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ABSTRACT 
 

The objective of our project is to design an agent architecture to simulate the intelligence 

and behaviour of a vessel captain in navigation. An agent representing a vessel captain 

should be able to perceive the environment, make decisions and act simultaneously. The 

agent should be able to prioritize its activities according to their importance and urgency. 

The agent should be able to reconsider its goals and intentions and adapt in the changing 

environment. The agent should be able to improve its performance with the accumulation 

of experience. Different vessel captains and thus different vessel agents should behave 

differently based on different personalities and past experience. It is also the objective of 

our research that work done here is general enough for building agents in other contexts 

like a robot looking after a patient or old people. 

 

Many agent architectures have been proposed based on various processing philosophies, 

including deliberative architectures, reactive architectures and hybrid architectures. The 

deliberative agents have powerful reasoning ability compared to the reactive agents, but 

the slow processing speed due to the theorem proving based on complex symbol systems 

of the world makes them unsuitable for some dynamic environments. The agents based 

on the reactive architecture do not need deliberating and have quick processing ability. 

However, it is hard to design and maintain such agents, especially for complex agent 

systems. More importantly, the reactive agents lack learning ability which is essential for 

a truly automatic and evolutionary agent. The hybrid architecture combines deliberative 

and reactive architectures. The emergencies can be processed by the reactive layers while 

the deliberative layers process other decisions. Currently, the behaviours of all the 

existing agents are organized in a sequential way: detect-think-act. When an agent is 

thinking, it cannot detect the environment and may be in the danger of overlooking 

emergencies. 

 

 VIII 



 

In this thesis, a general framework for real time performance in the Belief-Desire-

Intention (BDI) model is proposed. It is an improvement for the BDI agent model. The 

agent consists of three parallel components: belief manager, intention generator and 

intention executor. The communication among them is realized by interrupts. The current 

running actions in the intention generator or intention executor can be suspended if the 

new incoming data has a higher priority. It supports the following agent abilities at the 

architecture level: (1) the ability to respond to emergencies timely; (2) the ability to 

reconsider and modify goals, intentions and actions in reaction to unexpected or new 

information; (3) the ability to perform multiple actions at once; (4) the ability to perceive, 

deliberate and act simultaneously; (5) the ability to prioritize the deliberations and 

intention executions. The architecture provides a possibility for the deliberative agents to 

be applied in complex and dynamic environments. A comparison experiment among the 

parallel agent and the sequential ones is made by simulating the processing of incoming 

events. The results show that the parallel agent has a powerful processing ability. The 

issue of how much parallelism and how to configure a parallel agent based on the general 

framework are studied by experiments with different configurations of the parallel agent. 

 

Furthermore the vessel agent is personalized by its past experience and personality. We 

incorporate Experience Function library into the basic BDI model. As an example for 

accumulating experience, we apply the reinforcement learning algorithm to improve the 

agent’s skills of obstacle avoidance. The algorithm is incorporated into the vessel agent 

as an Experience Function. The agent accumulates the experience during its navigation 

and the different past experiences will make the agent behave differently.  

 

Then we propose a Priority Control extension to the BDI agent. The priorities of the 

deliberations/intentions in the agent can be controlled by proper Priority Control 

Functions. This provides a way to schedule the deliberations/intentions. A reminding-

forgetting Priority Control Function is designed by simulating human behaviours when 

dealing with several things at the same time. Such function can be used when designing 

human-like agents. The agent with different settings for the Priority Control Function 

behaves differently.  

 IX



 

 

Finally, a software agent system of vessel captain traveling at sea is developed based on 

the parallel BDI agent framework with the Experience Function library and Priority 

Control components. The structure for realizing the software agent is designed. The 

experiments show that the agent is able to respond according to expectations. 

 

At the end of the thesis, we conclude on the contributions made in this research. Possible 

future research and applications are also discussed. The work presented in this thesis was 

done in simulation. We expect that it can be applied in real robots some day.  
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Chapter 1 Introduction 
 

 

 

CHAPTER 

1  

INTRODUCTION 
 

1.1   Background 

The Singapore Strait is used by vessels entering and leaving the Port of Singapore as well 

as by transiting vessels. Vessels enter and leave the Port of Singapore via various 

navigational approaches. The types of vessels using the Singapore Strait range from very 

large container carriers to small crafts such as passenger ferries. During peak periods, like 

morning or evening, or public holidays, a larger number of ferries will appear. The heavy 

marine traffic makes certain sea areas very crowed and accidents do happen occasionally. 

 

In such an environment, vessels exhibit the following behaviours: 

o Moving towards the destination. This means that a vessel has to reach its target, 

instead of navigating aimless. For example, a vessel moves to the Port of 

Singapore. With a given destination and the map of the sea, each vessel plans its 

own route to arrive at the destination. 

o Avoiding stationary objects and other moving vessels. For example, for a 

transiting vessel, it should avoid collision with islands, reefs and lighthouses 

spotted in the Singapore Strait. At the same time, when it meets other navigating 

vessels, it should also avoid these moving vessels. Thus methods of avoiding 

dynamic obstacles are necessary. 
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In the real world, vessels are under the commands of their own captains. As people have 

different personalities, different captains demonstrate different vessel navigation arts. So 

human factors have very important effects on vessel navigation. The human factors 

affecting navigation can be seen from the following facts: 

o Captains have different behaviours in moving towards the destinations. Some 

people tend to move fast, some take it easy. Some are behind schedule, therefore 

have to rush. Some are before schedule, so need to slow down. 

o A bold and a meticulous captain may have different styles of command when 

dealing with the same situations when other vessels are nearby. A meticulous 

captain always adopts the safest strategies earlier than his bold peers. Different 

types of vessels also have different velocities, sizes and capacities. 

o Experienced and green-horn captains have different reactions to the same events. 

 

A simulation system of vessels traveling at sea is very useful for risk analysis and 

channel capacity estimation in the Singapore Strait or any other waters. The risk analysis 

will be carried out for the interaction between each type of vessel and each of the other 

types of vessels, the time of the day and the different areas. The simulation system will be 

able to indicate what type of vessels, what kind of captains or behaviour, which area and 

what weather condition are high risk factors. Then remedial or precautionary actions may 

be taken. This simulation can also be used to find how many vessels can safely use the 

Singapore Strait at the same time. The channel capacity is defined as the number of 

vessels that can safely use the channel. Ferry schedule determines the frequency and the 

size of the ferries. Given a fixed demand of passenger capacity, increasing the number of 

high seating capacity ferries will reduce the ferry frequency. However, reducing ferry 

frequency may cause costumer unhappiness and drive out business. The channel capacity 

estimation can be used to find an optimal balance between them. In order to have 

meaningful conclusions from the simulation system, different vessel behaviours must be 

simulated realistically. 
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1.2   Objectives of This Research 

In this research, we will try to design an agent architecture for the agent that replicates 

the behaviours of vessel captains traveling in sea. The captain agent has the ability to 

navigate from starting point to target using different navigation methods. Each vessel 

plans its global path first using a global path-planning algorithm. When the vessel moves 

along its path, it may detect some unknown obstacles. Then it uses some local obstacle 

avoidance methods to avoid collision with them while still trying to move to its 

destination. More importantly, the vessel agent should obtain: (1) the ability to respond to 

emergencies timely; (2) the ability to reconsider and modify goals, intentions and actions 

in reaction to unexpected or new information; (3) the ability to perform multiple actions 

at once; (4) the ability to perceive, deliberate and act simultaneously; (5) the ability to 

prioritize the deliberations and intention executions. 

 

It is also the objective of this research that the work done here is general enough for 

building agents in other contexts. 

 

1.3   Main problems and Technical Issues 

The agent will be realized based on the famous BDI agent architecture. Currently, the 

BDI agent architecture is not suitable to simulate a real-time vessel captain in two 

aspects: 1. the reactivity of the agent cannot be assured; 2. the characters of the captain 

cannot be easily realized. We design a parallel BDI agent architecture to solve the first 

problem. As we said earlier, a vessel is under the commands of its captain, a human 

being. The captain’s own personality and experience will affect the vessel’s navigation. 

So we integrate some more components into the parallel BDI agent architecture to realize 

the agent characters. In the future, multi-agent simulation of the vessels based on the 

parallel BDI agent architecture can be used for the risk analysis and channel capacity 

estimation as discussed in Section 1.1. 

 

To validate the performance and applicability of the agent architecture we proposed, the 

research methodology adopted is computer simulation. In the simulation, we assume that 
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the agent can receive the world information in the form of beliefs and the actions are 

carried out immediately. We will judge whether the system runs according to our 

expectation by examining the behaviour records of the agent. 

 

1.4   Thesis Organization 

The following chapters are organized as following: 

o Chapter 2 LITERATURE REVIEW. This chapter introduces related research, 

including agent architectures, agent character, agent learning, action selection and 

agent systems. The techniques related to robot navigation are also reviewed here. 

o Chapter 3 PARALLEL BDI AGENT ARCHITECTURE. In this chapter, the 

design of the general parallel BDI agent framework is introduced. Simulation 

experiments of the parallel BDI agent and several sequential BDI agents are 

performed. The experiment results have demonstrated the advantages of the 

parallel BDI agent. The parallelism is analyzed using experiment simulations. 

o Chapter 4 AGENT CHARACTER. The basic agent character is analyzed in this 

chapter. The Experience Function library is incorporated into the agent to support 

combining the reinforcement learning algorithm. Then an experiment simulating 

the agent experience is made. 

o Chapter 5 PRIORITY CONTROL. A component to control priority change in an 

agent is proposed. As an example, a personalized priority control schema for 

action scheduling is shown. The schema is designed by simulating human 

behaviours when dealing with several things together. 

o Chapter 6 A VESSEL CAPTAIN AGENT. A software vessel captain agent is 

realized based on the general parallel BDI framework with the two character 

components: experience function library and priority control schema. The 

architecture to realize the software parallel BDI agent is shown. The captain agent 

is realized by using multi-threads programming techniques. The agent shows the 

applicability of the parallel BDI model. 

o Chapter 7 CONCLUSIONS AND FUTURE WORK. We conclude our researches 

and make some proposals about future research. 
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CHAPTER 

2  

LITERATURE REVIEW 
 
 
In The Merriam Webster Dictionary, agent is defined as: “agent n 1 : one that acts 2 : 

MEANS, INSTRUMENT 3 : a person acting or doing business for another” [3]. From the 

viewpoint of the semantic meaning, we may regard the computer agent as an instrument 

that acts. However, a single definition of ‘computer agent’ is not accepted unanimously 

since it first appeared in the 1970s due to the diversification of the computer agents’ 

attributes, roles, architectures, and other features.  

 

In 1977, Hewitt introduced the concept of agent as ‘actor’ in the research of Distributed 

Artificial Intelligence (DAI). In the model, an actor “is a computational agent, which has 

a mail address and a behaviour. Actors communicate by message-passing and carry out 

their actions concurrently” [53]. This is the original model of an agent. From then on, the 

research on agents has been carried out in various areas and applications. In an overview 

of software agent, Nwana describes software agents as a broad range of computational 

entities [100]. From his viewpoint, agents in software area can be reusable software 

components that provide controlled access to (shared) services and resources or the basic 

building blocks for applications organized as networks of collaborating agents.  For a real 

physical system, like a Robot World cup team, each robot also can be seen as an agent, 
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which is a computational unit [73]. The whole team is considered as a multi-agent 

system, in which each agent can finish some tasks individually and cooperate with other 

teammates. Both kinds of computer agents will embody some characteristics of humans. 

In fact, the ultimate objective of agent research is to make agents act as real intelligent 

human agents. In our research, the final objective is to design an agent which is able to 

behaviour as a real vessel captain in navigation. 

 

As pointed out in [100], the three common attributes of agents are: autonomy, 

cooperation and learning ability. Such attributes make the agents different from 

conventional programs. Firstly, programs are sequences of clear and detailed instructions 

provided by their designers to be followed exactly. But agents are autonomous and act on 

behalf of a user. Agents act according to their own desires and interests without getting 

detailed instructions from the user. Secondly, agents often need to cooperate and 

coordinate with others. They have social ability. This human-like ability is lacking in 

conventional programs. Agents often communicate with the user, the system, and other 

agents. Through communication, agents can obtain knowledge about the user’s reaction, 

environment and others’ intention. Agents can then decide and act more effectively. 

Agents can also cooperate with other agents to carry out more complex tasks than what 

they can handle themselves. This cooperation can be seen from a Robot World Cup team. 

The agents must cooperate with each other efficiently to gain victory, like a human 

soccer team. In a multi-agent system for distributed computing, agents often obtain the 

ability to access remote resources. Thus, the efficiency of the whole system can be 

increased [57]. Thirdly, some agents have learning ability, which shows that they have 

some kinds of intelligence. If agents do not learn, they are not suitable for dynamic 

environments where situations cannot all be foreseen. Agents learn from actual actions 

and/or training. Thus they can choose the best actions based on the experiences gained 

from past actions. When under training, sometimes agents must be proactive. For 

example, an agent may test some actions to gain the rewards from these actions. Different 

to this, most programs always choose their actions using the same approach according to 

the way it is programmed. In recent years, emotions also become a very important 
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philosophies. The hybrid agents try to maximize the strengths and minimize the 

deficiencies of the most relevant technique for a particular purpose [100]. This kind of 

agent can inherit the advantages from other agents and avoid their shortcomings. It is 

becoming more popular in agent design. 

 

In the following, we will review these three kinds of agent architectures. We choose the 

BDI architecture as representative for deliberative architecture and the subsumption 

architecture for reactive architecture because of their popularity among the peers.  

