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Summary 

This thesis investigates how to produce a high quality, high-resolution image from low 

quality, low-resolution images. In many visual applications, high quality images are desired 

but may fail to be obtained because of some degradation factors. Several images, which suffer 

from the degradations but consist of the overlapping content of a scene, are used to produce a 

single image of superior quality. Using high-resolution reconstruction, it is possible to restore 

high-frequency content, reduce noise, and even increase spatial resolution when hardware 

modification is unrealizable.  

The generic name of high-resolution image reconstruction covers related subjects of 

deconvolution, interpolation, and super-resolution. Image deconvolution mainly deals with 

deblurring from blurred and noisy images, while the major goal of interpolation and 

super-resolution is to increase spatial resolution from the aliased images. 

In the first part, a series of algorithms are proposed to solve different problems encountered in 

blind image deconvolution. In Chapter 2, several efficient discrete spatial techniques for blur 

support identification are derived and analyzed. A soft modeling algorithm is proposed to 

generate the manifold parametric blur models and determine the final blur estimate in Chapter 

3. We attempt to address blind deconvolution by assessing the relevance of parametric blur 

information, and incorporating the knowledge into the parametric double regularization 

scheme. Further, an iterative algorithm based on multichannel recursive filtering is proposed 

to address multichannel image deconvolution. 

In the second part, the image interpolation is formulated as a regularized least squares 
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solution of a cost function. It is processed as a whole-matrix computation rather than 

pixel-to-pixel estimation individually. The regularized least squares can achieve a well 

trade-off between edge preservation and noise suppression. We derive the optimal solution 

using a combined framework of Kronecker product and singular value decomposition to 

reduce the computational cost greatly.  

The last part of this thesis deals with image resolution enhancement from several 

low-resolution observations. It includes subpixel registration in Chapter 6 and 

super-resolution in Chapter 7. For subpixel registration, a major shortcoming of conventional 

techniques is its sensitivity towards noise. The proposed bispectrum algorithm utilizes the 

characteristics of higher-order statistics to suppress Gaussian noise. A novel blind 

super-resolution algorithm is developed to enhance image resolution. The main contribution is 

the development of multichannel blind deconvolution to estimate the unknown point spread 

functions, and its integration into the super-resolution scheme to render high-resolution 

images. 

The algorithms presented in this thesis can serve as foundation for further work. The future of 

high-resolution image reconstruction technology appears to be very bright, although much 

work remains to be done for it to reach a mature technology.  
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PSF Point-spread function or blur  

PSNR Peak signal-to-noise ratio 

SDR Symmetric double regularization 

SIMO Single-input multiple-output 
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SNR  Signal-to-noise ratio 
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Key Symbols 

For conciseness, the notation f, g and h are often used in this thesis to denote the original 

image, the degraded image, and the PSF, respectively. In matrix-vector equation, f and g 

represent lexicographically ordered column vector of the original image and the degraded 

image, respectively. For ease of notation, we omit the cap “ ^ ” for the estimated variable in 

some chapters.  

,a A  AR model, corresponding AR matrix 

,c C  Regularization operator for image, corresponding regularization matrix 

,d D  Decimation factor along the X- and Y-axis, corresponding decimation matrix 

,e E  Regularization operator for PSF, corresponding regularization matrix 

ie  Regularization operator for the ith channel PSF 

f   Original image or estimated HR image 
( )if   Estimated image in the ith iteration   

( , ) ,m nf F   Circularly shifted original image by shiftsize ( , )m n , corresponding stacked 
array 

, ig g  Degraded image, degraded image in the ith channel  

( , ) ,m ng G  Circularly shifted degraded image by shiftsize ( , )m n , corresponding stacked 
array 

, ,h H �H  PSF, corresponding PSF matrix, corresponding 2-D DFT 

,i ih H  PSF in the ith channel or the ith K-NN, corresponding PSF matrix 
( )ih   Estimated PSF in the ith iteration   

ph   Parametric PSF estimate in MSPM 

K  Number of degraded images or channels or nearest neighbors in K-NN 

, in n   Noise, noise in the ith channel 

:fS M N×   Size of degraded image  
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:hS P Q×   Support size of PSF 

,i is S  Geometric warping vector in the ith channel, corresponding warping matrix 

λ   Forgetting factor in MRF 

, ,i i iα β γ   Regularization parameters 

, ,Λ Ψ Γ  Diagonal regularization matrices constructed from , ,i i iα β γ   

( , )x yω ω=ω   Frequency pair along the X- and Y-axis 

( ,  )J f h  Joint image and blur cost function 

( | )J f h  Image-domain cost function 

( | )J h f  Blur-domain cost function 

(.)H   Hermitian transposition  

*  2-D convolution  

⊗   Kronecker product 

( )tr ⋅   Trace of a matrix 

(.)diag   Diagonal matrix 

(.)vec   Concatenating the columns of a matrix into a vector 

(.)ivec   Inverse process of rehashing the vector into the matrix 

[.]F   DFT operation 

[.]E  Expectation 

|| . ||   L2-norm 
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Chapter 1  

Introduction 

1.1 Motivation 

Nowadays, digital imaging devices are growing in popularity for image acquisition ranging 

from consumer electronics to industrial equipments. Digital images are made up of numerous 

pixels, which are tiny light-sensitive grids arranged in a matrix plane. Spatial resolution is a 

term that refers to the number of pixels utilized in construction of a digital scene. Broadly 

speaking, images with higher resolution should not only have higher spatial density of pixels, 

but also be visually sharper and clearer than those with lower resolution.  

In many visual applications, high quality images are desired but may fail to be obtained 

because of some degradation factors. Blurring, noise, bandwidth limitation, quantization and 

frequency aliasing are common degradations found in imaging systems. The common web 

camera, for example, is an economic low-resolution (LR) video device, which records the 

scene in Figure 1.1(a) and implements real-time video communication over Internet. When 

the image experiences optical out-of-focus, relative motion between object and camera, and 

low bit rate video coding, the effect of blurring can be observed in Figure 1.1(b). During 

spatial sampling of the continuous scene, the highest spatial frequency is limited by the 

resolution of its imaging optics and transducer. This may potentially produce the aliased and 

downsampled image in Figure 1.1(c). Moreover, the imaging sensor array, usually the 
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charged-coupled device (CCD), is subject to various noise sources including the thermal and 

shot noise. The noisy effect is particularly evident under the environment of low lighting, as 

shown in Figure 1.1(d). 

 

  
 (a) (b) 

   
 (c) (d) 

Figure 1.1 The effects of various imaging degradations. (a) Original image, (b) Blurred image, (c) 

Aliased and downsampled image, (d) Noisy image. 

 

This thesis investigates how to produce a high quality, high-resolution (HR) image from low 

quality, low-resolution (LR) images. Several images, which suffer from the aforementioned 

degradations but consist of the overlapping content of a scene, are used to produce a single 

image of superior quality. This is known as HR image reconstruction that covers related 

subjects of deconvolution, interpolation, and super-resolution (SR). Image deconvolution 
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mainly deals with deblurring from blurred and noisy images, while the major goal of 

interpolation and SR is to increase spatial resolution from the aliased images.   

Using HR reconstruction, it is possible to restore high-frequency content, reduce noise, and 

even increase spatial resolution when hardware modification is unrealizable. The ultrasound 

imaging, for example, is one of the most widely used imaging modality in the clinical 

examination. The resolution of ultrasonic image is not only limited by the dimensions of the 

sound beam from the acoustic aperture but also degraded by the speckle noise. Figure 1.2 

illustrates one ultrasonic image of a fetus. Enhancing ultrasonic resolution can increase the 

accuracy of diagnostic decisions, and lessen the burden of well-trained radiographers as well. 

However, due to economic cost or physical limit, image quality cannot be improved by 

replacing the imaging hardware in some practical situations. HR image reconstruction using 

software is an appealing inexpensive alternative. 

 

 
Figure 1.2 Ultrasonic image of a fetus in uterus. 
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1.2 Objectives 

The aim of this thesis is to develop efficient, robust and automated HR reconstruction 

algorithms, which are useful for real-life applications. HR image reconstruction from low 

quality, LR images is one of the most intriguing challenges in image processing. It is a broad 

research area that covers image deconvolution, interpolation, and SR. It distinguishes itself 

from image enhancement in that it is based on models for the degradation process. The 

general mathematical model for the degradation process is 

 , 1, 2, ,i i i i K= + =g f n^ "  (1.1) 

where K is the number of observed degraded images. f , ig , in  denote the original image, 

the ith channel degraded image, and the noise, respectively. i^  is the system matrix that 

represents relationship between the original image and degraded image.  

Image reconstruction is an inverse process that attempts to estimate the original image from 

the degraded images. The problem can be mathematically stated as given ig , find a best 

estimate of f , according to some optimality criteria. A key feature in this formulation is the 

assumption of a blind situation, where no knowledge of i^ , e.g. optics parameters, relative 

motion, atmosphere turbulence, is assumed to be known a priori. It is a difficult ill-posed 

inverse problem as the uniqueness and stability of the solutions is not guaranteed [1]-[4]. 

 

1.2.1 Deconvolution  

Image restoration, also known as image deconvolution, began primarily with the efforts of 

scientists involved in the Space Race between the United States and the former Soviet Union 

in the 1960s. The astronomical images obtained from the satellites were mainly blurred for 
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some reasons such as out-of-focus optics, spinning and tumbling of spacecraft, and 

atmospheric turbulence [1], [2]. In such situations, the relationship i^  between the original 

image and degraded image can be modeled by a two-dimensional (2-D) filter, commonly 

referred to as blur or point-spread function (PSF). This leads to the following linear 

shift-invariant blurring model: 

 
( , )

( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , )

hm n S

g x y h x y f x y n x y
h m n f x m y n n x y

∈

= ∗ +

= − − +∑  (1.2) 

where * stands for 2-D convolution. ( , )f x y , ( , )g x y , and ( , )n x y  represent the original 

image, degraded image, and the additive noise, respectively. ( , )h x y  and hS  denote the PSF 

and its support size.  

Figure 1.3 illustrates the flowchart of the blurring process, where the original image is 

convoluted by PSF and degraded by noise to give the blurred image. The original image in 

Figure 1.4(a) displays a “Satellite” in the space. Figure 1.4(b) shows the shape of a Gaussian 

PSF. The degraded image in Figure 1.4(c) is produced by convoluting the original image with 

the PSF at 30dB noise level. It can be observed that a certain degree of detail information has 

been lost in the blurred image.  

 

 
Figure 1.3 Image blurring process for deconvolution. 
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  (a) (b) (c) 

Figure 1.4 Illustration of image blurring. (a) Original image, (b) Gaussian PSF, (c) Blurred image. 

 

The linear image degradation processes in (1.2) can be expressed in a matrix-vector 

formation: 

 = +g Hf n  (1.3) 

where f, g, and n represent the lexicographically ordered column vectors of the original 

image, the blurred image, and the noise, respectively. H is the matrix constructed from PSF h. 

Image deconvolution is an inverse process that attempts to deconvolute the blurred and noisy 

images to recover the original scene. Nevertheless, classical deconvolution needs the 

information of PSF, which is not available in many practical applications. Therefore, this 

motivates the studies of blind deconvolution where the primary objective is to estimate both 

the original image and PSF from the degraded image given little or no prior knowledge about 

the imaging system.  

Due to the following reasons, blind image deconvolution is a difficult ill-posed inverse 

problem that the uniqueness and stability of the solutions is not guaranteed, i.e. (i) a trivial 

perturbation in g can produce non-trivial perturbations in the restored image because the 

condition number of H is large, (ii) a solution may not exist because the smallest eigenvalue 

of H may equal or approach zero, and (iii) more than one solution may exist because H is 
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unknown.  

Conventional blind deconvolution methods only consider single-input single-output (SISO) 

model of (1.3). However, these are fundamentally limited by the inherent loss of information 

in single observation. A recent trend focuses on single-input multiple-output (SIMO) model:  

 , 1, 2, ,i i i i K= + =g H f n "  (1.4) 

The recovery of the original scene form its multiple observations is referred to as 

multichannel blind image deconvolution. By combining multiple observations of the same 

scene, the information lost in one channel may be compensated by the other channel. 

Therefore, the quality of the restored image through SIMO model is usually better than that of 

the SISO model. 

 

1.2.2 Interpolation  

To enlarge the image by increasing spatial resolution, the missing pixel information must be 

estimated from the surrounding pixels of the observed LR images. This problem is commonly 

referred to as image interpolation when only single LR image is available, or super-resolution 

(SR) when multiple LR images are available.  

Image interpolation or image resizing are commonly used in digital photography. The 

interpolation model is similar to that of classical image deconvolution in (1.3) except for the 

additional decimation process: 

 = +g DHf n  (1.5) 

where H represents the low-pass filtering process during the sensor array sampling. D is the 

sampling matrix constructed from the decimation processes with the decimation rate d. g and 
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f represent the observed image with size M N× , and the desired original image with size 

dM dN× .  

Figure 1.5 illustrates the imaging process for interpolation. The task of interpolation is to 

recover the lost high-frequency information during the sampling process from only one 

available LR image. 

  

 
 

Figure 1.5 Image degradation process for interpolation. 

 

1.2.3 Super-Resolution 

SR is the task of estimating HR images from a set of aliased, low quality LR images of the 

same scene. These LR observations are acquired either by multiple sensors imaging a single 

scene or using a single sensor capturing the scene over a period of time. SR is an active 

research area at present and has wide applications. For instance, a clear license plate image 

can be reconstructed from a video sequence in closed-circuit television (CCTV) system in 

Figure 1.6. Another important application in real-life is shown in Figure 1.7. After the failed 

bomb attacks in London on July 21, 2005, a CCTV image of the bomb suspect is issued by 

Scotland Yard [5]. If the technology of SR can successfully produce the suspect’s frontal face, 

not only can it improve quality of surveillance but also reduce the cost of the camera 

hardware. Therefore, the major advantage of SR is that it is less costly than either improving 

the existing imaging systems or overcoming the physical resolution limitation that cannot be 
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achieved even by replacing the imaging hardware. 

 

 
Figure 1.6 Super-resolution image reconstruction of a license plate. 

 

 
Figure 1.7 Suspected terrorist in the failed bomb attacks in London on July 21,2005. 

 

Consider the general SR model that consists of K measured LR images, which are related to 

the desired HR image through a series of mappings comprising geometric warping (i.e. 

translation, rotation), blurring, and decimation, together with potential additive noise. The ith 

LR image can be modeled as: 

 , 1,2, ,i i i i i i K= + =g D H S f n "  (1.6) 

where iS  stands for the ith channel geometric warping by warping parameters is .  

Figure 1.8 illustrates the image degradation process for SR, which can be considered as 
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multichannel interpolation problem with additional warping process. 

 

 
 

Figure 1.8 Image degradation process for super-resolution 

 

The SR methodology contains two major components of image registration and data fusion. 

The objective of image registration is to identify the pixel-to-pixel and subpixel-to-subpixel 

mapping between LR images in their overlapping region. All the warping information 

retrieved by registration, including translations, rotation angle, and scaling factor, are used to 

fuse the original image in the data fusion step. Image fusion is closely related to restoration 

that should have proper balance between image detail recovery and noise suppression. 

Currently, there are relatively few works on blind SR image reconstruction. In other words, 

they assume that the PSFs are known a priori, which is not practical in many real-world 

applications. Therefore, it is necessary to incorporate blur identification into the SR image 

reconstruction.  

Overall, a related problem to SR technologies is image deconvolution, which is to recover a 

blurred image, but does not increase the resolution. Another problem related to SR is image 
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interpolation that is to increase spatial resolution, but from a single image. For HR image 

reconstruction, SR is a more sophisticated technique which aims to restore poor quality image 

sequences by modeling and removing the degradations inherent in the imaging process, such 

as noise, blur and spatial-sampling. 

 

1.3 Contributions of Thesis 

The main contributions of this thesis are development of a set of complete and novel HR 

image reconstruction techniques, which cover image deconvolution, interpolation, and 

super-resolution. All the algorithms are developed towards HR image reconstructions along 

the way. For each respective topic, we develop efficient algorithms in theory and verify them 

by simulation. 

In Chapter 2, we present several discrete spatial techniques for identifying blur support in 

blind image deconvolution. Blur identification is a challenging problem in blind image 

deconvolution. In particular, if the blur support can be estimated reliably in the beginning of 

deconvolution, the computational cost of many blind deconvolution schemes can be reduced 

significantly, and their convergence performance will be improved. The proposed techniques 

are derived from the autoregressive (AR) model of the underlying images. The efficiency and 

validity of the techniques are also analyzed.  

In Chapter 3, a novel blind image deconvolution scheme based on soft integration of 

parametric blur structures is proposed. We attempt to address blind deconvolution by 

assessing the relevance of parametric blur information, and incorporating the knowledge into 

the parametric double regularization (PDR) scheme. The PDR method assumes that the actual 

blur satisfies up to a certain degree of parametric structure, as there are many well-known 
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parametric blurs in practical applications. Further, it can be tailored flexibly to include other 

blur types if some prior parametric knowledge of the blur is available. A manifold soft 

parametric modeling (MSPM) technique is proposed to generate the blur manifolds and 

estimate the fuzzy blur structure. 

Chapter 4 presents a novel multichannel recursive filtering (MRF) technique to address 

multichannel blind image deconvolution. The primary motivation for developing the MRF 

algorithm is due to its fast convergence in joint blur identification and image deconvolution. 

The estimated image is recursively updated from its previous estimates, while the 

multichannel blurs are identified iteratively using conjugate gradient optimization (CGO).  

Chapter 5 deals with a new and efficient algorithm for image interpolation based on 

regularization theory. To render a HR image from a LR one, classical interpolation techniques 

estimate the missing pixels from the surrounding pixels based on a pixel-by-pixel basis. In 

contrast, we formulate the interpolation problem into optimization of a cost function. The cost 

function consists of a data fidelity term and a regularization functional. The main contribution 

is the development of an efficient algorithm to solve the regularized least squares problem, 

which incorporates Kronecker product and singular value decomposition (SVD) to reduce the 

computational cost of the algorithm.  

In Chapter 6, we propose a robust higher-order statistics method to address subpixel image 

registration. Conventional spectrum techniques employ second-order statistics to estimate 

subpixel translations between two images. They are, however, susceptible to noise, thereby 

leading to significant performance deterioration in low signal-to-noise ratio (SNR) 

environments or in the presence of cross-correlated channel noise. The new bispectrum-based 

method utilizes the characteristics of bispectrum to suppress Gaussian noise. Experimental 

results show that the proposed technique provides performance improvement over 
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conventional power spectrum-based methods under different noise levels and conditions. 

Chapter 7 describes a novel blind SR algorithm to enhance image resolution without the 

knowledge of the PSFs. The primary motivation for developing the blind algorithm is due to 

the observation that most existing SR methods assume the blurs are known a priori, which 

may not be true in many real-world applications. In view of this, we formulate the SR 

problem into a new framework of joint interpolation-deconvolution scheme. The main 

contribution is the development of multichannel blind deconvolution to estimate the unknown 

PSFs, and its integration into the SR scheme to render HR images. 

  

1.4 Organization of Thesis 

The remainder of this thesis is organized as follows: 

In Chapter 2, several discrete spatial techniques are presented for identification of PSF 

support size with theoretical proof.  

In Chapter 3, the formulation of PDR for blind image deconvolution is discussed in detail. 

The MSPM algorithm is proposed to generate the blur manifolds and estimate the fuzzy blur 

structure.  

In Chapter 4, a novel multichannel recursive filtering (MRF) technique is presented to address 

multichannel blind image deconvolution.  

In Chapter 5, we discuss image interpolation from the perspective of HR reconstruction. An 

efficient image interpolation technique based on regularization theory is developed and 

compared with other classical interpolation methods.  

In Chapter 6, a robust higher-order statistics method to address subpixel image registration is 

proposed. Its efficiency is illustrated under different noisy environments.  
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In Chapter 7, we develop a blind SR algorithm to enhance image resolution without the 

knowledge of the PSFs. The SR problem is formulated into a new framework of joint 

interpolation-deconvolution scheme.  

In Chapter 8, the primary contributions toward efficient HR image reconstruction are 

summarized. Several possible avenues of future research are discussed in detail.
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Chapter 2  

Blur Support Identification for 

Deconvolution 

2.1 Introduction 

Image blurring is commonly due to causes such as lens defocusing, atmospheric turbulence, 

optical system aberration, and relative motion. The linear model for the blurred image is 

described in (1.3) that the original image is convoluted by point-spread function (PSF), 

followed by additive noise. PSF is the transfer function that is used to characterize the 

blurring process. The name of PSF comes from the spread distribution when a point light 

passes through a lens in optical experiment.  

Let PSF be a 2-D low pass filter with support size :hS P Q× . Some standard 2-D PSFs 

include the uniform and Gaussian blurs: 

 
2 2 21/ , ( , ) exp( ( ) / 2 ), ( , )

( , ) ; ( , )
0, otherwise 0, otherwise

h ha x y S a x y x y S
h x y h x y

σ∈ ⎧ − + ∈⎧
= =⎨ ⎨

⎩ ⎩
 (2.1) 

where σ  and a are the standard deviation of the Gaussian blur and normalizing constant, 

respectively. The uniform blur is the 2-D extension of 1-D motion blur, and is characterized 

completely by its dimension. The Gaussian blur is widely observed in applications such as 

X-ray imaging, and is difficult to estimate using traditional blur identification approaches. 
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Figure 2.1(a) shows the spatial profile of a truncated Gaussian PSF with support size 5 5×  

and standard variance 2.5σ = . 

 

       
 (a) (b) 

Figure 2.1 Gaussian PSF (support size 5 5× , standard variance 2.5σ = ). (a) Spatial profile, (b) 

Log-power spectrum. 

 

In most practical settings, the PSF is not known a priori, and must be estimated from the 

degraded image itself. Once the knowledge of the PSF is obtained, one of the existing image 

restoration techniques such as Wiener filtering and constrained least square (CLS) can then be 

applied to solve the problem [1]-[4]. Therefore, blur identification is an important issue in 

blind image deconvolution, involving the identification of the blur support and its 

coefficients. 

Blur support identification is analogous to filter order estimation in signal processing. This 

chapter will focus on blur support identification because if the blur support can be identified 

reliably at the beginning of deconvolution, the performance of deconvolution can be 

improved significantly. The discussion of blur coefficient estimation will be covered in the 

next chapter.  

The rest of this chapter is organized as follows. Section 2.2 reviews the methods for blur 

support identification. Section 2.3 establishes some notations and concepts to be used in this 
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chapter. In Section 2.4, the formulations of minimum cyclic-shift correlation (MCSC), 

maximum average square difference (MASD), and maximum average absolute difference 

(MAAD) are explained. In Section 2.5, the development of AR estimator is derived and 

analyzed. Simulation results are presented in Section 2.6. In Section 2.7, conclusions and 

further remarks are drawn. 

 

2.2 Literature Review 

The most straightforward way to identify PSF is by calibrating the camera. This approach is 

to match with a pre-defined calibration pattern through tuning the physical lens. However, it is 

complicated and only suitable for particular optics systems, such as astronomical telescope. 

From this sense, the blur identification using computer software offers an automatic and fast 

alternative. Most existing software techniques for blur identification do not differentiate 

between the identification of the blur support hS  and its coefficients ( , )h x y , because often 

the first problem implies solving the second, such as maximum likelihood (ML) [6], [7], 

generalized cross validation (GCV) [8], and residual spectral matching [9]. However, these 

multivariate estimation approaches require high computational cost and don’t guarantee 

convergence to global minimum. In other cases such as motion blur and out-of-focus blur, 

knowing the support itself is sufficient for blur identification, because these PSFs have the 

same coefficient values within the support.  

There exist some blind deconvolution approaches that do not need estimation of the blur 

support explicitly. Nevertheless, these methods avoid this step by either (i) imposing new 

constraints, or (ii) experiencing inadequate restoration results. For instance, nonnegative and 

support constraints recursive inverse filtering (NAS-RIF) requires the image object to have a 

known support and be embedded in a uniform background [25], Greatest common divisor 
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(GCD) [58] or null-spaced [60] methods require multiple blurred versions of the same scene 

to be available and the PSFs to be co-prime.  

Blur support estimation is analogous to filter order estimation in one-dimensional (1-D) signal 

processing, albeit the problem is in 2-D spatial domain in this context. In practical settings, if 

the blur support hS  can be identified reliably at the beginning of deconvolution, the 

convergence performance of many deconvolution schemes can be improved significantly.  

The most popular method to identify the blur support size is the frequency-zero method, 

which is based on identifying periodic zero-crossings of the blurred image. The discrete 

Fourier transform (DFT) of (1.3) is 

 ( ) ( ) ( ) ( )= +g ω ω f ω n ω� �� �H  (2.2) 

where superscript “ ~ ” and ( , )x yω ω=ω  are used to represent the signal in the frequency 

domain and the frequency pair along the X- and Y-axis, respectively.  

