
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Load management system for distributed
simulation

Yuan, Zijing

2005

Yuan, Z. (2005). Load management system for distributed simulation. Master’s thesis,
Nanyang Technological University, Singapore.

https://hdl.handle.net/10356/2563

https://doi.org/10.32657/10356/2563

Nanyang Technological University

Downloaded on 09 Apr 2024 14:15:56 SGT

NANYANG TECHNOLOGICAL UNIVERSITY

Load Management System for Distributed Simulation

A thesis submitted to the Nanyang Technological University
in Fulfillment of the Requirement for the degree of

Master of Engineering

by

Yuan Zijing

Supervisor: Assoc. Prof. Cai Wentong

School of Computer Engineering

2005

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis ACKNOWLEDGEMENT

Acknowledgement

This project cannot have reached this stage without the help of my supervisor,

Dr. Cai Wentong . I am grateful to his thorough help during my graduate study

at NTU. He helps me clarify my design and new concepts in distributed simulations.

Without his patience, understanding and encouragement, I cannot stick to and dip

into my project, and the project would not be successful.

I would like to thank Dr. Low Yoke Hean, Malcolm for his patience to

listen and discuss with me about the project. His valuable advice inspires me

greatly.

I would also like to extend my thanks to staff and technicians in the Parallel

and Distributed Computing Center, they kindly assisted me in many aspects, and

provided me with all the convenience I need.

Last but not least, I would like to thank all my friends Ms. Xue Ning, Mr. Wang

Lizhe, Mr. Zeng Yi and Ms. Wang Lihua, who helped me with the difficulties I

met.

i

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis ACKNOWLEDGEMENT

.

ii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis ABSTRACT

Abstract

Network of workstations are gaining popularity against parallel and super-

computers for running large-scale simulations. The Grid enables resource sharing

of computing resources at geographically distributed locations and provides the

simulations with immense computing power. At the meantime, the High Level

Architecture (HLA) paradigm provides a software platform and interoperability

interface for simulation components to utilize distributed resources. Running HLA-

based simulation over the Grid environments would shorten the simulation time,

improve the hardware availability and be beneficial for the simulation community.

Despite the convenience and benefits the Grid can provide, issues that hinder the

adoption of Grid as the simulation hardware platform still remain. The HLA lacks

the capability of resource management for running simulation in the aspect of re-

source discovery, federate deployment, dynamic load-balancing and fault-tolerance.

Hence, this project is motivated to develop a programming framework to facilitate

the HLA simulation development, with the consideration for possible integration

with the Grid environment.

Both dynamic load-balancing and fault-tolerance require frequent checkpoint-

ing of the simulation and saving the simulation state. Consequently, the amount

of information saved will greatly impact the simulation performance. HLA sim-

ulation normally has a large amount of information to be extracted and saved,

hence requiring more time and computing power for federate migration and fault

recovery. It is of great importance to develop a federate model that supports easy

checkpointing and has minimal state information for saving and restoration. It is

also noticed that substantial effort is required for writing programs that conform to

the HLA Runtime Infrastructure (RTI) specification because of its complexity. In

this project, a framework with easy checkpointing capability was developed, and

iii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis ABSTRACT

a code library was implemented. The code library is meant for automatic code

generation from user design with a Graphical User Interface (GUI), which is part

of the framework. HLA Data Distribution Management is used to route simulation

events (interactions) to achieve efficient use of network bandwidth.

Federate migration protocols have been introduced by various research projects.

However, existing protocols achieve migration by using either federation wide syn-

chronization or a third party host, such as FTP servers, to handle the saving and

restoring of migration states. Based on the framework, federate migration pro-

tocols that bypass the shortcomings identified above were developed and better

migration performance is achieved. To eliminate message loss during migration

process, a counter mechanism was employed. Study also shows that federate join

time contributes significantly to the migration overhead. Therefore, our protocol

was further modified to further reduce the migration overhead incurred.

iv

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Contents

1 Introduction 1

1.1 Background . 1

1.1.1 Distributed Simulation . 1

1.1.2 Grid Computing . 3

1.2 Motivation . 4

1.3 Objectives . 5

1.4 Organization of Thesis . 6

2 Related Works 7

2.1 HLA Tools . 7

2.2 Code Generation . 9

2.3 Resource Management for HLA-based Simulations 11

2.4 Federate Migration . 13

3 SimKernel Framework 17

3.1 Introduction . 19

3.2 Framework Overview . 20

v

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CONTENTS

3.3 SimKernel Operation . 22

3.4 SimKernel Time Management . 24

3.5 DDM Event Routing . 25

3.5.1 DDM Service . 27

3.5.2 Region Determination . 28

3.6 SimKernel Code Library . 29

3.6.1 Class Definitions . 32

3.6.2 Implementation . 35

3.7 Code Generator . 36

3.7.1 LPConf Syntax . 36

3.7.2 How LPConf Works . 37

3.8 Summary . 38

4 Load Management 41

4.1 Migration Architecture . 42

4.2 Simple Migration Protocol . 44

4.3 Improved Migration Protocol . 48

4.3.1 Message Loss . 48

4.3.2 Counter Mechanism . 50

4.3.3 Protocol Description . 52

4.3.4 Ownership Management for myOutCounter Object 54

4.3.5 Alternative Procedure . 55

vi

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CONTENTS

4.3.6 Further Improvement . 57

4.4 Summary . 58

5 Experiments and Performance Analysis 59

5.1 Experiment Setup . 59

5.2 Experimental Results and Discussion 60

5.2.1 Simple Migration Protocol 62

5.2.2 Improved Protocols . 64

5.3 Breakdown Study of HLA Activity 65

5.4 Summary . 66

6 Conclusions and Future Work 67

Appendices 70

A SimKernel Code Library API 71

B SimKernel Framework Use Case 75

B.1 Use Case . 75

B.2 Using the GUI . 76

B.3 Manual Setup . 89

Bibliography 93

vii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis LIST OF FIGURES

viii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

List of Figures

2.1 High Level View of Process Migration 14

3.1 HLA/RTI Simulation Interface 18

3.2 Logical Process to RTI Federate Mapping 19

3.3 SimKernel Framework Overview 21

3.4 Control Flow in SimKernel . 22

3.5 Same Event, Different Destination 26

3.6 Region Determination for Example 3.5 28

3.7 SimKernel Class Hierarchy . 31

3.8 LPConf File for Figure 3.5 . 38

4.1 Migration Architecture . 42

4.2 Federate States . 43

4.3 Simple Federate Migration Protocol 46

4.4 Potential Message Loss Problem 49

4.5 Improved Federate Migration Protocol 51

4.6 Alternative Protocol . 56

ix

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis LIST OF FIGURES

4.7 Further Improvement . 57

5.1 Experimental Setup . 60

5.2 Test-bed Cluster Surya Specification 61

5.3 Migration Protocols Performance Comparison 62

B.1 Use Case: One-way Super-ping 76

B.2 GUI Launchup . 76

B.3 GUI Design Environment . 77

B.4 Create New Federation Name 78

B.5 Create new LP Class . 78

B.6 Define LP Class’ Properties . 79

B.7 Tree View Refresh for LP Class 79

B.8 Define New Event Class . 80

B.9 Reflect the Event Class on Project Tree View 81

B.10 Add New LP Instance to Simulation Design 82

B.11 Default LP Instance Properties 82

B.12 Modify LP Instance’s Properties 83

B.13 Create More LP Instances . 83

B.14 Create Event Between LPs . 84

B.15 Define Event Processing Detail 85

B.16 Complete Simulation Design 86

B.17 Generate Federation File . 87

x

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis LIST OF FIGURES

B.18 Federation File Generation Completed 87

B.19 Code Generation Completed 88

B.20 LPConf.txt File for Use Case Figure B.1 90

B.21 LPaInit.java for LPa in Use Case Figure B.1 90

B.22 Event Class relay Encoding/Decoding Definition 91

B.23 Event Processing Definition for relay LPc LPd 91

xi

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis LIST OF TABLES

xii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

List of Tables

3.1 SimKernel Class APIs - User APIs 33

3.2 SimEvent Class APIs . 34

5.1 Breakdown Study of HLA/RTI Activity (in Seconds) 66

A.1 SimEventQueue Class APIs . 71

A.2 Interaction Class APIs . 72

A.3 InteractionQueue Class APIs 72

A.4 MyFederateAmbassador Class APIs 73

A.5 SimKernel Class APIs - System APIs 74

xiii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 0

.

1

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1

Introduction

Computer simulation has become an important tool for investigating and evaluat-

ing complicated scenarios in the area of industrial production, business, financial

service, education, science and military [14]. With the recent expansion and ad-

vancement in the computing industry, computer hardware price has been declining.

This makes network of workstations a more viable choice for large-scale parallel and

distributed simulation (PADS) [14] due to its high performance, high availability,

high scalability and low cost.

1.1 Background

1.1.1 Distributed Simulation

Distributed simulation is the simulation of some real or imagined system on dis-

tributed computers. Distributed computers are connected by network and may be

spatially separated by any distance. Distributed computers are characterized by

heterogeneity and the network used to interconnect the machines. Distributed sys-

tems are often composed of stand-alone computers from different vendors, running

1

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 1

different operating systems (OSes). Interoperability and reusability eliminate the

need to transform existing simulations to new platforms, and enable participation

of modelers with different computing equipment in distributed simulations.

By running simulation on distributed systems, the simulation execution time

is reduced, and geographical distribution of the simulation is also made available.

Distributed simulation also improves the fault tolerance capability. If one computer

goes down, other computer may take up the unfinished job of the failed node and

keep the simulation going despite the failure.

Distributed simulation is also characterized by its lack of global clock. Simu-

lation components at individual computers have no knowledge of the correct time

of the simulation. Fortunately, simulation frameworks usually provide mechanisms

for synchronization and time management.

The High Level Architecture (HLA) was developed by the Defense Modelling

and Simulation Office (DMSO) to provide a common architecture that facilitates

simulation interoperability and reusability across all classes of simulations in the

distributed environment. HLA has been adopted as IEEE standard 1516 in Septem-

ber 2000 [22].

In the HLA, a distributed simulation is called a federation, and each individual

simulation component is referred to as a federate. Each federate is a single point

of attachment to the Runtime Infrastructure (RTI), the software implementation

of the HLA standard. Federates in the same federation communicate with each

other by passing interactions1 and update objects. A federate can be a computer

simulation, it can also be an instrumented physical device or a passive data viewer.

HLA simulation must conform to the federation rules [22], the HLA interface spec-

1Interaction is the HLA definition of transient message. In this thesis, we will use interaction,

message and event interchangeably.

2

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 1

ification [23] and the Object Model Template [24].

1.1.2 Grid Computing

Grid computing has emerged as an important computing technology focusing on

large-scale resource sharing at geographically distributed organizations [13]. The

Grid integrates “networking, communication, computation and information to pro-

vide a virtual platform for computation and data management in the same way that

the Internet integrates resources to form a virtual platform for information” [4].

The Grid infrastructure provides the ability to dynamically link together re-

sources to support the execution of large-scale resource-intensive, and distributed

applications. The heart of any Grid is the tool that links together geographically

distributed resources and allows a single application to execute using these resources

collectively. The resources on the Grid can be of any level of computing power and

capability, some of them are high-performance machines or clusters. Such high-

performance machines form the Grid ‘nodes’ which provide major resources for

simulation, data mining and other computing-intensive executions.

Currently available toolkits for Grid computing include Globus [12], Legion [16],

MultiCluster [45] and Sun Grid Engine [41]. Among these toolkits, Globus is the

most popular one for its availability and completeness. The Globus project aims

to develop fundamental technologies needed to build computational grids. Globus

Toolkit provides convenient services to users to fully utilize the Grid resources.

Grid Security Infrastructure (GSI) provides services for authentication, communi-

cation protection and authorization. The Grid Resource Allocation and Manage-

ment (GRAM) service provides resource management services and allows programs

to be restarted on remote resources, despite local heterogeneity. The Grid Infor-

3

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 1

mation Service (GIS) provides access to static and dynamic information regarding

heterogeneous resources. Monitoring and Discovery Service (MDS) simplifies Grid

information services by providing a single standard interface and schema for the

many information services that are used within a virtual organization.

1.2 Motivation

Although the Globus provides the mechanisms for forming large-scale resource

sharing and HLA provides the convenience for simulation interoperability, neither

the Grid nor the HLA/RTI provides the functionality of resource management for

distributed simulations. Resource management for running distributed simulation

over the Grid environment includes resource discovery at runtime and load man-

agement.

Resource discovery collects the available computing resource for the HLA-based

simulation deployment. Executing simulation in distributed environment may

shorten simulation execution. However, the imbalance of load level at the par-

ticipating computing nodes may degrade the performance gain resulted from the

adoption of distributed environment. Load balancing technique, that migrates

some of the simulation components from heavily-loaded computing nodes to less-

loaded ones, could overcome the problem and lead to higher utilization rate of the

hardware resources.

Migrating a process (or federate in our scenario) involves checkpointing the

migrating process and restoring the checkpointed process state to the restarting

process at the new host. But, HLA federates generally contain tremendous appli-

cation specific information and are too difficult to checkpoint. Thus, it is necessary

to develop a generic framework that makes check-pointing and migration easier

4

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 1

and modular.

Despite the effort to checkpointing federate execution state, migration protocol

also plays an important role. Poorly designed protocols may incur large overhead

and render the benefit of load balancing less effective. Hence, efficient migration

protocol is essential in federate migration.

It is also noticed that developing HLA-based simulation requires tremendous

effort to comply with the HLA/RTI specifications. Hence, it is also important to

implement an automatic code generation tool so that the modeler could concentrate

on the simulation, rather than programming-level implementation.

1.3 Objectives

This project aims to provide a load management system for distributed simulation.

The load management system is comprised of two major components, namely a

framework that facilitates modelers with easy HLA-based simulation development

as well as provides support for easy checkpointing and state restoration, and a

migration support system with efficient migration protocol implementation. The

objectives can be further classified as follows:

• Design a Graphical User Interface for modelers to specify simulation at a

higher level. The modeler only needs to provide the logical processes (LPs),

the message types between LPs and how messages of each type are handled.

• Design an extensible and customizable generic framework that takes modeler

input from the GUI and produces the final executable simulation code for

deployment. The framework would encapsulate the HLA/RTI activities and

has the flexibility for modelers to extend for their customized needs.

5

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 1

• The framework would support migration by providing the facilities that allow

easy state saving and restoration at migration time.

• Design a federate migration protocol that improves the migration perfor-

mance and reduces overhead.

