consistently yield superior sensitivity (PF1: 85.4–98.3%; PSF: 82.5–100%) 

and specificity (PF1: 85.0–100%; PSF: 83.3–100%). The classification results are 

graphically illustrated by means of ROC curves in Figure 6.5, in addition to notched 

box plots in Figures 6.6 and 6.7 for PF1 and PSF, respectively.   

PF1 and PSF, which both signify approximated modes with highest coupling 

strength, have clearly demonstrated their capability to discriminate between AS and 

BS. To further appraise the diagnostic power of these two markers, we comparatively 

evaluated their performance with those obtained from the spectral PF. The 

computational procedures for PF are analogous to those mentioned in Section 5.6, 

except that the frame size has now changed to 512 samples, which is identical to the 

present experimental condition for WBC analysis, in order to conduct a fair test. 

Figure 6.7   Notched box plots of peak sum frequency (PSF) of apneic and benign snores for

males (M), females (F), and both males and females combined (C). Threshold values are marked

on the right-hand side of the plots.  
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Results in Table 6.3 verify that the proposed markers can offer better diagnostic 

accuracy than PF. For both males and females combined, the threshold of PF = 243 Hz, 

with a resultant AUC = 0.8537, SE = 0.0108, sensitivity = 77.7%, specificity = 78.0%, 

and p-value < 0.0001. In all three patient groups, the thresholds of PF deliver a 

sensitivity of 62.5–91.7% and a specificity of 78.0–97.5%.   

While both the parametric (see Chapter 5) and the nonlinear approaches achieve 

statistical significance between same- and both-gender patient groups (p-value < 

0.0001), the latter approach yields a slightly higher specificity (83.3–100% versus 

82.0–95.0%), along with a similar sensitivity of 82.5–100%, thereby suggesting that 

more benign patients can be correctly diagnosed as not having OSA.  

 

 

Table 6.3   Diagnostic performance of spectral peak frequency (PF) computed using the Welch’s 

method (frame size = 512 samples or 46 ms) of apneic (A) and benign (B) snores for males (M), 

females (F), and both males and females combined (C). 

Type AHI Value (Hz) Thre (Hz) AUC SE Sens (%) Spec (%) p-value 

M:A 52.8 ± 24.7 604 ± 413 
(95–2330) 

333 0.8163 0.0124 62.5 85.0 < 0.0001
M:B 5.3 ± 3.5 248 ± 159 

(88–867) 

F:A 23.6 ± 15.1 561 ± 554 
(88–2612) 

213 0.9316 0.0069 91.7 97.5 < 0.0001
F:B 3.4 ± 3.2 173 ± 100 

(82–892) 

C:A 46.9 ± 25.7 596 ± 445 
(88–2612) 

243 0.8537 0.0108 77.7 78.0 < 0.0001
C:B 4.6 ± 3.4 218 ± 143 

(82–892) 
Values are presented as mean ± standard deviation and range within brackets. AHI refers to apnea-
hypopnea index in events/h; Thre, threshold in hertz; AUC, area under receiver operating 
characteristic curve; SE, standard error of AUC; Sens, sensitivity in percentage; Spec, specificity
in percentage; p-value, value of statistical significance which was considered to be present when p-
value < 0.05. 
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6.5 Diagnostic Marker Regression Models 

On top of the statistical measures, we attempted to best-fit the scattering data through 

various linear and nonlinear regression models [204-207], as pictured in Figures 6.8 

and 6.9, in order to explain the feasible relationship between AHI and the proposed 

markers (PF1 and PSF). Under the same derivation procedures outlined in Section 5.7 

for the regression equations, Table 6.4 and Table 6.5 list the forms of regression 

models for PF1 and PSF, respectively, along with the goodness-of-fit statistics (R2 and 

RSD) and the predictive AHI values corresponding to the derived thresholds for both 

genders combined (PF1 = 285 Hz; PSF = 492 Hz).  

Interestingly, although the quadratic functional form seems to fit the scattering 

data well (R2 = 0.5555–0.5776), the dispersion of residuals between the predicted and 

the observed AHI values is far apart (RSD = 19.0152–19.5045 events/h) with broad 

confidence intervals, leading to inaccurate predictive AHI values (14.4–17.7 events/h). 

Ideally, the threshold of AHI should be 10.0 events/h as it was considered in this 

research work. In contrast to the quadratic model, the exponential and the power 

models perform better, in terms of RSD values (0.4347–0.5277 events/h) and AHI 

prediction (8.0–10.7 events/h), despite having lower R2 (0.2911–0.5189). Since R2 is 

not the major criterion for judging whether a fit is practical [204-207], one can deduce 

that the latter two regression models can realistically interpret the relationship between 

the severity of OSA and the potential dominant frequency modes involved in the 

nonlinear interactions in snore signals. The functional form of exponential or power 

are also in favor of illustrating the possible relationship between AHI and F1 of snore 

signals, as discussed in Section 5.7. 
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Figure 6.8   Regression models of (a) linear, (b) quadratic, (c) logarithmic, (d) exponential, and

(e) power functions for apnea-hypopnea index (AHI) in events/h and peak frequency at f1 (PF1) in

hertz (Hz). 
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Figure 6.9   Regression models of (a) linear, (b) quadratic, (c) logarithmic, (d) exponential, and

(e) power functions for apnea-hypopnea index (AHI) in events/h and peak sum frequency (PSF) in

hertz (Hz). 
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6.6 Summary 

This chapter provides entrances into the complex UA dynamics by examining the 

nonlinear properties of snore signals for the diagnosis of OSA. The analysis was 

performed by WBC and emphasized on the detection and quantification of QPC in 

nonstationary snore signals. Results reveal that nonlinear mode interactions in AS are 

less self-coupled and are usually associated with higher and wider frequency ranges 

than that of BS. Furthermore, the proposed diagnostic markers (PF1 and PSF) are 

indicative of AS and BS for all three patient groups (p-value < 0.0001), with a 

sensitivity of  82.5–100% and a specificity of 83.3–100%, outperforming the PF 

Table 6.4   Regression models for apnea-hypopnea index (AHI) in events/h and peak frequency at 

f1 (PF1) in hertz (Hz). 

Regression Equation R2 RSD AHI† 

Linear AHI = 0.0335 (PF1) + 12.6229 0.3011 24.4586 22.2 

Quadratic AHI = – 0.0001 (PF1)2 + 0.1512 (PF1) – 23.3608 0.5776 19.0152 14.4 

Logarithmic AHI = – 129.4423 + 60.3602 Log (PF1) 0.4463 21.7703 18.7 

Exponential Log (AHI) = 0.7801  + 0.0007 (PF1) 0.3269 0.5142 9.8 

Power Log (AHI) = – 2.5203 + 1.3943 Log (PF1) 0.5189 0.4347 8.0 
†Predictive AHI corresponding to derived thresholds for both males and females combined (PF1 = 
285 Hz). Ideally, AHI = 10.0 events/h. R2 refers to coefficient of determination; RSD, residual 
standard deviation in events/h; Log, logarithm function with base 10.   

Table 6.5   Regression models for apnea-hypopnea index (AHI) in events/h and peak sum 

frequency (PSF) in hertz (Hz). 

Regression Equation R2 RSD AHI† 

Linear AHI = 0.0207 (PSF) + 14.2461 0.2460 25.4041 24.4 

Quadratic AHI = – 0.00003 (PSF)2 + 0.0996 (PSF) – 24.3739 0.5555 19.5045 17.7 

Logarithmic AHI = – 139.7810 + 60.0108 Log (PSF) 0.3995 22.6720 21.8 

Exponential Log (AHI) = 0.7801  + 0.0007 (PF1) 0.2911 0.5277 10.7 

Power Log (AHI) = – 2.8099 + 1.4036 Log (PSF) 0.4761 0.4537 9.3 
†Predictive AHI corresponding to derived thresholds for both males and females combined (PSF = 
492 Hz). Ideally, AHI = 10.0 events/h. R2 refers to coefficient of determination; RSD, residual 
standard deviation in events/h; Log, logarithm function with base 10.   
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whose sensitivity and specificity are in the range of 62.5–91.7% and 78.0–97.5%, 

respectively. These results corroborate our hypothesis that phase-coupled interaction 

modes in snore signals may facilitate the classification of snores generated by apneic 

and benign patients attributed to differences in their UA anatomical and functional 

abnormalities. Relationship between AHI and the proposed markers can possibly take 

the functional form of exponential or power, with a predictive AHI of 8.0–10.7 

events/h.      

Besides analyzing snore signal acoustically, the evaluation of snore sounds 

through perceptual means can also play a role in the diagnosis of OSA because strong 

correlations exist between acoustical and perceptual factors [232]. The next chapter of 

this thesis investigates the applicability of various psychoacoustic metrics to classify 

snores produced by apneic and benign patients.       
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The contents of this chapter are partly based on the author’s publications [A2,A7,A9]. 

Chapter 7 

 

Psychoacoustic Analysis and Classification of 

Snores 

 

Snoring is foremost a subjective perception of the listener [25,183]. Prior to any kind 

of snore signal analysis, the signal per se must correspond to the sound that a listener 

perceives as a snore. Human hearing, therefore, remains the primary arbiter of what 

constitutes snoring. The hearing system is a complicated human organ, which 

constantly appraises the acoustic environment by means of sound perception 

mechanisms, also known as psychoacoustic metrics [232], for instance, loudness, 

sharpness, roughness, fluctuation strength, and even annoyance. Functionality of these 

metrics has been successfully realized in the analysis of auditory signals (e.g., speech 

[233-235], voice [236,237], and music [238,239]) and in noise control studies [240-

244], ascertaining relationship between the acoustical and the perceptual space [232].  

This chapter extends the application of psychoacoustic metrics (loudness, 

sharpness, roughness, fluctuation strength, and annoyance) to snore sound analysis by 

exploring their capability to discriminate AS from BS. Formulations of the metrics, in 

terms of physical signal parameters, are outlined. Experimental conditions, comprising 

the dataset for evaluation, the listening test procedure, and the scale for rating sound 

quality, are also described. Results are quantitatively illustrated by ROC curves and 

notched box plots. Furthermore, we discussed the degree of association between the 

psychoacoustic metrics and the patient demographic and clinical data, such as body 
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mass index (BMI), neck circumference (NC), and AHI, using Pearson’s product-

moment and Spearman’s rank correlation coefficients. 

 

7.1 Psychoacoustic Metrics 

7.1.1 Loudness 

Loudness is an essential parameter for any sound quality survey. It is a measure of 

sound strength defined by [232] 

   ∫=
Bark24

0

'dzNN  (7.1) 

where N is the loudness in sone that is referenced to a 1 kHz tone at a sound pressure 

level of 40 dB, N’ is the specific loudness in sone/Bark, and dz is the increment in the 

critical band rate z. The specific loudness represents the amount of loudness attributed 

to the auditory filters, and it is closely related to the hearing system excitation E 

through  
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where ETQ is the excitation at threshold in silence, while E0 is the excitation 

corresponding to the reference intensity I0 = 10-12 W/m2.  The specific loudness serves 

as a basis for many other psychoacoustic metrics. 

 

7.1.2 Sharpness 

Sharpness is an attribute that interprets the tone color of a sound, in terms of its 

powerfulness or aggressiveness. It relies on the weighted centroid of the specific 

loudness content, as highlighted in [232] 
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where S denotes the sharpness in acum, and g(z) denotes the weighing function of the 

critical band rate z. An acum is referenced to a band of noise centered at 1 kHz with 60 

dB. A higher sharpness value specifies a greater energy in high frequencies. 

 

7.1.3 Roughness 

Roughness is a sensation arising from rapid (15–300 Hz) temporal variations of a 

sound caused by beats between tones in a critical band or by amplitude- or frequency-

modulated tones. A 1 kHz tone at 60 dB with 100% amplitude modulation at 70 Hz 

can create the roughness R of 1 asper [232]. Explicitly,  
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where fmod signifies the modulation frequency, and ∆LE signifies the range of 

excitation level within an auditory filter. Roughness increases with increasing 

modulation depth of the sound temporal masking pattern.  

