
�5�I�J�T���E�P�D�V�N�F�O�U���J�T���E�P�X�O�M�P�B�E�F�E���G�S�P�N���%�3���/�5�6���	�I�U�U�Q�T�������E�S���O�U�V���F�E�V���T�H�

�/�B�O�Z�B�O�H���5�F�D�I�O�P�M�P�H�J�D�B�M���6�O�J�W�F�S�T�J�U�Z�
���4�J�O�H�B�Q�P�S�F��

�"�H�F�O�U���T�J�N�V�M�B�U�J�P�O���P�G���W�F�T�T�F�M�T���U�S�B�W�F�M�J�O�H���J�O���T�F�B

�;�I�B�O�H�
���)�V�J�M�J�B�O�H

��������

�;�I�B�O�H�
���)�����	���������
�����"�H�F�O�U���T�J�N�V�M�B�U�J�P�O���P�G���W�F�T�T�F�M�T���U�S�B�W�F�M�J�O�H���J�O���T�F�B�����%�P�D�U�P�S�B�M���U�I�F�T�J�T�
���/�B�O�Z�B�O�H

�5�F�D�I�O�P�M�P�H�J�D�B�M���6�O�J�W�F�S�T�J�U�Z�
���4�J�O�H�B�Q�P�S�F��

�I�U�U�Q�T�������I�E�M���I�B�O�E�M�F���O�F�U����������������������

�I�U�U�Q�T�������E�P�J���P�S�H��

�/�B�O�Z�B�O�H���5�F�D�I�O�P�M�P�H�J�D�B�M���6�O�J�W�F�S�T�J�U�Z

Downloaded on 13 May 2021 18:24:49 SGT

NANYANG TECHNOLOGICAL UNIVERSITY

Agent Simulation of Vessels Traveling in Sea

A thesis submitted to for Nanyang Technological University in fulfillment
of the requirement for the degree of Doctor of Philosophy

Zhang Huiliang
Supervisor: Huang Shell Ying

Division of Computer Science

School of Computer Engineering
Nanyang Technological University

Singapore

Dec 2006

ACKNOWLEDGEMENTS………………………………………………………….…II

TABLE OF CONTENTS………………………………………………………………III

LIST OF FIGURES……………………………………………………………………VI

LIST OF TABLES…………………………………………………………………… VII

ABSTRACT…………………………………………………………………………..VIII

ABBREVIATIONS…………………………………………………………………… XI

 I

ACKNOWLEDGEMENTS

Greatest thanks to my supervisor, Dr. Huang Shell Ying, who provided invaluable help

and indispensable guide for the research. She often provided new and useful papers in the

area to me. And she was always patient in discussing research with me. From her wise

suggestion, I learned much for the research. I am also imbued with her meticulous

attitude for science.

I would like to thank all my friends for their help and support. Without them, the living in

school would have been very boring. At the same time, I also learned much from them.

My lab, PDCC, provided me the biggest convenience for research. The center director

Dr. Stephen Turner, technician Irene Goh, Lau Lijun and Ek Ming Hong were very

helpful in solving the problems that I met in the lab. Thanks to all staff who helped me.

Without financial support, this research could not have started. I would like to thank

Nanyang Technological University for providing me scholarship, which was the main

financial source to support my study and living during my PhD candidate period. I would

also thank my supervisor and professor Hsu Wen Jing for providing me a part-time job

opportunity. Not only I earned some livings for the late period without scholarship, but

also it provided a working experience.

Finally, I want to say thanks to my parents.

 II

TABLE OF CONTENTS

1 INTRODUCTION ...1

1.1 Background... 1

1.2 Objectives of This Research... 3

1.3 Main problems and Technical Issues.. 3

1.4 Thesis Organization.. 4

2 LITERATURE REVIEW ...5

2.1 Agent Architectures.. 7
2.1.1 BDI architecture.. 8
2.1.2 Subsumption architecture ... 11
2.1.3 Hybrid architecture ... 14

2.2 Agent Character ... 16
2.2.1 Creating human-like agents .. 17
2.2.2 Promoting agent performance... 19

2.3 Agent Learning ... 19

2.4 Action Scheduling... 21

2.5 Agent Systems and Applications ... 22
2.5.1 Agent simulation system... 23
2.5.2 Multi-agent simulation system.. 23

2.6 Robot Navigation .. 24
2.6.1 Global path planning... 25
2.6.2 Local obstacle avoidance .. 26

3 PARALLEL BDI AGENT ARCHITECTURE..31

3.1 Introduction .. 32

3.2 The General Framework.. 38
3.2.1 Belief manager.. 39
3.2.2 Intention generator.. 40
3.2.3 Intention executor ... 44
3.2.4 Synchronization among peer intention plans .. 49
3.2.5 General Remarks .. 50

3.3 Comparison between the Parallel BDI Model and the Sequential Ones.. 50
3.3.1 Sequential BDI agents .. 51
3.3.2 The input data ... 53

 III

3.3.3 Comparison results and analysis... 55

3.4 Theoretical Analysis ... 59

3.5 How Much Parallelism... 63

3.6 Possible Advantages and a Limitation.. 68

3.7 Conclusions ... 70

4 AGENT CHARACTER...71

4.1 Introduction .. 72

4.2 The Analysis of Agent Character .. 73
4.2.1 Personality .. 74
4.2.2 Experience .. 76

4.3 The Extended BDI Agent Architecture .. 78
4.3.1 Personality settings ... 79
4.3.2 Experience function library .. 80

4.4 Experiment.. 82
4.4.1 Experience .. 82
4.4.2 Parameter setting .. 86

4.5 Conclusion... 91

5 PRIORITY CONTROL ...93

5.1 Introduction .. 94

5.2 Priority Control Extension .. 98

5.3 Priority Control .. 101
5.3.1 The reminding phase of a PCF.. 102
5.3.2 The forgetting phase and the unchanging phase of a PCF .. 106
5.3.3 The complete PCF .. 107
5.3.4 Priority change caused by other desires/intentions ... 110

5.4 Comparison of Parallel Agents Without and With the Reminding-forgetting PCF..................... 113

5.5 Agent Behaviours with Different Reminding Functions ... 117
5.5.1 Probability that the intention is running at t.. 119
5.5.2 Probability that the intention is started first time at t .. 120

5.6 Conclusion... 122

6 A VESSEL CAPTAIN AGENT...123

6.1 Software Agent Architecture... 123

6.2 Experiment.. 126

 IV

6.2.1 System design ... 126
6.2.2 Experiment result.. 129

6.3 Conclusion... 133

7 CONCLUSIONS AND FUTURE WORK..135

7.1 Conclusions ... 135

7.2 Proposals ... 137
7.2.1 A parallel hybrid agent architecture.. 137
7.2.2 Applications to real robots.. 138

REFERENCE..139

APPENDIX ...149

A. Complete behaviour records of the vessel captain agent.. 149

B. Publication list.. 155

 V

LIST OF FIGURES

Figure 2-1 The TouringMachines agent control architecture (from [35]). 14
Figure 3-1 Parallel BDI agent model. ... 36
Figure 3-2 The General Framework for Parallel BDI Agents. ... 38
Figure 3-3 States of desires and intentions and their transition. 41
Figure 3-4 Operations of DG. ... 43
Figure 3-5 Operations of DS... 44
Figure 3-6 Transformation of a normal intention plan. .. 46
Figure 3-7 Operations of IM. .. 48
Figure 3-8 Operations of IS. ... 49
Figure 3-9 Sequential BDI agents... 51
Figure 3-10 The data flow in the agent... 61
Figure 4-1 Effects of personality. ... 75
Figure 4-2 BDIE architecture.. 78
Figure 4-3 Obstacle avoidance.. 83
Figure 4-4 RBF Network for approximating the function of Q value. 84
Figure 4-5 HTN for obstacle avoidance.. 87
Figure 4-6 Decision making.. 89
Figure 4-7 Path of avoidance. ... 91
Figure 5-1 Priority control extension to the original parallel BDI framework (only parts

of the original framework that interact with the extension are shown). 98
Figure 5-2 Requirement for priority changes caused by new beliefs, new desires and new

intentions... 100
Figure 5-3 Sigmoid functions. ... 103
Figure 5-4 Gaussian functions. ... 104
Figure 5-5 Comparison of three functions. ... 105
Figure 5-6 Forgetting curves with different S... 107
Figure 5-7 Priority Control of Four Intentions. .. 109
Figure 5-8 Examples of several PCF(t). ... 109
Figure 5-9 I(t) shifting in the Reminding Phase. .. 112
Figure 5-10 Outside Reminders in Forgetting Process. .. 113
Figure 5-11 APT of events.. 116
Figure 5-12 Demonstration of function D(t)... 118
Figure 5-13 Probability that the intention is running at t.. 119
Figure 5-14 Probability that the intention is started at t first time. 121
Figure 6-1 Software implementation architecture. ... 124
Figure 6-2 Program interface. ... 126
Figure 6-3 The visibility graph (from [76]). ... 127
Figure 6-4 Algorithm for calculating the global path. .. 128
Figure 6-5 Environment monitor thread in Belief manager.. 129
Figure 6-6 Vessel navigation. ... 130
Figure 7-1 A parallel hybrid agent architecture.. 138

 VI

LIST OF TABLES

Table 3-1 Sequential agents .. 52
Table 3-2 Allocation schemes... 52
Table 3-3 Events statistics .. 54
Table 3-4 ART of the events by the agents... 56
Table 3-5 Experiment statistics... 61
Table 3-6 Experiments statistics ... 63
Table 3-7 Events statistics .. 64
Table 3-8 ART of the events by the agents... 65
Table 3-9 Average waiting time for deliberation.. 66
Table 3-10 Average waiting time for execution ... 66
Table 4-1 Priorities of messages for new beliefs .. 80
Table 4-2 Interface of obstacle avoidance function.. 86
Table 4-3 Interface of action decider function.. 88
Table 4-4 Initial status of obstacle avoidance... 88
Table 4-5 Outputs of the evaluation function ... 90
Table 5-1 Parameters related to the reminding-forgetting function................................ 108
Table 5-2 Intentions with different PCF parameter settings... 108
Table 5-3 Events statistics. ... 114
Table 5-4 Agents types. .. 114
Table 5-5 Events processed statistics.. 115
Table 6-1 Processing records of the vessel agent ... 131

 VII

ABSTRACT

The objective of our project is to design an agent architecture to simulate the intelligence

and behaviour of a vessel captain in navigation. An agent representing a vessel captain

should be able to perceive the environment, make decisions and act simultaneously. The

agent should be able to prioritize its activities according to their importance and urgency.

The agent should be able to reconsider its goals and intentions and adapt in the changing

environment. The agent should be able to improve its performance with the accumulation

of experience. Different vessel captains and thus different vessel agents should behave

differently based on different personalities and past experience. It is also the objective of

our research that work done here is general enough for building agents in other contexts

like a robot looking after a patient or old people.

Many agent architectures have been proposed based on various processing philosophies,

including deliberative architectures, reactive architectures and hybrid architectures. The

deliberative agents have powerful reasoning ability compared to the reactive agents, but

the slow processing speed due to the theorem proving based on complex symbol systems

of the world makes them unsuitable for some dynamic environments. The agents based

on the reactive architecture do not need deliberating and have quick processing ability.

However, it is hard to design and maintain such agents, especially for complex agent

systems. More importantly, the reactive agents lack learning ability which is essential for

a truly automatic and evolutionary agent. The hybrid architecture combines deliberative

and reactive architectures. The emergencies can be processed by the reactive layers while

the deliberative layers process other decisions. Currently, the behaviours of all the

existing agents are organized in a sequential way: detect-think-act. When an agent is

thinking, it cannot detect the environment and may be in the danger of overlooking

emergencies.

 VIII

In this thesis, a general framework for real time performance in the Belief-Desire-

Intention (BDI) model is proposed. It is an improvement for the BDI agent model. The

agent consists of three parallel components: belief manager, intention generator and

intention executor. The communication among them is realized by interrupts. The current

running actions in the intention generator or intention executor can be suspended if the

new incoming data has a higher priority. It supports the following agent abilities at the

architecture level: (1) the ability to respond to emergencies timely; (2) the ability to

reconsider and modify goals, intentions and actions in reaction to unexpected or new

information; (3) the ability to perform multiple actions at once; (4) the ability to perceive,

deliberate and act simultaneously; (5) the ability to prioritize the deliberations and

intention executions. The architecture provides a possibility for the deliberative agents to

be applied in complex and dynamic environments. A comparison experiment among the

parallel agent and the sequential ones is made by simulating the processing of incoming

events. The results show that the parallel agent has a powerful processing ability. The

issue of how much parallelism and how to configure a parallel agent based on the general

framework are studied by experiments with different configurations of the parallel agent.

Furthermore the vessel agent is personalized by its past experience and personality. We

incorporate Experience Function library into the basic BDI model. As an example for

accumulating experience, we apply the reinforcement learning algorithm to improve the

agent’s skills of obstacle avoidance. The algorithm is incorporated into the vessel agent

as an Experience Function. The agent accumulates the experience during its navigation

and the different past experiences will make the agent behave differently.

Then we propose a Priority Control extension to the BDI agent. The priorities of the

deliberations/intentions in the agent can be controlled by proper Priority Control

Functions. This provides a way to schedule the deliberations/intentions. A reminding-

forgetting Priority Control Function is designed by simulating human behaviours when

dealing with several things at the same time. Such function can be used when designing

human-like agents. The agent with different settings for the Priority Control Function

behaves differently.

 IX

Finally, a software agent system of vessel captain traveling at sea is developed based on

the parallel BDI agent framework with the Experience Function library and Priority

Control components. The structure for realizing the software agent is designed. The

experiments show that the agent is able to respond according to expectations.

At the end of the thesis, we conclude on the contributions made in this research. Possible

future research and applications are also discussed. The work presented in this thesis was

done in simulation. We expect that it can be applied in real robots some day.

 X

ABBREVIATIONS

AFSM Augmented Finite State Machines

ART Average Response Time of all events

ARTe the estimated ART

ARTp the ART of the events with priority p

ARTw the weighted ART by the priorities of the events

AVGd the average PG time

AVGe the average PE time

AWTD Average Waiting Time for Deliberations

AWTE Average Waiting Time for Execution of intentions

BCM Beam-Curvature Method

BDI Belief-Desire-Intention

BDIE Belief-Desire-Intention-Experience

BG Belief Generator

CPEF Continuous Planning and Execution Framework

CVM Curvature-Velocity Method

DAI Distributed Artificial Intelligence

DG Desire Generator

DS Desire Scheduler

DWA Dynamic Window Approach

EEC Emotion Eliciting Condition

EM Environment Monitor

HTN Hierarchical Task-Network

IM Intention Manager

IS Intention Scheduler

LCM Lane-Curvature Method

LORA Logic of Rational Agents

LSA Logic-Based Subsumption Architecture

 XI

NPC Non-Player Character

PCF Priority Control Function

PE Plan Executor

PG Plan Generator

PRS Procedural Reasoning System

RBF Radial Basis Function

VFF Virtual Force Field

VFH Vector Field Histogram

 XII

Chapter 1 Introduction

CHAPTER

1

INTRODUCTION

1.1 Background

The Singapore Strait is used by vessels entering and leaving the Port of Singapore as well

as by transiting vessels. Vessels enter and leave the Port of Singapore via various

navigational approaches. The types of vessels using the Singapore Strait range from very

large container carriers to small crafts such as passenger ferries. During peak periods, like

morning or evening, or public holidays, a larger number of ferries will appear. The heavy

marine traffic makes certain sea areas very crowed and accidents do happen occasionally.