Generally speaking, PSF has a smaller support size :hS P Q×  compared to image size 

:fS M N× . Thus, the frequency zeros of PSF are found near the normalized frequency of 

(1/ , 2 / , , 1/ )x P P P Pω = −"  along the X-axis and (1/ , 2 / , , 1/ )y Q Q Q Qω = −"  along the 

Y-axis. Figure 2.1(b) shows the log-power spectrum 2log(| ( ) | )ω�H  of the Gaussian PSF in 

the X-axis direction. It is observed that there are four negative spikes in the Figure 2.1(b), 

which correspond to the zero-crossings in the frequency domain. Since blurred image is the 

product of the original image and PSF in frequency domain, the DFT of blurred image is 

characterized by these periodic zero-crossings, which can be used to identify the blur support. 

This idea is extended to cepstrum and bispectrum techniques [10], [11]. However, they are 

sensitive to noise as ( )n ω�  will obscure the characteristics of zero-crossings. In addition, 
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these methods are less accurate for the image with rich textures (edges of different intensities 

and directional textures) because its frequency magnitudes are also rich in terms of zeros or 

near-zeros. 

The spatial-domain methods include Akaike information-theoretic criterion (AIC) [12] and 

image derivative-based (IDB) method [13]. The AIC identifies the blur support by choosing 

the optimal solution from a model collection. Therefore, it requires high computational cost. 

The IDB method is based on autocorrelation of the image derivative. However, the method is 

restricted to motion blur identification, and the high-pass filter selection does not take 

underlying image characteristics into consideration. There are other joint blur identification 

and image deconvolution methods, such as alternating minimization (AM) [14]. AM employs 

iterative threshold pruning (ITP) to identify the blur support. Starting with an overestimated 

support, the method proceeds to discard boundary coefficients that have small energy 

iteratively. Nevertheless, ITP fails to provide robust support identification, as it is sensitive 

towards the initial support guess and the regularization schemes. In [60], the blind restoration 

algorithm is based on the assumption that the multichannel PSFs are factor co-prime. 

Therefore, in the absence of noise, the desired image and PSFs can be transformed into the 

null-space of a special matrix constructed from the degraded images. The upper bound of the 

support size can be identified from the rank properties of this null-space matrix. The whole 

restoration scheme works by first estimating the PSF using a procedure of min-eigenvector, 

followed by conventional image restoration using the identified PSFs. Nevertheless, the 

null-spaced method suffers from noise amplification, which often leads to poor solutions in 

the noisy environments. 

In view of this, we develop three discrete spatial techniques, namely minimum cyclic-shift 

correlation (MCSC), maximum average square difference (MASD), and maximum average 
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absolute difference (MAAD) estimators to identify the PSF support. The novelty of the 

proposed methods involves: (i) investigating the practicality of utilizing autoregressive 

moving-average (ARMA) model in blur support identification, (ii) designing three blur 

support estimators, which include the development of adaptive filter based on the AR model 

of the underlying image, (iii) providing analytical studies on the efficiency and validity of the 

estimators.  

Unlike the frequency-domain techniques (cepstrum or bispectrum), the proposed methods do 

not require the condition that the PSFs must have spectral nulls. On the other hand, when 

compared to the spatial-domain techniques, the proposed methods are more flexible than the 

IDB method [13] as the proposed estimators can identify blur support for different blur types 

other than the motion blur. It is applicable for both single-channel and multi-channel 

restoration. In short, the main advantages of the proposed methods are their low 

computational complexity, implementation simplicity, and relative robustness. 

 

2.3 Preliminaries and Notations 

2.3.1 ARMA Image Model 

Various state-of-the-art image modeling techniques have been studied in different literatures.  

These include fast unitary transforms (discrete Fourier transform, discrete cosine transform, 

Walsh-Hadamard transform), Karhunen-Loeve transform, discrete Markov random field, 

autoregressive and state-space models [15]-[17]. Among them, ARMA model is frequently 

used in image restoration and blur identification. The practicality and effectiveness of the 

ARMA in modeling the blurred images in the context of image deconvolution have been 

demonstrated in many previous works [1]-[4]. 
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The development of a suitable model for images requires a tradeoff between the accuracy of 

representation and its utility in image identification and restoration. Generally, blurred images 

exhibit characteristics of low pass smoothing. Therefore, a 2-D moving-average (MA) process 

is used to represent this low pass filtering effect. On the other hand, the image model uses a 

2-D autoregressive (AR) process driven by independent zero-mean white noise (innovation) 

to model the image formation. Therefore, ARMA modeling of blurred images consists of two 

parts: AR for image modeling and MA for blur modeling.  

The original image is modeled as a 2-D AR process by many researchers in the area of image 

restoration:  

 
( , )

( , ) ( , ) ( , ) ( , )
am n S

f x y a m n f x m y n w m n
∈

= − − +∑  (2.3) 

where ( , )w i j  is the additive white Gaussian noise (AWGN) with variance 2
wσ . ( , )a x y  and 

aS  are the AR model coefficients and support, respectively. The AR model in (2.3) can be 

denoted by a more compact matrix-vector notation as: 

 = +f Af w  (2.4) 

Let the image be periodic with dimension M N× , f is a lexicographically ordered column 

vector of size 1MN ×  in (2.4). A is a block-Toeplitz Toeplitz-block (BTTB) matrix 

constructed from the AR model. The BTTB matrix is often approximated by the 

block-circulant circulant-block (BCCB) and given by  
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−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎣ ⎦

A A A
A A A

A A

A A A

""
""

# # % ## # % #
""

(2.5) 

with ( ) ( ) , ( , ) ( , )j j M a j k a j k N−= = −A A . 
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The linear blurring model can be expressed as a 2-D MA process in (1.3), where H is a BCCB 

matrix constructed from the PSF with size MN MN× . 

(0) ( 1) (1)

(1) (0) (2)
( )

( 1) ( 2) (0)

( ,0) ( , 1) ( ,1)
( ,1) ( ,0) ( , 2)

,

( , 1) ( , 2) ( ,0)

M

j

M M
N NMN MN

h j h j N h j
h j h j h j

h j N h j N h j

−

− −
××
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⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦⎣ ⎦

H H H
H H H

H H

H H H

""
""

# # % ## # % #
""

(2.6) 

 

2.3.2 Kronecker Product  

Kronecker product between two matrices A and B is an mp nq×  matrix with the block 

structure [18]: 

 
11 1

1

n

m mn mp nq

a a

a a
×

⎡ ⎤
⎢ ⎥⊗ = ⎢ ⎥
⎢ ⎥⎣ ⎦

B B
A B

B B

"
# % #

"
 (2.7) 

where m n×∈A \ , p q×∈B \ , and ⊗  denotes the Kronecker product.  
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 (2.8) 

The following properties of Kronecker product will be used throughout the analysis: 

 

H H H( )
( )( )

( ) ( ) ( )
( ) = ( ( ) )T

tr tr tr

⊗ = ⊗
⊗ ⊗ = ⊗

⊗ = ⋅

⊗

A B A B
A B C D AC BD

A B A B
A B c B c Avec ivec

 (2.9) 

where superscript H(.)  denotes Hermitian transposition, and ( )tr ⋅  represents the trace of a 

matrix. (.)vec   denotes concatenating the columns of a matrix into a vector, and (.)ivec  is 
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the inverse process of rehashing the vector into the matrix. 

 

2.3.3 Characteristics of PSF 

We impose the standard unity and non-negativity constraints on the PSF in this work [1]-[4]  

 
( , )

( , ) 1; ( , ) 0
hx y S
h x y h x y

∈

= >∑  (2.10) 

Image blurring is commonly due to causes such as lens defocusing, atmospheric turbulence, 

and object motion. There are numerous practical settings in which the PSF is separable, i.e.  

 H
u v=h h h  (2.11) 

where 
H

( 1) / 2 0 ( 1) / 2u P Pu u u− − −⎡ ⎤= ⎣ ⎦h … …  and 
H

( 1) / 2 0 ( 1) / 2v Q Qv v v− − −⎡ ⎤= ⎣ ⎦h … … . These 

include motion blur, uniform blur, sinc-square blur, and Gaussian blur, among others. In the 

specific event that the PSFs are non-separable, we can employ the technique in [19] to 

approximate the non-separable PSF using separable PSFs. Under the condition that the PSFs 

are separable, H can be decomposed into the Kronecker product of two circulant matrices 

( uH  and vH ) with bandwidth P and Q: 

 

0 1 1 0 1 1

1 0 2 1 0 2

1 2 0 1 2 0

u v

u u u v v v
u u u v v v

u u u v v v

− −

− − − −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ⊗ = ⊗
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

H H H

" "
" "

# # % # # # % #
" "

 (2.12) 

 

2.3.4 Cyclically Shifted Image 

We establish the following definitions in order to facilitate discussions for the blur support 

identification. 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 2 24  

 

DEFINITION 1: Shift-Identity Matrix is defined as 

 

0 1 0

1
1 0

M

M M×

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
# % % #
# % %
" "

I  (2.13) 

where M M
M

×∈\I . If we pre-multiply a column vector by a shift-identity matrix, the entries 

of the column vector will be shifted up circulantly. We further define 0
M M= II , where 

M M
M

×∈I \  is the identity matrix. 

 

DEFINITION 2: Cyclically Shifted Image is defined in terms of shift-identity matrix as: 

 ( , ) ( )m n
m n M N= ⊗f fI I  (2.14) 

where ( , )m n  is the shiftsize vector in the vertical and horizontal directions, respectively. The 

cyclically shifted image can be formed simply by circularly shifting the image matrix by 

shiftsize ( , )m n . 

 

2.4 Discrete Spatial Techniques  

The degraded image can be modeled by combining the MA model in (1.3) with the AR model 

in (2.4) to give: 

 1( )−= − +g H I A w n  (2.15) 

where n and w are assumed as additive white Gaussian noise (AWGN) with variance 2
nσ  and 

2
wσ . 
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Let r be the filtered image obtained by convoluting the degraded image g with a 2-D finite 

impulse response (FIR) filter l. Under the condition that the filter l satisfies = −L I A , where 

L and A are the BCCB matrices constructed from the filter l and AR model a, the filtered 

image r can be written as: 

 ( )= = + −r Lg Hw I A n  (2.16) 

Equation (2.16) implies that the correlation function of r is the sum of the correlations of H 

and −I A  weighted by their respective noise variances, since w and n are uncorrelated and 

AWGN. Moreover, if 2
wσ  is much larger than 2

nσ , the correlation of r approaches that of H. 

In view of this, we propose the following methods to estimate the PSF support: 

(1) Minimum cyclic-shift correlation (MCSC) estimator 

 

1 1

ˆˆ arg min{ ( ,0)} ; arg min{ (0, )}

1where ( , ) [ ( , ) ( , )]

MCSC MCSC MCSC MCSC
m n

M N

MCSC
x y

P R m Q R n

R m n r x y r x m y n
MN = =

= =

= + +∑∑
 (2.17) 

where P̂  and Q̂  are the estimated blur support in the vertical and horizontal directions. 

(2) Maximum average square difference (MASD) estimator:  

 
2

1 1

ˆˆ arg max{ ( ,0)} ; arg max{ (0, )}

1where ( , ) [ ( , ) ( , )]

MASD MASD MASD MASD
m n

M N

MASD
x y

P R m Q R n

R m n r x y r x m y n
MN = =

= =

= − + +∑∑
 (2.18) 

(3) Maximum average absolute difference (MAAD) estimator: 

 

1 1

ˆˆ arg max{ ( ,0)} ; arg max{ (0, )}

1where ( , ) ( , ) ( , )

MAAD MAAD MAAD MAAD
m n

M N

MAAD
x y

P R m Q R n

R m n r x y r x m y n
MN = =

= =

= − + +∑∑
 (2.19) 
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Proof: 

Let us first analyze the MCSC estimator in (2.17). The expected value of ( , )MCSCR m n  is: 

 H
( , )

1[ ( , )] ( , ) [ )]MCSC rr m nE R m n C m n E
MN

= = r r  (2.20) 

where ( , ) ( )m n
m n M N= ⊗r rI I  is the cyclically shifted image as in (2.14), and ( , )rrC m n  is the 

autocorrelation of image r given by: 

 

H
( , )

H

2 H 2 H

1( , ) [ ]

1 [( ( ) ) ( )( ( ) )]

1 1[ ( )] [( ) ( )( )]

rr m n

m n
M N

m n m n
w M N n M N

C m n E
MN

E
MN

tr tr
MN MN

σ σ

=

= + − ⊗ + −

= ⊗ + − − ⊗

r r

Hw I A n Hw I A n

H H I A I A

I I

I I I I

 (2.21) 

It is noted that (i) the inverse of a BCCB matrix is also a BCCB, and (ii) BCCB matrices are 

commutative. Previous studies have shown that in many practical applications, the MA noise 

power 2
nσ  is much smaller than the AR noise power 2

wσ , implying that the MA /AR noise 

ratio 2 2 1n wσ σ �  [3], [4], [6]-[8]. In line with these studies, we have assumed that the 

MA/AR noise ratio to be 2 2 1n wσ σ �  in our work. Thus, the second term in (2.21) can be 

ignored when compared to the first term. We will further simplify (2.21) by substituting (2.12) 

to obtain: 

 
2 H

2

1( , ) [( ) ( )( )]

( ) ( )

m n
rr w u v u v M N

w uu vv

C m n tr
MN

MN C m C n

σ

σ

= ⊗ ⊗ ⊗

= ⋅ ⋅

H H H H I I
 (2.22) 

where ( )uuC m and ( )vvC n  are the autocorrelations of uh  and vh , respectively: 
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* H

* H

1( ) [ ( ) ( )]

1( ) [ ( ) ( )]

m
uu u M u

n
vv v N v

C m E u x u x m
M

C n E v y v y n
N

= + =

= + =

h h

h h

I

I
 (2.23) 

In the cases where the autocorrelation sequence uh  is monotonically decreasing, which is 

applicable in many blurs such as Gaussian and concentric linear blurs, it is clear that the 

sequence [ ( ,0)]MCSCE R m  satisfies the following:  

 [ (0,0)] [ (1,0)] [ ( ,0)] [ ( 1,0)]MCSC MCSC MCSC MCSCE R E R E R P E R P> > > = + =" "  (2.24) 

Therefore, we observe that [ (0,0)]MCSCE R  will reach the minimum value when m P≥ , 

where P is the support of the PSF in the vertical direction. Similar argument can be used to 

verify ˆ
MCSCQ  in (2.17). 

As far as the MASD in (2.18) is concerned, the expected value of ( , )MASDR m n  is: 

 
H H H

( , ) ( , ) ( , )
1[ ( , )] [( 2 )]

2( (0,0) ( , ))

MASD m n m n m n

rr rr

E R m n E
MN

C C m n

= + −

= −

r r r r r r
 (2.25) 

This suggests that the minimum of ( , )MASDR m n  can be used to estimate M̂ASDP  and ˆ
MASDQ .  

We can derive the following expression for MAAD by using the invariance theorem [20]:  

 [ ( , )] 2 ( (0,0) ( , )) /MAAD rr rrE R m n C C m n π= −  (2.26) 

The MAAD estimator has low computational cost as it does not require multiplications. 

Therefore, it is useful for those applications where low computational complexity is a major 

consideration. It is worth mentioning that MCSC identifies the blur support by locating the 

minima, while the MASD and MAAD by using the maxima. 
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2.5 AR Image Model Estimation 

It has been shown that our techniques will achieve its optimal solution when = −L I A  in 

(2.16). The estimation of the AR model will influence the performance of the proposed 

techniques. Different AR models including causal, semicausal, and noncausal structures have 

been employed in modeling the images [15]. Various techniques have also been proposed to 

estimate the half plane causal AR model, such as the recursive method [12] and maximum 

likelihood method [6]. We will formulate an AR model estimation method that is applicable 

for noncausal as well as causal and semicausal structures. The AR model in (2.4) can be 

re-expressed alternatively as: 

 = +f a wF  (2.27) 

where a is the column vector formed by concatenating the coefficients of the AR model: 

 
T

( , ) ( 1,0) (1,0) ( , )a a a aα β α β− − −⎡ ⎤= ⎣ ⎦a " "  (2.28) 

with the AR model having a support size of (2 1) (2 1)α β+ × +  and (0,0) 0a = . 

F  is the stacked array of ( , )i jf , where ( , )i jf  is the cyclically shifted image as in (2.14) 

 ( , ) ( 1,0) (1,0) ( , )α β α β− − −⎡ ⎤= ⎣ ⎦f f f f" "F  (2.29) 

The minimum variance unbiased (MVU) estimator for the AR model is given by: 

 T 1 Tˆ ( )−=a fF F F  (2.30) 

It can be shown that this estimator is unbiased, and attains the Cramer-Rao lower bound 

(CRLB), provided TF F  is invertible and w is AWGN. In ideal condition where the 

original image f is available, we can estimate â  readily using (2.30). However, only the 

knowledge of the degraded image g is available in blind image deconvolution. Therefore, we 
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need to reformulate the MVU estimator in terms of the degraded image. Rewriting g in 

another format, we obtain: 

 
( )

( )
= + +
= + +
= + 1

g H Af w n
Ag Hw I - A n

a nG
 (2.31) 

where G  has the same structure as F  in (2.30), and 1 ( )= +n Hw I - A n , with 1n  being 

the colored Gaussian noise with 1 ~ ( , )Nn 0 Ç , where 2 T 2 T( )( )w nσ σ= +Ç HH I - A I - A . 

From Gauss-Markov Theorem [21], the MVU estimator is given by 

 T 1 1 T 1ˆ ( )− − −=a Ç Ç gG G G  (2.32) 

Since the estimator in (2.32) requires excessive computational cost due to the high 

dimensionality of Ç (namely MN MN× ), we simplify the complexity by assuming that the 

degraded image is noiseless to obtain the following estimator: 

 T 1 Tˆ ( )−=a gG G G  (2.33) 

The performance evaluation of the estimator in (2.33) is discussed in the Appendix. 

An important condition of AR model estimation lies in the relative homogeneity of the whole 

image. This is, however, restrictive, as some real-life images are non-homogeneous, 

consisting of numerous smooth and textured image regions. In order to overcome this 

limitation, we can decompose an image into a number of homogeneous or 

quasi-homogeneous image blocks by quadtree decomposition. The formation of the image 

blocks is determined based on standard homogeneity criterion such as local image variance. 

Hence, the proposed discrete spatial techniques can be implemented independently for each 

block. This procedure can reduce the constraint of Gaussian stationarity condition. 
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2.6 Experimental Results 

2.6.1 Blur Support Identification of 2-D PSF. 

The 256 256×  “Flower” image shown in Figure 2.2(a) is degraded by 7 7×  Gaussian blur 

with standard deviation 3.2σ =  in Figure 2.2(b) to produce Figure 2.2(c). The AR model a 

is computed using (2.33), and the filter = −L I A  is applied to the degraded image to obtain 

the filtered image. The MCSC, MASD, and MAAD of the filtered image in the vertical and 

horizontal directions are given in Figure 2.2(d) and (e). It is noted that the values of MCSC, 

MASD, and MAAD are normalized in order to accommodate them in a single figure. We 

observe from Figure 2.2 (d) that all estimators achieve the minima or maxima at m=7, which 

is the actual blur support in the vertical direction. Similarly, the techniques reach the minima 

or maxima at n=7 in the horizontal direction as shown in Figure 2.2(e). Therefore, the 

methods have correctly identified the support of the PSF as 7 7× .  

Moreover, the methods are still effective as the SNR reaches 25dB in this case. It is worth 

mentioning that when we apply median filter to remove noise in the degraded image, the 

proposed methods can work even better in low SNR environment. This illustrates that the 

proposed methods are robust in identifying blur support under different SNR environments. 
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 (a) (b) (c) 

 
 (d) (e) 

Figure 2.2 Blur support identification of 2-D PSF. (a) Original “Flower” image, (b) 2-D Gaussian PSF 

(size 7 7× , 3.2σ = ), (c) Image degraded by Gaussian PSF, (d) MCSC, MASD and MAAD profiles in 

the vertical direction, (e) MCSC, MASD and MAAD profiles in the horizontal direction. 
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2.6.2 Image Restoration Using Various PSF Support Sizes 

Blur identification from noisy blurred image is a challenging problem in blind image 

deconvolution. We illustrate the capability of the proposed algorithm to handle noisy 

degraded image. The 512 512×  “Lena” image in Figure 2.3(a) is selected as the test image. 

The image is degraded by 5 7×  uniform PSF in Figure 2.3(b), followed by 30dB SNR 

AWGN. We repeat the procedure as in previous experiments. The results are shown in Figure 

2.3(d) and Figure 2.3(e). It is observed that the all methods manage to identify the blur 

support as 5 7×  correctly under 30dB noise. In order to illustrate the significance of blur 

support identification, we restore the image and identify the PSF under different PSF support 

sizes. The proposed parametric double regularization (PDR) algorithm in Chapter 4 is run 

with iteration numbers of alternating minimization (AM) and conjugate gradient optimization 

(CGO) being set to 10. The comparison of the restored images and identified PSFs with 

different blur support sizes are tabulated in Table 2.1. 

The peak signal-to-noise ratio (PSNR) is employed for evaluation of image quality,  

 
2

10 2

( , )

25510log ˆ( ( , ) ( , ))
x y

MNPSNR
f x y f x y

⎛ ⎞
⎜ ⎟⋅

= ⎜ ⎟−⎜ ⎟
⎝ ⎠
∑

 (2.34) 

where ( , )f x y  and ˆ ( , )f x y are the original and the estimated images. 

The sum of square error (SSE) is used for PSF evaluation: 

 ( )
21

2

( , ) sup( , )

ˆ( , ) ( , )
h hx y S S

SSE h x y h x y
∈

= −∑  (2.35) 

where ( , )h x y and ˆ( , )h x y denote the coefficients of the original and the identified PSFs, 

respectively. As the original and the identified PSFs may have different support size, we pad 
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the smaller-size PSF with zeros.  

From Table 2.1, it is clear that the restored image with good support dimension such as 5×7 

outperforms the others as it has the highest PSNR and lowest SSE. The results clearly show 

good PSF support size can produce superior image quality during blind image restoration. 

TABLE 2.1 COMPARISON OF RESTORED IMAGES WITH DIFFERENT SUPPORT SIZES  

Blur Support Size 3×3 5×5 5×7 7×7 7×9 9×9 11×11 

PSNR of restored 
images 28.05 29.28 30.88 29.68 29.30 29.04 28.90 

SSE of identified 
PSFs 0.082 0.0114 0.0015 0.0059 0.0082 0.0083 0.0091 

 

2.6.3 Blur Support Identification under Noisy Condition 

In some experiments, there may have multiple maximum (or minimum) points that become 

the candidates for the support size. A 512 512×  “Woman” image shown in Figure 2.4(a) is 

blurred by a 9 9×  uniform PSF in Figure 2.4(b) under 40dB noise level. The proposed 

approaches are applied to the degraded image in Figure 2.4(c). In Figure 2.4(d) and (e), it is 

observed that multiple maximum values (MAAD and MASD) are achieved when the vertical 

and horizontal shiftsize are larger than 9. Together with MCSC, we will select the extremum 

with the smallest vertical or horizontal shiftsize if multiple candidates exist, which is 9×9 in 

Figure 2.4. In practice, the approach in [22] is recommended which can use the corner of the 

L-curve to estimate the support size (or lower- and upper-bounds of the support size). In 

addition, to facilitate the implementation of image restoration where blur support is usually 

taken as odd number, we will choose the next-best (odd number) blur support estimate. For 

example, if the estimated blur supports is 4×5, the restoration scheme will adopt 3×5 or 5×5 

as the estimated support.
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 (a) (b) (c) 

 
 (d) (e) 

Figure 2.3 Blur support identification under 30dB noise level. (a) Original “Lena” image, (b) 2-D 

uniform PSF (size 5 7× ), (c) Image degraded by uniform PSF, (d) MCSC, MASD and MAAD profiles 

in the vertical direction, (e) MCSC, MASD and MAAD profiles in the horizontal direction. 
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 (a) (b) (c) 

 
 (d) (e) 

Figure 2.4 Blur support identification of 2-D PSF. (a) Original “Woman” image, (b) 2-D uniform PSF 

(size 9 9× ), (c) Image degraded by uniform PSF, (d) MCSC, MASD and MAAD profiles in the vertical 

direction, (e) MCSC, MASD and MAAD profiles in the horizontal direction. 
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2.6.4 Comparison with Other Blur Support Identification Methods  

The 512×512 “Lena” image in Figure 2.3(a) is blurred by different PSFs in Figure 2.5(a)-(c), 

and followed by 30dB or 40dB additive noise, respectively. The identified support using the 

proposed methods are compared with two other well-known methods, namely, cepstrum [3] 

and ITP [14], and the results are given in Table 2.2. It is clear from Table 2.2 that the proposed 

methods manage to identify the blur support successfully in all the cases. In contrast, the 

cepstrum method fails to detect negative cepstral spikes in the vertical direction in some 

cases, particularly in more noisy environments of 30dB noise. We mark these occasions with 

“-” in Table 2.2. On the other hand, it can be seen that ITP makes some erroneous 

identification. This is because ITP is sensitive to various factors such as initial blur estimate, 

regularization scheme, and pruning threshold selection. The results show that the proposed 

methods are robust towards different blur types and up to at least 30dB noise levels. 

