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ABSTRACT 
 

The objective of our project is to design an agent architecture to simulate the intelligence 

and behaviour of a vessel captain in navigation. An agent representing a vessel captain 

should be able to perceive the environment, make decisions and act simultaneously. The 

agent should be able to prioritize its activities according to their importance and urgency. 

The agent should be able to reconsider its goals and intentions and adapt in the changing 

environment. The agent should be able to improve its performance with the accumulation 

of experience. Different vessel captains and thus different vessel agents should behave 

differently based on different personalities and past experience. It is also the objective of 

our research that work done here is general enough for building agents in other contexts 

like a robot looking after a patient or old people. 

 

Many agent architectures have been proposed based on various processing philosophies, 

including deliberative architectures, reactive architectures and hybrid architectures. The 

deliberative agents have powerful reasoning ability compared to the reactive agents, but 

the slow processing speed due to the theorem proving based on complex symbol systems 

of the world makes them unsuitable for some dynamic environments. The agents based 

on the reactive architecture do not need deliberating and have quick processing ability. 

However, it is hard to design and maintain such agents, especially for complex agent 

systems. More importantly, the reactive agents lack learning ability which is essential for 

a truly automatic and evolutionary agent. The hybrid architecture combines deliberative 

and reactive architectures. The emergencies can be processed by the reactive layers while 

the deliberative layers process other decisions. Currently, the behaviours of all the 

existing agents are organized in a sequential way: detect-think-act. When an agent is 

thinking, it cannot detect the environment and may be in the danger of overlooking 

emergencies. 
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In this thesis, a general framework for real time performance in the Belief-Desire-

Intention (BDI) model is proposed. It is an improvement for the BDI agent model. The 

agent consists of three parallel components: belief manager, intention generator and 

intention executor. The communication among them is realized by interrupts. The current 

running actions in the intention generator or intention executor can be suspended if the 

new incoming data has a higher priority. It supports the following agent abilities at the 

architecture level: (1) the ability to respond to emergencies timely; (2) the ability to 

reconsider and modify goals, intentions and actions in reaction to unexpected or new 

information; (3) the ability to perform multiple actions at once; (4) the ability to perceive, 

deliberate and act simultaneously; (5) the ability to prioritize the deliberations and 

intention executions. The architecture provides a possibility for the deliberative agents to 

be applied in complex and dynamic environments. A comparison experiment among the 

parallel agent and the sequential ones is made by simulating the processing of incoming 

events. The results show that the parallel agent has a powerful processing ability. The 

issue of how much parallelism and how to configure a parallel agent based on the general 

framework are studied by experiments with different configurations of the parallel agent. 

 

Furthermore the vessel agent is personalized by its past experience and personality. We 

incorporate Experience Function library into the basic BDI model. As an example for 

accumulating experience, we apply the reinforcement learning algorithm to improve the 

agent’s skills of obstacle avoidance. The algorithm is incorporated into the vessel agent 

as an Experience Function. The agent accumulates the experience during its navigation 

and the different past experiences will make the agent behave differently.  

 

Then we propose a Priority Control extension to the BDI agent. The priorities of the 

deliberations/intentions in the agent can be controlled by proper Priority Control 

Functions. This provides a way to schedule the deliberations/intentions. A reminding-

forgetting Priority Control Function is designed by simulating human behaviours when 

dealing with several things at the same time. Such function can be used when designing 

human-like agents. The agent with different settings for the Priority Control Function 

behaves differently.  
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Finally, a software agent system of vessel captain traveling at sea is developed based on 

the parallel BDI agent framework with the Experience Function library and Priority 

Control components. The structure for realizing the software agent is designed. The 

experiments show that the agent is able to respond according to expectations. 

 

At the end of the thesis, we conclude on the contributions made in this research. Possible 

future research and applications are also discussed. The work presented in this thesis was 

done in simulation. We expect that it can be applied in real robots some day.  
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Chapter 1 Introduction 
 

 

 

CHAPTER 

1  
INTRODUCTION 
 

1.1   Background 

The Singapore Strait is used by vessels entering and leaving the Port of Singapore as well 

as by transiting vessels. Vessels enter and leave the Port of Singapore via various 

navigational approaches. The types of vessels using the Singapore Strait range from very 

large container carriers to small crafts such as passenger ferries. During peak periods, like 

morning or evening, or public holidays, a larger number of ferries will appear. The heavy 

marine traffic makes certain sea areas very crowed and accidents do happen occasionally. 

 

In such an environment, vessels exhibit the following behaviours: 

o Moving towards the destination. This means that a vessel has to reach its target, 

instead of navigating aimless. For example, a vessel moves to the Port of 

Singapore. With a given destination and the map of the sea, each vessel plans its 

own route to arrive at the destination. 

o Avoiding stationary objects and other moving vessels. For example, for a 

transiting vessel, it should avoid collision with islands, reefs and lighthouses 

spotted in the Singapore Strait. At the same time, when it meets other navigating 

vessels, it should also avoid these moving vessels. Thus methods of avoiding 

dynamic obstacles are necessary. 
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In the real world, vessels are under the commands of their own captains. As people have 

different personalities, different captains demonstrate different vessel navigation arts. So 

human factors have very important effects on vessel navigation. The human factors 

affecting navigation can be seen from the following facts: 

o Captains have different behaviours in moving towards the destinations. Some 

people tend to move fast, some take it easy. Some are behind schedule, therefore 

have to rush. Some are before schedule, so need to slow down. 

o A bold and a meticulous captain may have different styles of command when 

dealing with the same situations when other vessels are nearby. A meticulous 

captain always adopts the safest strategies earlier than his bold peers. Different 

types of vessels also have different velocities, sizes and capacities. 

o Experienced and green-horn captains have different reactions to the same events. 

 

A simulation system of vessels traveling at sea is very useful for risk analysis and 

channel capacity estimation in the Singapore Strait or any other waters. The risk analysis 

will be carried out for the interaction between each type of vessel and each of the other 

types of vessels, the time of the day and the different areas. The simulation system will be 

able to indicate what type of vessels, what kind of captains or behaviour, which area and 

what weather condition are high risk factors. Then remedial or precautionary actions may 

be taken. This simulation can also be used to find how many vessels can safely use the 

Singapore Strait at the same time. The channel capacity is defined as the number of 

vessels that can safely use the channel. Ferry schedule determines the frequency and the 

size of the ferries. Given a fixed demand of passenger capacity, increasing the number of 

high seating capacity ferries will reduce the ferry frequency. However, reducing ferry 

frequency may cause costumer unhappiness and drive out business. The channel capacity 

estimation can be used to find an optimal balance between them. In order to have 

meaningful conclusions from the simulation system, different vessel behaviours must be 

simulated realistically. 
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1.2   Objectives of This Research 

In this research, we will try to design an agent architecture for the agent that replicates 

the behaviours of vessel captains traveling in sea. The captain agent has the ability to 

navigate from starting point to target using different navigation methods. Each vessel 

plans its global path first using a global path-planning algorithm. When the vessel moves 

along its path, it may detect some unknown obstacles. Then it uses some local obstacle 

avoidance methods to avoid collision with them while still trying to move to its 

destination. More importantly, the vessel agent should obtain: (1) the ability to respond to 

emergencies timely; (2) the ability to reconsider and modify goals, intentions and actions 

in reaction to unexpected or new information; (3) the ability to perform multiple actions 

at once; (4) the ability to perceive, deliberate and act simultaneously; (5) the ability to 

prioritize the deliberations and intention executions. 

 

It is also the objective of this research that the work done here is general enough for 

building agents in other contexts. 

 

1.3   Main problems and Technical Issues 

The agent will be realized based on the famous BDI agent architecture. Currently, the 

BDI agent architecture is not suitable to simulate a real-time vessel captain in two 

aspects: 1. the reactivity of the agent cannot be assured; 2. the characters of the captain 

cannot be easily realized. We design a parallel BDI agent architecture to solve the first 

problem. As we said earlier, a vessel is under the commands of its captain, a human 

being. The captain’s own personality and experience will affect the vessel’s navigation. 

So we integrate some more components into the parallel BDI agent architecture to realize 

the agent characters. In the future, multi-agent simulation of the vessels based on the 

parallel BDI agent architecture can be used for the risk analysis and channel capacity 

estimation as discussed in Section 1.1. 

 

To validate the performance and applicability of the agent architecture we proposed, the 

research methodology adopted is computer simulation. In the simulation, we assume that 

 3
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the agent can receive the world information in the form of beliefs and the actions are 

carried out immediately. We will judge whether the system runs according to our 

expectation by examining the behaviour records of the agent. 

 

1.4   Thesis Organization 

The following chapters are organized as following: 

o Chapter 2 LITERATURE REVIEW. This chapter introduces related research, 

including agent architectures, agent character, agent learning, action selection and 

agent systems. The techniques related to robot navigation are also reviewed here. 

o Chapter 3 PARALLEL BDI AGENT ARCHITECTURE. In this chapter, the 

design of the general parallel BDI agent framework is introduced. Simulation 

experiments of the parallel BDI agent and several sequential BDI agents are 

performed. The experiment results have demonstrated the advantages of the 

parallel BDI agent. The parallelism is analyzed using experiment simulations. 

o Chapter 4 AGENT CHARACTER. The basic agent character is analyzed in this 

chapter. The Experience Function library is incorporated into the agent to support 

combining the reinforcement learning algorithm. Then an experiment simulating 

the agent experience is made. 

o Chapter 5 PRIORITY CONTROL. A component to control priority change in an 

agent is proposed. As an example, a personalized priority control schema for 

action scheduling is shown. The schema is designed by simulating human 

behaviours when dealing with several things together. 

o Chapter 6 A VESSEL CAPTAIN AGENT. A software vessel captain agent is 

realized based on the general parallel BDI framework with the two character 

components: experience function library and priority control schema. The 

architecture to realize the software parallel BDI agent is shown. The captain agent 

is realized by using multi-threads programming techniques. The agent shows the 

applicability of the parallel BDI model. 

o Chapter 7 CONCLUSIONS AND FUTURE WORK. We conclude our researches 

and make some proposals about future research. 
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CHAPTER 

2  

LITERATURE REVIEW 
 
 
In The Merriam Webster Dictionary, agent is defined as: “agent n 1 : one that acts 2 : 

MEANS, INSTRUMENT 3 : a person acting or doing business for another” [3]. From the 

viewpoint of the semantic meaning, we may regard the computer agent as an instrument 

that acts. However, a single definition of ‘computer agent’ is not accepted unanimously 

since it first appeared in the 1970s due to the diversification of the computer agents’ 

attributes, roles, architectures, and other features.  

 

In 1977, Hewitt introduced the concept of agent as ‘actor’ in the research of Distributed 

Artificial Intelligence (DAI). In the model, an actor “is a computational agent, which has 

a mail address and a behaviour. Actors communicate by message-passing and carry out 

their actions concurrently” [53]. This is the original model of an agent. From then on, the 

research on agents has been carried out in various areas and applications. In an overview 

of software agent, Nwana describes software agents as a broad range of computational 

entities [100]. From his viewpoint, agents in software area can be reusable software 

components that provide controlled access to (shared) services and resources or the basic 

building blocks for applications organized as networks of collaborating agents.  For a real 

physical system, like a Robot World cup team, each robot also can be seen as an agent, 
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which is a computational unit [73]. The whole team is considered as a multi-agent 

system, in which each agent can finish some tasks individually and cooperate with other 

teammates. Both kinds of computer agents will embody some characteristics of humans. 

In fact, the ultimate objective of agent research is to make agents act as real intelligent 

human agents. In our research, the final objective is to design an agent which is able to 

behaviour as a real vessel captain in navigation. 

 

As pointed out in [100], the three common attributes of agents are: autonomy, 

cooperation and learning ability. Such attributes make the agents different from 

conventional programs. Firstly, programs are sequences of clear and detailed instructions 

provided by their designers to be followed exactly. But agents are autonomous and act on 

behalf of a user. Agents act according to their own desires and interests without getting 

detailed instructions from the user. Secondly, agents often need to cooperate and 

coordinate with others. They have social ability. This human-like ability is lacking in 

conventional programs. Agents often communicate with the user, the system, and other 

agents. Through communication, agents can obtain knowledge about the user’s reaction, 

environment and others’ intention. Agents can then decide and act more effectively. 

Agents can also cooperate with other agents to carry out more complex tasks than what 

they can handle themselves. This cooperation can be seen from a Robot World Cup team. 

The agents must cooperate with each other efficiently to gain victory, like a human 

soccer team. In a multi-agent system for distributed computing, agents often obtain the 

ability to access remote resources. Thus, the efficiency of the whole system can be 

increased [57]. Thirdly, some agents have learning ability, which shows that they have 

some kinds of intelligence. If agents do not learn, they are not suitable for dynamic 

environments where situations cannot all be foreseen. Agents learn from actual actions 

and/or training. Thus they can choose the best actions based on the experiences gained 

from past actions. When under training, sometimes agents must be proactive. For 

example, an agent may test some actions to gain the rewards from these actions. Different 

to this, most programs always choose their actions using the same approach according to 

the way it is programmed. In recent years, emotions also become a very important 
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attribute for the agents in some applications. This shows another distinction from 

traditional programs: efficiency is not the only goal to pursue. 

 

Research about agents has been illustrated, summarized and concluded in many books or 

papers, such as [107, 65, 100, 135, 115, 137]. In these publications, the agent research is 

divided into many areas: 

• Agent architectures 

• Agent language and programming 

• Agent characters 

• Automatic learning in agents 

• Agent systems and applications 

• Multi-agent systems 

• Agent coordination and negotiation 

• … 

Nowadays the areas of agent research have become so large and wide that it is very 

difficult to include all the areas even in a book. Here, our simple summaries will be 

focused on the areas which are mostly related to our research, including agent 

architectures, agent character and action scheduling. Agent learning and some agent 

systems are also introduced. At the end, some researches of robot navigation are 

examined, which are related to our vessel agent simulation. 

 

2.1   Agent Architectures 

Wooldridge and Jennings group agent architectures into three types: deliberative 

architecture, reactive architecture and hybrid architecture [135]. A deliberative 

architecture is based on the hypothesis of physical symbol system, which is said to be 

capable of general intelligent action. Different kinds of deliberative agents emerged from 

it, for example, planning agents, Belief-Desire-Intention (BDI) agents, Homer and so on. 

However, many unsolved problems existing in symbolic AI restricted its developments. 

A reactive architecture is designed without symbolic world model and complex symbolic 

reasoning. A hybrid agent architecture is built by a combination of these two agent 
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philosophies. The hybrid agents try to maximize the strengths and minimize the 

deficiencies of the most relevant technique for a particular purpose [100]. This kind of 

agent can inherit the advantages from other agents and avoid their shortcomings. It is 

becoming more popular in agent design. 

 

In the following, we will review these three kinds of agent architectures. We choose the 

BDI architecture as representative for deliberative architecture and the subsumption 

architecture for reactive architecture because of their popularity among the peers.  

 

2.1.1   BDI architecture 

BDI architecture is the deliberative architecture that is researched mostly. It provides a 

folk psychological way by simulating human deliberation. The mental attitudes of belief, 

desire, and intention represent the information, motivational, and deliberative states of the 

agent respectively [18, 111]. It may seem useless for simple agents, like a thermometer or 

an alarm clock, but it is helpful when developing agents that work in complex 

environments.  

 

Rao and Georgeff provided a BDI model in software engineering area [111, 110]. They 

defined the BDI components and explained their significance to agents. The actions or 

procedures that achieve the various objectives are dependent on the state of the 

environment and are independent of the internal state of the system. So it is necessary 

that there is some component of system state which represents the information on the 

state of the environment and which is updated appropriately after each sensing action. 

Such a component is called the system’s beliefs. It is also necessary that the system has 

information about the objectives to be accomplished. This component is called the 

system’s desire. In order to limit the frequency of reconsideration and thus achieve an 

appropriate balance between too much reconsideration and not enough, it is necessary to 

include a component of system state to represent the currently chosen course of actions. 

This additional state component is named as the system’s intention. This BDI agent 

architecture is used in an air-traffic management application [111]. Brazier et al. present 
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an extended task hierarchy for a BDI-agent in [19]. The agent process control consists of 

the belief, desire, intention and commitment determinations. 

 

Procedural reasoning system (PRS) [63] is a famous implementation of the BDI model. 

The deliberative process runs in iterations. At the beginning of each iteration step, new 

goals and new facts are obtained through input. Then several plans in the KA (knowledge 

area) library are triggered by the new belief and one or more of the applicable plans are 

selected to be sent to the intention structure. At the end of each iteration step, the 

intentions are executed. This kind of idea of implementing the BDI agent is adopted in 

many BDI systems [109, 4, 56]. In UM-PRS [77], an extension of the PRS system, the 

hierarchy of the plans is kept for monitoring plan execution and replanning. The formal 

specification of the PRS can be found in dMARS system [28]. JAM is a BDI agent 

architecture developed by Huber in 1999 [59]. It combines the advantages of the previous 

BDI agent researches. With the JAM toolkit, users can create and run their own agents by 

designing beliefs, plans, and primitive functions following the defined grammar. The 

basic structure is similar to PRS system. 

 

AgentSpeak(L) is a popular BDI programming language proposed by Rao in 1996 [112]. 

It defines a set of basic beliefs and a set of plans. The plans are searched for the 

triggering events (new beliefs). Then applicable plans are inserted into the intention stack 

for execution. A more formal description of AgentSpeak(L) can be found in [29]. This 

language has been combined into other agent language, for example 3APL [54]. 

SIM_AGENT is one application based on the AgentSpeak(L) [83].  

 

The reasoning of the BDI agents can also be performed by automatic theorem provers. A 

set of logic is defined in such agents. For example, Wooldridge introduced a BDI logic 

called Logic of Rational Agents (LORA) in his book [136]. LORA contains a temporal 

component as an addition to the traditional first-order logic. The theorem provers are 

used to produce some outputs.  
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The BDI agents have been applied in many applications. Rana et al. have applied Conflict 

Management Strategies in BDI Agents for Resource Management in Computational 

Grids [109]. A rational agent executes a plan from a pre-defined plan library (belief) to 

achieve local goals (desire), and can try alternate plans (intention) if a goal cannot be 

achieved by a chosen plan. Ambroszkiewicz and Komar use the BDI model in a Game-

Theoretic Framework [4]. In a game, the agent’s belief is identified with the knowledge 

about the game and about other agents together. The desire is represented as agent’s goal 

to achieve a maximum level of its utility. A reasoning process based on the agent’s 

rational behaviour is proposed. This process determines the agent’s intention. Rational 

behaviour may be used to construct such reasoning process. The process of reasoning is 

defined as a transformation that conveys the knowledge from higher types into lower 

types and finally into the ground type. This final ground knowledge is the basis for 

determining the final intention.  

 

Recently, a flexible BDI agent system is proposed in [106]. This paper identifies two 

drawbacks of the sequential BDI agents. One is that concrete layout of the cycle will 

determine the nature of the agent, for example, the caution level and reconsideration rate. 

Another drawback is that the agent architecture is not easy to be extended with additional 

facilities because the processing is step by step and very restrictive. The authors propose 

a more flexible way of mapping the original BDI model to a system based on agenda 

scheme in order to allow easier extension of the agent. The steps are transformed to meta-

actions. A main interpreter will decide which meta-action will be selected to execute 

from the agenda queue. The execution of the meta-action may update the status and insert 

new meta-actions into the agenda. The extension of new agent abilities can be easily done 

by designing the meta-actions. However, the outside messages are inserted into the 

agenda directly as external actions. This may indicate that the agent does not detect 

outside environment automatically. If the detection action is modeled as regular meta-

actions, the concrete layout problems still exist. The belief cannot be updated in real-time 

because the detection is performed in predefined intervals. Then caution level and 

reconsideration rate cannot be improved. 
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As seen from above, the BDI model can be used to design rational agents. In the design 

of a vessel agent, we will develop an agent architecture based on the BDI model. The 

environment information can be seen as the vessel agent’s belief. The desire is to 

navigate to target safely. The vessel’ admissible actions can be seen as intentions. We 

design a parallel BDI agent architecture to solve the problems caused by slow 

deliberating in traditional BDI agents. This is shown in Chapter 3. The BDI model 

represents the general attributes of vessel agents. However, the BDI model is not 

sufficient to represent realistically the vessel agents. There is no a proper representation 

of the vessel captain’s characters in the model. In a real world the character of a captain 

will affect the decision he makes to control his vessel. Even in identical environments, 

two captains may have different navigation decisions simply because one is more 

conservative and cautious than the other. The personality and character of the two 

captains are making the difference even with the same beliefs and desires. There is no 

component in the BDI model to represent variations among agent characters. Thus, we 

plan to incorporate a new factor into the BDI model. We call it ‘character’, which 

represents agent’s personality. The agent is expected to behave human-likely as 

demonstrated in Chapter 4 and 5.  

 

2.1.2   Subsumption architecture 

In deliberative systems, the world is represented by symbols and the reasoning is 

performed through theorem provers. Since the speed and efficiency of the provers cannot 

be ensured, this makes this architecture unsuitable in a dynamic environment. A reactive 

architecture takes a different approach than symbolic AI. It does not include any kind of 

central symbolic world model and does not use complex symbolic reasoning. Among 

reactive agent applications, Brooks’ subsumption architecture is the most celebrated one 

[22, 21]. The architecture consists of a set of modules, each of which is described in a 

subsumption language based on augmented finite state machines (AFSM). An AFSM is 

triggered into action if its input signal exceeds some threshold, though this is also 

dependent on the values of suppression and inhibition signals into the AFSM. The 

modules are grouped and placed in layers, which work asynchronously, such that 

 11

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 2 Literature Review 
 

modules in a more complex level can inhibit those in lower layers. In [84], a learning 

algorithm is proposed to improve the scheduling of the behaviours/layers based on the 

feedbacks when to activate the behaviours. 

 

This architecture is often used for robots. Each layer has a hard-wired purpose or 

behaviour, e.g. in a robot a layer is to avoid obstacles and other layer is to enable/control 

wandering [100]. The different layers represent different behaviours of a robot. Then the 

behaviours from a more complex layer suppress the behaviours from the low layers. For 

example, in the MIT AI laboratory Mobots [23], three kinds of behaviours are controlled 

in three layers. The lowest-level layer implements a behaviour, which makes the robot 

avoid being hit by objects. The next layer makes the robot wander about when not busy 

avoiding objects. The third layer makes the robot try to explore. There is no central 

control in the robot. Each layer is driven by the messages it receives. Though the process 

of deciding actions is similar to neural network, Brooks claims that this architecture has 

no relation with neural network because there is no biological significance existing in the 

architecture. 

 

The architecture is simple and efficient in terms of the amount of computation required. 

But the limitations are also obvious [137, 78]. One problem is that the arbitration 

technique only allows a single behaviour to be active at one time. The architecture 

chooses one action at each deciding cycle and other actions are suppressed. Though the 

deciding speed is promising, the single action decision will affect agent’s performance. 

For example, if a robot’s action is to avoid obstacle, the robot may deviate far away from 

the target. Several researchers have proposed to incorporate fuzzy logic technology with 

this architecture [78]. The decision process is fuzzied. In the process, behaviours from 

different layers are composed together and decomposed to get a final decision result. 

 

Another problem exists in that the agent makes decisions based on local information. 

Thus, global information is omitted when making decisions. This means that the agent 

always has a ‘short-term’ view. The architecture is not suitable for making global plans. 

At the same time, the information from the local environment needs to be sufficient, 
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otherwise the agent will not be able to determine its actions because the agent does not 

store models of environments. An improvement to deal with this weakness can be seen in 

an architecture for persistent reactive behaviour [26]. Long-term conceptual memory, 

long-term skill memory and short-term memories are incorporated in the agent. The 

knowledge encoded in the memories can be utilized when the agent updates its beliefs, 

selects and executes skills. A persistence factor is used to control the agent’s bias to 

select the skills picked on the previous time step. Thus, the agent can take into account 

the global environment and its previous behaviours. 

 

It is also difficult to implement agents’ learning ability using this architecture in a hard-

wired implementation. Purely reactive agents can hardly be designed to learn and 

improve performance over time. Besides, agents with many behaviours are very hard to 

build. The dynamics of the interactions between behaviours are very complex to 

understand. This implies that the subsumption architecture cannot be applied in a 

dynamic and complex environment. For our vessel agent, the deliberative architecture 

can better simulate the human behaviours with psychological significance. 

 

It is worth noticing that the layers run asynchronously in a subsumption architecture. In 

[21, 66], the layers are run concurrently. The speed of reaction of the agent is increased 

by parallelism. In a recent research, the deliberation ability is realized based on the 

machinery of the subsumption architecture. In Logic-Based Subsumption Architecture 

(LSA), the layers are realized as the theorem provers. Thus the reasoning ability of the 

deliberative agents is combined into the reactive agents. At the same time, the empirical 

results from a robot implementation show that the provers can be used without sacrificing 

much reactivity [5, 6]. Each control-loop cycle is shown to take 0.1-0.3 seconds, which is 

acceptable for the robot in their experiment. 

 

Another recent research about the subsumption system is a dynamic subsumption system 

[91]. The layers consist of several cells, which contain possible partial descriptions of 

certain functions of the agent. If the environment changed, only the related cells are 

affected. 
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2.1.3   Hybrid architecture 

A hybrid architecture is an architecture that combines the above two kinds of 

architectures together. This represents the new and popular trend in designing robots, 

because this architecture can inherit the advantages of the two architectures. For example, 

a reactive architecture is suitable for real-time environments, but the reactive architecture 

produces behaviours not goal-oriented at times. A deliberative architecture can handle 

that, but it sometimes cannot react timely. A hybrid architecture incorporating two 

architectures can solve the problems. In fact, human can be seen as a hybrid system. In 

the human reasoning system, we do not really think and spend time deliberating what to 

do in face of an emergency. For example, the kitchen is on fire, we just get water and put 

out the fire without spending time deliberating. 

 

 

Figure 2-1 The TouringMachines agent control architecture (from [35]). 

 

An example for this architecture is Ferguson’s TouringMachines hybrid agent 

architecture [35, 36]. We can see from Figure 2-1, the three layers work together to 

control the agent. The reactive layer is in the style of the subsumption architecture. The 
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planning layer is designed as a deliberative architecture, so the agent can have an overall 

planning ability and also can deal with emergencies. The modeling layer is used to model 

other agents in the environment. The three layers are embedded in a control framework, 

which deals with conflicting proposals from different layers by using control rules. The 

control rules will decide which action in the action buffer is chosen to be sent to the 

agent’s effectors. The rules will ensure that only one action will be activated at a time 

slice. 

