
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Agent simulation of vessels traveling in sea

Zhang, Huiliang

2008

Zhang, H. (2008). Agent simulation of vessels traveling in sea. Doctoral thesis, Nanyang
Technological University, Singapore.

https://hdl.handle.net/10356/2605

https://doi.org/10.32657/10356/2605

Nanyang Technological University

Downloaded on 13 Mar 2024 16:48:16 SGT

NANYANG TECHNOLOGICAL UNIVERSITY

Agent Simulation of Vessels Traveling in Sea

A thesis submitted to for Nanyang Technological University in fulfillment
of the requirement for the degree of Doctor of Philosophy

Zhang Huiliang
Supervisor: Huang Shell Ying

Division of Computer Science

School of Computer Engineering
Nanyang Technological University

Singapore

Dec 2006

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ACKNOWLEDGEMENTS………………………………………………………….…II

TABLE OF CONTENTS………………………………………………………………III

LIST OF FIGURES……………………………………………………………………VI

LIST OF TABLES…………………………………………………………………… VII

ABSTRACT…………………………………………………………………………..VIII

ABBREVIATIONS…………………………………………………………………… XI

 I

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ACKNOWLEDGEMENTS

Greatest thanks to my supervisor, Dr. Huang Shell Ying, who provided invaluable help

and indispensable guide for the research. She often provided new and useful papers in the

area to me. And she was always patient in discussing research with me. From her wise

suggestion, I learned much for the research. I am also imbued with her meticulous

attitude for science.

I would like to thank all my friends for their help and support. Without them, the living in

school would have been very boring. At the same time, I also learned much from them.

My lab, PDCC, provided me the biggest convenience for research. The center director

Dr. Stephen Turner, technician Irene Goh, Lau Lijun and Ek Ming Hong were very

helpful in solving the problems that I met in the lab. Thanks to all staff who helped me.

Without financial support, this research could not have started. I would like to thank

Nanyang Technological University for providing me scholarship, which was the main

financial source to support my study and living during my PhD candidate period. I would

also thank my supervisor and professor Hsu Wen Jing for providing me a part-time job

opportunity. Not only I earned some livings for the late period without scholarship, but

also it provided a working experience.

Finally, I want to say thanks to my parents.

 II

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

TABLE OF CONTENTS

1 INTRODUCTION ...1

1.1 Background... 1

1.2 Objectives of This Research... 3

1.3 Main problems and Technical Issues.. 3

1.4 Thesis Organization.. 4

2 LITERATURE REVIEW ...5

2.1 Agent Architectures.. 7
2.1.1 BDI architecture.. 8
2.1.2 Subsumption architecture ... 11
2.1.3 Hybrid architecture ... 14

2.2 Agent Character ... 16
2.2.1 Creating human-like agents .. 17
2.2.2 Promoting agent performance... 19

2.3 Agent Learning ... 19

2.4 Action Scheduling... 21

2.5 Agent Systems and Applications ... 22
2.5.1 Agent simulation system... 23
2.5.2 Multi-agent simulation system.. 23

2.6 Robot Navigation .. 24
2.6.1 Global path planning... 25
2.6.2 Local obstacle avoidance .. 26

3 PARALLEL BDI AGENT ARCHITECTURE..31

3.1 Introduction .. 32

3.2 The General Framework.. 38
3.2.1 Belief manager.. 39
3.2.2 Intention generator.. 40
3.2.3 Intention executor ... 44
3.2.4 Synchronization among peer intention plans .. 49
3.2.5 General Remarks .. 50

3.3 Comparison between the Parallel BDI Model and the Sequential Ones.. 50
3.3.1 Sequential BDI agents .. 51
3.3.2 The input data ... 53

 III

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3.3.3 Comparison results and analysis... 55

3.4 Theoretical Analysis ... 59

3.5 How Much Parallelism... 63

3.6 Possible Advantages and a Limitation.. 68

3.7 Conclusions ... 70

4 AGENT CHARACTER...71

4.1 Introduction .. 72

4.2 The Analysis of Agent Character .. 73
4.2.1 Personality .. 74
4.2.2 Experience .. 76

4.3 The Extended BDI Agent Architecture .. 78
4.3.1 Personality settings ... 79
4.3.2 Experience function library .. 80

4.4 Experiment.. 82
4.4.1 Experience .. 82
4.4.2 Parameter setting .. 86

4.5 Conclusion... 91

5 PRIORITY CONTROL ...93

5.1 Introduction .. 94

5.2 Priority Control Extension .. 98

5.3 Priority Control .. 101
5.3.1 The reminding phase of a PCF.. 102
5.3.2 The forgetting phase and the unchanging phase of a PCF .. 106
5.3.3 The complete PCF .. 107
5.3.4 Priority change caused by other desires/intentions ... 110

5.4 Comparison of Parallel Agents Without and With the Reminding-forgetting PCF..................... 113

5.5 Agent Behaviours with Different Reminding Functions ... 117
5.5.1 Probability that the intention is running at t.. 119
5.5.2 Probability that the intention is started first time at t .. 120

5.6 Conclusion... 122

6 A VESSEL CAPTAIN AGENT...123

6.1 Software Agent Architecture... 123

6.2 Experiment.. 126

 IV

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

6.2.1 System design ... 126
6.2.2 Experiment result.. 129

6.3 Conclusion... 133

7 CONCLUSIONS AND FUTURE WORK..135

7.1 Conclusions ... 135

7.2 Proposals ... 137
7.2.1 A parallel hybrid agent architecture.. 137
7.2.2 Applications to real robots.. 138

REFERENCE..139

APPENDIX ...149

A. Complete behaviour records of the vessel captain agent.. 149

B. Publication list.. 155

 V

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

LIST OF FIGURES

Figure 2-1 The TouringMachines agent control architecture (from [35]). 14
Figure 3-1 Parallel BDI agent model. ... 36
Figure 3-2 The General Framework for Parallel BDI Agents. ... 38
Figure 3-3 States of desires and intentions and their transition. 41
Figure 3-4 Operations of DG. ... 43
Figure 3-5 Operations of DS... 44
Figure 3-6 Transformation of a normal intention plan. .. 46
Figure 3-7 Operations of IM. .. 48
Figure 3-8 Operations of IS. ... 49
Figure 3-9 Sequential BDI agents... 51
Figure 3-10 The data flow in the agent... 61
Figure 4-1 Effects of personality. ... 75
Figure 4-2 BDIE architecture.. 78
Figure 4-3 Obstacle avoidance.. 83
Figure 4-4 RBF Network for approximating the function of Q value. 84
Figure 4-5 HTN for obstacle avoidance.. 87
Figure 4-6 Decision making.. 89
Figure 4-7 Path of avoidance. ... 91
Figure 5-1 Priority control extension to the original parallel BDI framework (only parts

of the original framework that interact with the extension are shown). 98
Figure 5-2 Requirement for priority changes caused by new beliefs, new desires and new

intentions... 100
Figure 5-3 Sigmoid functions. ... 103
Figure 5-4 Gaussian functions. ... 104
Figure 5-5 Comparison of three functions. ... 105
Figure 5-6 Forgetting curves with different S... 107
Figure 5-7 Priority Control of Four Intentions. .. 109
Figure 5-8 Examples of several PCF(t). ... 109
Figure 5-9 I(t) shifting in the Reminding Phase. .. 112
Figure 5-10 Outside Reminders in Forgetting Process. .. 113
Figure 5-11 APT of events.. 116
Figure 5-12 Demonstration of function D(t)... 118
Figure 5-13 Probability that the intention is running at t.. 119
Figure 5-14 Probability that the intention is started at t first time. 121
Figure 6-1 Software implementation architecture. ... 124
Figure 6-2 Program interface. ... 126
Figure 6-3 The visibility graph (from [76]). ... 127
Figure 6-4 Algorithm for calculating the global path. .. 128
Figure 6-5 Environment monitor thread in Belief manager.. 129
Figure 6-6 Vessel navigation. ... 130
Figure 7-1 A parallel hybrid agent architecture.. 138

 VI

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

LIST OF TABLES

Table 3-1 Sequential agents .. 52
Table 3-2 Allocation schemes... 52
Table 3-3 Events statistics .. 54
Table 3-4 ART of the events by the agents... 56
Table 3-5 Experiment statistics... 61
Table 3-6 Experiments statistics ... 63
Table 3-7 Events statistics .. 64
Table 3-8 ART of the events by the agents... 65
Table 3-9 Average waiting time for deliberation.. 66
Table 3-10 Average waiting time for execution ... 66
Table 4-1 Priorities of messages for new beliefs .. 80
Table 4-2 Interface of obstacle avoidance function.. 86
Table 4-3 Interface of action decider function.. 88
Table 4-4 Initial status of obstacle avoidance... 88
Table 4-5 Outputs of the evaluation function ... 90
Table 5-1 Parameters related to the reminding-forgetting function................................ 108
Table 5-2 Intentions with different PCF parameter settings... 108
Table 5-3 Events statistics. ... 114
Table 5-4 Agents types. .. 114
Table 5-5 Events processed statistics.. 115
Table 6-1 Processing records of the vessel agent ... 131

 VII

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ABSTRACT

The objective of our project is to design an agent architecture to simulate the intelligence

and behaviour of a vessel captain in navigation. An agent representing a vessel captain

should be able to perceive the environment, make decisions and act simultaneously. The

agent should be able to prioritize its activities according to their importance and urgency.

The agent should be able to reconsider its goals and intentions and adapt in the changing

environment. The agent should be able to improve its performance with the accumulation

of experience. Different vessel captains and thus different vessel agents should behave

differently based on different personalities and past experience. It is also the objective of

our research that work done here is general enough for building agents in other contexts

like a robot looking after a patient or old people.

Many agent architectures have been proposed based on various processing philosophies,

including deliberative architectures, reactive architectures and hybrid architectures. The

deliberative agents have powerful reasoning ability compared to the reactive agents, but

the slow processing speed due to the theorem proving based on complex symbol systems

of the world makes them unsuitable for some dynamic environments. The agents based

on the reactive architecture do not need deliberating and have quick processing ability.

However, it is hard to design and maintain such agents, especially for complex agent

systems. More importantly, the reactive agents lack learning ability which is essential for

a truly automatic and evolutionary agent. The hybrid architecture combines deliberative

and reactive architectures. The emergencies can be processed by the reactive layers while

the deliberative layers process other decisions. Currently, the behaviours of all the

existing agents are organized in a sequential way: detect-think-act. When an agent is

thinking, it cannot detect the environment and may be in the danger of overlooking

emergencies.

 VIII

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

In this thesis, a general framework for real time performance in the Belief-Desire-

Intention (BDI) model is proposed. It is an improvement for the BDI agent model. The

agent consists of three parallel components: belief manager, intention generator and

intention executor. The communication among them is realized by interrupts. The current

running actions in the intention generator or intention executor can be suspended if the

new incoming data has a higher priority. It supports the following agent abilities at the

architecture level: (1) the ability to respond to emergencies timely; (2) the ability to

reconsider and modify goals, intentions and actions in reaction to unexpected or new

information; (3) the ability to perform multiple actions at once; (4) the ability to perceive,

deliberate and act simultaneously; (5) the ability to prioritize the deliberations and

intention executions. The architecture provides a possibility for the deliberative agents to

be applied in complex and dynamic environments. A comparison experiment among the

parallel agent and the sequential ones is made by simulating the processing of incoming

events. The results show that the parallel agent has a powerful processing ability. The

issue of how much parallelism and how to configure a parallel agent based on the general

framework are studied by experiments with different configurations of the parallel agent.

Furthermore the vessel agent is personalized by its past experience and personality. We

incorporate Experience Function library into the basic BDI model. As an example for

accumulating experience, we apply the reinforcement learning algorithm to improve the

agent’s skills of obstacle avoidance. The algorithm is incorporated into the vessel agent

as an Experience Function. The agent accumulates the experience during its navigation

and the different past experiences will make the agent behave differently.

Then we propose a Priority Control extension to the BDI agent. The priorities of the

deliberations/intentions in the agent can be controlled by proper Priority Control

Functions. This provides a way to schedule the deliberations/intentions. A reminding-

forgetting Priority Control Function is designed by simulating human behaviours when

dealing with several things at the same time. Such function can be used when designing

human-like agents. The agent with different settings for the Priority Control Function

behaves differently.

 IX

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Finally, a software agent system of vessel captain traveling at sea is developed based on

the parallel BDI agent framework with the Experience Function library and Priority

Control components. The structure for realizing the software agent is designed. The

experiments show that the agent is able to respond according to expectations.

At the end of the thesis, we conclude on the contributions made in this research. Possible

future research and applications are also discussed. The work presented in this thesis was

done in simulation. We expect that it can be applied in real robots some day.

 X

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ABBREVIATIONS

AFSM Augmented Finite State Machines

ART Average Response Time of all events

ARTe the estimated ART

ARTp the ART of the events with priority p

ARTw the weighted ART by the priorities of the events

AVGd the average PG time

AVGe the average PE time

AWTD Average Waiting Time for Deliberations

AWTE Average Waiting Time for Execution of intentions

BCM Beam-Curvature Method

BDI Belief-Desire-Intention

BDIE Belief-Desire-Intention-Experience

BG Belief Generator

CPEF Continuous Planning and Execution Framework

CVM Curvature-Velocity Method

DAI Distributed Artificial Intelligence

DG Desire Generator

DS Desire Scheduler

DWA Dynamic Window Approach

EEC Emotion Eliciting Condition

EM Environment Monitor

HTN Hierarchical Task-Network

IM Intention Manager

IS Intention Scheduler

LCM Lane-Curvature Method

LORA Logic of Rational Agents

LSA Logic-Based Subsumption Architecture

 XI

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

NPC Non-Player Character

PCF Priority Control Function

PE Plan Executor

PG Plan Generator

PRS Procedural Reasoning System

RBF Radial Basis Function

VFF Virtual Force Field

VFH Vector Field Histogram

 XII

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1 Introduction

CHAPTER

1
INTRODUCTION

1.1 Background

The Singapore Strait is used by vessels entering and leaving the Port of Singapore as well

as by transiting vessels. Vessels enter and leave the Port of Singapore via various

navigational approaches. The types of vessels using the Singapore Strait range from very

large container carriers to small crafts such as passenger ferries. During peak periods, like

morning or evening, or public holidays, a larger number of ferries will appear. The heavy

marine traffic makes certain sea areas very crowed and accidents do happen occasionally.

In such an environment, vessels exhibit the following behaviours:

o Moving towards the destination. This means that a vessel has to reach its target,

instead of navigating aimless. For example, a vessel moves to the Port of

Singapore. With a given destination and the map of the sea, each vessel plans its

own route to arrive at the destination.

o Avoiding stationary objects and other moving vessels. For example, for a

transiting vessel, it should avoid collision with islands, reefs and lighthouses

spotted in the Singapore Strait. At the same time, when it meets other navigating

vessels, it should also avoid these moving vessels. Thus methods of avoiding

dynamic obstacles are necessary.

 1

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1 Introduction

In the real world, vessels are under the commands of their own captains. As people have

different personalities, different captains demonstrate different vessel navigation arts. So

human factors have very important effects on vessel navigation. The human factors

affecting navigation can be seen from the following facts:

o Captains have different behaviours in moving towards the destinations. Some

people tend to move fast, some take it easy. Some are behind schedule, therefore

have to rush. Some are before schedule, so need to slow down.

o A bold and a meticulous captain may have different styles of command when

dealing with the same situations when other vessels are nearby. A meticulous

captain always adopts the safest strategies earlier than his bold peers. Different

types of vessels also have different velocities, sizes and capacities.

o Experienced and green-horn captains have different reactions to the same events.

A simulation system of vessels traveling at sea is very useful for risk analysis and

channel capacity estimation in the Singapore Strait or any other waters. The risk analysis

will be carried out for the interaction between each type of vessel and each of the other

types of vessels, the time of the day and the different areas. The simulation system will be

able to indicate what type of vessels, what kind of captains or behaviour, which area and

what weather condition are high risk factors. Then remedial or precautionary actions may

be taken. This simulation can also be used to find how many vessels can safely use the

Singapore Strait at the same time. The channel capacity is defined as the number of

vessels that can safely use the channel. Ferry schedule determines the frequency and the

size of the ferries. Given a fixed demand of passenger capacity, increasing the number of

high seating capacity ferries will reduce the ferry frequency. However, reducing ferry

frequency may cause costumer unhappiness and drive out business. The channel capacity

estimation can be used to find an optimal balance between them. In order to have

meaningful conclusions from the simulation system, different vessel behaviours must be

simulated realistically.

 2

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1 Introduction

1.2 Objectives of This Research

In this research, we will try to design an agent architecture for the agent that replicates

the behaviours of vessel captains traveling in sea. The captain agent has the ability to

navigate from starting point to target using different navigation methods. Each vessel

plans its global path first using a global path-planning algorithm. When the vessel moves

along its path, it may detect some unknown obstacles. Then it uses some local obstacle

avoidance methods to avoid collision with them while still trying to move to its

destination. More importantly, the vessel agent should obtain: (1) the ability to respond to

emergencies timely; (2) the ability to reconsider and modify goals, intentions and actions

in reaction to unexpected or new information; (3) the ability to perform multiple actions

at once; (4) the ability to perceive, deliberate and act simultaneously; (5) the ability to

prioritize the deliberations and intention executions.

It is also the objective of this research that the work done here is general enough for

building agents in other contexts.

1.3 Main problems and Technical Issues

The agent will be realized based on the famous BDI agent architecture. Currently, the

BDI agent architecture is not suitable to simulate a real-time vessel captain in two

aspects: 1. the reactivity of the agent cannot be assured; 2. the characters of the captain

cannot be easily realized. We design a parallel BDI agent architecture to solve the first

problem. As we said earlier, a vessel is under the commands of its captain, a human

being. The captain’s own personality and experience will affect the vessel’s navigation.

So we integrate some more components into the parallel BDI agent architecture to realize

the agent characters. In the future, multi-agent simulation of the vessels based on the

parallel BDI agent architecture can be used for the risk analysis and channel capacity

estimation as discussed in Section 1.1.

To validate the performance and applicability of the agent architecture we proposed, the

research methodology adopted is computer simulation. In the simulation, we assume that

 3

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1 Introduction

the agent can receive the world information in the form of beliefs and the actions are

carried out immediately. We will judge whether the system runs according to our

expectation by examining the behaviour records of the agent.

1.4 Thesis Organization

The following chapters are organized as following:

o Chapter 2 LITERATURE REVIEW. This chapter introduces related research,

including agent architectures, agent character, agent learning, action selection and

agent systems. The techniques related to robot navigation are also reviewed here.

o Chapter 3 PARALLEL BDI AGENT ARCHITECTURE. In this chapter, the

design of the general parallel BDI agent framework is introduced. Simulation

experiments of the parallel BDI agent and several sequential BDI agents are

performed. The experiment results have demonstrated the advantages of the

parallel BDI agent. The parallelism is analyzed using experiment simulations.

o Chapter 4 AGENT CHARACTER. The basic agent character is analyzed in this

chapter. The Experience Function library is incorporated into the agent to support

combining the reinforcement learning algorithm. Then an experiment simulating

the agent experience is made.

o Chapter 5 PRIORITY CONTROL. A component to control priority change in an

agent is proposed. As an example, a personalized priority control schema for

action scheduling is shown. The schema is designed by simulating human

behaviours when dealing with several things together.

o Chapter 6 A VESSEL CAPTAIN AGENT. A software vessel captain agent is

realized based on the general parallel BDI framework with the two character

components: experience function library and priority control schema. The

architecture to realize the software parallel BDI agent is shown. The captain agent

is realized by using multi-threads programming techniques. The agent shows the

applicability of the parallel BDI model.

o Chapter 7 CONCLUSIONS AND FUTURE WORK. We conclude our researches

and make some proposals about future research.

 4

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

CHAPTER

2

LITERATURE REVIEW

In The Merriam Webster Dictionary, agent is defined as: “agent n 1 : one that acts 2 :

MEANS, INSTRUMENT 3 : a person acting or doing business for another” [3]. From the

viewpoint of the semantic meaning, we may regard the computer agent as an instrument

that acts. However, a single definition of ‘computer agent’ is not accepted unanimously

since it first appeared in the 1970s due to the diversification of the computer agents’

attributes, roles, architectures, and other features.

In 1977, Hewitt introduced the concept of agent as ‘actor’ in the research of Distributed

Artificial Intelligence (DAI). In the model, an actor “is a computational agent, which has

a mail address and a behaviour. Actors communicate by message-passing and carry out

their actions concurrently” [53]. This is the original model of an agent. From then on, the

research on agents has been carried out in various areas and applications. In an overview

of software agent, Nwana describes software agents as a broad range of computational

entities [100]. From his viewpoint, agents in software area can be reusable software

components that provide controlled access to (shared) services and resources or the basic

building blocks for applications organized as networks of collaborating agents. For a real

physical system, like a Robot World cup team, each robot also can be seen as an agent,

 5

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

which is a computational unit [73]. The whole team is considered as a multi-agent

system, in which each agent can finish some tasks individually and cooperate with other

teammates. Both kinds of computer agents will embody some characteristics of humans.

In fact, the ultimate objective of agent research is to make agents act as real intelligent

human agents. In our research, the final objective is to design an agent which is able to

behaviour as a real vessel captain in navigation.

As pointed out in [100], the three common attributes of agents are: autonomy,

cooperation and learning ability. Such attributes make the agents different from

conventional programs. Firstly, programs are sequences of clear and detailed instructions

provided by their designers to be followed exactly. But agents are autonomous and act on

behalf of a user. Agents act according to their own desires and interests without getting

detailed instructions from the user. Secondly, agents often need to cooperate and

coordinate with others. They have social ability. This human-like ability is lacking in

conventional programs. Agents often communicate with the user, the system, and other

agents. Through communication, agents can obtain knowledge about the user’s reaction,

environment and others’ intention. Agents can then decide and act more effectively.

Agents can also cooperate with other agents to carry out more complex tasks than what

they can handle themselves. This cooperation can be seen from a Robot World Cup team.

The agents must cooperate with each other efficiently to gain victory, like a human

soccer team. In a multi-agent system for distributed computing, agents often obtain the

ability to access remote resources. Thus, the efficiency of the whole system can be

increased [57]. Thirdly, some agents have learning ability, which shows that they have

some kinds of intelligence. If agents do not learn, they are not suitable for dynamic

environments where situations cannot all be foreseen. Agents learn from actual actions

and/or training. Thus they can choose the best actions based on the experiences gained

from past actions. When under training, sometimes agents must be proactive. For

example, an agent may test some actions to gain the rewards from these actions. Different

to this, most programs always choose their actions using the same approach according to

the way it is programmed. In recent years, emotions also become a very important

 6

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

attribute for the agents in some applications. This shows another distinction from

traditional programs: efficiency is not the only goal to pursue.

Research about agents has been illustrated, summarized and concluded in many books or

papers, such as [107, 65, 100, 135, 115, 137]. In these publications, the agent research is

divided into many areas:

• Agent architectures

• Agent language and programming

• Agent characters

• Automatic learning in agents

• Agent systems and applications

• Multi-agent systems

• Agent coordination and negotiation

• …

Nowadays the areas of agent research have become so large and wide that it is very

difficult to include all the areas even in a book. Here, our simple summaries will be

focused on the areas which are mostly related to our research, including agent

architectures, agent character and action scheduling. Agent learning and some agent

systems are also introduced. At the end, some researches of robot navigation are

examined, which are related to our vessel agent simulation.

2.1 Agent Architectures

Wooldridge and Jennings group agent architectures into three types: deliberative

architecture, reactive architecture and hybrid architecture [135]. A deliberative

architecture is based on the hypothesis of physical symbol system, which is said to be

capable of general intelligent action. Different kinds of deliberative agents emerged from

it, for example, planning agents, Belief-Desire-Intention (BDI) agents, Homer and so on.

However, many unsolved problems existing in symbolic AI restricted its developments.

A reactive architecture is designed without symbolic world model and complex symbolic

reasoning. A hybrid agent architecture is built by a combination of these two agent

 7

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

philosophies. The hybrid agents try to maximize the strengths and minimize the

deficiencies of the most relevant technique for a particular purpose [100]. This kind of

agent can inherit the advantages from other agents and avoid their shortcomings. It is

becoming more popular in agent design.

In the following, we will review these three kinds of agent architectures. We choose the

BDI architecture as representative for deliberative architecture and the subsumption

architecture for reactive architecture because of their popularity among the peers.

2.1.1 BDI architecture

BDI architecture is the deliberative architecture that is researched mostly. It provides a

folk psychological way by simulating human deliberation. The mental attitudes of belief,

desire, and intention represent the information, motivational, and deliberative states of the

agent respectively [18, 111]. It may seem useless for simple agents, like a thermometer or

an alarm clock, but it is helpful when developing agents that work in complex

environments.

Rao and Georgeff provided a BDI model in software engineering area [111, 110]. They

defined the BDI components and explained their significance to agents. The actions or

procedures that achieve the various objectives are dependent on the state of the

environment and are independent of the internal state of the system. So it is necessary

that there is some component of system state which represents the information on the

state of the environment and which is updated appropriately after each sensing action.

Such a component is called the system’s beliefs. It is also necessary that the system has

information about the objectives to be accomplished. This component is called the

system’s desire. In order to limit the frequency of reconsideration and thus achieve an

appropriate balance between too much reconsideration and not enough, it is necessary to

include a component of system state to represent the currently chosen course of actions.

This additional state component is named as the system’s intention. This BDI agent

architecture is used in an air-traffic management application [111]. Brazier et al. present

 8

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

an extended task hierarchy for a BDI-agent in [19]. The agent process control consists of

the belief, desire, intention and commitment determinations.

Procedural reasoning system (PRS) [63] is a famous implementation of the BDI model.

The deliberative process runs in iterations. At the beginning of each iteration step, new

goals and new facts are obtained through input. Then several plans in the KA (knowledge

area) library are triggered by the new belief and one or more of the applicable plans are

selected to be sent to the intention structure. At the end of each iteration step, the

intentions are executed. This kind of idea of implementing the BDI agent is adopted in

many BDI systems [109, 4, 56]. In UM-PRS [77], an extension of the PRS system, the

hierarchy of the plans is kept for monitoring plan execution and replanning. The formal

specification of the PRS can be found in dMARS system [28]. JAM is a BDI agent

architecture developed by Huber in 1999 [59]. It combines the advantages of the previous

BDI agent researches. With the JAM toolkit, users can create and run their own agents by

designing beliefs, plans, and primitive functions following the defined grammar. The

basic structure is similar to PRS system.

AgentSpeak(L) is a popular BDI programming language proposed by Rao in 1996 [112].

It defines a set of basic beliefs and a set of plans. The plans are searched for the

triggering events (new beliefs). Then applicable plans are inserted into the intention stack

for execution. A more formal description of AgentSpeak(L) can be found in [29]. This

language has been combined into other agent language, for example 3APL [54].

SIM_AGENT is one application based on the AgentSpeak(L) [83].

The reasoning of the BDI agents can also be performed by automatic theorem provers. A

set of logic is defined in such agents. For example, Wooldridge introduced a BDI logic

called Logic of Rational Agents (LORA) in his book [136]. LORA contains a temporal

component as an addition to the traditional first-order logic. The theorem provers are

used to produce some outputs.

 9

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

The BDI agents have been applied in many applications. Rana et al. have applied Conflict

Management Strategies in BDI Agents for Resource Management in Computational

Grids [109]. A rational agent executes a plan from a pre-defined plan library (belief) to

achieve local goals (desire), and can try alternate plans (intention) if a goal cannot be

achieved by a chosen plan. Ambroszkiewicz and Komar use the BDI model in a Game-

Theoretic Framework [4]. In a game, the agent’s belief is identified with the knowledge

about the game and about other agents together. The desire is represented as agent’s goal

to achieve a maximum level of its utility. A reasoning process based on the agent’s

rational behaviour is proposed. This process determines the agent’s intention. Rational

behaviour may be used to construct such reasoning process. The process of reasoning is

defined as a transformation that conveys the knowledge from higher types into lower

types and finally into the ground type. This final ground knowledge is the basis for

determining the final intention.

Recently, a flexible BDI agent system is proposed in [106]. This paper identifies two

drawbacks of the sequential BDI agents. One is that concrete layout of the cycle will

determine the nature of the agent, for example, the caution level and reconsideration rate.

Another drawback is that the agent architecture is not easy to be extended with additional

facilities because the processing is step by step and very restrictive. The authors propose

a more flexible way of mapping the original BDI model to a system based on agenda

scheme in order to allow easier extension of the agent. The steps are transformed to meta-

actions. A main interpreter will decide which meta-action will be selected to execute

from the agenda queue. The execution of the meta-action may update the status and insert

new meta-actions into the agenda. The extension of new agent abilities can be easily done

by designing the meta-actions. However, the outside messages are inserted into the

agenda directly as external actions. This may indicate that the agent does not detect

outside environment automatically. If the detection action is modeled as regular meta-

actions, the concrete layout problems still exist. The belief cannot be updated in real-time

because the detection is performed in predefined intervals. Then caution level and

reconsideration rate cannot be improved.

 10

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

As seen from above, the BDI model can be used to design rational agents. In the design

of a vessel agent, we will develop an agent architecture based on the BDI model. The

environment information can be seen as the vessel agent’s belief. The desire is to

navigate to target safely. The vessel’ admissible actions can be seen as intentions. We

design a parallel BDI agent architecture to solve the problems caused by slow

deliberating in traditional BDI agents. This is shown in Chapter 3. The BDI model

represents the general attributes of vessel agents. However, the BDI model is not

sufficient to represent realistically the vessel agents. There is no a proper representation

of the vessel captain’s characters in the model. In a real world the character of a captain

will affect the decision he makes to control his vessel. Even in identical environments,

two captains may have different navigation decisions simply because one is more

conservative and cautious than the other. The personality and character of the two

captains are making the difference even with the same beliefs and desires. There is no

component in the BDI model to represent variations among agent characters. Thus, we

plan to incorporate a new factor into the BDI model. We call it ‘character’, which

represents agent’s personality. The agent is expected to behave human-likely as

demonstrated in Chapter 4 and 5.

2.1.2 Subsumption architecture

In deliberative systems, the world is represented by symbols and the reasoning is

performed through theorem provers. Since the speed and efficiency of the provers cannot

be ensured, this makes this architecture unsuitable in a dynamic environment. A reactive

architecture takes a different approach than symbolic AI. It does not include any kind of

central symbolic world model and does not use complex symbolic reasoning. Among

reactive agent applications, Brooks’ subsumption architecture is the most celebrated one

[22, 21]. The architecture consists of a set of modules, each of which is described in a

subsumption language based on augmented finite state machines (AFSM). An AFSM is

triggered into action if its input signal exceeds some threshold, though this is also

dependent on the values of suppression and inhibition signals into the AFSM. The

modules are grouped and placed in layers, which work asynchronously, such that

 11

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

modules in a more complex level can inhibit those in lower layers. In [84], a learning

algorithm is proposed to improve the scheduling of the behaviours/layers based on the

feedbacks when to activate the behaviours.

This architecture is often used for robots. Each layer has a hard-wired purpose or

behaviour, e.g. in a robot a layer is to avoid obstacles and other layer is to enable/control

wandering [100]. The different layers represent different behaviours of a robot. Then the

behaviours from a more complex layer suppress the behaviours from the low layers. For

example, in the MIT AI laboratory Mobots [23], three kinds of behaviours are controlled

in three layers. The lowest-level layer implements a behaviour, which makes the robot

avoid being hit by objects. The next layer makes the robot wander about when not busy

avoiding objects. The third layer makes the robot try to explore. There is no central

control in the robot. Each layer is driven by the messages it receives. Though the process

of deciding actions is similar to neural network, Brooks claims that this architecture has

no relation with neural network because there is no biological significance existing in the

architecture.

The architecture is simple and efficient in terms of the amount of computation required.

But the limitations are also obvious [137, 78]. One problem is that the arbitration

technique only allows a single behaviour to be active at one time. The architecture

chooses one action at each deciding cycle and other actions are suppressed. Though the

deciding speed is promising, the single action decision will affect agent’s performance.