 

7.1.4 Fluctuation Strength 

Fluctuation strength reveals human sensitivity towards slow (up to 20 Hz) moving 

amplitude modulation for a sound with frequency modulated at approximately 4 Hz. 

The unit of fluctuation strength is vacil, referenced to a 1 kHz tone at 60 dB with 

100% amplitude modulation at 4 Hz, and the fluctuation strength of a sound can be 

expressed as [232] 
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where ∆L is the masking depth or the difference between the maxima and the minima 

in the temporal masking pattern. Fluctuation strength is associated with the fluent 

speech at a speaking rate of 4 syllables/s because its amplitude modulation is 

concentrated around 4 Hz.  

 

7.1.5 Annoyance 

Annoyance PA is a mixture of different hearing sensations including loudness N, 

sharpness S, roughness R, and fluctuation strength F. It can be estimated by [232] 

 ( )2
FR

2
s5 1 wwNPA ++≈      (7.6) 

where  

 ( ) ( ) 1.75  ,10log25.075.1 5es >+−= SNSw      (7.7) 

and 
( )

( )RF
N

w 6.04.018.2
4.0

5
FR +=     (7.8) 

with N5 indicating the percentile loudness in sone. It is apparent from Equation (7.6) 

that loudness has a dominant impact in the estimation of annoyance. 

 

7.2 Experimental Conditions 

7.2.1 Patient Dataset 

Among the 40 patients listed in Table 1.1, 13 patients (8 apneic and 5 benign) 

participated in this psychoacoustic research. Table 7.1 contains the patient 

demographic and clinical data. Similar to those mentioned in Section 5.5.1, snoring 

sounds were recorded through the acquisition system for snore signals (see Chapter 3), 

and then preprocessed via the wavelet-based preprocessing system (see Chapter 4). A 

snore sound sample, which consists of five consecutive snoring episodes, lasting about 

30 s, was selected from each patient, giving a total of 13 samples for evaluation.  
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7.2.2 Listening Test Procedure 

A snore sound sample was presented three times continuously in a quiet room to 25 

normal-hearing listeners (8 polysomnographic technicians from the Sleep Disorders 

Unit and 17 signal processing specialists from our institution), one at a time. Each 

listener was asked to pass judgments on the sample based on the five psychoacoustic 

metrics (loudness, sharpness, roughness, fluctuation strength, and annoyance) via a 7-

point semantic differential scale (range 1–7) with bipolar adjective pairs [232,245], as 

depicted in Figure 7.1, before continuing to the next sample. We chose the semantic 

differential scale in this research work owing to its aptitude to valuably convey the 

Extremely 

Very 

Extremely 

Very Neither 

Somewhat Somewhat 

1 2 3 4 5 6 7 

Loud 

Sharp 

Rough 

High 
fluctuation 
strength 

Annoying 

Soft

Flat

Smooth

Low
fluctuation

strength

Pleasing

Figure 7.1   A 7-point semantic differential scale with bipolar adjective pairs. 

Table 7.1   Demographic and clinical data of patients participated in psychoacoustic research. 

Type Sample size Age (years) BMI (kg/m2) NC (cm) AHI (events/h)

Combined : Apneic 8 
(M:6 ; F:2) 

42 ± 13  
(23–59) 

34.9 ± 8.4 
(25.0–50.4) 

42.5 ± 4.5 
(36.0–51.0) 

55.0 ± 25.6 
(14.2–90.8) 

Combined : Benign 5 
(M:4 ; F:1) 

42 ± 10 
(28–52) 

24.3 ± 2.9 
(21.6–28.1) 

38.5 ± 2.0 
(35.0–40.0) 

4.0 ± 3.5 
(0.2–8.6) 

Values are presented as mean ± standard deviation and range within brackets. BMI refers to body 
mass index in kg/m2; NC, neck circumference in centimeters; AHI, apnea-hypopnea index in 
events/h; M, males; F, females; Combined, both males and females combined. 
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denotative (e.g., loudness and sharpness) and the connotative (e.g., annoyance) 

meanings of a sound [232,245].  

 

7.3 Diagnostic Results and Discussion 

7.3.1 Statistical and Exploratory Data Analysis 

Based on the dataset of 13 snore sound samples and sample size of 25 listeners, the 

diagnostic accuracy was quantified using ROC curves [155-157] and notched box 

plots [139,140,181,182] whose respective algorithms are explained in Section 4.3.4 

and Section 5.5.1. However, due to the limited sound samples, the diagnostic 

sensitivity and specificity were determined from the same dataset; both training and 

test data are identical. A p-value < 0.05 was considered statistical significant. Results 

from the ROC curve analysis are summarized in Table 7.2, accompanied by ROC 

curves and notched box plots in Figures 7.2 and 7.3, respectively.  

Apneic snore sounds achieve higher ratings for all the metrics than the benign 

ones, implying that the qualities of apneic snore sounds are louder, sharper, rougher, 

higher fluctuation strength, and more annoying. Loudness and annoyance rank the top 

two metrics, in sequence, that best distinguish AS from BS (AUC = 0.9265–0.9328, 

SE = 0.0136–0.0142, sensitivity = 72.0–78.0%, specificity = 91.2–92.0%, and p-value 

Table 7.2   Diagnostic performances of psychoacoustic metrics of apneic and benign snore sounds.

Metric Thre AUC SE Sens (%) Spec (%) p-value 

Loudness 4 0.9328 0.0136 78.0 91.2 < 0.0001 

Sharpness 4 0.8500 0.0207 60.5 88.0 < 0.0001 

Roughness 4 0.8978 0.0169 74.0 81.6 < 0.0001 

Fluctuation strength 4 0.8392 0.0214 63.0 81.6 < 0.0001 

Annoyance 5 0.9265 0.0142 72.0 92.0 < 0.0001 
Thre refers to threshold; AUC, area under receiver operating characteristic curve; SE, standard 
error of AUC; Sens, sensitivity in percentage; Spec, specificity in percentage; p-value, value of 
statistical significance which was considered to be present when p-value < 0.05. 
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Figure 7.2   Receiver operating characteristic curves of psychoacoustic metrics of apneic and

benign snore sounds. 
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Figure 7.3   Notched box plots of psychoacoustic metrics: (a) loudness; (b) sharpness; (c)

roughness; (d) fluctuation strength; and (e) annoyance of apneic and benign snore sounds.
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< 0.0001), followed by roughness, sharpness, and fluctuation strength (AUC = 

0.8392–0.8500, SE = 0.0169–0.0214, sensitivity = 60.5–74.0%, specificity = 81.6–

88.0%, and p-value < 0.0001).  

Moreover, the typical threshold separating these two diagnostic classes of snore 

sounds falls on the rating of 4 (neutral response), except for the metric of annoyance 

whose threshold is 5, emphasizing that snoring is often considered as a nuisance. A 

study on 37 consecutive snoring men has found that 55% of their bed partners are 

irritated by snoring, and 40% of them chose to sleep in a separate room more than 

once a week in order to get a more restful and recuperative sleep [246], negatively 

affecting their partners’ health and well-being [105,247,248]. Other studies have 

further reported the devastating consequences of snore-induced noise pollution on 

couple’s relationship, for example, marital strife, divorces, and attempted murder 

[249-251].  

 

7.3.2 Correlation Analysis 

To examine the association between the psychoacoustic metrics and the patient 

demographic and clinical data (BMI, NC, and AHI), we employed the Pearson’s 

product-moment and the Spearman’s rank correlation measures [139,140]; the former 

correlation coefficient rp valuates the strength of a linear relationship between two 

variables, whereas the latter correlation coefficient rs is a non-parametric measure of 

monotone association between a pair of variables, as pointed out in Section 4.1.3. 

Nonetheless, both the coefficients lie in the range of -1 and +1, where the negative or 

positive sign indicates a negative or positive association, respectively, along with the 

magnitude that reflects the association strength. A correlation coefficient of zero 

means that there is entirely no association between the two variables; both variables 
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move independently.  

Results from the parametric and non-parametric correlation analysis in Table 7.3 

evidently demonstrate that loudness and annoyance are the two most preferable 

psychoacoustic metrics for assessing snore sounds, with loudness being the best metric 

as it yields the greatest association strength with AHI (rp = 0.7432; rs = 0.7062), NC 

(rp = 0.5564; rs = 0.6828), and BMI (rp = 0.4963; rs = 0.5878). Conversely, roughness, 

sharpness, and fluctuation strength are less dependent on AHI (rp = 0.5668–0.6835; rs 

= 0.5112–0.6520), NC (rp = 0.4052–0.4867; rs = 0.4739–0.5879), and BMI (rp = 

0.2885–0.3687; rs = 0.3400–0.4701). These outcomes are in conformity with those 

obtained from the ROC curve analysis. All p-values computed from the correlation 

analysis are less than 0.0001, indicating statistically significance.  

A close inspection of the correlation results also suggest that all the 

psychoacoustic metrics are more closely related to the NC than the BMI, while both 

NC and BMI are good predictors of AHI [252-254]. A likely rationalization is that the 

neck measurements correspond more directly to the UA soft tissues that possess an 

immediate influence on the pathophysiology of snoring and OSA [6,7,25]. Excessive 

Table 7.3   Pearson’s product-moment and Spearman’s rank correlation results between 

psychoacoustic metrics and patient demographic and clinical data. 

  BMI (kg/m2)  NC (cm)  AHI (events/h) 

Metric  rp rs  rp rs  rp rs 

Loudness  0.4963 0.5878  0.5564 0.6828  0.7432 0.7062 

Sharpness  0.3010 0.3687  0.4052 0.4739  0.5668 0.5112 

Roughness  0.3687 0.4701  0.4867 0.5879  0.6835 0.6520 

Fluctuation strength  0.2885 0.3400  0.4795 0.5069  0.5796 0.5304 

Annoyance  0.4356 0.5340  0.5313 0.6638  0.7182 0.7162 
BMI refers to body mass index in kg/m2; NC, neck circumference in centimeters; AHI, apnea-
hypopnea index in events/h; rp, Pearson’s product-moment correlation coefficient; rs, Spearman’s 
rank correlation coefficient. All p-values are < 0.0001, indicating statistically significant 
correlations. 
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soft tissues surrounding the UA, which is in the case of most apneic patients [29-

31,56,57], considerably reduce the airway space and vibrate vigorously when a 

constant airflow passes through the constrictions in the UA, thereby increasing the 

complexity of acoustic source dynamics (e.g., frequency or harmonic pattern and 

temporal regularity) and producing amplified sound perception. Correspondingly, 

snore sounds generated by apneic patients are unquestionably more annoying than 

those generated by benign patients since annoyance is a composite psychoacoustic 

metric with loudness as the key contributor.  

 

7.4 Summary 

This chapter explores the applicability of psychoacoustic metrics (loudness, sharpness, 

roughness, fluctuation strength, and annoyance) in the classification of AS and BS. 

Snore sound samples from 13 patients were appraised by 25 listeners by means of a 7-

point semantic differential scale with bipolar adjective pairs. Results from various 

statistical and correlation analysis consistently show differences between the 

psychoacoustics of apneic and benign snore sounds (p-value < 0.0001). Among the 

five psychoacoustic metrics, loudness and annoyance are the two most potential 

diagnostic markers for OSA, in sequence, because they can deliver a higher diagnostic 

accuracy (sensitivity = 72.0–78.0%, specificity = 91.2–92.0%) and stronger 

association with AHI (rp = 0.7182–0.7432; rs = 0.7062–0.7162), NC (rp = 0.5313–

0.5564; rs = 0.6638–0.6828), and BMI (rp = 0.4356–0.4963; rs = 0.5340–0.5878), as 

compared to roughness, sharpness, and fluctuation strength.  

Several promising snore-based OSA markers have been proposed in this thesis 

with remarkable diagnostic results. To provide more concrete justifications on the 

validity of the proposed markers, the next chapter of this thesis attempts to evaluate 
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the relationships between the snore source flow, the UA anatomical structures, and the 

properties of snores.  
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The contents of this chapter are partly based on the author’s publications [A1,A2]. 