1.4 Organization of Thesis

This thesis is organized as follows: Chapter 2 briefly reviews some related works

published in the area of federate modeling, code generation, load balancing and

federate migration. Chapter 3 describes the overall framework architecture and its

operating mechanisms. In Chapter 4, load management system is introduced, with

the focus on the federate migration protocols based on the framework proposed.

Chapter 5 describes the experiment setup and presents results of various migration

protocols. Chapter 6 concludes this thesis and proposes potential future work.

6

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2

Related Works

Although the HLA provides the paradigm for simulation interoperability and reusabil-

ity, there are still important issues that impose barrier for researchers adopting the

standard to develop and deploy their simulations in HLA/RTI. The two most im-

portant reasons are the complexity to write program conforming to the HLA/RTI

requirements and the lack of resource management in the runtime. This chapter

reviews some of the related works in these field with the focus on code generation.

As our main objective is to achieve load balancing, federate migration techniques

are also surveyed.

2.1 HLA Tools

One of the HLA’s aims is to foster simulation reuse. Hence, many researchers

focus on reuse of existing simulation components or development of reusable sim-

ulation components. Some also attempted to integrate simulation development

with object-oriented technology. Dobbs [11] noticed that although the HLA Ob-

ject Model Template (OMT) defines documenting format for HLA-related informa-

tion about object classes, attributes and interactions are derived based on Object-

7

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 2

Oriented Analysis and Design (OOAD) methodologies. No genuine object-oriented

paradigm is implemented. An OOAD representation of the federation using Uni-

fied Modeling Language (UML) was proposed and Rational Rose is used to develop

and maintain both the federation object model (FOM) and federation design.

Various groups have also explored federate reuse in the HLA environment. In

[3], the authors argue that to be successful, the HLA needs to create a set of con-

ditions under which optimal reuse is a natural and assured outcome. Reuse in

this case means utilizing the same federate in different federations. Since different

federations have different Federation Object Models (FOMs), federates need to be

built to support different FOMs. To facilitate federation formation, each federate is

required to develop a Simulation Object Model (SOM). The SOM provides means

for federation developers to determine the suitability of simulation systems to as-

sume specific roles within a federation. Once the federation has been formed, the

FOM is developed. An FOM is an identification of the essential classes of objects,

object attributes, and object interactions that are supported by an HLA federa-

tion. In short, simulation modelers develop SOMs, SOMs support the development

of FOMs, and FOMs support the creation and execution of federations. Five case

studies were carefully described in [3] to further illustrate how SOMs can be reused

and FOMs are formulated from the given SOMs and simulation requirements.

A Component-Based Development (CBD) [17, 42] methodology using fixed

code-base was discussed in [32]. Parr et al. noticed that traditionally, HLA develop-

ment has been seen as an FOM-centric activity, where all inter-federate interactions

(object and interaction classes) are described and then manually coded in the fed-

erate using a publish and subscribe pattern. This development approach tends to

lead to FOM lock-in, poor federate reuse and an unwieldy code-base. They further

argued that significant improvements in the reuse and portability of federates and

8

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 2

federations can be achieved by applying a CBD methodology to the HLA environ-

ment. These improvements are realized through the use of abstraction to insulate

from RTI API code, the improvement of translation and transformation services,

and the improvement of component aggregation in both RTI and non-RTI based

component integration infrastructures. These improvements lead to better simu-

lation granularity and fidelity, and improved simulation performance by enabling

non-RTI integration between aggregated federates using the same unchanged code-

base. A similar approach was also introduced in SIMULTAAN [6].

Although these works can relieve portion of the development effort from the

modelers, the modelers still need to carefully fulfill the required cooperation be-

tween each approach’s additional specifications and FOM extensions for both the

publishing and subscribing federates. This requires the modelers to have not only

the knowledge of the system they are simulating, but also the necessary HLA/RTI

requirements. Hence, it would be beneficial to the modelers if there is a system

which would allow them to focus on the simulation rather than implementation.

To accomplish this objective, an automatic simulation code generation tool could

be of great help to the modelers. The code generator should allow the modeler

to specify the essential information of the simulation, and performs other works

at the background. The modeler needs not have the knowledge on how the final

executable code is generated.

2.2 Code Generation

The need for automated tools to assist in various phases of the Federation Develop-

ment and Execution Process (FEDEP) is widely recognized and has been addressed

in a number of papers [7, 21, 35, 37]. Extensibility, openness and interoperabil-

9

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 2

ity are considered crucial to the widespread use of these tools in the federation

development and execution process.

Automatic code generation approach was investigated in the Laguna [20] project

to migrate legacy flight simulation code into HLA-compliant code using Runtime

Communication Infrastructure (RCI), which is a middleware layer code generator

that abstracts simulation applications from the underlying interoperability stan-

dards (such as HLA or DIS). In the case of HLA, the RCI takes HLA object

models as input, and from these the RCI code generator produces necessary RTI

communication and administrative work based on the HLA object model.

Having ‘ready made’ federates to model a portion of the federation is useful

for federate development and compliance testing as well as federation testing and

integration [15]. These ‘ready made’ federates are ‘RTI ready’ without additional

modification. To satisfy this purpose, Graham et al [15] proposed an approach for

automatic software generation with a bridging federate, or FedProxy. FedProxy al-

lows a user to generate proxy federates from an HLA object model specification in

Java programming language. FedProxy provides a complete integrated Java devel-

opment environment that lets the user quickly customize and adapt the generated

federate code to his specific requirements. FedProxy also implements a simula-

tion execution environment that provides all of the simulation services necessary

to execute FedProxy as a fully compliant HLA federate.

FedProxy takes a straightforward approach to treat an HLA object model spec-

ification as a software object model specification. It simply generates a class for

each class and interaction specified in the HLA object model along with any neces-

sary supporting data types. The FedProxy tool allows the user to specify a subset

of the classes and interactions she/he is interested in publishing and subscribing

so that only the code necessary to support the user’s publication and subscription

10

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 2

interests is generated. In short, the user is allowed to select from FOM only those

classes and interactions that define the SOM for his target federate and then the

FedProxy generates the code that implements the federate corresponding to the

derived SOM.

Another code generation tool using component-based development model was

also presented in [33], which is similar to the CBD approach discussed in the

previous section except that automatic code generation is also supported.

2.3 Resource Management for HLA-based Simu-

lations

When the simulation code is ready to execute in the distributed environment, the

modeler must make the decision on how to map the simulation components to the

available resources. In the scenario of HLA-based simulation, the resources are

the computers used to run the simulation, and the simulation components are the

federates. Resource management in such circumstances includes discovering the

available computers and mapping the simulation federates to these computers.

General resource management implementations, such as Condor [27] and Sun

Grid Engine [41], achieves process migration at the kernel level. However, these im-

plementations do not consider the specific requirements of distributed simulations,

for example, HLA services, such as object management and time management, that

need to be handled during the migration.

Various resource management approaches for distributed simulation have been

investigated in the research community. In [28], the resource sharing decision is

made by the end user of the computer. If the user has work for the computer,

she/he may opt not to participate in the resource sharing system. Otherwise, the

11

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 2

user indicates the willingness to share the resource to a manager. The manager

will ‘tell’ a communication federate that new resource is available. Based on the

outcome of the load balancing algorithm, one or more federates are selected by

the manager and migrated to the appropriate destination host, and the simulation

execution proceeds after migration is successful. When the user decides that the

resource should be no longer available to the simulation, the manager performs the

load balancing algorithm again to move the running federate(s) to other nodes.

Resource availability information is managed by the manager and relayed to the

communication federate. All communication between the communication federate

and the simulation federates is done using the RTI interactions, and the commu-

nication federate can be viewed as part of the HLA federation.

An alternative approach was proposed in [8], where a federate is encapsulated in

a job object. Each job, implemented with multi-threading architecture to increase

concurrency, consists of two interfaces: one to the RTI and the other to the Load

Management System (LMS). The LMS incorporates two subsystems: job man-

agement subsystem and resource management subsystem. The job management

subsystem monitors the execution of federates and performs load balancing activ-

ities if necessary. The resource management subsystem, with the help of services

provided by the Globus Toolkit, performs resource discovery and monitoring in

the computing Grid. The major modules of Globus that are used in LMS include

the Grid Security Infrastructure (GSI), the Grid Resource Allocation Manager

(GRAM), and Grid Information Service (GIS).

While [8, 28] focus on developing resource management systems for HLA-based

simulations, Zaja̧c et al. [48] attempted to solve the resource management problem

from a Grid perspective. HLA management service, migration support service,

broker support service and broker service are implemented as Grid services for

12

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 2

the purpose of resource management and federate migration. The migration sup-

port service starts HLA-application monitoring and triggers the broker support

service to benchmarking and analyzing the site’s performance. The broker service

will make migration decision based on the analyzed result provided by the broker

support service.

2.4 Federate Migration

Load management and load balancing have attracted many researchers in the com-

munity [5, 43, 49]. Load management frequently involves dynamic load balancing

during runtime, and load balancing is achieved by migrating selected ‘victim’ pro-

cess to appropriate destination computer.

Process migration is defined as “the act of transferring a process between two

machines” [29] during its execution time. Normally, the information migrated will

include data used by the process, a stack, register contents, and the state specific to

the underlying operating system, such as parameters related to process, memory,

and file management. If the process is multi-threaded, the content of each thread’s

stack and register must be extracted and restored correctly. Generally, process

migration consists of extracting the state information of the process on the source

node, creating a new instance of the process at the destination node, transferring

the state information there, and updating the connections with other processes on

communicating nodes (Figure 2.1).

Many implementations exist for process migration such as Condor [27], Mach [1],

Sprite [31], and LSF [50]. These implementations generally migrate whole process

at the kernel level or the user application space level in the Unix environment.

It is critical to notice that migration cannot occur at arbitrary point of program

13

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 2

source node destination node

communicating node

migrating
process
(source
instance)

restarting
process

(destination
instance)

communicating
process

state transfer

Figure 2.1: High Level View of Process Migration

execution. In [9, 40], a pre-compiler is used to examine user program, perform mi-

gration point analysis, and insert migration macros with data transfer algorithms.

Migration point is carefully selected and annotated so that the migration cost is

minimized.

Checkpointing2 often comes with process migration to provide fault-resilience

and fault-recovery capability. Techniques used in checkpointing include periodic

checkpointing, aperiodic checkpointing, adaptive checkpointing [2, 25, 38] and prob-

abilistic checkpointing [30]. Most checkpointing implementations were built at the

system level and are transparent to the user, with few exceptions that allow users

to define what data should be checkpointed [36].

Federate migration can be achieved at various levels. Obviously, general purpose

process migration schemes could be modified and be used to migrate HLA federates.

In this project, however, we focus only on application-level federate migration.

2Checkpointing and state saving are both saving essential execution state information. In this

thesis, we use the two terms interchangeably.

14

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 2

The easiest approach to migrate a federate is to utilize the HLA standard inter-

faces: federationSave and federationRestore. The drawback is apparent: federation

wide synchronization is required. One side-effect is that all non-migrating feder-

ates are required to participate in the federation save and restore process for every

migration request. As seen in Zaja̧c et al [48], the migration overhead increases

almost proportionally with the number of federates in the simulation. They further

argue that the overhead is mainly due to the time taken to join the federation [47].

Another side-effect of this approach is that no HLA-activity is allowed during the

whole federation save/restore process.

Other implementations generally adopt the checkpoint-and-restore approach. In

both [8, 28], the migrating federate’s essential state is checkpointed and uploaded to

an FTP server. The restarting federate will reclaim the state information from the

FTP server and perform a restoration. These implementations introduce further

latency since communicating with the FTP server is more time consuming.

Hence, minimizing the migration latency would be of great interest. As migra-

tion overhead stems mainly from synchronization and communication with a third

party (such as FTP), mechanisms avoiding these issues would be desirable. Such

algorithms exist in other migration studies. An interesting freeze free algorithm for

general purpose process migration was proposed by Roush [34]. In this algorithm,

the source host receives messages before the communication links are transferred.

Any message arriving while the communication links are in transit will be held

temporarily and will be sent to the destination when the links are ready at the

new host. Message receipt is only delayed while the communication links are in

transit. This greatly reduces process freeze time since non-migrating processes are

not involved in the migration. The migration mailbox is another approach [18]

where a predefined address, called a migration mailbox, receives messages for the

15

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 2

migrating process. After the process is successfully migrated, it will retrieve the

messages from the mailbox and inform other processes to send messages directly

to it. The shadow object approach used in avatar migration [19] also achieves the

same target. In this approach, each server monitors an interest area and neighbor-

ing servers’ interest areas overlap in a migration region. An avatar is maintained

by a server. When an avatar moves into the migration region, a shadow object is

created on the neighboring server. Once the avatar is out of the original server’s

scope, the shadow object is upgraded to an avatar on the neighboring server and

the old avatar at the original server is destroyed.

It is critical to ensure state consistency of the migrating federate during the mi-

gration process. Of all aspects, message integrity is the most difficult to ascertain

since messages are transmitted between federates dynamically. Above-mentioned

migration algorithms solve the message integrity problem under the specific cir-

cumstances. In Chapter 4, our approach will be discussed based on the migration

protocol proposed.

In this project, we focus on development of the framework and migration of

HLA-based simulation federate. In HLA-based simulations, each federate’s state

information includes its local attributes, published objects, updates and publica-

tion/subscription information, the received and outgoing interactions, and the in-

ternal state of the federate program itself. Thus, in addition that HLA simulations

are difficult to checkpoint, migrating a federate may need a large amount of data

to be transmitted. Therefore, one of our objectives is to devise a federate model

which will simplify federate checkpointing and minimize the data to be transferred

during migration. Our framework will be discussed in Chapter 3.

16

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3

SimKernel Framework

Although HLA/RTI provides the facility for simulation interoperability and reuse,

the complicated implementation requirements of an RTI-compliant program still

impose a barrier for people not specialized in HLA-based programming but still

like to design and deploy their PADS simulation in HLA [3].

The communication mechanism of HLA is based on the producer-consumer

paradigm where federates publish and subscribe certain type of object/events based

on their interests. A typical HLA-based federate contains its simulation code, a

FederateAmbassador that receives information from the RTI and an RtiAmbas-

sador that allows the simulation program to issue service requests to the RTI (see

Figure 3.1). When a modeler develops a federate complying to the HLA specifica-

tion, he/she needs to modify the simulation code to include service requests to the

RtiAmbassador and to implement all the required callbacks of the FederateAm-

bassador for federation management, time management, object management, and

declaration management. However, this process adds a significant amount of com-

plexity to user applications. For example, the HLA “HelloWorld” example program

contains only 15 lines of simulation code, but the entire program sums up to ap-

17

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 3

Interface

Federate Federate

FederateAmbassador FederateAmbassador

Run Time

Infrastructure

RTIambassador RTIambassador

Figure 3.1: HLA/RTI Simulation Interface

proximately 2700 lines. So, it takes tremendous effort for the modeler to develop

HLA-compliant simulation.