For example, if a robot’s action is to avoid obstacle, the robot may deviate far away from

the target. Several researchers have proposed to incorporate fuzzy logic technology with

this architecture [78]. The decision process is fuzzied. In the process, behaviours from

different layers are composed together and decomposed to get a final decision result.

Another problem exists in that the agent makes decisions based on local information.

Thus, global information is omitted when making decisions. This means that the agent

always has a ‘short-term’ view. The architecture is not suitable for making global plans.

At the same time, the information from the local environment needs to be sufficient,

 12

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

otherwise the agent will not be able to determine its actions because the agent does not

store models of environments. An improvement to deal with this weakness can be seen in

an architecture for persistent reactive behaviour [26]. Long-term conceptual memory,

long-term skill memory and short-term memories are incorporated in the agent. The

knowledge encoded in the memories can be utilized when the agent updates its beliefs,

selects and executes skills. A persistence factor is used to control the agent’s bias to

select the skills picked on the previous time step. Thus, the agent can take into account

the global environment and its previous behaviours.

It is also difficult to implement agents’ learning ability using this architecture in a hard-

wired implementation. Purely reactive agents can hardly be designed to learn and

improve performance over time. Besides, agents with many behaviours are very hard to

build. The dynamics of the interactions between behaviours are very complex to

understand. This implies that the subsumption architecture cannot be applied in a

dynamic and complex environment. For our vessel agent, the deliberative architecture

can better simulate the human behaviours with psychological significance.

It is worth noticing that the layers run asynchronously in a subsumption architecture. In

[21, 66], the layers are run concurrently. The speed of reaction of the agent is increased

by parallelism. In a recent research, the deliberation ability is realized based on the

machinery of the subsumption architecture. In Logic-Based Subsumption Architecture

(LSA), the layers are realized as the theorem provers. Thus the reasoning ability of the

deliberative agents is combined into the reactive agents. At the same time, the empirical

results from a robot implementation show that the provers can be used without sacrificing

much reactivity [5, 6]. Each control-loop cycle is shown to take 0.1-0.3 seconds, which is

acceptable for the robot in their experiment.

Another recent research about the subsumption system is a dynamic subsumption system

[91]. The layers consist of several cells, which contain possible partial descriptions of

certain functions of the agent. If the environment changed, only the related cells are

affected.

 13

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

2.1.3 Hybrid architecture

A hybrid architecture is an architecture that combines the above two kinds of

architectures together. This represents the new and popular trend in designing robots,

because this architecture can inherit the advantages of the two architectures. For example,

a reactive architecture is suitable for real-time environments, but the reactive architecture

produces behaviours not goal-oriented at times. A deliberative architecture can handle

that, but it sometimes cannot react timely. A hybrid architecture incorporating two

architectures can solve the problems. In fact, human can be seen as a hybrid system. In

the human reasoning system, we do not really think and spend time deliberating what to

do in face of an emergency. For example, the kitchen is on fire, we just get water and put

out the fire without spending time deliberating.

Figure 2-1 The TouringMachines agent control architecture (from [35]).

An example for this architecture is Ferguson’s TouringMachines hybrid agent

architecture [35, 36]. We can see from Figure 2-1, the three layers work together to

control the agent. The reactive layer is in the style of the subsumption architecture. The

 14

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

planning layer is designed as a deliberative architecture, so the agent can have an overall

planning ability and also can deal with emergencies. The modeling layer is used to model

other agents in the environment. The three layers are embedded in a control framework,

which deals with conflicting proposals from different layers by using control rules. The

control rules will decide which action in the action buffer is chosen to be sent to the

agent’s effectors. The rules will ensure that only one action will be activated at a time

slice.

As we can see, the hybrid architecture is good at representing both the meditated

behaviour and the reactive behaviour. But as Ferguson points out that there were still

many problems existing in the TouringMachine, a hybrid architecture as TouringMachine

is not really perfect for agents which operate in dynamic and unpredictable multi-agent

environments. For example, there is not a learning component in the architecture, which

may improve the agent’s adaptation in new environment. Also the computations in the

three layers are restricted strictly by the pre-determined time resources. This can be seen

as the concrete layout problem of the cycle in [106]. Thus the TouringMachine may fail

to make the best use of the time resources.

This hybrid architecture has been used successfully in designing robot agents. In most

cases, the deliberative layer is used for global path planning and the reactive layer for

obstacle avoidance, subgoal decision and so on. In [11], three layers are used for a 3T

robot architecture: deliberation, sequencing and reactive skills. The sequencer is used to

activate and deactivate the skills. In the hybrid mobile robot [82], deliberative and

reactive models are used for long-term and real-time decision respectively. The planning

module will provide targets for the target reaching module. The commands from the three

layers in reactive models are combined to make the final motor control signal.

Other kinds of hybrid architecture without the explicit deliberative and reactive layers

also exist. Sometimes, it is a combination of agent abilities. For example, an architecture

for Non Player Character (NPC) is proposed in [92]. The NPC agent architecture consists

of 4 layers: behaviour system, social system, goal based planner and schedule. The

 15

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

selection is made by selecting from the outputs. Another example is a homogenous agent

architecture for robot navigation [62]. In the designation, an agent can be created by

combing the functions of several other agents, such as goal-seeking agent, vacancy-

pursuing agent and obstacle avoidance agent.

2.2 Agent Character

Normally, agents are built to make rational and best-fit decisions. Thus, in the same

situation, different agents will all make the same decisions and they will have the same

behaviour. However, in some areas, this is not always desired and the agent should

demonstrate its own character. For example, in multi-agent simulation of human society

[61], agent character is essential for simulating various human beings. The agents will not

always work in an ideal way. Their characters will affect their decisions. As Sloman

points out when answering the question of what sort of architecture is required for a

human-like agent, “designing human like agent is part of the more general problem of

understanding design space, niche space and their interrelations, for, in the abstract, there

is no one optimal design, as biological diversity on earth shows” [120]. The discussion of

a similar question is seen in [121].

The agent characters separate one agent from another. An agent’s character can be found

in three aspects: the physical characters, experience and the emotions. The physical

characters include the agent’s basic attributes of physical resources, for example, a vessel

agent’s length, maximum acceleration, maximum loads and so on. The experience can be

expected to be realized by reinforcement learning algorithms. Compared to the physical

characters and experience, most researches working on the human-like agents concentrate

on simulating human emotions. Mainly, there are two objectives of this research: creating

human-like agents and promoting agent performance.

 16

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

2.2.1 Creating human-like agents

The most direct application of the emotions should be human-like agents, which are

supposed to show some human-like behaviours [117]. Humans show various behaviour

modes according to different emotions. In [122], it is said that though we do not

understand how human emotions work, by trying to model emotions, it is possible to

learn more about the emotions, and it is possible to create more realistic agents.

In the game area, the Non-Player Character (NPC) agents must demonstrate different

emotions for a vivid scene. In [96, 99], different kinds of Quake players are created based

on the BDI model. The players with different interactive characters show different

behaviours when executing the plan ‘win’. The characters are created by making some

probes. Then the characters are created based on the answers of the agent. In [97],

Norling argues that the BDI model is incapable of representing several human

characteristics. In a psychological way, the characteristics include decision making,

expertise, emotion, timing, and so on. She proposes to make a folk psychological

extension to the BDI model to represent these characteristics. Some special modes

representing the characteristics are incorporated into the BDI model to show the

character. An example of incorporating the recognition-primed decision model with the

BDI model to make human-like decision making is given. In [95, 98], COJACK

architecture is proposed to support psychologically plausible human variability. In this

architecture, that agent’s reasoning and actions are moderated via a set of parameters.

Some external and internal moderator will also affect the agent’s decision.

A five-factor (extraversion, agreeableness, conscientiousness, neuroticism, and openness)

model of emotion is borrowed from the psychological research. It is used to affect the

learning strategies of the agent [50] and the information behaviours [51]. Patrick Gebhard

makes his research to connect the five-factor model of personality to the agent

behaviours. A set of appraisal and dialogue act tags is designed. The tags are mapped

onto the emotion eliciting condition (EEC) variables to control the emotion changing.

Then the emotion will affect the behaviours of the agent [41]. This EEC system is used in

multi-character conversations [42]. Based on this, a layered model of affect is designed.

 17

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

Emotion, mood and personality are differenced in terms of short, medium and long

periods. The personality is realized as using the five-factor model. The five values are

defined by user at start. PAD (Pleasure, Arousal, and Dominance) system is used to

simulate mood. Then the 24 kinds of emotions are defined by the PAD values with

different weights. The agent’s behaviours are modulated based on the PAD values

according to the predefined rules [43]. A similar emotion model based on the five-factor

model is shown in [52]. The emotion factors are incorporated to make the decision-

making process of complex agents less predictable and more realistic. A kind of emotions

architecture is implemented with a three-dimensional personality space (Arousal, Pain,

and Confusion). The different status of the agent can be mapped to different emotions.

Then the emotions are used to make decisions together with the external and internal

inputs.

Another method to show the agent emotions is by designing the agent’s distinct

behaviours directly. The behaviours of the agents can be expected to be different because

of the personalities. The audiences can conclude the agents’ personalities based on the

behaviours they saw. An example of SceneMaker can be seen in [40]. The roles can make

plans based on the pre-scripted scene. In [87], a method of decision making for social

agents is proposed as the PsychSim system. From the theory of mind, the action of the

agent must exhibit consistently, self-interest, speaker self-interest, trust and support. A

quantitative value of each possible action is defined according to their beliefs and goals.

Such values can be modulated after the interaction with the environment, so the agent

will show different behaviours. This method is used to create characters based on the

story scripts as in the Thespian system [118]. Thespian is a tool to create agents with

personalities which are consistent with the behavious defined by the story path. The

characters’ goal weights can be modulated with the equation defined in PsychSim. The

character can be reused in different scenes. The agent will try to select an action based on

the reward of applying the actions to the current state.

 18

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

2.2.2 Promoting agent performance

Besides the applications for human-like agents, emotions also help to promote the

adaptability and autonomy of the agents. Though emotions were thought useless for agent

reasoning for long time, in [102], three benefits are identified. First, the emotion itself is

an important source of information which is highly centered on the individual. The

emotions will affect the agent’s behaviours as we show above. Secondly, the emotional

mechanisms are useful to filter relevant data from multiple, distributed and highly noisy

sources. An example can be seen in [86]. Here, emotions are used to change beliefs of the

characters in a scenario from the mission rehearsal exercise. With the same conversations

among the characters, the beliefs of mother, sergeant and soldier are changed according

to their own emotions. Thus their behaviours are consistent with their roles. Finally, the

emotions also provide a global management over other cognitive capabilities and

processes. In [132], the author states that the action decision of the agent should be

affected by both the sensory input and the desires of the agent. Agents with different

emotions may produce different desires. An example for human-like decision-making can

be found in [93, 94]. A recognition-primed decision making approach is integrated with

the BDI model as an emotion feature. The agent can learn from past experiences.

2.3 Agent Learning

An agent can better adapt in a dynamic environment if it has some learning abilities.

Then the agent can change its strategies to cope with the new situations automatically.

Automatic learning is that an agent saves historical actions and scenes in order to use

when meeting the same scene again. Learning is divided into supervised learning and

unsupervised learning [125]. Under supervised learning, a manager exists and is

responsible for providing training samples to agents. Such samples can be chosen from

special examples. This may fill agent with experience quickly [45]. In an unsupervised

learning situation, there is no such a special manager. The agent will learn from all

random events happening in environment, and the agent can become more robust for

various environments.

 19

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

Reinforcement Learning is viewed as an on-line variation of dynamic programming,

which is defined as a discrete-time system with the state transitions and costs/reward

functions [124]. Using reinforcement learning algorithm, an agent can choose an action

based on its current and past status. The algorithm will use a reward function to choose

the maximum reward value for several future steps. Different kinds of reward functions

have been defined in various situations. According to the book [80], reinforcement

learning may be computationally implemented depending on (1) whether some heuristics

are employed, (2) whether a model of the problem domain or a utility function for action

selection is available, or (3) whether the learning always converges. For example, Q-

learning does not utilize any domain model, but tries to iteratively derive an action-

weighting function.

Learning is very useful to improve the competition and coordination strategies in multi-

agent system. For example, Stone, Riley and Veloso used the learning method to train

their robot soccer team [104]. The robot can gain experience through examples and

choose better actions in a real game. Learning is also used for data collection problem.

Caragea, Silvescu and Honavar designed a multi-agent decision tree learning from

distributed autonomous data source [24]. Goldman and Rosenschein have made an

application by incorporating mutual supervised learning into multi-agent systems [45].

They test the teaching technique in a scenario of a crosswalk with two traffic signal

agents. Each agent controls the traffic light for its direction. Each agent is the other’s

teacher and also receives samples from the other.

With learning algorithms, a single agent can improve its behaviours according to the past

experience. For example, in OBELIX, an automatic robot, the RL algorithm is adopted to

solve the problem of pushing-box tasks. Experimental result showed that after the initial

learning phase an agent will outperform a hard coded agent that does not learn [85]. In a

more complex robot, the robot soccer team for Robot World Cup, Q-learning is used to

help the robots finding the best actions [72, 58]. The percent of successful actions is

greatly promoted after using Q-Learning for the robots. The learning algorithm for

obstacle avoidance in navigation is another typical application. An example can be found

 20

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

in [47]. The variables related to the positions of the robot and obstacles are used as the

status. The parameters about control the robot motions are modulated through training.

2.4 Action Scheduling

When there are several actions/intentions waiting for execution, the agent should have a

mechanism to decide the execution order. For example, in AgentSpeak(L) [112], the

selection function SI selects an intention to execute from the intention set I. However, the

detailed selection criteria are not specified in the paper. Some scheduling mechanisms

can be seen in other researches. Normally, there are two kinds of scheduling schema.

One is by a single attribute of the actions, for example, the priority. This is normally

adopted in the systems where the actions are independent. Imaging that several dependent

actions can be integrated to a single mega action, this kind of method can be seen as a

general method for scheduling actions. An example is shown in the JAM agent

architecture [59]. The intention selection is done based on the utility value of the plan.

The intention with higher utility will be executed first. Recently, another work of

intention scheduling is reported in [79]. The researchers take several properties into

consideration when scheduling the intentions, such as the importance of the plan, the

estimated running time, the deadline utility function, the degree of completeness and

FairFacter.

The other scheduling method is by the relationship among the actions. This is suitable for

complex job circumstances, for example, where the execution of an action depends on the

results from the execution of other actions. For example, in AgentSpeak(XL), an

extension version of AgentSpeak(L) [12], a task scheduler is incorporated into the

interpreter to decide how to select intentions. The set of intentions in AgentSpeak(L) is

converted into a corresponding TÆMS task structure. Then the selection is done based on

the analyses of the relationship among the plans in the TÆMS task structure. The

'enables' and 'hinders' relationships indicate which plan may be executed first. A method

to identify the potential common subgoal is provided in [127]. At first, the positive

 21

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

common subgoals are identified. Then the potential common subgoals are figured out by

maintaining summaries of definite and potential effects of goals and plans.

Human-like action scheduling schema has seldom been researched. In [74], a priority

control mechanism for behavioural animation is shown. The priority is set at minimal

value immediately after the agent displays certain behaviour like drinking. Then this

priority is increased with time. The increased priority will induce the agent to drink again.

A more formal description of this human behaviour system can be found in [75].

However, expecting the priorities of all intentions to change in the same manner is not

realistic. Different intentions should be allowed to change their priorities in various

suitable ways. Some intentions may also change priorities with the arrival of new beliefs.

This problem will be discussed more in Chapter 5.

2.5 Agent Systems and Applications

Many kinds of agent and multi-agent systems are designed for real applications besides

the robot agents. For example, the BDI agents were designed to manage the air-traffic

[111]. In a resource management system, mobile agents are capable of finding computing

resources in network, completing the goals, and returning the results [108]. The agents

are also designed for providing an interface. In a hosting system, the agents interact with

a visitor to design visiting schedule based on the visitor’s areas of interest, name and

organization [126]. As an example in the economic area, an agent is designed to perform

Market-Based Supply-Chain Management [67].

Multi-agent systems are useful for solving problems which are composed of

subproblems. As shown in [108], each mobile agent can complete a subgoal. Then all the

results are brought together for making the final result. It also can be seen that a

decentralized multi-agent system is more robust than the centralized systems. The

container port system described by Thurston and Hu is another example for distributed

multi-agent system [128]. The system is used to manage the container handling process in

a port. Four types of agents are designed for the management tasks. The agents cooperate

 22

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

with each other to accomplish the job. An agent failing will not halt the whole system. A

method to transfer the centralized policies to the decentralized policies in the multi-agent

system can be seen in [138].

Here, our focus will be put on the agent and multi-agent simulation systems.

2.5.1 Agent simulation system

Several human-like agent simulation systems have been developed in the agent character

sector. Besides those, creature simulation is also an important topic in agent area. For

example, a simulation system of a highland terrier is shown in [64]. This paper describes

a kind of brain architecture for synthetic creatures. The brain consists of sensory system,

perception system, working memory, action system, navigation system, motor system and

blackboard. Action tuples are designed. If the TriggerContext is satisfied, the action will

be executed.

2.5.2 Multi-agent simulation system

Multi-agent simulation provides a tool for simulating various societies. Simulation is

widely used to enhance knowledge in real worlds and enables us to make artificial worlds

for measuring the influence of different multi-agent coordination strategies in an

unpredictable environment. For example, Horling, Kesser and Vicent have designed a

simulation system that can be used for testing in an actual system [55]. This simulation

system enables users to directly control the baseline-simulated environment and permit

the addition of ‘deterministically random’ events that can affect the environment

throughout the run. In an agent-based interaction analysis of consumer behaviours,

Customer BEhaviior Simulator model is designed to simulate consumer behaviours when

selecting a new brand [116]. The agent evolution is simulated using the GA algorithm.

As a hot research topic, multi-agent simulation systems of traffic were researched for

predicating traffic information and finding ways to relieve traffic jam. In [103], the

unorganized traffic is simulated. With different parameter settings, the drivers are

 23

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

modeled to be cautious, normal and aggressive. The agent’s action is calculated by

physical motion laws. Then the average speed, the numbers of overtakes and accidents

are counted. A fully agent-based simulation of the traffic in Switzerland is shown in [7].

In the simulations, it is important for the driver agents to think human-likely. A method

to simulate human-like thinking is provided in [114]. Based on the psychological studies

on human drivers, Rigolli and Brady propose that the agent translate the objective world

into its own subjective world. With different parameters for perception, the agents will

have different views of world. By simulating 330 agents, some macroscopic

performances are gotten, including zone density and lane occupancy.

Better traffic control is important to relieve traffic jam. In simulation, the coordination

can be done in two ways, centralized and decentralized. In the centralized way, a manage

agent will collect all the traffic information and provide optional solutions. Traffic lights

are used for this objective [101]. The light coordination is made using distributed

constraint optimization. For a single intersection, a reservation-based mechanism is

proposed in [31]. An improvement of this system is shown in [32]. The driver agents are

assigned more abilities, for example, turning and accelerating in the intersection. In [27],

the traffic signal controller agents are divided into three layers: intersection, zone, and

region. The results from the lower layers are summarized at the higher layer. An example

of decentralized control is shown in [139]. Each driver agent will send and receive the

traffic information through a route information server. Then each agent will re-calculate

its own shortest path based on the newest information.

2.6 Robot Navigation

Basically, there are two issues in navigation: path planning and obstacle avoidance. In

this part, we will summarize the existing global path planning algorithms and obstacle

avoidance algorithms respectively.

 24

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

2.6.1 Global path planning

Path planning is a fundamental problem in navigation. A robot will usually do its path

planning at the beginning of navigation. According to known map information, several

intermediate targets will be put on the path line to the final target. Path planning methods

assume that the environment does not change while a robot is moving. Latombe

summarized a larger number of robot motion planning algorithms in his book [76]. These

methods are based on a few general approaches: roadmap, cell decomposition and

potential fields. The first two methods convert the planning problem into searching a

graph by analyzing the connectivity of the whole free space. In these methods, an

effective searching algorithm is involved. However, the potential field method is usually

defined with a limited range of influence. It can be applied while the robot is moving. So

the potential field method is often seen as a local method. We will introduce the potential

field method as a local obstacle avoidance method in Section 2.6.2.1.

The general idea of the roadmap is to construct a network of one-dimensional curves.

Then the roadmap is used as a set of standardized paths. The path planning is reduced to

search a path between the initial and goal points. Based on this idea, various methods are

proposed. The visibility graph method is one of the earliest path planning methods. In this

method, a roadmap consists of line segments connecting two nodes that do not intersect

the interior of an obstacle region. Then a path can be obtained through searching this

roadmap.

Cell decomposition decomposes the robot’s space into simple regions, called cells, such

that a path between any two configurations in a cell can be easily generated. This method

can be broken into exact and approximate methods. The exact method divides the space

by drawing vertical rays from obstacles’ vertices. The approximation method keeps

decomposing a rectangle space into identical rectangles till the interior of the rectangle is

completely free or the predefined resolution is achieved.

We can see that these methods all require complete and accurate information about

obstacles’ configurations and locations. After the path is decided, it will not be changed

 25

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

during navigation. Thus the path planning methods alone cannot react to dynamic

environment. We will review various local obstacle avoidance methods in the following

section.

2.6.2 Local obstacle avoidance

The robot should have the ability to cope with obstacles detected by sensors in

navigation. Usually two objectives of obstacle avoidance should be fulfilled. One is to

make the robot to go around obstacles to avoid collision with them. The other is to make

robot move toward its target. The second objective will be pursued together with the first

one. This will make the robot move to its target safely and quickly.

Many obstacle avoidance algorithms have been invented and applied in real robot

navigation, for example, the wall-following method [8] and the edge detection [16]. In

some cases, the wall-following method works as an alterative function when the robot is

trapped in a local minima situation [13]. The drawback of these methods is that robot

needs to know exactly the configuration of the obstacles before deciding the next step.

Thus this will consume much time when measuring the obstacles. Because of the

limitations of these two methods, they are seldom adopted in current robot systems.

The two main approaches of the methods are Potential Field Method and Steer Angle

Field Methods. For obstacle avoidance in a dynamic environment, the robot needs

mechanisms different from the static methods. Methods of dynamic obstacle avoidance

are included at the end. In the following, we will introduce the methods and their

application respectively.

2.6.2.1 Potential Field Methods

In 1985, Khatib published his paper about Potential Field Method [68]. Potential Field

Methods solve the problem by assuming that obstacles and target have influence on

robot, like magnetism. The influence is materialized as a force. Obstacles will produce

repulsive forces on robot. At the same time, the target produces attractive force. In the

 26

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

field of force, the robot is pushed by these forces. Having properly defined potential

functions of repulsive forces from the obstacles and attractive force from the target, the

robot will move away from obstacles and toward target automatically. The potential

functions can be modified in fluid dynamics and magnetic field forms.

Around the same time, Moravec and Elfes pioneered the concept of certainty grids, a

widely popular map representation that is well suited for sensor data accumulation and

sensor fusion [89]. By integrating the concepts of potential field and certainty grid,

Borenstein and Koren developed the Virtual Force Field (VFF) method [13, 14, 15]. This

method is a direct expression of the original potential field method. The robot’s motion is

decided by the resultant force factor of the repulsive and attractive forces. Though the

robot can achieve a maximum travel speed of 0.78m/sec, several limitations exists in this

method. As identified in [71, 39], the robot may be trapped to local minima, oscillate

between obstacles and narrow passages, and cannot reach the goals with obstacles

nearby.

In order to overcome these drawbacks, Borenstein and Koren introduced the Vector Field

Histogram (VFH) method in 1991 [17]. Polar obstacle density is designed to calculate the

repulsive forces from the obstacles. The VFH+ method is an improved version of the

VFH method [129]. It explicitly takes into account the robot dimensions and the

trajectory of the mobile robot. The VFH* method employs a four-stage data reduction

process in order to compute the new direction of motion. This method is combined with

the A* search algorithm to find the optimal path [130].

2.6.2.2 Steer Angle Field Methods

Though the potential field method is good at computing an obstacle-free motion

direction, it often fails in controlling the speed of a robot. It is mainly because the

potential field method does not include the robot’s velocity as a factor for computing

collision free path. Different from the potential field method, the steer angular field

method will compute the collision free path based on both the obstacles positions and the

 27

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

velocity of the robot. The main steer angle field methods include the Dynamic Window

Approach (DWA) [38] and Curvature-Velocity Method (CVM) [119].

Fox, Burgard and Thrun invented DWA in 1997 [38]. This method starts from searching

the velocity space of a robot. Among all possible velocities for the next step, an objective

function is used to evaluate them and the velocity with the highest evaluation value is

chosen. Brock and Khatib modified the Dynamic Window Approach to holonomic

dynamic window approach for holonomic robots, which can instantaneously accelerate in

all directions. And this holonomic DWA was integrated with a global planning method to

result in the global dynamic window approach [20]. Stachniss and Burgard integrated

path-planning techniques with DWA to produce an integrated approach [123]. In this

approach, the robot first computes a path. Then the path is used to determine the search

space to be explored in the next step. Through the path planning, the path to the target is

divided into several parts. For each part, the robot will use the dynamic window approach

to achieve the sub-goals, the terminals of each part.

CVM is another steer angle field method, which is introduced by Simmons [119].

Different from DWA, this method has different function for the three factors. It

concentrates more on how to get the distance from obstacles. Ko and Simmons invented

Lane-Curvature Method (LCM) on the base of CVM [69]. The lanes are constructed by

determining the maximum collision-free distance to obstacles along the desired goal

targeting. The longest trajectory to each lane is chosen for the objective function.

Because CVM may ignore some opening and LCM may neglect some radical openings,

Benayas, Fernάndez, Sanz and Diéguez introduced their Beam-Curvature Method (BCM)

approach [10]. This method works by integrating beam method with CVM approach.

Beams are used as searching intervals instead of lanes in LCM. In the experiments, BCM

has the best performance in comparison with CVM and LCM.

2.6.2.3 Dynamic Obstacle Avoidance

A robot moving in a dynamic environment must have the ability of avoiding moving

obstacles. In many cases, the moving obstacles will move unpredictably. The obstacle

 28

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Literature Review

avoidance methods reviewed so far are all for relatively static environments. In such

environments, obstacles are stationary objects or slow moving persons. Though the

obstacle avoidance algorithms may divert the robot from the moving obstacles past

enough to avoid collisions, they may fail if the speeds of obstacles are high.

Fiorini and Shriller proposed the Velocity Obstacle (VO) concept for the dynamic

obstacle avoidance problem [37]. VO consists of velocities that will potentially cause the

robot to collide with moving obstacles. Castro, Nunes and Ruano have integrated this VO

concept with the dynamic window approach to produce a reactive local navigation

method for dynamic environment [25]. The velocity space for the dynamic window

approach is the reachable avoidance velocities obtained by using the VO approach. Then

a velocity is chosen for the next step from the RAV. This enriches the dynamic window

approach’s ability in a dynamic environment.

In the VO method, the rotational velocity of the moving obstacle is not considered. As

the authors pointed out, several optimal solutions may be omitted because each possible

velocity consisting of the searching tree tries to avoid all obstacles. So we have suggested

the dynamic map idea for dynamic obstacle avoidance [140]. But our method is based on

the assumption that the vessel can accurately predict the moving obstacle’s motion. Thus,

if the vessel is far away from the obstacle, a small estimation error may cause the

obstacle avoidance to fail. However, this possible failure can be compensated when the

robot moves near the obstacle, because the computation time based on dynamic map may

be short enough and the estimation of the obstacle may be more precise after a longer

observation of the obstacle.

 29

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

CHAPTER

3

PARALLEL BDI AGENT ARCHITECTURE

The traditional BDI agent has 3 basic computational components: generate beliefs,

generate intentions and execute intentions. They run in a sequential and cyclic manner.

This may introduce several problems. Among them, the inability to watch the

environment continuously in dynamic environments may be disastrous. One possible

solution is by using parallelism. We propose a parallel BDI model with three parallel

running components which are the belief manager, the intention generator and the

intention executor. The coordination between the parallel components is done by

interrupts of different priorities. The agent built with this architecture has the ability of

performing several actions at once. The agent also has the ability to prioritize the

deliberations and intention executions so it is able to respond quickly to circumstance

changes and all the thinking and acting are done at appropriate times.

In order to evaluate the parallel BDI model, we compare the parallel agent against five

versions of sequential agents where the 3 components of the BDI agent are controlled and

managed in different ways and different time resources are allocated to the 3 components.

Experiments are designed to simulate the operation of the three components in the agents.

The ability of the agents to respond to the same sequences of external events of various

 31

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

priorities is assessed. The comparison results show that the parallel BDI agent has

quicker response, react to emergencies immediately and its behaviour is more rational.

This chapter is structured as follows. In the first section, an introduction of background

and motivation is given. In Section 3.2, we present the general framework for parallel

BDI agents that need to perform in real time. The functions of the processing units in the

framework are identified, their operations are defined and how these functional units

interact and cooperate is specified. In Section 3.3, simulation experiments are presented

to compare the performance of the parallel agent and five versions of sequential agents. A

theoretical analysis about the performance of the parallel agent is presented in Section

3.4. In Section 3.5, the issue of how much parallelism and how to configure a parallel

agent based on the general framework with a limited number of CPUs are studied by

experiments with different configurations of the parallel agent. We describe some

advantages and a limitation of the parallel BDI architecture in Section 3.6. A short

conclusion is given in the last section.

3.1 Introduction

Hayes-Roth [48] defined the primary objective of an intelligent agent that needs to

perform in real time as “to maintain the value of its own behaviour within an acceptable

range over time”. Among the requirements for an intelligent agent, two related are

flexibility (the agent should react to important unexpected events) and timeliness (the

agent should meet various real-time constraints). Many agent architectures or frameworks

have been developed for building an intelligent agent. As identified in the survey of agent

architectures [135], three kinds of agent architectures, deliberative architecture [18, 111,

63, 110], reactive architecture [22, 23] and hybrid architecture [35, 36, 81], are proposed

according to the processing mechanism of the agents. The BDI model is well understood

for designing deliberative architectures because it combines a respectable philosophical

model of human practical reasoning [44]. The reactive architecture, most noticeably, the

subsumption architecture, is a different paradigm [21, 22, 23]. The hybrid architecture is

 32

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

proposed to combine the deliberative and reactive architectures to inherit the advantages

of both.

With the different agent models proposed, it is said [44] that the basic components of an

agent designed for a dynamic, uncertain world should include some representation of

Beliefs, Desires, Intentions and Plans – the BDI model. There are three main operations

in this model: detecting, thinking and executing. In normal implementation of the

deliberative agent, the three operations run sequentially. For example, in PRS [63], the

deliberative process runs in iterations. At the beginning of each iteration step, new goals

and new facts are obtained through input. Then several plans in the KA (knowledge area)

library are triggered by the new belief and one or more of the applicable plans are

selected to be sent to the intention structure. At the end of each iteration step, the

intentions are executed. In PRS, the agent will not proceed to the next step until the

current step is finished. In a complex and dynamic environment, the agent needs more

time to search for proper intentions or one action may need more time to execute. Then

more time is needed in each iteration step and the agent is not able to detect new events

before the current iteration step is finished. As a consequence of this, the agent may not

be able to start processing the emergencies immediately. So the reactivity of the PRS

agent cannot be assured in such circumstance.

A possible solution to promote the reactivity of the agents appears in the TouringMachine

[35], a well known hybrid agent architecture. The architecture consists of three sequential

components: perception subsystem, control framework and action subsystem. The control

framework will output actions to the action subsystem based on the sensory input from

the perception subsystem. It consists of three layers, a reactive layer, a planning layer and

a modeling layer. The outputs from the three layers are summarized by using some

context-activated control rules. A clock is used to control the execution time of the

control framework. For each time cycle, the control framework has fixed time resource to

use. And the primitive schema (action) structure is designed with a ‘cost’ property, which

indicates how much time it costs to execute the action. If in a cycle, the remaining time

resource is not sufficient for an action to execute, another action needing less time cost

 33

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

will be executed instead or the remaining time is wasted if no suitable action is available.

