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Summary

Fingerprints as a kind of human biometric feature have been widely used for per-

sonal recognition in the forensic, commercial and civilian areas. A lot of works

have been done for the fingerprint verification and identification. Fingerprint iden-

tification which requires the search of database for a match is more complex than

fingerprint verification. Although good performances have been reported for finger-

print verification in the literature, the accuracy and efficiency of the identification

deteriorate seriously if the 1:1 verification algorithm is directly extended to the

1:N fingerprint identification. How to facilitate an efficient and effective search of

database is still a great challenge in developing an automatic fingerprint identifi-

cation system. The multi-level search of fingerprint database is usually employed

to incorporate both the coarse and fine level features of fingerprint for the efficient

and effective automatic identification. The coarse level search of database is intro-

duced to reduce the search space of time consuming fine matching and alleviate the

performance deterioration resulted by the exhaustive fine search in an automatic

fingerprint identification system.

The fingerprint classification and indexing techniques have been widely inves-

tigated for the coarse level search of fingerprint database. However, most of them

still do not meet with the performance requirements of wide applications for finger-

print identification. This thesis investigates the efficient and accurate fingerprint

retrieval techniques based on the coarse level features to facilitate the search of fin-

gerprint database in automatic identification. The proposed fingerprint retrieval

algorithms are the coarse level search of database independent of the fine matching

ii
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Summary iii

algorithm. Hence, they can be coupled with the existing verification algorithm as

the fine matcher to design an automatic fingerprint identification system. The fol-

lowing several issues are extensively studied in this thesis to develop the automatic

fingerprint retrieval algorithms.

Firstly, some techniques are investigated to robustly and reliably estimate two

local parameters of fingerprint: ridge orientation and ridge distance, which play

important roles for fingerprint analysis and retrieval. An effective method is pro-

posed to consistently locate a reference point and compute a corresponding ref-

erence direction for all types of fingerprints which can be used for the fingerprint

alignment. Secondly, we develop a fingerprint retrieval algorithm based on con-

tinuous classification that uses the orientation field as the main retrieval feature

and the dominant ridge distance as an auxiliary feature. A new distance measure

is proposed to quantify more effectively the dissimilarity between two orientation

vectors than the traditional measures. A regional feature weighting scheme is in-

troduced on the distance measure to visibly improve the retrieval performance.

Thirdly, a multi-prototype clustering algorithm is developed to discover the clus-

ters of arbitrary shape and size. A separation measure is proposed to evaluate

how two prototypes are separated by a sparse region. Multiple prototypes with

small separation are grouped into a given number of clusters in the agglomerative

method. Finally, a clustering-based fingerprint retrieval algorithm is developed

to speed up the retrieval process without compromising the retrieval accuracy. A

nonuniform spacing of fingerprint by a circular tessellation is proposed to compute

a multi-scale orientation field as the main retrieval feature. A modified K-means

clustering is proposed to partition the high dimensional orientation feature space

into a number of clusters. It outperforms the traditional K-means clustering for

the fingerprint retrieval. The proposed fingerprint retrieval algorithms have been

evaluated on the NIST fingerprint database which contains a significant number

of poor quality fingerprints. The extensive experimental results and comparisons

demonstrate the effectiveness and superiority of the proposed approaches.
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Chapter 1

Introduction

1.1 Biometrics

The information society is developing very fast during the past decades and some

electronically interconnected applications are evolving rapidly such as e-commerce,

smart cards, cellular phones and electronic banking etc.. Identity fraud is reach-

ing unprecedented proportions so that more emphasis is put on the privacy and

security of information stored in various database. Hence, the reliable automatic

personal recognition becomes crucial in many daily transactions and access con-

trols. Traditional means of personal recognition are usually based on (i) knowledge

such as passwords and Personal Identification Number (PIN) which only the indi-

viduals know and (ii) token such as passport, identification (ID) card and licenses

which the individuals possess [78, 83]. However, PINs and passwords may be for-

gotten and passport, ID card and licenses may be forged, stolen or lost. Due to

these problems, the traditional means cannot meet with the growing demands of

the privacy and security in the information society.

Biometrics-based recognition system recognizes a person based on his/her phys-

iological and/or behavioral characteristics such as fingerprint, face, voice, hand

geometry, DNA and iris etc. [78, 83]. With the increasing use of computers as the

1
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1.2 Fingerprints 2

vehicles of information technology, automatic personal recognition based on bio-

metrics is a rapidly evolving technology. It outperforms the traditional means of

personal recognition in that the biometric features are distinctive, reliable and can-

not be lost or forgotten. Thus, the biometrics-based personal recognition systems

have been widely investigated and used in the forensic, commercial and civilian

areas. For example, they are used to authorize a person to access the ATMs, cellu-

lar phones, smart cards, desktop PCs and computer networks etc. and to replace

keys in automobile with key-less entry and key-less ignition. Due to the increase

of security threats, some countries such as United States of America (USA) have

started using the biometrics for border control and national ID cards. The personal

recognition system based on single biometric feature may have some limitations

such as low reliability. Recently, multiple biometrics are integrated to further im-

prove the performance of the biometric-based recognition systems [41]. Biometrics

is becoming a dominant and popular solution of automatic personal recognition

for the increasing demands of the privacy and security in the information society.

1.2 Fingerprints

Fingerprints are a kind of human biometrics on the tips of finger. Since the be-

ginning of the 20th century, fingerprints have been extensively used for the iden-

tification of criminals by the various forensic departments around the world [1].

Fingerprint-based personal recognition is one of the most mature and proven bio-

metric technologies. With the availability of cheap and compact solid state sensors,

fingerprint-based recognition systems are becoming popular in the commercial and

civilian areas such as welfare disbursement and laptop computer access. Compar-

ing to other human biometric features, fingerprints have some advantages. Firstly,

it has been generally accepted that fingerprints can uniquely identify a person,

which gives it a crucial advantage over other biometric features such as DNA, face

and voice that cannot distinguish the identical twins. In addition, fingerprints are
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1.2 Fingerprints 3

fully formed at about seven months of fetus development and finger ridge con-

figurations do not change throughout the life of an individual except due to the

accidents such as bruises and cuts on the finger tips [3]. This immutability gives

fingerprint another important advantage over other biometric features such as face

and voice which will change over lifetime. Finally, fingerprint is easily accessible

and its acquisition is inexpensive comparing to other biometrics techniques such as

iris and retinal scan. Because of the above advantages: uniqueness, immutability

and low cost, fingerprints become one of the most widely used human biometric

features for personal recognition in the forensic, commercial and civilian areas. It

has the potential to stay as a dominant biometric technique in the future [83].

Fingerprint is composed of the flow patterns of parallel ridges (black) and val-

leys (white). Figure 1.1 shows an example of fingerprint image. The anomalies

of the ridge flows in the local regions vary for different fingerprints to form their

individualities. Thus, the position and orientation of these anomalies are usually

used to represent fingerprint for personal recognition. To develop a practical per-

sonal recognition system based on fingerprints, a first and important issue is to

determine how a person is recognized. In general, fingerprint-based recognition

systems work in two modes: verification (authentication) and identification [73].

Each mode has its own complexity and can be best solved by some techniques.

Figure 1.1: A fingerprint image.
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1.3 Fingerprint Verification

Verification mode answers the question: “Is this person actually who he/she claims

to be?”. A verification system either accepts or rejects a user’s identity by match-

ing the input with the pre-stored one. In fingerprint verification, the user inputs

his fingerprint and claims an identity, and the system verifies whether the user’s

fingerprint is consistent with the claimed identity by comparing the input finger-

print with the one already provided or stored in the database. Figure 1.2 shows the

block diagram of a fingerprint verification system. In general, fingerprint verifica-

tion system consists of two stages: enrollment and verification. In the enrollment

stage, each user claims an identity such as name or PIN through a keyboard or

keypad and presses his/her finger on a sensor to capture a digital fingerprint im-

age. The captured fingerprint is further processed to extract the feature for its

representation which is often called a template. Both the representation feature

and the claimed identity are stored in the database by the system. During the ver-

ification stage, the user claims an identity and the sensor captures the user’s input

fingerprint image which is further processed in the same way as the enrollment

stage. The representation feature of the input fingerprint is compared with the

template selected from the database according to the user’s identity. The output

of fingerprint verification system is a match (accept) or non-match (reject) of the

user.

In practice, the output of a fingerprint verification system is a matching score

quantifying the similarity between the feature of the input fingerprint and a data-

base template. The larger the matching score is, the more confident the verification

system is to determine that two fingerprints are matched (i.e., come from the same

finger). The decision of the system to accept or reject the user is determined by a

threshold. If the matching score is larger than the threshold, these two fingerprints

are matched and the user is accepted to access the system. Otherwise, they are

non-matched and the user is rejected. There are two types of errors produced by

a fingerprint verification system. One error is the false match of an input finger-
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Figure 1.2: The block diagram of a fingerprint verification system

print which does not come from the same finger as the template. Another error is

the false non-match of a genuine fingerprint which should be accepted. The false

match error rate (FMR) and false non-match error rate (FNMR), which are the

probabilities of the false match and non-match errors, respectively, are often used

to evaluate the accuracy of fingerprint verification system. A tradeoff exists be-

tween FMR and FNMR and can be adapted by adjusting the matching threshold.

Since the year 2000, international fingerprint verification competition (FVC) [13] is

being held every two years such as FVC2000, FVC2002 and FVC2004. This com-

petition focuses on the assessment of various fingerprint verification algorithms

and attracts many researchers and engineers working on fingerprint verification.

Results are reported after each competition [70–72]. A more detailed description

for the performance evaluation of fingerprint verification algorithms can be found

in the literature [20,70].

With the availability of cheap and compact solid state fingerprint sensors, fin-

gerprint verification becomes popular in the civilian and commercial areas such

as the entry and access control systems, identity verification and attendance, etc..

For example, fingerprint verification is employed to verify and grant a person’s

access to cellular phones, desktop PCs and computer networks in some entry and

access control systems.
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1.4 Automatic Fingerprint Identification

Identification mode answers the question of “Is this person a member of a specified

group?”. Fingerprint identification is to establish a user’s identity from the finger-

print database of a group. Without the claimed identity information, the query

fingerprint of a user needs to be compared with a large number of fingerprints from

the database and a match found indicates that the person belongs to the group. It

is very labor intensive and may be impractical to manually compare a query fin-

gerprint with thousands of fingerprints in a large database. Automatic fingerprint

identification can efficiently identify a person and is very helpful to save the labor

cost.

Let N be the number of fingerprints stored in the database. Figure 1.3 shows the

block diagram of an automatic fingerprint identification system (AFIS). In general,

an AFIS also consists of two stages: enrollment and identification. It differs from

the fingerprint verification system in that the user does not provide any identity

information in the identification stage. The enrollment stage is similar to that of

fingerprint verification system. In the identification stage, a sensor captures the

query fingerprint of the user which is further processed to extract the representation

feature in the same way as the enrollment stage. Since no identity information of

the user is provided, it is usually required to search the fingerprint database for

a match of the query fingerprint. The output of fingerprint identification system

is either the identity of an enrolled user or an warning message such as ”user not

identified”.

A simple solution to design an AFIS is to directly extend a fingerprint verifi-

cation algorithm of 1:1 matching to the automatic identification system of 1 : N

matching. To infer the error rates of fingerprint identification from those of veri-

fication, we assume that the query fingerprint is required to match with all the N

database templates and only one template is pre-stored in the database for each

user. Let FMR1:N and FNMR1:N be the false match and non-match error rates
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Figure 1.3: The block diagram of an automatic fingerprint identification system

of fingerprint identification, respectively. They are computed by [73]:

FMR1:N = 1 − (1 − FMR)N (1.1)

FNMR1:N = FNMR (1.2)

where FMR and FNMR are the false match and non-match error rates of finger-

print verification, respectively. We can see that FMR1:N increases with large N .

In addition, fingerprint verification is usually a kind of fine matching algorithm so

that the fingerprint identification is very time consuming by repeating it N times

(scale up to the size of database). Thus, both the accuracy and time efficiency of

fingerprint identification deteriorates seriously if the 1:1 verification algorithm is

simply extended to the 1:N identification system especially for large database.

Multi-level matching (search) approaches are proposed to facilitate the search

of database by incorporating the global and local information of fingerprint in an

AFIS [89,96]. If two fingerprints are from the same finger, they must have the same

global information first. The coarse level search, which is also called “fingerprint

retrieval” in [73], is introduced to reduce the search space of the time-consuming

fine matching for efficient fingerprint identification. After the fingerprint retrieval

is applied to narrow down the search space of fingerprint verification (i.e., fine
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matching), the false match rate FMR1:N and false non-match rate FNMR1:N are

computed by [73]:

FMR1:N = 1 − (1 − FMR)PR×N (1.3)

FNMR1:N = RER + (1 − RER) × FNMR (1.4)

where PR (i.e., Penetration Rate) is the average percentage of the template fin-

gerprints retrieved over all query fingerprints and RER is the retrieval error rate

(i.e., the percentage of query fingerprints with false retrieval). Assume that FMR

of a fingerprint matching algorithm is 10−5 for an acceptable FNMR, Figure 1.4

shows the effects of the different penetration rates PR on the the false match

rates FMR1:N against the size of database. For a database consisting of 10,000

fingerprints (N = 10, 000), the FMR1:N is almost up to 10% by repeating the fine

matching N times. It can be reduced to about 1% if a fingerprint retrieval with

PR = 10% is employed to narrow down the fine matching (i.e., the query finger-

print is only required to be compared with 10% of the database templates in the

fine matching). Thus, by reducing the search space of fine matching to only a small

subset of the entire database, fingerprint retrieval not only reduces the response

time of the AFIS but also alleviates the deterioration of FMR1:N . Therefore, fin-

gerprint classification and indexing have been proposed and investigated for the

coarse level matching of database templates to narrow down the search space of

fine matching in an AFIS.

1.5 Motivation

As discussed in the above sections, although satisfactory performances (i.e., accu-

racy and time efficiency) have been reported for the fingerprint verification [20,72],

the performance of fingerprint identification will deteriorate seriously if the 1:1

verification algorithm is directly extended to an AFIS. Fingerprint identification,
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Figure 1.4: The effects of the penetration rate PR on the false match rate FMR1:N

against the size of database in fingerprint identification system.

which requires the search of database for a match, is more complex than the fin-

gerprint verification, especially when the database is large. Its performance is still

not acceptable for wide employment in the large scale identifications. A fast and

accurate fingerprint retrieval is expected to facilitate the search of fingerprint data-

base and alleviate the performance deterioration of an AFIS. The motivation of

this thesis is to review the current published approaches and techniques for the

coarse level search of fingerprint database and fill the gaps in the following areas

where inefficiency is observed:

� Fingerprint is composed of parallel ridge and valley flows with a certain

orientation and frequency in a local region. In general, there are two local

parameters widely used for analyzing fingerprints, which are the local ridge

orientation and the local ridge distance. The ridge orientation describes

the ridge-valley flow pattern while the inverse of ridge distance represents

the ridge density or frequency. They play important roles for fingerprint
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1.5 Motivation 10

processing and feature extraction. Some methods have been proposed for

the estimation of them in the literature. However, a significant number

of captured fingerprint images are of poor quality. It is still a challenging

problem to robustly and reliably estimate these local parameters in the poor

quality fingerprints corrupted by different kinds of noise caused by sensor

error, elasticity of skin, scars, ridge breaks and too dry or wet finger, etc..

� Pose transformation usually exists in the fingerprint impressions originated

from the same finger. To achieve the invariance of such transformation,

translation and rotation are needed to bring two fingerprints into alignment,

which is one of the crucial parts for fingerprint retrieval and identification.

Fingerprint alignment based on the minutiae structure and ridge shape is

time consuming and is thus unsuitable for the fingerprint retrieval. One

common and efficient solution for the retrieval is the alignment of fingerprints

based on a reference scheme. Some landmark points in a fingerprint are

often used as the reference point for fingerprint alignment [12, 46, 49, 66,

84]. However, consistent and reliable detection of the reference point for all

types of fingerprints is not an easy task and thus need continuous effort for

improvement.

� Fingerprint classification, which is also called ”exclusive fingerprint classifi-

cation” [66], is a traditional approach to provide an efficient indexing mech-

anism for large-scale fingerprint identification. It assigns each fingerprint

into one of predefined classes and the query fingerprint only needs to be

compared with the fingerprints of the same class in the fine matching. An

ideal automatic classification algorithm should be able to consistently clas-

sify fingerprints into a significant number of classes with a desirable accu-

racy. However, most existing classification algorithm classify fingerprints

into 4 or 5 classes. In addition, fingerprints are unevenly distributed in these

classes. Thus, this approach cannot sufficiently reduce the search of finger-

print database. Moreover, there are some ambiguous fingerprints whose class
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membership cannot be consistently stated even by human experts. For ex-

ample, about 17% of fingerprints in the NIST database-4 [102] are labelled

as two classes by human experts. An attractive approach called “continu-

ous fingerprint classification” is proposed to avoid the difficult problems of

exclusive classification [66]. This approach represents each fingerprint with

the numerical feature vectors and similar fingerprints are mapped into close

points in the multi-dimensional feature space by a given distance measure.

The database templates close to the query fingerprint are retrieved for the

fine matching of fingerprint identification. This approach can achieve better

retrieval performance than the exclusive classification. Some algorithms on

continuous classification have been proposed in the literature [11, 14, 17, 53],

but their retrieval performances are still not very attractive. Further works

on this approach such as extraction of compact and representative features

and better quantifying the similarity between two representations are still of

great interest to improve the retrieval performance.

� Clustering is a crucial technique widely used in discovering the underlying

structure in a data set by unsupervisedly grouping the similar patterns. It

is often used to facilitate the information retrieval from large database by

exploiting the underlying data structure. Most partitional clustering algo-

rithms represent each cluster with a single prototype such as the centroid

and medoid of the cluster. This may not adequately model the clusters of

arbitrary shape and size and hence limits the clustering performance on the

complex data structure. Using multiple prototypes to model the clusters is

expected to improve the clustering performance on discovering the clusters

complex in shape and size.

� Although continuous fingerprint classification can avoid the problems of ex-

clusive classification and achieve good retrieval performance, it only ranks

the database templates according to their similarities to the query finger-

print while neglecting the similarities among the database templates. The
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retrieval speed is still prohibitive for large database by the exhaustive com-

parison of the query fingerprint with all database template. The clustering

can be applied to partition the fingerprint database into a number of clusters

with more flexibility. The fingerprint retrieval is performed by comparing

the query fingerprint with the cluster prototypes instead of all database tem-

plates. Thus, the similarities among the database templates can be exploited

to facilitate the efficient search of fingerprint database. A good clustering

technique can be explored to speed up the fingerprint retrieval process with-

out compromising the retrieval accuracy.

1.6 Objectives

The primary objective of this thesis are to develop an automatic fingerprint re-

trieval algorithm which is able to sufficiently reduce the search space of fine match-

ing with desirable accuracy and efficiency. The proposed fingerprint retrieval al-

gorithm is independent of the fine matcher and can be coupled with an existing

verification algorithm to obtain an AFIS. In developing an automatic fingerprint

retrieval algorithm, two most important issues should be considered: (i) how to

extract the representation feature from fingerprint and (ii) how to search the fin-

gerprint database. More specifically, the objectives of the research works reported

in this thesis can be summarized as:

� Propose some techniques to robustly and reliably estimate the two local para-

meters: local ridge orientation and local ridge distance, which are important

for fingerprint analysis.

� Propose an effective method to consistently locate a reference point and

compute a corresponding reference direction for all types of fingerprints which

can be used for fingerprint alignment.

� Develop a fingerprint retrieval algorithm based on the continuous classifi-
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cation. The representation features other than the minutiae features are

extracted for the retrieval. New distance measure is investigated to quantify

effectively the dissimilarity of the fingerprint representations.

� Develop a multi-prototype clustering algorithm to discover the clusters of

arbitrary shape and size. Multiple close prototypes are grouped to represent

one cluster.

� Develop a clustering-based fingerprint retrieval algorithm. The nonuniform

spacing of fingerprint is exploited to produce the compact and representative

feature vector. The clustering technique is investigated to exploit the simi-

larities among the database templates for the efficient fingerprint retrieval.

1.7 Major Contributions of the Thesis

The major contributions in this thesis can be summarized as follows:

� Some techniques have been proposed to robustly and reliably estimate two lo-

cal parameters of fingerprint: local ridge orientation and local ridge distance,

which play important roles for fingerprint analysis and retrieval. A new ori-

entation smoothing method based on the adaptive neighborhood is proposed

to not only attenuate the noise but also maintain the orientation localization

in the high curvature area. Instead of computing only one x-signature in

the oriented window of each block, we propose to estimate the local ridge

distance based on more than one x-signatures which is more robust to noise

and irregular ridge flows.

� An effective method has been proposed to consistently locate a reference

point and compute a corresponding reference direction for all types of fin-

gerprints. The reference point is located based on multi-scale analysis of the

orientation consistency, while the reference direction is computed by analysis

of the orientation differences between 16 redial directions from the reference
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point and the local ridge orientations along these radii. They can be used

for fingerprint alignment to achieve the invariance of pose transformation in

fingerprint retrieval.

� We have developed a fingerprint retrieval algorithm based on continuous

classification that uses the orientation field as the main retrieval feature and

the dominant ridge distance as an auxiliary feature. The dominant ridge

distance of a fingerprint is more robust to noise than the simple average

ridge distance and consistently improve the retrieval performance. These

two coarse level features are not closely correlated with the minutiae features

so that the fingerprint retrieval approach can cooperate with the minutiae

based matching algorithms to design an identification system. A new distance

measure is proposed to quantify the distance between two orientation vectors

more effectively than the conventional Euclidean and Manhattan distance

measures. In addition, we propose a regional feature weighting scheme on

the distance measure to improve the retrieval performance. Furthermore,

a variable search tolerance is introduced for more effective retrieval than

those by the fixed distance and fixed order. Experimental results on the

NIST database-4 and FVC2000 demonstrate that our proposed approach

outperforms some existing approaches in terms of retrieval efficiency v.s.

accuracy.

� A multi-prototype clustering algorithm has been developed to discover the

clusters of arbitrary shape and size. The squared-error clustering is used

to produce a number of prototypes to locate the regions of high density. A

separation measure is proposed to evaluate how two prototypes are sepa-

rated by a sparse region and is used to organize the prototypes into a given

number of clusters. New prototypes are iteratively added to improve the

poor cluster boundary resulted by the poor initial settings. The proposed

algorithm requires less memory space and computation cost than some hi-

erarchical clustering algorithms such as Single-link and Complete-link while
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preserves much of the speed and efficiency of the squared-error clustering

algorithm. Experimental results on both synthetic and real data sets show

the effectiveness of the proposed clustering algorithm.

� A clustering-based fingerprint retrieval algorithm has been developed to speed

up the retrieval process without compromising the retrieval accuracy. A

nonuniform spacing of fingerprint by a circular tessellation is proposed to

compute a multi-scale orientation field as the main retrieval feature. The

nonuniform spacing not only produces more compact orientation vector but

also achieves better retrieval performance than the uniform spacing. The

dominant ridge distance as an auxiliary feature not only reduces the orien-

tation comparisons in the query process but also consistently improves the

retrieval accuracy. A modified K-means clustering approach is proposed to

partition the high dimensional orientation feature space into a number of

clusters. It outperforms the traditional K-means clustering for the finger-

print retrieval. Based on the offline database clustering, a hierarchical query

processing is proposed to perform the cluster search followed by the contin-

uous fingerprint classification. It not only reduces the retrieval complexity

but also improves the retrieval accuracy. The extensive experimental studies

and comparisons consistently demonstrate the effectiveness and superiority

of the clustering-based fingerprint retrieval algorithm.