In such an environment, vessels exhibit the following behaviours:

o Moving towards the destination. This means that a vessel has to reach its target,

instead of navigating aimless. For example, a vessel moves to the Port of

Singapore. With a given destination and the map of the sea, each vessel plans its

own route to arrive at the destination.

o Avoiding stationary objects and other moving vessels. For example, for a

transiting vessel, it should avoid collision with islands, reefs and lighthouses

spotted in the Singapore Strait. At the same time, when it meets other navigating

vessels, it should also avoid these moving vessels. Thus methods of avoiding

dynamic obstacles are necessary.

 1

Chapter 1 Introduction

In the real world, vessels are under the commands of their own captains. As people have

different personalities, different captains demonstrate different vessel navigation arts. So

human factors have very important effects on vessel navigation. The human factors

affecting navigation can be seen from the following facts:

o Captains have different behaviours in moving towards the destinations. Some

people tend to move fast, some take it easy. Some are behind schedule, therefore

have to rush. Some are before schedule, so need to slow down.

o A bold and a meticulous captain may have different styles of command when

dealing with the same situations when other vessels are nearby. A meticulous

captain always adopts the safest strategies earlier than his bold peers. Different

types of vessels also have different velocities, sizes and capacities.

o Experienced and green-horn captains have different reactions to the same events.

A simulation system of vessels traveling at sea is very useful for risk analysis and

channel capacity estimation in the Singapore Strait or any other waters. The risk analysis

will be carried out for the interaction between each type of vessel and each of the other

types of vessels, the time of the day and the different areas. The simulation system will be

able to indicate what type of vessels, what kind of captains or behaviour, which area and

what weather condition are high risk factors. Then remedial or precautionary actions may

be taken. This simulation can also be used to find how many vessels can safely use the

Singapore Strait at the same time. The channel capacity is defined as the number of

vessels that can safely use the channel. Ferry schedule determines the frequency and the

size of the ferries. Given a fixed demand of passenger capacity, increasing the number of

high seating capacity ferries will reduce the ferry frequency. However, reducing ferry

frequency may cause costumer unhappiness and drive out business. The channel capacity

estimation can be used to find an optimal balance between them. In order to have

meaningful conclusions from the simulation system, different vessel behaviours must be

simulated realistically.

 2

Chapter 1 Introduction

1.2 Objectives of This Research

In this research, we will try to design an agent architecture for the agent that replicates

the behaviours of vessel captains traveling in sea. The captain agent has the ability to

navigate from starting point to target using different navigation methods. Each vessel

plans its global path first using a global path-planning algorithm. When the vessel moves

along its path, it may detect some unknown obstacles. Then it uses some local obstacle

avoidance methods to avoid collision with them while still trying to move to its

destination. More importantly, the vessel agent should obtain: (1) the ability to respond to

emergencies timely; (2) the ability to reconsider and modify goals, intentions and actions

in reaction to unexpected or new information; (3) the ability to perform multiple actions

at once; (4) the ability to perceive, deliberate and act simultaneously; (5) the ability to

prioritize the deliberations and intention executions.

It is also the objective of this research that the work done here is general enough for

building agents in other contexts.

1.3 Main problems and Technical Issues

The agent will be realized based on the famous BDI agent architecture. Currently, the

BDI agent architecture is not suitable to simulate a real-time vessel captain in two

aspects: 1. the reactivity of the agent cannot be assured; 2. the characters of the captain

cannot be easily realized. We design a parallel BDI agent architecture to solve the first

problem. As we said earlier, a vessel is under the commands of its captain, a human

being. The captain’s own personality and experience will affect the vessel’s navigation.

So we integrate some more components into the parallel BDI agent architecture to realize

the agent characters. In the future, multi-agent simulation of the vessels based on the

parallel BDI agent architecture can be used for the risk analysis and channel capacity

estimation as discussed in Section 1.1.

To validate the performance and applicability of the agent architecture we proposed, the

research methodology adopted is computer simulation. In the simulation, we assume that

 3

Chapter 1 Introduction

the agent can receive the world information in the form of beliefs and the actions are

carried out immediately. We will judge whether the system runs according to our

expectation by examining the behaviour records of the agent.

1.4 Thesis Organization

The following chapters are organized as following:

o Chapter 2 LITERATURE REVIEW. This chapter introduces related research,

including agent architectures, agent character, agent learning, action selection and

agent systems. The techniques related to robot navigation are also reviewed here.

o Chapter 3 PARALLEL BDI AGENT ARCHITECTURE. In this chapter, the

design of the general parallel BDI agent framework is introduced. Simulation

experiments of the parallel BDI agent and several sequential BDI agents are

performed. The experiment results have demonstrated the advantages of the

parallel BDI agent. The parallelism is analyzed using experiment simulations.

o Chapter 4 AGENT CHARACTER. The basic agent character is analyzed in this

chapter. The Experience Function library is incorporated into the agent to support

combining the reinforcement learning algorithm. Then an experiment simulating

the agent experience is made.

o Chapter 5 PRIORITY CONTROL. A component to control priority change in an

agent is proposed. As an example, a personalized priority control schema for

action scheduling is shown. The schema is designed by simulating human

behaviours when dealing with several things together.

o Chapter 6 A VESSEL CAPTAIN AGENT. A software vessel captain agent is

realized based on the general parallel BDI framework with the two character

components: experience function library and priority control schema. The

architecture to realize the software parallel BDI agent is shown. The captain agent

is realized by using multi-threads programming techniques. The agent shows the

applicability of the parallel BDI model.

o Chapter 7 CONCLUSIONS AND FUTURE WORK. We conclude our researches

and make some proposals about future research.

 4

Chapter 2 Literature Review

CHAPTER

2

LITERATURE REVIEW

In The Merriam Webster Dictionary, agent is defined as: “agent n 1 : one that acts 2 :

MEANS, INSTRUMENT 3 : a person acting or doing business for another” [3]. From the

viewpoint of the semantic meaning, we may regard the computer agent as an instrument

that acts. However, a single definition of ‘computer agent’ is not accepted unanimously

since it first appeared in the 1970s due to the diversification of the computer agents’

attributes, roles, architectures, and other features.

In 1977, Hewitt introduced the concept of agent as ‘actor’ in the research of Distributed

Artificial Intelligence (DAI). In the model, an actor “is a computational agent, which has

a mail address and a behaviour. Actors communicate by message-passing and carry out

their actions concurrently” [53]. This is the original model of an agent. From then on, the

research on agents has been carried out in various areas and applications. In an overview

of software agent, Nwana describes software agents as a broad range of computational

entities [100]. From his viewpoint, agents in software area can be reusable software

components that provide controlled access to (shared) services and resources or the basic

building blocks for applications organized as networks of collaborating agents. For a real

physical system, like a Robot World cup team, each robot also can be seen as an agent,

 5

Chapter 2 Literature Review

which is a computational unit [73]. The whole team is considered as a multi-agent

system, in which each agent can finish some tasks individually and cooperate with other

teammates. Both kinds of computer agents will embody some characteristics of humans.

In fact, the ultimate objective of agent research is to make agents act as real intelligent

human agents. In our research, the final objective is to design an agent which is able to

behaviour as a real vessel captain in navigation.

As pointed out in [100], the three common attributes of agents are: autonomy,

cooperation and learning ability. Such attributes make the agents different from

conventional programs. Firstly, programs are sequences of clear and detailed instructions

provided by their designers to be followed exactly. But agents are autonomous and act on

behalf of a user. Agents act according to their own desires and interests without getting

detailed instructions from the user. Secondly, agents often need to cooperate and

coordinate with others. They have social ability. This human-like ability is lacking in

conventional programs. Agents often communicate with the user, the system, and other

agents. Through communication, agents can obtain knowledge about the user’s reaction,

environment and others’ intention. Agents can then decide and act more effectively.

Agents can also cooperate with other agents to carry out more complex tasks than what

they can handle themselves. This cooperation can be seen from a Robot World Cup team.

The agents must cooperate with each other efficiently to gain victory, like a human

soccer team. In a multi-agent system for distributed computing, agents often obtain the

ability to access remote resources. Thus, the efficiency of the whole system can be

increased [57]. Thirdly, some agents have learning ability, which shows that they have

some kinds of intelligence. If agents do not learn, they are not suitable for dynamic

environments where situations cannot all be foreseen. Agents learn from actual actions

and/or training. Thus they can choose the best actions based on the experiences gained

from past actions. When under training, sometimes agents must be proactive. For

example, an agent may test some actions to gain the rewards from these actions. Different

to this, most programs always choose their actions using the same approach according to

the way it is programmed. In recent years, emotions also become a very important

 6

Chapter 2 Literature Review

philosophies. The hybrid agents try to maximize the strengths and minimize the

deficiencies of the most relevant technique for a particular purpose [100]. This kind of

agent can inherit the advantages from other agents and avoid their shortcomings. It is

becoming more popular in agent design.

In the following, we will review these three kinds of agent architectures. We choose the

BDI architecture as representative for deliberative architecture and the subsumption

architecture for reactive architecture because of their popularity among the peers.

2.1.1 BDI architecture

BDI architecture is the deliberative architecture that is researched mostly. It provides a

folk psychological way by simulating human deliberation. The mental attitudes of belief,

desire, and intention represent the information, motivational, and deliberative states of the

agent respectively [18, 111]. It may seem useless for simple agents, like a thermometer or

an alarm clock, but it is helpful when developing agents that work in complex

environments.

Rao and Georgeff provided a BDI model in software engineering area [111, 110]. They

defined the BDI components and explained their significance to agents. The actions or

procedures that achieve the various objectives are dependent on the state of the

environment and are independent of the internal state of the system. So it is necessary

that there is some component of system state which represents the information on the

state of the environment and which is updated appropriately after each sensing action.

Such a component is called the system’s beliefs. It is also necessary that the system has

information about the objectives to be accomplished. This component is called the

system’s desire. In order to limit the frequency of reconsideration and thus achieve an

appropriate balance between too much reconsideration and not enough, it is necessary to

include a component of system state to represent the currently chosen course of actions.

This additional state component is named as the system’s intention. This BDI agent

architecture is used in an air-traffic management application [111]. Brazier et al. present

 8

Chapter 2 Literature Review

an extended task hierarchy for a BDI-agent in [19]. The agent process control consists of

the belief, desire, intention and commitment determinations.

Procedural reasoning system (PRS) [63] is a famous implementation of the BDI model.

The deliberative process runs in iterations. At the beginning of each iteration step, new

goals and new facts are obtained through input. Then several plans in the KA (knowledge

area) library are triggered by the new belief and one or more of the applicable plans are

selected to be sent to the intention structure. At the end of each iteration step, the

intentions are executed. This kind of idea of implementing the BDI agent is adopted in

many BDI systems [109, 4, 56]. In UM-PRS [77], an extension of the PRS system, the

hierarchy of the plans is kept for monitoring plan execution and replanning. The formal

specification of the PRS can be found in dMARS system [28]. JAM is a BDI agent

architecture developed by Huber in 1999 [59]. It combines the advantages of the previous

BDI agent researches. With the JAM toolkit, users can create and run their own agents by

designing beliefs, plans, and primitive functions following the defined grammar. The

basic structure is similar to PRS system.

AgentSpeak(L) is a popular BDI programming language proposed by Rao in 1996 [112].

It defines a set of basic beliefs and a set of plans. The plans are searched for the

triggering events (new beliefs). Then applicable plans are inserted into the intention stack

for execution. A more formal description of AgentSpeak(L) can be found in [29]. This

language has been combined into other agent language, for example 3APL [54].

SIM_AGENT is one application based on the AgentSpeak(L) [83].

The reasoning of the BDI agents can also be performed by automatic theorem provers. A

set of logic is defined in such agents. For example, Wooldridge introduced a BDI logic

called Logic of Rational Agents (LORA) in his book [136]. LORA contains a temporal

component as an addition to the traditional first-order logic. The theorem provers are

used to produce some outputs.

 9

Chapter 2 Literature Review

The BDI agents have been applied in many applications. Rana et al. have applied Conflict

Management Strategies in BDI Agents for Resource Management in Computational

Grids [109]. A rational agent executes a plan from a pre-defined plan library (belief) to

achieve local goals (desire), and can try alternate plans (intention) if a goal cannot be

achieved by a chosen plan. Ambroszkiewicz and Komar use the BDI model in a Game-

Theoretic Framework [4]. In a game, the agent’s belief is identified with the knowledge

about the game and about other agents together. The desire is represented as agent’s goal

to achieve a maximum level of its utility. A reasoning process based on the agent’s

rational behaviour is proposed. This process determines the agent’s intention. Rational

behaviour may be used to construct such reasoning process. The process of reasoning is

defined as a transformation that conveys the knowledge from higher types into lower

types and finally into the ground type. This final ground knowledge is the basis for

determining the final intention.

Recently, a flexible BDI agent system is proposed in [106]. This paper identifies two

drawbacks of the sequential BDI agents. One is that concrete layout of the cycle will

determine the nature of the agent, for example, the caution level and reconsideration rate.

Another drawback is that the agent architecture is not easy to be extended with additional

facilities because the processing is step by step and very restrictive. The authors propose

a more flexible way of mapping the original BDI model to a system based on agenda

scheme in order to allow easier extension of the agent. The steps are transformed to meta-

actions. A main interpreter will decide which meta-action will be selected to execute

from the agenda queue. The execution of the meta-action may update the status and insert

new meta-actions into the agenda. The extension of new agent abilities can be easily done

by designing the meta-actions. However, the outside messages are inserted into the

agenda directly as external actions. This may indicate that the agent does not detect

outside environment automatically. If the detection action is modeled as regular meta-

actions, the concrete layout problems still exist. The belief cannot be updated in real-time

because the detection is performed in predefined intervals. Then caution level and

reconsideration rate cannot be improved.

 10

Chapter 2 Literature Review

As seen from above, the BDI model can be used to design rational agents. In the design

of a vessel agent, we will develop an agent architecture based on the BDI model. The

environment information can be seen as the vessel agent’s belief. The desire is to

navigate to target safely. The vessel’ admissible actions can be seen as intentions. We

design a parallel BDI agent architecture to solve the problems caused by slow

deliberating in traditional BDI agents. This is shown in Chapter 3. The BDI model

represents the general attributes of vessel agents. However, the BDI model is not

sufficient to represent realistically the vessel agents. There is no a proper representation

of the vessel captain’s characters in the model. In a real world the character of a captain

will affect the decision he makes to control his vessel. Even in identical environments,

two captains may have different navigation decisions simply because one is more

conservative and cautious than the other. The personality and character of the two

captains are making the difference even with the same beliefs and desires. There is no

component in the BDI model to represent variations among agent characters. Thus, we

plan to incorporate a new factor into the BDI model. We call it ‘character’, which

represents agent’s personality. The agent is expected to behave human-likely as

demonstrated in Chapter 4 and 5.