This method insures that the agent can sense the environment at fixed time intervals. The

probability of overlooking emergencies is low if the time spent in detection and

processing is balanced well. It is usually required that the detection should not consume

much time. If the TouringMachine puts much time on the control framework in a cycle,

the problem of poor reactivity still exists.

In agents based on BDI logics, such as AgentSpeak(L) [112] and LORA [136], the

problems may appear as reactivity and intention reconsideration issues. The reasoning is

done by theorem provers, which usually need much executing time. In LORA, the basic

agent control loop of the BDI interpreter consists of perception, updating belief,

generating desires, choosing intention and executing actions. Desires, intentions, and

actions are generated based on belief. The original circumstance/belief may have changed

during these processing. The intentions may become impossible under the new

circumstance. The agent should not commit to infeasible intentions. An improvement is

made by updating beliefs and reconsidering intentions after executing each action. An

experimental result of intention reconsideration by Kinny and Georgeff is provided in the

book [136]. The result shows that the more frequently the intentions are reconsidered, the

lower the effectiveness of the agent is. Thus, the reactivity of the agent cannot be

ensured.

Pokahr [106] suggested that in the sequential BDI agents the concrete layout of the

processing cycle will determine the nature of the agent, for example, the caution level and

reconsideration rate. And the agent architecture is not easy to be extended with additional

facilities because the processing is step by step and very restrictive. The authors proposed

a more flexible way of mapping the BDI model to allow easy extension of the agents. In

the architecture, the steps are transformed to meta-actions. A main interpreter will decide

which meta-action will be selected to execute from the agenda queue. The execution of

the meta-action may update the status and insert new meta-actions into the agenda. The

extension of new agent abilities can be easily done by designing meta-actions. However,

it is noticed that the outside messages are inserted into the agenda directly as external

 34

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

actions. If perceiving environment is modeled as a regular meta-action, there is no

guarantee at the architecture level that the environment is monitored appropriately

closely. At the same time, the problems of low caution level and reconsideration rate also

remain.

Pokahr [105] commented that the current BDI model does not support any mechanism for

handling goal relationships at the architecture level. They proposed a deliberation

strategy for agent developers to specify relationships between goals such that there is a

maximum number of goals that an agent may pursue at once and the activation of one

goal may inhibit another goal. However, an important factor that is not considered is the

importance and urgency of a goal that influences which goal should have the attention of

the agent first.

Hayes-Roth [48] pointed out that parallel subsystems with buffered communications to

provide asynchronous perception, cognition and action will allow an agent to perform in

real time. We propose what is required of an agent for real time performance: (1) ability

to respond to emergencies timely; (2) ability to modify goals, intentions and actions in

reaction to unexpected or new information; (3) ability to perform multiple actions at once

(e.g. talking while walking); (4) ability to perceive, deliberate and act simultaneously

(e.g. thinking while walking).

In [73], a multi-threaded approach is used to simulate soccer agents for the RoboCup

competition. The sensing, thinking and acting behaviours are executed in parallel. Thus

the soccer agent does not need to wait for I/O operations (sensor and act) with the world

and gains more time for thinking. The experiments show that the agent with a parallel

architecture has obvious advantages in lessening the impact of I/O operations in the

simulation of an intelligent agent like a human being.

 35

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

Figure 3-1 Parallel BDI agent model.

In this chapter, we propose a parallel BDI agent framework for real time performance

based on the BDI model. The general idea is that such a framework consists of three main

components, the belief manager, the intention generator and the intention executor which

are running in parallel as shown in Figure 3-1. The horizontal dark thin lines show the

control flow in the agent. The three components each consists of a number of smaller

processing units and they run in parallel. The coordination between them is done by

messages and interrupts of different priorities. The data flows are shown by the purple

and red line between the components. The message flows and interrupts are shown by

arrows. The belief manager generates beliefs from world information perceived by the

agent and human commands given to the agent. The intention generator generates desires,

then schedules and reschedules the generation of intention plans for the desires. The

intention executor schedules and reschedules the execution of intention plans and

executes them. Some parallelism can be achieved by simply running these three

components as parallel threads. However, in such set-up there is no pre-emption of less

important and urgent desires/intentions by more important and urgent ones so the agent is

not able to respond quickly to emergencies. Furthermore, the degree of parallelism is

 36

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

limited because there is no parallelism in multiple intention generations and multiple

intention executions. The general framework proposed offers much better functionalities.

Under this general framework, parallel BDI agents with different configurations based on

the best way to share the available computational resources may be built. These agents

have a number of advantages over the sequential one: 1. they have the 4 abilities required

of an agent as discussed earlier; 2. support is provided at the architecture level for

reconsideration of desires and intentions and consideration of goal relationships when a

new belief/desire is generated.

The idea of parallel operation can be seen in some other agents. However, it is realized in

different applications or to deal with different problems from ours. For example, in the

designation of subsumption systems [21, 66], the layers of control are run concurrently.

In LSA, the layers are realized as the theorem provers. So the reasoning ability of the

deliberative agents is combined into the reactive agents. The empirical results from a

robot implementation show that the provers can be used without sacrificing much

reactivity [5, 6]. This kind of parallel deliberative architecture is different from ours. In

LSA, the layers are presumed to work independently. Each parallel layer will perform the

actions of detection, reasoning and output sequentially. Output from one layer can be

input for another layer. It can be regarded as several deliberative agents each with its own

sub-goals running in parallel in the subsumption architecture.

Another example of parallel operation can be seen in JAM [60]. The JAM agent can

execute some action_sequences in a plan simultaneously. This means that some actions

in an intention can be performed concurrently. This parallel execution of some actions is

also different from our work. In our work, the three basic behaviours of the agent,

detection, deliberation and execution, are parallelized. The agent can be watching,

thinking and acting at the same time. Together with the interrupt mechanism in the agent,

this parallel BDI agent architecture can solve the problem of concrete layer in traditional

sequential agents. The reactivity of the agent can be improved to real-time level.

 37

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

3.2 The General Framework

We propose a general framework for parallel BDI agents based on the parallel BDI agent

model shown in Figure 3-1. The framework is shown in Figure 3-2. The arrow lines in

the figure show the control flow among the processing elements of the agent. The

framework can be useful when designing a robot agent. Each device is a processing

element which can be run on a processor. It can also be used for agent-based simulation

of a physical system that is capable of parallel actions. An example of software agent

representing a vessel captain who can watch, think and act simultaneously is presented in

Chapter 6.

Figure 3-2 The General Framework for Parallel BDI Agents.

The framework consists of three main components: the belief manager, the intention

generator and the intention executor. These three components represent the three steps in

the deliberation process of an agent: detect, think and act respectively. The three

components will retrieve and update data in the three data structures: beliefs, desires, and

 38

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

intentions. The beliefs contain the agent’s view of its environment and of itself. The

desires will maintain the goals of the agent. The intentions store the plans to be executed

to achieve the agent’s goals. Each of the three components are further divided into

smaller processing elements, also shown in Figure 3-2. We define the functionalities of

each processing element and the interactions among them.

3.2.1 Belief manager

The belief manager is responsible for detecting the changes in its environment and

managing the agent’s view of the world and of itself. It is made up with Environment

Monitors (EMs) and a Belief Generator (BG). The set of EMs serve as the information

collectors from heterogeneous sensors that an agent may have. Each EM monitors world

information from one type of sensors or sensory organs like a camera or human eyes and

converts the information into abstract representation. Each EM sends the converted

information to the BG.

The BG will merge the various information items passed from the EMs into the agent’s

view of the world. For example, the eyes of a person see and the ears hear a car coming.

The visual and audio information will come through two separate EMs and the BG

combines the information to form a new belief. This is a cognitive process where the

semantics of the sensor information is worked out. Each new belief has a certain degree

of urgency. The BG will determine the urgency of the new belief. When a new belief is

generated, existing contradictory or obsolete beliefs will be removed. In other words,

when bnew, a new belief is formed, we have

 beliefs = beliefs ∪ { bnew } and
 ∃b ∈ beliefs[obsolete(bnew, b)] beliefs = beliefs - {b}

Messages will be produced by the BG to notify the intention generator. Depending on the

urgencies of the new beliefs, message of different priority levels will be generated so that

the intention generator may process them accordingly. This allows urgent information to

be handled immediately and less urgent information be dealt with later. As the belief

 39

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

manager works simultaneously with the intention generator and the intention executor,

this allows the agent to monitor its environment including any emergencies at all times.

3.2.2 Intention generator

The intention generator manages the agent’s desires (goals), based on the agent’s current

beliefs. This includes generation of new goals, removal of obsolete goals and suspension

of existing goals. The intention Generator also deliberates on the plans to achieve these

goals. It is made up with a Desire Generator (DG), a Desire Scheduler (DS) and a

number of Plan Generators (PGs).

The DG may produce new desires after a new belief is added into beliefs. The new desire

will have a priority level according to these rules:

 If b1 ∧ b2 ∧ … ∧ bn ⇒ d then pd = max(pbi), i = 1…n.

 If b1 ∨ b2 ∨ … ∨ bn ⇒ d then pd = max(pbi),

 i = 1…n, and bi ∈ beliefs

These rules mean that when a number of beliefs b1 to bn conjunctively trigger a desire d,

the priority of the desire pd, will have the highest priority level of the beliefs that

triggered its generation. When a desire d may be triggered by any one of a number of

beliefs b1 … bn, the priority of the desire will have the highest priority level of the belief

among b1 … bn that the agent currently believes in.

A new belief may make a current desire no longer desirable because it is obsolete or it is

not consistent with the new desire. A new belief may also affect the priority of an

existing desire. After the generation of a new desire, the new desire may affect an

existing desire or be affected by an existing desire with respect to their priorities. The

intention generator will handle these cases as described later.

The set of desires of an agent desires consists of three subsets:

desires = pendingD ∪ planningD ∪ executingD

 40

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

where

pendingD: the set of desires waiting for their plans to be worked out or a partial plan for

the desire has been decided but more deliberation is needed,

planningD: the set of desires being planned, that is, a plan to achieve the desire is being

worked out in a PG,

executingD: the set of desires whose intention plans are waiting to be executed or being

executed by the intention executor.

If di ∈ desires then di = (IDi, gi, pi, si) where IDi is the identifier of the desire, gi is the

desired goal of the agent, pi is the priority of gi representing its urgency and si represents

the status of deliberation about this goal.

Figure 3-3 States of desires and intentions and their transition.

With the partition of desires into pendingD, planningD and executingD as shown in

Figure 3-3, we provide a simple way to handle the reconsideration of goals. When a

desire is generated by the DG, it is deposited into the pendingD. A desire will move from

pendingD to planningD when the Desire Scheduler (DS) decides that this desire should

 41

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

preempt another desire in planningD or there is a free PG to do planning and this desire

has the highest priority in pendingD. A desire will be moved from planningD to

pendingD by DS when this desire is preempted by another desire in pendingD or a new

desire in pendingD calls for the suspension of this desire in planningD. A desire moves

from planningD to executingD when the intention plan for the desire has been generated.

A desire will be removed from pendingD, planningD or executingD if a new belief or a

new desire makes the agent abandon this desire.

We define the operations of DG in Figure 3-4 and those for DS in Figure 3-5. In Figure

3-4, obsolete(a, d) means belief/desire a makes desire d obsolete. urgencyAffected(a, d)

means belief/desire a changes the urgency of desire d or desire d changes the urgency of

desire a. This may result in an increase or a decrease of priority for d or a (if a is a

desire), or a temporary suspension of d or a. Suspension of a desire happens when an

agent decides to shelf the desire temporarily because of the conflicts between a new

desire and an existing desire. clash(d1, d2) in Figure 3-5 returns true if d2 was suspended

(priority set to suspensionPriority) because of d1. The function preempt(pk, pi) in Figure

3-5 will decide whether dk should preempt di. For example, suppose dk is the desire with

the highest priority in pendingD, di is the desire with the lowest priority in planningD and

preempt(pk, pi) = pk > pi. Then at all times, we have

∀i∀j, (IDi, gi, pi, si) ∈ pendingD, (IDj, gj, pj, sj) ∈ planningD [pi≤ pj]

It is possible to have other more elaborate definitions for preempt(pk, pi), for example, pk

> (pi - some threshold) and (remaining time for di > some threshold).

LOOP:
bnew = the belief with maximum priority among the newly generated beliefs in

beliefs;
Process the new belief bnew and form a new desire dnew, if appropriate;
If dold ∈ desires and (obsolete(bnew, dold))
 If dold ∈ pendingD

 pendingD = pendingD - { dold }.
 If dold ∈ planningD

 Set the priority of dold to removalPriority such that DS will remove it from
a PG.

 If dold ∈ executingD

 42

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

 Notify IM through interrupts to have the corresponding intention removed.
If dold ∈ desires and (urgencyAffected(bnew, dold))
 If dold ∈ pendingD ∪ planningD

 Change the priority of dold to a higher/lower value or suspensionPriority.
 If dold ∈ executingD

 Notify IM through interrupts to change the priority of the corresponding
intention.

If a new desire, dnew, is formed
 pendingD = pendingD ∪ { dnew }.
 If dold ∈ desires and (obsolete(dnew, dold))

 If dold ∈ pendingD
 pendingD = pendingD - { dold }.

 If dold ∈ planningD
 Set the priority of dold to removalPriority such that DS will remove it

from a PG.
 If dold ∈ executingD
 Notify IM through interrupts to have the corresponding intention

removed.
 If dold ∈ desires and (urgencyAffected(dnew, dold))
 If dold ∈ pendingD ∪ planningD

 Change the priority of dold or dnew to a higher/lower value or
suspensionPriority.

 If dold ∈ executingD
 Notify IM through interrupts to change the priority of the

corresponding intention.
If there is change in membership in pendingD or planningD
 Inform DS by message.

Figure 3-4 Operations of DG.

LOOP:
1. Scheduling desires according to the priorities of desires.
LOOP1:
 ;)(max p j

pendingDd
pk

j∈
=

 If Pk equals null or suspensionPriority
 break LOOP1.
 If there is no free PG
 ;)(min p j

planningDd
pi

j∈
=

 If preempt(Pk, Pi)
 pendingD = pendingD ∪ { di };
 planningD = planningD - { di };
 Send an interrupt to the PG to suspend di;
 else

 43

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

 break LOOP1.
 If there is a free PG
 pendingD = pendingD - { dk };
 planningD = planningD ∪ { dk };
 Send an interrupt to the PG to start dk.
2. Handling the completion of the planning of a desire by a PG.
 For each desire dp ∈ planningD
 If the planning of dp is finished in a PG
 planningD = planningD - { dp };
 executingD = executingD ∪ { dp };

 If dold ∈ pendingD and clash(dp, dold))
 Increase the priority of dold such that dold may be considered for

plan generation.
 Send a message to IM with the information about dp.
3. Updating the priorities of desires.
 For each desire i ∈ desires
 Update the priority of di according to DG instructions or by other factors, like

time;
 If priority of di equals removalPriority
 If di ∈ executingD

 Notify IM through interrupts to have the corresponding intention
removed;

 else
 desires = desires - { di };
 If di ∈ planningD
 Send an interrupt to the PG to remove di.
 If priority of di equals suspensionPriority
 If di ∈ planningD
 planningD = planningD - { di };
 pendingD = pendingD ∪ { di };
 Send an interrupt to the PG to suspend di.
 If di ∈ executingD

 Notify IM through interrupts to have the corresponding intention
suspended.

Figure 3-5 Operations of DS.

3.2.3 Intention executor

The intention executor works in a similar way as the intention generator. Intention

Manager (IM) will receive the plan information from the PGs in the intention generator.

Intention Scheduler (IS) will schedule/suspend/resume the running of intentions in the

 44

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

Plan Executors (PEs). Finally, the physical actions will be put into the action effectors

and the PE will remove the finished desire d from executingD. The agent’s intentions

consists of three subsets of intentions:

intentions = inactiveI ∪ pendingI ∪ executingI

where

inactiveI: the set of intentions that are waiting for the completion of other intentions

before they can execute and intentions the agent has to put on hold temporarily,

pendingI: the set of intentions waiting to be executed,

executingI: the set of intentions being executed.

If ii ∈ intentions then ii = (IDi, predeccessorsi, peersi, plani, pi, si) where IDi is the

identifier, plani is the action plan, pi is the priority, si represents the status of the intention,

predeccessorsi and peersi are used to address the dependency issues between different

intentions and facilitate synchronization among intentions and is explained in the

following paragraphs.

Normally, an intention plan may be a sequence of primitive actions to be carried out by

the agent one after another. Or it may be a composite hierarchical task structure where

predecessor subtasks need to be completed first and peer subtasks need to be executed

simultaneously. If two subtasks are not related as predecessor-successor or as peer, they

may be executed in any order or in parallel. Such a composite hierarchical task structure

is transformed into several intentions by the PG which generates the intention plan in

Intention Generator. The transformed intentions have a predecessors attribute to name the

predecessor intentions which has to be completed before its own execution. They also

have a peer attribute to identify what other intentions are to be executed simultaneously

with them. An example of the transformation is shown in Figure 3-6.

In the example in Figure 3-6, the original intention plan is transformed into 6 intentions

with smaller action plans. Normally, each sequence of actions, like the one presented by

Action a, is transformed into a new intention. If some sequences of actions are to be

executed one by one, like Actions d and f, it may be possible to combine them into one

 45

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

intention like Intention 4, provided that both d and f may be executed by the same PE or

the PEs are homogeneous. This reduces the cost for scheduling. In the rectangles showing

the intentions 1-6, the first pair of bracelets shows the predecessors of the intention. For

example, intention 6 cannot start before both intentions 4 and 5 are completed. With the

transformation, the original intention plan can exploit parallelism supported in the agent’s

framework. An example is that intention 2 (Action b) and intention 3 (Action c) may be

executed at the same time if two PEs are available. This speeds up the execution of

intentions and the parallel framework of the agent is used more effectively. Intentions 4

and 5 are peers so they have to be executed in 2 PEs simultaneously. The synchronization

issue among peer intentions is discussed in the next section.

Figure 3-6 Transformation of a normal intention plan.

As shown in Figure 3-3, intentions are partitioned into inactiveI, pendingI and executingI.

This supports the scheduling and the reconsideration of intentions. An intention plan in

inactiveI is one that can only start execution after the completion of its predecessor

intentions or it is one that the agent wants to put on hold for the moment. An intention

plan in pendingI or executingI has the same meaning as a desire in pendingD and

planningD respectively. When a new intention plan arrives at IM, it joins pendingI if it

has no predecessor intentions otherwise it joins the inactiveI. For each intention in

inactiveI, IS checks whether all the predecessor intentions are completed. If yes, it

 46

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

moves this intention from inactiveI to pendingI. In this way, scheduling intentions with

predecessors are easily managed by updating their predecessor attributes and organize

them in inactiveI and pendingI.

The operations of IM and IS are defined in Figure 3-7 and Figure 3-8 respectively.

Functions with the same names in Figure 3-7 and Figure 3-8 as those in Figures 3-4 and

3-5 behave in the same way.

With this framework, an agent developer just needs to concentrate on specifying domain

specific definitions of obsolete desires, urgent desires and clashing desires. The desires

and intentions will be activated, deactivated, suspended or removed automatically.

LOOP:
1. Handling the message, mnew, from DG.

If iold ∈ intentions and (obsolete(mnew, iold))
 If iold ∈ inactiveI
 executingD = executingD – { dold };

 inactiveI = inactiveI - { iold }.
If iold ∈ pendingI

 executingD = executingD – { dold };
 pendingI = pendingI - { iold }.

 If iold ∈ executingI
 Set the priority of iold to removalPriority such that IS will remove it from a

PE.
If iold ∈ intentions and (urgenceAffected(mnew, iold))

 Change the priority of iold to a higher/lower value or suspensionPriority.
2. Handling the message, mnew, from DS.

Form a new intention, inew, based on mnew;
If inew and its peers intentions have no predecessors intentions

 pendingI = pendingI ∪ { inew };
 else
 inactiveI = inactiveI ∪ { inew }.

If iold ∈ intentions and (obsolete(inew, iold))
 If iold ∈ inactiveI
 executingD = executingD – { dold };

 inactiveI = inactiveI - { iold }.
 If iold ∈ pendingI
 executingD = executingD – { dold };

 pendingI = pendingI - { iold }.
 If iold ∈ executingI

 Reduce the priority of iold to removalPriority.

 47

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

If iold ∈ intentions and (urgencyAffected(inew, iold))
 Change the priority of iold or inew to a higher/lower value or suspensionPriority.
Inform IS the priority of an intention has changed.

Figure 3-7 Operations of IM.

LOOP:
1. Scheduling intentions according to the priorities of intentions.
LOOP1:

)(max p j
pendingIi

pk
j∈

= ;

 If Pk equals null or suspensionPriority
 break LOOP1.

K = {intention k and its peers intentions};
If there is no enough free PE(s) for intentions in K
 n is the number of PEs needed if K can get executed;
)(max p j

Ii
pi

j∈
=

 where I = { n intentions in executingI with the lowest priorities, note that priority
of peer intention have the same priority}.

 If preempt(Pk, Pi)
 pendingI = pendingI ∪ I;
 executingI = executingI - I;
 Send interrupts to the PEs to suspend the execution of intentions in I.
 else
 break LOOP1.
If there is enough free PE(s) for intentions in K
 pendingI = pendingI - K;
 executingI = executingI ∪ K.
Send interrupts to the PEs to start execution of intentions in K.

2. Handling the completion of the executing of an intention by a PE.
For each intention e ∈ executingI

If the executing of ie is finished in a PE:
 executingD = executingD – { de };
 executingI = executingI - { ie };
 If iold ∈ pendingI and clash(ie, iold))
 Increase the priority of iold such that iold may be considered for

execution.
3. Updating the priorities of intentions.

For each intention i ∈ intentions
Update the priority of ii according to IM instructions or by other factors, like time.
If priority of ii equals removalPriority
 executingD = executingD - { di };
 intentions= intentions - { ii }.
 Send an interrupt to the PE to remove ii

 If priority of ii equals suspensionPriority and ii ∈ executingI

 48

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

 executingI = executingI - { ii and its peers intentions};
 inactiveI = inactiveI ∪ { ii and its peers intentions}.

 Send an interrupt to the PE to suspend ii and its peers intentions.
4. Checking predecessors.

For each intention i ∈ intentions
If ii ∈ pendingI and a new predecessor is added to it
 pendingI = pendingI - { ii and its peers intentions};
 inactiveI = inactiveI ∪ { ii and its peers intentions}.

If ii ∈ executingI and a new predecessor is added to it
 executingI = executingI - { ii and its peers intentions};
 inactiveI = inactiveI ∪ { ii and its peers intentions}.

If ii ∈ inactiveI and all predecessors of it and its peers intentions are completed or
removed

 inactiveI = inactiveI - { ii and its peers intentions};
 pendingI = pendingI ∪ { ii and its peers intentions}.

 Figure 3-8 Operations of IS.

3.2.4 Synchronization among peer intention plans

With multiple PEs, the agent is able to carry out multiple actions simultaneously. Some

actions need to be synchronized and some are completely asynchronous.

Synchronization is needed among peer intention plans and we classify the

synchronization into the following three forms.

1) Time stepped synchronization. The execution of intention plan P in one PE has to be

at the same ‘speed’ as those of several other intention plans in several other PEs. IS

can play the centralized coordinator in controlling the PEs.

2) Barrier style synchronization. The execution of several intention plans in several PEs

may progress asynchronously until a certain ‘barrier’ then they synchronize with each

other and continue. This can be managed in the same way as the barrier

synchronization in parallel discrete event simulation. Again, IS can coordinate.

Execute intention plan P1 in PE1 while intention plan P2 is being executed in PE2. IS

start P1 and P2 in the 2 PEs at the same time and it will terminate P1 in PE1 as soon as P2

in PE2 has completed execution.

 49

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

3.2.5 General Remarks

The operations define how the devices in the belief manager, the intention generator and

the intention executor work to process the incoming events. All the devices work in

parallel. The interrupt mechanism ensures that an emergency can be dealt with first.

Thus, the agent obtains the ability of quick reaction to emergencies and the capacity for

careful deliberation when required. With the parallel components, the agent can handle

several matters at once. The agent is also able to ‘change his mind’ towards his

desires/intentions according to the changing environments. The requirements for real

time performance, as we proposed in Section 3.1, are satisfied. One method to realize the

operations is by priority control, which will be discussed in Chapter 5. In next section, we

make a comparison between the sequential BDI model and the parallel BDI model.

3.3 Comparison between the Parallel BDI Model and the
Sequential Ones

In this section, we evaluate the performance of the parallel agent by comparing it with the

sequential agents. There are 3 main or coarse computational components in a BDI agent,

the belief manager, the intention generator and the intention executor. In a sequential

agent, only one computational component is running at any time. However it is possible

to control and manage the 3 components in several different ways in an attempt to get

better performance from a sequential agent. On the parallel BDI agent side, under the

general framework the maximum parallelism can be realized by having all the processing

elements, like EMs, BG, DG, running in parallel. To demonstrate that parallel BDI

agents constructed according to the general framework are able to offer the benefit of

parallel actions, we have a conservative parallelism where only the 3 main components,

i.e. the belief manager, the intention generator, and the intention executor, operate in

parallel. This means the processing elements in the same component will run

sequentially. We first describe the five sequential BDI agents each with their own way of

controlling and managing their computational components. Then the simulation

experiments are presented and the results are analyzed.

 50

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

3.3.1 Sequential BDI agents

Figure 3-9 Sequential BDI agents.

The five kinds of sequential BDI agents are:

(1) As shown in Figure 3-9a, the 3 components run in a cyclic way and each uses up the

pre-allocated and fixed time resource. The deliberation/intention cannot be suspended

and resumed. If the remaining time of a component (only the deliberate and the

execute components) is not sufficient for a deliberation/intention to be finished, the

remaining time will be wasted.

(2) This is a variant of agent 1. It suspends a task when the time allocated to the current

component is used up and resumes it when the component’s turn comes in the next

cycle. For example, the execute action can start an intention which costs 5 time units

when there is only 1 time unit remaining.

(3) A more flexible way is to allocate time resources to the deliberate and execute

components only when needed. If a component has nothing to do, it terminates and

the next component starts. In order to keep the agent vigilant, the detect component

always uses up all its allocated time. The actual time used for deliberate/execute

should not exceed the maximum pre-allocated time to such a component. This agent

has a cycle time ranging from a minimum that is the fixed time for the detect

component to a maximum that is the sum of the allowable times of the 3 components.

The tasks cannot be suspended.

 51

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

(4) Different from agent 3, the tasks can be suspended.

(5) This agent has a cycle as shown in Figure 3-9b, in each cycle, after the detect

component, the agent will choose to deliberate or execute based on the maximum

priority of deliberations and intentions. After deliberate/execute is finished, another

cycle begins. This makes the agent more watchful for emergencies.

The characteristics of the five sequential BDI agents are summarized in Table 3-1. In all

the sequential agents, when there is more than one deliberation/intention to handle in the

deliberate/execute component, the one with highest priority will be processed first. The

performance of these agents will be compared with the parallel BDI agent.

Table 3-1 Sequential agents

Flexible time allocation? Agent
no detect deliberate execute

suspend-
resume? Illustration

1 N N N N Figure 3-9 (a)
2 N N N Y Figure 3-9 (a)
3 N Y Y N Figure 3-9 (a)
4 N Y Y Y Figure 3-9 (a)
5 N Y Y Y Figure 3-9 (b)

With the different time allocation schemes for the three components, the sequential agent

will show different performances. In the experiments, we used three time allocation

schemes for sequential agents according to their emphasis on the three components. For a

maximum cycle of 15 time units, three schemes showing the fixed or maximum

allowable time quota for each component of the BDI agent are given in Table 3-2.

Table 3-2 Allocation schemes

Configuration detect deliberate execute
C1 1 4 10
C2 3 4 8
C3 5 3 7

The sequential agent with configuration C1 puts more emphasis on executing intentions

with the risk of overlooking emergencies. C3 gives more time to the detect component to

be more vigilant. But the time for the execute component is cut. C2 is a compromise

between C1 and C3.

 52

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

Each sequential agent described in Table 3-1 will be configured according to C1, C2 and

C3 respectively in the experiments to compare them with the parallel agent.

3.3.2 The input data

The evaluation of the sequential and parallel agents is done by simulation of the

processing of events by agents. All the sequential agents and the parallel agent will

process some sequences of events. Each event will be processed by the 3 computational

components of the BDI agent, namely, the belief manager(detect), the intention

generator(deliberate) and the intention executor(execute).

In the experiment, the system time is represented as continuous time units. There is a

system clock to control the increase of the time. The system time is started from 0. For a

vessel agent, the events may include new topological findings, nearby obstacles, and user

commands. According to the details of these events, the priorities of the events and the

costs in time used to execute the corresponding plan can be decided. In this simulation,

we will discard the actual details of the events. Only the processing time of the events

and the priority are used to identify an event. These properties are related to the analysis.

To evaluate the agent ability to handle events of different importance or urgencies, events

will have one of the four different priority levels 1 to 4, with 4 being the highest. We

assume that an event can be detected and a belief generated in 1 time unit and each

deliberation to generate an intention takes 1 to 3 time units. The intention execution time

of events at all priority levels is uniformly distributed in the range from 1 to 7 time units.

So the average deliberation execution time is 2 time units and the average intention

execution time is 4 time units. This also means the average time required to handle an

event is 7 (1+2+4) time units.

We use the exponential density function to represent the inter-arrival time between any

two events. As shown in [113], the exponential density function is memoryless and often

 53

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

used to model lifetimes or waiting times. The cumulative distribution function is shown

as:

λtt −−= e1)cdf(3-1

where 1/λ is the mean, and t is the time units.

cdf(t) shows the probability that the inter-arrival time between 2 events is less than t. So

given a total number of events, sum, to be used in our experiments, we can decide the

number of intervals with length of n time units by:

() sumnnn *)1cdf()cdf()G(−−= 3-2

The intervals are kept in a vector. Then the intervals are selected randomly. The current

time plus the interval length is the arrival time of the next event. The event priority is

selected randomly from 1 to 4.

We consider three sequences of events with different average inter-arrival times. The

average inter-arrival times of the 3 sequences of events are respectively smaller than,

equal to and larger than the average processing time required by an event. The events

statistics used in the experiments are shown in Table 3-3.

Table 3-3 Events statistics

Events count
Priority Set

Expected
average

interval 1/λ 1 2 3 4 sum

Actual
average
interval

Average
deliberation

time

Average
intention

time
a 4 262 250 235 251 998 4.48 1.99 3.96
b 7 240 260 247 247 994 7.31 1.97 4.08
c 15 268 244 239 234 985 14.58 1.98 3.89

When an event arrives and the agent is not doing detection, the event will be stored in an

event buffer. The agent can retrieve the new events later. After receiving the event, the

agent will create one deliberation for it. The deliberation will be added in a deliberation

queue. The deliberation and intention plan selected later will have the same priority as

the event.

 54

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

3.3.3 Comparison results and analysis

We will use the response time to evaluate how well the agent processes the event. The

response time is defined as the time between the arrival of the event and end of the

execution of the intention plan chosen for the event. The response time is calculated as

the sum of the time for detecting the event, deliberation and execution. The overhead

transmit messages between the three parallel components in the parallel agent is omitted

as it is felt that the delay in passing the interrupts is very small.

The results of the experiments are presented in Table 3-4. ART is the Average Response

Time of all events. ARTp stands for the ART of the events with priority p. ARTw is the

weighted ART by the priorities of the events.

Count

T
Count

i
i∑

== 1ART , ∑
= +++

=
4

1 4321
*ART

ART
p

p
w

p

3-3

where Ti is the reaction time for event i, and Count is the number of events.

Parallel agent vs sequential agents

Looking at the response times of the parallel agent and the various sequential agents

(rows with agent nos. 1 to 5), we can see that the parallel agent responds at least 3 times

faster than the sequential agents in most the cases. This shows that the parallel agent can

process events quicker than the sequential ones. Especially for the events set a and b,

which are in high-density for the processing ability of the sequential agents, some ARTs

of them reach over one thousand. Normally it is very irrational to complete a task 1000

time units later after the event happened. So in such environments, the sequential agents

are not applicable. The main reason for this difference comes from the fact that the

parallel agent uses 3 times CPU time as the sequential agents do. So in order to get

comparable ARTs, we should prepare for the sequential agents a single CPU which is 3

times as powerful as the CPUs used in the parallel agent. In most cases, it is more

applicable and economic to prepare 3 less powerful CPUs for a parallel agent.