 

As we can see, the hybrid architecture is good at representing both the meditated 

behaviour and the reactive behaviour. But as Ferguson points out that there were still 

many problems existing in the TouringMachine, a hybrid architecture as TouringMachine 

is not really perfect for agents which operate in dynamic and unpredictable multi-agent 

environments. For example, there is not a learning component in the architecture, which 

may improve the agent’s adaptation in new environment. Also the computations in the 

three layers are restricted strictly by the pre-determined time resources. This can be seen 

as the concrete layout problem of the cycle in [106]. Thus the TouringMachine may fail 

to make the best use of the time resources.  

 

This hybrid architecture has been used successfully in designing robot agents. In most 

cases, the deliberative layer is used for global path planning and the reactive layer for 

obstacle avoidance, subgoal decision and so on. In [11], three layers are used for a 3T 

robot architecture: deliberation, sequencing and reactive skills. The sequencer is used to 

activate and deactivate the skills. In the hybrid mobile robot [82], deliberative and 

reactive models are used for long-term and real-time decision respectively. The planning 

module will provide targets for the target reaching module. The commands from the three 

layers in reactive models are combined to make the final motor control signal. 

 

Other kinds of hybrid architecture without the explicit deliberative and reactive layers 

also exist. Sometimes, it is a combination of agent abilities. For example, an architecture 

for Non Player Character (NPC) is proposed in [92]. The NPC agent architecture consists 

of 4 layers: behaviour system, social system, goal based planner and schedule. The 
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selection is made by selecting from the outputs. Another example is a homogenous agent 

architecture for robot navigation [62]. In the designation, an agent can be created by 

combing the functions of several other agents, such as goal-seeking agent, vacancy-

pursuing agent and obstacle avoidance agent. 

 

2.2   Agent Character 

Normally, agents are built to make rational and best-fit decisions. Thus, in the same 

situation, different agents will all make the same decisions and they will have the same 

behaviour. However, in some areas, this is not always desired and the agent should 

demonstrate its own character. For example, in multi-agent simulation of human society 

[61], agent character is essential for simulating various human beings. The agents will not 

always work in an ideal way. Their characters will affect their decisions. As Sloman 

points out when answering the question of what sort of architecture is required for a 

human-like agent, “designing human like agent is part of the more general problem of 

understanding design space, niche space and their interrelations, for, in the abstract, there 

is no one optimal design, as biological diversity on earth shows” [120]. The discussion of 

a similar question is seen in [121]. 

 

The agent characters separate one agent from another. An agent’s character can be found 

in three aspects: the physical characters, experience and the emotions. The physical 

characters include the agent’s basic attributes of physical resources, for example, a vessel 

agent’s length, maximum acceleration, maximum loads and so on. The experience can be 

expected to be realized by reinforcement learning algorithms. Compared to the physical 

characters and experience, most researches working on the human-like agents concentrate 

on simulating human emotions. Mainly, there are two objectives of this research: creating 

human-like agents and promoting agent performance. 
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2.2.1   Creating human-like agents 

The most direct application of the emotions should be human-like agents, which are 

supposed to show some human-like behaviours [117]. Humans show various behaviour 

modes according to different emotions. In [122], it is said that though we do not 

understand how human emotions work, by trying to model emotions, it is possible to 

learn more about the emotions, and it is possible to create more realistic agents. 

 

In the game area, the Non-Player Character (NPC) agents must demonstrate different 

emotions for a vivid scene. In [96, 99], different kinds of Quake players are created based 

on the BDI model. The players with different interactive characters show different 

behaviours when executing the plan ‘win’. The characters are created by making some 

probes. Then the characters are created based on the answers of the agent. In [97], 

Norling argues that the BDI model is incapable of representing several human 

characteristics. In a psychological way, the characteristics include decision making, 

expertise, emotion, timing, and so on. She proposes to make a folk psychological 

extension to the BDI model to represent these characteristics. Some special modes 

representing the characteristics are incorporated into the BDI model to show the 

character. An example of incorporating the recognition-primed decision model with the 

BDI model to make human-like decision making is given. In [95, 98], COJACK 

architecture is proposed to support psychologically plausible human variability. In this 

architecture, that agent’s reasoning and actions are moderated via a set of parameters. 

Some external and internal moderator will also affect the agent’s decision. 

 

A five-factor (extraversion, agreeableness, conscientiousness, neuroticism, and openness) 

model of emotion is borrowed from the psychological research. It is used to affect the 

learning strategies of the agent [50] and the information behaviours [51]. Patrick Gebhard 

makes his research to connect the five-factor model of personality to the agent 

behaviours. A set of appraisal and dialogue act tags is designed. The tags are mapped 

onto the emotion eliciting condition (EEC) variables to control the emotion changing. 

Then the emotion will affect the behaviours of the agent [41]. This EEC system is used in 

multi-character conversations [42]. Based on this, a layered model of affect is designed. 
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Emotion, mood and personality are differenced in terms of short, medium and long 

periods. The personality is realized as using the five-factor model. The five values are 

defined by user at start. PAD (Pleasure, Arousal, and Dominance) system is used to 

simulate mood. Then the 24 kinds of emotions are defined by the PAD values with 

different weights. The agent’s behaviours are modulated based on the PAD values 

according to the predefined rules [43]. A similar emotion model based on the five-factor 

model is shown in [52]. The emotion factors are incorporated to make the decision-

making process of complex agents less predictable and more realistic. A kind of emotions 

architecture is implemented with a three-dimensional personality space (Arousal, Pain, 

and Confusion). The different status of the agent can be mapped to different emotions. 

Then the emotions are used to make decisions together with the external and internal 

inputs. 

 

Another method to show the agent emotions is by designing the agent’s distinct 

behaviours directly. The behaviours of the agents can be expected to be different because 

of the personalities. The audiences can conclude the agents’ personalities based on the 

behaviours they saw. An example of SceneMaker can be seen in [40]. The roles can make 

plans based on the pre-scripted scene. In [87], a method of decision making for social 

agents is proposed as the PsychSim system. From the theory of mind, the action of the 

agent must exhibit consistently, self-interest, speaker self-interest, trust and support. A 

quantitative value of each possible action is defined according to their beliefs and goals. 

Such values can be modulated after the interaction with the environment, so the agent 

will show different behaviours. This method is used to create characters based on the 

story scripts as in the Thespian system [118]. Thespian is a tool to create agents with 

personalities which are consistent with the behavious defined by the story path. The 

characters’ goal weights can be modulated with the equation defined in PsychSim. The 

character can be reused in different scenes. The agent will try to select an action based on 

the reward of applying the actions to the current state. 
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2.2.2   Promoting agent performance 

Besides the applications for human-like agents, emotions also help to promote the 

adaptability and autonomy of the agents. Though emotions were thought useless for agent 

reasoning for long time, in [102], three benefits are identified. First, the emotion itself is 

an important source of information which is highly centered on the individual. The 

emotions will affect the agent’s behaviours as we show above. Secondly, the emotional 

mechanisms are useful to filter relevant data from multiple, distributed and highly noisy 

sources. An example can be seen in [86]. Here, emotions are used to change beliefs of the 

characters in a scenario from the mission rehearsal exercise. With the same conversations 

among the characters, the beliefs of mother, sergeant and soldier are changed according 

to their own emotions. Thus their behaviours are consistent with their roles. Finally, the 

emotions also provide a global management over other cognitive capabilities and 

processes. In [132], the author states that the action decision of the agent should be 

affected by both the sensory input and the desires of the agent. Agents with different 

emotions may produce different desires. An example for human-like decision-making can 

be found in [93, 94]. A recognition-primed decision making approach is integrated with 

the BDI model as an emotion feature. The agent can learn from past experiences. 

 

2.3   Agent Learning 

An agent can better adapt in a dynamic environment if it has some learning abilities. 

Then the agent can change its strategies to cope with the new situations automatically. 

Automatic learning is that an agent saves historical actions and scenes in order to use 

when meeting the same scene again. Learning is divided into supervised learning and 

unsupervised learning [125]. Under supervised learning, a manager exists and is 

responsible for providing training samples to agents. Such samples can be chosen from 

special examples. This may fill agent with experience quickly [45]. In an unsupervised 

learning situation, there is no such a special manager. The agent will learn from all 

random events happening in environment, and the agent can become more robust for 

various environments. 
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Reinforcement Learning is viewed as an on-line variation of dynamic programming, 

which is defined as a discrete-time system with the state transitions and costs/reward 

functions [124]. Using reinforcement learning algorithm, an agent can choose an action 

based on its current and past status. The algorithm will use a reward function to choose 

the maximum reward value for several future steps. Different kinds of reward functions 

have been defined in various situations. According to the book [80], reinforcement 

learning may be computationally implemented depending on (1) whether some heuristics 

are employed, (2) whether a model of the problem domain or a utility function for action 

selection is available, or (3) whether the learning always converges. For example, Q-

learning does not utilize any domain model, but tries to iteratively derive an action-

weighting function. 

 

Learning is very useful to improve the competition and coordination strategies in multi-

agent system. For example, Stone, Riley and Veloso used the learning method to train 

their robot soccer team [104]. The robot can gain experience through examples and 

choose better actions in a real game. Learning is also used for data collection problem. 

Caragea, Silvescu and Honavar designed a multi-agent decision tree learning from 

distributed autonomous data source [24]. Goldman and Rosenschein have made an 

application by incorporating mutual supervised learning into multi-agent systems [45]. 

They test the teaching technique in a scenario of a crosswalk with two traffic signal 

agents. Each agent controls the traffic light for its direction. Each agent is the other’s 

teacher and also receives samples from the other.  

 

With learning algorithms, a single agent can improve its behaviours according to the past 

experience. For example, in OBELIX, an automatic robot, the RL algorithm is adopted to 

solve the problem of pushing-box tasks. Experimental result showed that after the initial 

learning phase an agent will outperform a hard coded agent that does not learn [85]. In a 

more complex robot, the robot soccer team for Robot World Cup, Q-learning is used to 

help the robots finding the best actions [72, 58]. The percent of successful actions is 

greatly promoted after using Q-Learning for the robots. The learning algorithm for 

obstacle avoidance in navigation is another typical application. An example can be found 
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in [47]. The variables related to the positions of the robot and obstacles are used as the 

status. The parameters about control the robot motions are modulated through training. 

 

2.4   Action Scheduling 

When there are several actions/intentions waiting for execution, the agent should have a 

mechanism to decide the execution order. For example, in AgentSpeak(L) [112], the 

selection function SI selects an intention to execute from the intention set I. However, the 

detailed selection criteria are not specified in the paper. Some scheduling mechanisms 

can be seen in other researches. Normally, there are two kinds of scheduling schema. 

 

One is by a single attribute of the actions, for example, the priority. This is normally 

adopted in the systems where the actions are independent. Imaging that several dependent 

actions can be integrated to a single mega action, this kind of method can be seen as a 

general method for scheduling actions. An example is shown in the JAM agent 

architecture [59]. The intention selection is done based on the utility value of the plan. 

The intention with higher utility will be executed first. Recently, another work of 

intention scheduling is reported in [79]. The researchers take several properties into 

consideration when scheduling the intentions, such as the importance of the plan, the 

estimated running time, the deadline utility function, the degree of completeness and 

FairFacter. 

 

The other scheduling method is by the relationship among the actions. This is suitable for 

complex job circumstances, for example, where the execution of an action depends on the 

results from the execution of other actions. For example, in AgentSpeak(XL), an 

extension version of AgentSpeak(L) [12], a task scheduler is incorporated into the 

interpreter to decide how to select intentions. The set of intentions in AgentSpeak(L) is 

converted into a corresponding TÆMS task structure. Then the selection is done based on 

the analyses of the relationship among the plans in the TÆMS task structure. The 

'enables' and 'hinders' relationships indicate which plan may be executed first. A method 

to identify the potential common subgoal is provided in [127]. At first, the positive 
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common subgoals are identified. Then the potential common subgoals are figured out by 

maintaining summaries of definite and potential effects of goals and plans. 

 

Human-like action scheduling schema has seldom been researched. In [74], a priority 

control mechanism for behavioural animation is shown. The priority is set at minimal 

value immediately after the agent displays certain behaviour like drinking. Then this 

priority is increased with time. The increased priority will induce the agent to drink again. 

A more formal description of this human behaviour system can be found in [75]. 

However, expecting the priorities of all intentions to change in the same manner is not 

realistic. Different intentions should be allowed to change their priorities in various 

suitable ways.  Some intentions may also change priorities with the arrival of new beliefs. 

This problem will be discussed more in Chapter 5. 

 

2.5   Agent Systems and Applications 

Many kinds of agent and multi-agent systems are designed for real applications besides 

the robot agents. For example, the BDI agents were designed to manage the air-traffic 

[111]. In a resource management system, mobile agents are capable of finding computing 

resources in network, completing the goals, and returning the results [108]. The agents 

are also designed for providing an interface. In a hosting system, the agents interact with 

a visitor to design visiting schedule based on the visitor’s areas of interest, name and 

organization [126]. As an example in the economic area, an agent is designed to perform 

Market-Based Supply-Chain Management [67]. 

 

Multi-agent systems are useful for solving problems which are composed of 

subproblems. As shown in [108], each mobile agent can complete a subgoal. Then all the 

results are brought together for making the final result. It also can be seen that a 

decentralized multi-agent system is more robust than the centralized systems. The 

container port system described by Thurston and Hu is another example for distributed 

multi-agent system [128]. The system is used to manage the container handling process in 

a port. Four types of agents are designed for the management tasks. The agents cooperate 
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with each other to accomplish the job. An agent failing will not halt the whole system. A 

method to transfer the centralized policies to the decentralized policies in the multi-agent 

system can be seen in [138]. 

 

Here, our focus will be put on the agent and multi-agent simulation systems. 

 

2.5.1   Agent simulation system 

Several human-like agent simulation systems have been developed in the agent character 

sector. Besides those, creature simulation is also an important topic in agent area. For 

example, a simulation system of a highland terrier is shown in [64]. This paper describes 

a kind of brain architecture for synthetic creatures. The brain consists of sensory system, 

perception system, working memory, action system, navigation system, motor system and 

blackboard. Action tuples are designed. If the TriggerContext is satisfied, the action will 

be executed. 

 

2.5.2   Multi-agent simulation system 

Multi-agent simulation provides a tool for simulating various societies. Simulation is 

widely used to enhance knowledge in real worlds and enables us to make artificial worlds 

for measuring the influence of different multi-agent coordination strategies in an 

unpredictable environment. For example, Horling, Kesser and Vicent have designed a 

simulation system that can be used for testing in an actual system [55]. This simulation 

system enables users to directly control the baseline-simulated environment and permit 

the addition of ‘deterministically random’ events that can affect the environment 

throughout the run. In an agent-based interaction analysis of consumer behaviours, 

Customer BEhaviior Simulator model is designed to simulate consumer behaviours when 

selecting a new brand [116]. The agent evolution is simulated using the GA algorithm. 

 

As a hot research topic, multi-agent simulation systems of traffic were researched for 

predicating traffic information and finding ways to relieve traffic jam. In [103], the 

unorganized traffic is simulated. With different parameter settings, the drivers are 
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modeled to be cautious, normal and aggressive. The agent’s action is calculated by 

physical motion laws. Then the average speed, the numbers of overtakes and accidents 

are counted. A fully agent-based simulation of the traffic in Switzerland is shown in [7]. 

In the simulations, it is important for the driver agents to think human-likely. A method 

to simulate human-like thinking is provided in [114]. Based on the psychological studies 

on human drivers, Rigolli and Brady propose that the agent translate the objective world 

into its own subjective world. With different parameters for perception, the agents will 

have different views of world. By simulating 330 agents, some macroscopic 

performances are gotten, including zone density and lane occupancy.  

 

Better traffic control is important to relieve traffic jam. In simulation, the coordination 

can be done in two ways, centralized and decentralized. In the centralized way, a manage 

agent will collect all the traffic information and provide optional solutions. Traffic lights 

are used for this objective [101]. The light coordination is made using distributed 

constraint optimization. For a single intersection, a reservation-based mechanism is 

proposed in [31]. An improvement of this system is shown in [32]. The driver agents are 

assigned more abilities, for example, turning and accelerating in the intersection. In [27], 

the traffic signal controller agents are divided into three layers: intersection, zone, and 

region. The results from the lower layers are summarized at the higher layer. An example 

of decentralized control is shown in [139]. Each driver agent will send and receive the 

traffic information through a route information server. Then each agent will re-calculate 

its own shortest path based on the newest information.  

 

2.6   Robot Navigation 

Basically, there are two issues in navigation: path planning and obstacle avoidance. In 

this part, we will summarize the existing global path planning algorithms and obstacle 

avoidance algorithms respectively. 
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2.6.1   Global path planning 

Path planning is a fundamental problem in navigation. A robot will usually do its path 

planning at the beginning of navigation. According to known map information, several 

intermediate targets will be put on the path line to the final target. Path planning methods 

assume that the environment does not change while a robot is moving. Latombe 

summarized a larger number of robot motion planning algorithms in his book [76]. These 

methods are based on a few general approaches: roadmap, cell decomposition and 

potential fields. The first two methods convert the planning problem into searching a 

graph by analyzing the connectivity of the whole free space. In these methods, an 

effective searching algorithm is involved. However, the potential field method is usually 

defined with a limited range of influence. It can be applied while the robot is moving. So 

the potential field method is often seen as a local method. We will introduce the potential 

field method as a local obstacle avoidance method in Section 2.6.2.1. 

 

The general idea of the roadmap is to construct a network of one-dimensional curves. 

Then the roadmap is used as a set of standardized paths. The path planning is reduced to 

search a path between the initial and goal points. Based on this idea, various methods are 

proposed. The visibility graph method is one of the earliest path planning methods. In this 

method, a roadmap consists of line segments connecting two nodes that do not intersect 

the interior of an obstacle region. Then a path can be obtained through searching this 

roadmap. 

 

Cell decomposition decomposes the robot’s space into simple regions, called cells, such 

that a path between any two configurations in a cell can be easily generated. This method 

can be broken into exact and approximate methods. The exact method divides the space 

by drawing vertical rays from obstacles’ vertices. The approximation method keeps 

decomposing a rectangle space into identical rectangles till the interior of the rectangle is 

completely free or the predefined resolution is achieved. 

 

We can see that these methods all require complete and accurate information about 

obstacles’ configurations and locations. After the path is decided, it will not be changed 
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during navigation. Thus the path planning methods alone cannot react to dynamic 

environment. We will review various local obstacle avoidance methods in the following 

section. 

 

2.6.2   Local obstacle avoidance 

The robot should have the ability to cope with obstacles detected by sensors in 

navigation. Usually two objectives of obstacle avoidance should be fulfilled. One is to 

make the robot to go around obstacles to avoid collision with them. The other is to make 

robot move toward its target. The second objective will be pursued together with the first 

one. This will make the robot move to its target safely and quickly.  

 

Many obstacle avoidance algorithms have been invented and applied in real robot 

navigation, for example, the wall-following method [8] and the edge detection [16]. In 

some cases, the wall-following method works as an alterative function when the robot is 

trapped in a local minima situation [13]. The drawback of these methods is that robot 

needs to know exactly the configuration of the obstacles before deciding the next step. 

Thus this will consume much time when measuring the obstacles. Because of the 

limitations of these two methods, they are seldom adopted in current robot systems. 

 

The two main approaches of the methods are Potential Field Method and Steer Angle 

Field Methods. For obstacle avoidance in a dynamic environment, the robot needs 

mechanisms different from the static methods. Methods of dynamic obstacle avoidance 

are included at the end. In the following, we will introduce the methods and their 

application respectively. 

 

2.6.2.1   Potential Field Methods 

In 1985, Khatib published his paper about Potential Field Method [68]. Potential Field 

Methods solve the problem by assuming that obstacles and target have influence on 

robot, like magnetism. The influence is materialized as a force. Obstacles will produce 

repulsive forces on robot. At the same time, the target produces attractive force. In the 
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field of force, the robot is pushed by these forces. Having properly defined potential 

functions of repulsive forces from the obstacles and attractive force from the target, the 

robot will move away from obstacles and toward target automatically. The potential 

functions can be modified in fluid dynamics and magnetic field forms. 

 

Around the same time, Moravec and Elfes pioneered the concept of certainty grids, a 

widely popular map representation that is well suited for sensor data accumulation and 

sensor fusion [89]. By integrating the concepts of potential field and certainty grid, 

Borenstein and Koren developed the Virtual Force Field (VFF) method [13, 14, 15]. This 

method is a direct expression of the original potential field method. The robot’s motion is 

decided by the resultant force factor of the repulsive and attractive forces. Though the 

robot can achieve a maximum travel speed of 0.78m/sec, several limitations exists in this 

method. As identified in [71, 39], the robot may be trapped to local minima, oscillate 

between obstacles and narrow passages, and cannot reach the goals with obstacles 

nearby. 

 

In order to overcome these drawbacks, Borenstein and Koren introduced the Vector Field 

Histogram (VFH) method in 1991 [17]. Polar obstacle density is designed to calculate the 

repulsive forces from the obstacles. The VFH+ method is an improved version of the 

VFH method [129]. It explicitly takes into account the robot dimensions and the 

trajectory of the mobile robot. The VFH* method employs a four-stage data reduction 

process in order to compute the new direction of motion. This method is combined with 

the A* search algorithm to find the optimal path [130]. 

 

2.6.2.2   Steer Angle Field Methods 

Though the potential field method is good at computing an obstacle-free motion 

direction, it often fails in controlling the speed of a robot. It is mainly because the 

potential field method does not include the robot’s velocity as a factor for computing 

collision free path. Different from the potential field method, the steer angular field 

method will compute the collision free path based on both the obstacles positions and the 
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velocity of the robot. The main steer angle field methods include the Dynamic Window 

Approach (DWA) [38] and Curvature-Velocity Method (CVM) [119].  

 

Fox, Burgard and Thrun invented DWA in 1997 [38]. This method starts from searching 

the velocity space of a robot. Among all possible velocities for the next step, an objective 

function is used to evaluate them and the velocity with the highest evaluation value is 

chosen. Brock and Khatib modified the Dynamic Window Approach to holonomic 

dynamic window approach for holonomic robots, which can instantaneously accelerate in 

all directions. And this holonomic DWA was integrated with a global planning method to 

result in the global dynamic window approach [20]. Stachniss and Burgard integrated 

path-planning techniques with DWA to produce an integrated approach [123]. In this 

approach, the robot first computes a path. Then the path is used to determine the search 

space to be explored in the next step. Through the path planning, the path to the target is 

divided into several parts. For each part, the robot will use the dynamic window approach 

to achieve the sub-goals, the terminals of each part. 

 
CVM is another steer angle field method, which is introduced by Simmons [119]. 

Different from DWA, this method has different function for the three factors. It 

concentrates more on how to get the distance from obstacles. Ko and Simmons invented 

Lane-Curvature Method (LCM) on the base of CVM [69]. The lanes are constructed by 

determining the maximum collision-free distance to obstacles along the desired goal 

targeting. The longest trajectory to each lane is chosen for the objective function. 

Because CVM may ignore some opening and LCM may neglect some radical openings, 

Benayas, Fernάndez, Sanz and Diéguez introduced their Beam-Curvature Method (BCM) 

approach [10]. This method works by integrating beam method with CVM approach. 

Beams are used as searching intervals instead of lanes in LCM. In the experiments, BCM 

has the best performance in comparison with CVM and LCM. 

 

2.6.2.3   Dynamic Obstacle Avoidance 

A robot moving in a dynamic environment must have the ability of avoiding moving 

obstacles. In many cases, the moving obstacles will move unpredictably. The obstacle 
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avoidance methods reviewed so far are all for relatively static environments. In such 

environments, obstacles are stationary objects or slow moving persons. Though the 

obstacle avoidance algorithms may divert the robot from the moving obstacles past 

enough to avoid collisions, they may fail if the speeds of obstacles are high. 

 

Fiorini and Shriller proposed the Velocity Obstacle (VO) concept for the dynamic 

obstacle avoidance problem [37]. VO consists of velocities that will potentially cause the 

robot to collide with moving obstacles. Castro, Nunes and Ruano have integrated this VO 

concept with the dynamic window approach to produce a reactive local navigation 

method for dynamic environment [25]. The velocity space for the dynamic window 

approach is the reachable avoidance velocities obtained by using the VO approach. Then 

a velocity is chosen for the next step from the RAV. This enriches the dynamic window 

approach’s ability in a dynamic environment. 

 

In the VO method, the rotational velocity of the moving obstacle is not considered. As 

the authors pointed out, several optimal solutions may be omitted because each possible 

velocity consisting of the searching tree tries to avoid all obstacles. So we have suggested 

the dynamic map idea for dynamic obstacle avoidance [140]. But our method is based on 

the assumption that the vessel can accurately predict the moving obstacle’s motion. Thus, 

if the vessel is far away from the obstacle, a small estimation error may cause the 

obstacle avoidance to fail. However, this possible failure can be compensated when the 

robot moves near the obstacle, because the computation time based on dynamic map may 

be short enough and the estimation of the obstacle may be more precise after a longer 

observation of the obstacle. 
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CHAPTER 

3  

PARALLEL BDI AGENT ARCHITECTURE 
 

The traditional BDI agent has 3 basic computational components: generate beliefs, 

generate intentions and execute intentions. They run in a sequential and cyclic manner. 

This may introduce several problems. Among them, the inability to watch the 

environment continuously in dynamic environments may be disastrous. One possible 

solution is by using parallelism. We propose a parallel BDI model with three parallel 

running components which are the belief manager, the intention generator and the 

intention executor. The coordination between the parallel components is done by 

interrupts of different priorities. The agent built with this architecture has the ability of 

performing several actions at once. The agent also has the ability to prioritize the 

deliberations and intention executions so it is able to respond quickly to circumstance 

changes and all the thinking and acting are done at appropriate times.  

 

In order to evaluate the parallel BDI model, we compare the parallel agent against five 

versions of sequential agents where the 3 components of the BDI agent are controlled and 

managed in different ways and different time resources are allocated to the 3 components. 

Experiments are designed to simulate the operation of the three components in the agents. 

The ability of the agents to respond to the same sequences of external events of various 
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priorities is assessed. The comparison results show that the parallel BDI agent has 

quicker response, react to emergencies immediately and its behaviour is more rational. 

 

This chapter is structured as follows. In the first section, an introduction of background 

and motivation is given. In Section 3.2, we present the general framework for parallel 

BDI agents that need to perform in real time.  The functions of the processing units in the 

framework are identified, their operations are defined and how these functional units 

interact and cooperate is specified. In Section 3.3, simulation experiments are presented 

to compare the performance of the parallel agent and five versions of sequential agents. A 

theoretical analysis about the performance of the parallel agent is presented in Section 

3.4. In Section 3.5, the issue of how much parallelism and how to configure a parallel 

agent based on the general framework with a limited number of CPUs are studied by 

experiments with different configurations of the parallel agent. We describe some 

advantages and a limitation of the parallel BDI architecture in Section 3.6. A short 

conclusion is given in the last section. 

