
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Parallel and distributed algorithms for
computational biology

Liu, Weiguo

2006

Liu, W. G. (2006). Parallel and distributed algorithms for computational biology. Doctoral
thesis, Nanyang Technological University, Singapore.

https://hdl.handle.net/10356/2474

https://doi.org/10.32657/10356/2474

Nanyang Technological University

Downloaded on 13 Mar 2024 18:53:29 SGT

Nanyang Technological University

Parallel and Distributed Algorithms for

Computational Biology

by

Weiguo Liu

Supervisor: Dr. Bertil Schmidt

Division of Information Systems
School of Computer Engineering

A thesis submitted to the Nanyang Technological University
in fulfillment of the requirement for the degree of

Doctor of Philosophy

October 2005

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Statement of Originality

I hereby certify that the content of this thesis is the result of work done by myself and

has not been submitted for a higher degree to any other University or Institution.

. .

Date Signature

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

To my wife and my dear parents,
who always give me love and support.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis ABSTRACT

Abstract

The computational biology (CB) research area is now faced with an obstacle of ever-

increasing genome data. The amount, complexity and increased need for the rigorous

postprocessing of this data requires an increased role for high performance computing

(HPC).

Dynamic programming (DP) is an important algorithm design technique in scien-

tific computing. It has been widely applied to solve CB problems. Typical applications

using this technique are compute-intensive and suffer from long runtimes on sequen-

tial architectures. In this thesis, we are proposing a tunable coarse-grained partitioning

and communication scheme for DP algorithms. By introducing two performance-related

parameters division and rowwidth, we can tradeoff between computation time and com-

munication time by tuning these two parameters and thus obtain the maximum possible

performance. We will demonstrate how this scheme leads to substantial performance

gains for both regular and irregular DP applications.

Genetic algorithms (GAs) are efficient search methods based on Darwinian evolution.

They have powerful characteristics such as robustness and flexibility to capture global

solutions of complex optimization problems. The fundamental nature of GAs relies on

heuristics to quickly search large numbers of candidate results in order to achieve better

solutions over time. Unfortunately, the more likely a good solution can be found, the more

computational resources are needed by GAs. This leads to high runtimes on sequential

architectures. Because of their inherent parallelism, GAs are promising candidates for

efficient and scalable parallel implementations. In this thesis, we present the design of

a new hierarchical parallel genetic algorithm (HPGA) for the protein folding problem

(PFP) on PC clusters and computational grids. Our hierarchical approach unites the

inter-cluster and intra-cluster parallelism in an efficient way by using a combination of

two communication models, i.e. the stepping stone model and the island model. This

i

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis ABSTRACT

unique combination achieves super-linear speedups on two different parallel architectures.

Based on the concept of hit rates we also introduce a mathematical model to explain and

predict our experimental results.

Although HPC can reduce the runtime of many compute-intensive applications sig-

nificantly, the development and implementation of HPC programs are very complex.

Therefore, this task is usually done by a small number of experts. In this thesis we pro-

pose a parallel pattern-based framework to facilitate the semi-automatic development of

HPC programs. Parallel patterns are derived from sequential design patterns that are

successfully used in object-oriented programming (OOP). By separating the communi-

cation structure of a parallel program from the sequential application, parallel patterns

can be reused and therefore allow for a rapid development of HPC applications. We

show how our parallel pattern-based framework can be deployed to implement parallel

DP algorithms and HPGAs effectively and efficiently.

ii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis ACKNOWLEDGEMENT

Acknowledgement

I would like to express my deepest gratitude and respect to the following people. Without

their help, I could not have done so far.

I would like to thank the following people for working with me on the researches

discussed in the thesis. I benefit a lot from their kindly helps. First and foremost, I

would specially thank my supervisor, Dr. Bertil Schmidt, for his remarkable guidance,

heuristic advices and encouragement during my research work. In the research, Dr. Bertil

is always encouraging me to explore new problems and face new challenges. His broad

knowledge, insightful vision and pure-hearted personality help and encourage me greatly

during the research procedure. I would also thank Dr. Lee Bu-Sung, Dr. Cai Wentong,

and Dr. Stephen John Turner for their valuable ideas in grid meetings that have inspired

me so much on my research work. And I would like to say thanks to Mrs. Irene Goh,

Mr. Chen Chunxi, Mr. Zeng Yi, Mr. Tang Ming, Mr. Yuan Zijing, Ms. Wang Lihua,

Ms. Wang Xiaoguang, Ms. Feng Yuhong and all others who have supported my research

work.

iii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis PUBLICATIONS

Author’s Publications

Journal Papers

1. Weiguo Liu and Bertil Schmidt, Mapping of Hierarchical Parallel Genetic Algo-

rithms for Protein Folding onto Computational Grids, IEICE Transactions on In-

formation and Systems, E89-D(2): 589–596, February 2006.

2. Weiguo Liu and Bertil Schmidt, A Parallel Pattern-based System for High Per-

formance Computational Biology, IEEE Transactions on Parallel and Distributed

Systems, Vol. 17, No. 8, pp. 750–763, August 2006.

Conference Papers

1. Weiguo Liu and Bertil Schmidt, Parallel Design Pattern for Computational Biology

and Scientific Computing, Proceedings of 2003 IEEE International Conference on

Cluster Computing (Cluster 2003), IEEE Computer Society Press, Hong Kong,

2003, pp. 456–459. (acceptance rate: 29.3%)

2. Weiguo Liu and Bertil Schmidt, A Generic Parallel Pattern-based System for Bioin-

formatics, Proceedings of EuroPar’04, Pisa, Italy, Springer, LNCS 3149, 2004, pp.

989–996. (acceptance rate: 35%)

3. Weiguo Liu and Bertil Schmidt, A Case Study on Pattern-based Systems for High

Performance Computational Biology, Proceedings of 1st International BioEngineer-

ing Conference (IBEC 2004), Singapore, 2004, pp. 205–208.

4. Weiguo Liu and Bertil Schmidt, A Tunable Coarse-Grained Parallel Algorithm for

Irregular Dynamic Programming Applications, Proceedings of 11th Annual Interna-

tional Conference on High Performance Computing (HiPC 2004), Bangalore, India,

Springer, LNCS 3296, 2004, pp. 91–100. (acceptance rate: 22%)

iv

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis PUBLICATIONS

5. Weiguo Liu and Bertil Schmidt, A Case Study on Pattern-based Systems for High

Performance Computational Biology, Proceedings of 19th IEEE International Par-

allel and Distributed Processing Symposium (IPDPS 2005)(HICOMB workshop),

IEEE Computer Society Press, Denver, 2005. (acceptance rate: 31%)

6. Weiguo Liu and Bertil Schmidt, Mapping of Genetic Algorithms for Protein Folding

onto Computational Grids, Proceedings of IEEE TENCON’05, IEEE Computer

Society Press, Melbourne, Australia, 2005.

v

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Contents

Abstract i

Acknowledgement iii

Publication iv

Contents vi

List of Figures xi

List of Tables xvii

1 Introduction 1

1.1 Overview . 1

1.1.1 Nucleic Acids . 1

1.1.2 Proteins . 3

1.1.3 Genome Databases . 3

1.2 Motivation . 6

1.3 Objectives . 11

vi

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CONTENTS

1.4 Contributions . 12

1.5 Synopsis of the Thesis . 14

2 Literature Review 16

2.1 Introduction . 16

2.2 Algorithm Design Techniques . 16

2.2.1 Exhaustive Search . 17

2.2.2 Branch-and-Bound Algorithms . 17

2.2.3 Greedy Algorithms . 18

2.2.4 Dynamic Programming . 18

2.2.5 Divide-and-Conquer Algorithms 19

2.2.6 Machine Learning . 19

2.2.7 Randomized and Heuristic Algorithms 20

2.3 Popular Genome Analysis Tasks . 21

2.3.1 Sequence Alignment . 21

2.3.2 Protein Structure Prediction . 25

2.4 Parallel Architectures: A Brief Introduction 28

2.4.1 Flynn’s Taxonomy . 28

2.4.2 A Further Breakdown of MIMD 32

2.4.3 Grids . 35

2.5 Parallel Program Design Environments 42

2.6 Parallel Program Design Methods . 46

vii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CONTENTS

2.6.1 Explicit Parallel Programming . 47

2.6.2 Parallel Pattern Programming . 49

2.7 Summary . 55

3 Characteristic Analyses of Sequential Computational Biology Algorithms 56

3.1 Introduction . 56

3.2 Dynamic Programming Algorithms . 57

3.2.1 Characteristic Analysis of Dynamic Programming Algorithms . . 59

3.2.2 Space-Saving Algorithm . 78

3.3 Genetic Algorithms . 80

3.4 Summary . 86

4 Design of Partitioning and Communication Schemes 87

4.1 Introduction . 87

4.2 Parallel Dynamic Programming Algorithms 89

4.2.1 Striped Partitioning . 89

4.2.2 Block-based Partitioning . 90

4.2.3 Tunable Coarse-grained Partitioning and Communication Scheme 91

4.3 Design of a Hierarchical Parallel Genetic Algorithm for Protein Folding on

Computational Grids . 100

4.3.1 Protein Folding Problems with HP Lattice Models 100

4.3.2 A Hierarchical Parallel Genetic Algorithm for Protein Folding Prob-

lems . 105

viii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CONTENTS

4.3.3 Communication Scheme on Computational Grids 110

4.4 Summary . 115

5 A Generic Parallel Pattern-based Framework for Computational Biol-

ogy Algorithms 116

5.1 Introduction . 116

5.2 Design and Development of Our Framework 117

5.2.1 Multi-Paradigm Design for High Performance Computing 118

5.2.2 Our Parallel Pattern-based Framework: Overview 119

5.2.3 Development of An Extensible and Reusable Framework 122

5.3 Performance Evaluations . 129

5.3.1 Experimental Results for Parallel Dynamic Programming Algo-

rithms on PC Clusters . 129

5.3.2 Experimental Results for Parallel Genetic Algorithms 135

5.4 Summary . 140

6 Conclusions and Future Work 142

6.1 Conclusions . 142

6.2 Future Work . 143

6.2.1 Using Our Framework to Solve Other Dynamic Programming Ap-

plications . 144

6.2.2 Using Our Framework to Solve Tertiary Structure Prediction for

Real Proteins . 146

ix

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CONTENTS

6.2.3 Extending Our Parallel Pattern-based Framework 148

x

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

List of Figures

1.1 An abstract illustration of a segment of a DNA or RNA molecule. It

shows that the molecule consists of a backbone of sugars linked together

by phosphates with an amine base side chain attached to each sugar. The

two ends of the backbone are conventionally called the 5’ end and the 3’ end 2

1.2 Comparison of the rate of growth the GenBank sequence (data from Ta-

ble 1.1) with the rate of growth of the number of transistors in personal

computer chips (Moore’s law: data from Table 1.2). 7

2.1 The Single Instruction, Single Data (SISD) architecture 29

2.2 The Single Instruction, Multiple Data (SIMD) architecture 30

2.3 The Multiple Instruction, Single Data (MISD) architecture 31

2.4 The Multiple Instruction, Multiple Data (MIMD) architecture 31

2.5 The Symmetric Multiprocessor (SMP) architecture 32

2.6 The distributed-memory architecture . 33

2.7 The layered grid architecture . 37

3.1 The computation and composition of sub-problem solutions to solve prob-

lem f(x8) . 58

xi

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis LIST OF FIGURES

3.2 Example of a wavefront computation: (a) shift direction, (b) dependency

relationship . 62

3.3 Example of the Smith-Waterman algorithm to compute the local alignment

between two sequences ATCTCGTATGATG and GTCTATCAC. 64

3.4 The syntenic alignment is an ordered list of local alignments separated by

difference blocks . 66

3.5 (a) Dependency relationship and wavefront shift direction of SW with the

linear gap penalty (b) Dependency relationship and wavefront shift direc-

tion of SW with the affine gap penalty (c) Dependency relationship and

computation shift direction of syntenic alignment algorithm 67

3.6 An example 8 × 8 skyline matrix . 68

3.7 The wavefront computation of skyline matrix problem: (a) shift direction,

(b) dependency relationship . 69

3.8 The wavefront computation of Nussinov algorithm: (a) shift direction; (b)

dependency relationship . 71

3.9 An example of four states Pre-Fix HMM 73

3.10 The wavefront computation of arbitrary-order Viterbi algorithm: (a) shift

direction, (b) dependency relationship . 74

3.11 The principle of spliced alignments . 76

3.12 Pseudo-code for the LastColumn Algorithm 79

3.13 Classification of search techniques . 80

3.14 Genetic operators for GAs. (a) Mutation exchanges one single bit; (b)

Crossover exchanges a contiguous fragment of an individual. 83

xii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis LIST OF FIGURES

4.1 (a) Columnwise striping (b) Columnwise cyclic striping 89

4.2 (a) block-based distribution of an 8 × 8 matrix using 4 processors, (b)

DP computation for 4 processors, 8 columns and a 2 × 2 block size. The

complete 8 × 8 matrix can then be computed in 7 iteration steps 90

4.3 (a) Example of an irregular dependency pattern; (b) Distribution of load

computation density . 91

4.4 The tunable coarse-grained partitioning and communication scheme for

(a)The triangular matrix computation, (b)The square matrix computation 92

4.5 The general parallel algorithm for the tunable coarse-grained partitioning

and communication scheme. (a) For the triangular matrix computation,

(b) For the square matrix computation 93

4.6 Residues are distributed evenly through the whole matrix 95

4.7 Residues are put to the forefront of the matrix 95

4.8 Performance comparison for the skyline matrix problem using different

methods to treat the residue. The performance is measured on two Intel

Pentium IV Xeon 2.6GHz processors in a PC cluster. 96

4.9 Communication scheme using synchronous communication 97

4.10 Communication scheme using asynchronous communication 98

4.11 The general parallel algorithm after moving residues to the forefront of the

matrix and using the hybrid communication mode. (a) For the triangular

matrix computation, (b) For the square matrix computation 99

xiii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis LIST OF FIGURES

4.12 Folding of a protein from a linear chain of amino acids to a three-dimensional

structure. The folding pathway involves amino acid interactions. Many

different amino acid patterns are found in the same types of folds. Thus

making structure prediction from amino acid sequence a difficult under-

taking. 101

4.13 (a) The standard HP model on the square lattice. (b) The HP model

with side chains on the square lattice. (c) The HP tangent spheres model

with side chains. Black denotes a hydrophobic amino acid, white denotes

a hydrophilic amino acid, and gray denotes a backbone element 103

4.14 Illustration of the crossover procedure of the GA for HP lattice models.

In this example the cut point is randomly chosen to be between residues 6

and 7. The first 6 residues of (A) are then joined with the last 6 residues of

(B) to form the new conformation (C). The energy value of conformation

(C) is −4, which is lower than the energies in conformations (A) (−3) and

(B) (−2). Thus the new conformation is accepted. 103

4.15 The Unger-Moult GA for protein structure prediction 104

4.16 Mapping of a sequence to the conformation space. 105

4.17 Global single-population master-slave GAs. 106

4.18 The multiple-population GA for PFP . 107

4.19 Migration models for multiple population GAs: (a) The island model (b)

the stepping stone model . 108

4.20 An HPGA with the master-slave structure for each subpopulation 109

xiv

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis LIST OF FIGURES

4.21 (a) An HPGA with the stepping stone model at the higher level and the

island model at the lower level, (b) an HPGA with the island model at the

higher level and the stepping stone model at the lower level 110

4.22 The structure of the two-layer architecture 112

4.23 The communication detail of the two-layer architecture. 114

5.1 Summarization of all the activities: from the algorithm space to the im-

plementation space. 117

5.2 The two parts of parallel algorithms for (a) Parallel DP algorithms, (b)

HPGAs . 120

5.3 (a) Mapping of parallel DP algorithms onto a cluster, (b) Mapping of

HPGAs onto the computational grid environment 121

5.4 Pure OOP design for the parallel wavefront pattern. 122

5.5 Using inheritance and overriding virtual functions to develop new applica-

tions in traditional OOP. 123

5.6 The connection between the sequential data type and the MPI data type. 124

5.7 The structure of class template GenericPattern. 125

5.8 The UML class diagram for GenericPattern 126

5.9 The UML class diagram of an extension of the GenericPattern to imple-

ment parallel DP programs . 127

5.10 The UML class diagram of an extension of the GenericPattern to imple-

ment HPGA programs . 128

5.11 Reusability of components in the framework for different policies 129

xv

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis LIST OF FIGURES

5.12 Speedups on the Alpha cluster for several regular and irregular DP CB

algorithms with corresponding matrix size. 132

5.13 Speedups of irregular DP applications using different partitioning schemes

for (a) the skyline matrix problem, (b) the Smith-Waterman algorithm

with general gap penalties. 134

5.14 Speedups of irregular DP applications using different partitioning schemes

for (a) the Nussinov algorithm, (b) the MCOP problem. 134

5.15 Speedups of irregular DP applications using different partitioning schemes

for the arbitrary-order Viterbi algorithm. 135

5.16 Hit rates of the parallel GA on the Alpha cluster 138

5.17 Speedups of the parallel GA with (a) the island model and (b) the stepping

stone model on the Alpha cluster . 138

5.18 Hit rates of the HPGA on the computational grid environment 139

5.19 Speedups of our HPGA with (a) the island model on both the grid level

and the cluster level, (b) the island model on the grid level and the stepping

stone model on the cluster level, (c) the stepping stone model on both the

grid level and the cluster level, (d) the stepping stone model on the grid

level and the island model on the cluster level 140

6.1 The new framework can generate HPC applications automatically. 148

6.2 Framework of the cost module. 149

xvi

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

List of Tables

1.1 Growth rate of GenBank [1] . 5

1.2 The growth of the number of transistors in personal computer processors [7] 8

1.3 Comparison of rates of increase of different data explosion curves 8

3.1 A classification for the popular DP algorithms in CB 61

3.2 Popular GA applications in CB. 86

5.1 Performance comparison between two frameworks(framework1: only using

OOP techniques; framework2: using GP and OOP techniques) 130

5.2 Speedups on the Beowulf cluster for several DP algorithms with corre-

sponding matrix size. 131

5.3 Speedup comparison using different division d and rowwidth r for the

Nussinov algorithm. The matrix size is 5000×5000. The number of pro-

cessor is 32 . 133

5.4 Speedup comparison using different division d and rowwidth r for the

Smith-Waterman algorithm with the general gap penalty function. The

matrix size is 5000×5000. The number of processor is 32 133

xvii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1

Introduction

1.1 Overview

All living organisms have a similar molecular chemistry. The most important molecules

involved in bio-chemistry are nucleic acids and proteins. Nucleic acids encode the infor-

mation necessary to produce proteins, and are also responsible for passing this information

to subsequent generations. The research work in molecular biology is mainly devoted to

the study of the structure and function of nucleic acids and proteins.

1.1.1 Nucleic Acids

There are two different types of nucleic acids: DNA (deoxyribonucleic acid) and RNA

(ribonucleic acid). DNA was discovered in 1869 while studying the chemistry of white

blood cells. The two strands of a DNA molecule are tied together in a helical structure.

This is the famous double helix structure discovered by James Watson and Francis Crick

in 1953 [147]. The structure holds because each base in one strand bonds to a base in

the other strand. Pairs are always formed between the bases A and T, and between G

and C. These pairs are known as Watson-Crick base pairs, and their bases are referred

to as complementary bases. Most often, base pairs (bp) are used as the unit of length for

1

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 1.

the DNA molecules.

5’ Phosphate Sugar Phosphate PhosphateSugar Sugar 3’... ...

Base’ Base’’ Base’’’

Figure 1.1: An abstract illustration of a segment of a DNA or RNA molecule. It shows
that the molecule consists of a backbone of sugars linked together by phosphates with
an amine base side chain attached to each sugar. The two ends of the backbone are
conventionally called the 5’ end and the 3’ end

RNA molecules are similar to the DNA molecules, with small differences in com-

position and structure. DNA and RNA are chainlike molecules, called polymers, that

consist of nucleotides linked together by phosphate ester bonds. A nucleotide consists

of a phosphoric acid, a pentose sugar and an amine base. In DNA the pentose sugar is

2-deoxyribose and the amine base is either adenine, guanine, cytosine, or thymine. In

RNA the pentose sugar is ribose instead of 2-deoxyribose and the amine base thymine is

exchanged with the very similar amine base uracil. As illustrated in Figure 1.1 a DNA or

RNA molecule is a uniform backbone of sugars linked together by the phosphates with

side chains of amine bases attached to each sugar.

The most significant difference is that RNA does not form a double helix, although

hybrid RNA-DNA helices are frequent. Also, parts of an RNA molecule may bind to

other parts of the same molecule through complementarity. In terms of functionality,

while DNA is used only for encoding information, there are multiple types of RNAs in a

cell, performing different expression functions.

Both types of nucleic acids, DNA and RNA, are represented as strings of letters over

the four-letter alphabet created by the letters corresponding to the nucleotides from which

they are made.

2

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 1.

1.1.2 Proteins

Proteins are polymers that consists of amino acids linked together by peptide bonds. An

amino acid consists of a central carbon atom, an amino group, a carboxyl group and a

side chain. The side chain determines the type of the amino acid. A protein thus consists

of a backbone of the common structure shared between all amino acids with the different

side-chains attached to the central carbon atoms. Even though there is an infinite number

of different types of amino acids, only twenty of these types are encountered in proteins.

Similar to DNA and RNA molecules, it is thus possible to uniquely specify a protein by

listing the sequence of side chains. Since there is only twenty possible side chains, the

listing can be described as a string over a twenty letter alphabet.

Proteins constitute the majority of the substance types present in living organisms.

For instance, structural proteins are the building blocks of tissues, while enzymes act as

catalysts for biochemical reactions. Other proteins are used for the transport of oxygen,

or act as antibodies for the immune system.

Only residues of the original amino acids are presented in the molecular chain. For

this reason, the length of a protein is measured in residues rather than in amino acids,

although often the latter term is used. Typical proteins are 300-residues long [130].

1.1.3 Genome Databases

In the past decade there has been an explosion in the amount of genome sequence data

available, due to the very rapid progress of genome sequencing projects. There are three

principal comprehensive databases of genome sequences in the world today.

• The EMBL (European Molecular Biology Laboratory) database is maintained at

the European Bioinformatics Institute in Cambridge, UK [136].

3

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 1.

• GenBank is maintained at the National Center for Biotechnology Information in

Maryland, USA [30].

• The DDBJ (DNA Databank of Japan) is maintained at the National Institute of

Genetics in Mishima, Japan [109].

These three databases share information and hence contain almost identical sets of

sequences. The objective of these databases is to ensure that DNA sequence information

is stored in a way that is publicly, and freely, accessible and that it can be retrieved

and used by other researchers in the future. Most scientific journals require submission

of newly sequenced DNA to one of the public databases before a publication can be

made that relies on the sequence. This policy has proved tremendously successful for

the progress of science, and has led to a rapid increase in the size and usage of sequence

databases [86].

Genome databases are growing exponentially. Historically, these databases have been

doubling in size about every 22 months, but that rate has rapidly accelerated due to the

enormous growth in data from ESTs (expressed sequence tags). The current doubling

time for EMBL is now down to under 8 months. Database growth rate will continue for

the foreseeable future, since multiple concurrent genome projects have begun, with more

to come. Table 1.1 shows the total length of all sequences in GenBank, and the total

number of sequences in GenBank as a function of time.

The CB area is also referred to as bioinformatics. The two names are used interchange-

ably, but there seems to be a consensus forming where CB is used to refer to activities

which mainly focus on constructing algorithms or programs that address problems with

biological relevance, while bioinformatics is used to refer to activities which mainly focus

on constructing and using computational tools to analyze available biological data. It

should be emphasized that this distinction between CB and bioinformatics only serves

4

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 1.

Table 1.1: Growth rate of GenBank [1]
Year Base pairs Sequences
1982 680,338 606
1983 2,274,029 2,427
1984 3,368,765 4,175
1985 5,204,420 5,700
1986 9,615,371 9,978
1987 15,514,776 14,584
1988 23,800,000 20,579
1989 34,762,585 28,791
1990 49,179,285 39,533
1991 71,947,426 55,627
1992 101,008,486 78,608
1993 157,152,442 143,492
1994 217,102,462 215,273
1995 384,939,485 555,694
1996 651,972,984 1,021,211
1997 1,160,300,687 1,765,847
1998 2,008,761,784 2,837,897
1999 3,841,163,011 4,864,570
2000 11,101,066,288 10,106,023
2001 15,849,921,438 14,976,310
2002 28,507,990,166 22,318,883
2003 36,553,368,485 30,968,418
2004 44,575,745,176 40,604,319

to expose the main focus of the work. CB spans several classical areas such as biology,

chemistry, physics, statistics and computer science, and the activities in the area are nu-

merous. From a computational point of view the activities are ranging from algorithmic

theory focusing on problems with biological relevance, via construction of computational

tools for specific biological problems, to experimental work where a laboratory with test

tubes and microscopes is substituted with a fast computer and a hard disk full of com-

putational tools written to analyze huge amounts of biological data to prove or disprove

a certain hypothesis.

5

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 1.

Algorithms for solving CB problems are often associated with long runtimes. This is

due to various factors:

• Biological data are obtained by experiments which are prone to errors. The need

to deal with errors and uncertainties results in algorithms with high complexities.

• Many problems involve seemingly well-behaved polynomial time algorithms (such

as all-to-all comparisons) but have massive computational requirements due to the

large data sets that must be analyzed. For example, the assembly of the human

genome in 2001 from the many short segments of sequence data produced by se-

quence robots required approximately 10,000 CPU hours [145].

• Many problems are compute-intensive due to their inherent algorithmic complexities

(such as the protein folding and reconstructing evolutionary histories from molecular

data). Some are known to be NP-hard. (An NP-hard problem is one for which an

exact solution is conjectured by computer scientists to not be solvable in polynomial

time, that is, an NP-hard problem requires more steps than can be grounded by a

polynomial.) Thus, while NP-hard problems are thought to be intractable, HPC

may provide sufficient capability for evaluating bio-molecular hypotheses or solving

more limited but meaningful instances.

The work presented in this thesis is mainly concerned with constructing efficient HPC

algorithms that address CB problems.

1.2 Motivation

The curves with dots and circles in Figure 1.2 show the growth rate of GenBank. Note

that the vertical scale is logarithmic and the curves appear approximately as straight

lines. This means that the size of GenBank is increasing exponentially with time. From

6

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 1.

1970 1975 1980 1985 1990 1995 2000 2005
0

2

4

6

8

10

12 Moore's Law (number of transistors on a microprocessor)
 Total sequence length (kbp)
 Number of sequences

(10n)

Year

Figure 1.2: Comparison of the rate of growth the GenBank sequence (data from Table
1.1) with the rate of growth of the number of transistors in personal computer chips
(Moore’s law: data from Table 1.2).

these two lines we can estimate that the database doubles in size about every 1.4 years.

Interestingly, the curve for the number of sequences almost exactly parallels the curve for

the total length. This means that the typical length of one sequence entry in GenBank has

remained at close to 1000. There are, of course, enormous variations in length between

different sequence entries.

However, according to Moore’s law, the number of transistors on a microprocessor

would double approximately every 2.09 years; this is much slower than the growth rate

of genetic sequence databases. Data on the size of Intel PC chips (Table 1.2) show that

7

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 1.

Table 1.2: The growth of the number of transistors in personal computer processors [7]
Microprocessor Year of Introduction Transistors

4004 1971 2,250
8008 1972 2,500
8080 1974 5,000
8086 1978 29,000

Intel286 1982 134,000
Intel386TMprocessor 1985 275,000

Intel486TMDX processor 1989 1,200,000
IntelR©PentiumR©processor 1993 3,100,000

IntelR©PentiumR©II processor 1997 7,500,000
IntelR©PentiumR©III processor 1999 9,500,000
IntelR©PentiumR©4 processor 2000 42,000,000
IntelR©ItaniumR©2 processor 2002 220,000,000

IntelR©ItaniumR©2 processor (9MB cache) 2004 592,000,000

this exponential increase is still continuing. Looking at the data more carefully, however,

we see that the estimate of doubling every year is rather overoptimistic. The chip size is

actually doubling every two years. Although extremely impressive, this is slower than the

rate of increase of GenBank (see Figure 1.2). As to supercomputers, Jack Dongarra and

colleagues from the University of Tennessee have introduced the LINPACK benchmark,

which measures the speed of computers at solving a complex set of linear equations. A

list of the top 500 supercomputers according to this benchmark is published twice yearly.

According to the LINPACK benchmark, the computing power of supercomputers doubles

every 1.04 years [18]. So supercomputers can beat GenBank for the moment. Table 1.3

shows growth rates of GenBank, PC chips and supercomputer speed.

Table 1.3: Comparison of rates of increase of different data explosion curves
Type of data Doubling time

GenBank (total sequence length) 1.44
PC chips (number of transistors) 2.09

Supercomputer speed (LINPACK benchmark) 1.04

With the publication of the human genome in 2001, we can now truly say that we

8

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 1.

are in the “post-genome age”. The availability of complete genomes is tremendously

important for evolutionary studies. For the first time we can begin to compare whole

sets of genes between organisms, not just single genes. For the first time we can begin

to study the processes that govern the evolution of whole genomes. This is therefore an

exciting time to be in the CB area. The study of large amounts of quantitative biological

data poses challenges for scientists and provides a staggeringly wide field of opportunities

for HPC exploration (see Table 1.3): by finding new and ever-more-efficient methods to

analyze all this biological data, we may be able to unlock potential answers to many of

the “secrets” of life as we have known it. This is a new area of biological sciences where

computational methods are essential for the progress of the experimental science, and

where algorithms and experimental techniques are being developed side by side.