 55

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

Table 3-4 ART of the events by the agents.

ARTpSet Confi
g.

Agent
no 1 2 3 4 ART ARTw

1 3731.59 1577.26 90.22 22.41 1401.62 724.64
2 4443.1 1621.04 64.09 23.66 1593.54 797.21
3 2706.14 927.34 58.8 19.54 961.49 481.54
4 3300.26 635.3 42.51 20.86 1040.8 478.18

C1

5 3318.06 651.88 38.66 20.87 1048.72 482.13
1 4416.69 2114.99 144.25 23.12 1729.08 917.19
2 4581.51 1818.47 73.33 26.18 1682.14 854.32
3 4046.55 1735.6 115.54 22.51 1529.96 795.44
4 4496.36 1599.33 71.64 25.2 1604.25 801.07

C2

5 4531.08 1651.86 63.06 23.13 1623.98 811.65
1 6523.12 3832.43 656.97 27.9 2834.22 1627.05
2 6621.4 3990.95 573.05 32.56 2881.14 1645.27
3 5959.58 3193.37 371.31 23.75 2457.89 1355.53
4 6017.61 3415.7 252.62 28.57 2502.08 1372.12

C3

5 6112.63 3523.51 312.36 26.88 2567.67 1420.42

a

Parallel 48.81 17.59 11.18 7.75 21.8 14.85
1 961.05 78.29 28.69 18.4 264.22 127.73
2 456.77 50.65 26.58 20.26 135.17 71.88
3 68.91 26.33 18.15 13.45 31.38 22.98
4 65.3 27.65 19.14 15.74 31.67 24.1

C1

5 73.74 28.82 20.72 15.81 34.42 25.68
1 2177.75 132.21 35.53 19.48 574.07 262.67
2 1075.42 73.53 33.39 23.32 292.98 141.59
3 1051.26 86.14 29.45 17.5 288.02 138.19
4 903.78 78.73 34.39 23.95 253.31 126.02

C2

5 1015.03 62.61 31.53 21.31 274.58 132.01
1 4520.94 728.04 57.62 19.52 1301.18 622.8
2 4814.97 408.03 44.98 24.77 1286.63 586.5
3 3688.76 459.78 45.62 18.09 1026.74 481.75
4 4109.05 208.17 39.25 23.95 1062.28 473.89

C3

5 4590.59 267.35 37.85 22.12 1193.23 532.73

b

Parallel 13.12 10.0 8.58 7.35 9.74 8.83
1 34.46 25.52 20.15 16.4 24.48 21.16
2 27.16 22.91 19.26 16.65 21.69 19.73
3 11.19 9.73 8.79 9.03 9.73 9.32
4 11.11 9.61 8.96 9.18 9.76 9.39

C1

5 14.5 12.14 10.41 9.59 11.76 10.84
1 44.23 28.39 21.44 16.93 28.29 23.3
2 31.07 23.59 20.99 17.61 23.57 21.16
3 17.63 13.29 11.49 10.69 13.41 12.14
4 16.19 13.64 11.82 11.09 13.28 12.32

C2

5 27.78 20.31 16.24 13.88 19.83 17.27
1 76.7 34.8 22.0 15.69 38.55 27.5
2 51.63 31.1 22.37 17.95 31.44 25.27
3 35.13 20.25 14.54 12.06 20.97 16.75
4 29.42 19.42 15.31 13.85 19.82 16.96

C3

5 41.46 26.29 18.28 15.89 26.0 21.24

c

Parallel 8.92 7.75 7.52 6.87 7.8 7.45

 56

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

One thing to note is that in a few cases the parallel agent responds less than 3 times faster

than the sequential ones. This happens with sequential agents 3, 4, 5 when the event

sequence is set c. ARTs and the weighted ARTs of agents 3, 4 with configuration C1 and

C2 are less than 2 times those of the parallel agent. This means when the inter-arrival

time is long enough, the parallel agent will not show its advantage. Because the inter-

arrival time is 14.58, the sequential agents have sufficient time to process the incoming

events. Though configuration C3 is allocating too much time to the detect component of

the agent, the performance of the sequential agents with C3 is not too bad. However, the

parallel agent is still valuable to process the real emergencies with the highest priority. As

seen in Table 3-4, ART4 to process the events set c is 6.87 for parallel agent and 9.03 for

the sequential one with best performance.

The priority 4 events are the highest priority events in the experiments. The average time

needed to process one such event in the ideal case (ATN4) is calculated by:

4

Count

1i
4

4

)(
ATN

Count

TExecutionionTDeliberatTDetection iii∑
=

++
=

3-4

where TDetectioni is the time used to detect the event i, TDeliberationi is the time used to

deliberate the event i, TExecutioni is the time used to execute the plan generated based on

the event i, and count4 is the number of events with priority 4.

In this experiment, TDetection equals to 1. TDeliberation and TExecution can be gotten

from the events list as shown in Table 3-3. Using the equation, ATN4 equals to 7 for set

a, 7.02 for set b, 6.79 for set c. Compared to the ART4(column 7 in Table 3-4) we can see

that the parallel agent spends just 0.75 time units more for set a, 0.33 time units more for

set b and 0.08 time units more for set c. Set a is a sequence of events with an inter-arrival

time smaller than the processing time required for an event. So the intention generator

and the intention executor are busy handling other beliefs and intentions when a high

priority belief/intention comes to them. Here the interrupt mechanism in the parallel

agent is able to guarantee immediate handling of higher priority items while the

 57

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

sequential agents are not able to do this. It is clear that the parallel agent has a big

advantage over the others on processing real emergencies.

For events with lower priority, the difference of ART between the sequential agents and

the parallel agent is bigger.

Different time resources allocation in the sequential agents

Looking at the ART and ARTw columns and comparing the corresponding rows for

configurations C1, C2 and C3, we conclude that the performances of the sequential

agents with configuration C3 are significantly worse than those with configuration C1

and C2. This shows that the sequential agents perform badly if they spend more time on

detecting and less time on deliberation and intention execution. The processing of

emergencies is often postponed, though the emergencies are detected earlier in

configuration C3. This can be seen that in most cases the processing of the highest

priority events also have longer response time. This indicates that in real life, the agent is

not reacting to high priority events quickly and is taking a longer time to react to other

events.

We also observe that the performance of the sequential agents with configuration C1 is

significantly better than C2. This shows that the sequential agents perform much better if

they spend short time on detecting and more time on deliberation and intention execution.

Because the deliberating and executing components get more time resources, the beliefs

and intention plans get cleared faster so the events experience shorter response time.

Different ways of controlling the computational components in the sequential agents

Looking at the ART and ARTw columns and comparing the corresponding rows among

the sequential agents, we see that agent 1 and 2 are the losers in all cases. This is

expected because of their rigid way of controlling the detect, deliberate and execute

components. In the best performing configuration C1, agents 3, 4 and 5 have comparable

performance in all event sequences a, b and c. So we conclude that if a component has

nothing to do, it is better to give way to the next computational component.

 58

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

For set b and c in configurations C2 and C3, generally agents 3 and 4 are better with 4

being the best more often but agent 5 is not the loser every time. We may conclude that it

is better to allow the computational components to start processing an item if there is one,

then suspend it when its time quota is up and resume in the next round. But this policy is

not always effective. At first, it is interesting to notice that the ART4 is normally better

for the agent 3 than agent 4 (Just one exception is found: set a Configuration C1). This is

because that the above police will cause a lower-priority task is being dealt with when a

higher-priority event enters. The sequential agent has no interruption schema, so the new

task will not be executed immediately. In Table 3-4, we can see that the ART4 is from 1

to 5 time units bigger for agent 4 than agent 3. This also affects the ART3 and ART2 in

some cases. Another interesting phenomenon is that for set a, even the ARTs are mostly

worse for the agents with the suspend-resume mechanism (2, 4) than the agents without

such mechanism (1, 3). It is because in agents 1 and 3, the execution of the tasks is not

strictly scheduled according to the policy that the higher-priority tasks get processed first.

If the current remaining time-slot is not sufficient to execute a task with high-priority, the

low-priority task with suitable execution time will be processed earlier. Then the tasks

with shorter execution time are prone to be processed first. For a high-density events set,

as the set a, such fact will decrease the average waiting time of the tasks. So ART is

increased. It is suggested to make verification before adopting this policy.

3.4 Theoretical Analysis

In the following, theoretical analysis is carried out to predict the performance of the

parallel agent when some attributes of the incoming events sequence are known. The

estimated ART is shown as ARTe. The following facts are assumed:

• The inter-arrival time of the events is exponentially distributed and only one event

can happen in any time unit;

• The time to process an incoming event and generate a belief is 1 time unit;

• The processing time for a deliberation is chosen randomly in [1, Dmax];

• The time to execute an intention is chosen randomly in [1, Emax];

 59

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

• The priority value for an intention is chosen randomly in [1, Pmax];

• The overheads for transferring data between the devices are very small compared

to the time needed for processing the event sequence and ignored.

The following symbols are used in the subsequent discussion. The values of them can be

gotten given an event sequence.

N – number of events;

interval - average interval between two events;

1S - average time needed to process an incoming event and generate a belief;

2S - average processing time needed to complete a deliberation job;

3S - average processing time needed to execute an intention job;

The performance of the agent is analyzed when an event sequence is input for processing.

The agent performance is evaluated by ART for the events in the serial. A smaller ART

shows that the agent can process the events quicker. The ARTe can be calculated by:

332211eART SWTSWTSWT +++++=

Where:

1WT : average , waiting time between the occurrence of an event and its detection; 1WT

2WT : average , waiting time between the generation of a deliberation, that is, the

insertion of the deliberation into the queue and the start of the deliberation;

2WT

3WT : mean of , waiting time between the generation of an intention, that is, the

insertion of the intention into the intention queue and the start of intention

execution.

3WT

The following figure is used to show the data flow in the agents.

 60

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

Figure 3-10 The data flow in the agent.

First, the total time needed to process all the N events can be estimated by

()intervalSSSNT ,,,max 321∗= . Because device1 runs at all time and it can detect a new

event immediately after the event happens and 1Sinterval ≥ for all events, therefore

01 =WT . There will be two cases when estimating the ARTe according to the different

interval .

Case 1: ()32 ,max SSinterval >=

If ()32 ,max SSinterval >= , it is expected that the devices in the parallel agent have

sufficient time to process an event in the interval between two events. The waiting time

for services will be 0. So the ARTe equals to 321 SSS ++ . This can be verified by the

statistics in the previous experiments. The event sequences, a, b and c, shown in Table 3-

3 are used as examples to show the analysis.

Table 3-5 Experiment statistics

Set interval ART in experiments ARTe = 321 SSS ++
a 4.48 21.8 6.96
b 7.31 9.74 7.05
c 14.58 7.8 6.87

From the table, it can be seen that the difference between the actual ART and ARTe is

smaller if interval is larger. This is because with a larger interval , there are few cases

that the interval between two events is smaller than ()32 ,max SS . In most cases, the agent

can complete processing the previous events before the next one comes in. Then the

actual ART is closer to the expectation.

 61

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

Compared to sets b and c, there are more cases in set a that the interval between two

events is actually smaller than ()32 ,max SS . So the agent may not have enough time to

complete processing the previous intentions, which makes the actual ATR (21.8) much

longer than the expectation (6.96).

Case 2: ()32 ,max SSinterval <

If ()32 ,max SSinterval < , the estimation will be done using the following equation. We

use b to show the index of devices in which the average processing time is larger among

the device2 and device3 as shown in Figure 3-10. Thus, ()32 ,max SSSb = . So device b is

the bottleneck.

After the arrival of the mth event, the number of tasks waiting to be processed in device b

on average is:

Nremaining= ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∗

bS
intervalm 1

The highest priority of the remaining tasks is:

Phigh=

maxP
m

N remaining = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∗

bS
intervalP 1max

Thus, we can see that the probability that a task can be executed immediately is:

Pro(p > Phigh)=1-Phigh/Pmax=
bS

interval .

where p is the priority of the task. The interval bigger, the possibility is bigger. A

blocked task is expected to get executed after all the events are inserted. The number of

remaining tasks when all the events are inserted is NrN= ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∗

bS
intervalN 1 . Then the

average waiting time for execution in the device b is:

 62

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

bWT = () ⎥
⎦

⎤
⎢
⎣

⎡
∗

−
+⎟

⎠

⎞
⎜
⎝

⎛
∗−∗∗⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
− ∑

=
b

rN
N

ib

S
N

intervaliN
NS

interval
2

111
1

 = ⎟
⎠
⎞

⎜
⎝
⎛ ∗

−
+∗

−
∗⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
− b

rN

b

S
N

intervalN
S

interval
2

1
2

11

ARTe can be estimated as 321eART SSWTS b +++= . We designed three experiments to

empirically validate this equation. The results are shown in Table 3-6. It can be seen that

the ARTe is quite close to the real ART.

Table 3-6 Experiments statistics

N
2S 3S interval ART in experiments eART

999 1.98 4.01 1.09 1468.53 1463.68
999 2 4.01 2.05 1014.92 981.78
998 2 3.88 3.01 460.74 439.38

3.5 How Much Parallelism

In Section 3.2, we proposed that when an agent is simulating a certain physical system,

the parallel agent should be configured such that it has the same number of Environment

Monitors (EMs), Plan Generators (PGs) and Plan Executors (PEs)as the number of

parallel physical devices that exist in the physical system to perform the corresponding

functions. In this section, we consider agents that are not simulating a physical system.

In this case, the constraint is the parallelism that can be supported by the physical

computer. For example, if a computer has 2 CPUs, only 2 processing elements can be

running in parallel. However, given a fixed number of CPUs, there is still the issue of

how to distribute the CPU power to the processing elements. For example, 6 CPUs can

be used by the PGs and PEs, how do we decide whether to have 2 PGs and 4 PEs or 3

PGs and 3 PEs? In this section, we present experimental results on agents with different

configurations based on the general parallel BDI agent framework. The agents will

process a sequence of events. The events sequences are designed in the same way as in

Section 3.3. The statistics about the sequences used are shown in Table 3-7.

 63

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

Table 3-7 Events statistics

Events count
Priority Set

Expected
average

interval 1/λ 1 2 3 4 sum

Actual
average
interval

Average
PG time

Average
PE time

a 2 244 286 234 235 999 2.54 1.99 4.16
b 4 270 237 255 236 998 4.48 1.99 4.01
c 7 235 244 264 251 994 7.31 2.01 3.98

For simplicity, we assume there is only one type of sensor input so there is just one EM

(K1 in Figure 3-2 is 1). The following are assumed in the experiment:

1. The incoming event can be detected and beliefs updated in 1 time unit. So processing

time in BG is 1 time unit.

2. The DG takes 1 time unit to generate a desire.

3. Each deliberation to generate an intention takes 1 to 3 time units, uniformly

distributed. This is the processing time in PG. So the expected average processing

time in a PG is 2 time units.

4. The intention execution time of events at all priority levels is uniformly distributed in

the range from 1 to 7 time units. This is the processing time in PE. And the average is

4 time units.

5. The times used in DS, IM, IS are significantly shorter than the processing times in

other processing units like BG, DG, PG etc and can be ignored.

6. The overhead of transmitting messages between the various processing units in the

parallel agent is not included as it is assumed that the agent is running on a machine

with multiple processors sharing memory. So the delay in passing the interrupts is

very small.

All these assumptions mean the expected average time required to process an event is 8

(1+1+2+4) time units.

The results of the experiments with different combinations of K2 and K3 devices(refer to

Figure 3-2) are presented in Table 3-8.

 64

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

The priority 4 events are the highest priority events in the experiments. The average time

needed to process one such event in the ideal case (ATN4) is calculated as the sum of the

detection time (1), desire generation time (1), average PG time and average PE time for

all the events with priority 4. In the events sequence used, ATN4 equals to 8.01 for set a,

8.28 for set b, 8.0 for set c. Compared to the ART4 in Table 3-8 we can see that the

parallel agent spends just a little more or the same amount of time for processing the

events with priority 4. This confirms that the interrupt mechanism in the parallel agent is

able to guarantee immediate handling of higher priority items.

Table 3-8 ART of the events by the agents

ARTpSet K2 K3 1 2 3 4 ART ARTw

1 1 2364.78 813.83 18.64 9.26 817.12 408.54
1 2 22.32 11.8 8.89 8.17 12.84 10.53
2 2 18.21 10.28 8.4 8.06 11.25 9.62
2 3 9.12 8.59 8.01 8.01 8.45 8.24
2 4 8.49 8.35 7.99 8.01 8.22 8.12
3 3 9.0 8.55 8.0 8.01 8.41 8.21

a

3 4 8.4 8.28 7.97 8.01 8.17 8.09
1 1 49.33 17.36 11.3 8.84 22.45 15.33
1 2 9.77 9.07 8.36 8.34 8.91 8.64
2 2 8.87 8.52 8.13 8.28 8.46 8.34
2 3 7.99 8.03 7.96 8.28 8.06 8.1
2 4 7.84 8.0 7.96 8.28 8.01 8.08
3 3 7.96 8.04 7.96 8.28 8.05 8.1

b

3 4 7.82 7.99 7.96 8.28 8.0 8.08
1 1 14.35 10.84 9.85 8.31 10.77 9.88
1 2 9.02 8.2 8.27 8.05 8.37 8.24
2 2 8.47 7.97 8.09 8.01 8.13 8.07
2 3 8.12 7.81 8.05 8.0 8.0 7.99
2 4 8.08 7.81 8.05 8.0 7.99 7.99
3 3 8.11 7.81 8.05 8.0 7.99 7.99

c

3 4 8.07 7.81 8.05 8.0 7.98 7.98

In the following, we will show the waiting time for deliberation and execution. Average

waiting time for deliberation (AWTD) means the time a desire spent in pendingD

waiting. This includes the time before the plan generation is started and the time when

the plan generation for this desire is suspended. AWTE, average waiting time for

 65

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

intention execution, is defined in a similar way. A shorter waiting time means that the

processing is quicker.

The AWTD is only related to K2, the number of PGs. Table 3-9 confirms that a larger

K2, the deliberations can be finished quicker. In the three sets of environments, 3 PGs are

enough to provide the agent the ability to deliberate any event immediately after it is

received.

Table 3-9 Average waiting time for deliberation

AWTDpSet K2 1 2 3 4 AWTD

1 5.95 2.13 0.62 0.13 2.24
2 0.09 0.09 0.01 0.0 0.05 a
3 0.0 0.0 0.0 0.0 0.0
1 1.26 0.74 0.31 0.07 0.61
2 0.03 0.01 0.0 0.0 0.01 b
3 0.0 0.0 0.0 0.0 0.0
1 0.63 0.25 0.19 0.04 0.27
2 0.01 0.0 0.0 0.0 0.0 c
3 0.0 0.0 0.0 0.0 0.0

AWTE is affected by both K2 and K3(the number of PEs). The statistics is shown in

Table 3-10. With a same K3, the agent with a larger K2 can produce intentions earlier. So

in such case, the AWTE may be increased. But referring to Table 3-8, we can see that the

total ART is decreased. It is easy to see that with K2=1 and K3 increased from 1 to 2, the

AWTE is greatly decreased. Because in an event-congested environment like set a

(interval=2.54), the agent with 1 PE cannot process all the intentions in time.

Table 3-10 Average waiting time for execution

AWTEpSet K2 K3 1 2 3 4 AWTE

1 1 2350.52 803.46 10.04 1.12 806.74
1 2 8.06 1.43 0.29 0.03 2.45
2 2 9.81 1.94 0.41 0.05 3.06
2 3 0.72 0.25 0.03 0.0 0.25
2 4 0.09 0.01 0.0 0.0 0.02
3 3 0.69 0.3 0.03 0.0 0.26

a

3 4 0.09 0.03 0.0 0.0 0.03
1 1 40.27 8.64 3.04 0.5 13.84 b
1 2 0.71 0.34 0.1 0.0 0.3

 66

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

2 2 1.05 0.53 0.16 0.01 0.45
2 3 0.16 0.04 0.0 0.0 0.05
2 4 0.02 0.0 0.0 0.0 0.01
3 3 0.17 0.05 0.0 0.0 0.06

3 4 0.02 0.0 0.0 0.0 0.01
1 1 5.65 2.78 1.61 0.27 2.51
1 2 0.32 0.14 0.03 0.01 0.12
2 2 0.39 0.16 0.04 0.01 0.14
2 3 0.04 0.0 0.0 0.0 0.01
2 4 0.0 0.0 0.0 0.0 0.0
3 3 0.04 0.0 0.0 0.0 0.01

c

3 4 0.0 0.0 0.0 0.0 0.0

The overall performance of the agent is decided by the slowest processing unit of the

system. In the parallel agent, plan generation and intention execution are the most time

consuming. The balance between K2 and K3 should be:

e

d

AVG
AVG

K
K

=
3
2 3-5

where AVGd is the average PG time, and AVGe is the average PE time.

Tables 3-8 and 3-10 confirm that having K2 = 2 and K3 = 4 is better than having K2 = 3

and K3 = 3, more so when the arrival rate of events is high. If the average inter-arrival

time between events equal to AVGi, the agent needs
i

d

AVG
AVG

K =2 PGs to generate plans

to prevent build-up of desires in pendingD. In the situation where the arrival of events

are very dynamic, that is, the inter-arrival time changes drastically, the best solution will

be for the Desire Scheduler(DS) and the Intention Scheduler(IS) to dynamically adjust

the number of PGs and PEs in response to the changes in the arrivals of events. In other

words, the DS and IS should self organize what is the best ratio of PGs to PEs.

If there is at most 1 event coming in 1 time unit, maximum K2 and K3 needed should be

smaller than the maximum PG and PE time respectively. For example, in the experiment,

maximum PG time is 3, so 3 PGs are enough to ensure that waiting time for a PG is 0 and

AWTD will as a result be 0.

 67

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

In general, if it is critical to keep the waiting time for PG to zero, the number of PGs

required can be calculated by

K2 = ⎡b/a⎤ 3-6

where a is the minimum time interval between two events, and b is the maximum

processing time for PG to generate an intention plan for a desire.

This also applies to the value of K3 where a is the minimum time interval between the

arrival of two intention plans produced by PGs and b is the maximum processing time for

PE to execute an intention plan for a desire. With these values for K2 and K3, whenever

a new desire is generated or a new intention plan is generated, there is always a PG or a

PE available to process them. It can be stated that the minimum time interval between

the arrivals of two intention plans produced by PGs is the smaller value between the

minimum inter-arrival time of events and the minimum processing time for PG to

generate an intention plan for a desire.

Under a relative static situation where the demand for deliberation power and that for

plan execution power are not changing drastically, the computing power of the agent can

be allocated to reflect the demands using this simulation method. But in a more dynamic

situation, a dynamic approach will be needed. Learning algorithm will be a good way to

decide the number of EMs, DGs and PEs dynamically based on feedbacks of agent

performance.

3.6 Possible Advantages and a Limitation

This parallel model should be helpful in the research of continual planning. Continual

planning means that the agent will be continuously planning, interleaving planning with

execution, because its plans can undergo continual evaluation and revision [30]. For a

parallel agent, it will be able to continue planning while executing an intention plan.

Several techniques have been produced for continual planning. For example, the

continuous planning and execution framework (CPEF) [90] integrates HTN planning

 68

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

technique [34, 33] to implement open-ended reasoning. Open-ended planning process

allows the agent not to generate full level plans before execution. In UM-PRS [77], the

hierarchy of the plans is kept for monitor plan execution and replanning. Obviously, the

techniques for continual planning increase the needs for time resource. In order to replan,

it is necessary for the agent to detect new situations frequently. The idea of parallelizing

the basic behaviours of the agent is helpful to support continual planning: the new

situations can be detected quickly. More, in a parallel agent, a high-level intention can be

subdivided into several sub-intentions. The problems of resource sharing and

coordination of the sub-intentions may be solved by utilizing some parallel algorithm.

Thus, the intention can be finished quickly and computation resource is used wisely.

Another possible advantage of the architecture is that it can provide the agent some

adaptive behaviour by combining automatic learning algorithms for some special

problems. Adaptive ability is an important attribute for agents to show the autonomy and

proactiveness properties [44]. With adaptive ability, the agents can respond to dynamic

environments more intelligently. The agents can improve performance continually

without human interference. Many mature learning algorithms have been produced and

are utilized in the machine learning areas [88]. But in the plan-based architectures, such

as PRS, it is hard to combine the learning algorithms within the reasoning process. An

experimental step was taken in [46]. The learning is implemented by applying the Top-

down induction of decision trees on the agent’s action models. The models are labeled

with success or fail tag. The models are organized as the decision trees. In the situations

with fixed action steps, the agent can interact with environment with past experiences.

But for agents working in continuous environments the limitation is obvious: the models

may be too voluminous to save. We have proposed to extend the original BDI model by

adding an experience function library [141]. Some complicate algorithms can be coded in

this library and called. Combining that extension and the parallel architecture, it is

possible to incorporate learning algorithms as experience functions. For example, in a

vessel agent, it is possible to implement the obstacle avoidance function with the Q-

learning algorithm. The agent can accumulate and take advantage of experience gained

through its moving. Using the traditional sequential BDI architectures, the agents may not

 69

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Parallel BDI Agent Architecture

be able to react to emergencies in time when calling an experience function. However,

the parallel BDI agents have the abilities of detecting emergencies immediately,

suspending some low-priority executing experience functions and resuming them at a

proper later time. We will see details about the experience function library in next

chapter.

A problem for implementing the parallel architecture is that it needs more processors

because multi-threads will demand more CPU resources. In our implementation of vessel

agents, one agent consists of about 15 threads. This is not surprising if we consider how

many little thinking and controlling processes are working in parallel in a human body

but it requires a lot of system resources. A system with multi-CPUs will be very useful to

have the activities of the agent run in a real concurrency and the responsiveness of the

agent can be simulated better.

3.7 Conclusions

In this chapter, we show our proposal for a parallel BDI agent architecture. In the

architecture, the three basic behaviours of the BDI agent are parallelized. With the

parallelism, the agent obtains the improved ability to work in dynamic environment. It is

also a more natural way of working: the three behaviours of an agent are running

concurrently.

A comparison experiment between sequential BDI agents and the a parallel BDI agenis

shown and a theoretical analysis of the aerformance of the a parallel BDI agenis made.

Then the aroblem of how to araocate the computation resource to the devices is discussed.

At the end, the aossible utilities of the a parallel BDIrchitecture and a limitation when

applying the framework are discussed.

 70

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Agent Character

CHAPTER

4

AGENT CHARACTER

As have discussed in the first chapter, vessels navigation control is affected by human

and natural factors. Each vessel agent has its own character, which does not have proper

representation in the BDI model. We aim to improve the BDI model by incorporating the

components into the BDI model to realize the agent character. In this chapter, we analyze

the effect of human character and propose an extended BDI architecture for designing

human-like agent. Different agent behaviour is a result of: 1. different initial parameter

setting; 2. different experience from reinforcement learning. In experiment, a vessel

captain is built based on this architecture. Cautious captain, adventurous captains and the

like can be created with different parameter settings and experience accumulated through

its individual navigation.

Touschapter is structured as follows. In the first section, we give an introduction about the

background. In Section 4.2, we analyze the agent character and explain the two basic

components of the agent character. In Section 4.3, an extended BDI agent architecture

with character components is illustrated, and the implementations of the agent character

are explained within this architecture. The experiment of implementing the agent is

shown in Section 4.4. A conclusion is given in Section 4.5.

 71

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Agent Character

4.1 Introduction

Most of the previous agent architectures are designed to provide the agents with rational

abilities to detect, deliberate and act. Thus, in the same situations, different agents will all

make the same decisions and they will have the same behaviour. However, in multi-agent

simulation system this is not always desirable. Multi-agent simulation is widely used to

enhance knowledge in real worlds and provides the possibility to create artificial worlds

for the testing of theories [55]. In multi-agent simulation of human society, agent

character is essential for simulating various human beings. The agents will not always

work in an ideal and optimal way. Their characters will affect their decisions. For

example, in a system which is used for risk analysis by simulating vessels in sea, the

vessel agents must show different characters. This is because different captains

demonstrate different navigation approaches. Human characters have very important

effects on vessel navigation. In order to have meaningful conclusion from the simulation

system, different vessel behaviours must be simulated realistically. So the vessel agent

should demonstrate human-like character. The agent character should be considered as an

important factor when designing real agents.

In this chapter, we analyze the agent character from the agent itself and propose an

alternative way to implement the character in the agent architecture. Different from

Norling’s paper, in which the character is researched from its cause in psychological

explanation [97], the character is identified by its effects. The agent character influence

will be divided into personality influence and experience influence. We argue that the

way people behave is affected mainly by two factors: (1) their personality that seems to

come from birth and; (2) the previous life experience of the person. The personality

influence shows the agent’s initial natures, for example, some babies are more talkative

than others and other babies are natural introverts. Another example of this is two twin

brothers after going through the same education will still behave differently. Different

personalities will be realized as different parameter settings and priority libraries. The life

experience comes from the interaction between the agent and the environment. The good

 72

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Agent Character

and bad experience from the environment will affect the agent’s character and future

behaviours. The experience is realized by the reinforcement learning algorithm. These

character influences are incorporated into BDI agent architecture. And a vessel agent

representing a vessel captain navigating in sea is created using the architecture.

Experiment results show that the agents are able to demonstrate different behaviours

based on their different characters.

4.2 The Analysis of Agent Character

An agent’s uniqueness is called the agent’s character. In the following, the agent

character is analyzed with the example of a vessel doing navigation. To simulate the

navigation behaviours of different vessels, each vessel agent must have its own distinct

character. A vessel’s distinct character can be seen from its physical specifications and its

captain’s reasoning behaviour, both of which will have influence on the decision results

for navigation. This means, a vessel agent should also have two such kinds of influences

on its decision making. A vessel’ physical specification is the vessel’s physical

properties, including the vessels’ size, maximum acceleration, maximum translational

velocity, and so on. The reasoning behaviour of a captain is determined by the captain’s

behavioral and mental characteristics and his experience in navigation. The three factors

are analyzed one by one.

The physical properties will affect agents’ decision result. The influence will be that the

agents have to decide the output actions according to their physical capabilities. These

physical capabilities do not change with time or the experience of the vessel captain.

These are the unchanging factors in the decision making process of the captain.

A person’s behavioral and mental characteristics form his personal character. This will

have a big impact on the person’s behaviour. Each captain is more inclined to make

certain decisions. For example, some captain is more inclined to overtake another vessel

when being blocked. Some captains are born to be more meticulous than the average and

others are born to be more adventurous than others. The difference will result in that a

 73

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Agent Character

bold captain is more willing to take a bigger risk in navigation compared to a meticulous

or cautious captain. The vessel agent is made to simulate a captain to make decision for

navigation. So each vessel agent should have the behavioral and mental characteristics

that will affect the whole reasoning process.

Experience in navigation comes from past navigations. Different pasts provide different

experiences. Different experiences will make different people. So an expert captain will

outperform a green one. A captain who accustoms to navigate in one sea area may not be

good in another area.

Of the three factors that affect a captain’s decision making, the physical properties have

the similar effect as the captain’ behavioral and mental characteristics, in that both are not

changing with time or experience. From another point of view, we can assume that the

physical properties affect the agent’ unique personality first, and then they influence the

agent’s decision making through the personality. So to simulate the agent’ decision

process, we combine these physical properties with the agent’s unique behavioral and

mental characteristics. We call it the personality of an agent. To summarize, an agent’s

character can be divided into two aspects: personality and experience as shown below:

⎪⎩

⎪
⎨
⎧

⎩
⎨
⎧

Experience
csracteristimental chaandlBehavioura

ropertiesPhysical p
yPersonalitacterAgent char

The applications of personality and experience are shown in the following individually.