 

3.1   Introduction 

Hayes-Roth [48] defined the primary objective of an intelligent agent that needs to 

perform in real time as “to maintain the value of its own behaviour within an acceptable 

range over time”. Among the requirements for an intelligent agent, two related are 

flexibility (the agent should react to important unexpected events) and timeliness (the 

agent should meet various real-time constraints). Many agent architectures or frameworks 

have been developed for building an intelligent agent. As identified in the survey of agent 

architectures [135], three kinds of agent architectures, deliberative architecture [18, 111, 

63, 110], reactive architecture [22, 23] and hybrid architecture [35, 36, 81], are proposed 

according to the processing mechanism of the agents. The BDI model is well understood 

for designing deliberative architectures because it combines a respectable philosophical 

model of human practical reasoning [44]. The reactive architecture, most noticeably, the 

subsumption architecture, is a different paradigm [21, 22, 23]. The hybrid architecture is 
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proposed to combine the deliberative and reactive architectures to inherit the advantages 

of both. 

 

With the different agent models proposed, it is said [44] that the basic components of an 

agent designed for a dynamic, uncertain world should include some representation of 

Beliefs, Desires, Intentions and Plans – the BDI model. There are three main operations 

in this model: detecting, thinking and executing. In normal implementation of the 

deliberative agent, the three operations run sequentially. For example, in PRS [63], the 

deliberative process runs in iterations. At the beginning of each iteration step, new goals 

and new facts are obtained through input. Then several plans in the KA (knowledge area) 

library are triggered by the new belief and one or more of the applicable plans are 

selected to be sent to the intention structure. At the end of each iteration step, the 

intentions are executed. In PRS, the agent will not proceed to the next step until the 

current step is finished. In a complex and dynamic environment, the agent needs more 

time to search for proper intentions or one action may need more time to execute. Then 

more time is needed in each iteration step and the agent is not able to detect new events 

before the current iteration step is finished. As a consequence of this, the agent may not 

be able to start processing the emergencies immediately. So the reactivity of the PRS 

agent cannot be assured in such circumstance.  

 

A possible solution to promote the reactivity of the agents appears in the TouringMachine 

[35], a well known hybrid agent architecture. The architecture consists of three sequential 

components: perception subsystem, control framework and action subsystem. The control 

framework will output actions to the action subsystem based on the sensory input from 

the perception subsystem. It consists of three layers, a reactive layer, a planning layer and 

a modeling layer. The outputs from the three layers are summarized by using some 

context-activated control rules. A clock is used to control the execution time of the 

control framework. For each time cycle, the control framework has fixed time resource to 

use. And the primitive schema (action) structure is designed with a ‘cost’ property, which 

indicates how much time it costs to execute the action. If in a cycle, the remaining time 

resource is not sufficient for an action to execute, another action needing less time cost 
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will be executed instead or the remaining time is wasted if no suitable action is available. 

This method insures that the agent can sense the environment at fixed time intervals. The 

probability of overlooking emergencies is low if the time spent in detection and 

processing is balanced well. It is usually required that the detection should not consume 

much time. If the TouringMachine puts much time on the control framework in a cycle, 

the problem of poor reactivity still exists. 

 

In agents based on BDI logics, such as AgentSpeak(L) [112] and LORA [136], the 

problems may appear as reactivity and intention reconsideration issues. The reasoning is 

done by theorem provers, which usually need much executing time. In LORA, the basic 

agent control loop of the BDI interpreter consists of perception, updating belief, 

generating desires, choosing intention and executing actions. Desires, intentions, and 

actions are generated based on belief. The original circumstance/belief may have changed 

during these processing. The intentions may become impossible under the new 

circumstance. The agent should not commit to infeasible intentions. An improvement is 

made by updating beliefs and reconsidering intentions after executing each action. An 

experimental result of intention reconsideration by Kinny and Georgeff is provided in the 

book [136]. The result shows that the more frequently the intentions are reconsidered, the 

lower the effectiveness of the agent is. Thus, the reactivity of the agent cannot be 

ensured. 

 

Pokahr [106] suggested that in the sequential BDI agents the concrete layout of the 

processing cycle will determine the nature of the agent, for example, the caution level and 

reconsideration rate. And the agent architecture is not easy to be extended with additional 

facilities because the processing is step by step and very restrictive. The authors proposed 

a more flexible way of mapping the BDI model to allow easy extension of the agents. In 

the architecture, the steps are transformed to meta-actions. A main interpreter will decide 

which meta-action will be selected to execute from the agenda queue. The execution of 

the meta-action may update the status and insert new meta-actions into the agenda. The 

extension of new agent abilities can be easily done by designing meta-actions. However, 

it is noticed that the outside messages are inserted into the agenda directly as external 
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actions. If perceiving environment is modeled as a regular meta-action, there is no 

guarantee at the architecture level that the environment is monitored appropriately 

closely. At the same time, the problems of low caution level and reconsideration rate also 

remain. 

 

Pokahr [105] commented that the current BDI model does not support any mechanism for 

handling goal relationships at the architecture level. They proposed a deliberation 

strategy for agent developers to specify relationships between goals such that there is a 

maximum number of goals that an agent may pursue at once and the activation of one 

goal may inhibit another goal.  However, an important factor that is not considered is the 

importance and urgency of a goal that influences which goal should have the attention of 

the agent first.    

 

Hayes-Roth [48] pointed out that parallel subsystems with buffered communications to 

provide asynchronous perception, cognition and action will allow an agent to perform in 

real time. We propose what is required of an agent for real time performance: (1) ability 

to respond to emergencies timely; (2) ability to modify goals, intentions and actions in 

reaction to unexpected or new information; (3) ability to perform multiple actions at once 

(e.g. talking while walking); (4) ability to perceive, deliberate and act simultaneously 

(e.g. thinking while walking).   

 

In [73], a multi-threaded approach is used to simulate soccer agents for the RoboCup 

competition. The sensing, thinking and acting behaviours are executed in parallel. Thus 

the soccer agent does not need to wait for I/O operations (sensor and act) with the world 

and gains more time for thinking. The experiments show that the agent with a parallel 

architecture has obvious advantages in lessening the impact of I/O operations in the 

simulation of an intelligent agent like a human being. 
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Figure 3-1 Parallel BDI agent model. 

 

In this chapter, we propose a parallel BDI agent framework for real time performance 

based on the BDI model. The general idea is that such a framework consists of three main 

components, the belief manager, the intention generator and the intention executor which 

are running in parallel as shown in Figure 3-1. The horizontal dark thin lines show the 

control flow in the agent. The three components each consists of a number of smaller 

processing units and they run in parallel. The coordination between them is done by 

messages and interrupts of different priorities. The data flows are shown by the purple 

and red line between the components. The message flows and interrupts are shown by 

arrows. The belief manager generates beliefs from world information perceived by the 

agent and human commands given to the agent. The intention generator generates desires, 

then schedules and reschedules the generation of intention plans for the desires.  The 

intention executor schedules and reschedules the execution of intention plans and 

executes them. Some parallelism can be achieved by simply running these three 

components as parallel threads. However, in such set-up there is no pre-emption of less 

important and urgent desires/intentions by more important and urgent ones so the agent is 

not able to respond quickly to emergencies. Furthermore, the degree of parallelism is 
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limited because there is no parallelism in multiple intention generations and multiple 

intention executions. The general framework proposed offers much better functionalities. 

Under this general framework, parallel BDI agents with different configurations based on 

the best way to share the available computational resources may be built. These agents 

have a number of advantages over the sequential one: 1. they have the 4 abilities required 

of an agent as discussed earlier; 2. support is provided at the architecture level for 

reconsideration of desires and intentions and consideration of goal relationships when a 

new belief/desire is generated. 

 

The idea of parallel operation can be seen in some other agents. However, it is realized in 

different applications or to deal with different problems from ours. For example, in the 

designation of subsumption systems [21, 66], the layers of control are run concurrently. 

In LSA, the layers are realized as the theorem provers. So the reasoning ability of the 

deliberative agents is combined into the reactive agents. The empirical results from a 

robot implementation show that the provers can be used without sacrificing much 

reactivity [5, 6]. This kind of parallel deliberative architecture is different from ours. In 

LSA, the layers are presumed to work independently. Each parallel layer will perform the 

actions of detection, reasoning and output sequentially. Output from one layer can be 

input for another layer. It can be regarded as several deliberative agents each with its own 

sub-goals running in parallel in the subsumption architecture.  

 

Another example of parallel operation can be seen in JAM [60]. The JAM agent can 

execute some action_sequences in a plan simultaneously. This means that some actions 

in an intention can be performed concurrently. This parallel execution of some actions is 

also different from our work. In our work, the three basic behaviours of the agent, 

detection, deliberation and execution, are parallelized. The agent can be watching, 

thinking and acting at the same time. Together with the interrupt mechanism in the agent, 

this parallel BDI agent architecture can solve the problem of concrete layer in traditional 

sequential agents. The reactivity of the agent can be improved to real-time level. 
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3.2   The General Framework 

We propose a general framework for parallel BDI agents based on the parallel BDI agent 

model shown in Figure 3-1. The framework is shown in Figure 3-2. The arrow lines in 

the figure show the control flow among the processing elements of the agent. The 

framework can be useful when designing a robot agent. Each device is a processing 

element which can be run on a processor. It can also be used for agent-based simulation 

of a physical system that is capable of parallel actions. An example of software agent 

representing a vessel captain who can watch, think and act simultaneously is presented in 

Chapter 6. 

 

 

Figure 3-2 The General Framework for Parallel BDI Agents. 

 

The framework consists of three main components: the belief manager, the intention 

generator and the intention executor. These three components represent the three steps in 

the deliberation process of an agent: detect, think and act respectively. The three 

components will retrieve and update data in the three data structures: beliefs, desires, and 
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intentions. The beliefs contain the agent’s view of its environment and of itself. The 

desires will maintain the goals of the agent. The intentions store the plans to be executed 

to achieve the agent’s goals.  Each of the three components are further divided into 

smaller processing elements, also shown in Figure 3-2. We define the functionalities of 

each processing element and the interactions among them. 

 

3.2.1   Belief manager 

The belief manager is responsible for detecting the changes in its environment and 

managing the agent’s view of the world and of itself.  It is made up with Environment 

Monitors (EMs) and a Belief Generator (BG).  The set of EMs serve as the information 

collectors from heterogeneous sensors that an agent may have.  Each EM monitors world 

information from one type of sensors or sensory organs like a camera or human eyes and 

converts the information into abstract representation.  Each EM sends the converted 

information to the BG. 

 

The BG will merge the various information items passed from the EMs into the agent’s 

view of the world.  For example, the eyes of a person see and the ears hear a car coming.  

The visual and audio information will come through two separate EMs and the BG 

combines the information to form a new belief.  This is a cognitive process where the 

semantics of the sensor information is worked out.  Each new belief has a certain degree 

of urgency.  The BG will determine the urgency of the new belief. When a new belief is 

generated, existing contradictory or obsolete beliefs will be removed.  In other words, 

when bnew, a new belief is formed, we have   

     beliefs  = beliefs ∪ { bnew }  and 
         ∃b ∈ beliefs[obsolete(bnew, b)]  beliefs  = beliefs - {b} 
 

Messages will be produced by the BG to notify the intention generator. Depending on the 

urgencies of the new beliefs, message of different priority levels will be generated so that 

the intention generator may process them accordingly. This allows urgent information to 

be handled immediately and less urgent information be dealt with later.  As the belief 
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manager works simultaneously with the intention generator and the intention executor, 

this allows the agent to monitor its environment including any emergencies at all times. 

 

3.2.2   Intention generator 

The intention generator manages the agent’s desires (goals), based on the agent’s current 

beliefs.  This includes generation of new goals, removal of obsolete goals and suspension 

of existing goals. The intention Generator also deliberates on the plans to achieve these 

goals.  It is made up with a Desire Generator (DG), a Desire Scheduler (DS) and a 

number of Plan Generators (PGs).   

 

The DG may produce new desires after a new belief is added into beliefs. The new desire 

will have a priority level according to these rules: 

  If  b1 ∧ b2 ∧ … ∧ bn ⇒ d then pd = max(pbi),  i = 1…n. 

  If  b1 ∨ b2 ∨ … ∨ bn ⇒ d then pd = max(pbi),   

                                                i = 1…n, and bi ∈ beliefs 

These rules mean that when a number of beliefs b1 to bn conjunctively trigger a desire d, 

the priority of the desire pd, will have the highest priority level of the beliefs that 

triggered its generation.  When a desire d may be triggered by any one of a number of 

beliefs b1 … bn, the priority of the desire will have the highest priority level of the belief 

among b1 … bn that the agent currently believes in. 

 

A new belief may make a current desire no longer desirable because it is obsolete or it is 

not consistent with the new desire.  A new belief may also affect the priority of an 

existing desire.  After the generation of a new desire, the new desire may affect an 

existing desire or be affected by an existing desire with respect to their priorities.  The 

intention generator will handle these cases as described later. 

 

The set of desires of an agent desires consists of three subsets: 

desires = pendingD ∪ planningD ∪ executingD  
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where  

pendingD:  the set of desires waiting for their plans to be worked out or a partial plan for 

the desire has been decided but more deliberation is needed,  

planningD: the set of desires being planned, that is, a plan to achieve the desire is being 

worked out in a PG,  

executingD: the set of desires whose intention plans are waiting to be executed or being 

executed by the intention executor.   

If di  ∈ desires then di = (IDi, gi, pi, si) where IDi is the identifier of the desire, gi is the 

desired goal of the agent, pi is the priority of gi representing its urgency and si represents 

the status of deliberation about this goal.  

 

 

Figure 3-3 States of desires and intentions and their transition. 

 

With the partition of desires into pendingD, planningD and executingD as shown in 

Figure 3-3, we provide a simple way to handle the reconsideration of goals.  When a 

desire is generated by the DG, it is deposited into the pendingD.  A desire will move from 

pendingD to planningD when the Desire Scheduler (DS) decides that this desire should 
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preempt another desire in planningD or there is a free PG to do planning and this desire 

has the highest priority in pendingD. A desire will be moved from planningD to 

pendingD by DS when this desire is preempted by another desire in pendingD or a new 

desire in pendingD calls for the suspension of this desire in planningD.  A desire moves 

from planningD to executingD when the intention plan for the desire has been generated. 

A desire will be removed from pendingD, planningD or executingD if a new belief or a 

new desire makes the agent abandon this desire.  

 

We define the operations of DG in Figure 3-4 and those for DS in Figure 3-5.  In Figure 

3-4, obsolete(a, d) means belief/desire a makes desire d obsolete. urgencyAffected(a, d) 

means belief/desire a changes the urgency of desire d or desire d changes the urgency of 

desire a. This may result in an increase or a decrease of priority for d or a (if a is a 

desire), or a temporary suspension of d or a.  Suspension of a desire happens when an 

agent decides to shelf the desire temporarily because of the conflicts between a new 

desire and an existing desire.  clash(d1, d2) in Figure 3-5 returns true if d2 was suspended 

(priority set to suspensionPriority) because of d1.  The function preempt(pk, pi) in Figure 

3-5 will decide whether dk should preempt di.  For example, suppose dk is the desire with 

the highest priority in pendingD, di is the desire with the lowest priority in planningD and 

preempt(pk, pi) = pk > pi.  Then at all times, we have 

∀i∀j, (IDi, gi, pi, si) ∈ pendingD, (IDj, gj, pj, sj) ∈ planningD [pi≤  pj] 

It is possible to have other more elaborate definitions for preempt(pk, pi), for example, pk 

> (pi - some threshold) and (remaining time for di > some threshold). 

 

LOOP: 
bnew =  the belief with maximum priority among the newly generated beliefs  in 

beliefs; 
Process the new belief bnew and form a new desire dnew, if appropriate; 
If dold ∈ desires and (obsolete(bnew, dold)) 
 If dold ∈ pendingD 

 pendingD  = pendingD - { dold }.  
 If dold ∈ planningD  

 Set the priority of dold to removalPriority such that DS will remove it from 
a PG. 

 If dold ∈ executingD 
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 Notify IM through interrupts to have the corresponding intention removed. 
If dold ∈ desires and (urgencyAffected(bnew, dold)) 
 If dold ∈ pendingD ∪ planningD  

 Change the priority of dold to a higher/lower value or suspensionPriority. 
 If dold ∈ executingD  

 Notify IM through interrupts to change the priority of the corresponding 
intention. 

If a new desire, dnew, is formed 
 pendingD  = pendingD ∪ { dnew }. 
 If dold ∈ desires and (obsolete(dnew, dold)) 

       If dold ∈ pendingD 
       pendingD  = pendingD - { dold }.  

       If dold ∈ planningD 
       Set the priority of dold to removalPriority such that DS will remove it 

from a PG. 
       If dold ∈ executingD 
        Notify IM through interrupts to have the corresponding intention 

removed. 
 If dold ∈ desires and (urgencyAffected(dnew, dold)) 
       If dold ∈ pendingD ∪ planningD 

       Change the priority of dold or dnew to a higher/lower value or 
suspensionPriority. 

       If dold ∈ executingD 
       Notify IM through interrupts to change the priority of the 

corresponding intention. 
If there is change in membership in pendingD or planningD  
 Inform DS by message. 

Figure 3-4 Operations of DG. 

 

LOOP: 
1.  Scheduling desires according to the priorities of desires. 
LOOP1: 
 ; )(max p j

pendingDd
pk

j∈
=

 If Pk equals null or suspensionPriority 
  break LOOP1. 
 If there is no free PG 
  ; )(min p j

planningDd
pi

j∈
=

  If preempt(Pk, Pi) 
   pendingD = pendingD  ∪ { di };  
   planningD = planningD - { di }; 
   Send an interrupt to the PG to suspend di; 
  else 
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   break LOOP1. 
 If there is a free PG 
  pendingD = pendingD - { dk };  
  planningD = planningD  ∪ { dk }; 
  Send an interrupt to the PG to start dk. 
2.  Handling the completion of the planning of a desire by a PG. 
 For each desire dp ∈ planningD 
  If the planning of dp is finished in a PG 
   planningD = planningD - { dp }; 
   executingD = executingD ∪ { dp }; 

  If dold ∈ pendingD and clash(dp, dold )) 
      Increase the priority of dold such that dold may be considered for 

plan generation. 
   Send a message to IM with the information about dp. 
3.  Updating the priorities of desires. 
 For each desire i ∈ desires 
  Update the priority of di according to DG instructions or by other factors, like 

time; 
  If priority of di equals removalPriority 
   If di ∈ executingD 

  Notify IM through interrupts to have the corresponding intention 
removed; 

 else 
    desires  = desires - { di }; 
              If di ∈ planningD 
     Send an interrupt to the PG to remove di. 
  If priority of di equals suspensionPriority 
   If di ∈ planningD 
    planningD = planningD - { di }; 
    pendingD = pendingD ∪ { di }; 
    Send an interrupt to the PG to suspend di. 
   If di ∈ executingD 

  Notify IM through interrupts to have the corresponding intention 
suspended. 
 

Figure 3-5 Operations of DS. 

 

3.2.3   Intention executor 

The intention executor works in a similar way as the intention generator. Intention 

Manager (IM) will receive the plan information from the PGs in the intention generator. 

Intention Scheduler (IS) will schedule/suspend/resume the running of intentions in the 
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Plan Executors (PEs). Finally, the physical actions will be put into the action effectors 

and the PE will remove the finished desire d from executingD.  The agent’s intentions 

consists of three subsets of intentions: 

intentions = inactiveI ∪ pendingI ∪ executingI  

where  

inactiveI: the set of intentions that are waiting for the completion of other intentions 

before they can execute and intentions the agent has to put on hold temporarily, 

pendingI:  the set of intentions waiting to be executed,  

executingI: the set of intentions being executed. 

 

If ii  ∈ intentions then ii = (IDi, predeccessorsi, peersi, plani, pi, si) where IDi is the 

identifier, plani is the action plan, pi is the priority, si represents the status of the intention, 

predeccessorsi and peersi are used to address the dependency issues between different 

intentions and facilitate synchronization among intentions and is explained in the 

following paragraphs.  

 

Normally, an intention plan may be a sequence of primitive actions to be carried out by 

the agent one after another.  Or it may be a composite hierarchical task structure where 

predecessor subtasks need to be completed first and peer subtasks need to be executed 

simultaneously. If two subtasks are not related as predecessor-successor or as peer, they 

may be executed in any order or in parallel.  Such a composite hierarchical task structure 

is transformed into several intentions by the PG which generates the intention plan in 

Intention Generator. The transformed intentions have a predecessors attribute to name the 

predecessor intentions which has to be completed before its own execution.  They also 

have a peer attribute to identify what other intentions are to be executed simultaneously 

with them. An example of the transformation is shown in Figure 3-6. 

 

In the example in Figure 3-6, the original intention plan is transformed into 6 intentions 

with smaller action plans. Normally, each sequence of actions, like the one presented by 

Action a, is transformed into a new intention. If some sequences of actions are to be 

executed one by one, like Actions d and f, it may be possible to combine them into one 
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intention like Intention 4, provided that both d and f may be executed by the same PE or 

the PEs are homogeneous. This reduces the cost for scheduling. In the rectangles showing 

the intentions 1-6, the first pair of bracelets shows the predecessors of the intention. For 

example, intention 6 cannot start before both intentions 4 and 5 are completed. With the 

transformation, the original intention plan can exploit parallelism supported in the agent’s 

framework. An example is that intention 2 (Action b) and intention 3 (Action c) may be 

executed at the same time if two PEs are available. This speeds up the execution of 

intentions and the parallel framework of the agent is used more effectively. Intentions 4 

and 5 are peers so they have to be executed in 2 PEs simultaneously. The synchronization 

issue among peer intentions is discussed in the next section. 

 

 

Figure 3-6 Transformation of a normal intention plan. 

 

As shown in Figure 3-3, intentions are partitioned into inactiveI, pendingI and executingI. 

This supports the scheduling and the reconsideration of intentions. An intention plan in 

inactiveI is one that can only start execution after the completion of its predecessor 

intentions or it is one that the agent wants to put on hold for the moment.  An intention 

plan in pendingI or executingI has the same meaning as a desire in pendingD and 

planningD respectively.  When a new intention plan arrives at IM, it joins pendingI if it 

has no predecessor intentions otherwise it joins the inactiveI.  For each intention in 

inactiveI, IS checks whether all the predecessor intentions are completed.  If yes, it 
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moves this intention from inactiveI to pendingI.  In this way, scheduling intentions with 

predecessors are easily managed by updating their predecessor attributes and organize 

them in inactiveI and pendingI.   

 

The operations of IM and IS are defined in Figure 3-7 and Figure 3-8 respectively.  

Functions with the same names in Figure 3-7 and Figure 3-8 as those in Figures 3-4 and 

3-5 behave in the same way. 

With this framework, an agent developer just needs to concentrate on specifying domain 

specific definitions of obsolete desires, urgent desires and clashing desires.  The desires 

and intentions will be activated, deactivated, suspended or removed automatically. 

 

LOOP: 
1.  Handling the message, mnew, from DG. 

If iold ∈ intentions and (obsolete(mnew, iold )) 
 If iold ∈ inactiveI  
  executingD = executingD – { dold }; 

 inactiveI  = inactiveI - { iold }. 
If iold ∈ pendingI  

  executingD = executingD – { dold }; 
 pendingI  = pendingI - { iold }. 

 If iold ∈ executingI  
 Set the priority of iold to removalPriority such that IS will remove it from a 

PE. 
If iold ∈ intentions and (urgenceAffected(mnew, iold )) 

 Change the priority of iold to a higher/lower value or suspensionPriority.  
2.  Handling the message, mnew, from DS. 

Form a new intention, inew, based on mnew; 
If  inew and its peers intentions have no predecessors intentions 

           pendingI = pendingI ∪ { inew }; 
    else  
 inactiveI = inactiveI ∪ { inew }. 

If iold ∈ intentions and (obsolete(inew, iold)) 
        If iold ∈ inactiveI 
  executingD = executingD – { dold }; 

 inactiveI  = inactiveI - { iold }. 
 If iold ∈ pendingI 
  executingD = executingD – { dold }; 

 pendingI  = pendingI - { iold }. 
 If iold ∈ executingI 

 Reduce the priority of iold to removalPriority. 
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If iold ∈ intentions and (urgencyAffected(inew, iold)) 
 Change the priority of iold  or inew to a higher/lower value or suspensionPriority. 
Inform IS the priority of an intention has changed. 

Figure 3-7 Operations of IM. 

 
LOOP: 
1.  Scheduling intentions according to the priorities of intentions. 
LOOP1: 

)(max p j
pendingIi

pk
j∈

= ; 

     If Pk equals null or suspensionPriority 
  break LOOP1. 

K = {intention k and its peers intentions}; 
If there is no enough free PE(s) for intentions in K 
 n is the number of PEs needed if K can get executed; 
  )(max p j

Ii
pi

j∈
=

 where I = { n intentions in executingI with the lowest priorities, note that priority 
of  peer  intention have the same priority}. 

 If preempt(Pk, Pi) 
  pendingI = pendingI ∪ I;  
  executingI = executingI - I; 
  Send  interrupts to the PEs to suspend the execution of intentions in I. 
 else 
  break LOOP1. 
If there is enough free PE(s) for intentions in K 
 pendingI = pendingI - K;  
 executingI = executingI ∪ K. 
Send  interrupts to the PEs to start execution of intentions in K. 

2.  Handling the completion of the executing of an intention by a PE. 
For each intention e ∈ executingI 

If the executing of ie is finished in a PE: 
 executingD  = executingD – { de }; 
 executingI = executingI - { ie }; 
 If iold ∈ pendingI and clash(ie, iold )) 
    Increase the priority of iold such that iold may be considered for 

execution. 
3.  Updating the priorities of intentions. 

For each intention i ∈ intentions 
Update the priority of ii according to IM instructions or by other factors, like time. 
If priority of ii equals removalPriority 
 executingD = executingD - { di }; 
 intentions= intentions - { ii }. 
   Send an interrupt to the PE to remove ii

     If priority of ii equals suspensionPriority and ii ∈ executingI 
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  executingI = executingI - { ii and its peers intentions}; 
  inactiveI = inactiveI ∪ { ii  and its peers intentions}. 

 Send an interrupt to the PE to suspend ii and its peers intentions. 
4.  Checking predecessors. 

For each intention i ∈ intentions 
If ii ∈ pendingI and a new predecessor is added to it   
 pendingI = pendingI - { ii and its peers intentions}; 
 inactiveI = inactiveI ∪ { ii and its peers intentions}. 

If ii ∈ executingI and a new predecessor is added to it  
 executingI = executingI - { ii and its peers intentions}; 
 inactiveI = inactiveI ∪ { ii and its peers intentions}. 

If ii ∈ inactiveI and all predecessors of it and its peers intentions are completed or 
removed 

 inactiveI = inactiveI - { ii and its peers intentions}; 
  pendingI = pendingI ∪ { ii and its peers intentions}. 