Traditionally, supercomputers were rare and available for only the most critical prob-

lems. Since the mid-1990s, however, the availability of supercomputers has changed

dramatically. With multi-threading support built into the latest microprocessors and

the emergence of multiple processor cores on a single silicon die, supercomputers are be-

coming ubiquitous. Now, almost every university computer science department has at

least one parallel computer. Virtually all oil companies, automobile manufacturers, drug

development companies, and special effects studios use parallel computers.

The availability of very fast processors in supercomputers, together with the widespread

utilization of networks, led to the notion of a “virtual parallel computer” that connected

several fast microcomputers by means of a fast LAN 1.1. This distributed-memory sys-

tem was called a multi-computer or a parallel computer. Clusters of workstations and

beowulf-clusters [17] are good examples of parallel computer systems. Beowulf-clusters

are popular since they are composed of ordinary hardware components (like any PC)

together with public domain software (like Linux, PVM or MPI).

1.1Local Area Network

9

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 1.

Grid systems are the new paradigm of parallel computers. The SETI@home project

[14, 23] provides a fascinating example of the power of grids. The project seeks evidence

of extraterrestrial intelligence by scanning the sky with the world’s largest radio telescope,

the Arecibo Telescope in Puerto Rico. The collected data is then analyzed for candidate

signals that might indicate an intelligent source. The computational task is beyond even

the largest supercomputer, and certainly beyond the capabilities of the facilities available

to the SETI@home project. The problem is solved with public resource computing, which

turns PCs around the world into a huge parallel computer connected by the Internet. Data

is broken up into work units and distributed over the Internet to client computers whose

owners donate spare computing time to support the project. Each client periodically

connects with the SETI@home server, downloads the data to analyze, and then sends

the results back to the server. The client program is typically implemented as a screen

saver so that it will devote CPU cycles to the SETI problem only when the computer

is otherwise idle. A work unit currently requires an average of between seven and eight

hours of CPU time on a client. More than 205,000,000 work units have been processed

since the start of the project. More recently, similar technology to that demonstrated by

SETI@home has been used for a variety of public resource computing projects as well as

internal projects within large companies utilizing their idle PCs to solve problems ranging

from drug screening to chip design validation.

Given the exponential growth in the size of genomic and protein databases and the

availability of complete genomes of complex organisms, the CB area has taken dramatic

leaps forward with the availability of computational resources. The effective use of parallel

computers will become increasingly important in CB. This continues to remain a largely

unexplored territory, and is the principal motivation behind our work.

10

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 1.

1.3 Objectives

In this thesis, we have investigated how the concept of parallel patterns can be applied

in CB. According to the characteristics of popular CB algorithms and the important

features that should be present in the parallel pattern-based program design and devel-

opment method, the objective of our research is to systematically design efficient parallel

algorithms for compute-intensive CB problems. Our research work includes the following

aspects:

• Characteristic Analysis: The first step to design an efficient parallel algorithm is to

analyze and identify the characteristics of the sequential algorithm. Characteristics

of sequential algorithms will affect the design and development of corresponding

parallel programs greatly.

• Partitioning and Communication Scheme: According to the characteristics of the

sequential algorithm, we will design appropriate partitioning and communication

schemes on parallel computers. The partitioning and communication scheme sig-

nificantly affects the performance of a parallel program. So, it is important to

determine what scheme is the most appropriate one for each algorithm according

to its characteristics.

• Separation of Specification: This is the central feature of parallel pattern-based

programming methods. It means that it should be possible to specify the pattern

(i.e., the parallelization aspects of the application) separately from the sequential

application code. This key feature is crucial for rapid prototyping and performance

tuning of a parallel application. It also allows for the application code and its par-

allelization structures to be evolved in an independent manner. It allows for rapid

prototyping of programs, and permits users to quickly experiment with alternative

parallel communication structures.

11

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 1.

• Extensibility: A design pattern does not represent a single solution to a given prob-

lem, but rather embodies a family of potential solutions. So, under limited parallel

patterns, an extensible mechanism should be provided to meet novel utilities.

• Execution Performance: The maximum performance possible should be achievable.

There will always be limitations to the achievable performance. The complexity and

interdependence of components external to the system (communication subsystem,

operating system, network, etc.) make it very difficult to abstract and still attain

the highest possible performance.

1.4 Contributions

The contributions of our work are briefly summarized below:

1. Characteristic analyses for popular CB algorithms:

We have analyzed two categories of popular CB problems: those that can be ad-

dressed analytically, and those that can not. These two categories are addressed

in turn by two respective classes of algorithms: analytical solution approaches and

heuristic approaches. Analysis and understanding of characteristics of CB algo-

rithms will help us develop efficient parallel applications for them.

2. Design of a tunable coarse-grained partitioning and communication scheme for par-

allel DP algorithms:

We have proposed a general parameterized coarse-grained parallel algorithm for

regular and irregular DP applications. By introducing two performance-related

parameters, we can tradeoff between computation time and communication time by

tuning these two parameters and thus obtain the maximum possible performance.

12

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 1.

We have demonstrated how this algorithm leads to substantial performance gains

for regular and irregular DP applications.

3. Design of a new hierarchical parallel genetic algorithm (HPGA) for protein folding

on computational grids:

According to the characteristics of GAs, we have designed a new HPGA for protein

folding on PC clusters and computational grids. The high level part of this HPGA

is mapped onto the grid layer and the low level part of it is mapped onto the cluster

layer. Two kinds of parallel communication modules, the module within the cluster

and the module between clusters, are used to implement the intra-cluster and the

inter-cluster communication within distributed populations.

4. Design and development of a parallel pattern-based framework:

We have developed a parallel pattern-based framework to facilitate the semi-automatic

development of HPC programs. The underlying programming technique is based

on object-oriented programming (OOP) and generic programming (GP) which is a

program design technique that deals with finding abstract representations of algo-

rithms, data structures, and other software concepts [144]. GP techniques provide

a better environment for code reuse. An important aspect of our framework is the

generic representation for a set of patterns, i.e. a generic pattern. With this generic

pattern, we mainly focus on the extensibility of the framework rather than how

many limited patterns it can support. The user can extend the generic pattern by

specifying the application-dependent template parameters. Different specialization

will lead to different implementation strategies for a concrete parallel application.

5. Evaluate experimental results:

HPC brings new methods into the experimental results evaluation in CB. Although

speedup is a well-accepted way of measuring the efficiency of a parallel algorithm, in

13

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 1.

the CB community the topic of parallel speedups has raised significant controversy.

In this thesis, we have introduced some new concepts into the deterministic parallel

application field. By using them, we have provided appropriate ways to explain the

super-linear speedups achieved by our HPGA for the PFP.

1.5 Synopsis of the Thesis

The rest of the thesis is organized as follows:

• Chapter 2 presents a general survey of the state-of-the-art HPC backgrounds and

techniques. We review algorithm design techniques, popular genome analysis tasks,

parallel architectures, parallel program design environments and methods.

• Chapter 3 discusses sequential characteristics of two popular CB algorithms: DP

algorithms and GAs. We give a general classification for sequential DP algorithms

as well as the theoretical foundation of GAs.

• Chapter 4 presents corresponding partitioning and communication schemes accord-

ing to the characteristics of CB applications. For DP algorithms, a tunable coarse-

grained algorithm is introduced. We have also designed a new HPGA for the PFP

with hydrophobic-hydrophilic (HP) lattice models.

• Chapter 5 elaborates the implementation detail of our parallel pattern-based frame-

work. This framework is designed and developed using multi-paradigm techniques

with the objectives of extensibility and reusability. We also presents a performance

evaluation of our framework on different parallel architectures. According to super-

linear speedups measured in the HPGA for PFP, we introduce a mathematical

model to explain and predict the experimental results.

14

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 1.

• Chapter 6 concludes the achievements of our research work and suggests possible

areas for future work.

15

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2

Literature Review

2.1 Introduction

The task of parallel programming in CB is to solve compute-intensive problems more

efficiently than their sequential counterparts. However, because a parallel program is

more complex than an equivalent sequential program, to realize this increase in speed

some challenges must be overcome first and this daunting task usually falls on a small

number of experts [26]. In this chapter, we review algorithm design techniques, parallel

architectures, parallel program design environments and methods.

2.2 Algorithm Design Techniques

The word algorithm comes from the name of the 9th century Persian mathematician Abu

Abdullah Muhammad bin Musa al-Khwarizmi. The word algorism originally referred

only to the rules of performing arithmetic using Arabic numerals but evolved into algo-

rithm by the 18th century. The word has now evolved to include all definite procedures

for solving problems or performing tasks. With the advent of automated computing

devices such as modern computers, an algorithm has in most contexts become synony-

mous with a description that can be turned into a computer program that instructs a

16

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

computer how to solve the problem addressed by the algorithm. The ability of modern

computers to perform billions of simple calculations per second and to store billions of

bits of information, makes it possible by using the proper computer programs to address

a wide range of problems that would otherwise remain out of reach. Such possibilities

have spawned several interdisciplinary activities where the objective is to utilize the ca-

pacities of computers to gain knowledge from huge amounts of data. An important part

of such activities is to construct good algorithms that can serve as basis for the computer

programs that are needed to utilize the capacities of computers.

Over the last forty years, computer scientists have discovered that many algorithms

share similar ideas, even though they solve very different problems. There appear to be

relatively few basic techniques that can be applied when designing an algorithm, and we

cover the most common algorithm design techniques in this section.

2.2.1 Exhaustive Search

An exhaustive search, or brute force, algorithm examines every possible alternative to

find one particular solution. In general, though, exhaustive search algorithms are too

slow to be practical for anything but the smallest instances and we will try to avoid the

exhaustive algorithms or how to finesse them into faster versions.

2.2.2 Branch-and-Bound Algorithms

In certain cases, as we explore the various alternatives in a brute force algorithm, we

discover that we can omit a large number of alternatives, a technique that is often called

branch-and-bound, or pruning.

Branch-and-Bound is a general search method. It starts by considering the root

problem (the original problem with the complete feasible region), the lower-bounding

17

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

and upper-bounding procedures are applied to the root problem. If the bounds match,

then an optimal solution has been found and the procedure terminates. Otherwise, the

feasible region is divided into two or more regions, these subproblems partition the feasible

region. The algorithm is applied recursively to the subproblems. If an optimal solution

is found to a subproblem, it is a feasible solution to the full problem, but not necessarily

globally optimal. If the lower bound for a node exceeds the best known feasible solution,

no globally optimal solution can exist in the subspace of the feasible region represented by

the node. Therefore, the node can be removed from consideration. The search proceeds

until all nodes have been solved or pruned, or until some specified threshold is met

between the best solution found and the lower bounds on all unsolved subproblems.

2.2.3 Greedy Algorithms

Many algorithms are iterative procedures that choose among a number of alternatives

at each iteration. Greedy algorithms choose the “most attractive” alternative at each

iteration, without regard for future consequences. Generally, this means that some local

optimum is chosen. This ‘take what you can get now’ strategy is the source of the name for

this class of algorithms. When the algorithm terminates, we hope that the local optimum

is equal to the global optimum. If this is the case, then the algorithm is correct; otherwise,

the algorithm has produced a suboptimal solution. If the best answer is not required,

then simple greedy algorithms are sometimes used to generate approximate answers,

rather than using the more complicated algorithms generally required to generate an

exact answer.

2.2.4 Dynamic Programming

Some algorithms break a problem into smaller subproblems and use the solutions of the

subproblems to construct the solution of the larger one. During this process, the number

18

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

of subproblems may become very large, and some algorithms solve the same subproblem

repeatedly, needlessly increasing the runtime. Dynamic programming organizes compu-

tations to avoid recomputing values that you already know, which can often save a great

deal of time.

2.2.5 Divide-and-Conquer Algorithms

One big problem may be hard to solve, but two problems that are half the size may

be significantly easier. In these cases, divide-and-conquer algorithms fare well by doing

just that: splitting the problem into smaller subproblems, solving the subproblems in-

dependently, and combining the solutions of subproblems into a solution of the original

problem. The situation is usually more complicated than this and after splitting one

problem into even smaller sub-subproblems, and so on, until it reaches a point at which

it no longer needs to recurse. A critical step in many divide-and-conquer algorithms is

the recombining of solutions to subproblems into a solution for a larger problem. Often,

this merging step can consume a considerable amount of time.

The divide-and-conquer approach is similar to the DP in that the solution of a large

problem depends on previously obtained solutions to easier subproblems. The significant

difference, however, is that DP permits subproblems to overlap. By overlap, we mean

that the subproblem can be used in the solution of two different subproblems. In contrast,

the divide-and-conquer approach creates subproblems that are completely separate and

can be solved independently.

2.2.6 Machine Learning

Machine learning algorithms often base their strategies on the computational analysis

of previously collected data. Machine learning algorithms are presented with training

data, which are used to derive important insights about the parameters (often hidden).

19

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

Once an algorithm has been suitable trained, it can apply these insights to the analysis

of a test sample. As the amount of training data increases, the accuracy of the machine

learning algorithm typically increases as well. The parameters that are learned during

training represent knowledge; application of the algorithm with those parameters to new

data (not used in the training phase) represents the algorithm’s use of that knowledge.

2.2.7 Randomized and Heuristic Algorithms

Randomized algorithms make random decisions throughout their operation. At first

glance, making random decisions does not seem particularly helpful. Basing an algo-

rithm on random decisions sounds like a recipe for disaster, but an eighteenth-century

French naturalist, Comte de Buffon, proved the opposite by developing an algorithm to

accurately compute π by randomly dropping needles on a sheet of paper with parallel

lines. The fact that a randomized algorithm undertakes a nondeterministic sequence of

operations often means that, unlike deterministic algorithms, no input can reliably pro-

duce worst-case results. Randomized algorithms are often used in hard problems where

an exact, polynomial-time algorithm is not known.

Genetic algorithms attempt to find solutions to problems by mimicking biological

evolutionary processes, with a cycle of random mutations yielding successive generations

of solutions. Thus, they emulate reproduction and “survival of the fittest”.

The term heuristic is used for algorithms which find solutions among all possible ones,

but they do not guarantee that the best will be found, therefore they may be considered

as approximately and not accurate algorithms. An example of this would be simulated

annealing algorithms, a class of heuristic probabilistic algorithms that vary the solution

of a problem by a random amount.

20

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

2.3 Popular Genome Analysis Tasks

CB has been revolutionized by advances in both computer hardware and software algo-

rithms. High-throughput techniques for DNA sequencing and analysis of gene expression

have led to exponential growth in the amount of publicly available genomic data. Biol-

ogists are keen to analyze and understand this data, since genetic sequences determine

biological structure, and thus the function. Understanding the function of biologically

active molecules leads to understanding biochemical pathways and disease-prevention

strategies and cures, along with the mechanisms of life itself. However, the amount of

genomic data is now so great that traditional database approaches are no longer sufficient

for rapidly performing life science queries involving the fusion of data types. Computing

systems are now so powerful that it is possible for researchers to consider modelling the

folding of a protein or even the simulation of an entire human body. As a result, computer

scientists and biomedical researchers face the challenge of transforming data into models

and simulations that will enable scientists for the first time to gain a profound under-

standing of the deepest biological functions. Traditional uses of HPC systems in physics,

engineering, and weather forecasting involve problems that often have well-defined and

regular structures. In contrast, many problems in CB are irregular in structure, are

significantly more challenging for software engineers to parallelize.

In this thesis, we have focused on two popular genome analysis tasks: sequence align-

ment and protein folding.

2.3.1 Sequence Alignment

Sequence alignment is the most basic sequence analysis task. It is used to tell whether

two or more sequences are related and give an impression how close their relationship is in

terms of sequence similarity. It is centrally important to find the best possible alignment

21

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

of sequences for bioinformatics and data processing after routine laboratory procedures

like sequencing nucleic acids. A list of problems that are related to sequence alignment

are identified in [130]. These problems are summarized as follows:

• Two sequences over the same alphabet are almost equal, except for a few isolated

insertions, deletions, and substitutions of characters. The average frequency of

these differences is very low; however, their exact positions must be found. This

problem occurs when a gene is sequenced by two different labs and the results are

compared.

• Two sequences over the same alphabet, with a few hundred characters each, are

given. The problem is to decide whether there is a prefix of one sequence that is

similar to a suffix of the other. If the answer is yes, the matching prefix and suffix

must be produced. This problem appears when small DNA fragments are assembled

into a longer sequence in the process of large-scale DNA sequencing. Often, this

problem must be applied pairwise to several hundred sequences, most of which are

unrelated.

• Two sequences over the same alphabet, with a few hundred characters each, are

given. The problem is to decide whether there are two substrings, one from each

sequence, that are similar. This problem appears when searching for local similar-

ities in large sequence databases. In this context, a sequence must be compared

against thousands of others.

All these problems can be solved using the same basic algorithmic idea that is used

for solving the sequence comparison problem. The formal details of the pairwise sequence

alignment problem are given as follows.

Consider the following pair of DNA sequences: TATCAG and TAATCCG. At a

glance, they look very much alike, and this becomes more obvious when they are aligned

22

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

one above the other:

T−ATCAG

TAATCCG

The only differences are an extra A in the second sequence and a change from A to

C in the second to last position. Note that a gap, marked with a “−”, is introduced in

the first sequence in order to allow the bases before and after the gap to align perfectly.

This is a sample alignment of the two sequences.

Formally, an alignment of two sequences is obtained from the original sequences by

inserting gaps until the resulting sequences are of the same size. An alignment also must

obey the restriction that gaps cannot appear in the same position in both sequences. The

example above satisfies the definition of an alignment.

The goal of the sequence comparison operation is to find an optimal alignment of two

sequences relative to a cost function. One type of cost function is obtained by assigning

a score to an alignment in the following manner: each column of the alignment is given

a value based on the two characters forming the column, and the total score of the

alignment is the sum of all the values assigned to its columns. If a column has two

identical characters, it is valued with +2 (i.e. a match). Different characters are valued

with −1 (i.e., a mismatch). Finally, if a gap is present, the column is valued with −2

(i.e., a gap penalty). An optimal alignment is one with maximal total score among the

total scores of all possible alignments between the two sequences. In general, there may

be many optimal alignments between two sequences.

For the alignment in the example above, there are five columns with identical char-

acters, one column with distinct characters, and one column with a gap, giving a total

score of:

23

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

5 × 2 + 1 × (−1) + 1 × (−2) = 7

The particular values +2, −1, and −2 were chosen because they constitute a simple

implementation of the policy of rewarding matches, and penalizing mismatches and gaps.

In practice, the value which is assigned to a column depends on the probability with

which the character from the first row can transform itself into the character from the

second row after a certain number of evolutionary steps. With regard to proteins, the

amino acids have biochemical properties that influence the way they replace each other

during the evolution of a protein [130]. For example, it is more likely that amino acids of

similar sizes will be substituted for one another than those of widely different sizes. The

tendency to bind with water molecules also influences the probability of mutual substi-

tution. Because protein comparisons are usually performed to establish an evolutionary

relation between sequences, it is important to use scoring functions that reflect these

probabilities accurately.

Often, the best method to derive similarity scores for pairs of residues is to empirically

observe the actual substitution rates; doing so is advisable because it is difficult to account

for all the factors that influence the probability of mutual substitution of amino acids.

A standard procedure for achieving this goal is based on an important family of scoring

matrices, known as the point accepted mutations of percent of accepted mutations PAM

matrices [52].

Before two sequences are aligned, the evolutionary distance at which to compare them

must be chosen. The PAM matrices are functions of this distance. For instance, a PAM-

250 matrix is suitable for comparing sequences that are 250 units of evolution apart. If

no information on the true evolutionary distance between the two sequences is available,

the recommended approach is to align the sequences using several PAM matrices that

cover a wide range-for instance, PAM-40, PAM-120, and PAM-250. In general, low PAM

numbers are good for finding short, strong, local similarities, while high PAM numbers

24

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

detect long, weak ones [130]. It should also be noted that PAM matrices consider the

mutations at the amino acid level only, without involving the DNA level.

2.3.2 Protein Structure Prediction

Proteins are large molecules found in all organisms built from a chain of amino acids and

are responsible for the structure, function, and regulation of cells, tissues, and organs.

Protein structure prediction is the process of self-assembly of an amino acid sequence

into the native 3D structure of the functioning protein. Proper functioning of a protein

depends on its ability to fold into its native structure. Failure to do so causes a loss

of biological function and often results in illness or fatal disease. Examples are cystic

fibrosis; Parkinson’s; Alzheimer’s; and Prion diseases (such as Creutzfeldt-Jakob Dis-

ease and Bovine Spongiform Encephalopathy, or mad cow disease). Hence, a biomedical

researcher’s understanding of how a protein folds has direct medical significance. The

protein-folding problem is computationally challenging, and many techniques, ranging

from experimental to theoretical, are being investigated for their accuracy and speed in

predicting 3D structures.

Many protein structure prediction methods are based on a basic thermodynamic hy-

pothesis: proteins tend to fold into a global minimum free energy state. Consequently,

researchers predict protein structures in two steps: first, design a scoring function to

reflect the relationships among the amino acids in the native states, and second, design

or employ certain algorithms to optimize the scoring function. The result is the three

dimensional structure of a protein. The scoring function can be constructed from the

physicochemical principles of protein folding, and reflects the real energy of proteins in a

native state. Alternatively, the scoring function can be a knowledge-based potential func-

tion, measuring the probability distribution of the possible conformational arrangements

of a protein sequence. Traditionally, the scoring function is also called “energy function”

25

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

even if the scoring function does not reflect the real energy of proteins.

During the last three decades, many protein structure prediction methods have been

proposed, and in the past ten years, many structure prediction computer programs have

been developed to ease or speed up manual predictions. The methods can be grouped

into three categories:

• homology modelling,

• protein threading,

• ab initio folding.

According to their most suitable target sequences. The first two are template-based,

and the third one builds protein structures without referring to any structural template.

Homology modelling is for those target sequences obviously having homologue with

a known three-dimensional structure. This kind of target sequences are called homology

modelling targets. Homology modelling builds the tertiary structure of a target sequence

by comparing the target sequence to all of its homologous sequences, recognizing the

most conserved segments through multiple alignments, copying coordinates for these

conserved segments from one homolog with a known structure, and finally, refining the

whole structure through the energy minimization technique. Protein threading is suitable

for those target sequences which have no homologous templates but do have the same

fold as some templates. The three dimensional structure of a target sequence is built

by placing its amino acids one-by-one and sequentially into different positions of the

template which has the same fold as the target sequence.

Ab initio folding is the preferred methodology to apply to those targets that could not

be predicted by the two former methods, that is, the targets that do not have the same

fold as some templates or do not have the homologous proteins with a known structure.

26

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

This kind of targets are called new fold targets. Ab initio folding has also been called

the “new fold” method in recent years, because it is appropriate for targets that do not

have the same fold as any protein with a known structure. Ab initio folding depends on

a scoring function which can accurately describe the native state of proteins and on an

efficient algorithm to optimize the scoring function.

Besides the traditional three structure prediction methods, a class of computer pro-

grams have been recently developed to combine the outcomes of several different predic-

tion programs by certain consensus methods, such as 3DSX, developed by Daniel Fischer

[59], 3D-Jury by Lesek Rychlewski [76], and PMODX by Janu Bujnicki [100].

There are three representative approximation algorithms for the protein structure

prediction problem:

• Monte Carlo Sampling and Genetic Algorithm: Bryant [39, 106] et al. used

GAs to search for the optimal alignment between the target sequence and the tem-

plate. They began from one initial sequence-template alignment from the current

alignment. The energy function is calculated for each generated alignment, and

the alignment is kept according to a certain probability calculated from its energy

function value. Theoretically, the GA can converge to the optimal alignment (i.e.,

minimal energy status) if enough computational time is given. But usually “enough

computational time” is unaffordable if a long sequence is threaded.

• Interaction-Frozen Approximation [35, 77, 78, 150]: This is a type of itera-

tive algorithm. Given an initial alignment between the sequence and the template,

one end of each contact (interaction) is fixed to the residue in the current align-

ment position. Then a dynamic programming algorithm is used to search for the

next alignment based on the current “frozen” pairwise contact potential. This step

is repeated for a number of times or until the next alignment is the same as the

27

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

current alignoent (i.e., the algorithm converges). The outstanding drawback of

this method is that no convergence is guaranteed. that is, no optimal alignoent is

guaranteed.

• Recursive Dynamic Programming [141]: This algorithm repeatedly uses a DP

algorithm to match the target sequence to the template. At each iteration, the local

alignoent between the target sequences and the templates is searched by the DP

algorithm. A segoent of the target sequence is fixed onto a segoent of the template

if a significant similarity is attained. If the alignoent position of one segoent of

sequence is fixed, then all pairwise contact potential involved with the residues in

this segoent is easy to handle. This is possible because one end of the pairwise

contacts is frozen. The iteration is repeated until no significant similarity is found.

those unmatched segoents of the target sequence are interpreted as gaps.

2.4 Parallel Architectures: A Brief Introduction

There are dozens of different parallel architectures, such as networks of workstations,

clusters of off-the-shelf PCs, massively parallel supercomputers, tightly coupled symmet-

ric multiprocessors, and multiprocessor workstations. In this section, we give an overview

of these systems, focusing on the characteristics relevant to the programmer.

2.4.1 Flynn’s Taxonomy

By far the most common way to characterize these architectures is Flynn’s taxonomy

[61]. He categorizes all computers according to the number of instruction streams and

data streams they have, where a stream is a sequence of instructions or data on which

a computer operates. In Flynn’s taxonomy, there are four possibilities: SISD, SIMD,

MISD, and MIMD.

28

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

Single Instruction, Single Data (SISD)

Processor

Control UnitInstructions

Results
Data

Figure 2.1: The Single Instruction, Single Data (SISD) architecture

The category SISD refers to computers with a single instruction stream and a single

data stream. Figure 2.1 shows the illustration for SISD architecture. Standard serial

computers fall into this category. One instruction is executed per unit time to produce

one useful result because the stream of instructions and stream of data can be viewed as

being tightly coupled in SISD.

Single Instruction, Multiple Data (SIMD)

In a SIMD system, a single instruction stream is concurrently broadcast to multiple pro-

cessors, each with its own data stream (as shown in Figure 2.2). The original systems

from Thinking Machines and MasPar can be classified as SIMD. The CPP DAP Gamma

II and Quadrics Apemille are more recent examples; these are typically deployed in spe-

cialized applications, such as digital signal processing, that are suited to fine-grained

parallelism and require little interprocess communication. Vector processors, which op-

erate on vector data in a pipelined fashion, can also be categorized as SIMD. Exploiting

this parallelism is usually done by the compiler.

29

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

Control Unit

Processor

Processor

Processor

Data

Data

Data
Results

Results

Results

Instructions

Figure 2.2: The Single Instruction, Multiple Data (SIMD) architecture

Multiple Instruction, Single Data (MISD)

The category MISD (see Figure 2.3) refers to computers with multiple instruction steams

but only a single data stream. There are few machines in this category, none that have

been commercially successful or had any impact on computational science. One type of

system that fits the description of an MISD computer is a systolic array [5], which is a

network of small computing elements connected in a regular grid. All the elements are

controlled by a global clock. On each cycle, an element will read a piece of data from one

of its neighbors, perform a simple operation.

30

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

Control Unit

Processor

Control Unit Control Unit

Processor Processor

Instructions Instructions Instructions

ResultsData

Figure 2.3: The Multiple Instruction, Single Data (MISD) architecture

Processor

Control Unit

Control Unit

Processor

Data

Data

Control Unit

ProcessorData

Instructions

Instructions

Instructions

Results

Results

Results

Figure 2.4: The Multiple Instruction, Multiple Data (MIMD) architecture

Multiple Instruction, Multiple Data (MIMD)

In a MIMD system, each processing element has its own stream of instructions operating

on its own data. This architecture, shown in Figure 2.4, is the most general of the

31

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

architectures in that each of the other cases can be mapped onto the MIMD architecture.

The vast majority of modern parallel computers fit into this category.

2.4.2 A Further Breakdown of MIMD

Most contemporary parallel computers fall into the MIMD category. Hence the MIMD

designation is not particularly helpful when describing modern parallel architectures.

Memory architecture has a strong influence on the global architecture of MIMD ma-

chines, becoming a key issue for parallel execution, and frequently determines the optimal

programming model. Therefore, a further classification of MIMD which is based on the

memory architecture is widely accepted. The classification results in three categories:

shared-memory system, distributed-memory system, and hybrid system.

Processor

Cache

Shared high-speed bus

Processor

Cache

Processor

Cache

Shared
memoryI/O interface

Figure 2.5: The Symmetric Multiprocessor (SMP) architecture

Shared-memory

In a shared-memory system, all processes share a single address space and communicate

with each other by writing and reading shared variables.

32

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

One main class of shared-memory systems is called SMPs (symmetric multiproces-

sors). As shown in Figure 2.5, all processors share a connection to a common memory

and access all memory locations at equal speeds. SMP systems are arguably the easiest

parallel systems to program because programmers do not need to distribute data struc-

tures among processors. Because increasing the number of processors increases contention

for the memory, the processor/memory bandwidth is typically a limiting factor. Thus,

SMP systems do not scale well and are limited to small numbers of processors.