Despite the complexity involved in the development phase, the HLA specifi-

cation does not provide consideration for efficient migration support. HLA does

specify API for federation save and restore for migration and fault tolerance pur-

pose. However, during the whole federation save or restore operation, all federates

in the simulation are forced to participate, and no other HLA-related activity is al-

lowed. This limitation effectively halts all simulation federates even if the federate

is not involved in the migration operation. Obviously, this approach is ineffective.

In this project, we aim to develop a framework that separates the simulation

design from detailed implementation. The framework not only provides the mod-

elers with an easy-to-use interface, but also supports migration by providing easy

state saving and restoration APIs. In this chapter, we introduce the Simulation

Kernel framework, or SimKernel in short. We demonstrate how the SimKernel

framework [46] can facilitate efficient federate migration in the following chapters.

18

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 3

LP 1

LP3LP 2

Federate
2

Federate
3

Federate
1

Modeler’s View

Events

LP: Logical Process

HLA/RTI View

Federate

Interactions

Figure 3.2: Logical Process to RTI Federate Mapping

3.1 Introduction

A user-friendly modeling interface is developed to facilitate the adoption of HLA as

simulation platform. The interface hides the RTI implementation from the PADS

modelers. It is based on a commonly used model for PADS: physical processes are

modeled as logical processes (LPs); and interaction between physical processes are

modeled using message-passing between LPs. From the modeler’s view, she/he only

sees a set of LPs with appropriate communication links between them. However,

at the implementation level, these LPs will be mapped to a set of federates, and

all communications between the LPs will be implemented using RTI interactions.

When a modeler wants to design a simulation running on the RTI environment,

she/he can simply draw the LPs and specify the events between them with the help

of a GUI. The modeler can then specify the details on how each event is handled

19

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 3

at each receiving LP. Note that in this case the modeler does not need to know

anything about the HLA/RTI.

Once the configuration is specified, it will be transformed into an intermediate

specification file. Based on the configuration file, the target federate code is auto-

matically generated by extending a code library. This process greatly reduces the

modeler’s work in developing and deploying HLA simulations. Figure 3.2 shows a

mapping of PADS simulation configuration from a modeler’s view to the HLA/RTI

view.

This chapter explains the SimKernel framework in detail. Section 3.2 presents

a brief overview of the framework and Section 3.3 describes how the SimKernel

functions. Time Management and Data Distribution Management issues are illus-

trated in Section 3.4 and 3.5 respectively. The framework code library is presented

in Section 3.6 and the Code Generator that generates final executable based on

the modeler’s input is stated in Section 3.7. Finally, Section 3.8 summarizes the

characteristics of the SimKernel framework.

3.2 Framework Overview

Figure 3.3 shows the overview of the framework architecture. From a modeler’s

point of view, a GUI is available for her/him to specify the configuration of a

parallel simulation. The modeler can specify the LPs in the simulation and the

events that are sent or received by the LPs. The modeler also needs to specify

event handling behaviors for each type of events transmitted between two LPs.

Additional attributes for LPs can also be defined. The modeler may perform other

initialization activities in the LPs. The modeler’s design will be transformed to a

specification file (i.e., the LPConf.txt file), and event handling and initialization

20

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 3

Java code
(event
handler,
init, etc)

GUI
Module

Code
Gen

Federate &
SimEvent
definitions

LPConf
specs

FED file
RID file

SimKernel
code

libruary

Figure 3.3: SimKernel Framework Overview

codes are specified in Java programming language. These are all that are required

from the modeler, and the remainder of the work will be done by the framework.

Subsequently, a code generator will generate the RTI Initialization Data (RID)

file, the Federation Execution Data (FED) file and the executable federate code

based on the modeler specifications by extending the SimKernel code library. The

SimKernel code library components, developed in Java, are described in Section 3.6.

In HLA, federates communicate with each other by sending and receiving in-

teractions. Each event type defined by the modeler will correspond to an HLA

interaction class. In the implementation level, we define the SimEvent class. Each

event defined between two LPs will correspond to a SimEvent subclass. Hence, each

event subclass can be uniquely defined by the event type, the source and destination

LPs. Since events of the same type could be processed in totally different ways at

different receiving LPs, we define an abstract method consume() in the SimEvent

class. Each event subclass defines the handling behavior in the consume() method.

Thus, with the help of Java’s polymorphism, events can be processed in a uniform

way. SimEvent defines the name, data (event parameters encoded by the modeler),

timestamp, and destination of the event. Interfaces for parameter encoding and de-

coding are also defined in the SimEvent class. Additional attributes can be defined

in SimEvent subclass, but the modeler must manage the attributes properly.

21

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 3

SimKernel

outQ

consume

simulation control loop
5

8

3

6

7

2

1

inQ

4

Figure 3.4: Control Flow in SimKernel

The SimKernel maintains two queues, namely inQ and outQ. The inQ will

maintain the incoming interactions in SimEvent format, and the outQ contains in-

teractions to be sent to the RTI. The federate ambassador will dynamically trans-

late incoming interactions to SimEvent objects using Java dynamic class loading

technique [26], and put them into the inQ. When a SimEvent object is consumed,

interactions may be generated by the SimKernel and they will be put into the outQ.

RTI ambassador will later remove the interaction from the outQ and send it to the

appropriate destination.

3.3 SimKernel Operation

After the SimKernel is created and joins the federation execution, it will enter

a main simulation loop. The main loop iteratively checks the internal queues,

processes events and performs RTI related tasks until a termination condition is

met (see Figure 3.4).

22

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 3

The SimKernel first checks the outQ (operation 1). If there are some pending

interactions in the outQ, SimKernel will send them out using the HLA Data Distri-

bution Management (DDM) service (operation 2). The federate ambassador that

receives an interaction will convert it into a SimEvent object and push it to inQ

(operation 8).

Next, the inQ is checked (operation 3). If there are some events, the topmost

event’s timestamp (referred to as eventTime in algorithm 1) is compared with the

current simulation time (operation 4). If the timestamp of the event is greater than

the current simulation time, the SimKernel will request time advancement from the

RTI (operation 5). Once time advancement is granted, the events with timestamp

less than or equal to the granted time will be processed with the SimEvent’s con-

sume method (operation 6). Processing an event may generate new events. Events

generated for other LPs are converted into RTI interactions and inserted into the

outQ. Events generated for the same LP will be inserted into the inQ (operation

7).

This process is repeated until a termination criterion is met. The modeler can

end the simulation by setting the fedStatus variable to “terminating” directly.

The queue structure used in the implementation also simplifies the checkpoint-

ing process. Since the main simulation loop will iteratively process events in the

inQ, checkpointing is made easy by simply saving the local attributes, the ob-

ject/interaction publication/subscription information, the inQ and outQ at the

beginning of each iteration. When a migration request is issued, only the objects

in the inQ, the local attributes and the interaction publication/subscription infor-

mation need to be transferred.

23

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 3

3.4 SimKernel Time Management

The SimKernel employs the HLA event-based time management scheme. That is,

the SimKernel’s simulation time is calculated based on the event received from the

federation execution. Algorithm 1 presents the time advancement mechanism.

Algorithm 1 Time Advancement Algorithm

while fedStatus != terminating do
sendEventToRTI(); // send the interactions in outQ to RTI

if inQ.size() == 0 then
nextEventRequestAvailable(INFINITY);
while timeAdvanceGrant == false do

rtiAmb.tick();
end while
// CurrentTime set by RTI callback
if inQ.size() == 0 then

continue;
end if

end if

eventTime = inQ.getTopTime();
if eventTime > CurrentTime then

nextEventRequestAvailable(eventTime);
while timeAdvanceGrant == false do

rtiAmb.tick();
end while
// CurrentTime set by RTI callback

end if

repeat
inQ.getTopEvent().consume();
if inQ.size() == 0 then

break;
else

eventTime = inQ.getTopTime();
end if

until CurrentTime < eventTime
end while

24

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 3

The control flow is described in the previous section. The interactions in the

outQ are sent out using the sendEventToRTI() method. Next, SimKernel will

make request to the RTI to advance its simulation time. If the inQ has no event,

the SimKernel will attempt to advance the current simulation time to INFINITY.

The nextEventRequestAvailable() method is invoked here to handle potential zero

lookahead problem. The RTI will grant appropriate logical time to the federate.

When time advancement is granted, the inQ is checked again. If there is no new

event waiting for processing, this process is repeated. Otherwise, SimKernel will

attempt to process the first event in the inQ.

Before the event is processed, SimKernel will negotiate with the RTI to advance

its simulation time to the event’s time. This is done by issuing a nextEventReques-

tAvailable() with the eventTime. Once time advancement is granted, all events

in the inQ with timestamp less than or equal to the current simulation time are

processed. When a new event is generated during the event processing phase, it

will be inserted into either the outQ or the inQ. Events in the outQ will be sent to

other federates in the federation at the next round of processing.

3.5 DDM Event Routing

In the SimKernel framework, each LP specified by the modeler is given a unique

literal name. When an LP sends an event to its destinations, the modeler is allowed

to address the destination using the literal name. However, the HLA manages each

federate’s event interest based on a producer-consumer model. That is, a publish-

ing federate produces interaction instances according to its published interaction

classes, and the subscribing federate consumes the instances of the subscribed in-

teraction classes. The RTI tracks all federates’ publication and subscription in-

25

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 3

formation and sends control signals to the consumer, notifying what is produced

based on its subscription interest. Hence an algorithm that transforms the literal

name to HLA-compliant implementation is needed, and it should be completely

transparent to the modeler.

Suppose the modeler wants the LPs in Figure 3.5 to send and receive the same

type of events. The modeler certainly does not want LP3 to receive events sent by

LP2 which are in fact destined for LP1. Therefore, there must be some mechanisms

to prevent this scenario from happening.

One possible approach is to rename these events to different interaction classes.

For such approach, four federates publish and subscribe five distinct types of in-

teractions, although these interactions carry the same type of information. Each

federate will subscribe and publish based on its interest. Federates only receive

interactions sent from interested publishing federates.

LP1

LP4LP3

LP2e

e

e

e e

Figure 3.5: Same Event, Different Destination

Event renaming is a simple approach to design and implement. However, this

approach is not scalable. The difficulty of renaming increases with the complexity

of the simulation application. For example, if event e from LP2 to LP1 and LP3

26

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 3

are renamed to e21 and e23 respectively, when LP2 wants to send some information

through event e to both LP1 and LP3, it must send each event separately. However,

these two messages carry the same information except the destination is different.

With DDM, this can be done in one transmission by including both LP1 and

LP3’s subscription region when the message is transmitted. Event renaming is

also inflexible. For example, assume that LP2 will send e to LP1 only on certain

condition, and broadcast e to both LP1 and LP3 otherwise. With event renaming,

it is not straightforward to implement such scenarios.

3.5.1 DDM Service

Another approach is to employ the HLA Data Distribution Management (DDM)

service. HLA specifies the DDM service to promote effective network utilization and

reduce the network traffic. DDM provides a flexible and extensive mechanism for

isolating publication and subscription interests – effectively extending the sophis-

tication of the RTI’s producer/consumer mechanism. The RTI effectively serves as

an intelligent switch – matching up data distribution, based on declared interests

without knowing details about the data format or content being transported.

DDM further limits the number of messages transmitted in the federation using

Region3 with more stringent filtering at both sender and receiver side. This im-

proves the performance and scalability. With DDM, each federate declares a region

in which it is interested to receive interactions. When another federate sends an

interaction with a region overlapping the region a federate subscribes to, the fed-

erate will receive such interaction. Otherwise, the interaction will not be received

by the federate. A comprehensive discussion on how DDM is used can be found

in [10].

3A Region is a subset of the default routing space in HLA.

27

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 3

3.5.2 Region Determination

Suppose a collection of LPs send and receive an event class e as shown in Figure 3.5,

and the modeler wishes e to be delivered to different destination LPs based on cer-

tain criteria. To fulfill this requirement, a generic region determination algorithm

is needed.

To allow the modeler to send event to specific destination(s), our framework

automatically generates a unique literal name for each LP when it is created. The

modeler can change the name, but its uniqueness must be preserved. When an LP

needs to send an event to a specific LP or a list of LPs, the modeler only needs to

supply a literal string containing all the names of the destination LPs. From the

HLA perspective, we use a default region specification with only one dimension.

Each federate will subscribe with a unique single point region. When an LP sends

an event to a destination, the destination’s subscription region will be added to its

sending region. Figure 3.6 explains how a region is determined for the example 3.5.

Big circle is used to indicate the single point extent for each LP.

LP2’s sending region
for destination

 "LP1 LP3"

Subscribe Region
LP1 LP2 LP3 LP4

LP2’s sending region
for destination "LP1"

Figure 3.6: Region Determination for Example 3.5

Multiple extent region is used when an interaction is sent to multiple destina-

tions. The region will include all the subscription regions of the destination LPs.

28

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 3

For the example in Figure 3.5, when LP2 wishes to send event e to LP1 and LP3,

the destination will be specified as “LP1 LP3”, and transformed to a region with

two extents including the subscription points of both LP1 and LP3. If the event is

only sent to LP1, the destination will be specified as “LP1” and transformed to a

single extent region including the subscription point of LP1.

All new regions created are maintained by the federate using a lookup table.

When a region is to be created for a destination list, the lookup table is first checked

to see if an entry already exists. If such entry exists, the region is used directly.

Otherwise, a new region is created and stored in the lookup table. This region

reuse saves the time for creating a new region each time an interaction is sent.

By giving each federate a unique lateral name, it not only makes the destination

list of events more meaningful to the modeler but also makes use of the network

more efficiently. It can also further reduce the efforts in federate migration, and

this will be discussed in the next chapter.

3.6 SimKernel Code Library

The SimKernel code library is developed in Java language. The modeler has two

approaches to utilize the code library. One approach is to use the GUI to complete

the simulation design. The GUI will generate the LPConf file according to the

modeler’s specification. The other approach is manual development. That is, the

modeler writes the LPConf specification file and any necessary Java code directly.

Then, she/he can manually use the code generator to generate the final executable

code. Either way, the final code will be generated by the code generator (see

Figure 3.3). Appendix B presents examples on how each approach works. In this

section, we will describe the SimKernel code library hierarchy and how the library

29

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 3

is used.