 Figure 3-8 Operations of IS. 

 

3.2.4   Synchronization among peer intention plans 

With multiple PEs, the agent is able to carry out multiple actions simultaneously.  Some 

actions need to be synchronized and some are completely asynchronous.  

Synchronization is needed among peer intention plans and we classify the 

synchronization into the following three forms. 

1) Time stepped synchronization.  The execution of intention plan P in one PE has to be 

at the same ‘speed’ as those of several other intention plans in several other PEs. IS 

can play the centralized coordinator in controlling the PEs. 

2) Barrier style synchronization.  The execution of several intention plans in several PEs 

may progress asynchronously until a certain ‘barrier’ then they synchronize with each 

other and continue.  This can be managed in the same way as the barrier 

synchronization in parallel discrete event simulation. Again, IS can coordinate. 

Execute intention plan P1 in PE1 while intention plan P2 is being executed in PE2.  IS 

start P1 and P2 in the 2 PEs at the same time and it will terminate P1 in PE1 as soon as P2 

in PE2 has completed execution. 
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3.2.5   General Remarks 

The operations define how the devices in the belief manager, the intention generator and 

the intention executor work to process the incoming events. All the devices work in 

parallel. The interrupt mechanism ensures that an emergency can be dealt with first. 

Thus, the agent obtains the ability of quick reaction to emergencies and the capacity for 

careful deliberation when required. With the parallel components, the agent can handle 

several matters at once. The agent is also able to ‘change his mind’ towards his 

desires/intentions according to the changing environments. The requirements for real 

time performance, as we proposed in Section 3.1, are satisfied. One method to realize the 

operations is by priority control, which will be discussed in Chapter 5. In next section, we 

make a comparison between the sequential BDI model and the parallel BDI model. 

 

3.3   Comparison between the Parallel BDI Model and the 
Sequential Ones 

In this section, we evaluate the performance of the parallel agent by comparing it with the 

sequential agents. There are 3 main or coarse computational components in a BDI agent, 

the belief manager, the intention generator and the intention executor. In a sequential 

agent, only one computational component is running at any time. However it is possible 

to control and manage the 3 components in several different ways in an attempt to get 

better performance from a sequential agent. On the parallel BDI agent side, under the 

general framework the maximum parallelism can be realized by having all the processing 

elements, like EMs, BG, DG, running in parallel.  To demonstrate that parallel BDI 

agents constructed according to the general framework are able to offer the benefit of 

parallel actions, we have a conservative parallelism where only the 3 main components, 

i.e. the belief manager, the intention generator, and the intention executor, operate in 

parallel. This means the processing elements in the same component will run 

sequentially.  We first describe the five sequential BDI agents each with their own way of 

controlling and managing their computational components. Then the simulation 

experiments are presented and the results are analyzed. 
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3.3.1   Sequential BDI agents 

 

Figure 3-9 Sequential BDI agents. 

 

The five kinds of sequential BDI agents are: 

(1) As shown in Figure 3-9a, the 3 components run in a cyclic way and each uses up the 

pre-allocated and fixed time resource. The deliberation/intention cannot be suspended 

and resumed. If the remaining time of a component (only the deliberate and the 

execute components) is not sufficient for a deliberation/intention to be finished, the 

remaining time will be wasted. 

(2) This is a variant of agent 1. It suspends a task when the time allocated to the current 

component is used up and resumes it when the component’s turn comes in the next 

cycle. For example, the execute action can start an intention which costs 5 time units 

when there is only 1 time unit remaining. 

(3) A more flexible way is to allocate time resources to the deliberate and execute 

components only when needed. If a component has nothing to do, it terminates and 

the next component starts. In order to keep the agent vigilant, the detect component 

always uses up all its allocated time. The actual time used for deliberate/execute 

should not exceed the maximum pre-allocated time to such a component. This agent 

has a cycle time ranging from a minimum that is the fixed time for the detect 

component to a maximum that is the sum of the allowable times of the 3 components. 

The tasks cannot be suspended. 
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(4) Different from agent 3, the tasks can be suspended. 

(5) This agent has a cycle as shown in Figure 3-9b, in each cycle, after the detect 

component, the agent will choose to deliberate or execute based on the maximum 

priority of deliberations and intentions. After deliberate/execute is finished, another 

cycle begins. This makes the agent more watchful for emergencies. 

 

The characteristics of the five sequential BDI agents are summarized in Table 3-1. In all 

the sequential agents, when there is more than one deliberation/intention to handle in the 

deliberate/execute component, the one with highest priority will be processed first. The 

performance of these agents will be compared with the parallel BDI agent. 

Table 3-1 Sequential agents 

Flexible time allocation? Agent 
no detect deliberate execute 

suspend-
resume? Illustration 

1 N N N N Figure 3-9 (a) 
2 N N N Y Figure 3-9 (a) 
3 N Y Y N Figure 3-9 (a) 
4 N Y Y Y Figure 3-9 (a) 
5 N Y Y Y Figure 3-9 (b) 

 

With the different time allocation schemes for the three components, the sequential agent 

will show different performances. In the experiments, we used three time allocation 

schemes for sequential agents according to their emphasis on the three components. For a 

maximum cycle of 15 time units, three schemes showing the fixed or maximum 

allowable time quota for each component of the BDI agent are given in Table 3-2. 

Table 3-2 Allocation schemes 

Configuration detect deliberate execute 
C1 1 4 10 
C2 3 4 8 
C3 5 3 7 

 

The sequential agent with configuration C1 puts more emphasis on executing intentions 

with the risk of overlooking emergencies. C3 gives more time to the detect component to 

be more vigilant. But the time for the execute component is cut. C2 is a compromise 

between C1 and C3. 
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Each sequential agent described in Table 3-1 will be configured according to C1, C2 and 

C3 respectively in the experiments to compare them with the parallel agent. 

 

3.3.2   The input data 

The evaluation of the sequential and parallel agents is done by simulation of the 

processing of events by agents.  All the sequential agents and the parallel agent will 

process some sequences of events.  Each event will be processed by the 3 computational 

components of the BDI agent, namely, the belief manager(detect), the intention 

generator(deliberate) and the intention executor(execute).  

 

In the experiment, the system time is represented as continuous time units. There is a 

system clock to control the increase of the time. The system time is started from 0. For a 

vessel agent, the events may include new topological findings, nearby obstacles, and user 

commands. According to the details of these events, the priorities of the events and the 

costs in time used to execute the corresponding plan can be decided. In this simulation, 

we will discard the actual details of the events. Only the processing time of the events 

and the priority are used to identify an event. These properties are related to the analysis. 

To evaluate the agent ability to handle events of different importance or urgencies, events 

will have one of the four different priority levels 1 to 4, with 4 being the highest. We 

assume that an event can be detected and a belief generated in 1 time unit and each 

deliberation to generate an intention takes 1 to 3 time units. The intention execution time 

of events at all priority levels is uniformly distributed in the range from 1 to 7 time units. 

So the average deliberation execution time is 2 time units and the average intention 

execution time is 4 time units. This also means the average time required to handle an 

event is 7 (1+2+4) time units. 

 

We use the exponential density function to represent the inter-arrival time between any 

two events. As shown in [113], the exponential density function is memoryless and often 
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used to model lifetimes or waiting times. The cumulative distribution function is shown 

as: 

λtt −−= e1)cdf(  3-1 

where 1/λ is the mean, and t is the time units. 

 

cdf(t) shows the probability that the inter-arrival time between 2 events is less than t. So 

given a total number of events, sum, to be used in our experiments, we can decide the 

number of intervals with  length of n time units by: 

( ) sumnnn *)1cdf()cdf()G( −−=  3-2 

 

The intervals are kept in a vector. Then the intervals are selected randomly. The current 

time plus the interval length is the arrival time of the next event. The event priority is 

selected randomly from 1 to 4.  

 

We consider three sequences of events with different average inter-arrival times. The 

average inter-arrival times of the 3 sequences of events are respectively smaller than, 

equal to and larger than the average processing time required by an event. The events 

statistics used in the experiments are shown in Table 3-3. 

Table 3-3 Events statistics 

Events count 
Priority Set 

Expected 
average 

interval 1/λ 1 2 3 4 sum 

Actual 
average 
interval 

Average 
deliberation 

time 

Average 
intention 

time 
a 4 262 250 235 251 998 4.48 1.99 3.96 
b 7 240 260 247 247 994 7.31 1.97 4.08 
c 15 268 244 239 234 985 14.58 1.98 3.89 

 

When an event arrives and the agent is not doing detection, the event will be stored in an 

event buffer. The agent can retrieve the new events later. After receiving the event, the 

agent will create one deliberation for it. The deliberation will be added in a deliberation 

queue. The deliberation and intention plan selected later will have the same priority as 

the event. 
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3.3.3   Comparison results and analysis 

We will use the response time to evaluate how well the agent processes the event. The 

response time is defined as the time between the arrival of the event and end of the 

execution of the intention plan chosen for the event. The response time is calculated as 

the sum of the time for detecting the event, deliberation and execution. The overhead 

transmit messages between the three parallel components in the parallel agent is omitted 

as it is felt that the delay in passing the interrupts is very small.  

 

The results of the experiments are presented in Table 3-4. ART is the Average Response 

Time of all events. ARTp stands for the ART of the events with priority p. ARTw is the 

weighted ART by the priorities of the events. 

Count

T
Count

i
i∑

== 1ART , ∑
= +++

=
4

1 4321
*ART

ART
p

p
w

p
 

3-3 

where Ti is the reaction time for event i, and Count is the number of events. 

 

Parallel agent vs sequential agents 

Looking at the response times of the parallel agent and the various sequential agents 

(rows with agent nos. 1 to 5), we can see that the parallel agent responds at least 3 times 

faster than the sequential agents in most the cases. This shows that the parallel agent can 

process events quicker than the sequential ones. Especially for the events set a and b, 

which are in high-density for the processing ability of the sequential agents, some ARTs 

of them reach over one thousand. Normally it is very irrational to complete a task 1000 

time units later after the event happened. So in such environments, the sequential agents 

are not applicable. The main reason for this difference comes from the fact that the 

parallel agent uses 3 times CPU time as the sequential agents do. So in order to get 

comparable ARTs, we should prepare for the sequential agents a single CPU which is 3 

times as powerful as the CPUs used in the parallel agent. In most cases, it is more 

applicable and economic to prepare 3 less powerful CPUs for a parallel agent. 
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Table 3-4 ART of the events by the agents. 

ARTpSet Confi
g. 

Agent 
no 1 2 3 4 ART ARTw

1 3731.59 1577.26 90.22 22.41 1401.62 724.64 
2 4443.1 1621.04 64.09 23.66 1593.54 797.21 
3 2706.14 927.34 58.8 19.54 961.49 481.54 
4 3300.26 635.3 42.51 20.86 1040.8 478.18 

C1 

5 3318.06 651.88 38.66 20.87 1048.72 482.13 
1 4416.69 2114.99 144.25 23.12 1729.08 917.19 
2 4581.51 1818.47 73.33 26.18 1682.14 854.32 
3 4046.55 1735.6 115.54 22.51 1529.96 795.44 
4 4496.36 1599.33 71.64 25.2 1604.25 801.07 

C2 

5 4531.08 1651.86 63.06 23.13 1623.98 811.65 
1 6523.12 3832.43 656.97 27.9 2834.22 1627.05 
2 6621.4 3990.95 573.05 32.56 2881.14 1645.27 
3 5959.58 3193.37 371.31 23.75 2457.89 1355.53 
4 6017.61 3415.7 252.62 28.57 2502.08 1372.12 

C3 

5 6112.63 3523.51 312.36 26.88 2567.67 1420.42 

a 

Parallel 48.81 17.59 11.18 7.75 21.8 14.85 
1 961.05 78.29 28.69 18.4 264.22 127.73 
2 456.77 50.65 26.58 20.26 135.17 71.88 
3 68.91 26.33 18.15 13.45 31.38 22.98 
4 65.3 27.65 19.14 15.74 31.67 24.1 

C1 

5 73.74 28.82 20.72 15.81 34.42 25.68 
1 2177.75 132.21 35.53 19.48 574.07 262.67 
2 1075.42 73.53 33.39 23.32 292.98 141.59 
3 1051.26 86.14 29.45 17.5 288.02 138.19 
4 903.78 78.73 34.39 23.95 253.31 126.02 

C2 

5 1015.03 62.61 31.53 21.31 274.58 132.01 
1 4520.94 728.04 57.62 19.52 1301.18 622.8 
2 4814.97 408.03 44.98 24.77 1286.63 586.5 
3 3688.76 459.78 45.62 18.09 1026.74 481.75 
4 4109.05 208.17 39.25 23.95 1062.28 473.89 

C3 

5 4590.59 267.35 37.85 22.12 1193.23 532.73 

b 

Parallel 13.12 10.0 8.58 7.35 9.74 8.83 
1 34.46 25.52 20.15 16.4 24.48 21.16 
2 27.16 22.91 19.26 16.65 21.69 19.73 
3 11.19 9.73 8.79 9.03 9.73 9.32 
4 11.11 9.61 8.96 9.18 9.76 9.39 

C1 

5 14.5 12.14 10.41 9.59 11.76 10.84 
1 44.23 28.39 21.44 16.93 28.29 23.3 
2 31.07 23.59 20.99 17.61 23.57 21.16 
3 17.63 13.29 11.49 10.69 13.41 12.14 
4 16.19 13.64 11.82 11.09 13.28 12.32 

C2 

5 27.78 20.31 16.24 13.88 19.83 17.27 
1 76.7 34.8 22.0 15.69 38.55 27.5 
2 51.63 31.1 22.37 17.95 31.44 25.27 
3 35.13 20.25 14.54 12.06 20.97 16.75 
4 29.42 19.42 15.31 13.85 19.82 16.96 

C3 

5 41.46 26.29 18.28 15.89 26.0 21.24 

c 

Parallel 8.92 7.75 7.52 6.87 7.8 7.45 
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One thing to note is that in a few cases the parallel agent responds less than 3 times faster 

than the sequential ones.  This happens with sequential agents 3, 4, 5 when the event 

sequence is set c.  ARTs and the weighted ARTs of agents 3, 4 with configuration C1 and 

C2 are less than 2 times those of the parallel agent.  This means when the inter-arrival 

time is long enough, the parallel agent will not show its advantage.  Because the inter-

arrival time is 14.58, the sequential agents have sufficient time to process the incoming 

events. Though configuration C3 is allocating too much time to the detect component of 

the agent, the performance of the sequential agents with C3 is not too bad. However, the 

parallel agent is still valuable to process the real emergencies with the highest priority. As 

seen in Table 3-4, ART4 to process the events set c is 6.87 for parallel agent and 9.03 for 

the sequential one with best performance.  

 

The priority 4 events are the highest priority events in the experiments. The average time 

needed to process one such event in the ideal case (ATN4) is calculated by: 

4

Count

1i
4

4

)(
ATN

Count

TExecutionionTDeliberatTDetection iii∑
=

++
=  

3-4 

where TDetectioni is the time used to detect the event i, TDeliberationi is the time used to 

deliberate the event i, TExecutioni is the time used to execute the plan generated based on 

the event i, and count4 is the number of events with priority 4. 

 

In this experiment, TDetection equals to 1. TDeliberation and TExecution can be gotten 

from the events list as shown in Table 3-3. Using the equation, ATN4 equals to 7 for set 

a, 7.02 for set b, 6.79 for set c. Compared to the ART4(column 7 in Table 3-4) we can see 

that the parallel agent spends just 0.75 time units more for set a, 0.33 time units more for 

set b and 0.08 time units more for set c.  Set a is a sequence of events with an inter-arrival 

time smaller than the processing time required for an event. So the intention generator 

and the intention executor are busy handling other beliefs and intentions when a high 

priority belief/intention comes to them. Here the interrupt mechanism in the parallel 

agent is able to guarantee immediate handling of higher priority items while the 
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sequential agents are not able to do this. It is clear that the parallel agent has a big 

advantage over the others on processing real emergencies. 

 

For events with lower priority, the difference of ART between the sequential agents and 

the parallel agent is bigger. 

 

Different time resources allocation in the sequential agents 

Looking at the ART and ARTw columns and comparing the corresponding rows for 

configurations C1, C2 and C3, we conclude that the performances of the sequential 

agents with configuration C3 are significantly worse than those with configuration C1 

and C2. This shows that the sequential agents perform badly if they spend more time on 

detecting and less time on deliberation and intention execution. The processing of 

emergencies is often postponed, though the emergencies are detected earlier in 

configuration C3. This can be seen that in most cases the processing of the highest 

priority events also have longer response time. This indicates that in real life, the agent is 

not reacting to high priority events quickly and is taking a longer time to react to other 

events. 

 

We also observe that the performance of the sequential agents with configuration C1 is 

significantly better than C2. This shows that the sequential agents perform much better if 

they spend short time on detecting and more time on deliberation and intention execution.  

Because the deliberating and executing components get more time resources, the beliefs 

and intention plans get cleared faster so the events experience shorter response time. 

 

Different ways of controlling the computational components in the sequential agents 

Looking at the ART and ARTw columns and comparing the corresponding rows among 

the sequential agents, we see that agent 1 and 2 are the losers in all cases.  This is 

expected because of their rigid way of controlling the detect, deliberate and execute 

components.  In the best performing configuration C1, agents 3, 4 and 5 have comparable 

performance in all event sequences a, b and c. So we conclude that if a component has 

nothing to do, it is better to give way to the next computational component. 
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For set b and c in configurations C2 and C3, generally agents 3 and 4 are better with 4 

being the best more often but agent 5 is not the loser every time.  We may conclude that it 

is better to allow the computational components to start processing an item if there is one, 

then suspend it when its time quota is up and resume in the next round. But this policy is 

not always effective. At first, it is interesting to notice that the ART4 is normally better 

for the agent 3 than agent 4 (Just one exception is found: set a Configuration C1). This is 

because that the above police will cause a lower-priority task is being dealt with when a 

higher-priority event enters. The sequential agent has no interruption schema, so the new 

task will not be executed immediately. In Table 3-4, we can see that the ART4 is from 1 

to 5 time units bigger for agent 4 than agent 3. This also affects the ART3 and ART2 in 

some cases. Another interesting phenomenon is that for set a, even the ARTs are mostly 

worse for the agents with the suspend-resume mechanism (2, 4) than the agents without 

such mechanism (1, 3). It is because in agents 1 and 3, the execution of the tasks is not 

strictly scheduled according to the policy that the higher-priority tasks get processed first. 

If the current remaining time-slot is not sufficient to execute a task with high-priority, the 

low-priority task with suitable execution time will be processed earlier. Then the tasks 

with shorter execution time are prone to be processed first. For a high-density events set, 

as the set a, such fact will decrease the average waiting time of the tasks. So ART is 

increased. It is suggested to make verification before adopting this policy. 

 

3.4   Theoretical Analysis 

In the following, theoretical analysis is carried out to predict the performance of the 

parallel agent when some attributes of the incoming events sequence are known. The 

estimated ART is shown as ARTe. The following facts are assumed: 

• The inter-arrival time of the events is exponentially distributed and only one event 

can happen in any time unit; 

• The time to process an incoming event and generate a belief is 1 time unit; 

• The processing time for a deliberation is chosen randomly in [1, Dmax]; 

• The time to execute an intention is chosen randomly in [1, Emax]; 

 59

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 3 Parallel BDI Agent Architecture 
 

• The priority value for an intention is chosen randomly in [1, Pmax]; 

• The overheads for transferring data between the devices are very small compared 

to the time needed for processing the event sequence and ignored. 

 

The following symbols are used in the subsequent discussion. The values of them can be 

gotten given an event sequence. 

N – number of events; 

interval  - average interval between two events; 

1S  - average time needed to process an incoming event and generate a belief; 

2S  - average processing time needed to complete a deliberation job; 

3S  - average processing time needed to execute an intention job; 

 

The performance of the agent is analyzed when an event sequence is input for processing. 

The agent performance is evaluated by ART for the events in the serial. A smaller ART 

shows that the agent can process the events quicker. The ARTe can be calculated by: 

332211eART SWTSWTSWT +++++=  

Where: 

1WT : average , waiting time between the occurrence of an event and its detection; 1WT

2WT : average ,  waiting time between the generation of a deliberation, that is, the  

insertion of the deliberation into the queue and the start of the deliberation; 

2WT

3WT : mean of ,  waiting time between the generation of an intention, that is, the 

insertion of the intention into the intention queue and the start of intention 

execution. 

3WT

 

The following figure is used to show the data flow in the agents. 
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Figure 3-10 The data flow in the agent. 

 

First, the total time needed to process all the N events can be estimated by 

( )intervalSSSNT ,,,max 321∗= . Because device1 runs at all time and it can detect a new 

event immediately after the event happens and 1Sinterval ≥  for all events, therefore 

01 =WT . There will be two cases when estimating the ARTe according to the different 

interval . 

 

Case 1: ( )32 ,max SSinterval >=  

If ( )32 ,max SSinterval >= , it is expected that the devices in the parallel agent have 

sufficient time to process an event in the interval between two events. The waiting time 

for services will be 0. So the ARTe equals to 321 SSS ++ . This can be verified by the 

statistics in the previous experiments. The event sequences, a, b and c, shown in Table 3-

3 are used as examples to show the analysis. 

Table 3-5 Experiment statistics 

Set interval  ART in experiments ARTe = 321 SSS ++  
a 4.48 21.8 6.96 
b 7.31 9.74 7.05 
c 14.58 7.8 6.87 

 

From the table, it can be seen that the difference between the actual ART and ARTe is 

smaller if interval  is larger. This is because with a larger interval , there are few cases 

that the interval between two events is smaller than ( )32 ,max SS . In most cases, the agent 

can complete processing the previous events before the next one comes in. Then the 

actual ART is closer to the expectation.  
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Compared to sets b and c, there are more cases in set a that the interval between two 

events is actually smaller than ( )32 ,max SS . So the agent may not have enough time to 

complete processing the previous intentions, which makes the actual ATR (21.8) much 

longer than the expectation (6.96). 

 

Case 2: ( )32 ,max SSinterval <  

If ( )32 ,max SSinterval < , the estimation will be done using the following equation. We 

use b to show the index of devices in which the average processing time is larger among 

the device2 and device3 as shown in Figure 3-10. Thus, ( )32 ,max SSSb = . So device b is 

the bottleneck. 

 

After the arrival of the mth event, the number of tasks waiting to be processed in device b 

on average is: 

Nremaining= ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∗

bS
intervalm 1  

The highest priority of the remaining tasks is: 

Phigh=

maxP
m

N remaining = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∗

bS
intervalP 1max  

Thus, we can see that the probability that a task can be executed immediately is: 

Pro( p > Phigh)=1-Phigh/Pmax=
bS

interval . 

where p is the priority of the task. The interval  bigger, the possibility is bigger. A 

blocked task is expected to get executed after all the events are inserted. The number of 

remaining tasks when all the events are inserted is NrN= ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∗

bS
intervalN 1 . Then the 

average waiting time for execution in the device b is: 

 62 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 3 Parallel BDI Agent Architecture 
 

bWT = ( ) ⎥
⎦

⎤
⎢
⎣

⎡
∗

−
+⎟

⎠

⎞
⎜
⎝

⎛
∗−∗∗⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
− ∑

=
b

rN
N

ib

S
N

intervaliN
NS

interval
2

111
1

 

        = ⎟
⎠
⎞

⎜
⎝
⎛ ∗

−
+∗

−
∗⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
− b

rN

b

S
N

intervalN
S

interval
2

1
2

11  

 

ARTe can be estimated as 321eART SSWTS b +++= . We designed three experiments to 

empirically validate this equation. The results are shown in Table 3-6. It can be seen that 

the ARTe is quite close to the real ART. 

Table 3-6 Experiments statistics 

N 
2S  3S  interval  ART in experiments eART  

999 1.98 4.01 1.09 1468.53 1463.68 
999 2 4.01 2.05 1014.92 981.78 
998 2 3.88 3.01 460.74 439.38 

 

3.5   How Much Parallelism 

In Section 3.2, we proposed that when an agent is simulating a certain physical system, 

the parallel agent should be configured such that it has the same number of Environment 

Monitors (EMs), Plan Generators (PGs) and Plan Executors (PEs)as the number of 

parallel physical devices that exist in the physical system to perform the corresponding 

functions.  In this section, we consider agents that are not simulating a physical system.  

In this case, the constraint is the parallelism that can be supported by the physical 

computer.  For example, if a computer has 2 CPUs, only 2 processing elements can be 

running in parallel.  However, given a fixed number of CPUs, there is still the issue of 

how to distribute the CPU power to the processing elements.  For example, 6 CPUs can 

be used by the PGs and PEs, how do we decide whether to have 2 PGs and 4 PEs or 3 

PGs and 3 PEs? In this section, we present experimental results on agents with different 

configurations based on the general parallel BDI agent framework. The agents will 

process a sequence of events. The events sequences are designed in the same way as in 

Section 3.3. The statistics about the sequences used are shown in Table 3-7. 
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Table 3-7 Events statistics 

Events count 
Priority Set 

Expected 
average 

interval 1/λ 1 2 3 4 sum 

Actual 
average 
interval 

Average 
PG time 

Average 
PE time 

a 2 244 286 234 235 999 2.54 1.99 4.16 
b 4 270 237 255 236 998 4.48 1.99 4.01 
c 7 235 244 264 251 994 7.31 2.01 3.98 

 
 

For simplicity, we assume there is only one type of sensor input so there is just one EM 

(K1 in Figure 3-2 is 1). The following are assumed in the experiment: 

1. The incoming event can be detected and beliefs updated in 1 time unit.  So processing 

time in BG is 1 time unit. 

2. The DG takes 1 time unit to generate a desire. 

3. Each deliberation to generate an intention takes 1 to 3 time units, uniformly 

distributed. This is the processing time in PG.  So the expected average processing 

time in a PG is 2 time units. 

4. The intention execution time of events at all priority levels is uniformly distributed in 

the range from 1 to 7 time units. This is the processing time in PE. And the average is 

4 time units.  

5. The times used in DS, IM, IS are significantly shorter than the processing times in 

other processing units like BG, DG, PG etc and can be ignored. 

6. The overhead of transmitting messages between the various processing units in the 

parallel agent is not included as it is assumed that the agent is running on a machine 

with multiple processors sharing memory. So the delay in passing the interrupts is 

very small. 

All these assumptions mean the expected average time required to process an event is 8 

(1+1+2+4) time units. 

 

The results of the experiments with different combinations of K2 and K3 devices(refer to 

Figure 3-2) are presented in Table 3-8. 
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The priority 4 events are the highest priority events in the experiments. The average time 

needed to process one such event in the ideal case (ATN4) is calculated as the sum of the 

detection time (1), desire generation time (1), average PG time and average PE time for 

all the events with priority 4. In the events sequence used, ATN4 equals to 8.01 for set a, 

8.28 for set b, 8.0 for set c. Compared to the ART4 in Table 3-8 we can see that the 

parallel agent spends just a little more or the same amount of time for processing the 

events with priority 4.  This confirms that the interrupt mechanism in the parallel agent is 

able to guarantee immediate handling of higher priority items.  