Distributed-memory

In a distributed-memory system, each process has its own address space and commu-

nicates with other processes by message passing (sending and receiving messages). A

schematic representation of a distributed memory computer is shown in Figure 2.6.

Processor

Cache

Interconnection network

Memory

I/O
interface

Processor

Cache

Memory

I/O
interface

Processor

Cache

Memory

I/O
interface

Node 1 Node 2 Node 3

Figure 2.6: The distributed-memory architecture

Depending on the topology and technology used for the processor interconnection,

communication speed can range from almost as fast as shared memory (in tightly inte-

grated supercomputers) to orders of magnitude slower (for example, in a cluster of PCs

interconnected with an Ethernet network). The programmer must explicitly program all

33

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

the communication between processors and be concerned with the distribution of data.

Distributed-memory computers are traditionally divided into two classes: MPP (mas-

sively parallel processors) and clusters. In an MPP, the processors and the network

infrastructure are tightly coupled and specialized for use in a parallel computer. These

systems are extremely scalable, in some cases supporting the use of many thousands of

processors in a single system [107, 19].

Clusters are distributed-memory systems composed of off-the-shelf processors con-

nected by an off-the-shelf network. Every processor is supported by its own memory and

they form an independent computing unit together. Each of these independent comput-

ing units is called a node (see Figure 2.6). When the nodes are PCs running the Linux

operating system, these clusters are called Beowulf clusters. As off-the-shelf networking

technology improves, systems of this type are becoming more common and much more

powerful. Clusters provide an inexpensive way for an organization to obtain parallel

computing capabilities [17]. Pre-configured clusters are now available from many ven-

dors. One frugal group even reported constructing a useful parallel system by using a

cluster to harness the combined power of obsolete PCs that otherwise would have been

discarded [83].

Hybrid systems

These systems are clusters of nodes with separate address spaces in which each node

contains several processors that share memory.

Shared-memory architecture brings several advantages to CB applications. For in-

stance, a single address map simplifies the design of parallel programs. In addition, there

is no “time penalty” for communication between processes, because every byte of memory

is accessible in the same amount of time from any CPU. However, shared-memory does

not scale well as the number of processors in the computer increases. Distributed-memory

34

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

systems scale very well, on the other hand, but the lack of a single physical address map

for memory incurs a “time penalty” for inter-process communication. Hybrid systems

try to achieve the best of both shared and distributed memory architectures. A certain

amount of memory physically attaches to each node (distributed architecture), but the

hardware creates the image of a single memory for the whole system (shared architec-

ture). In this way, the memory installed in any node can be accessed from any other

node as if all memory were local with only a slight time penalty.

According to van der Steen and Dongarra’s “Overview of Recent Supercomputers”[135],

which contains a brief description of the supercomputers currently or soon to be com-

mercially available, hybrid systems formed from clusters of SMPs connected by a fast

network are currently the dominant trend in HPC. For example, in late 2003, four of the

five fastest computers in the world were hybrid systems [18].

2.4.3 Grids

In 1998, Ian Foster and Carl Kesselman attempted a definition of the computing grid

in [62]:

A computing grid is a hardware and software infrastructure that provides de-

pendable, consistent, pervasive, and inexpensive access to high-end computa-

tional capabilities.

This definition of the grid focuses on the access to computing resource, data, and

services on demand. In 2001, the concept of Virtual Organization (VO) is proposed

in [65]:

A set of individuals and/or institutions defined by the sharing rules is called

a virtual organization (VO).

35

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

Based on the concept of VO, the definition of the grid is refined to address social and

policy issues in [65]:

The real and specific problem that underlies the grid concept is coordinated

resource sharing and problem solving in dynamic, multi-institutional virtual

organizations.

While Grid technology made great progress recently, there still remains technical

problems to meet various requirements of QoS (Qualities of Service) when applications

are executed on different types of platforms. To address the new challenges of Grid

computing, the Open Grid Services Architecture (OGSA) [63] is proposed to evolve the

current Grid infrastructure towards a Grid system architecture based on an integration

of Grid and Web services concepts and technologies. OGSA defines:

- Grid service using a uniform exposed service semantics, and

- standard mechanisms for creating and naming Grid service instances.

It also supports:

- location transparency and multiple protocol bindings for service instances, and

- integration with underlying native platform facilities.

As more and more requirements are imposed on the Grid computing, new issues will arise.

The Grid technologies will be continuously developed with the aim to address these new

challenges as the Grid concept evolves.

Grid Architecture

The grid architecture is fundamental for the establishment, management and exploitation

of dynamic, cross-organizational VO resource sharing. As defined in [62, 65], the layered

36

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

grid architecture is shown in Figure 2.7.

Application

Connectivity

Fabric

Collective

Resource

Application

Transport
Internet

Link

Grid Protocol
Architecture

Internet Protocol
Architecture

Figure 2.7: The layered grid architecture

Components within each layer in Figure 2.7 share common characteristics and can be

built on the capabilities and behaviors provided by any lower layer. For example, proto-

cols at Resource and Connectivity layer are designed so that they can be implemented on

top of a diverse range of resource types, defined at the Fabric layer. On the other hand,

they can be used to construct a wide range of global services and application-specific

behaviors at the Collective layer. The detail of each layer is described as follows:

• Fabric: Interfaces to Local Control

The grid Fabric layer provides basic grid protocols that enable grid applications

to share resources, which can be, for example, computational resources, storage

systems, network resources and sensors. Fabric components implement the local,

resource-specific operations that occur on specific resources. These operations en-

able resource sharing operations at higher levels.

• Connectivity: Communicating Easily and Securely

37

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

The Connectivity layer defines core communication and authentication protocols

required for grid-specific network transmission. Communication protocols enable

the exchange of data between Fabric layer resources. Authentication protocols

provide cryptographically secured mechanisms for verifying the identity of users

and resources.

• Resource: Sharing Single Resources

The Resource layer builds communication and authentication protocols of Con-

nectivity layer to define protocols (and APIs, SDKs) for the secured negotiation,

initiation, monitoring, control, accounting and payment of sharing operations on in-

dividual resources. Resource layer calls Fabric layer functions to access and control

local resources.

• Collective: Coordinating Multiple Resources

While the Resource layer is focused on interactions with a single resource, the Col-

lective layer in the architecture contains protocols and services (and APIs, SDKs)

that are not associated with any specific resource but rather interactions across

collections of resources.

• Application

The Application layer in the grid architecture comprises the user applications that

operate within a VO environment. Applications are constructed in terms of services

defined at any other layers.

Globus Toolkit-the de facto standard for grid computing

The Globus Toolkit [3] is fundamental enabling technology for the “grid”. It is a collabo-

ration among Argonne National Laboratory, the University of Chicago, and Information

Sciences Institute of the University of Southern California. Globus Toolkit is the soft-

38

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

ware product developed by Globus project team to build computing Grid and Grid-based

applications. Globus Toolkit has the following modules:

• Globus Security Infrastructure

Grid Security Infrastructure (GSI) [64] enables secure authentication and commu-

nication over an open network. GSI provides a number of useful services for the

computing grid, including mutual authentication and single sign-on. GSI is based

on public key encryption, X.509 certificates, and the Secure Sockets Layer (SSL)

communication protocol.

• Globus Resource Management System

The Resource Management System (GRMS) [48, 113] is developed to support re-

source allocation and reservation in the computing grid. The GRMS architecture

is a layered system in which a high-level global resource management services are

layered on top of local resource allocation services.

GRMS has three main components:

- Resource Specification Language

The Globus Resource Specification Language (RSL) provides a common inter-

change language to describe resources. The various components of the Globus

Resource Management architecture manipulate RSL strings to perform their

management functions in cooperation with the other components in the sys-

tem. The RSL provides the skeletal syntax used to compose complicated

resource descriptions, and the various resource management components intro-

duce specific < attribute, value > pairings into this common structure. Each

attribute in a resource description serves as a parameter to control the behavior

of one or more components in the resource management system.

- Grid Resource Allocation Manager

39

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

The Globus Resource Allocation Manager (GRAM) processes the requests for

resources for remote application execution, allocates the required resources,

and manages the active jobs. It also returns updated information regarding the

capabilities and availability of the computing resources to the Monitoring and

Discovery Service. GRAM provides an API for submitting and cancelling a job

request, as well as checking the status of a submitted job. The specifications

are written by the user in the RSL, and is processed by GRAM as a part of

the job request.

- Resource Broker/Co-allocator

Resource brokers are responsible for taking high-level RSL specifications and

transforming them into more concrete specifications through a process called

specialization. Transformations effected by resource brokers generate a specifi-

cation in which the locations of the required resources are completely specified.

Such ground requests can be passed to a resource co-allocator. Resource co-

allocator provides a co-allocation service, which coordinates ground requests

that may span multiple GRAMs.

These three components of GRMS collaborate to realize the function of resource

management of Globus. Applications submit resource requirements which are ex-

pressed in RSL. These resource requests are submitted to resource broker then

transformed to ground specifications. Resource broker gets resource information

from the grid information services. The ground specifications and resource infor-

mation are processed and the GRAMs that manage required resources are specified.

Resource co-allocator transfers single request to individual GRAM. With the collab-

oration of multiple GRAMs, resource co-allocator allocates resources to applications

to fulfill their resource requirements.

• Globus Metacomputing Directory Service

40

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

The Globus Metacomputing Directory Service (MDS) [47] provides the necessary

tools to build an LDAP2.1 based information infrastructure for computational Grids.

MDS uses the LDAP protocol as a uniform means of querying system information

from a rich variety of system components, and for optionally constructing a uni-

form namespace for resource information across a system that may involve many

organizations.

MDS has two components:

- GRIS - Grid Resource Information Service.

GRIS provides a uniform means of querying resources on a computational Grid

for their current configuration, capabilities, and status.

- GIIS - Grid Index Information Service GIIS provides a means of linking to-

gether arbitrary GRIS services to provide a coherent system image that can

be explored or searched by Grid applications.

A GIIS could pool information about all of the Grid resources in a particular

research consortium, thus providing a coherent system image of that consor-

tium’s computing Grid. For example, a GIIS could list all of the computing

resources available within a research lab or all of the distributed data storage

systems owned by a particular agency.

• GridFTP

GridFTP [21] is a high-performance, secured, reliable data transfer protocol opti-

mized for high-bandwidth wide-area networks. It provides the following protocol

features:

- GSI security on control and data channels;

- multiple data channels for parallel transfers;

2.1Lightweight Directory Access Protocol

41

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

- partial file transfers;

- third-party (direct server-to-server) transfers;

- authenticated data channels;

- reusable data channels; and

- command pipelining.

2.5 Parallel Program Design Environments

Parallel programming environments provide the basic tools, language features, and ap-

plication programming interfaces (APIs) needed to construct a parallel program. A pro-

gramming environment implies a particular abstraction of the computer system called a

programming model. Traditional sequential computers use the well known von Neumann

model. Because all sequential computers use this model, software designers can design

software to a single abstraction and reasonably expect it to map onto most, if not all,

sequential computers.

Unfortunately, there are many possible models for parallel computing, reflecting the

different ways processors can be interconnected to construct a parallel system. The most

common models are based on one of the parallel architectures mentioned before: shared-

memory, distributed-memory with message passing, or a hybrid combination of the two.

Programming models aligned to a particular parallel system too closely will lead to

programs that are not portable between parallel computers. Because the effective lifespan

of software is longer than that of hardware, many organizations have more than one type

of parallel computer, and most programmers insist on programming environments that

allow them to write portable parallel programs. Also, explicitly managing large numbers

of resources in a parallel computer is difficult, suggesting that higher-level abstractions

of the parallel computer might be useful. The result is that as of the mid-1990s, there

42

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

was a veritable glut of parallel programming environments. This created a great deal of

confusion for application developers and hindered the adoption of parallel computing for

mainstream applications.

Fortunately, by the late 1990s, the parallel programming community converged pre-

dominantly on two environments for parallel programming: OpenMP [10] for shared-

memory; MPI [6, 82] for message passing and PVM [72] for parallel virtual machines.

OpenMP is a set of language extensions implemented as compiler directives. Im-

plementations are currently available for Fortran, C, and C++. OpenMP is frequently

used to incrementally add parallelism to sequential code. By adding a compiler directive

around a loop, for example, the compiler can be instructed to generate code to execute

the iterations of the loop in parallel. The compiler takes care of most of the details of

thread creation and management. OpenMP programs tend to work very well on SMPs,

but because its underlying programming model does not include a notion of nonuniform

memory access times, it is less ideal distributed-memory machines.

MPI is a set of library routines that provide for process management, message pass-

ing, and some collective communication operations (these are operations that involve

all the processes involved in a program, such as the barrier, broadcast, and reduction).

MPI programs can be difficult to write because the programmer is responsible for data

distribution and explicit interprocess communication using messages. Because the pro-

gramming model assumes distributed memory, MPI is a good choice for MPPs and other

distributed-memory machines.

PVM is a software package that allows a heterogeneous network of computers (par-

allel, vector, or serial) to appear as a single concurrent computational resource–a virtual

machine. Thus large computational problems can be solved effectively by using the ag-

gregate power and memory of many computers. In this thesis, we prefer MPI over PVM

because following reasons:

43

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

• MPI is formally specified and standard;

• MPI has full asynchronous communication;

• MPI can be used to efficiently program on clusters;

• MPI groups are solid, efficient, and deterministic;

• MPICH-G2 provides users the grid level communication support.

Neither OpenMP nor MPI is an ideal fit for hybrid architectures that combine multi-

processor nodes, each with multiple processes and a shared memory, into a larger system

with separate address spaces for each node: The OpenMP model does not recognize

nonuniform memory access times, so its data allocation can lead to poor performance

on machines that are not SMPs, while MPI does not include constructs to manage data

structures residing in a shared memory. One solution is a hybrid model in which OpenMP

is used on each shared-memory node and MPI is used between the nodes. This works

well, but it requires the programmer to work with two different programming models

within a single program. Another option is to use MPI on both the shared-memory and

distributed-memory portions of the algorithm and give up the advantages of a shared-

memory programming model, even when the hardware directly supports it.

New high-level programming environments that simplify portable parallel program-

ming and more accurately reflect the underlying parallel architectures are topics of current

research. Another approach more popular in the commercial sector is to extend MPI and

OpenMP. In the mid-1990s, the MPI Forum defined an extended MPI called MPI 2.0,

although implementations are not widely available at the time this was written. It is

a large complex extension to MPI that includes dynamic process creation, parallel I/O,

and many other features. Of particular interest to programmers of modern hybrid archi-

tectures is the inclusion of one-sided communication. One-sided communication mimics

44

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

some of the features of a shared-memory system by letting one process write into or read

from the memory regions of other processes. The term “one-sided” refers to the fact

that the read or write is launched by the initiating process without the explicit involve-

ment of the other participating process. A more sophisticated abstraction of one-sided

communication is available as part of the Global Arrays [116, 115, 2] package. Global

Arrays works together with MPI to help a programmer manage distributed array data.

After the programmer defines the array and how it is laid out in memory, the program

executes “puts” or “gets” into the array without needing to explicitly manage which MPI

process “owns” the particular section of the array. In essence, the global array provides

an abstraction of a globally shared array. This only works for arrays, but these are such

common data structures in parallel computing that this package, although limited, can

be very useful.

Just as MPI has been extended to mimic some of the benefits of a shared-memory en-

vironment, OpenMP has been extended to run in distributed-memory environments. The

annual WOMPAT (Workshop on OpenMP Applications and Tools) workshops contain

many papers discussing various approaches and experiences with OpenMP in clusters.

MPI is implemented as a library of routines to be called from programs written in

a sequential programming language, whereas OpenMP is a set of extensions to sequen-

tial programming languages. They represent two of the possible categories of parallel

programming environments (libraries and language extensions), and these two partic-

ular environments account for the overwhelming majority of parallel computing being

done today. There is, however, one more category of parallel programming environments,

namely languages with built-in features to support parallel programming. Java is such

a language. Rather than being designed to support HPC, Java is an object-oriented,

general-purpose programming environment with features for explicitly specifying concur-

rent processing with shared memory. In addition, the standard I/O and network packages

45

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

provide classes that make it easy for Java to perform interprocess communication between

machines, thus making it possible to write programs based on both the shared-memory

and the distributed-memory models. However, currently the performance of parallel Java

programs cannot compete with OpenMP or MPI programs for typical scientific computing

applications.

2.6 Parallel Program Design Methods

Although computing in less time is beneficial, and may enable problems to be solved

that couldn’t be otherwise, it comes at a cost. Writing programs to run on parallel

computers can be much more difficult than producing an equivalent sequential imple-

mentation. Parallelism requires the programmer to consider a set of factors not present

in sequential code. The complexity these features create propagates throughout the pro-

gram and can seriously hinder the production, maintenance and portability of efficient

parallel implementations. This daunting task usually falls on a small number of experts.

For example, communication is via message passing, which introduces concurrency and

possibly non-determinacy: in particular the deadlock and race conditions are all possible.

Non-determinacy greatly confuses reasoning about program behaviour. The characteris-

tics of the interconnection network-its latency and bandwidth-must also be considered.

Failure to do so may cause processors that are waiting for a message to block excessively

or the network to become saturated.

The key to parallel computing is exploitable concurrency. Concurrency exists in a

computational problem when the problem can be decomposed into subproblems that can

safely execute at the same time. To be of any use, however, it must be possible to struc-

ture the code to expose and later exploit the concurrency and permit the subproblems

to actually run concurrently; that is, the concurrency must be exploitable. Most large

computational problems contain exploitable concurrency. The programmer’s task is to

46

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

identify the concurrency in the problem, structure the algorithm so that this concur-

rency can be exploited, and then implement the solution using a suitable programming

environment.

Also, the concurrent tasks making up the problem include dependencies that must

be identified and correctly managed. The order in which the tasks execute may change

the answers of the computations in nondeterministic ways. A good parallel program-

mer must take care to ensure that nondeterministic issues do not affect the quality of

the final answer. Creating safe parallel programs can take considerable effort from the

programmer.

Even when a parallel program is “correct”, it may fail to deliver the anticipated

performance improvement from exploiting concurrency. Care must be taken to ensure

that the overhead incurred by managing the concurrency does not overwhelm the program

runtime. Also, partitioning the work among the processors in a balanced way is often

not easy. The effectiveness of a parallel algorithm depends on how well it maps onto the

underlying parallel computer.

In this section we survey two main approaches currently taken for parallel program-

ming design. We start with the mainstream method, writing parallel programs using

a sequential language combined with a communication library. After identifying the

strengths and weaknesses of this technique, we examine the parallel pattern program-

ming.

2.6.1 Explicit Parallel Programming

The most direct method for programming parallel applications is to view them as a

collection of interacting sequential processors. Each processor is programmed using a

conventional sequential language. Communication is achieved by calling message-passing

47

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

libraries. A level of portability can be achieved by using a standard communication API

such as MPI [6] or PVM [72] which are available on many different platforms.

The popularity of this method is understandable: the programmer does not need to

learn a new language; the programmer has direct and absolute control over the way an

algorithm is expressed; there are few abstractions to introduce execution overhead; and

there is extensive experience, support and libraries of sequential code written using this

method.

However, it is not easy to gain a clear picture of the global behaviour of the machine

from the program source. Sections where the computations of different processors differ

are typically expressed using case statements or expressions over the processor rank. This

allows the behaviour of the entire system to be represented within a single executable

but the code is liable to get very tangled.

Related to the difficulty in understanding the behaviour of the parallel machine is

ensuring that the processors communicate and synchronize correctly. Communicating a

single message typically requires two library calls a send and a reception. As these calls

will occur in different branches of the program it is hard to ensure that the pairs of library

calls match up as intended. Similarly, calls to initialize communication system objects,

such as the communicators of MPI, must be executed by all processors, and each must

pass identical parameters to the call. The sequential language provides no support for

these constraints, and so deadlock and other hard-to-find errors are a common occurrence

during development.

Furthermore, this method makes it hard to develop parallel programs incrementally.

Exploration and experimentation are discouraged because they require extensive restruc-

turing of the code. Rather, the programmer makes a set of arbitrary implementation

decisions and then codes the program. It is also difficult to prove properties of programs

written in this style because non-determinism is exposed by the communication model.

48

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

In summary, explicit parallel programming provides fine control of all aspects of the

parallel execution but exposes the programmer to great complexity. The code produced

is brittle, hard to write, understand and maintain. Although this is one of the commonest

techniques used to produce applications for parallel machines, its many limitations have

led researchers to investigate other ways to express parallel computation.

2.6.2 Parallel Pattern Programming

Design Patterns

A design pattern describes a recurring design problem to be solved, a solution to the

problem, and the context in which that solution works [40, 71]. The description specifies

objects and classes that are customized to solve a general design problem in a particular

context. A design pattern is a larger-grained form of software reuse than a class because

it involves more than one class and the interconnection among objects from different

classes. A design pattern is sometimes referred to as a micro-architecture.

After the original success of the design pattern concept, other kinds of patterns were

developed. The main kinds of reusable patterns are:

• Architectural patterns. This work was described by Buschmann et al. [40] at

Siemens. Architectural patterns are larger-grained than design patterns, addressing

the structure of major subsystems of a system.

• Analysis patterns. Analysis patterns were described by Fowler [66], who found

similarities during analysis of different application domains. He described recurring

patterns found in object-oriented analysis and described them with static models,

expressed in class diagrams.

• Product line-specific patterns. These are patterns used in specific application

areas, such as factory automation [71] or electronic commerce.

49

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

• Idioms. Idioms are low-level patterns specific to a programming language. For

example, C++. These patterns are closest to code, but they can be used only by

applications that are coded in the same programming language.

Algorithmic skeletons

The concept of algorithmic skeleton has been presented in [44]. It has been followed by

different research groups [97, 129, 20, 45]. The basic idea is to provide users by a set of

either language constructs or library calls that completely take care of exploiting a given,

recurring, parallel computation pattern [51]. Users need to supply specific parameters or

codes, such as the sequential portions of code, to get a working parallel program.

Parallel Patterns

It has been observed that explicitly parallel programs are made up of two different kinds of

code: task specific code that implements the steps of the algorithm; and code for structur-

ing the program into patterns of computation and communication for parallel execution.

The second kind of code deals with the problematic aspects of parallel programming and

handles the low-level details of the target machine. Although the code used to structure a

parallel computation is complex, it often forms familiar patterns [121]. Parallel patterns

are based on sequential program design patterns. The main idea is to separate the com-

munication structure of a parallel program from the sequential application code. Thus,

both parts of a parallel program can evolve independently. This allows for rapid pro-

totyping of programs, and permits users to experiment with alternative communication

structures quickly and easily.

Parallel patterns look like to be very close to the algorithmic skeleton idea, but for the

different roots: the former being originated from Object-Oriented programming (OOP)

area, the latter from parallel processing area. One of the most important contributions of

50

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

parallel pattern technology lies in the nice exemplification of how layered programming

environments can be designed, that both allow plain user to fully exploit design patterns

in software design and implementation and more experienced users to intervene adding

new patterns in the programming environment once those patterns have been understood

to be useful and effective [105].

Parallel Pattern-Based Systems

Parallel patterns have made a substantial impact on the mainstream practice in parallel

programming [45]. Over the last two decades, several pattern-based systems have been

built with the intention to facilitate the rapid development of parallel applications through

the use of pre-implemented, reusable components. Some of the earlier systems include

Code [37] and Frameworks [132]. Some of the recent systems based on similar ideas are

Enterprise [125], Code2 [38], HeNCE [29], Tracs [28], and CO2P3S [36].

• CODE and CODE2 : Designers of Computationally Oriented Display Environment

(CODE) in University of Texas at Austin were early advocates of separation of

specifications. In CODE, programmers develop programs in two steps. Firstly, de-

velopers specify the content of each node, i.e., sequential computation subroutines,

input/output ports, internal variables and other rules that determine how the node

is run. Secondly, they specify how these annotated nodes interact by composing

them in a graph using a graphical interface. Then, CODE translates the graph into

a complete parallel program. CODE is one of the first systems to enforce separa-

tion of specifications and to use a graphical interface to visualize process graphs.

It has flexible rules for handling data flow in graphs, called firing rules that allow

expression of a wide variety of parallel algorithms. However, data-flow elements

and complex firing rules can be too low level and fine-grained when designing large

and complex data-flow-based parallel programs.

51

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

• Heterogeneous Network Computing Environment (HeNCE) was developed at Uni-

versity of Tennessee. It is similar in purpose and philosophy to CODE. It dif-

fers, however, in its implementation. It also is graphics user interface oriented.

It uses separation of specifications where developers first specify the computation

in each node and then specify their interconnection using a process graph. How-

ever, HeNCE graphs are control-flow oriented rather than the data-flow oriented

graphs of CODE. HeNCE generates parallel programs, using PVM, based on these

graphs. The basic building block in HeNCE is a node that contains sequential com-

putation and input/output variable declarations. Design patterns, represented by

HeNCE ’s graphical icons, include higher-level primitives such as loop, replication,

and pipeline. They can be used, with basic nodes, to build structures such as mas-

ter/slave, pipeline, and for-all construct. Furthermore, similar to CODE, HeNCE

allows recursive invocation of graphs. HeNCE has much simpler firing rules than

CODE, and thus is easier to learn and use. However, experience shows that it might

not be flexible enough to express more complex parallel algorithms.

• FrameWorks was specifically designed to restructure existing sequential programs

to exploit parallelism on workstation clusters. It uses separation of specifications

as well. Communication and synchronization of distributed processes are captured

in design patterns. Developers insert sequential computation procedures into these

patterns to create parallel programs. FrameWorks is an early system that success-

fully applies the design patterns to re-structure sequential applications for paral-

lelism. It demonstrated that this technique can be used effectively, thus inspiring

the next generation system, called Enterprise, which followed the same approach of

using design patterns for parallel programming.

• Enterprise: Its goal is to let developers develop distributed applications quickly,

economically and reliably. It is an integrated development environment complete

52

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

with tools such as a compiler, a debugger, graphical visualization tools, and a per-

formance debugger. Like FrameWorks, it also uses separation of specifications.

Developers use a meta-programming model resembling a business organization to

express parallel structures like pipeline, master/slave, and divide and conquer. A

design pattern in Enterprise, called asset, represents structures such as fan-out,

pipeline or divide and conquer. Developers provide sequential computation proce-

dures and annotate them with different assets. All necessary communication code

for each process is automatically generated by Enterprise. Design patterns in En-

terprise describe the behaviour of the whole process by combining all three types of

patterns (input, output and body) used in FrameWorks into a single structure called

an asset. Therefore, an asset contains process behaviour such as RPC scheduling

and dynamic process replication. Unlike FrameWorks, it uses refinement whereby

a node in a process graph can be recursively replaced by another sub-graph. Re-

finement only allows creation of tree-structured process graphs. These graphs are

acyclic and thus can never deadlock a program. The disadvantage is that not all

process graphs can be easily expressed using refinement. Enterprise is one of the

very few non-commercial, integrated, design-pattern-based parallel programming

environments. This research provided many insights into how tools such as debug-

gers and performance monitors can be used effectively in a design-pattern-based

system.

• Tracs was developed at University di Pisa, provides an elegant graphical user inter-

face for developing message-passing parallel programs. It uses separation of specifi-

cations similar to FrameWorks and HeNCE. The significant contribution of Tracs is

its use of high-level design patterns. It raised the abstraction of design patterns from

a single process to a collection of processes in its architecture model. However, its

node specification is limited compared to other systems such as FrameWorks which

53

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

also allow a user to specify message scheduling. Tracs forces all design patterns

to be graphical, causing difficulties in representing some patterns that cannot be

conveniently represented graphically such as divide and conquer. Tracs ’s graphical

interface is elegant, but it can actually limit the expressiveness of the system in

cases such as recursive structures where graphical representation of the pattern is

not the most appropriate.

• The CO2P3S (Correct Object-Oriented Pattern-Based Parallel Programming Sys-

tem) project uses a layered approach to parallel programming in an effort to address

correctness and openness, two problems that continue to plague current parallel pro-

gramming systems. Correctness ensures that, once created, a parallel program is

structurally correct (i.e. that it contains all necessary communication and syn-

chronization). Further, though, correctness in CO2P3S ensures that this structure

cannot be used incorrectly or accidentally modified until the performance tuning

stages. In contrast, most current systems require the user to correctly implement

and debug the desired structure. Openness means that the programming system

provides opportunities for performance tuning and allows the user to take full ad-

vantage of all language facilities and run-time libraries to improve the performance

of an application.

However, most of these systems lack practical usability for the CB field because the

following reasons:

(1) Most systems only provide a limited set of parallel patterns, such as pipeline and

task farm [45, 97]. These patterns can not meet the requirements of most CB

applications.

(2) These systems produce code with disappointing parallel performance because they

don’t consider the characteristics of specific application domain.

54

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 2.

(3) They are not flexible enough for the user to reuse the components of the systems

at the application level. Also, they lack of extensibility for new appeared patterns.

(4) No computational grid oriented pattern-based systems have been developed. With

the increased availability of grid computing platforms, grid-enabling of pattern-

based systems are of high importance.