The SimKernel library consists of six classes, namely SimKernel, SimEvent,

SimEventQueue, Interaction, InteractionQueue and MyFederateAmbassador (see

Figure 3.7).

The SimKernel encapsulates most of the RTI-related work, such as federation

management, time management, declaration management, federate setup, region

creation, and other APIs for use in the modeler’s code. It also has an abstract

method, init(). The final federate code generated by the code generator will ex-

tend the SimKernel and implement the abstract init() method. In init(), the

modeler may initialize federate attributes and/or create initial events. As previ-

ously mentioned, each SimKernel will have two queue objects: the inQ of type

SimEventQueue and the outQ of type InteractionQueue.

The SimEvent class defines the name, data (event parameters encoded by the

modeler), timestamp and destination of the event. The modeler can specify addi-

tional attributes when creating a subclass of SimEvent. All parameters of an event

will be packed into the data field of SimEvent. However, the modeler must explic-

itly define how to decode information from SimEvent objects through the decode()

method. The processing detail must be defined in the consume() method. Two

APIs are provided for the modeler to send event, one taking a SimEvent object,

and the other takes the contents of event. Encoding of individual parameters is

done either implicitly by the user in consume(), or explicitly in encode() method.

Note that SimEvent will also have a reference to the SimKernel. The reference

is necessary because instances of SimEvent are dynamically constructed, and the

event handling is done in the SimEvent’s consume() method. When the modeler

wishes to send new events to the RTI, the event object must have the reference to

the SimKernel so that appropriate SimKernel method can be used to deliver the

30

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 3

SimKernel

SimEventQueue

Federate
MyFederate-
Ambassador

1 (inQ)

1

*

(inQ)

MySimEvent

SimEvent

Interaction

InteractionQueue

1 (outQ)

*

Figure 3.7: SimKernel Class Hierarchy

event.

The SimEventQueue class stores event objects converted from RTI interactions

in ascending order based on the SimEvent’s timestamp. The SimEventQueue al-

lows SimEvent objects to be pushed into and popped from the queue. As both

the SimKernel and the FederateAmbassador are accessing the SimEventQueue,

synchronized methods are used in the SimEventQueue to ensure mutual exclusion.

The Interaction class wraps an RTI interaction into a Java object. It includes

31

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 3

a handle of the interaction, the ParameterHandleValuePair, timestamp, and a tag

indicating the source federate and a Region to be sent with. The InteractionQueue

class is analogous to the SimEventQueue class in functionality, except that this

queue only contains Interaction objects.

The MyFederateAmbassador class handles callbacks from the RTI. It is respon-

sible for coordinating the federate’s time advancement. It also uses the received in-

teraction information to dynamically create SimEvent subclass objects and pushes

the objects into SimKernel’s inQ.

3.6.1 Class Definitions

The SimKernel class is the core of the code library. It defines an abstract model

of federate. The final user federate will extend the SimKernel class and may de-

fine other local attributes. The SimKernel has a vector where the literal names

of all federates in the federation is stored, and hashtables are used to store the

name/parameter handles of the interaction subscribed/published. Since RTI in-

teractions are delivered with regions when DDM is used, we also incorporate a

hashtable to maintain existing Regions. New Region objects will be stored in the

hashtable so that no future Region creation is required.

The SimKernel also has string attributes for both the federation name and

the federate’s literal name. To facilitate federate migration in the future, SimK-

ernel uses fedStatus to indicate the current execution status. Valid value for fed-

Status includes running, restarting, collected, suspended, restoring, and

terminating. The states are explained later in Chapter 4.

Other attributes of SimKernel are related to the RTI time management. Both

regulating and constrained flags are used to enable time management service.

32

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 3

Table 3.1: SimKernel Class APIs - User APIs
protected void init() This abstract method allows modeler to specify

user-level initialization information.
protected String getAlias() This method will return the literal representation

of the current federate.
protected String getFedSta-
tus()

This method will return the current simulation
status of the federate.

protected void setFedSta-
tus(String aStatus)

This method will set the fedStatus to aStatus.

protected double getCur-
rentTime()

This method will return the current simulation
time of the federate.

protected double getLooka-
head()

This method will return the Lookahead value of
the federate.

public void setLooka-
head(int theLA)

This method allows the modeler set the federate’s
lookahead value, which has a default value of 1.0
in logical time.

public void setTime-
Limit(long limit)

Modelers are allowed to specify a simulation ter-
mination condition. This method specifies a ter-
mination condition based on the simulation time
upper bound. When the federate’s simulation
time is greater than the given limit, the federate
will finish simulation and resign from the federa-
tion afterwards.

Lookahead, CurrentTime and TimeAdvanceOutstanding define the variables used

to manage the correct simulation time.

The end user should not modify the SimKernel attributes directly. The set of

operations supplied to programmer are listed in Table 3.1 and other system APIs

are provided in Appendix A.

The SimEvent class will be used intensively by the users. The user may ob-

tain the simulation time and lookahead value of the residing federate using the

getLookahead() and getCurrentTime() methods. Events can be sent by SimEvent

using either of the two APIs, the sendEvent(String ename, String param, double

ttime, String destList) method or sendEvent(SimEvent se, String destList). The

33

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 3

Table 3.2: SimEvent Class APIs
public double getCurrent-
Time()

This method will return the current simulation
time at the federate where this SimEvent object
is being processed.

public double getLooka-
head()

This method will return the lookahead value at
the federate where this SimEvent object is being
processed.

public void encode() This abstract method allows the modeler to spec-
ify how the event’s parameters will be encoded
into a single String payload.

public void decode() This abstract method allows the modeler to spec-
ify how to interpret the received single String data
and decode it into the event’s parameter fields.

public void consume() This abstract method allows the modeler to spec-
ify how the event will be processed in the receiv-
ing federate.

public void sendE-
vent(String ename, String
param, double ttime, String
destList)

This method forwards the request to the SimK-
ernel instance. SimKernel reference is used to
invoke the sendEvent() method defined in the
SimKernel.

public void sendE-
vent(SimEvent se, String
destList)

This method will allow the user to send the
SimEvent object se to the destination destList.
Similarly, sendEvent() method defined in the
SimKernel will be invoked.

public Object getLPAt-
tribute(String attriName)

This method enables the modeler to obtain the
value of the named attribute at the LP where this
SimEvent object is being processed. The return
value is an Object. The modeler must perform
necessary type conversion using the Java API.

public synchronized void
updateLPAttribute(String
attriName, Object value)

This method allows the modeler to update the
named attribute value of the LP where this
SimEvent is being processed. If attriName does
not exist in the LP’s attribute table, this call
has no effect. Otherwise, the corresponding at-
tribute’s value will be updated accordingly.

first API requires the modeler to specify the event name, the encoded event param-

eter, the time to send and destination list. The second API requires the modeler

to construct a SimEvent object before invoking the API. These methods are dif-

34

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 3

ferent from the sendEventToRTI() method in SimKernel class. They will forward

the invocation to the corresponding sendEvent() method defined in the SimKernel,

which will transform the user-specified event into Interaction object if destination

is foreign federates or SimEvent object if the destination is itself. The reference to

the SimKernel is hidden from the users. Description of the SimEvent class APIs is

shown in Table 3.2.

The other classes, namely SimEventQueue, MyFederateAmbassador, Interac-

tion, and InteractionQueue, are designed to assist the operation of SimKernel.

These classes are hidden from the user, and should not be modified by the user.

The complete APIs and descriptions of these classes can be found in Appendix A.

3.6.2 Implementation

A federate under the framework extends the SimKernel. It has a MyFederateAm-

bassador object, a SimEventQueue object named inQ and an InteractionQueue

object named outQ. Each type of event transmitted between two LPs corresponds

to a SimEvent subclass. The MyFederateAmbassador object, instantiated from

the predefined library, will create SimEvent subclass objects using a dynamic class

loader based on the received interaction handle, source federate and destination

federate. The new event created is then pushed into the inQ. Figure 3.7 illustrates

the class hierarchy of the final federate code. Note that only Federate, MySimEvent

and Interaction classes will be created by the code generator, whereas other classes

are provided by the library.

35

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 3

3.7 Code Generator

The GUI allows modelers to specify the simulation model at a higher abstraction

level and transforms the modeler’s input files into final executables. What the code

generator requires is a set of input java files of event handling routines, federate

initialization routines and a specification file named LPConf.txt . The format of

the LPConf file is described below. It is also shown how the LPConf works for

Figure 3.5. An extensive use case is illustrated in Appendix B.

3.7.1 LPConf Syntax

The GUI design will be represented by an LPConf text file named LPConf.txt, and

the LPConf file will be the basis of generating the FED file and federate code.

Thus, all information entered from the GUI must be contained in the LPConf file.

Hence, LPConf will include the following information:

LP Information This section includes information of all LPs entered by the mod-

eler, including LP classes, local attributes and assigned instance literal names

of each LP class.

Event Information This section includes not only the type of events and all

classes of events, but also the source-destination of each event class, and the

handling details.

Based on these requirements, a proposed file format will include the following

sections:

• Federation information This section will include federation information,

such as the federation name.

36

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 3

• LP section This section includes the names of all LP classes. The attributes

of each class are also specified here, followed by the literal name of each

instance. Each literal name is unique in the whole simulation. The literal

names will be used to specify the source or destination of an event instance

at the next section.

• Event class section This section includes all the information of all the

event classes. The information of each event class includes two subsections,

namely the parameter subsection and mapping subsection. The parameter

subsection is self-explanatory; it simply states the parameters that the event

type can accommodate. The mapping subsection describes the literal name

of source LP and destination LP and where the event handling routine is

stored temporarily. We propose the following format:

– sourceLP: destLP classHandlerFile This clause specifies an event

class that will be sent to destLP from sourceLP, and at the destLP, this

event will be handled in the way as specified in the classHandlerFile.

3.7.2 How LPConf Works

Figure 3.8 illustrates the LPConf file generated for Figure 3.5. The simulation

has a federation name called TestCase, with four LPs, namely LP1, LP2, LP3,

and LP4, from the same LP class called LP. The LP class defines a local attribute

messageOfTheDay in String format. An event class e is defined with a parame-

ter named myMessage, also in String format. The way how message e is handled by

each LP is defined in a placeholder with the name eventName SourceLP DestinationLP.java.

In this case, they are e LP1 LP4.java, etc.

37

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 3

Federation TestCase
startLP

LP (String messageOfTheDay) (LP1 LP2 LP3 LP4)
endLP

startEvent
event e

parameter String myMessage
mapping

LP1: LP4 e LP1 LP4.java
LP2: LP1 e LP2 LP1.java
LP2: LP3 e LP2 LP3.java
LP3: LP1 e LP3 LP1.java
LP4: LP3 e LP4 LP3.java

endmapping
endEvent

Figure 3.8: LPConf File for Figure 3.5

3.8 Summary

In a nutshell, SimKernel framework is designed with the following characteristics

so that federate development and migration is made easy:

• Simulation design is allowed to be specified at Logical Process (LP) level.

This saves the modeler’s effort to code the simulation in RTI-compliant way.

The automatic code generator will produce the final executables based on

modeler’s input.

• Each federate is abstracted to a main simulation loop with two event queues,

namely inQ and outQ, holding incoming events and outgoing events respec-

tively. This feature makes checkpointing and state saving modular and sim-

ple. Federates only differ from each other by the queue contents and local

attributes. State saving is reduced to save the queue contents and local vari-

ables. Efforts to analyze state information is greatly reduced.

38

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 3

• All federates adopt the same execution pattern. This results in an application-

independent SimKernel. Thus, the SimKernel code library can be pre-uploaded

to the destination, saving the data size transferred at migration time.

• Event interest of a particular federate is specified in a configuration file. The

configuration file customizes the federate to represent a particular federate.

• Event processing detail is defined in each event’s user-defined consume() rou-

tine. Thus, processing of event is achieved by dynamically loading the event

object and invoking the processing routine.

• Each federate is identified by a unique literal name at the LP level. Instead

of routing the interactions using regions directly, SimKernel allows model-

ers to specify the destination in a more intuitive approach. SimKernel will

transform the literal name to RTI region and perform the message delivery.

These features facilitate easy federate migration at a higher abstraction level.

As the SimKernel is application independent, information transferred at migration

time is tremendously reduced. Since the standard library of the SimKernel frame-

work can be pre-uploaded to the destination hosts, only the events in the inQ, the

local attributes and the LP’s event interest specifications need to be transferred.

During federate migration, the migrating federate can be dynamically reconstructed

at the destination with the LP specifications and the saved states.

39

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 3

40

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4

Load Management

The SimKernel framework only provides the basic features to support easy load

management. We aim to deploy the SimKernel-based simulation onto the comput-

ing Grid to benefit from the vast computing resources and shorten the simulation

execution time. However, load level at different computing nodes may not be

evenly distributed, which may cause some federate processing at a lower speed.

Consequently, simulation execution time may not be always optimized. Migrating

federates from heavily-loaded host to less-loaded ones could overcome this problem

and make the less-loaded resources better utilized. In this chapter, the migration

support architecture is first presented, followed by a variety of federate migra-

tion protocols which take advantage of the SimKernel framework and result in less

migration overhead. A simple protocol may achieve migration with minimal inter-

ference to the simulation at the cost of potential message loss in heavily congested

network. Three improved protocols are therefore introduced to solve the potential

message loss problem using a counter mechanism.

41

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 4

Job
SimKernel

LMClient

RTI

.....

Load Manager (LM)

Job
SimKernel

LMClient

Job
SimKernel

LMClient

Figure 4.1: Migration Architecture

4.1 Migration Architecture

Our simulation execution support system consists of two subsystems, namely sim-

ulation subsystem and load management subsystem. Each simulation job is a

combination of components of the two subsystems. A SimKernel component per-

forms the simulation activity using the HLA/RTI and the Load Manager (LM),

with the LMClients at each individual hosts, performs the load management ac-

tivity (Figure 4.1). The SimKernel component and the LMClient component are

implemented as two separate threads running concurrently and interacting with

each other through shared objects.

The LM determines the destination host for the federate to be migrated. The

LMClients at the source and destination hosts will communicate until a successful

migration is achieved.

The LMClient at each host performs three major tasks. First, it monitors the

load level at the host and reports the information to the LM. The information

will be used by the LM to determine the federate and hosts involved in migration.

Second, on receiving a migration request from the LM, the LMClient will migrate

the selected federate using the protocol described in the next subsection. Third,

42

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 4

1

7 4

3

2

6

5

8

Legend:
1 created
2 running
3 suspended
4 collected
5 restarting
6 joined
7 restoring
8 terminating

Figure 4.2: Federate States

the LMClient will create, suspend, communicate with, and destroy the federate

when necessary.