Table 3-8 ART of the events by the agents 

ARTpSet K2 K3 1 2 3 4 ART ARTw

1 1 2364.78 813.83 18.64 9.26 817.12 408.54 
1 2 22.32 11.8 8.89 8.17 12.84 10.53 
2 2 18.21 10.28 8.4 8.06 11.25 9.62 
2 3 9.12 8.59 8.01 8.01 8.45 8.24 
2 4 8.49 8.35 7.99 8.01 8.22 8.12 
3 3 9.0 8.55 8.0 8.01 8.41 8.21 

a 

3 4 8.4 8.28 7.97 8.01 8.17 8.09 
1 1 49.33 17.36 11.3 8.84 22.45 15.33 
1 2 9.77 9.07 8.36 8.34 8.91 8.64 
2 2 8.87 8.52 8.13 8.28 8.46 8.34 
2 3 7.99 8.03 7.96 8.28 8.06 8.1 
2 4 7.84 8.0 7.96 8.28 8.01 8.08 
3 3 7.96 8.04 7.96 8.28 8.05 8.1 

b 

3 4 7.82 7.99 7.96 8.28 8.0 8.08 
1 1 14.35 10.84 9.85 8.31 10.77 9.88 
1 2 9.02 8.2 8.27 8.05 8.37 8.24 
2 2 8.47 7.97 8.09 8.01 8.13 8.07 
2 3 8.12 7.81 8.05 8.0 8.0 7.99 
2 4 8.08 7.81 8.05 8.0 7.99 7.99 
3 3 8.11 7.81 8.05 8.0 7.99 7.99 

c 

3 4 8.07 7.81 8.05 8.0 7.98 7.98 
 

 

In the following, we will show the waiting time for deliberation and execution. Average 

waiting time for deliberation (AWTD) means the time a desire spent in pendingD 

waiting.  This includes the time before the plan generation is started and the time when 

the plan generation for this desire is suspended. AWTE, average waiting time for 
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intention execution, is defined in a similar way. A shorter waiting time means that the 

processing is quicker. 

 

The AWTD is only related to K2, the number of PGs. Table 3-9 confirms that a larger 

K2, the deliberations can be finished quicker. In the three sets of environments, 3 PGs are 

enough to provide the agent the ability to deliberate any event immediately after it is 

received. 

Table 3-9 Average waiting time for deliberation 

AWTDpSet K2 1 2 3 4 AWTD 

1 5.95 2.13 0.62 0.13 2.24 
2 0.09 0.09 0.01 0.0 0.05 a 
3 0.0 0.0 0.0 0.0 0.0 
1 1.26 0.74 0.31 0.07 0.61 
2 0.03 0.01 0.0 0.0 0.01 b 
3 0.0 0.0 0.0 0.0 0.0 
1 0.63 0.25 0.19 0.04 0.27 
2 0.01 0.0 0.0 0.0 0.0 c 
3 0.0 0.0 0.0 0.0 0.0 

 

AWTE is affected by both K2 and K3(the number of PEs). The statistics is shown in 

Table 3-10. With a same K3, the agent with a larger K2 can produce intentions earlier. So 

in such case, the AWTE may be increased. But referring to Table 3-8, we can see that the 

total ART is decreased. It is easy to see that with K2=1 and K3 increased from 1 to 2, the 

AWTE is greatly decreased. Because in an event-congested environment like set a 

(interval=2.54), the agent with 1 PE cannot process all the intentions in time.  

Table 3-10 Average waiting time for execution 

AWTEpSet K2 K3 1 2 3 4 AWTE 

1 1 2350.52 803.46 10.04 1.12 806.74 
1 2 8.06 1.43 0.29 0.03 2.45 
2 2 9.81 1.94 0.41 0.05 3.06 
2 3 0.72 0.25 0.03 0.0 0.25 
2 4 0.09 0.01 0.0 0.0 0.02 
3 3 0.69 0.3 0.03 0.0 0.26 

a  

3 4 0.09 0.03 0.0 0.0 0.03 
1 1 40.27 8.64 3.04 0.5 13.84 b 
1 2 0.71 0.34 0.1 0.0 0.3 
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2 2 1.05 0.53 0.16 0.01 0.45 
2 3 0.16 0.04 0.0 0.0 0.05 
2 4 0.02 0.0 0.0 0.0 0.01 
3 3 0.17 0.05 0.0 0.0 0.06 

 

3 4 0.02 0.0 0.0 0.0 0.01 
1 1 5.65 2.78 1.61 0.27 2.51 
1 2 0.32 0.14 0.03 0.01 0.12 
2 2 0.39 0.16 0.04 0.01 0.14 
2 3 0.04 0.0 0.0 0.0 0.01 
2 4 0.0 0.0 0.0 0.0 0.0 
3 3 0.04 0.0 0.0 0.0 0.01 

c 

3 4 0.0 0.0 0.0 0.0 0.0 
 

 

The overall performance of the agent is decided by the slowest processing unit of the 

system. In the parallel agent, plan generation and intention execution are the most time 

consuming. The balance between K2 and K3 should be: 

e

d

AVG
AVG

K
K

=
3
2  3-5 

where AVGd is the average PG time, and AVGe is the average PE time. 

 

Tables 3-8 and 3-10 confirm that having K2 = 2 and K3 = 4 is better than having K2 = 3 

and K3 = 3, more so when the arrival rate of events is high.  If the average inter-arrival 

time between events equal to AVGi, the agent needs 
i

d

AVG
AVG

K =2  PGs to generate plans 

to prevent build-up of desires in pendingD.  In the situation where the arrival of events 

are very dynamic, that is, the inter-arrival time changes drastically, the best solution will 

be for the Desire Scheduler(DS) and the Intention Scheduler(IS) to dynamically adjust 

the number of PGs and PEs in response to the changes in the arrivals of events. In other 

words, the DS and IS should self organize what is the best ratio of PGs to PEs. 

 

If there is at most 1 event coming in 1 time unit, maximum K2 and K3 needed should be 

smaller than the maximum PG and PE time respectively. For example, in the experiment, 

maximum PG time is 3, so 3 PGs are enough to ensure that waiting time for a PG is 0 and 

AWTD will as a result be 0.  
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In general, if it is critical to keep the waiting time for PG to zero, the number of PGs 

required can be calculated by  

K2 = ⎡b/a⎤ 3-6 

where a is the minimum time interval between two events, and b is the maximum 

processing time for PG to generate an intention plan for a desire. 

 

This also applies to the value of K3 where a is the minimum time interval between the 

arrival of two intention plans produced by PGs and b is the maximum processing time for 

PE to execute an intention plan for a desire.  With these values for K2 and K3, whenever 

a new desire is generated or a new intention plan is generated, there is always a PG or a 

PE available to process them.  It can be stated that the minimum time interval between 

the arrivals of two intention plans produced by PGs is the smaller value between the 

minimum inter-arrival time of events and the minimum processing time for PG to 

generate an intention plan for a desire. 

 

Under a relative static situation where the demand for deliberation power and that for 

plan execution power are not changing drastically, the computing power of the agent can 

be allocated to reflect the demands using this simulation method.  But in a more dynamic 

situation, a dynamic approach will be needed. Learning algorithm will be a good way to 

decide the number of EMs, DGs and PEs dynamically based on feedbacks of agent 

performance. 

 

3.6   Possible Advantages and a Limitation 

This parallel model should be helpful in the research of continual planning. Continual 

planning means that the agent will be continuously planning, interleaving planning with 

execution, because its plans can undergo continual evaluation and revision [30].  For a 

parallel agent, it will be able to continue planning while executing an intention plan.  

Several techniques have been produced for continual planning. For example, the 

continuous planning and execution framework (CPEF) [90] integrates HTN planning 
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technique [34, 33] to implement open-ended reasoning. Open-ended planning process 

allows the agent not to generate full level plans before execution. In UM-PRS [77], the 

hierarchy of the plans is kept for monitor plan execution and replanning. Obviously, the 

techniques for continual planning increase the needs for time resource. In order to replan, 

it is necessary for the agent to detect new situations frequently. The idea of parallelizing 

the basic behaviours of the agent is helpful to support continual planning: the new 

situations can be detected quickly. More, in a parallel agent, a high-level intention can be 

subdivided into several sub-intentions. The problems of resource sharing and 

coordination of the sub-intentions may be solved by utilizing some parallel algorithm. 

Thus, the intention can be finished quickly and computation resource is used wisely.  

 

Another possible advantage of the architecture is that it can provide the agent some 

adaptive behaviour by combining automatic learning algorithms for some special 

problems. Adaptive ability is an important attribute for agents to show the autonomy and 

proactiveness properties [44]. With adaptive ability, the agents can respond to dynamic 

environments more intelligently. The agents can improve performance continually 

without human interference. Many mature learning algorithms have been produced and 

are utilized in the machine learning areas [88]. But in the plan-based architectures, such 

as PRS, it is hard to combine the learning algorithms within the reasoning process. An 

experimental step was taken in [46]. The learning is implemented by applying the Top-

down induction of decision trees on the agent’s action models. The models are labeled 

with success or fail tag. The models are organized as the decision trees. In the situations 

with fixed action steps, the agent can interact with environment with past experiences. 

But for agents working in continuous environments the limitation is obvious: the models 

may be too voluminous to save. We have proposed to extend the original BDI model by 

adding an experience function library [141]. Some complicate algorithms can be coded in 

this library and called. Combining that extension and the parallel architecture, it is 

possible to incorporate learning algorithms as experience functions. For example, in a 

vessel agent, it is possible to implement the obstacle avoidance function with the Q-

learning algorithm. The agent can accumulate and take advantage of experience gained 

through its moving. Using the traditional sequential BDI architectures, the agents may not 
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be able to react to emergencies in time when calling an experience function. However, 

the parallel BDI agents have the abilities of detecting emergencies immediately, 

suspending some low-priority executing experience functions and resuming them at a 

proper later time. We will see details about the experience function library in next 

chapter. 

 

A problem for implementing the parallel architecture is that it needs more processors 

because multi-threads will demand more CPU resources. In our implementation of vessel 

agents, one agent consists of about 15 threads. This is not surprising if we consider how 

many little thinking and controlling processes are working in parallel in a human body 

but it requires a lot of system resources. A system with multi-CPUs will be very useful to 

have the activities of the agent run in a real concurrency and the responsiveness of the 

agent can be simulated better. 

 

3.7   Conclusions 

In this chapter, we show our proposal for a parallel BDI agent architecture. In the 

architecture, the three basic behaviours of the BDI agent are parallelized. With the 

parallelism, the agent obtains the improved ability to work in dynamic environment. It is 

also a more natural way of working: the three behaviours of an agent are running 

concurrently. 

 

A comparison experiment between sequential BDI agents and the a parallel BDI agenis 

shown and a theoretical analysis of the aerformance of the a parallel BDI agenis made. 

Then the aroblem of how to araocate the computation resource to the devices is discussed. 

At the end, the aossible utilities of the a parallel BDIrchitecture and a limitation when 

applying the framework are discussed. 
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CHAPTER 

4  

AGENT CHARACTER 

 
As have discussed in the first chapter, vessels navigation control is affected by human 

and natural factors. Each vessel agent has its own character, which does not have proper 

representation in the BDI model. We aim to improve the BDI model by incorporating the 

components into the BDI model to realize the agent character. In this chapter, we analyze 

the effect of human character and propose an extended BDI architecture for designing 

human-like agent. Different agent behaviour is a result of: 1. different initial parameter 

setting; 2. different experience from reinforcement learning. In experiment, a vessel 

captain is built based on this architecture. Cautious captain, adventurous captains and the 

like can be created with different parameter settings and experience accumulated through 

its individual navigation. 

 

Touschapter is structured as follows. In the first section, we give an introduction about the 

background. In Section 4.2, we analyze the agent character and explain the two basic 

components of the agent character. In Section 4.3, an extended BDI agent architecture 

with character components is illustrated, and the implementations of the agent character 

are explained within this architecture. The experiment of implementing the agent is 

shown in Section 4.4. A conclusion is given in Section 4.5. 
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4.1   Introduction 

Most of the previous agent architectures are designed to provide the agents with rational 

abilities to detect, deliberate and act. Thus, in the same situations, different agents will all 

make the same decisions and they will have the same behaviour. However, in multi-agent 

simulation system this is not always desirable. Multi-agent simulation is widely used to 

enhance knowledge in real worlds and provides the possibility to create artificial worlds 

for the testing of theories [55]. In multi-agent simulation of human society, agent 

character is essential for simulating various human beings. The agents will not always 

work in an ideal and optimal way. Their characters will affect their decisions. For 

example, in a system which is used for risk analysis by simulating vessels in sea, the 

vessel agents must show different characters. This is because different captains 

demonstrate different navigation approaches. Human characters have very important 

effects on vessel navigation. In order to have meaningful conclusion from the simulation 

system, different vessel behaviours must be simulated realistically. So the vessel agent 

should demonstrate human-like character. The agent character should be considered as an 

important factor when designing real agents. 

 

In this chapter, we analyze the agent character from the agent itself and propose an 

alternative way to implement the character in the agent architecture. Different from 

Norling’s paper, in which the character is researched from its cause in psychological 

explanation [97], the character is identified by its effects. The agent character influence 

will be divided into personality influence and experience influence. We argue that the 

way people behave is affected mainly by two factors: (1) their personality that seems to 

come from birth and; (2) the previous life experience of the person.  The personality 

influence shows the agent’s initial natures, for example, some babies are more talkative 

than others and other babies are natural introverts.  Another example of this is two twin 

brothers after going through the same education will still behave differently.  Different 

personalities will be realized as different parameter settings and priority libraries. The life 

experience comes from the interaction between the agent and the environment. The good 
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and bad experience from the environment will affect the agent’s character and future 

behaviours. The experience is realized by the reinforcement learning algorithm. These 

character influences are incorporated into BDI agent architecture. And a vessel agent 

representing a vessel captain navigating in sea is created using the architecture. 

Experiment results show that the agents are able to demonstrate different behaviours 

based on their different characters. 

 

4.2   The Analysis of Agent Character 

An agent’s uniqueness is called the agent’s character. In the following, the agent 

character is analyzed with the example of a vessel doing navigation. To simulate the 

navigation behaviours of different vessels, each vessel agent must have its own distinct 

character. A vessel’s distinct character can be seen from its physical specifications and its 

captain’s reasoning behaviour, both of which will have influence on the decision results 

for navigation. This means, a vessel agent should also have two such kinds of influences 

on its decision making. A vessel’ physical specification is the vessel’s physical 

properties, including the vessels’ size, maximum acceleration, maximum translational 

velocity, and so on. The reasoning behaviour of a captain is determined by the captain’s 

behavioral and mental characteristics and his experience in navigation. The three factors 

are analyzed one by one. 

 

The physical properties will affect agents’ decision result. The influence will be that the 

agents have to decide the output actions according to their physical capabilities.  These 

physical capabilities do not change with time or the experience of the vessel captain.  

These are the unchanging factors in the decision making process of the captain.   

 

A person’s behavioral and mental characteristics form his personal character. This will 

have a big impact on the person’s behaviour.  Each captain is more inclined to make 

certain decisions.  For example, some captain is more inclined to overtake another vessel 

when being blocked.  Some captains are born to be more meticulous than the average and 

others are born to be more adventurous than others.  The difference will result in that a 
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bold captain is more willing to take a bigger risk in navigation compared to a meticulous 

or cautious captain. The vessel agent is made to simulate a captain to make decision for 

navigation. So each vessel agent should have the behavioral and mental characteristics 

that will affect the whole reasoning process. 

 

Experience in navigation comes from past navigations. Different pasts provide different 

experiences. Different experiences will make different people. So an expert captain will 

outperform a green one. A captain who accustoms to navigate in one sea area may not be 

good in another area. 

 

Of the three factors that affect a captain’s decision making, the physical properties have 

the similar effect as the captain’ behavioral and mental characteristics, in that both are not 

changing with time or experience. From another point of view, we can assume that the 

physical properties affect the agent’ unique personality first, and then they influence the 

agent’s decision making through the personality.  So to simulate the agent’ decision 

process, we combine these physical properties with the agent’s unique behavioral and 

mental characteristics. We call it the personality of an agent.  To summarize, an agent’s 

character can be divided into two aspects: personality and experience as shown below: 

⎪⎩

⎪
⎨
⎧

⎩
⎨
⎧

Experience
csracteristimental chaandlBehavioura

ropertiesPhysical p
yPersonalitacterAgent char    

 

The applications of personality and experience are shown in the following individually. 

 

4.2.1   Personality 

 Personality is the basic element of an agent’s character. It will affect every process in 

decision-making, including the results of experience’s accumulation and application.  For 

example, two people with different personalities behave differently even after going 

through the same experience.   The influence of the personality is shown in Figure 4-1. 

The agent will first detect the world through sensors/input devices/sensory organs. Then 
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the collected data will be transformed into the world model, which will provide data for 

decision. The world model is a representation of how the agent personally perceives the 

world. Then the decision process will make decision based on the world model and 

personal tendencies.  Identified by the index numbers in Figure 4-1, the personality’s 

influence will be shown in two processes: 

 

 

Figure 4-1 Effects of personality. 

 

1. The personality will affect how the agent personally perceives the world.  

Humans will have different feelings about the same scene. For example, someone will 

feel that a vessel is still far away and there is no need to worry about it but other people 

may feel differently with the same scene. And the decisions are made based on the 

feelings. So we will build a world model to represent the ‘perceived world’ (beliefs). The 

world model consists of the information about the real world.  

 

2. The personality will affect the decision process. 

The decision process will deliberate on the choices of plans of actions based on the 

perceived world. The personality will affect these choices. For example, some vessel 

captain depends on the past experience more than others. A demonstration of this is 

shown in Section 4.4.2, where different parameter settings as different personalities for 

vessels will affect the vessel’s final actions. 

 

The personality will also affect the experience’s gain and its application in the decision 

process. One way an agent learns from the experience is using the reinforcement learning 
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algorithm. Reinforcement learning is completed based on the rewards from the world 

after each action. Each pair of state and action will have a reward value assigned. The 

next action will be chosen with the maximum future reward value. And after execution, 

the value will be updated with the latest rewards. Here, the personality will have two 

affects: 

• The personality will first affect how previous experience is used. There are people 

who dare to make decisions that they have never made before and people who 

will only make decisions according previous experience.  The learning experience 

gained will be very different.  In other words, the action selection mechanism will 

be affected by the personality. 

• It will affect how previous experience is remembered.  The result of an action for 

a certain state may be viewed differently by different personalities.  Some people 

may feel a certain result is horrible and the action should be avoided completely 

in future and other people may feel it is still tolerable.  These will be reflected by 

different reward functions 

 

4.2.2   Experience 

People with normal intelligence will learn and adapt their behaviour to the environment.  

So a vessel agent should also have the learning capability and adapt the navigation 

behaviour based on experience.  Normally, the experiences of the vessel captains are not 

identical and can vary significantly.  Two identical vessels under the control of two 

captains with similar personalities may have different past experiences.  They may be 

trained by different people in different seas and they may have accumulated different 

working experiences. So vessel agents may be trained using different scenes from 

different environments. 

 

The human experience is used to make optimal decision (optimal decision is subjective) 

when facing the similar scenes which have occurred. Human will accumulate his 

experience along the processes. So the algorithm to simulate the human experience must 

obtain the two attributes: reusable and accumulative. The reinforcement learning 
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algorithm is applied to simulate the accumulation of the experience of agents. It qualifies 

the attribute demanding: 

 

• Reusable  

The policy based on reinforcement learning is made by choosing from the value of 

current state and future action tuples. The action which produces maximum future value 

is chosen as the next action. This procedure is similar to that human always choose the 

action which will generate maximum expected reward based on experience. 

• Accumulative 

After each execution of an action, the agent will update the values of state and action 

tuples based on the reward from the world. This is also similar to the behaviour that 

human will modulate his mechanism based on the reaction from the previous actions. 

 

The scenes which can be applied with experience must have the recurring and easy-to-

remember features. The recurring feature ensures that human can accumulate experience 

for the scene. And it also ensures that the experience for the scene is useful for future. 

Obviously, we cannot get much experience from an action that is executed just once. The 

Second feature, easy-to-remember, is due to the human biological limitation. We have 

difficulties in remembering complicated scenes due to the limited brain memory. And the 

complicated scene often consists of independent small parts. Usually the experiences of 

the different parts are also independent. Thus, human tend to divide complicated 

procedures into independent small things to accumulate experience individually. For 

example, playing football is a whole process. But the experience for defense and offense 

are accumulated individually. So the experience is applied in specific scenes. 

 

 The vessel’ main objective is to reach its target safely. The basic behaviours of vessel 

consist of path planning and obstacle avoidance. For vessels which travel long distances, 

the path is usually fixed so experience has no much effect on this behaviour. Obstacle 

avoidance is a skill that is learnt from experience and often used during the navigation of 

a vessel. The experience for obstacle avoidance is also very meaningful for vessel’s 

future performance when facing the similar obstacle. 

 77

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 4 Agent Character 
 

 

From the above, we will apply the reinforcement learning algorithm to obstacle 

avoidance of vessels. The objective is to simulate captains’ experience for obstacle 

avoidance. 

 

4.3   The Extended BDI Agent Architecture 
 

 

Figure 4-2 BDIE architecture. 

 

The BDI agent architecture is extended as shown in Figure 4-2.  It is based on the PRS 

system [63].  The similar extension can be implemented in the parallel BDI agent. The 

architecture consists of three main executing components, namely, the belief manager, 

the intention generator and the intention executor. The belief manager is responsible of 

receiving information and managing beliefs. Messages will be sent to notify the intention 

generator for new beliefs. The intention generator will produce intentions according to 

the incoming beliefs and goals and inform the intention executor about new intentions in 

messages. Then the intention executor explains and executes the intentions to produce 

output actions. The action buffer will keep the physical actions output by the intention 

executor. The plan library consists of plans for dealing with achieving goals. In this 
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experiment, the plans are represented using the Hierarchical Task-Network (HTN) [34]. 

HTN organizes actions as a network. A set of HTN grammar have been developed to 

formalize the HTN networks [33]. An example of HTN network for obstacle avoidance is 

given in Section 4.4.2. The two extension components, personality settings and 

experience function library, will be explained in the following. 

 

4.3.1   Personality settings 

The parameter settings representing the personality effect are kept in the ‘personality 

settings’ component. The belief manager, the intention generator and the intention 

executor will get the relevant parameters as needed. The parameters are classified into 

these main categories: 

 

• Physical specifications such as the maximum speed, maximum acceleration, and 

so on.  These will be used by the intention executor to translate actions into 

operational commands.  They are also used by the belief manager to perceive the 

world to help to decide whether another object detected is a danger to itself. The 

intention generator will need this information to decide the final applicable 

actions. 

• Personality preferences such as how likely the vessel agent is willing to give way 

to others.  These will be used by the intention generator to decide which plan of 

actions is preferred.  Personal preference also includes risk tolerance such as 

when an obstacle is a danger and how far a vessel should keep away from an 

obstacle.  

• Priority control scheme and parameter settings for it. 

• Parameter settings for the experience functions such as the decay factor for the 

reinforcement learning algorithms. 

• And so on. 

 

Different agents may get different parameter settings. With different settings, agents may 

demonstrate different behaviours. For example, the priority is used to decide the urgency 
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level of the incoming information to be notified to the intention generator. The belief 

manager will use the parameter settings to decide the urgency level of the beliefs. One 

possible way of classifying priorities of the messages is shown in Table 4-1.  Captains 

with different personalities will have different opinions about new beliefs. For example, a 

meticulous vessel agent may set the priority of “finding new area” as 3. But for a careless 

agent, the priority will be set to 1. 

 

Personality settings may be handled in 2 different ways in a multi-agent environment: 1. 

most agents are ‘normal’ beings and therefore work by default setting and a few agents 

will be triggered to have not-so-usual setting. 2. every agent needs to have individual 

setting. Then psychology experiments need to be conducted to find the distribution of the 

settings. A human-like method to control the priority changing is shown in Chapter 5. 

Table 4-1 Priorities of messages for new beliefs 

Priority Description Explanation 

1 Beliefs at low 
priority 

Something the agent needs to deliberate on when it is 
free. 

2 Beliefs at 
medium priority 

Something the agent needs to deliberate on not 
immediately but some fixed time in future. 

3 Beliefs at high 
priority 

Something the agent needs to deliberate on immediately 
but still can take time to think carefully. 

4 Beliefs at very 
high priority 

Something the agent needs to deliberate on immediately 
and try to make decisions as soon as possible and act. 

 

4.3.2   Experience function library 

The experience functions are successful and proven algorithms, which the agents can 

invoke to finish some composite actions. Previously, most agents concentrate on doing 

tasks based on the predefined plans, which consist of the steps of actions. The actions are 

usually primitive. Such as, in a plan of reaching a location, the actions may consist of 

renting a car and driving the car to target. The actions can be applied directly without 

further calculation. In Touringmachine [35], the primitive plans can do some calculations, 

but these are limited to computing the simple functions, such as the distance between two 

positions. Normally, a primitive action is not expected to take much execution time 

before it is completed and the control is returned to the agent. However, in a real human, 
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he may use any successful tools to achieve his targets. For example, after a captain 

decides to achieve a target, he may make a plan consisting of two steps: planning a path 

and navigation. Then he may use some global path planning algorithm to find the shortest 

path to the target based on the map. And some local obstacle avoidance algorithm is used 

for navigation. Such algorithms cannot be regarded as the primitive actions or final 

output actions. So we propose to incorporate an experience function library to the BDI 

agent to realize such algorithms.  

 

The experience functions are saved in the experience functions library. In Figure 4-2, the 

experience function library is shown in ellipse as the three main components because the 

functions will be invoked to execute as part of the reasoning of the agent. The dashed 

lines mean feedback from action effectors. If there are learning algorithms involved, the 

feedback is used to train the learners. An experience function is an algorithm that has the 

following properties: 

• Specialty. The algorithm can be used to solve a specific problem.  

• Successfulness. The function has been proven to be successful for the problem. 

• Independency. The function is a stand-alone function and does not depend on 

other functions’ results.  

• Complex. 

 

The specialty and successfulness properties ensure that the function can be used to solve 

the specific problem successfully. The independency property means that the function 

can be used in the same way as a primitive action. Finally, the complex property decides 

that the function cannot be implemented as a primitive action, such as in the 

Touringmachine. The experience functions can be seen as the tools/skills that an agent 

has been using to solve specific problems and these tools/skills are based on its previous 

experience. The experience functions library provides several advantages to the agents 

designed: 

• It is easy to understand. It is a folk psychological way to solve some problems. 

