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Summary

The research work presented in this thesis is particularly focused on a fundamental

investigation and development of the optical flow estimation, which is considered

as one of the fundamental computation tasks often required in computer vision.

The goal of the optical flow computation is to extract the two-dimensional velocity

information at each pixel on the individual frame of a video sequence.

The fundamental constraint equation for gradient-based optical flow estimation

is the gradient constraint which restricts the optical flow solution by the spatial

and temporal derivatives of the pixel intensity on video frames. However, only the

normal flow, which is one of the two optical flow components that is parallel to

the image gradient, can be computed. On the other hand, the tangent flow, which

is another optical flow component that is perpendicular to the image gradient,

cannot be calculated from the gradient constraint. This is known as the standard

aperture problem, and the tangent flow has to be estimated by making an additional

smoothness assumption over the motion field. However, such assumption might not

be effective, especially for the boundaries of moving objects or non-rigid objects,

besides the computational complexity issue.

To address the above-mentioned issues, a three-dimensional gradient constraint

is proposed in this research to calculate the optical flow without imposing any

hypothesis on the smoothness of the motion field. By representing a video as a

spatio-temporal cube, the constraint line of the conventional gradient constraint

viii
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Summary

is replaced by the constraint plane which is perpendicular to the local gradient

of the spatio-temporal cube. It is further shown that the tangent flow could be

calculated on the constraint plane by finding the direction of constant brightness

which is a 3-D vector from the local pixel to its counterpart on the next frame in

the spatio-temporal cube.

As the tangent flow could be obtained based on the proposed 3-D gradient

constraint, the standard aperture problem could be effectively and efficiently solved.

The condition for solving this problem is derived by analyzing the spatio-temporal

image of the constraint plane. Based on this analysis, an estimator for estimating

the direction of image gradient is developed to replace the regular image gradient

estimators, such as the Sobel estimator, which may fail to extract the variational

information from the spatio-temporal image on the constraint plane.

In addition, because the optical flow are computed from our derived closed-form

equations, no iterative computations are involved. This yields a relatively low com-

putational complexity and has a good potential to provide real-time performance

on computing the optical flows.

The performance of the proposed optical flow estimation method is evaluated

in terms of the optical flow precision and the runtime. Simulation results clearly

demonstrate that the developed optical flow estimation method is able to obtain a

fairly precise optical flow field with very low computational complexity.

ix
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Chapter 1

Introduction

Motion is the most salient temporal information perceived by the human visual

system to detect any movement that might be incurred in our surroundings. In

digital video processing, motion information can be extracted from the intensity

change at each pixel based on the consecutive frames. The obtained motion field

could be further utilized in many video processing and computer vision tasks, in-

cluding video coding, video object segmentation, 3-D shape acquisition and scene

understanding, etc.

Generally, the motion estimation methods could be divided into two categories:

optical flow estimation(e.g., [1]) and block-matching algorithm(e.g., [2]). In this the-

sis, the research work is only focused on the former, from which the obtained optical

flow presents the apparent motion of brightness pattern derived from two consecu-

tive video frames [3] (see Figure 1.1 for a demonstration). In general, there are three

categories of optical flow estimation techniques that have been developed: gradi-

ent-based regularization methods (e.g., [1, 4]), region-based matching approaches

(e.g., [5]) and phase-based differential algorithms (e.g., [6]). They will be succinctly

discussed in Chapter 2 as the essential background. The gradient-based methods

will be further studied for the development of a new optical flow estimation scheme.

1
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1.1 Problems and Major Contributions

(a) (b)

Figure 1.1. An example of optical flow field. (a) The 8th frame of the Sphere sequence.

(b) The ground truth of the optical flow obtained from frames 8 and 9.

1.1 Problems and Major Contributions

The fundamental constraint for gradient-based optical flow estimation is the gra-

dient constraint proposed by Horn and Schunck [1], from which the optical flow is

only restricted on a constraint line (Figure 1.2). As the constraint line is a linear

equation in two variables, the optical flow solution could not be determined based

on the gradient constraint. This is known as the standard aperture problem [3, 7].

Due to this problem, the optical flow can only be estimated by imposing a smooth-

ness assumption on the motion field. For that, various smoothness constraints for

regularization [1, 8] as well as the least-squares or the tensor-based computational

methods [4, 9] are developed to estimate the optical flow field. In addition, to make

the estimation more robust against image noise, illumination change and object oc-

clusion, different energy functionals [10, 11] and probabilistic models [12, 13] have

been attempted. To preserve more accurate boundary of the moving objects in the

motion field, parametric models [14, 15] and piecewise-smooth hypothesis [16, 17]

are incorporated, on the expense of increased computational complexity. Besides,

these methods still fail to reasonably handle non-rigid moving object deformation.

2
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1.1 Problems and Major Contributions

u

v

Constraint line

),( vu

Figure 1.2. The optical flow solution (u, v) is restricted on a constraint line.

This is due to the fact that the estimation of optical flow based on the gradient

constraint relies heavily on the smoothness assumption of the motion field.

To address these issues, the 3-D gradient constraint is proposed to calculate

the optical flow without imposing any hypothesis on the smoothness of the motion

field. In this constraint, a constraint plane is introduced to constrain the optical

flow components at each pixel position in the spatio-temporal cube of a video,

which replaces the constraint line of Horn and Schunck. And it is derived that the

spatio-temporal image on the constraint plane could be utilized to calculated the

tangent flow, which can not be estimated by the conventional gradient constraint.

This implies that both the normal flow and the tangent flow could be computed

at each pixel position, and the standard aperture problem could be solved. The

condition for solving the standard aperture problem is derived by analyzing the

spatio-temporal image of the constraint plane. In addition, a new image gradient

estimator is introduced to replace the regular gradient estimator which may fail to

estimate the image gradient of the spatio-temporal image on the constraint plane.

Moreover, the proposed optical flow estimation method has a good potential to

provide real-time performance as the optical flow is calculated from a set of closed-

form equations.

3
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1.2 Organization of The Thesis

1.2 Organization of The Thesis

The rest of this thesis is organized as follows. Chapter 2 provides the fundamental

knowledge of optical flow and a comprehensive review of the conventional optical

flow estimation techniques. In Chapter 3, a new three-dimensional gradient con-

straint is proposed, which extends the conventionally exploited constraint line to

the constraint plane, from which the tangent flow could be estimated. The condition

for solving the standard aperture problem is derived, and a image gradient estima-

tor is introduced in this chapter. In Chapter 4, the experimental simulation results

are presented in terms of the optical flow precision and the runtime to demonstrate

the accuracy of computed optical flow by using the proposed approach. Conclusions

of this thesis are drawn in Chapter 5.

4
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Chapter 2

Basics of Optical Flow Estimation

In this chapter, the fundamentals of the optical flow is presented as the essential

background for the understanding and development of this thesis. Three categories

of optical flow estimation methods are succinctly reviewed; they are: gradient-

based regularization methods, region-based matching approaches and phase-based

differential algorithms.