Chapter 8 

 

Snore Physiological-Anatomical-Acoustical 

Relationships 

 

While snore-based diagnostic markers appear to shed light on the detection of OSA 

both in the literature (see Chapter 2) and in this thesis, there is little research on the 

correlations between the snore source flow (SF, i.e., acoustic source in snore 

production), the UA anatomical structures (e.g., cross-sectional airway dimensions), 

and the characteristics of snores. Such correlation studies are undeniably crucial 

because they not only provide insights into different perspectives on snores from 

physiological to acoustical and perceptual domains, but also warrant the feasibility of 

using snore signals as an alternative to PSG in diagnosing OSA.  

This chapter attempts to address this concern through the following two studies. 

First, it investigates the acoustical and perceptual influences of changing the cross-

sectional areas (CSA) of the pharynx (PX) and oral cavity (OC) on the generation of 

snores, which correspondingly validates the reliability of the proposed formant 

frequency (F1), spectral peak frequency (PF), and psychoacoustic metrics (loudness, 

sharpness, roughness, fluctuation strength, and annoyance). Second, it parameterizes 

and models the SF and its derivative (SFD), in addition to generating synthetic snores, 

with a hypothesize that temporal and spectral attributes of SF and SFD may contain 

essential information about snore excitation source (ES) dynamics and affect the 

characteristics of snores, both acoustically and perceptually.  
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To accomplish the study tasks, we estimated SFs directly from natural snores, 

developed acoustic models of the UA, and synthesized snores by perturbing the CSA 

of PX and OC, as well as by utilizing various SFD pulse shapes. Methodologies for SF 

analysis (signal estimation, parameterization, and modeling), UA acoustic modeling, 

and snore synthesis are described in detail with graphical illustrations, followed by 

experimental results, in terms of objective and subjective measures. 

 

8.1 Snore Source Flow Estimation 

The soft tissue in the UA is a flow-induced self-excited biomechanical oscillator 

[208,255-257]; it acts as the main ES during the production of snores. Direct 

measuring of airflow at snore ES, defined as SF, is a complicated process attributable 

to its difficulty of accessing the snoring site during natural (without anesthesia) 

nocturnal snoring. Nevertheless, if one applies the well-known source-filter theory 

[152,158-161], as discussed in Section 5.1, in snore generation by presuming that the 

ES and the UA are linearly separable, and that the SF is acoustically filtered by the UA 

and the lip radiation to produce snoring sounds, a feasible technique for estimating SF 

is the inverse filtering – a technique extensively applied in speech science to explore 

the nature of vocal fold excitation, indirectly and non-invasively [152,158-161,258].  

Figure 8.1 depicts a flow chart of an iterative adaptive inverse filtering technique 

[258] for approximating SF. To offer a clearer picture of the technique, graphical 

illustrations of a quasi-periodic snore signal processing through the technique are 

shown alongside the figure. This technique removes the effects of ES and UA from a 

snore signal through an iterative structure that repeats twice, with a goal to acquire 

more accurate SF estimate as compared to a direct inverse filtering method. The 

technique robustness has been demonstrated in voice source analysis for the estimation 
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of glottal flow [258-260], and it consists of the following two phases. First, an initial 

estimate of SF is computed from a denoised snore by eliminating the contributions of 

ES, UA, and lip radiation, correspondingly simulated by a 1st-order and a 14th-order 

DAP model, and a fixed differentiator. The 1st-order DAP model approximates the 

combined effect (-6 dB/octave) of the ES (-12 dB/octave) and the lip radiation (+6 

dB/octave), and it is the first to remove from the input signal through inverse filtering. 

Subsequently, the effect of UA, represented by a 14th-order DAP model, is canceled 

from the input signal by inverse filtering prior to eliminating the lip radiation effect via 

integration (i.e., the resulting signal is filtered with the inverse of the differentiator). 

This concludes the first phase of inverse filtering and yields the initial SF estimate. 

Second phase of the technique begins with a 2nd-order DAP modeling of the initial SF 

Figure 8.1   Flowchart of an iterative adaptive inverse filtering technique with discrete-all pole

(DAP) modeling. NS and SF denote natural snore and source flow, respectively.  

NS 

1st-order 
DAP model 

Inverse 
filtering 

Integration 

2nd-order 
DAP model

14th-order 
DAP model

14th-order 
DAP model

Inverse 
filtering 

Inverse 
filtering 

Inverse 
filtering 

Integration Integration 

SF 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 8 Snore Physiological-Anatomical-Acoustical Relationships 141 
 ____________________________________________________________________________________________________________________________________________________________________________________________  

 

estimate to account for the approximated contribution of ES, which is removed from 

the input signal through inverse filtering, followed by an integration of its output 

signal to eliminate the lip radiation effect. Eventually, the final SF estimate is 

determined after canceling the contributions of UA and lip radiation by inverse 

filtering the input signal with a 14th-order DAP model obtained in the second phase 

and by integrating the resulting signal, respectively. 

To give simple yet reasonable approximations for the filter coefficients, we 

implemented the DAP modeling [173] in the iterative adaptive inverse filtering 

technique rather than the LP modeling whose spectral peaks are highly biased towards 

the pitch harmonics, as elaborated in Section 5.2. Moreover, we evaluated the order of 

the DAP model representing the UA, apart from using Equations (5.44)–(5.47), 

through several criteria [160,261] including the final prediction error [262] 

 ( ) ( )
( )⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛
+−
++

=
1
1FPE 2

pN
pNp σ , (8.1) 

the Akaike information criterion [263] 

 ( ) ( ) pNp 2logAIC 2
e += σ , (8.2) 

and the minimum description length [264] 

 ( ) ( ) ( )NpNp e
2

e loglogMDL += σ . (8.3) 

These criteria generally weight the prediction error variance σ2, accompanied by the 

frame size N, and determine the model order that delivers the minimum error value. 

Figure 8.2 exhibits the three typical forms of snore signals encountered in the 

patient dataset detailed in Section 5.5.1 and in the literature [28,97,100,216]. These 

signals can be mathematically formulated [100] and broadly characterized as quasi-

periodic or aperiodic. The two quasi-periodic snores, namely snore 1 and snore 2, were 

produced by two male patients whose AHI values are 45.6 events/h and 7.0 events/h, 
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respectively; on the other hand, the aperiodic snore was produced by a male patient 

whose AHI value is 41.1 events/h.  

The criterion values of the three snores at N = 256 samples (≈ 23 ms) are 

displayed in Figure 8.3. As can be noted, the derived p = 14 in Section 5.5.2 remains a 

Figure 8.2   Typical waveforms of snores. 

0 20 40 60 80
-0.4

-0.2

0

0.2

0.4

Si
gn

al
 a

m
pl

itu
de

6
0 20 40 60 80

-0.4

-0.2

0

0.2

0.4

0 20 40 60 80
-1

-0.5

0

0.5

1
Quasi-periodic snore 1 Quasi-periodic snore 2 Aperiodic snore 

Time (ms) Time (ms) Time (ms)

Figure 8.3   Performance of different model order selection criteria: (a) final prediction error; (b)

Akaike information criterion; (c) minimum description length for quasi-periodic snore 1 (blue) and 

snore 2 (red), as well as aperiodic snore (green). 
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preferable choice to model the UA attributed to its relatively low error values for all 

the criteria, further justifying the use of a 14th-order DAP model to configure the UA.  

 

8.2 Upper Airway Acoustic Modeling 

Since both snore and speech sounds propagate through the same medium, an UA 

model that may ascertain the anatomical-acoustical relationships is likely comparable 

to the transmission-line model of the lossy vocal tract with non-rigid walls, where 

wave propagation in an acoustic tube resembles plane wave propagation along an 

electrical transmission line  [152,158-161,265,266]. A transmission-line model of the 

UA is rendered in Figure 8.4; alongside the figure are graphically illustrations of snore 

synthesis. In spite of the UA inherent intricacy, it can be regarded as a concatenation 

of cylindrical sections whose lengths are shorter than 1/8th the acoustic wavelength of 

interest [158,159,266]. With the maximum frequency of interest for snore signals as 

5000 Hz [99,105] and the speed of sound for moist air at 37ºC as 35400 cm/s, the 

•
•

•
•

Ri Li RiLi

Gi Ci

Rwi

Lwi

Cwi

Rr Lr

•
•
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SS SF

Figure 8.4   Transmission-line model of the upper airway for ith section and lip radiation load

with lumped parameters including resistance Ri, inertance Li, compliance Ci, conductance Gi, wall

inertance Lwi, wall resistance Rwi, wall compliance Cwi, radiation resistance Rr, and radiation

inertance Lr. SF and SS denote source flow and synthetic snore, respectively.  
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maximum section length is found to be 0.89 cm. In this research work, we adopted an 

equal section length of 0.10 cm, which increases the number of sections representing 

the UA, thereby improving the accuracy of the UA acoustic modeling.  

Losses owing to viscous friction, heat conduction, and tissue vibration in each 

section are represented by frequency-dependent lumped parameters, as listed in Table 

8.1, together with the physical properties of air. The acoustic resistance Ri arises from 

viscous and thermal losses at the boundaries, and the conductance Gi from heat 

conduction on the ith section walls. The inertance Li is associated with the mass of air, 

and the compliance Ci is with the ability of air to expand and compress. The series 

combination of mechanical wall impedance comprising a resistance Rwi, inertance Lwi, 

and compliance Cwi model the effect of wall vibration. Furthermore, radiation load at 

the lips is configured by a parallel connection of resistance Rr and inertance Lr to 

Table 8.1   Lumped parameters for ith section of upper airway model and lip radiation load. 

Parameter Expression  Parameter Expression 

Resistance 
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li, Si, and Ai refer to length, circumference, and cross-sectional area of the ith cylindrical section, 
respectively; ω, radian frequency; ρ, density of air = 1.14·10-3 g·cm-3 (moist air 37°C); c, sound 
velocity = 3.54·104 cm·s-1 (moist air 37°C); µ, shear viscosity = 1.86·10-4 dyne·s·cm-2 (20°C, 1 
atm); λ, heat conduction coefficient of air = 5.5·10-5 cal·cm-1·s-1·°C-1 (0°C); η, adiabatic gas 
constant = 1.4; ξ, specific heat of air at constant pressure = 0.24·cal·g-1·°C-1 (0°C, 1 atm); m, b, and 
k are the mass = 1.5 g, mechanical resistance = 1.6·103 g·s-1, and stiffness = 3·104 dyne·cm-1 of 
wall per unit area, respectively; Am, cross-sectional area of mouth, which was deemed as the area 
of the last section.  
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account for energy loss and mass inertia of air. The UA acoustic transfer function can 

be ultimately described by the product of all section transfer matrices. 

As an explanatory example, consider the UA with N cylindrical sections. The 

UA acoustic transfer matrix 

 ( ) ( ) ( ) ( ) ( )wwwww N1-N21 TTTTT K=  (8.4)  

where w is the angular frequency, 
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is the ith section transfer matrix derived from impedances  
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These impedances are correlated with the section length ℓi, characteristic impedance, 

and propagation constant [152,158-161], where the latter two variables are 

respectively equated as  
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describing the impedance of medium and the admittance of medium and wall, 

correspondingly. 
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8.3 Synthetic Snore Generation 

8.3.1 Experimental Conditions for Area Perturbation Study 

8.3.1.1 Patient Dataset 

The iterative adaptive inverse filtering technique [258] with DAP modeling [173] was 

applied on the three typical forms of snore signals in Figure 8.2, and the outcomes are 

shown in Figure 8.5. The two quasi-periodic signals yield rhythmically repeating SF 

waveforms. Strong peaks in the waveforms reveal the periodic nature of the rate at 

which the ES maneuvers (fundamental frequency). The first quasi-periodic SF, 

designated as SF1, has a longer plateau of airflow and a lower fundamental frequency 

(38 Hz) than the other quasi-periodic SF designated as SF2  (64 Hz). Conversely, the 

SF of the aperiodic snore signal, denoted as SF3, is random with high-frequency 

chaotic oscillations and no fundamental frequency. The fundamental frequencies were 

Figure 8.5   Waveforms of (a) quasi-periodic and aperiodic snores, and their corresponding (b)

source flow waveforms. 
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calculated from the YIN algorithm [267], which is a meliorated autocorrelation-based 

pitch estimator with minimum estimation errors, by means of the cumulative mean 

normalized difference function  

 ( ) ( ) ( ) ( )⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
=

= ∑
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otherwise,1

0  if,1
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' τ
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τ
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k
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 ( ) ( )∑
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−−=
+−=

22

22

2
Nt

Ntk
kkt xxd

τ

τ
ττ  (8.13) 

is the difference function of lag τ at time index t, and N is the frame size of a discrete-

time snore signal xt. The SFs were selected as the excitations for three different types 

of synthetic snores, one for each snore type. 