2.1.2 Subsumption architecture

In deliberative systems, the world is represented by symbols and the reasoning is

performed through theorem provers. Since the speed and efficiency of the provers cannot

be ensured, this makes this architecture unsuitable in a dynamic environment. A reactive

architecture takes a different approach than symbolic AI. It does not include any kind of

central symbolic world model and does not use complex symbolic reasoning. Among

reactive agent applications, Brooks’ subsumption architecture is the most celebrated one

[22, 21]. The architecture consists of a set of modules, each of which is described in a

subsumption language based on augmented finite state machines (AFSM). An AFSM is

triggered into action if its input signal exceeds some threshold, though this is also

dependent on the values of suppression and inhibition signals into the AFSM. The

modules are grouped and placed in layers, which work asynchronously, such that

 11

Chapter 2 Literature Review

modules in a more complex level can inhibit those in lower layers. In [84], a learning

algorithm is proposed to improve the scheduling of the behaviours/layers based on the

feedbacks when to activate the behaviours.

This architecture is often used for robots. Each layer has a hard-wired purpose or

behaviour, e.g. in a robot a layer is to avoid obstacles and other layer is to enable/control

wandering [100]. The different layers represent different behaviours of a robot. Then the

behaviours from a more complex layer suppress the behaviours from the low layers. For

example, in the MIT AI laboratory Mobots [23], three kinds of behaviours are controlled

in three layers. The lowest-level layer implements a behaviour, which makes the robot

avoid being hit by objects. The next layer makes the robot wander about when not busy

avoiding objects. The third layer makes the robot try to explore. There is no central

control in the robot. Each layer is driven by the messages it receives. Though the process

of deciding actions is similar to neural network, Brooks claims that this architecture has

no relation with neural network because there is no biological significance existing in the

architecture.

The architecture is simple and efficient in terms of the amount of computation required.

But the limitations are also obvious [137, 78]. One problem is that the arbitration

technique only allows a single behaviour to be active at one time. The architecture

chooses one action at each deciding cycle and other actions are suppressed. Though the

deciding speed is promising, the single action decision will affect agent’s performance.

For example, if a robot’s action is to avoid obstacle, the robot may deviate far away from

the target. Several researchers have proposed to incorporate fuzzy logic technology with

this architecture [78]. The decision process is fuzzied. In the process, behaviours from

different layers are composed together and decomposed to get a final decision result.

Another problem exists in that the agent makes decisions based on local information.

Thus, global information is omitted when making decisions. This means that the agent

always has a ‘short-term’ view. The architecture is not suitable for making global plans.

At the same time, the information from the local environment needs to be sufficient,

 12

Chapter 2 Literature Review

otherwise the agent will not be able to determine its actions because the agent does not

store models of environments. An improvement to deal with this weakness can be seen in

an architecture for persistent reactive behaviour [26]. Long-term conceptual memory,

long-term skill memory and short-term memories are incorporated in the agent. The

knowledge encoded in the memories can be utilized when the agent updates its beliefs,

selects and executes skills. A persistence factor is used to control the agent’s bias to

select the skills picked on the previous time step. Thus, the agent can take into account

the global environment and its previous behaviours.

It is also difficult to implement agents’ learning ability using this architecture in a hard-

wired implementation. Purely reactive agents can hardly be designed to learn and

improve performance over time. Besides, agents with many behaviours are very hard to

build. The dynamics of the interactions between behaviours are very complex to

understand. This implies that the subsumption architecture cannot be applied in a

dynamic and complex environment. For our vessel agent, the deliberative architecture

can better simulate the human behaviours with psychological significance.

It is worth noticing that the layers run asynchronously in a subsumption architecture. In

[21, 66], the layers are run concurrently. The speed of reaction of the agent is increased

by parallelism. In a recent research, the deliberation ability is realized based on the

machinery of the subsumption architecture. In Logic-Based Subsumption Architecture

(LSA), the layers are realized as the theorem provers. Thus the reasoning ability of the

deliberative agents is combined into the reactive agents. At the same time, the empirical

results from a robot implementation show that the provers can be used without sacrificing

much reactivity [5, 6]. Each control-loop cycle is shown to take 0.1-0.3 seconds, which is

acceptable for the robot in their experiment.

Another recent research about the subsumption system is a dynamic subsumption system

[91]. The layers consist of several cells, which contain possible partial descriptions of

certain functions of the agent. If the environment changed, only the related cells are

affected.

 13

Chapter 2 Literature Review

2.1.3 Hybrid architecture

A hybrid architecture is an architecture that combines the above two kinds of

architectures together. This represents the new and popular trend in designing robots,

because this architecture can inherit the advantages of the two architectures. For example,

a reactive architecture is suitable for real-time environments, but the reactive architecture

produces behaviours not goal-oriented at times. A deliberative architecture can handle

that, but it sometimes cannot react timely. A hybrid architecture incorporating two

architectures can solve the problems. In fact, human can be seen as a hybrid system. In

the human reasoning system, we do not really think and spend time deliberating what to

do in face of an emergency. For example, the kitchen is on fire, we just get water and put

out the fire without spending time deliberating.

Figure 2-1 The TouringMachines agent control architecture (from [35]).

An example for this architecture is Ferguson’s TouringMachines hybrid agent

architecture [35, 36]. We can see from Figure 2-1, the three layers work together to

control the agent. The reactive layer is in the style of the subsumption architecture. The

 14

Chapter 2 Literature Review

planning layer is designed as a deliberative architecture, so the agent can have an overall

planning ability and also can deal with emergencies. The modeling layer is used to model

other agents in the environment. The three layers are embedded in a control framework,

which deals with conflicting proposals from different layers by using control rules. The

control rules will decide which action in the action buffer is chosen to be sent to the

agent’s effectors. The rules will ensure that only one action will be activated at a time

slice.

As we can see, the hybrid architecture is good at representing both the meditated

behaviour and the reactive behaviour. But as Ferguson points out that there were still

many problems existing in the TouringMachine, a hybrid architecture as TouringMachine

is not really perfect for agents which operate in dynamic and unpredictable multi-agent

environments. For example, there is not a learning component in the architecture, which

may improve the agent’s adaptation in new environment. Also the computations in the

three layers are restricted strictly by the pre-determined time resources. This can be seen

as the concrete layout problem of the cycle in [106]. Thus the TouringMachine may fail

to make the best use of the time resources.

This hybrid architecture has been used successfully in designing robot agents. In most

cases, the deliberative layer is used for global path planning and the reactive layer for

obstacle avoidance, subgoal decision and so on. In [11], three layers are used for a 3T

robot architecture: deliberation, sequencing and reactive skills. The sequencer is used to

activate and deactivate the skills. In the hybrid mobile robot [82], deliberative and

reactive models are used for long-term and real-time decision respectively. The planning

module will provide targets for the target reaching module. The commands from the three

layers in reactive models are combined to make the final motor control signal.

Other kinds of hybrid architecture without the explicit deliberative and reactive layers

also exist. Sometimes, it is a combination of agent abilities. For example, an architecture

for Non Player Character (NPC) is proposed in [92]. The NPC agent architecture consists

of 4 layers: behaviour system, social system, goal based planner and schedule. The

 15

Chapter 2 Literature Review

selection is made by selecting from the outputs. Another example is a homogenous agent

architecture for robot navigation [62]. In the designation, an agent can be created by

combing the functions of several other agents, such as goal-seeking agent, vacancy-

pursuing agent and obstacle avoidance agent.

2.2 Agent Character

Normally, agents are built to make rational and best-fit decisions. Thus, in the same

situation, different agents will all make the same decisions and they will have the same

behaviour. However, in some areas, this is not always desired and the agent should

demonstrate its own character. For example, in multi-agent simulation of human society

[61], agent character is essential for simulating various human beings. The agents will not

always work in an ideal way. Their characters will affect their decisions. As Sloman

points out when answering the question of what sort of architecture is required for a

human-like agent, “designing human like agent is part of the more general problem of

understanding design space, niche space and their interrelations, for, in the abstract, there

is no one optimal design, as biological diversity on earth shows” [120]. The discussion of

a similar question is seen in [121].

The agent characters separate one agent from another. An agent’s character can be found

in three aspects: the physical characters, experience and the emotions. The physical

characters include the agent’s basic attributes of physical resources, for example, a vessel

agent’s length, maximum acceleration, maximum loads and so on. The experience can be

expected to be realized by reinforcement learning algorithms. Compared to the physical

characters and experience, most researches working on the human-like agents concentrate

on simulating human emotions. Mainly, there are two objectives of this research: creating

human-like agents and promoting agent performance.

 16

Chapter 2 Literature Review

2.2.1 Creating human-like agents

The most direct application of the emotions should be human-like agents, which are

supposed to show some human-like behaviours [117]. Humans show various behaviour

modes according to different emotions. In [122], it is said that though we do not

understand how human emotions work, by trying to model emotions, it is possible to

learn more about the emotions, and it is possible to create more realistic agents.

In the game area, the Non-Player Character (NPC) agents must demonstrate different

emotions for a vivid scene. In [96, 99], different kinds of Quake players are created based

on the BDI model. The players with different interactive characters show different

behaviours when executing the plan ‘win’. The characters are created by making some

probes. Then the characters are created based on the answers of the agent. In [97],

Norling argues that the BDI model is incapable of representing several human

characteristics. In a psychological way, the characteristics include decision making,

expertise, emotion, timing, and so on. She proposes to make a folk psychological

extension to the BDI model to represent these characteristics. Some special modes

representing the characteristics are incorporated into the BDI model to show the

character. An example of incorporating the recognition-primed decision model with the

BDI model to make human-like decision making is given. In [95, 98], COJACK

architecture is proposed to support psychologically plausible human variability. In this

architecture, that agent’s reasoning and actions are moderated via a set of parameters.

Some external and internal moderator will also affect the agent’s decision.

A five-factor (extraversion, agreeableness, conscientiousness, neuroticism, and openness)

model of emotion is borrowed from the psychological research. It is used to affect the

learning strategies of the agent [50] and the information behaviours [51]. Patrick Gebhard

makes his research to connect the five-factor model of personality to the agent

behaviours. A set of appraisal and dialogue act tags is designed. The tags are mapped

onto the emotion eliciting condition (EEC) variables to control the emotion changing.

Then the emotion will affect the behaviours of the agent [41]. This EEC system is used in

multi-character conversations [42]. Based on this, a layered model of affect is designed.

 17

Chapter 2 Literature Review

Emotion, mood and personality are differenced in terms of short, medium and long

periods. The personality is realized as using the five-factor model. The five values are

defined by user at start. PAD (Pleasure, Arousal, and Dominance) system is used to

simulate mood. Then the 24 kinds of emotions are defined by the PAD values with

different weights. The agent’s behaviours are modulated based on the PAD values

according to the predefined rules [43]. A similar emotion model based on the five-factor

model is shown in [52]. The emotion factors are incorporated to make the decision-

making process of complex agents less predictable and more realistic. A kind of emotions

architecture is implemented with a three-dimensional personality space (Arousal, Pain,

and Confusion). The different status of the agent can be mapped to different emotions.

Then the emotions are used to make decisions together with the external and internal

inputs.

Another method to show the agent emotions is by designing the agent’s distinct

behaviours directly. The behaviours of the agents can be expected to be different because

of the personalities. The audiences can conclude the agents’ personalities based on the

behaviours they saw. An example of SceneMaker can be seen in [40]. The roles can make

plans based on the pre-scripted scene. In [87], a method of decision making for social

agents is proposed as the PsychSim system. From the theory of mind, the action of the

agent must exhibit consistently, self-interest, speaker self-interest, trust and support. A

quantitative value of each possible action is defined according to their beliefs and goals.

Such values can be modulated after the interaction with the environment, so the agent

will show different behaviours. This method is used to create characters based on the

story scripts as in the Thespian system [118]. Thespian is a tool to create agents with

personalities which are consistent with the behavious defined by the story path. The

characters’ goal weights can be modulated with the equation defined in PsychSim. The

character can be reused in different scenes. The agent will try to select an action based on

the reward of applying the actions to the current state.

 18

Chapter 2 Literature Review

2.2.2 Promoting agent performance

Besides the applications for human-like agents, emotions also help to promote the

adaptability and autonomy of the agents. Though emotions were thought useless for agent

reasoning for long time, in [102], three benefits are identified. First, the emotion itself is

an important source of information which is highly centered on the individual. The

emotions will affect the agent’s behaviours as we show above. Secondly, the emotional

mechanisms are useful to filter relevant data from multiple, distributed and highly noisy

sources. An example can be seen in [86]. Here, emotions are used to change beliefs of the

characters in a scenario from the mission rehearsal exercise. With the same conversations

among the characters, the beliefs of mother, sergeant and soldier are changed according

to their own emotions. Thus their behaviours are consistent with their roles. Finally, the

emotions also provide a global management over other cognitive capabilities and

processes. In [132], the author states that the action decision of the agent should be

affected by both the sensory input and the desires of the agent. Agents with different

emotions may produce different desires. An example for human-like decision-making can

be found in [93, 94]. A recognition-primed decision making approach is integrated with

the BDI model as an emotion feature. The agent can learn from past experiences.

2.3 Agent Learning

An agent can better adapt in a dynamic environment if it has some learning abilities.

Then the agent can change its strategies to cope with the new situations automatically.

Automatic learning is that an agent saves historical actions and scenes in order to use

when meeting the same scene again. Learning is divided into supervised learning and

unsupervised learning [125]. Under supervised learning, a manager exists and is

responsible for providing training samples to agents. Such samples can be chosen from

special examples. This may fill agent with experience quickly [45]. In an unsupervised

learning situation, there is no such a special manager. The agent will learn from all

random events happening in environment, and the agent can become more robust for

various environments.

 19

Chapter 2 Literature Review

Reinforcement Learning is viewed as an on-line variation of dynamic programming,

which is defined as a discrete-time system with the state transitions and costs/reward

functions [124]. Using reinforcement learning algorithm, an agent can choose an action

based on its current and past status. The algorithm will use a reward function to choose

the maximum reward value for several future steps. Different kinds of reward functions

have been defined in various situations. According to the book [80], reinforcement

learning may be computationally implemented depending on (1) whether some heuristics

are employed, (2) whether a model of the problem domain or a utility function for action

selection is available, or (3) whether the learning always converges. For example, Q-

learning does not utilize any domain model, but tries to iteratively derive an action-

weighting function.

Learning is very useful to improve the competition and coordination strategies in multi-

agent system. For example, Stone, Riley and Veloso used the learning method to train

their robot soccer team [104]. The robot can gain experience through examples and

choose better actions in a real game. Learning is also used for data collection problem.