2.1 Motion Field

When a video camera is used to take a video sequence of the 3-D scene in the real

world, the 3-D motion of an object in this scene is projected onto the camera sensor

and appears as the 2-D position change of the object’s image between consecutive

frames of the video. Based on the principle of optics, this 2-D position change is

the perspective projection of the object’s 3-D motion relative to the camera in the

real world.

In computer vision, motion field is defined as the ideal representation of a 3-D

motion when it is projected onto the image plane of a video camera [3]. As shown

in Figure 2.1, at a particular time instant t, the point Pi acquired by the camera

5
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2.1 Motion Field
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Figure 2.1. The projection of a 3-D motion on a 2-D translation on the image plane.

lens and presented in the image plane corresponds to the point Po on the surface

of an object by the perspective projection. Let ro and ri be the vector from the

optical center of the lens to Po and Pi, respectively. In a short time interval δt, the

motion of Po and Pi is represented as δro and δri, respectively (Figure 2.1). As the

time interval δt is very short, the velocities of Po and Pi could be given as

vo =
dro

dt
and vi =

dri

dt
, (2.1)

where ro and ri are related by

ri

f
= − ro

ro · uz

. (2.2)

Here, f is the focal length of the camera lens, and uz corresponds to the unit

vector on z-axis which is perpendicular to the image plane. By differentiating this

perspective projection equation with respect to time t, it can be arrived at

vi

f
= −(ro · uz)vo − (vo · uz)ro

(ro · uz)2
= −(ro × vo)× uz

(ro · uz)2
. (2.3)

Equation (2.3) reveals the relation of perspective projection between the motion vo

in the 3-D scene and its projected counterpart vi on the image plane.

6
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2.2 Optical Flow

(a) (b)

Figure 2.2. The optical flow is not always equal to the motion field. (a) A smooth sphere

rotating under constant illumination. (b) A stationary smooth sphere illuminated

by a moving light source.

The motion field is composed of the velocity vectors projected onto the image

plane as described above. Here, the perspective projection is shown to illustrate

the scheme that the motion vectors are obtained to construct the motion field. In

the following part of this thesis, we will focus on the analysis of the 2-D motion in

video sequences.

2.2 Optical Flow

Unlike the motion field, which is the projection of the 3-D real motion in the scene,

the so-called optical flow is the apparent motion of the brightness pattern (spatial

variation of image intensity, such as textures and edges) between consecutive frames

of a video sequence [3]. The difference between the motion field and the optical flow

could be demonstrated by the following two examples.

In the first example, consider a uniform sphere with smooth surface rotating

about an axis across its spherical center under a fixed illumination (Figure 2.2(a)).

Because of its uniform shape and textureless surface, the brightness pattern on

7
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2.2 Optical Flow

motion field

optical flow

Figure 2.3. The optical flow and the motion field of a rotating barber’s pole.

the sphere will not change accordingly with the rotation of the sphere. Therefore,

the optical flow is zero everywhere, while the motion field is nonzero owing to the

rotation of the sphere. In contrast to the setup of the above-mentioned experiment,

let us consider the same sphere without any movement illuminated by a moving

light source (Figure 2.2(b)). Along with the movement of the light source, the

position of the shading on the sphere surface will be changed, and this will yield the

movement of brightness patterns across image frames. The corresponding optical

flow is obviously nonzero, although the motion field of the sphere is in fact zero

everywhere. Another famous example is the barber’s pole illusion [18] (Figure 2.3),

in which the motion field (i.e., real motion) and the optical flow (i.e., apparent

motion) are perpendicular to each other.

Although the motion field and the optical flow are different in some occasions,

only the optical flow could be extracted from a video sequence. Therefore, the

optical flow would still be investigated as an approximation of the motion field to

obtain the motion of the objects. The basic formulation of optical flow is given as

follows.

Let I(x, y, t) be the pixel intensity at position (x, y) in the image plane at time

t, which reflects the brightness of a point in the real-world scene. After a lapse of

time δt, the same point is reflected at the position (x+δx, y+δy) in the image plane

8
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2.3 Optical Flow Estimation Techniques

at time t + δt. In optical flow estimation, the intensity of this point is expected to

be unchanged during such a short time interval. That is

I(x + δx, y + δy, t + δt) = I(x, y, t), (2.4)

Let (u, v) denote the optical flow vector representing the 2-D velocity in the image

plane; here, u = δx/δt and v = δy/δt. Equation (2.4) could be represented as

I(x + uδt, y + vδt, t + δt) = I(x, y, t). (2.5)

As the time interval δt is very short, (2.5) can further be derived as

d

dt
I(x, y, t) = 0. (2.6)

Equation (2.5) is the so-called constant intensity constraint [3] used for optical flow

computation. That is, the velocity vector v = (u, v) satisfying (2.5) is the optical

flow at point (x, y). Equivalently, the optical flow can be computed by minimizing

dI(x, y, t)/dt. And the corresponding motion vector is known as the velocity with

minimum intensity change.

2.3 Optical Flow Estimation Techniques

In general, the optical flow estimation techniques can be divided into three cate-

gories: gradient-based regularization methods (e.g., [1, 4]), region-based matching

approaches (e.g., [5]) and phase-based differential algorithms (e.g., [6]). In these

methods, different shift-invariant properties of pixel intensity, block pattern or im-

age phase are utilized respectively, with more details as follows.

2.3.1 Gradient-based Regularization Methods

Known as the differential techniques or the variational methods, the gradient-based

methods have been extensively investigated since the novel work done by Horn

9
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2.3 Optical Flow Estimation Techniques

),(
yx
II
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v

u

v

Constraint line

v
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v

Figure 2.4. Analysis of optical flow components. The full flow v is orthogonally decom-

posed into the normal flow vNF and the tangent flow vTF . Only the normal flow

could be determined directly by the constraint line.

and Schunck [1], and have been proved to provide very precise optical flow field

[19, 20, 21].

The gradient-based methods are based on the gradient constraint, which is first

introduced by Horn and Schunck [1], nearly three decades ago. Serving as the

fundamental constraint in optical flow estimation, the gradient constraint relates

the optical flow components with spatial and temporal derivatives of the image

intensity on consecutive frames of a video sequence.

The gradient constraint is derived from (2.6) by using the chain rule of differen-

tiation with respect to t, which is

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂t
= 0. (2.7)

As the two components of optical flow u = dx/dt and v = dy/dt, (2.7) can be

written as a linear equation in the two variables u and v,

Ixu + Iyv + It = 0, (2.8)

where the abbreviations Ix, Iy and It are the partial derivatives for image intensity

with respect to x, y and t. As shown in Figure 2.4, (2.8) defines the constraint line,

10
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2.3 Optical Flow Estimation Techniques

on which the optical flow is confined. However, it’s impossible to determine the two

unknowns u and v uniquely with merely one linear equation.