 
 (a) (b) (c)  

Figure 2.5 Different PSFs. (a) 2-D Gaussian PSF (size 5 5× , 3.0σ = ), (b) 2-D Gaussian PSF (size 

7 7× , 3.5σ = ), (c) 2-D uniform PSF (size 7 9× ). 

TABLE 2.2 BLUR SUPPORT IDENTIFICATION BY DIFFERENT METHODS 

PSF 
Gaussian 

5×5, σ =3.0 
Gaussian 

7×7, σ =3.5 
Uniform 

7×9 
Noise Level  40dB 30dB 40dB 30dB 40dB 30dB 
Cepstrum 5×5 -×5 7×7 -×7 9×9 -×11 

ITP 5×5 7×7 9×9 9×9 11×9 11×11 
Proposed 5×5 5×5 7×7 7×7 7×9 7×9 
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2.6.5 Blur Support Identification for Infinite- or Large-Support PSF 

In some practical situations, the PSF will have infinite- or large-support size but the energy of 

the PSF will be concentrated near the center of the PSF. To simulate this scenario, a sample 

PSF is modeled by the following Gaussian mixture: 

 1 2( , ) ( , ) ( , )h x y h x y h x y= +  (2.36) 

where  

 

1

2

2 2 2
1 1

1

2 2 2
2 2

2

exp( ( ) / 2 ) ( , )

0, otherwise

exp( ( ) / 2 ) ( , )

0, otherwise

h

h

a x y x y S
h

a x y x y S
h

σ

σ

⎧ − + ∈⎪= ⎨
⎪⎩
⎧ − + ∈⎪= ⎨
⎪⎩

 (2.37) 

Here ( , )h x y is composed of two different Gaussian blurs with 
1 2h hS S<  and 1 1σ σ< . Since 

1( , )h x y is narrower and steeper than 2 ( , )h x y , the effective 2-D profile of ( , )h x y  is 

bounded by 
1 2h h hS S S≤ ≤ . Figure 2.6(b) shows an example of such PSF with 

1
5 5hS = × , 

1 2σ = ,
2

13 13hS = × , 2 4σ = . The coefficients of the PSF are given by 

0.0007  0.0009  0.0012  0.0015  0.0018  0.0019  0.0020  0.0019  0.0018  0.0015  0.0012  0.0009  0.0007
0.0009  0.0013  0.0017  0.0021  0.0025  0.0027  0.0028  0.0027  0.0025  0.0021  0.0017  0.0013  0.0009
0.0012  0.0017  0.0023  0.0028  0.0033  0.0036  0.0038  0.0036  0.0033  0.0028  0.0023  0.0017  0.0012
0.0015  0.0021  0.0028 0.0060 0.0087  0.0112  0.0122  0.0112  0.0087  0.0060  0.0028  0.   0021  0.0015
0.0018  0.0025  0.0033  0.0087  0.0134  0.0178  0.0196  0.0178  0.0134  0.0087  0.0033  0.0025  0.0018
0.0019  0.0027  0.0036  0.0112  0.0178  0.0240  0.0266  0.0240  0.0178  0.0112  0.0036  0.0027  0.0019
0.0020  0.0028  0.0038  0.0122  0.0196  0.0266  0.0295  0.0266  0.0196  0.0122  0.0038  0.0028  0.0020
0.0019  0.0027  0.0036  0.0112  0.0178  0.0240  0.0266  0.0240  0.0178  0.0112  0.0036  0.0027  0.0019
0.0018  0.0025  0.0033  0.0087  0.0134  0.0178  0.0196  0.0178  0.0134  0.0087  0.0033  0.0025  0.0018
0.0015  0.0021  0.0028  0.0060  0.0087  0.0112  0.0122  0.0112  0.0087  0.0060  0.0028  0.0021  0.0015
0.0012  0.0017  0.0023  0.0028  0.0033  0.0036  0.0038  0.0036  0.0033  0.0028  0.0023  0.0017  0.0012
0.0009  0.0013  0.0017  0.0021  0.0025  0.0027  0.0028  0.0027  0.0025  0.0021  0.0017  0.0013  0.0009
0.0007  0.0009  0.0012  0.0015  0.0018  0.0019  0.0020  0.0019  0.0018  0.0015  0.0012  0.0009  0.0007
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It can be observed that the energy of the PSF is centered within the central 7 7× support area, 

even though the actual blur support is the larger value of13 13× .  

The original 512×512 “Lena” image in Figure 2.6 (a) is degraded by the PSF in Figure 2.6 (b) 

to produce the degraded image in Figure 2.6 (c). The proposed methods are applied to obtain 

the estimated blur support size in Figure 2.6 (d) and (e). From the figures, it can be observed 

that the estimated blur supports is 7×8. To facilitate the implementation of image restoration 

where blur support is usually taken as odd number, we will choose the next-best blur support 

estimate to be 7×7 or 7×9. The proposed PDR algorithm in Chapter 4 is run with iteration 

number of alternating minimization (AM) and conjugate gradient optimization (CGO) being 

10. The restored images with different blur support size are given in Figure 2.6 (f)-(m) and the 

corresponding PSNR are tabulated Table 2.3. It is clear that the restored image with good 

support dimension such as 7×7 in Figure 2.6 (h) outperforms the others as it has the highest 

PSNR. If the estimated size is smaller than the actual support, insufficient textured or edge 

details are restored as shown in Figure 2.6 (f). Conversely, if support is larger than the actual 

support, extreme ringing and noise amplification dominates the scene as in Figure 2.6 (l) and 

(m). A good compromise of the support size between 7×7 and 11×11 will provide a higher 

quality in the restored image, as shown in Figure 2.6 (g)-(k). 

 

TABLE 2.3 IMAGE DECONVOLUTION FOR LARGE-SUPPORT PSF 

Blur Support 
Size 5×5 5×7 7×7 7×9 9×9 11×11 13×13 15×15 

PSNR(dB) 28.87 29.57 30.33 29.93 29.37 29.24 28.82 19.13 
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 (a) (b) (c) 

 
 (d) (e) 

    
 (f) (g) (h) (i) 

    
 (j) (k) (l) (m) 

Figure 2.6 Blind deconvolution of image degraded by a PSF with large blur support size. (a) Original 

“Lena” image, (b) Gaussian mixture PSF, (c) Image degraded by PSF, (d) MCSC, MASD and MAAD 

profiles in the vertical direction, (e) MCSC, MASD and MAAD profiles in the horizontal direction, (f) 

5×5, (g) 5×7, (h) 7×7, (i) 7×9, (j) 9×9, (k) 11×11, (l) 13×13, (m) 15×15. 
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2.7 Summary 

Three efficient discrete spatial techniques, namely MCSC, MASD and MAAD have been 

developed for blur support identification. The methods can provide robust estimate of the 

support for 1-D blurs as well as 2-D blurs. The efficiency and validity of the techniques have 

also been analyzed.  

 

2.8 Appendix 

We will analyze the efficiency of the proposed estimator in (2.33). An estimator is efficient if 

it satisfies two conditions: (i) it is unbiased, and (ii) its variance achieves CRLB. From (2.31), 

we have: 

 1, ~ ( ( ), ) , ~ ( , )N N= + 1g a n g μ a Ç n 0 ÇG  (2.38) 

where 2 T 2 T( ) , ( )( )w nσ σ= = +μ a a Ç HH I - A I - AG  

(1) Expectation of â  

 T 1 T T 1 T
1 1ˆ( ) [( ) ( )] [( ) ]− −= + = + =E a E a n a E n aG G G G G G G  (2.39) 

(2) Variance of â  

 T 1 T T 1 T T T 1 T T 1ˆ( ) [( ) ))(( ) ) ] ( ) ( )− − − −= − − =var a E g a g a ÇG G G G G G G G G G G G  (2.40) 

The Fisher’s information matrix is given by [21]: 

 [ ]
T

1 1 1( ) ( ) 1( )
2ij

i j i j

tr− − −
⎡ ⎤ ⎡ ⎤⎡ ⎤∂ ∂ ∂ ∂

= +⎢ ⎥ ⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

μ a μ a Ç ÇJ a Ç Ç Ç
a a a a

 (2.41) 

Thus the CRLB is the [ , ]i i elements of the inverse matrix that 1ˆ( ) [ ( )]i ii
−≥var a J a . It is 
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difficult to compute the CRLB analytically using (2.41) as it involves the inversion of a large 

covariance matrix Ç . To simplify the analysis, we consider the noiseless degraded image, 

where 2 0nσ = . Thus we obtain: 

 

2 T 1 T T T 1

T T 1
2

ˆ( ) ( ) ( )
1( ) ( )

w

w

σ

σ

− −

−

=

=

var a HH

J a HH

G G G G G G

G G
 (2.42) 

It can be observed that 1ˆ( ) [ ( )]i ii
−≈var a J a  when the blur has a small support. 
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Chapter 3  

Parametric Double Regularization 

Approach for Deconvolution 

3.1 Introduction 

Image deconvolution is an inverse process that attempts to deconvolute the blurred and noisy 

images to recover the original scene. Figure 3.1 shows the system flowchart of the 

deconvolution process, where the blurred image is passed through an inverse filter to produce 

the restored image. Classical image restoration assumes that the PSF is known prior to 

deconvolution. This is, however, elusive in real-world applications due to various practical 

constraints that PSF cannot be calibrated in advance. This leads to the study of blind image 

deconvolution (blind image restoration) where the primary objective is to perform joint blur 

identification and image restoration given little or no prior knowledge about the blur [3], [4]. 

 

  
Figure 3.1 Image blurring model and deconvolution process. 
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Even when the PSF is known prior to deconvolution, it is impossible to deconvolute the 

blurred image directly to give a close-fidelity of the estimated image by 

( ) ( ( ) ( )) / ( )= −f ω g ω n ω ω� �� � H . The reason is that the condition number of H is large. A trivial 

perturbation in g can produce non-trivial perturbations in f̂ . The restored image will be 

subjected to noise amplification when there exists noise in g. In the worst scenario, the 

smallest eigenvalue of H will equal or approximate zero. The solution f̂  may not exist as 

1( )− → ∞ω�H . To reduce the condition number of H, the common approach is using 

regularization to impose constraint on the image. This leads to the conventional Wiener filter 

and constraint least squares. Moreover, since PSF is unknown in blind deconvolution, more 

than one solution may exist when (1) (1) (2) (2)
ˆ ˆˆ ˆ=H f H f , where (1) (2) (1) (2)

ˆ ˆˆ ˆ, , ,H H f f  are the 

estimated blurs and images. Therefore, blind image deconvolution is a difficult ill-posed 

inverse problem as the uniqueness and stability of the solutions is not guaranteed.  

The rest of this chapter is organized as follows. Section 3.2 reviews the methods for blind 

image deconvolution. Section 3.3 provides a discussion on cost function formulation. In 

Section 3.4, the development of parametric modeling is explained. In Section 3.5, the 

derivation of optimization procedure is discussed. In Section 3.6, experimental results using 

the proposed method are discussed and compared with other techniques. In Section 3.7, 

conclusions and further remarks are given.  

 

3.2 Literature Review 

Various techniques have been proposed to address blind image deconvolution over the last 

two decades. A popular parametric approach in representing linear image degradation 

processes is centered on autoregressive moving-average (ARMA) model. The AR and MA 
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processes are used to model the original image and PSF, respectively. Under this framework, 

the objective of blind deconvolution is to estimate these parameters using statistical methods 

such as maximum likelihood (ML) [6], expectation maximization (EM) [7], [23] and 

generalized cross-validation (GCV) [8]. EM is used in conjunction with the ML method to 

maximize the log-likelihood function of the ARMA parameter set in the solution space. In 

contrast, GCV determines the parameters by minimizing a weighted sum of predictive errors. 

The shortcomings of ARMA modeling include its sensitivity towards high-dimensional 

parametric vector, leading to poor local convergence.  

The development of filtering theory with constraints has been extended to address blind 

image deconvolution by some researchers. Iterative blind deconvolution (IBD) adopts 

Wiener-based filter to restore the image and identify the blur alternately [24]. The major 

drawback of IBD lies in its sensitivity towards initial image estimate and noise, thus leading 

to algorithmic instability. Another class of iterative methods include NAS-RIF [25], together 

with its extensions such as enhanced NAS-RIF [26], and regularized RIF [27]. NAS-RIF 

methods involve recursive filtering of the blurred image to minimize a predictive cost 

function, which is based on the difference between the estimated true image and the projected 

image. They require the image object to have a known support and be located in a uniform 

background. This is inflexible as the assumption conflicts with many real-life images.  

Another research direction involves extending the regularization theory to address image 

deconvolution. The regularized adaptive iterative algorithms for image deconvolution have 

been proposed in [28], [29]. Projection-based approaches with conjugate-gradient 

minimization have also been developed in [30], [31]. Symmetric double regularization (SDR) 

combines the advantages of the above two methodologies, i.e. formulates the blind problem as 

the minimization of an adaptive double Tikhonov regularization cost function, decomposes it 
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into two symmetric processes of blur identification and image deconvolution, where each 

process is minimized by conjugate gradient optimization (CGO) [14]. Anisotropic 

regularization attempts to mitigate the lack of information by exploiting the piecewise 

smoothness of the images and blur [32]. One of the successful regularization approaches is 

the total variation (TV) regularization method [33], [34]. TV regularization has also been 

incorporated into SDR to achieve edge preservation and noise suppression [35].  

Motivated by parallel computational power and intelligence of the neural networks (NN), a 

number of researchers have attempted to achieve good restoration results via the dense 

interconnection of neurons. The NN model is employed to represent the possibly 

nonstationary image [36]. The restoration procedure consists of two stages: estimation of the 

parameters of the NN model and reconstruction of images. During the first stage, the 

parameters are estimated by comparing the energy function of the network to a constrained 

error function. The nonlinear restoration method is then carried out iteratively in the second 

stage by using a dynamic algorithm to minimize the energy function of the network. Further, 

the modified Hopfield NN is proposed for regularized image restoration [37]. A hierarchical 

cluster model (HCM) is developed that consists of parallel, distributed subnetworks [38], 

[39]. HCM models the organization of the neo-cortex in human brain where functional groups 

of neurons organize themselves dynamically into multidimensional subnetworks. This idea is 

extended to formulate a recursive blind deconvolution scheme based on soft blur 

identification and hierarchical network model [40], [41].  

It is well known that most PSFs satisfy up to a certain degree of parametric structure [1]-[4]. 

Conventional blind methods require a hard-decision on the structure of PSF to be made prior 

to deconvolution. This either restricts the flexibility of the algorithms, as exemplified by a 

priori blur identification, or results in underutilization of the information available, as 
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illustrated in SDR and NAS-RIF approaches. In view of this, this chapter proposes a 

parametric double regularization (PDR) approach for adaptive blind image deconvolution. A 

novel manifold soft parametric modeling (MSPM) algorithm is developed to evaluate the 

relevance of multiple parametric blur structures, and integrate the useful information into the 

scheme. An optimization procedure called alternating minimization (AM) is then employed to 

minimize the image- and blur-domain cost functions iteratively. 

 

3.3 Development of Cost Function  

The main issues involved in the design of blind image deconvolution comprise: (i) proposal of 

meaningful cost function, (ii) integration of useful a priori information, and (iii) development 

of effective optimization procedure. We will examine the development of the meaningful cost 

function in this section.  

Blind image deconvolution is an ill-posed problem, as the stability of the solution is not 

guaranteed. The regularization approach is effective in offering numerically stable and 

visually pleasing solution. SDR adopts two regularization functionals to impose the 

constraints on the estimated original image and PSF, respectively. The regularization 

functional can be either TV to minimize the energy of first-order derivative or Tikhonov for 

second-order derivative. To perform effective joint blur identification and image 

deconvolution, we extend DR by proposing the following cost function: 

 2( , ) || || ( ) ( ) ( )J R R S= − + + +f h g Hf f h h  (3.1) 

where || . ||  represents the L2-norm. For ease of notation, we omit cap “ ^ ” that represents the 

estimated results for blur and image. 

The first term in (3.1) represents the least-square data fidelity of the estimated f and h with 
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respect to the degrade image g. ( )R f  and ( )R h  are the Tikhonov regularization functionals 

that introduce stability into the solution by imposing smoothness constraints on the image and 

PSF, respectively. We formulate a spatially adaptive regularization scheme by introducing the 

functional below: 

 
[ ]

[ ]

2 2

( , )

2 2

( , )

( ) ( , ) ( , ) ( , ) || || ;

( ) ( , ) ( , ) ( , ) || ||

f

h

x y S

x y S

R x y c x y f x y

R x y e x y h x y

α

β

∈

∈

= ∗ =

= ∗ =

∑

∑

f ΛCf

h ΨEh
 (3.2) 

where ( , )c x y  and ( , )e x y  are the regularization filters to ensure smoothness of the 

solution, which can take the form of high-pass or impulse function. C  and E  are the 

BCCB matrices constructed from ( , )c x y  and ( , )e x y  , respectively. iα  and iβ  assign 

regularization parameters to the ith element in the image- and blur-domain, respectively. They 

serves two purposes: (i) assign spatially varying regularization parameters to different image 

areas to encourage detail preservation at the textured regions, and suppress noise in the 

smooth background, (ii) provide a compromise between data fidelity and regularization 

functionals. Let (.)diag  denotes the diagonal matrix, Λ  and Ψ  are diagonal matrices 

given as 

  1 1( , , , , ); ( , , , , )i MN i PQdiag diagα α α β β β= =Λ Ψ" " " "  (3.3) 

The last term ( )S h  in (3.1) represents the soft parametric modeling term for the blur. It 

serves as a reinforcement learning term to integrate the potentially useful parametric structure 

of the blur. It is well-known that most blurs satisfy up to a certain degree of parametric 

structure. In view of this, we introduce the following soft modeling term for ( )S h : 

 
2 2

( , )
( ) ( , ) ( , ) ( , ) || ( ) ||

h

p p
x y S

S x y h x y h x yγ
∈

⎡ ⎤= − = −⎣ ⎦∑h Γ h h  (3.4) 
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where 1= diag( , , , , )i PQγ γ γΓ " " . The weight parameters iγ  assign different 

emphases based on the relative difference between h and ph . ph  is the parametric estimate 

constructed from soft parametric models, which will be introduced in Section 3.4.  

The main objective of this arrangement is to assess the relevance of current blur estimate h  

with respect to parametric models, and integrate this knowledge progressively into the scheme 

if necessary. If the current blur h  resembles the parametric estimate ph  closely, suggesting 

a strong likelihood that h  indeed belongs to a parametric structure, then the soft modeling 

term ( )S h  will induce learning towards ph . In contrast, if h  differs from ph  

significantly, suggesting that h  may not belong to any predefined parametric blur types, then 

( )S h  will be small, and there will be little learning towards ph . This mechanism represents a 

flexible reinforcement learning paradigm where the parametric blur information is integrated 

only if it is relevant.  

 

3.4 Manifold Soft Parametric Modeling  

Blind image deconvolution algorithms can be classified broadly into two categories: 

parametric and nonparametric techniques. Parametric modeling techniques such as a priori 

blur identification assume that the PSF satisfies a known parametric structure. The scheme is 

developed specifically for the targeted blur structure, hence restricting its overall flexibility. In 

contrast, nonparametric methods do not utilize well-known blur knowledge, resulting in 

underutilization of the information available. Both classes of methods above adopt crisp 

logics implicitly, namely the parametric blur information is either incorporated fully or 

discarded totally. In view of this, we propose a novel manifold soft parametric modeling 

(MSPM) algorithm to resolve such dilemma.  
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The MSPM algorithm assesses the relevance of current blur h  with respect to parametric 

models, and integrates this knowledge progressively into the scheme. The block diagram of 

the MSPM scheme is given in Figure 3.2. It consists of three functional layers. The first layer 

is the neighbor generation layer where K nearest neighbors or manifolds { }1, , Kh h"  are 

constructed from h . The second layer is fuzzy membership estimation layer, which aims at 

evaluating the relevance of the parametric models { }1, , CT T" with respect to { }1, , Kh h" . 

The final layer performs weighted mean filtering to obtain the final parametric blur estimate 

ph  based on their relative degree of relevance. 

 

 
Figure 3.2 Manifold soft parametric modeling blur estimator. 

 

3.4.1 Nearest Neighbors Generation  

The K-nearest-neighbor (K-NN) rule is one of the most widely used classifying principles in 
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pattern recognition. K-NN rule implies that the input sample is classified according to its K 

nearest neighbors [42]-[44]. Throughout deconvolution, the coefficients of h  are susceptible 

to error due to uncertainty in joint estimation of blur and image. The only reliable information 

lies in the overall structure, or in other words, the low-frequency contents of h . Therefore, 

the neighbor generation is based on its low-frequency information.  

First, the 2-D DFT of h  is computed to produce �H .  

Next, �H  is passed through different low-pass raised cosine filters { 1, , }j j K=W " [45]: 

 

2 2 2 2

2 2 2 2

1  1  1 1 cos ;   
( ,  )         2 2 2

1; otherwise

j j

j j

x y x y
W x y P Q P Q

ζ ζπ
ζ

⎧ ⎧ ⎫⎡ ⎤⎛ ⎞− −⎪ ⎪⎪ ⎢ ⎥+ + − + ≥⎜ ⎟⎪ ⎨ ⎬⎜ ⎟= ⎨ ⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭⎪
⎪⎩

 (3.5) 

where jζ  is the roll-off factor. The raised cosine filters consist of unity gain at low 

frequencies, a raised cosine function in the middle, and total attenuation at high frequencies. 

The purpose of the roll-off factor jζ  is to generate a 2-D weighting matrix to assign 

emphases to different frequency component. In other words, each nearest neighbor is 

generated by a weighting matrix, where this weighting matrix is produced by a specific jζ . 

Since the weighting matrices are desired to have different frequency emphasis, the sequence 

of jζ  is ideally randomly distributed in the range of [0 1]. In the experiments, we use 

/j j Kζ =  in (3.5), where 1, ,j K= " and K  is the number of neighbors. For example, 

{0.2, 0.4, 0.6, 0.8,1.0}jζ =  when there are 5 nearest neighbors. Experimental results show 

that the algorithm is relatively insensitive to this roll-off factor. 

Finally, 2-D inverse discrete Fourier transform (IDFT) is performed to generate the K-NN 

{ 1, , }j j K=h " . We will adopt K PQ=  in our experiment. 
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3.4.2 Fuzzy Membership Estimation 

We define a soft set Ω , consisting of parametric models as  

 { }( ) ; 1, ,i i CΩ = =T θ "  (3.6) 

where ( )iT θ  represents the ith parametric model of the PSF with its defining parameters θ , 

and C  is the number of blur models. We will focus our attention on some practical blur 

models in this work, namely Gaussian, uniform, and linear blurs:  

 

{ }
{ }

{ }

2 2 2

2 2

( ) : ( , ) exp ( ( ) /(2 ))

( ) : ( , ) 1/

( ) : ( , )

g g

u u

l l

T x y a x y

T x y a

T x y b a x y

σ= − +

=

= − +

T θ

T θ

T θ

 (3.7) 

where , ,a b σ  are the model parameters of the PSF. The linear blur is implemented as a 

first-order approximation to the generic blur. We can extend the model set Ω  to include 

other parametric models if desired.  

We define ijμ  as the fuzzy membership or likelihood of the neighbor jh  in resembling the 

ith parametric model ( )iT θ . The first subscript i denotes the index of blur model, while the 

second subscript j represents the index of the nearest neighbor. It is assumed that 

( )i jχ = −T θ h  is identically and independently distributed (iid) Gaussian noise with 

covariance matrix 2 χσ= IΣ . A maximum a posteriori (MAP) estimator is then employed to 

determine the best-fit model ( )ij
∗T θ  for jh :  
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 (3.8) 

where 2
χσ  is the modeling noise. Next, the fuzzy membership of ijμ  is computed based on 

the Euclidean distance between jh  and the corresponding MAP model ( )ij
∗T θ : 

 
2|| ( ) ||

exp( )
2 ( )

j ij
ij

eetr
μ

∗−
= −

h T θ
Σ

 (3.9) 

 

3.4.3 Weighted Mean Filtering 

We will introduce a membership function ( )iμ h  to determine the membership of h  

belonging to the ith parametric blur model. The membership function is: 

 

2

1

2

1

(1/ || || )
( ) ; 1, ,

(1/ || || )

K

ij j
j

i K

j
j

i C
μ

μ =

=

−
= =

−

∑

∑

h h
h

h h
"  (3.10) 

The likelihood function ( )iμ h  depends on two factors: (i) membership value of the blur 

manifold ijμ , and (ii) the distance between h  and its neighbor jh . It is based on the notion 

that those neighbors that are closer to h  should be assigned greater weight in the 

computation of ( )iμ h .  