Caragea, Silvescu and Honavar designed a multi-agent decision tree learning from

distributed autonomous data source [24]. Goldman and Rosenschein have made an

application by incorporating mutual supervised learning into multi-agent systems [45].

They test the teaching technique in a scenario of a crosswalk with two traffic signal

agents. Each agent controls the traffic light for its direction. Each agent is the other’s

teacher and also receives samples from the other.

With learning algorithms, a single agent can improve its behaviours according to the past

experience. For example, in OBELIX, an automatic robot, the RL algorithm is adopted to

solve the problem of pushing-box tasks. Experimental result showed that after the initial

learning phase an agent will outperform a hard coded agent that does not learn [85]. In a

more complex robot, the robot soccer team for Robot World Cup, Q-learning is used to

help the robots finding the best actions [72, 58]. The percent of successful actions is

greatly promoted after using Q-Learning for the robots. The learning algorithm for

obstacle avoidance in navigation is another typical application. An example can be found

 20

Chapter 2 Literature Review

in [47]. The variables related to the positions of the robot and obstacles are used as the

status. The parameters about control the robot motions are modulated through training.

2.4 Action Scheduling

When there are several actions/intentions waiting for execution, the agent should have a

mechanism to decide the execution order. For example, in AgentSpeak(L) [112], the

selection function SI selects an intention to execute from the intention set I. However, the

detailed selection criteria are not specified in the paper. Some scheduling mechanisms

can be seen in other researches. Normally, there are two kinds of scheduling schema.

One is by a single attribute of the actions, for example, the priority. This is normally

adopted in the systems where the actions are independent. Imaging that several dependent

actions can be integrated to a single mega action, this kind of method can be seen as a

general method for scheduling actions. An example is shown in the JAM agent

architecture [59]. The intention selection is done based on the utility value of the plan.

The intention with higher utility will be executed first. Recently, another work of

intention scheduling is reported in [79]. The researchers take several properties into

consideration when scheduling the intentions, such as the importance of the plan, the

estimated running time, the deadline utility function, the degree of completeness and

FairFacter.

The other scheduling method is by the relationship among the actions. This is suitable for

complex job circumstances, for example, where the execution of an action depends on the

results from the execution of other actions. For example, in AgentSpeak(XL), an

extension version of AgentSpeak(L) [12], a task scheduler is incorporated into the

interpreter to decide how to select intentions. The set of intentions in AgentSpeak(L) is

converted into a corresponding TÆMS task structure. Then the selection is done based on

the analyses of the relationship among the plans in the TÆMS task structure. The

'enables' and 'hinders' relationships indicate which plan may be executed first. A method

to identify the potential common subgoal is provided in [127]. At first, the positive

 21

Chapter 2 Literature Review

common subgoals are identified. Then the potential common subgoals are figured out by

maintaining summaries of definite and potential effects of goals and plans.

Human-like action scheduling schema has seldom been researched. In [74], a priority

control mechanism for behavioural animation is shown. The priority is set at minimal

value immediately after the agent displays certain behaviour like drinking. Then this

priority is increased with time. The increased priority will induce the agent to drink again.

A more formal description of this human behaviour system can be found in [75].

However, expecting the priorities of all intentions to change in the same manner is not

realistic. Different intentions should be allowed to change their priorities in various

suitable ways. Some intentions may also change priorities with the arrival of new beliefs.

This problem will be discussed more in Chapter 5.

2.5 Agent Systems and Applications

Many kinds of agent and multi-agent systems are designed for real applications besides

the robot agents. For example, the BDI agents were designed to manage the air-traffic

[111]. In a resource management system, mobile agents are capable of finding computing

resources in network, completing the goals, and returning the results [108]. The agents

are also designed for providing an interface. In a hosting system, the agents interact with

a visitor to design visiting schedule based on the visitor’s areas of interest, name and

organization [126]. As an example in the economic area, an agent is designed to perform

Market-Based Supply-Chain Management [67].

Multi-agent systems are useful for solving problems which are composed of

subproblems. As shown in [108], each mobile agent can complete a subgoal. Then all the

results are brought together for making the final result. It also can be seen that a

decentralized multi-agent system is more robust than the centralized systems. The

container port system described by Thurston and Hu is another example for distributed

multi-agent system [128]. The system is used to manage the container handling process in

a port. Four types of agents are designed for the management tasks. The agents cooperate

 22

Chapter 2 Literature Review

with each other to accomplish the job. An agent failing will not halt the whole system. A

method to transfer the centralized policies to the decentralized policies in the multi-agent

system can be seen in [138].

Here, our focus will be put on the agent and multi-agent simulation systems.

2.5.1 Agent simulation system

Several human-like agent simulation systems have been developed in the agent character

sector. Besides those, creature simulation is also an important topic in agent area. For

example, a simulation system of a highland terrier is shown in [64]. This paper describes

a kind of brain architecture for synthetic creatures. The brain consists of sensory system,

perception system, working memory, action system, navigation system, motor system and

blackboard. Action tuples are designed. If the TriggerContext is satisfied, the action will

be executed.

2.5.2 Multi-agent simulation system

Multi-agent simulation provides a tool for simulating various societies. Simulation is

widely used to enhance knowledge in real worlds and enables us to make artificial worlds

for measuring the influence of different multi-agent coordination strategies in an

unpredictable environment. For example, Horling, Kesser and Vicent have designed a

simulation system that can be used for testing in an actual system [55]. This simulation

system enables users to directly control the baseline-simulated environment and permit

the addition of ‘deterministically random’ events that can affect the environment

throughout the run. In an agent-based interaction analysis of consumer behaviours,

Customer BEhaviior Simulator model is designed to simulate consumer behaviours when

selecting a new brand [116]. The agent evolution is simulated using the GA algorithm.

As a hot research topic, multi-agent simulation systems of traffic were researched for

predicating traffic information and finding ways to relieve traffic jam. In [103], the

unorganized traffic is simulated. With different parameter settings, the drivers are

 23

Chapter 2 Literature Review

modeled to be cautious, normal and aggressive. The agent’s action is calculated by

physical motion laws. Then the average speed, the numbers of overtakes and accidents

are counted. A fully agent-based simulation of the traffic in Switzerland is shown in [7].

In the simulations, it is important for the driver agents to think human-likely. A method

to simulate human-like thinking is provided in [114]. Based on the psychological studies

on human drivers, Rigolli and Brady propose that the agent translate the objective world

into its own subjective world. With different parameters for perception, the agents will

have different views of world. By simulating 330 agents, some macroscopic

performances are gotten, including zone density and lane occupancy.

Better traffic control is important to relieve traffic jam. In simulation, the coordination

can be done in two ways, centralized and decentralized. In the centralized way, a manage

agent will collect all the traffic information and provide optional solutions. Traffic lights

are used for this objective [101]. The light coordination is made using distributed

constraint optimization. For a single intersection, a reservation-based mechanism is

proposed in [31]. An improvement of this system is shown in [32]. The driver agents are

assigned more abilities, for example, turning and accelerating in the intersection. In [27],

the traffic signal controller agents are divided into three layers: intersection, zone, and

region. The results from the lower layers are summarized at the higher layer. An example

of decentralized control is shown in [139]. Each driver agent will send and receive the

traffic information through a route information server. Then each agent will re-calculate

its own shortest path based on the newest information.

2.6 Robot Navigation

Basically, there are two issues in navigation: path planning and obstacle avoidance. In

this part, we will summarize the existing global path planning algorithms and obstacle

avoidance algorithms respectively.

 24

Chapter 2 Literature Review

2.6.1 Global path planning

Path planning is a fundamental problem in navigation. A robot will usually do its path

planning at the beginning of navigation. According to known map information, several

intermediate targets will be put on the path line to the final target. Path planning methods

assume that the environment does not change while a robot is moving. Latombe

summarized a larger number of robot motion planning algorithms in his book [76]. These

methods are based on a few general approaches: roadmap, cell decomposition and

potential fields. The first two methods convert the planning problem into searching a

graph by analyzing the connectivity of the whole free space. In these methods, an

effective searching algorithm is involved. However, the potential field method is usually

defined with a limited range of influence. It can be applied while the robot is moving. So

the potential field method is often seen as a local method. We will introduce the potential

field method as a local obstacle avoidance method in Section 2.6.2.1.

The general idea of the roadmap is to construct a network of one-dimensional curves.

Then the roadmap is used as a set of standardized paths. The path planning is reduced to

search a path between the initial and goal points. Based on this idea, various methods are

proposed. The visibility graph method is one of the earliest path planning methods. In this

method, a roadmap consists of line segments connecting two nodes that do not intersect

the interior of an obstacle region. Then a path can be obtained through searching this

roadmap.

Cell decomposition decomposes the robot’s space into simple regions, called cells, such

that a path between any two configurations in a cell can be easily generated. This method

can be broken into exact and approximate methods. The exact method divides the space

by drawing vertical rays from obstacles’ vertices. The approximation method keeps

decomposing a rectangle space into identical rectangles till the interior of the rectangle is

completely free or the predefined resolution is achieved.

We can see that these methods all require complete and accurate information about

obstacles’ configurations and locations. After the path is decided, it will not be changed

 25

Chapter 2 Literature Review

during navigation. Thus the path planning methods alone cannot react to dynamic

environment. We will review various local obstacle avoidance methods in the following

section.

2.6.2 Local obstacle avoidance

The robot should have the ability to cope with obstacles detected by sensors in

navigation. Usually two objectives of obstacle avoidance should be fulfilled. One is to

make the robot to go around obstacles to avoid collision with them. The other is to make

robot move toward its target. The second objective will be pursued together with the first

one. This will make the robot move to its target safely and quickly.

Many obstacle avoidance algorithms have been invented and applied in real robot

navigation, for example, the wall-following method [8] and the edge detection [16]. In

some cases, the wall-following method works as an alterative function when the robot is

trapped in a local minima situation [13]. The drawback of these methods is that robot

needs to know exactly the configuration of the obstacles before deciding the next step.

Thus this will consume much time when measuring the obstacles. Because of the

limitations of these two methods, they are seldom adopted in current robot systems.

The two main approaches of the methods are Potential Field Method and Steer Angle

Field Methods. For obstacle avoidance in a dynamic environment, the robot needs

mechanisms different from the static methods. Methods of dynamic obstacle avoidance

are included at the end. In the following, we will introduce the methods and their

application respectively.

2.6.2.1 Potential Field Methods

In 1985, Khatib published his paper about Potential Field Method [68]. Potential Field

Methods solve the problem by assuming that obstacles and target have influence on

robot, like magnetism. The influence is materialized as a force. Obstacles will produce

repulsive forces on robot. At the same time, the target produces attractive force. In the

 26

Chapter 2 Literature Review

field of force, the robot is pushed by these forces. Having properly defined potential

functions of repulsive forces from the obstacles and attractive force from the target, the

robot will move away from obstacles and toward target automatically. The potential

functions can be modified in fluid dynamics and magnetic field forms.

Around the same time, Moravec and Elfes pioneered the concept of certainty grids, a

widely popular map representation that is well suited for sensor data accumulation and

sensor fusion [89]. By integrating the concepts of potential field and certainty grid,

Borenstein and Koren developed the Virtual Force Field (VFF) method [13, 14, 15]. This

method is a direct expression of the original potential field method. The robot’s motion is

decided by the resultant force factor of the repulsive and attractive forces. Though the

robot can achieve a maximum travel speed of 0.78m/sec, several limitations exists in this

method. As identified in [71, 39], the robot may be trapped to local minima, oscillate

between obstacles and narrow passages, and cannot reach the goals with obstacles

nearby.

In order to overcome these drawbacks, Borenstein and Koren introduced the Vector Field

Histogram (VFH) method in 1991 [17]. Polar obstacle density is designed to calculate the

repulsive forces from the obstacles. The VFH+ method is an improved version of the

VFH method [129]. It explicitly takes into account the robot dimensions and the

trajectory of the mobile robot. The VFH* method employs a four-stage data reduction

process in order to compute the new direction of motion. This method is combined with

the A* search algorithm to find the optimal path [130].

2.6.2.2 Steer Angle Field Methods

Though the potential field method is good at computing an obstacle-free motion

direction, it often fails in controlling the speed of a robot. It is mainly because the

potential field method does not include the robot’s velocity as a factor for computing

collision free path. Different from the potential field method, the steer angular field

method will compute the collision free path based on both the obstacles positions and the

 27

Chapter 2 Literature Review

avoidance methods reviewed so far are all for relatively static environments. In such

environments, obstacles are stationary objects or slow moving persons. Though the

obstacle avoidance algorithms may divert the robot from the moving obstacles past

enough to avoid collisions, they may fail if the speeds of obstacles are high.

Fiorini and Shriller proposed the Velocity Obstacle (VO) concept for the dynamic

obstacle avoidance problem [37]. VO consists of velocities that will potentially cause the

robot to collide with moving obstacles. Castro, Nunes and Ruano have integrated this VO

concept with the dynamic window approach to produce a reactive local navigation

method for dynamic environment [25]. The velocity space for the dynamic window

approach is the reachable avoidance velocities obtained by using the VO approach. Then

a velocity is chosen for the next step from the RAV. This enriches the dynamic window

approach’s ability in a dynamic environment.

In the VO method, the rotational velocity of the moving obstacle is not considered. As

the authors pointed out, several optimal solutions may be omitted because each possible

velocity consisting of the searching tree tries to avoid all obstacles. So we have suggested

the dynamic map idea for dynamic obstacle avoidance [140]. But our method is based on

the assumption that the vessel can accurately predict the moving obstacle’s motion. Thus,

if the vessel is far away from the obstacle, a small estimation error may cause the

obstacle avoidance to fail. However, this possible failure can be compensated when the

robot moves near the obstacle, because the computation time based on dynamic map may

be short enough and the estimation of the obstacle may be more precise after a longer

observation of the obstacle.

 29

Chapter 3 Parallel BDI Agent Architecture

CHAPTER

3

PARALLEL BDI AGENT ARCHITECTURE

The traditional BDI agent has 3 basic computational components: generate beliefs,

generate intentions and execute intentions. They run in a sequential and cyclic manner.

This may introduce several problems. Among them, the inability to watch the

environment continuously in dynamic environments may be disastrous. One possible

solution is by using parallelism. We propose a parallel BDI model with three parallel

running components which are the belief manager, the intention generator and the

intention executor. The coordination between the parallel components is done by

interrupts of different priorities. The agent built with this architecture has the ability of

performing several actions at once. The agent also has the ability to prioritize the

deliberations and intention executions so it is able to respond quickly to circumstance

changes and all the thinking and acting are done at appropriate times.

In order to evaluate the parallel BDI model, we compare the parallel agent against five

versions of sequential agents where the 3 components of the BDI agent are controlled and

managed in different ways and different time resources are allocated to the 3 components.

Experiments are designed to simulate the operation of the three components in the agents.

The ability of the agents to respond to the same sequences of external events of various

 31

Chapter 3 Parallel BDI Agent Architecture

priorities is assessed. The comparison results show that the parallel BDI agent has

quicker response, react to emergencies immediately and its behaviour is more rational.