As shown in Figure 2.4, the so-called full flow v is composed of two orthogonal

components: the normal flow vNF and the tangent flow vTF , where the normal

flow is parallel to the image gradient (Ix, Iy) and the tangent flow is perpendicular

to the normal flow. In (2.8), if we move It to the right side and rewrite the left side

as the inner product of two vectors, it can be represented as

(Ix, Iy) · (u, v) = −It. (2.9)

Because the normal flow is parallel to the image gradient, the normal flow vNF =

(uNF , vNF ) could be obtained by representing (uNF , vNF ) as

(uNF , vNF ) = α · (Ix, Iy)

‖(Ix, Iy)‖ , (2.10)

where α is a scalar, and (Ix, Iy)/‖(Ix, Iy)‖ is the unit vector parallel to the image gra-

dient. By substituting (2.10) into (2.9), it can be calculated that α = −It/‖(Ix, Iy)‖,
which yields

(uNF , vNF ) = − It

‖(Ix, Iy)‖ ·
(Ix, Iy)

‖(Ix, Iy)‖ . (2.11)

However, the tangent flow vTF can not be estimated directly based on the gradient

constraint, which is referred to as the standard aperture problem [3, 16]. Due to such

limitation of gradient constraint, two branches of methods, the global smoothness

constraint and the least-squares minimization are proposed to further constrain the

optical flow field.

i) The Global Smoothness Constraint

In this category of methods, the gradient constraint (2.8) is combined with a

smoothness term to establish an energy functional E(u, v), subjected to be min-

imized globally. Therefore, these methods are also known as the global methods.
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2.3 Optical Flow Estimation Techniques

Taking the Horn and Schunck method [1] as an example, the optical flow is calcu-

lated by minimizing the energy functional defined over a domain D, as

E(u, v) =

∫∫

D

(Ixu + Iyv + It)
2 + λ(‖∇u‖2

2 + ‖∇v‖2
2)dxdy, (2.12)

where the regularization parameter λ is determined experimentally and used to

reflect the influence of the smoothness term (‖∇u‖2
2 + ‖∇v‖2

2). Normally, the op-

tical flow is calculated by Gauss-Seidel iterative equations, which yield very high

computational load. Although the multigrid algorithm is developed to achieve fast

calculation [22, 23], the optical flow estimation procedure is still getting more and

more complicated as more models are incorporated.

Due to the different motion of the moving objects and the background, this

smoothness assumption of the motion field would be violated at the boundary of

the moving object. In order to handle such problem, Nagel and Enkelmann [8] intro-

duced the oriented-smoothness constraint in which smoothness is not imposed across

steep intensity gradients (edges). In order to achieve piecewise smoothness of the

optical flow field, another approach was proposed by Black and Jepson [14], in which

the parametric flow model was used to estimate the motion in segmented and pla-

nar hypothesized regions with piecewise smooth brightness. Weickert and Schnörr

[24] introduced a nonlinear spatio-temporal regularization method based on non-

quadratic convex variational regularization which yields discontinuity-preserving

computation of optical flow. For the same purpose, a multi-cue driven adaptive

bilateral filter is utilized to regularize the flow field in the method proposed by Xiao

et al. [17].

In order to cope with large displacement as well as reduce the risk to be trapped

by irrelevant minimum, the multi-resolution technique and the coarse-to-fine strat-

egy were widely adopted [25, 26, 27]. Brox et al. [10] used an energy function

combining the brightness constancy, the gradient constancy and the discontinuity-

12
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2.3 Optical Flow Estimation Techniques

preserving spatio-temporal smoothness constraint. The coarse-to-fine warping strat-

egy is also incorporated to make the algorithm insensitive to parameter variation

and relatively more robust under noise.

An additional approach to acquire robust optical flow estimation is to combine

the global method (i.e., the global smoothness constraint) and the local method

(i.e., the least-squares minimization), which was proposed by Bruhn et al. [11]. It

is not only more robust under noise, but also yields dense flow fields, which takes

the advantage of the global and local methods.

Although various smoothness constraints, regularizers and computational ap-

proaches are designed, incorporating parametric models as well as probability mod-

els [13], accurate motion vectors for non-rigid objects with deformed motion bound-

aries are still difficult to obtain. This is due to the fact that the variational infor-

mation is only extracted in the direction of the image gradient. Furthermore, the

motion component perpendicular to the image gradient has to be estimated from

the local region of the pixel by imposing the smoothness assumption, from which,

however, such smoothness often gets violated especially in the motion boundary,

with illumination change and in occlusion areas.

ii) The Least-squares Minimization

The least-squares minimization approaches are also known as the local methods.

A weighted least-squares of the first-order gradient constraints (2.8) is used in this

category of methods to calculate the optical flow [4, 9]. In each spatial neighborhood

Ω, the optical flow is obtained by minimizing

E(u, v) =
∑
x∈Ω

W (x)(Ixu + Iyv + It)
2, (2.13)

where x = (x, y), and W (x) denotes a weighting function. For that, a Gaussian

function is commonly used, giving more influence to the center of the neighborhood.

13
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2.3 Optical Flow Estimation Techniques

In the approach of Lucas and Kanade [4], the solution to the minimization of

(2.13) is obtained by closed-form equations using the standard least-squares estima-

tion. Unlike this approach, the structure tensor technique [28] solves the minimiza-

tion of (2.13) by using the total least-squares estimation which was first introduced

by Bigün et al. [9]. In the approach proposed by Liu et al. [15], the parametric flow

model was combined with the 3-D structure tensor to further improve the accuracy

of the optical flow.

In these approaches, because the motion of each pixel within the neighborhood

Ω is assumed to be the same, which might easily be violated, the robust model

designed by Black and Anandan [16] was widely utilized to remove the outliers

from the neighborhood. Probabilistic models [12, 29] were also incorporated in the

estimation of optical flow to act against the uncertainty posed by the image noise

and illumination change. However, the estimation of full flow field still relies on the

smoothness assumption of the motion field.

iii) Second-order Approaches

Nagel [30] and Uras et al. [31] used the second-order derivatives to constrain the

optical flow, which assumes d∇I(x, y, t)/dt = 0 as a stronger restriction than the

gradient constraint (2.8). That is,





Ixxu + Ixyv + Ixt = 0;

Ixyu + Iyyv + Iyt = 0.
(2.14)

However, higher-order derivatives are often extremely noisy, and the conservation

of d∇I(x, y, t)/dt = 0 implies that the motion field has no first order deformation,

which might also be violated easily.

14
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2.3 Optical Flow Estimation Techniques

2.3.2 Region-based Matching Approaches

In this category of methods, the optical flow v is defined as the shift d that corre-

sponds to the best fit between image regions in neighboring frames. We can utilize

the minimization of a distance measure, such as the sum-of-squared difference (SSD)

to find the best match, which is,

SSD1,2(x;d) =
n∑

j=−n

n∑
i=−n

W 2(i, j)[(I1(x + (i, j))− I2(x + d + (i, j))]2

= W (x) ∗ [(I1(x)− I2(x + d)]2 (2.15)

where x = (x, y), W (x) denotes a 2-D window function, and d = (dx, dy) takes only

integer values. It is not too different to use the cross-correlation similarity measure

and differential techniques: minimizing the SSD distance is equal to maximizing

the integral of the term I1(x)I2(x+d); the SSD in (2.15) can also be viewed as the

weighted least-squares first-order gradient constraint, except the integer results.