1.8 Organization of the Thesis

This thesis is divided into seven chapters which are organized as below:

Chapter 1 gives a brief introduction of the history and technologies in the

personal recognition based on fingerprints. The motivation, objectives and contri-

butions of the thesis are also presented in this chapter.

In Chapter 2, literature review is given on some common and published ap-

proaches of the coarse level search of fingerprint database in automatic personal
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identification. They are broadly classified according to different feature extractions

and search strategies used in these approaches.

In Chapter 3, some techniques are proposed to robustly and reliably estimate

the two important local parameters: ridge orientation and ridge distance. In addi-

tion, an effective method is proposed to robustly and consistently locate a reference

point and compute a corresponding reference direction for all types of fingerprints.

The reference point and direction can be used for the fingerprint alignment to

achieve the invariance of pose transformation.

In Chapter 4, a fingerprint retrieval algorithm based on continuous classifica-

tion is presented to incorporate two coarse level features: orientation vector and

dominant ridge distance. A new distance measure is proposed to better quantify

the similarity between two orientation vectors than the traditional Euclidean and

Manhattan distance measures. In addition, a feature weighting scheme by the

entropy is exploited on the distance measure to achieve more effective fingerprint

retrieval. We perform our algorithm on the NIST database-4 and FVC2000 and

compare it with some published approaches in the field.

In Chapter 5, a multi-prototype clustering algorithm is presented that can

discover the clusters of arbitrary shape and size. This algorithm begins using the

squared-error clustering to produce a number of prototypes. A separation measure

is proposed to evaluate how well two prototypes are separated. The multiple

prototypes with small separation are organized into a given number of clusters.

New prototypes are iteratively added to improve the poor cluster boundaries. We

perform the proposed clustering algorithm on both synthetic and real data sets

and compare it some well-known clustering algorithms.

In Chapter 6, a clustering-based fingerprint retrieval algorithm is presented for

an efficient search of fingerprint database. A nonuniform spacing of fingerprint is

proposed to compute a multi-scale orientation field as the main retrieval feature

and the dominant ridge distance is used as an auxiliary feature. A modified K-

means clustering is proposed to partition the high dimensional orientation feature
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space into a number of clusters represented by prototypes. Based on the offline

database clustering, a hierarchical query processing is proposed to facilitate an

efficient fingerprint retrieval. We perform our algorithm on the NIST database-4

and the results are compared with those of some published approaches in the field.

Chapter 7 gives the conclusions of this thesis and recommends some research

directions which can be further pursued in the future.
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Chapter 2

Literature Review

2.1 Introduction

Identifying a person based on fingerprints requires the search of database for a

match of the query fingerprint. A lot of approaches are proposed in the literature to

facilitate the database search in automatic fingerprint identification. Most of them

are based on the multi-level search of database by incorporating the global and local

information of fingerprint. Fingerprint retrieval and indexing are introduced as a

coarse level search of database to reduce the search space of the time-consuming

fine matching in an AFIS [8,73]. An accurate and efficient fingerprint retrieval can

greatly reduce the response time and improve the accuracy of an AFIS, especially

for a large database. A typical fingerprint retrieval algorithm usually extracts a

representation feature set to capture the individuality of each fingerprint and does

some comparisons (search strategies such as classification and indexing) to select

a subset of database as the candidates of a query fingerprint for the fine matching.

In this chapter, we will give a literature review of some common and published

approaches of fingerprint retrieval in automatic personal identification. They are

broadly classified according to the feature extractions and search strategies used

in developing the automatic fingerprint retrieval algorithms.
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2.2 Feature Extraction

The captured fingerprint image by a sensor is a grey level image. It is well known

that the grey values of fingerprint are unstable and of high dimension so that they

cannot be directly used to reliably and efficiently represent fingerprint. Feature

extraction is an important stage to identify representative features to capture the

individuality of each fingerprint. Fingerprint is composed of parallel ridge and

valley flows with a strong orientation tendency and well-defined spatial frequency

in the local region that does not contain irregular ridge flows. In general, there

are two main types of features for fingerprint representation: coarse level features

which globally describe the ridge-valley flow patterns and fine level features with

the minute details of the ridge flow anomalies. To facilitate the search of fingerprint

database, the coarse level features are usually used for fingerprint retrieval while

the fine level features are employed in the fine matching. A good feature set for

the fingerprint retrieval usually has the following properties: easily computable

and compact, translation and rotation invariant, noise robust and discriminating

over a large number of fingerprints. In addition, the retrieval feature set should be

independent on or loosely correlated with that used in the fine matching to avoid

redundant representation of fingerprint in an AFIS. Most existing algorithms of

fingerprint classification and indexing are based on one or more of the following

features: singular points, local ridge orientations, filter responses, minutiae points

and others.

2.2.1 Singular Points

Singular points are the points in a fingerprint with sharp changes of ridge flows.

Core and delta points are two types of singular points. The core point is defined

as the topmost point of the innermost curving ridge and the delta point is defined

as the center of triangular regions where three different direction flows meet [39].

The positions of a core and a delta point in an example fingerprint is given in
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Figure 2.1(a). Core and delta points are two landmarks of a fingerprint and the

global ridge and valley flow structure of fingerprint can be determined by the

position and rotation of them. The numbers and positions of core and delta points

are closely related to the human-predefined fingerprint class types. For example,

whorl fingerprint often contains two pairs of core and delta points, loop fingerprint

usually has one pair of core and delta points while no singular point exists in

plain arch fingerprint. In addition, this kind of feature (the numbers and positions

of core and delta points) is invariant to the translation, rotation, and moderate

amounts of scale changes in fingerprint image. It is often used to generate some

rules for fingerprint classification [30, 55, 108]. However, it is not an easy task to

reliably and consistently detect the singular points in some partial or poor quality

fingerprints. The singular points are usually outside of the partial fingerprint

images. For example, the delta point is easily left outside of the fingerprint due

to the small size of the sensor, especially of the dab fingerprint captured by the

solid-state sensor. Inconsistent or unreliable detection of singular points may result

in inconsistent classification of fingerprints from the same finger and increase the

retrieval error.

2.2.2 Local Ridge Orientation

In addition to the singular points, the global ridge flow structure of a fingerprint

can be inferred by extraction of the local ridge orientation field. To reduce the com-

putational complexity, fingerprint is often divided into blocks and the local ridge

orientation of each block is computed. The local ridge orientation field of finger-

print is composed of all the block-wise orientations. It is also called “directional

image” in some literature. Figure 2.1(b) shows an example of fingerprint orienta-

tion field. The orientation field is widely used as the main feature for fingerprint

classification and indexing [12,14,15,53,66,67,104].

An orientation vector is often constructed by concatenating the local ridge ori-

entations and associating a dimension to each orientation element for fingerprint
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Ridge ending

Ridge bifurcation

Core point

Delta point

(a) (b)

Figure 2.1: (a) Singular points (black circles) and minutia points (black boxes)
and (b) local ridge orientation field.

representation [12, 53, 66, 104]. To be invariant to the translation of fingerprint

image, the orientation field is usually registered with respect to the core points.

Each local ridge orientation is represented by a unit vector of the doubled angle

[cos(2θ), sin(2θ)] to facilitate the feature transform and weighting. The constructed

orientation vector is usually of high dimension (e.g., 1680 in [66]). The Karhunen-

Loeve transform (KLT) is one of the most widely used statistical framework for

reduction of dimensionality with the minimum loss of information. It is used to

reduce the dimensionality of orientation vector and produce a more compact repre-

sentation of fingerprint. However, the efficacy and efficiency of KLT progressively

deteriorate with the increase of the database size. To overcome this problem, a

multi-space generalization of KLT (MKL) is proposed to create some subspaces

to represent different sets of patterns with common characteristics [16, 19]. It is

imposed on the enhanced orientation vectors to produce multiple subspaces to

represent fingerprint for classification [15].

A structural feature based on the relational graphs of the orientation field is

proposed for fingerprint classification [67]. The orientation field is segmented into
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several homogenous regular-shaped regions by using a dynamic clustering tech-

nique according to some well-suited criteria, i.e. minimization of the variance of

the orientations within the regions. A relational graph is constructed by creating a

node for each region and an arch for each pair of adjacent regions to summarize the

topological structure of fingerprint. The inexact graph matching techniques are

employed to compute the distances between the obtained graph and the prototype

graphs of the predefined classes which are used to produce a feature vector to repre-

sent fingerprint for classification. A further improvement of this structural feature

is proposed to use a set of dynamic masks to guide the segmentation of orientation

field into regions [14]. The dynamic mask of each fingerprint class is generated

using the same clustering algorithm as that in constructing the relational graph.

It represents a general segmentation of regions for the class. A numerical feature

vector is produced by the adaption of the masks to represent each fingerprint for

classification. These structure features based on relational graph of orientation

field are invariant to the translation and rotation of fingerprint image without any

position alignment or normalization. In addition, they can be directly applied for

partial fingerprints.

The orientation feature extracted by a single method captures limited infor-

mation of fingerprint orientation field. Various methods are used to extract the

orientation features which are integrated to give a more comprehensive representa-

tion of fingerprint [17,82]. The structural feature on the relational graph [14] and

the MKL based statistical feature [15] are integrated to capture more information

of fingerprint orientation field, thus improving the performance of fingerprint clas-

sification [17]. The structural and statistical approaches are combined to extract

the representation feature from the local ridge orientation field for classifying fin-

gerprints into six classes [82]. In this approach, the orientation field is binarized by

a set of direction codes and its bifurcations are removed by a set of filter operators.

A one-dimensional binary string is produced to form the structural feature set. The

statistical feature set is extracted from the Euclidean distances between the second

moment of an unknown pattern and the mean of the second moment of each fin-
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gerprint class. The hybrid orientation feature extracted by different methods can

compensate for the limitations of the respective single extraction strategy to give

a more comprehensive representation of fingerprint for more effective retrieval.

Although the local ridge orientation field has been widely used for the coarse

level search of fingerprint database, it is still a challenging problem to robustly

and reliably estimate the local ridge orientation for the poor quality fingerprints

corrupted by heavy noise. In addition, how to extract a compact and representative

feature from the orientation field is an important issue for fingerprint retrieval.

2.2.3 Filter Responses

The ridge and valley flows of fingerprint have strong orientation tendency and well-

defined spatial frequency in the local neighborhoods that do not contain irregular

ridge flows. Gabor filters are directional band-pass filters which not only have

the properties of both orientation and spatial frequency selectivity but also have

optimal joint resolution in both spatial and frequency domains [27]. The Gabor

filters are properly tuned and applied on the fingerprint image and a feature vector

is extracted from the responses to represent fingerprint for classification [49]. In this

approach, the region of interest around a registration point is unevenly partitioned

by a circular spatial tessellation which is composed of six bands and eight even

sectors in each band. The fingerprint is convolved with four Gabor filters with the

orientation equal to 0, π
4
, π

2
and 3π

4
and the responses of the four filters are produced.

A feature vector called “FingerCode” is constructed by the standard deviations

of the Gabor filter responses in all sectors. It consists of 192 elements and is

used for fingerprint classification. A set of complex filters are proposed for the

detection of patterns with radial symmetries [10]. Two of them are applied on the

orientation field of fingerprint to extract the local singularities, i.e. the similarities

to singular points, for fingerprint retrieval [65]. The feature extraction from the

filter responses are dependent on setting the parameters of the filters. Selecting an

appropriate parameter for some filters is not an easy task. For example, the local
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ridge orientation and distance are two important parameters for the Gabor filters.

However, it is not an easy task to reliably estimate them, especially for the poor

quality fingerprints.

2.2.4 Minutiae Points

Minutiae points in a fingerprint are the minute details of ridge flow anomalies.

Ridge ending and bifurcation (see Figure 2.1(a)) are two most common types of

minutiae points. The minutiae triplets (i.e. three minutiae points are constructed

into a triangle which is called a minutiae triplet) are employed to index finger-

prints to facilitate the search of database [9,36,96]. Using the minutiae feature for

fingerprint indexing is proposed in [36] which is further improved in [9,96]. In [36],

all the minutiae triplets in a fingerprint are identified with each triplet defining a

triangle. This approach extracts the geometric features of each triplet: the length

of each side, the angles and the ridge count between each pair as the feature set.

A geometric hashing table is built by quantizing all the possible triplets for finger-

print indexing which can avoid the time consuming minutiae comparison between

the query fingerprint and all database templates. A variant of this representation

is presented to extract more robust geometric features such as handedness and

maximum side of the triangle in [9]. Some geometric constraints are introduced

to more effectively index fingerprints. Two new features of the minutiae triplet,

minutiae density and ridge counts in each side of triangle, are added to the geo-

metric feature set and the performance of fingerprint indexing is further improved

in [96]. The fingerprint indexing based on minutiae triplets is attractive for the

fast search of fingerprint database. However, the minutiae feature is the most

important fine level feature and widely used in the fine matching of fingerprint

verification and identification algorithms [44, 45, 52, 89]. One should try to avoid

a redundant representation of fingerprint between the coarse level search and fine

level matching in designing an AFIS.
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2.2.5 Others

Fingerprint representation by a single feature captures limited information of fin-

gerprint and thus limits the effectiveness of fingerprint retrieval. Various features

are combined to give a more comprehensive representation of fingerprint for the

effective retrieval [11, 91]. Three features, local ridge orientation field, Finger-

Code [49] and minutiae triplets [9], are combined to represent fingerprint to achieve

more effective retrieval than that based on a single feature [11]. In [91], a set of

fiducial lines are laid across the skeleton image of the ridges and the local ridge

features are extracted at each intersection. The extracted local features consist of

four measurements: the angle of the intersection, the ridge curvature, the changes

of angle and distance since the last intersection. This representation can capture

more information about a fingerprint which allows a representation of higher res-

olution. But it involves several local ridge features with different metrics which

result in complex processing. The extracted local ridge features are slowly vary-

ing across the fingerprint with the stationary distributions over some spatial or

temporal periods.

Hidden Markov models are a form of stochastic finite state automata which

is successfully applied in speech recognition [87]. Thus, two-dimensional hidden

Markov models are applied to statistically model the local ridge features by ac-

cumulations of the evidence across the whole fingerprint. To extract the hybrid

representation feature, one should try to avoid redundant representation of finger-

print for the effective retrieval. A good processing method is also important for

combining several features with different metrics.

In addition, some representation features for fingerprint classification are be-

yond the above mentioned features or their combinations. A Hexagonal Fast

Fourier Transform is applied to extract a feature vector by utilization of the hexag-

onally sampled data and extension of the output data in a rectangular scheme for

fingerprint classification [33]. A novel fingerprint representation is proposed by

modelling fingerprint images as the amplitude-modulated (AM) and frequency-
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modulated (FM) functions [86]. In the AM-FM model, ridge variations are repre-

sented as a FM function while the variations in the ridge intensity are modelled as

an AM function. The dominant FM component is employed as the classification

feature.

2.3 Search Strategies

After extraction of the representation features, some comparisons are needed to se-

lect a subset of database as the candidates for fine matching in fingerprint retrieval.

Thus, an accurate and efficient search strategy is also crucial for the fingerprint

retrieval. In general, three search strategies: exclusive fingerprint classification,

continuous fingerprint classification and fingerprint indexing are often used in the

literature to retrieve a subset of database according to the extracted features for

the fine matching of fingerprint identification.

2.3.1 Exclusive Fingerprint Classification

Exclusive fingerprint classification is also called as “fingerprint classification” in

the literature. It is denoted by adding “exclusive” to be different from another

approach, i.e., “continuous classification”, in [66]. Exclusive fingerprint classifi-

cation assigns each fingerprint exclusively into one of predefined classes based on

the extracted features and the database templates in the same class as that of

query fingerprint are retrieved for the fine matching. It is a traditional approach

of coarse level search to accelerate the search of fingerprint database in large-scale

identification system [89].

Exclusive fingerprint classification has been studied for more than one century.

Francis Galton defines three large general classes of fingerprint patterns which are

Arch, Loop and Whorl with each class containing the similar general character-

istics or family resemblance [35]. Edward Henry further refined this fingerprint
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Figure 2.2: The five common fingerprint classes: Arch, Tented Arch, Left Loop,
Right Loop and Whorl.

classification by dividing the general classes into more subclasses according to the

smaller differences existing in the patterns of the classes [39]. The five most com-

mon fingerprint classes of the Galton-Henry classification scheme are Arch, Tented

Arch, Left Loop, Right Loop and Whorl as shown in Figure 2.2. Consistently and

reliably classifying fingerprints is a difficult problem due to the small inter-class

variability and the large intra-class variability of the fingerprint patterns. Exclu-

sive fingerprint classification has generated great interest because of its importance

and intrinsic difficulty. A lot of fingerprint classification approaches are proposed

in the literature [12,15,49,55,74,85,91,97,105]. Most of them are based on the five

common fingerprint classes and can be broadly grouped as: rule-based, syntactic,

structural, statistical, neural network based and multi-classifier approaches [73].

The rule based approaches usually adopt the techniques and rules commonly

used in the manual classification by human experts for the automatic fingerprint
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classification. For example, forensic experts often visually classify fingerprints

based on the singular points. An approach is proposed to generate rules according

to the number and positions of singular points for the automatic fingerprint clas-

sification [55]. Another rule based classification approach is proposed to classify

fingerprints based on the type and orientation of core points [25]. These fingerprint

classification approaches highly depend on the reliable and consistent detection of

singular points. Although they work well for the rolled fingerprint impressions

scanned from card, they are not suitable for the dab fingerprints captured by

solid-state sensor in which the delta points are often outside of the images. In-

stead of only relying on the singular points, the traced pseudoridge analysis is

used to compensate for the missing singular points to improve the classification

performance [108]. In addition, the robust geometrical shapes of the ridge lines

are extracted to produce rules for fingerprint classification [26,47]. B-spline curves

are extracted to model fingerprint ridges and the classification is conducted by

tracing the resulting B-spline curves to detect the turns [26]. A fingerprint kernel

is defined to model the general geometrical shape of the fingerprints in each class

and the classification is conducted by hierarchical kernel fitting [47]. In general,

the rule based approaches of fingerprint classification are straightforward and easy

to understand. But it is still difficult to generate rules which can consistently and

reliably classify the poor quality or partial fingerprints.

The syntactic classification approaches usually represent each fingerprint by

some symbols, define a grammar for each fingerprint class, and finally use a pars-

ing process to classify fingerprints. Moayer and Fu [79, 80] propose two syntactic

classification approaches. In these approaches, terminal symbols are associated

with small groups of orientation elements in the orientation field and fingerprint

patterns are described with the stochastic grammars [79] and tree grammars [80].

A syntactic classification approach is proposed based on the global distribution of

10 basic ridge patterns, the analysis of the ridge shapes and a sequence of ridge

distributions [22]. Due to the great variance of fingerprint patterns, complex gram-

mars are often required that may result in a complicated and unstable inference
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in the syntactic approaches.

Structural approaches of fingerprint classification are based on the relational or-

ganization of the information in a fingerprint which is often represented by graphs

or trees. A state-of-the-art structural approach is proposed based on the relational

graphs of some connected regions which are obtained by partitioning the finger-

print orientation field to minimize the orientation variance within each region [67].

Instead of giving the clustering algorithm total freedom, a set of dynamic masks,

together with an optimization criterion, are used to guide the partitioning of orien-

tation field into homogeneous regions [14]. The dynamic mask represents a general

partition of the homogeneous regions for each fingerprint class. The structural

classification approaches are usually based on the global structural information of

fingerprint so that they can work on partial and poor quality fingerprints. However,

it is not an easy task to obtain a stable and reliable structure of a fingerprint.

Statistical approaches of fingerprint classification represent each fingerprint by

a numerical feature vector and use some general statistical classifiers to classify

fingerprints. The most widely used statistical classifier, K-nearest neighbor clas-

sifier, is employed for fingerprint classification [33, 49]. In addition, the statistical

Karhunen-Loeve (KL) and multi-space generalization of KL (MKL) transforms are

used to reduce the dimensionality of orientation vectors for fingerprint classifica-

tion [12,15,66].

Some approaches of fingerprint classification determine the fingerprint class by

using neural networks. The probabilistic neural network is often employed for the

determination of fingerprint classes [12, 86, 103, 104]. A fingerprint classification

approach based on neural network is proposed to construct a pyramidal architec-

ture consisting of several multi-layer perceptions with each perception trained to

discriminate one fingerprint class [54]. A multi-layer artificial neural network is

constructed to be composed of six independent sub-networks which are used to

discriminate six fingerprint classes (with each subnetwork for one class) [82]. The

self-organizing neural networks are employed for fingerprint classification [38]. In
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general, the fingerprint classification approaches based on neural networks take

some feature sets for training the classifiers to discriminate different fingerprint

classes. The more feature sets are provided for training the neural networks, the

more the classifiers are able to learn about the classes and accurately discriminate

the fingerprint classes. Thus, these approaches can work well if sufficiently large

and representative fingerprints of all different classes are provided for training.

It is well known that the fingerprint classification approaches have limited clas-

sification performance by using a single method of class determination. Two or

more classifiers, which produce somewhat uncorrelated classification errors, are

combined to offer complementary information of class determination and improve

the performance of classification with a single classifier [49, 91, 106]. A hybrid

multi-channel approach of fingerprint classification assigns the FingerCode of each

fingerprint into one of the five common classes using the K-nearest neighbor clas-

sifier followed by a set of neural networks for further class determination [49]. A

hybrid fingerprint classifier is proposed to combine a hidden Markov model clas-

sifier and a decision tree classifier [91]. Two ways of classifier combination: linear

likelihood and neural network combinations are also discussed for this hybrid fin-

gerprint classifier [91]. In [106], two machine learning approaches: support vector

machines and recursive neural networks are combined for the determination of

fingerprint classes.

The exclusive fingerprint classification has been widely studied to facilitate

the search of fingerprint database because of some advantages such as human-

interpretable, fast query process and rigid database partitioning. It provides an

efficient indexing mechanism for large-scale fingerprint identification. An ideal au-

tomatic classification algorithm for fingerprint retrieval should be able to classify

fingerprints into a large number of classes in a fast, consistent and reliable way.

However, most automated classification algorithms are able to classify fingerprints

into only 4 or 5 classes. Some researchers explores to further divide the fingerprint

classes into more specific sub-classes [30]. But the automatic sub-classification
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is more difficult than the first-level classification due to the small inter-class vari-

ance and large intra-class variance. Furthermore, fingerprints are unevenly distrib-

uted in these classes. The natural fingerprint distribution among the five common

classes is approximately 3.7% plain arch, 2.9% tented arch, 33.8% left loop, 31.7%

right loop and 27.9% whorl, which are estimated on the classification summary of

more than 222 million fingerprints [104]. More than 90% of fingerprints belong to

only three classes. On average, the query fingerprint still needs to be compared

with about 29.48% of database templates in the fine matching of identification af-

ter the exclusive classification is applied. Thus, the exclusive classification cannot

sufficiently narrow down the search of fingerprint database. Another problem of

this approach is that there are many ambiguous fingerprints, whose class mem-

bership cannot be exclusively stated even by human experts. It is more difficult

to consistently classify them by the automatic fingerprint classification algorithm.

For example, there are about 17% of fingerprints in the NIST special database 4

(NIST-4) [102] labelled as two classes by human experts. These intrinsic difficul-

ties in exclusive fingerprint classification lead some researchers to investigate other

strategies that are not based on the human predefined classes but can effectively

narrow down the search of fingerprint database.