This chapter is structured as follows. In the first section, an introduction of background

and motivation is given. In Section 3.2, we present the general framework for parallel

BDI agents that need to perform in real time. The functions of the processing units in the

framework are identified, their operations are defined and how these functional units

interact and cooperate is specified. In Section 3.3, simulation experiments are presented

to compare the performance of the parallel agent and five versions of sequential agents. A

theoretical analysis about the performance of the parallel agent is presented in Section

3.4. In Section 3.5, the issue of how much parallelism and how to configure a parallel

agent based on the general framework with a limited number of CPUs are studied by

experiments with different configurations of the parallel agent. We describe some

advantages and a limitation of the parallel BDI architecture in Section 3.6. A short

conclusion is given in the last section.

3.1 Introduction

Hayes-Roth [48] defined the primary objective of an intelligent agent that needs to

perform in real time as “to maintain the value of its own behaviour within an acceptable

range over time”. Among the requirements for an intelligent agent, two related are

flexibility (the agent should react to important unexpected events) and timeliness (the

agent should meet various real-time constraints). Many agent architectures or frameworks

have been developed for building an intelligent agent. As identified in the survey of agent

architectures [135], three kinds of agent architectures, deliberative architecture [18, 111,

63, 110], reactive architecture [22, 23] and hybrid architecture [35, 36, 81], are proposed

according to the processing mechanism of the agents. The BDI model is well understood

for designing deliberative architectures because it combines a respectable philosophical

model of human practical reasoning [44]. The reactive architecture, most noticeably, the

subsumption architecture, is a different paradigm [21, 22, 23]. The hybrid architecture is

 32

Chapter 3 Parallel BDI Agent Architecture

proposed to combine the deliberative and reactive architectures to inherit the advantages

of both.

With the different agent models proposed, it is said [44] that the basic components of an

agent designed for a dynamic, uncertain world should include some representation of

Beliefs, Desires, Intentions and Plans – the BDI model. There are three main operations

in this model: detecting, thinking and executing. In normal implementation of the

deliberative agent, the three operations run sequentially. For example, in PRS [63], the

deliberative process runs in iterations. At the beginning of each iteration step, new goals

and new facts are obtained through input. Then several plans in the KA (knowledge area)

library are triggered by the new belief and one or more of the applicable plans are

selected to be sent to the intention structure. At the end of each iteration step, the

intentions are executed. In PRS, the agent will not proceed to the next step until the

current step is finished. In a complex and dynamic environment, the agent needs more

time to search for proper intentions or one action may need more time to execute. Then

more time is needed in each iteration step and the agent is not able to detect new events

before the current iteration step is finished. As a consequence of this, the agent may not

be able to start processing the emergencies immediately. So the reactivity of the PRS

agent cannot be assured in such circumstance.

A possible solution to promote the reactivity of the agents appears in the TouringMachine

[35], a well known hybrid agent architecture. The architecture consists of three sequential

components: perception subsystem, control framework and action subsystem. The control

framework will output actions to the action subsystem based on the sensory input from

the perception subsystem. It consists of three layers, a reactive layer, a planning layer and

a modeling layer. The outputs from the three layers are summarized by using some

context-activated control rules. A clock is used to control the execution time of the

control framework. For each time cycle, the control framework has fixed time resource to

use. And the primitive schema (action) structure is designed with a ‘cost’ property, which

indicates how much time it costs to execute the action. If in a cycle, the remaining time

resource is not sufficient for an action to execute, another action needing less time cost

 33

Chapter 3 Parallel BDI Agent Architecture

will be executed instead or the remaining time is wasted if no suitable action is available.

This method insures that the agent can sense the environment at fixed time intervals. The

probability of overlooking emergencies is low if the time spent in detection and

processing is balanced well. It is usually required that the detection should not consume

much time. If the TouringMachine puts much time on the control framework in a cycle,

the problem of poor reactivity still exists.

In agents based on BDI logics, such as AgentSpeak(L) [112] and LORA [136], the

problems may appear as reactivity and intention reconsideration issues. The reasoning is

done by theorem provers, which usually need much executing time. In LORA, the basic

agent control loop of the BDI interpreter consists of perception, updating belief,

generating desires, choosing intention and executing actions. Desires, intentions, and

actions are generated based on belief. The original circumstance/belief may have changed

during these processing. The intentions may become impossible under the new

circumstance. The agent should not commit to infeasible intentions. An improvement is

made by updating beliefs and reconsidering intentions after executing each action. An

experimental result of intention reconsideration by Kinny and Georgeff is provided in the

book [136]. The result shows that the more frequently the intentions are reconsidered, the

lower the effectiveness of the agent is. Thus, the reactivity of the agent cannot be

ensured.

Pokahr [106] suggested that in the sequential BDI agents the concrete layout of the

processing cycle will determine the nature of the agent, for example, the caution level and

reconsideration rate. And the agent architecture is not easy to be extended with additional

facilities because the processing is step by step and very restrictive. The authors proposed

a more flexible way of mapping the BDI model to allow easy extension of the agents. In

the architecture, the steps are transformed to meta-actions. A main interpreter will decide

which meta-action will be selected to execute from the agenda queue. The execution of

the meta-action may update the status and insert new meta-actions into the agenda. The

extension of new agent abilities can be easily done by designing meta-actions. However,

it is noticed that the outside messages are inserted into the agenda directly as external

 34

Chapter 3 Parallel BDI Agent Architecture

actions. If perceiving environment is modeled as a regular meta-action, there is no

guarantee at the architecture level that the environment is monitored appropriately

closely. At the same time, the problems of low caution level and reconsideration rate also

remain.

Pokahr [105] commented that the current BDI model does not support any mechanism for

handling goal relationships at the architecture level. They proposed a deliberation

strategy for agent developers to specify relationships between goals such that there is a

maximum number of goals that an agent may pursue at once and the activation of one

goal may inhibit another goal. However, an important factor that is not considered is the

importance and urgency of a goal that influences which goal should have the attention of

the agent first.

Hayes-Roth [48] pointed out that parallel subsystems with buffered communications to

provide asynchronous perception, cognition and action will allow an agent to perform in

real time. We propose what is required of an agent for real time performance: (1) ability

to respond to emergencies timely; (2) ability to modify goals, intentions and actions in

reaction to unexpected or new information; (3) ability to perform multiple actions at once

(e.g. talking while walking); (4) ability to perceive, deliberate and act simultaneously

(e.g. thinking while walking).

In [73], a multi-threaded approach is used to simulate soccer agents for the RoboCup

competition. The sensing, thinking and acting behaviours are executed in parallel. Thus

the soccer agent does not need to wait for I/O operations (sensor and act) with the world

and gains more time for thinking. The experiments show that the agent with a parallel

architecture has obvious advantages in lessening the impact of I/O operations in the

simulation of an intelligent agent like a human being.

 35

Chapter 3 Parallel BDI Agent Architecture

Figure 3-1 Parallel BDI agent model.

In this chapter, we propose a parallel BDI agent framework for real time performance

based on the BDI model. The general idea is that such a framework consists of three main

components, the belief manager, the intention generator and the intention executor which

are running in parallel as shown in Figure 3-1. The horizontal dark thin lines show the

control flow in the agent. The three components each consists of a number of smaller

processing units and they run in parallel. The coordination between them is done by

messages and interrupts of different priorities. The data flows are shown by the purple

and red line between the components. The message flows and interrupts are shown by

arrows. The belief manager generates beliefs from world information perceived by the

agent and human commands given to the agent. The intention generator generates desires,

then schedules and reschedules the generation of intention plans for the desires. The

intention executor schedules and reschedules the execution of intention plans and

executes them. Some parallelism can be achieved by simply running these three

components as parallel threads. However, in such set-up there is no pre-emption of less

important and urgent desires/intentions by more important and urgent ones so the agent is

not able to respond quickly to emergencies. Furthermore, the degree of parallelism is

 36

Chapter 3 Parallel BDI Agent Architecture

limited because there is no parallelism in multiple intention generations and multiple

intention executions. The general framework proposed offers much better functionalities.

Under this general framework, parallel BDI agents with different configurations based on

the best way to share the available computational resources may be built. These agents

have a number of advantages over the sequential one: 1. they have the 4 abilities required

of an agent as discussed earlier; 2. support is provided at the architecture level for

reconsideration of desires and intentions and consideration of goal relationships when a

new belief/desire is generated.

The idea of parallel operation can be seen in some other agents. However, it is realized in

different applications or to deal with different problems from ours. For example, in the

designation of subsumption systems [21, 66], the layers of control are run concurrently.

In LSA, the layers are realized as the theorem provers. So the reasoning ability of the

deliberative agents is combined into the reactive agents. The empirical results from a

robot implementation show that the provers can be used without sacrificing much

reactivity [5, 6]. This kind of parallel deliberative architecture is different from ours. In

LSA, the layers are presumed to work independently. Each parallel layer will perform the

actions of detection, reasoning and output sequentially. Output from one layer can be

input for another layer. It can be regarded as several deliberative agents each with its own

sub-goals running in parallel in the subsumption architecture.

Another example of parallel operation can be seen in JAM [60]. The JAM agent can

execute some action_sequences in a plan simultaneously. This means that some actions

in an intention can be performed concurrently. This parallel execution of some actions is

also different from our work. In our work, the three basic behaviours of the agent,

detection, deliberation and execution, are parallelized. The agent can be watching,

thinking and acting at the same time. Together with the interrupt mechanism in the agent,

this parallel BDI agent architecture can solve the problem of concrete layer in traditional

sequential agents. The reactivity of the agent can be improved to real-time level.

 37

Chapter 3 Parallel BDI Agent Architecture

3.2 The General Framework

We propose a general framework for parallel BDI agents based on the parallel BDI agent

model shown in Figure 3-1. The framework is shown in Figure 3-2. The arrow lines in

the figure show the control flow among the processing elements of the agent. The

framework can be useful when designing a robot agent. Each device is a processing

element which can be run on a processor. It can also be used for agent-based simulation

of a physical system that is capable of parallel actions. An example of software agent

representing a vessel captain who can watch, think and act simultaneously is presented in

Chapter 6.

Figure 3-2 The General Framework for Parallel BDI Agents.

The framework consists of three main components: the belief manager, the intention

generator and the intention executor. These three components represent the three steps in

the deliberation process of an agent: detect, think and act respectively. The three

components will retrieve and update data in the three data structures: beliefs, desires, and

 38

Chapter 3 Parallel BDI Agent Architecture

intention like Intention 4, provided that both d and f may be executed by the same PE or

the PEs are homogeneous. This reduces the cost for scheduling. In the rectangles showing

the intentions 1-6, the first pair of bracelets shows the predecessors of the intention. For

example, intention 6 cannot start before both intentions 4 and 5 are completed. With the

transformation, the original intention plan can exploit parallelism supported in the agent’s

framework. An example is that intention 2 (Action b) and intention 3 (Action c) may be

executed at the same time if two PEs are available. This speeds up the execution of

intentions and the parallel framework of the agent is used more effectively. Intentions 4

and 5 are peers so they have to be executed in 2 PEs simultaneously. The synchronization

issue among peer intentions is discussed in the next section.

Figure 3-6 Transformation of a normal intention plan.

As shown in Figure 3-3, intentions are partitioned into inactiveI, pendingI and executingI.

This supports the scheduling and the reconsideration of intentions. An intention plan in

inactiveI is one that can only start execution after the completion of its predecessor

intentions or it is one that the agent wants to put on hold for the moment. An intention

plan in pendingI or executingI has the same meaning as a desire in pendingD and

planningD respectively. When a new intention plan arrives at IM, it joins pendingI if it

has no predecessor intentions otherwise it joins the inactiveI. For each intention in

inactiveI, IS checks whether all the predecessor intentions are completed. If yes, it

 46

Chapter 3 Parallel BDI Agent Architecture

3.2.5 General Remarks

The operations define how the devices in the belief manager, the intention generator and

the intention executor work to process the incoming events. All the devices work in

parallel. The interrupt mechanism ensures that an emergency can be dealt with first.

Thus, the agent obtains the ability of quick reaction to emergencies and the capacity for

careful deliberation when required. With the parallel components, the agent can handle

several matters at once. The agent is also able to ‘change his mind’ towards his

desires/intentions according to the changing environments. The requirements for real

time performance, as we proposed in Section 3.1, are satisfied. One method to realize the

operations is by priority control, which will be discussed in Chapter 5. In next section, we

make a comparison between the sequential BDI model and the parallel BDI model.

3.3 Comparison between the Parallel BDI Model and the

Sequential Ones

In this section, we evaluate the performance of the parallel agent by comparing it with the

sequential agents. There are 3 main or coarse computational components in a BDI agent,

the belief manager, the intention generator and the intention executor. In a sequential

agent, only one computational component is running at any time. However it is possible

to control and manage the 3 components in several different ways in an attempt to get

better performance from a sequential agent. On the parallel BDI agent side, under the

general framework the maximum parallelism can be realized by having all the processing

elements, like EMs, BG, DG, running in parallel. To demonstrate that parallel BDI

agents constructed according to the general framework are able to offer the benefit of

parallel actions, we have a conservative parallelism where only the 3 main components,

i.e. the belief manager, the intention generator, and the intention executor, operate in

parallel. This means the processing elements in the same component will run

sequentially. We first describe the five sequential BDI agents each with their own way of

controlling and managing their computational components. Then the simulation

experiments are presented and the results are analyzed.

 50

Chapter 3 Parallel BDI Agent Architecture

3.3.1 Sequential BDI agents

Figure 3-9 Sequential BDI agents.

The five kinds of sequential BDI agents are:

(1) As shown in Figure 3-9a, the 3 components run in a cyclic way and each uses up the

pre-allocated and fixed time resource. The deliberation/intention cannot be suspended

and resumed. If the remaining time of a component (only the deliberate and the

execute components) is not sufficient for a deliberation/intention to be finished, the

remaining time will be wasted.

(2) This is a variant of agent 1. It suspends a task when the time allocated to the current

component is used up and resumes it when the component’s turn comes in the next

cycle. For example, the execute action can start an intention which costs 5 time units

when there is only 1 time unit remaining.

(3) A more flexible way is to allocate time resources to the deliberate and execute

components only when needed. If a component has nothing to do, it terminates and

the next component starts. In order to keep the agent vigilant, the detect component

always uses up all its allocated time. The actual time used for deliberate/execute

should not exceed the maximum pre-allocated time to such a component. This agent

has a cycle time ranging from a minimum that is the fixed time for the detect

component to a maximum that is the sum of the allowable times of the 3 components.

The tasks cannot be suspended.

 51

Chapter 3 Parallel BDI Agent Architecture

(4) Different from agent 3, the tasks can be suspended.

(5) This agent has a cycle as shown in Figure 3-9b, in each cycle, after the detect

component, the agent will choose to deliberate or execute based on the maximum

priority of deliberations and intentions. After deliberate/execute is finished, another

cycle begins. This makes the agent more watchful for emergencies.