Using only SSD minimization might be enough for video coding tasks, but for

optical flow computation, it’s only adequate. To make the matching algorithm pro-

duce a better flow field, Anandan [5] introduced a technique based on the Laplacian

pyramid and the coarse-to-fine SSD-based matching strategy. Anandan also intro-

duced a smoothness constraint on the estimated velocities to produce smooth flow

fields. Another SSD-based matching method proposed by Singh [32] uses two stages

to get the optical flow: the first stage computes the SSD0, which is,

SSD0(x,d) = SSD0,1(x,d) + SSD0,−1(x,d) (2.16)

on band-pass filtered images, and the SSD0 is converted into a probability distri-

bution to acquire sub-pixel velocity; the second stage propagates the velocity using

neighborhood constraint, which assumes that a weighted least-squares velocity es-

timation could be obtained from the velocities of its neighboring pixels.

15
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2.3 Optical Flow Estimation Techniques

2.3.3 Phase-based Differential Algorithms

This category of techniques are defined in terms of the phase behavior of band-pass

filter outputs. Fleet and Jepson [6, 33] assumed that the phase would conserve in

each band, into which the image was decomposed. The output of band-pass filter

is complex-valued and can be written as

R(x, t) = ρ(x, t) exp[iφ(x, t)], (2.17)

where ρ(x, t) and φ(x, t) are the amplitude part and the phase part of R(x, t). The

optical flow is calculated by applying the phase-based gradient constraint to the

phase component of R(x, t), which is quite similar to the gradient-based approach:

φx(x, t)u + φy(x, t)v + φt(x, t) = 0. (2.18)

However, because the phase is a multi-function, only uniquely defined on intervals

of width 2π, it’s difficult to make explicit differentiation. Instead, it’s convenient

to exploit the following equations to compute the derivatives

φx(x, t) =
Im[R∗(x, t)Rx(x, t)]

|R(x, t)|2 , (2.19)

where R∗ is the complex conjugate of R, Im[R] denotes the imaginary part of R,

and Rx = ∂R/∂x.

The use of phase is motivated by the fact that the stability of the phase compo-

nent of band-pass filter output is much higher than the amplitude component [34].

However, the phase would not be so stable around the neighborhood of the phase

singularities.

As the development of the wavelet theory, wavelet-based transforms are also

used as band-pass filter to extract the phase which would be used in the com-

putation of optical flow. Magarey and Kingsbury [35] proposed a complex discrete

wavelet transform (CDWT) based method, which builds a multi-resolution pyramid

16
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2.3 Optical Flow Estimation Techniques

to achieve the coarse-to-fine strategy. Bayro-Corrochano [36] introduced a method

based on quaternion wavelet transform (QWT), which serves as an extension of

the discrete wavelet transform and combines the advantage of the wavelet and the

quaternion algebra.

17
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Chapter 3

Three-dimensional (3-D) Gradient

Constraint

In this chapter, the velocity estimator for 1-D time-variant signal is introduced as

the foundation for deriving the proposed constraint. By extending the conventional

gradient constraint, the 3-D gradient constraint is proposed by formulating the

constraint plane, on which the tangent flow could be uniquely determined. Conse-

quently, the standard aperture problem could be solved based on the 3-D gradient

constraint, and the solvability condition for this problem is given as well. Based on

the analysis of the spatio-temporal image of the constraint plane, a gradient estima-

tor is developed to estimate the direction of image gradient on the spatio-temporal

image of the constraint plane. The optical flow estimation scheme based on the

proposed 3-D gradient constraint is shown in the end.

18
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3.1 Optical Flow for 1-D Time-variant Signal

3.1 Optical Flow for 1-D Time-variant Signal

3.1.1 The Velocity Estimator for 1-D Time-variant Signal

As defined in (2.5), the optical flow estimation is based on the assumption of

brightness constancy. Although such assumption might be violated by illumina-

tion change, object occlusion and specular reflection, it still performs well in most

cases. In this section, we would still utilize this brightness constancy constraint as

our basic hypothesis to derive the optical flow formulas.

For the convenience of demonstration, we would first show the derivation of the

velocity estimator for a 1-D time-variant signal, which will be used in the following

sections. Let f1(x) and f2(x) be the intensity of a 1-D ‘video’ at two time instants,

where f2(x) is the translated version of f1(x). That is

f2(x) = f1(x− d), (3.1)

where d denotes the translation. Expanded in the form of a Taylor series, f1(x− d)

is given by

f1(x− d) = f1(x)− df ′1(x) + O(d2), (3.2)

which can be rewritten as the difference between the two signals at location x:

f1(x)− f2(x) = df ′1(x) + O(d2). (3.3)

Ignoring the second and the higher order terms, the linear approximation to d could

be obtained as

d̂ =
f1(x)− f2(x)

f ′1(x)
. (3.4)

As shown in Figure 3.1, equation (3.4) gives exactly the displacement for a

linear signal as the ignored higher order component O(d2) is equal to 0. For a

nonlinear signal, however, what (3.4) gives is an approximation of the translation

[33], which ignores the higher order terms of corresponding Taylor series. Assuming

19
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Figure 3.1. The linear approximation of the translation for 1-D signals. (a) Estimate the

translation for a linear signal. (b) Estimate the translation for a nonlinear signal.

the displacement is well approximated by (3.4), if we replace f1(x) and f2(x) with

I(x, t) and I(x, t + δt), respectively, and divide both sides of the equation by δt,

(3.4) can be written as

d̂

δt
=

I(x, t)− I(x, t + δt)

Ix(x, t)δt
. (3.5)

Let v = d̂/δt and δt → 0, it becomes

v = − It(x, t)

Ix(x, t)
, (3.6)

which gives the linear estimation of the optical flow for the 1-D ‘video’. It’s obvious

that such estimation approximates the local area of the signal as linear. Besides,

the estimation of the 1-D velocity is not valid when Ix(x, t) = 0.

3.1.2 The Gradient Constraint for 1-D Time-variant Signal

In this part, the fundamental perpendicular relationship between the image gradient

and the direction of constant brightness on the spatio-temporal image of the 1-D

time-variant signal would be demonstrated in deriving the gradient constraint for

the 1-D signal.

20
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3.1 Optical Flow for 1-D Time-variant Signal

Similar with the derivation of the gradient constraint for 2-D video sequences,

the velocity for the 1-D ‘video’ can be derived from dI(x, t)/dt = 0 by using the

chain rule, which is

∂I

∂x

dx

dt
+

∂I

∂t
= 0. (3.7)

As the 1-D velocity v = dy/dt, (3.7) can be written as a linear equation in the

variable v,

Ixv + It = 0, (3.8)

where the abbreviations Ix and It are the partial derivatives for image intensity

with respect to x and t. The solution of the 1-D velocity v to (3.8) is

v = − It

Ix

, (3.9)

which is the same as the linear approximation of the velocity (3.6). Unlike the

situation in the gradient constraint for 2-D video sequences, the gradient constraint

for the 1-D ‘video’ has a unique solution.