To support migration, the SimKernel main simulation loop is adapted to a

state-based process model (Algorithm 2). A set of valid states is illustrated in Fig-

ure 4.2. Most state names are self-explanatory. The state is set to “created” when a

normal federate is created. The federate sets its state to “running” after it finishes

its interaction subscription/publication and simulation execution will proceed. If

the federate is created at the migration destination, the newly created federate,

hereafter referred to as restarting federate, will have its state set to “restarting”.

After the restarting federate finishes interaction subscription/publication, its state

transits to “joined”, which means the federate is now a part of the simulation fed-

eration and starts to receive interactions. This information is critical to the simple

migration protocol and is discussed in detail in Section 4.2. A “joined” federate

will switch to “restoring” state when it receives federate execution state from the

migration source and starts restoration. The “restoring” federate will reach the

“running” state when the restoration process is completed. A “running” federate

will go to “suspended” state when it is selected as the victim in a migration op-

43

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 4

eration and is referred to as the migrating federate in the following text. Here,

“suspended” means that the federate will not progress to the next simulation loop.

So, it will not process any event in its inQ with simulation time greater than its

current simulation time. But, it can still execute other tasks such as the Feder-

ateAmbassador callbacks and LMClient requests. State “collected” means that

the execution state information of the migrating federate is already extracted and

transferred to the destination. The state “restarting” is not shown in Algorithm 2

because the restarting federate’s state is set to “joined” prior to the execution of

the main simulation loop.

4.2 Simple Migration Protocol

The SimKernel framework defines a set of application-neutral base classes. Before a

federate is migrated to the destination, the base classes and federate codes, together

with the federate’s specification file are uploaded to the destination.

The simple migration protocol (see Figure 4.3) begins with the LM issuing a

migration request to the LMClients at both source and destination hosts. The

LMClient at the source host will set the federate state to “suspended”. After the

event(s) with timestamp less than or equal to the federate’s current time, if any, is

processed, the migrating federate sends out all outgoing events in its outQ. Then,

the federate waits for the LMClient to set the CollectInfo flag and starts to extract

its execution state after the flag is set. The LMClient will set the flag only when

its peer at the migration destination sends a “requestInformation” request. The

LMClient at the destination host will create a new instance (i.e., restartLP in Fig-

ure 4.3) of the federate with state “restarting” upon receiving the migration request

from the LM. The restarting federate will proceed to join the federation execution

44

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 4

Algorithm 2 Adapted SimKernel Main Simulation Loop
while (notEndOfSimulation()){

switch(fedState) {

case running:

processEvent(); // identical to the loop body in Algorithm 1

if (flagSet(“Suspended”))

setFedState(“Suspended”);

break;

case suspended:

sendOutgoingEvents();

waitForFlag(“CollectInfo”);

flushQueueRequest();

saveState();

setFlag(“InfoReady”);

setFedState(“collected”);

break;

case collected:

waitForFlag(“Terminate”);

setFedState(“terminating”);

break;

case joined:

waitForFlag(“Restore”);

setFedState(“restoring”);

break;

case restoring:

flushQueueRequest();

restoreState();

setFlag(“Resume”);

setFedState(“running”);

break;

case terminating:

break;

default:

System.out.println(“invalid state.”);

}

}

and subscribe and publish any event of its interests with the same configuration of

the original federate. After the restarting federate successfully completes the event

subscription (i.e., “joined”), the LMClient at the host will be notified and subse-

45

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 4

RTI
migrating
federate

LMClient@
source

restarting
federate

LMClient@
destination

Load
Manager

req_migrate

CollectInfo requestInformation

subscribeInteraction

startLP
Suspend

InfoReady

Terminate

resignFederationExec

returnInformation
Restore

flushQueueRequest

receivedInteraction

migrationSucceeded

receivedInteraction

flushQueueRequest

publishInteraction

req_migrate

joinFederationExec

sendOutgoingEvents

Joined

Resume

Figure 4.3: Simple Federate Migration Protocol

quently send “requestInformation” to its peer at the source host. the restarting

federate also starts to receive messages of its interest after it reaches the “joined”

state. Note that the new federate is identical to the original one. After the restart-

ing federate subscribes to the events, both federates will receive the same set of

messages from other federates.

When the migrating federate is instructed to collect execution state, it first

invokes flushQueueRequest(), causing the RTI to deliver all messages by calling its

receivedInteraction() callback regardless of time management constraints. Received

46

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 4

events will be stored in the federate’s inQ.

Upon the completion of flush queue request, the migrating federate encodes its

current time, lookahead, events in the inQ and local attributes in the attribute

table into a formatted string and in the meantime, sets the infoReady flag to

indicate that execution state data is ready for migration. The federate state is

also set to “collected”. Event publication/subscription information is not included

because it is specified in a separate text file and is transferred with the migration

request to the migration host4. The LMClient at the source host waits until the

federate sets the InfoReady flag and gets the execution state. It then starts to

transfer the information to its peer at the destination host. After the LMClient

at the destination host receives the information, it will notify the LM and its peer

at the source that the federate is successfully migrated. The “collected” migrating

federate’s state will be set to “terminating” by the LMClient after it receives a

“migrationSucceeded” message. The migrating federate will exit the main loop

and resign from the federation. The information transferred to the destination

host is restored by the restarting federate.

The LMClient at the destination host will set the federate state to “restor-

ing”. Subsequently, the federate begins restoration. A dynamic class loading tech-

nique [26] is used to reconstruct event objects from the string specification encoded

by the migrating federate. Reconstructed event objects are inserted to inQ. The

restarting federate then invokes flushQueueRequest() with its current logical time

to obtain all events sent by RTI since it registered its event interests. When the

restarting federate restores the received information, duplicates are removed. Since

both migrating and restarting federates subscribe to the same set of interaction

4We use text file to specify the federate’s event interests because the SimKernel framework

only support static event publication/subscription at this stage.

47

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 4

classes, there may exist interactions that reach both the migrating federate and

the restarting federates.

After the restarting federate has successfully restored its execution state, normal

simulation execution resumes and the LMClient at the host will be notified. The

LMClient will subsequently inform its peer at the migration source host with a

“migrationSucceeded” message.

Note that the LMClient at each host is regularly updating the load level infor-

mation to the LM. When an LMClient fails to do so, the host is assumed inactive

and not eligible for migration. If the selected destination host is down after the mi-

gration decision is made, no socket channel to the host can be successfully created

and the LM has to select another destination for migration.

4.3 Improved Migration Protocol

Although the simple protocol achieves migration with minimal interference to non-

migrat-

ing federates, there is a potential possibility of message loss which will invalidate

the state consistency constraint when the network is heavily congested (or in a very

high latency network). In this section, we first present the problem, followed by

three improved protocols that use a counter mechanism to solve the problem and

to ensure message integrity.

4.3.1 Message Loss

Consistency is an important requirement for any migration design. In our de-

sign, we must ensure that the restarting federate completely mirrors the migrating

48

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 4

publishing
federate

migrating
federate
(MF)

restarting
federate
(RF)

R
F
:

s
u
b
s
c
r
i
b
e
I
n
t
e
r
a
c
t
i
o
n

M
F
:

f
l
u
s
h
Q
u
e
u
e
R
e
q
u
e
s
t

e

M
F
:

r
e
s
i
g
n
F
e
d
e
r
a
t
i
o
n
E
x
e
c
u
t
i
o
n

Figure 4.4: Potential Message Loss Problem

federate. Further, there is no message loss in transit during federate migration.

In a low latency network, messages are mostly delivered to the destination

federate immediately. Hence, we assume that our simple protocol can comply to

message integrity constraint most of the time. However, in a high latency network,

such as the Wide Area Network (WAN), there is a high tendency that a message

may take quite a long time to reach the migrating federate (See Figure 4.4).

Figure 4.4 illustrates how the problem could happen. When the publishing

federate sends out an interaction e before the restarting federate subscribes that

particular interaction class, the publishing federate will only deliver the message to

the migrating federate. However, the interaction e may not arrive at the migrating

federate before it resigns from the federation, due to high network latency. Thus,

the message e will not be encoded as the migrating federate’s execution state. Since

the interaction e is not delivered to the restarting federate either, it is lost in transit

during the federate migration.

49

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 4

4.3.2 Counter Mechanism

To overcome the problem identified above, an additional component is incorporated

into each federate. We propose to attach an index for each interaction sent and

for each individual interaction class, maintain counters for interactions sent and

received at the publishing and subscribing federate respectively. The counter values

will then be used to determine whether or not there is a message loss.

An object class, named myOutCounter, is defined in the FOM. It has a set

of counter attributes, one for each interaction class defined in the FOM. After a

federate joined the federation execution, it first checks whether or not an instance

of myOutCounter is created in the federation. If not, it will create an instance5.

Each federate will acquire ownership of attributes corresponding to its published

interaction classes. They will publish and update the value of the acquired counter

attributes. A counter attribute value is initialized to -1 and is only incremented

by 1 when an instance of the corresponding interaction is sent out by the federate.

The value -1 is used to identify that the federate has not sent any instance of the

interaction class yet. Thus, interaction instances sent are labeled from 0 onwards.

The counter value is also attached to the tag field as the index when an interac-

tion is sent. The myOutCounter object class and its attributes are automatically

generated by the code generator and are put into the FED file.

Each federate also maintains a myInCounter variable for each subscribed in-

teraction class. If reliable communication is assumed, myInCounter variable can

contain only the largest index value of the corresponding interaction instances re-

ceived. In case of “best effort” communication, the myInCounter could maintain

the intervals of indices of received interactions.

5Note that only one instance of myOutCounter needs to be created for each federation.

50

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 4

o
p
t
i
o
n
a
l

RTI
migrating
federate

LMClient@
source

restarting
federate

LMClient@
destination

Load
Manager

req_migrate

CollectInfo requestInformation

subscribeInteraction

startLP
Suspend

receivedInteraction

flushQueueRequest

publishInteraction

req_migrate

joinFederationExec

sendOutgoingEvents

attributeOwnershipAcquisition

requestAttributeOwnershipRelease

attributeOwnershipReleaseResponse

attributeOwnershipAcquisitionNotification

InfoReady
returnInformation

Restore

flushQueueRequest

receivedInteraction

Terminate

resignFederationExecutionmigrationSucceeded

subscribeObjectClassAttribute

A

unsubscribeObjectClass

reflectAttributeValues

requestObjectAttributeValueUpdate

B

notifyMissingMessages

returnMissingMessages

receivedInteraction
C

Joined

Resume

missingMsg

restoreMissingMsg

missingMsg

missingMsgCollected

Figure 4.5: Improved Federate Migration Protocol

Thus, for each interaction class, a myOutCounter object attribute, maintained

at the publishing federate, contains the index value of the latest interaction sent,

and myInCounter value, maintained by a subscribing federate, contains the in-

51

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 4

dex value of the latest interaction received. Message in transit for an interac-

tion class i can be detected by comparing the values of the corresponding myOut-

Counter attribute and the myInCounter variable as follows. If myInCounteri <

myOutCounteri is true, there is a message in transit.

For example, if a publishing federate has updated a myOutCounter attribute

value to 10, and the subscribing federate only have a value 9 in its corresponding

myInCounter variable, this means that the message with index 10 has not reached

the subscribing federate yet, and it is still in transit.

4.3.3 Protocol Description

The counter mechanism is incorporated into the improved protocol to prevent mes-

sage loss, and Figure 4.5 shows the details. Federates can be classified into three

groups according to the role played during a migration operation:

1. Federates that does not participate in the migration.

2. The federate that is to be migrated, i.e., the migrating federate.

3. The restarting federate on the migration destination host.

For non-migrating federates, during the migration process, they behave as if

no migration is occurring. That is, those federates continue to send, receive and

process interactions. To ensure there is no message loss, the non-migrating federate

may be requested to update some of its published myOutCounter attributes.

When a federate receives an interaction from the RTI, it needs to identify the

class of the interaction and update the corresponding myInCounter variable for

the specific interaction class.

52

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 4

The protocol is identical to the simple protocol except for the optional part

shown in Figure 4.5. When the restarting federate receives the execution state

information from the migrating federate, it first performs restoration. Immediately

after restoration, the restarting federate sends a flush queue request to the RTI to

receive interactions if there is any. Once the callback is received, the restarting

federate starts to analyze whether or not the state is consistent (point A in the

protocol). If there are interactions received for a particular interaction class, the

interaction’s index is checked against the restored myInCounter value of the spe-

cific interaction class. If the myInCounter value and the indices of the received

interactions make a continuous series, or overlap, no message is lost during the

migration process for the interaction class. The above procedure can be performed

for all interaction classes subscribed. The migration is successful only if there is no

missing message for any of the interaction classes subscribed.

However, the restarting federate may not yet receive any message for a particu-

lar interaction class. In this case, myOutCounter object needs to be used to verify

whether or not there is a message loss for the interaction class. For an interac-

tion class that the restarting federate subscribes to but has not yet received any

interaction, it performs the following activities:

1. Subscribe to the attribute of myOutCounter object that corresponds to the

interaction class with the RTI service subscribeObjectClassAttributes().

2. Request the value of the attribute by RTI service requestObjectAttributeVal-

ueUpdate().

3. Receive the value of the attribute by the reflectAttributeValue() RTI callback.

The reflected attribute values are compared with the corresponding restored my-

InCounter values. The verification process (point B in the protocol) is the same

53

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 4

as that described for point A.

It is noted that this attribute update request/reflect process is optional, depend-

ing on the result of the operation at point A. If at point A, the restarting federate

has already received interactions for all the interaction classes it subscribes to, this

process in unnecessary.

The migrating federate will resign from the federation after a successful migra-

tion is achieved. If the restarting federate finds that there exists missing message(s)

for an interaction class, it has to wait until all missing messages (point C in Fig-

ure 4.5) are received and forwarded to the restarting federate.

4.3.4 Ownership Management for myOutCounter Object

As described in the previous subsection, each federate only owns the ownership

of myOutCounter attributes it publishes. Thus, each federate will acquire the

ownership of the corresponding attributes at startup time.

The ownership of the object myOutCounter needs to be transferred if the mi-

grating federate owns some of the attributes and/or the privilege to destroy the

object. The restarting federate will acquire the corresponding attributes’ ownership

intrusively. The standard intrusive pull protocol of HLA ownership management

is used here [22].

The restarting federate will request to acquire attribute ownership after it sub-

scribes all events from the RTI. Since the restarting federate and the migrating

federate are publishing the same set of interaction classes, the attributes acquired

will be always from the migrating federate. If, after the restarting federate has

acquired the attributes, but before it resumes normal simulation execution other

federate requests for the update of the corresponding attribute values, the restart-

54

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 4

ing federate will postpone the update until it resumes normal execution.