When we are using some tools, we seldom consider why we use it. So the utility 

is only related to the execution of plans. 
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• The plan library is easy to create and maintain. It reduces the needs to transfer 

complex calculation processes into plans. The agent can obtain the abilities that 

some algorithms can provide by simply incorporating the corresponding functions 

into the agent. 

 

Here, to give the agent its learning ability, an experience function library is incorporated. 

Some skills of the vessel agent cannot be realized as primitive actions in the plan library, 

such as global path planning or obstacle avoidance. These skills will need more execution 

time to apply than the simple primitive actions. These skills can be improved through 

experience and time.  So in the extended BDI architecture, such skills are realized as 

experience functions. For example, the reinforcement learning algorithm for obstacle 

avoidance can be realized in an experience function. These experience functions are 

grouped into the experience function library.  The functions are invoked by the intention 

executor. If learning algorithms are involved, feedback may be obtained from the new 

beliefs after an action/plan is executed. 

 

4.4   Experiment 

As described above, the agent’s characters are realized as different parameter settings, 

and experiences. A behaviour of obstacle avoidance is shown here. The agent can decide 

the next action based on the target direction and the experience accumulated previously. 

The actions of the agents with different parameter settings facing identical situations are 

investigated. Because experience function is used when demonstrating different 

parameter settings, the implementation of the learning algorithm is shown first. 

 

4.4.1   Experience 

In the experiment, the reinforcement learning algorithm is used to learn the skills for 

single dynamic obstacle avoidance, as illustrated in Figure 4-3. Reinforcement learning 

tries to find the state-action tuple with the best reward. The state-action table can be 
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obtained through training. The agent is recognized as A. The vessel B will present a 

moving obstacle to the agent A. To identify the status, five variables are used: 

• d is distance between two vessels 

• VA is A’s translational speed 

• VB is B’s translational speed 

• θa is the angle between A’s moving direction and the line AB 

• θb is the angle between B’s moving direction and the line AB 

 

 
Figure 4-3 Obstacle avoidance. 

 

Q-learning algorithm [133] is used here for learning to avoid obstacle. The Q-function, 

Q(s,a), represents the expected value of the reward for taking action a from current state 

s. Here s is represented as (d, VA, VB, θa, θb). And the agent’s action part consists of the 

vessel’s translational Ta and rotational speed Ra. Thus the state-action tuple for this 

question is (d, VA, VB, θa, θb, Ta, Ra). It is obvious that the variables are continuous. The 

number of records in Q-table should be the multiple of the size of the variables. Thus it is 

impossible to use the Q-table for this high-dimension input because there may be 

voluminous records which cannot be processed by a PC.  
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In the training, a discrete reward function is used to calculate the reward of new status, 

which is shown as: 
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where max distance is the maximum distance between A and B, direction change is the 

angle between the original direction and current direction of A, and max rotation change 

is the maximum rotational acceleration of A. 

So after each action, the Q value will be updated by: 

( ) ( ) ( ) ( )( )',max,1,' 1' asQRasQasQ tatttt +∗+∗+∗−= γαα  4-3 

where α, γ are the parameters for training. 

Then, the parameters of the RBF network are adjusted by the gradient of the difference of 

expected value and output value. The difference will be calculated as:  

( ) ( ) ( )[ ]),(',max,,' 1' tttatttt asQasQRasQasQQ −∗+=−=Δ +γα  4-4 

 

In order to avoid that the values of the network parameter vector oscillate or even grow to 

infinity, we adopt the method to perform gradient descent on the mean squared Bellman 

residual. Because this defines an unchanging error function, convergence to a local 

minimum is guaranteed. This means that we can get the benefit of the generality of neural 

networks while still guaranteeing convergence. Then we can get the equations for the 

modifications of the parameters as: 
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We will update the parameters at the end of obstacle avoidance. Then the error from the 

training can be lessened by summing all derivatives together. If a training consists of t 

steps, the update equations will be: 
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The vessel agent will be trained with random inputs. Each set of random input represents 

a unique sequence of experiences. After the algorithm converge, we can get the value 

function for calculating the expected reward after taking an action in a status. 

 

The learning algorithm is combined in the experience function library. The interface of 

the obstacle avoidance function is shown in Table 4-2. 

Table 4-2 Interface of obstacle avoidance function 

Name Obstacle avoidance 
Input (d, VA, VB, θa, θb) 
Output *(Ta, Ra, Q(d, VA, VB, θa, θb, Ta, Ra)) 

 

4.4.2   Parameter setting 

In the vessel agent, the HTN for obstacle avoidance task is shown in Figure 4-5. The 

agent will use the navigation experience to decide the feasible actions to avoid the 

obstacles. This process will be simulated using a state-action value function. The function 

is trained using the reinforcement learning algorithm. In a state, the actions with higher 

state-action value will be better choices for current situation. Thus, we can evaluate the 

feasible actions using the state-action values. All feasible actions, whose state-action 

values are higher than a threshold, and their state-action values will be sent to the action 

decider together.  
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Figure 4-5 HTN for obstacle avoidance. 

 

As identified in Figure 4-5, there are four actions in the plan. Path plan action is to select 

the next subgoal from the global path. A direction to this subgoal is outputted. The n2 

step is implemented by a reinforcement learning algorithm. The output is the desired 

actions with the corresponding rewards. Then the action decider will decide the final 

action. The n2 and n3 will be implemented as the experience functions, which will be 

explained in the following section. The action decider will make decision using the 

following evaluation function. The inputs of the evaluation function are the direction to 

the immediate target θt, and the output from the obstacle avoidance function.  

Ra) Ta, , , ,V ,V (d,
18010*max

)( baBA θθγ
θθ

βα Q
speed
Vxf atA ∗+

−
∗−∗=  4-11 

where a is the action, 

          α, β, γ are positive discount factors, α+β+ γ =1, 

          θt is the direction to the immediate target, 

          Q(d, VA, VB, θa, θb, Ta, Ra) is the RBF approximator.  

 

From the function, we can see that the vessel prefers bigger speed, smaller deviation from 

the target direction and bigger reward of the action calculated by the learning function 

approximator. The action with the maximum evaluation value will be chosen as the 

output of the action decider. Then the action will be outputted to the action buffer for 

execution. The interface of the action decider function (n3) is shown in Table 4-3. 
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Table 4-3 Interface of action decider function 

Name Action decider 
Input *(Ta, Ra, Q(d, VA, VB, θa, θb, Ta, Ra)), θt
Output (Ta, Ra) 

 
 

An experiment is done with the following initial status in Table 4-4. 

Table 4-4 Initial status of obstacle avoidance 

Name d θa θb VA VB α β γ 
Value 10 45 45 2 2 0.4 0.4 0.2 

 
 

Then the motions of the vessel can be seen in the left-top of Figure 4-7. The red vessel 

agent is starting from the point (10, 0) to its target (0, 10). The blue vessel will run from 

the point (0, 0) and keep its original velocity and direction. After detecting the blue 

vessel, the plan to avoid obstacle is invoked. In each step, the output of the agent is gotten 

through executing the plan. As stated above, two experience functions are called when 

executing the plan. After three steps, the agent will be free from the obstacle. We can see 

that the agent takes translational acceleration actions. Its direction is a little deviated from 

the target direction because the reward function of the learning algorithm prefers a closer 

distance after the agent successfully avoids the obstacle. The evaluation function for 

different actions in the status can be seen in Figure 4-6. 
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Step 1: Chosen action: (1, 0) 

 
Step 2: Chosen action: (0.3, -6) 

 
Step 3: Chosen action: (0.4, -17) 

Figure 4-6 Decision making. 
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In the following, we will try to design the vessel agents with different personalities by 

setting different α, β, γ parameters for the valuation function. 

Table 4-5 Outputs of the evaluation function 

Output Personality α β γ 
Ta Ra f(x) 
1 0 1.252284 

0.3 -6 1.26938474 Adventurous 0.4 0.4 0.2 
0.4 -17 1.22478426 
0.5 0 0.14215751 
0.5 -3 0.18508856 Less 

adventurous 0.3 0.3 0.4 
0.3 -14 0.0916117 
0.4 0 0.193021119 
0.4 -2 0.2540053 Less 

cautious 0.2 0.2 0.6 
0.3 -11 0.126752362 
0.3 0 0.244209826 
0.3 -2 0.323696345 Cautious 0.1 0.1 0.8 
0.4 -7 0.167052984 

 

The navigations are shown in Figure 4-7. The agent will navigate differently depending 

on how much the agent will decide based on the experience. As shown in Table 4-5, such 

difference can be used to show different personalities. From Figure 4-7, we can see that 

the agent will navigate closer to the target direction when the experience part has a bigger 

weighter. The cautious agent prefers a slower speed when facing an obstacle. But it ends 

up closer to the obstacle. In this sense, the meticulous behaviours may not always 

produce safer results. 
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Figure 4-7 Path of avoidance. 

 

4.5   Conclusion 

In this chapter, we analyze the agent characters and introduce an extended BDI agent 

architecture to realize the characters. The character of an agent consists of personalities 

and experience. In the extended BDI agent architecture, the personalities of the agent are 

implemented as different parameter settings. And the experience is realized by a 

reinforcement learning algorithm. The learning algorithm is incorporated into the agent as 

an experience function. An example of vessel navigation is shown to demonstrate the 

behaviours of the agent with the characters. 
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The experience function library can be implemented well in a parallel BDI agent. The 

parallel agent’s abilities of suspension and resumption at any time ensure that the agent 

can stay alert when calling an experience function. In my current work, each experience 

function is implemented to provide one specific skill or solve one specific problem. The 

experience functions are pre-learned and pre-defined. The agent does not create, select or 

improve an experience function. The agent just utilizes experience functions to make its 

decisions. Future work may put feedback mechanisms into the agent where the agent will 

be able to improve his experience functions through continuous learning. 
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CHAPTER 

5  

PRIORITY CONTROL 

 
Activity scheduling mechanism plays a critical role in the correct behaviour of BDI 

agents. The parallel BDI agent framework allows the management of beliefs, generation 

of intentions and execution of a limited number of intentions to go in parallel. The 

desire/intention schedule can be done based on the priorities of the desires/intentions, 

which show the different degrees of importance and urgency. As we can see, the value of 

priority may change over time. In this chapter, we propose to enrich the framework with 

an extension which consists of 2 processing components, a Priority Changing Function 

(PCF) Selector and a Priority Controller. The priorities of the intentions can have 

different initial values and can be changed over time according to the chosen PCF. As an 

example, we design a function by simulating human behaviours when dealing with 

several things at the same time. The priority first increases with time according to a 

Gaussian function to simulate the fact that people are more inclined to do something 

which has been in their mind for sometime. After a certain time, if the intention still was 

not executed because of other higher priority intentions, its priority will decrease 

according to the Ebbinghaus forgetting curve. External reminders of an intention can also 

be handled by the Priority Controller. Experiment results show that with this mechanism, 

the parallel agent can show some human-like characteristics when scheduling intention to 
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execute. This can be used when simulating agents with human characters. Besides the 

extension, the agent operations that are facilitated by changing priority are also shown. 

By controlling priorities in the two ways, the desires/intentions in a parallel agent can be 

managed effectively. 

 

This chapter is structured as follows. In the first section, we make an introduction to the 

background work. In Section 5.2, we present the parallel BDI agent framework with the 

proposed extension of priority control. In Section 5.3, we discuss the mechanisms of 

priority controls proposed that include some samples of human-like priority changing 

functions and how these functions are handled to reflect the effect of new beliefs, new 

desires, and new intentions on the priorities of existing desires and intentions. A 

simulation experiment is conducted to compare the behaviour of agents with and without 

the priority control. The experiment results are presented in Section 5.4. An analysis of 

how agent acts with different reminding functions is shown in Section 5.5. A conclusion 

is made at the end of this chapter. 

 

5.1   Introduction 

Bellman defines AI in [9] as the automation of activities that we associate with human 

thinking, activities such as decision making, problem solving, learning.  One such activity 

is to decide when is the appropriate time to think about a certain matter or to do 

something. For an intelligent agent, this means it should know when to deliberate and 

when to act in addition to being able to deliberate on how to achieve a goal and how to 

carry out a plan.  There has been significant amount of work on solving the “How” 

problem but not the “When” problem.  As described in the survey of agent architectures 

[135], the world is symbolized and decision is made through logical reasoning of 

relationship among the symbols in the deliberative architecture. The BDI (belief-desire-

intention) model is the most famous one of the deliberative architectures. It provides a 

folk psychological way by simulating human deliberation. The mental attitudes of belief, 

desire and intention represent the information, motivational, and deliberative states of the 

agent respectively [18, 111]. Several successful agent architectures and systems based on 
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BDI have been developed. PRS (procedural reasoning system) is an implementation of 

the BDI model. In each cycle, the belief is updated first. Then intentions are selected 

from the applicable plans. Finally action in the chosen intention is executed. The PRS 

system obtains the ability of reasoning in complex ways about dynamic processes while 

keeping appropriate responsiveness and control [63]. In UM-PRS [77], an extension of 

the PRS system, the hierarchy of the plans is kept for monitoring plan execution and 

replanning. AgentSpeak(L) [112] and LORA (logic of rational agents) [136] are two sets 

of operational semantics defined for BDI agents. The decision is made through logic 

reasoning. All these works are solutions to the “How” question. 

 

The “When” question, that is, the scheduling of deliberation about new beliefs and the 

scheduling of intention execution is usually omitted in these BDI systems. The 

researchers mostly concentrate on solving the problem of intention generation. For 

example, in AgentSpeak(L) [112], the selection function SI selects an intention to execute 

from the intention set I. The detailed selection criteria are not specified. We believe the 

scheduling of intention is crucial in an agent’s ability to cope with the changing world. 

Some scheduling mechanisms appear in subsequent researches. In AgentSpeak(XL) [12], 

an extension version of AgentSpeak(L), a task scheduler is incorporated into the 

interpreter to decide how to select intentions. The set of intentions in the AgentSpeak(L) 

is converted into a corresponding TÆMS task structure. Then the selection is done based 

on the analyses of the relationship among the plans in the TÆMS task structure. The 

'enables' and 'hinders' relationships indicate which plan may be executed first. Another 

method is shown in the JAM agent architecture [59]. The intention selection is done 

based on the utility value of the plan. The intention with higher utility will be executed 

first. Recently, another work of intention scheduling is reported in [79]. The researchers 

take several properties into consideration when scheduling the intentions, such as the 

importance of the plan, the estimated running time, the deadline utility function, the 

degree of completeness and FairFacter. 

 

We consider the problem of deliberation scheduling and intention scheduling in an agent 

who will behave like an “average human”.  If people identify and accept an agent as 
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human and not machine-like, they tend to trust the agent better. For example, a 

companion to shut-ins or a playmate for a child should display a human way of 

interacting with its environment. When there are multiple goals to achieve and multiple 

intentions to execute, the agent needs a rational and human-like way to control the 

deliberation of plans for the goals and the execution of intention plans.  We associate a 

single priority value with each desire or intention to facilitate the scheduling of 

deliberations and intention executions. The priority represents the importance and 

urgency of the goals or intentions to an agent. For humans, their priorities change with 

time.  The priorities may be affected by how close it is to the deadline of a task, or a 

change in personal interest.  The deadlines of tasks may also change, either forward or 

backward.  So the priority of a goal or an intention of an agent should also change with 

time. In other words, the priority should be a function of time. 

 

While specifying the priority of a goal or an intention of an agent by a function of time, it 

is also necessary to consider the influence of new beliefs, new desires and new intentions 

on the priorities of existing desires and intentions. New beliefs, new desires and new 

intentions may make some existing desires or intentions more important and urgent, or 

less important and urgent, or may even render them not relevant any more.  We propose 

how to support these changes in the agent’s behaviour. 

 

Currently, the control of the priority changing with time has not been adequately 

researched even though some work has been done in the artificial life community. In 

[74], a priority control mechanism for behavioural animation is proposed. The priority is 

set at minimal value immediately after the agent displays a certain behaviour like 

drinking. Then this priority increases with time. The increased priority will induce the 

agent to drink again. However, expecting the priorities of all desires and intentions to 

change in the same manner is not realistic.  Different desires and intentions should be 

allowed to change their priorities in various suitable ways.   

 

We proposed a parallel BDI agent framework in Chapter 3 to achieve better reactivity 

and rationality in intelligent agents. This framework equips a BDI agent with the natural 
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abilities of doing several things at the same time and the ability of prioritizing the 

deliberations and intention executions according to the urgency of the matters.  Each 

desire and intention is at a certain level of priority among the several levels of priorities.  

The level of priority is used in the scheduling of the desires/intentions in the agent. 

However this mechanism has the problem that with priorities set at constant levels, some 

desire or intention may be starved indefinitely by desires or intentions with higher levels 

of priorities.  

 

In this chapter, we proposed a priority control extension to the parallel BDI agent 

framework in order to support the capabilities of representing the changing importance of 

different desires and intentions. Pre-defined Priority Changing Functions(PCFs) are 

associated with the desires and intentions. A Priority Controller will compute the priority 

value of the desires and intentions to help the scheduling decisions to be made at various 

time moments. We proposed a few priority changing functions which simulate the human 

behaviours when dealing with several things at the same time. A popular pattern is that it 

first increases the priority value according to a certain function and then decreases 

according to the Ebbinghaus forgetting curve.  However other patterns are also possible.  

With the setting of suitable parameter values, the PCFs are also able to simulate the 

changing of priority when a person is not very motivated to pursue his goal or put an 

intention into actions. The function can also represent the changing of desire/intention 

priority when it will get stronger and stronger and stay at its maximum value until it is 

carried out. We have also incorporated other controls to realize the effect of new beliefs, 

new desires and new intentions on the priorities of existing desires and intentions or 

intentions that need to be executed exactly at a certain moment. This is to simulate human 

behaviours when dealing with several things at the same time. These controls of priorities 

for desires and intentions provide a human-like way to control an agent’s activities. Other 

successful human-like systems are, for example, the i-Bid game player agent [70] and 

adaptive agent designation [134]. 
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5.2   Priority Control Extension 

 

Figure 5-1 Priority control extension to the original parallel BDI framework (only parts of the 
original framework that interact with the extension are shown). 

 

To represent the dynamic change of priorities of a desire or intention, each desire or 

intention will be associated with a Priority Changing Function (PCF) which defines how 

the priority should change with time. The priority control extension to the agent 

architecture is shown in Figure 5-1. Two processing components are introduced into the 

BDI agent, a PCF (Priority Changing Function) Selector and a Priority Controller. When 

a desire/intention is generated, the Desire Generator (DG) or the Intention Manager (IM) 

will call on the PCF Selector which will, based on some context-rules, (i) select a suitable 

PCF for the new desire/intention from the PCF Library and (ii) decide on the values of 

the parameters if any for the PCF.  The signature of the function of the PCF Selector is as 

follows: 

PCF_Selector : desires × PCFs → PCFs    and 
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PCF_Selector : intentions × PCFs → PCFs 

where desires and intentions are the set of desires and the set of intentions of the agent 

respectively, and PCFs is the set of priority changing functions in the PCF library. 

 

The Priority Controller will be responsible for updating the priorities of the 

desires/intentions according to their PCFs as time passes.  In order to have the priorities 

of desires and intentions assessed accurately but not computed unnecessarily, the Priority 

Controller will update the priorities of desires/intentions each time the BDI agent is to 

select a desire/intention to execute by   

( )tfPriority =  5-1 

where f(t) is the PCF and t is the current time. This extension allows a BDI agent to select 

suitable PCFs for the desires/intentions and compute the priority values of 

desires/intentions at various points in time.  Then the deliberation of the desires and the 

execution of the intentions can be scheduled by the Desire Scheduler (DS) or the 

Intention Scheduler (DS) based on their importance or urgency, represented by their 

priority values at the time.  

 

Various PCFs suited to different intentions can be pre-defined. This enriches the BDI 

agent with the ability of realizing the scheduling of the desires/intentions in a more 

realistic way. As an example, for an intention to be completed before a deadline, td, a 

simple PCF is: 

⎩
⎨
⎧ −≤≤−∗+

=
otherwise0

tt)t(
)f( edss tttβα

t  5-2 

where ts is the time when the execution of the intention plan can be started, te is the time 

required to execute the intention, α is the initial priority value, and β is the rate of 

changing of the priority value.   

 

By setting a suitable value to ts, it is very easy to manage clashing intentions or 

something/some task that needs to be done at a certain future time.  For example, ts may 

be set to the time when a clashing intention will finish so that it is feasible for this 
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intention to execute. At the time set for ts, the intention will be activated from its sleeping 

status (priority=0). The PCF Selector will decide the values of α, ts, td, te and β based on 

the features of the intention. 

 

DG, DS, IM and IS are responsible for the generation, scheduling and managing of the 

desires and intentions. The operations for them are defined in Chapter 3. The priority 

changes are used to resolve obsolete, clashing and urgent desires/intentions. The 

requirement for such priority controls are summarized in Figure 5-2.  

 

1. If a new belief makes an existing desire obsolete, set the priority of the desire to zero. 
2. If a new belief makes an existing desire more/less urgent, change the priority of the 

desire. 
3. If a new desire just generated makes an existing desire obsolete, set the priority of the 

existing desire to zero. 
4. If a new desire just generated makes an existing desire more/less urgent, change the 

priority of the desire. 
5. If a new desire just generated clashes with an existing desire, reduce the priority of 

the less important desire so that it will be put on hold. 
6. If a new belief makes an existing intention obsolete, set the priority of the intention to 

zero. 
7. If a new belief makes an existing intention more/less urgent, change the priority of 

the intention. 
8. If a new desire just generated makes an existing intention obsolete, set the priority of 

the existing intention to zero. 
9. If a new desire just generated makes an existing intention more/less urgent, change 

the priority of the intention. 
10. If a new intention just generated clashes with an existing intention, reduce the priority 

of the less important intention so that it will be put on hold. 
11. If a new intention just generated makes an existing intention obsolete, set the priority 

of the intention to zero. 
12. If a new intention just generated makes an existing intention more/less urgent, change 

the priority of the intention. 
13. If an existing intention just completed clashes with another existing intention which 

was put on hold, increase the priority of the waiting intention. 
14. If an existing desire just achieved clashes with another existing desire which was put 

on hold, increase the priority of the waiting desire. 
Figure 5-2 Requirement for priority changes caused by new beliefs, new desires and new intentions. 
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In the following parts, we will first show the designation and implementation of the 

reminding-forgetting PCF. Then the function is applied to the parallel BDI model for a 

comparison experiment. 

 

5.3   Priority Control 

With the architectural support as described in the previous section, we present in this 

section the mechanism of priority control so that what an agent deliberates and acts on 

are decided by his priorities, just like the humans.  The basic control of priorities comes 

from the Priority Changing Function (PCF) which defines how the priority of a desire or 

an intention should change with time. The PCF is defined by 

)I( * )f( tiorityMaximum prt =  5-3 

where Maximum priority is the highest value which a desire or an intention may have, 

and I(t) is the function of influence factor with a range [0, 1].  Maximum priority is an 

intrinsic constant value of a desire or an intention where I(t) controls the changes in 

priority with time. This PCF with a suitable I(t) will be applied in the parallel BDI agent 

to provide some human-like behaviour.  I(t) can be different for different desires and 

intentions.  

 

Very often, human interests in a certain goal or intention go through a few phases. One 

phase is the interests are getting stronger and stronger and we call it the reminding phase.  

Another phase is the interests will be getting weaker and weaker and occasionally the 

goal or intention may even be forgotten and this is called the forgetting phase. There are 

also situations where someone has an unchanging interest to do something and this is 

called the unchanging phase.  These phases may happen to a certain goal or intention one 

after another or there is just one phase throughout the existence of the goal or intention. 

For example, the interests in the intention to eat remains a constant at a low level for a 

short period after a person has just eaten but will then start to increase.  An agent may 

have an interest to reorganize the furniture in the bedroom but he is either too lazy to do it 

or the interest is just not enough, so from the beginning the intention gradually fades 

away. An agent may have an interest to learn how to cook better and the interest will 

 101

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 5 Priority Control 
 

increase till it reaches its maximum and never fades away. We will first describe how I(t) 

models the various phases of priority changing and then show how the various phases 

work together. Then we will present how the effect of a new belief/desire/intention on 

some existing desire/intention is modeled. 

 

5.3.1   The reminding phase of a PCF 

This is the phase where an agent has increasing inclination to deliberate on how to 

achieve a goal or to execute an intention plan.  The priority of the goal or intention should 

be increased gradually until it reaches its maximum value. We call this phase the 

‘reminding’ phase.  The manner by which the priority of a desire or an intention increases 

may be different from that of the others.  We propose three different functions to model 

the way a priority may increase, the Sigmoid, Gaussian, and ramp functions shown in 

Figure 5-5.   

 

For the three functions, the value I(t) at t = 0 is y0.  The value of y0 when multiplied by 

the maximum priority as shown in Equation 5-3 will return f(t), the initial priority of a 

desire or intention. At t = tm, the value of I(t) should be 1 or very close to 1. tm is the time 

when f(t) is to reach its maximum priority value. It should be the time till when the agent 

keeps interests to the deliberation/intention or the latest time a deliberation or an 

execution of a plan should start in order to meet a deadline. The ramp function is a model 

where the priority increases at a constant rate.  It is realized by: 

t
t

y
yy

m

∗
−

+= 0
0

1
 5-4 

The Sigmoid function is commonly used to model the growth of some set p. Here it is 

used to model the growth of interests in a deliberation or an execution of a plan. It is 

shifted to right by ⎟
⎠
⎞

⎜
⎝
⎛ −11ln
α

 in x-axis. Then the function between [α, 1- α] in y-axis will 

be resized to [0, tm] in x-axis and [y0, 1] in y-axis. We get the equation: 

 102 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 5 Priority Control 
 

( )
( ) 0

0

21
1

*
11ln21exp1

1 y
y

t
t

y

m

+
−
−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −∗⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

=
α

α

α

 5-5 

where α will decide the figure of the function, 0<α<0.5. 

 

Five sets of Sigmoid functions with different α, tm and y0 are shown in Figure 5-3. It is 

noticed that with a smaller α, it takes a longer time before the priority starts to increase 

sharply. The bigger the α is, the closer the function is to the ramp function. 
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Figure 5-3  Sigmoid functions. 

 
The Gaussian function is the function: 
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where η is a constant value, σ is the width of Gaussian function, and x0 is the middle point 

of the function. 
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In order to make I(t) reach the maximum value 1 at the middle point, we set η to σπ2 . 