2.3.2 Continuous Fingerprint Classification

The continuous fingerprint classification is proposed to avoid the problems of ex-

clusive classification for the effective fingerprint retrieval [66]. Instead of classi-

fying fingerprints into predefined classes, continuous classification represents each

fingerprint by the numerical feature vectors and similar fingerprints are mapped

into close points in the multi-dimensional feature space by a given distance mea-

sure. Fingerprint retrieval is performed by comparing the query fingerprint with

all database templates and the closer ones are retrieved as the candidates for the

fine matching. The tradeoff between the penetration rate and retrieval accuracy

can be easily adapted by adjusting the size of retrieval neighborhood.
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The local ridge orientation field of fingerprint is often used as the main fea-

ture for continuous classification [11, 14, 17, 53, 66]. A numerical feature vector is

constructed by concatenating the orientation elements of the registered orienta-

tion field to represent fingerprint [53, 66]. In these approaches, each local ridge

orientation is represented by a unit vector of the doubled angle [cos(2θ), sin(2θ)]

to facilitate the feature transform and comparison. The constructed orientation

vector is usually of high dimension which results in high computation cost and

memory space in fingerprint retrieval. The KL transform is used to reduce the

dimensionality of orientation vector without loss of much information. Euclid-

ean distance measure is used to compare two orientation vectors. Although the

representation by the orientation vector is suitable for continuous fingerprint clas-

sification, the retrieval accuracy highly depends on the registration of orientation

field by the reference points whose detection is sensitive to noise and partial im-

ages. The fingerprint orientation field is characterized by the relational graphs

and a numerical feature vector is produced by the adaption of the masks to rep-

resent each fingerprint for continuous classification [14]. This approach captures

the global structure information of fingerprint orientation field without the regis-

tration by reference point. Thus, it can work on the partial and poor quality fin-

gerprint images. To further improve the retrieval accuracy, some approaches are

proposed to combine different representation features for continuous fingerprint

classification [11,17]. Two numerical features on the relational graph [14] and the

statistical MKL [15] are integrated to capture more information of fingerprint for

continuous classification [17]. Three numerical features: orientation vector, Fin-

gerCode and minutia triplets are combined to represent fingerprint for continuous

classification [11]. These combined representation features can compensate for the

limits of individual feature and give more comprehensive representations of finger-

print so that better retrieval performances are often achieved in the continuous

classification.

The continuous fingerprint classification can avoid the intrinsic problems in

exclusive classification and achieve better retrieval performance. However, it only
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ranks the database templates according to their similarities to the query fingerprint

while neglecting the similarities among the database templates. Although the

comparison between the query fingerprint and database template is a coarse level

matching and is much faster than the fine matching, the fingerprint retrieval by

exhaustive comparison of the database templates is still time consuming for large

databases. Further works to facilitate an effective and efficient search of database

are still of great interest to the researchers in the area of automatic fingerprint

retrieval and identification.

2.3.3 Fingerprint Indexing

In most applications, it is not necessary to classify fingerprints into human inter-

pretable classes in an AFIS. Instead of classifying fingerprints into a small num-

ber of human predefined classes, some researcher propose to partition fingerprint

database into a number of bins based on the minutia triplets for fingerprint index-

ing [9,36,96]. This approach builds a geometric hashing table by quantizing all the

possible minutiae triplets to index fingerprints which avoids the time consuming

minutiae comparison between the query fingerprint and all database templates. In

addition, it can classify fingerprints into more groups (classes or bins) than the

exclusive classification as it exploits the more discriminating features, minutiae

features. This indexing approach is attractive to speed up the search of fingerprint

database. However, minutia points are the most important local features and

widely used in the fine matching of fingerprint verification and identification algo-

rithms [44, 45, 52]. To use the minutiae features to index fingerprints, one should

try to avoid a redundant representation of fingerprint in designing an AFIS. This is

because the accuracy deterioration of large-scale fingerprint identification system

from the 1:1 verification can be hardly alleviated if the features used in finger-

print indexing (coarse level search) and fine matching (verification) are strongly

correlated.
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2.4 Summary

This chapter presents a brief review of some common and published fingerprint

retrieval approaches in the literature. They are broadly classified according to the

feature extractions and search strategies used. The exclusive fingerprint classi-

fication has been widely studied to facilitate the search of fingerprint database.

However, most of the existing approaches classify fingerprints into only 4 or 5

classes and more than 90% of fingerprints belong to only three classes. Thus,

exclusive classification cannot sufficiently reduce the search space of fingerprint

database. Continuous classification is proposed to avoid the problems of exclusive

classification and can achieve better retrieval performance. Most of the existing

methods are based on the orientation feature and Euclidean distance measure.

Their retrieval performances are still not very attractive. In the following chapters

of this thesis, some research works have been done to further improve the retrieval

performance.

The local ridge orientation and the local ridge distance are two important local

parameters widely used for analyzing fingerprints and most existing methods can-

not do a good job in the presence of high noise level in a fingerprint image. In the

first part of this thesis, focus is on the investigation of robust and reliable estima-

tions of these two parameters. In addition, to achieve the invariance of the pose

transformation of fingerprint images, fingerprint alignment based on the minutiae

structure and ridge shape is time consuming and thus unsuitable for real-time re-

trieval. We also present an algorithm to consistently detect a reference point for

fingerprint alignments in the first part.

In the second part, we develop a fingerprint retrieval algorithm based on the

continuous classification. Besides the orientation feature, other discriminating fea-

ture and more effective distance measure are explored to further improve the re-

trieval performance in database search.

The continuous classification only ranks the database templates according to
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their similarities to the query fingerprint while neglecting the similarities among the

database templates in fingerprint retrieval. The retrieval speed by the comparison

of query fingerprint with all database templates is still time consuming for large

database. In the last part of the thesis, we explore the database clustering for an

efficient fingerprint retrieval.

In the next chapter, we investigate some techniques to robustly and reliably

estimate the local ridge orientation and local ridge distance, which play important

roles for fingerprint analysis and retrieval. In addition, an effective approach will

be presented to consistently locate a reference point and compute a corresponding

reference direction for all types of fingerprints which can be used for the fingerprint

alignment to achieve the invariance of pose transformation.

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 3

Parameter Estimation and

Reference Point Detection

3.1 Introduction

Fingerprint is a grey level image captured by a sensor after pressing a finger against

the smooth surface. It is composed of the ridge (low grey value) and valley (high

grey value) flows which are interleaved at a certain frequency and run parallel with

strong orientation in a local region that does not contain irregular ridge flows such

as minutiae and singular points. In general, there are two local parameters widely

used for analyzing fingerprints, which are the local ridge orientation and the local

ridge distance. The local ridge orientation of fingerprint describes the ridge-valley

flow pattern while the local ridge distance is another important intrinsic property

of fingerprint as its inverse represents the ridge density or frequency. These two

local parameters vary not only across fingerprint impressions of different fingers

but also across different regions in the same fingerprint. They play important

roles for fingerprint processing and feature extraction. Some methods have been

proposed for the estimation of these local parameters in the literature. However,

it is still a difficult task to reliably estimate them in the poor quality fingerprints.

36
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In this chapter, some techniques are investigated to robustly and reliably estimate

these two local parameters.

In addition, pose transformation usually exists in different fingerprint impres-

sions originated from the same finger. To achieve the invariance of such transfor-

mation, translation and rotation are needed to bring two different fingerprints into

alignment, which is one of the crucial parts for fingerprint retrieval and matching.

Fingerprint alignment based on the minutiae structure and ridge shape is time

consuming and is therefore unsuitable for fingerprint retrieval. One common and

efficient solution suitable for the retrieval is the alignment of fingerprints based on

a reference scheme. Some landmark points in a fingerprint are often used as the

reference point for the fingerprint alignment [12, 46, 49, 66, 84]. However, robust

and consistent detection of the reference point is still a difficult task and thus

needs continuous research effort for improvement. In this chapter, we propose an

effective method to detect a reference point and compute a corresponding reference

direction for all types of fingerprints which can be used for fingerprint alignments.

3.2 Fingerprint Segmentation

The captured fingerprint images by a sensor often consist of not only the foreground

originated from the contact of fingertip with the sensor but also the background,

i.e., the blank and heavy noisy areas on the border. In the background of finger-

print, the estimations of the local parameters are usually unreliable and spurious

reference points may be produced. If the background is included in feature extrac-

tion, the within-finger variance of fingerprint representation is greatly increased

which results in low matching score for the fingerprints from the same finger. Fin-

gerprint segmentation is introduced to decide which part of the image belongs to

the foreground and which part belongs to the background. A good segmentation

plays an important role to reliably extract the local parameters and detect the

reference point for fingerprint analysis and feature extraction.
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There are some approaches proposed for fingerprint segmentation in the lit-

erature [5, 68, 88, 92]. The foreground of fingerprint is discriminated from the

background based on the variance of gray values in the direction orthogonal to the

local ridge orientation [88]. This approach is based on the observation that the

foreground with the striped and oriented pattern contains higher variance of gray

values than the background without the oriented pattern does. The average magni-

tude of the gradients in each image block is used for fingerprint segmentation [68].

The magnitude of the gradients in the foreground of fingerprint is larger than that

in the background because the foreground contains the clear ridge and valley al-

terations. The Gabor filter responses are used to classify the regions of fingerprint

into ”good”, ”poor”, ”smudged” and ”dry” [92]. Instead of using only one feature,

three features: gradient coherence, the mean and variance of the grey values are

combined by a linear classifier to separate the foreground of fingerprint from the

background in [5]. A morphological filter is applied in the post-processing to ob-

tain the compact foreground and background clusters. This method has achieved

good segmentation results and is employed in this work for fingerprint segmenta-

tion. The estimation of local parameters and detection of reference point in the

following are performed only on the foreground of fingerprint.

3.3 Estimation of Local Ridge Orientation

The local ridge orientation at a pixel (x, y) of fingerprint is the angle θ(x, y) that

the ridges, crossing through an arbitrary neighborhood centered at the pixel, form

with respect to the horizontal axis [73]. It belongs to [−π/2, π/2) as the ridges of

fingerprint are not directed. The local ridge orientation is an intrinsic property of

ridge flows and plays an important role in fingerprint processing and representation.

It is often estimated at the discrete positions by dividing the fingerprint image into

blocks to reduce the computational complexity. The fingerprint orientation field is

represented by a matrix composed of all the block-wise orientation elements.
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3.3.1 Orientation Estimation

Most existing methods proposed for the estimation of local ridge orientation in the

literature can be broadly classified as the pixel alignment based method [38, 55]

and the gradient based method [6,29,42,51,68]. The pixel alignment based method

estimates the local ridge orientation of each pixel based on the alignments of the

pixels in a local neighborhood with respect to a fixed number of reference orienta-

tions. The total fluctuation of gray values is expected to be smallest along the local

ridge orientation and largest along its orthogonal orientation. The orientation of

each image block is estimated by averaging the unit vectors of doubled pixel-wise

orientations in the block. However, the reliability of the estimated orientation in

the pixel alignment based method may be limited due to the fixed number of ref-

erence orientations. Since the phase angle of the gradients is the orientation with

maximum changes of gray values, it is perpendicular to the local ridge orientation

of each pixel. The gradient based method is widely used to estimate the local ridge

orientation because of its high efficiency and resolution [29,42,68]. Due to the peri-

odicity of the phase angle, the orientation of each image block cannot be estimated

by arithmetically averaging the phase angles of the pixels. To avoid the orientation

ambiguity, it is estimated by averaging the squared gradients. It is proven that

this method is mathematically equivalent to the principal component analysis of

the auto-covariance matrix of the gradient vectors [6]. Therefore, the least mean

square method based on the gradients [42] is employed in this work to estimate

the local ridge orientation of each block. Its processing steps are summarized as

follows:

(1) Divide the fingerprint image into non-overlapping blocks of size w×w pixels.

(2) Compute the gradients Gx(x, y) and Gy(x, y) of each pixel corresponding

to the horizontal and vertical directions, respectively. The gradient operator

varies from the simple Sobel operator to the complex Marr-Hildreth operator.

The Sobel operator is used for simplicity.
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(3) Estimate the orientation of each block (i, j) by averaging the squared gradi-

ents as:

A =
∑

(x,y)∈Wi,j

G2
x(x, y), B =

∑

(x,y)∈Wi,j

G2
y(x, y), C =

∑

(x,y)∈Wi,j

Gx(x, y)Gy(x, y)

(3.1)

θ(i, j) =
1

2
arctan

A − B

2C
, (3.2)

where Wi,j is the block (i, j) of size w × w pixels.

3.3.2 Orientation Smoothing

After estimation of the local ridge orientation, the original grey level fingerprint im-

age of size X × Y pixels is transformed into an orientation field of size bX
w
c × bY

w
c

blocks. The orientation field may still contain the corrupted elements resulted

by the minutiae and heavy noise such as scars, ridge breaks and low grey value

contrast. Orientation smoothing is often used to further attenuate the noise and

partially restore the corrupted orientation elements in the orientation field. A sta-

tistical orientation smoothing method is proposed to attenuate the impulsive-like

noise [58]. But the resolution of the estimated orientation is limited due to the

quantified orientation value. The smoothing method by averaging the unit vectors

of the doubled orientation over a neighborhood is widely used because of its high

efficiency and resolution [42]. However, the effectiveness and efficiency of this ori-

entation smoothing method highly depends on the determination of the smoothing

neighborhood. Large smoothing neighborhood is often required to attenuate the

heavy noise and produce a smooth orientation field. But it also blurs the orienta-

tions of the high ridge curvature area such as the singular region (i.e., the region

near the singular point). The smoothing neighborhood is adaptively determined

based on the orientation consistency [44, 45]. If the consistency level of the orien-

tations is small in a local neighborhood of a block, the block is considered as noisy
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area and its orientation is smoothed on a larger neighborhood. But the orientation

consistency is also small in the areas of high ridge curvature. This method cannot

differentiate the noisy area from the area of high ridge curvature where the small

smoothing neighborhood is required to capture the orientation of the area center.

We propose an orientation smoothing method that adaptively determines the

smoothing neighborhood based on the analysis of the reliability of orientation es-

timation. The orientation smoothing is performed on the block-wise orientation

field. The smoothing neighborhood is adjusted to attenuate the noise while avoid-

ing the orientation blurring. The large smoothing neighborhood is used only when

the orientation estimation on a small neighborhood is considered to be unreliable.

The reliability measure of orientation estimation is also important in adjusting

the smoothing neighborhood. The coherence of the squared gradients is computed

by [6]:

Coh =
√

(A − B)2 + 4C2/(A + B), (3.3)

where A, B and C are computed in Equation (3.1). Coh gives a good measure

of how well the gradients over a neighborhood are pointing in the same direction.

Thus, it also indicates the reliability of the estimated orientation in Equation (3.2).

However, not only the phase angle but also the modulus of the gradient vector affect

the value of Coh. Although it is normalized by the average grey value contrast

A + B, the inconsistent contrast of the grey values in the smoothing window W

may drastically change the value of Coh. As a result, Coh may not correctly reflect

the orientation consistency in W when the grey value contrasts in the image block

are inconsistent.

An orientation consistency is introduced to measure the reliability of orientation

estimation based on the preliminarily estimated orientation vectors instead of the

gradient vectors. It can avoid the negative effect of the inconsistency of grey

value contrasts. In a smoothing neighborhood Ω(s), the orientation consistency is
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computed by:

Cons(s) =

√
(
∑

(i,j)∈Ω(s) cos(2θ(i, j)))2 + (
∑

(i,j)∈Ω(s) sin(2θ(i, j)))2

M
(3.4)

where M is the number of orientations θ(i, j) in Ω(s). If all the orientations in

Ω(s) are exactly directed to one orientation, Cons(s) obtains the highest value

of 1. It achieves the lowest value of 0 if the orientations in Ω(s) are evenly

distributed in [−π/2, π/2). Cons(s) varies between these two extreme situa-

tions to provide a quantitative measure of the orientation consistency and re-

liability. Larger Cons(s) indicates that the estimated orientation is more reli-

able. If the gradient vector used in Equation (3.1) is converted to a unit vector

[Gx(x, y), Gy(x, y)]/
√

G2
x(x, y) + G2

y(x, y) and the θ(i, j) in Equation (3.4) is the

phase angle of the gradient vector, the coherence in Equation (3.3) will be equal

to the orientation consistency in Equation (3.4). This equivalence of Equations

(3.3) and (3.4) does not hold in general. The suggested orientation consistency

based on the normalized orientation vector of each block is more robust to the

inconsistency of grey value contrast than the coherence of the squared gradients.

Therefore, it is used to measure the reliability of the estimated orientation in a

local neighborhood.

The fingerprint ridges flow slowly and smoothly in most areas of fingerprint

so that the local ridge orientation usually varies slowly in a local neighborhood.

The area with sharp orientation changes may be either the high-curvature area

or noisy area. The difference between the high-curvature and noisy areas is that

the orientation consistency in Equation (3.4) becomes larger with the increase of

the size of the smoothing neighborhood for the noisy area while it keeps small

in the high-curvature area. Based on this observation, the analysis of orientation

consistencies on the neighborhoods of variant sizes is used to differentiate the

high-curvature area from the noisy area of fingerprint. Only the orientations in

the noisy area are further smoothed with a larger neighborhood. We increase

the size of smoothing neighborhood and compute the orientation consistency with
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Equation (3.4). The optimal smoothing neighborhood for each block is adaptively

determined by analyzing not only the orientation consistency but also its changes

on the different neighborhoods.

If all the orientations in the neighborhood are included for smoothing in the

noisy area of fingerprint, the corrupted orientations still deteriorate the final ori-

entation estimation even if a large smoothing neighborhood is used. The proposed

smoothing method tries to circumvent the corrupted orientations and use the reli-

able orientations in its neighborhood to restore the corrupted orientations. If the

orientation consistency on a larger neighborhood is better than that on the small

neighborhood, the orientations on the outer blocks of the larger neighborhood are

more reliable than those on the small neighborhood. To circumvent the corrupted

orientations on the small neighborhood, the smoothing neighborhood Ω(s) only

includes the outside surrounding blocks of its (2s + 1) × (2s + 1) neighborhood

and consists of 8s elements. The processing steps of the proposed orientation

smoothing method for each block are summarized as follows:

(1) Convert the doubled orientation of each block to a unit vector [cos(2θ(i, j))

sin(2θ(i, j))] and compute Cons(1) (s=1) with Equation (3.4) where Ω(1) is

set to the outer 8 blocks of the 3 × 3 smoothing neighborhood;

(2) s=s+1. Compute Cons(s) with Equation (3.4) where Ω(s) is set to the outer

8s surrounding blocks of the (2s + 1) × (2s + 1) neighborhood;

(3) If Cons(s) is smaller than a threshold (0.5 in our experiment) or smaller than

Cons(s−1), go to step (2) until s reaches its maximum (5 in our experiment);

(4) If s equals to its maximum, Ω(s) is reset to the neighborhood of size 3 × 3

blocks;

(5) Compute the local ridge orientation of the block by:

θ =
1

2
arctan(

∑
(i,j)∈Ω(s) sin(2θ(i, j))

∑
(i,j)∈Ω(s) cos(2θ(i, j))

). (3.5)
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In step (3), the orientation estimation based on Ω(s) is considered reliable if

Cons(s) is larger than both Cons(s − 1) and the threshold. If Cons(s) of all

scales (s=1, 2, 3, 4) are smaller than the threshold, Ω(s) is considered as a high

curvature area and we reduce the smoothing neighborhood to the minimum Ω(1).

Finally, an orientation field of fingerprint is composed of the local ridge orien-

tations estimated by uniformly dividing the fingerprint into blocks and smoothed

on the adaptively varying neighborhoods.

3.3.3 Experimental Results

Figure 3.1 shows the orientation fields of a poor quality fingerprint smoothed with

different settings of neighborhood. From Figure 3.1(a), we can see the corrupted

orientation elements have not been well restored using a small smoothing neigh-

borhood although the local ridge orientations near the core point are not blurred.

Figure 3.1(b) shows that the corrupted orientation elements are well restored us-

ing a larger smoothing neighborhood, but the local ridge orientations near the core

point are blurred comparing to those of Figure 3.1(a). Figure 3.1(c) shows that

the corrupted orientation elements are well restored while the orientation localiza-

tion near the core point is maintained by using the proposed adaptive smoothing

method. From these results, we can see that the proposed adaptive smoothing

method not only maintains the orientation localization of high-curvature area but

also has good performance in attenuating noise.

In practice, we cannot know the ground truth of the local orientations in a

real poor quality fingerprint. To quantitatively analyze the proposed orientation

smoothing method, we add noise to corrupt a good quality fingerprint image.

Since the impulsive-like oriented noise such as scar and ridge breaks often appears

in real fingerprints [51], the noise is simulated by using white lines of 5 pixels in

width and 20 pixels in length. Figure 3.2 shows a good quality fingerprints and

the corrupted ones by noises of 15 and 20 random lines. The orientation field of
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(a) (b) (c)

Figure 3.1: The orientation fields of a poor quality fingerprint smoothed on differ-
ent settings of neighborhood: (a) 5 × 5 blocks; (b) 9 × 9 blocks; (c) the proposed
adaptive smoothing neighborhood. The significant orientation errors caused by
the 5 × 5 and 9 × 9 neighborhoods are shown in the white rectangle in (a) and
circle in (b), respectively.

the good quality fingerprint is considered as the ground truth. The smoothing

methods used in [42, 44] are also employed to smooth the orientation fields of the

corrupted fingerprints. 400 local ridge orientations are estimated for each image

with each block of size 9× 9 pixels. To compare the effectiveness of the smoothing

methods, the average absolute error is computed over all smoothing regions of 10

images with independent noise. Table 3.1 shows the experimental results. We can

see that our method performs better than others.

Table 3.1: The average error of smoothed orientations of fingerprints in Figure 3.2.

Average error no smoothing method [42] method [44] Our method

Figure 3.2b 5.05
�

4.54
�

4.06
�

2.43
�

Figure 3.2c 5.99
�

5.12
�

4.68
�

2.99
�
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(a) (b) (c)

Figure 3.2: (a) A good quality fingerprint, (b) the corrupted fingerprint by noise
of 15 lines and (c) the corrupted fingerprint by noise of 20 lines.

3.4 Estimation of Local Ridge Distance

Another evident and important property of fingerprint image is the texture pattern

of the interleaved ridges and valleys. In a local region without irregular ridge flows,

the ridge and valley are interleaved at a certain frequency and run in parallel. The

local ridge distance of fingerprint is defined as the distance between the center

points of two adjacent ridges along a line perpendicular to the local ridge orienta-

tion. It is another important local parameter of fingerprint as its inverse represents

the ridge density or frequency, i.e., the number of ridges per unit length along a

line perpendicular to the local ridge orientation. For the fingerprints scanned at

500 dpi, the local ridge distance varies from 3 to 25 pixels [42]. It varies not only

across the fingerprints from different fingers but also across the different regions

in the same fingerprint. The local ridge distance has been used as an important

parameter for fingerprint image enhancement [42].

Similar to the estimation of local ridge orientation, the local ridge distance is

estimated by dividing the fingerprint image into blocks of the same size. Several

methods have been proposed for the estimation of local ridge distance in the lit-

erature [42, 50, 69]. In [69], the local ridge pattern of fingerprint is modelled as a

sinusoidal-shaped surface and the variation theorem is exploited to estimate the

local ridge distance. In [42], the local ridge distance is estimated by averaging the
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distances between two consecutive peaks of the x-signature which is defined as the

average grey values along the direction orthogonal to the local ridge orientation.

In this method, an oriented window is defined at the center of each block and

rotated to align the y-axis with the local ridge orientation firstly (see Figure 3.3).

Next, the x-signature is computed by averaging the grey values of the pixels in each

column of the oriented window. Finally, the local ridge distance of the block is es-

timated as the average distance between two consecutive peaks of the x-signature.

For example, the ridge distance of the block (i, j) in Figure 3.3 is computed as

rd1+rd2+rd3+rd4

4
. The method in [50] further makes use of the high-order spectrum

technique to estimate the local ridge distance based on the x-signature. The infor-

mation contained in the second and third harmonics is exploited to enhance the

fundamental frequency of the signal.

w

l

Block

Oriented Window

(i,j)

x−signature

rd
1

rd
2

rd
3

rd
4

(a) (b)

Figure 3.3: (a) The oriented window centered at the center of each block and (b)
the corresponding x-signature with five peaks.