 

2.1.1   BDI architecture 

BDI architecture is the deliberative architecture that is researched mostly. It provides a 

folk psychological way by simulating human deliberation. The mental attitudes of belief, 

desire, and intention represent the information, motivational, and deliberative states of the 

agent respectively [18, 111]. It may seem useless for simple agents, like a thermometer or 

an alarm clock, but it is helpful when developing agents that work in complex 

environments.  

 

Rao and Georgeff provided a BDI model in software engineering area [111, 110]. They 

defined the BDI components and explained their significance to agents. The actions or 

procedures that achieve the various objectives are dependent on the state of the 

environment and are independent of the internal state of the system. So it is necessary 

that there is some component of system state which represents the information on the 

state of the environment and which is updated appropriately after each sensing action. 

Such a component is called the system’s beliefs. It is also necessary that the system has 

information about the objectives to be accomplished. This component is called the 

system’s desire. In order to limit the frequency of reconsideration and thus achieve an 

appropriate balance between too much reconsideration and not enough, it is necessary to 

include a component of system state to represent the currently chosen course of actions. 

This additional state component is named as the system’s intention. This BDI agent 

architecture is used in an air-traffic management application [111]. Brazier et al. present 
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an extended task hierarchy for a BDI-agent in [19]. The agent process control consists of 

the belief, desire, intention and commitment determinations. 

 

Procedural reasoning system (PRS) [63] is a famous implementation of the BDI model. 

The deliberative process runs in iterations. At the beginning of each iteration step, new 

goals and new facts are obtained through input. Then several plans in the KA (knowledge 

area) library are triggered by the new belief and one or more of the applicable plans are 

selected to be sent to the intention structure. At the end of each iteration step, the 

intentions are executed. This kind of idea of implementing the BDI agent is adopted in 

many BDI systems [109, 4, 56]. In UM-PRS [77], an extension of the PRS system, the 

hierarchy of the plans is kept for monitoring plan execution and replanning. The formal 

specification of the PRS can be found in dMARS system [28]. JAM is a BDI agent 

architecture developed by Huber in 1999 [59]. It combines the advantages of the previous 

BDI agent researches. With the JAM toolkit, users can create and run their own agents by 

designing beliefs, plans, and primitive functions following the defined grammar. The 

basic structure is similar to PRS system. 

 

AgentSpeak(L) is a popular BDI programming language proposed by Rao in 1996 [112]. 

It defines a set of basic beliefs and a set of plans. The plans are searched for the 

triggering events (new beliefs). Then applicable plans are inserted into the intention stack 

for execution. A more formal description of AgentSpeak(L) can be found in [29]. This 

language has been combined into other agent language, for example 3APL [54]. 

SIM_AGENT is one application based on the AgentSpeak(L) [83].  

 

The reasoning of the BDI agents can also be performed by automatic theorem provers. A 

set of logic is defined in such agents. For example, Wooldridge introduced a BDI logic 

called Logic of Rational Agents (LORA) in his book [136]. LORA contains a temporal 

component as an addition to the traditional first-order logic. The theorem provers are 

used to produce some outputs.  
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The BDI agents have been applied in many applications. Rana et al. have applied Conflict 

Management Strategies in BDI Agents for Resource Management in Computational 

Grids [109]. A rational agent executes a plan from a pre-defined plan library (belief) to 

achieve local goals (desire), and can try alternate plans (intention) if a goal cannot be 

achieved by a chosen plan. Ambroszkiewicz and Komar use the BDI model in a Game-

Theoretic Framework [4]. In a game, the agent’s belief is identified with the knowledge 

about the game and about other agents together. The desire is represented as agent’s goal 

to achieve a maximum level of its utility. A reasoning process based on the agent’s 

rational behaviour is proposed. This process determines the agent’s intention. Rational 

behaviour may be used to construct such reasoning process. The process of reasoning is 

defined as a transformation that conveys the knowledge from higher types into lower 

types and finally into the ground type. This final ground knowledge is the basis for 

determining the final intention.  

 

Recently, a flexible BDI agent system is proposed in [106]. This paper identifies two 

drawbacks of the sequential BDI agents. One is that concrete layout of the cycle will 

determine the nature of the agent, for example, the caution level and reconsideration rate. 

Another drawback is that the agent architecture is not easy to be extended with additional 

facilities because the processing is step by step and very restrictive. The authors propose 

a more flexible way of mapping the original BDI model to a system based on agenda 

scheme in order to allow easier extension of the agent. The steps are transformed to meta-

actions. A main interpreter will decide which meta-action will be selected to execute 

from the agenda queue. The execution of the meta-action may update the status and insert 

new meta-actions into the agenda. The extension of new agent abilities can be easily done 

by designing the meta-actions. However, the outside messages are inserted into the 

agenda directly as external actions. This may indicate that the agent does not detect 

outside environment automatically. If the detection action is modeled as regular meta-

actions, the concrete layout problems still exist. The belief cannot be updated in real-time 

because the detection is performed in predefined intervals. Then caution level and 

reconsideration rate cannot be improved. 
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As seen from above, the BDI model can be used to design rational agents. In the design 

of a vessel agent, we will develop an agent architecture based on the BDI model. The 

environment information can be seen as the vessel agent’s belief. The desire is to 

navigate to target safely. The vessel’ admissible actions can be seen as intentions. We 

design a parallel BDI agent architecture to solve the problems caused by slow 

deliberating in traditional BDI agents. This is shown in Chapter 3. The BDI model 

represents the general attributes of vessel agents. However, the BDI model is not 

sufficient to represent realistically the vessel agents. There is no a proper representation 

of the vessel captain’s characters in the model. In a real world the character of a captain 

will affect the decision he makes to control his vessel. Even in identical environments, 

two captains may have different navigation decisions simply because one is more 

conservative and cautious than the other. The personality and character of the two 

captains are making the difference even with the same beliefs and desires. There is no 

component in the BDI model to represent variations among agent characters. Thus, we 

plan to incorporate a new factor into the BDI model. We call it ‘character’, which 

represents agent’s personality. The agent is expected to behave human-likely as 

demonstrated in Chapter 4 and 5.  

 

2.1.2   Subsumption architecture 

In deliberative systems, the world is represented by symbols and the reasoning is 

performed through theorem provers. Since the speed and efficiency of the provers cannot 

be ensured, this makes this architecture unsuitable in a dynamic environment. A reactive 

architecture takes a different approach than symbolic AI. It does not include any kind of 

central symbolic world model and does not use complex symbolic reasoning. Among 

reactive agent applications, Brooks’ subsumption architecture is the most celebrated one 

[22, 21]. The architecture consists of a set of modules, each of which is described in a 

subsumption language based on augmented finite state machines (AFSM). An AFSM is 

triggered into action if its input signal exceeds some threshold, though this is also 

dependent on the values of suppression and inhibition signals into the AFSM. The 

modules are grouped and placed in layers, which work asynchronously, such that 
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modules in a more complex level can inhibit those in lower layers. In [84], a learning 

algorithm is proposed to improve the scheduling of the behaviours/layers based on the 

feedbacks when to activate the behaviours. 

 

This architecture is often used for robots. Each layer has a hard-wired purpose or 

behaviour, e.g. in a robot a layer is to avoid obstacles and other layer is to enable/control 

wandering [100]. The different layers represent different behaviours of a robot. Then the 

behaviours from a more complex layer suppress the behaviours from the low layers. For 

example, in the MIT AI laboratory Mobots [23], three kinds of behaviours are controlled 

in three layers. The lowest-level layer implements a behaviour, which makes the robot 

avoid being hit by objects. The next layer makes the robot wander about when not busy 

avoiding objects. The third layer makes the robot try to explore. There is no central 

control in the robot. Each layer is driven by the messages it receives. Though the process 

of deciding actions is similar to neural network, Brooks claims that this architecture has 

no relation with neural network because there is no biological significance existing in the 

architecture. 

 

The architecture is simple and efficient in terms of the amount of computation required. 

But the limitations are also obvious [137, 78]. One problem is that the arbitration 

technique only allows a single behaviour to be active at one time. The architecture 

chooses one action at each deciding cycle and other actions are suppressed. Though the 

deciding speed is promising, the single action decision will affect agent’s performance. 

For example, if a robot’s action is to avoid obstacle, the robot may deviate far away from 

the target. Several researchers have proposed to incorporate fuzzy logic technology with 

this architecture [78]. The decision process is fuzzied. In the process, behaviours from 

different layers are composed together and decomposed to get a final decision result. 

 

Another problem exists in that the agent makes decisions based on local information. 

Thus, global information is omitted when making decisions. This means that the agent 

always has a ‘short-term’ view. The architecture is not suitable for making global plans. 

At the same time, the information from the local environment needs to be sufficient, 
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otherwise the agent will not be able to determine its actions because the agent does not 

store models of environments. An improvement to deal with this weakness can be seen in 

an architecture for persistent reactive behaviour [26]. Long-term conceptual memory, 

long-term skill memory and short-term memories are incorporated in the agent. The 

knowledge encoded in the memories can be utilized when the agent updates its beliefs, 

selects and executes skills. A persistence factor is used to control the agent’s bias to 

select the skills picked on the previous time step. Thus, the agent can take into account 

the global environment and its previous behaviours. 

 

It is also difficult to implement agents’ learning ability using this architecture in a hard-

wired implementation. Purely reactive agents can hardly be designed to learn and 

improve performance over time. Besides, agents with many behaviours are very hard to 

build. The dynamics of the interactions between behaviours are very complex to 

understand. This implies that the subsumption architecture cannot be applied in a 

dynamic and complex environment. For our vessel agent, the deliberative architecture 

can better simulate the human behaviours with psychological significance. 

 

It is worth noticing that the layers run asynchronously in a subsumption architecture. In 

[21, 66], the layers are run concurrently. The speed of reaction of the agent is increased 

by parallelism. In a recent research, the deliberation ability is realized based on the 

machinery of the subsumption architecture. In Logic-Based Subsumption Architecture 

(LSA), the layers are realized as the theorem provers. Thus the reasoning ability of the 

deliberative agents is combined into the reactive agents. At the same time, the empirical 

results from a robot implementation show that the provers can be used without sacrificing 

much reactivity [5, 6]. Each control-loop cycle is shown to take 0.1-0.3 seconds, which is 

acceptable for the robot in their experiment. 

 

Another recent research about the subsumption system is a dynamic subsumption system 

[91]. The layers consist of several cells, which contain possible partial descriptions of 

certain functions of the agent. If the environment changed, only the related cells are 

affected. 
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2.1.3   Hybrid architecture 

A hybrid architecture is an architecture that combines the above two kinds of 

architectures together. This represents the new and popular trend in designing robots, 

because this architecture can inherit the advantages of the two architectures. For example, 

a reactive architecture is suitable for real-time environments, but the reactive architecture 

produces behaviours not goal-oriented at times. A deliberative architecture can handle 

that, but it sometimes cannot react timely. A hybrid architecture incorporating two 

architectures can solve the problems. In fact, human can be seen as a hybrid system. In 

the human reasoning system, we do not really think and spend time deliberating what to 

do in face of an emergency. For example, the kitchen is on fire, we just get water and put 

out the fire without spending time deliberating. 

 

 

Figure 2-1 The TouringMachines agent control architecture (from [35]). 

 

An example for this architecture is Ferguson’s TouringMachines hybrid agent 

architecture [35, 36]. We can see from Figure 2-1, the three layers work together to 

control the agent. The reactive layer is in the style of the subsumption architecture. The 
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planning layer is designed as a deliberative architecture, so the agent can have an overall 

planning ability and also can deal with emergencies. The modeling layer is used to model 

other agents in the environment. The three layers are embedded in a control framework, 

which deals with conflicting proposals from different layers by using control rules. The 

control rules will decide which action in the action buffer is chosen to be sent to the 

agent’s effectors. The rules will ensure that only one action will be activated at a time 

slice. 

 

As we can see, the hybrid architecture is good at representing both the meditated 

behaviour and the reactive behaviour. But as Ferguson points out that there were still 

many problems existing in the TouringMachine, a hybrid architecture as TouringMachine 

is not really perfect for agents which operate in dynamic and unpredictable multi-agent 

environments. For example, there is not a learning component in the architecture, which 

may improve the agent’s adaptation in new environment. Also the computations in the 

three layers are restricted strictly by the pre-determined time resources. This can be seen 

as the concrete layout problem of the cycle in [106]. Thus the TouringMachine may fail 

to make the best use of the time resources.  

 

This hybrid architecture has been used successfully in designing robot agents. In most 

cases, the deliberative layer is used for global path planning and the reactive layer for 

obstacle avoidance, subgoal decision and so on. In [11], three layers are used for a 3T 

robot architecture: deliberation, sequencing and reactive skills. The sequencer is used to 

activate and deactivate the skills. In the hybrid mobile robot [82], deliberative and 

reactive models are used for long-term and real-time decision respectively. The planning 

module will provide targets for the target reaching module. The commands from the three 

layers in reactive models are combined to make the final motor control signal. 

 

Other kinds of hybrid architecture without the explicit deliberative and reactive layers 

also exist. Sometimes, it is a combination of agent abilities. For example, an architecture 

for Non Player Character (NPC) is proposed in [92]. The NPC agent architecture consists 

of 4 layers: behaviour system, social system, goal based planner and schedule. The 
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selection is made by selecting from the outputs. Another example is a homogenous agent 

architecture for robot navigation [62]. In the designation, an agent can be created by 

combing the functions of several other agents, such as goal-seeking agent, vacancy-

pursuing agent and obstacle avoidance agent. 