To make I(0)= α, we calculate the width of Gaussian function σ by: 

α
σ

ln
1*t*

2
2 −

= m  5-7 

 

These produce the I(t) function as below: 
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Five sets of Gaussian functions with different tm and y0 are shown in Figure 5-4. With a 

smaller α, the increasing is slower at the initial period. Normally, we set α=y0. So the 

equation 5-8 will be simplified to: 
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Figure 5-4 Gaussian functions. 
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Both the Sigmoid and the Gaussian function have the property that the gradient of I(t) 

gradually decreases to zero when t is approaching tm.  This simulates the increase in the 

agent’s interest in a goal or an intention gradually stops as the interest reaches its 

maximum.  For example, for the I(t) function that is based on the Gaussian function, (1) 

the function value is increasing for t ≤ tm; (2) the rate of increase first increases for 0 ≤ t ≤ 

tm - σ (I’’(t) ≥ 0) and then decreases for tm - σ  ≤ t ≤ tm (I’’(t) < 0); (3) the increase in 

function value and the rate of increase at tm are 0, which means that the trend to increase 

the priority has stopped. The difference between these two functions is that Sigmoid 

function initially increases more slowly than the Gaussian function. Sigmoid function 

models people who tend to leave things to “last minute” where Gaussian function models 

people who tend not to do so. The three kinds of reminding functions are shown in Figure 

5-5. And an analysis of the agent behaviours with the different reminding functions is 

shown in the last section of this chapter. In the other following parts, Gaussian function is 

chosen as an example to demonstrate the agent’s reminding function. 
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Figure 5-5 Comparison of three functions. 
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5.3.2   The forgetting phase and the unchanging phase of a PCF 

The forgetting phase is the phase where an agent’s interest in a goal or an intention plan 

is fading.  The priority of the goal or the intention should be decreased gradually. This 

may happen if an intention is deferred for a long time because intentions with higher 

priority keep on coming and the agent do not manage to carry out the intention plan 

which has a lower priority. This is similar to that humans forget to do something when 

they are doing something else more important. In biological science, this is a protective 

mechanism to ensure that human can learn new things. We tend to forget things that the 

external environment does not remind us of. So as time passes, the priority of the 

intention in an agent is decreased.  If the priority decreases to a value below a threshold, 

the intention will be removed (forgotten). For human-like agent, proper parameter 

settings should be gotten through studying human behaviour models. The first significant 

study on memory was performed by Hermann Ebbinghaus and published in 1885 as On 

Memory. Ebbinghaus was the first to describe the shape of the forgetting curve [1]. This 

curve is the biological base on which we simulate the process of intention retention. In 

[3], the forgetting curve is described as: 

Ste /R −=  5-10 

where R is the retention, which means the ability to retain things in memory, t is the 

elapsed time, and S is the strength of memory, which means the duration of things in 

memory. 

 

The forgetting curves with different S are shown in Figure 5-6. It can be seen that with a 

larger S, the retention decays more slowly. When S is a very big value, the retention will 

keep constant as 1, that is, no forgetting. 

 

The unchanging phase is the phase where an agent’s interest in a goal or an intention plan 

is at a constant level.  The priority of the goal or the intention is specified by a constant. 
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Figure 5-6 Forgetting curves with different S. 

 

5.3.3   The complete PCF 

The complete PCF, or more specifically, the complete I(t) is formed by either any one of 

the single phased functions described earlier, or it is a concatenation of two or more 

single phased functions.  For example, we can compose an I(t) by combining the 

functions of the reminding phase and the forgetting phase together. The result is a 

reminding-forgetting function: 
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 5-11 

 

An example of the situation modeled by this I(t) is that an agent intends to search for a 

piece of information which is ‘hot’ recently but he has more urgent things to do so does 

not find time to search.  Then after a while, the information he wanted is no longer ‘hot’ 

so the interest and therefore the priority goes into the forgetting phase. 
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It is easy to show that I(t) is continuous at every point. The influence factor does not 

change significantly at any time. By proving the continuity of the influence function, we 

intend to show the fact that the simulated human behaviour is consistent without outside 

disturbance.  

 

We will use the reminding-forgetting function in (9) as an example to show how the I(t) 

function is composed.  The following initial parameters need to be decided: 

Table 5-1 Parameters related to the reminding-forgetting function 

Name Type Explanation 
IP (Initial Priority) Float It is the initial urgency of the desire/intention.  
MP (Max Priority) Float The maximum priority the desire/intention can have. 
tm Integer The time when the forgetting process begins. 

S Integer Strength of memory. It is assumed that a higher initial 
priority will have a longer retention. 

Threshold Float  In forgetting progress, if the priority is below the 
threshold, the intention will be removed.  

 
Table 5-2 Intentions with different PCF parameter settings 

Intention IP MP tm S Threshold 
1 1 1.5*IP 20 10*IP 10% 
2 2 1.5*IP 20 10*IP 10% 
3 1 2*IP 20 10*IP 10% 
4 1 1.5*IP 10 10*IP 10% 
5 1 1.5*IP 20 20*IP 10% 
6 1 1.5*IP 20 10*IP 20% 

 
Figure 5-7 shows the change of priority for 6 sample intentions with the parameter 

settings shown in Table 5-2. The intentions 2-6 each has one different PCF parameter as 

compared with the intention 1.  
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Figure 5-7 Priority Control of Four Intentions. 
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Figure 5-8 Examples of several PCF(t). 
 

 109

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 5 Priority Control 
 

Figure 5-8 shows several examples of I(t).  PCF1(t) is a single phased function where the 

priority depreciates from the beginning.  This happens when someone has the intention to 

do something but he is either too lazy to do it or the interest is just not enough, he(the 

agent) starts to forget about it according to the forgetting curve from the beginning. 

PCF2(t) is the concatenation of reminding phase and the unchanging phase.  Notice that 

this can also be achieved by concatenating the reminding phase and the unchanging phase 

and setting S to infinity in the forgetting phase. So before the desire/intention is 

completed, it will never be forgotten. PCF3(t) is a single unchanging phase function. 

PCF4(t) is the concatenation of the reminding phase, the unchanging phase and the 

forgetting phase.  It can be used in the case that the priority is kept at the maximum value 

for a period of time before the forgetting period starts. 

 

5.3.4   Priority change caused by other desires/intentions 

It is noticed that the I(t) function as described earlier changes the priority of a desire or an 

intention in the absence of the effect of new beliefs, desires and intentions. However, as 

listed in Figure 5-2, there are situations where a new belief, a new desire or a new 

intention may make an existing desire or intention more urgent or less urgent, therefore 

the priority of the affected desire or intention needs to be increased or decreased.  For 

example, suppose the human master asked his robotic agent to wash his car while the 

agent is doing cleaning in the house and the robotic agent also has a few other things to 

do.  The agent has the intention to wash the car but the priority is not as high as his other 

intentions.  After a little while the master reminds the agent about washing his car.  At 

this point the priority for washing the car should be increased.  So the new belief that the 

car needs to be washed sooner should have the effect of increasing the priority of the 

intention of washing the car.  Another scenario that will change the priority of an existing 

intention:  the robotic agent has the intention to tidy up a room but his master tells him to 

iron a shirt in the next 10 minutes.  The robotic agent generates the intention to iron the 

shirt and has to lower the priority of tidying up the room.  In situations like these 

examples, the priority of an existing desire/intention at t and beyond is affected.  t is the 
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time when a new belief, a new desire or a new intention is generated and it is the moment 

when the priority of an existing desire/intention should be changed.  

 

To model the effect on the I(t) of the existing desire/intention, we have 

( ) ( )( )
( ) ( )( )rtt

rtt
−=

+=
I,1.0maxI

1 ,IminI

new

new  5-12 

where r is the increase/decrease of the influence factor. r has a value in the range (0, 1] 

and will be decided according to the relative urgency of the affecting and the affected 

desire/intention.  The maximum value of I(t) is kept at 1 such that the priority of the 

existing desire/intention will not be increased beyond its maximum priority.  This is to 

make sure that the increase in priority will not render it to have a higher priority than the 

desire/intention should have and to overpower other desires/intentions that are more 

important and critical by nature, for example, life-saving intentions. 

 

In the following discussion, we look at the computation of Inew(t) where the priority will 

be increased, that is, r is added to I(t). Suppose I(t) is the reminding-forgetting function in 

Equation 5-11.  The increase in I(t) may come in reminding phase or the forgetting phase.  

 

In the first case, the increase of I(t) by r can be realized by shifting the reminding 

function left by Δt1 on the time scale as given below.  
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where Δt1 is zero before the first time I(t) is increased by a new belief/desire/intention and 

at subsequent times, Δt1 is a further shift from the previous shift.   

 

If the increase in I(t) comes in the forgetting phase where the priority is decreasing, the 

forgetting curve will be shifted right by Δt2 on the time scale as given below.  
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Δt2 is zero before the first time I(t) is increased by a new belief/desire/intention in the 

forgetting phase and at subsequent times, Δt2 is a further shift from the previous shift.  

Similarly, the decrease in I(t) when I(t) is in the reminding phase is achieved by a shift to 

right on the time scale and the decrease in the forgetting phase is by a shift to left by an 

appropriate amount. 

 

With the time shifting values Δt1and Δt2, the function I(t) is:  
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Figure 5-9 I(t) shifting in the Reminding Phase. 

 

An example is shown in Figure 5-9. The intention is created with an initial priority of 1. 

The line 2 shows the priority changing with three shifts in the reminding phase. The 
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change in I(t) is an increase of 0.1 at time 5, a decrease of 0.2 at 10 and another increase 

of 0.1 at 15.  Another example is shown in Figure 5-10. The intention is created with 

initial priority 1. The line 2 shows the priority changing with four shifts in the forgetting 

phase. Two are at time 25 and 30, the increase in I(t) is 0.5. This will make the priority 

value rise to the maximum value. The 3rd is at time 35, the priority will be decreased by 

10%. The increase at time 40 is by 20%. The cases in Figure 5-10 are easy to understand 

in an imaginary scene that an absent-minded person acts under others’ reminders. This is 

similar to active recall in mnemonic techniques [1]. The difference here is that here the 

outside reminders do not change the strength of memory. 
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Figure 5-10 Outside Reminders in Forgetting Process. 

 

5.4   Comparison of Parallel Agents Without and With the 
Reminding-forgetting PCF 

In this experiment, parallel BDI agents without or with priority control are simulated. A 

set of events are input to them. Then the performance of them is analyzed. The events 

designation is the same as demonstrated in Section 3.3.2. 
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We consider three sequences of events with different average inter-arrival times. The 

average inter-arrival times of the 3 sequences of events are respectively smaller than, 

equal to and larger than, the average processing time required by an event. The events 

statistics used in the experiments are shown in Table 5-3. 

Table 5-3 Events statistics. 

Events count 
Priority Set 

Expected 
average 

interval 1/λ 1 2 3 4 sum 
Actual average 

interval 

a 2 25 22 26 25 98 2.42 
b 4 25 26 24 21 96 4.04 
c 6 26 22 24 23 95 5.64 

 

We experiment with 6 agents: agent 1 has a constant PCF so the initial priority is the 

priority all the time; agent 2 to 6 each has a different parameter settings for the PCF as 

shown in Table 5-4. The initial priority value of an intention is used as the basic priority.  

Table 5-4 Agents types. 

PCF parameter settings Agent 
no PCF S Tm MP Threshold 
1 - - - - - 
2 √ 100*IP 20 1.5*IP 10%*MP 
3 √ 100*IP 20 1.5*IP 1%*MP 
4 √ 100*IP 20 2.5*IP 10%*MP 
5 √ 100*IP 40 1.5*IP 10%*MP 
6 √ 300*IP 20 1.5*IP 10%*MP 

 

The intention processing time is defined as the duration from the time when the intention 

is created to the time when the execution of the intention is finished. The average 

processing time (APT) of the three sets of events by the agents is shown in Figure 5-11. 

In set a, compared to the expected average processing time 4, agent 1 does not have 

sufficient time to finish processing an event before the next event arrives. So the 

intentions with lower priorities have to wait for a long time. The time to process the 

events with priority 1 is 228 time units. So the intention is starved for a very long time. 

With the increased average inter-arrival time, the agent 1 has more time to process an 

event before next event begins and the corresponding APT is decreased to 38.6 for set b 
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and 10.8 for set c. In agents 2, 4 and 5, the APTs are the APTs of the events that get 

processed and they are smaller than those for agent 1.  Here some intentions with priority 

1 in set a are forgotten due to a long waiting time, which can be seen from the statistics in 

Table 4.  For events with priority 4, the APT is not affected too much, because the urgent 

events will be scheduled first. What we see is that some of those low priority events that 

experience terribly long waiting time in agent 1 are forgotten in agent 2, 4 and 5 for event 

set a.   

Table 5-5 Events processed statistics. 

completed 
forgotten

Priority 
Agent 

no Set 

1 2 3 4 
sum 

a 14 
11

22 
0

26 
0

25 
0

87 
11

b 25 
0

26 
0

24 
0

21 
0

96 
02 

c 26 
0

22 
0

24 
0

23 
0

95 
0

3 a 25 
0

22 
0

26 
0

25 
0

98 
0

4 a 14 
11

22 
0

26 
0

25 
0

87 
11

5 a 16 
9

22 
0

26 
0

25 
0

89 
9

6 a 25 
0

22 
0

26 
0

25 
0

98 
0

 
Looking at Table 5-5, we see the effect of the parameters of the PCF.  For set a, 11 events 

are forgotten by agent 2 (row 2a). This is because the agent has no enough time to 

process all the crowded events. Rows 2b and 2c have all the events processed because of 

the longer event inter-arrival time.  Comparing row 2a and 3a, more intentions are 

processed because of a lower threshold of retention. Comparing row 2a and 4a, the 

numbers of intentions processed are same because a higher maximum priority will not 

change the retention time of the intention. Comparing row 2a and 5a, 2 more intentions 

are processed because of a longer reminding period before forgetting starts. Comparing 

row 2a and 6a, 11 more intentions are processed because of a bigger strength of memory. 

The APT of them are bigger for intentions with lower priority in set a. 
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c. average interval = 5.46 

Figure 5-11 APT of events. 
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5.5   Agent Behaviours with Different Reminding Functions 

In this section, an analysis of how agent will behave is given with the three different 

reminding functions proposed in Section 5.3. The three functions are Ramp, Sigmoid 

(α=0.001) and Gaussian functions. We will estimate the probability that in the agent an 

intention with a reminding function is running or starts its execution first time at a time 

point before the tm. 

 

The following are assumed: 

• The highest priority allowed in the agent is 100. Thus MP of the intention is in the 

range [1, 100]. IP of the intention is set as 10%*MP. At time unit t, the priority of 

the intention is calculated as PCF(t). 

• At any time t, there is random number of other intentions existing in the agent. 

The highest priority of the intentions is phigh_t. Then we define: 

D(α) = Pro(phigh_t < α) 5-16 

 

Then the probability that the intention is running at a time point t is calculated as: 

Pro(the intention is running at time unit t)= 

Pro(phigh_t is bellow the current priority of the intention)= 

Pro(phigh_t < PCF(t))= 

D(PCF(t)) 

5-17 

 

 

The probability that the intention is started first time at t is calculated as: 

Pro(the intention is started first time at time unit t)= 

Pro(the intention is not started previously)*Pro(phigh_t < PCF(t))= 

( ) ))((*))((1
1

1
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5-18 
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In an agent, the distribution of phigh_t can be in any forms in various situations. The 

following analysis is made in the case that it is distributed in [1, 100] according to the 

standard normal distribution. Thus we have: 

( ) ( )( )
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5-19 

where erf() is the "error function" encountered in integrating the normal distribution; 

scale() is the function to scale the priority of the intention at time t, PCF(t), from the 

domain [1, 100] to [-3 ,3]. The domain [-3, 3] is selected because for standard normal 

distribution function, the probability that the variable is outside [-3, 3] is very small 

(Dstandard-normal(-3)≈0.00135, Dstandard-normal(3)≈0.99865). A figure of this distribution 

function is shown in Figure 5-12.  
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Figure 5-12 Demonstration of function D(t). 

 

The calculation of erf() function can be seen in many mathematics articles about normal 

distribution, such as [113], [2]. Here we show it for reference. 
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The calculation results of the two probability functions are shown and analyzed in the 

following. 

 

5.5.1   Probability that the intention is running at t 

The following results are calculated by Equation 5-17. Four intentions with different 

parameter settings of tm and MP are designed. The probabilities that the intentions are 

running at t are shown in Figure 5-13. 
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Figure 5-13 Probability that the intention is running at t. 
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From the figure, it is shown that with a same tm, a higher MP will increase the probability 

that the intention is running. With a same MP, a shorter tm will also increase the 

probability because the priority is increased more quickly. With the same tm and MP, the 

intention with Sigmoid reminding function will be running in the initial period with the 

smallest probability. However, when approaching tm, the probability that the intention 

with Sigmoid reminding function is running is the greatest. 

 

5.5.2   Probability that the intention is started first time at t 

The following results are calculated by Equation 5-18. The results will show when the 

intention will be started first time at the largest probability. MP of the intention is set as 

50. The intention is associated with different PCF functions and parameter settings of tm. 

The results are shown in Figure 5-14. 

 

It can be seen that if tm is larger than 30 in the experiment setting, the probability that the 

intention is started before tm is very close to 100%. However, with a small tm, such as 10, 

the intention may not be started before tm. With the same tm, the probability that an 

intention with Sigmoid PCF is started is smallest in the initial period. Then it is increased 

quickly. The intention is likely to be started in a period shorter than the intention with 

other PCFs. 

 

From the above analysis, it can be seen that with a Sigmoid reminding function, the 

intention will be started later than with a Gaussian reminding function as we expect: 

Sigmoid function models people who tend to leave things to “last minute” where 

Gaussian function models people who tend not to do so. 
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Figure 5-14 Probability that the intention is started at t first time. 

 

 121

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 5 Priority Control 
 

5.6   Conclusion 

In this chapter, we first argue that the priority of the deliberations/intentions in an agent 

should be changing with time. Then we design a “priority control” extension to the 

parallel BDI agent. For each deliberation/intention, the agent will choose a PCF for it 

from the PCF library. By priority, it provides a way to schedule the 

deliberations/intentions in the agent. 

 

We design a reminding-forgetting PCF by simulating human bahaviours when dealing 

with several tasks together. We propose three functions to simulate the reminding phase 

and use the forgetting curve function for the forgetting phase. A comparison experiment 

of the agents with or without the reminding-forgetting PCF is shown. The agent 

behaviours with the three reminding functions are analyzed. 
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CHAPTER 

6  

A VESSEL CAPTAIN AGENT 
 

In this chapter, we will show a software agent which simulates the behaviours of a vessel 

captain navigating in the sea. The agent architecture for implementing the software agent 

is an instantiation of the parallel BDI agent framework with the two agent character 

extensions. Then the simulation experiments are shown. 

 

The purpose of this experiment is to apply the parallel agent framework to make a real 

software agent. The behaviour records of the vessel agent demonstrate the abilities that 

we expect from a parallel agent. The software agent architecture we show here can be 

used to make software agents in other contexts. 

 

This chapter is structured as follows. In Section 6.1, the software agent architecture is 

shown and explained. The experiment designation and results are shown in Section 6.2. A 

conclusion is given in the last section. 

 

6.1   Software Agent Architecture 

When an agent is simulating a certain physical system like a human being, the parallel 

agent under the general framework should be configured such that it has the same number 
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of Environment Monitors (EMs), Plan Generators (PGs) and Plan Executors (PEs)as the 

number of parallel physical devices that exist in the physical system to perform the 

corresponding functions.  Figure 6-1 shows the detailed software agent architecture for a 

vessel captain navigating a vessel in the sea.  

 

 

Figure 6-1 Software implementation architecture. 

 

Threads are used to simulate the parallel processing elements in the agent. In Figure 6-1, 

these threads are shown in white boxes and identified with numbers (1-6). For example, 

the belief manager consists of two threads, numbered by 1 and 2.  Similarly, the intention 

generator and the intention executor are made of several threads of their own. The 

information flows in the architecture are shown by the dark arrow lines. The link from the 

Intention scheduler to EM is to inform it that a certain intention plan has been completed. 
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The PG and PE are not explicitly shown in Figure 6-1. Desires and intentions are 

implemented as separate threads. A running thread of desire/intention is to simulate a 

PG/PE. This makes it very easy to manage the suspension and the subsequent resuming 

of the plan generation of a desire in the PG and that of the plan execution of an intention 

in the PE. If a thread is suspended, the current working status of the thread is saved in 

computer memory automatically for resuming the thread later on. The Desire scheduler 

and the Intention scheduler will schedule the running of the threads according to the 

priorities of the desires and intentions respectively.  

 

In the following experiment of vessel agent, there is just one PG in the agent. This means 

that at any time, just one desire thread can be activated. This is to simulate the human 

behaviour that at any time, we deliberate on or think about one matter.  To keep the 

experiment simple, the agent’s actions only include vessel maneuvering and only one PE 

is simulated in the agent. Of course, it is straightforward and easy to realize to start 

another PE thread so that the vessel is able to sound the siren and one more PE thread to 

communicate with other vessels or marine authorities. The number of EMs is also one for 

the collection of information about its surroundings by the vessel.   

 

Two more threads, the action effecter (7) and the interface thread, do not belong to the 

BDI agent architecture. They are components of the simulation system. The action 

effecter thread will execute output physical actions from the intention executor. In our 

simulation, this action effecter thread is responsible for updating the world map with the 

new position of the vessel which is calculated using physical motion laws. The Interface 

thread will receive commands through user input and send the commands to the belief 

manager.  

 

All the threads run in parallel. Message buffers in the three components are used to save 

the incoming messages from one processing element to another. The messages in these 

buffers are sequenced by their priorities so that high priority messages are handled first. 
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A global path planning algorithm and RBF neural network learning algorithm are 

included in the experience function library to provide the agent abilities of path planning 

and obstacle avoidance. The priority control extension works in the parallel agent as 

described in Chapter 5. The reminding-forgetting PCF is used to control the priorities. 

 

6.2   Experiment 

The agent is simulated using Visual J# 2003. The navigation of the vessel is shown in a 

windows graphic interface. The history of processing of the agent is recorded in a 

Microsoft Access database. With these records, we can find out how the agent processes 

the events. In addition, a map editor is designed to create the world map which consists of 

some islands. The maps can be loaded by the agent simulation program. In the following, 

we will first show the designation details of the simulation program. Then an example of 

the vessel navigation is shown and the records of the agent behaviours are analyzed. 

 

6.2.1   System design 

 

Figure 6-2 Program interface. 
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The agent can detect the world information through sensors and the output actions consist 

of commands of changing translational and rotational speeds. Vessel agents are created 

with their specific physical parameters. The vessel agent’s destinations are given when 

the vessel is created. User can give commands to the vessel at any time through the 

command input window, such as changing or adding commands.  The objective of the 

agent is to move to the destinations safely and quickly. A snapshot of this program can be 

seen in Figure 6-2. In the experiment, the agent will reach three destinations denoted in 

the figure. The agent needs to avoid the islands while navigating. A global path planning 

algorithm is adopted to search the paths among the islands. The algorithm is shown first. 

Then the details about the agent are explained. 

 

6.2.1.1   Path planning algorithm 

We adopt the visibility graph method [76] for path planning. The algorithm demands that 

the nodes of the obstacles are prior known. Then all the possible combinations of the 

nodes are searched to find an optimal path with the shortest distance. A demonstration is 

shown in Figure 6-3. 

 

 

Figure 6-3 The visibility graph (from [76]). 

 

We use a recursive algorithm to realize the method. The algorithm is shown in Figure 6-

4. 
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Figure 6-4 Algorithm for calculating the global path. 

 

Obviously, the time needed for this algorithm will be increased with the number of the 

nodes of the obstacles. In our experiment, it takes over 4 seconds to calculate a path in a 

map with 12 nodes. 

 

6.2.1.2   The agent implementation 

In order to achieve its objective, the vessel agent should have the abilities to plan its path, 

to output actions which make it travel to the destination, and to avoid obstacles. These 

behaviours are triggered by new beliefs of the agent. The corresponding plans are 

designed in reaction to the new beliefs. The descriptions of the four levels of priorities for 

the vessel agent’s beliefs are given in Table 4-1. 

 

For a simulation system, all physical data and structure need to be symbolized. We apply 

object-oriented approach to program the vessel simulation system. The vessel agents and 
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environment are implemented as objects. Each vessel agent exchanges information with 

the environment individually. The processing of the Environment monitor in the belief 

manager is shown in Figure 6-5. 

 

 

Figure 6-5 Environment monitor thread in Belief manager. 

 

6.2.2   Experiment result 

A navigation example is shown in Figure 6-6. The area of interests is shown in a two-

dimensional rectangular sea area. There are four islands shown by the shaded areas in the 

map. As shown in Figure 6-6 a, the vessel agent at start point (0,0) is given four 

destinations 1, 2, 3, and 4 to move to. Then a change of plan, that is, new destinations 1 

and 2, as shown in Figure 6-6 b are given when the vessel is moving to the old 

destination 1. Then the vessel navigates to the new destinations. The behaviours of the 

corresponding threads are recorded. Only the most relevant activities are shown in Table 

6-1. These activities are carried out by the belief manager, intention generator and the 

intention executor of the agent as stated before. 
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a. Destinations are changed at this moment. 

 

 
b. The vessel navigates to the destinations 1, 2. 

Figure 6-6 Vessel navigation. 
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Table 6-1 Processing records of the vessel agent 

ID Insert_Time Type Behaviour 
492  7:32:20 PM Agent1 Start! 
493  7:32:20 PM deliberation thread0 Created. Status: New Target 
494  7:32:20 PM deliberation thread1 Created. Status: Idle 
495  7:32:21 PM deliberation thread0 Start. Status: New Target 
496  7:32:21 PM deliberation thread0 finished. Status: New Target 
497  7:32:21 PM intention thread0 Created. Intention: 0/1. 
498  7:32:21 PM deliberation thread1 Start. Status: Idle 
499  7:32:21 PM intention thread0 Start. Intention: 0/1. 
…    

504  7:32:23 PM intention thread1 Start. Intention: 10. 
…    

507  7:33:06 PM deliberation thread2 Start. Status: The global path updated 
508  7:34:38 PM deliberation thread2 finished. Status: The global path updated
509  7:34:55 PM intention thread2 Created. Intention: 2/3. 
510  7:34:56 PM suspend intention1.0 2.2 Start. 
511  7:34:56 PM suspend intention1.0 2.2 Suspended. 
512  7:34:57 PM intention thread2 Start. Intention: 2/3. 
513  7:34:57 PM Subgoal reached (0,0) 
514  7:34:57 PM intention thread2 finished. Intention: 2/3. 
515  7:35:05 PM resume intention intention1 
…    

523  7:35:57 PM Action Created. action: Accelerate to max speed.
…    

534  7:37:40 PM Remove obsolete intention 1 
535  7:37:40 PM intention thread5 Created. Intention: 2/3. 
536  7:37:40 PM deliberation thread6 Created. Status: Targets changed 
537  7:37:40 PM deliberation thread7 Created. Status: New Target 
538  7:37:40 PM deliberation thread8 Created. Status: Idle 
539  7:37:39 PM intention thread4 Start. Intention: 4/5. 
540  7:37:40 PM Action Created. action: Decelerate to min speed.
541  7:37:40 PM intention thread4 finished. Intention: 4/5. 
542  7:37:39 PM deliberation thread5 finished. Status: Subgoal reached 
543  7:37:41 PM deliberation thread6 Start. Status: Targets changed 

…    
568  7:40:16 PM deliberation thread11 Start. Status: The global path updated 
569  7:40:17 PM deliberation thread11 finished. Status: The global path updated
570  7:40:13 PM intention thread9 Start. Intention: 4/5. 
571  7:40:17 PM intention thread11 Created. Intention: 2/3. 
572  7:40:17 PM Action Created. action: Decelerate to min speed.
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The activities of the agent are shown in Table 6-1.  The sequence of the activities 

illustrates the behaviour of the agent.  