2.7 Summary

In this chapter, our research background is introduced and a survey of concepts and

techniques is carried out accordingly. Section 2.2 presents the algorithm design tech-

niques. Two popular genome analysis tasks are surveyed in Section 2.3. The parallel

architecture-related concepts are reviewed in Section 2.4. Section 2.5 and 2.6 describe

the parallel program design environments and methods. These surveys have motivated us

to analyze the characteristics of popular sequential CB algorithms, design corresponding

parallel algorithms, implement and evaluate them on different parallel architectures.

55

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3

Characteristic Analyses of
Sequential Computational Biology
Algorithms

3.1 Introduction

With the advent of automated computing devices such as modern computers, an algo-

rithm has in most contexts become synonymous with a description that can be turned

into a computer program that instructs a computer how to solve the problem addressed

by the algorithm. The ability of modern computers to perform billions of simple calcu-

lations per second and to store billions of bits of information, makes it possible by using

the proper computer programs to address a wide range of problems that would otherwise

remain out of reach. Such possibilities have spawned several interdisciplinary activities

where the objective is to utilize the capacities of computers to gain knowledge from huge

amounts of data. An important part of such activities is to construct good algorithms

that can serve as the basis for computer programs that are needed to utilize the capacities

of computers.

In very broad terms, we identify two high-level categories of CB problems: those

that can be addressed analytically, and those that cannot. These two categories are

56

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

addressed in turn by two respective classes of algorithms: analytical solution approaches

and heuristic approaches.

3.2 Dynamic Programming Algorithms

DP is a very important analytical solution method in CB. DP views a problem as a set of

interdependent sub-problems. It solves sub-problems and uses the results to solve larger

sub-problems until the entire problem is solved [99]. The solution to a sub-problem is

expressed as a function of solutions to one or more sub-problems at the preceding levels.

For example, a problem of size n may decompose into several problems of size n−1, each

of which decomposes into several problems of size n− 2, etc. This decomposition seems

to lead to an exponential-time algorithm, which is indeed true in the travelling salesman

problem. In most other problems, however, there are only a polynomial number of distinct

sub-problems. DP gains its efficiency by avoiding solving common sub-problems many

times. It keeps track of the solutions of sub-problems in a table, and looks up the table

whenever needed.

In general, the solution to a DP problem is expressed as a minimum (or maximum)

of possible alternative solutions. Each of these alternative solutions is constructed by

composing one or more sub-problems. If r represents the cost of a solution composed of

sub-problems x1, x2,. . . ,xl, then r can be written as:

r = g(f(x1), f(x2), . . . , f(xl)) (3.2.1)

The function g() in Eq. 3.2.1 is called the composition function, and its nature de-

pends on the problem described. If the optimal solution to each problem is determined by

composing optimal solutions to the sub-problems and selecting the minimum (or max-

imum), Eq. 3.2.1 is then said to be a DP formulation [99]. Figure 3.1 illustrates an

57

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

instance of composition and minimization of solutions. The solution to problem x8 is the

minimum of the three possible solutions having costs r1, r2, and r3. The cost of the first

solution is determined by composing solutions to sub-problems x1 and x3, the second

solution by composing solutions to sub-problems x4 and x5, and the third solution by

composing solutions to sub-problems x2, x6, and x7.

f(x
1
)

f(x2)

f(x7)

f(x
6
)

f(x5)

f(x4)

f(x3)

r1 = g(f(x1), f(x3))

r2 = g(f(x4), f(x5))

r3 = g(f(x2), f(x6), f(x7))

f(x8)= min{r1, r2, r3}

Composition of solutions into a term

Minimization of terms

Figure 3.1: The computation and composition of sub-problem solutions to solve problem
f(x8)

According to [70], DP algorithms have three features in common:

(1) a table

58

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

(2) the entry dependency of the table

(3) the order to fill in the table

Each entry of the table corresponds to a sub-problem. Thus the size of the table is

the total number of sub-problems including the problem itself. The entry dependency is

defined by the decomposition: if a problem P decomposes into several sub-problems P1,

P2. . .Pk, the table entry of the problem P depends on the table entries of P1, P2. . .Pk. The

order to fill in the table may be chosen under the restriction of the table and the entry

dependency. The DP formulation of a problem always provides an obvious algorithm

which fills in the table according to the entry dependency.

3.2.1 Characteristic Analysis of Dynamic Programming Algo-
rithms

DP algorithms can be classified according to the matrix size and the dependency rela-

tionship of each cell on the matrix [70]: a DP algorithm is called a tD/eD algorithm if its

matrix size is nt and each matrix cell depends on O(ne) other cells. The DP formulation

of a problem always yields an obvious algorithm whose time complexity is determined by

the matrix size and the dependency relationship. If a DP algorithm is a tD/eD problem,

it takes time O(nt+e) provided that the computation of each term takes constant time.

Four examples are given in Algorithms 1 to 4.

Algorithm 1 (1D/1D): Given a real-valued function w(i, j) for integers 0 ≤ i < j ≤ n

and D[0]

D[j] = min
0≤i<j

{D[i] + w(j, j)}for 1 ≤ j ≤ n (3.2.2)

Algorithm 2 (2D/0D): Given D[i, 0] and D[0, j] for 1 ≤ i, j ≤ n

D[i, j] = min{D[i− 1, j] + xi, D[i, j − 1] + yj, D[i− 1, j − 1] + zij} (3.2.3)

59

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

where xi, yj and zij are computed in constant time.

Algorithm 3 (2D/1D): Given w(i, j) for 1 ≤ i < j ≤ n; D[i, i] = 0 for 1 ≤ i ≤ n

D[i, j] = w(i, j) + min
i<k≤j

{D[i, k − 1] +D[k, j]} (3.2.4)

where w(i, j) is computed in constant time.

Algorithm 4 (2D/2D): Given w(i, j) for 1 ≤ i < j ≤ 2n, D[i, 0] and D[0, j] for

0 ≤ i, j ≤ n

D[i, j] =
0≤i′<i

min
0≤j′<j

{D[i′, j ′] + w(i′ + j′, i+ j)}for 1 ≤ i, j ≤ n (3.2.5)

The DP formulation of a problem always yields an obvious algorithm whose efficiency

is determined by the table size and entry dependency. If a DP problem is a tD/eD

problem, an obvious algorithm takes time O(nt+e) provided that the computation of each

term (e.g., D[i] + w(j, j) in Algorithm 1) takes constant time. The space required is

usually O(nt).

There are many DP algorithms in CB. DP is used for assembling DNA sequence data

from the fragments that are delivered by automated sequencing machines [25], and to

determine the intron/exon structure of eukaryotic genes [74]. It is used to infer function

of proteins by homology to other proteins with known function [114, 133] and it is used to

predict the secondary structure of functional RNA genes or regulatory elements [152]. A

recent textbook [55] presents a dozen variants of DP algorithms in its introductory chapter

on sequence comparison. In some areas of CB, DP problems arise in such variety that

a specific code generation system for implementing such algorithms has been developed

[32]. However, the development of a successful parallel DP algorithm is a matter of

experience, talent, and luck. The typical matrix recurrence relations that make up a

parallel DP algorithm are intricate to construct, and difficult to implement reliably. No

general problem independent guidance is available. According to above classification

method, we can classify the popular DP algorithms in CB as shown in Table 3.1.

60

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

Table 3.1: A classification for the popular DP algorithms in CB
Algorithms Time Applications References

Complexity

Smith-Waterman O(n2) Genome alignment [90, 134]
algorithm with
linear and affine

gap penalty
Syntenic alignment Generalized genome

global alignment

Smith-Waterman O(n3) Genome alignment [55, 134]
algorithm with

with general gap
penalty

Nussinov algorithm RNA base pair maximization

Viterbi algorithm O(n2) − O(n4) Gene sequence alignment [55]
using HMMs, Multiple

sequence alignment

Double DP algorithm O(n4) Protein threading [110]

Spliced alignment O(n3) Gene finding [73]

Zuker algorithm O(n3) − O(n4) RNA secondary [153]
structure prediction

CYK algorithm O(n3) − O(n4) RNA secondary [55]
structure alignment

Due to the wide variety of problems solved using DP, it is difficult to develop generic

parallel algorithm for them. However, parallel formulations of the problems in each of

the four DP categories have certain similarities. We will discuss parallel formulations

for sample problems in each class. These samples suggest parallel algorithms for other

problems in the same class.

DP applications usually exhibit the characteristic of the wavefront computation, that

is, each element computes a value that depends on the computation of a set of previous

elements. An example is shown in Figure 3.2. Figure 3.2b displays the dependency

relationship: each matrix element (i, j) is computed from the matrix cells (i − 1, j),

(i, j−1), (i−1, j−1). The wavefront moves in anti-diagonals as depicted in Figure 3.2a,

that is, the shift direction is from northwest to southeast. Depending on the dependency

61

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

Mij

(a) (b)

Figure 3.2: Example of a wavefront computation: (a) shift direction, (b) dependency
relationship

relationship different wavefront shift directions are possible. In this section we discuss

four examples of DP algorithms with different dependency relationships.

2D/0D Dynamic Programming Algorithms

• Smith-Waterman Algorithm

Sequence alignments are fundamental to many applications in CB, and comprise one of

the best studied and well understood problem areas in this discipline. Much of the early

pioneering work concentrated on two types of alignments: 1) global alignments, which

are intended for comparing two sequences that are entirely similar [80, 112, 114], and 2)

local alignments, which are intended for comparing sequences that have locally similar

regions [89, 134].

The local alignment algorithm was developed in the early 1980’s. It is frequently

known as the Smith-Waterman algorithm. Given are two sequences A and B of length

m and n, respectively, a substitution matrix s and a linear gap penalty d. The following

recursion relation then computes the optimal local alignment of A and B:

62

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

M(i, j) = max

M(i− 1, j − 1) + s(Ai, Bj),
M(i− 1, j) − d,
M(i, j − 1) − d,
0;

(3.2.6)

The recursions is calculated with i going from 1 to m and j from 1 to n, starting with

M(i, j) = 0 for all i = 0 or j = 0. The order of computation of the values in the alignment

matrix is strict because the value of any cell cannot be computed before the value of all

cells to the left and above it has been computed. The wavefront computation procedure

of Smith-Waterman algorithm is shown in Figure 3.2.

The Smith-Waterman algorithm with linear gap penalty is not ideal for biological

sequences: it penalizes additional gap steps as much as the first, whereas, when gaps do

occur, they are often longer than one residue. If we are given a general function for γ(g)

then we can still use the DP versions described in Eq. 3.2.6, with adjustments to the

recurrence relations as typified by the following:

M(i, j) = max

M(i− 1, j − 1) + s(Ai, Bj),
M(i− 1, j) + γ(i− k), k = 0, . . . , i− 1
M(i, j − 1) + γ(j − k), k = 0, . . . , j − 1
0;

(3.2.7)

which gives a replacement for the basic local dynamic relation. However, this procedure

now requires O(n3) operations to align two sequences of length n, rather than O(n2)

for the linear gap cost version, because in each cell (i, j) we have to look at i + j + 1

potential precursors, not just three as previously. This is a prohibitively costly increase

in computational time in many cases. Under some conditions on the properties of γ()

the search in k can be bounded, returning the expected computational time to O(n2),

although the constant of proportionality is higher in these cases [112].

The standard alternative to using 3.2.7 is to assume an affine gap cost structure

as: γ(g) = −d − (g − 1)e. For this form of gap cost there is once again an O(n2)

63

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

implementation of DP. However, we now have to keep track of multiple values for each

pair of residue coefficients (i, j) in place of the single value M(i, j). The recurrence

relations corresponding to 3.2.7 now become:

M(i, j) = max

M(i− 1, j − 1) + s(Ai, Bj),
Ix(i− 1, j − 1) + s(Ai, Bj),
Iy(i− 1, j − 1) + s(Ai, Bj),
0;

(3.2.8)

Ix(i, j) = max

{

M(i− 1, j) − d,
Ix(i− 1, j) − e;

Iy(i, j) = max

{

M(i, j − 1) − d,
Iy(i, j − 1) − e;

In these equations, we assume that a deletion will not be followed directly by an

insertion. This will be true for the optimal path if −d−e is less than the lowest mismatch

score.

C GT

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

0
0

0
0
0
0

0

0

A T C G T A T A T G

G

T

C

T

A

T

C

A

C

0

0
0

0

2
1
0
2
1

0
2
1
2
2

2
1

4
3

0
1
4
3
2
3

4
5
6

0
2
3
6
5
4
5
5
4

0
1

5
5
4
6
5
7

4

2
1
3
4
4
4
5
5
6

4
3
5
4
6
5
4
5

1 0
3
3
4
7
5
5
7
6

0
2
2
5
6

7
6

9
8

2
1
1
4
5
8
8
7
6

1
1
0
3
6
7
7

9
10

0

2
5
8
7
9
9

3
2

2
2
2
1
4
7
7
8
8

Figure 3.3: Example of the Smith-Waterman algorithm to compute the local alignment
between two sequences ATCTCGTATGATG and GTCTATCAC.

Figure 3.3 illustrates an example to compute the local alignment between two se-

quences S1 = ATCTCGTATGATG and S2 = GTCTATCAC. The matrix H(i, j) is

shown for the computation with gap(k) = 0 + 1 × k and a substitution cost of +2 if the

64

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

characters are identical and −1 otherwise. From the highest score (+10 in the example),

a traceback procedure delivers the corresponding alignment (shaded elements), the two

subsequences TCGTATGA and TCTATCA. Since the score (+10) is the highest one in

the similarity matrix, the corresponding alignment is the optimal alignment.

• Syntenic Alignment Algorithm

It is widely recognized that evolutionary processes tend to conserve genes. Along

a chromosome, genes are interspersed by large regions known as “junk DNA”. A gene

itself is comprised of alternating regions known as exons and introns, and the introns are

intervening regions that do not participate in the translation of a gene to its corresponding

protein. Homologous DNA sequences from related organisms, such as the human and the

mouse, are usually similar over the exon regions but different over other regions. Because

the different regions are much longer than similar regions, conserved sequences cannot be

identified through global alignment. This results in the problem of aligning two sequences

where an ordered list of subsequences of one sequence is highly similar to a corresponding

ordered list of subsequences from the other sequence. We refer to this problem as the

syntenic alignment problem [68].

Let A = a1a2 . . . am and B = b1b2 . . . bn be two sequences. A subsequence A′ of A is

said to precede another subsequence A′′ of A, written A′ ≺ A′′, if the last character of

A′ occurs strictly before the first character of A′′ in A. An ordered list of subsequences

of A, (A1, A2, . . . , Ak) is called a chain if A1 ≺ A2 ≺ . . . Ak of subsequences in A and a

chain (B1, B2, . . . , Bk) of subsequences in B such that the score:

{

∑k
i=1 score(Ai, Bi)

}

− (k − 1)d

is maximized (see figure 3.4. The parameter d is a large penalty aimed at preventing

alignment of short subsequences which occur by chance and not because of any biological

65

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

significance).

Difference
Block

Difference
Block

Difference
Block

Difference
Block

A1 A2 A3

B1 B2 B3

Figure 3.4: The syntenic alignment is an ordered list of local alignments separated by
difference blocks

M(i, j) = s(Ai, Bj) + max

E(i− 1, j − 1),
F (i− 1, j − 1),
H(i− 1, j − 1);

(3.2.9)

E(i, j) = max

M(i− 1, j) − g′,
E(i− 1, j) − g,
F (i− 1, j) − g′,
H(i− 1, j) − g′;

F (i, j) = max

M(i, j − 1) − g′,
E(i, j − 1) − g′,
F (i, j − 1) − g,
H(i, j − 1) − g′;

H(i, j) = max

M(i− 1, j) −D,
F (i− 1, j) −D,
M(i, j − 1) −D,
E(i, j − 1) −D,
H(i− 1, j),
H(i, j − 1);

Based on the problem definition, the syntenic alignment of two sequencesA = a1a2 . . . am

and B = b1b2 . . . bn can be computed by DP. Consider two strings A and B of length l1

and l2, a substitution matrix s and a linear gap penalty d, g ′ = g + h, g is the gap-open

penalty and h is the gap-extension penalty, D is a constant penalty for each different

block. To identify common subsequences, they compute the similarity matrix M(i, j) of

66

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

two sequences ending at position i and j. It follows from these definitions that M(i, j)

can be computed using the recurrence equations in Eq. 3.2.9.

E

F

E

F

H

E

F

E

F

H

(a) (b) (c)

Mij MijMijMijMij

Figure 3.5: (a) Dependency relationship and wavefront shift direction of SW with the
linear gap penalty (b) Dependency relationship and wavefront shift direction of SW with
the affine gap penalty (c) Dependency relationship and computation shift direction of
syntenic alignment algorithm

Figure 3.5 shows the dependency relationship and the computation shift direction of

Smith-Waterman (with linear and affine gap penalty) and Syntenic alignment algorithms.

We can find that the obvious differences between them are the number of matrices they

will compute. All of these algorithms have an even workload across matrix cells, i.e.

each matrix cell is computed from the same number of other matrix cells. We call such

DP algorithms regular. In practice, the regular DP computations share these similar

67

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

characters.

2D/1D Dynamic Programming Algorithms

• Skyline Matrix Problem

The skyline matrix problem is one of the “Cowichan-Problems”. The Cowichan problem

set presented in [151] has been carefully selected to provide a suitable handle for assessing

the usability of parallel programming systems.

An N×N matrix A is known as a skyline matrix when each sub diagonal row ai1 . . . aii

and each supra diagonal column a1j . . . ajj of A, 1 ≤ i, j ≤ N , has a (possibly zero-length)

prefix of zero-valued elements. More exactly, a skyline matrix is one for which there exist

constants ri and cj, 1 ≤ i, j ≤ N , such that:

1. 1 ≤ ri ≤ i, row i has non-zero values in columns ri to i;

2. 1 ≤ cj ≤ j, column j has non-zero values in rows cj to j.

1

377634

53

18

3325

5687

27

21

58

63

3

33

49

15

21

22

17

98

19

11

917814

6

5

2

3

3

3

2

1 2 862343

cj

ri

Figure 3.6: An example 8 × 8 skyline matrix

68

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

A typical example of a skyline matrix is shown in Figure 3.6, together with the

corresponding ri and cj values. These two vectors may be regarded as describing the

skyline envelope of the non-zero values in the matrix.

The skyline matrix problem can be formulated as follows: Given an N × N skyline

matrix A and an N -vector b, we seek to find an N -vector x such that Ax = b. An

efficient and widely used technique for solving Ax = b in the general case is the LU -

Decomposition. This method decomposes A into two matrices L and U . The algorithm

used for sequential LU -Decomposition is “Doolittle’s Method”. Generally, the algorithm

works as follows:

for i = 1 to N do

for j = 1 to i− 1 do

Lij =
(

aij −
∑j−1

k=1 LikUkj

)

/Ujj

for j = 1 to i do

Uji = aji −
∑j−1

k=1 LjkUki

Uii

Lij

(a) (b)

Figure 3.7: The wavefront computation of skyline matrix problem: (a) shift direction,
(b) dependency relationship

The algorithm generates the dependency relationship shown in Figure 3.7. The calcu-

lation of each element Uij requires only the externally provided row Li and local prefix-

69

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

column Uj just up to Uij, and the calculation of element Lji requires only the externally

provided column Ui and local prefix-row Lj just up to Lji.

• Nussinov and Matrix Chain Ordering Algorithm

Structure prediction is important for RNA. RNA molecules perform certain catalytic

functions, which are the consequence of their specific three-dimensional structure. This

structure is encoded in the nucleotide sequence of the RNA molecule. While RNA tertiary

structure prediction appears as difficult as protein structure prediction, there are DP

algorithms for the simpler problem of RNA secondary structure prediction.

Suppose we wish to predict the secondary structure of a single RNA. Many plausible

secondary structures can be drawn for a sequence. The number increases exponentially

with sequence length. An RNA with 200 bases long has over 1050 possible base-paired

structures. We must distinguish the biologically correct structure from all the incorrect

structures. We need both a function that assigns the correct structure the highest score,

and an algorithm for evaluation the scores of all possible structures [55].

Initialization:

for i = 2 to L do

M(i, i− 1) = 0

for i = 1 to L do

M(i, i) = 0

Recursion:

M(i, j) = max

M(i+ 1, j),
M(i, j − 1),
M(i+ 1, j − 1) + δ(i, j),
max1<k<j [M(i, k) +M(k + 1, j)].

The value of M(1, L) is the number of base pairs in the maximally base-paired structure.

70

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

The Nussinov algorithm is an efficient DP algorithm to find the RNA structure with

the most base pairs. We are given a sequence A of length L with symbols x1 . . . xL. Let

(i, j) = 1 if xi and xj are a complementary base pair, else (i, j) = 0. We will recursively

calculate scores M(i, j) which are the maximal number of base pairs that can be formed

for subsequence xi, . . . , xj. Formally, the Nussinov algorithm is as above.

Mij

0

0 0

0 0

0

0

0

0

0 0

0 0

0 0

(a) (b)

Figure 3.8: The wavefront computation of Nussinov algorithm: (a) shift direction; (b)
dependency relationship

The wavefront computation procedure of Nussinov algorithm is shown in Figure 3.8.

We can see that each matrix cell (i, j) is computed from all matrix cells in row i and

column j from index min(i, j) up to max(i, j).

The Matrix Chain Ordering Problem (MCOP) is very similar to the Nussinov algo-

rithm. It can be expressed as a parenthesization of the n given matrices giving an order

to optimally multiply them. There are a Catalan number of ways to parenthesize any n

element associative product, so a brute-force method of exhaustive search algorithm is

not feasible.

Taking a chain of n matrices M1×M2×· · ·×Mn, then there are possible sub-products

of the form MCi,j = Mi × · · · ×Mj. Clearly, the final product M1,n must be made up of

one of these sub-products. These sub-products, in turn, are made up of such sub-products

with the single matrix base case when i = j.

71

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

Suppose an optimal parenthesization of M1×M2×· · ·×Mn splits the product between

Mk and Mk+1 for some k. Then, the prefix sub-chain M1 ×M2 × · · · ×Mk within this

optimal parenthesization must be optimal. The same is for Mk+1 ×Mk+2 × · · · ×Mn.

This principle of optimality is the characteristic of DP algorithms. So, given that the

matrix MCi,j is of dimensions di × dj+1, and taking MCi,i = 0 as a base case, we can get

the following pseudo code for solving the MCOP:

Initialization:

for i = 1 to L do

MCi,i = 0

Recursion:

for each diagonal D from 2 to n do

for each element MCi,k in diagonal D do

MCi,k = Mini≤j≤k[MCi,j +MCj+1,k + didj+1dk+1]

where MCi,k is the cost of computing Mi ×Mi+1 × · · · ×Mk.

In general, using this algorithm to find the minimum for an element in diagonal D,

it uses elements from all D − 1 previous diagonals. Given n matrices to order, such

inter-diagonal dependency relationship is same with the one shown in Figure 3.8.

2D/2D Dynamic Programming Algorithms

• Arbitrary-Order Viterbi Algorithm

Hidden Markov Models (HMMs) have been the mainstay of the statistical modeling

used in modern speech recognition systems and biological sequence analysis systems [96,

122]. The Viterbi Algorithm is often used to find the state sequence that best explains

the observation, that is, to find the single best state sequence Q = q1, q2 . . . qr, for the

given observation sequence O = O1, O2 . . . Or. Here, we need to define the quantity

72

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

δt(i) = max
q1,q2...qt−1

p[q1, q2 . . . qt = i, O1O2 . . . Ot|λ]

δt(i) is the best score (highest probability) along a single path, at time t, which

accounts for the first t observations and ends in state Si, λ is the complete parameter set

of the HMM. By induction we have

δt+1(j) = [max
i
δt(i)aij]bj(Ot+1)

where aij is the state transition probability distribution, bj(k) is the observation symbol

probability distribution.

First-order and second-order Viterbi algorithms are generally used in practice. In the

first-order algorithm, elements in the matrix depend on all the elements in the previous

row. In the second-order Viterbi algorithm elements depend on all the elements in the

previous two rows.

state1 state2 state3 state4

Figure 3.9: An example of four states Pre-Fix HMM

Although the first and second-order Viterbi algorithms are frequently used, they are

not sufficient for some application areas such as biological sequence analysis where a

position in a gene sequence not merely depends on the previous two positions. Here, we

design a new kind of HMM. In this HMM, each state will depend on all the previous

73

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

states. We call this a Pre-Fix HMM (see Figure 3.9).

The corresponding modified Viterbi algorithm that we called arbitrary order Viterbi

algorithm looks as follows:

Initialization:

for i = 1 to N do

δ1(i) = δibi(O1)

Recursion:

for t = 2 to T do

for k = 1 to t do

δt(j) = Max1≤i≤j [δt−k(i)aij]bj(Ot)

where N is the number of states and T is the number of observations.

The dependency relationship for the algorithm is shown in Figure 3.10.

Mij

(a) (b)

Figure 3.10: The wavefront computation of arbitrary-order Viterbi algorithm: (a) shift
direction, (b) dependency relationship

From dependency relationship figures (see Figure 3.7, 3.8, and 3.10) of 2D/1D and

2D/2D DP algorithms we can see that the load to compute one cell in the matrix will

increase along the shift direction of the wavefront. We call this kind of DP algorithms

74

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

irregular.

3D/0D Dynamic Programming Algorithms

• Spliced Alignment Algorithm

Many gene sequence alignment algorithms are multi-dimensional algorithms and the de-

pendency relationships are more complex. The spliced aliment algorithm is one example

of such kind of algorithms.

Spliced alignment belongs to the problem class of automatized gene-finding. The

structure of a typical nuclear eukaryotic gene is a mosaic of exons and introns. A so-

called cDNA (complementary DNA) is a DNA sequence which is reverse transcribed

from RNA into DNA; it is the DNA counterpart of a mature RNA, i.e. the exons of a

gene glued together, omitting the intervening intron sequences. These artificial pieces of

DNA can be established in a laboratory protocol from mRNA isolated from cell tissue.

Given such a cDNA, the problem is to localize it in the genomic DNA (see Figure 3.11).

This is different from a simple matching problem, since the goal is to derive the correct

splice pattern.

The formal statement of spliced alignment is as follows:

Let G = g1 . . . gn be a string, and let B = gi . . . gj and B′ = gi′ . . . gj′ are substrings

of G. We write B < B ′ if j < i′, i.e., if B ends before B ′ starts. A sequence Γ =

(B1, . . . , Bp) of substrings of G is a chain if B1 < B2 < · · · < Bp. Γ
∗ = B ∗B ∗ · · · ∗Bp

is a concatenation of strings from the chain Γ . s(G, T) denotes the score of the optimal

alignment between strings G and T .

Let G = g1 . . . gn be a string called genomic sequence, T = t1 . . . tm be a string called

target sequence, and B = B1, . . . , Bp be a set of substrings of G called blocks. Given G,

T , and B, the spliced alignment problem is to find a chain Γ of strings from B such that

75

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

Spliced Site

Genomic DNA

cDNA or Protein

Extron Intron

Figure 3.11: The principle of spliced alignments

the score s(Γ ∗, T) of the alignment between the concatenation of these strings and the

target sequence is maximum among all chains of blocks from B.

Gelfand et al. [73] reduced the exon assembly problem to the search of a path in

a directed graph. Let Bk = gm . . . gi . . . gl be a substring of G containing a position i.

Define i− prefix of Bk as Bk(i) = gm . . . gi. For a block Bk = gm . . . gl, let first(k) = m,

last(k) = l, size(k) = l − m + 1. Let B(i) = {k : last(k) < i} be the set of blocks

ending before position i in G. Let G = (B1, . . . , Bk, . . . , Bt) be a chain and some block

Bk contains position i. Define Γ ∗(i) as a string Γ ∗(i) = B ∗B ∗ · · · ∗Bk(i). Let

S(i, j, k) = max
all chains Γ containing block Bk

s(Γ ∗(i), T (j)) (3.2.10)

The following recurrence computes S(i, j, k) for 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 1 ≤ k ≤ b.

For the sake of simplicity we consider sequence alignment with linear gap penalties and

define δ(x, y) as a similarity score for every pair of amino acids x and y and δindel as a

penalty for insertion or deletion of amino acids.

76

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

S(i, j, k) = max

S(i− 1, j − 1, k) + δ(gi, tj), if i 6= first(k)
S(i− 1, j, k) + δindel, if i 6= first(k)
maxl∈B(first(k)) S(last(l), j − 1, l) + δ(gi, tj), if i = first(k)
maxl∈B(first(k)) S(last(l), j, l) + δindel, if i = first(k)
S(i, j − 1, k) + δindel

(3.2.11)

After computing the 3-dimensional table S(i, j, k), the score of the optimal spliced

alignment is

max
k
S(last(k),m, k) (3.2.12)

Gelfand reduced the number of edges in the spliced alignment graph by making equiv-

alent transformations of the described network, leading to a reduction in time and space.

Define

P (i, j) = max
l∈B(i)

S(last(l), j, l) (3.2.13)

Then 3.2.11 can be rewritten as

S(i, j, k) = max

S(i− 1, j − 1, k) + δ(gi, tj), if i 6= first(k)
S(i− 1, j, k) + δindel, if i 6= first(k)
P (first(k), j − 1) + δ(gi, tj), if i = first(k)
P (first(k), j) + δindel, if i = first(k)
S(i, j − 1, k) + δindel

(3.2.14)

where

P (i, j) = max

{

P (i− 1, j)
maxk:last(k)=i−1 S(i− 1, j, k)

(3.2.15)

77

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

The network corresponding to 3.2.14 and 3.2.15 has a significantly smaller number of

edges, thus leading to a practical implementation of the spliced alignment algorithm.