The final output parametric blur ph  is obtained from the parametric blur models using: 
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where 0 1, ,
( ) 1 max ( ( ))ii C

μ μ
=

= −h h
"

, and ( )i
∗T θ  is the optimal parametric model which is 

computed based on h  using (3.8) 

 ( ) arg max P( ( ) | ); 1, ,i i i C∗ = =
θ

T θ T θ h "  (3.12) 

The proposed MSPM algorithm employs a fuzzy K-NN notion in estimating the final blur 

estimate. As opposed to finding a single best-fit structure, the MSPM algorithm generates 

multiple parametric models to the current blur based on K-NN rule. This approach is 

consistent with the notion that the current blur can only be described in terms of likelihood, 

rather than absolute certainty, in assuming any parametric structure. In addition, the new 

scheme will allow the construction of a representative solution space where more blur 

structures can be incorporated.  

  

3.5 Optimization Procedure  

The cost function in (3.1) consists of image- and blur-domain terms. As it is computationally 

intensive to perform joint optimization, the optimization procedure called alternating 

minimization (AM) is then extended to minimize them iteratively [14], [31]. We project the 

overall cost function ( , )J f h  into the image-domain cost function ( | )J f h , and the 

blur-domain cost function ( | )J h f . The optimization procedure can be summarized as: 

(i)  Initialize (0)h , (0)f  

(ii) Minimize the ith iterative cost functions:  
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 2 2( | ) || || || ||iJ = − +f h g Hf ΛCf  (3.13) 

 2 2 2( | ) || || || || || ( ) ||i pJ = − + + −h f g Hf ΨEh Γ h h  (3.14) 

(iii) Stop when termination condition is satisfied. 

 

The cost functions ( | )J f h  and ( | )J h f  can be shown to be quadratic with positive 

semi-definite Hessian matrices. It follows that ( | )J f h  and ( | )J h f  are convex functions, 

which ensure convergence in their respective domains. A more thorough treatment of 

convergence analysis on general AM is given in [46].  

The overview of the proposed PDR algorithm is given in Figure 3.3. Two relevant issues in 

PDR deconvolution scheme include: (i) blur support size estimation, and (ii) generation of the 

MSPM blur estimate. We have already developed MCSC, MASD, and MAAD to address the 

first issue in Chapter 2. A MSPM algorithm is developed to solve the second issue in previous 

section. The AM procedure is then employed in conjunction with conjugate gradient 

optimization (CGO) to perform blur identification and image restoration iteratively. 

Therefore, The iterative minimization scheme of PDR consists of outer loop of AM, where 

each AM iteration contains two inner loops of image- and blur-domain CGO.  
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Figure 3.3 Overview of parametric double regularization scheme. 

 

The proposed PDR algorithm is different from the SDR method in several aspects. Firstly, the 

SDR method decomposes blind image deconvolution into two symmetric processes of image 

deconvolution and blur identification. It does not consider the unique characteristics of blur 

domain. This is inconsistent with practical applications as many real-world PSFs satisfy up to 

a certain degree of parametric structure. Secondly, most PSFs exist in the form of low-pass 

filters. Thirdly, the SDR method employs a heuristic ITP to estimate the blur support, which is 

sensitive to pruning threshold and regularization schemes. The proposed PDR algorithm 

attempts to address these asymmetries by integrating parametric blur information into the 

scheme. Moreover, the blur support is identified prior to the deconvolution process. These 

observations above highlight the importance of performing image deconvolution and blur 
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identification according to their characteristics.  

 

3.5.1 Minimization of Blur-Domain Cost Function 

CGO is used in conjunction with AM to optimize the image- and blur-domain cost functions. 

The steepest descent method uses local gradient and tends to search in the same directions 

repeatedly, leading to very slow convergence. CGO utilizes conjugate direction at each step to 

search for the minima and can achieve faster convergence when compared with steepest 

descent method. Furthermore, the resulting conjugate search directions implicitly accumulate 

information about the Hessian matrix as iterations proceed. Compared to Newton’s method, 

CGO does not require explicit second partial derivatives in Hessian matrix. It requires less 

storage requirement and computational complexity when compared with Newton’s method 

[48]. Therefore, CGO is ideal in this large-scale optimization application, leading to fast 

convergence in a small number of iterations.  

The formulation involved in the optimization of ( | )J h f  is derived in this subsection. The 

gradient of ( | )J h f  in (3.14) with respect to h  is given by:  

 H H 2 2( | ) 2 ( ) 2 2 ( )
 p

JJ = = − + + −
∂h
h f h g E Ψ Eh Γ h h

h
F F∇  (3.15) 

where F  is the stacked matrix formed by the estimated image f  as in (2.29).  

The mathematical formulations of blur identification based on CGO are developed as follows:  

(i) Initialize the conjugate vector q: 

 (0) (0)J= − hq ∇  (3.16) 

(ii) Update the ( 1k + )th iteration blur estimate: 
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(iii) Update the (k+1)th iteration conjugate vector: 
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(iv) Impose the blur constraints: 

 
( , )

( , ) 1; ( , ) 0
hx y S
h x y h x y

∈

= >∑  (3.19) 

(v) Repeat steps (ii) to (iv) until convergence or a maximum number of iterations is reached. 

 

3.5.2 Minimization of Image-Domain Cost Function 

The gradient of ( | )J f h  with respect to f is given by:  

 H H 2( | ) 2 ( ) 2JJ ∂
= = − +

∂f
f h H Hf g C Λ Cf
f

∇  (3.20) 

The mathematical formulations of image deconvolution based on CGO are developed as 

follows:  

(i) Initialize the conjugate vector q: 

 (0) (0)J= − fq ∇  (3.21) 

(ii) Update the (k+1)th iteration image estimate: 

 
( ) 2

( 1) ( ) ( ) ( ) ( )
( ) 2 ( ) 2

 || ||
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|| ||  || ||

k
k k k k k

k k

J
η η+ = + =

+
ff f q

Hq ΛCq
∇

 (3.22) 

(iii) Update the (k+1)th iteration conjugate vector: 
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(iv) Impose the image constraint 

 0 ( , ) 255; ( , ) ff x y x y S≤ ≤ ∈  (3.24) 

(v) Repeat steps (ii) to (iv) until convergence or a maximum number of iterations is reached. 

 

3.6 Experimental Results 

The effectiveness of the PDR algorithm is illustrated through deconvolution of several 

degraded images under various conditions. The blur support is identified prior to the 

deconvolution process using the proposed techniques in Chapter 2. For MSPM, we select 

three practical blur models, namely Gaussian, uniform, and linear blurs in (3.7). After 

generating the K-NN of the current estimated blur, the paramteric blur estimate ph  is 

produced by (3.11). The weight assignment for the regularization term has been studied 

extensively in previous literatures [14], [40], [41]. The regularization parameters and soft 

error term are given as: 30.5 /(1 10 var ( ))i iα = + f , 6 310 /(1 10 var ( ))i iβ = + h , and 

6 310 /(1 10 var ( ))
pi iγ −= + h h , where var ( )if , var ( )ih , var ( )

p
i−h h  denote the normalized local 

variance of f , h , p−h h . We have also tried different weight assignments to determine the 

suitable weighting scheme for the soft MSPM error term. We observe empirically that as long 

as the contribution between the regularization term and the soft MSPM terms are within the 

same order of magnitude, the deconvolution results will remain satisfactory. In view of this, 

we suggest a similar weight assignment scheme for iβ  and iγ  due to its simplicity.  

The number of iteration for AM and CGO are set to 5 and 10, and the procedure consisting of 
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blur identification with MSPM and image deconvolution is run. To evaluate the efficiency of 

the PDR algorithm, a performance measure called peak signal-to-noise ratio (PSNR) is 

employed. We further evaluate the efficiency of PDR by comparing it with the SDR method 

[14]. Both methods are run with the same initial conditions and regularization schemes. 

  

3.6.1 Blind Deconvolution of Image Degraded by a Uniform PSF 

The 256 256×  “Cameraman” image shown in Figure 3.4(a) is degraded by 7 7×  uniform 

blur to produce Figure 3.4(b). The MCSC, MAAD, and MASD sequences of the filtered 

image in the vertical and horizontal directions are given in Figure 3.4(e) and (f). We observe 

from Figure 3.4(e) that the criterion achieves the minima or maxima at m=7, which is the 

actual blur support in the vertical direction. Similarly, the criterion reaches the minima or 

maxima at n=7 in the horizontal direction as shown in Figure 3.4(f). Therefore, the MCSC, 

MAAD, and MASD have correctly identified the support of the PSF as 7 7× . After that, we 

initialize the PSF with impulse function based on the estimated support size. We apply MSPM 

in conjunction with AM to perform joint blur identification and image deconvolution. The 

final restored image is given in Figure 3.4(c). It can be observed that the overall sharpness of 

the image has been recovered. Significant amount of details has also been restored in the 

textured and edge regions. 

Next, we compare our result with that obtained using the SDR method. The initial blur size 

for SDR is set to 11 11× , and the ITP is employed to estimate the blur support. The restored 

image by SDR is shown in Figure 3.4(d). Comparison reveals that our approach is superior in 

preserving details in the textured regions, while suppressing ringing in the smooth 

background. This is supported by objective performance measure as our method offers a 

PSNR of 30.15 dB, compared to 28.28 dB obtained by using the SDR method. The good 
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performance is due to the effectiveness of the MCSC method in estimating the PSF support, 

and the MSPM algorithm in integrating the soft parametric blur information. Both these 

factors result in satisfactory restored image quality. 

 

3.6.2 Blind Deconvolution of Image Degraded under Noisy Conditions 

Blind deconvolution of noisy degraded image is a challenging problem. The “Lena” image 

shown in Figure 3.5(a) is degraded by 5 5×  Gaussian blur (standard deviation, 2.5σ = ), 

followed by 30 dB noise to produce Figure 3.5(b). The PDR algorithm is employed as 

previously to identify the blur and restore the image. The PDR restored result is given in 

Figure 3.5(c). It is observed that most visual clarity has been recovered, especially near the 

feather and hat regions. Next, we compare our result with that obtained using the SDR 

method. The restored image by SDR is shown in Figure 3.5(d). Comparison reveals that our 

approach is better as our method offers a PSNR of 31.68 dB, compared to 29.26 dB obtained 

by using the SDR method. 
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 (a) (b)  

          
 (c) (d)  

  
 (e) (f) 

Figure 3.4 Blind deconvolution of image degraded by a uniform PSF. (a) Original image, (b) Degraded 

Image, (c) PDR restored image, (d) SDR restored image, (e) MCSC, MASD and MAAD profiles in the 

vertical direction, (f) MCSC, MASD and MAAD profiles in the horizontal direction. 
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 (a) (b) 

  
  (c) (d) 

Figure 3.5 Blind deconvolution of image degraded by a Gaussian PSF with additive noise. (a) Original 

image, (b) Degraded Image, (c) PDR restored image, (d) SDR restored image. 
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3.6.3 Blind Deconvolution of Image Degraded by Different PSFs 

We illustrate the robustness of the proposed PDR method under different conditions: blur 

sizes, noise levels, and blur types in this subsection. The “Lena” image is selected as the test 

image again. The final results are tabulated in Table 3.1. The PDR scheme has achieved 

satisfactory image deconvolution, as reflected by good PSNR values. It is effective in 

restoring images under different blur sizes ( 5 5× , 7 7× ), different blur types (Gaussian, 

uniform, linear) in (3.7), and different noise levels (noiseless, 30dB). Further, it is observed 

that PDR consistently outperforms the SDR method. This demonstrates the robustness of our 

method in performing blind deconvolution under various conditions and constraints. 

 

TABLE 3.1 BLIND IMAGE DECONVOLUTION RESULTS 

Original PSF PSNR (noiseless) PSNR (noise at 30 dB) 
Size Type Parameter PDR SDR PDR SDR 

Gaussian σ =2.0 31.69 29.63 31.06 29.24 
Uniform NA 31.89 30.02 30.44 28.57 5×5 
Linear a = 0.004 31.46 29.93 30.15 29.34 

Gaussian σ =3.0 30.42 29.28 29.22 28.45 
Uniform NA 31.65 29.55 30.30 29.04 7×7 
Linear a = 0.005 31.21 30.50 30.62 28.57 

 

Next, we give a set of images degraded by Gaussian PSF (5 5× , standard deviation, 2.5σ = ), 

followed by 40dB noise. The proposed PDR approach is applied to restore the image and the 

result is shown in Figure 3.6. It is observed that significant amount of details has been 

recovered in the restored images.  
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  (a) (b) (c) 

Figure 3.6 Examples of blind image deconvolution results. (a) Original image, (b) Degraded image, (c) 

Restored image. 
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(a)  

  
 (b) (c) 

 
 (d)   (e) 

Figure 3.7 Blind deconvolution of real-life image. (a) Naturally blurred Image, (b) PDR restored image, 

(c) SDR restored image, (d) MCSC, MASD and MAAD profiles in the vertical direction, (e) MCSC, 

MASD and MAAD profiles in the horizontal direction. 
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3.6.4 Blind Deconvolution of Real-Life Blurred Image  

A real-life blurred color image of sized 640×480 pixels is captured using a digital camera 

(Cannon IXUS v3). The image is a shell lying on a piece of paper with some texts, as shown 

in Figure 3.7(a). We use MCSC, MASD, and MAAD to identify the blur support in this 

experiment. From the figures, it can be observed that the estimated blur supports is 4 ×5. To 

facilitate the implementation of image restoration where blur support is usually taken as odd 

number, we have determined the next-best blur support estimate to be 5×5. The restored 

image by the PDR algorithm is given in Figure 3.7(b). It can be observed that the overall 

quality of the image has been improved. In contrast, the SDR restored image is shown in 

Figure 3.7(c). By comparing the restored images shown in Figure 3.7 (b) and (c), it is obvious 

that the PDR algorithm is better than SDR as there is little ringing or amplification of noise in 

the smooth backgrounds. This illustrates that the PDR method is instrumental in handling 

real-life image deconvolution. 

 

3.7 Summary 

We have proposed a PDR approach for blind image deconvolution based on soft integration of 

manifold blur parametric modeling. The new scheme integrates the parametric information of 

the blur structures progressively throughout deconvolution. The blind deconvolution problem 

is formulated into an AM procedure of blur identification and image deconvolution. This 

improves the convergence rate greatly, leading to significant reduction in computational cost. 

As opposed to other blind algorithms, the proposed technique is flexible as it has the 

following characteristics: (i) it can identify the blur support, (ii) it can incorporate readily 

many well known parametric PSFs such as motion, uniform, and Gaussian blurs into the 
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scheme, (iii) it can be tailored flexibly to include other blur types if some prior parametric 

knowledge of the blur is available, (iv) in the event that the actual blur does not satisfy any 

parametric models, the method has the flexibility to ignore the soft MSPM learning term, and 

determine the blur based on the combination of least-square data fidelity and regularization 

term. 
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Chapter 4  

Multichannel Recursive Filtering for 

Deconvolution 

4.1 Introduction 

In many applications such as remote sensing and microscopy imaging, multiple degraded 

images of a single scene become available while the PSF of each channel remains unknown. 

The single-input multiple-output (SIMO) model for multichannel degradation is shown in  

Figure 4.1. Therefore, the recovery of the original scene from its multiple observations is 

required and this problem is, commonly, referred to as multichannel blind image 

deconvolution.  

 
 

Figure 4.1 Multichannel blurring model. 
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Processing multichannel images is more complicated than processing single channel image 

due to the higher dimensionality of the problem. Similar to single-input single-output (SISO) 

deconvolution in Chapter 2, the key feature in multichannel deconvolution is that PSFs are 

unknown a priori. It is worth mentioning that the ill-posed nature of deconvolution is 

improved due to that the information lost in one channel may be compensated from the other 

channel. In other words, the quality of the restored image through SIMO model is normally 

better than that of SISO model. The more channels we have, the better the deconvolution 

result is.  

The organization for the rest of this chapter is outlined as follows. Section 4.2 reviews the 

methods for multichannel blind image deconvolution. Section 4.3 provides a brief discussion 

on the cost function formulation. In Section 4.4, the development of recursive image 

deconvolution algorithm is presented. In Section 4.5, issues related to the selection of 

regularization parameters and forgetting factor are discussed. Simulation results are given in 

Section 4.6. In Section 4.7, conclusions and further remarks are drawn. 

 

4.2 Literature Review 

Early efforts for multichannel deconvolution are centered on non-blind restoration of noisy 

blurred images by using Wiener filtering [49]-[51], constrained least squares [52]-[55], and 

Bayesian methods [56], [57].  

With the assumption that the multichannel PSFs are weakly co-prime, and in the absence of 

noise, the desired image and PSFs can be transformed into the null-space of a special matrix 

constructed from the degraded images [58]-[61]. Centered on this idea, several techniques 

have been proposed which include greatest common divisor (GCD) [58], subspace-based 
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[59], [60], and eigenstructure-based approaches [61]. The GCD method is based on the notion 

that the desired image can be regarded as the polynomial GCD among the degraded images in 

the z-domain. Subspace-based methods work by first estimating the PSF using a procedure of 

min-eigenvector, followed by conventional image restoration using the identified PSFs. In 

similar concept, eigenstructure-based algorithm transforms the nullspace problem into a 

constrained optimization framework and performs direct deconvolver estimation. The 

aforementioned nullspace-based methods, however, suffer from noise amplification, which 

often lead to poor solutions in the noisy environments. 

There are some successful works on the development of multichannel deconvolution, which 

exploit the features of SISO deconvolution algorithms. These techniques develop a cost 

function within the framework of constrained least squares minimization. The iterative 

alternating minimization (AM) strategy is used to minimize the cost function. The 

minimization step involves two processes of blur identification and image restoration centered 

on the principle of projection-onto-convex-sets (POCS). The AM strategy is first proposed in 

[31] along with POCS and extended to double Tikhonov regularization for SISO 

deconvolution in [14]. SDR [62] and Gauss-Markov random fields [63] have also been 

applied in multichannel blind image deconvolution. A promising attempt has been made by 

utilizing the blur null-space as the regularization term in the framework of total variation (TV) 

[64]. Recently, the extension of the Bussgang blind equalization algorithm to iterative 

multichannel deconvolution has been proposed in [65]. The basic idea is focused on Wiener 

filtering of the observed degraded images, and updating the filters using a nonlinear Bayesian 

estimation of the estimated image. Generally speaking, these iterative methods are the 

extensions of SISO blind image deconvolution approaches. Therefore, if a new degraded 

image becomes available at a later stage, the iterative schemes will require a complete re-run, 

rather than a recursive process to update the estimate. This is, clearly, inflexible and 
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computationally inefficient. 

In view of this, we develop a new and efficient algorithm called multichannel recursive 

filtering (MRF) to address blind multichannel image deconvolution. The estimated image is 

recursively updated from the previous estimate using a regularization framework. All the 

operations of MRF are performed in DFT domain, giving rise to fast and simple 

implementation. The multichannel PSFs are identified iteratively using conjugate gradient 

optimization (CGO). The proposed algorithm introduces a forgetting factor to discard the old 

unreliable estimates, hence achieving better convergence performance. A key feature of the 

method is its computational simplicity and efficiency. This allows the new method to be 

adopted readily in real-life applications. 

   

4.3 Development of Cost Function 

In this work, we are interested in the SIMO multichannel blind image deconvolution problem. 

Considering the SIMO linear degradation system that consists of K measurements of the 

original image f, the observed degraded image of the ith-channel can be modeled as: 

 , 1, 2,i i i i K= ∗ + =g h f n "  (4.1) 

where ig , ih , and in  represent the degraded image, PSF, and noise of the ith-channel, 

respectively. To tackle the ill-posed nature of image deconvolution, Tikhonov regularization 

theory has been employed in the deconvolution scheme, as it is effective in detail preservation 

and noise suppression. The regularization principle has been extended to a SDR framework 

that imposes smoothness constraint in both the image- and blur domains. In terms of the 

ith-channel, it can be described by [52], [53]: 

 2 2 2 2 2 2 2|| || || || ; || || ; || ||i i i i i i iε κ δ− ∗ = ≤ ∗ ≤ ∗ ≤g h f n c f e h   (4.2) 
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where iε , κ , iδ  are the upper bounds related to the noise, image and PSF terms, 

respectively. c  and ie  are the regularization operators and usually take the form of a 

high-pass filter. The first term in (4.2) is the data-fidelity term, while the second and third 

terms are the regularization functionals that impose smoothness constraints on the image- and 

blur-domains respectively. In order to perform joint blur identification and image 

deconvolution for multichannel problem, the following cost function, in similar fashion to 

(3.1), is formulated over K channels: 

 ( )2 2 2

1

( , ) || || || || || ||
K

i i i i i i
i

J α β
=

= − ∗ + ∗ + ∗∑f h g h f c f e h  (4.3) 

where 1{ , , }K=h h h"  is the multichannel blur. The cost function in (4.3) consists of the data 

fidelity term, and the image- and blur-domain regularization terms. iα  and iβ  are the 

regularization parameters that offer a compromise between least-square fidelity error and the 

regularity of the solutions f  and ih . As it is computationally intensive to perform joint 

optimization to estimate image and blur simultaneously, an iterative strategy based on AM is 

adopted to project the overall cost function ( , )J f h  into the image-domain cost function 

( | )J f h  and the blur-domain cost function ( | )J h f . The technique, however, suffers from 

potential poor local convergence, leading to ringing artifacts in the restored image. Further, if 

an extra degraded image (i.e. (K+1)th measurement 1K +g ) becomes available at a later stage, 

the iterative schemes will require a complete re-run, rather than a recursive process to update 

the estimate. 
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4.4 Recursive Filtering for Multichannel Blind Deconvolution 

4.4.1 Multichannel Recursive Filtering 

The overall cost function in (4.3) consists of two sets of unknown variables: image and blur. 

As explained earlier, we project ( , )J f h  into the image-domain cost function ( | )J f h  by 

fixing the blurring filters h to give:  

 ( )2 2

1

( | ) || || || ||
K

i i i
i

J α
=

= − ∗ + ∗∑f h g h f c f  (4.4) 

It is observed that (4.4) is a convex function with respect to f.   

Recursive filtering is widely used in 1-D signal processing due to its fast convergence rate, as 

compared with least mean squares (LMS) filtering [66]. Motivated by this consideration, we 

develop a new multichannel recursive filtering scheme to address the 2-D problem in this 

work. It is worth noting that, unlike the 1-D cases where matrix inversion lemma is used in 

the development of recursive least square filtering, the same approach cannot be applied in 

2-D images due to significantly enhanced complexity. In view of this, we propose a MRF 

scheme that utilizes DFT to update the image estimate.   

This formulation of the proposed MRF is outlined as follows.  

Let ( ){ 1, 2, , }n n K=f "  be the estimated image from the observed data 1{ , , }ng g"  at the 

nth recursive step. The estimated ( 1)n+f  can be updated by using the information contained 

in the newly received observation 1n+g  through: 

 ( 1) ( ) ( 1)n n n+ += +f f u  (4.5) 

where ( 1)n+u  is the update term, to be derived in the later part of this subsection.  

In the development of MRF, we introduce a forgetting factor λ  into the cost function of 
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(4.4) to ensure that the data in the distant past are assigned less emphasis [66]. Thus, we can 

re-express (4.4) in the matrix-vector notation with the forgetting factor λ  as: 

 ( )( ) 2 2

1
min || || || ||

n
n n i

i i i
i

λ α−

=

= − +∑f
f g H f Cf  (4.6) 

where iH  and C  are the block-circulant matrices that are constructed from ih  and c , 

respectively. It is worth mentioning that the special case of 1λ =  means infinite memory as 

the effect of past data is not attenuated. In contrast, the exponentially decaying memory 

channel ( 1λ < ) is used in time-varying environment.  

The closed-form solution to the least squares problem in (4.6) using the pseudoinverse is 

given by: 

 ( ) ( ) 1 ( )( )n n n−=f R r  (4.7) 

where ( )( )

1

n
n n i H H

i i i i i
i

λ α−

=

= +∑R H H C C  and ( )

1

n
n n i H

i i
i

λ −

=

= ∑r H g .  