1. The new beliefs of the agent are processed in the order of priority.  When the 

agent is started, new beliefs of the need to go to destination 1 followed by 2, 3 and 

4 are received.  After the beliefs are sent by the belief manager, the intention 

generator create deliberation threads 0 and 1 (events 493, 494) and starts 

deliberation thread 0 (event 495) while deliberation thread 1 stays in the 

deliberation queue.  Deliberation thread 1 is something the agent needs to 

deliberate on when it has time as shown by event 498. 

2. The agent is able to carry out several activities at once. As shown by event 498 

and 499, the agent is executing deliberation thread 1 and intention thread 0 

simultaneously, that is, the agent is processing the belief of the need to go to 

destination 2, 3, 4 and the intention of planning the path to destination 1 at once. 

3. When there is a more urgent intention, the intention with low priority can be 

suspended and resumed later.  As shown by events 509, 510 and 515, intention 2 

is one of the steps in following the path plan to go to destination 1 while intention 

1 is to compute the path to destination 2, 3, 4.  Intention 2 preempts intention 1. 

4. When an intention becomes obsolete because of some new beliefs, the agent is 

able to stop and remove it.  As shown by event 534, intention 1 which is being 

executed by the intention executor is stopped and removed.  This is caused by an 

interrupt from the intention generator when it is processing the belief that the 

vessel should change course and go to the new destinations 1 and 2. 

5. The agent can respond to circumstance changes rapidly.  Event 523 shows the 

agent is moving to the old destination 1.  Event 543 shows the agent is processing 

the new belief that the destination is changed.  Event 569 shows the processing of 

the belief that vessel path is updated in response to the new destinations.  Event 

572 shows the vessel is changing course when it is moving to the old destination 

1. 

 

In summary, the agent is able to prioritize its deliberation and intention execution and is 

able to reconsider its goals and intentions after they are generated. 
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The complete records for this example can be found in Appendix A. 

 

6.3   Conclusion 

In this chapter, the software agent architecture for implementing a parallel BDI agent is 

demonstrated. Then a vessel captain agent is realized. The behaviours of the vessels are 

demonstrated and historical behaviour records are explained. 

 

The software agent architecture is also useful when designing agents in other aspects. In 

some sense, this proves the applicability of the general parallel BDI agent framework we 

propose in Chapter 3. 
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CHAPTER 

7  

CONCLUSIONS AND FUTURE WORK 
 

In this thesis, parallel BDI agent architecture is designed for simulating the vessel 

captain. The agent architecture is general enough to make other agents. Two components 

are incorporated into the architecture to provide the agent some human-like characters. In 

this final chapter, we will first make a conclusion about the contributions of our research. 

Then some possible future researches and applications are proposed. 

 

7.1   Conclusions    

In Chapter 3, a general framework for real time performance in the BDI model is 

proposed. It is a parallel agent architecture that supports the following agent abilities at 

architecture level: (1) the ability to respond to emergencies timely; (2) the ability to 

reconsider and modify goals, intentions and actions in reaction to unexpected or new 

information; (3) the ability to perform multiple actions at once; (4) the ability to perceive, 

deliberate and act simultaneously; (5) the ability to prioritize the deliberations and 

intention executions. We defined the functions and the operations of the processing units 

in the agent and how these units interact and cooperate with each other.  With the 

advances in semiconductor technology which allow multiple CPUs to be implemented on 
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the same silicon chip, a parallel BDI agent will be an effective way to enable it to 

perform in real time when the arrival rate of events is high. 

 

To evaluate the parallel BDI model, a comparison experiment is done with the sequential 

BDI agents. Five ways of organizing and controlling a sequential BDI agent are studied. 

The sequential agents and the parallel agent are evaluated by simulating their operations 

in processing events of different priorities and examining their performance. We analyze 

their performance in handling the same sequences of events.  The results show that the 

parallel BDI agent outperforms the sequential ones in offering significantly shorter 

response time to events with various inter-arrival times. The parallel BDI agent with its 

interrupt mechanism is able to guarantee to immediately react to high priority events 

where none of the sequential ones are capable of. 

  

Then the agent character is studied. We analyze the agent character from the agent itself 

and propose an extended BDI architecture for implementing such characters. The basic 

character consists of two parts: personality and experience. The personality will affect the 

whole process of the agent. In the vessel agent, it is represented by different initial 

parameter settings. The parameter settings will decide the agent’s basic physical 

properties and actions. The experience is implemented using the reinforcement learning 

algorithm. With the extended BDI architecture, the learning algorithm is combined into 

the agent as an experience function. In the experiment, the learning algorithm is used for 

improving the agent’s skills of obstacle avoidance. The behaviours of the agent will be 

affected by the experience accumulated by the learning algorithm. The experiment results 

show that the agent built using this method will have different behaviour with different 

parameter settings and different past experience. This is important for realistic simulation 

of systems made up by different people. 

 

Furthermore, we propose to enrich the BDI agent architecture with 2 processing 

components, a PCF (Priority Changing Function) Selector and a Priority Controller. The 

priorities of the desires/intentions can have different initial values and can change with 

time according to the chosen PCF. The desires/intentions can be scheduled according to 
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their own nature. It is a method to realize the operations defined in the parallel BDI agent 

framework by controlling priority of the desires/intentions. This also provides us a 

chance to control the scheduling of the intentions in a more human-like manner. As an 

example, a reminding-forgetting PCF is designed that simulates the way that human deals 

with several intentions together. The PCF goes through a rising/reminding phase and then 

a descending/forgetting phase. We proposed to use the Ramp, Sigmoid or Gaussian 

function to simulate the reminding processes of the intentions. And a forgetting function 

based on Ebbinghaus forgetting curve is used to simulate the function in forgetting 

process. With the setting of different parameter values, this PCF may also simulate a 

priority function that has the forgetting phase alone or the reminding phase alone.  From 

the experiment results, we can see that the resulted intention scheduling behaviour and 

the effect of setting the different parameter values. The agent can show some human 

behaviour. 

 

At the end, the software architecture for realizing the parallel BDI agent framework is 

proposed. The experience function library and the reminding-forgetting PCF are 

combined to simulate the agent characters. The architecture is used to implement the 

vessel agent. The experiment demonstrates an example of agents based on the parallel 

BDI agent architecture. 

 

7.2   Proposals 

7.2.1   A parallel hybrid agent architecture 

The current parallel BDI agent architecture is a kind of deliberative agent architecture. 

Though the parallel designation promotes the processing speed of the agent, the 

disadvantages of the deliberative agent still limit the parallel agent. So we propose that 

the architecture can be extended into a hybrid agent architecture. As shown in Figure 7-1, 

the layers in the reactive architecture can be run parallel with the intention generator and 

the intention executor. The original belief manager will have a new function to filter the 

events into the reactive or deliberative components. Issues of how to decide what needs 
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quick reaction and what needs deliberation will be interesting to explore. Then the 

outputs from the two components will be combined by some context-rules. 

 

 

Figure 7-1 A parallel hybrid agent architecture. 

 

7.2.2   Applications to real robots 

Because the parallel BDI agent model demands several CPUs to produce its best 

performance, currently the most directive and possible application will be robot control. 

The robot may have several parallel processors to use instead of the threads in the 

previous software simulation experiments. The robot with such designation is expected to 

show more natural human behaviours. The robot can detect, think and act at the same 

time. And the emergencies can be dealt with immediately by suspending some normal 

processing. The human-like ability to learn from experience and to prioritize tasks to be 

done will be very useful for robots which are taking care of some patients or old people. 
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Appendix 

A. Complete behaviour records of the vessel captain agent 
 
ID Insert_Time Type Behaviour 

492 4/8/2005 7:32:20 PM Agent1 Start! 
493 4/8/2005 7:32:20 PM deliberation thread0 Created. Status: New Target 
494 4/8/2005 7:32:20 PM deliberation thread1 Created. Status: Idle 
495 4/8/2005 7:32:21 PM deliberation thread0 Start. Status: New Target 
496 4/8/2005 7:32:21 PM deliberation thread0 finished. Status: New Target 
497 4/8/2005 7:32:21 PM intention thread0 Created. Intention: 0/1. 
498 4/8/2005 7:32:21 PM deliberation thread1 Start. Status: Idle 
499 4/8/2005 7:32:21 PM intention thread0 Start. Intention: 0/1. 
500 4/8/2005 7:32:22 PM intention thread0 finished. Intention: 0/1. 
501 4/8/2005 7:32:21 PM intention thread1 Created. Intention: 10. 
502 4/8/2005 7:32:21 PM deliberation thread1 finished. Status: Idle 
503 4/8/2005 7:32:23 PM deliberation thread2 Created. Status: The global path updated 
504 4/8/2005 7:32:23 PM intention thread1 Start. Intention: 10. 
505 4/8/2005 7:33:06 PM path plan finished 2 
506 4/8/2005 7:33:09 PM path plan finished 3 
507 4/8/2005 7:33:06 PM deliberation thread2 Start. Status: The global path updated 
508 4/8/2005 7:34:38 PM deliberation thread2 finished. Status: The global path updated 
509 4/8/2005 7:34:55 PM intention thread2 Created. Intention: 2/3. 
510 4/8/2005 7:34:56 PM suspend intention1.0 2.2 Start. 
511 4/8/2005 7:34:56 PM suspend intention1.0 2.2 Suspended. 
512 4/8/2005 7:34:57 PM intention thread2 Start. Intention: 2/3. 
513 4/8/2005 7:34:57 PM Subgoal reached (0,0) 
514 4/8/2005 7:34:57 PM intention thread2 finished. Intention: 2/3. 
515 4/8/2005 7:35:05 PM resume intention intention1 
516 4/8/2005 7:35:05 PM deliberation thread3 Created. Status: Running 
517 4/8/2005 7:35:09 PM deliberation thread3 Start. Status: Running 
518 4/8/2005 7:35:55 PM intention thread3 Created. Intention: 4/5. 
519 4/8/2005 7:35:55 PM suspend intention1.0 3.3 Start. 
520 4/8/2005 7:35:54 PM deliberation thread3 finished. Status: Running 
521 4/8/2005 7:35:55 PM suspend intention3.3 3.3 Suspended. 
522 4/8/2005 7:35:56 PM intention thread3 Start. Intention: 4/5. 
523 4/8/2005 7:35:57 PM Action Created. action: Accelerate to max speed. 
524 4/8/2005 7:36:07 PM resume intention intention1 
525 4/8/2005 7:35:57 PM intention thread3 finished. Intention: 4/5. 
526 4/8/2005 7:36:37 PM deliberation thread4 Created. Status: Running 
527 4/8/2005 7:36:37 PM deliberation thread5 Created. Status: Subgoal reached 
528 4/8/2005 7:36:56 PM deliberation thread4 Start. Status: Running 
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529 4/8/2005 7:37:14 PM deliberation thread4 finished. Status: Running 
530 4/8/2005 7:37:16 PM intention thread4 Created. Intention: 4/5. 
531 4/8/2005 7:37:33 PM suspend intention1.0 4.3 Start. 
532 4/8/2005 7:37:33 PM deliberation thread5 Start. Status: Subgoal reached 
533 4/8/2005 7:37:38 PM suspend intention1.0 4.3 Suspended. 
534 4/8/2005 7:37:40 PM Remove obsolete 

intention 
1 

535 4/8/2005 7:37:40 PM intention thread5 Created. Intention: 2/3. 
536 4/8/2005 7:37:40 PM deliberation thread6 Created. Status: Targets changed 
537 4/8/2005 7:37:40 PM deliberation thread7 Created. Status: New Target 
538 4/8/2005 7:37:40 PM deliberation thread8 Created. Status: Idle 
539 4/8/2005 7:37:39 PM intention thread4 Start. Intention: 4/5. 
540 4/8/2005 7:37:40 PM Action Created. action: Decelerate to min speed. 
541 4/8/2005 7:37:40 PM intention thread4 finished. Intention: 4/5. 
542 4/8/2005 7:37:39 PM deliberation thread5 finished. Status: Subgoal reached 
543 4/8/2005 7:37:41 PM deliberation thread6 Start. Status: Targets changed 
544 4/8/2005 7:37:41 PM deliberation thread6 finished. Status: Targets changed 
545 4/8/2005 7:37:42 PM intention thread5 Start. Intention: 2/3. 
546 4/8/2005 7:37:42 PM deliberation thread7 Start. Status: New Target 
547 4/8/2005 7:37:43 PM Subgoal reached (45,24) 
548 4/8/2005 7:37:43 PM intention thread5 finished. Intention: 2/3. 
549 4/8/2005 7:37:42 PM intention thread6 Created. Intention: 11. 
550 4/8/2005 7:37:43 PM intention thread7 Created. Intention: 0/1. 
551 4/8/2005 7:37:42 PM deliberation thread7 finished. Status: New Target 
552 4/8/2005 7:37:43 PM deliberation thread8 Start. Status: Idle 
553 4/8/2005 7:37:43 PM deliberation thread8 finished. Status: Idle 
554 4/8/2005 7:37:44 PM intention thread8 Created. Intention: 10. 
555 4/8/2005 7:37:48 PM intention thread6 Start. Intention: 11. 
556 4/8/2005 7:37:44 PM deliberation thread9 Created. Status: Running 
557 4/8/2005 7:37:50 PM intention thread6 finished. Intention: 11. 
558 4/8/2005 7:37:51 PM deliberation thread9 Start. Status: Running 
559 4/8/2005 7:37:51 PM deliberation thread9 finished. Status: Running 
560 4/8/2005 7:37:51 PM intention thread7 Start. Intention: 0/1. 
561 4/8/2005 7:38:00 PM intention thread9 Created. Intention: 4/5. 
562 4/8/2005 7:38:03 PM deliberation thread10 Created. Status: Running 
563 4/8/2005 7:38:33 PM deliberation thread10 Start. Status: Running 
564 4/8/2005 7:38:48 PM intention thread10 Created. Intention: 4/5. 
565 4/8/2005 7:38:48 PM deliberation thread10 finished. Status: Running 
566 4/8/2005 7:40:13 PM deliberation thread11 Created. Status: The global path updated 
567 4/8/2005 7:40:12 PM intention thread7 finished. Intention: 0/1. 
568 4/8/2005 7:40:16 PM deliberation thread11 Start. Status: The global path updated 
569 4/8/2005 7:40:17 PM deliberation thread11 finished. Status: The global path updated 
570 4/8/2005 7:40:13 PM intention thread9 Start. Intention: 4/5. 
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571 4/8/2005 7:40:17 PM intention thread11 Created. Intention: 2/3. 
572 4/8/2005 7:40:17 PM Action Created. action: Decelerate to min speed. 
573 4/8/2005 7:40:18 PM intention thread9 finished. Intention: 4/5. 
574 4/8/2005 7:40:18 PM deliberation thread12 Created. Status: Subgoal reached 
575 4/8/2005 7:40:19 PM intention thread10 Start. Intention: 4/5. 
576 4/8/2005 7:40:19 PM deliberation thread12 Start. Status: Subgoal reached 
577 4/8/2005 7:40:19 PM Action Created. action: Decelerate to min speed. 
578 4/8/2005 7:40:21 PM deliberation thread12 finished. Status: Subgoal reached 
579 4/8/2005 7:40:21 PM intention thread10 finished. Intention: 4/5. 
580 4/8/2005 7:40:21 PM intention thread12 Created. Intention: 2/3. 
581 4/8/2005 7:40:24 PM intention thread11 Start. Intention: 2/3. 
582 4/8/2005 7:40:26 PM intention thread12 Start. Intention: 2/3. 
583 4/8/2005 7:40:26 PM intention thread12 finished. Intention: 2/3. 
584 4/8/2005 7:40:24 PM intention thread11 finished. Intention: 2/3. 
585 4/8/2005 7:40:26 PM deliberation thread13 Created. Status: Running 
586 4/8/2005 7:40:27 PM intention thread8 Start. Intention: 10. 
587 4/8/2005 7:40:29 PM deliberation thread13 Start. Status: Running 
588 4/8/2005 7:40:30 PM deliberation thread13 finished. Status: Running 
589 4/8/2005 7:40:29 PM path plan finished 2 
590 4/8/2005 7:40:30 PM intention thread8 finished. Intention: 10. 
591 4/8/2005 7:40:30 PM deliberation thread14 Created. Status: Running 
592 4/8/2005 7:40:30 PM deliberation thread15 Created. Status: Subgoal reached 
593 4/8/2005 7:40:30 PM intention thread13 Created. Intention: 4/5. 
594 4/8/2005 7:40:31 PM deliberation thread14 Start. Status: Running 
595 4/8/2005 7:40:32 PM intention thread14 Created. Intention: 4/5. 
596 4/8/2005 7:40:31 PM intention thread13 Start. Intention: 4/5. 
597 4/8/2005 7:40:32 PM Action Created. action: Decelerate to min speed. 
598 4/8/2005 7:40:32 PM intention thread13 finished. Intention: 4/5. 
599 4/8/2005 7:40:31 PM deliberation thread14 finished. Status: Running 
600 4/8/2005 7:40:32 PM deliberation thread15 Start. Status: Subgoal reached 
601 4/8/2005 7:40:33 PM deliberation thread15 finished. Status: Subgoal reached 
602 4/8/2005 7:40:33 PM intention thread14 Start. Intention: 4/5. 
603 4/8/2005 7:40:33 PM Action Created. action: Decelerate to min speed. 
604 4/8/2005 7:40:37 PM intention thread15 Created. Intention: 2/3. 
605 4/8/2005 7:40:36 PM intention thread14 finished. Intention: 4/5. 
606 4/8/2005 7:40:40 PM intention thread15 Start. Intention: 2/3. 
607 4/8/2005 7:40:40 PM Subgoal reached (51,21) 
608 4/8/2005 7:40:40 PM intention thread15 finished. Intention: 2/3. 
609 4/8/2005 7:40:41 PM deliberation thread16 Created. Status: Running 
610 4/8/2005 7:40:41 PM deliberation thread16 Start. Status: Running 
611 4/8/2005 7:40:42 PM deliberation thread16 finished. Status: Running 
612 4/8/2005 7:40:42 PM intention thread16 Created. Intention: 4/5. 
613 4/8/2005 7:40:43 PM intention thread16 Start. Intention: 4/5. 
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614 4/8/2005 7:40:43 PM Action Created. action: Accelerate to max speed. 
615 4/8/2005 7:40:44 PM intention thread16 finished. Intention: 4/5. 
616 4/8/2005 7:41:00 PM deliberation thread17 Created. Status: Subgoal reached 
617 4/8/2005 7:41:01 PM deliberation thread18 Created. Status: Running 
618 4/8/2005 7:41:01 PM deliberation thread17 Start. Status: Subgoal reached 
619 4/8/2005 7:41:01 PM suspend 

deliberation17.2 
18.3 

620 4/8/2005 7:41:03 PM deliberation thread18 Start. Status: Running 
621 4/8/2005 7:41:03 PM intention thread17 Created. Intention: 4/5. 
622 4/8/2005 7:41:03 PM resume deliberation deliberation17 
623 4/8/2005 7:41:03 PM deliberation thread17 finished. Status: Subgoal reached 
624 4/8/2005 7:41:05 PM intention thread17 Start. Intention: 4/5. 
625 4/8/2005 7:41:06 PM Action Created. action: Decelerate to min speed. 
626 4/8/2005 7:41:06 PM intention thread17 finished. Intention: 4/5. 
627 4/8/2005 7:41:03 PM deliberation thread18 finished. Status: Running 
628 4/8/2005 7:41:05 PM intention thread18 Created. Intention: 2/3. 
629 4/8/2005 7:41:07 PM intention thread18 Start. Intention: 2/3. 
630 4/8/2005 7:41:07 PM Subgoal reached (68,46) 
631 4/8/2005 7:41:07 PM intention thread18 finished. Intention: 2/3. 
632 4/8/2005 7:41:08 PM deliberation thread19 Created. Status: Running 
633 4/8/2005 7:41:09 PM deliberation thread19 Start. Status: Running 
634 4/8/2005 7:41:09 PM deliberation thread19 finished. Status: Running 
635 4/8/2005 7:41:10 PM intention thread19 Created. Intention: 4/5. 
636 4/8/2005 7:41:13 PM intention thread19 Start. Intention: 4/5. 
637 4/8/2005 7:41:13 PM Action Created. action: Accelerate to max speed. 
638 4/8/2005 7:41:14 PM intention thread19 finished. Intention: 4/5. 
639 4/8/2005 7:41:24 PM deliberation thread20 Created. Status: Subgoal reached 
640 4/8/2005 7:41:24 PM deliberation thread21 Created. Status: Running 
641 4/8/2005 7:41:24 PM suspend 

deliberation20.2 
21.3 

642 4/8/2005 7:41:26 PM deliberation thread21 Start. Status: Running 
643 4/8/2005 7:41:28 PM intention thread20 Created. Intention: 4/5. 
644 4/8/2005 7:41:26 PM resume deliberation deliberation20 
645 4/8/2005 7:41:26 PM deliberation thread21 finished. Status: Running 
646 4/8/2005 7:41:26 PM deliberation thread20 Start. Status: Subgoal reached 
647 4/8/2005 7:41:29 PM deliberation thread20 finished. Status: Subgoal reached 
648 4/8/2005 7:41:30 PM intention thread21 Created. Intention: 2/3. 
649 4/8/2005 7:41:30 PM intention thread20 Start. Intention: 4/5. 
650 4/8/2005 7:41:31 PM Action Created. action: Decelerate to min speed. 
651 4/8/2005 7:41:32 PM intention thread20 finished. Intention: 4/5. 
652 4/8/2005 7:41:33 PM intention thread21 Start. Intention: 2/3. 
653 4/8/2005 7:41:33 PM Target1 reached (91,50) 
654 4/8/2005 7:41:33 PM deliberation thread22 Created. Status: Running 
655 4/8/2005 7:41:33 PM intention thread21 finished. Intention: 2/3. 
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656 4/8/2005 7:41:37 PM deliberation thread22 Start. Status: Running 
657 4/8/2005 7:41:37 PM deliberation thread22 finished. Status: Running 
658 4/8/2005 7:41:38 PM intention thread22 Created. Intention: 4/5. 
659 4/8/2005 7:41:38 PM intention thread22 Start. Intention: 4/5. 
660 4/8/2005 7:41:38 PM Action Created. action: Accelerate to max speed. 
661 4/8/2005 7:41:38 PM intention thread22 finished. Intention: 4/5. 
662 4/8/2005 7:41:48 PM deliberation thread23 Created. Status: Running 
663 4/8/2005 7:41:48 PM deliberation thread24 Created. Status: Subgoal reached 
664 4/8/2005 7:41:49 PM deliberation thread23 Start. Status: Running 
665 4/8/2005 7:41:49 PM deliberation thread23 finished. Status: Running 
666 4/8/2005 7:41:49 PM intention thread23 Created. Intention: 4/5. 
667 4/8/2005 7:41:50 PM deliberation thread24 Start. Status: Subgoal reached 
668 4/8/2005 7:41:53 PM intention thread23 Start. Intention: 4/5. 
669 4/8/2005 7:41:50 PM deliberation thread24 finished. Status: Subgoal reached 
670 4/8/2005 7:41:54 PM intention thread24 Created. Intention: 2/3. 
671 4/8/2005 7:41:53 PM Action Created. action: Decelerate to min speed. 
672 4/8/2005 7:41:54 PM intention thread23 finished. Intention: 4/5. 
673 4/8/2005 7:41:55 PM intention thread24 Start. Intention: 2/3. 
674 4/8/2005 7:41:55 PM Subgoal reached (90,28) 
675 4/8/2005 7:41:55 PM intention thread24 finished. Intention: 2/3. 
676 4/8/2005 7:41:56 PM deliberation thread25 Created. Status: Running 
677 4/8/2005 7:41:57 PM deliberation thread25 Start. Status: Running 
678 4/8/2005 7:41:57 PM deliberation thread25 finished. Status: Running 
679 4/8/2005 7:42:00 PM intention thread25 Created. Intention: 4/5. 
680 4/8/2005 7:42:02 PM intention thread25 Start. Intention: 4/5. 
681 4/8/2005 7:42:02 PM Action Created. action: Accelerate to max speed. 
682 4/8/2005 7:42:03 PM intention thread25 finished. Intention: 4/5. 
683 4/8/2005 7:42:18 PM deliberation thread26 Created. Status: Target reached 
684 4/8/2005 7:42:18 PM deliberation thread27 Created. Status: Running 
685 4/8/2005 7:42:19 PM deliberation thread28 Created. Status: Target reached 
686 4/8/2005 7:42:19 PM deliberation thread26 Start. Status: Target reached 
687 4/8/2005 7:42:19 PM deliberation thread26 finished. Status: Target reached 
688 4/8/2005 7:42:20 PM deliberation thread29 Created. Status: Target reached 
689 4/8/2005 7:42:20 PM intention thread26 Created. Intention: 9. 
690 4/8/2005 7:42:20 PM deliberation thread28 Start. Status: Target reached 
691 4/8/2005 7:42:20 PM deliberation thread28 finished. Status: Target reached 
692 4/8/2005 7:42:22 PM deliberation thread30 Created. Status: Target reached 
693 4/8/2005 7:42:23 PM intention thread26 Start. Intention: 9. 
694 4/8/2005 7:42:23 PM deliberation thread29 Start. Status: Target reached 
695 4/8/2005 7:42:24 PM deliberation thread29 finished. Status: Target reached 
696 4/8/2005 7:42:24 PM deliberation thread31 Created. Status: Target reached 
697 4/8/2005 7:42:24 PM deliberation thread32 Created. Status: Target reached 
698 4/8/2005 7:42:25 PM Agent1 Stop begins! 
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699 4/8/2005 7:42:24 PM intention thread27 Created. Intention: 9. 
700 4/8/2005 7:42:24 PM deliberation thread33 Created. Status: Target reached 
701 4/8/2005 7:42:25 PM intention thread28 Created. Intention: 9. 
702 4/8/2005 7:42:26 PM Agent1 Stop ends! 
703 4/8/2005 7:42:28 PM intention thread26 finished. Intention: 9. 
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