3.4.1 Ridge Distance Estimation

The estimation methods based on the x-signature can perform well when the ridges

and valleys in the oriented window have distinct contrast and consistent ridge

directions. However, these methods are not very effective to estimate the local

ridge distance in the regions with high curvature, irregular ridge flows such as ridge

ending and bifurcation, scars and low grey-value contrast because the peaks of the
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x-signature can be easily corrupted by them. Figure 3.4(b) shows a corrupted x-

signature by a ridge ending. We propose an improvement of this estimation method

by dividing the width of the oriented window w into B segments. A x-signature

is produced for each segment by averaging the grey values in each column of the

segment instead of the oriented window. Therefore, we can get B x-signatures for

each oriented window. Figure 3.4(c) shows an example of 4 x-signatures for an

oriented window in Figure 3.4(a). We locate the peak points of each x-signature

and compute the distances between two consecutive peak points of all x-signature

denoted as rd1,rd2,...,rdn. To attenuate the noise, the local ridge distance of each

block (i, j) is finally estimated by

rgdi,j = mean{∀rdq|(1 ≤ q ≤ n)∧(|rdq−
1

n

n∑

q=1

rdq| ≤ b)∧(3 ≤ rdq ≤ 25)}, (3.6)

where b is a threshold determining the valid distances of consecutive peak points

for the ridge distance estimation (b is set 2 pixels in our experiments). For the

block corrupted by a minutiae point in Figure 3.4(a), the estimated ridge distance

based on 4 x-signatures is 12 pixels while the estimated ridge distance based on

one x-signature is 21 pixels.

x−signature x−signature

(a) (b) (c)

Figure 3.4: (a) The oriented window with a ridge ending, (b) the corrupted x-
signature and (c) the 4 x-signatures.

In addition, fingerprint may be corrupted by heavy noise so that the corrupted

areas will have no clear ridge and valley flows (see Figure 3.5(a)). The estimation

of the local ridge distance cannot be reliable in these areas. We identify such blocks
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with the unreliable estimation of the local ridge distance by computing the ratio:

r =
#{∀rdq|(1 ≤ q ≤ n) ∧ (|rdq − 1

n

∑n
q=1 rdq| ≤ b) ∧ (3 ≤ rdq ≤ 25)}

n
(3.7)

If r is larger than a threshold, the estimated local ridge distance is reliable. Oth-

erwise it is considered to be unreliable (see Figure 3.5).

x−signature

(a) (b)

Figure 3.5: (a) The oriented window and (b) four x-signatures of a heavily cor-
rupted block.

Let I be the grey values of a fingerprint image. The fingerprint image is divided

into blocks of size w×w to estimate the local ridge distances. The process steps for

the estimation of the local ridge distance in each block are summarized as follows:

(1) Define an oriented window of size w × l at the center of block (i, j) with the

v-axis rotated to align with the local ridge orientation θi,j (see Figure 3.3

(a)). The grey values of the oriented window in the transformed coordinate

system (u, v) are computed as:

W (d, k) = I(u, v), for 0 ≤ d ≤ w, 0 ≤ k ≤ l

u = i + (d − w/2) cos θi,j + (k − l/2) sin θi,j

v = j + (d − w/2) sin θi,j + (l/2 − k) cos θi,j (3.8)
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(2) Compute the B x-signatures of each oriented window as:

X(m, k) =
B

w

mw/B∑

d=(m−1)w/B+1

W (d, k),m = 1, 2, ..., B, k = 1, 2, ..., l (3.9)

(3) Compute the distances between two consecutive peak points of all x-signatures

and denote them as rd1,rd2,...,rdn.

(4) Compute r using Equation (3.7).

(5) If r is larger than a threshold (0.6 in our experiments), the local ridge distance

is computed with Equation (3.6). Otherwise, it is denoted as an unreliable

element.

3.4.2 Experimental Results

Similar to the evaluation of orientation smoothing, we also add noise to a good

quality fingerprint to test the effectiveness of the proposed method. The test

fingerprints in Figure 3.2 are also used to test the estimation of local ridge distance.

The local ridge distances of the good quality and the corrupted fingerprints are

estimated with both the proposed method and the method in [42]. Similarly, to

evaluate the estimation of local ridge distance, the average absolute estimation

error is computed over all estimation regions of 10 images with independent noise.

The experimental results are shown in Table 3.2. We can see that the average

absolute estimation errors by our proposed method are smaller than those by the

method in [42].

Table 3.2: The estimation error of local ridge distance of fingerprints in Figure 3.2.

Estimation error (pixels) method in [42] Our method

Figure 3.2b 0.57 0.30

Figure 3.2c 0.68 0.41
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3.5 Reference Point Detection

A good reference point for fingerprint alignments should be consistently detected

for all types of fingerprints including the plain arch fingerprint in which no singular

points exist. In addition, the detection of reference point should be robust to

noise such as ridge cracks and scars etc.. To reflect the pose transformation of

fingerprint, the detection of reference point in this section includes locating a

reference point and computing a reference direction corresponding to the reference

point. The reference point is located based on multi-scale analysis of the orientation

consistency. A reference direction is determined by finding the radial direction

from the reference point that is most parallel to the local ridge orientations along

the radial. For plain arch fingerprints, two such directions can be found and the

average of them serves as the reference direction.

3.5.1 Reference Point Locating

The singular points, i.e., core and delta points, are the landmark points in a

fingerprint image where the local ridge orientation changes more rapidly than that

in other areas (see Figure 2.1(a)). However, the delta point is easily left outside of

the fingerprint due to the small size of the sensor, especially of the dab fingerprints

captured by the solid-state sensor. The core point often exists in the central area

of fingerprint and is thus more reliable for the alignment purpose. It is widely

employed as the reference point for the translational alignment of fingerprints [12,

49,66]. However, the number of core points differs in different types of fingerprints

[55]. For example, there are no core points in strict sense in plain arch fingerprints

and two core points usually exist in whorl fingerprints. For the consistent detection

of a reference point in all types of fingerprints, we define the reference point as

the point with maximum curvature on the convex ridge. If core points exist in a

fingerprint, the core point on the convex ridge is the reference point (see Figure

3.8(b)). Otherwise, the point with maximum curvature is always on the convex
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ridge and can be consistently detected (see Figure 3.8(c)).

Some approaches are proposed to detect the singular points in the literature

[55, 60, 107]. Most of them are based on the orientation field of fingerprint. The

Poincare index (PI) method is one of the commonly used methods for the detection

of singular points [55, 107]. It computes the PI of each block by summing up

the direction changes around a closed digital curve of the block. Although this

method is efficient, it is not effective to detect the reference point in plain arch

fingerprint as it is not a core point in strict sense. The singular points are detected

based on searching the point with maximum curvature [60]. This method cannot

work well in poor quality fingerprints as the curvature computation is sensitive to

noise. A sine map based method is proposed to detect a reference point based on

multi-resolution analysis of the differences of sine component integration between

two defined regions in the orientation field [46]. This method is robust to noise,

but the two defined regions are sensitive to the rotation of fingerprint. A novel

method is proposed for the detection of reference point based on orientation pattern

labelling [84]. Although this method is computationally efficient, the orientation

pattern labelling is sensitive to the rotation of fingerprint.

We propose to locate the reference point based on multi-scale analysis of the

orientation consistency, which indicates how well the orientations in a neighbor-

hood are consistent with the dominant direction. The introduced orientation con-

sistency in Equation (3.4) is based on the normalized orientation vector of each

block. It is more robust to the variance of grey value contrasts than the coherence

of squared gradients when evaluating how well the orientations in a neighborhood

are consistent. As analyzed in orientation smoothing, the orientation consistency

in the high-curvature area is smaller than that of homogeneous area (see Figure

3.6). Hence, it is used for the detection of reference point in which the orientation

consistency is minimum in a local neighborhood. However, delta points and the

core point in the concave ridge of whorl fingerprints also have minimum orienta-

tion consistency in a local neighborhood (see Figure 3.6(a)). We discriminate the

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



3.5 Reference Point Detection 53

reference point on the convex ridge from those spurious points according to the

direction of curvature. In the (2s + 1) × (2s + 1) neighborhood of block (i,j), we

compute:

dxi,j(s) =
s∑

t=−s

cos (2θ(i − s, j + t)) −
s∑

t=−s

cos (2θ(i + s, j + t)), (3.10)

dyi,j(s) =
s∑

t=−s

sin (2θ(i + t, j − s)) −
s∑

t=−s

sin (2θ(i + t, j + s)), (3.11)

If both dxi,j(s) and dyi,j(s) are larger than 0, the block (i, j) is considered to be on

the convex ridge and selected as candidate blocks for the reference point. From the

selected blocks on the convex ridge, we choose the one with minimum orientation

consistency as the reference point.

(a) (b)

Figure 3.6: (a) A whorl fingerprint and its orientation consistency field, (b) A
plain arch fingerprint and its orientation consistency field. White block denotes
high orientation consistency.

In addition, the consistency of the corrupted orientation elements in the noisy

area of fingerprint may also be small which will result in producing the spurious

reference points. As discussed earlier in orientation smoothing, we can differenti-

ate the high curvature area from the noisy area based on the analysis of both the

orientation consistency and its changes on the neighborhoods of varying sizes. The

orientation consistency in the high curvature area is always small on the neighbor-

hoods of varying sizes while the orientation consistency in the noisy area on a large
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neighborhood is usually larger than that on a small neighborhood. To reliably de-

tect the reference point, we search the block with minimum orientation consistency

from large scale to fine scale (see Figure 3.7). Similar to orientation smoothing, the

orientation consistency on each scale is computed based on the outer surrounding

blocks of the neighborhood to circumvent the corrupted orientations. The spuri-

ous reference points in the noisy areas are eliminated in the large scale while the

accurate reference point with high ridge curvature is finally lacated in the finest

scale.

3 X 3

(2s+1) X (2s+1)

(2s-1) X (2s-1)

The Largest Scale

The Finest Scale

Figure 3.7: The multi-scale analysis of the orientation consistency.

As a result, the block on the convex ridge, which contains the minimum orien-

tation consistency from both large and fine scales, is located as the reference point.

Given an orientation field of fingerprint, the processing steps of the proposed ap-

proach for reference point locating are summarized as below:

(1) Set s to the largest scale of the neighborhood considered (4 in our experi-

ments);

(2) Compute dxi,j(s) and dyi,j(s) of each block with Equation (3.10) and (3.11),

respectively;

(3) Select the blocks with both dxi,j(s) and dyi,j(s) larger than 0 as the candidate

blocks for the reference point;
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(4) Compute the orientation consistencies Cons(s) of all the selected candidate

blocks with Equation (3.4) based on the outer 8s surrounding blocks of the

(2s + 1) × (2s + 1) neighborhood;

(5) Find the block with the minimum orientation consistency Cons(s);

(6) Set s = s − 1 and go to step (2) in the selected blocks until s = 1;

(7) Locate the block with the minimum orientation consistency Cons(1) as the

reference point.

3.5.2 Reference Direction Computation

There are few papers concerned with the computation of a reference direction for

fingerprint alignment. A good reference direction should be consistently computed

for all types of fingerprint to reflect the rotation of fingerprint. An orientation

associated with a singular point is computed by comparing the orientation field

near the singular point and a standard orientation model [6]. This method performs

well if the orientation field near the singular point is very similar to the standard

reference model. But it cannot work well for plain arch fingerprints since this type

of fingerprint does not belong to any one of the proposed two reference models.

To define a consistent reference direction for all types of fingerprints, 16 di-

rections are radiated from the reference point with π
8

equal interval (see Figure

3.8(a)). In a neighborhood of the reference point, the local ridge orientation most

parallel to the nearest radial direction is consistent for the fingerprints whose refer-

ence points are core point and thus can reflect the fingerprint rotation (see Figure

3.8(b)). Thus, this local ridge orientation is defined as the reference direction of

the core point. For plain arch fingerprint whose reference point is not core point

in strict sense, there exists two different such local ridge orientations. The average

of them is defined as the reference direction (see Figure 3.8(c)).

To consistently and reliably compute the reference direction, we propose to
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Reference Point

0

π/2

Reference Point

Reference Orientation

Reference Point

Reference Orientation

(a) (b) (c)

Figure 3.8: (a) The 16 radial directions from the reference point, (b) The reference
point and direction for core point, (c) The reference point and direction for plain
arch fingerprint.

analyze the differences between the radial directions from the reference point and

the local ridge orientations along the corresponding radial. The absolute sine

component of the orientation difference is employed to approximate the difference

between the radial direction and the local ridge orientations. The absolute sine

components of the differences between the radial direction θk and the local ridge

orientations θ(i, j) along the corresponding radial are averaged as:

V ar(k) =
1

M

∑

(i,j)∈Ωk

| sin (θ(i, j) − θk)|, θk = kπ/8, k = 0, 1, ..., 15 (3.12)

where Ωk is a set of M local ridge orientations along the radial with direction θk. It

is a rectangle with its length side parallel to the radial and symmetric with respect

to the radial. Obviously, V ar(k) of range [0 1] equals to 1 when θk is orthogonal to

all the orientations in Ωk and equals to 0 when θk is parallel to them. Therefore,

the dominant local ridge orientation in Ωk with the minimum V ar(k) is considered

to be most parallel to the radial direction θk. For the fingerprint whose reference

point is core point, only one local minimum exists in V ar(k) for k = 0, 1, ..., 15

(see Figure 3.9(a)). For plain arch fingerprint in which the reference point is not

core point in strict sense, two local minimums exist in V ar(k) (see Figure 3.9(b)).

In order to effectively search the minimum of V ar(k), the size of the orientation
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set Ωk is adaptively changed. The number of blocks along the side orthogonal to

and centered with the radial, i.e., the width of Ωk is set to 5. The length of Ωk

is initialized to 4 blocks (this depends on the minimum distance between two core

points) and is adjusted by the analysis of V ar(k). The processing steps of the

proposed approach to compute the reference direction are summarized as below:

(1) The length and width of Ωk are initially set to 4 and 5 blocks, respectively;

(2) Compute V ar(k) with respect to the 16 radial directions with Equation (3.12)

and find the minimum of V ar(k) as V ar(kmin);

(3) Select the radial directions θk with V ar(k) < V ar(kmin) + 0.1 as the candi-

date directions. If two or more such directions are continuous with k, select

the radial direction with the minimum V ar(k) from them as one candidate

direction;

(4) If more than two candidate directions exist and the length of Ωk does not

reach the boundary of image or its maximum (15 in our experiment), increase

the length of Ωk by 1 and go to step (2);

(5) Compute the dominant local ridge orientations of Ωk with respect to the

candidate radial directions using the least mean square averaging method.

The average of these dominant orientations is computed as the reference

direction.

3.5.3 Experimental Results

The proposed algorithm for the reference point detection has been tested on the

FVC2000 DB2 set A, in which 800 fingerprint images from 100 fingers (with 8

images from each finger) are captured using a low cost capacitive sensor. The

image size is 364×256 pixels and the resolution is 500 dpi. This database contains

many poor quality fingerprints such as the partial images with the reference point
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Figure 3.9: V ar(k) against k where circle denotes the minimum: (a) one minimum
and (b) two local minimums.

left outside and the noisy images corrupted by scars, ridge breaks and too wet or dry

etc.. The desired position and orientation of the reference point in each fingerprint

are not detected previously by the experts. To evaluate the performance of our

proposed algorithm quantitatively, we manually locate the desired reference point

and the desired reference orientation for each fingerprint.

There are 13 partial fingerprint images in the test database with the reference

point left outside. For these images, no reference point should be detected. In our

experiments, one point with minimum orientation consistency is usually detected

for each fingerprint. If the detected point is on the boundary of image (see Fig.

3.10a), this image is identified as partial fingerprint image. In this way, we can

correctly identify 11 partial fingerprint images while two partial fingerprints fail

as the detected reference points are not located on the image boundary (see an

example of Fig. 3.10b).

Reference Point Locating

In our experiments, the position of the reference point is the center pixel of the

finally located block. The Euclidean distance between the manually located posi-

tion and the position located by the algorithm is computed as the distance error

of the reference point. Since the manually located reference point may have some
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(a) (b)

Figure 3.10: The identification of partial fingerprint image: (a) the correct identifi-
cation with the detected point on the boundary of image, (b) the false identification
with the detected point in the internal region of image.

deviation from the true one, four coarse level measures of the distance error are

defined to evaluate the accuracy of reference point locating. If the distance error

is not larger than 10 pixels (about 1 inter-ridge), the reference point is considered

to be accurate as the error may be caused by human vision. If the distance error

is larger than 10 pixels but not larger than 20 pixels, it is considered as small error

which may be caused by both human vision and algorithm. If the distance error

is larger than 20 pixels but not larger than 40 pixels, it is considered as significant

error which may have negative effect on the subsequent processing steps. If the

distance error is larger than 40 pixels, most likely a spurious or false reference

point is detected that cannot be used for subsequent processing steps. Table 3.3

shows the experimental results in the test database. We can see that the accuracy

of the reference point arrives 95.18% if small distance errors can be tolerated in

the subsequent processing steps. It can be further improved by reducing the step

size of overlapping blocks. Almost all the significant errors and false detections are

in the poor quality fingerprints (see Fig. 3.11).

The definition of reference point in [46] is same as that in this work. We

compare our approach with the sine map based approach proposed in [46]. Fig.

3.12 shows two examples of reference points located in our approach and the sine

map based approach. From Fig. 3.12a, we can see that the detected reference
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Table 3.3: The accuracy of the reference point for non-partial fingerprints
Distance Error (pixels) The Number of fingerprints The probability

≤ 10 659 0.8374
> 10 and ≤ 20 90 0.1144
> 20 and ≤ 40 25 0.0318

> 40 13 0.0165

Figure 3.11: Examples of false reference point detection and the detection with sig-
nificant error (”×” denotes the manually located reference point and ”�” denotes
the reference point located by the algorithm).

points by the sine map based approach are not very consistent in two fingerprints

from the same finger due to a slight rotation between them. Fig. 3.12b shows

that the detected reference points by our approach are more consistent in these

two fingerprints than those in Fig. 3.12a. Furthermore, the standard deviations

of the reference points are computed to compare their consistencies. Let Zr(i)

and Z(i) be the positions of the manually located reference point and the detected

reference point of the fingerprint i from the same finger, respectively. The standard

deviation σ is computed as:

σ =

√√√√ 1

M

M∑

i=1

‖dZ(i) − 1

M

M∑

i=1

dZ(i)‖2 (3.13)

dZ(i) = Z(i) − Zr(i) (3.14)

where M is the number of fingerprints (8 in our test database) from the same

finger. As for the 8 fingerprints from the same finger as those shown in Fig. 3.12,
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the σ of the detected reference points by the sine map based approach is 6.0228,

while it is 2.4708 by our approach. The average standard deviation of the whole

test database (800 fingerprints) by our approach is 11.5109, which is smaller than

that by the sine map based approach (19.7800). Therefore, the consistency of the

detected reference points by our approach is better than that by the sine map

based approach.

(a)

(b)

Figure 3.12: Examples of the reference points located by (a) the sine map based
approach and (b) our approach (”×”, ”4” and ”�” denote the reference points
detected by human expert, sine map based approach and our approach, respec-
tively).

Reference Direction Computation

The difference between the manually detected reference orientation and the ref-

erence orientation computed by the proposed approach is calculated as the error
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Table 3.4: The accuracy of the reference orientations on the test database.
OE Number of fingerprints Probability

≤π/16 690 87.67%
> π/16 and ≤π/8 47 5.97%

> π/8 50 6.35%

of reference orientation computation. Similarly, three coarse level measures of the

orientation errors are defined to evaluate the accuracy of the reference orientation.

The orientation error larger than π/8 rads is considered as significant error while

the orientation error larger than π/16 but not larger than π/8 rads is considered

as small error. The orientation error not larger than π/16 rads is considered as

accurate computation. To avoid the ambiguity of the orientation difference, the

orientation error (OE) is computed as below:

OE = min {|θp − θr|, π − |θp − θr|}, −π/2 ≤ θp, θr < π/2, (3.15)

where θp and θr are the computed and the manually detected reference orientations,

respectively. Table 3.4 shows the experimental results on the test database. We

can see the accuracy is 93.65% if the reference orientation can tolerate error up to

π/8. It can be further improved if we can improve the accuracy of reference point.

3.5.4 Alignment of Fingerprints

Pose transformation often exists in the fingerprint impressions originated from the

same finger. Figure 3.13 shows examples of two fingerprints from the same finger

with pose transformation. To achieve the invariance of such transformation, trans-

lation and rotation are needed to bring two fingerprints into alignment, which is

one of the crucial parts for fingerprint verification and identification. Fingerprint

alignment based on the minutiae structure and ridge shape used in the verifica-

tion is time consuming and is thus unsuitable for fingerprint identification. One
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common and efficient solution is the alignment of fingerprints based on a reference

scheme. Let (xr, yr) and θr, −π < θr ≤ π, be the position of the reference point

and the corresponding reference direction, respectively. They can be used for the

translational and rotational alignments of fingerprints to achieve the invariance of

pose transformation. Figure 3.14 shows some examples of fingerprint orientation

fields after smoothing and segmentation with the corresponding detected reference

point and direction superimposed on the fingerprints.

Figure 3.13: Examples of two fingerprints from the same finger with pose trans-
formation.

Figure 3.14: Examples of orientation field, reference point and reference direction
superimposed on the fingerprint, where the white area without orientation is seg-
mented as the background and the small white square and black arrow denote the
reference point and direction, respectively.
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3.6 Summary

In this chapter, some techniques have been proposed to robustly and reliably es-

timate two local parameters of fingerprint: local ridge orientation and local ridge

distance, which will play important roles for fingerprint analysis and retrieval in the

following chapters. We propose a new orientation smoothing method based on the

adaptive neighborhood which not only attenuates the noise well but also maintains

the orientation locating in the high curvature area. Instead of computing only one

x-signature in the oriented window of each block, we propose to estimate the local

ridge distance based on more than one x-signatures which is more robust to noise

and irregular ridge flows. In addition, an effective method has been proposed to

consistently locate a reference point and compute a corresponding reference direc-

tion for all types of fingerprints. The reference point is located based on multi-scale

analysis of the orientation consistency, while the reference direction is computed

by analysis of the orientation differences between 16 redial directions from the ref-

erence point and the local ridge orientations along these radii. They can be used

for the alignment of fingerprints to achieve the invariance of pose transformation.

In the next chapter, we will develop a fingerprint retrieval algorithm based on the

continuous classification and using the results obtained in this chapter.
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Chapter 4

Fingerprint Retrieval Based on

Continuous Classification

4.1 Introduction

As mentioned in Chapter 2, the traditional exclusive classification provides an effi-

cient indexing mechanism to speed up the search of fingerprint database for large-

scale identification. However, it cannot sufficiently reduce the search of fingerprint

database due to the small number of predefined classes and uneven fingerprint

distribution in the classes. In addition, it is still a difficult problem to consistently

and exclusively classifying fingerprints, especially the poor quality fingerprints, due

to the small inter-class variance and large intra-class variance. Thus, the retrieval

efficiency and accuracy are limited on exclusive fingerprint classification. In fact,

it is usually not a practice to classify fingerprints into human-interpretable classes

for an AFIS in some applications.