When the cost function of (4.6) incorporates the available (n+1)th channel, the estimate 

( 1)n+f  is given as 

 ( 1) ( 1) 1 ( 1)( )n n n+ + − +=f R r  (4.8) 

where ( 1) ( )
1 1 1 1 1

n n H H
n n n n nλ α+

+ + + + += + +R R H H C C  and ( 1) ( )
1 1

n n H
n nλ+

+ += +r r H g . The (n+1)th 

( 1)n+f  depends on the (n+1)th channel 1n+h  which is estimated from the blur identification 

step detailed in next subsection.   

Substituting  (4.5) and (4.7) into (4.8), it yields the update term ( 1)n+u  as 

 ( 1) ( 1) 1 ( )
1 1 1 1 1 1 1( ) ( ( ) )n n H H H n

n n n n n n nα+ + −
+ + + + + + += − +u R H g H H C C f  (4.9) 

Hence, the (n+1)th  least squares estimate ( 1)n+f  can be computed recursively from its 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 4 75  

 

previous estimate ( )nf  using (4.5) and (4.9). However, the matrix ( 1) 1( )n+ −R  cannot be 

computed readily from ( ) 1( )n −R  due to the huge computation cost associated with the 

inversion of the matrix ( ) 1
1 1 1 1 1( )n H H

n n n n nλ α −
+ + + + ++ +R H H C C  (dimension of MN MN× , 

where M N×  is the size of the image). To address this issue, we exploit the diagonalization 

properties of the 2-D DFT for BCCB matrix. The recursive filtering in spatial domain is 

transformed into the DFT domain. Let [.]F  denote the DFT operation, the cap “ ~ ” and 

( , )x yω ω=ω  are used to represent the signal in the frequency domain and the frequency pair 

along the X- and Y-axis, respectively. The proposed recursive multichannel deconvolution can 

be summarized as follows: 

(i) Initialize the algorithm 

 (0) (0),  ,  1λ= = ≤f 0 R 0�  (4.10) 

(ii) For the (n+1)th channel, 0,  1,  ,  1n K= −" ,  

   Set 1nα + , 1n+c , and calculate the DFT1: 

 ( ) ( )
1 1 1 1 1 1[ ], [ ], [ ], [ ]n n

n n n n n n+ + + + + += = = =f f g g h C c� � �� HF F F F  (4.11) 

  (a) Update the old estimate recursively: 

 

2 2 ( )
( 1) ( ) 1 1 1 1 1

( 1)

( 1) ( ) 2 2
1 1 1

( ) ( ) (| ( ) | | ( ) | ) ( )( ) ( )
( )

where ( ) ( ) | ( ) | | ( ) |

H n
n n n n n n n

n

n n
n n n

α

λ α

+ + + + + +
+

+
+ + +

− +
= +

= + +

ω g ω ω C ω f ωf ω f ω
R ω

R ω R ω ω C ω

� � � ��� �
�

� �� �

H H

H

 (4.12) 

  (b) Calculate the IDFT and impose image constraint to obtain the estimated image: 

                                                 
1 In Matlab, the 2-D DFT of the PSF and regularization operator is implemented using 

psf2otf, while for image, it is implemented using fft2 function. 
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 ( 1) -1 ( 1)0 [ ] 255n n+ +≤ = ≤f f�F  (4.13) 

 

4.4.2 Blur Identification 

Blur identification is a challenging problem in blind image deconvolution, involving the 

estimation of its support size and coefficients. The cost function involved in the blur 

coefficients estimation is given by: 

 
( )

( )

2 2
1

1

2 2

1

( , , | ) || || || ||

|| || || ||

K

K i i i i i
i
K

i i i i i
i

J β

β

=

=

= − ∗ + ∗

= − +

∑

∑

h h f g h f e h

g H f E h

"
 (4.14) 

The gradient of ( | )J h f  with respect to { 1, 2, , }i i K=h "  is given by:  

 ( ) H H
1( , , | ) 2 ( ) 2

i

n
K i i i i iJ β= − +h h h f h g E E h" F F∇  (4.15) 

The mathematical formulations of blur identification have already been illustrated in 

Subsection 3.5.1 and summarized in Table 4.1. 
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TABLE 4.1 SUMMARY OF CONJUGATE GRADIENT OPTIMIZATION FOR BLUR IDENTIFICATION     

(i) For the i th channel ( 1, 2, ,i K= " ), initialize the conjugate vector by setting: 

 (0) ( )
1( , , | )

i

n
KJ= − hq h h f"∇  

(ii) At the ( n +1)th CGO iteration, 0,1,n = "  
   (a) Update the n th iteration blur estimate: 

 
( ) 2

( 1) ( ) ( ) ( ) ( )
( ) ( ) 2 ( ) 2

 || ||
, where

|| || || ||
i

n
n n n n n

i i n n n
i i

J
η η

β
+ = + =

+
hh h q

q E qF
∇

 

   (b) Update the n th conjugate vector: 

 
( 1) 2

( 1) ( ) ( ) ( ) ( )
( ) 2

|| ||
 , where

|| ||
i

i

i

n
n n n n n

n

J
J

J
ρ ρ

+
+ = − +  = h

h
h

q q
∇

∇
∇

 

(iii) Repeat (ii) until convergence or a maximum number of iterations is reached. 

 

4.4.3 Schematic Overview 

The schematic overview of the proposed algorithm is given in Figure 4.2. This approach is to 

alternately minimize the cost function with respect to the common f and the PSFs ih  in each 

channel, respectively. The flowchart consists of two key steps. The first step performs 

recursive image restoration to yield ( )if  using ( 1)i−f , ( 1)i−R  and the new data of the 

ith-channel. The second step performs blur identification using the conjugate gradient 

minimization to reach the optimal solution ih .  

Let K be the total number of channels, the inner loop of the procedure will run through the 

two steps alternately until data from all K channels have been computed. Unlike recursive 

filtering in 1-D adaptive filter design, multichannel image deconvolution does not have 

hundreds of measurements. Therefore, we propose to reuse the estimates (0) ( )K=f f , 

(0) ( )K=R R  from previous iteration in the outer loop to reiterate the inner loop till the 
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convergence is reached.  

 

 
Figure 4.2 Schematic diagram of the proposed algorithm. 

 

The novelty of this work is the recursive scheme in which the channel index is treated as a 

time index. It is worth mentioning that the proposed MRF for image restoration is performed 

in a fashion similar to Wiener filtering. It is, however, different from previous iterative 

schemes, which employ SDR-AM [62] or TV-AM [64] for the minimization of image-domain 

cost function. One advantage of the proposed algorithm is that it is flexible enough to update 

the old estimate when the new measurement becomes available later, i.e. the K+1 channel 
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becomes available after computation has been completed based on earlier K channels. Hence, 

the computational cost is greatly reduced due to two reasons: (i) recursive filtering updates the 

estimate based on first-come-first-serve basis, hence it does not require all the data to be 

available at once, and (ii) all the operations of MRF for image-domain minimization are 

conducted in the DFT domain. 

  

4.5 Issues on MRF Parameters 

4.5.1 Regularization Parameters and Operators 

The regularization framework is instrumental in providing satisfactory results in image 

restoration. Let ( )nχ  denote the residual error between ( )nf  in (4.7) and the original image f 

in (4.1). In the 2-D DFT domain, ( )nχ  is given by:  
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( ) ( )

2

1 1

2 2 2 2

1 1
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� � � �

H

H H

 (4.16) 

It can be observed that the error consists of two parts: the noise and the image terms. The first 

part is the noise term, which will be large for small ( )i ω�H  if there is no regularization term 

2| ( ) |iα C ω� . Thus, 2| ( ) |i iα C ω�  will reduce the impact of noise term. However, this is at the 

cost of producing a small bias to the actual image. In order to make ( )nχ  as small as 

possible, a reasonable compromise needs to be reached between these two terms through 

careful determination of regularization parameter and operator. Previous work on the selection 

of the regularization parameter includes set theoretic approach and generalized 

cross-validation [67]. We follow the idea of set theoretic [52], [53] to estimate the 
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regularization parameters iα  and iβ :  

 
2 2 2 2

2 (0) 2 2 (0) 2;
|| * || || * ||

i i i i
i i

i i i

MN MNε σ ε σα β
κ δ

= ≈ = ≈
c f e h

 (4.17) 

where iε , κ , iδ  are the upper bounds related to the noise, image and PSF terms in (4.2). 

2
iσ  is the noise variance in the ith-channel, which can be estimated from the smooth regions 

of the image. The purpose of (4.17) is to explore the relationship between noise, image and 

PSF to choose the reasonable regularization parameters. In practice, the regularization 

parameters iα  and iβ  are initialized and remained constant during AM procedure. We can 

use the estimated 2
iσ , (0)f  and (0)

ih  to provides an order-of-magnitude estimate for the 

regularization parameters [62], [64], [67]. The simulation results show that the algorithm is 

robust towards different regularization parameters so long as they fall within a reasonable 

range.  

The role of the regularization operator c  is to move the small magnitude term of ( )i ω�H  

away from the zeroes, while leaving the large values relatively unchanged. As PSF is 

generally a low-pass filter, c  should be taken as a high-pass filter or simply as an impulse 

function such as =C I , which impose smooth constraints on the images. The analysis on the 

regularization operator ie  is similar to c . In Appendix, an analysis on how the regularization 

result of (4.6) is affected by the error in the PSFs is investigated. 

 

4.5.2 Forgetting Factor 

The introduction of forgetting factor is centered on the observation that when the estimated 

image converges to the original one, the identified blur will approach the actual PSF in the 
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alternating minimization scheme. It can be observed from (4.6) that if the forgetting factor is 

0 1λ≤ < , the scheme will diminish the older, less reliable estimated ih , and favor the later, 

more updated estimate. Generally speaking, λ  should have small positive value for fast 

memory, and large positive value for slow memory. In this work, we let  

 1/ Kλ ζ=  (4.18) 

where ζ  is the memory attenuation rate. 

  

4.6 Experimental Results 

4.6.1 Multichannel Blind Deconvolution under Noisy Conditions 

The effectiveness of the proposed method is illustrated under different blurring conditions. 

For performance evaluation, PSNR is chosen as the objective performance metric. In Figure 

4.3(a), the original “Board” image of sized 256×256 is selected as the test image. The image 

is blurred by four 5×5 Gaussian blurs, corresponding to different values of iσ ={2.0, 2.5, 3.0, 

3.5}. Further, the blurred image is degraded under different noise levels to produce different 

SNR values {30dB, 33dB, 36dB, 40dB}. Through this, we can simulate four acquisition 

channels with variable PSFs and noise levels, as shown in Figure 4.3(b).  

The proposed MRF algorithm is run to perform blind image deconvolution. All the degraded 

images are firstly preprocessed using the edgetaper function in Matlab to lessen the boundary 

effect. The forgetting factor is taken as 1/ Kλ ζ= , where 0.05ζ =  and 4K = . The 

regularization parameters are calculated according to (4.17), while the regularization 

operators are simply taken as =C I  and i =D I . The PSFs are initialized to impulse 

functions, with the support estimated using the MCSC criterion. The outer-loop iteration 
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number is set to 10, while the CGO iteration for blur identification is 5. 

The restored image using the proposed algorithm is shown in Figure 4.3(c). It is observed that 

the approach is effective in preserving detailed information, as demonstrated by the clear 

numbers on the board. The satisfactory subjective inspection of the image is supported by 

objective performance measure as our method offers a PSNR of 21.93 dB, compared to the 

average of 12.46 dB for the degraded images. Further, the profile of PSNR versus the number 

of iteration is given in Figure 4.3(d). It is noted that each outer-loop iteration comprises 4 

inner-loop iterations for recursive image deconvolution. It can be observed from the figure 

that the algorithm achieves convergence in 6 iterations. 
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 (a) (b) 

    
 (c) (d) 

Figure 4.3 Multichannel blind image deconvolution results. (a) Original “Board” image, (b) A sampled 

blurred image out of the four degraded images, (c) Restored image using the proposed MRF algorithm, 

(d) The profile of PSNR versus the number of iterations. 
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4.6.2 Comparison with Other Multichannel Deconvolution Methods 

To further evaluate the effectiveness of our algorithm, we compare the proposed algorithm 

with two iterative multichannel deconvolution methods, namely SDR-AM [62] and TV-AM 

[64]. Both methods decompose the multichannel blind deconvolution problem into two 

processes of image deconvolution and blur identification, which are optimized by alternating 

minimization. Their difference mainly lies in that the SDR-AM adopted symmetric double 

regularization to minimize the image- and blur- domain cost function, while TV and 

null-space of blur are incorporated into the TV-AM scheme. 

The 256×256 “Satellite image” shown in Figure 4.4(a) is degraded by different blurs of 

iσ ={1.7, 2.4, 3.1, 3.8} under different noisy conditions (30dB and 40dB SNR noise). The 

proposed MRF, SDR-AM and TV-AM are applied to the blurred image, and the results are 

given in Figure 4.4 and Table 4.2. By comparing the restored images shown in Figure 4.4(c), 

(d) and (e), it is clear that our approach is superior in preserving details of the satellite. This is 

supported by objective performance measure as our method offers PSNR of 29.41 dB, as 

opposed to 28.70dB and 26.10dB by the SDR-AM and TV-AM methods, respectively. In 

30dB SNR condition, our method offers PSNR of 28.58dB, which is better than 27.96 dB and 

25.42dB provided by the SDR-AM and TV-AM methods. In addition, it is observed that the 

proposed method manages to restore image faster than the other two methods. The simulation 

environments of these methods are: Windows XP, MATLAB 6.5, CPU P4-2.4 GHz, and 

512M RAM. It takes 64s in terms of the running time, as compared to 89s and 179s by the 

CGO-AM and TV-AM methods, respectively. The reason that the proposed method is faster 

than the CGO-AM and TV-AM methods is due to the efficient recursive updating of the 

images. This is in contrast to the conventional gradient-descent optimization adopted by the 

other methods that requires many iterations to converge in the image domain.
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 (a) (b)  

   
 (c) (d)  (e) 

Figure 4.4 Comparison of different deconvolution results in 30dB noise environment. (a) Original 

“Satellite” image, (b) One of the three degraded images, (c) Restored image using the proposed MRF 

algorithm, (d) Restored image using the SDR-AM algorithm, (e) Restored image using the TV-AM 

algorithm. 

 

TABLE 4.2 COMPARISON OF DIFFERENT DECONVOLUTION ALGORITHMS  

PSF Gaussian 7×7, iσ ={2.5, 3.0, 3.5} 

Noise Level  30dB 40dB 
Time 

SDR-AM 27.96dB 28.70dB 89s 

TV-AM 25.42dB 26.10dB 179s 

Proposed MRF  28.58dB 29.41dB 64s 
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4.7 Summary 

This chapter proposes an iterative blind multichannel image deconvolution algorithm based 

on recursive filtering. The estimated image is recursively updated from its previous estimate 

using a regularization framework. The main novelty of this work is the development of a 

recursive scheme, which can reduce the computational cost through recursive updating in the 

Fourier transform domain. This allows the new method to be adopted readily in real-life 

applications. Experimental results show that it is effective in performing multichannel blind 

deconvolution. 

 

4.8 Appendix A 

In this Appendix, the error bound for the regularization scheme is studied. The error bound for 

the least squares solution to the overdetermined and underdetermined system =Ax b  is 

presented in [68]. To examine how the regularization solution is affected by the changes in A 

and b, the regularized solution to the underdetermined/overdetermined system =Ax b  is 

investigated. 

Proposition: Suppose m n×∈A \ , m nδ ×∈A \ , 0 m≠ ∈b \ , mδ ∈b \ , 0 α< ∈\ , and 

( )rank m n= <A . Let max{ , }A bε ε ε= , where 2 2|| || / || ||Aε δ= A A  and 2 2|| || / || ||bε δ= b b . 

If x and x̂  are the regularization solution that satisfy 

 
1 1

1

( ) ( )
ˆ (( ) ( ) ) ( ) ( )

T T T T

T T

α α

δ δ α δ δ

− −

−

= + = +

= + + + + +

x A A I A b A AA I b
x A A A A I A A b b

 (4.19) 

then 
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Proof. Let B and q be defined by /δ εA  and /δ εb . It follows that the solution ( )tx  to  

 (( ) ( ) ) ( ) ( ) ( )T Tt t t t tα+ + + = + +A B A B I x A B b q  (4.21) 

is continuously differentiable for all [0, )t ∈ ∞ .  

Define 1
T α= +P A A I  and 2

T α= +P AA I , we obtain: 
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where iσ  is the singular value of A and 1 2 0mσ σ σ≥ ≥ ≥ >" . 

By differentiating (4.21) with respect to t and setting t = 0 in the result, we obtain: 

 1 1 1
1 1 2(0) ( )T Tα− − −= − +x P A q Ex P E P b�  (4.22) 

Since (0)=x x , ˆ ( )ε=x x , the error upper bound is given by: 
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(4.23) 

thereby establishing (4.20).  
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The extension of error bound to SIMO system in (4.6) when =C I  is straightforward by 

setting: 

 

1 1 1 1
1 1 1 1
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H H g g
# # # #

(4.24) 

In this case, the regularization operator is taken as impulse function to simplify the analysis. 

Suppose that the estimated iH  converges to the actual PSF during the iterative MRF 

scheme, we will have 2 1nδ δ δ≤ ≤ ≤H H H" .  Therefore, δ A  in (4.24) will be reduced as 

the forgetting factor assigns less weight to larger error of iδ H .  In this sense, the 

upper-bound error will be reduced progressively. 

  

4.9 Appendix B 

Thorough treatment of convergence analysis on general alternating minimization (AM) is 

given in [46], [47].  Nevertheless, we will still provide a brief discussion on the convergence 

analysis of the proposed multichannel method in the following paragraphs. 

In order to perform joint blur identification and image deconvolution for multichannel 

problem, the cost function is formulated over K  channels in (4.3). An iterative strategy 

based on AM is adopted to project the overall cost function ( , )J f h  into the image-domain 

cost function ( | )J f h  and the blur-domain cost function ( | )J h f . A general procedure of 

the AM is outlined as follows: 

• nth iteration:  
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      Fix h , estimate * arg min ( | )J=
f

f f h  using multichannel recursive filtering 

• ( 1)n + th iteration:  

      Fix f , estimate * arg min ( | )J=
h

h h f  using conjugate gradient optimization.  

     Since 1{ , , }K=h h h" , where ih  is the ith-channel PSF, we have to perform 

o 
1

*
1 1 2arg min ( | , , , )KJ=

h
h h f h h"  

o 
2

*
2 2 1 3arg min ( | , , , , )KJ=

h
h h f h h h"  

o … 

o *
1 1arg min ( | , , , )

K

K K KJ −=
h

h h f h h"  

It is worth mentioning that the order of cost function minimization can be exchanged as the 

proposed flowchart in Figure 4.2. We arrange the order as above for the ease of explanation.  

The image- and blur-domain cost functions (i.e. ( | )J f h  and ( | )J h f ) can be shown to be 

quadratic with respect to f  and h  respectively. Therefore, it follows that ( | )J f h and 

( | )J h f  are convex. This implies that convergence can be achieved with respect to the 

image- and blur-domain cost functions, respectively.  Throughout the AM procedure, the 

sequence of cost function is given by: 

 n 0 1 2 2k 2k+1 = {  } = { , , , , , , }a a a a aa a " "  (4.25) 

where (0) (0)
0 ( , )a J= f h , (1) (0)

1 ( , )a J= f h , (1) (1)
2 ( , )a J= f h , ( ) ( )

2 ( , )k k
ka J= f h , 

( 1) ( )
2k+1 ( , )k ka J += f h  will tend to decrease monotonically. ( )kf  and ( )

1{ , , }k
K=h h h"  denote 

the estimated image and PSFs at the kth iteration.  

As k 0a ≥  and k 1ka a +≥   for 1,2,k = " , this implies that  
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 0 1 2 2k 2k+1    a a a a a≥ ≥ ≥ ≥ ≥ ≥" "  (4.26) 

The inequality in (4.26) holds true as ( , )J f h  are projected and minimized repeatedly with 

respect to its image and blur domains. This is equivalent to alternating minimization by part 

of the overall cost function. Therefore, there exists a limit, lim     0kk
 a a∞→∞

= ≥  based on the 

limit existence theorem. As we have shown that there exists a solution ( ,  h f ) corresponding 

to the limit a∞ , and ( | )J f h , ( | )J h f ∈ NConvexR , it is apparent from the convexity property 

that the proposed algorithm will converge to a minima, local or global. 
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Chapter 5  

Regularized Interpolation Using Kronecker 

Product  

5.1 Introduction 

Image interpolation, also referred to as image resizing and image enlargement, is an important 

component in image processing. The interpolation problem requires, in general, integer 

positions in the input image map to fractional (non-integer) positions in the output image. It is 

desirable to preserve the continuity of curvilinear features and the connectivity of objects 

within the image. Image interpolation is widely applied in the digital photography, computer 

graphics, medical imaging, among others [69]. 

Generally speaking, the process of decreasing the data sample is called decimation and 

increasing the date sample is termed interpolation. Decimation and interpolation are inverse 

processes. One image decimation/interpolation model is illustrated in Figure 5.1. The dotted 

squares denote the HR pixels, while the shaded solid squares represent LR pixels. The 

decimation factor d is 2 in this example.  
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Figure 5.1 The relationship between HR and LR pixels. 

 

From physical viewpoint of image acquisition, the response of each sensor is proportional to 

the integral of the light projected onto the surface of the sensor. Therefore, the intensity of the 

LR pixel in Figure 5.1 is determined by the weighted average of the neighbor pixels in the HR 

image grids. 

 
(0,0) ( 1, 1) ( 1, 1) ( 1,0) ( 1,0) ( 1,1) ( 1,1)

(0, 1) (0, 1) (0,0) (0,0) (0,1) (0,1)
(1, 1) (1, 1) (1,0) (1,0) (1,1) (1,1)

g h f h f h f
h f h f h f
h f h f h f

= − − − − + − − + − −
+ − − + +
+ − − + +

 (5.1) 

where ( , )h x y  is the weight that is proportional to the area of HR pixels ( , )f x y  in the LR 

pixel (0,0)g . For example, ( 1, 1) (1 )(1 )h x y− − = − Δ − Δ  and ( 1,0) (1 )h x− = − Δ .  

To render a HR image, the missing pixel information must be estimated from the surrounding 

pixels of the observed LR image. This problem can be classified into two categories: (i) image 

interpolation when only single LR image is available, and (ii) super-resolution when multiple 

LR images are available.  

The rest of this chapter is organized as follows. Section 5.2 reviews the methods for image 

interpolation. Section 5.3 provides a brief discussion on the interpolation problem. In Section 

5.4, the novel algorithm using regularization theory and Kronecker product is presented. 
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Simulation results are given in Section 5.5. In Section 5.5.3, conclusions and further remarks 

are drawn. 

 

5.2 Literature Review 

Various algorithms have been proposed to address image interpolation over the years [70], 

[71]. Enhancing image resolution while suppressing artifacts such as blurring and jagged 

edges is one of the most intriguing challenges in image processing. The fast adaptive 

interpolation algorithms with perceptual edge enhancement are desired, especially in noisy 

environment where large magnification is required.  

From a numerical analysis viewpoint, the classical polynomial interpolation approaches, e. g. 

Lagrange interpolation and Newton interpolation, use an nth polynomial to fit a large number 

of data points. The sequence of interpolations, however, may not converge uniformly to a 

continuous function. In piecewise polynomial techniques, e.g. B-spline interpolation [72], 

different polynomials are used in each data interval. Although piecewise polynomial 

interpolation eliminates the problems of excessive oscillation and non-convergence, the 

techniques still lead to over-smoothness in the edge and textured regions. An optimal 

spline-based algorithm is proposed in [73] by using the finite difference method with the idea 

that integral of a spline is another spline of higher degree. Some adaptive approaches adjust 

the algorithmic parameters according to the local features. For example, the inverse gradient 

[74] and warped distance [75] have been employed to determine the weights of bicubic 

interpolation.  

Other edge-directed methods try to modify the polynomial interpolation in order to sharpen 

the edge perceptually. In [76], the edge information of each local image area is extracted by 
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using the discrete cosine transform (DCT). Different edge types are identified and used to 

determine different interpolation strategy for each area. The basic ideal of [77] is to estimate 

HR local covariance coefficients from the LR counterpart based on their geometric duality. 

The edge-directed interpolation is tuned based on the covariance. Other techniques, including 

wavelet [78], [79] and fuzzy [80] algorithms, are employed to produce visibly sharper edges 

than traditional techniques. These adaptive methods typically employ heuristic reasoning to 

estimate parameters such as threshold values or filter weights on a pixel-by-pixel basis. 

Therefore, they require extra computation to determine these local parameters, and the quality 

of the interpolated images will vary significantly with respect to changes in these parameters.  