 

2.2   Agent Character 

Normally, agents are built to make rational and best-fit decisions. Thus, in the same 

situation, different agents will all make the same decisions and they will have the same 

behaviour. However, in some areas, this is not always desired and the agent should 

demonstrate its own character. For example, in multi-agent simulation of human society 

[61], agent character is essential for simulating various human beings. The agents will not 

always work in an ideal way. Their characters will affect their decisions. As Sloman 

points out when answering the question of what sort of architecture is required for a 

human-like agent, “designing human like agent is part of the more general problem of 

understanding design space, niche space and their interrelations, for, in the abstract, there 

is no one optimal design, as biological diversity on earth shows” [120]. The discussion of 

a similar question is seen in [121]. 

 

The agent characters separate one agent from another. An agent’s character can be found 

in three aspects: the physical characters, experience and the emotions. The physical 

characters include the agent’s basic attributes of physical resources, for example, a vessel 

agent’s length, maximum acceleration, maximum loads and so on. The experience can be 

expected to be realized by reinforcement learning algorithms. Compared to the physical 

characters and experience, most researches working on the human-like agents concentrate 

on simulating human emotions. Mainly, there are two objectives of this research: creating 

human-like agents and promoting agent performance. 
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2.2.1   Creating human-like agents 

The most direct application of the emotions should be human-like agents, which are 

supposed to show some human-like behaviours [117]. Humans show various behaviour 

modes according to different emotions. In [122], it is said that though we do not 

understand how human emotions work, by trying to model emotions, it is possible to 

learn more about the emotions, and it is possible to create more realistic agents. 

 

In the game area, the Non-Player Character (NPC) agents must demonstrate different 

emotions for a vivid scene. In [96, 99], different kinds of Quake players are created based 

on the BDI model. The players with different interactive characters show different 

behaviours when executing the plan ‘win’. The characters are created by making some 

probes. Then the characters are created based on the answers of the agent. In [97], 

Norling argues that the BDI model is incapable of representing several human 

characteristics. In a psychological way, the characteristics include decision making, 

expertise, emotion, timing, and so on. She proposes to make a folk psychological 

extension to the BDI model to represent these characteristics. Some special modes 

representing the characteristics are incorporated into the BDI model to show the 

character. An example of incorporating the recognition-primed decision model with the 

BDI model to make human-like decision making is given. In [95, 98], COJACK 

architecture is proposed to support psychologically plausible human variability. In this 

architecture, that agent’s reasoning and actions are moderated via a set of parameters. 

Some external and internal moderator will also affect the agent’s decision. 

 

A five-factor (extraversion, agreeableness, conscientiousness, neuroticism, and openness) 

model of emotion is borrowed from the psychological research. It is used to affect the 

learning strategies of the agent [50] and the information behaviours [51]. Patrick Gebhard 

makes his research to connect the five-factor model of personality to the agent 

behaviours. A set of appraisal and dialogue act tags is designed. The tags are mapped 

onto the emotion eliciting condition (EEC) variables to control the emotion changing. 

Then the emotion will affect the behaviours of the agent [41]. This EEC system is used in 

multi-character conversations [42]. Based on this, a layered model of affect is designed. 
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Emotion, mood and personality are differenced in terms of short, medium and long 

periods. The personality is realized as using the five-factor model. The five values are 

defined by user at start. PAD (Pleasure, Arousal, and Dominance) system is used to 

simulate mood. Then the 24 kinds of emotions are defined by the PAD values with 

different weights. The agent’s behaviours are modulated based on the PAD values 

according to the predefined rules [43]. A similar emotion model based on the five-factor 

model is shown in [52]. The emotion factors are incorporated to make the decision-

making process of complex agents less predictable and more realistic. A kind of emotions 

architecture is implemented with a three-dimensional personality space (Arousal, Pain, 

and Confusion). The different status of the agent can be mapped to different emotions. 

Then the emotions are used to make decisions together with the external and internal 

inputs. 

 

Another method to show the agent emotions is by designing the agent’s distinct 

behaviours directly. The behaviours of the agents can be expected to be different because 

of the personalities. The audiences can conclude the agents’ personalities based on the 

behaviours they saw. An example of SceneMaker can be seen in [40]. The roles can make 

plans based on the pre-scripted scene. In [87], a method of decision making for social 

agents is proposed as the PsychSim system. From the theory of mind, the action of the 

agent must exhibit consistently, self-interest, speaker self-interest, trust and support. A 

quantitative value of each possible action is defined according to their beliefs and goals. 

Such values can be modulated after the interaction with the environment, so the agent 

will show different behaviours. This method is used to create characters based on the 

story scripts as in the Thespian system [118]. Thespian is a tool to create agents with 

personalities which are consistent with the behavious defined by the story path. The 

characters’ goal weights can be modulated with the equation defined in PsychSim. The 

character can be reused in different scenes. The agent will try to select an action based on 

the reward of applying the actions to the current state. 
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2.2.2   Promoting agent performance 

Besides the applications for human-like agents, emotions also help to promote the 

adaptability and autonomy of the agents. Though emotions were thought useless for agent 

reasoning for long time, in [102], three benefits are identified. First, the emotion itself is 

an important source of information which is highly centered on the individual. The 

emotions will affect the agent’s behaviours as we show above. Secondly, the emotional 

mechanisms are useful to filter relevant data from multiple, distributed and highly noisy 

sources. An example can be seen in [86]. Here, emotions are used to change beliefs of the 

characters in a scenario from the mission rehearsal exercise. With the same conversations 

among the characters, the beliefs of mother, sergeant and soldier are changed according 

to their own emotions. Thus their behaviours are consistent with their roles. Finally, the 

emotions also provide a global management over other cognitive capabilities and 

processes. In [132], the author states that the action decision of the agent should be 

affected by both the sensory input and the desires of the agent. Agents with different 

emotions may produce different desires. An example for human-like decision-making can 

be found in [93, 94]. A recognition-primed decision making approach is integrated with 

the BDI model as an emotion feature. The agent can learn from past experiences. 

 

2.3   Agent Learning 

An agent can better adapt in a dynamic environment if it has some learning abilities. 

Then the agent can change its strategies to cope with the new situations automatically. 

Automatic learning is that an agent saves historical actions and scenes in order to use 

when meeting the same scene again. Learning is divided into supervised learning and 

unsupervised learning [125]. Under supervised learning, a manager exists and is 

responsible for providing training samples to agents. Such samples can be chosen from 

special examples. This may fill agent with experience quickly [45]. In an unsupervised 

learning situation, there is no such a special manager. The agent will learn from all 

random events happening in environment, and the agent can become more robust for 

various environments. 

 

 19



Chapter 2 Literature Review 
 

Reinforcement Learning is viewed as an on-line variation of dynamic programming, 

which is defined as a discrete-time system with the state transitions and costs/reward 

functions [124]. Using reinforcement learning algorithm, an agent can choose an action 

based on its current and past status. The algorithm will use a reward function to choose 

the maximum reward value for several future steps. Different kinds of reward functions 

have been defined in various situations. According to the book [80], reinforcement 

learning may be computationally implemented depending on (1) whether some heuristics 

are employed, (2) whether a model of the problem domain or a utility function for action 

selection is available, or (3) whether the learning always converges. For example, Q-

learning does not utilize any domain model, but tries to iteratively derive an action-

weighting function. 

 

Learning is very useful to improve the competition and coordination strategies in multi-

agent system. For example, Stone, Riley and Veloso used the learning method to train 

their robot soccer team [104]. The robot can gain experience through examples and 

choose better actions in a real game. Learning is also used for data collection problem. 

Caragea, Silvescu and Honavar designed a multi-agent decision tree learning from 

distributed autonomous data source [24]. Goldman and Rosenschein have made an 

application by incorporating mutual supervised learning into multi-agent systems [45]. 

They test the teaching technique in a scenario of a crosswalk with two traffic signal 

agents. Each agent controls the traffic light for its direction. Each agent is the other’s 

teacher and also receives samples from the other.  

 

With learning algorithms, a single agent can improve its behaviours according to the past 

experience. For example, in OBELIX, an automatic robot, the RL algorithm is adopted to 

solve the problem of pushing-box tasks. Experimental result showed that after the initial 

learning phase an agent will outperform a hard coded agent that does not learn [85]. In a 

more complex robot, the robot soccer team for Robot World Cup, Q-learning is used to 

help the robots finding the best actions [72, 58]. The percent of successful actions is 

greatly promoted after using Q-Learning for the robots. The learning algorithm for 

obstacle avoidance in navigation is another typical application. An example can be found 
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in [47]. The variables related to the positions of the robot and obstacles are used as the 

status. The parameters about control the robot motions are modulated through training. 

 

2.4   Action Scheduling 

When there are several actions/intentions waiting for execution, the agent should have a 

mechanism to decide the execution order. For example, in AgentSpeak(L) [112], the 

selection function SI selects an intention to execute from the intention set I. However, the 

detailed selection criteria are not specified in the paper. Some scheduling mechanisms 

can be seen in other researches. Normally, there are two kinds of scheduling schema. 

 

One is by a single attribute of the actions, for example, the priority. This is normally 

adopted in the systems where the actions are independent. Imaging that several dependent 

actions can be integrated to a single mega action, this kind of method can be seen as a 

general method for scheduling actions. An example is shown in the JAM agent 

architecture [59]. The intention selection is done based on the utility value of the plan. 

The intention with higher utility will be executed first. Recently, another work of 

intention scheduling is reported in [79]. The researchers take several properties into 

consideration when scheduling the intentions, such as the importance of the plan, the 

estimated running time, the deadline utility function, the degree of completeness and 

FairFacter. 

 

The other scheduling method is by the relationship among the actions. This is suitable for 

complex job circumstances, for example, where the execution of an action depends on the 

results from the execution of other actions. For example, in AgentSpeak(XL), an 

extension version of AgentSpeak(L) [12], a task scheduler is incorporated into the 

interpreter to decide how to select intentions. The set of intentions in AgentSpeak(L) is 

converted into a corresponding TÆMS task structure. Then the selection is done based on 

the analyses of the relationship among the plans in the TÆMS task structure. The 

'enables' and 'hinders' relationships indicate which plan may be executed first. A method 

to identify the potential common subgoal is provided in [127]. At first, the positive 
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common subgoals are identified. Then the potential common subgoals are figured out by 

maintaining summaries of definite and potential effects of goals and plans. 

 

Human-like action scheduling schema has seldom been researched. In [74], a priority 

control mechanism for behavioural animation is shown. The priority is set at minimal 

value immediately after the agent displays certain behaviour like drinking. Then this 

priority is increased with time. The increased priority will induce the agent to drink again. 

A more formal description of this human behaviour system can be found in [75]. 

However, expecting the priorities of all intentions to change in the same manner is not 

realistic. Different intentions should be allowed to change their priorities in various 

suitable ways.  Some intentions may also change priorities with the arrival of new beliefs. 

This problem will be discussed more in Chapter 5. 

 

2.5   Agent Systems and Applications 

Many kinds of agent and multi-agent systems are designed for real applications besides 

the robot agents. For example, the BDI agents were designed to manage the air-traffic 

[111]. In a resource management system, mobile agents are capable of finding computing 

resources in network, completing the goals, and returning the results [108]. The agents 

are also designed for providing an interface. In a hosting system, the agents interact with 

a visitor to design visiting schedule based on the visitor’s areas of interest, name and 

organization [126]. As an example in the economic area, an agent is designed to perform 

Market-Based Supply-Chain Management [67]. 

 

Multi-agent systems are useful for solving problems which are composed of 

subproblems. As shown in [108], each mobile agent can complete a subgoal. Then all the 

results are brought together for making the final result. It also can be seen that a 

decentralized multi-agent system is more robust than the centralized systems. The 

container port system described by Thurston and Hu is another example for distributed 

multi-agent system [128]. The system is used to manage the container handling process in 

a port. Four types of agents are designed for the management tasks. The agents cooperate 
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with each other to accomplish the job. An agent failing will not halt the whole system. A 

method to transfer the centralized policies to the decentralized policies in the multi-agent 

system can be seen in [138]. 

 

Here, our focus will be put on the agent and multi-agent simulation systems. 

 

2.5.1   Agent simulation system 

Several human-like agent simulation systems have been developed in the agent character 

sector. Besides those, creature simulation is also an important topic in agent area. For 

example, a simulation system of a highland terrier is shown in [64]. This paper describes 

a kind of brain architecture for synthetic creatures. The brain consists of sensory system, 

perception system, working memory, action system, navigation system, motor system and 

blackboard. Action tuples are designed. If the TriggerContext is satisfied, the action will 

be executed. 

 

2.5.2   Multi-agent simulation system 

Multi-agent simulation provides a tool for simulating various societies. Simulation is 

widely used to enhance knowledge in real worlds and enables us to make artificial worlds 

for measuring the influence of different multi-agent coordination strategies in an 

unpredictable environment. For example, Horling, Kesser and Vicent have designed a 

simulation system that can be used for testing in an actual system [55]. This simulation 

system enables users to directly control the baseline-simulated environment and permit 

the addition of ‘deterministically random’ events that can affect the environment 

throughout the run. In an agent-based interaction analysis of consumer behaviours, 

Customer BEhaviior Simulator model is designed to simulate consumer behaviours when 

selecting a new brand [116]. The agent evolution is simulated using the GA algorithm. 

 

As a hot research topic, multi-agent simulation systems of traffic were researched for 

predicating traffic information and finding ways to relieve traffic jam. In [103], the 

unorganized traffic is simulated. With different parameter settings, the drivers are 
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modeled to be cautious, normal and aggressive. The agent’s action is calculated by 

physical motion laws. Then the average speed, the numbers of overtakes and accidents 

are counted. A fully agent-based simulation of the traffic in Switzerland is shown in [7]. 

In the simulations, it is important for the driver agents to think human-likely. A method 

to simulate human-like thinking is provided in [114]. Based on the psychological studies 

on human drivers, Rigolli and Brady propose that the agent translate the objective world 

into its own subjective world. With different parameters for perception, the agents will 

have different views of world. By simulating 330 agents, some macroscopic 

performances are gotten, including zone density and lane occupancy.  