To avoid the difficult problems of exclusive fingerprint classification, an attrac-

tive approach called “continuous classification” is proposed to facilitate the search

of fingerprint database [66]. Instead of classifying fingerprints into a small number

of human interpretable classes, this approach represent each fingerprint with the
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ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



4.2 Feature Extraction 66

numerical feature vectors. Similar fingerprints are mapped into close points in the

multi-dimensional feature space by a given distance measure. The database tem-

plates close to the query fingerprint are retrieved for the fine matching of fingerprint

identification. The tradeoff between the penetration rate (the portion of retrieved

database) and the retrieval accuracy can be easily adapted by adjusting the size

of retrieval neighborhood. This approach can achieve better retrieval performance

than the exclusive classification. Some algorithms are proposed on the continuous

classification in the literature [11, 14, 17, 53], but their retrieval performances are

still not very attractive. Further works on this technique are still of great interest

to the researchers in the fields of fingerprint retrieval and identification.

In this chapter, we develop a fingerprint retrieval algorithm based on the con-

tinuous classification. An orientation vector of fixed size is constructed from the

local ridge orientation field of fingerprint and is used as the main retrieval feature.

A dominant ridge distance is computed as an auxiliary retrieval feature. A new dis-

tance measure is proposed to quantify the distance between two orientation vectors

and is compared with the conventional Euclidean and Manhattan distance mea-

sures. In addition, we propose a new regional feature weighting scheme which puts

larger weights on the orientation elements with the more powerful variation in the

test database to compare the orientation vectors. As a result, the representation

power of the orientation feature is improved for the fingerprint retrieval. Further-

more, a variable search tolerance is introduced for the effective retrieval. Finally,

the proposed fingerprint retrieval algorithm is performed on NIST database-4 [102]

and compared with some state-of-the-art approaches to test its effectiveness.

4.2 Feature Extraction

As mentioned in Chapter 2, fingerprint retrieval is a coarse level search to reduce

the search space of the fine matching in an AFIS. An ideal retrieval feature set

should have the following properties: easily computable and compact, translation
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and rotation invariant, noise robust and discriminating over a large number of

fingerprints. In addition, it should be independent on or loosely correlated with

that used in the fine matching to avoid redundant representation in an AFIS. The

local ridge orientation and local ridge distance are two important local parame-

ters for fingerprint analysis. In Chapter 3, we have proposed some techniques to

robustly and reliably estimate them. These two local parameters are the coarse

level features of fingerprint and are low correlated with each other. Moreover, both

of them have low correlation with the fine level feature, minutiae points, that are

often used in the fine matching. Thus, we combine these two features to repre-

sent fingerprint for the retrieval. An orientation vector of fixed size is constructed

from the local ridge orientation field of fingerprint as the main retrieval feature. A

dominant ridge distance is computed from the local ridge distances of fingerprint

as an auxiliary retrieval feature.

4.2.1 Construction of Orientation Vector

The orientation field of fingerprint is a discrete matrix composed of the local ridge

orientations estimated at the discrete positions of fingerprint. It describes the

global information of the fingerprint ridge and valley flows and varies across dif-

ferent fingerprint patterns. In addition, the orientation field is loosely correlated

with the minutiae features that are often used in the fine matching. As mentioned

in Chapter 2, it is widely used as the main feature for fingerprint classification. It

is tested in [12, 104] that the performance of fingerprint classification is improved

by replacing the uniform spacing orientation field (i.e., orientation field computed

by dividing fingerprint into blocks of same size) with an orientation field computed

on a nonuniform spacing of the fingerprint image. The nonuniform spacing con-

centrates the orientation measurements more densely on the regions more likely to

contain core and delta points. It is further found that performance improvement

similar to that of nonuniform spacing is achieved by applying regional weights to

the uniform spacing orientation field in comparing the orientation vectors [12,104].
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We adopt the uniform spacing orientation field same as that used in the fingerprint

image enhancement and minutia extraction to avoid the double computation of the

orientation field. A regional weighting scheme will be investigated to compare the

orientation vectors. The proposed method in Chapter 3 is used to estimate each

local ridge orientation.

For construction of orientation vector, each local ridge orientation is often rep-

resented by a unit vector of the doubled orientation [cos(2θ) sin(2θ)] instead of the

phase angle θ [12,53,66]. This representation is able to facilitate the feature trans-

form and weighting. But it doubles the size of the feature vector and increases the

storage and computation cost in the fingerprint retrieval. For example, the orien-

tation vector consists of 1680 elements if the fingerprint of size 512× 480 pixels is

divided into blocks of 16×16 pixels to estimate the orientation [66]. The Karhunen-

Loeve (KL) or multi-space KL transform is used to reduce the dimensionality of

orientation vector into a much lower one in such a way that the Euclidean distances

between two vectors are approximately preserved [12, 15, 53, 66]. The basic idea

of the KL transform is to select the combinations of elements which contain the

most representation power in the test database. To implement the KL transform,

each element of the original feature vectors is valid to produce a sample covariance

matrix. However, in the practical applications, the orientation vectors may have

quite different valid and invalid elements due to the variant translation, rotation

and background areas in different fingerprints. This may negatively affect the reli-

ability of the covariance matrix and the obtained transform matrix. Furthermore,

the transform of the feature vector into the eigen-space combines all elements of the

feature vector in the original feature space. If the original feature vector has a sub-

stantial number of invalid elements, the transformation may result in large error.

Therefore, we do not apply such transform technique although it may bring some

advantages such as reducing the dimensionality of feature vector and facilitating

the feature weighting. As we will see later, if the Euclidean distance measure is

applied to compare two orientation vectors, the orientation representation by the

unit vector has similar function as that by the phase angle θ. Therefore, we repre-
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sent each local ridge orientation with the phase angle to reduce the dimensionality

of the feature vector by half.

To achieve the invariance of pose transformation, the position of reference point

(xr, yr) and the corresponding reference direction θr (−π < θr ≤ π) detected in

Chapter 3 are used for the translational and rotational alignments of the orienta-

tion fields. The new coordinates of the aligned orientation field, represented by a

complex variable m + jn, are calculated by

m + jn = [x − xr + j(y − yr)]e
−jθr (4.1)

where (x, y) are the coordinates of the orientation field before alignments. Due to

the periodicity and discontinuity of the orientation θm,n at ±π/2 and the direction

θr at ±π, the aligned local ridge orientation θ̂m,n is computed by

θ̂m,n =






∆θ, if − π/2 < ∆θ ≤ π/2,

∆θ − π, if ∆θ > π/2,

∆θ + π, if ∆θ ≤ −π/2,

(4.2)

where ∆θ = θm,n − θr. Obviously, −π/2 < θ̂m,n ≤ π/2.

For the fingerprint retrieval based on continuous classification, an orientation

vector of fixed size is constructed by concatenating the aligned local ridge orien-

tations θ̂m,n to represent each fingerprint. Thus, all orientation vectors should be

cropped into a canonical size. In practice, the canonical size of orientation vector

depends on the size of the fingerprint image and the validity of the orientation

elements. If the reference point is located at the center of fingerprint image, the

orientation vector covers most crucial area of the fingerprint. Otherwise, it includes

only a part of the fingerprint and a substantial number of orientation elements are

from the noisy background or the outside of the image if the reference point is lo-

cated near the background or the border of image such as in the partial image. The

segmentation algorithm is therefore used to label the valid and invalid elements
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of each orientation vector. The segmentation result of fingerprint q is denoted by

a vector Sq = [sq
1,1, s

q
1,2, ..., s

q
X,Y ] where sq

m,n ∈ {0, 1} and sq
m,n = 1 indicates that

element (m,n) is valid for feature selection. For example, we estimate the valid

probability of each element of the orientation field aligned by the reference point

and reference direction pointing to south-most using the first fingerprint instances

of the NIST database-4. Figure 4.1 shows the probability map. We can see that

the elements far from the reference point is more likely to be invalid than those

near the reference point. This is because the border of fingerprint is more possible

to be background or corrupted by the heavy noise than the central region.

Figure 4.1: The valid probability map of the aligned orientation field estimated on
the NIST database-4 (white area indicates high probability).

Obviously, the more valid values exist in one element for different fingerprints,

the more important it is for the fingerprint representation. Therefore, the orienta-

tion vector of fixed size O = {ok, k = 1, 2, ...,M} is constructed by concatenating

the aligned local orientations within a circle of radius R, excluding the one nearest

to the reference point, i.e.,

O = {∀θ̂m,n|(m2 + n2 < R2) ∧ ((m,n) 6= (0, 0))}. (4.3)

The orientation nearest to the reference point is excluded from the orientation
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vector because this element is of high curvature and its orientation estimation is

unreliable. Determination of the parameter R depends on the size of fingerprint

image. For the application to the NIST database-4, the orientation field is com-

puted by dividing the fingerprint into blocks of size 27 × 27 pixels and R is set to

8. The constructed orientation vector consists of M = 192 elements, which covers

the fingerprint image of size 27[2(8 − 1) + 1] × 27[2(8 − 1) + 1] = 405 × 405. The

dimensionality of the feature vector is equal to that of ”FingerCodes” [49]. Figure

4.2 shows some examples of the smoothed fingerprint orientation fields, the valid

orientation elements for the construction of feature vector and the corresponding

detected reference point and direction.

Figure 4.2: Examples of orientation field, reference point and direction superim-
posed on the fingerprint, where short (thicker / thinner) line represents for the
local orientation (included in / excluded from the feature vector), the small square
and arrow for the reference point and direction, respectively.

4.2.2 Computation of Dominant Ridge Distance

In addition to the local ridge orientation, the local ridge distance is another intrinsic

property of fingerprint image. The local ridge distance map {rgdx,y} of fingerprint

can be robustly estimated by the proposed method in Chapter 3. However, the local

ridge distance may vary across different fingerprints from the same finger due to the

different manners a elastic finger presses on a plane sensor. In addition, the local

ridge orientation is an important parameter for the estimation of the local ridge

distance so that unreliable local ridge orientation can result in large estimation
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error of the local ridge distance. Moreover, noise and image deterioration may also

result in large estimation error of the local ridge distance. Thus, the estimated

local ridge distance is much less stable than the local ridge orientation. It seems

not viable to construct a high dimensional feature vector using the local ridge

distances for the fingerprint retrieval.

Nevertheless, the average ridge distance ARD over the fingerprint foreground

shows a stable yet discriminating scalar feature. The average within-finger variance

of the ARD over the NIST database-4 is 0.033 and its between-finger variance is

0.494, which lead to a discriminant value of 0.494/0.033=14.97. We further find

that some local ridge distances largely deviate from the mean due to the existence

of minutia, ridge break, bad ridge separation and other heavy noise. These outliers

negatively affect the stability of the ARD. Therefore, we define a dominant ridge

distance DRD as the second mean over the local ridge distances within a bin

centered at the first mean over the fingerprint foreground F by:

DRD = mean{∀rgdx,y|((x, y) ∈ F) ∧ (|rgdx,y − ARD| < b)}, (4.4)

where

ARD = mean{∀rgdx,y|(x, y) ∈ F}. (4.5)

With a proper choice of threshold b, outliers of the local ridge distance will

be excluded from the computation of the dominant ridge distance DRD. The

average within-finger variance of the DRD with b = 2 over the NIST database-4 is

0.028 and its between-finger variance is 0.665, which lead to a discriminant value of

0.665/0.028=23.75. We can see that it is much better than the discriminant value

14.97 of the ARD. Obviously, the DRD is discriminating, loosely correlated with

the orientation field and the minutia features. It can bring new information to

represent fingerprint for the retrieval of an AFIS with the minutia features used in

the fine matching. In addition, this scalar feature is invariant to the translation and
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rotation of fingerprint image without the requirement of the alignments. Therefore,

the DRD computed with Equations (4.4) and (4.5) is employed as an auxiliary

scalar feature for our fingerprint retrieval based on continuous classification.

4.3 An Orientation Distance Measure

Euclidean and Manhattan distance measures have been widely used in quanti-

fying the distance between two numerical vectors. The constructed orientation

vector to represent fingerprint in the above section is composed of phase an-

gles which are periodic, discontinuous at ±π/2 and can be valid or invalid. Let

Op = {op
k, k = 1, 2, ...,M} denote the orientation vector of fingerprint p and

Sp = {sp
k, k = 1, 2, ...,M}(sp

k ∈ {0, 1}) denote the corresponding segmentation

result where sp
k = 1 indicates that the element k of fingerprint p is valid for feature

selection. Therefore, the Euclidean distance dE(Op, Oq) and Manhattan distance

dM(Op, Oq) between the orientation vectors of two fingerprints p, q (i.e., Op and

Oq) can be computed by

dE(Op, Oq) =

√√√√ 1
∑M

k=1 sp
ks

q
k

M∑

k=1

sp
ks

q
k(∆

p,q
k )2 (4.6)

dM(Op, Oq) =
1

∑M
k=1 sp

ks
q
k

M∑

k=1

sp
ks

q
k∆

p,q
k (4.7)

where

∆p,q
k = min(|op

k − oq
k|, π − |op

k − oq
k|). (4.8)

If the unit vector [cos(2ok) sin(2ok)] is employed to represent each local ridge

orientation for construction of the orientation vector, from the trigonometry, we
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can easily have

(cos 2op
k − cos 2oq

k)
2 + (sin 2op

k − sin 2oq
k)

2

= 4 sin2(op
k − oq

k) = (2 sin ∆p,q
k )2. (4.9)

Obviously, if Euclidean distance measure is applied, this unit vector represen-

tation that doubles the feature vector size maps 0 ≤ ∆p,q
k ≤ π/2 in (4.6) to

0 ≤ 2 sin(∆p,q
k ) ≤ 2, which produces very similar distance to that of the angle ok.

If all the orientation elements between two feature vectors consistently have a

constant difference, the fingerprint orientation fields of such two vectors are very

similar just with a rotation in human perception. Therefore, the distance between

these two orientation vectors should be zero. However, the Euclidean and Manhat-

tan distances of them may achieve a large deviation as a constant difference exists

in all vector elements. To overcome this problem, we propose a new orientation

distance measure that is based on the inconsistency of the orientation differences

among all valid elements. The proposed distance between the orientation vectors

of fingerprint p and q (i.e., Op and Oq) is computed as

dC(Op, Oq) = 1 −

∣∣∣
∑M

k=1 vke
j2(op

k
−oq

k
)
∣∣∣

∑M
k=1 vk

(4.10)

where vk = sp
ks

q
k (vk ∈ {0, 1} and vk = 1 means that the element k is valid for both

fingerprints p and q.), j =
√
−1 and |z| computes the magnitude of the complex

variable z. Instead of averaging the absolute or squared difference over all the

valid orientations with Equation (4.6) or (4.7), the proposed distance measure in

Equation (4.10) averages the unit vectors whose phases are the doubled orientation

differences. Thus, it quantifies the distance between two orientation vectors based

on the inconsistency of the orientation differences among all the valid elements.

We can see that the proposed distance dC(Op, Oq)(∈ [0 1]) achieves the minimum

of zero for a constant orientation difference op
k − oq

k (constant to k) and it increases
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when all the valid orientation differences of two fingerprints are inconsistent.

Let a and b be two scalars and I be a unit vector of the same size as O, it is

easy to verify that the proposed distance measure satisfies:

dC(Op + aI,Oq + bI) = dC(Op, Oq), (4.11)

because

∣∣∣∣∣

M∑

k=1

vke
j2(op

k
+a−oq

k
−b)

∣∣∣∣∣ =
∣∣ej2(a−b)

∣∣
∣∣∣∣∣

M∑

k=1

vke
j2(op

k
−oq

k
)

∣∣∣∣∣

=

∣∣∣∣∣

M∑

k=1

vke
j2(op

k
−oq

k
)

∣∣∣∣∣ . (4.12)

This means that a constant amount of orientation difference has no effect on the

proposed distance measure in Equation (4.10). Therefore, the proposed orientation

distance measure is invariant to a slight rotation between two aligned fingerprints

resulted by a small estimation error of the reference direction. Another merit of

the proposed distance measure is that we need not subtract the reference direction

from the original orientation field to construct the orientation vector, i.e., Equation

(4.2) is not necessary and we can use θm,n instead of θ̂m,n in the feature vector

construction of Equation (4.3).

4.4 Regional Feature Weighting

In the aligned orientation fields, the local orientation elements may have variant

representation powers to discriminate fingerprints. If all elements are put equal

weights to compare the orientation vectors, it will obscure those elements which

have more power to discriminate fingerprints. A nonuniform pattern of the re-

gional weights, which assigns greater weights to the elements in the central region

of fingerprint, is applied on the orientation elements before performing the KL
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transform and computing distances [12]. The results of fingerprint classification

are improved comparing to those without regional weighting. In [14], the regional

weights are used to attenuate the orientation elements near the border by applying

a Gaussian-like function and strengthen those in the irregular regions by imposing

the singularity. However, we find that the discriminating power of a local ori-

entation element may not be simply decreased with the increase of its distance

to the singular points. As the entropy of a random variable measures its uncer-

tainty, we propose to weight a local orientation by its entropy. The entropy of each

orientation element is estimated by:

wk = −
∑L

l=1 p(ok ∈ Bl) log p(ok ∈ Bl)

log(L)
, (4.13)

where L is the number of bins used to partition the orientation range of (−π/2, π/2],

Bl is the lth bin and p(ok ∈ Bl) is the occurrence frequency of fingerprints whose

local orientations ok fall in the bin Bl. Note that p(ok ∈ Bl) log p(ok ∈ Bl) is set to

be zero if p(ok ∈ Bl) = 0 in Equation (4.13). The weight wk obtains the minimum

of zero if the local orientations ok of all fingerprints fall in a same bin. It reaches

to the maximum of one if ok are evenly distributed over all bins.

We compute the regional weights with Equation (4.13) using the first finger-

print instances from NIST database-4. All the test fingerprints are aligned by the

reference point on the central point and reference direction pointing to south-most.

Figure 4.3 (a) and (b) show the regional weights based on the first instances of all

2000 fingerprints from NIST database-4 and 1204 fingerprints selected from NIST

database-4 according to the natural distribution, respectively. From Figure 4.3,

we can see that the orientation elements below the reference point contain more

variant values and thus are more discriminating than those above that. This is

expected because the ridge flows in the upper region (i.e., the region above the

reference point) have more variant patterns than those in the below region. The

center block is bright due to the unstable orientation of the highest curvature and

it is excluded from the feature vector.
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(a) (b)

Figure 4.3: Gray level representation of the regional weights computed by the
entropy estimates on the first fingerprint instances from NIST database-4: (a) all
fingerprints and (b) 1204 fingerprints selected according to the natural distribution.

Due to the periodicity and discontinuity of the orientation, we can neither

weight the orientation nor its difference directly during the computation of the

distance measure in Equation (4.10). Our proposed distance measure with the

incorporation of the regional weights is defined by

dW (Op, Oq) = 1 −

∣∣∣
∑M

k=1 wkvke
j2(op

k
−oq

k
)
∣∣∣

∑M
k=1 wkvk

. (4.14)

Similar to the property (4.11), we have

dW (Op + aI,Oq + bI) = dW (Op, Oq). (4.15)

Let αk = wkvk and δpq
k = 2(op

k−oq
k), the proposed distance measure in Equation

(4.14) can be computed by

dW (Op, Oq) = 1 −

√
(
∑

k αk cos δpq
k )2 + (

∑
k αk sin δpq

k )2

∑
k αk

. (4.16)
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4.5 Fingerprint Retrieval

The purpose of fingerprint retrieval is to reduce the search space of the fine match-

ing with a desired accuracy and facilitate the search of database in an AFIS. Given

a query fingerprint, retrieval is to select a subset of candidate fingerprints for the

fine matching by coarsely searching the database. The average percentage of the

retrieved fingerprints from the database over all query fingerprints measures how

much the fingerprint retrieval can narrow down the fine search space and thus rep-

resents the retrieval efficiency. At a given retrieval efficiency, if one of the retrieved

candidates originates from the same finger as the query fingerprint, the retrieval

is successful for this query. Otherwise, it is a failure. The retrieval accuracy/error

rate is calculated by the percentage of the query fingerprints with retrieval suc-

cess/failure. The performance of a retrieval technique is thus measured by the

retrieval accuracy and efficiency. The retrieval on the continuous classification

retrieves fingerprints in the database whose features fall in a neighborhood cen-

tered at that of query fingerprint. Its retrieval efficiency and accuracy can be

balanced more easily by adjusting the size of the retrieval neighborhood than the

traditional exclusive classification. Thus, it usually provides good retrieval perfor-

mance. Since our retrieval feature set consists of a 1-D dominant ridge distance

DRD and a 192-D orientation vector, we investigate the performance of finger-

print retrieval by incorporating these two numerical features on the continuous

classification in this chapter.

As the DRD is a scalar feature, we sort the fingerprints in the database accord-

ing to their DRDs computed with Equations (4.4) and (4.5). In the online query

processing of fingerprint retrieval, we first narrow down the search of the database

by selecting a subset of fingerprints whose DRDs are within a bin centered at the

DRD of the query fingerprint. This is a coarse level retrieval in which the bin

width is chosen sufficiently large so that there is almost no error occurring in this

stage at a price of low retrieval efficiency. The bin width is set to 2 pixels in our

experiments.
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In the retrieved subset of database by the DRD, the 192-D orientation vector is

then used to search for the candidate fingerprints of the query fingerprint. Finger-

prints in the subset are retrieved if their distances (4.16) between their orientation

vectors Op and the query orientation vector Oq are less than a threshold rq
n, i.e.,

dW (Op, Oq) < rq
n, (4.17)

where rq
n represents for the retrieval threshold of query fingerprint q that results

in retrieving n fingerprints. The tradeoff between retrieval accuracy and efficiency

can be adapted by adjusting the threshold rq
n. In an AFIS, the retrieval and

fine matching can be integrated so that the retrieval threshold increases from a

small value until a successful match is found. The threshold can increase by a

fixed step or based on a fixed number of new fingerprints retrieved [18, 66]. The

incorporation of the fingerprint matching in the retrieval may greatly increase the

retrieval performance if a good matching algorithm is applied. As the retrieval

performance of this incremental search depends on the matching algorithm, it is

not further studied in this work. We will just give the experimental result of

retrieval efficiency by assuming a perfect matching algorithm is applied, i.e., the

search of database stops once the corresponding database template is found.

Let N be the number of fingerprints in the database. Without applying the

matching algorithm, we can only set the retrieval threshold to a constant rq
n =

c (fixed distance) or some value that results in retrieving a constant portion of

fingerprints rq
n|(n = cN) (fixed order) for all query fingerprints q. c is usually

determined by a given target of retrieval efficiency or accuracy in practice. Our

experiments show that the variable threshold rq
n|(n = cN) achieves better retrieval

performance than the constant one rq
n = c at a price of longer retrieval time caused

by sorting the distances between the query fingerprint and database templates. To

avoid the time consuming database sorting, we propose to vary the threshold based

on the nearest few fingerprints in the database. If a query fingerprint has smaller

distance to its nearest few fingerprints in the database, the possibility that one
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of them is the right candidate is higher than the case of larger distance. It is

very likely that the former case needs smaller retrieval threshold than the latter.

Therefore, we set the retrieval threshold as

rq
n = rq

bN + c, (4.18)

where b (1/N ≤ b < 1) and c are two constants to all query fingerprint q. b

is often set a small value (b is simply fixed to the minimum value 1/N in our

experiments). Different values of c are used to test the retrieval accuracies at

different retrieval efficiencies. Our experiments show that the proposed threshold

setting rq
n = rq

1 + c achieves better retrieval performance than the fixed distance

rq
n = c and surprisingly even better than the fixed order rq

n|(n = cN).

4.6 Experimental Results

In this section, we apply the proposed fingerprint retrieval algorithm on the well-

known data sets and compare it with some existing approaches to demonstrate

its performance and advantages. Retrieval efficiency and accuracy/error are two

main evaluations of the retrieval performance. In our experiments, these two per-

formances are evaluated to be well scaled to the size of database. The retrieval

efficiency is indicated by a ”penetration rate”, which is the average percentage of

database retrieved for the fine matching over all query fingerprints. The pene-

tration rate can be adapted by changing the values of c. It indicates how much

the fingerprint retrieval can narrow down the search of database. For a query

fingerprint, the retrieval is successful if one of the retrieved candidate fingerprints

is from the same finger as the query one. It is more likely to retrieve the correct

one if more candidate fingerprints are retrieved from the database. The retrieval

error rate is thus calculated by the percentage of the query fingerprints with false

retrieval at a given penetration rate. These performance estimates are independent

of the size of database used, although the uncertainties in the estimates depend
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on the size of the sample pair populations.