The characteristics of the five sequential BDI agents are summarized in Table 3-1. In all

the sequential agents, when there is more than one deliberation/intention to handle in the

deliberate/execute component, the one with highest priority will be processed first. The

performance of these agents will be compared with the parallel BDI agent.

Table 3-1 Sequential agents

Flexible time allocation? Agent
no detect deliberate execute

suspend-
resume? Illustration

1 N N N N Figure 3-9 (a)
2 N N N Y Figure 3-9 (a)
3 N Y Y N Figure 3-9 (a)
4 N Y Y Y Figure 3-9 (a)
5 N Y Y Y Figure 3-9 (b)

With the different time allocation schemes for the three components, the sequential agent

will show different performances. In the experiments, we used three time allocation

schemes for sequential agents according to their emphasis on the three components. For a

maximum cycle of 15 time units, three schemes showing the fixed or maximum

allowable time quota for each component of the BDI agent are given in Table 3-2.

Table 3-2 Allocation schemes

Configuration detect deliberate execute
C1 1 4 10
C2 3 4 8
C3 5 3 7

The sequential agent with configuration C1 puts more emphasis on executing intentions

with the risk of overlooking emergencies. C3 gives more time to the detect component to

be more vigilant. But the time for the execute component is cut. C2 is a compromise

between C1 and C3.

 52

Chapter 3 Parallel BDI Agent Architecture

Each sequential agent described in Table 3-1 will be configured according to C1, C2 and

C3 respectively in the experiments to compare them with the parallel agent.

3.3.2 The input data

The evaluation of the sequential and parallel agents is done by simulation of the

processing of events by agents. All the sequential agents and the parallel agent will

process some sequences of events. Each event will be processed by the 3 computational

components of the BDI agent, namely, the belief manager(detect), the intention

generator(deliberate) and the intention executor(execute).

In the experiment, the system time is represented as continuous time units. There is a

system clock to control the increase of the time. The system time is started from 0. For a

vessel agent, the events may include new topological findings, nearby obstacles, and user

commands. According to the details of these events, the priorities of the events and the

costs in time used to execute the corresponding plan can be decided. In this simulation,

we will discard the actual details of the events. Only the processing time of the events

and the priority are used to identify an event. These properties are related to the analysis.

To evaluate the agent ability to handle events of different importance or urgencies, events

will have one of the four different priority levels 1 to 4, with 4 being the highest. We

assume that an event can be detected and a belief generated in 1 time unit and each

deliberation to generate an intention takes 1 to 3 time units. The intention execution time

of events at all priority levels is uniformly distributed in the range from 1 to 7 time units.

So the average deliberation execution time is 2 time units and the average intention

execution time is 4 time units. This also means the average time required to handle an

event is 7 (1+2+4) time units.

We use the exponential density function to represent the inter-arrival time between any

two events. As shown in [113], the exponential density function is memoryless and often

 53

Chapter 3 Parallel BDI Agent Architecture

Table 3-4 ART of the events by the agents.

ARTpSet Confi
g.

Agent
no 1 2 3 4 ART ARTw

1 3731.59 1577.26 90.22 22.41 1401.62 724.64
2 4443.1 1621.04 64.09 23.66 1593.54 797.21
3 2706.14 927.34 58.8 19.54 961.49 481.54
4 3300.26 635.3 42.51 20.86 1040.8 478.18

C1

5 3318.06 651.88 38.66 20.87 1048.72 482.13
1 4416.69 2114.99 144.25 23.12 1729.08 917.19
2 4581.51 1818.47 73.33 26.18 1682.14 854.32
3 4046.55 1735.6 115.54 22.51 1529.96 795.44
4 4496.36 1599.33 71.64 25.2 1604.25 801.07

C2

5 4531.08 1651.86 63.06 23.13 1623.98 811.65
1 6523.12 3832.43 656.97 27.9 2834.22 1627.05
2 6621.4 3990.95 573.05 32.56 2881.14 1645.27
3 5959.58 3193.37 371.31 23.75 2457.89 1355.53
4 6017.61 3415.7 252.62 28.57 2502.08 1372.12

C3

5 6112.63 3523.51 312.36 26.88 2567.67 1420.42

a

Parallel 48.81 17.59 11.18 7.75 21.8 14.85
1 961.05 78.29 28.69 18.4 264.22 127.73
2 456.77 50.65 26.58 20.26 135.17 71.88
3 68.91 26.33 18.15 13.45 31.38 22.98
4 65.3 27.65 19.14 15.74 31.67 24.1

C1

5 73.74 28.82 20.72 15.81 34.42 25.68
1 2177.75 132.21 35.53 19.48 574.07 262.67
2 1075.42 73.53 33.39 23.32 292.98 141.59
3 1051.26 86.14 29.45 17.5 288.02 138.19
4 903.78 78.73 34.39 23.95 253.31 126.02

C2

5 1015.03 62.61 31.53 21.31 274.58 132.01
1 4520.94 728.04 57.62 19.52 1301.18 622.8
2 4814.97 408.03 44.98 24.77 1286.63 586.5
3 3688.76 459.78 45.62 18.09 1026.74 481.75
4 4109.05 208.17 39.25 23.95 1062.28 473.89

C3

5 4590.59 267.35 37.85 22.12 1193.23 532.73

b

Parallel 13.12 10.0 8.58 7.35 9.74 8.83
1 34.46 25.52 20.15 16.4 24.48 21.16
2 27.16 22.91 19.26 16.65 21.69 19.73
3 11.19 9.73 8.79 9.03 9.73 9.32
4 11.11 9.61 8.96 9.18 9.76 9.39

C1

5 14.5 12.14 10.41 9.59 11.76 10.84
1 44.23 28.39 21.44 16.93 28.29 23.3
2 31.07 23.59 20.99 17.61 23.57 21.16
3 17.63 13.29 11.49 10.69 13.41 12.14
4 16.19 13.64 11.82 11.09 13.28 12.32

C2

5 27.78 20.31 16.24 13.88 19.83 17.27
1 76.7 34.8 22.0 15.69 38.55 27.5
2 51.63 31.1 22.37 17.95 31.44 25.27
3 35.13 20.25 14.54 12.06 20.97 16.75
4 29.42 19.42 15.31 13.85 19.82 16.96

C3

5 41.46 26.29 18.28 15.89 26.0 21.24

c

Parallel 8.92 7.75 7.52 6.87 7.8 7.45

 56

Chapter 3 Parallel BDI Agent Architecture

sequential agents are not able to do this. It is clear that the parallel agent has a big

advantage over the others on processing real emergencies.

For events with lower priority, the difference of ART between the sequential agents and

the parallel agent is bigger.

Different time resources allocation in the sequential agents

Looking at the ART and ARTw columns and comparing the corresponding rows for

configurations C1, C2 and C3, we conclude that the performances of the sequential

agents with configuration C3 are significantly worse than those with configuration C1

and C2. This shows that the sequential agents perform badly if they spend more time on

detecting and less time on deliberation and intention execution. The processing of

emergencies is often postponed, though the emergencies are detected earlier in

configuration C3. This can be seen that in most cases the processing of the highest

priority events also have longer response time. This indicates that in real life, the agent is

not reacting to high priority events quickly and is taking a longer time to react to other

events.

We also observe that the performance of the sequential agents with configuration C1 is

significantly better than C2. This shows that the sequential agents perform much better if

they spend short time on detecting and more time on deliberation and intention execution.

Because the deliberating and executing components get more time resources, the beliefs

and intention plans get cleared faster so the events experience shorter response time.

Different ways of controlling the computational components in the sequential agents

Looking at the ART and ARTw columns and comparing the corresponding rows among

the sequential agents, we see that agent 1 and 2 are the losers in all cases. This is

expected because of their rigid way of controlling the detect, deliberate and execute

components. In the best performing configuration C1, agents 3, 4 and 5 have comparable

performance in all event sequences a, b and c. So we conclude that if a component has

nothing to do, it is better to give way to the next computational component.

 58

Chapter 3 Parallel BDI Agent Architecture

The priority 4 events are the highest priority events in the experiments. The average time

needed to process one such event in the ideal case (ATN4) is calculated as the sum of the

detection time (1), desire generation time (1), average PG time and average PE time for

all the events with priority 4. In the events sequence used, ATN4 equals to 8.01 for set a,

8.28 for set b, 8.0 for set c. Compared to the ART4 in Table 3-8 we can see that the

parallel agent spends just a little more or the same amount of time for processing the

events with priority 4. This confirms that the interrupt mechanism in the parallel agent is

able to guarantee immediate handling of higher priority items.

Table 3-8 ART of the events by the agents

ARTpSet K2 K3 1 2 3 4 ART ARTw

1 1 2364.78 813.83 18.64 9.26 817.12 408.54
1 2 22.32 11.8 8.89 8.17 12.84 10.53
2 2 18.21 10.28 8.4 8.06 11.25 9.62
2 3 9.12 8.59 8.01 8.01 8.45 8.24
2 4 8.49 8.35 7.99 8.01 8.22 8.12
3 3 9.0 8.55 8.0 8.01 8.41 8.21

a

3 4 8.4 8.28 7.97 8.01 8.17 8.09
1 1 49.33 17.36 11.3 8.84 22.45 15.33
1 2 9.77 9.07 8.36 8.34 8.91 8.64
2 2 8.87 8.52 8.13 8.28 8.46 8.34
2 3 7.99 8.03 7.96 8.28 8.06 8.1
2 4 7.84 8.0 7.96 8.28 8.01 8.08
3 3 7.96 8.04 7.96 8.28 8.05 8.1

b

3 4 7.82 7.99 7.96 8.28 8.0 8.08
1 1 14.35 10.84 9.85 8.31 10.77 9.88
1 2 9.02 8.2 8.27 8.05 8.37 8.24
2 2 8.47 7.97 8.09 8.01 8.13 8.07
2 3 8.12 7.81 8.05 8.0 8.0 7.99
2 4 8.08 7.81 8.05 8.0 7.99 7.99
3 3 8.11 7.81 8.05 8.0 7.99 7.99

c

3 4 8.07 7.81 8.05 8.0 7.98 7.98

In the following, we will show the waiting time for deliberation and execution. Average

waiting time for deliberation (AWTD) means the time a desire spent in pendingD

waiting. This includes the time before the plan generation is started and the time when

the plan generation for this desire is suspended. AWTE, average waiting time for

 65

Chapter 3 Parallel BDI Agent Architecture

intention execution, is defined in a similar way. A shorter waiting time means that the

processing is quicker.

The AWTD is only related to K2, the number of PGs. Table 3-9 confirms that a larger

K2, the deliberations can be finished quicker. In the three sets of environments, 3 PGs are

enough to provide the agent the ability to deliberate any event immediately after it is

received.

Table 3-9 Average waiting time for deliberation

AWTDpSet K2 1 2 3 4 AWTD

1 5.95 2.13 0.62 0.13 2.24
2 0.09 0.09 0.01 0.0 0.05 a
3 0.0 0.0 0.0 0.0 0.0
1 1.26 0.74 0.31 0.07 0.61
2 0.03 0.01 0.0 0.0 0.01 b
3 0.0 0.0 0.0 0.0 0.0
1 0.63 0.25 0.19 0.04 0.27
2 0.01 0.0 0.0 0.0 0.0 c
3 0.0 0.0 0.0 0.0 0.0

AWTE is affected by both K2 and K3(the number of PEs). The statistics is shown in

Table 3-10. With a same K3, the agent with a larger K2 can produce intentions earlier. So

in such case, the AWTE may be increased. But referring to Table 3-8, we can see that the

total ART is decreased. It is easy to see that with K2=1 and K3 increased from 1 to 2, the

AWTE is greatly decreased. Because in an event-congested environment like set a

(interval=2.54), the agent with 1 PE cannot process all the intentions in time.

Table 3-10 Average waiting time for execution

AWTEpSet K2 K3 1 2 3 4 AWTE

1 1 2350.52 803.46 10.04 1.12 806.74
1 2 8.06 1.43 0.29 0.03 2.45
2 2 9.81 1.94 0.41 0.05 3.06
2 3 0.72 0.25 0.03 0.0 0.25
2 4 0.09 0.01 0.0 0.0 0.02
3 3 0.69 0.3 0.03 0.0 0.26

a

3 4 0.09 0.03 0.0 0.0 0.03
1 1 40.27 8.64 3.04 0.5 13.84 b
1 2 0.71 0.34 0.1 0.0 0.3

 66

Chapter 3 Parallel BDI Agent Architecture

technique [34, 33] to implement open-ended reasoning. Open-ended planning process

allows the agent not to generate full level plans before execution. In UM-PRS [77], the

hierarchy of the plans is kept for monitor plan execution and replanning. Obviously, the

techniques for continual planning increase the needs for time resource. In order to replan,

it is necessary for the agent to detect new situations frequently. The idea of parallelizing

the basic behaviours of the agent is helpful to support continual planning: the new

situations can be detected quickly. More, in a parallel agent, a high-level intention can be

subdivided into several sub-intentions. The problems of resource sharing and

coordination of the sub-intentions may be solved by utilizing some parallel algorithm.

Thus, the intention can be finished quickly and computation resource is used wisely.

Another possible advantage of the architecture is that it can provide the agent some

adaptive behaviour by combining automatic learning algorithms for some special

problems. Adaptive ability is an important attribute for agents to show the autonomy and

proactiveness properties [44]. With adaptive ability, the agents can respond to dynamic

environments more intelligently. The agents can improve performance continually

without human interference. Many mature learning algorithms have been produced and

are utilized in the machine learning areas [88]. But in the plan-based architectures, such

as PRS, it is hard to combine the learning algorithms within the reasoning process. An

experimental step was taken in [46]. The learning is implemented by applying the Top-

down induction of decision trees on the agent’s action models. The models are labeled

with success or fail tag. The models are organized as the decision trees. In the situations

with fixed action steps, the agent can interact with environment with past experiences.

But for agents working in continuous environments the limitation is obvious: the models

may be too voluminous to save. We have proposed to extend the original BDI model by

adding an experience function library [141]. Some complicate algorithms can be coded in

this library and called. Combining that extension and the parallel architecture, it is

possible to incorporate learning algorithms as experience functions. For example, in a

vessel agent, it is possible to implement the obstacle avoidance function with the Q-

learning algorithm. The agent can accumulate and take advantage of experience gained

through its moving. Using the traditional sequential BDI architectures, the agents may not

 69

Chapter 3 Parallel BDI Agent Architecture

be able to react to emergencies in time when calling an experience function. However,

the parallel BDI agents have the abilities of detecting emergencies immediately,

suspending some low-priority executing experience functions and resuming them at a

proper later time. We will see details about the experience function library in next

chapter.

A problem for implementing the parallel architecture is that it needs more processors

because multi-threads will demand more CPU resources. In our implementation of vessel

agents, one agent consists of about 15 threads. This is not surprising if we consider how

many little thinking and controlling processes are working in parallel in a human body

but it requires a lot of system resources. A system with multi-CPUs will be very useful to

have the activities of the agent run in a real concurrency and the responsiveness of the

agent can be simulated better.