 

Better traffic control is important to relieve traffic jam. In simulation, the coordination 

can be done in two ways, centralized and decentralized. In the centralized way, a manage 

agent will collect all the traffic information and provide optional solutions. Traffic lights 

are used for this objective [101]. The light coordination is made using distributed 

constraint optimization. For a single intersection, a reservation-based mechanism is 

proposed in [31]. An improvement of this system is shown in [32]. The driver agents are 

assigned more abilities, for example, turning and accelerating in the intersection. In [27], 

the traffic signal controller agents are divided into three layers: intersection, zone, and 

region. The results from the lower layers are summarized at the higher layer. An example 

of decentralized control is shown in [139]. Each driver agent will send and receive the 

traffic information through a route information server. Then each agent will re-calculate 

its own shortest path based on the newest information.  

 

2.6   Robot Navigation 

Basically, there are two issues in navigation: path planning and obstacle avoidance. In 

this part, we will summarize the existing global path planning algorithms and obstacle 

avoidance algorithms respectively. 
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2.6.1   Global path planning 

Path planning is a fundamental problem in navigation. A robot will usually do its path 

planning at the beginning of navigation. According to known map information, several 

intermediate targets will be put on the path line to the final target. Path planning methods 

assume that the environment does not change while a robot is moving. Latombe 

summarized a larger number of robot motion planning algorithms in his book [76]. These 

methods are based on a few general approaches: roadmap, cell decomposition and 

potential fields. The first two methods convert the planning problem into searching a 

graph by analyzing the connectivity of the whole free space. In these methods, an 

effective searching algorithm is involved. However, the potential field method is usually 

defined with a limited range of influence. It can be applied while the robot is moving. So 

the potential field method is often seen as a local method. We will introduce the potential 

field method as a local obstacle avoidance method in Section 2.6.2.1. 

 

The general idea of the roadmap is to construct a network of one-dimensional curves. 

Then the roadmap is used as a set of standardized paths. The path planning is reduced to 

search a path between the initial and goal points. Based on this idea, various methods are 

proposed. The visibility graph method is one of the earliest path planning methods. In this 

method, a roadmap consists of line segments connecting two nodes that do not intersect 

the interior of an obstacle region. Then a path can be obtained through searching this 

roadmap. 

 

Cell decomposition decomposes the robot’s space into simple regions, called cells, such 

that a path between any two configurations in a cell can be easily generated. This method 

can be broken into exact and approximate methods. The exact method divides the space 

by drawing vertical rays from obstacles’ vertices. The approximation method keeps 

decomposing a rectangle space into identical rectangles till the interior of the rectangle is 

completely free or the predefined resolution is achieved. 

 

We can see that these methods all require complete and accurate information about 

obstacles’ configurations and locations. After the path is decided, it will not be changed 
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during navigation. Thus the path planning methods alone cannot react to dynamic 

environment. We will review various local obstacle avoidance methods in the following 

section. 

 

2.6.2   Local obstacle avoidance 

The robot should have the ability to cope with obstacles detected by sensors in 

navigation. Usually two objectives of obstacle avoidance should be fulfilled. One is to 

make the robot to go around obstacles to avoid collision with them. The other is to make 

robot move toward its target. The second objective will be pursued together with the first 

one. This will make the robot move to its target safely and quickly.  

 

Many obstacle avoidance algorithms have been invented and applied in real robot 

navigation, for example, the wall-following method [8] and the edge detection [16]. In 

some cases, the wall-following method works as an alterative function when the robot is 

trapped in a local minima situation [13]. The drawback of these methods is that robot 

needs to know exactly the configuration of the obstacles before deciding the next step. 

Thus this will consume much time when measuring the obstacles. Because of the 

limitations of these two methods, they are seldom adopted in current robot systems. 

 

The two main approaches of the methods are Potential Field Method and Steer Angle 

Field Methods. For obstacle avoidance in a dynamic environment, the robot needs 

mechanisms different from the static methods. Methods of dynamic obstacle avoidance 

are included at the end. In the following, we will introduce the methods and their 

application respectively. 

 

2.6.2.1   Potential Field Methods 

In 1985, Khatib published his paper about Potential Field Method [68]. Potential Field 

Methods solve the problem by assuming that obstacles and target have influence on 

robot, like magnetism. The influence is materialized as a force. Obstacles will produce 

repulsive forces on robot. At the same time, the target produces attractive force. In the 
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field of force, the robot is pushed by these forces. Having properly defined potential 

functions of repulsive forces from the obstacles and attractive force from the target, the 

robot will move away from obstacles and toward target automatically. The potential 

functions can be modified in fluid dynamics and magnetic field forms. 

 

Around the same time, Moravec and Elfes pioneered the concept of certainty grids, a 

widely popular map representation that is well suited for sensor data accumulation and 

sensor fusion [89]. By integrating the concepts of potential field and certainty grid, 

Borenstein and Koren developed the Virtual Force Field (VFF) method [13, 14, 15]. This 

method is a direct expression of the original potential field method. The robot’s motion is 

decided by the resultant force factor of the repulsive and attractive forces. Though the 

robot can achieve a maximum travel speed of 0.78m/sec, several limitations exists in this 

method. As identified in [71, 39], the robot may be trapped to local minima, oscillate 

between obstacles and narrow passages, and cannot reach the goals with obstacles 

nearby. 

 

In order to overcome these drawbacks, Borenstein and Koren introduced the Vector Field 

Histogram (VFH) method in 1991 [17]. Polar obstacle density is designed to calculate the 

repulsive forces from the obstacles. The VFH+ method is an improved version of the 

VFH method [129]. It explicitly takes into account the robot dimensions and the 

trajectory of the mobile robot. The VFH* method employs a four-stage data reduction 

process in order to compute the new direction of motion. This method is combined with 

the A* search algorithm to find the optimal path [130]. 

 

2.6.2.2   Steer Angle Field Methods 

Though the potential field method is good at computing an obstacle-free motion 

direction, it often fails in controlling the speed of a robot. It is mainly because the 

potential field method does not include the robot’s velocity as a factor for computing 

collision free path. Different from the potential field method, the steer angular field 

method will compute the collision free path based on both the obstacles positions and the 
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avoidance methods reviewed so far are all for relatively static environments. In such 

environments, obstacles are stationary objects or slow moving persons. Though the 

obstacle avoidance algorithms may divert the robot from the moving obstacles past 

enough to avoid collisions, they may fail if the speeds of obstacles are high. 

 

Fiorini and Shriller proposed the Velocity Obstacle (VO) concept for the dynamic 

obstacle avoidance problem [37]. VO consists of velocities that will potentially cause the 

robot to collide with moving obstacles. Castro, Nunes and Ruano have integrated this VO 

concept with the dynamic window approach to produce a reactive local navigation 

method for dynamic environment [25]. The velocity space for the dynamic window 

approach is the reachable avoidance velocities obtained by using the VO approach. Then 

a velocity is chosen for the next step from the RAV. This enriches the dynamic window 

approach’s ability in a dynamic environment. 

 

In the VO method, the rotational velocity of the moving obstacle is not considered. As 

the authors pointed out, several optimal solutions may be omitted because each possible 

velocity consisting of the searching tree tries to avoid all obstacles. So we have suggested 

the dynamic map idea for dynamic obstacle avoidance [140]. But our method is based on 

the assumption that the vessel can accurately predict the moving obstacle’s motion. Thus, 

if the vessel is far away from the obstacle, a small estimation error may cause the 

obstacle avoidance to fail. However, this possible failure can be compensated when the 

robot moves near the obstacle, because the computation time based on dynamic map may 

be short enough and the estimation of the obstacle may be more precise after a longer 

observation of the obstacle. 
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CHAPTER 

3  

PARALLEL BDI AGENT ARCHITECTURE 
 

The traditional BDI agent has 3 basic computational components: generate beliefs, 

generate intentions and execute intentions. They run in a sequential and cyclic manner. 

This may introduce several problems. Among them, the inability to watch the 

environment continuously in dynamic environments may be disastrous. One possible 

solution is by using parallelism. We propose a parallel BDI model with three parallel 

running components which are the belief manager, the intention generator and the 

intention executor. The coordination between the parallel components is done by 

interrupts of different priorities. The agent built with this architecture has the ability of 

performing several actions at once. The agent also has the ability to prioritize the 

deliberations and intention executions so it is able to respond quickly to circumstance 

changes and all the thinking and acting are done at appropriate times.  

 

In order to evaluate the parallel BDI model, we compare the parallel agent against five 

versions of sequential agents where the 3 components of the BDI agent are controlled and 

managed in different ways and different time resources are allocated to the 3 components. 

Experiments are designed to simulate the operation of the three components in the agents. 

The ability of the agents to respond to the same sequences of external events of various 
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priorities is assessed. The comparison results show that the parallel BDI agent has 

quicker response, react to emergencies immediately and its behaviour is more rational. 

 

This chapter is structured as follows. In the first section, an introduction of background 

and motivation is given. In Section 3.2, we present the general framework for parallel 

BDI agents that need to perform in real time.  The functions of the processing units in the 

framework are identified, their operations are defined and how these functional units 

interact and cooperate is specified. In Section 3.3, simulation experiments are presented 

to compare the performance of the parallel agent and five versions of sequential agents. A 

theoretical analysis about the performance of the parallel agent is presented in Section 

3.4. In Section 3.5, the issue of how much parallelism and how to configure a parallel 

agent based on the general framework with a limited number of CPUs are studied by 

experiments with different configurations of the parallel agent. We describe some 

advantages and a limitation of the parallel BDI architecture in Section 3.6. A short 

conclusion is given in the last section. 

 

3.1   Introduction 

Hayes-Roth [48] defined the primary objective of an intelligent agent that needs to 

perform in real time as “to maintain the value of its own behaviour within an acceptable 

range over time”. Among the requirements for an intelligent agent, two related are 

flexibility (the agent should react to important unexpected events) and timeliness (the 

agent should meet various real-time constraints). Many agent architectures or frameworks 

have been developed for building an intelligent agent. As identified in the survey of agent 

architectures [135], three kinds of agent architectures, deliberative architecture [18, 111, 

63, 110], reactive architecture [22, 23] and hybrid architecture [35, 36, 81], are proposed 

according to the processing mechanism of the agents. The BDI model is well understood 

for designing deliberative architectures because it combines a respectable philosophical 

model of human practical reasoning [44]. The reactive architecture, most noticeably, the 

subsumption architecture, is a different paradigm [21, 22, 23]. The hybrid architecture is 
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proposed to combine the deliberative and reactive architectures to inherit the advantages 

of both. 

 

With the different agent models proposed, it is said [44] that the basic components of an 

agent designed for a dynamic, uncertain world should include some representation of 

Beliefs, Desires, Intentions and Plans – the BDI model. There are three main operations 

in this model: detecting, thinking and executing. In normal implementation of the 

deliberative agent, the three operations run sequentially. For example, in PRS [63], the 

deliberative process runs in iterations. At the beginning of each iteration step, new goals 

and new facts are obtained through input. Then several plans in the KA (knowledge area) 

library are triggered by the new belief and one or more of the applicable plans are 

selected to be sent to the intention structure. At the end of each iteration step, the 

intentions are executed. In PRS, the agent will not proceed to the next step until the 

current step is finished. In a complex and dynamic environment, the agent needs more 

time to search for proper intentions or one action may need more time to execute. Then 

more time is needed in each iteration step and the agent is not able to detect new events 

before the current iteration step is finished. As a consequence of this, the agent may not 

be able to start processing the emergencies immediately. So the reactivity of the PRS 

agent cannot be assured in such circumstance.  

 

A possible solution to promote the reactivity of the agents appears in the TouringMachine 

[35], a well known hybrid agent architecture. The architecture consists of three sequential 

components: perception subsystem, control framework and action subsystem. The control 

framework will output actions to the action subsystem based on the sensory input from 

the perception subsystem. It consists of three layers, a reactive layer, a planning layer and 

a modeling layer. The outputs from the three layers are summarized by using some 

context-activated control rules. A clock is used to control the execution time of the 

control framework. For each time cycle, the control framework has fixed time resource to 

use. And the primitive schema (action) structure is designed with a ‘cost’ property, which 

indicates how much time it costs to execute the action. If in a cycle, the remaining time 

resource is not sufficient for an action to execute, another action needing less time cost 
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will be executed instead or the remaining time is wasted if no suitable action is available. 

This method insures that the agent can sense the environment at fixed time intervals. The 

probability of overlooking emergencies is low if the time spent in detection and 

processing is balanced well. It is usually required that the detection should not consume 

much time. If the TouringMachine puts much time on the control framework in a cycle, 

the problem of poor reactivity still exists. 

 

In agents based on BDI logics, such as AgentSpeak(L) [112] and LORA [136], the 

problems may appear as reactivity and intention reconsideration issues. The reasoning is 

done by theorem provers, which usually need much executing time. In LORA, the basic 

agent control loop of the BDI interpreter consists of perception, updating belief, 

generating desires, choosing intention and executing actions. Desires, intentions, and 

actions are generated based on belief. The original circumstance/belief may have changed 

during these processing. The intentions may become impossible under the new 

circumstance. The agent should not commit to infeasible intentions. An improvement is 

made by updating beliefs and reconsidering intentions after executing each action. An 

experimental result of intention reconsideration by Kinny and Georgeff is provided in the 

book [136]. The result shows that the more frequently the intentions are reconsidered, the 

lower the effectiveness of the agent is. Thus, the reactivity of the agent cannot be 

ensured. 