4.3.5 Alternative Procedure

There are two alternatives to place the requestObjectAttributeValuesUpdate() call:

either immediately after restarting federate subscribes/publishes interactions (Fig-

ure 4.6) or as that shown in Figure 4.5.

In the first case (i.e., Figure 4.6), the restarting federate needs to request the

latest myOutCounter attribute values corresponding to all the interaction classes

it subscribes to. Since the restarting federate performs this request after it reg-

isters its event interests with the RTI, it is guaranteed that index value of fu-

ture received interactions will be larger than the corresponding attribute values

reflected by the reflectAttributeValue() callback. Those values are sent to the mi-

grating federate with the requestInformtion() call. The migrating federate will

send flushQueueRequest() to the RTI and wait until all the interactions with index

less than or equal to the corresponding myOutCounter attribute value received.

The migrating federate then saves the state and transmits them to the restarting

federate.

This approach needs minimal modification of the simple protocol (Figure 4.3)

and requires only one round of communication between the migrating federate and

the restarting federate. However, the restarting federate needs to request object

attribute value update for all the interaction classes that it subscribes to no matter

whether or not it has received interactions.

In the second case (i.e., Figure 4.5), the restarting federate only requests ob-

ject attribute value update for those interactions of which it has not received any

interactions. This may reduce the overhead caused by object attribute value up-

55

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 4

RTI
migrating
federate

LMClient@
source

restarting
federate

LMClient@
destination

Load
Manager

req_migrate

subscribeInteraction

startLP
Suspend

publishInteraction

req_migrate

joinFederationExec

sendOutgoingEvents

flushQueueRequest

receivedInteraction

Terminate

resignFederationExec

migrationSucceeded

subscribeObjectClassAttribute

unsubscribeObjectClass

reflectAttributeValues

requestObjectAttributeValueUpdate

InfoReady
returnInformation

RestorerequestAttributeOwnershipRelease

attributeOwnershipReleaseResponse

attributeOwnershipAcquisitionNotification

CollectInfo

receivedInteraction

flushQueueRequest

requestInformation

attributeOwnershipAcquisition

Joined

Resume

Figure 4.6: Alternative Protocol

date. Depending on the scenarios, the optional part in Figure 4.5 (or part of it)

may not be executed at all. However, there is still a likelyhood that two rounds of

communication may be required between the migrating federate and the restart-

ing federate: one for transmitting saved state information; the other for handling

missing messages.

56

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 4

o
p
t
i
o
n
a
l

RTI
migrating
federate

LMClient@
source

restarting
federate

LMClient@
destination

Load
Manager

req_migrate

requestInformation

subscribeInteraction

startLP

publishInteraction

req_migrate

joinFederationExec

sendOutgoingEvents

attributeOwnershipAcquisition

requestAttributeOwnershipRelease

attributeOwnershipReleaseResponse

attributeOwnershipAcquisitionNotification

InfoReady
returnInformation

Restore

flushQueueRequest

receivedInteraction

subscribeObjectClassAttribute

A

unsubscribeObjectClass

reflectAttributeValues

requestObjectAttributeValueUpdate

CollectInfo

receivedInteraction

flushQueueRequest

Suspend

Terminate

resignFederationExecutionmigrationSucceeded

B

notifyMissingMessages

returnMissingMessages

receivedInteraction
C

Resume

missingMsg

restoreMissingMsg

missingMsg

missingMsgCollected

Joined

Figure 4.7: Further Improvement

4.3.6 Further Improvement

Further study of HLA/RTI activity shows that the process of joining the federa-

tion execution may contribute a very large portion to the migration overhead [47]

57

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 4

because the restarting federate needs to establish TCP connections to all the ex-

isting federates. Hence, protocols that reduce the time for a federate to join the

federation would potentially further reduce the migration overhead.

This can be achieved by modifying on our improved protocol (i.e., Figure 4.5).

Instead of setting the migrating federate’s state to “suspended” after the LMClient

at the source host receives migration request, we allow the migrating federate

continue simulation execution till the LMClient receives the “requestInformation”

call from the migration destination. All other procedures remain the same as the

improved protocol (see Figure 4.7). So, the process of restarting federate joining the

federation execution will be carried out concurrently with the simulation execution

of the migrating federate, and thus can be excluded from the migration overhead.

4.4 Summary

In this chapter, we first present our migration support system based on the SimK-

ernel framework, followed by a simple migration protocol that has a low migration

overhead at the expense of potential message loss in high latency network. The mes-

sage loss problem is discussed in detail and an improved protocol using a counter

mechanism to overcome the problem is then presented. An alternative to the im-

proved protocol and a further improvement to reduce migration overhead are also

presented. The performance of these protocols will be studied in the next Chapter.

58

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5

Experiments and Performance

Analysis

This chapter first describes the benchmark and the test environment. Results of

all the migration protocols are presented and discussion on each protocol follows.

A study of each HLA activity is also presented, which further explains the perfor-

mance difference between migration protocols.

5.1 Experiment Setup

In the improved protocols, to verify message integrity, the restarting federate is

required to communicate with federates that sends interactions to it. Therefore,

we used a bidirectional, completely-connected graph with number of nodes varied

from 2 to 15 as test benchmark. Each federate sends messages to, and receives

messages from, all federates in the simulation, including itself. Figure 5.1 shows

the experimental setup for the case with three federates. To avoid the message

numbers growing exponentially, each LP will not send out messages to other LPs if

59

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 5

LP2

relay

LP0

relay
relay

LP1

relay
re
la
y

relay

re
la
y relay

relay

Figure 5.1: Experimental Setup

the message being processed is not sent by itself. In other words, an LP will send

a message to all federates only when the source and destination of the message

being processed are identical.

The various migration protocols are tested on a Linux cluster connected by

both Ethernet and Myrinet. Figure 5.2 illustrates the architecture of the cluster

and lists each node’s specification. Load Manager (LM) runs on Surya, which

deploys federates to the modes inside the cluster. In the experiments, there is only

one federate running on each node.

5.2 Experimental Results and Discussion

The protocols tested was:

• Simple migration protocol described in Figure 4.3 (referred in Figure 5.3 as

“Simple”)

• Improved migration protocol that performs message integrity checking at

60

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 5

Figure 5.2: Test-bed Cluster Surya Specification

the restarting federate as described in Figure 4.5 (referred in Figure 5.3 as

“Improved-1”)

• Improved migration protocol that performs message integrity checking at

the migrating federate as described in Figure 4.6 (referred in Figure 5.3 as

“Improved-2”)

• Improved migration protocol that reduces federate join time as described in

Figure 4.7 (referred in Figure 5.3 as “Improved-3”)

The federates are submitted to each host manually and it is ensured that each

nost only runs one federate at a time. The LMClients are built to communicate

in TCP/IP sockets. A Load Manager randomly selects a federate as the migration

61

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 5

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of Federates

L
a
te

n
c
y
 (

s
e
c
o

n
d

s
)

Federation Save/Restore

Simple

Improved-1

Improved-2

Improved-3

Figure 5.3: Migration Protocols Performance Comparison

victim, indicating the federate to migrate to another host which has LMClient but

no federate is running. For each protocol, the test case is executed three times and

the migration overhead is averaged and plotted in Figure 5.3 in comparison to the

federation save/restore approach provided by the standard HLA/RTI interface.

5.2.1 Simple Migration Protocol

Comparing to the federation save/restore approach, the migration overhead in-

curred using the simple protocol is generally much smaller. Migration overhead

spans from the time when the migrating federate is suspended to the time when

the restarting federate resumes normal execution. The simple protocol results in

reduced migration overhead mainly due to the following factors:

No explicit federation-wide synchronization is required. Since parallel and

62

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 5

distributed simulations generally impose constraint on time management,

halting a federate could potentially prevent other federate from advancing.

Clearly, this is inevitable. However, when a HLA federation save or restore is

performed, all federates in the federation are explicitly forced to participate.

It effectively synchronizes the whole federation until the operation is achieved.

Thus, all federates are directly affected during the migration while most of

them are not migrating. Hence, performance is degraded. Federate migration

that employs federation-wide synchronization suffers from poor performance

since federates not involved in the migration are forced to be synchronized.

No communication with third party is required. While most migration im-

plementations use a third party, such as a FTP server, to store the saved state,

additional overhead is introduced since communicating with third party is

more time consuming. In the simple protocol, migrating a federate requires

only peer to peer communication between the source and the destination

hosts. This greatly reduces the migration time.

Only the migrating federate is affected during state restoration. Some im-

plementations that perform event history logging require the restarting fed-

erate to request event history from all federates interacting with it and carry

out restoration when necessary. When the number of federates grows, the

overhead grows proportionately. Using the simple protocol, the only commu-

nication required is between the migrating federate and its restarting copy,

other federates need not take part in the restoration.

In addition, the simple migration protocol also has the following advantages:

Checkpointing is transparent to the modeler. The SimKernel framework is

completely transparent to modelers. Modelers only need to specify the LPs

63

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 5

in the simulation at LP level, the events between LPs and the processing

details of each event. The design is translated into Java codes by automatic

code generator. Checkpointing/state-saving is carried out at the SimKernel

level, which does not require modelers to provide the code to explicitly save

state at the application level. This also applies to the improved protocols.

Migration is transparent to non-migrating federates. This protocol further

benefits the non-migrating federates with complete migration transparency.

During the entire migration period, non-migrating federates that interact

with the migrating federate continue to send and receive events. These fed-

erates have no knowledge whether the federate is processing a message or

migrating to another host.

5.2.2 Improved Protocols

Results show that two protocols (Improved-1, and Improved-2) incurs larger over-

head than the simple protocol due to additional activities to handle missing mes-

sages. It is noted that the migration overhead of the improved protocols increases

faster than that of the simple protocol when the number of federates increases.

This can be explained by two main factors: the complexity handling missing mes-

sages and the significance of the join time compared to other operations, as shown

in a breakdown study of each HLA/RTI activity (see next Section).

For both Improved-1 and Improved-2, by the time the restarting federate re-

ceives the state information from the migrating federate, the restarting federate

may have received messages for some of the interaction classes it subscribes to.

In Improved-1, the federate will not request object value update from the RTI for

those interaction classes, and this reduces the overhead. However, with Improved-2,

64

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 5

the received message information is not used, and a larger overhead is observed.

As our benchmark uses bidirectional fully-connected graph, when Improved-2

is used for migration, it is noted that the migration overhead is higher than that of

federation save/restore. This is because the restarting federate has to communicate

with all other federates for counter value update.

It is also noted that the result of the further-improved protocol (Improved-3)

shows that the overhead incurred is greatly reduced. Furthermore, the overhead

incurred increases in a slower pace than other protocols. The reason lies in two

aspects. First, in the further improved protocol, the join federation operation of

the restarting federate overlaps with the continuous simulation execution of the

migrating federate. This effectively excludes the join federation operation being

counted in the migration overhead. Second, since the migrating federate continues

simulation execution, it is likely that the migrating federate might have received

all interactions/messages in transit when requested to collect state information.

This will avoid the execution of the optional part of the protocol that handles the

missing messages.

5.3 Breakdown Study of HLA Activity

A breakdown study of each HLA/RTI activity is also carried out to investigate

the impact of each operation. Results are shown in Table 5.1. Results shows

that creating and joining federation (createFE and joinFE) consumes tremendous

amount of time compared to other HLA/RTI initialization activities, such as ob-

ject/interaction publication/subscription (objPubSub and intPubSub). This is due

to the fact that when a new federate joins the federation execution, it is required

to establish TCP connection to all the rest federates, even though the new federate

65

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 5

does not have any event subscription/publication relationship with the federate.

This also explains why the Simple protocol’s migration latency increases when the

number of federates increases.

Table 5.1: Breakdown Study of HLA/RTI Activity (in Seconds)
FederateNo 2 3 4 5 6 7 8 9 10 11 12 13 14 15

createFE 2.9 3.1 3.3 3.7 3.8 3.9 4.0 4.3 4.6 5.6 5.7 6.3 6.9 7.5

joinFE 1.9 1.8 3.3 4.6 5.7 6.6 9.4 10.8 12.1 12.3 12.3 13.8 13.9 15.4

objPubSub 0.15 0.14 0.15 0.14 0.16 0.16 0.17 0.18 0.18 0.21 0.23 0.25 0.26 0.27

intPubSub 0.17 0.18 0.16 0.16 0.20 0.21 0.22 0.22 0.23 0.22 0.23 0.25 0.27 0.28

5.4 Summary

In this chapter, we presented the test environment and test results for both the

simple migration protocol and the improved alternatives. The simple protocol

achieves migration without federation-wide synchronization. No communication

with third-party program/server is required and a better performance is achieved.

However, the simple protocol may cause potential message loss problem in high

latency network. We solve the problem by using a counter mechanism. The im-

proved protocol achieves consistency-guaranteed migration at a higher overhead.

Study shows that creating and joining federation contribute a large amount to the

migration overhead. The further improved protocol takes this into consideration,

which achieves consistency in migration with reduced overhead.

66

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6

Conclusions and Future Work

High Level Architecture provides a software platform with simulation interoper-

ability and reusability. However, developing simulation that conforms to the HLA

specification requires tremendous effort. Hence, in this project, a SimKernel frame-

work that allows modelers to focus on the design of the simulation rather than

HLA/RTI details was developed.

The SimKernel framework includes:

• A GUI which allows the modelers to specify the simulation from the logical

process level;

• A SimKernel code library which implements the HLA requirements and pro-

vides the modeler a set of intuitive APIs;

• An automatic code generator which takes the modeler input, links the SimK-

ernel code library, and produces the final executables.

The SimKernel, the heart of the whole framework, was built on a queue-based

message processing model: all incoming messages are stored in an incoming queue

67

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 6

(inQ) and all outgoing messages are stored in an outgoing queue (outQ). It it-

eratively takes messages from the inQ and processes according to the modeler

specification. Outgoing events generated during message processing are pushed to

the outQ and sent out afterwards. Local attributes are stored in hashtable. In

addition, each SimKernel is given a unique literal name, which can be used as

destination of an outgoing message. These features provide modelers great conve-

nience for the simulation design. Furthermore, state saving is also made easy and

application-independent. The SimKernel’s dynamic execution state contains the

messages in its inQ/ouQ, and its local attributes, and state saving can be done in

a transparent and modular manner.