4.6.1 Data Sets

The NIST fingerprint special database 4 (NIST database-4) [102] is often used as a

benchmark to test the performance of fingerprint retrieval. Most published results

of fingerprint classification and indexing are based on this database. It contains

2,000 pairs of fingerprints of size 512 × 480 pixels with the resolution of 500 dpi.

These fingerprints are taken from 2,000 different fingers with two instances per

finger and are numbered from f0001 to f2000 for the first instances and from

s0001 to s2000 for the second instances. To have a comprehensive comparison, we

also perform our fingerprint retrieval approach on this database. This fingerprint

database is collected for the purpose of testing the exclusive classification so that

the five common classes (arch, tented arch, left loop, right loop and whorl) are pre-

labelled for each fingerprint and are of the same occurrence frequency. However,

the natural distribution of fingerprints among these five classes is significantly

different with 3.7% for arch, 2.9% tented arch, 33.8% left loop, 31.7% right loop and

27.9% whorl, respectively. We reduce the number of fingerprints of less frequent

classes according to this real distribution and obtain 1204 pairs of fingerprints from

NIST database-4. This reduced database, called data set 2, and the original NIST

database-4, are both applied in our experiments. The first fingerprint instances

form the database templates to be retrieved and the second instances serve as

query fingerprints. In addition, our proposed algorithm are also performed on the

databases of Fingerprint Verification Competition (FVC) [70] to test the retrieval

performance on the online fingerprints captured under less controlled conditions.

4.6.2 Fingerprint Retrieval on NIST Database

In our developed fingerprint retrieval algorithm, a new distance measure is pro-

posed to compare two orientation vectors and a regional feature weighting scheme
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is imposed on the proposed distance measure. In addition, the dominant ridge dis-

tance is employed as an auxiliary feature for fingerprint retrieval. The first experi-

ment is implemented to test the improvements of fingerprint retrieval performance

by these contributions. Data set 2 is applied in this experiment as it resembles

the real fingerprint distribution. Figure 4.4 shows the retrieval error rate against

the penetration rate by using the Euclidean, Manhattan distance measures, the

proposed distance measure in Equation (4.10) and the proposed weighted distance

measure in Equation (4.16) as well as the proposed approach adding the dominant

ridge distance. While there is little difference between Euclidean and Manhattan

distance measures, the proposed distance measure (4.10) consistently improves the

retrieval performance. Moreover, the proposed weighted distance measure (4.16)

consistently reduces the retrieval error by more than two percents at all penetra-

tion rates. Comparing to the fingerprint retrieval by applying the Euclidean and

Manhattan distance measures on the orientation vectors alone, the proposed fin-

gerprint retrieval approach significantly reduces the retrieval error by about five

percents at all penetration rates.
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Figure 4.4: Comparison of retrieval results with different distance measures and
the effect by adding the dominant ridge distance in the retrieval feature set.
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The second experiment tests the retrieval performance with different ways of

setting the retrieval threshold rq
n. The dominant ridge distance is not used in this

experiment as the threshold rq
n is only applied to the retrieval on the orientation

vector. Figure 4.5 shows the retrieval error rate against the penetration rate by

using the retrieval thresholds of fixed distance (rq
n = c), fixed order (rq

n|(n = cN))

and the proposed retrieval threshold (rq
1 + c). Error rates at different penetration

rates are computed by using different values of c, which are constant to all query

fingerprints. We can see that the retrieval performance of fixed order is better

than that of fixed distance. This performance improvement is at a price of longer

retrieval time caused by sorting the distances of all template fingerprints to the

query fingerprint. In contrast, our proposed threshold setting only needs to find

the minimal distance. From Figure 4.5, we can see that the proposed threshold

setting rq
n = rq

1 + c achieves better retrieval performance than the fixed distance

rq
n = c and surprisingly even better than the fixed order rq

n|(n = cN).
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Figure 4.5: Comparison of retrieval results with different threshold setting meth-
ods.

The third experiment tests the effect of the database size on the retrieval per-

formance. A model is proposed to predict fingerprint biometrics performance from
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a small gallery based on the feature of minutiae triplets [101]. But our features for

the fingerprint retrieval are orientation vector and dominant ridge distance. It is

difficult to derive theoretically the retrieval performance on a large database from

that on a small one. In the absence of a general theory, we test the retrieval per-

formance on different subsets picked randomly from the NIST database-4. Figure

4.6 shows the retrieval error rate against the penetration rate on the databases of

five different sizes. We can see no general trend of performance deterioration exist

with the increase of database size. We further test the error rates at the penetra-

tion rate of 10% for 40 different database sizes (from 50 to 2000). Fig 4.7 shows

the retrieval error rate against the database size. The oscillation of the curve at

small database sizes indicates that the performance evaluated on small database is

unstable. As the database size is larger than 1000, the retrieval performance tends

to be stable and no general trend of performance deterioration exists with the

increase of database size. This is expected because the performance is estimated

by the percentage of fingerprints in the database. These performance estimates

are independent of the size of database used, although the uncertainties in the

estimates depend on the size of the sample pair populations.

5 10 15 20 25 30
0

5

10

15

20

25

Penetration rate in %

E
rr

or
 r

at
e 

in
 %

 

 

200 samples
500 samples
1000 samples
1500 samples
2000 samples

Figure 4.6: Comparison of retrieval results on the databases of different sizes.
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Figure 4.7: The retrieval error rates at the penetration rate of 10% against the
number of fingerprints in the database.

4.6.3 Comparison with Other Approaches

The state-of-the-art approaches of continuous classification proposed in the lit-

erature [14, 66] are tested on the data set 2. The approach [14] achieves better

retrieval performance than the approach [66]. Figure 4.8 compares the retrieval

results reported in [14] with those of our proposed approach on the same data set.

Consistent performance improvement of our approach is visible over all penetra-

tion rates in Figure 4.8 where significant performance enhancement is achieved in

the low penetration rate (i.e., high retrieval efficiency).

In addition, the fingerprint retrieval on continuous classification can be incor-

porated with a fine matching algorithm which is used to halt further retrieval just

when the right candidate is retrieved for each query fingerprint. Obviously, this

incremental retrieval depends on the fine matching algorithm. An important pen-

etration rate of 5.22% is given in [14] by assuming a perfect matching algorithm

is applied for the incremental retrieval, i.e., the search of database stops once the

corresponding database template is found. In the implementation, it is to the av-
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Figure 4.8: Retrieval results of the proposed approach and the approach in [14].

erage order of the corresponding database templates for all query fingerprints after

sorting the distances of the database templates to each query fingerprint. Our

proposed approach achieves 2.93% for such an indicative penetration rate.

The fingerprint indexing approach proposed in [9] is based on the minutia

triplets. The retrieval performance is further improved in [96] by adding two

new features. The better performed approach [96] is tested on the second 1000

pairs of fingerprints from the NIST database-4. Figure 4.9 shows the results re-

ported in [96] and our approach on the same data set. The retrieval accuracy

of our approach is consistently about two percents better than that in [96] for

all penetration rates in Figure 4.9. Moreover, the test database is not of natural

distribution, which negatively affects the performance of the proposed approach

mainly based on the local ridge orientation feature. The minutia based approaches

can be less affected as the minutia features have less correlation with the finger-

print class types than the orientation feature. Therefore, we also plot the retrieval

results of our approach on the data set 2 that has natural distribution for a further

comparison in Figure 4.9. In addition, the minutia based indexing approaches tend

to bring redundant information in the identification system if the minutia feature
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is also used in the fine matching algorithm. This will limit its ability to alleviate

the accuracy deterioration of an automatic identification system.
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Figure 4.9: Retrieval results in [96] and the proposed approach on the same data-
base as in [96] and on the data set 2.

4.6.4 Fingerprint Retrieval on FVC Database

This experiment tests our proposed approach on the on-line fingerprint databases.

Two databases: FVC2000 Db2 a and Db3 a [70], which contain 1600 fingerprints

from 200 fingers (8 impressions per finger), are used in this experiment. Figure

4.10 shows the retrieval error rate against the penetration rate of our algorithm

performed on these databases. Fingerprints of the Db2 a have higher image quality

than those of the Db3 a. At the low penetration rate, successful retrieval needs

closer similarity between the query and the template fingerprints, which is more

sensitive to the image quality. Therefore, the retrieval performance on Db2 a is

better than that on Db3 a at the low penetration rates. However, the retrieval

performance on Db2 a is worse than than that on Db3 a at the high penetration

rates. Partial fingerprint whose core point is near the image border or out of the

image is the culprit. Db2 a contains more such partial fingerprints than Db3 a,

which will fail to be retrieved even at the high penetration rates.

We further test the retrieval performance on the combined database that con-

tains all fingerprints from both Db2 a and Db3 a. Figure 4.10 shows that the
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Figure 4.10: Retrieval results on the on-line fingerprint databases: FVC2000 Db2 a
and Db3 a.

retrieval performance on the combined database is better than those on the sepa-

rate Db2 a and Db3 a. This is not a surprise because fingerprints of a same finger

are captured by the same sensor but fingerprints from different fingers may origi-

nate from the different types of sensors which will enhance the discriminability of

the feature set.

4.6.5 Computational Complexity Analysis

The proposed fingerprint retrieval algorithm is implemented by C programming

language and is executed under Windows XP Professional O.S. on a Comaq Evo

D510CMT (Intel Pentium 4 at 2.26GHZ) PC. To test the computational com-

plexity, we compute the average time for searching the database over all query

fingerprints. The average search time for retrieving a subset from the 2000 tem-

plates of the NIST database-4 is 0.067 seconds (over 2000 query fingerprints from

the NIST database-4). It is indeed a fast search process comparing to the time

consumption for matching a query fingerprint with 2000 database templates using

the minutiae features.
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4.7 Summary

In this chapter, we have developed a fingerprint retrieval algorithm based on the

continuous classification that uses the orientation field as the main retrieval fea-

ture and the dominant ridge distance as an auxiliary feature. These two coarse

level features are not closely correlated with the minutiae features that are often

used for the fine matching in the automatic fingerprint verification and identifica-

tion systems. Consequently, the proposed retrieval approach will not only speed

up the identification process but also alleviate the accuracy deterioration of fin-

gerprint identification from that of verification. The introduced auxiliary feature,

dominant ridge distance, is more robust to noise than the simple average ridge dis-

tance of a fingerprint and brings new information of fingerprint for more effective

retrieval. The proposed orientation distance measure, which evaluates the incon-

sistency of orientation differences, quantifies more effectively the distance between

two orientation vectors than the traditional Euclidean and Manhattan distance

measures. The proposed regional weighting scheme imposed on the distance mea-

sure also visibly improves the retrieval performance. In addition, the suggested

retrieval threshold setting slightly improves the retrieval performance comparing

to those by the fixed distance and fixed order. We have performed our algorithm

on the NIST database-4 and FVC2000 Db2 a and Db3 a. Experimental results

and comparisons demonstrate that the proposed retrieval approach outperforms

the previous continuous classification and minutia-based indexing approaches in

terms of retrieval efficiency v.s. accuracy.

However, the continuous classification only ranks the database templates ac-

cording to their distances to the query fingerprint while neglecting the similarities

among the database templates for the fingerprint retrieval. Therefore, our pro-

posed fingerprint retrieval algorithm suffers from the time consuming exhaustive

search of database in the continuous classification. This will limit its application

to large fingerprint database. Other indexing techniques which can discover the

underlying structure of the fingerprint database such as database clustering will be
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explored to facilitate more efficient fingerprint retrieval in the following chapters.
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Chapter 5

A Multi-Prototype Clustering

Algorithm

5.1 Introduction

Clustering is a crucial technique widely used to discover the underlying structure

of a given data set by unsupervisedly grouping the similar patterns. It groups the

data set into a number of clusters such that the patterns within cluster are more

similar than those from different clusters. Clustering techniques have been widely

investigated in the literature [7, 21, 24, 34, 37, 48, 56, 59, 61, 64, 81, 94, 98, 110] and

are used in many applications such as data mining, information retrieval, image

segmentation and pattern recognition, etc.. Most clustering algorithms can be

broadly classified into hierarchical or partitional clustering [43].

Hierarchical clustering is a procedure of transforming the proximity matrix

of the data set into a sequence of nested groups in an agglomerative or divisive

manner. The agglomerative hierarchical clustering has been widely studied since it

allows for more feasible segments to be investigated [34,37,56,59,94]. The single-

link [94], complete-link [59] and average-link [94] algorithms produce a sequence of

clusterings based on the rank order of proximities. The single-link and complete-
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link algorithms use the distance between two closest and farthest points from two

clusters as the cluster distance, respectively. Dependence on only a few data points

to measure the cluster distance makes these algorithms sensitive to noise. The

average-link algorithm measures the cluster distance with the average distance

of all pairs of patterns from different clusters. It is more robust to noise than

the single-link and complete-link algorithms. A CURE algorithm [37] represents

each cluster with a certain fixed number of well scattered points and shrinks these

points toward the cluster center by a specified fraction. This algorithm achieves an

improvement of noise robustness over the single-link algorithm through shrinking.

A Chameleon algorithm partitions a constructed k-nearest neighbor graph into a

number of subclusters followed by dynamically merging the subclusters [56]. A

cluster isolation criterion is proposed for the agglomerative hierarchical clustering

in [34]. In general, the hierarchical clustering algorithms can provide an easy

understanding of the inherent structure of the data set. But they often require

high computation cost and large memory space which make them inefficient for

large data sets.

Partitional clustering produces a single partition of the data set which aims to

optimize a certain cluster criterion function. Some partitional clustering algorithms

have been proposed based on different cluster criterions [2,31,32,75,76,90,93]. In

fact, each cluster criterion imposes a certain structure on the data set. The model-

based clustering algorithms [32, 75] assume that the data distribution of a cluster

fit a given probability density model such as Gaussian model. They can discover

the hyper-ellipsoidal clusters. But assumption of a static model makes them inef-

fective to adequately capture the characteristics of individual clusters, especially

when the data set contains the clusters of diverse shapes and densities and the

model parameters are not properly selected. Some nonparametric clustering algo-

rithms based on density and grid are proposed to identify clusters by searching the

regions of high data density separated by sparse valleys [2,31,93]. Although these

algorithms can find clusters of arbitrary shape, their performances usually degrade

for the high dimensional data set. The squared-error clustering algorithm produces
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a partition of the data set based on the minimization of squared error [43, 76]. It

represents each cluster with the mean vector of the cluster and assign each pat-

tern to the closest cluster iteratively. It assumes the clusters are hyper-spherical

and of similar size. This algorithm terminates when the cluster labels do not

change. But there is no guarantee to reach the global minimum of the squared

error. Some variants of the squared-error clustering algorithm are proposed in the

literature [4,23,57,76,90,95,100]. The K-means clustering algorithm [76] assumes

the number of clusters is given. It is widely used because of its low computa-

tional cost and memory space requirement, but the clustering result is sensitive

to the initialization of partition. A good initialization method can improve the

performance of K-means clustering algorithm [57]. The Euclidean distance used in

the K-means clustering makes it only effective to discover hyper-spherical clusters.

Some new distance measures are proposed to detect clusters with specific character-

istics [23,95]. An ISODATA (Iterative Self-Organizing Data Analysis Techniques)

clustering algorithm is proposed to automatically adjust the number of clusters

by merging similar clusters and splitting clusters with large standard deviation

during the iteration [4]. Besides the squared error, other criterions such as the

Davies-Bouldin index [28] and cluster variance are imposed as a global criterion to

determine the optimum number of clusters [90, 100]. Most partitional clustering

algorithms require less memory space and computation cost than the hierarchical

clustering algorithms. But their clustering results are usually not as good as those

of hierarchical clustering since they often represent each cluster with a single pro-

totype which may not adequately model the complex cluster. Recently, support

vector clustering is proposed to generate the cluster boundaries of arbitrary shape

by transforming the original space to a high dimensional space with a kernel func-

tion [7]. Although this algorithm can solve some difficult clustering problems, it

is not easy to choose a suitable kernel parameter and the clustering result cannot

provide information about the representation of cluster such as prototypes.

The hybrid clustering algorithms are proposed to combine the merits of par-

titional and hierarchical clustering algorithms for better data grouping [24, 64, 81,
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99,110]. They usually partition the data set into a relatively large number of small

subclusters and construct a hierarchical structure for them based on a certain clus-

ter distance (similarity) measure. A given number of clusters can be found on the

hierarchical structure. A BIRCH algorithm [110] arranges the patterns of a data

set into a number of subclusters represented by cluster feature (CF) vectors in a

tree structure. The centroid, radius and diameter of subcluster are easily obtained

from its CF vector. The representation of each subcluster by a CF vector makes

it efficient for very large data sets. The agglomerative method based on a cluster

distance measure is often performed on the subclusters to obtain a desired number

of clusters [64, 81, 99, 110]. The hybrid clustering algorithms usually work well to

discover clusters of arbitrary shape and size. But the clustering results through a

single scan of the data set may be sensitive to the number of subclusters and the

initial settings of the partition.

Most partitional clustering algorithms represent each cluster with a single pro-

totype such as the centroid and medoid of the cluster. This may not adequately

model the clusters of arbitrary shape and size and hence limits the clustering

performance on the complex data structure. In this chapter, we develop a cluster-

ing algorithm which use multiple prototypes to represent a cluster. The proposed

multi-prototype clustering algorithm begins with an initial partitioning of the data

set into a relatively large number of small subclusters using the squared-error clus-

tering. Each subcluster is represented by a prototype to locate the region of high

density. A separation measure is proposed to evaluate how well two prototypes

are separated. Multiple prototypes with small separation are grouped to model a

given number of clusters in agglomerative method. After a single scan of the data

set, the cluster separating boundary may still reside in the region of high density

due to the poor initial settings. New prototypes are iteratively added to improve

the poor cluster boundaries until all of them move to the sparse region. The details

of our proposed clustering algorithm are presented in the following sections. We

perform the proposed algorithm on both synthetic and real data sets and compare

it with some existing clustering algorithms to demonstrate its effectiveness.
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5.2 Squared-error Clustering Algorithm

The squared-error clustering algorithm produces a partition of the data set based

on the minimization of squared error [43, 76]. Let X = {X1, X2, ..., XN} where

Xi = [xi,1, xi,2, ..., xi,M ] ∈ R
M be a set of N patterns in the data set and K be the

given number of clusters. The cluster prototypes are denoted by a set of vectors

Z = {Z1, Z2, ..., ZK}. The squared error of clustering is computed as:

E(U,Z) =
K∑

l=1

N∑

i=1

ui,ld
2(Xi, Zl), (5.1)

subject to

K∑

l=1

ui,l = 1, 1 ≤ i ≤ N, (5.2)

where ui,l ∈ {0, 1} and ui,l = 1 indicates that pattern i belongs to cluster l;

d(Xi, Zl) is the distance between pattern i and the prototype of cluster l and

Euclidean distance measure is often used. The squared error can be reduced by

iteratively solving the following two minimization problems:

� Fix Z = Ẑ and solve the problem E(U, Ẑ) by:

ui,l =





1 if d2(Xi, Zl) = minK

t=1 d2(Xi, Zt)

0 otherwise
(5.3)

� Fix U = Û and solve the problem E(Û , Z) by:

Zl =

∑N
i=1 ui,lXi∑N

i=1 ui,l

, for 1 ≤ l ≤ K (5.4)

The processing steps of the squared-error clustering algorithm can be summarized

as follows [43]:

(1) Initialize the K cluster prototypes;
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(2) For each pattern, compute its distance to the K prototypes and assign it to

the closest cluster using Equation (5.3);

(3) Compute the new prototype of each cluster with Equation (5.4);

(4) Go to step (2) until the cluster labels do not change between two successive

iterations.

The squared-error clustering algorithm has been widely used in data partition-

ing because of its high computational efficiency, low memory space and yet good

performance in finding the regions of high density. It tends to work well with

the hyper-spherical clusters of similar size. However, two basic problems exist

in this algorithm. One is that the clustering result is sensitive to the initializa-

tion of prototypes since there is no guarantee to reach the global minimum of the

squared error. Another problem is that using single prototype to represent each

cluster may not adequately model the clusters of arbitrary shape and size even if

the cluster prototypes are properly initialized. In this algorithm, the separating

boundary for each pair of clusters is the hyperplane through the midpoint of the

cluster prototypes and perpendicular to the line connecting these prototypes. Fig-

ure 5.1 shows the separating hyperplane (HP) between cluster Cq and Cl. Thus,

the cluster separating boundary may reside in the region of high density between

two clusters of complex structure. For example, the separating hyperplanes reside

in the high-density region between two clusters of different size in Figure 5.2 (a)

and two clusters of arbitrary shapes in Figure 5.2 (c). We will propose a cluster-

ing algorithm which can use multiple prototypes to model the clusters of complex

structure.

5.3 The Multi-prototype Clustering Algorithm

In this section, we first propose a separation measure to evaluate how well two

cluster prototypes are separated. Next, we present the proposed multi-prototype
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Figure 5.1: The separating hyperplane of cluster Cq and Cl represented by proto-
type Zq and Zl, respectively, in squared-error clustering.
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Figure 5.2: Clustered data represented by different marks and the prototypes
denoted by text ’Zl’: (a) poor result with two clusters of different size modelled by
’Z1’ and ’Z2’, (b) good result with the small cluster modelled by ’Z2’ and the large
cluster modelled by ’Z1’ and ’Z3’, (c) poor result with two clusters of arbitrary
shape modelled by ’Z1’ and ’Z2’ and (d) good result with one cluster modelled by
’Z1,Z2,Z4,Z8’ and another cluster modelled by ’Z3,Z5,Z6,Z7,Z9’.
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clustering algorithm based on the separation measure. Finally, the complexity

analysis of the proposed clustering algorithm is provided.

5.3.1 Separation Measure

The separation of two clusters measures how well the clusters are separated. Con-

ceptually, large separation of two clusters indicates less inclination of integrating

these clusters into a larger one. It is also called cluster distance or similarity in

the literature [37, 56, 59, 94]. The distances between the closest or farthest data

points of two clusters are used to measure the cluster separation in the agglomer-

ative clustering algorithms [59,94]. They are not only computation expensive but

also sensitive to noise due to the dependence on a few points. In the prototype-

based clustering algorithms, the separation of two clusters (or prototypes) is often

measured using the distance between their prototypes. Although this measure is

computationally efficient and robust to noise, it cannot distinguish the clusters

of different sizes and shapes. For example, four pairs of clusters in Figure 5.3

have equal prototype distances, but their separations are obviously different. A

measure of within-to-between cluster spread Rq,l = e(Zq)+e(Zl)

d(Zq ,Zl)
, where e(Zl) is the

within-cluster variance and d(Zq, Zl) is the distance between the prototype Zq and

Zl, is introduced to evaluate the cluster separation [28]. Including the information

of within-cluster variance solves the problem of cluster size but leave the cluster

shape problem unsolved. For example, the R of two clusters in Figure 5.3 (d) is

0.2931 which is larger than that in Figure 5.3 (c), 0.2455. But two clusters in Fig-

ure 5.3 (d) are obviously better separated than those in Figure 5.3 (c). A similarity

measure of two clusters is proposed by assuming that the data distribution of each

cluster follows a static model [64]. Although this measure is effective in some cases,

it may not adapt to the internal characteristics of the clusters especially when the

data set contains the clusters of diverse shapes and distributions.