Note that S(i, j, k) is defined only if i ∈ Bk and therefore only a portion of entries

in the three-dimensional nmb matrix S needs to be computed. The time complexity of

the algorithm is O(mnc+mb), where c = 1
n

∑b
k=1 size(k) is the coverage of the genomic

sequence by blocks.

3.2.2 Space-Saving Algorithm

Alignment algorithms can be used to report all possible alignments between two se-

quences. However, their quadratic space complexities have made them unattractive for

applications involving very long sequences. For instance, considering comparing two se-

quences with length of l 1 and l2, the memory and time complexity for Smith-Waterman

algorithm is O(l 1×l2). For aligning two sequences of a few million base pairs in length

this would lead to a memory requirement of several Terabytes. This amount of memory

is prohibitive for most commodity computers of today. To date, no algorithm is known

that uses asymptotically less time than O(n2) and keeps the same generality as the DP

algorithms mentioned in this section. However, with respect to space, the complexity can

be improved from quadratic, O(l1× l2), to linear, O(l1 + l2), without losing any generality.

Hirschberg was the first to present a linear space algorithm capable of producing an

optimal alignment of two sequences [87]. Although Hirschberg made his observations in

the context of the problem of finding a longest common subsequence of two strings, the

results also apply to the common sequence alignment problem. Myers and Miller are

credited with developing the first linear space algorithm for optimal sequence alignment

based on Hirschberg’s algorithm [112]. The maximal score in the similarity matrix can

be computed in linear space as follows. An important observation is that the derivation

of the column i requires only the column i − 1 of the matrix to be known. Figure 3.12

78

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

presents an algorithm that computes the best score for two sequences using linear space.

Algorithm LastColumn takes as input the strings a[1 . . . n] and b[1 . . . n], and produces

as output the vector LL. This vector consists of the same values as the last column,

m, of the similarity matrix computed by the Smith-Waterman algorithm. However, the

LastColumn algorithm requires only n + 1 locations of memory to compute the vector

LL; hence, it is space linear in the size of the sequences.

Algorithm BestScore
Input: sequences a and b
Output: vector LL
m = |a|
n = |b|
for j = 0 to n do

LL[j] = j ×GapPenalty

for i = 1 to m do
old = LL[0]
LL[0] = i×GapPenalty

for j = 1 to n do
temp = LL[j]
LL[j] = max(old+ align(a[i], b[j]),

LL[j − 1] +GapPenalty,
LL[j] +GapPenalty)

old = temp

Figure 3.12: Pseudo-code for the LastColumn Algorithm

The correctness of LastColumn is supported by the following invariant assertions:

• at the beginning of step i of the outer loop, LL holds the values of the column i−1

of the similarity matrix;

• in the inner loop, at the beginning of step j, LL[0 . . . j − 1] holds the values of the

column i, while LL[j . . . n] holds the values of the column i− 1;

• at step j, old = S[i− 1, j − 1].

79

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

The computations done by the Smith-Waterman algorithm are mimicked using only

the vector LL, and two temporary variables. Because of the two loops, the time com-

plexity of the LastColumn algorithm is O(n2).

3.3 Genetic Algorithms

If we can address a CB problem analytically, this generally means that we know enough

about the structure of the search space to reliably guide a search towards the best solution.

The more typical situation is that we do not have enough analytical knowledge to do this.

Perhaps even more commonly, we can analyze the structure of the problem to a small

extent, but not enough to be able to use the knowledge to reliably find the best solution.

This type of CB problems fall into the heuristic category.

Search Techniques

Analytical
Techniques

Heuristic
Techniques

Direct
Methods

Indirect
Methods

Evolutionary
Algorithms

Simulated
Annealing

Evolutionary
Strategy

Genetic
Algorithms

Calculus-based
Techniques

Enumerative
Techniques

Dynamic
Programming

Figure 3.13: Classification of search techniques

The so-called genetic algorithm (GA) is a heuristic search method that operates on

pieces of information like the nature dose on genes in the course of evolution (see Figure

3.13). GAs and evolutionary strategies emerged at about the same time. Both tech-

niques model the natural evolution process in order to optimize either a fitness function

80

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

(evolutionary strategies) or the effort of generation subsequent, well-adapted individuals

in successive generations (GAs). In a GA, individuals are represented by a linear string

of letters of an alphabet and they are evaluated by a fitness function. Depending on the

generation replacement mode a subset of parents and offspring enters the next reproduc-

tion cycle. After a number of iterations the population consists of individuals that are

well adapted in terms of the fitness function. Although this setting is reminiscent of a

classical function optimization problem, GAs were originally designed to demonstrate the

benefit of genetic crossover in an evolutionary scenario, not for function optimization. It

cannot be proven that the individuals of a final generation contain an optimal solution for

the objective encoded in the fitness function but it can be shown mathematically that the

GA optimizes the effort of testing and producing new individuals if their representation

permits development of building blocks. In that case, the GA is driven by an implicit

parallelism and generates significantly more successful progeny than random search. In a

number of applications where the search space was too large for other heuristic methods

or too complex for analytical treatment GAs produced favorable results.

GAs differ from traditional search techniques in several ways:

• GAs optimize the trade-off between exploring new points in the search space and

exploiting the information discovered thus far.

• Second, GAs have the property of implicit parallelism. Implicit parallelism means

that the GA’s effect is equivalent to an extensive search of hyper-planes of the given

space, without directly testing all hyperplane values.

• Third, GAs are randomized algorithms, in that they use operators whose values are

governed by probability. The results for such operations are based on the value of

a random number.

• GAs operate on several solutions simultaneously, gathering information from cur-

81

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

rent search points to direct subsequent search. Their ability to maintain multiple

solutions concurrently makes GAs less susceptible to the problems of local maxima

and noise.

As noted, GAs are randomized-but not random-search algorithms. Each organism

represents a point in the search space. Randomization must balance two competing

concerns, exploration and exploitation. A solution cannot be tested unless it appears

as an organism. Therefore, a reasonable number of solutions must be explored. On the

other hand, unlimited exploration would not be efficient search. The strength of highly fit

organisms must be exploited and allowed to propagate in the population. Yet, giving too

much precedence to such organisms results in premature termination at a local optimum.

The basic outline of a GA is as follows [95]:

1. Initialise a population of individuals. This can be done either randomly or with

domain specific background knowledge to start the search with promising seed in-

dividuals.

• Individuals are represented as a string of bits.

• A fitness function must be defined that takes as input an individual and returns

a number that can be used as a measure of the quality of that individual.

2. Evaluate all individuals of the initial population.

3. Generate new individual. Reproduction involves domain specific genetic operators

(see Figure 3.14). Operations to produce new individuals are:

• Mutation. Substitute one or more bits of an individual randomly by a new

value (0 or 1).

• Crossover. Exchange parts of one individual with the corresponding parts of

another individual.

82

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

4. Select individuals for the new parent generation.

5. Go back to step 2 until either a desired fitness value is reached or until a predefined

number of iteration is performed.

1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0

1 0 1 0 0 0 1 1 0 1 1 0 0 1 1 0

1 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 0 0 1 1 0 0 1 1

1 1 0 1 00 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1

1 1 0 1 0

0 0 1 1 01

Mutation Crossover

(a) (b)

Figure 3.14: Genetic operators for GAs. (a) Mutation exchanges one single bit; (b)
Crossover exchanges a contiguous fragment of an individual.

The theoretical foundation of GAs is the schemata theorem [88]. It makes a statement

about the propagation of schemata (or building blocks) within all individuals of one

generation. A schema is implicitly contained in an individual. Like individuals, schemata

consist of bit strings (1,0) and can be as long as the individual itself. In addition, schemata

may contain undefined positions where it is not specified whether the bit is 1 or 0. A

string is said to match a schema if they agree in the defined positions. For example:

The string 1010101 matches the schemata ∗0∗0∗∗∗ and ∗∗∗01∗∗ among others, but does

not match ∗1∗0∗∗∗ since they differ in the second position. The length (δ(H)) of ∗0∗0∗∗∗

is 3 which is the distance from the first to the last fixed symbol (1 or 0 but not ∗). The

order of a schema o(H) is the number of fixed positions (1 or 0 but not ∗).

According to [79], let s(H, t) be the number of occurrences of a particular schema H

in a population of n individuals at time t. The bit string Ai of individual i then gets

selected for reproduction with probability pi:

pi =
fi

∑n
j=1 fj

(3.3.1)

83

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

where fi, fj is the fitness value of the i, j−th individual. The expected number of occur-

rences of schema H at time t+ 1 is:

s(H, t+ 1) = s(H, t) · n ·
f(H)

∑n
i=1 f(i)

(3.3.2)

where f(H) is the average fitness of all individuals (strings Ai) that contain H.

Crossover and mutation operators can destroy schemata during reproduction. The

longer a single individual, the smaller the probability that a schema H will be involved

in a crossover event. The longer a schema, i.e. the larger δ(H), the more likely is its

destruction through recombination with another individual. Hence, for crossover the

lower bound for the survival probability of a schema H is:

ps ≥ 1 −
δ(H)

L− 1
(3.3.3)

where L is the length of one whole individual. If we perform crossover stochastically at

a frequency pc the survival probability ps becomes:

ps ≥ 1 − pc ·
δ(H)

L− 1
(3.3.4)

Combining the effects of independent crossover and reproduction we arrive at the follow-

ing equation for the expected occurrence of a schema H at time t+ 1:

s(H, t+ 1) = s(H, t) · n ·
f(H)

∑n
i=1 f(i)

·

(

1 − pc ·
δ(H)

L− 1

)

(3.3.5)

3.3.5 presents that schemata increase over time proportional to their relative fitness and

inversely proportional to their length.

Mutation can effect a schema H at each of its o(H) fixed positions with mutation

84

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

probability pm. Survival of a single constant position in a schema is then ps = 1 − pm

and survival of the entire schema:

ps = (1 − pm)o(H) (3.3.6)

where small pm can be approximated by ps ≈ 1 − o(H) · pm. Combining the effects

of independent mutation, crossover and variation we get the following formula for the

expected count of a schema H:

s(H, t+ 1) = s(H, t) · n ·
f(H)

∑n
i=1 f(i)

·

(

1 − pc ·
δ(H)

L− 1
− o(H) · pm

)

(3.3.7)

Assuming a schema H could always outperform other schemata by a fraction b of the

total mean fitness then this equation can be rewritten as:

s(H, t+ 1) = s(H, t) ·
1
n

∑n
i=1 fi + b 1

n

∑n
i=1 fi

1
n

∑n
i=1 fi

·

(

1 − pc ·
δ(H)

L− 1
− o(H) · pm

)

= s(H, t) · (1 + b) ·

(

1 − pc ·
δ(H)

L− 1
− o(H) · pm

)

(3.3.8)

This equation tells us that the number of schemata better than average will exponentially

increase over time. Effectively, many different schemata are sampled implicitly in parallel

and good schemata will persist and grow. This is the basic rationale behind GAs. It is

suggested that if the representation of a problem allows the formation of schemata then

the GA can efficiently produce individuals that continuously improve in terms of the

fitness function.

GAs have been widely used, Table 3.2 shows some popular GA applications in CB.

85

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 3.

Table 3.2: Popular GA applications in CB.
Algorithms Applications References

SAGA Mutiple protein sequence alignment [117]
RAGA Pairwise RNA sequence alignment [118]

Hybrid GA DNA sequence reconstruction [33]
KENOBI Protein structure alignment [140]

GGA Microarray data clustering [58]
GARC Feature selection methods for in silico drug design [53, 56]

3.4 Summary

The characteristics of sequential CB algorithms are fundamental and important to the

design of efficient parallel algorithms. In this chapter, we have analyzed characteristics

of two categories of popular CB algorithms: DP algorithms and GAs. According to the

problem dimension and the data dependency relationship, we have presented a general

classification for popular DP algorithms in CB. From the point of view of computational

load density, we have identified two kinds of DP algorithms further-regular and irregular.

The data dependency relationship graphs are also provided to facilitate the understanding

of characteristics of variable DP algorithms in CB. As to GAs, the theoretical foundation

of them has been introduced.

86

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4

Design of Partitioning and
Communication Schemes

4.1 Introduction

The exponential growth in the size of genomic and protein databases and the availability

of complete genomes of complex organisms have made the CB area keen for HPC. Due

to the wide variety of problems solved in CB and variable HPC architectures, we need

to consider the characteristics of specific applications to perform. Also, we must manage

additional implementation concerns introduced by HPC.

The most basic problem is which parallel partitioning scheme to use, that is, how

the algorithm is to be broken into independent computations that may be executed in

parallel. There are two primary methods for partitioning a problem:

• Data Partition: partition the data first, then partition the computation based on

the data partition.

• Functional Partition: partition the computation into smaller tasks, then, parti-

tion the data based on these tasks. This is common in problems where there are

no obvious data structures to partition, or where the data structures are highly

87

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

unstructured.

In this thesis, we have used the data partition method because it is general-purpose

and suitable for CB algorithms such as DP and GAs which operate on regular data-

structures. The data-structure is divided between the processors, which compute a por-

tion of the result.

Another concern is to balance the computational load among processors. It is dis-

cussed below:

• A parallel computation usually proceeds at the speed of the slowest processor.

Therefore it is important to ensure that a computational component completes at

approximately the same time as its result is required by another component. For

some problems it is possible to determine which are the more expensive computa-

tions by inspection. In these cases the load balancing can be achieved statically

by allocating these components more processors. In other situations a dynamic

approach must be used in which the implementation adapts to expensive compu-

tations by re-routing work elsewhere. As to our parallel DP applications in CB,

we proposed a tunable coarse-grained partitioning and communication scheme to

achieve better load balancing.

• In parallel GAs, the load balancing will not matter greatly. For example, imagine

one process being deployed to a slow machine with slow networking capabilities,

and another one to a fast machine with lots of networking resources. For some

kinds of parallel algorithms this would be a problem, since the slow machine would

probably keep the faster one up. As to GAs this is not a problem because both sub-

populations would evolve with different speeds. The slower sub-population may see

the immigration of advanced individuals earlier in its evolution than the faster sub-

population. In this thesis, we have mainly focused on the design and development

88

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

of a hierarchical parallel GA running on computational grids.

4.2 Parallel Dynamic Programming Algorithms

4.2.1 Striped Partitioning

The parallelization of DP algorithms has been done in different ways depending on the

particular parallel architecture being used. On fine-grained architectures, the compu-

tation of each cell within an anti-diagonal is parallelized [128, 127, 126]. However, this

technique is only efficient on architectures such as systolic arrays, which have an extremely

fast inter-processor communication.

P1 P2 P3 P4 P2 P3 P4 P1 P2 P3 P4P1

division = 2

(a) (b)

Figure 4.1: (a) Columnwise striping (b) Columnwise cyclic striping

On coarse-grained architectures (The term coarse-grained comes from the fact that the

problem size in each processor n/p is considerably larger than the number of processors)

like PC clusters it is more convenient to assign an equal number of adjacent columns to

each processor as shown in Figure 4.1a. This method is called the columnwise striping.

The method illustrated in Figure 4.1b is called the columnwise cyclic striping [99]. Using

a columnwise cyclic distribution of columns can reduce uneven workload. The parameter

89

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

division is used to implement a cyclic distribution of columns to processors. Increasing

the number of cyclic divisions leads to a better load balancing.

The partitioning method in Figure 4.1 does not consider dependency relations be-

tween neighbor processors. The parallel computation can proceed normally if there are

not any communications among processors. However, if the result of a computational

component is required by another component, the communication between them is a

necessary concern and these two partitioning methods need to be improved.

4.2.2 Block-based Partitioning

P1 P2 P3P0

1 3 42

3

4

4 5

5

6

7

54

6

32

P1 P2 P3P0

(a) (b)

Figure 4.2: (a) block-based distribution of an 8 × 8 matrix using 4 processors, (b) DP
computation for 4 processors, 8 columns and a 2 × 2 block size. The complete 8 × 8
matrix can then be computed in 7 iteration steps

The concept of block-based partitioning method is shown in Figure 4.2a. Matrix

cells are grouped into blocks. Processor i computes all the cells within a block after

receiving the required data from processor i − 1. Figure 4.2b shows an example of the

computation for 4 processors, 8 columns and a block size of 2×2, the numbers 1 to 7

represent consecutive phases in which the cells are computed.

The block-based partitioning method works efficiently for regular DP algorithms.

90

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

However, there are many examples of irregular DP problems. For these problems this

method does not work well, since it leads to an uneven workload.

Mij

P1 P2 P3P0

(a) (b)

Figure 4.3: (a) Example of an irregular dependency pattern; (b) Distribution of load
computation density

Figure 4.3a shows an example of an irregular DP algorithm: matrix element (i, j) is

computed from all matrix cells in row i and column j from index 1 up to min(i−1, j−1).

The load to compute one element in the matrix (we call this the load computation density)

will then increase along the shift direction of computation. We can see from 4.3b that

the load computation density at the bottom right-hand corner is much higher than that

in the top left-hand corner. The block-based method in Figure 4.2 will therefore lead to

a poor performance, since the workload on processor Pi is higher than processor Pi−1.

4.2.3 Tunable Coarse-grained Partitioning and Communication
Scheme

In this thesis, we have proposed a tunable coarse-grained (TCG) partitioning and com-

munication scheme. It is illustrated in Figure 4.4. The parameter division is used to

implement a cyclic distribution of columns to processors. The parameter rowwidth is

used to control the size of messages that processor Pi sends to processor Pi+1. Increasing

91

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

P1 P2 P3 P4 P1 P2 P3 P4

division=2

rowwidth P1,d1
2

P2,d1
3

P2,d1
4

P2,d1
2

P3,d1
6

P3,d1
5

P3,d1
4

P3,d1
3

P3,d1
2

P4,d1
5

P4,d1
6

P4,d1
7

P4,d1
8

P4,d1
4

P4,d1
3

P4,d1
2

P1,d2
10

P1,d2
9

P1,d2
8

P1,d2
7

P1,d2
6

P1,d2
5

P1,d2
4

P1,d2
3

P1,d2
2

P1,d1
1

P2,d1
1

P3,d1
1

P4,d1
1

P1,d2
1

M[1, n]

P2,d2
1

P2,d2
2

P2,d2
3

P2,d2
4

P2,d2
5

P2,d2
6

P2,d2
7

P2,d2
8

P2,d2
9

P2,d2
10

P2,d2
11

P2,d2
12

P3,d2
1

P3,d2
2

P3,d2
3

P3,d2
4

P3,d2
5

P3,d2
6

P3,d2
7

P3,d2
8

P3,d2
9

P3,d2
10

P3,d2
11

P3,d2
12

P3,d2
13

P3,d2
14

P4,d2
1

P4,d2
2

P4,d2
3

P4,d2
4

P4,d2
5

P4,d2
6

P4,d2
7

P4,d2
8

P4,d2
9

P4,d2
10

P4,d2
11

P4,d2
12

P4,d2
13

P4,d2
14

P4,d2
15

P4,d2
16

P1 P2 P3 P4 P1 P2 P3 P4

division=2

rowwidth P1,d1
1

P1,d1
2

P1,d1
3

P1,d1
4

P1,d1
5

P1,d1
6

P1,d1
7

P1,d1
8

P1,d1
9

P1,d1
10

P1,d1
11

P1,d1
12

P1,d1
13

P1,d1
14

P1,d1
15

P1,d1
16

P2,d1
1

P2,d1
2

P2,d1
3

P2,d1
4

P2,d1
5

P2,d1
6

P2,d1
7

P2,d1
8

P2,d1
9

P2,d1
10

P2,d1
11

P2,d1
12

P2,d1
13

P2,d1
14

P2,d1
15

P2,d1
16

P1,d2
1

P1,d2
2

P1,d2
3

P1,d2
4

P1,d2
5

P1,d2
6

P1,d2
7

P1,d2
8

P1,d2
9

P1,d2
10

P1,d2
11

P1,d2
12

P1,d2
13

P1,d2
14

P1,d2
15

P1,d2
16

P2,d2
1

P2,d2
2

P2,d2
3

P2,d2
4

P2,d2
5

P2,d2
6

P2,d2
7

P2,d2
8

P2,d2
9

P2,d2
10

P2,d2
11

P2,d2
12

P2,d2
13

P2,d2
14

P2,d2
15

P2,d2
16

P3,d2
1

P3,d2
2

P3,d2
3

P3,d2
4

P3,d2
5

P3,d2
6

P3,d2
7

P3,d2
8

P3,d2
9

P3,d2
10

P3,d2
11

P3,d2
12

P3,d2
13

P3,d2
14

P3,d2
15

P3,d2
16

P4,d2
1

P4,d2
2

P4,d2
3

P4,d2
4

P4,d2
5

P4,d2
6

P4,d2
7

P4,d2
8

P4,d2
9

P4,d2
10

P4,d2
11

P4,d2
12

P4,d2
13

P4,d2
14

P4,d2
15

P4,d2
16

P3,d1
1

P3,d1
2

P3,d1
3

P3,d1
4

P3,d1
5

P3,d1
6

P3,d1
7

P3,d1
8

P3,d1
9

P3,d1
10

P3,d1
11

P3,d1
12

P3,d1
13

P3,d1
14

P3,d1
15

P3,d1
16

P4,d1
1

P4,d1
2

P4,d1
3

P4,d1
4

P4,d1
5

P4,d1
6

P4,d1
7

P4,d1
8

P4,d1
9

P4,d1
10

P4,d1
11

P4,d1
12

P4,d1
13

P4,d1
14

P4,d1
15

P4,d1
16

(b)

(a)

Figure 4.4: The tunable coarse-grained partitioning and communication scheme for
(a)The triangular matrix computation, (b)The square matrix computation

the number of cyclic divisions and decreasing the size of messages can lead to a better

load balancing. Of course, doing this also increases the communication overhead. Thus,

the choice of the parameter division and rowwidth is a trade-off between the load bal-

92

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

Input: The number of processors p, the value of division and rowwidth. (Pk denotes
the k-th processor, n× n is the size of matrix M , dt denotes the t-th division).
Output: Depending on the requirements of the given applications, the output will be
optimal score M [1, n] or the whole matrix M .
Begin

for Pk(1 ≤ Pk ≤ p) in division dt(1 ≤ dt ≤ division) do
if Pk 6= 1 then

receive message from processor Pk−1;

for

{

(a)i = Pk ×
n

p×division
+ (dt − 1) × n

division
to 1

(b)i == 1 to n

}

do

after

{

(a)i is reduced by rowwidth
(b)i is increased by rowwidth

}

do

if Pk == 1 then
if dt == 1 do

send message to P2;
if dt > 1 do

receive message from Pp;
send message to P2;

if 1 < Pk < p then
receive message from Pk−1;
send message to Pk+1;

if Pk == p then
receive message from processor Pk−1;
if dt 6= division then

send message to processor P1;

for

(a)j = i to Pk ×
n

p×division
+ (dt − 1) × n

division

(b)j = (Pk − 1) × n
p×division

+ (dt − 1) × n
division

+ 1 to

Pk ×
n

p×division
+ (dt − 1) × n

division

do

compute M [i, j];
End

Figure 4.5: The general parallel algorithm for the tunable coarse-grained partitioning and
communication scheme. (a) For the triangular matrix computation, (b) For the square
matrix computation

ancing and communication time. In Figure 4.4, P k
i,dj

denotes the block of processor Pi

at division j and step k. Initially P1 starts computing at block 1 in division 1. In the

same division, after Pi completes computing block 1, it sends this part to Pi+1 and then

Pi+1 can work at the block 1 in this division. Between two different divisions, the last

processor will send message to P1. This parallel procedure will continue until all cells on

93

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

matrix M are computed.

The general parallel algorithm for this scheduling scheme is presented in Figure 4.5.

We can get the following theorem according to Figure 4.4 and Figure 4.5.

Theorem. The Proposed algorithm uses α× (division×p−1)× n
rowwidth

communication

steps with O(n3

p
) sequential computing time on each processor. (α is 1

2
for the triangular

matrix computation in Figure 4.4a; α is 1 for the square matrix computation in Figure

4.4b)

Proof:

Processor Pi sends P k
i,dj

to Pi + 1 after the k-th step in division dj. In the same division,

after α× n
rowwidth

communication steps, processor Pi completes its work and moves to the

next division to continue this loop until finish computing the sub matrix allocated to itself.

Each moving to the next division will bring another computation and communication

loop, thus, after α× (division× p− 1)× n
rowwidth

communication steps, all the processors

have completed their work.

As mentioned in Chapter 3, the time complexity of 2D/1D DP algorithms is O(n3).

Increasing the number of division can balance the load among processors. For example,

as to the Nussinov algorithm, the load on processor Pi is about (2p2×division3 +6×p×

p×pi×division
2)× n3

division3p3 . When the parameter division is increased, the lower power

item 6 × P × Pi × division2 can be omitted. The remainder part is direct proportional

to n3

p
. Thus, each processor needs almost the same O(n3

p
) sequential computing time.]

There are two problems that should be solved when implementing this parallel algo-

rithm. One is the residue problem. That is because the matrix dimension can not be

divided exactly by the product of the number of divisions and the number of processors,

usually there is a residue. That is, there is one processor that will compute more elements

than others; we call this processor the Special Processor (SP).

94

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

division=2

P1 P2 P3 SP P1 P2 P3 SP

residues

P1 P2 P3 SP P1 P2 P3 SP

residues

division=2

Figure 4.6: Residues are distributed evenly through the whole matrix

division=2

P1 P2 P3 P4 P1 P2 P4P3

residue

P1 P2 P3 P4 P1 P2 P3 P4

residue

division=2

Figure 4.7: Residues are put to the forefront of the matrix

When the product of the number of divisions and number of processors is large, there

will be a big residue, thus the negative influence will be serious. This is because the

residue may be much larger than the average block size. If the residue is distributed

evenly through the matrix (as shown in Figure 4.6), the workload on the SP (usually the

95

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

last processor) will cause work imbalance greatly.

For example, if the matrix dimension is 4000×4000, the number of processors is 2, the

division is 700, then the residue is 1200, and the average block size is only 2. So the SP

will compute about 600 times more workload than the average one. Because the matrix

is uneven, this big residue will cause serious imbalance. In order to solve this problem, we

put the residues to the forefront of the matrix (as shown in Figure 4.7). In the forefront

part the workload density is much lower, so the residue influence will be very light.

450 500 550 600 650 700 750 800 850 900 950 1000 1050
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1 Residues are kept at the rear of the matrix
 Residues are moved to the forefront of the matrix

Sp
ee

du
p

Division

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

Figure 4.8: Performance comparison for the skyline matrix problem using different meth-
ods to treat the residue. The performance is measured on two Intel Pentium IV Xeon
2.6GHz processors in a PC cluster.

Figure 4.8 shows the performance measurements on a PC cluster for the skyline matrix

problem using different methods to treat the residue. The matrix size is 4000×4000, the

number of processors is 2, the rowwidth is 10, the division is set from 500 to 1000. From

the figure we can see that if the residues are not moved to the forefront of the matrix, the

performance will be affected by the values of residues greatly (see the curve with circles

96

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

in Figure 4.8). Otherwise, when the residues are put to the forefront of the matrix, the

performance curve will be much more smooth (see the curve with triangles in Figure 4.8).

So, moving residues to the forefront of the matrix is an efficient way to solve the residue

problem.

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4
idle time

idle time

idle time

idle time idle time

P1 P2 P3 P4 P1 P2 P3 P4......P1 P2 P3 P4......

idle time

idle time

idle time

idle time idle time

idle time

Figure 4.9: Communication scheme using synchronous communication

Another problem that should be considered is what scheduling of communication to

use. If we use synchronization barriers, each division will not begin the computing until

its previous division has completed the computing. Synchronization barriers can give

reasonable predictions on the performance of algorithms when implemented on parallel

97

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

architectures. For instance, the BSP model [143] consists of a sequence of super-steps

separated by Synchronization barriers. In a super-step, each processor executes a set

of independent operations using local data available in each processor at the start of

the super-step, as well as communication consisting of send and receive of messages.

However, synchronization barriers are very expensive since it introduces the idle time

between all the processors in each division. From Figure 4.9 we can see that each division

will introduce twice idle time among processors because the barriers between divisions.

P1 P2 P3 P4 P1 P2 P3 P4......P1 P2 P3 P4......

idle time

idle time

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4
idle time idle time

Figure 4.10: Communication scheme using asynchronous communication

In this thesis, we have used the asynchronous communication mode to reduce the

idle time introduced by synchronization barriers between all the divisions. The asyn-

chronous communication is also called non-block communication. It is used to overlap

98

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

Input: The number of processors p, the value of division and rowwidth. (Pk denotes
the k-th processor, n× n is the size of matrix M , dt denotes the t-th division).
Output: Depending on the requirements of the given applications, the output will be
optimal score M [1, n] or the whole matrix M .
Begin

compute and move residues to the forefront of the matrix;
for Pk(1 ≤ Pk ≤ p) in division dt(1 ≤ dt ≤ division) do

if Pk 6= 1 then
receive message (synchronous way) from processor Pk−1;

for

{

(a)i = Pk ×
n

p×division
+ (dt − 1) × n

division
to 1

(b)i == 1 to n

}

do

after

{

(a)i is reduced by rowwidth
(b)i is increased by rowwidth

}

do

if Pk == 1 then
if dt == 1 do

send message (asynchronous way) to P2;
if dt > 1 do

receive message (synchronous way) from Pp;
send message (asynchronous way) to P2;

if 1 < Pk < p then
receive message (synchronous way) from Pk−1;
send message (asynchronous way) to Pk+1;

if Pk == p then
receive message (synchronous way) from processor Pk−1;
if dt 6= division then

send message (asynchronous way) to processor P1;

for

(a)j = i to Pk ×
n

p×division
+ (dt − 1) × n

division

Ph.D Thesis CHAPTER 4.

communication mode is very suitable for our algorithm. The number of barriers is re-

duced, so the idle time is reduced greatly. Figure 4.10 shows that after we use the

asynchronous mode, there are only twice idle time spaces throughout the matrix; it is a

huge performance win.