When simulation is executing over a distributed network, there may be scenario

that some host becomes heavily-loaded. Subsequently, the federate deployed on the

host may progress slowly and cause the slowdown of the entire simulation. Migrat-

ing the federate to a less-loaded host could solve this problem. However, traditional

HLA-based simulation requires tremendous effort to be migration-enabled, mainly

due to the effort required to save the execution state. With SimKernel framework,

migration can be achieved easily because the framework incorporates built-in sup-

port for state-saving.

Protocol plays a very important role in migration. Most existing migration pro-

tocols employ the federation save/restore approach or with the help of a third-party

FTP server. These protocols incur unnecessary synchronization or communication,

which affects the performance. In this project, we proposed some migration proto-

cols which do not require federation wide synchronization or communication with

a third party. A simple protocol was first developed, which achieves better per-

formance than the protocol that uses federation wide synchronization. However,

it may result in message loss during migration. A counter mechanism was then

68

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis CHAPTER 6

proposed to solve the problem. With the counter mechanism, although there is a

higher migration overhead, message consistency is guaranteed. Study shows that

the action of joining federation contributes most of the overhead, thus, the protocol

was further improved to avoid the federation join operation being counted in the

migration overhead.

In summary, the SimKernel framework not only provides the modeler an easy-

to-use interface for creating parallel and distributed simulation that conforms to

the HLA/RTI standard, but also provides features to facilitate easy federate mi-

gration. Aspects that affect migration performance were carefully studied and

protocols were developed accordingly. Experimental results show that the final

improved protocol achieves better performance than the protocol using federation

save/restore. It further reduces the migration overhead in comparison to the simple

protocol and ins the meantime it guarantees that there is no message loss during

migration.

69

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis APPENDIX

70

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Appendix A

SimKernel Code Library API

This Appendix includes the programmer’s APIs of SimEventQueue class, Interac-

tion class, InteractionQueue class, MyFederateAmbassador class and the system

APIs of the SimKernel class.

Table A.1: SimEventQueue Class APIs
public synchronized
SimEvent getTopEvent()

This method will pop the topmost SimEvent
object in the queue if any.

public synchronized void in-
sertEvent(SimEvent se)

This method will insert the SimEvent object
se to the queue according to the timestamp
in ascending order.

public synchronized int
size()

This method will return the size of the queue.

public synchronized double
getTimeAtIndex(int index)

This method will return the timestamp of the
SimEvent object at queue index index.

71

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis APPENDIX A

Table A.2: Interaction Class APIs
public int getHandle() This method will return the handle of the

Interaction object.
public double getTime() This method will return the timestamp at

which the interaction should be delivered.
public Region getDest() This method will return the Region where

the current Interaction will be sent to.
public
hla.rti13.java1.SuppliedPa-

This method will return the SuppliedParam-
eters to be sent to RTI.

rameters getParams()

Table A.3: InteractionQueue Class APIs
public synchronized Inter-
action pop()

This method will pop the topmost Interac-
tion object in the queue if any.

public synchronized void in-
sert(Interaction ip)

This method will insert the Interaction ob-
ject ip to the queue according to the times-
tamp in ascending order.

public synchronized int
size()

This method will return the size of the queue.

public double getTimeAtIn-
dex(int index)

This method will return the timestamp of the
Interaction object at queue index index.

72

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis APPENDIX A

Table A.4: MyFederateAmbassador Class APIs
public void turnInteraction-
sOn(int theHandle)

This callback advises the federate of the pres-
ence of active subscribers for an interaction
class published by the federate. Parameter
theHandle specifies the interaction class.

public void turnInteraction-
sOff(int theHandle)

This callback advises the federate of the ab-
sence of active subscribers for an interaction
class published by the federate. Parameter
theHandle specifies the interaction class.

public void receiveInter-
action(int theInteraction,
hla.rti13.java1.ReceivedInt-

This callback informs the federate that an
interaction in the federation relevant to the
federate’s current subscription interests.

eraction theParams, byte[
] theTime, String theTag,
EventRetractionHandle
theHandle)

This method will convert the ReceivedInter-
action into a SimEvent object and insert it to
the SimKernel’s incoming event queue (i.e.,
inQ).

public void timeAdvance-
Grant(byte[] theFederate-
Time)

This callback informs the federate that
a previous nextEventRequestAvailable() re-
quest has been completed. The granted log-
ical time is theFederateTime.

public void timeRegulatio-
nEnabled(byte[] theFeder-
ateTime)

This callback advises the federate that time
regulation has been enabled with effect from
theFederateTime onwards, as response to a
previous enableTimeRegulation() service in-
vocation.

public void timeConstraine-
dEnabled(byte[] theFeder-
ateTime)

This callback advises the federate that time
constraint has been enabled with effect from
theFederateTime onwards, as response to
a previous enableTimeConstrained() service
invocation.

73

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis APPENDIX A

Table A.5: SimKernel Class APIs - System APIs
private void createAndJoin-
Federation()

This method will create and join the feder-
ation as named in the constructor.

private void resignAndDe-
stroyFederation()

This method will resign the federate from
the federation execution. If the federate is
the only executing member of the federa-
tion, it will also destroy the federation exe-
cution.

private void loadFeder-
ateList()

This method initializes the fedList attribute
used for region extent creation.

private void initializeTime-
Management()

This method will initialize the time manage-
ment scheme for the federation execution.
By default, all federate are both regulat-
ing and constrained.

private void parseLPConf-
Spec(String fileName)

This method will read in the configuration
information for the current LP (federate)
and do the event (interaction) publication
and subscription work.

private void publishInterac-
tion(String iName)

This method will publish an event (interac-
tion) as specified in iName.

private void subscribeInter-
action(String iName)

This method will subscribe the event (inter-
action) iName with the region of itself.

private Region createRe-
gion(String destList)

This method will create a multi-extent re-
gion for destination LP list destList.

private void sendEvent-
ToRTI()

This function will check the outQ and send
the interaction stored in the queue to RTI.

protected void sendE-
vent(String ename, String
param, double ttime, String
destList)

This method will cause the federate send
an event ename with parameters encoded
into a single payload param to the desti-
nation LPs specified in destList at simula-
tion time ttime. If destLP is itself, event
will be converted to SimEvent object and
put into inQ ; otherwise, it will be converted
to Interaction object and put into ouQ.
Note that SimEvent class has an API of ex-
actly the same contract as this API. The
SimEvent API will invoke this API to send
the message through RTI interaction.

private void run() This is the main simulation loop. It itera-
tively checks the outQ, sends interaction to
RTI, advances the simulation time, and pro-
cesses the received interactions.

74

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Appendix B

SimKernel Framework Use Case

There are two approaches for the modeler to utilize the SimKernel framework:

using the GUI to specify the design or writing the necessary files directly. In this

Chapter, we build a simple use case and illustrate how to generate the simulation

using each approach.

B.1 Use Case

The use case implements a simple one-way super-ping [44] with a conditional mul-

ticast by relaying each federates local realtime to the following federate in the

simulation.

In the use case, All LPs belong to the same LP class, with name of LPa, LPb,

LPc and LPd respectively. Each LP has a local String variable named strLocal-

Time, which contains, in String format, the LP’s current realtime returned by the

System.currentTimeMill-

is() method. All LPs start at simulation time 0.0 and have a lookahead value of 1.0

(simulation time). An event class “relay” is defined to contain a single parameter

theTime, which is of the Java String type. LPa will relay its current real time to

LPb, and LPb will further relay its current wall clock time to LPc. LPc will also

75

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis APPENDIX B

LPa

LPb LPc

relay

relay

relay

LPd
relay

relay

Figure B.1: Use Case: One-way Super-ping

relay to LPd. However, when LPd receives LPc’s time, it will multicast its current

wall clock time to both LPa and LPb if the received time value’s least significant

digit is 5. When LPb receives the conditional multicast from LPd, it simply sleep

for 1 second (wall clock time). Each LP has an initial event which is sent to the

corresponding destination.

B.2 Using the GUI

When the GUI is used to specify the simulation design, the modeler must follow

the following steps:

Figure B.2: GUI Launchup

Step 1: Start the GUI using the following command:

76

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis APPENDIX B

$ java GUI/showgui

Then the GUI launch-up window will appear (Figure B.2).

Step 2: Click on “Start a Federation”, the design environment is popped up.

Select “Design View” (Figure B.3), and the GUI shows a tree view of the LP classes

and message classes, a design area, and control pane.

Figure B.3: GUI Design Environment

Step 3: Start a simulation design by starting the federation from menu File,

then click on “Create New Federation”. A dialog box will ask the modeler to specify

the simulation name. In this case, we name the federation as “demo2” (Figure B.4).

Then click OK.

Step 4: Before the modeler specify the simulation, LP classes and Event classes

must be created. This is done through the Template menu. Click on “Create New

LP Class”.

77

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis APPENDIX B

Figure B.4: Create New Federation Name

Figure B.5: Create new LP Class

Step 5: The “New Logical Process Class” dialog box will allow the modeler to

define the LP class and specify the LP class’ attributes (Figure B.6). In this case,

we only have one LP class, and we name it “LP”, and the class has one attribute,

String strLocalTime. If multiple attributes are defined, they will be delimited

by coma, like Type1 var1, Type2 var2, Type3 var3 . The LP class’ display

properties can also be changed.

Step 6: After the LP class is defined, click on File -> Save, followed by View

-> Refresh-all, the newly defined LP class “LP” will appear in the project tree

view under the LPs branch (Figure B.7).

78

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis APPENDIX B

Figure B.6: Define LP Class’ Properties

Figure B.7: Tree View Refresh for LP Class

79

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis APPENDIX B

Figure B.8: Define New Event Class

Step 7: Event Class is defined in a similar way to the LP class. For the use

case, we define the event name as “relay”, and parameter as “String theTime” (Fig-

ure B.8). Notice that the SimKernel framework defines the SimEvent class with a

single trunk, named as “data” of String type, of parameter(s) for simplicity pur-

pose, the modeler must specify how each individual parameter is encoded to and

decoded from the “data” field. In this case, the “relay” event class only has one

parameter, which is “theTime” of String type. After the event class’ details are

defined, click OK.

Step 8: Event class can be reflected in the project tree view by the same pro-

cedure as described in Step 6 (Figure B.9).

Step 9: After LP classes and Event classes are defined, the modeler can specify

the design by adding LP instances and event definitions between LP instances.

LP instance is added by first selecting the LP class in the tree view, this makes

80

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis APPENDIX B

Figure B.9: Reflect the Event Class on Project Tree View

subsequent operations in the design pane6 recognized as “create LP instance” op-

eration. Click on the design pane, new LP instance will be added to the design.

All new instances are named “default” (Figure B.10) and the modeler must fill in

the required details.

Step 10: Each LP instance’s properties can be changed. The modeler must click

the “select LP” option from the control pane on the right. Double clicking on an

LP instance, the instance’s properties will be displayed (Figure B.11). The modeler

can change the LP instance’s name and initialization routine (Figure B.12). After

modification is performed, click on Apply.

Step 11: More LP instances can be added to the simulation design by repeating

Step 9 and Step 10 (Figure B.13).

6In Swing, the Java graphics library, a pane is piece of a frame and is used to track the various
graphics components in the frame.

81

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis APPENDIX B

Figure B.10: Add New LP Instance to Simulation Design

Figure B.11: Default LP Instance Properties

82

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis APPENDIX B

Figure B.12: Modify LP Instance’s Properties

Figure B.13: Create More LP Instances

83

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis APPENDIX B

Step 12: Event is added to the design similar to adding LP instances. After the

appropriate Event class from the tree view is selected, all subsequent operations

in the design field will be recognized as “create event” operations. Each event is

defined by a directed link from one source LP to one destination LP. When both

source and destination LPs are selected, the link will show with an arrow and the

event class name is shown beside the link. In the example, an event from LPa to

LPb is specified, and the event is of type “relay” (Figure B.14).

Figure B.14: Create Event Between LPs

Step 13: Event defined in Step 12 has empty processing detail and the modeler

must explicitly specify how the receiving LP will process the event. Click “Select

Events” from the control pane on the right, then double click on the event, a di-

alog box showing the event’s properties will pop up. The event class’ parameters,

encoding and decoding functions are shown in grey text. The editable textbox

allow the modeler specify how exactly the receiving LP will handle this event in

84

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis APPENDIX B

the consume() method (Figure B.15). In our example, upon receiving a “relay”

event from LPa, LPb prints its local realtime on screen, followed by showing the

realtime relayed from LPa. It then updates its local realtime through the updateL-

PAttribute() API, obtains the residing machine’s local time and relays the time to

LPc by invoking the sendEvent() API. Available APIs are shown in Table 3.2.

Figure B.15: Define Event Processing Detail

Step 14: More Events can be defined by repeating Step 12 and Step 13 until

all events are specified (Figure B.16). The LPs can also be moved to a convenient

place in the design pane using the control pane on the right. Click inside the white

rectangle and hold the mouse button down, move the mouse and the design will

also move. Until a suitable position is reached, release the mouse button.

Step 15: When the simulation design is completed, the modeler can start code

generation by select “Execution View”, followed by click on “Generate Federation

File”. A dialog box will appear for the modeler to confirm file generation (Figure

85

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis APPENDIX B

Figure B.16: Complete Simulation Design

B.17). Click Yes, and the GUI will write the modeler’s design in the GUI to an

intermediate file recognized by the code generator. When files are generated, a

message indicating the operation is successful will show up (Figure B.18).

Step 16: The final executable code can be generated from the intermediate files

by clicking on “Generate Code Files”. The code generator will take the intermediate

files as input, link with the SimKernel code library, and produce the final code for

all LP instances and event classes. The code generator also compiles the code to

executables (Figure B.19).

In summary, the GUI allows the modeler to specify the simulation from the

GUI at a higher abstraction level. What is required is the essential simulation

information, such as the LPs, events and their associated properties. The modeler

specifies how each event is handled by specifying the consume() routine from the

GUI, and our code generator will automatically transform the LP-level simulation

86

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis APPENDIX B

Figure B.17: Generate Federation File

Figure B.18: Federation File Generation Completed

87

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis APPENDIX B

Figure B.19: Code Generation Completed

design to HLA-compliant code ready for execution. The next section will explain

the format of intermediate files and how the code generator works using the same

use case.

The GUI was implemented by a Final Year Project (FYP) student, and more

details regarding its implementation can be found in [39].

88

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis APPENDIX B

B.3 Manual Setup

The modeler may also create the simulation by manually setup all the required files

and run the code generator from command line to achieve exactly the same result

as using the GUI. The modeler needs to provide the following inputs:

• LPConf.txt file The LPConf.txt file specifies the LP level simulation spec-

ifications. This file must conform to the format described in Section 3.7.1.