Interpolation can also be seen as an ill-posed inverse problem of decimation and be 

considered using statistical framework. By posing the interpolation problem as one where the 

image belongs to a fixed quadratic image class, the method in [81] provides a procedure for 

finding explicit and closed-form optimal solutions based on linear partial differential equation 

models. Based on optimal recovery theory, the algorithm in [82] first determines the local 

quadratic signal class from local image patches and then applies optimal recovery to estimate 

the missing samples. 

In view of this, we develop a new method to estimate the HR image from the perspective of a 

whole image, instead of the abovementioned pixel-by-pixel basis. The relationship between 

the HR and LR images is developed, and the interpolation problem is formulated into 

optimization of a cost function. The cost function consists of a data fidelity term and a 

Tikhonov regularization functional. The solution to the optimization problem is estimated 

using a combined framework of Kronecker product and singular value decomposition (SVD). 

A key feature of the method is its computational efficiency in reconstructing high-fidelity HR 

image, while alleviating common artifacts encountered by other interpolation techniques. This 
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allows the new method to be employed readily in the areas of digital photography, computer 

vision, and medical imaging, among others.  

  

5.3 Interpolation Model 

The model between the HR and LR images plays a key role in the formulation of interpolation 

algorithms. Due to the finite sampling grid of the sensor array, the image acquisition 

processes can be modeled as low-pass filtering (averaging), followed by decimation [77]-[79].  

Let ( , )g i j  and ( , )f i j  represent the observed LR image of sized M N×  and the original 

HR image of sized dM dN× , respectively, where d is the decimation factor. The relationship 

between the LR and HR images can be modeled as:  

 ( , )
( , ) ( , ) ( , ) ( , )

( , ) ( , )
hm n S

w x y h m n f x m y n n x y

g x y w dx dy
∈

= − − +

=

∑
 (5.2) 

where ( , )w x y  is the intermediary signal before decimation, ( , )h x y  is a :hS P Q×  2-D 

low-pass filter characterizing the averaging process from the HR to LR image and ( , )n x y  is 

the additive noise.  

It is noted that this model is similar to that of classical image restoration except for the 

additional decimation process. Rewrite (5.2) in the matrix-vector formation, we have: 

 = +g DHf n  (5.3) 

where f and g are the lexicographically ordered column vector of HR and LR images, 

respectively, n is the noise vector, H and D are the corresponding matrices constructed from 

the filtering and decimation processes.  

The interpolation problem can, therefore, be formulated as solving the least squares problem 
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for f  given the observation g. We employ the Tikhonov regularization framework to address 

this problem, as it is able to offer numerically stable and visually pleasing solution. Under this 

setting, optf  is the solution to 

 2 2min || || || ||opt α= − +
f

f DHf g f  (5.4) 

where α  is the regularization parameter. The closed-form solution to the least squares 

problem in (5.4) using pseudoinverse is given by  

 1[( ) ( ) ] ( )T T
opt α −= +f DH DH I DH g  (5.5) 

However, this closed-form solution is impractical due to the high computational cost 

associated with the inversion of the large matrix 1[( ) ( ) ]T α −+DH DH I  (dimension of 

2 2d MN d MN× ). In view of this, we propose a computationally efficient solution to address 

this issue. 

 

5.4 Regularized Interpolation Using Kronecker Product 

The formulation of the interpolation algorithm as a least squares problem can be found by its 

counterpart in classical image restoration. The image is processed as a whole-matrix 

computation rather than pixel-to-pixel estimation individually. The regularized least squares 

can achieve a well trade-off between edge preservation and noise suppression. Unlike the 

model of restoration, the interpolation should consider an additional decimation process. 

Therefore, solving for the direct closed-from solution of the regularized least squares problem 

is impractical due to huge computational cost involved in large matrix inversion. In view of 

this, the main contribution of this chapter is the development of a regularized interpolation 

method with reduced computational cost based on Kronecker product and SVD. 
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5.4.1 Kronecker Product of Matrices 

In image interpolation, the relationship from HR image pixels to LR image pixels is 

characterized by the averaging effect, which can be mathematically modeled by a low-pass 

filter in (5.2). Hence the blurring matrix H in the linear image acquisition model (5.3) has 

BCCB structure. The separability of the low-pass averaging filter enables the matrix H to be 

decomposed into the Kronecker product of two matrices, in a similar fashion to (2.12): 

 

0 1 1 0 1 1

1 0 2 1 0 2

1 2 0 1 2 0

u v

dM dM dN dN

u u u v v v
u u u v v v

u u u v v v

− −

− − − −× ×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ⊗ = ⊗
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

H H H

" "
" "

# # % # # # % #
" "

 (5.6) 

The structure of the Kronecker product for the decimation matrix D in (5.3) will depend on 

the decimation factor d. For instance, the structure of D when 2d =  is given as: 

 

1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0

 

0 0 0 0 1 0 0 0 0 1

u v

M dM N dN× ×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ⊗ = ⊗
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

D D D
# # # # # # # # # #

 (5.7) 

Other decimation matrices with different decimation factors can be constructed in similar 

fashion to (5.7) by adjusting the spacing between consecutive 1s. 

Using (5.6) and (5.7), the Kronecker product of DH can be expressed as:  

 ( )( ) ( ) ( )u v u v u u v v= ⊗ ⊗ = ⊗DH D D H H D H D H  (5.8) 

Since the dimensions of u uD H  and v vD H  are M dM×  and N dN× , respectively. They 

require the computational cost of order 3 3( )O d M  and 3 3( )O d N  to perform SVD:  
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[ ]

1 1 1

2 2 2

|

|
u u

v v

=

=

T

T

D H U 0 V

D H U 0 V

Σ

Σ
 (5.9) 

where 1U , 1V , and 1Σ  are the standard matrices arising from SVD of u uD H , and 2U , 2V , 

and 2Σ  are that of v vD H . It is noted that the matrix dimension is reduced from 

2 2d MN d MN×  of DH to M dM× and N dN×  of u uD H  and v vD H . Therefore, the 

computational cost associated with the matrix operations is greatly reduced. 

  

5.4.2 Least Squares Minimization 

The minimization of (5.4) can be expressed as the constrained least squares problem: 

 
2

2

min    opt α

⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦f

DH g
f f

0I
 (5.10) 

As mentioned earlier, since the dimension of DH  is very large, it may not be 

computationally feasible to solve the problem directly using matrix pseudoinverse. In view of 

this, we decompose DH into two smaller matrices using the Kronecker product and SVD in 

(5.9).  

The least squares solution of (5.10) can then be reformulated into 

 
[ ] [ ]

2

1 2( | | )
min   opt

α

⎡ ⎤⊗ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥⎣ ⎦
y

0 0 x
y y

0I

Σ Σ
 (5.11) 

where 1 2( )= ⊗ Ty V V f , 1 2( )T= ⊗x U U g , and opty  is the solution to the reformulated 

problem in (5.11).  

Recall the property of Kronecker product for matrices A , B , and vector c in (2.9):  
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 ( ) = ( ( ) )T⊗A B c B c Avec ivec  (5.12) 

where (.)vec  denotes concatenating the columns of a matrix into a vector, and (.)ivec  is the 

inverse process of rehashing the vector into the matrix. We can solve (5.11) using the 

following equations to obtain the least squares solution for image interpolation  

 

2 1

1 2 2 2 1
1 2

2 1

( ( ) )

( )( )

( ( ) )

T

opt

T
opt opt

α −

=

⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤= ⊗ ⊗ +⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦

⎣ ⎦ ⎣ ⎦
=

x U g U

y I x
0 0

f V y V

vec ivec

vec ivec

Σ Σ
Σ Σ  (5.13) 

The derivation of opty  in (5.13) makes use of the property  

 1 1( ) ( )T T T Tα α− −+ = +A AA I A A I A  (5.14) 

The main advantage of utilizing the newly derived equations in (5.13) to solve the least 

squares problem is the significant reduction in the computational cost achieved. For an image 

of sized M N×  with decimation factor d, only 3 3 3 3( )O d M d N+  operations are needed in 

the new scheme as compared to 6 6 6 6( )O d M d N+  for direct implementation of 

pseudoinverse for (5.4). Therefore, this makes the algorithm computationally attractive and 

feasible to be implemented in real-life applications. The new algorithm is able to offer this 

computational reduction through clever manipulation of properties for SVD and Kronecker 

products in the context of constrained least square minimization. 

 

5.4.3 Regularization Issue 

The regularization technique is instrumental in providing satisfactory results in this work. In 

this Section, we will outline a simple scheme to estimate the regularization parameter α . We 

incorporate the generalized cross-validation (GCV) function [67] in our work as it has been 
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shown to be robust in general regularization schemes:  

 
2

2

|| ( ( ) ||( )
[ ( ( ))]

GCV
trace

αα
α

−
=

−
I DHP g

I DHP
 (5.15) 

where 1( ) (( ) ( ) ) ( )T Tα α −= +P DH DH I DH . An advantage of GCV is that it allows the 

selection of the regularization parameter even when the noise power is unknown. We modify 

the GCV function under the application of Kronecker product and SVD to give: 

 
2 2

2 2 2 2
1 1 1 11, 2, 1, 2,

( )
λ

M N M N
iM j

i j i ji j i j

x
GCV

α αα
σ σ σ σ α

+

= = = =

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

∑∑ ∑∑  (5.16) 

where 1,iσ  and 2, jσ  are the singular values of 1Σ  and 2Σ , respectively. iM jx +  is the 

(iM+j)-th entry of the column vector x in (5.13). In fact, experimental results show that our 

algorithm is robust towards different values of α  so long as it falls within a reasonable 

range. The relationship between the regularization parameter and interpolation result is 

discussed in the Appendix. 

 

5.5 Experimental Results 

5.5.1 Comparison with Other Interpolation Methods 

In this section, the proposed algorithm is run and compared with two conventional methods: 

Lagrange and bicubic interpolation [69]. Three natural images, “Lena” of sized 256×256, 

“F16” and “Boat” of sized 512×512, are selected as the test images in this experiment, as 

shown in Figure 5.2. The LR image is produced by filtering the original HR image using a 

uniform low-pass filter, and decimating it at a rate of d=2 in the horizontal and vertical 

directions. Further, the image is degraded under different noise levels to produce different 
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SNR values: noiseless (∞dB), 40dB, and 30dB. The filter should be uniform low-pass filter, 

which reflects the regions of the HR grid that contribute to the formation of a single pixel in 

the LR grid [82]. That commonly is T
u v=h h h , where [ ] 1

1 0.5 1 1 0.5 T
u v dd +

= =h h " . The 

proposed algorithm is applied to perform interpolation using (5.9) and (5.13), and the 

regularization parameter α  is chosen as 10-4 in this experiment.  

Table 5.1 summarizes the results obtained for the test images using different methods. It can 

be observed that the proposed method outperforms the Lagrange and bicubic methods 

consistently.  In average, the proposed method offers a PSNR improvement of 6.23dB over 

the Lagrange method, and 0.89dB over the bicubic method. Even though that the average time 

taken is longer for the proposed method, it is still within a reasonable range, in particular after 

considering the improvement that it offers over other methods. The extra computational cost 

is worth the benefit in some applications, where high accuracy of interpolation is the prime 

consideration, such as digital photography processing. Figure 5.3 shows the enlarged sections 

of the test images near the edge regions under 40dB noise environment. It can be observed 

that the proposed method produces superior image quality when compared with other 

methods. It also preserves the overall sharpness of the interpolated images, in particular near 

the edge and textured regions. The subjective human evaluation is consistent with the 

objective performance measure given in Table 5.1. 
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 (a) (b) (c) 

Figure 5.2 Test Images. (a) “Lena” image, (b) “F16” image, (c) “Boat” image. 

  

    

    

    
 (a) (b) (c) (d)   

Figure 5.3 Enlarged sections of interpolated images under 40dB noise. (a) Low-resolution images, (b) 

Lagrange method, (c) Bicubic method, (d) Proposed method.
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TABLE 5.1 COMPARISON OF DIFFERENT INTERPOLATION METHODS IN PSNR 

Lena (256×256) F16(512×512) Boat (512×512) 
Methods 

30dB 40dB ∞dB 
Average 

Time 
30dB 40dB ∞dB 30dB 40dB ∞dB 

Average 
Time 

Lagrange 24.88 24.91 24.92 0.06s 26.25 26.28 26.29 25.61 25.64 25.65 0.13s 

Bicubic 30.56 30.65 30.66 0.20s 32.41 32.56 32.58 30.52 30.63 30.64 0.56s 
Proposed 31.40 31.74 31.77 0.15s 33.11 33.64 33.70 31.06 31.49 31.54 0.29s 

 

5.5.2 Effects of Regularization Parameter 

In this section, the impact of the regularization parameter on the interpolation results is 

investigated. The “Lena” image in Figure 5.2(a) is selected as the test image. The same 

algorithm as in previous experiment is run but different values of regularization parameter α  

are used, which range from 10-2 to 10-5. In addition, the estimated α  based on the GCV 

function in (5.16) is also adopted. Table 5.2 summarizes the results obtained using different 

regularization parameters. It can be observed that method provides consistently good results 

for 310α −=  to 510− , and for various noisy environments from noiseless to 30dB noise. The 

estimated α  using GCV also offers comparable performance. The results suggest that the 

proposed algorithm is robust towards different noisy environments and regularization 

parameters so long as the value of α  falls within a reasonable order of magnitude ( 310α −=  

to 510− ). 

TABLE 5.2 COMPARISON OF DIFFERENT REGULARIZATION PARAMETERS IN PSNR 

Proposed Method 
Noise -210α =  -310α =  -410α =  -510α =  ( )GCV α  

30dB 29.49 31.38 31.40 31.41 -58.3 10λ = ⋅  31.41 

40dB 29.66 31.71 31.74 31.74 -56.6 10λ = ⋅  31.74 

Noiseless 29.68 31.74 31.77 31.77 -56.6 10λ = ⋅  31.77 
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5.5.3 Computational Complexity Reduction 

To reduce the computational cost, we have decided to employ the block-based processing to 

perform the proposed regularized interpolation. The reason for block processing is that the 

main computational cost of the proposed method is due to SVD, which is 3( )O M  for a 

M M×  matrix. If the dimensions of matrix is reduced from the image dimension 512× 512 to 

block dimension 16×16, the computational load of SVD will be greatly reduced.  

To reduce the dimensions of matrix, we can divide the image into blocks of sized 16×16 (or 

8×8, 32×32) with 4×4 overlapping to avoid the boundary effect. It is noted that this scheme 

is similar to the idea of DCT block coding. For each block, the proposed algorithm is applied 

to perform interpolation. The average processing times for 512× 512 images (10 images) are: 

Lagrange: 0.13 second; Bicubic: 0.56 second; Proposed: 0.29 second. For 256× 256 images 

(10 images): Lagrange: 0.06 second; Bicubic: 0.20 second; Proposed: 0.15 second. It can be 

seen that the modified proposed method is faster than the bicubic interpolation, but slightly 

slower than the Lagrange interpolation. It is also observed that the interpolated images have 

nearly the same visual quality and PSNR as in previous approach without block-processing. 

The simulation environments of these methods are: Windows XP, MATLAB 7.1, CPU P4-3.4 

GHz, and 1G RAM. 

 

5.6 Summary 

A novel image interpolation algorithm based on a combined framework of regularization 

theory, constrained least squares minimization, Kronecker product and SVD is proposed. The 

computational cost of the scheme is greatly reduced due to careful manipulation of the 

properties for Kronecker product and SVD. Experimental results show that the algorithm can 
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provide significant performance improvement over other conventional methods.  

The proposed algorithm has difficulty in modeling non-integer decimation factors when 

compared to conventional kernel-based approaches (polynomial or spline interpolation). 

Nevertheless, in applications where integer factor interpolation is used, the proposed 

algorithm will produce satisfactory results. The extension of this method to super-resolution is 

promising and we hope that this work will stimulate further investigation.  

 

5.7 Appendix  

In this appendix, the effect of the regularization parameter on the interpolation result is 

studied. The direct solution to the constrained least square problem in (5.4) is given as 

( )opt α=f P g , where optf  is the estimated HR image and ( )αP  is given by 

1( ) (( ) ( ) ) ( )T Tα α −= +P DH DH I DH . Substituting (5.8) and (5.9) into DH  and ( )αP , we 

obtain: 
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1, 2,
( 1) ( 1)2 2

1 1 1, 2,
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=

=
+

∑∑

∑∑

DH u v

P v u
 (5.17) 

where 1 1,( )idiag σ=Σ , 2 2,( )jdiag σ=Σ .  ( 1)i dM j− +v  and ( 1)i M j− +u  are the [( 1) ]-thi dM j− +  

and [( 1) ]-thi M j− +  column vectors of the orthogonal matrices 1 2⊗V V  and 1 2⊗U U , 

respectively, which can be expressed as: 

 ( 1) 2, 1,

( 1) 2, 1,

( )

( )

T
i dM j j i

T
i M j j i

− +

− +

=

=

v v v

u u u

� �

� �

vec

vec
 (5.18) 

where 1,iv� , 2, jv� , 1,iu� , 2, ju�  are the column orthonormal basis of 1V , 2V  , 1U , 2U , 
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respectively. 

The residual error vector between the original image f and the interpolation result optf  is 

equal to 
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 (5.19) 

If the noise is zero-mean additive white Gaussian with variance 2
nσ , and independent of the 

image, then the expected error vector and square error between optf  and f are given by: 
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 (5.21) 

It can be observed from (5.20) that the regularization functional has biased the interpolated 

image, as a trade-off for numerical stability (i.e. ( ) 0E ≠r  if 0α ≠  since 

( 1) ( 1)
1 1

M N
T

i dM j i dM j
i j

− + − +
= =

=∑∑v v I ). The expected square error 2(|| || )E r  consists of two parts: the 

noise term and the image term. If the image is preprocessed using zero-mean centering, and 

assumed to be white, then 2( )T
fE σ=ff I , where 2 2( ) /T

f E Mσ = f f  is the image power. 

This idealized assumption is introduced to enable 2
2(|| || )E r  to be upper-bounded explicitly in 

terms of α  as below:  
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It can be seen from (5.20) and (5.22) that regularization will reduce the impact of noise by 

effecting a small bias in the interpolated image. 
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Chapter 6  

Bispectrum Subpixel Registration   

6.1 Introduction 

Image registration is the process of establishing point-to-point correspondence including 

translations, rotation and scaling between two images of the same scene [83], [84]. This 

process is needed in various imaging applications, such as stereo depth perception, motion 

analysis, object recognition, and image fusion, among others. It is interesting to note that 

image registration requires the images to be registered cover the same parts of a scene, 

especially when they are allowed to have rotational and scaling differences. Figure 6.1 

illustrates an example of two images of the same scene, while Figure 6.1(b) is the shifted and 

rotated version of the reference image in Figure 6.1(a). 

The rest of this chapter is organized as follows. Section 6.2 reviews the methods for image 

registration. In Section 6.3, the problem of subpixel image registration under noisy conditions 

is discussed. In Section 6.4, the proposed bispectrum-based method is explained and 

developed. In Section 6.5, simulation results are given and compared with other methods. In 

Section 6.6, conclusions are drawn.  

 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 6 109  

 

                   
 (a) (b) 

Figure 6.1 Two images of the same scene. (a) Reference image, (b) Shifted and rotated image. 

 

6.2 Literature Review 

Image registration methods can be classified into several categories including feature-based 

techniques, gradient approaches, and Fourier methods. In feature-based methods, salient and 

distinctive objects (e.g. edges, contours, corners) are manually or automatically detected for 

establishing the correspondence between the observed images [85], [86]. Gradient 

approaches, originated from optical flow, estimate the motion parameters using a system of 

linear equations [87], [88]. The idea behind Fourier methods is quite simple as that the 

cross-correlation between the delayed signal and the reference signal will have a peak at the 

delayed time. According to Fourier shift property, the Fourier transform of a shifted function 

is just the transform of the unshifted function multiplied by an exponential phase factor. 

Hence, phase correlation method identifies the translations by taking the IDFT of the 

normalized cross power spectrum [89]. In addition, rotation and scaling can be reduced to 

similar problem like translation estimation with the aid of polar Fourier representation [90], 

[91]. Bypassing the need to transform data from the Cartesian to the polar domain, the 

rotation is estimated based on the detection of the two orthogonal zero-crossing lines that 
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stem from the difference of two normalized frequency magnitudes [92]. The main advantages 

of frequency domain algorithms are: (i) the decoupling of the estimation of the translations 

from the estimation of rotation and scaling, and (ii) computational convenience due to fast 

Fourier transform (FFT). Therefore, for estimating global motion parameters, 

frequency-based methods offer a very attractive alternative to traditional space domain 

techniques based on feature-based and gradient-based techniques. 

This work focuses on high-accuracy image registration, namely subpixel translation 

estimation, where pixel-level translation estimation is assumed to have been performed in 

coarse registration step. Rotation and scaling are not within the scope of this chapter, and can 

be considered as being handled prior to subpixel registration. It is noted that subpixel 

registration is more complicated than pixel-level registration because the subpixel image 

intensities are commonly needed to be interpolated. High-accuracy registration is becoming 

increasingly important in industry such as integrated circuits inspection and optical fiber 

connection. 

Spatial-domain subpixel registration methods interpolate the shifted image with different 

subpixel parameters, and compare the result with the reference image [93]. The minimum 

error between the image pair will provide a sound estimate of the actual motion parameters. 

For example, block-matching motion estimation from the noisy and downsampled frames is 

studied empirically in [94] . Since standard block motion estimation is accurate in theory to 1 

pixel, the method interpolates the image data by a factor of p  and performs motion 

estimation. The estimated motion from the interpolated data will correspond to 1/ p  subpixel 

of the original image. To reduce the computational complexity associated with the 2-D 

cross-correlation, the modified Marquardt-Levenberg nonlinear optimization is proposed to 

speed up this estimation in [94]. The feature-based methods, such as edge matching, find the 
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congruence that minimizes the error between the features and their targets [96]. The 

projection-based approach firstly transforms the image into two vector projections by 

accumulating pixel values along the rows and columns, respectively [97]. The vector 

projections are in turn used to estimate the individual horizontal and vertical components of 

the translation by means of a 1-D cross-correlation-based estimator. The underlying 

shortcoming of correlation-based methods is local convergence due to the interpolation 

procedure under noisy conditions. Gradient correlation methods use the gradient information 

to find the extrema of cross-correlation function. The method in [98] attempts to estimate the 

subpixel motion in the frequency-domain. The multiresolution bidirectional gradient is 

employed in [99] to improve the performance of the conventional gradient methods. The 

gradient techniques have degraded performance under noisy conditions due to the fact that the 

gradient operation amplifies the noise.  

The phase correlation approaches utilize the idea of the cross-correlation in the 

frequency-domain. They identify the translations by taking the inverse discrete Fourier 

transform (IDFT) of the normalized cross power spectrum. For 3-D medical imaging 

application, a higher-order singular value decomposition technique is used to decompose the 

phase correlation between two N-dimentional (N-D) images to independently identify 

translational displacements with subpixel accuracy [101]. Pixel-level Fourier techniques have 

been extended to address subpixel registration using two different approaches. The first 

approach is by estimating the best-fit phase plane in the frequency domain, of which the slope 

of the plane is used to determine the subpixel translation [100]. The aliasing error due to 

inadequate sampling is masked out by spectrum cancellation [101]. The second approach is to 

evaluate the dominant peaks of the IDFT of the normalized cross power spectrum, and 

proceed to estimate the subpixel translations [102].  
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Generally speaking, the aforementioned methods perform reasonably well when the noise is 

AWGN and the noise level is moderate. The precondition, however, is impractical in some 

applications such as sonar imaging where the SNR is low and the additive noise is correlated 

between the observed images. Under these circumstances, the performance of these 

techniques will degrade significantly [104], [105].  

In view of this, we propose a new bispectrum technique to address the problem of subpixel 

image registration. The proposed method is motivated by the observation that the n-th joint 

cumulants of the Gaussian random process are equal to zero for n>2 [106]. Therefore, the 

phase information between the image pair can be estimated reliably from the higher-order 

statistics such as bispectrum, as they are robust towards correlated Gaussian noise and low 

SNR environments. 

  

6.3 Problem Formulation 

6.3.1 Subpixel Translation Estimation  

Let s be the original image, and { 1, 2}i i =f  be two images that are shifted versions of s: 

 , ,( , ) ( , ) , 1,2i x i y if x y s x y iδ δ= + + =  (6.1) 

where ,2 ,1 ,2 ,1( , ) ( ,  )x y x x y yδ δ δ δ δ δ= − −  is the relative translations between the image pair, 

which is restricted to subpixel level [0, 1) in this work. In the absence of noise and aliasing, 

the shift property of Fourier transform gives: 

 ( )
1 2( , ) ( , ) x x y yj

x y x yf f e ω δ ω δω ω ω ω − +=� �  (6.2) 

where [ ]i i=f f� F  is the Fourier transform of { 1, 2}i i =f . Therefore, the normalized cross 
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power spectrum is given by: 

 
*

( )1 2
*

1 2

( , ) ( , )
( , )

| ( , ) ( , ) |
x x y yjx y x y

x y
x y x y

f f
P e

f f
ω δ ω δω ω ω ω

ω ω
ω ω ω ω

− += =
� �

�
� �  (6.3) 

The phase information of x x y yω δ ω δ+  plays a critical role in the estimation of subpixel 

translations. For instance, the best-fit plane method estimates the subpixel translations as the 

slopes of the phase plane [100]. 