The cluster prototypes produced by the squared-error clustering are often lo-

cated in the high-density regions. Two prototypes connected by a region of high
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The 1−D Projected Distribution The 1−D Projected Distribution

(a) (b)
The 1−D Projected Distribution The 1−D Projected Distribution

(c) (d)

Figure 5.3: Four pairs of clusters and their 1-D projected distributions. Their
separations are: (a) sp=1 (b) sp=0.8219 (c) sp=0.6372 and (d) sp=0.9930.

density are more possible to belong to one cluster than those connected by a sparse

region. We propose a separation measure based on the data distribution between

two cluster prototypes, which evaluates how well the prototypes are separated by a

sparse region. Firstly, two cluster prototypes are connected by a line segment. The

data points of two clusters are projected onto the line connecting the prototypes

since the separating hyperplane is perpendicular to it. Let Zq and Zl denote the

prototypes of cluster Cq and C l (column vectors), respectively. The projections of

the data points are computed by:

x′ =
(X − m0)

T (Zq − Zl)

‖Zq − Zl‖2
, X ∈ Cq ∪ C l (5.5)

where m0 = Zq+Zl

2
is corresponding to the origin of the projections x′. Two cluster

prototypes are projected at the positions −1
2

and 1
2

of the line.

Subsequently, we compute the distribution of the projections between the pro-

totypes. For simplicity, we use the histogram to compute the 1-D projected data

distribution. The bin center of the histogram is confined in the range of [−1 1].

To obtain the data densities at the prototypes and origin, the positions -1, −1
2
, 0,

1
2

and 1 are specified as the bin centers. 4B + 1(B ≥ 1) bins of equal size (i.e.,
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1
2B

) are formed and the number of projections x′ falling in each bin is counted

to produce the histogram. Figure 5.3 shows some examples of the 1-D projected

distribution where B is set to 6. Let f(c) be the data density at the position c.

The data distribution between the prototypes is denoted by the 2B + 1 densities

{f(−1
2
), f(−1

2
+ 1

2B
), ..., f(1

2
)}. The smoothness of the data distribution depends

on the bin size. To obtain a smooth distribution, Gaussian filter is repetitively

applied on these data densities until only one local minimum exists on them.

Finally, the separation is computed based on the projected data distribution

between the prototypes. If the minimum of the 2B + 1 densities between two

prototypes is large, the prototypes are connected with a relatively high density

region and hence are inclined to belong to one cluster. Based on the minimum

density normalized by the average of those at two prototypes, the separation is

computed by:

spq,l = 1 − 2 min2B+1
k=1 f(−1

2
+ k−1

2B
)

f(−1
2
) + f(1

2
)

(5.6)

Large spq,l indicates that cluster C l and Cq or their prototypes are well separated

by a sparse region. Some examples of the separations between two clusters are

shown in Figure 5.3. Instead of assuming a static distribution model, the data

distribution is automatically estimated in this separation measure which can adapt

to the internal characteristics of individual clusters.

The separation measure in Equation (5.6) is based on the minimum data density

so that the cluster separating boundary is assumed at the hyperplane through the

most sparse region between two prototypes. However, two clusters are separated

by the hyperplane through the midpoint of the prototypes in practice. By replac-

ing the minimum density with the density at the midpoint of two prototypes in

Equation (5.6), we compute the separation of two prototypes based on the current
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separating hyperplane as:

sp0
q,l = 1 − 2f(0)

f(−1
2
) + f(1

2
)

(5.7)

If sp0
q,l is small, the separating hyperplane resides in the high-density region be-

tween two prototypes. Obviously, sp0
q,l ≤ spq,l.

5.3.2 The Proposed Clustering Algorithm

For a given data set, the natural clusters often exist in the continuous regions of

relatively high density separated by the sparse areas in the pattern space. Using

single prototype to represent each cluster often result in the cluster boundaries

residing in the region of high density (see Figure 5.2 (a) and (c)). By adding

one or more prototypes to model the clusters, the cluster boundary can move to

the sparse region of the pattern space (see Figure 5.2 (b)) or a more complex

boundary can be constructed to separate the complex clusters (see Figure 5.2 (d)).

We propose a clustering algorithm which groups multiple prototypes coexisting

within a continuous region of relatively high density into one cluster and adds new

prototypes iteratively to improve the poor cluster boundaries.

Firstly, we partition the data set into a relatively large number of small sub-

clusters with each one represented by a prototype. Let P (K ≤ P < N) be the

number of prototypes for the K clusters. The squared-error clustering has good

performance in finding the regions of high density with high computational effi-

ciency and low memory space usage. It is thus employed in this stage to produce

P prototypes. However, the P prototypes may not be appropriately distributed

in the high-density regions. Some prototypes may represent the large subclusters

consisting of the patterns from different clusters which can form a connection be-

tween two natural clusters. In addition, some prototypes may reside in the outliers

which do not belong to any cluster. Thus, we try to add prototypes in the large

subclusters and remove the noise prototypes. For each subcluster l, we compute
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the within-cluster squared error El and the number of patterns Nl. The large

subcluster usually has both large Nl and El while the noise subcluster often has

small Nl. We remove the noise prototypes with Nl < Nmin (Nmin = 0.3N
P

in our

experiments) and add a new prototype in the large subcluster with Nl > 2.5Nmin

and El > Emax (Emax =
�P

k=1
Ek

P
+ ηstd(Ek), η > 0). The squared-error clustering

is repeated until no prototypes are added or removed.

Next, multiple prototypes coexisting within a continuous region of relatively

high density are grouped to model the cluster based on the separation measure in

Equation (5.6). We compute the separation between each pair of prototypes and

form a separation matrix of P × P . If spq,l is small, prototype q and l coexist in

a high-density region and can be grouped into one cluster. The separation of two

multi-prototype clusters Cm and Cn is defined as the smallest separation of two

prototypes from different clusters:

cspm,n = min
Zl∈Cm,Zq∈Cn

spl,q (5.8)

In cluster organization, each prototype forms a cluster initially and two clusters

with the smallest separation are iteratively grouped until K clusters are obtained.

This process is similar to the agglomerative single-link clustering [94]. The P pro-

totypes are finally organized to represent K clusters in the agglomerative method.

Thus, the separating boundary of two clusters is composed of multiple hyperplanes

determined by the pairs of prototypes from different clusters. For example, the

separating boundary of two clusters in Figure 5.2 (d) is composed of five hyper-

planes determined by the pairs of prototypes: {Z7,Z8}, {Z9,Z8}, {Z9,Z2}, {Z6,Z1},
{Z6,Z4} and {Z5,Z4}. By grouping multiple prototypes to represent a cluster, com-

plex boundaries can be obtained to separate the non-linearly separable clusters.

The last step is to improve the poor cluster boundaries. The cluster boundary

may not reside in the sparse region between two clusters due to the poor initial

settings. Adding new prototype can push the poor cluster boundary move to the

sparse region or construct a more complex boundary to separate the clusters. The
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sp0
q,l in Equation (5.7) is used to check the separation of cluster hyperplane. If

sp0
q,l < T , the cluster separating hyperplane is poor. We compute sp0

q,l for each

pair of prototypes from different clusters and sort the poor ones (sp0
q,l < T ) in

increasing order. For each pair of prototypes sorted by sp0
q,l, if Nq + Nl > 3Nmin

and the separating boundary of the clusters the prototypes belong to has no new

prototype already been added to, a new prototype is added to improve the poor

cluster boundary. The new prototype is computed as the mean vector of the

patterns whose projections x′ locate in [−1
4
, 1

4
].

After adding new prototypes, the multi-prototype clustering algorithm repeats

the above steps until the prototypes do not change. Each pattern in the data set

belongs to the cluster consisting of the closest prototype. The processing steps of

the proposed algorithm can be summarized as:

(1) Initially set P ≥ K and randomly choose the P cluster prototypes from the

data set;

(2) Apply the squared-error clustering on the data set to obtain P subclusters

with each one represented by a prototype;

(3) Remove the prototypes of subclusters with Nl < Nmin and decrease P ac-

cordingly. Add a new prototype in the large subclusters with Nl > 2.5Nmin

and El > Emax and increase P accordingly. If there are prototypes removed

or added, go to step (2);

(4) Calculate the separations between each pair of prototypes with Equation

(5.6) and produce a separation matrix;

(5) Organize the P prototypes into K clusters based on the separation matrix.

Two clusters with the smallest separation are iteratively grouped into one

cluster until K clusters are obtained;

(6) Compute the separation sp0
q,l between each pair of prototypes from different

clusters with Equation (5.7) and sort the poor ones (sp0
q,l < T ) in increasing
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order;

(7) For each pair of prototypes sorted by sp0
q,l, if Nq + Nl > 3Nmin and the

separating boundary of the clusters the prototypes belong to has no new

prototype already been added to, add a new prototype between these two

prototypes and increase P accordingly. The new prototype is computed as

the mean vector of the patterns whose projections x′ locate in [−1
4

1
4
];

(8) Go to step (2) until the prototypes do not change;

(9) Output the clustering result.

5.3.3 Complexity Analysis

Let m be the number of iterations in the squared-error clustering. The time com-

plexity is O(NPm) for partitioning the data set to produce P prototypes. It

is O(P 2logP ) for the prototype organization which is similar to the single-link

algorithm. Thus, the time complexity of the proposed clustering algorithm is

O(NPm + P 2logP ). The space complexity is O(N) for the partitioning of the

data set in the squared-error clustering. In the prototype organization, the space

complexity is O(P 2) because a separation matrix of size P × P has to be stored.

Thus, the space complexity of the proposed clustering algorithm is O(N+P 2). The

number of prototypes P is much smaller than N . Thus, the proposed clustering

algorithm requires less memory space and computation cost than the commonly

used hierarchical clustering algorithms such as Single-link and Complete-link while

preserves much of the speed and efficiency of the squared-error clustering algorithm.

5.4 Experimental Results

The proposed multi-prototype clustering algorithm can be applied for any numer-

ical data set. We conduct a series of experiments on both synthetic and real data
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sets to demonstrate the clustering performance of the proposed algorithm. The

results are compared with those of some existing clustering algorithms.

5.4.1 Synthetic Data Sets

Clusters on two dimensional (2D) data sets are easy to visualize and compare. The

proposed clustering algorithm is tested on five synthetic 2D data sets. For good

visualization of the clustering results, we represent the clustered data by different

marks and denote the prototypes with texts (e.g., ’Zl’ denotes prototype l).

To illustrate the processing steps of the proposed algorithm, we first consider

the data set shown in Figure 5.2 (c) which consists of two clusters of arbitrary

shape and size. The clustering result with P = K (K = 2) is shown in Figure 5.2

(c). K prototypes cannot adequately model the clusters. Our clustering algorithm

initializes P as 5 and set T to 0.8. Since only two clusters exist in the data

set, a new prototype is added in each iteration. Figure 5.4 (a) shows an initial

clustering state of 5 prototypes produced by the squared-error clustering. The

separation spq,l between each pair of the 5 prototypes is computed and Table 5.1

shows the separation matrix. In cluster organization, prototype Z1 and Z2 with

the smallest separation are first grouped into one cluster {Z1, Z2}. The second

smallest separation is sp3,4 so that Z3 and Z4 are organized into another cluster

{Z3, Z4}. The left prototype Z1 are organized into the same cluster as Z5, i.e.,

{Z1, Z2, Z5}, since sp1,5 is the third smallest separation. The cluster boundary is

composed of the hyperplanes separating four pairs of prototypes, {Z3,Z2}, {Z3,Z1},
{Z4,Z1} and {Z4,Z5}. We compute the sp0

q,l between these pairs of prototypes. A

new prototype is added between Z1 and Z4 since the sp0
1,4 = 0.4253 is the smallest

among them. If the above steps are repeated, an intermediate clustering state of

8 prototypes is obtained as shown in Figure 5.4 (b). Since the smallest separation

sp0
q,l between two clusters is sp0

4,5 = 0.7460 < T , a new prototype is added between

Z4 and Z5. The clustering algorithm terminates at P = 10 when the smallest

separation between two clusters sp0
4,10 = 0.8400 > T . Figure 5.4 (c) shows the
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final clustering result of 10 prototypes. We can see that two clusters are correctly

discovered by using 6 prototypes to model the circle cluster and 4 prototypes to

model the other cluster.
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Figure 5.4: An illustrative example of our clustering algorithm where ’◦’ denotes
the location of new added prototype: (a) initial clustering state of 5 prototypes,
(b) an intermediate clustering state of 8 prototypes and (c) final clustering result
of 10 prototypes.

Table 5.1: The separation matrix of 5 prototypes in Figure 5.4a.

sp Z1 Z2 Z3 Z4 Z5

Z1 - 0.0330 0.8388 0.5747 0.3474

Z2 0.0330 - 0.8426 0.9008 1.0000

Z3 0.8388 0.8426 - 0.2663 1.0000

Z4 0.5747 0.9008 0.2663 - 0.8579

Z5 0.3474 1.0000 1.0000 0.8579 -

In addition, we perform the proposed clustering algorithm on the four 2D data
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sets which are often used to test the clustering algorithms [31, 37, 56, 64, 110].

Figure 5.5 shows the four 2D data sets denoted as DB1, DB2, DB3 and DB4,

respectively. DB1 is obtained from [37]. It contains one big and two small circles

and two ellipsoids connected by a chain of outliers. The other three data sets DB2,

DB3 and DB4 are obtained from [56]. These four data sets with 8,000 to 10,000

data points consist of the clusters of complex shape and arbitrary size and the

outliers are scattered on the data sets, which represent some difficult clustering

instances.

(a) (b)

(c) (d)

Figure 5.5: Four 2D data sets used in our experiments: (a) DB1 with 8,000 data
points, (b) DB2 with 8,000 data points, (c) DB3 with 10,000 data points and (d)
DB4 with 8,000 data points.

Figure 5.6 shows the clustering results of the proposed multi-prototype clus-

tering algorithm on these 2D synthetic data sets. The total number of prototypes

finally obtained to model the clusters are 11, 29, 38 and 59 for the DB1, DB2,

DB3 and DB4, respectively. In addition, the clustering results with the grouped
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prototypes for the clusters are illustrated in Table 5.2. From these results, we can

see that the proposed clustering algorithm successfully discovers the clusters on

these data sets by using multiple prototypes to model the complex clusters.
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Figure 5.6: The clustering results of our proposed algorithm on the four 2D data
sets: (a) DB1 with 11 prototypes, (b) DB2 with 29 prototypes, (c) DB3 with 38
prototypes and (d) DB4 with 59 prototypes, where the clustered data are repre-
sented by different marks and the prototypes are denoted with texts.

To show the robustness to initial settings, we perform the proposed clustering

algorithm on a poor initialization. DB1 and DB3 are used in this experiment.

The initial number of prototypes is set to 20 for both data sets. The separation

threshold T is set to 0.45. Figure 5.7 (a) and (c) show the initial clustering results

of 19 prototypes on the DB1 and 20 prototypes on the DB3, respectively. DB3

has more complex data structure than DB1 so that the initial 20 prototypes can-

not adequately model the clusters on DB3. Although 20 prototypes are enough

to model the clusters on DB1, the inappropriate initial prototypes also result in
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Table 5.2: The clustering results with grouped prototypes in Figure 5.6.

# clusters Grouped prototypes

DB1 5 {Z5,Z10};{Z4,Z9};{Z2,Z3,Z6,Z8,Z11};{Z1};{Z7}
DB2 6 {Z6,Z12,Z14,Z16,Z21,Z25,Z28};{Z1,Z5,Z17,Z19,Z20,Z24,Z29};

{Z8,Z15};{Z3,Z22,Z27};{Z4,Z9,Z23,Z26};{Z2,Z7,Z10,Z11,Z13,Z18}
DB3 9 {Z3,Z11,Z12,Z15,Z16,Z17,Z20,Z25,Z26,Z33}; {Z21}; {Z6,Z35};

{Z13,Z18,Z23};{Z2,Z8,Z9};{Z4,Z5,Z7,Z19,Z27,Z28,Z30,Z31};
{Z22};{Z1,Z32,Z34,Z36};{Z10,Z14,Z24,Z29,Z37,Z38}

DB4 8 {Z2,Z3,Z12,Z16,Z29,Z34,Z35,Z40,Z45,Z49,Z53};
{Z5,Z14,Z20,Z25,Z26,Z28,Z48,Z52}; {Z41,Z54};
{Z10,Z11,Z21,Z22,Z30,Z32,Z36,Z47,Z55,Z56};

{Z1,Z8,Z13,Z18,Z23,Z24,Z38,Z44,Z50,Z58};{Z9,Z43,Z51,Z57,Z59};
{Z4,Z6,Z7,Z15,Z17,Z19,Z31,Z33,Z37,Z39,Z42,Z46};{Z27}

poor clustering result where two small circles on the right are modelled into one

cluster by a prototype. Our proposed algorithm iteratively adds new prototypes to

improve the poor cluster boundaries resulted by the inappropriate initial settings.

Figure 5.7 (b) and (d) show the final clustering results of 21 prototypes on DB1

and 47 prototypes on DB3, respectively. We can see the clusters on these data sets

are successfully discovered. Table 5.3 further illustrates the clustering results with

the grouped prototypes for the clusters.

Table 5.3: The clustering results with grouped prototypes in Figure 5.7.

# clusters Grouped prototypes

(a) 5 {Z4,Z8,Z12,Z13,Z14,Z18};{Z3,Z5,Z11,Z15};
{Z1,Z2,Z6,Z7,Z10,Z16,Z17,Z19};{Z9}

(b) 5 {Z4,Z8,Z12,Z13,Z14,Z18};{Z3,Z11,Z15,Z20,Z21};
{Z1,Z2,Z6,Z7,Z10,Z16,Z17,Z19};{Z5};{Z9}

(c) 9 {Z6};{Z3};{Z10};{Z8};{Z4,Z11,Z13,Z14,Z16,Z18,Z19};
{Z7,Z17,Z20};{Z2,Z5,Z9};{Z12,Z15};{Z1}

(d) 9 {Z3,Z6,Z7,Z10,Z16,Z17,Z20,Z22,Z25,Z35,Z37,Z42};{Z21,Z45};
{Z8,Z31};{Z9,Z27,Z33,Z41};{Z2,Z5,Z29,Z39,Z47};
{Z12,Z23,Z24,Z26,Z44};{Z15,Z30,Z34,Z36,Z40};

{Z4,Z11,Z13,Z14,Z16,Z18,Z19,Z28,Z32,Z38,Z43};{Z1,Z46}
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Figure 5.7: The clustering results of the proposed algorithm on poor initialization
(a) the initial partition of DB1 and (b) final result of 21 prototypes on DB1; (c)
the initial partition of DB3 and (d) final result of 47 prototypes on DB3.
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We compare the proposed clustering algorithm with other clustering algorithms

on the four 2D data sets. As these data sets contain the clusters of arbitrary

shapes and sizes, most variants of the squared-error clustering algorithm such as

K-means [76] and ISODATA [4], which use single prototype to represent each

cluster, cannot correctly discover the clusters on the data sets. DB1 is used to

test the CURE clustering algorithm [37]. As stated in [37], the BIRCH algorithm

[110] cannot distinguish between the big and small clusters and the single-link

algorithm cannot handle the chain of outliers connecting two ellipsoids. The hybrid

clustering algorithm [64] is also tested on the four data sets and performs better

than some existing clustering algorithms such as the Single-link [94], Complete-

link [59], CURE [37], K-means [76], BIRCH [110] and DBScan [31] algorithms. As

stated in [64], the Complete-link, K-means and BIRCH algorithms cannot discover

the clusters on the four data sets, while the Single-link equipped with outlier

elimination, DBScan and CURE algorithms can correctly discover the clusters

on one or two of the first three data sets but all fail in the complex DB4. The

hybrid clustering algorithm [64] is able to discover the clusters on the four data

sets. However, its clustering result is sensitive to the initial settings. As reported

in [64], the probabilities of successful partitions are about 95%, 90%, 65% and

40% on the DB1, DB2, DB3 and DB4, respectively, after performing this hybrid

algorithm 20 times with random initialization on each data set. Similarly, the

proposed algorithm is performed on each of the four 2D data sets over 20 random

runs with the initial number of prototypes set to 3K. The probabilities of the

successful partitions are 100%, 100%, 95% and 90% on the DB1, DB2, DB3 and

DB4, respectively. The average numbers of prototypes to finally model the clusters

are 17, 26, 39 and 62 for DB1, DB2, DB3 and DB4, respectively. Thus, more

prototypes are usually required to represent the clusters which are more complex

in shape and size. Table 5.4 shows the clustering results of different algorithms on

these four 2D data sets
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Table 5.4: Clustering results of different algorithms on four data sets.

Algorithms DB1 DB2 DB3 DB4

CURE 100% 100% 0 0

DBScan 0 100% 100% 0

Hybrid clustering [64] 95% 90% 65% 40%

Our algorithm 100% 100% 95% 90%

5.4.2 Real Data Sets

To show the practical applicability of our proposed multi-prototype clustering al-

gorithm, we perform it on three real data sets: Iris data, Wine Recognition Data,

Wisconsin Breast Cancer Data and image segmentation Data, which are available

at UCI Machine Learning Repository [77]. The class label is given for each pattern

in these data sets. It is ignored during the clustering but used for evaluation of clus-

tering performance. The clustering error rate is used to evaluate the performance

of clustering algorithm. It is computed by [57]:

Error =
the number of misclassified patterns

the number of patterns in data set
× 100% (5.9)

To compute the clustering error rate, the major problem is the correspondence be-

tween the given class labels and the found clusters of the data sets by the clustering

algorithm. We perform the matching between them. A cluster l corresponds to

class label q if the number of patterns labelled as q in l is larger than those of other

class labels. The best matching of the clusters is selected as the correspondence

to the class labels.

We compare our proposed algorithm with some existing clustering algorithms

such as K-means, agglomerative hierarchical clustering and hybrid algorithms on

these real data sets. The proposed algorithm is performed on each data set over

20 random runs and the best clustering result is presented. We implement the

K-means algorithm with a good initialization of the cluster centers in [57] on

the Wisconsin Breast Cancer Data while the clustering results on the other two

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



5.4 Experimental Results 113

real data sets are reported in [57]. We perform the three common agglomerative

clustering algorithms: Single-link [94], Complete-link [59] and Average-link [94] on

each data set and present the best clustering result of them. In addition, the hybrid

algorithm [64] is also implemented on these real data sets with our best effort. We

give the best clustering result after 20 random runs of it on each data set. For

other clustering algorithms, we present the results reported in the literature.

The Iris data set consists of 150 patterns and each pattern is represented by

four numerical features: sepal length, sepal width, petal length and petal width.

Three types of Iris flowers: setosa, versicolor and virginica are labelled as class I,

II and III, respectively. Each class consists of 50 patterns. This data set is often

used to test the clustering algorithms and the clustering results of three clusters

are reported in [24] and [57]. [24] also gives the clustering results by the Single-link

and Complete-link algorithms. Our algorithm produces five prototypes to model

the three clusters on this data set. One prototype is used to represent cluster C1

which is easier to be separated from others. Two prototypes are used to represent

each of cluster C2 and C3. Table 5.5 summarizes the clustering results for this real

data set. We can see our algorithm outperforms the other clustering algorithms.

Table 5.5: The clustering results for Iris data.
Found Given class Clustering Error Rate (%)
cluster I (50) II (50) III (50) Our algorithm [57] [64] [59] [24]

C1 50 0 0 2.67 11.33 4.0 4.0 7.4
C2 0 47 1
C3 0 3 49

The Wine Recognition data set contains the results of a chemical analysis of the

wines grown in the same region in Italy but derived from three different cultivars.