By parallel putting the intensity of a 1-D time-variant signal one after another

according to its time label, the 1-D signal can be represented as a 2-D image,

which is named as the spatio-temporal image with one spatial coordinate x and one

temporal coordinate t. Because I(x, t) is equal to I(x+ v, t+1) under the constant

intensity assumption, the vector (v, 1) points to the direction of constant brightness

on the spatio-temporal image. As (3.8) can be represented as the inner product of

two vectors

(Ix, It) · (v, 1) = 0, (3.10)

the image gradient of the spatio-temporal image is perpendicular to the direction

of constant brightness, which can be illustrated by the following example.

Figure 3.2(b) shows the spatio-temporal image of the shift 1-D sine pattern

(Figure 3.2(a)), in which the sine pattern is moving 0.4 pixel to the right by each
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Figure 3.2. Estimate optical flow from spatio-temporal image of the 1-D shift sine pattern.

(a) A shifting 1-D sine-wave pattern. (b) The spatio-temporal image of (a). (c) The

gradient of the spatio-temporal image. (d) The perpendicular relationship between

the image gradient (Ix, It) and the direction of constant brightness (v, 1).
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3.2 The 3-D Gradient Constraint

x

y

t

Figure 3.3. The 3-D spatio-temporal cube for 2-D video sequence.

interval of time. On this spatio-temporal image, it is clear that the image gradient

(Ix, It) and the direction of constant brightness (v, 1) are perpendicular to each

other, which is shown in Figure 3.2(d).

From the above observation, it will be further demonstrated that such perpen-

dicular relationship could further be taken advantage of to estimate the optical flow

for 2-D video sequences. However, as shown in Figure 3.2(c), it should be noticed

that not all pixels in the spatio-temporal image has a nonzero gradient, which means

the pixels with zero or very small amplitude of image gradient is not reliable enough

for calculating the optical flow for the 1-D time-variant signal.

3.2 The 3-D Gradient Constraint

In this section, the 3-D gradient constraint is derived from the perpendicular rela-

tionship between the direction of constant brightness and the 3-D gradient in the

spatio-temporal cube. By locating the direction of constant brightness on the con-

straint plane, the tangent flow could be determined directly, which implies that the

standard aperture problem could be solved based on the proposed constraint.
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Figure 3.4. Sample the spatio-temporal cube. (a) Sample the cube with a plane parallel

to the x-t plane. (b) The sample result of (a).

3.2.1 The Spatio-temporal Representation of Video

Now, consider a typical digital video containing a sequence of consecutive frames,

which can be viewed as a 3-D volume data called the spatio-temporal cube with

two spatial coordinates x and y, plus one temporal coordinate t, which is shown

in Figure 3.3. Because the two point (x, y, t) and (x + u, y + v, t + 1) share the

same intensity under the constant intensity assumption (2.5), (u, v, 1) points to the

direction of constant brightness in the spatio-temporal cube. It’s obvious that the

optical flow could be estimated by finding the direction of constant brightness in the

spatio-temporal cube, which is the fundamental idea of the proposed 3-D gradient

constraint.

Figure 3.4 illustrates this observation by taking a image sample parallel to x-t

plane in the spatio-temporal cube of the sequence Hall and monitor, which contains

300 frames. On the sample image, each pair of the pixels along the direction of

constant brightness could be connected to construct a curve which has a constant

intensity (Figure 3.4(b)). As discussed in 3.1.2, such texture could be utilized to

calculate the 1-D velocity of the 1-D time-variant signal. However, only the motion

parallel to the sample plane could be extracted from this sample of the spatio-
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3.2 The 3-D Gradient Constraint

temporal cube, which implies that the plane on which the direction of constant

brightness locates should be determined in the first place.

3.2.2 Definition of the Constraint Plane

As mentioned previously, the gradient constraint (2.8) only restricts the optical flow

solution on a constraint line (Figure 2.4) which is a single linear equation in the two

unknown velocity components u and v. Consequently, it is always the fundamental

problem for gradient-based methods that the tangent flow can not be estimated from

the gradient constraint [37]. In this part, we would introduce the constraint plane,

on which both the normal flow and the tangent flow could uniquely be determined.

The constraint plane is derived by extending the gradient constraint from the

2-D velocity space to a 3-D spatio-temporal space, which enable us to locate the

direction of constant brightness in the spatio-temporal cube. By rewriting the left

side of (2.8) in the inner product form, the gradient constraint can be represented

as

(Ix, Iy, It) · (u, v, 1) = 0, (3.11)

where (Ix, Iy, It) is the local gradient in the spatio-temporal cube and (u, v, 1) is the

vector pointing to the direction of constant brightness. Equation (3.11) reveals that

the direction of constant brightness is perpendicular to the local gradient, which is

the physical meaning underlying in the gradient constraint.

Because the 3-D vector (u, v, 1) is perpendicular to the vector (Ix, Iy, It) which

has already been determined, the solution to the vector (u, v, 1) is restricted on a

plane S which is perpendicular to the vector (Ix, Iy, It) (Figure 3.5). The plane S is

coined as the constraint plane in this paper. As (u, v, 1) represents the direction of

constant brightness of the current point in the spatio-temporal cube, the constraint
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Figure 3.5. The constant plane is perpendicular to the local gradient (Ix, Iy, It).

plane could be determined by the following equation,

Ixdx + Iydy + Itdt = 0, (3.12)

where dx, dy and dt are the three axes of the coordinate, and the origin of the

coordinate is the current point.

As the vector (u, v, 1) is restricted on the constraint plane, the problem could

be reduced to finding the 2-D direction of constant brightness on the image of

the constraint plane. Once the direction of constant brightness is located on the

constraint plane, the final solution to the vector (u, v, 1) could be calculated, and

the optical flow could therefore be obtained.

3.2.3 Construct the Constraint Plane

In order to further locate the direction of constant brightness, the image on the

constraint plane has to be obtained by sampling the spatio-temporal cube. Since a
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Figure 3.6. Sample the constraint plane. (a) The intersection lines on the constraint

plane. (b) Sample the intersection lines.

video is a sequence of frames captured at fixed time intervals, the constraint plane is

represented by the intersection lines of the constraint plane S with the consecutive

video frames (Figure 3.6(a)). Here, three frames are utilized to get the direction

of constant brightness, which implies that the motion is assumed to be the same

across three frames.

By combining (3.12) with dt = −1, dt = 0 and dt = 1, respectively, the three

intersection lines of the constraint plane at a point on the current frame n could be

obtained, which are

ln−1 : Ixdx + Iydy − It = 0 (on frame n− 1)

ln : Ixdx + Iydy = 0 (on frame n)

ln+1 : Ixdx + Iydy + It = 0 (on frame n + 1).

(3.13)

As shown in Figure 3.6(b), when the three intersection lines are projected onto

the same frame plane, it can be calculated that the distance between these lines is

|It/
√

I2
x + I2

y | which is equal to ‖vNF‖. This implies that the motion of the normal

flow has been compensated by positioning the intersection lines, and the tangent

flow could actually be estimated from the displacement between these intersection

lines, which would be further demonstrated.
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Figure 3.7. The distance between intersection lines in spatio-temporal space.