 

Pokahr [106] suggested that in the sequential BDI agents the concrete layout of the 

processing cycle will determine the nature of the agent, for example, the caution level and 

reconsideration rate. And the agent architecture is not easy to be extended with additional 

facilities because the processing is step by step and very restrictive. The authors proposed 

a more flexible way of mapping the BDI model to allow easy extension of the agents. In 

the architecture, the steps are transformed to meta-actions. A main interpreter will decide 

which meta-action will be selected to execute from the agenda queue. The execution of 

the meta-action may update the status and insert new meta-actions into the agenda. The 

extension of new agent abilities can be easily done by designing meta-actions. However, 

it is noticed that the outside messages are inserted into the agenda directly as external 
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actions. If perceiving environment is modeled as a regular meta-action, there is no 

guarantee at the architecture level that the environment is monitored appropriately 

closely. At the same time, the problems of low caution level and reconsideration rate also 

remain. 

 

Pokahr [105] commented that the current BDI model does not support any mechanism for 

handling goal relationships at the architecture level. They proposed a deliberation 

strategy for agent developers to specify relationships between goals such that there is a 

maximum number of goals that an agent may pursue at once and the activation of one 

goal may inhibit another goal.  However, an important factor that is not considered is the 

importance and urgency of a goal that influences which goal should have the attention of 

the agent first.    

 

Hayes-Roth [48] pointed out that parallel subsystems with buffered communications to 

provide asynchronous perception, cognition and action will allow an agent to perform in 

real time. We propose what is required of an agent for real time performance: (1) ability 

to respond to emergencies timely; (2) ability to modify goals, intentions and actions in 

reaction to unexpected or new information; (3) ability to perform multiple actions at once 

(e.g. talking while walking); (4) ability to perceive, deliberate and act simultaneously 

(e.g. thinking while walking).   

 

In [73], a multi-threaded approach is used to simulate soccer agents for the RoboCup 

competition. The sensing, thinking and acting behaviours are executed in parallel. Thus 

the soccer agent does not need to wait for I/O operations (sensor and act) with the world 

and gains more time for thinking. The experiments show that the agent with a parallel 

architecture has obvious advantages in lessening the impact of I/O operations in the 

simulation of an intelligent agent like a human being. 
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Figure 3-1 Parallel BDI agent model. 

 

In this chapter, we propose a parallel BDI agent framework for real time performance 

based on the BDI model. The general idea is that such a framework consists of three main 

components, the belief manager, the intention generator and the intention executor which 

are running in parallel as shown in Figure 3-1. The horizontal dark thin lines show the 

control flow in the agent. The three components each consists of a number of smaller 

processing units and they run in parallel. The coordination between them is done by 

messages and interrupts of different priorities. The data flows are shown by the purple 

and red line between the components. The message flows and interrupts are shown by 

arrows. The belief manager generates beliefs from world information perceived by the 

agent and human commands given to the agent. The intention generator generates desires, 

then schedules and reschedules the generation of intention plans for the desires.  The 

intention executor schedules and reschedules the execution of intention plans and 

executes them. Some parallelism can be achieved by simply running these three 

components as parallel threads. However, in such set-up there is no pre-emption of less 

important and urgent desires/intentions by more important and urgent ones so the agent is 

not able to respond quickly to emergencies. Furthermore, the degree of parallelism is 
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limited because there is no parallelism in multiple intention generations and multiple 

intention executions. The general framework proposed offers much better functionalities. 

Under this general framework, parallel BDI agents with different configurations based on 

the best way to share the available computational resources may be built. These agents 

have a number of advantages over the sequential one: 1. they have the 4 abilities required 

of an agent as discussed earlier; 2. support is provided at the architecture level for 

reconsideration of desires and intentions and consideration of goal relationships when a 

new belief/desire is generated. 

 

The idea of parallel operation can be seen in some other agents. However, it is realized in 

different applications or to deal with different problems from ours. For example, in the 

designation of subsumption systems [21, 66], the layers of control are run concurrently. 

In LSA, the layers are realized as the theorem provers. So the reasoning ability of the 

deliberative agents is combined into the reactive agents. The empirical results from a 

robot implementation show that the provers can be used without sacrificing much 

reactivity [5, 6]. This kind of parallel deliberative architecture is different from ours. In 

LSA, the layers are presumed to work independently. Each parallel layer will perform the 

actions of detection, reasoning and output sequentially. Output from one layer can be 

input for another layer. It can be regarded as several deliberative agents each with its own 

sub-goals running in parallel in the subsumption architecture.  

 

Another example of parallel operation can be seen in JAM [60]. The JAM agent can 

execute some action_sequences in a plan simultaneously. This means that some actions 

in an intention can be performed concurrently. This parallel execution of some actions is 

also different from our work. In our work, the three basic behaviours of the agent, 

detection, deliberation and execution, are parallelized. The agent can be watching, 

thinking and acting at the same time. Together with the interrupt mechanism in the agent, 

this parallel BDI agent architecture can solve the problem of concrete layer in traditional 

sequential agents. The reactivity of the agent can be improved to real-time level. 
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3.2   The General Framework 

We propose a general framework for parallel BDI agents based on the parallel BDI agent 

model shown in Figure 3-1. The framework is shown in Figure 3-2. The arrow lines in 

the figure show the control flow among the processing elements of the agent. The 

framework can be useful when designing a robot agent. Each device is a processing 

element which can be run on a processor. It can also be used for agent-based simulation 

of a physical system that is capable of parallel actions. An example of software agent 

representing a vessel captain who can watch, think and act simultaneously is presented in 

Chapter 6. 

 

 

Figure 3-2 The General Framework for Parallel BDI Agents. 

 

The framework consists of three main components: the belief manager, the intention 

generator and the intention executor. These three components represent the three steps in 

the deliberation process of an agent: detect, think and act respectively. The three 

components will retrieve and update data in the three data structures: beliefs, desires, and 
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intention like Intention 4, provided that both d and f may be executed by the same PE or 

the PEs are homogeneous. This reduces the cost for scheduling. In the rectangles showing 

the intentions 1-6, the first pair of bracelets shows the predecessors of the intention. For 

example, intention 6 cannot start before both intentions 4 and 5 are completed. With the 

transformation, the original intention plan can exploit parallelism supported in the agent’s 

framework. An example is that intention 2 (Action b) and intention 3 (Action c) may be 

executed at the same time if two PEs are available. This speeds up the execution of 

intentions and the parallel framework of the agent is used more effectively. Intentions 4 

and 5 are peers so they have to be executed in 2 PEs simultaneously. The synchronization 

issue among peer intentions is discussed in the next section. 

 

 

Figure 3-6 Transformation of a normal intention plan. 

 

As shown in Figure 3-3, intentions are partitioned into inactiveI, pendingI and executingI. 

This supports the scheduling and the reconsideration of intentions. An intention plan in 

inactiveI is one that can only start execution after the completion of its predecessor 

intentions or it is one that the agent wants to put on hold for the moment.  An intention 

plan in pendingI or executingI has the same meaning as a desire in pendingD and 

planningD respectively.  When a new intention plan arrives at IM, it joins pendingI if it 

has no predecessor intentions otherwise it joins the inactiveI.  For each intention in 

inactiveI, IS checks whether all the predecessor intentions are completed.  If yes, it 
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3.2.5   General Remarks 

The operations define how the devices in the belief manager, the intention generator and 

the intention executor work to process the incoming events. All the devices work in 

parallel. The interrupt mechanism ensures that an emergency can be dealt with first. 

Thus, the agent obtains the ability of quick reaction to emergencies and the capacity for 

careful deliberation when required. With the parallel components, the agent can handle 

several matters at once. The agent is also able to ‘change his mind’ towards his 

desires/intentions according to the changing environments. The requirements for real 

time performance, as we proposed in Section 3.1, are satisfied. One method to realize the 

operations is by priority control, which will be discussed in Chapter 5. In next section, we 

make a comparison between the sequential BDI model and the parallel BDI model. 

 

3.3   Comparison between the Parallel BDI Model and the 

Sequential Ones 

In this section, we evaluate the performance of the parallel agent by comparing it with the 

sequential agents. There are 3 main or coarse computational components in a BDI agent, 

the belief manager, the intention generator and the intention executor. In a sequential 

agent, only one computational component is running at any time. However it is possible 

to control and manage the 3 components in several different ways in an attempt to get 

better performance from a sequential agent. On the parallel BDI agent side, under the 

general framework the maximum parallelism can be realized by having all the processing 

elements, like EMs, BG, DG, running in parallel.  To demonstrate that parallel BDI 

agents constructed according to the general framework are able to offer the benefit of 

parallel actions, we have a conservative parallelism where only the 3 main components, 

i.e. the belief manager, the intention generator, and the intention executor, operate in 

parallel. This means the processing elements in the same component will run 

sequentially.  We first describe the five sequential BDI agents each with their own way of 

controlling and managing their computational components. Then the simulation 

experiments are presented and the results are analyzed. 
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3.3.1   Sequential BDI agents 

 

Figure 3-9 Sequential BDI agents. 

 

The five kinds of sequential BDI agents are: 

(1) As shown in Figure 3-9a, the 3 components run in a cyclic way and each uses up the 

pre-allocated and fixed time resource. The deliberation/intention cannot be suspended 

and resumed. If the remaining time of a component (only the deliberate and the 

execute components) is not sufficient for a deliberation/intention to be finished, the 

remaining time will be wasted. 

(2) This is a variant of agent 1. It suspends a task when the time allocated to the current 

component is used up and resumes it when the component’s turn comes in the next 

cycle. For example, the execute action can start an intention which costs 5 time units 

when there is only 1 time unit remaining. 

(3) A more flexible way is to allocate time resources to the deliberate and execute 

components only when needed. If a component has nothing to do, it terminates and 

the next component starts. In order to keep the agent vigilant, the detect component 

always uses up all its allocated time. The actual time used for deliberate/execute 

should not exceed the maximum pre-allocated time to such a component. This agent 

has a cycle time ranging from a minimum that is the fixed time for the detect 

component to a maximum that is the sum of the allowable times of the 3 components. 

The tasks cannot be suspended. 
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(4) Different from agent 3, the tasks can be suspended. 

(5) This agent has a cycle as shown in Figure 3-9b, in each cycle, after the detect 

component, the agent will choose to deliberate or execute based on the maximum 

priority of deliberations and intentions. After deliberate/execute is finished, another 

cycle begins. This makes the agent more watchful for emergencies. 

 

The characteristics of the five sequential BDI agents are summarized in Table 3-1. In all 

the sequential agents, when there is more than one deliberation/intention to handle in the 

deliberate/execute component, the one with highest priority will be processed first. The 

performance of these agents will be compared with the parallel BDI agent. 

Table 3-1 Sequential agents 

Flexible time allocation? Agent 
no detect deliberate execute 

suspend-
resume? Illustration 

1 N N N N Figure 3-9 (a) 
2 N N N Y Figure 3-9 (a) 
3 N Y Y N Figure 3-9 (a) 
4 N Y Y Y Figure 3-9 (a) 
5 N Y Y Y Figure 3-9 (b) 

 

With the different time allocation schemes for the three components, the sequential agent 

will show different performances. In the experiments, we used three time allocation 

schemes for sequential agents according to their emphasis on the three components. For a 

maximum cycle of 15 time units, three schemes showing the fixed or maximum 

allowable time quota for each component of the BDI agent are given in Table 3-2. 

Table 3-2 Allocation schemes 

Configuration detect deliberate execute 
C1 1 4 10 
C2 3 4 8 
C3 5 3 7 

 

The sequential agent with configuration C1 puts more emphasis on executing intentions 

with the risk of overlooking emergencies. C3 gives more time to the detect component to 

be more vigilant. But the time for the execute component is cut. C2 is a compromise 

between C1 and C3. 
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Each sequential agent described in Table 3-1 will be configured according to C1, C2 and 

C3 respectively in the experiments to compare them with the parallel agent. 

 

3.3.2   The input data 

The evaluation of the sequential and parallel agents is done by simulation of the 

processing of events by agents.  All the sequential agents and the parallel agent will 

process some sequences of events.  Each event will be processed by the 3 computational 

components of the BDI agent, namely, the belief manager(detect), the intention 

generator(deliberate) and the intention executor(execute).  

 

In the experiment, the system time is represented as continuous time units. There is a 

system clock to control the increase of the time. The system time is started from 0. For a 

vessel agent, the events may include new topological findings, nearby obstacles, and user 

commands. According to the details of these events, the priorities of the events and the 

costs in time used to execute the corresponding plan can be decided. In this simulation, 

we will discard the actual details of the events. Only the processing time of the events 

and the priority are used to identify an event. These properties are related to the analysis. 

To evaluate the agent ability to handle events of different importance or urgencies, events 

will have one of the four different priority levels 1 to 4, with 4 being the highest. We 

assume that an event can be detected and a belief generated in 1 time unit and each 

deliberation to generate an intention takes 1 to 3 time units. The intention execution time 

of events at all priority levels is uniformly distributed in the range from 1 to 7 time units. 

So the average deliberation execution time is 2 time units and the average intention 

execution time is 4 time units. This also means the average time required to handle an 

event is 7 (1+2+4) time units. 

 

We use the exponential density function to represent the inter-arrival time between any 

two events. As shown in [113], the exponential density function is memoryless and often 
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Table 3-4 ART of the events by the agents. 

ARTpSet Confi
g. 