  

6.3.2 Noise Effect 

In most imaging applications, noise exists in the captured images up to a certain level. The 

noise is commonly due to factors such as photoelectric noise, film grain noise, and 

quantization noise, among others. Moreover, the imaging sensor array, usually the 

charged-coupled device (CCD), is subject to various sources of noise, including thermal noise 

and shot noise. The noisy effect is particularly evident under low lighting when the camera 

gain is high.  

In the presence of additive noise, the images { 1,2}i i =f  in (6.1) are modeled as 

 , ,( , ) ( , ) ( , ) , 1, 2i x i y i if x y s x y n x y iδ δ= + + + =  (6.4) 

where in  is the additive noise that arises during the image formation process. Conventional 

Fourier method ignores the noise in their formulation, and hence will experience performance 

deterioration in noisy environments. Assuming in is independent of s, the normalized cross 

power spectrum of (6.3) can be expressed as: 
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 (6.5) 

where 
2 1 2 1( , ) [ ( , ) ( , )]f f x y x yR E f x y f x yτ τ τ τ+ +�  is the correlation function between 2f  and 

1f . It is observed that ( , )x yP ω ω�  can be approximated as ( )x x y yje ω δ ω δ− +  only when 

1 1
( , )n n x yR ω ω�  and 

1 2
( , )n n x yR ω ω�  are negligible compared to ( , )ss x yR ω ω� . This requires the 

SNR to be high (
1 1

( , ) 0n n x yR ω ω ≈� ) and the two noise processes to be uncorrelated 

(
1 2

( , ) 0n n x yR ω ω ≈� ). These preconditions, however, are restrictive in some applications, such as 

sonar imaging where the noise level is high and their sources are correlated. In view of this, 

we develop a bispectrum algorithm to address this difficulty. Of course, we assume that the 

techniques of pixel-level registration can still work to provide accurate translation estimation 

under such noisy conditions.  

 

6.4 Subpixel Registration under Noisy Conditions  

6.4.1 Proposed Cross Bispectrum Method 

Higher-order spectra defined in terms of higher-order cumulant contains additional 

information that is not conveyed by the signal’s correlation or power spectrum. It is useful in 

suppressing additive Gaussian noise (white and color noise) because all joint cumulants of 

order>2 are equal to zero for Gaussian random processes [106]. Hence, in circumstances 

where the observed signal consists of non-Gaussian signal of interest and is corrupted by 
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additive Gaussian noise, there are clear advantages in estimating the desired signal through 

higher-order spectra.  

In this work, we assume that the original image s in (6.4) follows non-Gaussian distribution 

with nonzero skewness (i.e. 3[ ] 0E ≠s , which indicates the existence of non-trivial 

bispectrum). This assumption is in agreement with most observations that images are indeed 

non-Gaussian distributed. We further assume that 1n  and 2n  are zero-mean Gaussian, 

signal independent random noise, which are potentially cross-correlated. It is noted that these 

assumptions are valid in many general applications [105]-[107]. We remove the mean from 

the images to perform zero-mean centering, and restrict the translations ( , )x yδ δ  to be within 

the interval [0, 1) for subpixel registration.  

The third-order auto- and cross-cumulants of the observed images 1f  and 2f  are defined 

as: 

 

1 1 1

2 1 2

1 1 1

1 2 2 1 2

( , , , ) [ ( , ) ( , ) ( , )]

( , , , );

( , , , ) [ ( , ) ( , ) ( , )]
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f f f x y x y x y x y

sss x y x y

f f f x y x y x y

sss x x y y x y

R v v E f x y f x y f x v y v

R v v

R v v E f x y f x y f x v y v

R v v

τ τ τ τ

τ τ

τ τ τ τ

τ δ τ δ

+ + + +

=

+ + + +

= − −

�

�
 (6.6) 

where ( , , , ) [ ( , ) ( , ) ( , )]sss x y x y x y x yR v v E s x y s x y s x v y vτ τ τ τ+ + + +�  is the third-order 

auto-cumulant of the desired signal s.  

It is worth mentioning that (6.6) holds because 1n  and 2n  are zero-mean Gaussian noise, 

hence all their joint cumulants of order>2 are equal to zero. Thus we can estimate the desired 

signal s from (6.6) without the interference of Gaussian noise.  

The bispectrums are computed by taking the DFT of the cumulants: 
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where ( , , , ) [ ( , , , )]sss x y x y sss x y x yR R v vω ω υ υ τ τ� � F  is the auto-bispectrum of s.  

Therefore, the phase information of x x y yω δ ω δ+  is given by the normalized cross 

bispectrum: 
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Compared to the cross power spectrum in (6.5), the normalized cross bispectrum in (6.8) 

provides more robust phase information in noisy environments. This is because that the 

normalized cross bispectrum is independent of the noise distortion terms 
1 1

( , )n n x yR ω ω�  and 

1 2
( , )n n x yR ω ω� . This enables reliable subpixel registration when incorporating the Dirichlet 

estimation scheme in [102] to give: 

 

1

( )1
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where M N×  is the length of IDFT. The Dirichlet function in (6.9) is approximated by sinc 

function as 

 ( , ) sinc( )sinc( )x yP x y x yδ δ≈ − −  (6.10) 

where the denominator is approximated by 
0

limsin
t

t t
→

≈ , i.e.  
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Expressing sin t  using Taylor series expansion, we have: 

 
2 1

1

1
sin ( 1)

(2 1)!

k
k

k

tt
k

−∞
−

=

= −
−∑  (6.12) 

It is obvious that the smaller the value of t, the less the error of approximation for 

0
limsin
t

t t
→

≈ . Further, the function of ( , ) sinc( )sinc( ) /x yP x y x y MNδ δ≈ − −  has dominant 

values centered near ( , ) ( , )x yx y δ δ=  where 0 , 1x yδ δ≤ ≤ . Therefore, a simple yet effective 

method of estimating ( , )x yδ δ  can be achieved by solving the nonlinear equations (6.10) at 

coordinates of (0,0), (0,1), (1,0) and (1,1), which correspond to the main peaks. The 

intermediate steps are given as:  

 

sin( (1 ) / ) 1(0,0) (0,1) ;
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 (6.13) 

The final estimated motion shift or translations ˆ ˆ( , )x yδ δ  can then be deduced directly by 

using 

 

1 (1,0) (1,1)ˆ ;
2 (1,0) (0,0) (1,1) (0,1)

1 (0,1) (1,1)ˆ
2 (0,1) (0,0) (1,1) (1,0)

x

y

P P
P P P P

P P
P P P P

δ

δ

⎛ ⎞
= +⎜ ⎟+ +⎝ ⎠

⎛ ⎞
= +⎜ ⎟+ +⎝ ⎠

 (6.14) 

It is worth mentioning that if a more accurate estimate for ˆ ˆ( , )x yδ δ  is required, we can 

approximate 3sin / 6t t t≈ − , and solve for ˆ ˆ( , )x yδ δ  accordingly. A brief analysis on the 
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higher-order estimate is provided in the Appendix. 

 

6.4.2 Complexity Reduction 

Conventional techniques for computation of power spectrum include (i) the direct method, 

which involves calculation of the power of the Fourier transform, and (ii) indirect method, 

which computes the Fourier transform of the correlation function of the data (i.e. 

periodogram). In a similar fashion to periodogram, the cumulants in (6.6) can be calculated by 

dividing the image into C segments, and obtaining the average cumulant as below (ergodicity 

is implicitly assumed) [106]: 

 
1 1 1 1 1 1

1

1 ˆ( , , , ) ( , , , )
C

f f f x y x y f f f x y x y
i

R v v R v v
C

τ τ τ τ
=

= ∑  (6.15) 

where 
1 1 1

ˆ ( , , , )f f f x y x yR v vτ τ  is the cumulant of each segment. The main advantage of this 

procedure is to reduce the computational cost of cumulant estimation.  

Moreover, it is observed that the ( , , , )x y x yP ω ω υ υ�  in (6.8) is independent of the frequency 

parameters ( , )x yυ υ . Therefore, we do not have to compute the entire 4-dimensional 

bispectrum. Instead, we may simply choose several low frequency slices, for example 

( 0,1, 2;  0,1,2)x yυ υ= = , in the computation of ( , , , )x y x yP ω ω υ υ� . The simulation 

environments of the experiments are as follows: Windows XP, MATLAB 7.1, CPU P4-3.4 

GHz, and 1G RAM. The average computational time for the images in Figure 6.3 is 14.13 

second, compared to 124.30 second before the block processing technique. Therefore, the 

computational load is greatly reduced. 

The schematic diagram of the proposed algorithm is given in the following flowchart: 
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 Figure 6.2 Schematic diagram of the proposed algorithm. 

 

6.5 Experimental Results 

The effectiveness of the proposed method is demonstrated using different images under noisy 

conditions. In addition, we compare the proposed algorithm with well-known phase 

correlation method by Foroosh et. al. [102]. In order to verify the algorithm experimentally, 

the image pair { 1, 2}i i =f  are generated in line with the procedures given in [93], [102] . The 

images in Figure 6.3 are translated by different shift sizes (at pixel level) for three different 

images. After that, each shifted image is filtered and downsampled at a rate that is larger than 

the maximum shift so that the relative translations between image pair are maintained at a 

subpixel level. Different levels of noises are then added to the shifted, downsampled images 
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to simulate the noisy image pair.  

 

   
 (a) (b) (c) 

Figure 6.3 Test Images. (a) “Pentagon” image, (b) “Castle” image, (c) “NTU” image. 

 

6.5.1 Image Degraded By AWGN 

The 1024×1024 “Pentagon” image shown in Figure 6.3(a) is shifted by different pixel values 

( , )a b , and downsampled by a factor of 4 4×  to generate an image pair with subpixel 

translations of ( / 4, / 4)a b . Further, the images are degraded under different noise levels to 

produce different SNR environments: 40dB, 30dB, 20dB, and 10dB. In this experiment, we 

perform the registration procedures given in Section 6.4 for two sets of subpixel translations 

(0.25, 0.75) and (0.75, 0.25). Table 6.1 summarizes the results obtained using the Foroosh 

method and the proposed algorithm. It can be observed that the proposed method provides 

satisfactory performance for subpixel translation estimation under different noisy conditions. 

Further, it is clear that the proposed method consistently outperforms the Foroosh methods, 

especially under low SNR or noisy environments. The results show that the method is more 

effective in suppressing Gaussian noise, hence giving rise to superior subpixel image 

registration.  

It is worth noting that bispectrum method requires a higher computational cost comported to 
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the normal spectrum approach. In the above experiment, the running time by the proposed 

method is nearly 100s, which is longer than 10s of spectrum-based method. However, in 

selected applications where high-accuracy registration is the prime consideration, the extra 

computational cost can be considered as well justified. 

  
TABLE 6.1 RESULTS OF SUBPIXEL REGISTRATION IN AWGN 

(0.25, 0.75) (0.75, 0.25) 
SNR 

Foroosh Proposed Foroosh Proposed 
10dB (0.38, 0.65) (0.29, 0.68) (0.64, 0.36) (0.68, 0.30) 
20dB (0.31, 0.71) (0.28, 0.74) (0.71, 0.31) (0.74, 0.29) 

30dB (0.30, 0.73) (0.27, 0.74) (0.74, 0.30) (0.74, 0.28) 

40dB (0.29, 0.74) (0.27, 0.74) (0.74, 0.29) (0.75, 0.28) 

 

6.5.2 Image Degraded by Cross-Correlated Noise   

The 1704 1704×  “Castle” image shown in Figure 6.3(b) is shifted and downsampled by a 

factor 8 8×  to produce the image pair. In this experiment, however, the noise is correlated 

across two channels, e.g. 1n  is assumed to be AWGN, while 2n  is generated from 1n  

using: 

 
3 3

2 1
3 3

( , ) ( , ) ( , )
i j

n x y h i j n x i y j
=− =−

= + +∑ ∑  (6.16) 

where ( )2 2( , ) exp ( ) / 2h i j i j= − +  is a low-pass filter used to ensure that the noise 1n  and 

2n  are correlated [106]. In this study, we use two sets of subpixel translations (0.125, 0.125) 

and (0.375, 0.75), and consider different noise power ranging from 10dB- 40 dB SNR 

environments. We repeat the procedures as before to estimate the subpixel translations. The 

results obtained are shown in Table 6.2. It is observed that proposed method again provides 

satisfactory performance in all cases. Again, it is noticed that the bispectrum method provides 
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superior performance when compared to the conventional phase correlation method. These 

results clearly demonstrate the effectiveness of the proposed method in dealing with 

cross-correlated channel noise. 

 
  TABLE 6.2 RESULTS OF SUBPIXEL REGISTRATION IN CORRELATED NOISE 

(0.125, 0.125) (0.375, 0.75) 
SNR 

Foroosh Proposed Foroosh Proposed 

10dB (0.267, 0.255) (0.151, 0.170) (0.378, 0.571) (0.330, 0.609) 

20dB (0.205, 0.199) (0.135, 0.132) (0.403, 0.677) (0.347, 0.736) 

30dB (0.152, 0.150) (0.132, 0.129) (0.406, 0.722) (0.380, 0.770) 

40dB (0.139, 0.137) (0.128, 0.127) (0.410, 0.731) (0.377, 0.774) 

 

6.5.3 Image Registration for Pixel and Subpixel Translations 

In this experiment, image registration is implemented for the situations that images are not 

only translated by subpixel but also shifted by pixels. A real-life image of sized 480×640 

pixels is captured using a digital camera (Cannon IXUS v3). The image in Figure 6.3(c) 

shows the graduate hall of Nanyang Technological University. The HR image is shifted by 

different pixels that are larger than the maximum decimation rate. Thus the overall 

translations between the registered images consist of both pixel and subpixel translations. 

Further, these images are degraded by AWGN at different levels. The two-stage coarse-to-fine 

algorithm for estimation of the translational displacement is run. The coarse step uses the 

classical phase correlation to identify the pixel level shift, while the fine step uses the 

proposed bispectrum method for subpixel registration. The results obtained are shown in 

Table 6.3. In coarse registration, conventional techniques can determine the pixel-level 

translations for low SNR images. However, in fine registration step, conventional subpixel 

registration methods cannot provide satisfactory results. It is shown that the proposed method 
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again provides satisfactory results under noisy conditions. 

 
TABLE 6.3 RESULTS OF PIXEL AND SUBPIXEL REGISTRATION 

(2.25, 1.50) (3.66, 4.33) 
SNR 

Foroosh Proposed Foroosh Proposed 
10dB (2.40, 1.64) (2.30, 1.59) (3.86, 4.67) (3.76, 4.47) 
20dB (2.34, 1.61) (2.29, 1.56) (3.77, 4.48) (3.78, 4.38) 
30dB (2.33, 1.61) (2.27, 1.55) (3.68, 4.44) (3.68, 4.32) 

40dB (2.26, 1.54) (2.26, 1.52) (3.68, 4.34) (3.64, 4.32) 

 

6.6 Summary  

This chapter proposes a new bispectrum technique to address subpixel image registration. Its 

main features include the capability to perform reliable image registration under low SNR 

environments as well as cross-correlated channel noise. This is because that the method 

utilizes higher-order spectra of the observed images to suppress Gaussian noise. Experimental 

results show that the proposed method is effective in identifying subpixel translations under 

different noise levels and environments. It also outperforms the conventional second-order 

phase correlation technique in image registration. 

Time average and ensemble average will not be exactly the same in practical situations. The 

high order cumulants of the noise term are not exactly zero with limited number of 

realizations. In the experiments, the assumption of ergordicity is adopted and the difference 

between time average and ensemble average is minimized by proper selection of the window 

size. 
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6.7 Appendix 

In the event that a higher precision for the shift estimate xδ  is desired, we can employ 

3rd-order Taylor expansion 3 5sin / 6 ( )t t t O t= − +  in our estimation. Therefore, the 

estimation of xδ  is given by 

 
2 3

2 3

1(1 ) (1 )sin( (1 ))(0,0) (0,1) 6
1(1,0) (1,1) sin( )
6

x x
x

x
x x

P Pk
P P

δ ρ δρ δ
ρδ δ ρ δ

− − −−
= = = ≈

−
 (6.17) 

where / Mρ π= . In order to compute xδ , we simply need to solve the implicit equation 

below: 

 2 3 2 2 2 2(1 ) 3 (3 6 6) 6 0x x xk kρ δ ρ δ ρ δ ρ+ − + − − + − =  (6.18) 
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Chapter 7  

Blind Multiframe Super-Resolution  

7.1 Introduction 

Super-resolution (SR) is the process of combining multiple LR images to form a higher 

resolution one. The technology of SR has been an active research area in image processing 

over the last two decades [108]-[111]. This cutting-edge technology has already yielded 

several commercial software products, including the Salient Stills’ “VideoFOCUS” [112], QE 

lab’s “QE SuperResolution”[113], Cognitech’s “Video Investigator” [114]. The technology of 

SR enables the user to easily process sequential video frames in order to produce high-quality 

still images with more detail, greater dynamic range, less noise, fewer artifacts and higher 

resolution.  

The basic model for SR is illustrated in Figure 7.1, where the upper HR image is 

reconstructed from three lower LR images. LR images represent the downsampled and aliased 

view of the same scene. And there exists relative global motion between LR images, including 

rotation and translations. It is noted that if the LR images are shifted by integer pixels, then 

each image contains the same information excluding the boundary, and thus there is no new 

information that can be used to reconstruct the image. Therefore, only the subpixel 

displacements make it possible to reconstruct a HR image.  
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Figure 7.1 Basic model for super-resolution. 

 

The rest of this chapter is organized as follows. Section 7.2 reviews the methods for SR. 

Section 7.3 provides a brief discussion on the spatial-domain SR problem. In Section 7.4, the 

development of blind multiframe SR reconstruction algorithm is presented. Simulation results 

are given in Section 7.5. In Section 0, conclusions are drawn. 

7.2 Literature Review 

The earliest work carried out by Tsai and Huang in [115] is in the frequency domain that 

centered on the shifting and aliasing properties of the continuous and discrete Fourier 

transform. It formulates a set of linear equations to estimate the Fourier coefficients of the HR 

image using least-squares criterion. An extension of this idea using recursive least squares is 

proposed in [116]. Further, to address the issue of the ill-posed nature of the inverse problem, 

regularization is employed in the recursive reconstruction procedure [117]. The 

frequency-based methods are simple and computationally efficient. Nevertheless, they are 

sensitive towards imprecision arising from subpixel image registration, and do not take the 

potential blurring effect into consideration.  

There have been some successful works on the development of SR in the spatial domain, 
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which exploit and extend the progresses made in the field of image restoration. These 

techniques develop a cost function using a framework of constrained least squares 

minimization, such as iterative back-projection (IBP) [118], [119] and 

projection-onto-convex-sets (POCS) [120], [121]. The IBP method provides an initial 

estimate to the HR image, and simulates the image formation process to obtain a set of LR 

images. An error function between the actual and simulated LR images is then minimized 

iteratively in order to estimate the HR image progressively. The POCS method, on the other 

hand, limits the feasible solution space of SR into an intersection of constraint sets. These 

include criteria corresponding to data fidelity, finite energy, and bounded support. In enhanced 

POCS, the discretization of the continuous image formation model is improved to explicitly 

allow for higher order interpolation methods to be used. And the constraint sets are modified 

to reduce the amount of edge ringing presented in the estimated HR image [122]. Another 

extension that incorporates the regularization theory for edge preservation and noise 

suppression has also been proposed in [123]. 

The probabilistic techniques employ the Bayes’ framework to seek the maximum a posteriori 

(MAP) estimate [124], [125]. The Bayesian framework with consideration of the hybrid 

motion-compensation and transform-based coding is extended to SR [126], [127]. It is 

appealing for the compressed video with moderate bit rates. The probabilistic reconstruction 

techniques need more computations than POCS method. Neural network has also been 

applied to solve SR reconstruction problem [128]. Training-based algorithm is proposed for 

the particular image-based rendering application that the object texture is known [129]. 

Nevertheless, it is hard to reconstruct the complex, real-world objects freely. 

Other SR schemes, which model the relationship between the HR and LR images using 

geometric warping, blurring and decimation process with additive noise, have also shown 
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promising results. These methods function by first finding the blurred HR image from the LR 

measurements, followed by image deconvolution to deblur the image [130], [131]. The data 

fusion for HR image reconstruction based on Delaunay triangulation with smoothness 

constraints has also been proposed in [132]. The main drawback of the aforementioned 

restoration-based methods is that the identification of the PSFs in the context of SR 

reconstruction has not been addressed adequately. In other words, they assume that the PSFs 

are known a priori, which is not practical in many real-world applications. Therefore, it is 

necessary to incorporate blur identification into the SR image reconstruction. Currently, there 

are relatively few works on blind SR image reconstruction, namely, simultaneous 

reconstruction of the HR image and identification of the unknown blurs from the observed LR 

images. A recent technique for blind SR has been reported in [133], which is based on 

generalized cross-validation and Gauss quadrature theory. The method, nevertheless, works 

only for parametric blur, thereby restricting its flexibility.  

In view of this, we propose a novel algorithm for SR under the blind condition, i.e. the blurs 

are unknown and will be identified jointly with the HR image reconstruction. It is noted that 

the algorithm can be considered as a joint interpolation-restoration strategy. The main 

contribution of this chapter is the development of multichannel blind restoration to estimate 

the unknown PSFs, and its integration into the SR scheme to render HR images. A joint blur 

identification and HR image reconstruction strategy is proposed using AM. It involves 

recursive updating of the estimated HR image from the previous estimate. The blurs are 

identified iteratively using CGO. A key feature of the method is that the quality of the 

estimated blurs and consequently the HR image improves progressively throughout the 

process. Therefore, this allows the user to monitor and terminate the SR reconstruction 

flexibly once the quality of the HR image becomes satisfactory to the user.  
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7.3 Spatial-Domain Super-Resolution 

Consider the general SR model that consists of K measured LR images, that are related to the 

desired HR image through a series of mappings comprising geometric warping (i.e. 

translations, rotation), blurring, decimation, together with potential additive noise. The ith LR 

image can be modeled as [108]-[111]: 

 , 1,2, ,i i i i i i K= + =g D H S f n "  (7.1) 

where f , ig  and in  represent the lexicographically ordered column vectors of the HR 

image, the ith LR image, and the ith channel noise, respectively. iS  and iH  stand for the 

ith channel geometric warping and blurring operators, which are matrices constructed from 

the warping vector is  and PSF ih , respectively. iD  denotes the decimation operator. In 

this work, we focus on space-invariant blur and translational geometric warps. Therefore, iS  

and iH  can be represented by BCCB matrices. In addition, the decimation operators are 

assumed to be the same across all channels (i.e. , ii∀ =D D ).  This is a reasonable 

assumption as it is fairly common that a single imaging device is used to capture multiple 

observations, hence the resolution and subsequently the decimation factors are similar across 

different channels.   

To tackle the ill-posed nature of SR, the following regularized cost function are commonly 

employed: 

 2

1
( ) (|| || ) ( )

K

i i i
i

J R
=

= − +∑f g DH S f f  (7.2) 

The first term in (7.2) represents the data fidelity criterion, while the second term ( )R f  is 

the regularization functional. The least-square fidelity and the regularization terms function 
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together to provide a numerically stable solution that bears close visual fidelity to the original 

HR image. In other words, the minimum of the cost function in (7.2) will provide a 

numerically stable yet visually pleasing estimate to the desired HR image. It is worth noting 

that the formation of the cost function in (7.2) is similar to that in the image deconvolution 

problem. However, most existing image restoration algorithms cannot be applied readily to 

address the SR problem due to extra complexities arising from geometric warping, decimation 

process, and multiple observations of LR images.  

Generally, the SR schemes consist of three stages: image registration, interpolation, and 

restoration. These steps can be implemented separately or simultaneously, depending on the 

conditions of the problem, thereby yielding algorithms with different levels of complexities 

and sophistications. A general overview of conventional SR algorithms can be described as 

follows: 

(1) Image registration  

This is used to identify the geometric warps between the HR and LR images.  