By laying a 3×3 grid on the constraint plane, the eight neighbors of the current

point is obtained (Figure 3.6(b)), which are the samples of the constraint plane. The

interval between the neighbor points on each intersection line is equal to 1, the same

as the space between image pixels. Because these neighbors may not necessarily

locate on integer points, the interpolation algorithm is needed to calculate the

intensity of these points.

3.2.4 The Direction of Constant Brightness

As the image on the constraint plane is constructed by the 1-D signal of the in-

tersection lines on consecutive frames, the direction of constant brightness can be

found by utilizing the perpendicular relationship described in (3.10), in which the

1-D time-variant signal is represented as a spatio-temporal image.

However, the distance between the intersection lines in the spatio-temporal space

is not equal to 1. As shown in Figure 3.7, because the time interval between the

three intersection lines is 1 and the distance between the projection of the inter-

section lines on the frame plane is ‖vNF‖, the distance between the intersection

lines in 3-D space is
√

1 + ‖vNF‖2. In order to utilizing the perpendicular rela-
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Figure 3.8. The direction of constant brightness on the constraint plane. (a) The nine

points on the constraint plane. (b) Normalize the distance between the intersection

lines.

tionship which has been discussed in 3.1.2, the distance between the intersection

lines are normalized to 1 to construct the spatio-temporal image, which is shown in

Figure 3.8(b). Based on this spatio-temporal image, the 2-D direction of constant

brightness (v0, 1) can be obtained from (3.10), where v0 is computed by (3.9) as

the 1-D displacement between the intersection lines. When these three lines are

stretched back to their original distance on the constraint plane (Figure 3.8(a)), the

vector (v0, 1) is correspondingly stretched along the direction perpendicular to the

intersection lines, and the vector is changed to (v0,
√

1 + ‖vNF‖2), which is the 2-D

direction of constant brightness on the constraint plane.

As the direction of constant brightness (v0,
√

1 + ‖vNF‖2) is represented using

the coordinate of the constraint plane, the corresponding 3-D vector in spatio-

temporal space can be obtained by mapping each component of this 2-D vector to
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Figure 3.9. The decomposition of the direction of constant brightness.

3-D space (Figure 3.9), which is:

(u, v, 1) = v0 · (e, 0) +
√

1 + ‖vNF‖2 · (vNF , 1)

‖(vNF , 1)‖
= (v0 · e + vNF , 1), (3.14)

where vNF is the normal flow, e is the 2-D unit vector parallel to the intersection

lines on the frame plane, and v0 is the 1-D displacement between the intersection

lines (Figure 3.8(b)).

Based on (3.14), the optical flow can be represented as

v = v0 · e + vNF . (3.15)

From v = vNF + vTF , the tangent flow is

vTF = v0 · e. (3.16)

Therefore, the tangent flow vTF is equal to the 1-D displacement between the

intersection lines which construct the constraint plane. In other words, vTF can be

calculated by utilizing the variational information on the constraint plane.
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3.3 The Standard Aperture Problem

3.3 The Standard Aperture Problem

Based on the traditional gradient constraint (2.8), the tangent flow could not be

estimated directly, which is known as the standard aperture problem [3, 16]. As

stated in 3.2, the tangent flow could be calculated based on the proposed 3-D gra-

dient constraint, which implies that the standard aperture problem could therefore

be solved.

In this section, the spatio-temporal image on the constraint plane is analyzed.

Based on this analysis, an image gradient estimator is proposed to replace the

regular image gradient estimator, such as the Sobel operator. The condition for

solving the standard aperture problem is given in the end.

3.3.1 The Spatio-temporal Image on the Constraint Plane

As the directional derivative of a 2-D function I(x) along the 2-D vector h is given

by

∇hI(x) = ∇I(x) · h, (3.17)

if the vector h is perpendicular to the image gradient ∇I(x), the corresponding

directional derivative is equal to zero. According to the definition in (3.13), the

intersection line ln on the constraint plane (Figure 3.6(b)) is perpendicular to the

local image gradient of the current frame. Therefore, the directional derivative

along the intersection line ln on the spatio-temporal image is expected to be zero.

However, such zero directional derivative does not means there is no intensity

variation along this direction. Normally, as the image intensity would not only

change in the direction of image gradient, except the case of barber’s pole illusion

which has no variation in the direction perpendicular to the image gradient, the

zero directional derivative represents the local extremum of the intensity (Figure

3.10). It will be shown that the variational information at the local extremum could
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x

)(xI

0x

0)(' 0  xI

Figure 3.10. The derivative would be zero at local extremum.

still be utilized in the solving of standard aperture problem.

3.3.2 Estimate the Direction of Image Gradient for Spatio-

temporal Image

Rather than a complicated computational strategy, a simple algorithm would be

introduced in this part to replace the regular image gradient estimator which may

fail to fully extract the variation information for spatio-temporal images.

Commonly, the 2-D image gradient (Ix, It) of a pixel (x, t) is calculated by the

difference operators, such as the Sobel operator, which is

Ix(x, t) = I(x, t)∗




−1 0 +1

−2 0 +2

−1 0 +1




and It(x, t) = I(x, t)∗




+1 +2 +1

0 0 0

−1 −2 −1




. (3.18)

Although such estimation may perform well in many other tasks, this method may

result in very poor solution when the computed image gradient was used to estimate

the tangent flow in the situation described in 3.3.1.

Take a 3 × 3 sample (Figure 3.11(a)) from the spatio-temporal image as an

example, in which the signal is shifting 1 pixel to the left by each frame and the

pixel in the center is a local minimum along the intersection line ln which is the

three pixels in the middle row. If we use (3.18) to calculate the image gradient of
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Figure 3.11. Estimate local gradient of a pixel by its 8-adjacent. (a) The 3 × 3 sample

from the spatio-temporal image. (b) The direction of maximum intensity change

and the corresponding velocity.

the pixel in the center, the gradient will be (Ix, It) = (0, 0), which implies that there

is no variational information to estimate the 1-D motion. However, if we utilized

the absolute difference between the current pixel and its neighbors, the 1-D motion

could still be extracted.

Because the gradient of a 2-D function is defined as a vector pointing to the

direction of the steepest slope, which means the image gradient could be determined

by finding the direction with the maximum intensity change. In addition, according

to (3.9), the 1-D velocity is computed from the quotient of the two image gradient

components

v = − It

Ix

= − it
ix

, (3.19)

where (ix, it) represents the direction of maximum intensity change (Figure 3.11(b)).