Agent 
no 1 2 3 4 ART ARTw

1 3731.59 1577.26 90.22 22.41 1401.62 724.64 
2 4443.1 1621.04 64.09 23.66 1593.54 797.21 
3 2706.14 927.34 58.8 19.54 961.49 481.54 
4 3300.26 635.3 42.51 20.86 1040.8 478.18 

C1 

5 3318.06 651.88 38.66 20.87 1048.72 482.13 
1 4416.69 2114.99 144.25 23.12 1729.08 917.19 
2 4581.51 1818.47 73.33 26.18 1682.14 854.32 
3 4046.55 1735.6 115.54 22.51 1529.96 795.44 
4 4496.36 1599.33 71.64 25.2 1604.25 801.07 

C2 

5 4531.08 1651.86 63.06 23.13 1623.98 811.65 
1 6523.12 3832.43 656.97 27.9 2834.22 1627.05 
2 6621.4 3990.95 573.05 32.56 2881.14 1645.27 
3 5959.58 3193.37 371.31 23.75 2457.89 1355.53 
4 6017.61 3415.7 252.62 28.57 2502.08 1372.12 

C3 

5 6112.63 3523.51 312.36 26.88 2567.67 1420.42 

a 

Parallel 48.81 17.59 11.18 7.75 21.8 14.85 
1 961.05 78.29 28.69 18.4 264.22 127.73 
2 456.77 50.65 26.58 20.26 135.17 71.88 
3 68.91 26.33 18.15 13.45 31.38 22.98 
4 65.3 27.65 19.14 15.74 31.67 24.1 

C1 

5 73.74 28.82 20.72 15.81 34.42 25.68 
1 2177.75 132.21 35.53 19.48 574.07 262.67 
2 1075.42 73.53 33.39 23.32 292.98 141.59 
3 1051.26 86.14 29.45 17.5 288.02 138.19 
4 903.78 78.73 34.39 23.95 253.31 126.02 

C2 

5 1015.03 62.61 31.53 21.31 274.58 132.01 
1 4520.94 728.04 57.62 19.52 1301.18 622.8 
2 4814.97 408.03 44.98 24.77 1286.63 586.5 
3 3688.76 459.78 45.62 18.09 1026.74 481.75 
4 4109.05 208.17 39.25 23.95 1062.28 473.89 

C3 

5 4590.59 267.35 37.85 22.12 1193.23 532.73 

b 

Parallel 13.12 10.0 8.58 7.35 9.74 8.83 
1 34.46 25.52 20.15 16.4 24.48 21.16 
2 27.16 22.91 19.26 16.65 21.69 19.73 
3 11.19 9.73 8.79 9.03 9.73 9.32 
4 11.11 9.61 8.96 9.18 9.76 9.39 

C1 

5 14.5 12.14 10.41 9.59 11.76 10.84 
1 44.23 28.39 21.44 16.93 28.29 23.3 
2 31.07 23.59 20.99 17.61 23.57 21.16 
3 17.63 13.29 11.49 10.69 13.41 12.14 
4 16.19 13.64 11.82 11.09 13.28 12.32 

C2 

5 27.78 20.31 16.24 13.88 19.83 17.27 
1 76.7 34.8 22.0 15.69 38.55 27.5 
2 51.63 31.1 22.37 17.95 31.44 25.27 
3 35.13 20.25 14.54 12.06 20.97 16.75 
4 29.42 19.42 15.31 13.85 19.82 16.96 

C3 

5 41.46 26.29 18.28 15.89 26.0 21.24 

c 

Parallel 8.92 7.75 7.52 6.87 7.8 7.45 
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sequential agents are not able to do this. It is clear that the parallel agent has a big 

advantage over the others on processing real emergencies. 

 

For events with lower priority, the difference of ART between the sequential agents and 

the parallel agent is bigger. 

 

Different time resources allocation in the sequential agents 

Looking at the ART and ARTw columns and comparing the corresponding rows for 

configurations C1, C2 and C3, we conclude that the performances of the sequential 

agents with configuration C3 are significantly worse than those with configuration C1 

and C2. This shows that the sequential agents perform badly if they spend more time on 

detecting and less time on deliberation and intention execution. The processing of 

emergencies is often postponed, though the emergencies are detected earlier in 

configuration C3. This can be seen that in most cases the processing of the highest 

priority events also have longer response time. This indicates that in real life, the agent is 

not reacting to high priority events quickly and is taking a longer time to react to other 

events. 

 

We also observe that the performance of the sequential agents with configuration C1 is 

significantly better than C2. This shows that the sequential agents perform much better if 

they spend short time on detecting and more time on deliberation and intention execution.  

Because the deliberating and executing components get more time resources, the beliefs 

and intention plans get cleared faster so the events experience shorter response time. 

 

Different ways of controlling the computational components in the sequential agents 

Looking at the ART and ARTw columns and comparing the corresponding rows among 

the sequential agents, we see that agent 1 and 2 are the losers in all cases.  This is 

expected because of their rigid way of controlling the detect, deliberate and execute 

components.  In the best performing configuration C1, agents 3, 4 and 5 have comparable 

performance in all event sequences a, b and c. So we conclude that if a component has 

nothing to do, it is better to give way to the next computational component. 
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The priority 4 events are the highest priority events in the experiments. The average time 

needed to process one such event in the ideal case (ATN4) is calculated as the sum of the 

detection time (1), desire generation time (1), average PG time and average PE time for 

all the events with priority 4. In the events sequence used, ATN4 equals to 8.01 for set a, 

8.28 for set b, 8.0 for set c. Compared to the ART4 in Table 3-8 we can see that the 

parallel agent spends just a little more or the same amount of time for processing the 

events with priority 4.  This confirms that the interrupt mechanism in the parallel agent is 

able to guarantee immediate handling of higher priority items.  

Table 3-8 ART of the events by the agents 

ARTpSet K2 K3 1 2 3 4 ART ARTw

1 1 2364.78 813.83 18.64 9.26 817.12 408.54 
1 2 22.32 11.8 8.89 8.17 12.84 10.53 
2 2 18.21 10.28 8.4 8.06 11.25 9.62 
2 3 9.12 8.59 8.01 8.01 8.45 8.24 
2 4 8.49 8.35 7.99 8.01 8.22 8.12 
3 3 9.0 8.55 8.0 8.01 8.41 8.21 

a 

3 4 8.4 8.28 7.97 8.01 8.17 8.09 
1 1 49.33 17.36 11.3 8.84 22.45 15.33 
1 2 9.77 9.07 8.36 8.34 8.91 8.64 
2 2 8.87 8.52 8.13 8.28 8.46 8.34 
2 3 7.99 8.03 7.96 8.28 8.06 8.1 
2 4 7.84 8.0 7.96 8.28 8.01 8.08 
3 3 7.96 8.04 7.96 8.28 8.05 8.1 

b 

3 4 7.82 7.99 7.96 8.28 8.0 8.08 
1 1 14.35 10.84 9.85 8.31 10.77 9.88 
1 2 9.02 8.2 8.27 8.05 8.37 8.24 
2 2 8.47 7.97 8.09 8.01 8.13 8.07 
2 3 8.12 7.81 8.05 8.0 8.0 7.99 
2 4 8.08 7.81 8.05 8.0 7.99 7.99 
3 3 8.11 7.81 8.05 8.0 7.99 7.99 

c 

3 4 8.07 7.81 8.05 8.0 7.98 7.98 
 

 

In the following, we will show the waiting time for deliberation and execution. Average 

waiting time for deliberation (AWTD) means the time a desire spent in pendingD 

waiting.  This includes the time before the plan generation is started and the time when 

the plan generation for this desire is suspended. AWTE, average waiting time for 
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intention execution, is defined in a similar way. A shorter waiting time means that the 

processing is quicker. 

 

The AWTD is only related to K2, the number of PGs. Table 3-9 confirms that a larger 

K2, the deliberations can be finished quicker. In the three sets of environments, 3 PGs are 

enough to provide the agent the ability to deliberate any event immediately after it is 

received. 

Table 3-9 Average waiting time for deliberation 

AWTDpSet K2 1 2 3 4 AWTD 

1 5.95 2.13 0.62 0.13 2.24 
2 0.09 0.09 0.01 0.0 0.05 a 
3 0.0 0.0 0.0 0.0 0.0 
1 1.26 0.74 0.31 0.07 0.61 
2 0.03 0.01 0.0 0.0 0.01 b 
3 0.0 0.0 0.0 0.0 0.0 
1 0.63 0.25 0.19 0.04 0.27 
2 0.01 0.0 0.0 0.0 0.0 c 
3 0.0 0.0 0.0 0.0 0.0 

 

AWTE is affected by both K2 and K3(the number of PEs). The statistics is shown in 

Table 3-10. With a same K3, the agent with a larger K2 can produce intentions earlier. So 

in such case, the AWTE may be increased. But referring to Table 3-8, we can see that the 

total ART is decreased. It is easy to see that with K2=1 and K3 increased from 1 to 2, the 

AWTE is greatly decreased. Because in an event-congested environment like set a 

(interval=2.54), the agent with 1 PE cannot process all the intentions in time.  

Table 3-10 Average waiting time for execution 

AWTEpSet K2 K3 1 2 3 4 AWTE 

1 1 2350.52 803.46 10.04 1.12 806.74 
1 2 8.06 1.43 0.29 0.03 2.45 
2 2 9.81 1.94 0.41 0.05 3.06 
2 3 0.72 0.25 0.03 0.0 0.25 
2 4 0.09 0.01 0.0 0.0 0.02 
3 3 0.69 0.3 0.03 0.0 0.26 

a  

3 4 0.09 0.03 0.0 0.0 0.03 
1 1 40.27 8.64 3.04 0.5 13.84 b 
1 2 0.71 0.34 0.1 0.0 0.3 
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technique [34, 33] to implement open-ended reasoning. Open-ended planning process 

allows the agent not to generate full level plans before execution. In UM-PRS [77], the 

hierarchy of the plans is kept for monitor plan execution and replanning. Obviously, the 

techniques for continual planning increase the needs for time resource. In order to replan, 

it is necessary for the agent to detect new situations frequently. The idea of parallelizing 

the basic behaviours of the agent is helpful to support continual planning: the new 

situations can be detected quickly. More, in a parallel agent, a high-level intention can be 

subdivided into several sub-intentions. The problems of resource sharing and 

coordination of the sub-intentions may be solved by utilizing some parallel algorithm. 

Thus, the intention can be finished quickly and computation resource is used wisely.  

 

Another possible advantage of the architecture is that it can provide the agent some 

adaptive behaviour by combining automatic learning algorithms for some special 

problems. Adaptive ability is an important attribute for agents to show the autonomy and 

proactiveness properties [44]. With adaptive ability, the agents can respond to dynamic 

environments more intelligently. The agents can improve performance continually 

without human interference. Many mature learning algorithms have been produced and 

are utilized in the machine learning areas [88]. But in the plan-based architectures, such 

as PRS, it is hard to combine the learning algorithms within the reasoning process. An 

experimental step was taken in [46]. The learning is implemented by applying the Top-

down induction of decision trees on the agent’s action models. The models are labeled 

with success or fail tag. The models are organized as the decision trees. In the situations 

with fixed action steps, the agent can interact with environment with past experiences. 

But for agents working in continuous environments the limitation is obvious: the models 

may be too voluminous to save. We have proposed to extend the original BDI model by 

adding an experience function library [141]. Some complicate algorithms can be coded in 

this library and called. Combining that extension and the parallel architecture, it is 

possible to incorporate learning algorithms as experience functions. For example, in a 

vessel agent, it is possible to implement the obstacle avoidance function with the Q-

learning algorithm. The agent can accumulate and take advantage of experience gained 

through its moving. Using the traditional sequential BDI architectures, the agents may not 
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be able to react to emergencies in time when calling an experience function. However, 

the parallel BDI agents have the abilities of detecting emergencies immediately, 

suspending some low-priority executing experience functions and resuming them at a 

proper later time. We will see details about the experience function library in next 

chapter. 

 

A problem for implementing the parallel architecture is that it needs more processors 

because multi-threads will demand more CPU resources. In our implementation of vessel 

agents, one agent consists of about 15 threads. This is not surprising if we consider how 

many little thinking and controlling processes are working in parallel in a human body 

but it requires a lot of system resources. A system with multi-CPUs will be very useful to 

have the activities of the agent run in a real concurrency and the responsiveness of the 

agent can be simulated better. 

 

3.7   Conclusions 

In this chapter, we show our proposal for a parallel BDI agent architecture. In the 

architecture, the three basic behaviours of the BDI agent are parallelized. With the 

parallelism, the agent obtains the improved ability to work in dynamic environment. It is 

also a more natural way of working: the three behaviours of an agent are running 

concurrently. 

 

A comparison experiment between sequential BDI agents and the a parallel BDI agenis 

shown and a theoretical analysis of the aerformance of the a parallel BDI agenis made. 

Then the aroblem of how to araocate the computation resource to the devices is discussed. 

At the end, the aossible utilities of the a parallel BDIrchitecture and a limitation when 

applying the framework are discussed. 
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CHAPTER 

4  

AGENT CHARACTER 

 

As have discussed in the first chapter, vessels navigation control is affected by human 

and natural factors. Each vessel agent has its own character, which does not have proper 

representation in the BDI model. We aim to improve the BDI model by incorporating the 

components into the BDI model to realize the agent character. In this chapter, we analyze 

the effect of human character and propose an extended BDI architecture for designing 

human-like agent. Different agent behaviour is a result of: 1. different initial parameter 

setting; 2. different experience from reinforcement learning. In experiment, a vessel 

captain is built based on this architecture. Cautious captain, adventurous captains and the 

like can be created with different parameter settings and experience accumulated through 

its individual navigation. 