4.2.1 Personality

 Personality is the basic element of an agent’s character. It will affect every process in

decision-making, including the results of experience’s accumulation and application. For

example, two people with different personalities behave differently even after going

through the same experience. The influence of the personality is shown in Figure 4-1.

The agent will first detect the world through sensors/input devices/sensory organs. Then

 74

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Agent Character

the collected data will be transformed into the world model, which will provide data for

decision. The world model is a representation of how the agent personally perceives the

world. Then the decision process will make decision based on the world model and

personal tendencies. Identified by the index numbers in Figure 4-1, the personality’s

influence will be shown in two processes:

Figure 4-1 Effects of personality.

1. The personality will affect how the agent personally perceives the world.

Humans will have different feelings about the same scene. For example, someone will

feel that a vessel is still far away and there is no need to worry about it but other people

may feel differently with the same scene. And the decisions are made based on the

feelings. So we will build a world model to represent the ‘perceived world’ (beliefs). The

world model consists of the information about the real world.

2. The personality will affect the decision process.

The decision process will deliberate on the choices of plans of actions based on the

perceived world. The personality will affect these choices. For example, some vessel

captain depends on the past experience more than others. A demonstration of this is

shown in Section 4.4.2, where different parameter settings as different personalities for

vessels will affect the vessel’s final actions.

The personality will also affect the experience’s gain and its application in the decision

process. One way an agent learns from the experience is using the reinforcement learning

 75

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Agent Character

algorithm. Reinforcement learning is completed based on the rewards from the world

after each action. Each pair of state and action will have a reward value assigned. The

next action will be chosen with the maximum future reward value. And after execution,

the value will be updated with the latest rewards. Here, the personality will have two

affects:

• The personality will first affect how previous experience is used. There are people

who dare to make decisions that they have never made before and people who

will only make decisions according previous experience. The learning experience

gained will be very different. In other words, the action selection mechanism will

be affected by the personality.

• It will affect how previous experience is remembered. The result of an action for

a certain state may be viewed differently by different personalities. Some people

may feel a certain result is horrible and the action should be avoided completely

in future and other people may feel it is still tolerable. These will be reflected by

different reward functions

4.2.2 Experience

People with normal intelligence will learn and adapt their behaviour to the environment.

So a vessel agent should also have the learning capability and adapt the navigation

behaviour based on experience. Normally, the experiences of the vessel captains are not

identical and can vary significantly. Two identical vessels under the control of two

captains with similar personalities may have different past experiences. They may be

trained by different people in different seas and they may have accumulated different

working experiences. So vessel agents may be trained using different scenes from

different environments.

The human experience is used to make optimal decision (optimal decision is subjective)

when facing the similar scenes which have occurred. Human will accumulate his

experience along the processes. So the algorithm to simulate the human experience must

obtain the two attributes: reusable and accumulative. The reinforcement learning

 76

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Agent Character

algorithm is applied to simulate the accumulation of the experience of agents. It qualifies

the attribute demanding:

• Reusable

The policy based on reinforcement learning is made by choosing from the value of

current state and future action tuples. The action which produces maximum future value

is chosen as the next action. This procedure is similar to that human always choose the

action which will generate maximum expected reward based on experience.

• Accumulative

After each execution of an action, the agent will update the values of state and action

tuples based on the reward from the world. This is also similar to the behaviour that

human will modulate his mechanism based on the reaction from the previous actions.

The scenes which can be applied with experience must have the recurring and easy-to-

remember features. The recurring feature ensures that human can accumulate experience

for the scene. And it also ensures that the experience for the scene is useful for future.

Obviously, we cannot get much experience from an action that is executed just once. The

Second feature, easy-to-remember, is due to the human biological limitation. We have

difficulties in remembering complicated scenes due to the limited brain memory. And the

complicated scene often consists of independent small parts. Usually the experiences of

the different parts are also independent. Thus, human tend to divide complicated

procedures into independent small things to accumulate experience individually. For

example, playing football is a whole process. But the experience for defense and offense

are accumulated individually. So the experience is applied in specific scenes.

 The vessel’ main objective is to reach its target safely. The basic behaviours of vessel

consist of path planning and obstacle avoidance. For vessels which travel long distances,

the path is usually fixed so experience has no much effect on this behaviour. Obstacle

avoidance is a skill that is learnt from experience and often used during the navigation of

a vessel. The experience for obstacle avoidance is also very meaningful for vessel’s

future performance when facing the similar obstacle.

 77

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Agent Character

From the above, we will apply the reinforcement learning algorithm to obstacle

avoidance of vessels. The objective is to simulate captains’ experience for obstacle

avoidance.

4.3 The Extended BDI Agent Architecture

Figure 4-2 BDIE architecture.

The BDI agent architecture is extended as shown in Figure 4-2. It is based on the PRS

system [63]. The similar extension can be implemented in the parallel BDI agent. The

architecture consists of three main executing components, namely, the belief manager,

the intention generator and the intention executor. The belief manager is responsible of

receiving information and managing beliefs. Messages will be sent to notify the intention

generator for new beliefs. The intention generator will produce intentions according to

the incoming beliefs and goals and inform the intention executor about new intentions in

messages. Then the intention executor explains and executes the intentions to produce

output actions. The action buffer will keep the physical actions output by the intention

executor. The plan library consists of plans for dealing with achieving goals. In this

 78

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Agent Character

experiment, the plans are represented using the Hierarchical Task-Network (HTN) [34].

HTN organizes actions as a network. A set of HTN grammar have been developed to

formalize the HTN networks [33]. An example of HTN network for obstacle avoidance is

given in Section 4.4.2. The two extension components, personality settings and

experience function library, will be explained in the following.

4.3.1 Personality settings

The parameter settings representing the personality effect are kept in the ‘personality

settings’ component. The belief manager, the intention generator and the intention

executor will get the relevant parameters as needed. The parameters are classified into

these main categories:

• Physical specifications such as the maximum speed, maximum acceleration, and

so on. These will be used by the intention executor to translate actions into

operational commands. They are also used by the belief manager to perceive the

world to help to decide whether another object detected is a danger to itself. The

intention generator will need this information to decide the final applicable

actions.

• Personality preferences such as how likely the vessel agent is willing to give way

to others. These will be used by the intention generator to decide which plan of

actions is preferred. Personal preference also includes risk tolerance such as

when an obstacle is a danger and how far a vessel should keep away from an

obstacle.

• Priority control scheme and parameter settings for it.

• Parameter settings for the experience functions such as the decay factor for the

reinforcement learning algorithms.

• And so on.

Different agents may get different parameter settings. With different settings, agents may

demonstrate different behaviours. For example, the priority is used to decide the urgency

 79

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Agent Character

level of the incoming information to be notified to the intention generator. The belief

manager will use the parameter settings to decide the urgency level of the beliefs. One

possible way of classifying priorities of the messages is shown in Table 4-1. Captains

with different personalities will have different opinions about new beliefs. For example, a

meticulous vessel agent may set the priority of “finding new area” as 3. But for a careless

agent, the priority will be set to 1.

Personality settings may be handled in 2 different ways in a multi-agent environment: 1.

most agents are ‘normal’ beings and therefore work by default setting and a few agents

will be triggered to have not-so-usual setting. 2. every agent needs to have individual

setting. Then psychology experiments need to be conducted to find the distribution of the

settings. A human-like method to control the priority changing is shown in Chapter 5.

Table 4-1 Priorities of messages for new beliefs

Priority Description Explanation

1 Beliefs at low
priority

Something the agent needs to deliberate on when it is
free.

2 Beliefs at
medium priority

Something the agent needs to deliberate on not
immediately but some fixed time in future.

3 Beliefs at high
priority

Something the agent needs to deliberate on immediately
but still can take time to think carefully.

4 Beliefs at very
high priority

Something the agent needs to deliberate on immediately
and try to make decisions as soon as possible and act.

4.3.2 Experience function library

The experience functions are successful and proven algorithms, which the agents can

invoke to finish some composite actions. Previously, most agents concentrate on doing

tasks based on the predefined plans, which consist of the steps of actions. The actions are

usually primitive. Such as, in a plan of reaching a location, the actions may consist of

renting a car and driving the car to target. The actions can be applied directly without

further calculation. In Touringmachine [35], the primitive plans can do some calculations,

but these are limited to computing the simple functions, such as the distance between two

positions. Normally, a primitive action is not expected to take much execution time

before it is completed and the control is returned to the agent. However, in a real human,

 80

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Agent Character

he may use any successful tools to achieve his targets. For example, after a captain

decides to achieve a target, he may make a plan consisting of two steps: planning a path

and navigation. Then he may use some global path planning algorithm to find the shortest

path to the target based on the map. And some local obstacle avoidance algorithm is used

for navigation. Such algorithms cannot be regarded as the primitive actions or final

output actions. So we propose to incorporate an experience function library to the BDI

agent to realize such algorithms.

The experience functions are saved in the experience functions library. In Figure 4-2, the

experience function library is shown in ellipse as the three main components because the

functions will be invoked to execute as part of the reasoning of the agent. The dashed

lines mean feedback from action effectors. If there are learning algorithms involved, the

feedback is used to train the learners. An experience function is an algorithm that has the

following properties:

• Specialty. The algorithm can be used to solve a specific problem.

• Successfulness. The function has been proven to be successful for the problem.

• Independency. The function is a stand-alone function and does not depend on

other functions’ results.

• Complex.

The specialty and successfulness properties ensure that the function can be used to solve

the specific problem successfully. The independency property means that the function

can be used in the same way as a primitive action. Finally, the complex property decides

that the function cannot be implemented as a primitive action, such as in the

Touringmachine. The experience functions can be seen as the tools/skills that an agent

has been using to solve specific problems and these tools/skills are based on its previous

experience. The experience functions library provides several advantages to the agents

designed:

• It is easy to understand. It is a folk psychological way to solve some problems.

When we are using some tools, we seldom consider why we use it. So the utility

is only related to the execution of plans.

 81

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Agent Character

• The plan library is easy to create and maintain. It reduces the needs to transfer

complex calculation processes into plans. The agent can obtain the abilities that

some algorithms can provide by simply incorporating the corresponding functions

into the agent.

Here, to give the agent its learning ability, an experience function library is incorporated.

Some skills of the vessel agent cannot be realized as primitive actions in the plan library,

such as global path planning or obstacle avoidance. These skills will need more execution

time to apply than the simple primitive actions. These skills can be improved through

experience and time. So in the extended BDI architecture, such skills are realized as

experience functions. For example, the reinforcement learning algorithm for obstacle

avoidance can be realized in an experience function. These experience functions are

grouped into the experience function library. The functions are invoked by the intention

executor. If learning algorithms are involved, feedback may be obtained from the new

beliefs after an action/plan is executed.

4.4 Experiment

As described above, the agent’s characters are realized as different parameter settings,

and experiences. A behaviour of obstacle avoidance is shown here. The agent can decide

the next action based on the target direction and the experience accumulated previously.

The actions of the agents with different parameter settings facing identical situations are

investigated. Because experience function is used when demonstrating different

parameter settings, the implementation of the learning algorithm is shown first.

4.4.1 Experience

In the experiment, the reinforcement learning algorithm is used to learn the skills for

single dynamic obstacle avoidance, as illustrated in Figure 4-3. Reinforcement learning

tries to find the state-action tuple with the best reward. The state-action table can be

 82

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Agent Character

obtained through training. The agent is recognized as A. The vessel B will present a

moving obstacle to the agent A. To identify the status, five variables are used:

• d is distance between two vessels

• VA is A’s translational speed

• VB is B’s translational speed

• θa is the angle between A’s moving direction and the line AB

• θb is the angle between B’s moving direction and the line AB

Figure 4-3 Obstacle avoidance.

Q-learning algorithm [133] is used here for learning to avoid obstacle. The Q-function,

Q(s,a), represents the expected value of the reward for taking action a from current state

s. Here s is represented as (d, VA, VB, θa, θb). And the agent’s action part consists of the

vessel’s translational Ta and rotational speed Ra. Thus the state-action tuple for this

question is (d, VA, VB, θa, θb, Ta, Ra). It is obvious that the variables are continuous. The

number of records in Q-table should be the multiple of the size of the variables. Thus it is

impossible to use the Q-table for this high-dimension input because there may be

voluminous records which cannot be processed by a PC.

 83

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Agent Character

In the training, a discrete reward function is used to calculate the reward of new status,

which is shown as:

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−

−

=

−

otherwise
collision

success
on changemax rotati
changedirection

cemax distan
R

d

0
1

2

 4-2

where max distance is the maximum distance between A and B, direction change is the

angle between the original direction and current direction of A, and max rotation change

is the maximum rotational acceleration of A.

So after each action, the Q value will be updated by:

() () () ()()',max,1,' 1' asQRasQasQ tatttt +∗+∗+∗−= γαα 4-3

where α, γ are the parameters for training.

Then, the parameters of the RBF network are adjusted by the gradient of the difference of

expected value and output value. The difference will be calculated as:

() () ()[]),(',max,,' 1' tttatttt asQasQRasQasQQ −∗+=−=Δ +γα 4-4

In order to avoid that the values of the network parameter vector oscillate or even grow to

infinity, we adopt the method to perform gradient descent on the mean squared Bellman

residual. Because this defines an unchanging error function, convergence to a local

minimum is guaranteed. This means that we can get the benefit of the generality of neural

networks while still guaranteeing convergence. Then we can get the equations for the

modifications of the parameters as:

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
−

∂
∂

−=+Δ ++

)(
),,(

)(
),,(

)],,(),('[)1(11
1 tw

wasQ
tw

wasQ
wasQasQtw

i

ttt

i

ttt
ttttti γη 4-5

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
−

∂
∂

−=+Δ ++

)(
),,(

)(
),,(

)],,(),('[)1(11
2 tc

wasQ
tc

wasQ
wasQasQtc

i

ttt

i

ttt
ttttti γη 4-6

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
−

∂
∂

−=+Δ ++

)(
),,(

)(
),,(

)],,(),('[)1(11
3 t

wasQ
t

wasQ
wasQasQt tttttt

ttttt σσ
γησ 4-7

 85

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Agent Character

We will update the parameters at the end of obstacle avoidance. Then the error from the

training can be lessened by summing all derivatives together. If a training consists of t

steps, the update equations will be:

∑
=

Δ+=
t

k
iii kwww

1
)(4-8

∑
=

Δ+=
t

k
iii kccc

1
)(4-9

∑
=

Δ+=
t

k
k

1
)(σσσ 4-10

The vessel agent will be trained with random inputs. Each set of random input represents

a unique sequence of experiences. After the algorithm converge, we can get the value

function for calculating the expected reward after taking an action in a status.

The learning algorithm is combined in the experience function library. The interface of

the obstacle avoidance function is shown in Table 4-2.

Table 4-2 Interface of obstacle avoidance function

Name Obstacle avoidance
Input (d, VA, VB, θa, θb)
Output *(Ta, Ra, Q(d, VA, VB, θa, θb, Ta, Ra))

4.4.2 Parameter setting

In the vessel agent, the HTN for obstacle avoidance task is shown in Figure 4-5. The

agent will use the navigation experience to decide the feasible actions to avoid the

obstacles. This process will be simulated using a state-action value function. The function

is trained using the reinforcement learning algorithm. In a state, the actions with higher

state-action value will be better choices for current situation. Thus, we can evaluate the

feasible actions using the state-action values. All feasible actions, whose state-action

values are higher than a threshold, and their state-action values will be sent to the action

decider together.

 86

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Agent Character

Figure 4-5 HTN for obstacle avoidance.

As identified in Figure 4-5, there are four actions in the plan. Path plan action is to select

the next subgoal from the global path. A direction to this subgoal is outputted. The n2

step is implemented by a reinforcement learning algorithm. The output is the desired

actions with the corresponding rewards. Then the action decider will decide the final

action. The n2 and n3 will be implemented as the experience functions, which will be

explained in the following section. The action decider will make decision using the

following evaluation function. The inputs of the evaluation function are the direction to

the immediate target θt, and the output from the obstacle avoidance function.

Ra) Ta, , , ,V ,V (d,
18010*max

)(baBA θθγ
θθ

βα Q
speed
Vxf atA ∗+

−
∗−∗= 4-11

where a is the action,

 α, β, γ are positive discount factors, α+β+ γ =1,

 θt is the direction to the immediate target,

 Q(d, VA, VB, θa, θb, Ta, Ra) is the RBF approximator.

From the function, we can see that the vessel prefers bigger speed, smaller deviation from

the target direction and bigger reward of the action calculated by the learning function

approximator. The action with the maximum evaluation value will be chosen as the

output of the action decider. Then the action will be outputted to the action buffer for

execution. The interface of the action decider function (n3) is shown in Table 4-3.

 87

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Agent Character

Table 4-3 Interface of action decider function

Name Action decider
Input *(Ta, Ra, Q(d, VA, VB, θa, θb, Ta, Ra)), θt
Output (Ta, Ra)

An experiment is done with the following initial status in Table 4-4.

Table 4-4 Initial status of obstacle avoidance

Name d θa θb VA VB α β γ
Value 10 45 45 2 2 0.4 0.4 0.2

Then the motions of the vessel can be seen in the left-top of Figure 4-7. The red vessel

agent is starting from the point (10, 0) to its target (0, 10). The blue vessel will run from

the point (0, 0) and keep its original velocity and direction. After detecting the blue

vessel, the plan to avoid obstacle is invoked. In each step, the output of the agent is gotten

through executing the plan. As stated above, two experience functions are called when

executing the plan. After three steps, the agent will be free from the obstacle. We can see

that the agent takes translational acceleration actions. Its direction is a little deviated from

the target direction because the reward function of the learning algorithm prefers a closer

distance after the agent successfully avoids the obstacle. The evaluation function for

different actions in the status can be seen in Figure 4-6.

 88

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Agent Character

Step 1: Chosen action: (1, 0)

Step 2: Chosen action: (0.3, -6)

Step 3: Chosen action: (0.4, -17)

Figure 4-6 Decision making.

 89

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Agent Character

In the following, we will try to design the vessel agents with different personalities by

setting different α, β, γ parameters for the valuation function.

Table 4-5 Outputs of the evaluation function

Output Personality α β γ
Ta Ra f(x)
1 0 1.252284

0.3 -6 1.26938474 Adventurous 0.4 0.4 0.2
0.4 -17 1.22478426
0.5 0 0.14215751
0.5 -3 0.18508856 Less

adventurous 0.3 0.3 0.4
0.3 -14 0.0916117
0.4 0 0.193021119
0.4 -2 0.2540053 Less

cautious 0.2 0.2 0.6
0.3 -11 0.126752362
0.3 0 0.244209826
0.3 -2 0.323696345 Cautious 0.1 0.1 0.8
0.4 -7 0.167052984

The navigations are shown in Figure 4-7. The agent will navigate differently depending

on how much the agent will decide based on the experience. As shown in Table 4-5, such

difference can be used to show different personalities. From Figure 4-7, we can see that

the agent will navigate closer to the target direction when the experience part has a bigger

weighter. The cautious agent prefers a slower speed when facing an obstacle. But it ends

up closer to the obstacle. In this sense, the meticulous behaviours may not always

produce safer results.

 90

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Agent Character

Figure 4-7 Path of avoidance.

4.5 Conclusion

In this chapter, we analyze the agent characters and introduce an extended BDI agent

architecture to realize the characters. The character of an agent consists of personalities

and experience. In the extended BDI agent architecture, the personalities of the agent are

implemented as different parameter settings. And the experience is realized by a

reinforcement learning algorithm. The learning algorithm is incorporated into the agent as

an experience function. An example of vessel navigation is shown to demonstrate the

behaviours of the agent with the characters.

 91

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Agent Character

The experience function library can be implemented well in a parallel BDI agent. The

parallel agent’s abilities of suspension and resumption at any time ensure that the agent

can stay alert when calling an experience function. In my current work, each experience

function is implemented to provide one specific skill or solve one specific problem. The

experience functions are pre-learned and pre-defined. The agent does not create, select or

improve an experience function. The agent just utilizes experience functions to make its

decisions. Future work may put feedback mechanisms into the agent where the agent will

be able to improve his experience functions through continuous learning.

 92

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

CHAPTER

5

PRIORITY CONTROL

Activity scheduling mechanism plays a critical role in the correct behaviour of BDI

agents. The parallel BDI agent framework allows the management of beliefs, generation

of intentions and execution of a limited number of intentions to go in parallel. The

desire/intention schedule can be done based on the priorities of the desires/intentions,

which show the different degrees of importance and urgency. As we can see, the value of

priority may change over time. In this chapter, we propose to enrich the framework with

an extension which consists of 2 processing components, a Priority Changing Function

(PCF) Selector and a Priority Controller. The priorities of the intentions can have

different initial values and can be changed over time according to the chosen PCF. As an

example, we design a function by simulating human behaviours when dealing with

several things at the same time. The priority first increases with time according to a

Gaussian function to simulate the fact that people are more inclined to do something

which has been in their mind for sometime. After a certain time, if the intention still was

not executed because of other higher priority intentions, its priority will decrease

according to the Ebbinghaus forgetting curve. External reminders of an intention can also

be handled by the Priority Controller. Experiment results show that with this mechanism,

the parallel agent can show some human-like characteristics when scheduling intention to

 93

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

execute. This can be used when simulating agents with human characters. Besides the

extension, the agent operations that are facilitated by changing priority are also shown.

By controlling priorities in the two ways, the desires/intentions in a parallel agent can be

managed effectively.

This chapter is structured as follows. In the first section, we make an introduction to the

background work. In Section 5.2, we present the parallel BDI agent framework with the

proposed extension of priority control. In Section 5.3, we discuss the mechanisms of

priority controls proposed that include some samples of human-like priority changing

functions and how these functions are handled to reflect the effect of new beliefs, new

desires, and new intentions on the priorities of existing desires and intentions. A

simulation experiment is conducted to compare the behaviour of agents with and without

the priority control. The experiment results are presented in Section 5.4. An analysis of

how agent acts with different reminding functions is shown in Section 5.5. A conclusion

is made at the end of this chapter.

5.1 Introduction

Bellman defines AI in [9] as the automation of activities that we associate with human

thinking, activities such as decision making, problem solving, learning. One such activity

is to decide when is the appropriate time to think about a certain matter or to do

something. For an intelligent agent, this means it should know when to deliberate and

when to act in addition to being able to deliberate on how to achieve a goal and how to

carry out a plan. There has been significant amount of work on solving the “How”

problem but not the “When” problem. As described in the survey of agent architectures

[135], the world is symbolized and decision is made through logical reasoning of

relationship among the symbols in the deliberative architecture. The BDI (belief-desire-

intention) model is the most famous one of the deliberative architectures. It provides a

folk psychological way by simulating human deliberation. The mental attitudes of belief,

desire and intention represent the information, motivational, and deliberative states of the

agent respectively [18, 111]. Several successful agent architectures and systems based on

 94

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

BDI have been developed. PRS (procedural reasoning system) is an implementation of

the BDI model. In each cycle, the belief is updated first. Then intentions are selected

from the applicable plans. Finally action in the chosen intention is executed. The PRS

system obtains the ability of reasoning in complex ways about dynamic processes while

keeping appropriate responsiveness and control [63]. In UM-PRS [77], an extension of

the PRS system, the hierarchy of the plans is kept for monitoring plan execution and

replanning. AgentSpeak(L) [112] and LORA (logic of rational agents) [136] are two sets

of operational semantics defined for BDI agents. The decision is made through logic

reasoning. All these works are solutions to the “How” question.

The “When” question, that is, the scheduling of deliberation about new beliefs and the

scheduling of intention execution is usually omitted in these BDI systems. The

researchers mostly concentrate on solving the problem of intention generation. For

example, in AgentSpeak(L) [112], the selection function SI selects an intention to execute

from the intention set I. The detailed selection criteria are not specified. We believe the

scheduling of intention is crucial in an agent’s ability to cope with the changing world.

Some scheduling mechanisms appear in subsequent researches. In AgentSpeak(XL) [12],

an extension version of AgentSpeak(L), a task scheduler is incorporated into the

interpreter to decide how to select intentions. The set of intentions in the AgentSpeak(L)

is converted into a corresponding TÆMS task structure. Then the selection is done based

on the analyses of the relationship among the plans in the TÆMS task structure. The

'enables' and 'hinders' relationships indicate which plan may be executed first. Another

method is shown in the JAM agent architecture [59]. The intention selection is done

based on the utility value of the plan. The intention with higher utility will be executed

first. Recently, another work of intention scheduling is reported in [79]. The researchers

take several properties into consideration when scheduling the intentions, such as the

importance of the plan, the estimated running time, the deadline utility function, the

degree of completeness and FairFacter.

We consider the problem of deliberation scheduling and intention scheduling in an agent

who will behave like an “average human”. If people identify and accept an agent as

 95

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

human and not machine-like, they tend to trust the agent better. For example, a

companion to shut-ins or a playmate for a child should display a human way of

interacting with its environment. When there are multiple goals to achieve and multiple

intentions to execute, the agent needs a rational and human-like way to control the

deliberation of plans for the goals and the execution of intention plans. We associate a

single priority value with each desire or intention to facilitate the scheduling of

deliberations and intention executions. The priority represents the importance and

urgency of the goals or intentions to an agent. For humans, their priorities change with

time. The priorities may be affected by how close it is to the deadline of a task, or a

change in personal interest. The deadlines of tasks may also change, either forward or

backward. So the priority of a goal or an intention of an agent should also change with

time. In other words, the priority should be a function of time.

While specifying the priority of a goal or an intention of an agent by a function of time, it

is also necessary to consider the influence of new beliefs, new desires and new intentions

on the priorities of existing desires and intentions. New beliefs, new desires and new

intentions may make some existing desires or intentions more important and urgent, or

less important and urgent, or may even render them not relevant any more. We propose

how to support these changes in the agent’s behaviour.

Currently, the control of the priority changing with time has not been adequately

researched even though some work has been done in the artificial life community. In

[74], a priority control mechanism for behavioural animation is proposed. The priority is

set at minimal value immediately after the agent displays a certain behaviour like

drinking. Then this priority increases with time. The increased priority will induce the

agent to drink again. However, expecting the priorities of all desires and intentions to

change in the same manner is not realistic. Different desires and intentions should be

allowed to change their priorities in various suitable ways.

We proposed a parallel BDI agent framework in Chapter 3 to achieve better reactivity

and rationality in intelligent agents. This framework equips a BDI agent with the natural

 96

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

abilities of doing several things at the same time and the ability of prioritizing the

deliberations and intention executions according to the urgency of the matters. Each

desire and intention is at a certain level of priority among the several levels of priorities.

The level of priority is used in the scheduling of the desires/intentions in the agent.

However this mechanism has the problem that with priorities set at constant levels, some

desire or intention may be starved indefinitely by desires or intentions with higher levels

of priorities.

In this chapter, we proposed a priority control extension to the parallel BDI agent

framework in order to support the capabilities of representing the changing importance of

different desires and intentions. Pre-defined Priority Changing Functions(PCFs) are

associated with the desires and intentions. A Priority Controller will compute the priority

value of the desires and intentions to help the scheduling decisions to be made at various

time moments. We proposed a few priority changing functions which simulate the human

behaviours when dealing with several things at the same time. A popular pattern is that it

first increases the priority value according to a certain function and then decreases

according to the Ebbinghaus forgetting curve. However other patterns are also possible.

With the setting of suitable parameter values, the PCFs are also able to simulate the

changing of priority when a person is not very motivated to pursue his goal or put an

intention into actions. The function can also represent the changing of desire/intention

priority when it will get stronger and stronger and stay at its maximum value until it is

carried out. We have also incorporated other controls to realize the effect of new beliefs,

new desires and new intentions on the priorities of existing desires and intentions or

intentions that need to be executed exactly at a certain moment. This is to simulate human

behaviours when dealing with several things at the same time. These controls of priorities

for desires and intentions provide a human-like way to control an agent’s activities. Other

successful human-like systems are, for example, the i-Bid game player agent [70] and

adaptive agent designation [134].

 97

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

5.2 Priority Control Extension

Figure 5-1 Priority control extension to the original parallel BDI framework (only parts of the
original framework that interact with the extension are shown).

To represent the dynamic change of priorities of a desire or intention, each desire or

intention will be associated with a Priority Changing Function (PCF) which defines how

the priority should change with time. The priority control extension to the agent

architecture is shown in Figure 5-1. Two processing components are introduced into the

BDI agent, a PCF (Priority Changing Function) Selector and a Priority Controller. When

a desire/intention is generated, the Desire Generator (DG) or the Intention Manager (IM)

will call on the PCF Selector which will, based on some context-rules, (i) select a suitable

PCF for the new desire/intention from the PCF Library and (ii) decide on the values of

the parameters if any for the PCF. The signature of the function of the PCF Selector is as

follows:

PCF_Selector : desires × PCFs → PCFs and

 98

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

PCF_Selector : intentions × PCFs → PCFs

where desires and intentions are the set of desires and the set of intentions of the agent

respectively, and PCFs is the set of priority changing functions in the PCF library.

The Priority Controller will be responsible for updating the priorities of the

desires/intentions according to their PCFs as time passes. In order to have the priorities

of desires and intentions assessed accurately but not computed unnecessarily, the Priority

Controller will update the priorities of desires/intentions each time the BDI agent is to

select a desire/intention to execute by

()tfPriority = 5-1

where f(t) is the PCF and t is the current time. This extension allows a BDI agent to select

suitable PCFs for the desires/intentions and compute the priority values of

desires/intentions at various points in time. Then the deliberation of the desires and the

execution of the intentions can be scheduled by the Desire Scheduler (DS) or the

Intention Scheduler (DS) based on their importance or urgency, represented by their

priority values at the time.

Various PCFs suited to different intentions can be pre-defined. This enriches the BDI

agent with the ability of realizing the scheduling of the desires/intentions in a more

realistic way. As an example, for an intention to be completed before a deadline, td, a

simple PCF is:

⎩
⎨
⎧ −≤≤−∗+

=
otherwise0

tt)t(
)f(edss tttβα

t 5-2

where ts is the time when the execution of the intention plan can be started, te is the time

required to execute the intention, α is the initial priority value, and β is the rate of

changing of the priority value.

By setting a suitable value to ts, it is very easy to manage clashing intentions or

something/some task that needs to be done at a certain future time. For example, ts may

be set to the time when a clashing intention will finish so that it is feasible for this

 99

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

intention to execute. At the time set for ts, the intention will be activated from its sleeping

status (priority=0). The PCF Selector will decide the values of α, ts, td, te and β based on

the features of the intention.

DG, DS, IM and IS are responsible for the generation, scheduling and managing of the

desires and intentions. The operations for them are defined in Chapter 3. The priority

changes are used to resolve obsolete, clashing and urgent desires/intentions. The

requirement for such priority controls are summarized in Figure 5-2.

1. If a new belief makes an existing desire obsolete, set the priority of the desire to zero.
2. If a new belief makes an existing desire more/less urgent, change the priority of the

desire.
3. If a new desire just generated makes an existing desire obsolete, set the priority of the

existing desire to zero.
4. If a new desire just generated makes an existing desire more/less urgent, change the

priority of the desire.
5. If a new desire just generated clashes with an existing desire, reduce the priority of

the less important desire so that it will be put on hold.
6. If a new belief makes an existing intention obsolete, set the priority of the intention to

zero.
7. If a new belief makes an existing intention more/less urgent, change the priority of

the intention.
8. If a new desire just generated makes an existing intention obsolete, set the priority of

the existing intention to zero.
9. If a new desire just generated makes an existing intention more/less urgent, change

the priority of the intention.
10. If a new intention just generated clashes with an existing intention, reduce the priority

of the less important intention so that it will be put on hold.
11. If a new intention just generated makes an existing intention obsolete, set the priority

of the intention to zero.
12. If a new intention just generated makes an existing intention more/less urgent, change

the priority of the intention.
13. If an existing intention just completed clashes with another existing intention which

was put on hold, increase the priority of the waiting intention.
14. If an existing desire just achieved clashes with another existing desire which was put

on hold, increase the priority of the waiting desire.
Figure 5-2 Requirement for priority changes caused by new beliefs, new desires and new intentions.

 100

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

In the following parts, we will first show the designation and implementation of the

reminding-forgetting PCF. Then the function is applied to the parallel BDI model for a

comparison experiment.