Figure 4.11 presents the whole algorithm after moving residues to the forefront of the

matrix and using the asynchronous communication mode.

4.3 Design of a Hierarchical Parallel Genetic Algo-

rithm for Protein Folding on Computational Grids

4.3.1 Protein Folding Problems with HP Lattice Models

Knowing a protein’s spatial structure is one of the foremost goals of molecular biology,

because it is this structure that determines the protein’s function. However, determining

the three-dimensional structures of proteins using techniques such as x-ray crystallogra-

phy and nuclear magnetic resonance has proved to be difficult, costly, and not always

feasible. As a result, there currently exists a gap between the number of proteins with

known sequences and the number of proteins with known three dimensional structures.

This gap has been widening every year. For example, 192,799 protein sequence entries

have been in the SwissProt protein sequence database as of August 2005, but only 32,434

protein structures have been deposited in the RCSB Protein Data Bank [13]. This cor-

responds to a ratio of approximately to 6 sequences to 1 structure. This situation has

caused much interest in searching for protein structure prediction methods using algo-

rithmic techniques.

Proteins are synthesized as linear chains of amino acids. They then form secondary

structures along this chain, such as alpha helices and beta sheets, as a result of interac-

tions between side chains of nearby amino acids. The region of the molecule with these

100

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

Polypeptide chain
Secondary structure alpha

helices, beta sheets etc. 3D structure

Figure 4.12: Folding of a protein from a linear chain of amino acids to a three-dimensional
structure. The folding pathway involves amino acid interactions. Many different amino
acid patterns are found in the same types of folds. Thus making structure prediction
from amino acid sequence a difficult undertaking.

secondary structures then folds back and forth on itself to form tertiary structures. These

include alpha helices, beta sheets comprising interacting beta strands, and loops (Figure

4.12) [110]. Anfinsen [24] showed that folding only requires knowledge of the amino acid

sequence alone. The determination of the 3D structure from its sequence is known as

the protein folding problem (PFP). Although this problem has been intensely researched

since the early 1950s, no completely satisfactory solution has been found so far.

It has been shown that the PFP is NP-hard [84]. Hence, exhaustive search of a pro-

tein’s conformational space is not a feasible algorithmic strategy even for small protein

sequences. Consequently, heuristic optimization methods seem the most reasonable algo-

rithmic choice to solve the PFP. In particular, a number of studies of the use of GAs for

the PFP have been made in the past decade [50, 103, 119, 139, 142].

Though experiments on small proteins [24, 93] suggest that the native state of a

protein corresponds to a free energy minimum, this is not yet proven. Nevertheless, this

hypothesis is widely accepted, and forms the basis for computational predictions of a

protein’s conformation from its amino acid sequence. Lattice models are based on the

minimum free energy hypothesis. They have proven to be extremely useful tools for

101

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

solving the PFP. By sacrificing atomic details, lattice models can be used to extract

essential principles, make predictions, and unify our understanding of many different

properties of proteins [54]. One of the important approximations made by lattice models

is the discretization of the space of conformations. While this discretization precludes

a completely accurate model of protein structures, it preserves important features for

computing the minimum energy conformations [85].

The hydrophobic-hydrophilic (HP) models on the 2D square and 3D cubic lattices

were proposed by Lau and Dill [54, 101]. They are the most predominant representative

of lattice models. HP models abstract the hydrophobic interaction process in protein

folding by reducing a protein to a heteropolymer that represents a predetermined pattern

of hydrophobicity in the protein. This is one of the most studied simple exact models, and

despite its simplicity, the model is powerful enough to capture a variety of properties of

actual proteins [85]. Although some amino acids are not hydrophilic or hydrophobic in all

contexts, this model reduces a protein instance to a string of H’s and P’s that represents

the pattern of hydrophobicity in the protein’s amino acid sequence. Some extensions of

the standard linear-chain HP model have been proposed in [85]. Figure 4.13 shows some

examples of these models.

Solving the PFP with HP models is a good test problem for evaluating GAs because its

complexity is well understood. There has been a lot of prior work developing GAs based

on HP models for the PFP. Unger and Moult have used a 2D HP model to demonstrate

the usefulness of GAs in the search for minimal energy conformations [142]. In a 2D HP

lattice model, each protein is a linear chain of a specific sequence of n amino acids. A chain

conformation is represented as a self-avoiding walk on a two-dimensional square lattice.

Thus, each amino acid is represented as simply occupying one lattice site, connected to

its chain neighbor(s), and unable to occupy a site filled by any other residue. Bond angles

are restricted to the values 90o, 180o and 270o. The force field to determine the inner

102

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

(b) (c)(a)

Figure 4.13: (a) The standard HP model on the square lattice. (b) The HP model with
side chains on the square lattice. (c) The HP tangent spheres model with side chains.
Black denotes a hydrophobic amino acid, white denotes a hydrophilic amino acid, and
gray denotes a backbone element

(b) (c)(a)

1

12

1

12

1

12

234

5
6

78

9

10 11

234

56

7

8

9 10

11

234

5

8

9
10

6

7

11

Figure 4.14: Illustration of the crossover procedure of the GA for HP lattice models.
In this example the cut point is randomly chosen to be between residues 6 and 7. The
first 6 residues of (A) are then joined with the last 6 residues of (B) to form the new
conformation (C). The energy value of conformation (C) is −4, which is lower than the
energies in conformations (A) (−3) and (B) (−2). Thus the new conformation is accepted.

energy of a fold is defined to be the sum of all hydrophobic interactions. A hydrophobic

interaction contributes −1 energy units when two not directly connected hydrophobic

103

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

Begin
t = 0
initialize population P (t)
best = argmax{F (x)|x in P (t)}
repeat

t+ +
pointwise mutation
n = 0
while (n < p)

select two conformations m, f
produce child c by crossover of m, f
ave = average(F (m), F (f))
if (F (c) ≥ ave)

place c in next generation
n+ +

else
z = random(0, 1)
if (z < e−(ave−F (c))/T)

place c in next generation
n+ +

end while
update best

until convergence
End

Figure 4.15: The Unger-Moult GA for protein structure prediction

residues are orthogonally adjacent to each other. Every other interaction among all other

possible types of neighbor pairs has energy equal to 0. For example, the “molecule” in

Figure 4.13 (a) has three hydrophobic interactions and hence has the energy of −3 units.

The GA for HP lattice models in [142] starts with a population of n extended con-

formations, as represented by a chromosome. The population at time t is denoted P (t).

The fitness F (c) of conformation c equals −E(c). In each generation all conformations

are subject to a number of mutations. At the end of the mutation stage a crossover

operation is performed as follows: For a pair of selected structures a random point is

chosen along the sequence and the head part of the first structure is connected to the

104

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

Conformation Space

Lowest Energy

Conformation

HHPHHH...PPPHPP

...

Figure 4.16: Mapping of a sequence to the conformation space.

tail part of the second structure. If the resulting path is self-avoiding and fitter than its

parent conformations, the structure is then accepted. Figure 4.14 illustrates an example.

The pseudocode of the algorithm is shown in Figure 4.15

For a sequence chain, the conformation space is searched, and then the energy of each

conformation is evaluated to find the native conformation(s), those with the minimum

energy value (see Figure 4.16).

4.3.2 A Hierarchical Parallel Genetic Algorithm for Protein
Folding Problems

In the previous section, we have pointed out that the PFP is NP-hard and heuristic opti-

mization methods such as GAs are suitable for solving the PFP. Unfortunately, the more

likely a good solution can be found, the more computational resources are needed by GAs

[124]. This leads to high runtimes on sequential architectures. Parallel processing is one

approach to reduce this runtime significantly. Because of their inherent parallelism, GAs

105

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

are suitable candidates for running on parallel and distributed architectures. Generally,

from the point of view of basic communication structures, parallel GAs can be categorized

into three main types [42]:

(1) Global single-population master-slave GAs;

(2) Single-population fine-grained GAs;

(3) Multiple-population coarse-grained GAs.

In (1) there is a single panmictic population, but the evaluation of fitness is distributed

among several processors. A single master processor does the supervision of the whole

population and also does the selection. Slave processors receive the individuals that are

recombined to create off-springs (see Figure 4.17).

...

D
is

tri
bu

te
In

di
vi

du
al

D
istribute

Individual

Distribute IndividualDist
rib

ute
Individual

Evaluation Evaluation Evaluation Evaluation

Master

Slaves

Population

Figure 4.17: Global single-population master-slave GAs.

Fine-grained GAs are suited for massively parallel computers and consist of one

spatially-structured population. Fine-grained parallel GAs have only one population,

106

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

but it has a spatial structure that limits the interactions between individuals. An in-

dividual can only compete and mate with its neighbors, but since the neighborhoods

overlap good solutions may disseminate across the entire population. It is usually to

place the individuals of a fine-grained PGA in a 2-Dimensional matrix, because in many

massively parallel computers the processing elements are connected with this topology.

Randomly initialize a population of

self-avoiding HP lattice conformations;

While not finding the lowest energy

conformation,do

Generate new conformations through:

Mutation;(Substitute one or more bits

of a conformation randomly

by a new value)

Crossover;(Exchange parts of one

conformation with the

corresponding parts of

another conformation)

Select conformations for the new parent

generation;

Evaluate all conformations;

Migration; (Communicate with other

populations)

end while;

Figure 4.18: The multiple-population GA for PFP

Multiple-population GAs consist of several subpopulations which exchange individuals

occasionally. This exchange of individuals is called migration. In this paper, we mainly

focus on the multiple-population coarse-grained GAs since it is the most popular GA used

in CB. The outline of the multiple-population GA for the PFP with HP lattice models

is shown in Figure 4.18.

Multiple-population GAs are very promising in terms of the gains in performance.

Also, they are more complex than their serial counterparts. In particular, the migration

107

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

of individuals from one subpopulation to another is controlled by several parameters like

follows:

• the topology that defines the connections between the subpopulations,

• a migration rate that controls how many individuals migrate,

• a migration interval that affects the frequency of migrations.

Subpopulation

Migration path;
every island sends
to every other island

Subpopulation

Limited migration path

(a) (b)

Figure 4.19: Migration models for multiple population GAs: (a) The island model (b)
the stepping stone model

In the majority of multiple-population parallel GAs, migration is synchronous which

means that it occurs at predetermined constant intervals. Migration may also be asyn-

chronous so that the demes communicate only after some events occur. There are two

popular approaches for modelling migration in multiple-population GAs: the island model

and the stepping stone model. In the island model, individuals are allowed to be sent

to any other subpopulations (see Figure 4.19a). It places no restrictions on where an

individual may migrate. In the stepping stone model, migration is limited by allowing

emigrants to move only to neighboring subpopulations (see Figure 4.19b). The stepping

stone model reduces communication overhead by limiting the number of destinations to

which emigrants may travel, and thereby limiting the number of messages. The island

108

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

model allows more freedom, and in some ways represents a better model of nature. How-

ever, there is significantly more communication overhead and delay when implementing

such a model [149].

Combining two methods of parallel GAs at two levels producing hierarchical parallel

GAs (HPGAs). HPGAs combine the benefits of its components, and it promises better

performance than any of them alone [42]. Most HPGAs have multiple-population GAs

at the upper level. Different types of parallel GAs can be used at the lower level. Figure

4.20 shows an HPGA with a master-slave structure on every subpopulation. Migration

occurs among sub-populations and the evaluation is handled in parallel.

...

Master

...

Master

... ...

Master Master

Figure 4.20: An HPGA with the master-slave structure for each subpopulation

Figure. 4.21 shows two communication architectures for HPGAs with multiple-population

GAs at both the upper and the lower levels. In most cases, a high migration rate is used

at the lower level and a low migration rate is used at the high level. The complexity of

this kind of HPGAs would be equivalent to a multiple-population GA [42].

109

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

Migration path

Subpopulation

(a) (b)

Figure 4.21: (a) An HPGA with the stepping stone model at the higher level and the
island model at the lower level, (b) an HPGA with the island model at the higher level
and the stepping stone model at the lower level

4.3.3 Communication Scheme on Computational Grids

Computational grids enable resource sharing among geographically distributed sites all

over the world. These sharing resources may reside in different administrative domains,

run different software, be subject to different access control policies, and be connected

by networks with widely varying performance characteristics. Therefore, computational

grids are hierarchical and heterogeneous environments [43]. Details are presented as

follows.

• Each resource in a grid typically has grid infrastructure installation only in its

control nodes. Grid users can submit tasks to these control nodes by using GRMS4.1.

There may be a LRMS4.2 [57, 137], e.g., PBS [12], LoadLeveler [4], LSF [11], NQE

and Sun Grid Engine [16], in each geographical site shared in a grid. The LRMS

will schedule the tasks in the control nodes to other nodes inside the local resource

system. GRMS and LRMS constitute the hierarchical nature of the grid.

• Resources shared in the computational grid are commonly owned and controlled by

4.1Grid Resource Management System
4.2Local Resource Management System

110

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

different individuals or organizations in different sites. Administrators of these sites

decide which resource to share and how to share. Therefore, grid users may meet

different scheduling policies and security mechanisms when using resources shared

in the Grid.

• Different sites may have different types of resources. Even the resources of the

same type, located at different sites, may have different configurations, capacities

and performance.

• Grid resources distributed all over the world linked in the Internet. In a grid

system, the network links among different resources usually have widely varying

performance characteristics. Furthermore, the inter-resource connection is by one

or two orders of magnitude slower than the intra-resource connection.

In this section, we design an HPGA for the PFP on computational grids. Here, we are

especially interested in hierarchical grid architectures. The hierarchical grid computing

describes the combination of several PC clusters within one architecture. Computing

resources located in geographically distributed clusters are shared in this environment.

Grid infrastructures, such as the Globus Toolkit [3], are installed on the head nodes of

these resources. Inside each cluster, the resource is managed by the local resource man-

agement system. Using PC clusters as in the Beowulf approach is currently one of the

most efficient and simple ways to gain high compute power at a reasonable price. One

such application example is shown in [102]. The development or adaptation of parallel

applications for the hierarchical grid architecture is made challenging by the often het-

erogeneous nature of the resources involved. A typical characteristic of this architecture

is the large gap between the fast connection inside a cluster and the slow connection be-

tween clusters. Thus applications designed for uniform speed interconnections will lead

to performance degradation on the computational grid environment.

111

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

Node 1 Node m

Cluster 1

...... Node 1 Node m

Message Passing (MPICH−P4)

Cluster

......

n

node 1
Head Head

node n

......

Message Passing (MPICH−P4)

Message Passing (MPICH−G2)

......

......

Shared Memory Shared Memory

Figure 4.22: The structure of the two-layer architecture

In order to efficiently map our HPGA onto the hierarchical grid, different MPI libraries

are used in the two layers. In the grid layer, MPICH-G2 [3] based processes run on the

head node, it migrates the subpopulations in the local cluster to other clusters within

the grid environment. Inside the cluster, MPICH-P4 [9] is used to transfer data between

different nodes. Subpopulations can be exchanged between the grid layer and the cluster

layer by reading and writing to shared memory areas on the head node of each cluster.

Figure 4.22 shows the general structure of our two-layer architecture.

MPICH [9, 92] is a popular implementation of MPI-1 [82] standard with extensions

to support the parallel I/O functionality defined in the MPI-2 [81] standard. Its free

distribution and wide portability have contributed materially to the adoption of the MPI

standard by the parallel computing community. MPICH achieves its portability from its

interfaces and layered architecture. At the top of the layered architecture is the MPI

interface defined by the MPI standards. Directly beneath the interface is the MPICH

112

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

layer, which implements the MPI interface. Much of the code in MPICH is independent

of the networking devices or process management systems.

MPICH-G2 [92, 8] is a implementation of the complete MPI-1 [82] standard and

MPI-2 [81] I/O standard. It hides heterogeneity of grid by using Globus Toolkit services

for such purpose as authentication, authorization, executable staging, process creation,

process monitoring, process control, communication, redirection of standard input and

output, and remote file access, while also allowing for application management of hetero-

geneity. As a result a user can run MPI programs across multiple computers at different

sites using the same commands that would be used on a parallel computer.

Before the startup of an MPICH-G2 application, the user need to employ the Grid

Security Infrastructure (GSI) [62] to obtain a (pubic key) proxy credential that is used

to authenticate the user to each site. The user may also use the Monitoring and Discov-

ery Service (MDS) [60] to select computers on the basis of, for example, configuration,

availability, and network connectivity.

Once authenticated, the user can use the standard mpirun command to request the

creation of an MPI computation. The MPICH-G2 implementation of this command uses

the Resource Specification Language (RSL) [48] to describe the job. A RSL script may

contain the description of resources (e.g., computers) and requirements (e.g., number of

CPUs, memory, execution time) and parameters (e.g., location of executables, command

line arguments, environment variables). Based on the information found in an RSL script,

MPICH-G2 calls the Dynamically-updated Request Online Co-allocator (DUROC) [49]

to schedule and start the application across the various computers specified by user. The

DUROC library itself uses the Grid Resource Allocation and Management (GRAM) [48]

API and protocol to start and subsequently manage a set of subcomputations. Once an

application has started, Globus Access to Secondary Storage (GASS) [31] will be used to

direct standard output and error steams to the user’s terminal and provide access to files

113

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

regardless of location, Thus masking essentially all aspects of geographical distribution

except those associated with performance.

On running of the application, MPICH-G2 selects the most efficient communica-

tion method possible between any two processes, using vendor-supplied MPI if available,

or Globus communication (Globus IO) with Globus Data Conversion (Globus DC) for

TCP/IP, otherwise.

MPICH-G2 is not the only implementation of grid-enabled MPI. Others includes

PACX-MPI [69], Stampi [91] and MagPIe [94], etc. However, MPICH-G2 is the most

widely used one due to its performance and the degree to which it hides and manages

heterogeneity of grid environments. Many applications have achieved good performance

by using MPICH-G2 [41].

MPICH-P4

MPICH-P4

Receive Send

MPICH-G2

MPICH-P4

MPICH-P4

Receive Send

MPICH-G2

Cluster 1

Grid layer Grid layer

Cluster 2

Figure 4.23: The communication detail of the two-layer architecture.

Figure 4.23 shows the communication detail of our two layer architecture. Two shared

memory blocks are used on the head node of each cluster. Within each cluster, all nodes

can exchange individuals through MPICH-P4 and send a portion of subpopulations to

114

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 4.

the send memory block. When there are individuals in the receive block, MPICH-P4 will

transfer them to each node inside the cluster. The head node of each cluster will migrate

individuals in the send memory block to other clusters. Also, these head nodes will move

individuals come from outside to the receive memory block.

4.4 Summary

In this chapter, we have proposed corresponding partitioning and communication schemes

according to the characteristic of two CB problems. For DP algorithms, a tunable coarse-

grained algorithm is introduced. By putting the residues to the forefront of the matrix

and using asynchronous communication mode, our algorithm can work efficiently for

regular and irregular DP algorithms. We also have designed an HPGA for the PFP on

computational grids. By combining the inter-cluster parallelism with the intra-cluster

parallelism, our HPGA can achieve super-linear speedups.

115

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5

A Generic Parallel Pattern-based
Framework for Computational
Biology Algorithms

5.1 Introduction

In Chapter 3 and 4, we have analyzed and studied characteristics of two popular CB

algorithms in the algorithm space. We have proposed corresponding parallel partitioning

and communication schemes. If we view the whole development procedure for an HPC

application as activities that derive a solution structure from an algorithm space, it

isn’t enough just to understand the algorithm itself. In this chapter, we present the

implementation detail of a framework in the implementation space. We have used the

standard C++ programming language [15] to implement this framework.

Figure 5.1 summarizes the whole procedure of our design and implementation. We

have started by analyzing characteristics of two popular CB algorithms. Next, we have

proposed corresponding parallel algorithms and communication schemes. At last, the

algorithm space and the implementation space are combined to yield the framework at

the bottom part in Figure 5.1.

According to [46], a framework is a software package that captures the software archi-

116

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

Algorithm Space Implementation Space

 Implementation of a Framework

Characteristic
Analysis

Parallel
Algorithms

Partitioning
Scheme

Communication
Scheme

Communication Abstraction

Data Abstraction Control Abstraction

OO ProgrammingTechniques

Generic Programming Techniques

Extensible

Reusable

Figure 5.1: Summarization of all the activities: from the algorithm space to the imple-
mentation space.

tecture in source and object code. It is a partly filled-out implementation, with “holes”

to be filled in on a per-application basis. Therefore frameworks are an abstraction and

characterize a family of related implementations. Object-oriented frameworks have be-

come increasingly popular in the literature and industry dialogue [67]. There has been

notable success in some frameworks such as the STL (the Standard Template Library,

which later was adapted and incorporated into the C++ standard library) [111].

5.2 Design and Development of Our Framework

In Chapter 2, some parallel pattern-based systems are introduced. These systems were

built with the intention to facilitate the development of general parallel applications.

117

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

However, they lack practical usability for the CB area. This is mainly because most of

these systems support only a limited set of patterns in a stiff way. There is no generic

model describing the structure and behavior of a pattern. Lack of genericness is often at

the root of the lack of extensibility.

In this section, we present the design and development of a new parallel pattern-based

framework. An important aspect of the framework is the generic representation for a set

of patterns, i.e. a generic pattern. With this generic pattern, the framework provides

users good extensible and reusable mechanisms.

5.2.1 Multi-Paradigm Design for High Performance Computing

The term paradigm was originally popularized by Kuhn [98], and has much broader

meaning than we find in computer science. Kuhn defines paradigms as “universally

recognized scientific achievements that for a time provide model problems and solutions

to a community of practitioners”. It is a deeper and broader concept than any notion of

paradigm in contemporary computer science. Wegner extends the notion to programming

language paradigms [148]. It is defined to shape the way we formulate abstractions. In

practice, a paradigm encodes rules, tools, and conventions to partition the world into

pieces that can be understood individually.

C++ is a programming language that supports Object Oriented Programming (OOP)

paradigms and Generic Programming (GP) paradigms such as: classes, overloaded func-

tions, inheritances, virtual functions, templates, and others [138]. OOP groups classes

into hierarchies that reflect commonality in the structure and behavior, while at the same

time allowing for regular variations in the structure and in the algorithm that implements

a given behavior. GP comes from traditional OOP, the special features of template tech-

niques make it different from traditional OOP. GP paradigm deals with finding abstract

representations of algorithms, data structures, and other software concepts [144]. Because

118

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

of its good flexibility, extensibility and security, GP techniques are very suitable for the

development of pattern based systems. The STL [111] and Janus [75] are two examples

of GP applications.

There’s no denying the vast benefits of OOP but the OOP is just one subset of the

implementation space and not always appropriate for the problem at hand. Furthermore,

HPC programming exhibits a rich multiplicity: You can do the same thing in many

correct ways, and there are infinite nuances between right and wrong. The design of an

HPC framework is a choice of solutions out of a combinational implementation space.

Neither OOP nor GP in the form of templates will create a flexible design method to

handle the possible combinational explosion; using multi-paradigm techniques, that is,

combining the two paradigms together, will be an efficient way.

For example, if we find that framework members share common data structures, we

look for a way to express that in C++ and find that inheritance fits the bill. If we

find that framework members share the same interface, with each one implementing it

differently, we might use inheritance with virtual functions. If we find common code

structure and behavior but variability in the interface, we might use templates. This

process may repeat recursively.

5.2.2 Our Parallel Pattern-based Framework: Overview

In this section, we demonstrate the implementation of a parallel pattern-based framework

for parallel CB algorithms presented in Chapter 4. A parallel pattern does not represent a

single solution to a given problem, but rather embodies a family of potential solutions. To

incorporate the idea of patterns as families of solutions, we use multi-paradigms in C++

to construct an intermediate abstract framework of parallel patterns. The framework code

defines virtual functions for the sequential application code as well as the corresponding

parallel structure.

119

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

Sequential computing for
each cell on the matrix

Parallel
communication

module

Data received from neighbor
processor

Data sent to neighbor
processor

Communication

(a)

Sequential GA
Parallel

communication
module

Subpopulations received
from other populations

Subpopulations sent to other
populations

Communication

(b)

Figure 5.2: The two parts of parallel algorithms for (a) Parallel DP algorithms, (b)
HPGAs

According to the characteristics of the parallel algorithms shown in Chapter 4, we have

divided parallel DP algorithms and the HPGA into two parts: the sequential computing

part and the communication part (see Figure 5.2). The sequential computing part deals

with the local behavior of a parallel algorithm, such as the computation of each element

on the matrix in DP, the mutation, variation and crossover in GAs. The communication

part processes the communication behavior between all processors participating in the

parallel algorithm. By dividing parallel algorithms in such a way, both parts of a parallel

algorithm can evolve independently. This allows for the rapid prototyping of parallel

programs and facilitates the mapping of them onto parallel architectures.

Figure 5.3 shows our way to map DP algorithms and the HPGA onto parallel archi-

tectures. Two kinds of parallel communication modules (ParallelCommu), the module

within the cluster and the module between clusters, are used to implement the intra-

cluster and the inter-cluster communication separately. For the HPGA, the high level

120

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

Sequential computing for
each cell on the matrix

ParallelCommu
within the cluster

Data received from neighbor
processor

Data sent to neighbor
processor

Communication

(a)

Sequential
GA

ParallelCommu
within the cluster

Received
subpopulations pool

Sent subpopulations
pool

Sequential
GA

ParallelCommu
within the cluster

Received
subpopulations pool

Sent subpopulations
pool

ParallelCommu
between clusters

Received subpopulations
pool

Sent subpopulations pool

ParallelCommu
between clusters

Received subpopulations
pool

Sent subpopulations pool

Cluster 1 Cluster 2

Grid layer

Cluster layer

(b)

Figure 5.3: (a) Mapping of parallel DP algorithms onto a cluster, (b) Mapping of HPGAs
onto the computational grid environment

part of it is mapped onto the grid layer and the low level part is mapped onto the cluster

layer.

121

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

5.2.3 Development of An Extensible and Reusable Framework

Traditional OOP techniques provide a good environment for code reuse, such as the

techniques of inheritances and virtual functions. For example, we can use pure OOP

techniques to design the framework for parallel wavefront pattern as shown in Figure 5.4.

The virtual function parallelcommunication() contains a loop that iterates over all

matrix elements in the partition and invokes the sequentialcomputation() method on

each element.

class Wavefront{

Public:

void launch(){

preprocess();

while(the cyclic loop is not completed){

parallelcommunication(){

...

sequentialcomputation();

...

}

}

postprocess();

}

virtual void preprocess();

virtual void postprocess();

virtual void parallelcommunication();

virtual void sequentialcomputation();

};

Figure 5.4: Pure OOP design for the parallel wavefront pattern.

By inheriting the base class, and overriding virtual functions, new parallel applica-

tions can be implemented. In order to reuse components in the base class, users need to

construct other derived classes for specific applications. That is, the code reuse in tra-

ditional OOP is lengthways. If some common parts among virtual functions need to be

changed for specific applications, users have to rewrite them from scratch. For instance,

122

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

the data type int and MPI INT may be used in the base class Wavefront. However, the

data type float and MPI FLOAT are needed in the derived class SmithWaterman. In this

case, users have to override all data type-related codes. This is a time-consuming and

error-prone work. Figure 5.5 illustrates how to use available patterns to develop new

applications in traditional OOP.

Pattern

Derived class 1 Derived class n

Application 1 Application n

Overwrite all
virtual functions

Application 1 Application n

Overwrite all
virtual functions

Overwrite all
virtual functions

Overwrite all
virtual functions

...

... ...

Figure 5.5: Using inheritance and overriding virtual functions to develop new applications
in traditional OOP.

GP techniques provide a new mechanism for code reuse. The code reuse in GP is

obtained by template specialization rather than inheritance. It is much more flexible than

OOP. For example, we can use the code in Figure 5.6 to construct the connection between

the parallel communication part and the sequential code, i.e. the relationship between the

data type int and the data type MPI INT. Here, we use the partial specialization technique

to specialize the class template MPItype<class datatype> with int (line 2). Similarly,

other data types can be specialized in this way. Thus, the program can automatically

identify which MPI type will be used according to the data type specified by the user

(lines 4, 5).

This kind of code reuse in GP is transverse and can be used to solve multi-strategy

problems efficiently. The multi-strategy problem is that a problem computation routine

123

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

1. Template<class datatype> class MPItype;

2. Template<>class MPItype<int>{enum{TypeID=MPI_INT};};

3. ...