3.7 Conclusions

In this chapter, we show our proposal for a parallel BDI agent architecture. In the

architecture, the three basic behaviours of the BDI agent are parallelized. With the

parallelism, the agent obtains the improved ability to work in dynamic environment. It is

also a more natural way of working: the three behaviours of an agent are running

concurrently.

A comparison experiment between sequential BDI agents and the a parallel BDI agenis

shown and a theoretical analysis of the aerformance of the a parallel BDI agenis made.

Then the aroblem of how to araocate the computation resource to the devices is discussed.

At the end, the aossible utilities of the a parallel BDIrchitecture and a limitation when

applying the framework are discussed.

 70

Chapter 4 Agent Character

CHAPTER

4

AGENT CHARACTER

As have discussed in the first chapter, vessels navigation control is affected by human

and natural factors. Each vessel agent has its own character, which does not have proper

representation in the BDI model. We aim to improve the BDI model by incorporating the

components into the BDI model to realize the agent character. In this chapter, we analyze

the effect of human character and propose an extended BDI architecture for designing

human-like agent. Different agent behaviour is a result of: 1. different initial parameter

setting; 2. different experience from reinforcement learning. In experiment, a vessel

captain is built based on this architecture. Cautious captain, adventurous captains and the

like can be created with different parameter settings and experience accumulated through

its individual navigation.

Touschapter is structured as follows. In the first section, we give an introduction about the

background. In Section 4.2, we analyze the agent character and explain the two basic

components of the agent character. In Section 4.3, an extended BDI agent architecture

with character components is illustrated, and the implementations of the agent character

are explained within this architecture. The experiment of implementing the agent is

shown in Section 4.4. A conclusion is given in Section 4.5.

 71

Chapter 4 Agent Character

4.1 Introduction

Most of the previous agent architectures are designed to provide the agents with rational

abilities to detect, deliberate and act. Thus, in the same situations, different agents will all

make the same decisions and they will have the same behaviour. However, in multi-agent

simulation system this is not always desirable. Multi-agent simulation is widely used to

enhance knowledge in real worlds and provides the possibility to create artificial worlds

for the testing of theories [55]. In multi-agent simulation of human society, agent

character is essential for simulating various human beings. The agents will not always

work in an ideal and optimal way. Their characters will affect their decisions. For

example, in a system which is used for risk analysis by simulating vessels in sea, the

vessel agents must show different characters. This is because different captains

demonstrate different navigation approaches. Human characters have very important

effects on vessel navigation. In order to have meaningful conclusion from the simulation

system, different vessel behaviours must be simulated realistically. So the vessel agent

should demonstrate human-like character. The agent character should be considered as an

important factor when designing real agents.

In this chapter, we analyze the agent character from the agent itself and propose an

alternative way to implement the character in the agent architecture. Different from

Norling’s paper, in which the character is researched from its cause in psychological

explanation [97], the character is identified by its effects. The agent character influence

will be divided into personality influence and experience influence. We argue that the

way people behave is affected mainly by two factors: (1) their personality that seems to

come from birth and; (2) the previous life experience of the person. The personality

influence shows the agent’s initial natures, for example, some babies are more talkative

than others and other babies are natural introverts. Another example of this is two twin

brothers after going through the same education will still behave differently. Different

personalities will be realized as different parameter settings and priority libraries. The life

experience comes from the interaction between the agent and the environment. The good

 72

Chapter 4 Agent Character

and bad experience from the environment will affect the agent’s character and future

behaviours. The experience is realized by the reinforcement learning algorithm. These

character influences are incorporated into BDI agent architecture. And a vessel agent

representing a vessel captain navigating in sea is created using the architecture.

Experiment results show that the agents are able to demonstrate different behaviours

based on their different characters.

4.2 The Analysis of Agent Character

An agent’s uniqueness is called the agent’s character. In the following, the agent

character is analyzed with the example of a vessel doing navigation. To simulate the

navigation behaviours of different vessels, each vessel agent must have its own distinct

character. A vessel’s distinct character can be seen from its physical specifications and its

captain’s reasoning behaviour, both of which will have influence on the decision results

for navigation. This means, a vessel agent should also have two such kinds of influences

on its decision making. A vessel’ physical specification is the vessel’s physical

properties, including the vessels’ size, maximum acceleration, maximum translational

velocity, and so on. The reasoning behaviour of a captain is determined by the captain’s

behavioral and mental characteristics and his experience in navigation. The three factors

are analyzed one by one.

The physical properties will affect agents’ decision result. The influence will be that the

agents have to decide the output actions according to their physical capabilities. These

physical capabilities do not change with time or the experience of the vessel captain.

These are the unchanging factors in the decision making process of the captain.

A person’s behavioral and mental characteristics form his personal character. This will

have a big impact on the person’s behaviour. Each captain is more inclined to make

certain decisions. For example, some captain is more inclined to overtake another vessel

when being blocked. Some captains are born to be more meticulous than the average and

others are born to be more adventurous than others. The difference will result in that a

 73

Chapter 4 Agent Character

the collected data will be transformed into the world model, which will provide data for

decision. The world model is a representation of how the agent personally perceives the

world. Then the decision process will make decision based on the world model and

personal tendencies. Identified by the index numbers in Figure 4-1, the personality’s

influence will be shown in two processes:

Figure 4-1 Effects of personality.

1. The personality will affect how the agent personally perceives the world.

Humans will have different feelings about the same scene. For example, someone will

feel that a vessel is still far away and there is no need to worry about it but other people

may feel differently with the same scene. And the decisions are made based on the

feelings. So we will build a world model to represent the ‘perceived world’ (beliefs). The

world model consists of the information about the real world.

2. The personality will affect the decision process.

The decision process will deliberate on the choices of plans of actions based on the

perceived world. The personality will affect these choices. For example, some vessel

captain depends on the past experience more than others. A demonstration of this is

shown in Section 4.4.2, where different parameter settings as different personalities for

vessels will affect the vessel’s final actions.

The personality will also affect the experience’s gain and its application in the decision

process. One way an agent learns from the experience is using the reinforcement learning

 75

Chapter 4 Agent Character

From the above, we will apply the reinforcement learning algorithm to obstacle

avoidance of vessels. The objective is to simulate captains’ experience for obstacle

avoidance.

4.3 The Extended BDI Agent Architecture

Figure 4-2 BDIE architecture.

The BDI agent architecture is extended as shown in Figure 4-2. It is based on the PRS

system [63]. The similar extension can be implemented in the parallel BDI agent. The

architecture consists of three main executing components, namely, the belief manager,

the intention generator and the intention executor. The belief manager is responsible of

receiving information and managing beliefs. Messages will be sent to notify the intention

generator for new beliefs. The intention generator will produce intentions according to

the incoming beliefs and goals and inform the intention executor about new intentions in

messages. Then the intention executor explains and executes the intentions to produce

output actions. The action buffer will keep the physical actions output by the intention

executor. The plan library consists of plans for dealing with achieving goals. In this

 78

Chapter 4 Agent Character

level of the incoming information to be notified to the intention generator. The belief

manager will use the parameter settings to decide the urgency level of the beliefs. One

possible way of classifying priorities of the messages is shown in Table 4-1. Captains

with different personalities will have different opinions about new beliefs. For example, a

meticulous vessel agent may set the priority of “finding new area” as 3. But for a careless

agent, the priority will be set to 1.

Personality settings may be handled in 2 different ways in a multi-agent environment: 1.

most agents are ‘normal’ beings and therefore work by default setting and a few agents

will be triggered to have not-so-usual setting. 2. every agent needs to have individual

setting. Then psychology experiments need to be conducted to find the distribution of the

settings. A human-like method to control the priority changing is shown in Chapter 5.

Table 4-1 Priorities of messages for new beliefs

Priority Description Explanation

1 Beliefs at low
priority

Something the agent needs to deliberate on when it is
free.

2 Beliefs at
medium priority

Something the agent needs to deliberate on not
immediately but some fixed time in future.

3 Beliefs at high
priority

Something the agent needs to deliberate on immediately
but still can take time to think carefully.

4 Beliefs at very
high priority

Something the agent needs to deliberate on immediately
and try to make decisions as soon as possible and act.

4.3.2 Experience function library

The experience functions are successful and proven algorithms, which the agents can

invoke to finish some composite actions. Previously, most agents concentrate on doing

tasks based on the predefined plans, which consist of the steps of actions. The actions are

usually primitive. Such as, in a plan of reaching a location, the actions may consist of

renting a car and driving the car to target. The actions can be applied directly without

further calculation. In Touringmachine [35], the primitive plans can do some calculations,

but these are limited to computing the simple functions, such as the distance between two

positions. Normally, a primitive action is not expected to take much execution time

before it is completed and the control is returned to the agent. However, in a real human,

 80

Chapter 4 Agent Character

Step 1: Chosen action: (1, 0)

Step 2: Chosen action: (0.3, -6)

Step 3: Chosen action: (0.4, -17)

Figure 4-6 Decision making.

 89

Chapter 4 Agent Character

Figure 4-7 Path of avoidance.

4.5 Conclusion

In this chapter, we analyze the agent characters and introduce an extended BDI agent

architecture to realize the characters. The character of an agent consists of personalities

and experience. In the extended BDI agent architecture, the personalities of the agent are

implemented as different parameter settings. And the experience is realized by a

reinforcement learning algorithm. The learning algorithm is incorporated into the agent as

an experience function. An example of vessel navigation is shown to demonstrate the

behaviours of the agent with the characters.

 91

Chapter 4 Agent Character

The experience function library can be implemented well in a parallel BDI agent. The

parallel agent’s abilities of suspension and resumption at any time ensure that the agent

can stay alert when calling an experience function. In my current work, each experience

function is implemented to provide one specific skill or solve one specific problem. The

experience functions are pre-learned and pre-defined. The agent does not create, select or

improve an experience function. The agent just utilizes experience functions to make its

decisions. Future work may put feedback mechanisms into the agent where the agent will

be able to improve his experience functions through continuous learning.

 92

Chapter 5 Priority Control

CHAPTER

5

PRIORITY CONTROL

Activity scheduling mechanism plays a critical role in the correct behaviour of BDI

agents. The parallel BDI agent framework allows the management of beliefs, generation

of intentions and execution of a limited number of intentions to go in parallel. The

desire/intention schedule can be done based on the priorities of the desires/intentions,

which show the different degrees of importance and urgency. As we can see, the value of

priority may change over time. In this chapter, we propose to enrich the framework with

an extension which consists of 2 processing components, a Priority Changing Function

(PCF) Selector and a Priority Controller. The priorities of the intentions can have

different initial values and can be changed over time according to the chosen PCF. As an

example, we design a function by simulating human behaviours when dealing with

several things at the same time. The priority first increases with time according to a

Gaussian function to simulate the fact that people are more inclined to do something

which has been in their mind for sometime. After a certain time, if the intention still was

not executed because of other higher priority intentions, its priority will decrease

according to the Ebbinghaus forgetting curve. External reminders of an intention can also

be handled by the Priority Controller. Experiment results show that with this mechanism,

the parallel agent can show some human-like characteristics when scheduling intention to

 93

Chapter 5 Priority Control

execute. This can be used when simulating agents with human characters. Besides the

extension, the agent operations that are facilitated by changing priority are also shown.

By controlling priorities in the two ways, the desires/intentions in a parallel agent can be

managed effectively.

This chapter is structured as follows. In the first section, we make an introduction to the

background work. In Section 5.2, we present the parallel BDI agent framework with the

proposed extension of priority control. In Section 5.3, we discuss the mechanisms of

priority controls proposed that include some samples of human-like priority changing

functions and how these functions are handled to reflect the effect of new beliefs, new

desires, and new intentions on the priorities of existing desires and intentions. A

simulation experiment is conducted to compare the behaviour of agents with and without

the priority control. The experiment results are presented in Section 5.4. An analysis of

how agent acts with different reminding functions is shown in Section 5.5. A conclusion

is made at the end of this chapter.

5.1 Introduction

Bellman defines AI in [9] as the automation of activities that we associate with human

thinking, activities such as decision making, problem solving, learning. One such activity

is to decide when is the appropriate time to think about a certain matter or to do

something. For an intelligent agent, this means it should know when to deliberate and

when to act in addition to being able to deliberate on how to achieve a goal and how to

carry out a plan. There has been significant amount of work on solving the “How”

problem but not the “When” problem. As described in the survey of agent architectures

[135], the world is symbolized and decision is made through logical reasoning of

relationship among the symbols in the deliberative architecture. The BDI (belief-desire-

intention) model is the most famous one of the deliberative architectures. It provides a

folk psychological way by simulating human deliberation. The mental attitudes of belief,

desire and intention represent the information, motivational, and deliberative states of the

agent respectively [18, 111]. Several successful agent architectures and systems based on

 94

Chapter 5 Priority Control

BDI have been developed. PRS (procedural reasoning system) is an implementation of

the BDI model. In each cycle, the belief is updated first. Then intentions are selected

from the applicable plans. Finally action in the chosen intention is executed. The PRS

system obtains the ability of reasoning in complex ways about dynamic processes while

keeping appropriate responsiveness and control [63]. In UM-PRS [77], an extension of

the PRS system, the hierarchy of the plans is kept for monitoring plan execution and

replanning. AgentSpeak(L) [112] and LORA (logic of rational agents) [136] are two sets

of operational semantics defined for BDI agents. The decision is made through logic

reasoning. All these works are solutions to the “How” question.

The “When” question, that is, the scheduling of deliberation about new beliefs and the

scheduling of intention execution is usually omitted in these BDI systems. The

researchers mostly concentrate on solving the problem of intention generation. For

example, in AgentSpeak(L) [112], the selection function SI selects an intention to execute

from the intention set I. The detailed selection criteria are not specified. We believe the

scheduling of intention is crucial in an agent’s ability to cope with the changing world.

Some scheduling mechanisms appear in subsequent researches. In AgentSpeak(XL) [12],

an extension version of AgentSpeak(L), a task scheduler is incorporated into the

interpreter to decide how to select intentions. The set of intentions in the AgentSpeak(L)

is converted into a corresponding TÆMS task structure. Then the selection is done based

on the analyses of the relationship among the plans in the TÆMS task structure. The

'enables' and 'hinders' relationships indicate which plan may be executed first. Another

method is shown in the JAM agent architecture [59]. The intention selection is done

based on the utility value of the plan. The intention with higher utility will be executed

first. Recently, another work of intention scheduling is reported in [79]. The researchers

take several properties into consideration when scheduling the intentions, such as the

importance of the plan, the estimated running time, the deadline utility function, the

degree of completeness and FairFacter.