Besides the selection of SF, we chose two clinical UA area-distance profiles 

from the works of Jung et al. [268] and Mohsenin [269] for acoustic modeling, as 

depicted in Figure 8.6 with familiar anatomical landmarks (e.g., pharyngeal peak, 

oropharyngeal junction, and mouth peak) labeled between the glottis and the incisors.  

Figure 8.6   Upper airway (UA) area-distance profiles of reference (a) UA1 and (b) UA2. 
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The profiles were constructed by the acoustic reflection technology and intended as 

reference UA1 and UA2, respectively; the former has a shorter UA (from glottis to 

incisors) length than the latter (around 16.0 cm versus 18.5 cm), possibly due to 

different subjects and measurement procedures. Alterations in the CSA of PX (from 

glottis to soft palate) and OC (from anterior margin of oropharyngeal junction to 

incisors) were made in ±0.2 cm2 and ±0.4 cm2 from the reference models, as 

exemplified in Figure 8.7. For instance, PX +0.4 cm2 and OC -0.4 cm2 specify a CSA 

increment of PX by 0.4 cm2 and a decrement of OC by 0.4 cm2 with respect to the 

reference, which in turn illustrates a subject with a smaller pharyngeal airway but 

wider mouth opening during snoring. 

Using the above resources, snores were synthesized by convolving the SF and 

the UA transfer function with lip radiation load. For each UA model, 12 CSA 

perturbations were performed, thereby giving 39 synthetic snores including reference-

generated snores of roughly 1.5 s each for analysis. 

Figure 8.7   Upper airway (UA) area-distance profiles with changes of cross-sectional areas of

pharynx and oral cavity at ±0.2 cm2 (red) and ±0.4 cm2 (blue) from the reference (a) UA1 (green)

and (b) UA2 (green). 
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8.3.1.2 Test Procedure 

Synthetic snores of the area perturbations were analyzed by means of the DAP 

modeling [173] and the Welch’s averaged modified periodogram method [112,113] 

with the same parameters selected for the parametric analysis of natural snores in 

Section 5.5.2 (a 256-sample Hanning window with 75% overlap). F1 and PF were 

extracted via peak picking the 14th-order DAP spectrum and the Welch PSD spectrum, 

respectively. 

On top of the acoustical analysis, six pairs of synthetic snores from each UA 

model were subjectively experimented by the group of 16 normal-hearing 

polysomnographic technicians and signal processing specialists through a paired 

comparison approach [232,245], one at a time, in a quiet room. For each pair of snore 

sounds, the listener was requested to compare one sound (comparison sample) with the 

other (reference sample), and then rate the comparison sample, in terms of loudness, 

sharpness, roughness, fluctuation strength, and annoyance, on a 5-point semantic 

differential scale with bipolar adjective pairs [232,245] before proceeding to the next 

pair.  

For example, in the case of loudness, the value ‘1’ in the scale symbolises very 

soft, ‘2’: somewhat soft, ‘3’: equal loudness, ‘4’: somewhat loud, and ‘5’: very loud. If 

the listener perceived the comparison sample as somewhat soft, a value of ‘2’ will be 

assigned to it, and automatically a value of ‘4’ will be assigned to the reference sample, 

implying that it is somewhat loud. Thus, the degree of loudness for the comparison 

sample and the reference sample are ‘2’ and ‘4’, correspondingly. In contrast, if the 

listener judged both the samples as equal loudness, a value of ‘3’ will be allocated to 

the samples, and the degree of loudness for the samples is ‘3’. 
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8.3.2 Experimental Conditions for Source Flow Analysis 

8.3.2.1 Signal Parameterization 

Apart from the area perturbation study, the analysis of SF and SFD is also necessary 

for the understanding of snore production mechanisms, which can also be rationalized 

by the source-filter theory [152,158-161]. Aerodynamic forces at constrictions in the 

UA excite ES vibrations, modulating the steady airflow to a pulsating airflow (snore 

SF). The SF, denoted by u(t), is then modified by the UA acting as an acoustic filter 

with impulse response of h(t). The volume velocity output of the UA is eventually 

radiated from the lips, which can be regarded as a differentiator [152,158-161], giving 

rise to a snore sound pressure signal x(t) ≈ d[u(t) * h(t)]/dt = [du(t)/dt] * h(t), where 

du(t)/dt is the SFD that combines the effects of SF and lip radiation and constitutes the 

input to the UA, as graphically displayed in Figure 8.8. 

Figure 8.9 renders the SFs and SFDs of the abovementioned quasi-periodic snore 

signals. To establish quantitative data on the dynamical behavior of ES, we 

parameterized the SF and SFD waveforms in time domain after smoothing the 

Figure 8.8   Source-filter model of snore production with snore source flow derivative (SFD) as

the input to the upper airway transmission-line model with lumped parameters including resistance

Ri, inertance Li, compliance Ci, conductance Gi, wall inertance Lwi, wall resistance Rwi, and wall

compliance Cwi. SF and SS denote source flow and synthetic snore, respectively. 
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waveforms to suppress short-lived fluctuations driven by interharmonic noise above 

2000 Hz [160,270]. Figure 8.10 plots a common SF waveform and SFD waveform 

Figure 8.9   Waveforms of (a) quasi-periodic snores, and their corresponding (b) source flow (SF)

waveforms, (c) source flow derivative (SFD) waveforms, (d) SF spectra, and (e) SFD spectra.

Waveforms and spectra for SFD model with support of [-5, 5] are plotted in green, whereas time

instants are indicated by markers. 
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with distinguishing time instants, such as negative and positive return flow time 

instants, minimum and maximum flow time instants, as well as return flow time 

instant, to define the onset of five plausible vibratory phases within a fundamental 

period. In sequence, these phases are negative closing and opening phases, positive 

opening and closing phases, and return phase. The time instants and their 

corresponding amplitude instants primarily serve as a basis for formulating several 

critical time- and amplitude-based parameters to quantify ES oscillatory maneuvers, as 

detailed in Table 8.2. 

 

Figure 8.10   Common waveforms of snore (a) source flow and (b) source flow derivative with

temporal features of function support intervals [-4, 4] (cyan), [-5, 5] (green), and [-6, 6] (magenta).

T denotes fundamental period; tnr and tpr, negative and positive return flow time instant,

respectively; tmin and tmax, minimum and maximum flow time instant, respectively; tr, return flow

time instant; tdnmin and tdpmin, negative and positive minimum flow derivative time instant,

respectively; tdmax, maximum flow derivative time instant; NCP and NOP, negative closing and

negative opening phase, respectively; POP and PCP, positive opening and positive closing phase,

respectively; RP, return phase. 
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8.3.2.2 Signal Modeling 

In addition to signal parameterization, we modeled the SF and SFD waveforms using 

analytical functions. By fitting the SF and SFD waveforms to various functional forms, 

we observed that the first and second derivatives of the Gaussian probability density 

function, expressed as  

 ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

2
exp

2tttu  (8.14) 

and  ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

2
exp1

2
2 tt

dt
tdu  (8.15) 

can appropriately represent the SF and SFD pulse shapes, respectively. Coincidentally, 

the function for SFD model is proportional to the Mexican hat wavelet [136,221] that 

has been demonstrated to effectively identify QRS complexes in electrocardiograms 

[271], calcium sparks in muscle cells [272], and dynamic characteristics of micro-

Table 8.2   Time- and amplitude-based parameters for snore source flow analysis. 

Parameter Expression  Parameter Expression 

Open quotient 
T

tt nrprOQ
−

=  Positive opening quotient 
nrpr

rmaxPOQ
tt
tt

−
−

=

Negative open quotient 
T

tt nrrNQ
−

=   Positive closing quotient 
nrpr

maxprPCQ
tt
tt
−

−
=

Positive open quotient 
T

tt rprPQ
−

=   Amplitude quotient 
dmax

1AQ
A

=  

Negative closing quotient 
nrpr

nrminNCQ
tt
tt

−
−

=  Negative amplitude quotient 
dnmin

1NAQ
A

=

Negative opening quotient 
nrpr

minrNOQ
tt

tt
−
−

=  Positive amplitude quotient 
dpmin

1PAQ
A

=

T refers to fundamental period; tnr, negative return flow time instant (i.e., last negative zero-
crossing of the flow derivative before time instant of negative minimum flow derivative); tmin, 
minimum flow time instant; tr, return flow time instant; tmax, maximum flow time instant; tpr, 
positive return flow time instant (i.e., first positive zero-crossing of the flow derivative after time 
instant of positive minimum flow derivative); Admax, amplitude at time instant of maximum flow 
derivative; Adnmin, amplitude at time instant of negative minimum flow derivative; Adpmin, 
amplitude at time instant of positive minimum flow derivative.   
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electro-mechanical structures [273]. Stemmed from the admissibility condition of the 

wavelet [136,221], one can infer that the net gain of airflow during a fundamental 

period T is zero since the area of the SFD model is zero, i.e., 

 ( ) 0
0

=∫
T

dt
tdu . (8.16) 

This deduction for maintaining an overall constant volume velocity of airflow at ES is 

in agreement with that made in the Liljencrants-Fant glottal model [158,159,274], a 

popular glottal flow derivative waveform simulating voice source for speech analysis 

and synthesis. 

A primary consideration for the SFD model is its function support interval fitting 

the SFD pulsating pattern. Even though the Mexican hat wavelet possesses an 

effective compact support of [-5, 5] [136,221], we further assessed the ability of two 

other possible support intervals, namely [-4, 4] and [-6, 6], in curve-fitting the shape of 

SFD pulses by performing listening tests on the resulting synthetic snores. By doing so, 

we also examined the perceptual impact of changing the SFD pulse shapes on the 

generation of snores. Temporal features of the support intervals are displayed in Figure 

8.10, indicating discrepancies between the intervals. To augment the naturalness of 

synthetic snores, the devised time domain parameters in Table 8.2 were applied to 

construct artificial SFD waveforms. 

 

8.3.2.3 Test Procedure 

The performance of SFD model was subjectively appraised via listening tests of the 

synthetic snores, which were created by convolving the SFD and the UA transfer 

function without lip radiation load. The SFDs involve SFD1 and SFD2 with various 

support intervals, whereas the UA models involve reference UA1 and UA2 without 

area perturbations. Pairs of snore sounds were presented, one at a time, to the same 
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group of polysomnographic technicians and signal processing specialists in a quiet 

room. For each pair of sounds, the listener was requested to rate the degree of 

similarity [232,245] of one sound (comparison sample) relative to the other (reference 

sample) on a numbered scale, which ranges from 1 (least similar) to 5 (most similar), 

before advancing to the next pair. Finally, the ratings were averaged to give a single 

evaluation score for each sound pair. Due to the fact that the reference samples are 

snores generated by either natural or smoothed SFD waveforms, the capability of SFD 

model in generating quality snores was also explored. To confirm the reliability of the 

listeners’ judgments, we deliberately paired each sound with itself (i.e., comparison 

and reference samples were identical) and randomly incorporated them into the tests. 

Table 8.3   First formant frequency (F1) and spectral peak frequency (PF) computed with a frame 

size = 256 samples or 23 ms of snore signals synthesized using different source flows (SF1, SF2, 

and SF3) and cross-sectional areas (CSA) of pharynx (PX) and oral cavity (OC) for upper airway

models (UA1 and UA2). 