5.3 Priority Control

With the architectural support as described in the previous section, we present in this

section the mechanism of priority control so that what an agent deliberates and acts on

are decided by his priorities, just like the humans. The basic control of priorities comes

from the Priority Changing Function (PCF) which defines how the priority of a desire or

an intention should change with time. The PCF is defined by

)I(*)f(tiorityMaximum prt = 5-3

where Maximum priority is the highest value which a desire or an intention may have,

and I(t) is the function of influence factor with a range [0, 1]. Maximum priority is an

intrinsic constant value of a desire or an intention where I(t) controls the changes in

priority with time. This PCF with a suitable I(t) will be applied in the parallel BDI agent

to provide some human-like behaviour. I(t) can be different for different desires and

intentions.

Very often, human interests in a certain goal or intention go through a few phases. One

phase is the interests are getting stronger and stronger and we call it the reminding phase.

Another phase is the interests will be getting weaker and weaker and occasionally the

goal or intention may even be forgotten and this is called the forgetting phase. There are

also situations where someone has an unchanging interest to do something and this is

called the unchanging phase. These phases may happen to a certain goal or intention one

after another or there is just one phase throughout the existence of the goal or intention.

For example, the interests in the intention to eat remains a constant at a low level for a

short period after a person has just eaten but will then start to increase. An agent may

have an interest to reorganize the furniture in the bedroom but he is either too lazy to do it

or the interest is just not enough, so from the beginning the intention gradually fades

away. An agent may have an interest to learn how to cook better and the interest will

 101

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

increase till it reaches its maximum and never fades away. We will first describe how I(t)

models the various phases of priority changing and then show how the various phases

work together. Then we will present how the effect of a new belief/desire/intention on

some existing desire/intention is modeled.

5.3.1 The reminding phase of a PCF

This is the phase where an agent has increasing inclination to deliberate on how to

achieve a goal or to execute an intention plan. The priority of the goal or intention should

be increased gradually until it reaches its maximum value. We call this phase the

‘reminding’ phase. The manner by which the priority of a desire or an intention increases

may be different from that of the others. We propose three different functions to model

the way a priority may increase, the Sigmoid, Gaussian, and ramp functions shown in

Figure 5-5.

For the three functions, the value I(t) at t = 0 is y0. The value of y0 when multiplied by

the maximum priority as shown in Equation 5-3 will return f(t), the initial priority of a

desire or intention. At t = tm, the value of I(t) should be 1 or very close to 1. tm is the time

when f(t) is to reach its maximum priority value. It should be the time till when the agent

keeps interests to the deliberation/intention or the latest time a deliberation or an

execution of a plan should start in order to meet a deadline. The ramp function is a model

where the priority increases at a constant rate. It is realized by:

t
t

y
yy

m

∗
−

+= 0
0

1
 5-4

The Sigmoid function is commonly used to model the growth of some set p. Here it is

used to model the growth of interests in a deliberation or an execution of a plan. It is

shifted to right by ⎟
⎠
⎞

⎜
⎝
⎛ −11ln
α

 in x-axis. Then the function between [α, 1- α] in y-axis will

be resized to [0, tm] in x-axis and [y0, 1] in y-axis. We get the equation:

 102

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

()
() 0

0

21
1

*
11ln21exp1

1 y
y

t
t

y

m

+
−
−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −∗⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

=
α

α

α

 5-5

where α will decide the figure of the function, 0<α<0.5.

Five sets of Sigmoid functions with different α, tm and y0 are shown in Figure 5-3. It is

noticed that with a smaller α, it takes a longer time before the priority starts to increase

sharply. The bigger the α is, the closer the function is to the ramp function.

0

1

0

Time unit

y

α=0.001 α=0.01 α=0.1 α=0.001

t m=20t m=10

0.1

0.2

Figure 5-3 Sigmoid functions.

The Gaussian function is the function:

() ()
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−∗= 2

2
0

2
exp

2
1G

σσπ
η

xx
x 5-6

where η is a constant value, σ is the width of Gaussian function, and x0 is the middle point

of the function.

 103

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

In order to make I(t) reach the maximum value 1 at the middle point, we set η to σπ2 .

To make I(0)= α, we calculate the width of Gaussian function σ by:

α
σ

ln
1*t*

2
2 −

= m 5-7

These produce the I(t) function as below:

() 0
0

2

m 1
1

ln1
t

expI y
ytt +

−
−

∗
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∗⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

α
αα 5-8

Five sets of Gaussian functions with different tm and y0 are shown in Figure 5-4. With a

smaller α, the increasing is slower at the initial period. Normally, we set α=y0. So the

equation 5-8 will be simplified to:

()
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∗⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= 0

2

m

ln1
t

expI ytt 5-9

0

1

0

Time unit

y

α=0.1 α=0.01 α=0.001 α=0.1

t m=20t m=10

0.1

0.2

Figure 5-4 Gaussian functions.

 104

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

Both the Sigmoid and the Gaussian function have the property that the gradient of I(t)

gradually decreases to zero when t is approaching tm. This simulates the increase in the

agent’s interest in a goal or an intention gradually stops as the interest reaches its

maximum. For example, for the I(t) function that is based on the Gaussian function, (1)

the function value is increasing for t ≤ tm; (2) the rate of increase first increases for 0 ≤ t ≤

tm - σ (I’’(t) ≥ 0) and then decreases for tm - σ ≤ t ≤ tm (I’’(t) < 0); (3) the increase in

function value and the rate of increase at tm are 0, which means that the trend to increase

the priority has stopped. The difference between these two functions is that Sigmoid

function initially increases more slowly than the Gaussian function. Sigmoid function

models people who tend to leave things to “last minute” where Gaussian function models

people who tend not to do so. The three kinds of reminding functions are shown in Figure

5-5. And an analysis of the agent behaviours with the different reminding functions is

shown in the last section of this chapter. In the other following parts, Gaussian function is

chosen as an example to demonstrate the agent’s reminding function.

0

1

0

Time unit

y

Ramp Sigmoid (α=0.001) Gaussian

t m=100

0.1

Figure 5-5 Comparison of three functions.

 105

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

5.3.2 The forgetting phase and the unchanging phase of a PCF

The forgetting phase is the phase where an agent’s interest in a goal or an intention plan

is fading. The priority of the goal or the intention should be decreased gradually. This

may happen if an intention is deferred for a long time because intentions with higher

priority keep on coming and the agent do not manage to carry out the intention plan

which has a lower priority. This is similar to that humans forget to do something when

they are doing something else more important. In biological science, this is a protective

mechanism to ensure that human can learn new things. We tend to forget things that the

external environment does not remind us of. So as time passes, the priority of the

intention in an agent is decreased. If the priority decreases to a value below a threshold,

the intention will be removed (forgotten). For human-like agent, proper parameter

settings should be gotten through studying human behaviour models. The first significant

study on memory was performed by Hermann Ebbinghaus and published in 1885 as On

Memory. Ebbinghaus was the first to describe the shape of the forgetting curve [1]. This

curve is the biological base on which we simulate the process of intention retention. In

[3], the forgetting curve is described as:

Ste /R −= 5-10

where R is the retention, which means the ability to retain things in memory, t is the

elapsed time, and S is the strength of memory, which means the duration of things in

memory.

The forgetting curves with different S are shown in Figure 5-6. It can be seen that with a

larger S, the retention decays more slowly. When S is a very big value, the retention will

keep constant as 1, that is, no forgetting.

The unchanging phase is the phase where an agent’s interest in a goal or an intention plan

is at a constant level. The priority of the goal or the intention is specified by a constant.

 106

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

t

R

S=5 S=20 S=50 S=100 S=10,000

Figure 5-6 Forgetting curves with different S.

5.3.3 The complete PCF

The complete PCF, or more specifically, the complete I(t) is formed by either any one of

the single phased functions described earlier, or it is a concatenation of two or more

single phased functions. For example, we can compose an I(t) by combining the

functions of the reminding phase and the forgetting phase together. The result is a

reminding-forgetting function:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛

<=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

=
otherwise

S
t-

-exp

t if
2

)t(
exp

)I(
m

m2

2
m

t

t
t

t
σ

 5-11

An example of the situation modeled by this I(t) is that an agent intends to search for a

piece of information which is ‘hot’ recently but he has more urgent things to do so does

not find time to search. Then after a while, the information he wanted is no longer ‘hot’

so the interest and therefore the priority goes into the forgetting phase.

 107

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

It is easy to show that I(t) is continuous at every point. The influence factor does not

change significantly at any time. By proving the continuity of the influence function, we

intend to show the fact that the simulated human behaviour is consistent without outside

disturbance.

We will use the reminding-forgetting function in (9) as an example to show how the I(t)

function is composed. The following initial parameters need to be decided:

Table 5-1 Parameters related to the reminding-forgetting function

Name Type Explanation
IP (Initial Priority) Float It is the initial urgency of the desire/intention.
MP (Max Priority) Float The maximum priority the desire/intention can have.
tm Integer The time when the forgetting process begins.

S Integer Strength of memory. It is assumed that a higher initial
priority will have a longer retention.

Threshold Float In forgetting progress, if the priority is below the
threshold, the intention will be removed.

Table 5-2 Intentions with different PCF parameter settings

Intention IP MP tm S Threshold
1 1 1.5*IP 20 10*IP 10%
2 2 1.5*IP 20 10*IP 10%
3 1 2*IP 20 10*IP 10%
4 1 1.5*IP 10 10*IP 10%
5 1 1.5*IP 20 20*IP 10%
6 1 1.5*IP 20 10*IP 20%

Figure 5-7 shows the change of priority for 6 sample intentions with the parameter

settings shown in Table 5-2. The intentions 2-6 each has one different PCF parameter as

compared with the intention 1.

 108

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70

Time unit

P
rio

rit
y

1 2 3 4 5 6

2
3

5
6

4

1

Figure 5-7 Priority Control of Four Intentions.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50 60 7

Time unit

Pr
io

rit
y

0

PCF1(t) PCF2(t) PCF3(t) PCF4(t)

Figure 5-8 Examples of several PCF(t).

 109

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

Figure 5-8 shows several examples of I(t). PCF1(t) is a single phased function where the

priority depreciates from the beginning. This happens when someone has the intention to

do something but he is either too lazy to do it or the interest is just not enough, he(the

agent) starts to forget about it according to the forgetting curve from the beginning.

PCF2(t) is the concatenation of reminding phase and the unchanging phase. Notice that

this can also be achieved by concatenating the reminding phase and the unchanging phase

and setting S to infinity in the forgetting phase. So before the desire/intention is

completed, it will never be forgotten. PCF3(t) is a single unchanging phase function.

PCF4(t) is the concatenation of the reminding phase, the unchanging phase and the

forgetting phase. It can be used in the case that the priority is kept at the maximum value

for a period of time before the forgetting period starts.

5.3.4 Priority change caused by other desires/intentions

It is noticed that the I(t) function as described earlier changes the priority of a desire or an

intention in the absence of the effect of new beliefs, desires and intentions. However, as

listed in Figure 5-2, there are situations where a new belief, a new desire or a new

intention may make an existing desire or intention more urgent or less urgent, therefore

the priority of the affected desire or intention needs to be increased or decreased. For

example, suppose the human master asked his robotic agent to wash his car while the

agent is doing cleaning in the house and the robotic agent also has a few other things to

do. The agent has the intention to wash the car but the priority is not as high as his other

intentions. After a little while the master reminds the agent about washing his car. At

this point the priority for washing the car should be increased. So the new belief that the

car needs to be washed sooner should have the effect of increasing the priority of the

intention of washing the car. Another scenario that will change the priority of an existing

intention: the robotic agent has the intention to tidy up a room but his master tells him to

iron a shirt in the next 10 minutes. The robotic agent generates the intention to iron the

shirt and has to lower the priority of tidying up the room. In situations like these

examples, the priority of an existing desire/intention at t and beyond is affected. t is the

 110

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

time when a new belief, a new desire or a new intention is generated and it is the moment

when the priority of an existing desire/intention should be changed.

To model the effect on the I(t) of the existing desire/intention, we have

() ()()
() ()()rtt

rtt
−=

+=
I,1.0maxI

1 ,IminI

new

new 5-12

where r is the increase/decrease of the influence factor. r has a value in the range (0, 1]

and will be decided according to the relative urgency of the affecting and the affected

desire/intention. The maximum value of I(t) is kept at 1 such that the priority of the

existing desire/intention will not be increased beyond its maximum priority. This is to

make sure that the increase in priority will not render it to have a higher priority than the

desire/intention should have and to overpower other desires/intentions that are more

important and critical by nature, for example, life-saving intentions.

In the following discussion, we look at the computation of Inew(t) where the priority will

be increased, that is, r is added to I(t). Suppose I(t) is the reminding-forgetting function in

Equation 5-11. The increase in I(t) may come in reminding phase or the forgetting phase.

In the first case, the increase of I(t) by r can be realized by shifting the reminding

function left by Δt1 on the time scale as given below.

()⎪⎩

⎪
⎨
⎧

Δ+−−−
≥+−=Δ

+ otherwiselnln*2
1I(t) if

t1
rI(t)I(t)1

σ
rttm

t 5-13

where Δt1 is zero before the first time I(t) is increased by a new belief/desire/intention and

at subsequent times, Δt1 is a further shift from the previous shift.

If the increase in I(t) comes in the forgetting phase where the priority is decreasing, the

forgetting curve will be shifted right by Δt2 on the time scale as given below.

()
() ()()⎩

⎨
⎧

Δ+−∗
≥+−

=Δ + otherwiselnlnS
1tI if

2
II2

t
rtt

m
t

rtt
 5-14

 111

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

Δt2 is zero before the first time I(t) is increased by a new belief/desire/intention in the

forgetting phase and at subsequent times, Δt2 is a further shift from the previous shift.

Similarly, the decrease in I(t) when I(t) is in the reminding phase is achieved by a shift to

right on the time scale and the decrease in the forgetting phase is by a shift to left by an

appropriate amount.

With the time shifting values Δt1and Δt2, the function I(t) is:

()
()

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛ −Δ+Δ+
−

Δ−≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −Δ+
−

=

otherwiseexp

 if
2

exp
I

21

12

2
1

S
tt

tt
tt

t
mtt

tm
mt

σ
 5-15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50

Time unit

Pr
io

rit
y

Series1
Series2

r=-20%

r=10%

r=10%

Figure 5-9 I(t) shifting in the Reminding Phase.

An example is shown in Figure 5-9. The intention is created with an initial priority of 1.

The line 2 shows the priority changing with three shifts in the reminding phase. The

 112

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

change in I(t) is an increase of 0.1 at time 5, a decrease of 0.2 at 10 and another increase

of 0.1 at 15. Another example is shown in Figure 5-10. The intention is created with

initial priority 1. The line 2 shows the priority changing with four shifts in the forgetting

phase. Two are at time 25 and 30, the increase in I(t) is 0.5. This will make the priority

value rise to the maximum value. The 3rd is at time 35, the priority will be decreased by

10%. The increase at time 40 is by 20%. The cases in Figure 5-10 are easy to understand

in an imaginary scene that an absent-minded person acts under others’ reminders. This is

similar to active recall in mnemonic techniques [1]. The difference here is that here the

outside reminders do not change the strength of memory.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60

Time unit

Pr
io

rit
y

Series1
Series2

r=20%r=-10%

r=50%r=50%

Figure 5-10 Outside Reminders in Forgetting Process.

5.4 Comparison of Parallel Agents Without and With the
Reminding-forgetting PCF

In this experiment, parallel BDI agents without or with priority control are simulated. A

set of events are input to them. Then the performance of them is analyzed. The events

designation is the same as demonstrated in Section 3.3.2.

 113

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

We consider three sequences of events with different average inter-arrival times. The

average inter-arrival times of the 3 sequences of events are respectively smaller than,

equal to and larger than, the average processing time required by an event. The events

statistics used in the experiments are shown in Table 5-3.

Table 5-3 Events statistics.

Events count
Priority Set

Expected
average

interval 1/λ 1 2 3 4 sum
Actual average

interval

a 2 25 22 26 25 98 2.42
b 4 25 26 24 21 96 4.04
c 6 26 22 24 23 95 5.64

We experiment with 6 agents: agent 1 has a constant PCF so the initial priority is the

priority all the time; agent 2 to 6 each has a different parameter settings for the PCF as

shown in Table 5-4. The initial priority value of an intention is used as the basic priority.

Table 5-4 Agents types.

PCF parameter settings Agent
no PCF S Tm MP Threshold
1 - - - - -
2 √ 100*IP 20 1.5*IP 10%*MP
3 √ 100*IP 20 1.5*IP 1%*MP
4 √ 100*IP 20 2.5*IP 10%*MP
5 √ 100*IP 40 1.5*IP 10%*MP
6 √ 300*IP 20 1.5*IP 10%*MP

The intention processing time is defined as the duration from the time when the intention

is created to the time when the execution of the intention is finished. The average

processing time (APT) of the three sets of events by the agents is shown in Figure 5-11.

In set a, compared to the expected average processing time 4, agent 1 does not have

sufficient time to finish processing an event before the next event arrives. So the

intentions with lower priorities have to wait for a long time. The time to process the

events with priority 1 is 228 time units. So the intention is starved for a very long time.

With the increased average inter-arrival time, the agent 1 has more time to process an

event before next event begins and the corresponding APT is decreased to 38.6 for set b

 114

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

and 10.8 for set c. In agents 2, 4 and 5, the APTs are the APTs of the events that get

processed and they are smaller than those for agent 1. Here some intentions with priority

1 in set a are forgotten due to a long waiting time, which can be seen from the statistics in

Table 4. For events with priority 4, the APT is not affected too much, because the urgent

events will be scheduled first. What we see is that some of those low priority events that

experience terribly long waiting time in agent 1 are forgotten in agent 2, 4 and 5 for event

set a.

Table 5-5 Events processed statistics.

completed
forgotten

Priority
Agent

no Set

1 2 3 4
sum

a 14
11

22
0

26
0

25
0

87
11

b 25
0

26
0

24
0

21
0

96
02

c 26
0

22
0

24
0

23
0

95
0

3 a 25
0

22
0

26
0

25
0

98
0

4 a 14
11

22
0

26
0

25
0

87
11

5 a 16
9

22
0

26
0

25
0

89
9

6 a 25
0

22
0

26
0

25
0

98
0

Looking at Table 5-5, we see the effect of the parameters of the PCF. For set a, 11 events

are forgotten by agent 2 (row 2a). This is because the agent has no enough time to

process all the crowded events. Rows 2b and 2c have all the events processed because of

the longer event inter-arrival time. Comparing row 2a and 3a, more intentions are

processed because of a lower threshold of retention. Comparing row 2a and 4a, the

numbers of intentions processed are same because a higher maximum priority will not

change the retention time of the intention. Comparing row 2a and 5a, 2 more intentions

are processed because of a longer reminding period before forgetting starts. Comparing

row 2a and 6a, 11 more intentions are processed because of a bigger strength of memory.

The APT of them are bigger for intentions with lower priority in set a.

 115

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

22
8

12
7.5

13
.5

5.2

16
0.3

6

14
0.7

3

12
.23

5.9
6

23
1.6

14
0.7

3

12
.23

5.9
6

16
1

11
2.7

7

15
.35

9.6
4

17
2.0

6

12
8.9

1

12
.77

5.7
6

23
3

13
5.5

12
.31

6
0

50

100

150

200

250

1 2 3 4

Priority

A
PT

Agent1 Agent2 Agent3 Agent4 Agent5 Agent6

a. average interval = 2.42

38
.6

9.8
1

5.1
3

4.4
3

34
.92

9.8
1

5.1
3

4.4
3

34
.92

9.8
1

5.1
3

4.4
3

34
.2

9.1
2

4.7
1

4.8
6

42
.92

9.8
1

5.1
3

4.4
3

40

9.8
1

5.1
3

4.4
3

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4

Priority

A
P

T

Agent1 Agent2 Agent3 Agent4 Agent5 Agent6

b. average interval = 4.04

10
.81

7.5
9

6.4

3.6

11
.27

7.5
9

6.1
7

3.7

11
.27

7.5
9

6.1
7

3.7

11
.38

7.2
3

5.7
1

4

10
.81

7.5
9

6.4
2

3.6
1

11

7.5
9

6.1
7

3.7

0

2

4

6

8

10

12

1 2 3 4

Priority

AP
T

Agent1 Agent2 Agent3 Agent4 Agent5 Agent6

c. average interval = 5.46

Figure 5-11 APT of events.

 116

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

5.5 Agent Behaviours with Different Reminding Functions

In this section, an analysis of how agent will behave is given with the three different

reminding functions proposed in Section 5.3. The three functions are Ramp, Sigmoid

(α=0.001) and Gaussian functions. We will estimate the probability that in the agent an

intention with a reminding function is running or starts its execution first time at a time

point before the tm.

The following are assumed:

• The highest priority allowed in the agent is 100. Thus MP of the intention is in the

range [1, 100]. IP of the intention is set as 10%*MP. At time unit t, the priority of

the intention is calculated as PCF(t).

• At any time t, there is random number of other intentions existing in the agent.

The highest priority of the intentions is phigh_t. Then we define:

D(α) = Pro(phigh_t < α) 5-16

Then the probability that the intention is running at a time point t is calculated as:

Pro(the intention is running at time unit t)=

Pro(phigh_t is bellow the current priority of the intention)=

Pro(phigh_t < PCF(t))=

D(PCF(t))

5-17

The probability that the intention is started first time at t is calculated as:

Pro(the intention is started first time at time unit t)=

Pro(the intention is not started previously)*Pro(phigh_t < PCF(t))=

()))((*))((1
1

1

tPCFDiPCFD
t

i
⎥
⎦

⎤
⎢
⎣

⎡
−∏

−

=

5-18

 117

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

In an agent, the distribution of phigh_t can be in any forms in various situations. The

following analysis is made in the case that it is distributed in [1, 100] according to the

standard normal distribution. Thus we have:

() ()()

()
⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠

⎞
⎜
⎝

⎛
=

=

=

∫ ∞−

−

−

1
2

)(*
2
1

2
1

)()(
))((

2
2

tPCFscaleerf

dxe

tPCFscaleDtPCFD
tPCFscale x

normalstandard

π

5-19

where erf() is the "error function" encountered in integrating the normal distribution;

scale() is the function to scale the priority of the intention at time t, PCF(t), from the

domain [1, 100] to [-3 ,3]. The domain [-3, 3] is selected because for standard normal

distribution function, the probability that the variable is outside [-3, 3] is very small

(Dstandard-normal(-3)≈0.00135, Dstandard-normal(3)≈0.99865). A figure of this distribution

function is shown in Figure 5-12.

D(PCF(t))

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100

PCF(t)

Figure 5-12 Demonstration of function D(t).

The calculation of erf() function can be seen in many mathematics articles about normal

distribution, such as [113], [2]. Here we show it for reference.

 118

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

()

∑

∫
∞

=

+

−

+
−

=

=

0

12

0

)12(!
)1(2

2 2

n

nn

z t

nn
z

dtezerf

π

π
 5-20

The calculation results of the two probability functions are shown and analyzed in the

following.

5.5.1 Probability that the intention is running at t

The following results are calculated by Equation 5-17. Four intentions with different

parameter settings of tm and MP are designed. The probabilities that the intentions are

running at t are shown in Figure 5-13.

tm=100 MP=50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Ramp
Sigmoid
Gaussian

tm=50 MP=50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Ramp
Sigmoid
Gaussian

tm=100 MP=100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Ramp
Sigmoid
Gaussian

tm=50 MP=100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Ramp
Sigmoid
Gaussian

Figure 5-13 Probability that the intention is running at t.

 119

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

From the figure, it is shown that with a same tm, a higher MP will increase the probability

that the intention is running. With a same MP, a shorter tm will also increase the

probability because the priority is increased more quickly. With the same tm and MP, the

intention with Sigmoid reminding function will be running in the initial period with the

smallest probability. However, when approaching tm, the probability that the intention

with Sigmoid reminding function is running is the greatest.

5.5.2 Probability that the intention is started first time at t

The following results are calculated by Equation 5-18. The results will show when the

intention will be started first time at the largest probability. MP of the intention is set as

50. The intention is associated with different PCF functions and parameter settings of tm.

The results are shown in Figure 5-14.

It can be seen that if tm is larger than 30 in the experiment setting, the probability that the

intention is started before tm is very close to 100%. However, with a small tm, such as 10,

the intention may not be started before tm. With the same tm, the probability that an

intention with Sigmoid PCF is started is smallest in the initial period. Then it is increased

quickly. The intention is likely to be started in a period shorter than the intention with

other PCFs.

From the above analysis, it can be seen that with a Sigmoid reminding function, the

intention will be started later than with a Gaussian reminding function as we expect:

Sigmoid function models people who tend to leave things to “last minute” where

Gaussian function models people who tend not to do so.

 120

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

Ramp MP=50

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 20 40 60 80 100

tm=100 tm=50 tm=30 tm=10

Sigmoid MP=50

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 20 40 60 80 100

tm=100 tm=50 tm=30 tm=10

Gaussian MP=50

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 20 40 60 80 100

tm=100 tm=50 tm=30 tm=10

Figure 5-14 Probability that the intention is started at t first time.

 121

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Priority Control

5.6 Conclusion

In this chapter, we first argue that the priority of the deliberations/intentions in an agent

should be changing with time. Then we design a “priority control” extension to the

parallel BDI agent. For each deliberation/intention, the agent will choose a PCF for it

from the PCF library. By priority, it provides a way to schedule the

deliberations/intentions in the agent.

We design a reminding-forgetting PCF by simulating human bahaviours when dealing

with several tasks together. We propose three functions to simulate the reminding phase

and use the forgetting curve function for the forgetting phase. A comparison experiment

of the agents with or without the reminding-forgetting PCF is shown. The agent

behaviours with the three reminding functions are analyzed.

 122

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Character 6 A Vessel Captain Agent

CHAPTER

6

A VESSEL CAPTAIN AGENT

In this chapter, we will show a software agent which simulates the behaviours of a vessel

captain navigating in the sea. The agent architecture for implementing the software agent

is an instantiation of the parallel BDI agent framework with the two agent character

extensions. Then the simulation experiments are shown.

The purpose of this experiment is to apply the parallel agent framework to make a real

software agent. The behaviour records of the vessel agent demonstrate the abilities that

we expect from a parallel agent. The software agent architecture we show here can be

used to make software agents in other contexts.

This chapter is structured as follows. In Section 6.1, the software agent architecture is

shown and explained. The experiment designation and results are shown in Section 6.2. A

conclusion is given in the last section.

6.1 Software Agent Architecture

When an agent is simulating a certain physical system like a human being, the parallel

agent under the general framework should be configured such that it has the same number

 123

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Character 6 A Vessel Captain Agent

of Environment Monitors (EMs), Plan Generators (PGs) and Plan Executors (PEs)as the

number of parallel physical devices that exist in the physical system to perform the

corresponding functions. Figure 6-1 shows the detailed software agent architecture for a

vessel captain navigating a vessel in the sea.

Figure 6-1 Software implementation architecture.

Threads are used to simulate the parallel processing elements in the agent. In Figure 6-1,

these threads are shown in white boxes and identified with numbers (1-6). For example,

the belief manager consists of two threads, numbered by 1 and 2. Similarly, the intention

generator and the intention executor are made of several threads of their own. The

information flows in the architecture are shown by the dark arrow lines. The link from the

Intention scheduler to EM is to inform it that a certain intention plan has been completed.

 124

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Character 6 A Vessel Captain Agent

The PG and PE are not explicitly shown in Figure 6-1. Desires and intentions are

implemented as separate threads. A running thread of desire/intention is to simulate a

PG/PE. This makes it very easy to manage the suspension and the subsequent resuming

of the plan generation of a desire in the PG and that of the plan execution of an intention

in the PE. If a thread is suspended, the current working status of the thread is saved in

computer memory automatically for resuming the thread later on. The Desire scheduler

and the Intention scheduler will schedule the running of the threads according to the

priorities of the desires and intentions respectively.

In the following experiment of vessel agent, there is just one PG in the agent. This means

that at any time, just one desire thread can be activated. This is to simulate the human

behaviour that at any time, we deliberate on or think about one matter. To keep the

experiment simple, the agent’s actions only include vessel maneuvering and only one PE

is simulated in the agent. Of course, it is straightforward and easy to realize to start

another PE thread so that the vessel is able to sound the siren and one more PE thread to

communicate with other vessels or marine authorities. The number of EMs is also one for

the collection of information about its surroundings by the vessel.

Two more threads, the action effecter (7) and the interface thread, do not belong to the

BDI agent architecture. They are components of the simulation system. The action

effecter thread will execute output physical actions from the intention executor. In our

simulation, this action effecter thread is responsible for updating the world map with the

new position of the vessel which is calculated using physical motion laws. The Interface

thread will receive commands through user input and send the commands to the belief

manager.

All the threads run in parallel. Message buffers in the three components are used to save

the incoming messages from one processing element to another. The messages in these

buffers are sequenced by their priorities so that high priority messages are handled first.

 125

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Character 6 A Vessel Captain Agent

A global path planning algorithm and RBF neural network learning algorithm are

included in the experience function library to provide the agent abilities of path planning

and obstacle avoidance. The priority control extension works in the parallel agent as

described in Chapter 5. The reminding-forgetting PCF is used to control the priorities.

6.2 Experiment

The agent is simulated using Visual J# 2003. The navigation of the vessel is shown in a

windows graphic interface. The history of processing of the agent is recorded in a

Microsoft Access database. With these records, we can find out how the agent processes

the events. In addition, a map editor is designed to create the world map which consists of

some islands. The maps can be loaded by the agent simulation program. In the following,

we will first show the designation details of the simulation program. Then an example of

the vessel navigation is shown and the records of the agent behaviours are analyzed.

6.2.1 System design

Figure 6-2 Program interface.

 126

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Character 6 A Vessel Captain Agent

The agent can detect the world information through sensors and the output actions consist

of commands of changing translational and rotational speeds. Vessel agents are created

with their specific physical parameters. The vessel agent’s destinations are given when

the vessel is created. User can give commands to the vessel at any time through the

command input window, such as changing or adding commands. The objective of the

agent is to move to the destinations safely and quickly. A snapshot of this program can be

seen in Figure 6-2. In the experiment, the agent will reach three destinations denoted in

the figure. The agent needs to avoid the islands while navigating. A global path planning

algorithm is adopted to search the paths among the islands. The algorithm is shown first.

Then the details about the agent are explained.

6.2.1.1 Path planning algorithm

We adopt the visibility graph method [76] for path planning. The algorithm demands that

the nodes of the obstacles are prior known. Then all the possible combinations of the

nodes are searched to find an optimal path with the shortest distance. A demonstration is

shown in Figure 6-3.

Figure 6-3 The visibility graph (from [76]).

We use a recursive algorithm to realize the method. The algorithm is shown in Figure 6-

4.

 127

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Character 6 A Vessel Captain Agent

Figure 6-4 Algorithm for calculating the global path.

Obviously, the time needed for this algorithm will be increased with the number of the

nodes of the obstacles. In our experiment, it takes over 4 seconds to calculate a path in a

map with 12 nodes.

6.2.1.2 The agent implementation

In order to achieve its objective, the vessel agent should have the abilities to plan its path,

to output actions which make it travel to the destination, and to avoid obstacles. These

behaviours are triggered by new beliefs of the agent. The corresponding plans are

designed in reaction to the new beliefs. The descriptions of the four levels of priorities for

the vessel agent’s beliefs are given in Table 4-1.

For a simulation system, all physical data and structure need to be symbolized. We apply

object-oriented approach to program the vessel simulation system. The vessel agents and

 128

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Character 6 A Vessel Captain Agent

environment are implemented as objects. Each vessel agent exchanges information with

the environment individually. The processing of the Environment monitor in the belief

manager is shown in Figure 6-5.

Figure 6-5 Environment monitor thread in Belief manager.