• LPInit files These are the LP’s initialization routines that set up each LP’s

characteristics.

• Event Encoding/Decoding Definition File This type of files contains

the event parameter encoding/decoding definition for the event class.

• Event Processing Definition Files Each event’s processing detail defini-

tion is defined in a file using naming convention

eventName srcLP destLP.java.

All files should be located at project/src folder where project is the simula-

tion project directory. For example, in this use case, all files will be in the directory

demo2/src. The modeler must create the LPConf.txt file exactly as shown in Fig-

ure B.20.

All LP instances’ initialization routines are defined in the corresponding LPIn-

stNameInit.java file. For example, LPaInit.java contains the initialization routine

for LPa, which is shown in Figure B.21.

For the event class, the encoding/decoding details are defined in a Java file

named as event.java. In this case, relay.java will do the job and is shown in Fig-

ure B.22.

89

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis APPENDIX B

Federation demo2
startLP

LP1 (String strLocalTime) (LPa LPb LPc LPd)
endLP

startEvent
event relay

parameter String theTime
mapping

LPa: LPb relay LPa LPb.java
LPb: LPc relay LPb LPc.java
LPc: LPd relay LPc LPd.java
LPd: LPa relay LPd LPa.java
LPd: LPb relay LPd LPb.java

endmapping
endEvent

Figure B.20: LPConf.txt File for Use Case Figure B.1

// LPaInit.java

public void init(){
setTimeLimit(100);

updateAttribute(“strLocalTime”,
Long.toString(System.currentTimeMillis()));

sendEvent(“relay”, (String)getAttribute(“strLocalTime”),
getLookahead(), “LPb”);

}

Figure B.21: LPaInit.java for LPa in Use Case Figure B.1

For each event subclass, defined by a source and a destination LP, the event

processing behavior is defined in eventName srcLP destLP.java file. Figure B.23

shows the consume() method for event subclass relay LPc LPd.

After all files are created, the modeler can generate the final code by invoking

the CodeGenerator with the project directory as parameter from the command

line:

90

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis APPENDIX B

// relay.java

public void encode(){
data = theTime;

}

public void decode(){
theTime = data;

}

Figure B.22: Event Class relay Encoding/Decoding Definition

// relay LPc LPd.java

public void consume(){
System.out.println(“start processing relay LPc LPd”);
System.out.println(“received time is: ” + theTime);
System.out.println(“LPd’s local time is (before sync): ”

+ getLPAttribute(“strLocalTime”));

System.out.println(“synching time with remote time ...”);
updateLPAttribute(“strLocalTime”, theTime);
System.out.println(“done!”);

System.out.println(“LPd’s local time is (after sync): ”
+ getLPAttribute(“strLocalTime”));

String dest;
if(theTime.endsWidth(“5”))

dest = “LPa LPb”;
else

dest = “LPa”;
System.out.println(“relaying LPd’s local time.”);
sendEvent(“relay”, Long.toString(System.currentTimeMillis()),

getCurrentTime() + getLookahead(), dest);
}

Figure B.23: Event Processing Definition for relay LPc LPd

$ java CodeGenerator demo2

91

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis APPENDIX B

The CodeGenerator will look into and take input from the src subdirectory

of the demo2 directory, link with the SimKernel code library, and produce the fi-

nal HLA-compliant .java files in the demo2/dest directory and compile them to

.class files. The modeler could start the federate by the following:

$ cd demo2

$ java LP Name

92

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Bibliography

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and

M. Young. Mach: A New Kernel Foundation for UNIX Development. In

Proceedings of the Summer USENIX Conference, pages 93–112, 1986.

[2] Roberto Baldoni, Jean-Michel Hélary, Achour Mostefaoui, and Michel Raynal.

Consistent Checkpointing in Message Passing Distributed Systems. Techni-

cal Report 92, Institut de Recherche en Informatique et Systèmes Aléatoires,

Rennes, France, 1995. PI–925, available online at ftp://ftp.irisa.fr:

/techreports/1995/PI-925.ps.gz.

[3] B. Beebe, C. Bouwens, W. Braudaway, S. Harkrider, J. Ogren, D. Pater-

son, R. Richardson, and P. Zimmerman. Building HLA Interfaces for FOM

Flexibility: Five Case Studies. In Proceedings of the 1997 Fall Simulation

Interoperability Workshop, 1997. 97F-SIW-172.

[4] Fran Berman, Geoffry Fox, and Tony Hey. The Grid: Past, Present, Future.

Grid Computing - Making the Global Infrastructure a Reality, pages 9–50,

2003. John Wiley & Sons Ltd., England.

[5] Azzedine Boukerche and Sajal K. Das. Scalabilty of a Load Balancing Algo-

rithm, and Its Implementation On an Intel Paragon. In 1999 International

93

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis BIBLIOGRAPHY

Symposium on Parallel Architectures, Algorithms and Networks (ISPAN ’99),

pages 274–281, Fremantle, Australia, 1999.

[6] M. Brasse and O. Stroosma. A Component Architecture for Federate Develop-

ment Description. In Proceedings of the 1999 Fall Simulation Interoperability

Workshop, 1999. 99F-SIW-025.

[7] Carl Byers and Lily Lam. TRAXX: An Extensible Federate Development

Framework to Support HLA Compliant Federation Implementation. In Pro-

ceedings of the 1997 Spring Simulation Interoperability Workshop, 1997. 97S-

SIW-043.

[8] Wentong Cai, Stephen J. Turner, and Hanfeng Zhao. A Load Management

System for Running HLA-based Distributed Simulations over the Grid. In

Proceedings of the Sixth IEEE International Symposium on Distributed Simu-

lation and Real Time Applications (DS-RT ’02), pages 7–14, 2002.

[9] Kasidit Chanchio and Xian-He Sun. Data Collection and Restoration for Het-

erogeneous Process Migration. Software – Practice and Experience, 32(9):845–

871, 2002.

[10] D. Cohen and A. Kemkes. DDM Scenarios. In 1997 Fall Simulation Interop-

erability Workshop, 1997. 97F-SIW-057.

[11] V. S. Dobbs. Managing a Federation Object Model with Rational Rose: Bridg-

ing the Gap Between Specification and Implementation. In Proceedings of the

2000 Fall Simulation Interoperability Workshop, 2000. 00F-SIW-010.

[12] Ian Foster and Carl Kesselman. The Globus Project: A Status Report. Future

Generation Computer Systems, 15(5–6):607–621, 1999.

94

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis BIBLIOGRAPHY

[13] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the Grid:

Enabling Scalable Virtual Organizations. International J. Supercomputer Ap-

plications, 15(3), 2001.

[14] Richard M. Fujimoto. Parallel and Distributed Simulation Systems. Wiley-

Interscience, 2000.

[15] J. Graham, J. Foscue, and D. Cutts. HLA Object Models as Software Object

Models: An Approach to Automatic Software Generation from HLA Object

Models. In Proceeding of the 1998 Spring Simulation Interoperability Work-

shop, 1998. 98S-SIW-043.

[16] Andrew S. Grimshaw and W. A. Wulf. The Legion Vision of a Worldwide

Virtual Computer. Communications of the ACM, 40(1):39–45, January 1997.

[17] George T. Heineman and William T. Councill. Component-based Software En-

gineering: Putting the Pieces Together. Addison-Wesley Longman Publishing

Co., Inc., 2001.

[18] E. Heymann, F. Tinetti, and E. Luque. Preserving Message Integrity in Dy-

namic Process Migration. In Proceedings of Euromicro Workshop on Parallel

and Distributed Processing (PDP-98), pages 373–381, 1998.

[19] J. Huang, Y. Du, and C. Wang. Design of the Server Cluster to Support

Avatar Migration. In Proceedings of The IEEE Virtual Reality 2003 Confer-

ence (IEEE-VR2003), pages 7–14, Los Angeles, USA, March 2003.

[20] W. Huiskamp. Laguna Beach: HLA on Baywatch? In Proceedings of the 1999

Fall Simulation Interoperability Workshop, 1999. 99F-SIW-027.

95

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis BIBLIOGRAPHY

[21] Ken Hunt, Judith Dahmann, Robert Lutz, and Jack Sheehan. Planning for

the Evolution of Automated Tools in HLA. In Proceedings of the 1997 Spring

Simulation Interoperability Workshop, 1997. 97S-SIW-067.

[22] IEEE. P 1516, Standard for Modeling and Simulation (M&S) High Level

Architecture (HLA) - IEEE Framework and Rules, September 2000.

[23] IEEE. P 1516.1, Standard for Modeling and Simulation (M&S) High Level

Architecture (HLA) -Federate Interface Specification, April 2000.

[24] IEEE. P 1516.2, Standard for Modeling and Simulation (M&S) High Level

Architecture (HLA) -HLA Object Model Template (OMT), February 2000.

[25] C.-C. J. Li, E. M. Stewart, and W. K. Fuchs. Compiler-Assisted Full Check-

pointing. Software–Practice and Experience, 24(10):871–886, October 1994.

[26] Sheng Liang and Gilad Bracha. Dynamic Class Loading in the Java Vir-

tual Machine. In Conference on Object-oriented Programming, Systems, Lan-

guages, and Applications (OOPSLA’98), pages 36–44, 1998.

[27] M. Litzkow. Remote UNIX-Turning Idle Work-stations into Cycle Servers. In

Proceedings of the Summer USENIX Conference, pages 381–384, 1987.

[28] Johannes Lüthi and Steffen Großmann. The Resource Sharing System: Dy-

namic Federate Mapping for HLA-based Distributed Simulation. In Proceed-

ings of Parallel and Distributed Simulation, pages 91–98. IEEE, 2001.

[29] D. S. Milojičić, F. Douglis, Y. Paindaveine, R. Wheeler, and S. Zhou. Process

Migration. ACM Computing Surveys (CSUR), 32(3):241–299, September 2000.

96

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis BIBLIOGRAPHY

[30] Hyo-Chang Nam, Jong Kim, Sung Je Hong, and Sunggu Lee. Probabilistic

Checkpointing. In Symposium on Fault-Tolerant Computing, pages 48–57,

1997.

[31] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson, and B. Welch. The Sprite

Network Operating System. IEEE Computer, pages 23–26, 1988.

[32] S. Parr, A. Radeski, R. Keith-Magee, and J. Wharington. Component-Based

Development Extensions to HLA. In Proceedings of the 2002 Spring Simulation

Interoperability Workshop, 2002. 02S-SIW-046.

[33] Shawn Parr, Alex Radeski, and Rob Whitney. The Application of Tools Sup-

port in HLA. In The 11th Annual Simulation Technology and Trainning Con-

ference, Melbourne, 2002.

[34] Ellard Thomas Roush. The Freeze Free Algorithm for Process Migra-

tion. Technical Report UIUCDCS-R-95-1924, UIUC, 1995. Available

online at http://www.cs.uiuc.edu/Dienst/UI/2.0/Describe/ncstrl.uiuc cs/

UIUCDCS-R-%95-1924.

[35] J. Cracknell Rule, Nick. Lessons Learned Implementing and Using a General-

purpose Federation Management, Prototyping and Debugging Tool. In Pro-

ceedings of the 1997 Fall Simulation Interoperability Workshop, 1997. 97F-

SIW-019.

[36] Luis Moura Silva and Joao Gabriel Silva. System-Level Versus User-Defined

Checkpointing. In Symposium on Reliable Distributed Systems, pages 68–74,

1998.

97

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis BIBLIOGRAPHY

[37] F. G. Smith, A. W. Dunstan, and G. H. Lindquist. Information Architecture

Based Tools for Interoperable Simulation Within the HLA. In Proceedings of

the 1997 Fall Simulation Interoperability Workshop, 1997. 97F-SIW-069.

[38] Hussam M. Soliman and Adel Said Elmaghraby. An Analytical Model for Hy-

brid Checkpointing in Time Warp Distributed Simulation. IEEE Transactions

on Parallel and Distributed Systems, 9(10):947–951, October 1998.

[39] Wei Yeh Sun. GUI for HLA/RTI Simulation Modeling. Final Year Report,

Nanyang Technological University, 2004. SCE03-333.

[40] Xian-He Sun, Vijay K. Naik, and Kasidit Chanchio. A Coordinated Approach

for Process Migration in Heterogeneous Environments. In 1999 SIAM Parallel

Processing Conference, March 1999.

[41] Sun Grid Engine. http://www.sun.com/software/gridware.

[42] Clemens Syzperski. Component Software: Beyond Object-Oriented Program-

ming. Addison-Wesley, 1998.

[43] Yong Meng Teo and R. Ayani. Comparison of Load Balancing Strategies on

Cluster-based Web Servers. Simulation, The Journal of the Society for Mod-

elling and Simulation International, 77(5-6):185–195, November-December

2001.

[44] Yong-Meng Teo and Seng-Chuan Tay. Performance and Granularity Control

in the SPaDES Parallel Simulation System. In 1999 International Symposium

on Parallel Architectures, Algorithms and Networks (ISPAN ’99), pages 94–99,

Fremantle, Australia, 1999.

98

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Master of Engineering’s Thesis BIBLIOGRAPHY

[45] Ming Q. Xu. Effective Metacomputing Using LSF MultiCluster. In Procs. of

2001 International Symposium on Cluster Computing and the Grid (CCGrid

2001), pages 100–105, Brisbane, Australia, May 2001.

[46] Zijing Yuan, Wentong Cai, and Malcolm Yoke Hean Low. A Framework for

Executing Parallel Simulation using RTI. In Proceedings of the Seventh IEEE

International Symposium on Distributed Simulation and Real Time Applica-

tions (DS-RT ’03), pages 12–19, Delft, The Netherlands, October 2003.

[47] Katarzyna Zaja̧c. A Framework for HLA-based Interactive Simulations on the

Grid. Technical report, Kraków University.

[48] Katarzyna Zaja̧c, Marian Bubak, Maciej Malawski, and Peter Sloot. Towards a

Grid Management System for HLA-based Interactive Simulations. In Proceed-

ings of the Seventh IEEE International Symposium on Distributed Simulation

and Real Time Applications (DS-RT ’03), pages 4–11, Delft, The Netherlands,

October 2003.

[49] Songnian Zhou. A Trace-Driven Simulation Study of Dynamic Load Balancing.

IEEE Trans. on Software Engineering, 14(9):1327–1341, September 1988.

[50] Songnian Zhou, Xiaohu Zheng, Jingwen Wang, and Pierre Delisle. Utopia:

A Load Sharing Facility for Large, Heterogeneous Distributed Computer Sys-

tems. Software-Practice and Experience, 23(12):1305–1336, 1994.

99

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