 UA1 UA2 

∆CSA (cm2) SF1 SF2 SF3 SF1 SF2 SF3 

PX OC F1 PF F1 PF F1 PF F1 PF F1 PF F1 PF 

0 0 547 602 694 691 688 685 564 559 593 599 585 581 

-0.4 0 581 563 705 702 704 705 602 576 609 633 602 601 

-0.2 0 560 600 704 699 703 698 569 561 599 613 592 591 

+0.2 0 545 599 676 672 679 673 560 554 590 647 572 569 

+0.4 0 527 578 666 664 667 660 552 546 583 662 566 560 

0 -0.4 551 632 685 679 682 675 559 554 589 617 575 572 

0 -0.2 558 629 690 688 686 673 561 556 593 615 582 576 

0 +0.2 536 587 696 694 694 690 564 559 598 602 589 585 

0 +0.4 551 584 700 695 700 694 566 560 598 603 591 588 

-0.4 +0.4 587 560 709 705 706 707 626 608 619 633 611 650 

-0.2 +0.2 549 598 706 701 703 699 568 559 608 622 598 596 

+0.2 -0.2 522 596 672 668 674 673 556 552 579 673 566 709 

+0.4 -0.4 520 563 659 657 659 652 548 542 578 612 556 616 
Values are presented as mean. First row indicates F1 and PF in hertz for reference UA1 and UA2 
at their respective CSA, while others indicate F1 and PF under various changes in CSA from the 
reference. ∆CSA refers to change in CSA perturbations (cm2).    
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Besides the subjective paired comparison scores, the sum-of-squared errors 

between the natural and stimulated SFD waveforms were computed to determine how 

well the latter fits the former. Apparently, the smaller the error, the better the 

stimulated waveform fits its natural counterpart. 

 

8.4 Results and Discussion 

8.4.1 Acoustical Influences of Area Perturbations 

Table 8.3 and Figure 8.11 summarize the values of F1 and PF for perturbations that lie 

Figure 8.11   First formant frequency (red) and spectral peak frequency (blue) computed with a

frame size = 256 samples or 23 ms of snore signals synthesized using different source flows (SF1,

SF2, and SF3) and cross-sectional areas (CSA) of pharynx (PX) and oral cavity (OC) for upper

airway models (UA1 and UA2). ∆CSA denotes change in CSA perturbations (cm2), while ‘a’

denotes (PX,OC) = (0,0); b = (-0.4,0); c = (-0.2,0); d = (+0.2,0); e = (+0.4,0); f = (0,-0.4); g = (0,-

0.2); h = (0,+0.2); i = (0,+0.4); j = (-0.4,+0.4); k = (-0.2,+0.2); l = (+0.2,-0.2); m = (+0.4,-0.4). 
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within ±0.4 cm2 from the reference models. The key influence of decreasing the CSA 

of PX, while keeping constant or widening the CSA of OC, is an increase of F1. 

Correspondingly, an increase in the CSA of PX, while maintaining constant or 

narrowing the CSA of OC, can reduce F1. The variations of F1 with changing CSA are 

not as drastic as those of PF; conversely, they are more consistent and predictable for 

rise or fall regardless of SF types and UA models. In UA1 for SF2, when PX alters 

from -0.4 to +0.4 cm2 in parallel with OC from +0.4 to -0.4 cm2, both F1 and PF 

declines progressively from 709 to 659 Hz and from 705 to 657 Hz, respectively. 

However, under the same CSA configuration for SF2 in UA2, F1 drops from 619 to 

578 Hz, but PF fluctuates between 612 and 673 Hz rather than decreases as before. 

Table 8.4   First formant frequency (F1) and spectral peak frequency (PF) computed with a frame 

size = 512 samples or 46 ms of snore signals synthesized using different source flows (SF1, SF2, 

and SF3) and cross-sectional areas (CSA) of pharynx (PX) and oral cavity (OC) for upper airway

models (UA1 and UA2). 

 UA1 UA2 

∆CSA (cm2) SF1 SF2 SF3 SF1 SF2 SF3 

PX OC F1 PF F1 PF F1 PF F1 PF F1 PF F1 PF 

0 0 557 572 691 687 686 680 565 560 600 639 586 624 

-0.4 0 595 572 703 694 703 698 601 582 609 654 604 786 

-0.2 0 564 589 700 691 698 693 576 569 605 637 593 675 

+0.2 0 556 580 677 673 679 669 556 557 595 678 578 668 

+0.4 0 538 611 663 660 667 654 550 553 585 676 565 553 

0 -0.4 557 575 683 679 681 676 554 558 601 644 580 607 

0 -0.2 560 571 689 685 683 679 562 559 601 650 587 610 

0 +0.2 553 583 694 687 690 687 566 562 602 644 589 624 

0 +0.4 562 595 698 692 694 692 568 566 603 623 596 621 

-0.4 +0.4 597 593 708 701 708 701 628 612 620 650 609 790 

-0.2 +0.2 569 582 702 691 702 697 578 572 608 638 601 786 

+0.2 -0.2 548 588 671 668 677 665 552 558 583 717 566 556 

+0.4 -0.4 534 576 659 655 660 647 550 545 577 652 560 546 
Values are presented as mean. First row indicates F1 and PF in hertz for reference UA1 and UA2 
at their respective CSA, while others indicate F1 and PF under various changes in CSA from the 
reference. ∆CSA refers to change in CSA perturbations (cm2).    
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Likewise, under the same CSA configuration in UA1 for SF3, both F1 and PF 

gradually decline from 706 to 659 Hz and from 707 to 652 Hz, respectively; however, 

in UA2 for SF3, while F1 drops from 611 to 556 Hz, PF fluctuates between 596 and 

709 Hz. This undeterminable behavior of PF is also noticed in snore signals 

synthesized using SF1, and even when the frame size has been adjusted to 512 samples, 

as justified in Table 8.4 and Figure 8.12. A close inspection of Table 8.3 and Table 8.4 

also highlight that increasing the CSA of OC or shortening the UA length can likely 

boost the values of F1. 

 

Figure 8.12   First formant frequency (red) and spectral peak frequency (blue) computed with a

frame size = 512 samples or 46 ms of snore signals synthesized using different source flows (SF1,

SF2, and SF3) and cross-sectional areas (CSA) of pharynx (PX) and oral cavity (OC) for upper

airway models (UA1 and UA2). ∆CSA denotes change in CSA perturbations (cm2), while ‘a’

denotes (PX,OC) = (0,0); b = (-0.4,0); c = (-0.2,0); d = (+0.2,0); e = (+0.4,0); f = (0,-0.4); g = (0,-

0.2); h = (0,+0.2); i = (0,+0.4); j = (-0.4,+0.4); k = (-0.2,+0.2); l = (+0.2,-0.2); m = (+0.4,-0.4). 
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The frequency marker F1 of snore signals has considerably proven to be more 

sensitive to changes in UA geometry than PF, which is in line with the previous 

speech and voice studies, recognizing the associations between F1 and constrictions in 

PX and OC: the greater the pharyngeal constriction or the lower the oral constriction, 

the higher is F1 [152,160,275]. For instance, the PX is more constricted and the lips 

are more broadly opened for the vowel /a/ than /i/; therefore, the value of F1 for /a/ 

(710 Hz) is higher than that of /i/ (280 Hz) [275]. With the establishment of 

anatomical-acoustical relationships, one can deduce that F1 is superior to PF in 

detecting OSA, further validating the reliability of F1, discussed in Chapter 5, as a 

potential diagnostic marker for OSA. Apneic patients tend to produce snores of higher 

F1 than that of benign patients because they usually possess smaller pharyngeal airway 

[29-31,56,57] and spend more time on oral or oro-nasal breathing than benign ones 

[276,277], further reducing the airway size as a consequence of jaw opening.  

 

8.4.2 Perceptual Influences of Area Perturbations 

The degree (range 1–5) of each psychoacoustic metric (loudness, sharpness, roughness, 

fluctuation strength, and annoyance) of snore sounds involved in the listening tests for 

the area perturbation study are tabulated in Table 8.5. Most listeners feel that the 

sound quality metrics in response to the CSA perturbations are not pronounced. The 

degree ratings for each pair of snore sounds with same SF, when compared across 

different SFs, are confounded, except for those tailored to investigate the effects of 

varying CSA of OC, which indicate no sound change. On the contrary, when we 

compared snore sounds of different SFs with the same CSA configuration, the degree 

ratings are conclusive. Sounds created by SF3, an aperiodic waveform, yield highest 

ratings for all the metrics (degree range 3.9–4.6), followed by the two quasi-periodic 
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waveforms, SF2 (degree range 2.8–3.4) and SF1 (degree range 1.4–1.7) 

Unlike the frequency markers (F1 and PF), the integrity of snore sound qualities 

(loudness, sharpness, roughness, fluctuation strength, and psychoacoustic annoyance), 

are not easily affected by the changes of cross-sectional airway dimensions. Apart 

from the limited availability of listeners, another probable explanation is that the 

spectral contents (e.g., envelope, magnitude, and formant bandwidth) of the acoustic 

transfer functions of UA models with or without CSA perturbations have no 

considerable discrepancy. As evident in Figure 8.13, the transfer functions of reference 

UA models and those after CSA perturbations are somewhat similar, except for their 

spectral envelopes that are slightly shifted sideways. On the other hand, a change in SF 

types can bring about a vast change in the perception of snore sounds, suggesting that 

the UA anatomical structures are probably the aggravating factors in snore production.  

The dynamics of SF (e.g., amplitude envelope, fundamental frequency, and 

harmonicity) contribute a dominant part to the psychoacoustics of snore sounds since 

Table 8.5   Psychoacoustic metrics, in terms of loudness (L), sharpness (S), roughness (R), 

fluctuation strength (F), and annoyance (PA), of snore sounds synthesized using different source 

flows (SF1, SF2, and SF3) and cross-sectional areas (CSA) of pharynx (PX) and oral cavity (OC). 

∆CSA (cm2)  SF1 SF2  SF3 

PX OC  L S R F PA L S R F PA  L S R F PA

0 0  1.4 1.5 1.7 1.7 1.5 3.2 2.8 3.1 3.4 2.9  4.4 4.6 4.2 3.9 4.6

-0.4 0  2.8 2.9 3.1 3.1 3.1 3.0 3.3 3.3 2.8 3.0  3.3 3.1 3.4 3.1 3.3

+0.4 0  3.2 3.1 2.9 2.9 2.9 3.0 2.7 2.7 3.2 3.0  2.7 2.9 2.6 2.9 2.7

0 -0.4  3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0  3.0 3.0 3.0 3.0 3.0

0 +0.4  3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0  3.0 3.0 3.0 3.0 3.0

-0.4 +0.4  2.7 2.8 3.0 2.8 2.9 3.0 2.7 3.0 3.0 2.8  3.3 3.0 3.3 3.3 3.2

+0.4 -0.4  3.3 3.2 3.0 3.2 3.1 3.0 3.3 3.0 3.0 3.2  2.7 3.0 2.7 2.7 2.8
Values are presented as mean for both upper airway models (UA1 and UA2) combined. First row 
indicates the degree (range 1 to 5, with ‘1’ being least and ‘5’ being most) of the metrics after 
comparing snore sounds with different SFs, while others indicate the degree of the metrics for each 
pair of snore sounds (row 2nd and 3rd, 4th and 5th, 6th and 7th) with same SF. ∆CSA refers to 
change in CSA perturbations (cm2).    
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each sound quality metric can be anticipated from acoustic measurements [232], as 

elaborated in Section 7.1. Loudness correlates with amplitude; sharpness depends on 

centre frequency and bandwidth; roughness and fluctuation strength govern by 

temporal variations of high-frequency and low-frequency, respectively; and annoyance 

relies on the above four metrics. Relating this to the mechanisms of snoring 

development [28,150,213-216], a narrower airway escalates the negative intraluminal 

pressure and hence enhances the driving forces on the vibrating soft tissues or the rate 

of pharyngeal airway closure and reopening. Spontaneously, the complexity of SF 

dynamics rises (e.g., amplifying the amplitude, increasing the fundamental frequency, 

and introducing higher harmonics), and the resulting sound waves are spectrally 

modified by the acoustic transfer function of UA, producing snoring sounds of build-

up loudness, sharpness, roughness, fluctuation strength, and/or psychoacoustic 

annoyance. The perceptual findings further elucidate why AS and BS can be classified 

Figure 8.13   Acoustic transfer functions of reference (a) UA1 (green) and (b) UA2 (green), and

transfer functions of models with cross-sectional areas (CSA) of pharynx (PX) at -0.4 cm2 and oral

cavity (OC) at +0.4 cm2 from the reference (red), and models with CSA of PX at +0.4 cm2 and OC

at -0.4 cm2 from the reference (blue). 
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via the psychoacoustics of snore sounds in Chapter 7. 