Therefore, what we need is only the direction of image gradient rather than the

exact image gradient, and the direction of image gradient at a pixel in the spatio-

temporal image of the constraint plane could be computed by detecting the direction

of maximum intensity change:

Step 1 Take the absolute difference between the outlying pixels and the pixel in

the center along the four directions gi (i = 1, 2, 3, 4) shown in Figure 3.12 as
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Figure 3.12. Estimate the direction of image gradient based on the absolute intensity

difference along the 4 directions.

the weights of the corresponding directions, which are

d1 = |I(2, 3)− I(2, 2)|+ |I(2, 1)− I(2, 2)|

d2 = [|I(1, 1)− I(2, 2)|+ |I(3, 3)− I(2, 2)|]/
√

2

d3 = |I(1, 2)− I(2, 2)|+ |I(3, 2)− I(2, 2)|

d4 = [|I(1, 3)− I(2, 2)|+ |I(3, 1)− I(2, 2)|]/
√

2. (3.20)

Step 2 Compare the four weights and find the direction with the maximum abso-

lute difference, which is labeled as gmax.

Step 3 Estimate the direction of maximum intensity change by taking the weighted

vector sum of gmax and its two neighbors, which is

(ix, it) =





g1 · d1 + g2 · d2 − g4 · d4 if gmax = g1

g1 · d1 + g2 · d2 + g3 · d3 if gmax = g2

g2 · d2 + g3 · d3 + g4 · d4 if gmax = g3

−g1 · d1 + g3 · d3 + g4 · d4 if gmax = g4

where g1 = (1, 0), g2 = ( 1√
2
, 1√

2
), g3 = (0, 1) and g4 = (− 1√

2
, 1√

2
).

To illustrate the way that this scheme works, it is applied to the example shown

in Figure 3.11(a). First, the four weights are calculated as d1 = 20, d2 = 40, d3 = 20
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and d4 = 0. Then, the maximum of the four weights is d2. Finally, the direction of

maximum intensity change could be determined as (ix, it) = (20+20
√

2)(1, 1) which

is perpendicular to the direction of constant brightness (−1, 1) (Figure 3.11(b)).

As the image gradient is calculated by examining the absolute intensity differ-

ence along all four possible directions at a pixel position, the variational informa-

tion is fully extracted in the local area. Besides, this approach also accomplished

to extract the variational information for the spatio-temporal image where local

extremum would appear as illustrated in the Figure 3.11(a).

3.3.3 Condition for Solving The Standard Aperture Prob-

lem

In this paper, as the direction of maximum intensity change (ix, it) are utilized to

compute the tangent flow using (3.19), the solvability condition of the standard

aperture problem is

ix 6= 0 (3.21)

on the constraint plane. In addition, ix = 0 on the constraint plane implies that

there is no brightness variation along the direction perpendicular to the image

gradient at the current point, which appears like the barber’s pole illusion in the

local area. In that case, the tangent flow at this point cannot be obtained, thus

the standard aperture problem could not be solved, and only normal flow could be

obtained in the local area. Besides, because the 3-D gradient constraint is extended

from the gradient constraint, which is valid in the condition that the motion between

consecutive frames is very small, the case of large displacement could not be handled

by the proposed constraint. As stated in Chapter 2, the multi-resolution technique

and the coarse-to-fine strategy [25, 26] should be incorporated in such cases.

As the standard aperture problem could be solved, the estimation of tangent

35

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



3.4 The Optical Flow Estimation Scheme

flow could stop relying on those smoothness assumptions, which provides a potential

to get a more precise estimation of optical flow at the edge of motion objects as

well as the objects with non-rigid deformation.

3.4 The Optical Flow Estimation Scheme

From (3.16) the tangent flow can be directly estimated from the spatio-temporal

image of the constraint plane. Therefore, the full flow could be obtained by respec-

tively calculating the normal flow and the tangent flow, and taking the vector sum

of the two optical flow components. The optical flow estimation procedure for a

pixel on frame n of a pre-smoothed sequence is:

Step 1 Estimate the local gradient (Ix, Iy, It) and compute the normal flow vNF

by (2.11).

Step 2 Locate the three intersection lines of constraint plane by (3.13) and get the

intensity of the nine points on the intersection lines using image interpolation.

Step 3 Estimate the direction of image gradient on the constraint plane using the

approach in 3.3.2 and compute the tangent flow vTF by (3.19).

Step 4 Get the optical flow v by taking the vector sum of vNF and vTF , which is

v = vNF + vTF .

From the steps listed above, both the two components of the optical flow, the

normal flow and the tangent flow, are calculated by closed-form equations. And

it’s not so time-consuming to estimate the image gradient and implement the inter-

polation. Therefore, a real-time performance could be expected in estimating the

optical flow of high definition video sequences.
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Chapter 4

Experimental Results

4.1 Implementation

As described in 3.4, because the tangent flow could be estimated directly based

on the 3-D gradient constraint, the proposed optical flow estimation algorithm

is implemented by respectively calculating the normal flow and tangent flow and

taking their vector sum. First, the image of the current frame In and its two

neighbor frames In−1, In+1 are pre-smoothed by a Gaussian filter with a standard

deviation of 1.5 pixel in space and 1.5 frame in time. Then, the local gradient (Ix, Iy)

in space and It in time is calculated by utilizing the two point central-difference

kernel (−0.5 0 0.5) along the three corresponding directions in the spatio-temporal

space. The normal flow vNF is computed by (2.11), and the 3 × 3 image of the

constraint plane is obtained by using the bi-cubic interpolation on the corresponding

frames because the these points may not locate on integer indexed positions. Next,

the direction of image gradient in the spatio-temporal image of the constraint plane

is calculated using the approach introduced in 3.3.2. The tangent flow vTF is

estimated by using (3.19). Finally, by taking the vector sum of the normal flow and

the tangent flow, the estimation of the full flow v is obtained.
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4.2 Results

In this section, the performance of the proposed optical flow estimation method

will be explored, using the synthetic sequences Sine, Translating Tree, Diverging

Tree and Yosemite, as well as the real-world sequence Taxi. All these sequences

are available in ftp://ftp.csd.uwo.ca. To enhance the precision of the proposed

approach, the median filter is applied to the obtained optical flow field to get rid of

the vectors with large estimation error. Here, the u component and the v component

of the optical flow field are filtered by the median filter separately. In order to

demonstrate the full potential of the proposed method, we do not utilize any further

refinement or robust scheme.

Based on the 3-D gradient constraint, the result utilizing Sobel operator and the

direction of maximum intensity change are shown respectively to demonstrate the

novel effect of using the proposed gradient estimator on the constraint plane. In

addition, the precision of the two methods refined by the median filter are compared

in terms of AAE (average angular error) and STD (standard deviation of angular

error) (shown in Table 4.1). The estimation error of the flow field using the Sobel

operator and the proposed gradient estimator is also compared by demonstrating

the proportion of pixels with the angular error less than 1◦, 2◦, 3◦, 5◦ and 10◦ (Table

4.2), respectively. In the end, the execution time of the proposed method is shown

for video sequences with different resolutions.

Figure 4.1 shows the optical flow results of sequence Sine. The 2-D sine pattern

(Figure 4.1(a)) is moving (1, 1) by each frame to top right direction. The optical flow

result of the algorithm utilizing the Sobel operator (Figure 4.1(c)) and the algorithm

using the proposed gradient estimator (Figure 4.1(e)) get similar precision. By

further filtering the result in Figure 4.1(c) and Figure 4.1(e) using the median

filter, respectively, both the flow fields are fairly precise as the ground truth.