 

Touschapter is structured as follows. In the first section, we give an introduction about the 

background. In Section 4.2, we analyze the agent character and explain the two basic 

components of the agent character. In Section 4.3, an extended BDI agent architecture 

with character components is illustrated, and the implementations of the agent character 

are explained within this architecture. The experiment of implementing the agent is 

shown in Section 4.4. A conclusion is given in Section 4.5. 
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4.1   Introduction 

Most of the previous agent architectures are designed to provide the agents with rational 

abilities to detect, deliberate and act. Thus, in the same situations, different agents will all 

make the same decisions and they will have the same behaviour. However, in multi-agent 

simulation system this is not always desirable. Multi-agent simulation is widely used to 

enhance knowledge in real worlds and provides the possibility to create artificial worlds 

for the testing of theories [55]. In multi-agent simulation of human society, agent 

character is essential for simulating various human beings. The agents will not always 

work in an ideal and optimal way. Their characters will affect their decisions. For 

example, in a system which is used for risk analysis by simulating vessels in sea, the 

vessel agents must show different characters. This is because different captains 

demonstrate different navigation approaches. Human characters have very important 

effects on vessel navigation. In order to have meaningful conclusion from the simulation 

system, different vessel behaviours must be simulated realistically. So the vessel agent 

should demonstrate human-like character. The agent character should be considered as an 

important factor when designing real agents. 

 

In this chapter, we analyze the agent character from the agent itself and propose an 

alternative way to implement the character in the agent architecture. Different from 

Norling’s paper, in which the character is researched from its cause in psychological 

explanation [97], the character is identified by its effects. The agent character influence 

will be divided into personality influence and experience influence. We argue that the 

way people behave is affected mainly by two factors: (1) their personality that seems to 

come from birth and; (2) the previous life experience of the person.  The personality 

influence shows the agent’s initial natures, for example, some babies are more talkative 

than others and other babies are natural introverts.  Another example of this is two twin 

brothers after going through the same education will still behave differently.  Different 

personalities will be realized as different parameter settings and priority libraries. The life 

experience comes from the interaction between the agent and the environment. The good 
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and bad experience from the environment will affect the agent’s character and future 

behaviours. The experience is realized by the reinforcement learning algorithm. These 

character influences are incorporated into BDI agent architecture. And a vessel agent 

representing a vessel captain navigating in sea is created using the architecture. 

Experiment results show that the agents are able to demonstrate different behaviours 

based on their different characters. 

 

4.2   The Analysis of Agent Character 

An agent’s uniqueness is called the agent’s character. In the following, the agent 

character is analyzed with the example of a vessel doing navigation. To simulate the 

navigation behaviours of different vessels, each vessel agent must have its own distinct 

character. A vessel’s distinct character can be seen from its physical specifications and its 

captain’s reasoning behaviour, both of which will have influence on the decision results 

for navigation. This means, a vessel agent should also have two such kinds of influences 

on its decision making. A vessel’ physical specification is the vessel’s physical 

properties, including the vessels’ size, maximum acceleration, maximum translational 

velocity, and so on. The reasoning behaviour of a captain is determined by the captain’s 

behavioral and mental characteristics and his experience in navigation. The three factors 

are analyzed one by one. 

 

The physical properties will affect agents’ decision result. The influence will be that the 

agents have to decide the output actions according to their physical capabilities.  These 

physical capabilities do not change with time or the experience of the vessel captain.  

These are the unchanging factors in the decision making process of the captain.   

 

A person’s behavioral and mental characteristics form his personal character. This will 

have a big impact on the person’s behaviour.  Each captain is more inclined to make 

certain decisions.  For example, some captain is more inclined to overtake another vessel 

when being blocked.  Some captains are born to be more meticulous than the average and 

others are born to be more adventurous than others.  The difference will result in that a 
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the collected data will be transformed into the world model, which will provide data for 

decision. The world model is a representation of how the agent personally perceives the 

world. Then the decision process will make decision based on the world model and 

personal tendencies.  Identified by the index numbers in Figure 4-1, the personality’s 

influence will be shown in two processes: 

 

 

Figure 4-1 Effects of personality. 

 

1. The personality will affect how the agent personally perceives the world.  

Humans will have different feelings about the same scene. For example, someone will 

feel that a vessel is still far away and there is no need to worry about it but other people 

may feel differently with the same scene. And the decisions are made based on the 

feelings. So we will build a world model to represent the ‘perceived world’ (beliefs). The 

world model consists of the information about the real world.  

 

2. The personality will affect the decision process. 

The decision process will deliberate on the choices of plans of actions based on the 

perceived world. The personality will affect these choices. For example, some vessel 

captain depends on the past experience more than others. A demonstration of this is 

shown in Section 4.4.2, where different parameter settings as different personalities for 

vessels will affect the vessel’s final actions. 

 

The personality will also affect the experience’s gain and its application in the decision 

process. One way an agent learns from the experience is using the reinforcement learning 
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From the above, we will apply the reinforcement learning algorithm to obstacle 

avoidance of vessels. The objective is to simulate captains’ experience for obstacle 

avoidance. 

 

4.3   The Extended BDI Agent Architecture 

 

 

Figure 4-2 BDIE architecture. 

 

The BDI agent architecture is extended as shown in Figure 4-2.  It is based on the PRS 

system [63].  The similar extension can be implemented in the parallel BDI agent. The 

architecture consists of three main executing components, namely, the belief manager, 

the intention generator and the intention executor. The belief manager is responsible of 

receiving information and managing beliefs. Messages will be sent to notify the intention 

generator for new beliefs. The intention generator will produce intentions according to 

the incoming beliefs and goals and inform the intention executor about new intentions in 

messages. Then the intention executor explains and executes the intentions to produce 

output actions. The action buffer will keep the physical actions output by the intention 

executor. The plan library consists of plans for dealing with achieving goals. In this 
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level of the incoming information to be notified to the intention generator. The belief 

manager will use the parameter settings to decide the urgency level of the beliefs. One 

possible way of classifying priorities of the messages is shown in Table 4-1.  Captains 

with different personalities will have different opinions about new beliefs. For example, a 

meticulous vessel agent may set the priority of “finding new area” as 3. But for a careless 

agent, the priority will be set to 1. 

 

Personality settings may be handled in 2 different ways in a multi-agent environment: 1. 

most agents are ‘normal’ beings and therefore work by default setting and a few agents 

will be triggered to have not-so-usual setting. 2. every agent needs to have individual 

setting. Then psychology experiments need to be conducted to find the distribution of the 

settings. A human-like method to control the priority changing is shown in Chapter 5. 

Table 4-1 Priorities of messages for new beliefs 

Priority Description Explanation 

1 Beliefs at low 
priority 

Something the agent needs to deliberate on when it is 
free. 

2 Beliefs at 
medium priority 

Something the agent needs to deliberate on not 
immediately but some fixed time in future. 

3 Beliefs at high 
priority 

Something the agent needs to deliberate on immediately 
but still can take time to think carefully. 

4 Beliefs at very 
high priority 

Something the agent needs to deliberate on immediately 
and try to make decisions as soon as possible and act. 

 

4.3.2   Experience function library 

The experience functions are successful and proven algorithms, which the agents can 

invoke to finish some composite actions. Previously, most agents concentrate on doing 

tasks based on the predefined plans, which consist of the steps of actions. The actions are 

usually primitive. Such as, in a plan of reaching a location, the actions may consist of 

renting a car and driving the car to target. The actions can be applied directly without 

further calculation. In Touringmachine [35], the primitive plans can do some calculations, 

but these are limited to computing the simple functions, such as the distance between two 

positions. Normally, a primitive action is not expected to take much execution time 

before it is completed and the control is returned to the agent. However, in a real human, 
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Step 1: Chosen action: (1, 0) 

 
Step 2: Chosen action: (0.3, -6) 

 
Step 3: Chosen action: (0.4, -17) 

Figure 4-6 Decision making. 
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Figure 4-7 Path of avoidance. 

 

4.5   Conclusion 

In this chapter, we analyze the agent characters and introduce an extended BDI agent 

architecture to realize the characters. The character of an agent consists of personalities 

and experience. In the extended BDI agent architecture, the personalities of the agent are 

implemented as different parameter settings. And the experience is realized by a 

reinforcement learning algorithm. The learning algorithm is incorporated into the agent as 

an experience function. An example of vessel navigation is shown to demonstrate the 

behaviours of the agent with the characters. 
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The experience function library can be implemented well in a parallel BDI agent. The 

parallel agent’s abilities of suspension and resumption at any time ensure that the agent 

can stay alert when calling an experience function. In my current work, each experience 

function is implemented to provide one specific skill or solve one specific problem. The 

experience functions are pre-learned and pre-defined. The agent does not create, select or 

improve an experience function. The agent just utilizes experience functions to make its 

decisions. Future work may put feedback mechanisms into the agent where the agent will 

be able to improve his experience functions through continuous learning. 
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CHAPTER 

5  

PRIORITY CONTROL 

 

Activity scheduling mechanism plays a critical role in the correct behaviour of BDI 

agents. The parallel BDI agent framework allows the management of beliefs, generation 

of intentions and execution of a limited number of intentions to go in parallel. The 

desire/intention schedule can be done based on the priorities of the desires/intentions, 

which show the different degrees of importance and urgency. As we can see, the value of 

priority may change over time. In this chapter, we propose to enrich the framework with 

an extension which consists of 2 processing components, a Priority Changing Function 

(PCF) Selector and a Priority Controller. The priorities of the intentions can have 

different initial values and can be changed over time according to the chosen PCF. As an 

example, we design a function by simulating human behaviours when dealing with 

several things at the same time. The priority first increases with time according to a 

Gaussian function to simulate the fact that people are more inclined to do something 

which has been in their mind for sometime. After a certain time, if the intention still was 

not executed because of other higher priority intentions, its priority will decrease 

according to the Ebbinghaus forgetting curve. External reminders of an intention can also 

be handled by the Priority Controller. Experiment results show that with this mechanism, 

the parallel agent can show some human-like characteristics when scheduling intention to 
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execute. This can be used when simulating agents with human characters. Besides the 

extension, the agent operations that are facilitated by changing priority are also shown. 

By controlling priorities in the two ways, the desires/intentions in a parallel agent can be 

managed effectively. 

 

This chapter is structured as follows. In the first section, we make an introduction to the 

background work. In Section 5.2, we present the parallel BDI agent framework with the 

proposed extension of priority control. In Section 5.3, we discuss the mechanisms of 

priority controls proposed that include some samples of human-like priority changing 

functions and how these functions are handled to reflect the effect of new beliefs, new 

desires, and new intentions on the priorities of existing desires and intentions. A 

simulation experiment is conducted to compare the behaviour of agents with and without 

the priority control. The experiment results are presented in Section 5.4. An analysis of 

how agent acts with different reminding functions is shown in Section 5.5. A conclusion 

is made at the end of this chapter. 

 

5.1   Introduction 

Bellman defines AI in [9] as the automation of activities that we associate with human 

thinking, activities such as decision making, problem solving, learning.  One such activity 

is to decide when is the appropriate time to think about a certain matter or to do 

something. For an intelligent agent, this means it should know when to deliberate and 

when to act in addition to being able to deliberate on how to achieve a goal and how to 

carry out a plan.  There has been significant amount of work on solving the “How” 

problem but not the “When” problem.  As described in the survey of agent architectures 

[135], the world is symbolized and decision is made through logical reasoning of 

relationship among the symbols in the deliberative architecture. The BDI (belief-desire-

intention) model is the most famous one of the deliberative architectures. It provides a 

folk psychological way by simulating human deliberation. The mental attitudes of belief, 

desire and intention represent the information, motivational, and deliberative states of the 

agent respectively [18, 111]. Several successful agent architectures and systems based on 
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BDI have been developed. PRS (procedural reasoning system) is an implementation of 

the BDI model. In each cycle, the belief is updated first. Then intentions are selected 

from the applicable plans. Finally action in the chosen intention is executed. The PRS 

system obtains the ability of reasoning in complex ways about dynamic processes while 

keeping appropriate responsiveness and control [63]. In UM-PRS [77], an extension of 

the PRS system, the hierarchy of the plans is kept for monitoring plan execution and 

replanning. AgentSpeak(L) [112] and LORA (logic of rational agents) [136] are two sets 

of operational semantics defined for BDI agents. The decision is made through logic 

reasoning. All these works are solutions to the “How” question. 

 

The “When” question, that is, the scheduling of deliberation about new beliefs and the 

scheduling of intention execution is usually omitted in these BDI systems. The 

researchers mostly concentrate on solving the problem of intention generation. For 

example, in AgentSpeak(L) [112], the selection function SI selects an intention to execute 

from the intention set I. The detailed selection criteria are not specified. We believe the 

scheduling of intention is crucial in an agent’s ability to cope with the changing world. 

Some scheduling mechanisms appear in subsequent researches. In AgentSpeak(XL) [12], 

an extension version of AgentSpeak(L), a task scheduler is incorporated into the 

interpreter to decide how to select intentions. The set of intentions in the AgentSpeak(L) 

is converted into a corresponding TÆMS task structure. Then the selection is done based 

on the analyses of the relationship among the plans in the TÆMS task structure. The 

'enables' and 'hinders' relationships indicate which plan may be executed first. Another 

method is shown in the JAM agent architecture [59]. The intention selection is done 

based on the utility value of the plan. The intention with higher utility will be executed 

first. Recently, another work of intention scheduling is reported in [79]. The researchers 

take several properties into consideration when scheduling the intentions, such as the 

importance of the plan, the estimated running time, the deadline utility function, the 

degree of completeness and FairFacter. 

 

We consider the problem of deliberation scheduling and intention scheduling in an agent 

who will behave like an “average human”.  If people identify and accept an agent as 
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human and not machine-like, they tend to trust the agent better. For example, a 

companion to shut-ins or a playmate for a child should display a human way of 

interacting with its environment. When there are multiple goals to achieve and multiple 

intentions to execute, the agent needs a rational and human-like way to control the 

deliberation of plans for the goals and the execution of intention plans.  We associate a 

single priority value with each desire or intention to facilitate the scheduling of 

deliberations and intention executions. The priority represents the importance and 

urgency of the goals or intentions to an agent. For humans, their priorities change with 

time.  The priorities may be affected by how close it is to the deadline of a task, or a 

change in personal interest.  The deadlines of tasks may also change, either forward or 

backward.  So the priority of a goal or an intention of an agent should also change with 

time. In other words, the priority should be a function of time. 