 

8.4.3 Source Flow Parameterization 

Table 8.6 reveals the time- and amplitude-based parameter values for SF1 and SF2. 

Owing to the lengthened airflow plateau of SF1, the parameter values concerning the 

relative timing of ES maneuver within the fundamental period (open quotient, OQ; 

negative open quotient, NQ; and positive open quotient, PQ) are significantly smaller 

for SF1 than for SF2. The values of OQ = 0.3203 ± 0.0072 (range 0.3139–0.3280) for 

SF1, whereas OQ = 0.5706 ± 0.0733 (range 0.4743–0.6413) for SF2. Comparisons 

between NQ and PQ for each SF show that their values fall within the same range for 

SF1 but not for SF2 where NQ (0.2465 ± 0.0438) are lesser than PQ (0.3241 ± 0.0380). 

This outcome for SF2 is justified by the values of negative closing quotient (NCQ), 

which are considerably reduced as opposed to that of positive closing quotient (PCQ), 

with NCQ = 0.2632 ± 0.0485 and PCQ = 0.4250 ± 0.0426. Thus, the outcome suggests 

that the ES for SF2 takes a shorter time to collapse from neutral position than from 

fully open to neutral position, as evidenced in Figure 8.9. In contrast, such speed 

imbalance at the negative and positive closing phases is not found in the ES for SF1, 

signifying dissimilar biomechanical properties (e.g., compliance and elasticity) 

between the ESs.  

In view of the amplitude findings, the values of amplitude quotient (AQ), 

interpreted as the inverse of maximum SFD amplitude, for SF2 (AQ = 2.3278 ± 

0.2799, range 1.9802–2.6316) are substantially lower than for SF1 (AQ = 3.0173 ± 

0.1566, range 2.8548–3.1672), which can be attributed to the rapid acceleration of SF2 

as the ES abruptly pops open from closing position. Moreover, the values of positive 

amplitude quotient (PAQ) are consistently smaller than that of negative amplitude 
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quotient (NAQ) for both SF1 (PAQ = 4.3133 ± 0.4390; NAQ = 7.6117 ± 1.1294) and 

SF2 (PAQ = 4.6915 ± 0.3747; NAQ = 5.5982 ± 0.9090), implying a relatively steep 

Table 8.6   Time- and amplitude-based parameters for snore source flows, SF1 (T = 26.2 ms) and 

SF2 (T = 15.6 ms). 

  SF1  SF2 

Parameter  Mean ± SD Range  Mean ± SD Range 

T
tt nrprOQ

−
=   

 
0.3203 ± 0.0072

 
0.3139–0.3280  

 
0.5706 ± 0.0733 

 
0.4743–0.6413 

T
tt nrrNQ

−
=   

 
0.1565 ± 0.0158

 
0.1448–0.1744  

 
0.2465 ± 0.0438 

 
0.1899–0.2936 

T
tt rprPQ

−
=   

 
0.1639 ± 0.0211

 
0.1396–0.1778  

 
0.3241 ± 0.0380 

 
0.2583–0.3552 

nrpr

nrminNCQ
tt
tt

−
−

=   
 

0.3409 ± 0.0342
 

0.3127–0.3789  
 
0.2632 ± 0.0485 

 
0.2037–0.3333 

nrpr

minrNOQ
tt

tt
−
−

=   
 

0.1482 ± 0.0256
 

0.1267–0.1766  
 

0.1674 ± 0.0490 
 

0.1279–0.2474 

nrpr

rmaxPOQ
tt
tt

−
−

=   
 

0.1621 ± 0.0163
 

0.1435–0.1738  
 

0.1444± 0.0214 
 

0.1187–0.1839 

nrpr

maxprPCQ
tt
tt
−

−
=   

 
0.3489 ± 0.0414

 
0.3011–0.3731  

 
0.4250 ± 0.0426 

 
0.3608–0.4759 

dmax

1AQ
A

=   
 

3.0173 ± 0.1566
 

2.8548–3.1672  
 

2.3278 ± 0.2799 
 

1.9802–2.6316 

dnmin

1NAQ
A

=   
 

7.6117 ± 1.1294
 

6.4722–8.7306  
 

5.5982 ± 0.9090 
 

4.8190–7.2935 

dpmin

1PAQ
A

=   
 

4.3133 ± 0.4390
 

3.8202–4.6615  
 

4.6915 ± 0.3747 
 

4.2766–5.2641 

Values are presented as mean ± standard deviation (SD) and range. SF refers to source flow; T,
fundamental period; OQ, open quotient; NQ, negative open quotient; PQ, positive open quotient; 
NCQ, negative closing quotient; NOQ, negative opening quotient; POQ, positive opening 
quotient; PCQ, positive closing quotient; AQ, amplitude quotient; NAQ, negative amplitude 
quotient; PAQ, positive amplitude quotient; tnr, negative return flow time instant (i.e., last negative 
zero-crossing of the flow derivative before time instant of negative minimum flow derivative); tmin, 
minimum flow time instant; tr, return flow time instant; tmax, maximum flow time instant; tpr, 
positive return flow time instant (i.e., first positive zero-crossing of the flow derivative after time 
instant of positive minimum flow derivative); Admax, amplitude at time instant of maximum flow 
derivative; Adnmin, amplitude at time instant of negative minimum flow derivative; Adpmin, 
amplitude at time instant of positive minimum flow derivative.   
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decline in airflow when ES falls from fully open to neutral position at the positive 

closing phase. However, due to the large change of airflow, which is about two times 

greater, in the positive closing phase than in the negative closing phase, the time taken 

for ES to reach neural position is longer than it takes to collapse, as noted in the earlier 

outcome for SF2. 

The mechanisms of snore production are often associated with the instability of 

airflow over the flexible soft tissues [28,150,213-216], and they can be explained by 

the theory of flutter and the concept of static divergence, in which the former is mainly 

responsible for palatal snoring (e.g., sound from soft palate vibration), while the latter 

is for pharyngeal snoring (e.g., sound from pharyngeal wall vibration) [215,216]. In a 

nutshell, when palatal snoring is triggered, the soft palate flaps backwards and 

forwards in the UA, briefly occluding the nasopharyngeal space for nasal breathers, or 

alternately obstructing the oral and nasal airways as it flutters between the tongue and 

the posterior pharyngeal wall for ora-nasal breathers. On the contrary, pharyngeal 

snoring involves airway wall oscillations around a neutral position, colliding with the 

opposing walls between the soft palate and the larynx. 

Regardless of any modes of snoring, the UA lumen is inevitably susceptible to a 

series of short closures (partially or fully) and reopenings attributable to the flow-

induced self-sustained vibration of soft tissues that are aeroelastically unstable during 

snoring [28,99,100,150,208,213-216,255-257]. According to the water hammer 

phenomenon [278], the airway internal pressure rises during each closure and then 

blasts open the shut lumen at an elevated speed, momentarily distending the airway 

and inducing an overshoot [215]. The overshoot effect may clarify why the amplitude 

of SF1 and SF2 in Figure 8.9 was intensified at the positive opening phase, followed 

by a decay indicating the return of airflow to its neutral value at the positive closing 
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phase. This closing-opening-return sequence characterizes the vibration rate of ES and 

equivalently determines the fundamental frequency of the quasi-periodic snores. The 

faster the vibration rate, the higher the fundamental frequency, and vice versa. 

Relating this to the biomechanical properties of soft tissues, the ability for a 

tissue to stretch and return after stretching heavily relies on its compliance and 

elasticity, which vary among tissues and degree of tissue abnormalities [279-283]. 

Electromyographic studies have also reported that stiffness (inverse of compliance) of 

the soft palate for adult apneic subjects is higher than that of the tongue, whereas 

elasticity of the tongue is lower than that of the soft palate [284,285]. Furthermore, 

apneic subjects exhibit increased stiffness but decreased elasticity of the tongue as 

compared to non-snorers [286,287]. Surgical treatments for palatal snoring (e.g., 

injection snoreplasty [288,289], laser assisted uvulopalatoplasty [290,291], and palatal 

implants [292,293]) have also been documented to raise tissue stiffness, reducing 

dynamic flutter and snore loudness. Therefore, one may reasonably infer that the 

temporal details of SF waveform, quantified by the time- and amplitude-based 

parameters, carry rich information about the vibratory properties of snore ES and is 

potentially helpful for pathological research on snoring. 

 

8.4.4 Source Flow Modeling 

The paired comparison scores of synthetic snores generated from the SFD model with 

various function support intervals are tabulated in Table 8.7. As can be seen, the 

support of [-5, 5] and [-6, 6] yield comparable high ratings on the degree of similarity 

for all possible paired comparisons, while the support of [-4, 4] yields the lowest 

ratings. Since the artificial SFD waveforms were simulated using the post-smoothing 

time domain parameters, ratings for the comparisons between the synthetic and 
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smoothed snores are elevated. Snore sounds created from UA1 and SFD1 with support 

intervals [-4, 4], [-5, 5], and [-6, 6] are respectively rated with 2.3846 ± 0.8697, 2.7692 

± 0.5991, 2.8462 ± 0.5547 when they were evaluated against those generated from 

Table 8.7   Paired comparison scores of snores synthesized at various function support intervals 

for different source flow derivatives (SFD1 and SFD2) and upper airway models (UA1 and UA2). 

Type of sound sample  UA1 

Comparison Reference  SFD1 SFD2 

NS NS  4.8125 ± 0.4031 4.7500 ± 0.4472 

NSm NS  4.0769 ± 0.2774 3.5385 ± 0.6602 

SS4 NS  2.3846 ± 0.8697 1.5385 ± 0.5189 

SS5 NS  2.7692 ± 0.5991 1.8462 ± 0.8987 

SS6 NS  2.8462 ± 0.5547 1.8462 ± 0.8987 

NSm NSm  4.9375 ± 0.2500 4.8750 ± 0.3416  

SS4 NSm  3.0000 ± 0.9129 2.6154 ± 0.9608 

SS5 NSm  3.7692 ± 0.7250 3.0000 ± 0.8165 

SS6 NSm  3.7692 ± 0.5991 3.0000 ± 0.8165 

SS4 SS4  5.0000 ± 0.0000 5.0000 ± 0.0000 

SS5 SS5  5.0000 ± 0.0000 5.0000 ± 0.0000 

SS6 SS6  5.0000 ± 0.0000 5.0000 ± 0.0000 

     

Type of sound sample  UA2 

Comparison Reference  SFD1 SFD2 

NS NS  4.8750 ± 0.3416 4.8125 ± 0.4031 

NSm NS  4.0000 ± 0.4082 3.3846 ± 0.6504 

SS4 NS  2.3077 ± 0.6304 1.9231 ± 0.6405 

SS5 NS  2.8462 ± 0.6887 1.9231 ± 0.6405 

SS6 NS  2.8462 ± 0.6887 1.9231 ± 0.4935 

NSm NSm  4.9375 ± 0.2500  4.8750 ± 0.3416  

SS4 NSm  2.9231 ± 0.9541 2.2308 ± 0.7250 

SS5 NSm  3.2308 ± 0.9268 2.6154 ± 0.7679 

SS6 NSm  3.3077 ± 0.7511 2.6923 ± 0.7511 

SS4 SS4  5.0000 ± 0.0000 5.0000 ± 0.0000 

SS5 SS5  5.0000 ± 0.0000 5.0000 ± 0.0000 

SS6 SS6  5.0000 ± 0.0000 5.0000 ± 0.0000 
Values are presented as mean ± standard deviation. SFD refers to source flow derivative; UA, 
upper airway; NS, natural snore; NSm, snore generated from smoothed source flow derivative; SSk, 
synthetic snore with function support interval [-k, k]. 
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natural SFD1. Conversely, the correspondingly ratings noticeably increase to 3.0000 ± 

0.9129, 3.7692 ± 0.7250, and 3.7692 ± 0.5991 when the same snore sounds were 

weighted against those from smoothed SFD1. The listeners’ judgments are reliable as 

the average paired comparison scores for self-pairing are persistently skewed towards 

the high end (at least 4.75 out of 5).  