38

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



4.2 Results

Table 4.1

Precision comparison in AAE and STD.

Sobel operator Proposed

Sequence AAE(◦) STD(◦) AAE(◦) STD(◦)

Sine 0.69 0.21 1.02 0.09

Translating Tree 26.44 13.97 3.87 2.72

Diverging Tree 12.42 7.84 3.19 1.77

Yosemite 20.48 15.61 10.69 10.74

Table 4.2

Precision comparison in error distribution (%).

Sobel operator Proposed

Sequence < 1◦ < 2◦ < 3◦ < 5◦ < 10◦ < 1◦ < 2◦ < 3◦ < 5◦ < 10◦

Sine 93.3 99.8 99.9 100 100 51.0 100 100 100 100

Translating Tree 0.00 0.00 0.00 0.028 5.82 8.32 20.5 39.1 76.4 97.1

Diverging Tree 0.52 1.91 4.02 11.35 48.65 5.21 26.6 50.0 89.4 99.2

Yosemite 1.05 3.26 6.78 16.3 34.3 4.67 12.0 20.2 39.6 69.8

As shown in Figure 4.2(a) and Figure 4.3(a), the texture of the natural image

in the sequences Translating tree and Diverging tree is much more complicated

than the simple sine pattern in the sequence Sine. In such circumstances, a large

number of motion vectors are wrongly estimated in the result using Sobel operator

(Figure 4.2(c) and Figure 4.3(c)), while the result using the direction of maximum

intensity change estimator (Figure 4.2(e) and Figure 4.3(e)) is much more reliable.

Besides, the proposed gradient estimator also yields better objective precision in

the comparison of AAE and STD (Table 4.1), as well as higher proportion of pixels

with smaller angular error (Table 4.2).

As a more complicated scene, the Yosemite is involved with multiple motion of
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Table 4.3

Precision comparison of the sequence Yosemite.

Technique AAE(◦) STD(◦)

Negel [19] 10.22 16.51

Horn and Schunck [19] 9.78 16.19

Uras et al. [19] 8.94 15.61

Our method 10.69 10.74

Alvarez et al. [26] 5.53 7.40

Brox et al. [10] 2.46 7.31

Xiao et al. [17] 2.57 6.07

different objects located in different depths, which is shown in Figure 4.4(a). Due

to a large degree of illumination change in the area of clouds, accurate optical flow

estimation is difficult to achieve. However, after the refinement of the median filter

(Figure 4.4(f)), the motion boundaries are well preserved and the flow field in the

area of mountain is estimated accurately. As this sequence is widely utilized in

the evaluation of optical flow techniques, a comparison of the estimation precision

between the proposed method and some existing methods are shown in Table 4.3,

in which AAE and STD are used in the comparison.

For a real-world video sequence Taxi which contains multiple objects under

different motion and object occlusion, the result is shown in Figure 4.5. The pro-

posed method provides not only accurate moving direction but also sharp motion

boundaries. Further note that the speed of the three moving cars is also reflected

correctly: the one in the middle is turning slowly, and the other two are moving

horizontally with higher speed.

To demonstrate the potential of utilizing the proposed algorithm in time-critical

applications, the execution time is shown in Table 4.4. Such short execution time

reveals the potential of achieving real-time performance of optical flow estimation.
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Table 4.4

Execution time.

Sequence Image size Time (sec)

Sine 100× 100 0.38

Taxi 256× 190 0.84

Y osemite 316× 252 1.50

Our proposed algorithm is programmed in MATLAB language and run on 2.13 GHz

Intel Core 2 Duo CPU processor. For an image sequence with frame size 316× 252,

the resulted computation time is 1.5 sec/frame, which is much faster than most

algorithms even programmed in C/C++ language, for example, 4 sec/frame in

[17], 23 sec/frame in [10]. Furthermore, our algorithm yields a close performance,

compared to the method utilizing multigrid algorithms [38] implemented in C/C++,

which is 0.15 sec/frame for a 160× 120 sequence.

Based on these results, it is clear demonstrated that the intensity variation

on the image of constraint plane is reliable to estimate the tangent flow with the

proposed direction of maximum intensity change estimator. Although our approach

is not the best in terms of estimation accuracy, however, it provides the fastest

optical flow estimation, since only the closed-form equations are exploited without

incorporating any smoothness constraint or additional processing techniques, while

yielding a fairly precise optical flow field.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1. Estimated optical flow field for sequence Sine. (a) The 9th frame of Sine.

(b) Ground truth. (c) Proposed method using Sobel operator. (d) Refined result of

(c) using median filter. (e) Proposed method using direction of maximum intensity

change. (f) Refined result of (e) using median filter.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2. Estimated optical flow field for sequence Translating Tree. (a) The 9th frame

of Translating Tree. (b) Ground truth. (c) Proposed method using Sobel operator.

(d) Refined result of (c) using median filter. (e) Proposed method using direction

of maximum intensity change. (f) Refined result of (e) using median filter.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3. Estimated optical flow field for sequence Diverging Tree. (a) The 9th frame

of Diverging Tree. (b) Ground truth. (c) Proposed method using Sobel operator.

(d) Refined result of (c) using median filter. (e) Proposed method using direction

of maximum intensity change. (f) Refined result of (e) using median filter.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4. Estimated optical flow field for sequence Yosemite. (a) The 9th frame of

Yosemite. (b) Ground truth. (c) Proposed method using Sobel operator. (d)

Refined result of (c) using median filter.. (e) Proposed method using direction of

maximum intensity change. (f) Refined result of (e) using median filter.

45

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



4.2 Results

(a) (b)

(c) (d)

(e) (f)

Figure 4.5. Estimated optical flow field for sequence Taxi. (a) The 9th frame of Taxi.

(b) Horn and Schunck 100 iterations. (c) Proposed method using Sobel operator.

(d) Refined result of (c) using median filter. (e) Proposed method using direction

of maximum intensity change. (f) Refined result of (e) using median filter.
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Chapter 5

Conclusions

In this thesis, the 3-D gradient constraint is proposed to estimate the optical flow

without imposing any smoothness assumption of the motion field, which is the

fundamental contribution to optical flow estimation. By extending the constraint

line in the velocity space to the constraint plane in the spatio-temporal space, this

new constraint enable us to estimate the tangent flow directly. This implies that

the standard aperture problem could be solved, and the solvability condition for

this problem is derived. Besides, as the local extremum would appear in the spatio-

temporal image of the constraint plane, a gradient estimator which is named as the

direction of maximum intensity change is introduced to fully extract the variational

information on the constraint plane for tangent flow calculation.

Simulation results obtained from the synthetic and real-world sequences have

shown that the intensity variation on the direction perpendicular to the image gra-

dient indeed provides a reliable information for conducting tangent flow estimation.

In addition, because the optical flow is calculated by utilizing a set of closed-form

equations without incorporating any smoothness assumptions or calling for iterative

numerical computations, the fairly low computational complexity of the proposed

approach yields a very high potential for time-critical applications.
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