4. Template<class datatype> class Application{

5. mpitype=MPItype<datatype>::TypeID;}

Figure 5.6: The connection between the sequential data type and the MPI data type.

is determined by many parameters. Each parameter has different possible values or

types. Most computational problems are multi-strategy. This is because computation

routines of them are usually determined by many associated factors. It is very difficult

for traditional OOP techniques to implement the code reuse for multi-strategy problems.

This is because the combination explosion of all the possible values of different parameters

can make this implementation by OOP very difficult. GP techniques can make it easily

for that the compiler will automatically determine the specific computation routine. That

is GP provides a higher level abstraction than traditional OOP. It makes use of the power

of compiler to generate the specific program routine automatically.

The code in Figure 5.7 shows the general structure of our framework. Concrete parallel

applications can be implemented by extending and instantiating the template parameters

of GenericPattern. These parameters encapsulate the abstract structure and behav-

ior of a set of parallel patterns in an application independent manner. The parameter

AlgorithmIni initializes some parameters and defines the data structure of the communi-

cation message. SequentialComp processes the sequential computation. ParallelCommu

consists of the communication behavior between all processors participating in the paral-

lel computation. By defining these three parameters, the parallel part (ParallelCommu)

is separated from the sequential application parts (AlgorithmIni and SequentialComp).

Thus, both parts of a parallel application can evolve independently. This allows for the

rapid prototyping of parallel applications, and permits users to experiment with alterna-

124

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

template<class datatype,

class AlgorithmIni,

class SequentialComp,

class ParallelCommu>

class GenericPattern{

virtual void HpcComputing(){

AlgorithmIni::PreProcess();

while the cyclic loop is not completed{

...

/*For parallel DP applications, SequentialComp is

invoked in the following method*/

ParallelCommu::Launch();

...

/*For parallel GAs applications, ParallelCommu is

invoked in the following method*/

SequentialComp::Launch();

}

AlgorithmIni::PostProcess();

}

};

Figure 5.7: The structure of class template GenericPattern.

tive communication structures conveniently. Currently, we have integrated the tunable

coarse-grained partitioning and communication scheme for DP algorithms into the frame-

work. As for the HPGA, the island and stepping stone communication models have been

pre-implemented. Figure 5.8 is the UML class diagram for our framework.

An important aspect of our framework is the generic representation for a set of pat-

terns, i.e. a generic pattern. With this generic pattern, we mainly focus on the extensi-

bility of the framework rather than how many limited patterns it can support.

Figure 5.9 and 5.10 are UML class diagrams that show extensions of the GenericPattern

to develop parallel programs for DP algorithms and GAs. The user only needs to spec-

ify the relevant template parameters according to the characters of the algorithms. In

125

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

AlgorithmIni SequentialComp ParallelCommu

datatype
AlgorithmIni
SequentialComp
ParallelCommu

GenericPattern

Figure 5.8: The UML class diagram for GenericPattern

GP techniques, this extension is also called the template specialization. Our framework

provides users with some predefined, efficient and reusable components for HPC pro-

gramming, thus relieving users of the need to rebuild all the error prone parts that are

common in parallel and distributed program code.

From Figure 5.9 and 5.10 we can see that users can extend the generic pattern by

specifying the application-dependent template parameters. Different specialization will

lead to different policies, i.e. different implementation strategies for a concrete parallel

application. A policy can be further instantiated in order to generate the concrete parallel

program (see Figure 5.11). Each template parameter is defined independently from other

parameters. Yet different template parameters can interact with each other via standard

interfaces. Consequently, the framework has a good flexibility. In Figure 5.11, policy3 and

policy1 share the same parallel characters. Thus we can entirely reuse the overall design

of ParallelCommu1 to develop policy3. The user can therefore reuse the components in

existing patterns to develop new applications in a flexible way.

For instance, two groups of DP algorithms: the Nussinov algorithm and the MCOP;

the Smith-Waterman algorithm with the linear and the affine gap penalty, algorithms in

126

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

datatype
AlgorithmIni
SequentialComp
ParallelCommu

GenericPattern

AlgorithmIni

SequentialComp

ParallelCommu

DPIni

Preprocess()
Postprocess()

DPCommuModel

Prepare0()
ParallelCommu0()
PrepareP()
ParallelCommuP()

datatype
DPIni
DPSequentialComp
DPCommuModel

DpPattern

CommonProcess()
CommonCommunication0()
CommonCommunicationp()
DPComp()

DPSequentialComp

Launch()

Figure 5.9: The UML class diagram of an extension of the GenericPattern to implement
parallel DP programs

each group share same parallel characteristics. Thus we can reuse the same component

ParallelCommu to develop parallel applications for them. As to the HPGA for the PFP,

we can reuse existing communication patterns in the cluster level and the grid level, such

as the stepping stone model in the cluster level and the island model in the grid level or

vice versa, to generate new HPC applications.

127

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

datatype
AlgorithmIni
SequentialComp
ParallelCommu

GenericPattern

ClusterGAIni

Preprocess()
Postprocess()

GASequentialComp

Launch()

datatype
GAIni
GASequentialComp
GACommuModel

GAPattern

GeneticComp()

ClusterGACommuModel

Preprocess()
ParallelCommu()

GridGAIni

Preprocess()
Postprocess()

GridGACommuModel

SendData()
ReceiveData()

datatype
GridIni
GridCommuModel

GridGACommuPattern
shared_memroy_id : Integer
shared_memory_pointer : char*

Launch()

ParallelCommu

SequentialComp

AlgorithmIni

Figure 5.10: The UML class diagram of an extension of the GenericPattern to implement
HPGA programs

In summary, compared to other pattern-based systems mentioned in Chapter 2, our

framework has the following advantages:

(1) CB related parallel patterns, such as the parallel wavefront pattern and the parallel

GA pattern, have been integrated into the framework.

(2) It has good extensibility and reusability. Users can reuse the components in the

framework to develop new applications in a flexible way. The integration of new

parallel patterns is also allowed under the extensible mechanism of the framework.

(3) It supports computational grid oriented CB applications. With the increased avail-

ability of grid computing platforms, grid-enabling of pattern-based systems are of

128

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

datatype
AlgorithmIni
SequentialComp
ParallelCommu

GenericPattern

int
AlgorithmIni1
SequentialComp1
ParallelCommu1

policy1

float
AlgorithmIni2
SequentialComp2
ParallelCommu2

policy2

long
AlgorithmIni3
SequentialComp3
ParallelCommu1

policy3

Figure 5.11: Reusability of components in the framework for different policies

high importance to the future research in the high-performance CB area.

5.3 Performance Evaluations

5.3.1 Experimental Results for Parallel Dynamic Programming
Algorithms on PC Clusters

We have implemented the framework using standard C++ [15] and the MPI library

provided by MPICH [9, 8]. We have used it to develop parallel applications for several

DP algorithms and evaluated them on two different parallel architectures. One is a SMP

Alpha cluster with Tru64 UNIX installed. It comprises eight ES45 nodes. Each node

contains four Alpha-EV68 1GHz processors and 16GB RAM. Each processor has 8 MB

L2 cache. All the nodes are connected with each other by a Gbit/sec quadrics switch.

Another test bed is a Beowulf PC cluster with Linux 7.3 installed. It contains sixteen Intel

Pentium IV Xeon 2.6GHz processors, 512MB RAM and 512KB cache for each processor.

All the processors are connected with each other by a Gbit/sec Myrinet switch.

129

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

Since the framework has been implemented using multi-paradigm techniques (GP and

OOP), it is interesting to compare its performance with a framework implemented only

using OOP techniques. In order to investigate this, we have implemented the frame-

work in both ways. Table 5.1 presents the performance comparison for the sequential

applications between these two frameworks.

Table 5.1: Performance comparison between two frameworks(framework1: only using
OOP techniques; framework2: using GP and OOP techniques)

Sequential Applications Runtimes of Runtimes of Runtime
Framework1(sec) Framework2(sec) Reduction

Smith-Waterman with linear 551 503 8.7%
gap penalty (100000×100000)
Smith-Waterman with affine 917 868 5.3%
gap penalty (100000×100000)
Syntenic alignment algorithm 1543 1319 14.5%

(100000×100000)
Smith-Waterman with general 1262 1217 3.6%

gap penalty (5000×5000)
Skyline matrix (5000×5000) 1761 1708 3%

MCOP (5000×5000) 965 926 4%
Nussinov (5000×5000) 821 795 3.2%

Arbitrary Viterbi (700×700) 1396 1371 1.8%
Spliced alignment 730 642 12.1%
(4000×4000×1000)

From Table 5.1 we can see that the code developed by the framework using multi-

paradigm techniques is faster. This is because the GP relies on static polymorphism,

which resolves interfaces at the compile time. On the other hand dynamic polymorphism

uses inheritance and virtual functions, the determination of which virtual function to

use cannot be made at the compile time and must instead be made during the run

time. Thus, more overhead is associated with the invocation of a virtual function. In this

thesis, we have used HPC applications developed by the framework using multi-paradigm

techniques to do all the following experiments.

First, we have run all HPC DP applications on the Beowulf cluster to see their

130

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

speedups. The speedup of a parallel application is a well-accepted way of measuring

its performance. According to the conventional definition, the speedup can be defined as

the ratio of the execution time of the sequential algorithm, TS, and the execution time

of the parallel program, TP [22]. So, we can compute the speedup as:

SP =
TS

TP

(5.3.1)

Table 5.2: Speedups on the Beowulf cluster for several DP algorithms with corresponding
matrix size.

Number of Processors 2 4 8 16
SW with linear gap penalty(90000×90000) 2 3.99 7.76 14.16
SW with affine gap penalty(70000×70000) 1.92 3.89 7.58 13.96

Syntenic alignment(60000×60000) 2.02 3.89 7.93 15.79
SW with general gap penalty(5000×5000) 1.86 3.76 7.32 13.43

Skyline Matrix(5000×5000) 1.92 3.6 7.13 13.59
MCOP(5000×5000) 1.97 3.91 7.46 13.43

Nussinov(5000×5000) 1.93 3.87 7.4 13.65
Arbitrary Viterbi(700×700) 1.97 3.85 7.23 13.14
Spliced(4000×4000×1000) 2 4.04 8.12 16.2

Table 5.2 shows best speedups for different number of processors using the tunable

coarse-grained partitioning and communication scheme on the Beowulf cluster. For ir-

regular DP applications, the division is set from 1 to 150 and the rowwidth is set from

5 to 50. It is important to note that these applications are implemented using different

methods. The linear space method is used to reduce the RAM needed by the Smith-

Waterman algorithm (with the linear gap penalty and the affine gap penalty) and the

Syntenic alignment algorithm for long sequences. Similar space-saving methods are used

for the spliced alignment algorithm. As for the Smith-Waterman algorithm with the

general gap penalty, the skyline matrix, the matrix chain, the arbitrary Viterby, and the

Nussinov algorithm, we store and compute the whole matrix. From Table 5.2 we can

see that speedups for the spliced alignment algorithm are super-linear. This is because

131

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

0

5

10

15

20

25

30

35

40

Syntenic
 60000X60000

 32 Processors
 16 Processors
 8 Processors
 4 Processors
 2 Processors

 S
pe

ed
up

 SWaffine
 70000X70000

SWlinear
 90000X90000

0

5

10

15

20

25

30

35

40

 Spliced
4000X4000X1000

 32 Processors
 16 Processors
 8 Processors
 4 Processors
 2 Processors

 S
pe

ed
up

 Nussinov
 5000X5000

MCOP
 5000X5000

0

5

10

15

20

25

30

35

40

Arbitrary Viterbi
 700X700

 32 Processors
 16 Processors
 8 Processors
 4 Processors
 2 Processors

 S
pe

ed
up

 Skyline
 5000X5000

SWgeneral
 5000X5000

Figure 5.12: Speedups on the Alpha cluster for several regular and irregular DP CB
algorithms with corresponding matrix size.

when more processors are put into the parallel computation, more high-speed caches will

be used in the data communication and access. These caches can improve the hit rates

of processors and thus causes extra performance increase. As to the other regular DP

algorithms, the size of the message for communication is quite small and so the impact

of caches is not significant.

132

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

Then, we have run all parallel DP applications on the Alpha cluster. Figure 5.12

shows the best speedups for different number of processors when division is set from 1 to

150 and rowwidth is set from 5 to 50. Notice the super-linear speedups are observed in

some applications. This is because of the effects due to better caching.

Table 5.3: Speedup comparison using different division d and rowwidth r for the Nussi-
nov algorithm. The matrix size is 5000×5000. The number of processor is 32

r = 5 10 15 20 30
d = 1 10 10.5 9.8 9.6 8.5

40 22.2 24.5 21.9 21.2 20.6
60 26.2 27.5 26.7 25.2 24.9
65 27.7 29.8 26.9 26.4 25.7
70 24.2 26.2 22.5 22.2 19.9
75 24.2 26.1 23.3 21.6 21.5

Table 5.4: Speedup comparison using different division d and rowwidth r for the
Smith-Waterman algorithm with the general gap penalty function. The matrix size is
5000×5000. The number of processor is 32

r = 5 10 15 20 30
d = 1 10.5 12.8 11.3 10.1 8.5

40 20.4 23.6 21.3 20.6 19.1
60 22.1 24.9 22.2 21.2 19.4
65 25.8 27.9 26.2 25 23.4
70 23.2 26.1 23.2 22.3 21
75 23 24.7 21.9 20.7 20.3

For irregular DP algorithms we have observed the impact of division and rowwidth

to get the optimal block size for these applications. Two examples in Table 5.3 and

5.4 show the average speedups using different division and rowwidth. From these two

tables we can see that the best speedups are obtained when division is set around 65 and

rowwidth is set around 10 for these two DP algorithms. That is, in order to get the best

performance, the choice of these two parameters is a trade-off between the load balancing

and communication overhead.

Also, we have compared the performances between the block-based partitioning scheme

133

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

0 4 8 12 16 20 24 28 32
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32 Ideal Speedup

Speedup Using Block-Cyclic Based Method
Speedup Using Column-Based Method

Sp
ee

du
p

Number of Processors
(Skyline)

0 4 8 12 16 20 24 28 32
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32 Ideal Speedup

Speedup Using Block-Cyclic Based Method
Speedup Using Column-Based Method

Sp
ee

du
p

Number of Processors

(a) (b)

Figure 5.13: Speedups of irregular DP applications using different partitioning schemes
for (a) the skyline matrix problem, (b) the Smith-Waterman algorithm with general gap
penalties.

0 4 8 12 16 20 24 28 32
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32 Ideal Speedup

Speedup Using Block-Cyclic Based Method
Speedup Using Column-Based Method

Sp
ee

du
p

Number of Processors
0 4 8 12 16 20 24 28 32

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32 Ideal Speedup

Speedup Using Block-Cyclic Based Method
Speedup Using Column-Based Method

Sp
ee

du
p

Number of Processors

(a) (b)

Figure 5.14: Speedups of irregular DP applications using different partitioning schemes
for (a) the Nussinov algorithm, (b) the MCOP problem.

and the tunable coarse-grained partitioning scheme. Figures 5.13, 5.14 and 5.15 show the

speedups of irregular DP applications using different partitioning schemes. We can see

134

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

0 4 8 12 16 20 24 28 32
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32 Ideal Speedup

Speedup Using Block-Cyclic Based Method
Speedup Using Column-Based Method

Sp
ee

du
p

Number of Processors
(Arbitrary Viterbi)

Figure 5.15: Speedups of irregular DP applications using different partitioning schemes
for the arbitrary-order Viterbi algorithm.

that the results using the tunable coarse-grained partitioning scheme are much more

better due to better load balancing.

5.3.2 Experimental Results for Parallel Genetic Algorithms

Two test beds are used in experiments for our parallel GAs. One is the Alpha cluster. An-

other test bed is a heterogeneous cluster environment. It contains four high-performance

clusters. These clusters contain 8 Intel Xeon 2.6 GHz, 8 Intel Xeon 3.0 GHz, 8 In-

tel Pentium 731MHz and 8 Intel Itanium 733MHz respectively. A 1Gbit/sec Myrinet

switch connects each cluster internally and a 100Mbit/sec Ethernet switch is used as an

inter-cluster connection. Globus ToolkitTM is installed on the head node of each cluster.

Ganglia and Globus MDS [3] are used to collect and present resource information for

users.

According to Eq. (5.3.1), the speedup of a parallel GA can also be defined as the

ratio of TS and TP . Because TP can be further described as the sum of the time used

by one subpopulation in the computation (TCOMP) and the time it used to communicate

135

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

information to its neighbors (TCOMM), we can compute the speedup as:

SP =
TS

TP

=
TS

TCOMP + TCOMM

(5.3.2)

Although speedup is very common in the deterministic parallel algorithms field, in

the GA community the topic of parallel speedups has raised significant controversy. The

main reason is that the execution time of the serial and parallel GAs are compared

without considering the quality of the solutions found in each case. Because of the

limited number of individuals and the inherited selection, the sequential GA has much

more tendency to be trapped in a local minimum, without enough genetic diversity to

help itself out. Communicating individuals between different evolutions in parallel GAs

can help in keeping the genetic diversity of the population, thus greatly reducing the

probability to be trapped into local minimum. Assuming the GA is seeking the maximum

of some fixed real-valued function, the parallel GA will have an unfair advantage to work

out the result much faster. In fact, many researchers have achieved super-linear speedups

when using a parallel GA. Shonkwiler [131] has proven this theoretically and provided

the following formula to compute the speedup for parallel GAs:

SP = P × SP−1 (5.3.3)

In Eq. (5.3.3) he introduced an acceleration factor S that can explain the super-

linear speedup (S > 1), P is the number of processors. It is also shown that for the

“deceptive” problem where the time to reach the goal can be infinite, very large speedups

are possible. Eq. (5.3.3) provides us a precise way to explain and predict the speedups

for parallel GAs. However, the computation of the acceleration factor S is too complex.

And because for any time T, there is a non-zero probability that the algorithm will take

time T to work out the final result, in order to get the expected speedups by Eq. (5.3.3),

136

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

the user may wait a very long time T [131]. This is not feasible in practice. During an

experiment, if the time to reach the goal tends to be infinite, we think the algorithm is

trapped into local minimum. We therefore define the hit rates of a running parallel GA

as the percentage of the number of outcomes achieved in finite time relative to the total

number of experiments. With the concept of hit rates, we introduce an approximate way

to compute the speedups for parallel GAs:

SP = P × (k ×
HP

HS

) (5.3.4)

where HS and HP are the hit rates for the sequential and parallel GAs respectively. k is

an algorithm-dependent constant. In our experiments we have chosen the value of k to

be 1.

The following sequence with the length 64 has been used in the experiments: hh-

hhhhhhhhhhphphpphhpphhpphpphhpphhpphpphhpphhpphphphhhhhhhhhhhh. This sequence

is based on the hydrophobic-hydrophilic (HP) model. The HP model reduces a protein

instance to a string of h’s and p’s that represents the pattern of hydrophobicity in the

protein’s amino acid sequence.

Figure 5.16 shows the hit rates of the parallel GA with different migration models on

the Alpha cluster. Figure 5.17 shows the performance measurements for different numbers

of processors on the Alpha cluster. Because GAs are stochastic procedures, we have done

more than twenty measurements for each configuration. The total population size is set

to be 768. For the mutation stage and the crossover stage, the cooling scheme starts

with C = 2 and is cooled by a factor of 0.99 for every 4 generations. The communication

frequency is set to be every 5 generations, exchanging 10% subpopulations.

Figure 5.18 shows the hit rates of the HPGA with different migration models on the

computational grid environment. Figure 5.19 shows the performance measurements for

137

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Hit rates of the island model on the Alpha cluster
 Hit rates of the stepping stone model on the Alpha cluster

H
it

R
at

es

Number of Processors

Figure 5.16: Hit rates of the parallel GA on the Alpha cluster

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

5

10

15

20

25

30

35

40

45

50

55

60 Ideal Speedups
 Experimental Speedups
 Speedups Predicted by Eq. (5.3.3)

Sp
ee

du
ps

Number of Processors
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

5

10

15

20

25

30

35

40

45

50 Ideal Speedups
 Experimental Speedups
 Speedups Predicted by Eq. (5.3.3)

Sp
ee

du
ps

Number of Processors

(a) (b)

Figure 5.17: Speedups of the parallel GA with (a) the island model and (b) the stepping
stone model on the Alpha cluster

138

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 The island (grid) + the island model (cluster)
 The island (grid) + the stepping stone model (cluster)
 The stepping stone (grid) + the stepping model (cluster)
 The stepping stone (grid) + the island model (cluster)

H
it

R
at

es

Number of Processors

Figure 5.18: Hit rates of the HPGA on the computational grid environment

the protein folding simulations using the HPGA on the computational grid environment.

The processors used are distributed evenly on the four clusters. The island model and the

stepping stone model are used on the grid level and the cluster level respectively. From

these figures we can see that our hierarchical communication architecture in Figure 4.23

and 5.3b for HPGAs can be efficiently applied to the computational grid environment.

In our experiments, speedups of the HPGA with the island model on both the grid level

and the cluster level are slightly higher. This is because the island model allows more

freedom and brings more messages into subpopulations. Thus, the algorithm can work

the result out faster. We can also find that the speedups predicted by Eq. (5.3.4) are

very close to the experimental speedups.

139

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

5

10

15

20

25

30

35

40

45

50

55 Ideal Speedups
 Experimental Speedups
 Speedups Predicted by Eq. (5.3.3)

Sp
ee

du
ps

Number of Processors
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

5

10

15

20

25

30

35

40

45 Ideal Speedups
 Experimental Speedups
 Speedups Predicted by Eq. (5.3.3)

Sp
ee

du
ps

Number of Processors

(a) (b)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

5

10

15

20

25

30

35

40

45 Ideal Speedups
 Experimental Speedups
 Speedups Predicted by Eq. (5.3.3)

Sp
ee

du
ps

Number of Processors
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0

5

10

15

20

25

30

35

40

45

50 Ideal Speedups
 Experimental Speedups
 Speedups Predicted by Eq. (5.3.3)

Sp
ee

du
ps

Number of Processors

(c) (d)

Figure 5.19: Speedups of our HPGA with (a) the island model on both the grid level and
the cluster level, (b) the island model on the grid level and the stepping stone model on
the cluster level, (c) the stepping stone model on both the grid level and the cluster level,
(d) the stepping stone model on the grid level and the island model on the cluster level

5.4 Summary

In this chapter, we have presented a new parallel pattern-based framework for the devel-

opment of high performance CB applications. We have identified common communication

patterns by analyzing the characteristics of two popular CB algorithms. By integrating

140

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 5.

these pattern using multi-paradigms in C++, our framework provides good extensibility

and reusability. Moreover, we have integrated the two level communication schemes for

grid computing into the framework. So, it can support two level hierarchical applica-

tions, such as our HPGA for the PFP on computational grids. Experiments show that

our framework can be used to develop HPC applications with substantial performance

gains on both PC clusters and computational grid environments.

141

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6

Conclusions and Future Work

The next two sections further highlight our research achievements and suggest possible

future research directions.

6.1 Conclusions

The string representation of biomolecules allows for a wide range of algorithmic techniques

concerned with strings to be applied for analyzing and comparing biological data. We have

contributed to this field by analyzing and constructing HPC applications that address

problems with relevance to biological sequence analysis and structure prediction.

First, we have analyzed two categories of popular CB problems: DP algorithms and

GAs. Analyzing and understanding characteristics of these algorithms will help us to

develop efficient parallel applications for them.

According to the characteristics of DP algorithms, we have proposed a tunable coarse-

grained partitioning and communication scheme for regular and irregular DP applications.

By introducing two performance-related parameters, we can tradeoff between computa-

tion time and communication time by tuning these two parameters and thus obtain the

maximum possible performance. We have demonstrated how this algorithm leads to

142

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 6.

substantial performance gains for DP applications.

Next, we have designed a new HPGA for the PFP on PC clusters and computational

grids. Our hierarchical approach unites the inter-cluster and intra-cluster parallelism in an

efficient way by using a combination of two communication models, i.e. the stepping stone

model and the island model. This unique combination achieves super-linear speedups on

two different parallel architectures. Based on the concept of hit rates we also introduce

a mathematical model to explain and predict our experimental results.

At last, we have proposed a parallel pattern-based framework to facilitate the semi-

automatic development of HPC programs. By separating the communication structure

of a parallel program from the sequential application, parallel patterns can be reused

and therefore allow for a rapid development of HPC applications. We show how our

parallel pattern-based framework can be deployed to implement parallel DP algorithms

and HPGAs effectively and efficiently.

6.2 Future Work

The exponential growth of genome data demands even more HPC solutions in the future.

As algorithms favored by biologists are not fixed, programmable parallel environments

are eagerly required to speed up the compute-intensive tasks in CB. Our future work

includes adding more patterns to the framework and identifying more applications that

can benefit from it. Now, we are working on the identification of parallel patterns that are

frequently used on popular data structures in CB such as sequences, trees and matrices.

Also, we will add some functional modules to our framework to facilitate the use of it.

143

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 6.

6.2.1 Using Our Framework to Solve Other Dynamic Program-
ming Applications

Although many algorithms in CB can be implemented using DP, they usually exhibit

different characteristics according to their application fields. Only the wavefront compu-

tation is not enough to reflect the precise characteristics for all DP algorithms. We will

study more DP applications and extend our framework to support most DP problems in

CB.

Phylogenetic Analysis

Phylogenetic analysis provides a conceptual framework for understanding evolution but

involves several computational challenges. The generation of evolutionary trees can be

seen as two distinct NP-complete problems: multiple sequence alignments and phyloge-

netic tree searches. Phylogenetic analysis of sequence data depends strongly on accurate

multiple alignments. In addition, there are other problems, such as orthologs and par-

alogs. Orthologs are sequences derived from a common ancestor through vertical descent.

In more direct terms, this means the same gene in different species. Paralogs are genes

within the same genome that have been generated by duplication. Distinguishing between

orthologs and paralogs is important for building accurate phylogenetic trees.

As the number of DNA and protein sequences in databases increases, it is increasingly

important to be able to create multiple sequence alignments for very large numbers of

sequences. However, given that the underlying alignment algorithm requires O(n2) steps,

where n is the number of sequences to be aligned, it is not surprising that these standard

tools soon begin to take many hours to run. If we further consider the problem of simulta-

neously aligning sequences and finding a plausible phylogeny for them, such as what the

Sankoff and Cedergren’s gap-substitution algorithm [123] (it is also a multidimensional

dynamic programming algorithm), it will take even more time. Parallel computing thus

144

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 6.

is eagerly needed in this field.

Prediction of RNA Secondary Structure

The simplicity and the amount of information preserved, when describing complex bi-

molecular as sequences of residues is the foundation of most algorithms in computational

biology. However, in the real world the biomolecules DNA, RNA, and proteins are not

one-dimensional strings, but full three dimensional structures, e.g. the three-dimensional

structure of the double stranded DNA molecule that stores the genetic material of an

organism is the famous double helix described by Watson and Crick [147].

Secondary structure in RNA is the list of base pairs that occur in a three dimensional

RNA structure. According to the theory of thermodynamics the optimal folding of an

RNA sequence are those of minimum free energy, and thus the native folding, i.e. the

folding encountered in the real world, should correspond to the optimal folding. Further-

more, thermodynamics tells us that the folding of an RNA sequence in the real world is

actually a probability distribution over all possible structures, where the probability of

a specific structure is proportional to an exponential of the free energy of the structure.

For a set of structures, the partition function is the sum over all structures of the set of

the exponentials of the free energies. DP algorithms combined with the nearest neighbor

model and experimentally determined free energy parameters give rigorous solutions to

the problems of computing minimum free energy structures, structures that are usually

close to real world optimal folding, and partition functions that yield exact base pair

probabilities.

Zuker [152] proposes a method to determine all base pairs that can participate in

structures with a free energy within a specified range from the optimal. McCaskill [108]

demonstrates how a related DP algorithm can be used to calculate equilibrium partition

functions, which lead to exact calculations of base pair probabilities. A major problem

145

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 6.

for these algorithms is the time required to evaluate possible internal loops. In general,

this requires time O(n4). It is a time consuming task. Much work has been done to

reduce the total time to O(n3) by Waterman [146] and Lyngso [104]. Thus many new

algorithms have been presented. Constructing HPC programs using the parallel pattern-

based framework for these algorithms is also one of our future works.

6.2.2 Using Our Framework to Solve Tertiary Structure Pre-
diction for Real Proteins

In this thesis, we have presented an HPGA for the protein folding problem (PFP) using

2D HP lattice models. Although it is a useful demonstration of the potential advantages

of a GA for structure prediction, this model is so simple that it leaves open the question

of its applicability to real proteins.

In the first attempt to apply GAs to reproducing the tertiary structure of real proteins,

Sun [139] used a description of a protein molecule that consisted of a full backbone and

one virtual atom per side chain. A potential of mean force derived from known protein

structures was used to assess fitness. A library of peptide fragment conformations 2–

5 residues long was used to construct initial conformations and to perform mutational

changes. The library was constructed from known protein structures. An additional

constraint was the experimental radius of gyration. A population size of 90 was used.

Low final root mean square deviations from the experimental structures are reported.

The significance of the results is hard to assess. Fragments were selected from the library

on the basis of sequence similarity and the library contains the two larger structures that

were reproduced [120].