6.2.2 Experiment result

A navigation example is shown in Figure 6-6. The area of interests is shown in a two-

dimensional rectangular sea area. There are four islands shown by the shaded areas in the

map. As shown in Figure 6-6 a, the vessel agent at start point (0,0) is given four

destinations 1, 2, 3, and 4 to move to. Then a change of plan, that is, new destinations 1

and 2, as shown in Figure 6-6 b are given when the vessel is moving to the old

destination 1. Then the vessel navigates to the new destinations. The behaviours of the

corresponding threads are recorded. Only the most relevant activities are shown in Table

6-1. These activities are carried out by the belief manager, intention generator and the

intention executor of the agent as stated before.

 129

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Character 6 A Vessel Captain Agent

a. Destinations are changed at this moment.

b. The vessel navigates to the destinations 1, 2.

Figure 6-6 Vessel navigation.

 130

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Character 6 A Vessel Captain Agent

Table 6-1 Processing records of the vessel agent

ID Insert_Time Type Behaviour
492 7:32:20 PM Agent1 Start!
493 7:32:20 PM deliberation thread0 Created. Status: New Target
494 7:32:20 PM deliberation thread1 Created. Status: Idle
495 7:32:21 PM deliberation thread0 Start. Status: New Target
496 7:32:21 PM deliberation thread0 finished. Status: New Target
497 7:32:21 PM intention thread0 Created. Intention: 0/1.
498 7:32:21 PM deliberation thread1 Start. Status: Idle
499 7:32:21 PM intention thread0 Start. Intention: 0/1.
…

504 7:32:23 PM intention thread1 Start. Intention: 10.
…

507 7:33:06 PM deliberation thread2 Start. Status: The global path updated
508 7:34:38 PM deliberation thread2 finished. Status: The global path updated
509 7:34:55 PM intention thread2 Created. Intention: 2/3.
510 7:34:56 PM suspend intention1.0 2.2 Start.
511 7:34:56 PM suspend intention1.0 2.2 Suspended.
512 7:34:57 PM intention thread2 Start. Intention: 2/3.
513 7:34:57 PM Subgoal reached (0,0)
514 7:34:57 PM intention thread2 finished. Intention: 2/3.
515 7:35:05 PM resume intention intention1
…

523 7:35:57 PM Action Created. action: Accelerate to max speed.
…

534 7:37:40 PM Remove obsolete intention 1
535 7:37:40 PM intention thread5 Created. Intention: 2/3.
536 7:37:40 PM deliberation thread6 Created. Status: Targets changed
537 7:37:40 PM deliberation thread7 Created. Status: New Target
538 7:37:40 PM deliberation thread8 Created. Status: Idle
539 7:37:39 PM intention thread4 Start. Intention: 4/5.
540 7:37:40 PM Action Created. action: Decelerate to min speed.
541 7:37:40 PM intention thread4 finished. Intention: 4/5.
542 7:37:39 PM deliberation thread5 finished. Status: Subgoal reached
543 7:37:41 PM deliberation thread6 Start. Status: Targets changed

…
568 7:40:16 PM deliberation thread11 Start. Status: The global path updated
569 7:40:17 PM deliberation thread11 finished. Status: The global path updated
570 7:40:13 PM intention thread9 Start. Intention: 4/5.
571 7:40:17 PM intention thread11 Created. Intention: 2/3.
572 7:40:17 PM Action Created. action: Decelerate to min speed.

 131

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Character 6 A Vessel Captain Agent

The activities of the agent are shown in Table 6-1. The sequence of the activities

illustrates the behaviour of the agent.

1. The new beliefs of the agent are processed in the order of priority. When the

agent is started, new beliefs of the need to go to destination 1 followed by 2, 3 and

4 are received. After the beliefs are sent by the belief manager, the intention

generator create deliberation threads 0 and 1 (events 493, 494) and starts

deliberation thread 0 (event 495) while deliberation thread 1 stays in the

deliberation queue. Deliberation thread 1 is something the agent needs to

deliberate on when it has time as shown by event 498.

2. The agent is able to carry out several activities at once. As shown by event 498

and 499, the agent is executing deliberation thread 1 and intention thread 0

simultaneously, that is, the agent is processing the belief of the need to go to

destination 2, 3, 4 and the intention of planning the path to destination 1 at once.

3. When there is a more urgent intention, the intention with low priority can be

suspended and resumed later. As shown by events 509, 510 and 515, intention 2

is one of the steps in following the path plan to go to destination 1 while intention

1 is to compute the path to destination 2, 3, 4. Intention 2 preempts intention 1.

4. When an intention becomes obsolete because of some new beliefs, the agent is

able to stop and remove it. As shown by event 534, intention 1 which is being

executed by the intention executor is stopped and removed. This is caused by an

interrupt from the intention generator when it is processing the belief that the

vessel should change course and go to the new destinations 1 and 2.

5. The agent can respond to circumstance changes rapidly. Event 523 shows the

agent is moving to the old destination 1. Event 543 shows the agent is processing

the new belief that the destination is changed. Event 569 shows the processing of

the belief that vessel path is updated in response to the new destinations. Event

572 shows the vessel is changing course when it is moving to the old destination

1.

In summary, the agent is able to prioritize its deliberation and intention execution and is

able to reconsider its goals and intentions after they are generated.

 132

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Character 6 A Vessel Captain Agent

The complete records for this example can be found in Appendix A.

6.3 Conclusion

In this chapter, the software agent architecture for implementing a parallel BDI agent is

demonstrated. Then a vessel captain agent is realized. The behaviours of the vessels are

demonstrated and historical behaviour records are explained.

The software agent architecture is also useful when designing agents in other aspects. In

some sense, this proves the applicability of the general parallel BDI agent framework we

propose in Chapter 3.

 133

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Character 7 Conclusions and Future Work

CHAPTER

7

CONCLUSIONS AND FUTURE WORK

In this thesis, parallel BDI agent architecture is designed for simulating the vessel

captain. The agent architecture is general enough to make other agents. Two components

are incorporated into the architecture to provide the agent some human-like characters. In

this final chapter, we will first make a conclusion about the contributions of our research.

Then some possible future researches and applications are proposed.

7.1 Conclusions

In Chapter 3, a general framework for real time performance in the BDI model is

proposed. It is a parallel agent architecture that supports the following agent abilities at

architecture level: (1) the ability to respond to emergencies timely; (2) the ability to

reconsider and modify goals, intentions and actions in reaction to unexpected or new

information; (3) the ability to perform multiple actions at once; (4) the ability to perceive,

deliberate and act simultaneously; (5) the ability to prioritize the deliberations and

intention executions. We defined the functions and the operations of the processing units

in the agent and how these units interact and cooperate with each other. With the

advances in semiconductor technology which allow multiple CPUs to be implemented on

 135

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Character 7 Conclusions and Future Work

the same silicon chip, a parallel BDI agent will be an effective way to enable it to

perform in real time when the arrival rate of events is high.

To evaluate the parallel BDI model, a comparison experiment is done with the sequential

BDI agents. Five ways of organizing and controlling a sequential BDI agent are studied.

The sequential agents and the parallel agent are evaluated by simulating their operations

in processing events of different priorities and examining their performance. We analyze

their performance in handling the same sequences of events. The results show that the

parallel BDI agent outperforms the sequential ones in offering significantly shorter

response time to events with various inter-arrival times. The parallel BDI agent with its

interrupt mechanism is able to guarantee to immediately react to high priority events

where none of the sequential ones are capable of.

Then the agent character is studied. We analyze the agent character from the agent itself

and propose an extended BDI architecture for implementing such characters. The basic

character consists of two parts: personality and experience. The personality will affect the

whole process of the agent. In the vessel agent, it is represented by different initial

parameter settings. The parameter settings will decide the agent’s basic physical

properties and actions. The experience is implemented using the reinforcement learning

algorithm. With the extended BDI architecture, the learning algorithm is combined into

the agent as an experience function. In the experiment, the learning algorithm is used for

improving the agent’s skills of obstacle avoidance. The behaviours of the agent will be

affected by the experience accumulated by the learning algorithm. The experiment results

show that the agent built using this method will have different behaviour with different

parameter settings and different past experience. This is important for realistic simulation

of systems made up by different people.

Furthermore, we propose to enrich the BDI agent architecture with 2 processing

components, a PCF (Priority Changing Function) Selector and a Priority Controller. The

priorities of the desires/intentions can have different initial values and can change with

time according to the chosen PCF. The desires/intentions can be scheduled according to

 136

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Character 7 Conclusions and Future Work

their own nature. It is a method to realize the operations defined in the parallel BDI agent

framework by controlling priority of the desires/intentions. This also provides us a

chance to control the scheduling of the intentions in a more human-like manner. As an

example, a reminding-forgetting PCF is designed that simulates the way that human deals

with several intentions together. The PCF goes through a rising/reminding phase and then

a descending/forgetting phase. We proposed to use the Ramp, Sigmoid or Gaussian

function to simulate the reminding processes of the intentions. And a forgetting function

based on Ebbinghaus forgetting curve is used to simulate the function in forgetting

process. With the setting of different parameter values, this PCF may also simulate a

priority function that has the forgetting phase alone or the reminding phase alone. From

the experiment results, we can see that the resulted intention scheduling behaviour and

the effect of setting the different parameter values. The agent can show some human

behaviour.

At the end, the software architecture for realizing the parallel BDI agent framework is

proposed. The experience function library and the reminding-forgetting PCF are

combined to simulate the agent characters. The architecture is used to implement the

vessel agent. The experiment demonstrates an example of agents based on the parallel

BDI agent architecture.

7.2 Proposals

7.2.1 A parallel hybrid agent architecture

The current parallel BDI agent architecture is a kind of deliberative agent architecture.

Though the parallel designation promotes the processing speed of the agent, the

disadvantages of the deliberative agent still limit the parallel agent. So we propose that

the architecture can be extended into a hybrid agent architecture. As shown in Figure 7-1,

the layers in the reactive architecture can be run parallel with the intention generator and

the intention executor. The original belief manager will have a new function to filter the

events into the reactive or deliberative components. Issues of how to decide what needs

 137

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Character 7 Conclusions and Future Work

quick reaction and what needs deliberation will be interesting to explore. Then the

outputs from the two components will be combined by some context-rules.

Figure 7-1 A parallel hybrid agent architecture.

7.2.2 Applications to real robots

Because the parallel BDI agent model demands several CPUs to produce its best

performance, currently the most directive and possible application will be robot control.

The robot may have several parallel processors to use instead of the threads in the

previous software simulation experiments. The robot with such designation is expected to

show more natural human behaviours. The robot can detect, think and act at the same

time. And the emergencies can be dealt with immediately by suspending some normal

processing. The human-like ability to learn from experience and to prioritize tasks to be

done will be very useful for robots which are taking care of some patients or old people.

 138

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Reference

Reference

[1] Forgetting curve - Wikipedia, the free encyclopedia,

http://en.wikipedia.org/wiki/Strength_of_memory.
[2] Erf -- from Wolfram MathWorld, http://mathworld.wolfram.com/Erf.html.
[3] The Merriam-Webster Dictionary, Merriam-Webster, incorporated, Springfield,

Massachusettes, U.S.A., 1994.
[4] S. Ambroszkiewicz and J. Komar, A Model of BDI-Agent in Game-Theoretic

Framework, in Proceedings of Formal Models of Agents, ESPRIT Project
ModelAge Final Workshop, 1997, pp. 8-19.

[5] E. Amir and P. Maynard-Reid II, Logic-Based Subsumption Architecture, in
Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, July 31-August 6, 1999, pp. 147-152.

[6] E. Amir and P. Maynard-Reid II, LiSA: A robot driven by logical subsumption, in
Proceedings of Working Notes of the CommonSense01 Symposium, New York,
2001.

[7] M. Balmer, N. Cetin, K. Nagel and B. Raney, Towards Truly Agent-Based Traffic
and Mobility Simulations, in Proceedings of the 3rd International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004), New
York, NY, USA, August 19-23, 2004, pp. 60-67.

[8] G. Bauzil, M. Briot and P. Ribes, A Navigation Sub-System Using Ultrasonic
Sensors for the Mobile Robot HILARE, in Proceedings of 1st In. Conf. on Robot
Vision and Sensory Controls, Stratford-upon-Avon, UK, 1981, pp. pp. 47-58 and
pp. 681-698.

[9] R. E. Bellman, An Introduction to Artificial Intelligence: Can Computers Think?,
Boyd and Fraser Publishing Company, 1978.

[10] J. A. Benayas, J. L. Fernάndez, R. Sanz and A. R. Diéguez, The Beam-Curvature
Method: A New Approach for Improving Local Real-time Obstacle Avoidance, in
Proceedings of 15th Triennial World Congress, Barcelona, Spain, 2002.

[11] R. P. Bonasso, J. Firby, E. Gat, D. Kortenkamp, D. P. Miller and M. G. Slack,
Experiences with an Architecture for Intelligent, Reactive Agents, Experimental
& Theoretical Artificial Intelligence, 9, (1997), pp. 237--256.

[12] R. H. Bordini, A. L. C. Bazzan, R. d. O. Jannone, D. M. Basso, R. M. Vicari and
V. R. Lesser, AgentSpeak(XL): efficient intention selection in BDI agents via
decision-theoretic task scheduling, in Proceedings of International Conference on
Autonomous Agents, 2002, pp. 1294-1302.

[13] J. Borenstein and Y. Koren, Real-time Obstacle Avoidance for Fast Mobile
Robots, in Proceedings of International Conference on CAD/CAM, Robotics and
Factories of the Future (CARS&FOF), Detroit, Michigan, August 17, 1988.

[14] J. Borenstein and Y. Koren, Fast Obstacle Avoidance for Mobile Robots, in
Proceedings of Tenth Israel Convention on CAD/CAM and Robotics, Tel-Aviv,
Israel, December 27-29, 1988.

 139

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://en.wikipedia.org/wiki/Strength_of_memory
http://mathworld.wolfram.com/Erf.html

Reference

[15] J. Borenstein and Y. Koren, High-speed Obstacle Avoidance for Mobile Robots,
in Proceedings of the IEEE Symposium on Intelligent Control, Arlington,
Virginia, August 24-26, 1988, pp. 382-384.

[16] J. Borenstein and Y. Koren, Obstacle Avoidance With Ultrasonic Sensors, IEEE
Journal of Robotics and Automation, RA-4(2), (1988), pp. 213-218.

[17] J. Borenstein and Y. Koren, The Vector Field Histogram -- Fast Obstacle-
Avoidance for Mobile Robots, IEEE Journal of Robotics and Automation, 7(3),
(1991), pp. 278-288.

[18] M. E. Bratman, Intentions, Plans, and Practical Reason, Harvard University
Press, Cambridge, MA, 1987.

[19] F. Brazier, B. Dunin-Keplicz, J. Treur and R. Verbrugge, Beliefs, Intentions and
DESIRE, The Netherlands and Poland., in Proceedings of the 10th Workshop on
Knowledge Acquisition and Knowledge Base Systems, Voyager Inn, Banff,
Alberta, Canada, November 8-14, 1996.

[20] O. Brock and O. Khatib, High-Speed Navigation Using the Global Dynamic
Window Approach, in Proceedings of Video Proceedings of the International
Conference on Robotics and Automation, San Francisco, USA, 2000.

[21] R. A. Brooks, A robust layered control system for a mobile robot, IEEE Journal
of Robotics and Automation, 2(1), (1986), pp. 14-23.

[22] R. A. Brooks, Elephants Don’t Play Chess, Designing Autonomous Agents:
Theory and Practice from Biology to Engineering and Back, The MIT press,
London, 1991, pp. 3-15.

[23] R. A. Brooks, Intelligence without Representation, Artificial Intelligence, 47,
(1991), pp. 139-159.

[24] D. Caragea, A. Silvescu and V. Honavar, Multi-Agent Learning from Distributed
Data Sources, in Proceedings of the Workshop on Multi-Agent learning: Theory
and Practice, International Conference on Machine Learning (ICML-2000),
Stanford University, Stanford CA, 2000.

[25] D. Castro, U. Nunes and A. Ruano, Reactive Local Navigation, in Proceedings of
28th Annual Conference of the IEEE Industrial Electronics Society - IECON'02,
Sevilla, November 5-8, 2002.

[26] D. Choi, M. Kaufman, P. Langley, N. Nejati and D. Shapiro, An Architecture for
Persistent Reactive Behavior, in Proceedings of the 3rd International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004), New
York, NY, USA, August 19-23, 2004, pp. 988-995.

[27] M. C. Choy, D. Srinivasan and R. L. Cheu, Cooperative, Hybrid Agent
Architecture for Real-Time Traffic Signal Control, IEEE Transactions on
Systems, Man and Cybernetics - Part A: systems and humans, 33(5), (2003), pp.
597- 607.

[28] M. d'Inverno, D. Kinny, M. Luck and M. Wooldridge, A Formal Specification of
dMARS, in Proceedings of the 4th International Workshop on Intelligent Agents
IV, Agent Theories, Architectures, and Languages, Providence, Rhode Island,
USA, July 24-26, 1997, pp. 155--176.

[29] M. d'Inverno and M. Luck, Engineering AgentSpeak(L): A formal computational
model, Logic and Computation, 8(3), (1998), pp. 233--260.

 140

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Reference

[30] M. E. DesJardins, E. H. Durfee, J. Charles, L. Ortiz and M. J. Wolverton, A
survey of research in distributed, continual planning, AI Magazine, 21(4), (2000).

[31] K. Dresner and P. Stone, Multiagent Traffic Management: A Reservation-Based
Intersection Control Mechanism, in Proceedings of the 3rd International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004), New
York, NY, USA, August 19-23, 2004, pp. 530-537.

[32] K. Dresner and P. Stone, Multiagent Traffic Management: An Improved
Intersection Control Mechanism, in Proceedings of the 4rd International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2005),
Utrecht, The Netherlands, July 25-29, 2005, pp. 471-477.

[33] K. Erol, J. Hendler and D. S. Nau, Semantics for Hierarchical Task-Network
Planning, Technical report CS-TR-3239, UMIACS-TR-94-31, ISR-TR-95-9 at
the University of Maryland, 1994.

[34] K. Erol, J. Hendler and D. S. Nau, HTN planning: Complexity and expressivity,
in Proceedings of the Twelfth National Conf. on Artificial Intelligence, 1994, pp.
1123-1128.

[35] I. A. Ferguson, TouringMachines: An architecture for dynamic, rational, mobile
agents, PhD Thesis, Comput. Sci. Lab, University of Cambridge, Cambridge,
U.K, 1992.

[36] I. A. Ferguson, Autonomous agent control: a case for integrating models and
behaviors, Working Notes AAAI Fall Symposium on Control of the Physical
World by Intelligent Agents, New Orleans, LA, 1994, pp. 46---54.

[37] P. Fiorini and Z. Shiller, Motion Planning in Dynamic Environments using
Velocity Obstacles, Int. Journal on Robotics Research, 17(7), (1998), pp. 711-
727.

[38] D. Fox, W. Burgard and S.Thrun, The dynamic window approach to collision
avoidance, IEEE Robotics and Automation, 4(1), (1997).

[39] S. S. Ge and Y. J. Cui, Path Planning for Mobile Robots Using New Potential
Functions, in Proceedings of the 3rd Asia Control Conference, Shanghai, China,
July 4-7, 2000.

[40] P. Gebhard, M. Kipp, M. Klesen and T. Rist, Authoring scenes for adaptive,
interactive performances, in Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2003),
Melbourne, Victoria, Australia, July 14-18, 2003, pp. 725-732.

[41] P. Gebhard, M. Kipp, M. Klesen and T. Rist, Adding the Emotional Dimension to
Scripting Character Dialogues, Lecture Notes in Computer Science, 2792, (2003),
pp. 48 - 56.

[42] P. Gebhard, M. Klesen and T. Rist, Coloring Multi-character Conversations
through the Expression of Emotions, in Proceedings of Affective Dialogue
Systems, Tutorial and Research Workshop, ADS 2004, Kloster Irsee, Germany,
June 14-16, 2004 pp. 128-141.

[43] P. Gebhard, ALMA – a layered model of affect, in Proceedings of the 4rd
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2005), Utrecht, The Netherlands, July 25-29, 2005, pp. 29-36.

 141

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Reference

[44] M. Georgeff, B. Pell, M. Pollack, M. Tambe and M. Wooldridge, The Belief-
Desire-Intention Model of Agency, in M. J.P., S. M. and R. A., eds., Intelligent
Agents V: Theories, Architectures, and Languages, Springer-Verlag, Berlin, 1999.

[45] C. Goldman and J. Rosenschein, Mutually Supervised Learning in Multiagent
Systems, in Proceedings of IJCAI-95 Workshop on Adaptation and Learning in
Multiagent Systems, 1995.

[46] A. Guerra-Hernandez, A. El Falla-Seghrouchni and H. Soldano, Learning in BDI
Multi-agent Systems, in Proceedings of CLIMA IV- Computational Logic in
Multi-Agent Systems, Fort Lauderdale, FL, USA, January 6-7, 2004, pp. 218-233.

[47] B. Hamner, S. Scherer and S. Singh, Learning Obstacle Avoidance Parameters
from Operator Behavior, in Proceedings of the NIPS 2005 Workshop on Machine
Learning Based Robotics in Unstructured Environments, Dec, 2005.

[48] B. Hayes-Roth, Architectural Foundations for Real-Time Performance in
Intelligent Agents, Real-Time Systems, 2, (1990), pp. 99-125.

[49] S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan, New
York, 1994.

[50] J. Heinström, The impact of personality and approaches to learning on
information behaviour, Information Research, 5(3), (2000).

[51] J. Heinström, Five personality dimensions and their influence on information
behaviour, Information Research, 9(1), (2003).

[52] A. E. Henninger, R. M. Jones and E. Chown, Behaviors that emerge from emotion
and cognition: Implementation and evaluation of a symbolic-connectionist
architecture, in Proceedings of the Seventh International Conference on
Autonomous Agents, Melbourne, Australia, 2003.

[53] C. Hewitt, Viewing Control Structures as Patterns of Passing Messages, Artificial
Intelligence, 8(3), (1977), pp. 323-364.

[54] K. V. Hindriks, F. S. d. Boer, W. v. d. Hoek and J. C. Meyer, A formal
embedding of agentspeak(L) in 3APL, in Proceedings of Advanced Topics in
Artificial Intelligence, 11th Australian Joint Conference on Arti cial Intelligence
(AI'98), Brisbane, Australia, July 13-17, 1998.

[55] B. Horling, V. Lesser and R. Vincent, Multi-Agent System Simulation
Framework, in Proceedings of the 16th IMACS World Congress 2000 on
Scientific Computation, Applied Mathematics and Simulation, Lausanne,
Switzerland, August 21-25, 2000.

[56] N. Howden, R. Ronnquist, A. Hodgson and A. Lucas, JACK Intelligent AgentsTM
- Summary of an Agent Infrastructure, in Proceedings of the 5th International
Conference on Autonomous Agents, Montreal, Canada, May 28-June 1, 2001.

[57] H. Hu, I. Kelly, D. A. Keating and D. Vinagre, Coordination of Multiple Mobile
Robots via Communication, in Proceedings of SPIE'98, Mobile Robots XIII
Conference, Boston, USA, November, 1998, pp. 94-103.

[58] H. Hu, K. Kostiadis and Z. Liu, Coordination and Learning in a team of Mobile
Robots, in Proceedings of the IASTED Robotics and Automation Conference,
Santa Barbara, CA, USA, October, 1999, pp. 28-30.

[59] M. J. Huber, JAM: A BDI-theoretic mobile agent architecture, in Proceedings of
third International Conference on Autonomous Agents (Agents '99), 1999, pp.
236-243.

 142

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Reference

[60] M. J. Huber, JAM Agents in a Nutshell, 2001.
[61] M. Hunter, K. Kostiadis and H. Hu, A Behaviour-based Approach to Position

Selection for Simulated Soccer Agents, in Proceedings of 1 st European
Workshop on RoboCup, Amsterdam, May 28 - June 2, 2000.

[62] K. Hwang, H. C. Hsu and A. Liu, A Homogeneous Agent Architecture for Robot
Navigation, in Proceedings of IEEE 2003 International Conference on Neural
Network And Signal, 2003, pp. 310-313.

[63] F. F. Ingrand, M. P. Georgeff and A. S. Rao, An architecture for real-time
reasoning and system control, IEEE Expert, 7(6), (1992), pp. 34--44.

[64] D. Isla, R. Burke, M. Downie and B. Blumberg, A layered brain architecture for
synthetic creatures, in Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence (IJCAI), Seatle, Washington, USA, August,
2001.

[65] N. R. Jennings, K. Sycara and M. Wooldridge, A Roadmap of Agent Research
and Development, Autonomous Agents and Multi-Agent Systems Journal, N.R.
Jennings, K. Sycara and M. Georgeff (Eds.), Kluwer Academic Publishers,
Boston., 1(1), (1998), pp. 7-38.

[66] L. P. Kaelbling, Rex: A symbolic language for the design and parallel
implementation of embedded systems, in Proceedings of the AIAA Conference on
Computers in Aeorospace VI, Wakefield, MA, 1987, pp. 255--260.

[67] P. W. Keller, F.-O. Duguay and D. Precup, RedAgent-2003: An Autonomous
Market-Based Supply-Chain Management Agent, in Proceedings of the 3rd
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2004), New York, NY, USA, August 19-23, 2004, 3, pp. 1182-1189.

[68] O. Khatib, Real-time Obstacle Avoidance for Manipulators and Mobile Robots,
The International Journal of Robotics Research, 5(1), (1986).

[69] N. Y. Ko and R. Simmons, The lane-curvature method for local obstacle
avoidance, in Proceedings of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 1998.

[70] S. Koolmanojwong, R. Jiamthapthaksin and J. Daengdej, An agent architecture
for competitive application environment, in Proceedings of the 2004 IEEE
Aerospace Conference, Big Sky, Montana, USA, March 6-13, 2004 5, pp. 3079-
3089.

[71] Y. Koren and J. Borenstein, Potential Field Methods and Their Inherent
Limitations for Mobile Robot Navigation, in Proceedings of the IEEE
International Conference on Robotics and Automation, Sacramento, California,
April 7-12, 1991, pp. 1398-1404.

[72] K. Kostiadis and H. Hu, Reinforcement Learning and Co-operation in a Simulated
Multi-agent System, in Proceedings of IEEE/RSJ International Conference on
Intelligent Roots and Systems, Kyungiu, Korea, October 17-21, 1999, pp. 990-
995.

[73] K. Kostiadis and H. Hu, A Multi-threaded Approach to Simulated Soccer Agents
for the RoboCup Competition, RoboCup-99: Robot Soccer World Cup III,
Springer-Verlag, London, UK, 2000, pp. 366-377.

 143

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Reference

[74] F. Lamarche and S. Donikian, The orchestration of behaviours using resources
and priority levels, in Proceedings of the Eurographics Workshop, Manchester,
U.K., September 2-3, 2001, pp. 171-182.

[75] F. Lamarche and S. Donikian, Automatic orchestration of behaviours through the
management of resources and priority levels, in Proceedings of the First
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2002), Bologna, Italy, July 15-19, 2002, pp. 1309-1316.

[76] J.-C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, Boston,
1991.

[77] J. Lee, M. J. Huber, E. H. Durfee and P. G. Kenny, UM-PRS: an implementation
of the procedural reasoning system for multirobot applications, in Proceedings of
AIAA/NASA Conference on Int. Robots in Field, Factory, Service and Space,
American Institute of Aeronautics and Astronautics, 1994.

[78] M. Leyden, D. Toal and C. Flanagan, A Fuzzy Logic Based Navigation System for
a Mobile Robot, Automatisierungssymposium, Wismar, 1999.

[79] Z. N. Lin, H. J. Hsu and F. J. Wang, Intention Scheduling for BDI Agent Systems,
in Proceedings of International Conference on Information Technology Coding
and Computing (ITCC2005), 2005, 2.

[80] J. Liu, Autonomous agents and multi-agent systems Explorations in learning, self-
organization, and adaptative computation, World Scientific, Singapore, 2001.

[81] P. Lokuge and D. Alahakoon, A Motivation Based Behavior in Hybrid Intelligent
Agents for Intention Reconsideration Process in Vessel Berthing Applications, in
Proceedings of the 4th International Conference on Hybrid Intelligent Systems,
Kitakyushu, Japan, December 5-8, 2004, pp. 124-129.

[82] K. H. Low, W. K. Leow and J. M. H. Ang, A hybrid mobile robot architecture
with integrated planning and control, in Proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2002),
Bologna, Italy, July 15-19, 2002, pp. 219-226.

[83] R. Machado and R. H. Bordini, Running AgentSpeak(L) Agents on SIM_AGENT,
Revised Papers from the 8th International Workshop on Intelligent Agents VIII,
Springer-Verlag, London, UK LNCS, 2001, pp. 158-174.

[84] P. Maes and R. A. Brooks, Learning to Coordinate Behaviors, in Proceedings of
the American Association of Artificial Intelligence, Boston, MA, August, 1990,
pp. 796-802.

[85] S. Mahadevan and J. Connell, Automatic programming of behavior-based robots
using reinforcement learning, Artificial Intelligence, 55, (1992), pp. 311-365.

[86] S. Marsella and J. Gratch, A step toward irrationality: using emotion to change
belief, in Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2002), Bologna, Italy, July 15-19, 2002,
pp. 334-341.

[87] S. Marsella, D. V. Pynadath and S. J. Read, PsychSim: Agent-based modeling of
social interactions and influence, in Proceedings of the International Conference
on Cognitive Modeling, Pittsburgh, Pennsylvania, USA, July 30-August 1, 2004,
pp. 243--248.

[88] T. M. Mitchell, Machine Learning, McGraw Hill, 1997.

 144

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Reference

[89] H. P. Moravec and A. Elfes, High resolution maps from wide angle sonar, in
Proceedings of IEEE Int. Conf. On Robotics and Automation, March, 1985, pp.
116-121.

[90] K. L. Myers, CPEF: A continuous planning and execution framework, AI
Magazine, 20, (1999), pp. 63-70.

[91] H. Nakashima and I. Noda, Dynamic Subsumption Architecture for Programming
Intelligent Agents, in Proceedings of the 3rd International Conference on Multi
Agent Systems, July 3-7, 1998, pp. 190.

[92] M. Namee and B. P. Cunningham, A Proposal for an Agent Architecture for
Proactive Persistent Non Player Characters, in Proceedings of the 12 th Irish
Conference on AI and Cognitive Science, 2001, pp. 221 -- 232.

[93] E. Norling, L. Sonenberg and R. Rnnquist, Enhancing Multi-Agent Based
Simulation with Human-Like Decision Making Strategies, in Proceedings of
Multi-Agent Based Simulation: Proceedings of the Second International
Workshop, MABS, 2000.

[94] E. Norling, Learning to notice: Adaptive models of human operators, in
Proceedings of the Second International Workshop on Learning Agents,
Montreal, Canada, May, 2001.

[95] E. Norling and F. E. Ritter, Embodying the JACK Agent Architecture, in
Proceedings of the 14th Australian Joint Conference on Artificial Intelligence:
Advances in Artificial Intelligence, 2001, pp. 368-377.

[96] E. Norling, Capturing the Quake Player: Using a BDI Agent to Model Human
Behaviour, in Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems, Melbourne, Australia, July, 2003.

[97] E. Norling, Folk Psychology for Human Modelling: Extending the BDI Paradigm,
in Proceedings of the Third International Joint Conference on Autonomous
Agents and Multiagent Systems, New York, NY, July, 2004.

[98] E. Norling and F. E. Ritter, Towards Supporting Psychologically Plausible
Variability in Agent-Based Human Modelling, in Proceedings of the Third
International Joint Conference on Autonomous Agents and Multiagent Systems,
New York, NY, July, 2004.

[99] E. Norling and L. Sonenberg, Creating Interactive Characters with BDI Agents, in
Proceedings of Australian Workshop on Interactive Entertainment Sydney,
Australia, February 2004.

[100] H. S. Nwana, Software agents: an overview, The Knowledge Engineering Review,
1996.

[101] D. d. Oliveira, A. L. C. Bazzan and V. Lesser, Using Cooperative Mediation to
Coordinate Traffic Lights: a Case Study, in Proceedings of the 4rd International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2005),
Utrecht, The Netherlands, July 25-29, 2005, pp. 563-470.