 

While specifying the priority of a goal or an intention of an agent by a function of time, it 

is also necessary to consider the influence of new beliefs, new desires and new intentions 

on the priorities of existing desires and intentions. New beliefs, new desires and new 

intentions may make some existing desires or intentions more important and urgent, or 

less important and urgent, or may even render them not relevant any more.  We propose 

how to support these changes in the agent’s behaviour. 

 

Currently, the control of the priority changing with time has not been adequately 

researched even though some work has been done in the artificial life community. In 

[74], a priority control mechanism for behavioural animation is proposed. The priority is 

set at minimal value immediately after the agent displays a certain behaviour like 

drinking. Then this priority increases with time. The increased priority will induce the 

agent to drink again. However, expecting the priorities of all desires and intentions to 

change in the same manner is not realistic.  Different desires and intentions should be 

allowed to change their priorities in various suitable ways.   

 

We proposed a parallel BDI agent framework in Chapter 3 to achieve better reactivity 

and rationality in intelligent agents. This framework equips a BDI agent with the natural 
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abilities of doing several things at the same time and the ability of prioritizing the 

deliberations and intention executions according to the urgency of the matters.  Each 

desire and intention is at a certain level of priority among the several levels of priorities.  

The level of priority is used in the scheduling of the desires/intentions in the agent. 

However this mechanism has the problem that with priorities set at constant levels, some 

desire or intention may be starved indefinitely by desires or intentions with higher levels 

of priorities.  

 

In this chapter, we proposed a priority control extension to the parallel BDI agent 

framework in order to support the capabilities of representing the changing importance of 

different desires and intentions. Pre-defined Priority Changing Functions(PCFs) are 

associated with the desires and intentions. A Priority Controller will compute the priority 

value of the desires and intentions to help the scheduling decisions to be made at various 

time moments. We proposed a few priority changing functions which simulate the human 

behaviours when dealing with several things at the same time. A popular pattern is that it 

first increases the priority value according to a certain function and then decreases 

according to the Ebbinghaus forgetting curve.  However other patterns are also possible.  

With the setting of suitable parameter values, the PCFs are also able to simulate the 

changing of priority when a person is not very motivated to pursue his goal or put an 

intention into actions. The function can also represent the changing of desire/intention 

priority when it will get stronger and stronger and stay at its maximum value until it is 

carried out. We have also incorporated other controls to realize the effect of new beliefs, 

new desires and new intentions on the priorities of existing desires and intentions or 

intentions that need to be executed exactly at a certain moment. This is to simulate human 

behaviours when dealing with several things at the same time. These controls of priorities 

for desires and intentions provide a human-like way to control an agent’s activities. Other 

successful human-like systems are, for example, the i-Bid game player agent [70] and 

adaptive agent designation [134]. 
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It is easy to show that I(t) is continuous at every point. The influence factor does not 

change significantly at any time. By proving the continuity of the influence function, we 

intend to show the fact that the simulated human behaviour is consistent without outside 

disturbance.  

 

We will use the reminding-forgetting function in (9) as an example to show how the I(t) 

function is composed.  The following initial parameters need to be decided: 

Table 5-1 Parameters related to the reminding-forgetting function 

Name Type Explanation 
IP (Initial Priority) Float It is the initial urgency of the desire/intention.  
MP (Max Priority) Float The maximum priority the desire/intention can have. 
tm Integer The time when the forgetting process begins. 

S Integer Strength of memory. It is assumed that a higher initial 
priority will have a longer retention. 

Threshold Float  In forgetting progress, if the priority is below the 
threshold, the intention will be removed.  

 
Table 5-2 Intentions with different PCF parameter settings 

Intention IP MP tm S Threshold 
1 1 1.5*IP 20 10*IP 10% 
2 2 1.5*IP 20 10*IP 10% 
3 1 2*IP 20 10*IP 10% 
4 1 1.5*IP 10 10*IP 10% 
5 1 1.5*IP 20 20*IP 10% 
6 1 1.5*IP 20 10*IP 20% 

 
Figure 5-7 shows the change of priority for 6 sample intentions with the parameter 

settings shown in Table 5-2. The intentions 2-6 each has one different PCF parameter as 

compared with the intention 1.  
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Figure 5-7 Priority Control of Four Intentions. 
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Figure 5-8 Examples of several PCF(t). 
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Figure 5-8 shows several examples of I(t).  PCF1(t) is a single phased function where the 

priority depreciates from the beginning.  This happens when someone has the intention to 

do something but he is either too lazy to do it or the interest is just not enough, he(the 

agent) starts to forget about it according to the forgetting curve from the beginning. 

PCF2(t) is the concatenation of reminding phase and the unchanging phase.  Notice that 

this can also be achieved by concatenating the reminding phase and the unchanging phase 

and setting S to infinity in the forgetting phase. So before the desire/intention is 

completed, it will never be forgotten. PCF3(t) is a single unchanging phase function. 

PCF4(t) is the concatenation of the reminding phase, the unchanging phase and the 

forgetting phase.  It can be used in the case that the priority is kept at the maximum value 

for a period of time before the forgetting period starts. 

 

5.3.4   Priority change caused by other desires/intentions 

It is noticed that the I(t) function as described earlier changes the priority of a desire or an 

intention in the absence of the effect of new beliefs, desires and intentions. However, as 

listed in Figure 5-2, there are situations where a new belief, a new desire or a new 

intention may make an existing desire or intention more urgent or less urgent, therefore 

the priority of the affected desire or intention needs to be increased or decreased.  For 

example, suppose the human master asked his robotic agent to wash his car while the 

agent is doing cleaning in the house and the robotic agent also has a few other things to 

do.  The agent has the intention to wash the car but the priority is not as high as his other 

intentions.  After a little while the master reminds the agent about washing his car.  At 

this point the priority for washing the car should be increased.  So the new belief that the 

car needs to be washed sooner should have the effect of increasing the priority of the 

intention of washing the car.  Another scenario that will change the priority of an existing 

intention:  the robotic agent has the intention to tidy up a room but his master tells him to 

iron a shirt in the next 10 minutes.  The robotic agent generates the intention to iron the 

shirt and has to lower the priority of tidying up the room.  In situations like these 

examples, the priority of an existing desire/intention at t and beyond is affected.  t is the 
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change in I(t) is an increase of 0.1 at time 5, a decrease of 0.2 at 10 and another increase 

of 0.1 at 15.  Another example is shown in Figure 5-10. The intention is created with 

initial priority 1. The line 2 shows the priority changing with four shifts in the forgetting 

phase. Two are at time 25 and 30, the increase in I(t) is 0.5. This will make the priority 

value rise to the maximum value. The 3rd is at time 35, the priority will be decreased by 

10%. The increase at time 40 is by 20%. The cases in Figure 5-10 are easy to understand 

in an imaginary scene that an absent-minded person acts under others’ reminders. This is 

similar to active recall in mnemonic techniques [1]. The difference here is that here the 

outside reminders do not change the strength of memory. 
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Figure 5-10 Outside Reminders in Forgetting Process. 

 

5.4   Comparison of Parallel Agents Without and With the 

Reminding-forgetting PCF 

In this experiment, parallel BDI agents without or with priority control are simulated. A 

set of events are input to them. Then the performance of them is analyzed. The events 

designation is the same as demonstrated in Section 3.3.2. 
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and 10.8 for set c. In agents 2, 4 and 5, the APTs are the APTs of the events that get 

processed and they are smaller than those for agent 1.  Here some intentions with priority 

1 in set a are forgotten due to a long waiting time, which can be seen from the statistics in 

Table 4.  For events with priority 4, the APT is not affected too much, because the urgent 

events will be scheduled first. What we see is that some of those low priority events that 

experience terribly long waiting time in agent 1 are forgotten in agent 2, 4 and 5 for event 

set a.   

Table 5-5 Events processed statistics. 

completed 
forgotten

Priority 
Agent 

no Set 

1 2 3 4 
sum 

a 14 
11

22 
0

26 
0

25 
0

87 
11

b 25 
0

26 
0

24 
0

21 
0

96 
02 

c 26 
0

22 
0

24 
0

23 
0

95 
0

3 a 25 
0

22 
0

26 
0

25 
0

98 
0

4 a 14 
11

22 
0

26 
0

25 
0

87 
11

5 a 16 
9

22 
0

26 
0

25 
0

89 
9

6 a 25 
0

22 
0

26 
0

25 
0

98 
0

 
Looking at Table 5-5, we see the effect of the parameters of the PCF.  For set a, 11 events 

are forgotten by agent 2 (row 2a). This is because the agent has no enough time to 

process all the crowded events. Rows 2b and 2c have all the events processed because of 

the longer event inter-arrival time.  Comparing row 2a and 3a, more intentions are 

processed because of a lower threshold of retention. Comparing row 2a and 4a, the 

numbers of intentions processed are same because a higher maximum priority will not 

change the retention time of the intention. Comparing row 2a and 5a, 2 more intentions 

are processed because of a longer reminding period before forgetting starts. Comparing 

row 2a and 6a, 11 more intentions are processed because of a bigger strength of memory. 

The APT of them are bigger for intentions with lower priority in set a. 
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a. average interval = 2.42 
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b. average interval = 4.04 

10
.81

7.5
9

6.4

3.6

11
.27

7.5
9

6.1
7

3.7

11
.27

7.5
9

6.1
7

3.7

11
.38

7.2
3

5.7
1

4

10
.81

7.5
9

6.4
2

3.6
1

11

7.5
9

6.1
7

3.7

0

2

4

6

8

10

12

1 2 3 4

Priority

A
P

T

Agent1 Agent2 Agent3 Agent4 Agent5 Agent6

 
c. average interval = 5.46 

Figure 5-11 APT of events. 
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From the figure, it is shown that with a same tm, a higher MP will increase the probability 

that the intention is running. With a same MP, a shorter tm will also increase the 

probability because the priority is increased more quickly. With the same tm and MP, the 

intention with Sigmoid reminding function will be running in the initial period with the 

smallest probability. However, when approaching tm, the probability that the intention 

with Sigmoid reminding function is running is the greatest. 

 

5.5.2   Probability that the intention is started first time at t 

The following results are calculated by Equation 5-18. The results will show when the 

intention will be started first time at the largest probability. MP of the intention is set as 

50. The intention is associated with different PCF functions and parameter settings of tm. 

The results are shown in Figure 5-14. 

 

It can be seen that if tm is larger than 30 in the experiment setting, the probability that the 

intention is started before tm is very close to 100%. However, with a small tm, such as 10, 

the intention may not be started before tm. With the same tm, the probability that an 

intention with Sigmoid PCF is started is smallest in the initial period. Then it is increased 

quickly. The intention is likely to be started in a period shorter than the intention with 

other PCFs. 

 

From the above analysis, it can be seen that with a Sigmoid reminding function, the 

intention will be started later than with a Gaussian reminding function as we expect: 

Sigmoid function models people who tend to leave things to “last minute” where 

Gaussian function models people who tend not to do so. 
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Figure 5-14 Probability that the intention is started at t first time. 
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5.6   Conclusion 

In this chapter, we first argue that the priority of the deliberations/intentions in an agent 

should be changing with time. Then we design a “priority control” extension to the 

parallel BDI agent. For each deliberation/intention, the agent will choose a PCF for it 

from the PCF library. By priority, it provides a way to schedule the 

deliberations/intentions in the agent. 

 

We design a reminding-forgetting PCF by simulating human bahaviours when dealing 

with several tasks together. We propose three functions to simulate the reminding phase 

and use the forgetting curve function for the forgetting phase. A comparison experiment 

of the agents with or without the reminding-forgetting PCF is shown. The agent 

behaviours with the three reminding functions are analyzed. 
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CHAPTER 

6  

A VESSEL CAPTAIN AGENT 
 

In this chapter, we will show a software agent which simulates the behaviours of a vessel 

captain navigating in the sea. The agent architecture for implementing the software agent 

is an instantiation of the parallel BDI agent framework with the two agent character 

extensions. Then the simulation experiments are shown. 

 

The purpose of this experiment is to apply the parallel agent framework to make a real 

software agent. The behaviour records of the vessel agent demonstrate the abilities that 

we expect from a parallel agent. The software agent architecture we show here can be 

used to make software agents in other contexts. 

 

This chapter is structured as follows. In Section 6.1, the software agent architecture is 

shown and explained. The experiment designation and results are shown in Section 6.2. A 

conclusion is given in the last section. 

 

6.1   Software Agent Architecture 

When an agent is simulating a certain physical system like a human being, the parallel 

agent under the general framework should be configured such that it has the same number 
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of Environment Monitors (EMs), Plan Generators (PGs) and Plan Executors (PEs)as the 

number of parallel physical devices that exist in the physical system to perform the 

corresponding functions.  Figure 6-1 shows the detailed software agent architecture for a 

vessel captain navigating a vessel in the sea.  

 

 

Figure 6-1 Software implementation architecture. 

 

Threads are used to simulate the parallel processing elements in the agent. In Figure 6-1, 

these threads are shown in white boxes and identified with numbers (1-6). For example, 

the belief manager consists of two threads, numbered by 1 and 2.  Similarly, the intention 

generator and the intention executor are made of several threads of their own. The 

information flows in the architecture are shown by the dark arrow lines. The link from the 

Intention scheduler to EM is to inform it that a certain intention plan has been completed. 

 

 124 
































