(2) Image interpolation (data fusion) 

This is used to estimate the blurred HR image from the observed LR images. Assume that the 

blur operators across all channels are the same (i.e. , ii∀ =H H ). Let the blurred version of 

the desired HR image be =y Hf . Since iS  and H  are block-circulant matrices, they 

satisfy the commutivity property i i=S H HS . Therefore, (7.2) can be rewritten as  

 2

1

( ) (|| || ) ( )
K

i i
i

J R
=

= − +∑y g DS y y  (7.3) 

The blurred version of the HR image (i.e. y) can be obtained by minimizing the cost function. 

(3) Image restoration 
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This is used to estimate the HR image f  from its blurred version y using image 

deconvolution techniques. 

 2( ) || || ( )J R= − +f y Hf f  (7.4) 

Conventional SR algorithms outlined above require the assumption that , ii∀ =H H . This 

precondition, however, is elusive in many applications such as remote sensing and 

microscopy imaging, where the blurring conditions for different channels may differ. Further, 

the SR algorithms assume that the blur is known prior to SR image reconstruction. This 

assumption, unfortunately, is impractical in many real-world applications, hence restricting 

the flexibility of classical SR algorithms. In view of this, we propose a novel algorithm for SR 

image reconstruction under the blind condition, i.e. the blurs are unknown and will be 

identified jointly with the HR image reconstruction. 

 

7.4 Blind Multiframe Super-Resolution Scheme 

7.4.1 Joint Interpolation-Restoration Framework 

In this work, we focus on an important aspect of SR, namely the interpolation-restoration 

step. The warping vectors of ( 1, 2, , )i i K=s "  are assumed to have been successfully 

estimated in the registration step using methods found in [83]-[102]. We propose a novel SR 

scheme for performing joint interpolation-restoration as follows: 

(1) Image registration  

(2) Single-channel image interpolation  

The LR images are first interpolated to obtain the blurred, shifted versions of the required HR 

image as: 
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 interp( )i i=y g  (7.5) 

where interp(.)  denotes the conventional interpolation operation, such as the Bicubic or 

edge-directed algorithms [70]-[77]. 

(3) Multichannel image restoration  

In contrast to SISO restoration in (7.4), we propose the following new cost function to 

perform joint multichannel blind deconvolution: 

 2
1 1 1

1

( , , , ) || || ( ) ( , , ) ( , , )
K

K i i i K K
i

J R R S
=

= − + + +∑f h h y S H f f h h h h" " "  (7.6) 

where ( )R f  is the image-domain regularization functional. 1( , , )KR h h"  and 1( , , )KS h h"  

are blur-domain regularization functional and soft learning term. The objective of using 

1( , , )KS h h"  is to introduce reinforcement learning based on inter-channel blurring model. 

Further details will be explained in Subsection 7.4.2.  

 

The main feature of the proposed model in (7.6) is that it is a SIMO process. As opposed to 

SISO SR algorithms in [130], [131], the SIMO technique can produce better results as the 

inadequate information in one channel can be compensated by the other channels. Moreover, 

the blurring conditions need not be exactly the same for all the LR images (channels), hence 

alleviating one of the constraints encountered by conventional SISO schemes. We will outline 

the development of the joint multichannel blind deconvolution and HR image reconstruction 

algorithm in the following paragraphs. 

Let , ,( , )x i y iδ δ  be the relative translations along the X- and Y-axis between the ith LR image 

and the reference LR image, which is restricted to a subpixel value of [0, 1). In the case of 

pixel-level translations, we can simply shift the image by the corresponding integer pixels to 
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make the above assumption valid. It is noted that if the LR images are shifted by integer units 

only, each image will contain essentially the same information, and thus no useful information 

can be derived for SR.  

Considering the HR image with the decimation factor of d, the warping vector is then given 

by , ,( , )i x i y id dδ δ=s . The warped HR images are denoted by: 

 i i=z f s  (7.7) 

where iz  and f are the warped and reference HR images, respectively.  denotes the 

warping process as defined by , ,( , ) ( , )i x i y iz x y f x d y dδ δ= + + . The imaging process, which 

characterizes the blurring and warping operations, but without the decimation is given by: 

 , ,

( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , )

i i i

i x i y i

i

y x y h p q z x p y q dpdq

h p d q d f x p y q dpdq

q p q f x p y q dpdq

δ δ

= − −

= + + − −

= − −

∫∫
∫∫
∫∫

 (7.8) 

Let us define i i i=q h s  as the warped blur, it can be observed that the process of blurring a 

warped image is equivalent to blurring the reference image using a warped blur. Therefore, 

the cost function in (7.6) can be re-expressed in terms of iq  as: 

 2
1 1 1

1

( , , , ) || || ( ) ( , , ) ( , , )
K

K i i K K
i

J R R S
=

= − ∗ + + +∑f q q y q f f q q q q" " "  (7.9) 

It is noted that the minimization of (7.9) does not require the information of the warped vector 

if we consider iq  as the effective blur instead of ih . Therefore, the step of subpixel image 

registration can be circumvented, theoretically, if the minimization of (7.9) lead to a 

convergent solution. However, as SR tends to be ill-posed, we will still extract and integrate 

the subpixel translation information into the learning term 1( , , )KS q q"  to provide a stable 
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solution. As a result, our scheme is more robust as it is less sensitive towards the impact of 

inaccurate subpixel registration.  

The cost function in (7.9) consists of multivariate arguments of f  and { 1, , }i i K=q " . As it 

is computationally intensive to perform simultaneous optimization of all arguments, AM is 

adopted again as previous chapters to perform projection-based optimization. AM projects the 

overall cost function 1( , , , )KJ f q q"  into the image-domain cost function 1( | , , )KJ f q q"  

and the blur-domain cost function 1( , , | )KJ q q f" , and minimize them iteratively until 

convergence or a maximum number of iteration is reached. The proposed iterative SR strategy 

can be summarized as below: 

(1) Perform image registration to estimate ( 1,2, , )i i K=s " . 

(2) Perform image interpolation as (7.5) to obtain ( 1, 2, , )i i K=y " . 

(3) Perform joint blind multiframe restoration by optimizing (7.9) using AM: 

   (i) Initialize =f 0 , { 1, , }i i K=q "  as impulse function. 

   (ii) For the kth iteration: 

      For the nth LR image ( 1, ,n K= " ): 

(a) Minimize the nth blur-domain cost function, namely, perform nth channel blur      

identification using conjugate gradient optimization, to be explained in greater details 

in Section 7.4.2. 

 
1

2
1 1

1

arg min ( , , | )

arg min || || ( , , ) ( , , )

n

n

n K

K

i i K K
i

J

R S
=

=

⎛ ⎞= − ∗ + +⎜ ⎟
⎝ ⎠
∑

q

q

q q q f

y q f q q q q

"

" "
 (7.10) 

(b) Minimize the nth image-domain cost function, namely, perform the HR image 
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estimation using recursive multichannel restoration, to be explained in greater details 

in Section 7.4.3. 

 
1

2

1

arg min ( | , , )

arg min || || ( )

K

K

i i
i

J

R
=

=

⎛ ⎞= − ∗ +⎜ ⎟
⎝ ⎠
∑

f

f

f f q q

g q f f

"

 (7.11) 

(iii) Repeat step (ii) until convergence or a maximum number of iterations is reached. 

 

7.4.2 Channel Blur Identification 

PSF is the transfer function that is used to characterize the blurring process. Image blurring is 

commonly due to causes by inner optical system  (e.g. lens defocusing, optical system 

aberration) and outer environmental factors (e.g. relative motion between camera and objects, 

atmospheric turbulence). Taking these factors into consideration, the blurs across different 

channels in SR will share certain similar characteristics, e.g. they commonly belong to the 

same parametric model. In other words, the blur of each LR frame (channel) is similar to each 

other up to a certain extent. These scenarios are relatively common in many applications such 

as video recording which experience same lens focusing artifact, or image capturing with 

similar settings. This notion is used to determine the weighted mean blur estimate *
ih  from 

all the channel blurs jh  as: 

 1,*

1,

K

j j
j j i

i K

j
j j i

w

w

= ≠

= ≠

=
∑

∑

h
h  (7.12) 

where jw  is the weight of the jth channel blur.  
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The inter-frame similarity model for the warped blur *
iq  can be computed as 

 1,* *

1,

K

j j j i
j j i

i i i K

j
j j i

w

w

= ≠

= ≠

−
= =

∑

∑

q s s
q h s  (7.13) 

This inter-frame blur model will be incorporated into the HR reconstruction procedure to 

improve the convergence performance. We propose a new blur-domain cost function of (7.10) 

to integrate this modeling term: 

 ( )2 2 2
1

1

( , , | ) || || || || || ||
K

K i i i i i i i i
i

J β γ ∗

=

= − ∗ + ∗ + −∑q q f g q f e q q q"  (7.14) 

where iβ  are the regularization parameters that offer a compromise between least-square 

fidelity error and the regularity of the solution. ie  are the regularization operators, which 

usually take the form of high-pass filter. The third term serves as a reinforcement learning 

term to integrate the potentially useful parametric structure of the blur, where iγ  are the 

learning parameters.  

The main objective of this arrangement is to assess the relevance of the current blur iq  with 

respect to the inter-frame blur model, and integrates this knowledge progressively into the 

scheme whenever appropriate. If the current blur iq  resembles i
∗q  closely, suggesting a 

strong likelihood that iq  indeed belongs to a desired common structure, then the modeling 

term 2|| ||i i
∗−q q  will induce learning towards i

∗q . In contrast, if iq  differs from i
∗q  

significantly, then 2|| ||i i
∗−q q  will be small, and there will be little learning towards i

∗q . This 

mechanism represents a flexible reinforcement learning paradigm. It is noted that this idea is 

inspired by the successful PDR approach, which introduce a soft modeling term into the SDR 
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scheme in Chapter 3. The optimal solution of iq  can be obtained using CGO outlined in 

Subsection 3.5.1.  

 

7.4.3 Recursive Multichannel Image Restoration 

The overall cost function in (7.9) consists of two sets of unknown variables: image and blur. 

As explained earlier, we project 1( , , , )KJ f q q"  into the image-domain cost function 

1( | , , )KJ f q q"  by fixing the blurs to give: 

 2 2
1

1

( | , , ) (|| || || || )
K

K i i i
i

J α
=

= − ∗ + ∗∑f q q g q f c f"  (7.15) 

where c  and iα  are the regularization operator and parameter, respectively. We employ 

recursive filtering to minimize the cost function as detailed in Subsection 4.4.1.  

 

7.5 Experimental Results 

7.5.1 Super-Resolution of Simulated Images  

The effectiveness of the proposed algorithm is illustrated through using different images 

under various conditions. The original HR image is translated by different shift sizes at 

pixel-level. After that, each shifted image is blurred and downsampled such that the 

translations between the LR and the reference frames is maintained at a subpixel level. In 

addition, we compare the proposed algorithm with the well-known bicubic interpolation [134] 

and the benchmarked IBP method [119]. 

The “Satellite” image is selected as the test image in Figure 7.2(a). The HR image is shifted 

by translations of (0,0), (0,1), (1,0), (1,1), and blurred by four different 5×5 Gaussian blurs 
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iσ  ={2.0, 2.2, 2.4, 2.6}, respectively. The decimation factor d is taken as 2 and the images 

are degraded by additive noise to produce SNR at 40dB, as show in Figure 7.2(b). For the 

purpose of subjective comparison later, one of the four LR frames in Figure 7.2(b) is 

upsampled and shown in Figure 7.2(c). The proposed algorithm is run to perform blind SR 

image reconstruction. The forgetting factor is taken as 0.5λ = . The regularization parameters 

are 0.00025iα = , 610i iβ γ= = , while the regularization operators c  and ie  are simply 

taken as the impulse functions. The weight for computing *
iq  is set to 1iw = . The maximum 

iteration number is set to 5. The reconstructed HR image using the proposed algorithm is 

shown in Figure 7.2(d). It can be observed that the reconstructed image in Figure 7.2(d) has 

recovered most visual information of the original HR image in Figure 7.2(a) from four LR 

images. By comparing the reconstructed HR images shown in Figure 7.2(d)-(f), it is clear that 

the proposed method is superior in rendering high-quality images while preserving various 

details of the image. The satisfactory subjective inspection of the image is supported by 

objective performance measure as our method offers a PSNR of 28.83 dB, as opposed to 

26.27dB and 26.50dB offered by the bicubic and IBP methods, respectively. 

The second experiment is based on a real aerial image of “Singapore” in Figure 7.3(a). The 

observed LR frames are obtained as the same as the previous experiment where the subpixel 

translations are (0,0), (0.25,0.25), (0.5, 0.5), (0.75,0.75). The proposed method is 

implemented with the following parameters: 0.7λ = , 0.005α = , 610i iβ γ= = , c  and ie  

are taken as Laplacian high-pass filter. The enlarged section of the LR image and the 

reconstructed HR images are shown in Figure 7.3(b)-(f). The PSNR of the reconstructed HR 

images using the proposed method, bicubic interpolation, and the IBP methods are 24.37dB, 

22.12dB, and 22.52dB, respectively. It is clear from both visual inspection of the figures as 

well as the objective PSNR indicator that our method provides a superior reconstructed HR 
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image when compared with that obtained using the other two methods. 

  

7.5.2 Super-Resolution of Real-Life Images  

This experiment is to demostrate SR when considering static scenes, where snapshots of a 

static object are taken in a quick succession. A set of four real-life color images of sized 

640×480 pixels are captured using a digital camera (Cannon IXUS v3), as shown in Figure 

7.4(a). In the captured LR images, there are some texts that are region of interest (ROI) 

required enhancing, as shown in Figure 7.4(b). We use the two-stage coarse-to-fine algorithm 

for identification of the global translational displacement. The coarse step uses the classical 

phase correlation to identify the pixel-level shift, while the fine step uses the bispectrum 

method in Chapter 6 to estimate the subpixel-level translations. We observe that there does 

not exist any pixel-level translations among the captured images in the coarse step. Taken the 

first LR frame as the reference image, the subpixel translations are given in Table 7.1.
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 (a)   (b) 

             
 (c) (d)  

             
 (e) (f)  

Figure 7.2 Blind super-resolution image reconstruction results. (a) Original “Satellite” image,  (b) Four 

LR images, (c) One of the upsampled LR frames, (d) Proposed algorithm, (e) Bicubic interpolation, (f) 

IBP method. 
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 (a) (b) 

            
 (c) (d) 

            
 (e) (f) 

Figure 7.3 Blind super-resolution image reconstruction results. (a) Original “Singapore” image, (b) 

Section of LR frames, (c) One of the upsampled LR frames, (d) Proposed algorithm, (e) Bicubic 

interpolation, (f) IBP method. 
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 (a)                          (b) 

       
 (c) (d) 

Figure 7.4 Blind super-resolution image reconstruction results. (a) One of LR frame, (b) Section of LR 

frame, (c) Upsampled section, (d) Reconstruction result.  
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TABLE 7.1 RESULTS OF SUBPIXEL REGISTRATION 

LR images Red channel Green channel Blue channel  
1 (0,0) (0,0) (0,0) 
2 (0.200, -0.136) (0.183, -0.101) (0.200, -0.096) 
3 (0.289, 0.107) (0.246, 0.135) (0.309, 0.168) 
4 (0.449, -0.353) (0.441, -0.363)  (0.461, -0.278) 

  

Using the captured four LR images, a HR image is constructed through the proposed SR 

algorithm. After comparing Figure 7.4(c) and (d), we observe that the resolution and quality 

of the image has been increased, especially for some blurred words. This illustrates that the 

proposed method is helpful in handling real-life HR image reconstruction. 

 

7.6 Summary  

In the proposed SR method, the blurs do not need to be known a prior as they can be 

identified iteratively using the proposed AM scheme. If the PSFs are known a priori, the 

proposed method still will yield better performance as the number of unknown parameters is 

reduced. We formulate the SR problem as a framework of joint interpolation-restoration 

scheme. The main contribution of this chapter is the development of multichannel blind 

restoration to estimate the unknown PSFs, and its integration into the SR scheme to render 

HR images. A joint blur identification and HR image reconstruction is proposed using AM. It 

involves recursive updating of the estimated HR image from the previous estimate. The blurs 

are identified iteratively with the utilization of inter-frame blur similarity. Experimental 

results show that the method is effective in performing blind SR image reconstruction.  
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Chapter 8  

Conclusion and Recommendations 

8.1 Conclusion 

Enabling machines to observe, interpret, and interact with the world has long been a goal of 

computer vision and machine vision. A computer can monitor the world through various 

sensors, such as still and video cameras, or through more advanced sensors, such as radar, 

sonar, infra-red cameras, and medical imaging devices. A critical need that has not been 

adequately addressed so far is the ability to reconstruct object of interest at sufficient 

resolution with more fine details observable. This cutting-edge technology consists of 

probabilities and stochastic processes, statistical signal processing, optimization theory, and 

computational intelligence.   

This thesis has investigated the problem of combining information contained in a single or 

multiple views of a scene into a HR still image. There are three main parts to this 

investigation: image deconvolution, interpolation, and super-resolution. 

 

8.1.1 Image Deconvolution 

We have proposed a new PDR approach to blind image restoration based on soft integration 

of manifold blur parametric modeling. As opposed to other blind algorithms, the proposed 

technique is flexible, as it does not require assumptions such as (i) known blur supports, and 
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(ii) stringent stochastic image modeling.  

The efficient discrete spatial techniques for blur support identification are developed and 

implemented in Chapter 2. The method is formulated with consideration of the image and PSF 

characteristics. The efficiency and validity are demonstrated based on ARMA image 

modeling. The criterion involves the design of an adaptive filter, which is derived from the 

degraded image. The method provides robust estimation of the support size for 1-D blurs as 

well as 2-D blurs. The simplicity of our criterion is a main advantage in algorithmic 

formulation. Experimental results show that the technique is effective in identifying blur size 

under different circumstances, namely different images, blur types, and noise levels. 

A MSPM algorithm has been proposed to generate the manifold parametric blur models and 

determine the final blur estimate in Chapter 3. The PDR scheme integrates the parametric 

information of the blur structures progressively throughout restoration. The blind restoration 

problem is formulated into an AM procedure of blur identification and image restoration. This 

improves the convergence greatly, leading to significant reduction in computational cost. 

Experimental results show that the PDR method is robust in blind restoration of images 

degraded under different blur structures and noise levels.   

An iterative algorithm based on multichannel recursive filtering is proposed to address 

multichannel deconvolution in Chapter 4. The estimated image is recursively updated from its 

previous estimates using a regularization framework. The multichannel blurs are identified 

iteratively using CGO. A key feature of the method is its computational simplicity and 

efficiency. This allows the method to be adopted readily in real-life applications. 
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8.1.2 Image Interpolation 

The image interpolation is formulated as a regularized least squares solution of a cost function 

in Chapter 5. The cost function consists of a data fidelity term and a Tikhonov regularization 

functional. It is processed as a whole matrix computation rather than pixel-to-pixel estimation 

individually. Because solving for the direct closed-form solution is impractical due to huge 

computational cost involved in large matrix inversion, we derive the optimal solution using a 

combined framework of Kronecker product and SVD to reduce the computational cost.  

The regularized least squares can achieve a good trade-off between edge preservation and 

noise suppression. A key feature of the method is its computational efficiency in 

reconstructing high-fidelity HR image through clever manipulation of Kronecker product and 

SVD. This allows the new method to be employed readily in the areas of digital photography, 

computer vision, and medical imaging, among others.  

  

8.1.3 Image Super-Resolution 

The implementation of SR image reconstruction has been discussed in Chapter 6 and 7, 

focusing on image registration and multiframe reconstruction scheme. 

The conventional registration techniques for rotation, translations and scaling are reviewed 

briefly. For subpixel registration, a major shortcoming of conventional spectrum technique is 

its sensitivity towards noise. A higher-order statistics method is proposed to estimate subpixel 

translations between two images. The new bispectrum algorithm utilizes the characteristics of 

bispectrum to suppress Gaussian noise. It is robust towards noise, thereby leading to 

significant performance improvements in low SNR environments or in the presence of 

cross-correlated channel noise.  
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A novel blind SR algorithm to enhance image resolution without the knowledge of the PSFs is 

developed. It is based on a new framework of joint interpolation-deconvolution scheme. It 

combines the advantages of PDR and MRF. The primary motivation for developing the blind 

algorithm is due to the observation that most existing SR methods assume the blurs are known 

a priori, which may not be true in many real-world applications. The main contribution is the 

development of multichannel blind deconvolution to estimate the unknown PSFs, and its 

integration into the SR scheme to render HR images.  

 

8.2 Recommendations for Further Research 

As medical imaging and surveillance systems are becoming more and more ubiquitously 

deployed, a critical need that has not been adequately addressed so far is to utilize the HR 

technology in these real-life applications. A new promising direction will be the development 

of more realistic observation models, more accurate degradation identification methods, and 

more powerful optimization frameworks with computational intelligence leading to ultimate 

improvements in reconstructed image quality.  

 

8.2.1 High-Resolution Reconstruction for Color Image  

Color images are typically expressed in multichannel models such as RGB (red, green, blue), 

HSI (hue, saturation, intensity), and YCrCb (luminance, chrominance, chrominance). Among 

them, the RGB model is the most well-known color space, consisting of red, green, and blue 

channels. There are many practical factors that prevent accurate measurement of color 

images. For example, in single-chip CCD sensor array, color filter array (CFA) is commonly 

placed between the lens and the sensors for acquisition of color images [135], [136]. As CFA 
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has one color filter element for each sensor unit, this causes the captured image to have a 

mosaic pattern of observed pixels from different color channels. To render full-resolution 

images, the missing color information must be estimated from the surrounding pixels.  

Color images can be considered as a special case of the multiple-input multiple-output 

(MIMO) model. However, the color channels are not independent but rather highly correlated. 

For example, a change of intensities in red channel usually corresponds to an edge in 

blue/green at the same location. Therefore, how to fully exploit this property for 

reconstructing a clearer and sharper HR image is of interest [137], [138]. 

Currently, there is relatively little work addressing color HR image reconstruction, and most 

common solutions involve applying monochrome deconvolution and SR to each color 

channel separately. However, the correlations between the color channels should be utilized 

during the reconstruction process. Bolmgren and Chan extend the TV norm to vector color 

images in order to achieve edge preservation and noise suppression [139]. Using the Beltrami 

framework, a color image can be considered as a 2-D surface embedded in a five-dimensional 

“spatial-feature”[140]. It is promising that if all color channels can be restored simultaneously 

via color image deconvolution [141], [142], the performance of the SR reconstruction scheme 

can be improved accordingly. 

 

8.2.2 High-Resolution Reconstruction for Medical Imaging 

In recent years, there are significant advances in the medical imaging ranging from the 

research laboratory to the clinical examination. However, efficient HR reconstruction 

softwares for medical imaging, including ultrasound, CT, MRI, x-ray, are still needed to 

facilitate the routine clinical imaging system [143]-[146]. For example, the major advantages 

of medical ultrasound imaging include the capability of real-time imaging, no radiation, and 
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usage of small, movable scanner. However, the commonly captured medical ultrasound 

images have much lower spatial resolution than the corresponding x-ray, CT, and MRI. 

Moreover, ultrasound images are degraded by speckle noise [147]. On the other hand, 

diagnostic decisions often require accurate measurements of organ volume. Unreliable 

volume measurement techniques may potentially lead to inaccurate decisions in diagnosis. 

Therefore, using computer to reconstruct a HR medical image by combining the available 

multiple degraded images is important. Its main goals are (i) image enhancement to increase 

image quality and to lessen the need for highly experienced doctors, and (ii) extraction of 

diagnostic information about tissue and incorporation of this information into automated 

diagnostic system. 

 

8.2.3 Super-Resolution Considering Dynamic Scenes 

Conventional SR algorithms are based on the model that there exist relative global motion 

between two consecutive images, including rotation and translations [148], [149]. This is 

applicable for the controlled camera where the scene is static and the movement of camera is 

well-defined [150]. However, there are relatively few works on spatial-temporal images 

observed in dynamic scenes. It is meaningful to discuss the SR when using a still camera to 

capture the dynamic object, especially in video surveillance applications [151], [152]. 

For dynamic scenes, motion object detection is necessary to detect the moving object of 

interest. For example, a human face tracker that can locate and segment the frontal face 

should be integrated in the face recognition system [153], [154]. It is useful for feature 

extraction of moving targets [155]. The assumption, which should be satisfied for dynamic 

scenes, is that all the changes that the moving object undergoes are rigid. Obviously, this 

assumption is more or less strictly valid for a surveillance video. Therefore, in some 
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surveillance applications dealing with human motion, manual selection is needed to pick out 

those most relevant frames for further processing.  

 

8.3 Summary 

In this thesis, we have developed a set of complete and efficient algorithms for HR image 

reconstruction. The algorithms presented here can serve as the foundation for further work. 

The future of high-resolution image reconstruction technology appears to be very bright, 

although much work remains to be done for it to reach a mature technology. 
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