Although the SFD model with support of [-6, 6] somewhat outperforms the other 

support intervals in the listening tests, the sum-of-squared error for [-6, 6] is the largest, 

followed by [-5, 5] and [-4, 4], in a descending order (for SFD1: 3.5163, 3.3896, and 

3.1408; and for SFD2: 16.0063, 15.9262, and 15.9062). The large error is plausibly a 

consequence of narrowness of temporal pulse, which is inversely proportional to the 

support interval width, as illustrated in Figure 8.10. By considering the trade-off 

between degree of similarity and sum-of-squared error, we recommended the support 

interval [-5, 5] for the SFD model, which is also the effective compact support for the 

Mexican hat wavelet [136,221]. Figure 8.9 depicts the curve-fitting of the SF and SFD 

waveforms using the SFD model with support of [-5, 5], along with their 

corresponding spectra. 

Spectra of the natural, smoothed, and synthetic snore signals for different 

combinations of SFDs and UA models in Figure 8.14 offer extra confirmation of the 

earlier listening test results for SF analysis. The spectrum envelopes of synthetic snore 

signals match more closely to that of the smoothed signals than that of the natural 

signals. A close inspection of the plots also advocates that the proposed SFD model is 

capable of producing human-like snores up to 500 Hz and 1000 Hz for SFD1 

waveform and SFD2 waveform, respectively. With these outcomes for various 

function support intervals modeling the SFD, one can realize that there exist acoustical 

and perceptual impacts of changing the shapes of SF or SFD pulse on snore quality. 
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Even though the biophysics of snore and speech production shares many 

similarities (e.g., source-filter model) [99,162], snore SF and glottal flow can be 

dissimilar because of their sound-generating physiology and mechanisms. As rendered 

in Figure 8.15, the Liljencrants-Fant glottal model [158,159,274] suitably fits the 

glottal flow derivative waveforms for vowels /a/ and /o/, which were acquired and 

processed in the same way as the snores, but not the snore SFD waveform. In contrast, 

the second derivative of the Gaussian function or the Mexican hat wavelet [136,221] is 

relatively superior in approximating the shape of SFD pulses, producing close-to-

natural sounding snores. 

 

Figure 8.14   Spectra of natural (blue), smoothed (red), and synthetic snores with function support

intervals [-4, 4] (cyan), [-5, 5] (green), and [-6, 6] (magenta) for different combinations of source

flow derivatives and upper airway models: (a) SFD1 and UA1; (b) SFD2 and UA1; (c) SFD1 and

UA2; and (d) SFD2 and UA2. 
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8.5 Summary 

This chapter investigates the relationships between the snore SF, the UA anatomical 

structures, and the acoustical and perceptual characteristics of snores by conducting an 

area perturbation study and a SF analysis. Results demonstrate that changes in the 

CSA of PX and OC have diverse implications for generating snores, more acoustically 

than perceptually. The values of F1 and occasionally PF of snore signals increase with 

narrowing pharyngeal airway, being higher for a larger mouth opening, warranting the 

likelihood of using acoustical signatures in snores to discriminate between patients 

with and without OSA. Conversely, the snore sound psychoacoustic metrics are not 

easily affected by increasing or decreasing the dimensions of pharyngeal airway and 

Figure 8.15   Waveforms of (a) vowels /a/ and /o/, and their corresponding (b) glottal flow

waveforms and (c) glottal flow derivative waveforms. Waveforms for Liljencrants-Fant glottal

model are plotted in green. 
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mouth opening; nonetheless, these CSA changes can indirectly influence the metrics 

by altering the waveforms of SF.  

In addition to the above findings, changes in the SF or SFD pulse shape can 

affect the snore characteristics, both acoustically and perceptually. The shapes of SF 

pulse are dissimilar among snores and can be associated with the dynamic 

biomechanical properties (e.g., compliance and elasticity) of ES, lending support to 

our hypothesis that attributes of SF and SFD may contain important information about 

ES dynamics. The proposed SFD model based on the second derivative of the 

Gaussian probability density function or the Mexican hat wavelet with effective 

compact support of [-5, 5] can successfully generate natural-sounding synthetic snores, 

providing a deeper understanding of snore production mechanisms from physiological 

to acoustical and perceptual aspects. 

Although this research has achieved its overall aim of implementing a 

convenient, low-cost, safe, and efficient approach for OSA screening through the 

acquisition and analysis of snore signals, one also has to acknowledge limitations of 

this research work. The next chapter of this thesis revisits the general aim and specific 

objectives of this work, concludes the research findings, and outlines the work 

limitations, along with recommendations for future research. 
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Chapter 9 

 

Conclusions and Recommendations 

 

This research aims to innovate on a simple, inexpensive, safe, and reliable approach to 

diagnose OSA via the acquisition and analysis of snore signals, with an intention to 

mass screen for OSA. The present chapter revisits the objectives of this research work, 

summarizes the findings pertaining to the objectives, and draws conclusions from the 

findings. Subsequently, we discussed the work limitations and offered 

recommendations for future research. 

   

9.1 Conclusions 

OSA is a common sleep-related breathing disorder with elevated undiagnosis and 

untreated rate. Snore-based analysis has been increasing studied for its potential 

application in the clinical assessment of OSA as it can provide convenient and non-

invasive data measurement with minimum medical and labor costs. Motivated by the 

advantages of processing snores, several snore-based diagnostic methodologies, in 

terms of snore counting, sound intensity measurement, power spectrum estimation, 

and pitch calculation, have been introduced to distinguish between patients with and 

without OSA (see Chapter 2). While corroborating the hypothesis that snore signals 

could be an alternative means for assessing OSA, these methodologies yield mixed, 

contradictory, and inconclusive outcomes, thereby highlighting the need for better 

approaches to diagnose OSA. We attempted to address this concern through 

accomplishing the following objectives.    
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(a) To develop and set up an acquisition system for snore signals 

A high-fidelity and user-friendly acquisition system for snore signals is designed 

and implemented in a clinical environment (see chapter 3). In the process of 

developing the acquisition system, we took into account of various design 

considerations for microphone, preamplifier, data acquisition card, grounding layout, 

graphical user interface, and MMD. Experiments were also conducted to warrant the 

acquisition system robustness; results show that snore signals exhibit strong immunity 

to background acoustical noise with correct selection of the amplification gain and 

improve rejections to EMI with careful grounding and shielding. A MMD of 0.3 m can 

also reach a good balance between signal quality and patient comfort. Therefore, an 

appropriate selection and installation of the system components is necessary to acquire 

snore signals of high quality and integrity.    

 

(b) To improve snore signal quality and detect snore activity 

An advanced wavelet-driven preprocessing system is devised to simultaneously 

enhance snore signal quality via a LCD threshold and identify SA using a SA detector 

in a TIDWT domain (see Chapter 4). The LCD threshold with hard-thresholding rule 

successfully reduces additive colored noise embedded in snore signals, with an 

increased SNR of 3.02–38.22 dB and MOS of 4.14 out of 5.00, outperforming the 

classical LD threshold. The LCD threshold statistical quality was also verified 

theoretically. In addition, the SA detector is superior to the conventional short-time 

energy and zero-crossing rate approaches in identifying snore segments, with an 

accuracy of 50.63–97.47%. We also examined the clinical usefulness of the 

preprocessing system, and results reveal a better OSA diagnostic accuracy for snores 

analyzed after preprocessing than those before preprocessing. Thus, a robust system 
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for preprocessing snore signals is essential to improve signal quality prior to signal 

analysis and classification, augmenting the diagnostic value of snore signals for 

discriminating apneic patients from benign ones.  

 

(c) To identify useful acoustical characteristics of snore signals as OSA 

diagnostic markers 

(d) To classify snores produced by apneic and benign patients using the 

diagnostic markers 

(e) To ascertain the correlation between AHI and the diagnostic markers 

A variety of acoustical signatures in snore signals, such as formant frequencies 

(see Chapter 5), WBC peaks (see Chapter 6), and psychoacoustic metrics (see Chapter 

7), are proposed. F1, PF1, and PSF of snore signals can potentially be OSA diagnostic 

markers with high sensitivity (F1: 82.5–100%; PF1: 85.4–98.3%; PSF: 82.5–100%) 

and high specificity (F1: 82.0–95.0%; PF1: 85.0–100%; PSF: 83.3–100%) for all three 

patients groups (males, females, and both males and females combined), 

outperforming the commonly used spectral PF (sensitivity = 62.5–91.7%, specificity = 

70.0–97.5%) in the classification of AS and BS (p-value < 0.0001). Besides that, 

loudness and annoyance of snore sounds can also discriminate between AS and BS, 

with a sensitivity of 72.0–78.0%, a specificity of 91.2–92.0%, and a p-value < 0.0001. 

Accordingly, the possible relationship between AHI and the objective diagnostic 

markers (F1, PF1, and PSF) can best describe by the exponential or the power 

regression model with a predictive AHI value (F1: 10.3–14.9 events/h; PF1: 8.0–9.8 

events/h; PSF: 9.3–10.7 events/h) close to the ideal value of 10.0 events/h. 

Furthermore, the correlation between AHI and the subjective diagnostic markers 

(loudness and annoyance) are found to be statistically significant (p-value < 0.0001) 
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with Pearson’s product-moment correlation coefficient = 0.7182–0.7432 and 

Spearman’s rank correlation coefficient = 0.7062–0.7162.  

 

(f) To investigate physiological-anatomical-acoustical relationships of snores 

for validation of the diagnostic markers and for understanding the 

mechanisms of snore production 

The relationships between the snore SF, the UA anatomical structures, and the 

acoustical and perceptual characteristics of snores were explored by performing an 

area perturbation study and a SF analysis (see Chapter 8). Results illustrate that 

narrowing the pharyngeal airway consistently increases F1 but not PF; and altering the 

airway dimensions yield no considerable differences in perception of snore sounds but 

can ultimately affect the psychoacoustics by changing the dynamics of snore SF. 

Adding weight to these findings, alterations in the shape of SF or SFD pulse can 

influence the snore attributes, both acoustically and perceptually. The SF pulse shape 

varies among snores and can be related to the dynamic biomechanical properties (e.g., 

compliance and elasticity) of ES. The proposed SFD model stemmed from the second 

derivative of the Gaussian probability density function or the Mexican hat wavelet 

with effective compact support of [-5, 5] can competently generate close-to-natural 

sounding snores. Correlation exists between the snore SF, the UA anatomical 

structures, and the characteristics of snores. Hence, the proposed OSA diagnostic 

markers are reliable of classifying snores produced by apneic and benign patients, 

effectively distinguishing apneic patients from benign ones.  
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9.2 Recommendations for Further Research 

Even though this research has accomplished its objectives emphasizing on the 

acquisition and analysis of snore signals for the diagnosis of OSA, there are several 

limitations in this work that can serve as directions for future research. 

With the intention of minimizing background acoustical noise (e.g., sound from 

air conditioner and/or patient’s movements) while providing non-contact measurement, 

the microphone implemented for signal acquisition is unidirectional and suspended 

about 0.3 m above the patient’s mouth. A drawback of this setup is that patients were 

requested to sleep in the supine position, and the signal intensity could be degraded 

when patients turned during sleep. Further research on the optimal placement and 

polar patterns of microphone in relation to sleep positions may improve the acquisition 

technique. 