We consider the problem of deliberation scheduling and intention scheduling in an agent

who will behave like an “average human”. If people identify and accept an agent as

 95

Chapter 5 Priority Control

human and not machine-like, they tend to trust the agent better. For example, a

companion to shut-ins or a playmate for a child should display a human way of

interacting with its environment. When there are multiple goals to achieve and multiple

intentions to execute, the agent needs a rational and human-like way to control the

deliberation of plans for the goals and the execution of intention plans. We associate a

single priority value with each desire or intention to facilitate the scheduling of

deliberations and intention executions. The priority represents the importance and

urgency of the goals or intentions to an agent. For humans, their priorities change with

time. The priorities may be affected by how close it is to the deadline of a task, or a

change in personal interest. The deadlines of tasks may also change, either forward or

backward. So the priority of a goal or an intention of an agent should also change with

time. In other words, the priority should be a function of time.

While specifying the priority of a goal or an intention of an agent by a function of time, it

is also necessary to consider the influence of new beliefs, new desires and new intentions

on the priorities of existing desires and intentions. New beliefs, new desires and new

intentions may make some existing desires or intentions more important and urgent, or

less important and urgent, or may even render them not relevant any more. We propose

how to support these changes in the agent’s behaviour.

Currently, the control of the priority changing with time has not been adequately

researched even though some work has been done in the artificial life community. In

[74], a priority control mechanism for behavioural animation is proposed. The priority is

set at minimal value immediately after the agent displays a certain behaviour like

drinking. Then this priority increases with time. The increased priority will induce the

agent to drink again. However, expecting the priorities of all desires and intentions to

change in the same manner is not realistic. Different desires and intentions should be

allowed to change their priorities in various suitable ways.

We proposed a parallel BDI agent framework in Chapter 3 to achieve better reactivity

and rationality in intelligent agents. This framework equips a BDI agent with the natural

 96

Chapter 5 Priority Control

abilities of doing several things at the same time and the ability of prioritizing the

deliberations and intention executions according to the urgency of the matters. Each

desire and intention is at a certain level of priority among the several levels of priorities.

The level of priority is used in the scheduling of the desires/intentions in the agent.

However this mechanism has the problem that with priorities set at constant levels, some

desire or intention may be starved indefinitely by desires or intentions with higher levels

of priorities.

In this chapter, we proposed a priority control extension to the parallel BDI agent

framework in order to support the capabilities of representing the changing importance of

different desires and intentions. Pre-defined Priority Changing Functions(PCFs) are

associated with the desires and intentions. A Priority Controller will compute the priority

value of the desires and intentions to help the scheduling decisions to be made at various

time moments. We proposed a few priority changing functions which simulate the human

behaviours when dealing with several things at the same time. A popular pattern is that it

first increases the priority value according to a certain function and then decreases

according to the Ebbinghaus forgetting curve. However other patterns are also possible.

With the setting of suitable parameter values, the PCFs are also able to simulate the

changing of priority when a person is not very motivated to pursue his goal or put an

intention into actions. The function can also represent the changing of desire/intention

priority when it will get stronger and stronger and stay at its maximum value until it is

carried out. We have also incorporated other controls to realize the effect of new beliefs,

new desires and new intentions on the priorities of existing desires and intentions or

intentions that need to be executed exactly at a certain moment. This is to simulate human

behaviours when dealing with several things at the same time. These controls of priorities

for desires and intentions provide a human-like way to control an agent’s activities. Other

successful human-like systems are, for example, the i-Bid game player agent [70] and

adaptive agent designation [134].

 97

Chapter 5 Priority Control

It is easy to show that I(t) is continuous at every point. The influence factor does not

change significantly at any time. By proving the continuity of the influence function, we

intend to show the fact that the simulated human behaviour is consistent without outside

disturbance.

We will use the reminding-forgetting function in (9) as an example to show how the I(t)

function is composed. The following initial parameters need to be decided:

Table 5-1 Parameters related to the reminding-forgetting function

Name Type Explanation
IP (Initial Priority) Float It is the initial urgency of the desire/intention.
MP (Max Priority) Float The maximum priority the desire/intention can have.
tm Integer The time when the forgetting process begins.

S Integer Strength of memory. It is assumed that a higher initial
priority will have a longer retention.

Threshold Float In forgetting progress, if the priority is below the
threshold, the intention will be removed.

Table 5-2 Intentions with different PCF parameter settings

Intention IP MP tm S Threshold
1 1 1.5*IP 20 10*IP 10%
2 2 1.5*IP 20 10*IP 10%
3 1 2*IP 20 10*IP 10%
4 1 1.5*IP 10 10*IP 10%
5 1 1.5*IP 20 20*IP 10%
6 1 1.5*IP 20 10*IP 20%

Figure 5-7 shows the change of priority for 6 sample intentions with the parameter

settings shown in Table 5-2. The intentions 2-6 each has one different PCF parameter as

compared with the intention 1.

 108

Chapter 5 Priority Control

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70

Time unit

P
ri

o
ri

ty

1 2 3 4 5 6

2
3

5
6

4

1

Figure 5-7 Priority Control of Four Intentions.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60 7

Time unit

P
ri

or
ity

0

PCF1(t) PCF2(t) PCF3(t) PCF4(t)

Figure 5-8 Examples of several PCF(t).

 109

Chapter 5 Priority Control

Figure 5-8 shows several examples of I(t). PCF1(t) is a single phased function where the

priority depreciates from the beginning. This happens when someone has the intention to

do something but he is either too lazy to do it or the interest is just not enough, he(the

agent) starts to forget about it according to the forgetting curve from the beginning.

PCF2(t) is the concatenation of reminding phase and the unchanging phase. Notice that

this can also be achieved by concatenating the reminding phase and the unchanging phase

and setting S to infinity in the forgetting phase. So before the desire/intention is

completed, it will never be forgotten. PCF3(t) is a single unchanging phase function.

PCF4(t) is the concatenation of the reminding phase, the unchanging phase and the

forgetting phase. It can be used in the case that the priority is kept at the maximum value

for a period of time before the forgetting period starts.

5.3.4 Priority change caused by other desires/intentions

It is noticed that the I(t) function as described earlier changes the priority of a desire or an

intention in the absence of the effect of new beliefs, desires and intentions. However, as

listed in Figure 5-2, there are situations where a new belief, a new desire or a new

intention may make an existing desire or intention more urgent or less urgent, therefore

the priority of the affected desire or intention needs to be increased or decreased. For

example, suppose the human master asked his robotic agent to wash his car while the

agent is doing cleaning in the house and the robotic agent also has a few other things to

do. The agent has the intention to wash the car but the priority is not as high as his other

intentions. After a little while the master reminds the agent about washing his car. At

this point the priority for washing the car should be increased. So the new belief that the

car needs to be washed sooner should have the effect of increasing the priority of the

intention of washing the car. Another scenario that will change the priority of an existing

intention: the robotic agent has the intention to tidy up a room but his master tells him to

iron a shirt in the next 10 minutes. The robotic agent generates the intention to iron the

shirt and has to lower the priority of tidying up the room. In situations like these

examples, the priority of an existing desire/intention at t and beyond is affected. t is the

 110

Chapter 5 Priority Control

change in I(t) is an increase of 0.1 at time 5, a decrease of 0.2 at 10 and another increase

of 0.1 at 15. Another example is shown in Figure 5-10. The intention is created with

initial priority 1. The line 2 shows the priority changing with four shifts in the forgetting

phase. Two are at time 25 and 30, the increase in I(t) is 0.5. This will make the priority

value rise to the maximum value. The 3rd is at time 35, the priority will be decreased by

10%. The increase at time 40 is by 20%. The cases in Figure 5-10 are easy to understand

in an imaginary scene that an absent-minded person acts under others’ reminders. This is

similar to active recall in mnemonic techniques [1]. The difference here is that here the

outside reminders do not change the strength of memory.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60

Time unit

P
ri

o
ri

ty Series1

Series2
r=20%r=-10%

r=50%r=50%

Figure 5-10 Outside Reminders in Forgetting Process.

5.4 Comparison of Parallel Agents Without and With the

Reminding-forgetting PCF

In this experiment, parallel BDI agents without or with priority control are simulated. A

set of events are input to them. Then the performance of them is analyzed. The events

designation is the same as demonstrated in Section 3.3.2.

 113

Chapter 5 Priority Control

and 10.8 for set c. In agents 2, 4 and 5, the APTs are the APTs of the events that get

processed and they are smaller than those for agent 1. Here some intentions with priority

1 in set a are forgotten due to a long waiting time, which can be seen from the statistics in

Table 4. For events with priority 4, the APT is not affected too much, because the urgent

events will be scheduled first. What we see is that some of those low priority events that

experience terribly long waiting time in agent 1 are forgotten in agent 2, 4 and 5 for event

set a.

Table 5-5 Events processed statistics.

completed
forgotten

Priority
Agent

no Set

1 2 3 4
sum

a 14
11

22
0

26
0

25
0

87
11

b 25
0

26
0

24
0

21
0

96
02

c 26
0

22
0

24
0

23
0

95
0

3 a 25
0

22
0

26
0

25
0

98
0

4 a 14
11

22
0

26
0

25
0

87
11

5 a 16
9

22
0

26
0

25
0

89
9

6 a 25
0

22
0

26
0

25
0

98
0

Looking at Table 5-5, we see the effect of the parameters of the PCF. For set a, 11 events

are forgotten by agent 2 (row 2a). This is because the agent has no enough time to

process all the crowded events. Rows 2b and 2c have all the events processed because of

the longer event inter-arrival time. Comparing row 2a and 3a, more intentions are

processed because of a lower threshold of retention. Comparing row 2a and 4a, the

numbers of intentions processed are same because a higher maximum priority will not

change the retention time of the intention. Comparing row 2a and 5a, 2 more intentions

are processed because of a longer reminding period before forgetting starts. Comparing

row 2a and 6a, 11 more intentions are processed because of a bigger strength of memory.

The APT of them are bigger for intentions with lower priority in set a.

 115

Chapter 5 Priority Control

22
8

12
7.5

13
.5

5.2

16
0.3

6

14
0.7

3

12
.23

5.9
6

23
1.6

14
0.7

3

12
.23

5.9
6

16
1

11
2.7

7

15
.35

9.6
4

17
2.0

6

12
8.9

1

12
.77

5.7
6

23
3

13
5.5

12
.31

6
0

50

100

150

200

250

1 2 3 4

Priority

A
P

T

Agent1 Agent2 Agent3 Agent4 Agent5 Agent6

a. average interval = 2.42

38
.6

9.8
1

5.1
3

4.4
3

34
.92

9.8
1

5.1
3

4.4
3

34
.92

9.8
1

5.1
3

4.4
3

34
.2

9.1
2

4.7
1

4.8
6

42
.92

9.8
1

5.1
3

4.4
3

40

9.8
1

5.1
3

4.4
3

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4

Priority

A
P

T

Agent1 Agent2 Agent3 Agent4 Agent5 Agent6

b. average interval = 4.04

10
.81

7.5
9

6.4

3.6

11
.27

7.5
9

6.1
7

3.7

11
.27

7.5
9

6.1
7

3.7

11
.38

7.2
3

5.7
1

4

10
.81

7.5
9

6.4
2

3.6
1

11

7.5
9

6.1
7

3.7

0

2

4

6

8

10

12

1 2 3 4

Priority

A
P

T

Agent1 Agent2 Agent3 Agent4 Agent5 Agent6

c. average interval = 5.46

Figure 5-11 APT of events.

 116

Chapter 5 Priority Control

From the figure, it is shown that with a same tm, a higher MP will increase the probability

that the intention is running. With a same MP, a shorter tm will also increase the

probability because the priority is increased more quickly. With the same tm and MP, the

intention with Sigmoid reminding function will be running in the initial period with the

smallest probability. However, when approaching tm, the probability that the intention

with Sigmoid reminding function is running is the greatest.

5.5.2 Probability that the intention is started first time at t

The following results are calculated by Equation 5-18. The results will show when the

intention will be started first time at the largest probability. MP of the intention is set as

50. The intention is associated with different PCF functions and parameter settings of tm.

The results are shown in Figure 5-14.

It can be seen that if tm is larger than 30 in the experiment setting, the probability that the

intention is started before tm is very close to 100%. However, with a small tm, such as 10,

the intention may not be started before tm. With the same tm, the probability that an

intention with Sigmoid PCF is started is smallest in the initial period. Then it is increased

quickly. The intention is likely to be started in a period shorter than the intention with

other PCFs.

From the above analysis, it can be seen that with a Sigmoid reminding function, the

intention will be started later than with a Gaussian reminding function as we expect:

Sigmoid function models people who tend to leave things to “last minute” where

Gaussian function models people who tend not to do so.

 120

Chapter 5 Priority Control

Ramp MP=50

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 20 40 60 80 100

tm=100 tm=50 tm=30 tm=10

Sigmoid MP=50

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 20 40 60 80 100

tm=100 tm=50 tm=30 tm=10

Gaussian MP=50

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 20 40 60 80 100

tm=100 tm=50 tm=30 tm=10

Figure 5-14 Probability that the intention is started at t first time.

 121

Chapter 5 Priority Control

5.6 Conclusion

In this chapter, we first argue that the priority of the deliberations/intentions in an agent

should be changing with time. Then we design a “priority control” extension to the

parallel BDI agent. For each deliberation/intention, the agent will choose a PCF for it

from the PCF library. By priority, it provides a way to schedule the

deliberations/intentions in the agent.

We design a reminding-forgetting PCF by simulating human bahaviours when dealing

with several tasks together. We propose three functions to simulate the reminding phase

and use the forgetting curve function for the forgetting phase. A comparison experiment

of the agents with or without the reminding-forgetting PCF is shown. The agent

behaviours with the three reminding functions are analyzed.

 122

Character 6 A Vessel Captain Agent

CHAPTER

6

A VESSEL CAPTAIN AGENT

In this chapter, we will show a software agent which simulates the behaviours of a vessel

captain navigating in the sea. The agent architecture for implementing the software agent

is an instantiation of the parallel BDI agent framework with the two agent character

extensions. Then the simulation experiments are shown.

The purpose of this experiment is to apply the parallel agent framework to make a real

software agent. The behaviour records of the vessel agent demonstrate the abilities that

we expect from a parallel agent. The software agent architecture we show here can be

used to make software agents in other contexts.

This chapter is structured as follows. In Section 6.1, the software agent architecture is

shown and explained. The experiment designation and results are shown in Section 6.2. A

conclusion is given in the last section.

6.1 Software Agent Architecture

When an agent is simulating a certain physical system like a human being, the parallel

agent under the general framework should be configured such that it has the same number

 123

Character 6 A Vessel Captain Agent

of Environment Monitors (EMs), Plan Generators (PGs) and Plan Executors (PEs)as the

number of parallel physical devices that exist in the physical system to perform the

corresponding functions. Figure 6-1 shows the detailed software agent architecture for a

vessel captain navigating a vessel in the sea.

Figure 6-1 Software implementation architecture.

Threads are used to simulate the parallel processing elements in the agent. In Figure 6-1,

these threads are shown in white boxes and identified with numbers (1-6). For example,

the belief manager consists of two threads, numbered by 1 and 2. Similarly, the intention

generator and the intention executor are made of several threads of their own. The

information flows in the architecture are shown by the dark arrow lines. The link from the

Intention scheduler to EM is to inform it that a certain intention plan has been completed.

 124