[102] E. Oliveira and L. Sarmento, Emotional advantage for adaptability and autonomy,
in Proceedings of the second international joint conference on Autonomous
agents and multiagent systems (AAMAS 2003), New York, USA, July 14-18,
2003, pp. 305-312.

[103] P. Paruchuri, A. R. Pullalarevu and K. Karlapalem, Multi agent simulation of
unorganized traffic, in Proceedings of the First International Joint Conference on

 145

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Reference

Autonomous Agents and Multiagent Systems (AAMAS 2002), Bologna, Italy, July
15-19, 2002, pp. 176-183.

[104] P. R. Peter Stone, and Manuela Veloso, The CMUnited-99 champion simulator
team, RoboCup-99: Robot Soccer World Cup III, Springer Verlag, Berlin, 2000,
pp. 35-48.

[105] A. Pokahr, L. Braubach and W. Lamersdorf, A Goal Deliberation Strategy for
BDI Agent Systems, in Proceedings of Third German conference on Multi-Agent
System TEchnologieS (MATES-2005), Koblenz, Germany, September 11-13,
2005, pp. 82-94.

[106] A. Pokahr, L. Braubach and W. Lamersdorf, A Flexible BDI Architecture
Supporting Extensibility, in Proceedings of the 2005 IEEE/WIC/ACM
International Conference on Intelligent Agent Technology (IAT-2005),
Compiègne University of Technology, France, September 19-22, 2005, pp. 379-
385.

[107] D. Poole, A. Mackworth and R. Goebel, Computational Intelligence - A Logical
Approach, Oxford University Press, New York, 1998.

[108] C. Ramos, An Architecture and a Negotiation Protocol for the dynamic
Scheduling of Manufacturing Systems, in Proceedings of the IEEE International
Conference on Robots & Automation, 1994, pp. 3161 – 3166.

[109] O. Rana, M. Winikoff, L. Padgham and J. Harland, Applying Conflict
Management Strategies in BDI Agents for Resource Management in
Computational Grids, in Proceedings of Computer Science 2002, Twenty-Fifth
Australasian Computer Science Conference (ACSC2002), Monash University,
Melbourne, Victoria, Australia, January/February, 2002.

[110] A. S. Rao and M. Georgeff, Modeling rational agents within a BDI architecture,
in Proceedings of the Second International Conference on Principles of
Knowledge Representation and Reasoning (KR'91), Cambridge, MA, USA, April
22-25, 1991, pp. 473-484.

[111] A. S. Rao and M. Georgeff, BDI agents: From theory to practice, in Proceedings
of the First International Conference on Multiagent Systems, San Francisco June
12-14, 1995.

[112] A. S. Rao, AgentSpeak(L): BDI agents speak out in a logical computable
language, in Proceedings of the 7th European workshop on Modelling
autonomous agents in a multi-agent world : agents breaking away, Einhoven, The
Netherlands, 1996, pp. 42-55.

[113] J. A. Rice, Mathematical Statistics and Data Analysis, Duxbury Press, 1999.
[114] M. Rigolli and M. Brady, Towards a behavioural traffic monitoring system, in

Proceedings of the 4rd International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2005), Utrecht, The Netherlands, July 25-29, 2005,
pp. 449-454.

[115] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice
Hall, 1995.

[116] L. B. Said, T. Bouron and A. Drogoul, Agent-based interaction analysis of
consumer behavior, in Proceedings of the First International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2002), Bologna, Italy, July
15-19, 2002, pp. 184-190.

 146

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Reference

[117] K. Selvarajah and D. Richards, The use of emotions to create believable agents in
a virtual environment, in Proceedings of the 4rd International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2005), Utrecht, The
Netherlands, July 25-29, 2005.

[118] M. Si, S. C. Marsella and D. V. Pynadath, Thespian: using multi-agent fitting to
craft interactive drama, in Proceedings of the 4rd International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2005), Utrecht, The
Netherlands, July 25-29, 2005, pp. 21-28.

[119] R. Simmons, The Curvature-Velocity Method for Local Obstacle Avoidance, in
Proceedings of International Conference on Robotics and Automation, April
1996, 1996.

[120] A. Sloman, What sort of control system is able to have a personality?, in R.
Trappl and P. Petta, eds., Creating Personalities for Synthetic Actors: Towards
Autonomous Personality Agents, Springer, 1996, pp. 16-208.

[121] A. Sloman, What sort of architecture is required for a human-like agent?, in M.
Wooldridge and A. Rao, eds., Foundations of Rational Agency, Kluwer Academic
Publishers, 1997.

[122] L. D. S. P. Smith, Emotionware, Crossroads, Special issue on artificial
intelligence, 3(1), (1996), pp. 5-6.

[123] C. Stachniss and W. Burgard, An Integrated Approach to Goal-directed Obstacle
Avoidance under Dynamic Constraints for Dynamic Environments, in
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2002.

[124] R. Sun and C. Sessions, Multi-agent reinforcement learning with bidding for
segmenting action sequences, in Proceedings of the International Conference on
Simulation of Adaptive Behavior (SAB'2000), Paris, France, 2000.

[125] R. S. Sutton, Reinforcement learning architectures, in Proceedings of ISKIT'92
International Symposium on Neural Information Processing, Fukuoka, Japan,
1992.

[126] K. Sycara, Intelligent Agents and the Information Revolution, in Proceedings of
the UNICOM Seminar on Intelligent Agents and their Business Applications,
London, November 8-9, 1995, pp. 143 -159.

[127] J. Thangarajah, L. Padgham and M. Winikoff, Detecting & exploiting positive
goal interaction in intelligent agents, in Proceedings of the Second International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2003),
Melbourne, Victoria, Australia, July 14-18, 2003, pp. 401-408.

[128] T. Thurston and H. Hu, Distributed Agent Architecture for Port Automation, in
Proceedings of the 26th Annual Int. Computer Software and Applications
Conference, Oxford, England, August 26-29, 2002.

[129] I. Ulrich and J. Borenstein, VFH+: Reliable Obstacle Avoidance for Fast Mobile
Robots, in Proceedings of the 1998 IEEE International Conference on Robotics
and Automation, Leuven, Belgium, May 16-21, 1998, pp. 1572-1577.

[130] I. Ulrich and J. Borenstein, VFH*: Local Obstacle Avoidance with Look-ahead
Verification, in Proceedings of the 2000 IEEE International Conference on
Robotics and Automation, San Francisco, CA, April 24-28, 2000, pp. 2505-2511.

 147

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Reference

[131] M. Verleysen and K. Hlavackova, An Optimized RBF Network for
Approximation of Functions, in Proceedings of the European Symposium on
Artificial Neural Networks (ESANN'94), Brussels, Belgium, April 20-22, 1994,
pp. 175-180.

[132] D. L. Waltz, Eight principles for building an intelligent robot, in Proceedings of
the First International Conference on Simulation of Adaptive Behaviour: From
Animals to Animats, Paris, September 24-28, 1991.

[133] C. J. C. H. Watkins and P. Dayan, Q-learning, Machine Learning, 8, (1992), pp.
279-292.

[134] L. K. Wickramasinghe and L. D. Alahakoon, A Novel Adaptive Decision Making
Agent Architecture Inspired by Human Behavior and Brain Study Models, in
Proceedings of 4th International Conference on Hybrid Intelligent Systems (HIS
2004), Kitakyushu, Japan, December 5-8, 2004, pp. 142-147.

[135] M. Wooldridge and N. R. Jennings, Agent Theories, Architectures and
Languages: A Survey, in M. Wooldridge and N. R. Jennings, eds., Intelligent
Agents - Theories, Architectures, and Languages I, Springer-Verlag, 1995.

[136] M. Wooldridge, Reasoning about rational agents, The M. I. T. Presss,
Cambridge, MA, 2000.

[137] M. Wooldridge, An Introduction to Multiagent Systems, John Wiley & Sons
(Chichester, England), 2002.

[138] P. Xuan and V. Lesser, Multi-agent policies: from centralized ones to
decentralized ones, in Proceedings of the First International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2002), Bologna, Italy, July
15-19, 2002, pp. 1098-1105.

[139] T. Yamashita, K. Izumi, K. Kurumatani and H. Nakashima, Smooth traffic flow
with a cooperative car navigation system, in Proceedings of the 4rd International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2005),
Utrecht, The Netherlands, July 25-29, 2005, pp. 478-485.

[140] H. Zhang and S. Y. Huang, Dynamic Map for Obstacle Avoidance, in
Proceedings of the IEEE 6th International Conference On Intelligent
Transportation Systems, Shanghai, China, October 12-15, 2003, pp. 1152- 1157.

[141] H. Zhang and S. Y. Huang, BDIE architecture for rational agents, in Proceedings
of the international conference for Integration of Knowledge Intensive Multi-
Agent Systems (KIMAS05), Waltham, Massachusetts, US, April 18-21, 2005, pp.
623-628.

 148

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Appendix

Appendix

A. Complete behaviour records of the vessel captain agent

ID Insert_Time Type Behaviour

492 4/8/2005 7:32:20 PM Agent1 Start!
493 4/8/2005 7:32:20 PM deliberation thread0 Created. Status: New Target
494 4/8/2005 7:32:20 PM deliberation thread1 Created. Status: Idle
495 4/8/2005 7:32:21 PM deliberation thread0 Start. Status: New Target
496 4/8/2005 7:32:21 PM deliberation thread0 finished. Status: New Target
497 4/8/2005 7:32:21 PM intention thread0 Created. Intention: 0/1.
498 4/8/2005 7:32:21 PM deliberation thread1 Start. Status: Idle
499 4/8/2005 7:32:21 PM intention thread0 Start. Intention: 0/1.
500 4/8/2005 7:32:22 PM intention thread0 finished. Intention: 0/1.
501 4/8/2005 7:32:21 PM intention thread1 Created. Intention: 10.
502 4/8/2005 7:32:21 PM deliberation thread1 finished. Status: Idle
503 4/8/2005 7:32:23 PM deliberation thread2 Created. Status: The global path updated
504 4/8/2005 7:32:23 PM intention thread1 Start. Intention: 10.
505 4/8/2005 7:33:06 PM path plan finished 2
506 4/8/2005 7:33:09 PM path plan finished 3
507 4/8/2005 7:33:06 PM deliberation thread2 Start. Status: The global path updated
508 4/8/2005 7:34:38 PM deliberation thread2 finished. Status: The global path updated
509 4/8/2005 7:34:55 PM intention thread2 Created. Intention: 2/3.
510 4/8/2005 7:34:56 PM suspend intention1.0 2.2 Start.
511 4/8/2005 7:34:56 PM suspend intention1.0 2.2 Suspended.
512 4/8/2005 7:34:57 PM intention thread2 Start. Intention: 2/3.
513 4/8/2005 7:34:57 PM Subgoal reached (0,0)
514 4/8/2005 7:34:57 PM intention thread2 finished. Intention: 2/3.
515 4/8/2005 7:35:05 PM resume intention intention1
516 4/8/2005 7:35:05 PM deliberation thread3 Created. Status: Running
517 4/8/2005 7:35:09 PM deliberation thread3 Start. Status: Running
518 4/8/2005 7:35:55 PM intention thread3 Created. Intention: 4/5.
519 4/8/2005 7:35:55 PM suspend intention1.0 3.3 Start.
520 4/8/2005 7:35:54 PM deliberation thread3 finished. Status: Running
521 4/8/2005 7:35:55 PM suspend intention3.3 3.3 Suspended.
522 4/8/2005 7:35:56 PM intention thread3 Start. Intention: 4/5.
523 4/8/2005 7:35:57 PM Action Created. action: Accelerate to max speed.
524 4/8/2005 7:36:07 PM resume intention intention1
525 4/8/2005 7:35:57 PM intention thread3 finished. Intention: 4/5.
526 4/8/2005 7:36:37 PM deliberation thread4 Created. Status: Running
527 4/8/2005 7:36:37 PM deliberation thread5 Created. Status: Subgoal reached
528 4/8/2005 7:36:56 PM deliberation thread4 Start. Status: Running

 149

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Appendix

ID Insert_Time Type Behaviour
529 4/8/2005 7:37:14 PM deliberation thread4 finished. Status: Running
530 4/8/2005 7:37:16 PM intention thread4 Created. Intention: 4/5.
531 4/8/2005 7:37:33 PM suspend intention1.0 4.3 Start.
532 4/8/2005 7:37:33 PM deliberation thread5 Start. Status: Subgoal reached
533 4/8/2005 7:37:38 PM suspend intention1.0 4.3 Suspended.
534 4/8/2005 7:37:40 PM Remove obsolete

intention
1

535 4/8/2005 7:37:40 PM intention thread5 Created. Intention: 2/3.
536 4/8/2005 7:37:40 PM deliberation thread6 Created. Status: Targets changed
537 4/8/2005 7:37:40 PM deliberation thread7 Created. Status: New Target
538 4/8/2005 7:37:40 PM deliberation thread8 Created. Status: Idle
539 4/8/2005 7:37:39 PM intention thread4 Start. Intention: 4/5.
540 4/8/2005 7:37:40 PM Action Created. action: Decelerate to min speed.
541 4/8/2005 7:37:40 PM intention thread4 finished. Intention: 4/5.
542 4/8/2005 7:37:39 PM deliberation thread5 finished. Status: Subgoal reached
543 4/8/2005 7:37:41 PM deliberation thread6 Start. Status: Targets changed
544 4/8/2005 7:37:41 PM deliberation thread6 finished. Status: Targets changed
545 4/8/2005 7:37:42 PM intention thread5 Start. Intention: 2/3.
546 4/8/2005 7:37:42 PM deliberation thread7 Start. Status: New Target
547 4/8/2005 7:37:43 PM Subgoal reached (45,24)
548 4/8/2005 7:37:43 PM intention thread5 finished. Intention: 2/3.
549 4/8/2005 7:37:42 PM intention thread6 Created. Intention: 11.
550 4/8/2005 7:37:43 PM intention thread7 Created. Intention: 0/1.
551 4/8/2005 7:37:42 PM deliberation thread7 finished. Status: New Target
552 4/8/2005 7:37:43 PM deliberation thread8 Start. Status: Idle
553 4/8/2005 7:37:43 PM deliberation thread8 finished. Status: Idle
554 4/8/2005 7:37:44 PM intention thread8 Created. Intention: 10.
555 4/8/2005 7:37:48 PM intention thread6 Start. Intention: 11.
556 4/8/2005 7:37:44 PM deliberation thread9 Created. Status: Running
557 4/8/2005 7:37:50 PM intention thread6 finished. Intention: 11.
558 4/8/2005 7:37:51 PM deliberation thread9 Start. Status: Running
559 4/8/2005 7:37:51 PM deliberation thread9 finished. Status: Running
560 4/8/2005 7:37:51 PM intention thread7 Start. Intention: 0/1.
561 4/8/2005 7:38:00 PM intention thread9 Created. Intention: 4/5.
562 4/8/2005 7:38:03 PM deliberation thread10 Created. Status: Running
563 4/8/2005 7:38:33 PM deliberation thread10 Start. Status: Running
564 4/8/2005 7:38:48 PM intention thread10 Created. Intention: 4/5.
565 4/8/2005 7:38:48 PM deliberation thread10 finished. Status: Running
566 4/8/2005 7:40:13 PM deliberation thread11 Created. Status: The global path updated
567 4/8/2005 7:40:12 PM intention thread7 finished. Intention: 0/1.
568 4/8/2005 7:40:16 PM deliberation thread11 Start. Status: The global path updated
569 4/8/2005 7:40:17 PM deliberation thread11 finished. Status: The global path updated
570 4/8/2005 7:40:13 PM intention thread9 Start. Intention: 4/5.

 150

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Appendix

ID Insert_Time Type Behaviour
571 4/8/2005 7:40:17 PM intention thread11 Created. Intention: 2/3.
572 4/8/2005 7:40:17 PM Action Created. action: Decelerate to min speed.
573 4/8/2005 7:40:18 PM intention thread9 finished. Intention: 4/5.
574 4/8/2005 7:40:18 PM deliberation thread12 Created. Status: Subgoal reached
575 4/8/2005 7:40:19 PM intention thread10 Start. Intention: 4/5.
576 4/8/2005 7:40:19 PM deliberation thread12 Start. Status: Subgoal reached
577 4/8/2005 7:40:19 PM Action Created. action: Decelerate to min speed.
578 4/8/2005 7:40:21 PM deliberation thread12 finished. Status: Subgoal reached
579 4/8/2005 7:40:21 PM intention thread10 finished. Intention: 4/5.
580 4/8/2005 7:40:21 PM intention thread12 Created. Intention: 2/3.
581 4/8/2005 7:40:24 PM intention thread11 Start. Intention: 2/3.
582 4/8/2005 7:40:26 PM intention thread12 Start. Intention: 2/3.
583 4/8/2005 7:40:26 PM intention thread12 finished. Intention: 2/3.
584 4/8/2005 7:40:24 PM intention thread11 finished. Intention: 2/3.
585 4/8/2005 7:40:26 PM deliberation thread13 Created. Status: Running
586 4/8/2005 7:40:27 PM intention thread8 Start. Intention: 10.
587 4/8/2005 7:40:29 PM deliberation thread13 Start. Status: Running
588 4/8/2005 7:40:30 PM deliberation thread13 finished. Status: Running
589 4/8/2005 7:40:29 PM path plan finished 2
590 4/8/2005 7:40:30 PM intention thread8 finished. Intention: 10.
591 4/8/2005 7:40:30 PM deliberation thread14 Created. Status: Running
592 4/8/2005 7:40:30 PM deliberation thread15 Created. Status: Subgoal reached
593 4/8/2005 7:40:30 PM intention thread13 Created. Intention: 4/5.
594 4/8/2005 7:40:31 PM deliberation thread14 Start. Status: Running
595 4/8/2005 7:40:32 PM intention thread14 Created. Intention: 4/5.
596 4/8/2005 7:40:31 PM intention thread13 Start. Intention: 4/5.
597 4/8/2005 7:40:32 PM Action Created. action: Decelerate to min speed.
598 4/8/2005 7:40:32 PM intention thread13 finished. Intention: 4/5.
599 4/8/2005 7:40:31 PM deliberation thread14 finished. Status: Running
600 4/8/2005 7:40:32 PM deliberation thread15 Start. Status: Subgoal reached
601 4/8/2005 7:40:33 PM deliberation thread15 finished. Status: Subgoal reached
602 4/8/2005 7:40:33 PM intention thread14 Start. Intention: 4/5.
603 4/8/2005 7:40:33 PM Action Created. action: Decelerate to min speed.
604 4/8/2005 7:40:37 PM intention thread15 Created. Intention: 2/3.
605 4/8/2005 7:40:36 PM intention thread14 finished. Intention: 4/5.
606 4/8/2005 7:40:40 PM intention thread15 Start. Intention: 2/3.
607 4/8/2005 7:40:40 PM Subgoal reached (51,21)
608 4/8/2005 7:40:40 PM intention thread15 finished. Intention: 2/3.
609 4/8/2005 7:40:41 PM deliberation thread16 Created. Status: Running
610 4/8/2005 7:40:41 PM deliberation thread16 Start. Status: Running
611 4/8/2005 7:40:42 PM deliberation thread16 finished. Status: Running
612 4/8/2005 7:40:42 PM intention thread16 Created. Intention: 4/5.
613 4/8/2005 7:40:43 PM intention thread16 Start. Intention: 4/5.

 151

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Appendix

ID Insert_Time Type Behaviour
614 4/8/2005 7:40:43 PM Action Created. action: Accelerate to max speed.
615 4/8/2005 7:40:44 PM intention thread16 finished. Intention: 4/5.
616 4/8/2005 7:41:00 PM deliberation thread17 Created. Status: Subgoal reached
617 4/8/2005 7:41:01 PM deliberation thread18 Created. Status: Running
618 4/8/2005 7:41:01 PM deliberation thread17 Start. Status: Subgoal reached
619 4/8/2005 7:41:01 PM suspend

deliberation17.2
18.3

620 4/8/2005 7:41:03 PM deliberation thread18 Start. Status: Running
621 4/8/2005 7:41:03 PM intention thread17 Created. Intention: 4/5.
622 4/8/2005 7:41:03 PM resume deliberation deliberation17
623 4/8/2005 7:41:03 PM deliberation thread17 finished. Status: Subgoal reached
624 4/8/2005 7:41:05 PM intention thread17 Start. Intention: 4/5.
625 4/8/2005 7:41:06 PM Action Created. action: Decelerate to min speed.
626 4/8/2005 7:41:06 PM intention thread17 finished. Intention: 4/5.
627 4/8/2005 7:41:03 PM deliberation thread18 finished. Status: Running
628 4/8/2005 7:41:05 PM intention thread18 Created. Intention: 2/3.
629 4/8/2005 7:41:07 PM intention thread18 Start. Intention: 2/3.
630 4/8/2005 7:41:07 PM Subgoal reached (68,46)
631 4/8/2005 7:41:07 PM intention thread18 finished. Intention: 2/3.
632 4/8/2005 7:41:08 PM deliberation thread19 Created. Status: Running
633 4/8/2005 7:41:09 PM deliberation thread19 Start. Status: Running
634 4/8/2005 7:41:09 PM deliberation thread19 finished. Status: Running
635 4/8/2005 7:41:10 PM intention thread19 Created. Intention: 4/5.
636 4/8/2005 7:41:13 PM intention thread19 Start. Intention: 4/5.
637 4/8/2005 7:41:13 PM Action Created. action: Accelerate to max speed.
638 4/8/2005 7:41:14 PM intention thread19 finished. Intention: 4/5.
639 4/8/2005 7:41:24 PM deliberation thread20 Created. Status: Subgoal reached
640 4/8/2005 7:41:24 PM deliberation thread21 Created. Status: Running
641 4/8/2005 7:41:24 PM suspend

deliberation20.2
21.3

642 4/8/2005 7:41:26 PM deliberation thread21 Start. Status: Running
643 4/8/2005 7:41:28 PM intention thread20 Created. Intention: 4/5.
644 4/8/2005 7:41:26 PM resume deliberation deliberation20
645 4/8/2005 7:41:26 PM deliberation thread21 finished. Status: Running
646 4/8/2005 7:41:26 PM deliberation thread20 Start. Status: Subgoal reached
647 4/8/2005 7:41:29 PM deliberation thread20 finished. Status: Subgoal reached
648 4/8/2005 7:41:30 PM intention thread21 Created. Intention: 2/3.
649 4/8/2005 7:41:30 PM intention thread20 Start. Intention: 4/5.
650 4/8/2005 7:41:31 PM Action Created. action: Decelerate to min speed.
651 4/8/2005 7:41:32 PM intention thread20 finished. Intention: 4/5.
652 4/8/2005 7:41:33 PM intention thread21 Start. Intention: 2/3.
653 4/8/2005 7:41:33 PM Target1 reached (91,50)
654 4/8/2005 7:41:33 PM deliberation thread22 Created. Status: Running
655 4/8/2005 7:41:33 PM intention thread21 finished. Intention: 2/3.

 152

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Appendix

ID Insert_Time Type Behaviour
656 4/8/2005 7:41:37 PM deliberation thread22 Start. Status: Running
657 4/8/2005 7:41:37 PM deliberation thread22 finished. Status: Running
658 4/8/2005 7:41:38 PM intention thread22 Created. Intention: 4/5.
659 4/8/2005 7:41:38 PM intention thread22 Start. Intention: 4/5.
660 4/8/2005 7:41:38 PM Action Created. action: Accelerate to max speed.
661 4/8/2005 7:41:38 PM intention thread22 finished. Intention: 4/5.
662 4/8/2005 7:41:48 PM deliberation thread23 Created. Status: Running
663 4/8/2005 7:41:48 PM deliberation thread24 Created. Status: Subgoal reached
664 4/8/2005 7:41:49 PM deliberation thread23 Start. Status: Running
665 4/8/2005 7:41:49 PM deliberation thread23 finished. Status: Running
666 4/8/2005 7:41:49 PM intention thread23 Created. Intention: 4/5.
667 4/8/2005 7:41:50 PM deliberation thread24 Start. Status: Subgoal reached
668 4/8/2005 7:41:53 PM intention thread23 Start. Intention: 4/5.
669 4/8/2005 7:41:50 PM deliberation thread24 finished. Status: Subgoal reached
670 4/8/2005 7:41:54 PM intention thread24 Created. Intention: 2/3.
671 4/8/2005 7:41:53 PM Action Created. action: Decelerate to min speed.
672 4/8/2005 7:41:54 PM intention thread23 finished. Intention: 4/5.
673 4/8/2005 7:41:55 PM intention thread24 Start. Intention: 2/3.
674 4/8/2005 7:41:55 PM Subgoal reached (90,28)
675 4/8/2005 7:41:55 PM intention thread24 finished. Intention: 2/3.
676 4/8/2005 7:41:56 PM deliberation thread25 Created. Status: Running
677 4/8/2005 7:41:57 PM deliberation thread25 Start. Status: Running
678 4/8/2005 7:41:57 PM deliberation thread25 finished. Status: Running
679 4/8/2005 7:42:00 PM intention thread25 Created. Intention: 4/5.
680 4/8/2005 7:42:02 PM intention thread25 Start. Intention: 4/5.
681 4/8/2005 7:42:02 PM Action Created. action: Accelerate to max speed.
682 4/8/2005 7:42:03 PM intention thread25 finished. Intention: 4/5.
683 4/8/2005 7:42:18 PM deliberation thread26 Created. Status: Target reached
684 4/8/2005 7:42:18 PM deliberation thread27 Created. Status: Running
685 4/8/2005 7:42:19 PM deliberation thread28 Created. Status: Target reached
686 4/8/2005 7:42:19 PM deliberation thread26 Start. Status: Target reached
687 4/8/2005 7:42:19 PM deliberation thread26 finished. Status: Target reached
688 4/8/2005 7:42:20 PM deliberation thread29 Created. Status: Target reached
689 4/8/2005 7:42:20 PM intention thread26 Created. Intention: 9.
690 4/8/2005 7:42:20 PM deliberation thread28 Start. Status: Target reached
691 4/8/2005 7:42:20 PM deliberation thread28 finished. Status: Target reached
692 4/8/2005 7:42:22 PM deliberation thread30 Created. Status: Target reached
693 4/8/2005 7:42:23 PM intention thread26 Start. Intention: 9.
694 4/8/2005 7:42:23 PM deliberation thread29 Start. Status: Target reached
695 4/8/2005 7:42:24 PM deliberation thread29 finished. Status: Target reached
696 4/8/2005 7:42:24 PM deliberation thread31 Created. Status: Target reached
697 4/8/2005 7:42:24 PM deliberation thread32 Created. Status: Target reached
698 4/8/2005 7:42:25 PM Agent1 Stop begins!

 153

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Appendix

ID Insert_Time Type Behaviour
699 4/8/2005 7:42:24 PM intention thread27 Created. Intention: 9.
700 4/8/2005 7:42:24 PM deliberation thread33 Created. Status: Target reached
701 4/8/2005 7:42:25 PM intention thread28 Created. Intention: 9.
702 4/8/2005 7:42:26 PM Agent1 Stop ends!
703 4/8/2005 7:42:28 PM intention thread26 finished. Intention: 9.

 154

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Appendix

B. Publication list

[1] H. Zhang and S. Y. Huang, Dynamic Map for Obstacle Avoidance, in

Proceedings of the IEEE 6th International Conference On Intelligent
Transportation Systems, Shanghai, China, October 12-15, 2003, pp. 1152- 1157.

[2] H. Zhang and S. Y. Huang, BDIE architecture for rational agents, in Proceedings
of the international conference for Integration of Knowledge Intensive Multi-
Agent Systems (KIMAS05), Waltham, Massachusetts, US, April 18-21, 2005, pp.
623-628.

[3] H. Zhang and S. Y. Huang, A Parallel BDI Agent Architecture, in Proceedings of
the 2005 IEEE/WIC/ACM International Conference on Intelligent Agent
Technology (IAT-2005), Compiègne University of Technology, France,
September 19-22, 2005, pp. 157-160.

[4] H. Zhang and S. Y. Huang, Are Parallel BDI Agents Really Better?, in
Proceedings of the 17th European Conference on Artificial Intelligence, Riva del
Garda, Italy, August 28-September 1, 2006.

[5] H. Zhang and S. Y. Huang, Dynamic Control of Intention Priorities of Human-
like Agents, in Proceedings of the 17th European Conference on Artificial
Intelligence, Riva del Garda, Italy, August 28-September 1, 2006.

[6] H. Zhang and S. Y. Huang, A General Framework for Parallel BDI Agents, in
Proceedings of the 2006 IEEE/WIC/ACM International Conference on Intelligent
Agent Technology (IAT-2006), Hong Kong, China, December 18-22, 2006.
(Nominated for journal publication)

[7] H. Zhang and S. Y. Huang, Realistic Simulation of Vessel Navigation Behaviour,
in Proceedings of 2nd International Maritime-Port Technology and Development
Conference (MTEC 2007), Singapore, September 26-28, 2007.

[8] H. Zhang and S. Y. Huang, A General Framework for Real Time Performance in
BDI Agents (to be published), Web Intelligence and Agent Systems (2008).

[9] H. Zhang and S. Y. Huang, An Agent’s Activities Are Controlled by His
Priorities, The 2nd KES International Symposium on Agent and Multi-Agent
Systems : Technologies and Applications (KES AMSTA 2008), Inha University,
Korea, March 26-28, 2008. (Nominated for consideration for best paper)

 155

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

	1
	1.1 Background
	1.2 Objectives of This Research
	1.3 Main problems and Technical Issues
	1.4 Thesis Organization
	2
	2.1 Agent Architectures
	2.1.1 BDI architecture
	2.1.2 Subsumption architecture
	2.1.3 Hybrid architecture

	2.2 Agent Character
	2.2.1 Creating human-like agents
	2.2.2 Promoting agent performance

	2.3 Agent Learning
	2.4 Action Scheduling
	2.5 Agent Systems and Applications
	2.5.1 Agent simulation system
	2.5.2 Multi-agent simulation system

	2.6 Robot Navigation
	2.6.1 Global path planning
	2.6.2 Local obstacle avoidance
	2.6.2.1 Potential Field Methods
	2.6.2.2 Steer Angle Field Methods
	2.6.2.3 Dynamic Obstacle Avoidance

	3
	3.1 Introduction
	3.2 The General Framework
	3.2.1 Belief manager
	3.2.2 Intention generator
	3.2.3 Intention executor
	3.2.4 Synchronization among peer intention plans
	3.2.5 General Remarks

	3.3 Comparison between the Parallel BDI Model and the Sequential Ones
	3.3.1 Sequential BDI agents
	3.3.2 The input data
	3.3.3 Comparison results and analysis

	3.4 Theoretical Analysis
	3.5 How Much Parallelism
	3.6 Possible Advantages and a Limitation
	3.7 Conclusions

	4
	4.1 Introduction
	4.2 The Analysis of Agent Character
	4.2.1 Personality
	4.2.2 Experience

	4.3 The Extended BDI Agent Architecture
	4.3.1 Personality settings
	4.3.2 Experience function library

	4.4 Experiment
	4.4.1 Experience
	4.4.2 Parameter setting

	4.5 Conclusion

	5
	5.1 Introduction
	5.2 Priority Control Extension
	5.3 Priority Control
	5.3.1 The r!minding phase of a PCF
	5.3.2 The forgetting phase and the unchanging phase of a PCF
	5.3.3 The complete PCF
	5.3.4 Priority change caused by other desires/intentions

	5.4 Comparison of Parallel Agents Without and With the Reminding-forgetting PCF
	5.5 Agent Behaviours with Different Reminding Functions
	5.5.1 Probability that the intention is running at t
	5.5.2 Probability that the intention is started first time at t

	5.6 Conclusion

	6
	6.1 Software Agent Architecture
	6.2 Experiment
	6.2.1 System design
	6.2.1.1 Path planning algorithm
	6.2.1.2 The agent implementation

	6.2.2 Experiment result

	6.3 Conclusion

	7
	7.1 Conclusions
	7.2 Proposals
	7.2.1 A parallel hybrid agent architecture
	7.2.2 Applications to real robots

	
	Reference
	Appendix
	A. Complete behaviour records of the vessel captain agent
	B. Publication list