Bowie and Eisenberg [34] constructed initial conformations of a small protein using a

similar method with Sun. Nine-residue segments were selected from a library of fragment

conformations on the basis of the environment codes. A similar procedure was used for

146

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 6.

some larger fragments 15-25 residues long. Care was taken to exclude homologous struc-

tures from the database. The method of selecting initial conformations did enhance the

local structure accuracy to a value higher than that expected by chance alone. Structures

were then improved by a GA procedure in which each gene is the set of dihedral angles

of a structure and mutations are changes to one angle. For recombination, segments of

one gene were replaced with segments of another. Mutations and cross-overs had a high

probability of occurring at the fragment junctions. The fitness was evaluated with a

function containing contributions from the profile fit, hydrophobicity, accessible surface

area, atomic overlap and the sphericalness of the structure. The weighting of the terms

in the potential was strongly biased by the experimental structure.

Pedersen and Moult have used a GA to predict the structure of small fragments (12-22

residues long) of proteins in a blind test [119]. The procedure used was an extension of

an earlier torsion space MC method [27]. A full heavy atom and polar hydrogen repre-

sentation of the chain is used. Conformations with excessive steric overlap were rejected.

Fitness was evaluated using a potential that was based on point-charge electrostatics and

accessible surface area. Terms in the force field were parameterized with a potential of

mean-force analysis of experimental structures. A gene is a string of φ,ψ and χ angles

representing a conformation. Cross-over points were weighted towards positions where

the conformation was most varied in the current population. The extensive annealing of

side-chain conformations was performed at cross-over points before evaluating the fitness

of the new gene. The population size was 200–300, and 40–50 generations were performed.

Parameters of the search were optimized systematically on a set of fragments with known

structure. One of the three blind predictions did produce a native-like structure for a

22-residue fragment. Experience with this procedure shows it to be substantially more

effective than the MC procedure at generating low-energy structures.

At present, however, most of mentioned methods are limited to relatively small protein

147

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 6.

fragments. This is mainly because very compute-intensive tasks are needed for long

protein sequences. To design and develop efficient HPC algorithms on computational

grids for the PFP are thus an interesting and worthy task in our future work.

6.2.3 Extending Our Parallel Pattern-based Framework

Now, our parallel pattern-based framework presented in this thesis can be used to de-

velop HPC applications semi-automatically. That is, users still need to provide some

application-related code in order to get the final HPC application.

A major part of our future work is to develop user interfaces and an algorithm parser.

Users only need to provide necessary descriptions of a specific algorithm through a text-

script parser and then, the parallel application can be generated automatically. Figure

6.1 shows an illustration.

Parallel pattern-based
framework

Algorithm
Description (1)

Algorithm
Description (2)

Parallel
Program (1)

Parallel
Program (2)

Figure 6.1: The new framework can generate HPC applications automatically.

The new parallel pattern-based framework will have these special features: high per-

formance, easy to use and good extensibility. And also because a successful HPC pro-

gramming environment should be amenable to performance prediction, a cost prediction

module will be further developed so as to provide users a convenient tool. It is shown in

Figure 6.2.

148

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 6.

Cost Model

Parallel Layer Application Layer

Hardware Layer

Hardware

Parallel Program

Abstracted Parallel
Part

Serial Application
Part

Figure 6.2: Framework of the cost module.

• Parallel Layer – describes the parallel characteristics of subtasks in terms of ex-

pected computation-communication interactions between processors.

• Application Layer – describes the sequential part of every subtask within an appli-

cation that can be executed in parallel.

• Hardware Layer – collects system specification parameters, micro-benchmark re-

sults, statistical models, analytical models, and heuristics to characterize the com-

munication and computation abilities of a particular system.

According to the layered framework, a cost prediction module is built up from a num-

ber of separate objects. Each object is of one of the following types: application, parallel

framework and hardware. A key feature of the object organization is the independent

representation of computation, parallelization, and hardware. This is possible due to

strict object interaction rules. Using the cost model, users can understand the factors

149

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis CHAPTER 6.

that affect the performance well and can get a performance prediction without running

the program.

Also, we will integrate more patterns into our framework, such as divide and conquer,

branch and bound, simulated annealing, and randomized patterns.

150

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Bibliography

[1] GenBank. http://www.ncbi.nih.gov/Genbank/genbankstats.html.

[2] Global Arrays. http://www.emsl.pnl.gov/docs/global/ga.html.

[3] Globus Project. http://www.globus.org/.

[4] IBM LoadLeveler. http://www-128.ibm.com/developerworks/library/l-halinux3/.

[5] Instruction Systolic Array ISA. http://www.iti.fh-flensburg.de/lang/papers/isa/.

[6] Message Passing Interface Forum. http://www.mpi-forum.org/.

[7] Moor’s Law from Intel. http://www.intel.com/technology/mooreslaw/index.htm.

[8] MPICH – G2 Project in High-Performance Computing Laboratory of North Illinois

University. http://www3.niu.edu/mpi.

[9] MPICH-P4. http://www-unix.mcs.anl.gov/mpi/mpich/.

[10] OpenMP. http://www.openmp.org/.

[11] Platform LSF. http://www.platform.com/products/LSF/.

[12] Portable Batch System. http://www.openpbs.org/.

[13] RCSB Protein Data Bank. http://www.rcsb.org/pdb/.

151

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis BIBLIOGRAPHY

[14] SETI@home: The Search for Extraterrestrial Intelligence.

http://setiathome.ssl.berkeley.edu/.

[15] Standard C++. http://www.open-std.org/jtc1/sc22/wg21/.

[16] Sun Grid Engine. http://gridengine.sunsource.net/.

[17] The Beowulf Cluster Site. http://www.beowulf.org/.

[18] TOP500 Supercomputer Sites. http://www.top500.org/.

[19] N.R. Adiga. An Overview of the B1ueGene/L Supercomputer. In Proceedings of

SC’2002, 2002.

[20] M. Aldinucci, M. Danelutto, and P. Teti. An Advanced Environment Supporting

Structured Parallel Programming in Java. Future Generation Computer Systems,

19(5):611–626, 2003.

[21] W. Allcock, J. Bresnahan, I. Foster, L. Liming, J. Link, and

P. Plaszczac. GridFTP Update. In Technical Report, available at

http://www.globus.org/alliance/publications/papers.php, 2002.

[22] G. Almasi and A. Gottlieb. Highly Parallel Computing. Benjamin/Cummings

Publishing Company, 1994.

[23] D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. Seti@Home:

An Experiment in Public-Resource Computing. Communications of the ACM,

45(11):56–61, 2002.

[24] C.B. Anfinsen. Principles that Govern the Folding of Proteins. science, 1973.

[25] E.L. Anson and G.W. Myers. Realigner: A Program for Refining DNA Sequence

Multi-Alignments. In 1st Conference on Computational Molecular Biology, pages

9–16, 1997.

152

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis BIBLIOGRAPHY

[26] J. Anvik, S. MacDonald, D. Szafron, J. Schaeffer, S. Bromling, and K. Tan. Gen-

erating Parallel Programs from the Wavefront Design Pattern. In Proceedings of

the 7th International Workshop on High-Level Parallel Programming Models and

Supportive Environments, 2002.

[27] F. Avbelj and J. Moult. Determination of the Conformation of Folding Initiation

Sites in Proteins by Computer Simulation. Proteins, 23:129–141, 1995.

[28] A. Bartoli, P. Corsini, G. Dini, and C.A. Prete. Graphical Design of Distributed

Applications through Reusable Components. IEEE Parallel Distrib. Technol., 3:37–

50, 1995.

[29] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and K. Moore. Hence: A Het-

erogeneous Network Computing Environment. Scientific Programming, 3(1):49–60,

1994.

[30] D.A. Benson, I.K. Mizrachi, D.J. Lipman, J. Ostell, B.A. Rapp, and D.L. Wheeler.

The Anatomy of the Grid: Enabling Scalable Virtual Organizations. Nucleic Acids

Research, 28(1):15–18, 2000.

[31] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke. GASS: A Data

Movement and Access Service for Wide Area Computing Systems. In Proc. of

IOPADS’99, 1999.

[32] E. Birney and R. Durbin. Dynamite: Aflexible Code Generating Language for Dy-

namic Programming Methods. In Proc. Intelligent Systems for Molecular Biology,

pages 56–64, 1997.

[33] J. Blazewicz and M. Kasprzak. Complexity of DNA Sequencing by Hybridization.

Theoretical Computer Science, 290(3):1459–1473, 2003.

153

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis BIBLIOGRAPHY

[34] J.U. Bowie and D. Eisenberg. An Evolutionary Approach to Folding Small α-

Helical Proteins That Uses Sequence Information and an Empirical Guiding Fitness

Function. Proc Natl Acad Sci USA, 91:4436–4440, 1994.

[35] J.U. Bowie, R. Luthy, and D. Eisenberg. A Method to Identify Protein Sequences

That Fold Into a Known Three Dimensional Structure. Science, 253:164–170, 1991.

[36] S. Bromling, S. MacDonald, J. Anvik, J. Schaeffer, D. Szafron, and K. Tan. Pattern-

based Parallel Programing. In Proceedings of the 2002 International Conference on

Parallel Processing, 2002.

[37] J.C. Browne, M. Azam, and S. Sobek. Code: A Unified Approach to Parallel

Programming. IEEE Software, 6(4):10–18, 1989.

[38] J.C. Browne, S.I. Hyder, J. Dongarra, K. Moore, and P. Newton. Visual Pro-

gramming and Debugging for Parallel Computing. IEEE Parallel Distrib. Technol.,

3:75–83, 1995.

[39] S.H. Bryant and C.E. Lawrence. An Empitrcal Energy Function for Threading Pro-

tein Sequence through Folding Motif. Proteins: Structure, Function and Genetics,

16:92–112, 1993.

[40] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-

Oriented Software Architecture: A System of Patterns. Wiley, 1996.

[41] R. Buyya, K. Branson, J. Giddy, and D. Abramson. The Virtual Laboratory:

Enabling on Demand Drug Design with the Worldwide Grid. Concurrency and

Computation: Practice and Experience, 15(1), 2003.

[42] E. Cantu-Paz. A Survey of Parallel Genetic Algorithms. Calculateurs Paralleles,

Reseaux et Systems Repartis, 10(2):141–171, 1998.

154

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis BIBLIOGRAPHY

[43] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman. Heuristics for Scheduling

Parameter Sweep Applications in Grid Environments. In Proc. of the 9th Hetero-

geneous Computing workshop (HCW 2000), pages 349–363, 2000.

[44] M. Cole. Algorithmic Skeletons: A Structured Approach to the Management of

Parallel Computations. MIT Press, 1988.

[45] M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal

Parallel Programming. Parallel Computing, 30(3):389–406, 2004.

[46] J. Coplien. Multi-paradigm Design for C++. Addison Wesley, 1999.

[47] K. Czajkowski, S. Fitzgerald, and I. Foster C. Kesselman. Grid Information Ser-

vices for Distributed Resource Sharing. In Proc. of the 10th IEEE International

Symposium on High-Performance Distributed Computing (HPDC-10, 2001.

[48] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and

S. Tuecke. A Resource Management Architecture for Metacomputing Systems.

In Proc. of IPPS/SPDP 1998 Workshop on Job Scheduling Strategies for Parallel

Processing, pages 62–82, 1998.

[49] K. Czajkowski, I. Foster, and C. Kesselman. Co-Allocation Services for Com-

putational Grids. In In Proc. 8th IEEE Symp. on High Performance Distributed

Computing, 1999.

[50] T. Dandekar and P. Argos. Folding the Main Chain of Small Proteins with the

Genetic Algorithm. Journal of Molecular Biology, 236:844–861, 1994.

[51] M. Danelutto. Hpc The Easy Way: New Technologies for High Performance Appli-

cation Development and Deployment. Journal of Systems Architecture, 49:399–419,

2003.

155

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis BIBLIOGRAPHY

[52] M. Dayhoff, R.M. Schwartz, and B.C. Orcutt. A Model of Evolutionary Change in

Proteins. Atlas of Protein Sequence and Structure, 5:345–352, 1977.

[53] A. Demiriz, K.P. Bennett, and M.J. Embrechts. Semi-Supervised Clustering using

Genetic Algorithms. In Artificial Neural Networks in Engineering (ANNIE-99),

pages 809–814, 1999.

[54] K.A. Dill, S. Bromberg, K. Yue, K.M. Fiebig, D.P. Yee, P.D. Thomas, and H.S.

Chan. Principles of Protein Folding: A Perspective from Simple Exact Models.

Protein Science, 4:561–602, 1995.

[55] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis–

Probabilistic Models of Protein and Nucleic Acids. Cambridge University Press,

1998.

[56] M.J. Embrechts, D. Devogelaere, and M. Rijckaert. Supervised Scaled Regression

Clustering: An Alternative to Neural Networks. In Proceedings of the IEEE-INN-

ENNS International Conference(IJCNN2000), pages 571–576, 2000.

[57] C. Ernemann, V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour.

A Resource Management Architecture for Metacomputing Systems. In Proc. of

2nd IEEE International Symposium on Cluster Computing and the Grid (CCGRID

2002), pages 39–46, 2002.

[58] E. Falkenauer. Genetic Algorithms and Grouping Problems. John Wiley, 1998.

[59] D. Fischer. 3D−Shotgun: A Novel, Cooperative, Fold−Recognition Meta Predictor.

Proteins: Structure, Function and Genetics, 51:434–441, 2003.

[60] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke.

A Directory Service for Configuring High-Performance Distributed Computations.

156

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis BIBLIOGRAPHY

In Proc. of 6th IEEE Symp. on High Performance Distributed Computing, pages

365–375, 1997.

[61] M.J. Flynn. Some Computer Organizations and Their Effectiveness. IEEE Trans-

actions on Computers, 21(9), 1972.

[62] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastruc-

ture. Morgan Kaufmann Publishers, Inc, 1998.

[63] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the

Grid: An Open Grid Services Architecture for Distributed Systems Integration.

http://www.globus.org/ogsa/.

[64] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A Security Architecture for

Computational Grids. In Proc. of 5th ACM Conference on Computer and Commu-

nications Security Conference, pages 83–92, 1998.

[65] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling

Scalable Virtual Organizations. International Journal Supercomputer Applications,

15(3), 2001.

[66] M. Fowler. Patterns of Enterprise Application Architecture. Addison Wesley, 2002.

[67] S. Fraser, K. Beck, G. Booch, J. Coplien, R. Johnson, and B. Opdyke. Beyond

the Hype: Do Patterns and Frameworks Reduce Discovery Costs? In Proceed-

ings of the Conference on Object-Oriented Programming Systems, Languages, and

Applications, pages 342–344, 1997.

[68] N. Futamura, S. Aluru, and X. Huang. Parallel Syntenic Alignments. In Interna-

tional Conference on High Performance Computing, pages 420–430, 2002.

157

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis BIBLIOGRAPHY

[69] E. Gabriel, M. Resch, T. Beisel, and R. Keller. Distributed Computing in a Het-

erogenous Computing Environment. In Recent Advances in Parallel Virtual Ma-

chine and Message Passing Interface, Lecture Notes in Computing Scicence, 1998.

[70] Z. Galil and K. Park. Dynamic Programming with Convexity, Concavity and Spar-

sity. Theoretical Computer Science, 92(1):49–76, 1992.

[71] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison Wesley, 1995.

[72] A. Geist, A. Begulin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.

PVM-Parallel Virtual Machine- A User’s Guide and Tutorial for Networked Par-

allel computing. MIT Press, 1994.

[73] M.S. Gelfand, A.A. Mironov, and P.A. Pevzner. Gene Recognition Via Spliced

Sequence Alignment. Proc. Natl. Acad. Sci, 93:9061–9066, 1996.

[74] M.S. Gelfand and M.A. Roytberg. A Dynamic Programming Approach for Predic-

tion the Exon-Intron Structure. Biosystems, 30:173–182, 1993.

[75] J. Gerlach. Generic Programming of Parallel Application with JANUS. Parallel

Processing Letters, 12(2):175–190, 2002.

[76] K. Ginalski, A. Elofsson, D. Fischer, and L. Rychlewski. 3D−Jury: A Simple

Approach to Improve Protein Structure Predictions. Bioinformatics, 19:1015–1018,

2003.

[77] A. Godzik, A. Kolinske, and J. Skolnick. A Topology Fingerprint Approach to

Inverse Protein Folding Problem. Journal of Molecular Biology, 227:227–238, 1992.

158

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis BIBLIOGRAPHY

[78] A. Godzik and J. Skolnick. Sequence-Structure Matching in Globular Proteins:

Application to Supersecondary and Tertiary Structure Determination. National

Academy of Science, 89:12098–12102, 1992.

[79] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley, 1989.

[80] O. Gotoh. An Improved Algorithm for Matching Biological Sequences. Journal of

Molecular Biology, 162:705–708, 1982.

[81] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir, and

M. Snir. MPI: The Complete Reference (Vol. 2). MIT Press, 1998.

[82] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable Im-

plementation of the MPI Message-Passing Interface Standard. Parallel Computing,

22(6):789–828, 1996.

[83] W.W. Hargrove, F.M. Hoffman, and T. Sterling. The Do-It-Yourself Supercom-

puter. Scientific American, 285(2):72–79, 2001.

[84] W.E. Hart and S. Istrail. Robust Proofs of NP-hardness for Protein Folding: Gen-

eral Lattices and Energy Potentials. Journal of Computational Biology, 4(1):1–22,

1997.

[85] W.E. Hart and A. Newman. The Computational Complexity of Protein Structure

Prediction in Simple Lattice Models. CRC Press, 2003.

[86] P. Higgs and T. Attwood. Bioinformatics and Molecular Evolution. Blackwell

Publishing, 2005.

[87] D.S. Hirschberg. A Linear Space Algorithm for Computing Longest Common Sub-

sequences. Communications of the ACM, 18:341–343, 1975.

159

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis BIBLIOGRAPHY

[88] J. Holland. Adaptation in Natural and Artificial Systems. University of Michigan

Press, 1975.

[89] X. Huang. A Space-Efficient Algorithm for Local Similarities. Computer Applica-

tions in the Biosciences, 6:373–381, 1990.

[90] X. Huang and K.M. Chao. A Generalized Global Alignment Algorithm. Bioinfor-

matics, 19(2):228–233, 2003.

[91] T. Imamura, Y. Tsujita, H. Koide, and H. Takemiya. An Architecture of Stampi:

MPI Library on a Cluster of Parallel Computers. Lecture Notes in Computer Sci-

ence, 1908:200–207, 2000.

[92] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-Enabled Implementation

of the Message Passing Interface. Journal of Parallel and Distributed Computing,

63(5):551–563, 2003.

[93] M. Karplus and E. Shakhnovich. Protein Folding: Theoretical Studies of Thermo-

dynamics and Dynamics. Protein Folding, pages 196–237, 1992.

[94] T. Kielmann, R.F.H. Hofman, H.E. Bal, A. Plaat, and R.A.F. Bhoedjang. MagPIe:

MPI’s Collective Communication Operations for Clustered Wide Area Systems. In

Proc. of Ppopp’99, pages 131–140, 1999.

[95] S.S. Kremer. Molecular Bioinformatics: Algorithms and Applications. Walter de

Gruyter, 1995.

[96] A. Krogh, M. Brown, I.S. Mian, K. Sjolander, and D. Haussler. Hidden Markov

Models in Computational Biology: Applications to Protein Modeling. Journal of

Molecular Biology, 235:1501–1531, 1994.

[97] H. Kuchen. A Skeleton Library. In EURO-PAR’2002, LNCS 2400, 2002.

160

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis BIBLIOGRAPHY

[98] T. Kuhn. The Structure of Scientific Revolutions. University of Chicago Press,

1970.

[99] V. Kumar, A. Grama, A. Gupa, and G. Karypis. Introduction to Parallel Comput-

ing. The Benjamin-Cummings Publishing Company Inc., 1994.

[100] M.A. Kurowski and J.M. Bujnicki. Genesilico Protein Structure Prediction Meta-

Server. Nucleic Acids Research, 31:3305–3307, 2003.

[101] K.F. Lau and K.A. Dill. A Lattice Statistical Mechanics Model of the Conforma-

tional and Sequence Spaces of Proteins. Macromelecules, 22:3986–3997, 1989.

[102] S. Lee, M.K. Cho, J.W. Jung, J.H. Kim, and W. Lee. Exploring Protein Fold

Space by Secondary Structure Prediction Using Data Distribution Method on Grid

Platform. Bioinformatics, 20(18):3500–3507, 2004.

[103] S.M. LeGrand and K.M. Jr Merz. The Genetic Algorithm and the Conformational

Search of Polypeptides and Proteins. Molecular Simulation, 13:299–320, 1994.

[104] R.B. Lyngso, M. Zuker, and C.N.S. Pedersen. Fast Evaluation of Internal Loops

for RNA Secondary Structure Prediction. Bioinformatics, 15:440–445, 1999.

[105] S. MacDonald, J. Anvik, S. Bromling, J. Schaeffer, D. Szafron, and K. Taa. From

Patterns to Frameworks to Parallel Programs. Journal of Parallel Computing,

28(12):1663–1684, 2002.

[106] T. Madej, J.F. Gibrat, and S.H. Bryant. Threading a Database of Protein Cores.

Proteins: Structure, Function and Genetics, 23:356, 1995.

[107] T.G. Mattson, D. Scott, and S.R. Wheat. A TeraFLOP Supercomputer in 1996:

the ASCI TeraFLOP System. In Proceedings of IPPS’96, The 10th International

Parallel Processing Symposium, 1996.

161

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis BIBLIOGRAPHY

[108] J.S. McCaskill. The Equilibrium Partition Function and Base Pair Binding Prob-

abilities for RNA Secondary Structure. Biopolymers, 29:1105–1119, 1990.

[109] S. Miyazaki, H. Sugawara, T. Gojobori, and Y. Tateno. DNA Data Bank of Japan

DDBJ in XML. Nucleic Acids Research, 31(1):13–16, 2003.

[110] D.W. Mount. Bioinformatics-Sequence and Genome Analysis. Cold Spring Harbor

Laboratory Press, 2001.

[111] D.R. Musser and A. Siani. STL Tutorial and Reference Guide. Addison Wesley,

1996.

[112] E.W. Myers and W. Miller. Optimal Alignments in Linear Space. Computer Ap-

plications in the Biosciences, 4:11–17, 1988.

[113] J. Nabrzyski, J.M. Schopf, and J. Weglarz. Grid Resource Management. Kluwer

Publishing, 2003.

[114] S.B. Needleman and C.D. Wunsch. A General Method Applicable to the Search for

Similarities in the Amino Acid Sequence of Two Proteins. J. Mol. Biol, 48:443–453,

1970.

[115] J. Nieplocha, R.J. Harrison, M.K. Kumar, B. Palmer, V. Tipparaju, and H. Trease.

Combining Distributed and Shared Memory Models: Approach and Evolution of

the Global Arrays Toolkit. In Proceedings of Workshop on Performance Optimiza-

tion for High-Level Languages and Libraries (ICS’2002), 2002.

[116] J. Nieplocha, R.J. Harrison, and R.J. Littlefield. Global Arrays: A Nonuniform

Memory Access Programming Model for High-Performance Computers. The Jour-

nal of Supercomputing, 10(2):169–189, 1996.

162

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis BIBLIOGRAPHY

[117] C. Notredame and D.G. Higgins. SAGA: Sequence Alignment by Genetic Algo-

rithm. Nucleic Acid Research, 24:1515–1524, 1996.

[118] C. Notredame, E.A. O’Brien, and D.G. Higgins. RAGA: RNA Sequence Alignment

by Genetic Algorithm. Nucleic Acids Research, 25(22):4570–4580, 1997.

[119] J.T. Pedersen and J. Moult. Ab Initio Structure Prediction for Small Polypeptides

and Protein Fragments Using Genetic Algorithms. Proteins, 23:454–460, 1995.

[120] J.T. Pedersen and J. Moult. Genetic Algorithms for Protein Structure Prediction.

Curr Opin Struct Biol, 6(2):227–231, 1996.

[121] D. Pritchard. Mathmatical Models of Distributing Computation. In T. Muntean,

editor, Parallel Programming of Transputer Based Machines, pages 25–36. 1988.

[122] L. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in

Speech Recognition. In Proceedings of the IEEE, pages 257–286, 1989.

[123] D. Sankoff, R.J. Cedergren, and W. McKay. A Strategy for Sequence Phylogeny

Research. Nucleic Acids Research, 10(1):421–431, 1982.

[124] E.E. Santos, E. Santos, and Jr. Reducing the Computational Load of Energy

Evaluations for Protein Folding. In 4th IEEE Symposium on Bioinformatics and

Bioengineering, 2004.

[125] J. Schaeffer, D. Szafron, G. Lobe, and I. Parsons. The Enterprise Model for De-

veloping Distributed Applications. IEEE Parallel Distrib. Technol., pages 85–96,

1993.

[126] B. Schmidt and H. Schroder. Massively Parallel Sequence Analysis with Hidden

Markov Models. In Proceedings of IC-SEC, pages 781–784, 2002.

163

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis BIBLIOGRAPHY

[127] B. Schmidt, H. Schroder, and M. Schimmler. A Hybrid Architecture for Bioinfor-

matics. Future Generation Computer System, 18:855–862, 2002.

[128] B. Schmidt, H. Schroder, and M. Schimmler. Massively Parallel Solutions for Molec-

ular Sequence Analysis. In Proc. of IPDPS’02, 2002.

[129] J. Serot and D. Ginhac. Skeletons for Parallel Image Processing: An Overview of

the Skipper Project. Journal of Parallel Computing, 28(12):1685–1708, 2002.

[130] J.C. Setubal and J. Meidanis. Introduction to Computational Molecular Biology.

PWS Publishing Company, 1997.

[131] R. Shonkwiler. Parallel Genetic Algorithms. In 5th International Conference on

Genetic Algorithms, 1992.

[132] A. Singh, J. Schaeffer, and M. Green. A Template-Based Tool for Building Ap-

plications in a Multi-Computer Network Environment. Parallel Computing, pages

461–466, 1989.

[133] T.F. Smith and M.S. Waterman. Comparison of Biosequences. Adv. Appl. Math,

2:482–489, 1981.

[134] T.F. Smith and M.S. Waterman. Identification of Common Subsequences. Journal

of Molecular Biology, 147:195–197, 1981.

[135] A.J. Steen and J.J. Dongarra. Overview of Recent Supercomputers, 2004.

http://www.top500.org/ORSC/.

[136] G. Stoesser, W. Baker, A. Van Den Broek, M. Garcia-Pastor, C. Kanz, T. Kulikova,

R. Leinonen, Q. Lin, V. Lombard, R. Lopez, R. Mancuso, F. Nardone, P. Stoehr,

M. Tuli, K. Tzouvara, and R. Vaughan. The EMBL Nucleotide Sequence Database:

major new developments. Nucleic Acids Research, 31(1):17–22, 2003.

164

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis BIBLIOGRAPHY

[137] A. Streit. A Self-Tuning Job Scheduler Family with Dynamic Policy Switching. In

Proc. of the 8th workshop on job scheduling strategies for parallel, 2002.

[138] B. Stroustrup. Why C++ is not just an Object-Oriented Programming Language.

OOPS Messenger, 6(4):1–13, 1995.

[139] S. Sun. Reduced Representation of Protein Structure Prediction: Statistical Po-

tential and Genetic Algorithms. Protein Science, 2:762–785, 1993.

[140] J.D. Szustakowski and Z. Weng. Protein Structure Alignment Using a Genetic

Algorithm. Proteins, 38:428–440, 2000.

[141] R. Thiele, R. Zimmer, and T. Lenguaer. Protein Threading by Recursive Dynamic

Programming. Journal of Molecular Biology, 290:757–779, 1998.

[142] R. Unger and J. Moult. Genetic Algorithms for Protein Folding Simulations. Jour-

nal of Molecular Biology, 231:75–81, 1993.

[143] L. Valiant. A Bridging Model for Parallel Computation. Communication of the

ACM, 33(8):103–111, 1990.

[144] D. Vandevoorde and N.M. Josuttis. C++ Template: The Complete Guide. Addison

Wesley, 2002.

[145] J. Venter. The Sequence of the Human Genome. science, 291(5507):1304–1351,

2001.

[146] M.S. Waterman and T.F. Smith. Rapid Dynamic Programming Methods for RNA

Secondary Structure. Advances in Applied Mathematics, 7:455–464, 1986.

[147] J. Watson and F. Crick. A Structure of Deoxyribonucleic Acid. Nature, 171:737–

738, 1953.

165

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ph.D Thesis BIBLIOGRAPHY

[148] P. Wegner. Research Directions in Object-Oriented Programming. MIT Press, 1987.

[149] B. Wilkinson and M. Allen. Parallel Programming- Techniques and Applications

Using Networked Workstations and Parallel Computers. Pearson Education Inc.,

1999.

[150] M. Wilmanns and D. Eisenberg. Inverse Protein Folding by the Residue Pair Pref-

erence Profile Method. Protein Engineering, 8:626–639, 1995.

[151] G.V. Wilson. Assessing the Usability of Parallel Programming Systems: The

Cowichan Problems. In Proceedings of the IFIP Working Conference on Program-

ming Ecvironments for Massively Parallel Distributed Systems, 1994.

[152] M. Zuker. On Finding All Suboptimal Foldings of an RNA Molecule. Science,

244:48–52, 1989.

[153] M. Zuker and P. Stiegler. Optimal Computer Folding of Large RNA Sequences

Using Thermodynamics and Auxiliary Information. Nucleic Acids Research, 9,

1981.

166

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