The present work studied a limited number of patients (30 apneic and 10 benign); 

consequently, the training and test data were obtained from the same patient. Future 

studies should involve a larger sample of subjects, favorably with matched for gender, 

age, BMI, NC, and AHI, as well as absolutely independent training and test datasets 

comprising of dissimilar subjects in order to better appraise the diagnostic efficacy of 

snore-based predictor for OSA. Moreover, for real-time diagnostic applications, one 

should develop an automatic program that can sequentially execute the following tasks: 

(a) enhances the acquired signals; (b) detects sleep sound segments; (c) recognizes 

snores from other sleep sounds; (d) extracts snores exceeding a preset threshold value 

(e.g., in terms of sound pressure level); (e) analyzes snore properties; and (f) classifies 

the patient as apneic or benign, together with a predictive AHI value.   

The biophysics of snore production is inherently sophisticated due to the 

involvements of different soft tissues with inhomogeneity compositions and the 
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dynamic UA anatomical structures. Thus, the analytical results from the synthetic 

snores require further justification on the methodology for snore synthesis and its 

relationship with physiological and physical reality. Explicitly, we assumed that the 

snore ES and the UA are linearly separable, in accordance with the source-filter theory. 

This theory serves as a basic principle underlying numerous applications in speech 

technology since a non-interactive source-filter model is simple and the errors 

introduced by the assumption are approximately negligible in many cases. However, 

the assumption may not strictly hold for the case of snore sounds. The vibration of soft 

tissue can be affected by the sound pressure within the UA, entailing a certain degree 

of coupling between the ES and the UA when the flabby tissue reopens from its shut 

position. Nonetheless, the coupling may be weakened when the tissue is at its closing 

position, favoring the independence assumption of the ES and the UA, which makes 

the processing of snore signals tractable. Future research should consider the effect of 

source-filter interaction caused by the coupling, model the UA using an autoregressive 

moving average filter, and further validate the reliability of the proposed OSA 

diagnostic markers (F1, PF1, PSF, and psychoacoustic metrics including loudness and 

annoyance).  

Apart from the linearity assumption made, we changed the CSA of PX and OC, 

without taking into account that such changes could lead to modifications of UA 

dimensions in other anatomical regions. We also stimulated the acoustic waves 

propagating through the entire UA, but neglected the fact that these waves could be 

initiated in any locations where there are imbalance of forces between the UA dilator 

muscles and the negative intraluminal pressure within the UA. Nevertheless, based on 

the findings from the three SFs and the two clinical UA profiles with different UA 

lengths, one may reasonably predict that there is an association between the UA 
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anatomical structures and the acoustical and perceptual characteristics of snores. To 

further improve naturalness of snore synthesis, one should incorporate the following 

components into the existing UA acoustic model: (a) acoustic parameters to account 

for tissue biomechanical properties and UA neuromuscular activities; (b) one or more 

snore ES circuits to generate SF (e.g., a self-oscillating soft palate circuit); and (c) an 

acoustic side branch to represent the nasal cavity.          

Lastly, owing to limited medical resources, no clinical experiments were 

conducted to warrant the accuracy of the proposed SFD model in relation to the 

occurrence and development of physiological events, such as closing, opening, and 

speed of ES vibration during snoring. Future studies should examine the dynamics of 

ES by means of sleep nasendoscopy, which is a technique for assessing snoring under 

light anesthesia, and quantify the SF and SFD pulses, in terms of temporal and spectral 

dimensions. A variety of SF and SFD waveforms from different snoring modes (e.g., 

vibrations of soft palate, uvula, tonsils, tongue base, epiglottis, and/or lateral 

pharyngeal walls) should also be evaluated and compared across multiple acoustic 

dimensions, thereby providing a greater appreciation of the cause-effect relationships 

between the physiological or anatomical changes and the acoustical or perceptual 

characteristics of snores, which will certainly contribute to the development of reliable 

snore-based screening tools for OSA, the understanding of the pathophysiology of 

snoring, and the implementation of new therapies for snoring.  
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Appendix A 

 

Polysomnographic Report of an Apneic Patient 

 

Patient’s name: Sleep study number: 

Identification card number: Date of study: 

Date of birth: Gender: Male 

Height: 1.85 m Body mass index: 27.8 kg/m2 

Weight: 95 kg Neck circumference: 43.0 cm 

Referring physician: Recording technologist: 

 

Study Performed: Nocturnal polysomnography 

 

Procedure: Complete polysomnography with a digital sleep system using the 

international 10-20 electrode placement for recording electroencephalogram, 

electroocculogram, electromyogram from chin, electrocardiogram, respiratory effort, 

oximetry, body position, airflow, snoring sound, pulse rate, and limb movement. 

 

Summary: Sleep study was performed from 23:01:30 to 06:51:30. Patient slept at 

00:20:30 and woke up at 06:51:30. He mostly slept in the supine position. For both the 

lateral and supine positions, loud snoring was heard. 

 

Sleep architecture: The patient sleep latency was 79 min, and rapid eye movement 

(REM) latency was 279 min. Sleep period time was 370 min, and total sleep time was 
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266 min. Sleep efficiency was 56.6% with  24.1% of stage 1 sleep, 64.7% of stage 2 

sleep, 10.2% of stage 3 sleep, 0.0% stage 4 sleep, and 1.1% REM. The total number of 

arousals was 279, and total arousal index was 62.9 per hour. The spontaneous arousal 

index was 6.3 per hour, and the respiratory arousal index was 56.6 per hour.  

 

Respiratory disorders: Respiratory analysis demonstrated 271 obstructive apneas, 0 

mixed apneas, and 0 central apneas, with a total of 271 apneas. The apnea index was 

61.1 events/h, and apnea-hypopnea index (AHI) was 71.3 events/h. The patient spent 

76.5% of total sleep time in the supine position with a supine AHI of 89.9 events/h. 

The REM AHI was 100.0 events/h versus non-REM AHI of 71.0 events/h. 

 

Oxyhemoglobin desaturation: Number of desaturations was 276 with a nadir 

reaching 81% in stage 2 sleep, followed by apnea, and longest apnea is 42 s occurring 

in stage 2 sleep. 

 

Periodic limb movement: No periodic limb movement was noted. 

 

Diagnosis: Patient has a severe obstructive sleep apnea (AHI = 71.3 events/h). 
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Sleep staging summary 

Recording start time 23:01:30 Recording end time 06:51:30 
Analysis start time 00:20:30 Analysis end time 06:30:29 
Total recording time (min) 470 Epoch size (sec) 30 
Number of awakenings 82 Total sleep time (min) 266 
Wake time after sleep onset (min) 104 Sleep efficiency (%) 56.6 
Sleep onset latency (min) 79 Stage REM latency (min) 279 
Total sleep period time (min) 370   

Respiratory event summary 

Parameter REM Non-REM Sleep 
Apnea 5 266 271 
Hypopnea 0 45 45 
Apnea and hypopnea 5 311 316 
Duration of apnea (min) 1.67 108.20 109.88 
Duration of hypopnea (min) 0.00 17.75 17.75 
Duration of apnea and hypopnea (min) 1.67 125.97 127.65 
Apnea-hypopnea index (events/h) 100.0 71.0 71.3 
Respiratory arousal index (events/h) 0.0 6.4 56.6 

Heart rate summary 

Average heart rate (beats/min) 58 
Slowest heart rate (beats/min) 37 
Fastest heart rate (beats/min) 83 

Oxyhemoglobin summary 

Parameter REM Non-REM Sleep 
Lowest oxyhemoglobin saturation (%) 84 81 81 
Mean minimum oxyhemoglobin saturation (%) 92 89 91 
Mean oxyhemoglobin desaturation (%) - - 10 

Arousal summary 

Type of arousal REM Non-REM Sleep 
Spontaneous 0 28 28 
Respiratory 3 248 251 
Periodic limb movement 0 0 0 

Total number of arousals - - 279 
Spontaneous (per hour) 0.0 6.4 6.3 
Respiratory (per hour) 60.0 56.6 56.6 
Periodic limb movement (per hour) 0.0 0.0 0.0 

Total number of arousals per hour - - 62.9 
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Graphical summary of polysomnography (Appendix A) 
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Appendix B 

 

Polysomnographic Report of a Benign Patient 

 

Patient’s name: Sleep study number: 

Identification card number: Date of study: 

Date of birth: Gender: Male 

Height: 1.70 m Body mass index: 22.1 kg/m2 

Weight: 64 kg Neck circumference: 36.5 cm 

Referring physician: Recording technologist: 

 

Study Performed: Nocturnal polysomnography 

 

Procedure: Complete polysomnography with a digital sleep system using the 

international 10-20 electrode placement for recording electroencephalogram, 

electroocculogram, electromyogram from chin, electrocardiogram, respiratory effort, 

oximetry, body position, airflow, snoring sound, pulse rate, and limb movement. 

 

Summary: Sleep study was performed from 22:50:20 to 05:45:20. Patient slept at 

22:57:20 and woke up at 05:45:20. He mostly slept in the lateral position. In the lateral 

position, no snoring was heard. In the supine position, mild snoring was heard. 

 

Sleep architecture: The patient sleep latency was 7 min, and rapid eye movement 

(REM) latency was 19 min. Sleep period time was 355 min, and total sleep time was 
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322 min. Sleep efficiency was 77.6% with 7.9% of stage 1 sleep, 48.0% of stage 2 

sleep, 6.2% of stage 3 sleep, 15.5% stage 4 sleep, and 22.4% REM. The total number 

of arousals was 77, and total arousal index was 14.3 per hour. The spontaneous arousal 

index was 14.0 per hour, and the respiratory arousal index was 0.4 per hour.  

 

Respiratory disorders: Respiratory analysis demonstrated 2 obstructive apneas, 0 

mixed apneas, and 0 central apneas, with a total of 2 apneas. The apnea index was 0.4 

events/h, and apnea-hypopnea index (AHI) was 0.4 events/h. The patient spent 49.0% 

of total sleep time in the supine position with a supine AHI of 0.8 events/h. The REM 

AHI was 0.0 events/h versus non-REM AHI of 0.5 events/h. 

 

Oxyhemoglobin desaturation: Number of desaturations was 2 with a nadir reaching 

96% in stage 2 sleep, followed by apnea, and longest apnea is 26 s occurring in stage 2 

sleep. 

 

Periodic limb movement: No periodic limb movement was noted. 

 

Diagnosis: Patient has no obstructive sleep apnea (AHI = 0.4 events/h). 
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Sleep staging summary 

Recording start time 22:50:20 Recording end time 05:45:20 
Analysis start time 22:57:20 Analysis end time 04:52:19 
Total recording time (min) 415 Epoch size (sec) 30 
Number of awakenings 11 Total sleep time (min) 322 
Wake time after sleep onset (min) 33 Sleep efficiency (%) 77.6 
Sleep onset latency (min) 7 Stage REM latency (min) 19 
Total sleep period time (min) 355   

Respiratory event summary 

Parameter REM Non-REM Sleep 
Apnea 0 2 2 
Hypopnea 0 0 0 
Apnea and hypopnea 0 2 2 
Duration of apnea (min) 0.00 0.85 0.87 
Duration of hypopnea (min) 0.00 0.00 0.00 
Duration of apnea and hypopnea (min) 0.00 0.85 0.87 
Apnea-hypopnea index (events/h) 0.0 0.5 0.4 
Respiratory arousal index (events/h) 15.8 13.4 0.4 

Heart rate summary 

Average heart rate (beats/min) 56 
Slowest heart rate (beats/min) 31 
Fastest heart rate (beats/min) 83 

Oxyhemoglobin summary 

Parameter REM Non-REM Sleep 
Lowest oxyhemoglobin saturation (%) 96 96 96 
Mean minimum oxyhemoglobin saturation (%) 99 98 98 
Mean oxyhemoglobin desaturation (%) - - 2 

Arousal summary 

Type of arousal REM Non-REM Sleep 
Spontaneous 19 56 75 
Respiratory 0 2 2 
Periodic limb movement 0 0 0 

Total number of arousals - - 77 
Spontaneous (per hour) 15.8 13.4 14.0 
Respiratory (per hour) 0.0 0.5 0.4 
Periodic limb movement (per hour) 0.0 0.0 0.0 

Total number of arousals per hour - - 14.3 
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Graphical summary of polysomnography (Appendix B) 
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