The wines from three cultivars represent three types of wine data labelled as class

I, II and III, respectively. This data set consists of 178 patterns and each pattern

is represented by 13 features such as alcohol, magnesium, color intensity, etc.. The

feature values are normalized to [0, 1] to balance the effects of the features measured

on different scales. This data set is used to test the clustering algorithms [57,93] and
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the clustering results are reported in the literature. Five prototypes are produced

in our algorithm to model the three clusters on this data set. Two prototypes are

used to represent each of cluster C1 and C2. Cluster C3 is represented by one

prototype. Table 5.6 shows the clustering results for this real data set. We can see

that the clustering result of our algorithm is better than those of others.

Table 5.6: The clustering results for Wine Recognition data.
Found Given class Clustering Error Rate (%)
cluster I (59) II (71) III (48) Our algorithm [57] [64] [94] [93]

C1 59 2 0 2.25 5.05 3.93 5.62 17.42
C2 0 67 0
C3 0 2 48

The Wisconsin Breast Cancer (WBC) data set consists of 683 patterns which

belong to two types of patterns: 444 benigns and 239 malignants labelled as class

I and II, respectively. Each pattern is represented by nine features. This data set

is also used to test the clustering algorithm [34]. As stated in [34], its clustering

result is better than those in [61] and [21]. Our clustering algorithm produces

four prototypes to model the two clusters on this data set. One prototype is used

to represent cluster C1 and the other three prototypes represent cluster C2. The

clustering results for this real data set are shown in Table 5.7. Our algorithm

outperforms the other clustering algorithms on this real data set.

Table 5.7: The clustering results for Wisconsin Breast Cancer data.
Found Given class Clustering Error Rate (%)
cluster I (444) II (239) Our algorithm [57] [64] [94] [34]

C1 427 2 2.78 3.95 3.66 8.20 3.37
C2 17 237

The image segmentation (image) data set consists of 2,320 patterns from 7

classes. Each pattern consists of 19 features extracted from a 3×3 region taken

from seven types of outdoor images: brickface, sky, foliage, cement, window, path,

and grass. Due to the complexity of this data set, we only present the mean and

standard deviation of the clustering error rates over 20 random runs in the Table
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5.8. This data set is used to test the clustering algorithm in [62].

In addition, we present the mean and standard deviation (in the parenthesis)

of the clustering error rates over 20 random runs on each real data sets. Table 5.8

shows the experimental results on the above data sets. We compare the results

of the proposed algorithm with those of K-means and agglomerative algorithms

and the hybrid clustering algorithm [64]. The clustering results in [59]/ [94] show

the best of three common agglomerative algorithms: Single-link [94], Complete-

link [59] and Average-link [94] on each data set. They are stable so that the

standard deviations of the error rates are zero.

Table 5.8: The clustering results of different algorithms over 20 random runs.
Data Clustering Error Rate (in %)
Sets Our algorithm K-means [64] [59]/ [94] [62]
Iris 2.67 (0) 14.30 (10.16) 9.18 (4.75) 4.0 (0) -

Wine 2.75 (0.17) 5.23 (0.66) 4.88 (0.81) 5.62 (0) 6.61 (3.91)
WBC 2.78 (0) 3.88 (0.07) 3.10 (0.09) 8.20 (0) -
image 19.98 (1.75) 31.07 (3.93) 23.80 (3.11) 57.14 (0) 20.19 (1.54)

From above experimental results and comparisons, we can see that the proposed

multi-prototype clustering algorithm performs better than or comparable to some

existing clustering algorithms on these real data sets.

5.4.3 Discussion on Parameter T

Finally, we discuss the effects of parameter T on the clustering results. The setting

of T is empirical and has some effects on the clustering result. If T is set too

small, the iterative clustering process stops earlier which may result poor cluster

separation and false clustering result. Thus, T is usually set to larger than 0.5. If

T is set too large, however, the iterative clustering process may not stop due to

the strict requirement. This problem can be alleviated by analyzing the stability

of the clustering results in the iterative process. For the data set shown in Figure

5.2, the separations of two clusters with new prototypes added are shown in Figure

5.8. The obtained two clusters tend to be stable with the number of prototypes
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larger than 9. The cluster separation equals to 0.7522 with 9 prototypes. The

clusters are correctly discovered with T set to 0.8.
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Figure 5.8: The cluster separation changes with the number of prototypes for the
data set shown in Figure 5.2.

5.5 Summary

In this chapter, we have developed a multi-prototype clustering algorithm which

can discover the clusters of arbitrary shapes and sizes. The squared-error cluster-

ing is used to produce a number of prototypes to locate the regions of high density

because of its low computational cost and memory space and yet good perfor-

mance. A separation measure is proposed to evaluate how well two prototypes are

separated by a sparse region. Multiple prototypes with small separation are orga-

nized to model a given number of clusters in the agglomerative method. Instead of

taking a single scan of the data set to produce a large number of prototypes for the

clusters, our algorithm adds new prototypes iteratively to improve the poor cluster

boundaries resulted by the poor initial settings. The proposed algorithm requires

less memory space and computation cost than the commonly used hierarchical

clustering algorithms such as Single-link and Complete-link while preserves much

of the speed and efficiency of the squared-error clustering algorithm. Experimental

results on both synthetic and real data sets show the effectiveness of the proposed

clustering algorithm.
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One of the important applications for clustering is to facilitate the information

retrieval from the large database. Similarly, clustering can be used to explore

the underlying data structure of the fingerprint database to facilitate the database

search in an AFIS. Instead of classifying fingerprints into a small number of human

interpretable classes, the clustering can partition the fingerprint database into

a number of similar groups with more flexibility. In the next chapter, we will

investigate to employ the clustering technique for the fingerprint retrieval.
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Chapter 6

Clustering-based Fingerprint

Retrieval

6.1 Introduction

As mentioned in Chapter 2, exclusive and continuous classifications are two com-

mon search strategies used for the fingerprint retrieval. The exclusive classifica-

tion partitions the fingerprint database into non-overlapping and human-predefined

classes with similar patterns. The query fingerprint is compared with the finger-

prints of the same class in the fine matching of identification. It provides an efficient

indexing mechanism to faciliate the search of fingerprint database for the large-

scale identification system [89]. However, the exclusive fingerprint classification

cannot sufficiently narrow down the search of database due to the small number of

predefined classes and uneven fingerprint distribution. Moreover, it is sill a diffi-

cult problem to automatically and consistently classify fingerprints into predefined

classes due to the small inter-class variability and large intra-class variability.

Instead of classifying each fingerprint into one of human interpretable classes,

the continuous classification assigns the numerical feature vectors to each finger-

print [14, 53, 66]. Similar fingerprints are mapped into close points in the feature
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space by a given distance measure. The database templates close to the the query

fingerprint are retrieved for fine matching. The continuous classification can avoid

the problems of exclusive classification and achieve better retrieval performance.

In Chapter 4, we have developed a fingerprint retrieval algorithm based on contin-

uous classification using two numerical features: orientation vector and dominant

ridge distance, which has achieved better retrieval performance than some existing

approaches. However, the continuous classification only ranks the database tem-

plates according to their similarities to the query fingerprint while neglecting the

similarities among the database templates in fingerprint retrieval. The retrieval

speed by the comparison of query fingerprint with all database template is still

prohibitive for large database although this comparison is a coarse level search

and is much faster than the fine matching.

In this chapter, we investigate to employ the database clustering for the effi-

cient fingerprint retrieval. Instead of classifying fingerprints into a small number of

human-predefined classes, the unsupervised clustering technique is used to parti-

tion the fingerprint database into a number of non-overlapping clusters with more

flexibility. The query fingerprint is compared with a small number of cluster rep-

resentatives instead of all database templates and the fingerprints from the close

clusters are retrieved. Thus, the clustering technique can exploit the similarities

among the database templates to speed up the retrieval process. But it deteriorates

the retrieval accuracy and efficiency due to the quantization of the feature space

and the number of fingerprints retrieved comparing to the continuous classifica-

tion. Furthermore, we take advantages of both database clustering and continuous

classification by performing the cluster retrieval followed by the continuous finger-

print classification (fingerprint search) to speed up the retrieval process without

compromising the retrieval accuracy. Figure 6.1 shows the data-flow chart of the

fingerprint retrieval framework based on database clustering. It differs from the

continuous classification in that clustering is employed to partition the database

into many groups for cluster search before fingerprint search (continuous fingerprint

classification).
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Figure 6.1: The overview of the clustering based fingerprint retrieval framework.

A clustering-based fingerprint retrieval algorithm is developed in this chapter.

Similar to that of the proposed fingerprint retrieval algorithm in Chapter 4, the

fingerprint orientation field and dominant ridge distance DRD are used as two

retrieval features. Instead of uniformly dividing fingerprint to compute the ori-

entation field, we propose to unevenly partition fingerprint image by a circular

tessellation to compute a multi-scale orientation field as the main retrieval feature.

The DRD same as that used in Chapter 4 is also employed as an auxiliary re-

trieval feature. The clustering-based fingerprint retrieval algorithm consists of two

phases: offline database clustering and online query processing. During the offline

database clustering, a modified form of K-means clustering is proposed to partition

the high-dimensional orientation feature space into clusters and the fingerprints in

each cluster are further divided into bins according to their DRDs. Based on the

offline database clustering, a hierarchical online query processing is proposed to

perform the cluster search before the fingerprint search to facilitate an efficient

fingerprint retrieval. In the cluster search, each query fingerprint is compared with

the cluster prototypes to retrieve the close clusters followed by searching the bins

in the retrieved clusters. Fingerprint search is performed on the retrieved close

bins and the database templates close to the query fingerprint are finally retrieved

for the fine matching.
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6.2 Feature Extraction

As mentioned in Chapter 3, the local ridge orientation and the local ridge distance

are two important local parameters for fingerprint analysis. These two coarse level

features have been combined for the fingerprint retrieval on continuous classifica-

tion and have achieved good retrieval performance in Chapter 4. Similarly, they

are employed for the clustering-based fingerprint retrieval algorithm. The domi-

nant ridge distance DRD same as that used in Chapter 4, which is computed with

Equations (4.4) and (4.5) from the local ridge distances of fingerprint, is also used

as an auxiliary retrieval feature. In this section, we propose to unevenly partition

each fingerprint by a circular tessellation to compute a multi-scale orientation field,

from which an orientation vector of fixed size is constructed as the main feature

for the clustering-based fingerprint retrieval.

To construct a compact orientation vector for the efficient retrieval, the local

ridge orientation field of fingerprint are usually computed based on block wise

instead of pixel by pixel. The orientation field computed by uniformly dividing

fingerprint into blocks has been widely used as the feature for fingerprint classifi-

cation [12,53,66]. However, this uniform spacing orientation field may obscure the

representation power of the orientation elements in the important area which can

be estimated in finer scale. Larger scale is often required in some areas for noise

attenuation and dimensionality reduction. Since the singular regions of fingerprint

(i.e., the regions near the singular points) have large orientation changes, a nonuni-

form spacing is proposed to concentrate orientation measurements more densely

in the areas more likely to contain the singular points [104]. It outperforms the

uniform spacing orientation field for fingerprint classification. A nonuniform parti-

tion of fingerprint by tessellating the region of interest is also proposed to extract

the Gabor filter responses for construction of ”FingerCodes” [49]. This tessellation

puts finer scale measurements on the inner region of interest than the outer region.

Thus, the nonuniform spacing of fingerprint can be used to strengthen the feature

elements with large representation power without compromising the performance
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of noise attenuation and the compactness of feature vector.

The entropy of a random variable measures its uncertainty. In Chapter 4, the

representation power of each orientation element is evaluated by the entropy of

its orientation values over all the aligned orientation fields. The first fingerprint

instances of NIST database-4 are used to test the representation power. Each

orientation field is computed by uniformly dividing the fingerprint into blocks and

aligned by the reference point at the central point and reference direction pointing

to south-most. The entropy map of all the aligned orientation fields is shown

in Figure 4.3 (a). Thus, the representation power of the orientation elements is

unevenly distributed on the fingerprint image. The entropy values are used to

weight the uniform spacing orientation elements in the orientation comparison of

the continuous classification and better retrieval performance has been achieved

than that without the feature weights in Chapter 4.

In this chapter, instead of imposing the regional feature weights on the uniform

spacing orientation field, we propose to unevenly partition fingerprint image to

compute a multi-scale orientation field for fingerprint retrieval. From Figure 4.3,

we find that the elements in the region below the reference point have more variant

orientation patterns than those above. To improve the discriminability of orien-

tation vector, the elements with large representation power can be estimated in

finer scale. In addition, the ridge curvature of the inner region around the reference

point is usually larger than that of outer region in a fingerprint. The orientations of

the high curvature area can be estimated in finer scale than those of low curvature

area. Based on above observations, we construct a circular tessellation to unevenly

divide fingerprint and compute a multi-scale orientation field. Let I(x, y) be the

gray value at pixel (x, y) of a fingerprint of size X × Y . To achieve the invariance

of pose transformation, translation and rotation are usually needed to bring two

different fingerprints into alignment. The reference point (xr, yr) and the corre-

sponding reference direction θr, −π < θr ≤ π detected in Chapter 3 are employed

for the translational and rotational alignments of fingerprints, respectively. The
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circular tessellation is composed of sectors determined by the radius r from (xr, yr)

and the rotation angle ϕ from θr. Sector Si,j (1 ≤ i ≤ E, 1 ≤ j ≤ F ), the jth

sector of the ith band, is computed as:

Si,j = {(x, y)|(i−1)b+b0 ≤ r < i ·b+b0, ϕj−1 ≤ ϕ < ϕj, 1 ≤ x ≤ X, 1 ≤ y ≤ Y }

(6.1)

r =
√

(x − xr)2 + (y − yr)2, ϕ = tan−1(
y − yr

x − xr

) − θr mod 2π (6.2)

where b is the band width and b0 is the width of the innermost band which is

not used for orientation extraction due to its large orientation inconsistency. The

parameters ϕj, b, E, F are determined empirically to obtain the best performance of

fingerprint retrieval. Each band is segmented into 13 nonuniform sectors (F = 13)

and finer scale estimation is put in the region with ϕ close to θr than that far

from θr. ϕj = jπ/8 for 1 ≤ j ≤ 5, (2j − 5)π/8 for 6 ≤ j ≤ 8 and (j + 3)π/8

for 9 ≤ j ≤ 13, respectively. Parameter b depends on the dpi resolution of the

sensor. It is set to 18 pixels for the fingerprints scanned at 500 dpi. Parameter E

depends on the size of the contact area of fingertip with sensor. The region around

the reference point is partitioned into 12 bands (E = 12) for the fingerprints of

512 × 480 pixels in the NIST database-4. The circular tessellation is shown in

Figure 6.2.

The local ridge orientation of each sector is estimated in the least square av-

eraging method based on the gradients [42]. The unit vector of doubled angles

[cos(2θ), sin(2θ)] is often used to represent each local orientation that facilitates

the feature transform and weighting [12, 53, 66]. But this representation doubles

the size of feature vector and requires extra memory and computation time in the

database searching process. Similar to Chapter 4, we choose the angle representa-

tion to reduce the dimensionality of orientation vector by half. Let θ̂i,j be the local

ridge orientation of sector (i, j). Due to the periodicity and discontinuity of θ̂i,j

at ±π/2 and θr at ±π, each aligned local orientation is computed with Equation
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Figure 6.2: The circular tessellation of fingerprint aligned by the reference point
(∗) and direction (the line with arrow).

(4.2) in Chapter 4.

An orientation vector of fixed size is constructed for a fingerprint q by con-

catenating the aligned local orientations of all sectors. Let Θq = [θq,1, θq,2, ..., θq,M ]

(M = E × F ) denote the orientation vector. The orientation in each sector cap-

tures the local ridge flow pattern, while the ordered enumeration of the tessellation

describes the global relationships among the local patterns. This orientation vector

consists of 156 elements. It covers most important areas of fingerprint if the refer-

ence point is located at the center of image. However, only a part of fingerprint is

included in the tessellation due to the unfavorable position of the reference point

so that a substantial number of feature elements are from the noisy background or

the outside of fingerprint image. The segmentation is therefore used to label the

valid and invalid elements of the feature vector. The segmentation result of fin-

gerprint q is denoted with a vector Sq = [sq,1, sq,2, ..., sq,M ] where sq,k ∈ {0, 1} and

sq,k = 1 indicates that sector k is segmented as foreground and valid for feature

selection.
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6.3 Clustering-based Fingerprint Retrieval

Clustering is a crucial technique widely used in discovering the underlying structure

in a data set by unsupervisedly grouping the similar patterns. It groups the data

set into a number of clusters such that the patterns within cluster are more similar

than those from different clusters. Clustering has been widely used in many appli-

cations such as data mining, information retrieval, image segmentation and pattern

recognition. It is also used to accelerate the content based image retrieval by com-

paring the query image with a small number of cluster representatives instead of

all database templates [63, 109]. Although the fingerprint retrieval on continuous

classification can achieve good retrieval performance, the retrieval process is time

consuming due to the exhaustive database search. Thus, we propose to employ the

database clustering to exploit the similarities among the database templates for

the efficient fingerprint retrieval. The 156-D orientation vector constructed from

the multi-scale orientation field is used as the main retrieval feature while 1-D

DRD is used as an auxiliary feature. Clustering is used to partition the finger-

print database into a number of groups with the similar feature sets. The query

fingerprint is coarsely compared with the prototypes of the groups the number of

which is much smaller than that of database templates and the close groups are

retrieved for further fingerprint search. The proposed clustering-based fingerprint

retrieval algorithm consists of two phases: offline database clustering and online

query processing.

6.3.1 The Offline Database Clustering

The orientation feature space is high-dimensional and unevenly distributed. For

example, the orientation fields of whorl fingerprints are more variant than those

of plain arch fingerprints as a whorl fingerprint contains more singularities with

sharp orientation changes. The retrieval process by exhaustively searching the

high-dimensional orientation feature space is time consuming especially when the
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database is large. The clustering can be used to exploit the similarities among

the database templates to speed up the retrieval process. We propose a clustering

technique to partition the orientation feature space into non-overlapping clusters

with more flexibility for the efficient fingerprint retrieval.

The K-means clustering algorithm [76] is the most widely used partitional clus-

tering algorithm because of its high computational efficiency and low memory space

requirement. Some of its variants have been proposed for the specific applications

in the literature [23, 95]. This clustering algorithm represents each cluster with

its mean vector and assign each pattern to the cluster with the closest prototype

iteratively. It terminates when the cluster labels do not change. However, using

one prototype to represent each cluster may not adequately model the clusters on

the given data set especially when the clusters are of arbitrary shape and size.

Recently, support vector clustering is proposed to generate the cluster bound-

aries of arbitrary shape by transforming the original space to a high dimensional

space with a kernel function [7]. Although this algorithm can solve some difficult

clustering problems, it is not easy to choose a suitable kernel parameter and the

clustering result cannot provide information about the representation of cluster.

In Chapter 5, a multi-prototype clustering algorithm has been developed to use

multiple prototypes to represent the complex cluster. This clustering algorithm

begins with an initial partitioning of the data set into a relatively larger number

of small subclusters than the expected clusters and each subcluster is represented

by one prototype. The multiple prototypes with small separation are organized to

model a given number of clusters in the agglomerative method. New prototypes

are iteratively added to improve the poor cluster boundaries resulted by the poor

initial settings. As a result, the proposed algorithm can discover the clusters of

complex structure and is robust to prototype initialization.

The clusters in the multi-dimensional orientation feature space of fingerprints

may also be complex in shape and size. Moreover, some ambiguous fingerprints

are located near the cluster boundaries no matter how well the database is parti-
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tioned. Therefore, similar to the exclusive fingerprint classification, the retrieval

efficiency and accuracy are limited if the fingerprint database is partitioned into a

small number of clusters by the clustering technique and the fingerprints from the

nearest cluster are retrieved. Instead, a modified form of the K-means clustering is

developed to partition the orientation feature space into a relatively large number

of clusters to avoid the low retrieval efficiency.

It is well known that the K-means clustering needs to specify the number of

clusters previously. Instead of understanding the inherent data structure correctly,

the main purpose of clustering for fingerprint retrieval is to exploit the similarities

among the database templates and facilitate a fast and effective query process.

Thus, the initial number of clusters is approximately determined to balance the

time efficiency and accuracy of fingerprint retrieval. After grouping N patterns

into K clusters, the average number of comparisons is approximately computed

as K + N
K

for retrieving the nearest cluster followed by fingerprint search in the

retrieved cluster. It is minimized when K =
√

N . However, multiple clusters close

to the query fingerprint are often retrieved to improve the accuracy of fingerprint

retrieval. To balance these effects, the initial number of clusters is approximately

set to about τ
√

N(1 < τ < 3).

Euclidean distance measure is often used in the traditional K-means clustering

algorithm to assign each pattern to its closest cluster. This makes it only effec-

tive to discover the hyperspherical clusters. Since our feature vector for clustering

is composed of the orientation angles, Euclidean distance cannot be directly ap-

plied to compare the orientation vectors due to the periodicity and discontinuity

of orientations. In addition, if all elements between two orientation vectors con-

sistently have a constant difference, the orientation fields of such two vectors are

very similar just with a rotation in human perception. The distance between them

is zero but their Euclidean distance may achieve a large deviation. In Chapter 4,

to overcome these problems, a distance measure is proposed in Equation (4.10)

by averaging the unit vectors of the doubled difference instead of the squared dif-
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ferences over all valid orientations. The orientation distance measure in Equation

(4.10) is based on the inconsistency of the orientation differences among all valid

elements and is invariant to the constant amount of orientation differences caused

by a slight rotation between two aligned fingerprints. It performs better to quan-

tify the distance between two orientation vectors than the traditional Euclidean

and Manhattan distance measures. The modified K-means clustering employs this

distance measure to assign each orientation vector to the cluster with the closest

prototype.

After all feature vectors are assigned to their closest clusters in each iteration,

the mean vector of each cluster is computed as its new prototype in the traditional

K-means clustering. However, the mean vector by directly averaging the orienta-

tion vectors is not applicable due to their periodicity and discontinuity. For exam-

ple, the average orientation of 0 and π is 0 instead of the arithmetic mean value π
2
.

To avoid this problem, the orientation averaging is often performed by separately

averaging two components of the unit vector of doubled angles [cos 2θ sin 2θ]. This

method is used to compute the mean vector of each cluster. Let {Z1, Z2, ..., ZK}
denote the K cluster prototypes where Zl = [zl,1, zl,2, ..., zl,M ] (1 ≤ l ≤ K). In the

modified K-means clustering, the mth element zl,m of the prototype Zl of cluster

Cl is updated as:

zl,m =
1

2
arctan

∑
p∈Cl

sp,msin2θp,m∑
p∈Cl

sp,mcos2θp,m

, 1 ≤ m ≤ M, 1 ≤ l ≤ K (6.3)

The K-means clustering algorithm cannot guarantee the global minimum of

the cluster criterion so that the clustering result is sensitive to the initial cluster

prototypes. Cluster split and merge techniques are often used to alleviate this

problem [23]. In our application, the skewed fingerprint distribution on the clusters

may deteriorate the effectiveness of fingerprint retrieval. Let Pl (1 ≤ l ≤ K) be

the percentages of fingerprints assigned to cluster Cl. The average portion of

fingerprints retrieved is about
∑K

l=1 P 2
l if the nearest cluster is retrieved for each

query fingerprint. It achieves its minimum on even distribution (P1 = P2 = ... =
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PK) and increases on the skewed distribution. To alleviate the above problems,

the modified K-means clustering eliminate the small clusters and split the large

clusters into two clusters. To split the large cluster, a new prototype is added by

randomly choosing one feature vector from the cluster. In our experiments, the

cluster with Pl < 1
3K

is considered as small cluster while the cluster with Pl > 2
K

is considered as large cluster.

The traditional K-means clustering is modified by replacing the Euclidean dis-

tance measure with the distance measure (4.10), computing the cluster prototype

with equation (6.3), eliminating the small clusters and splitting the large clusters.

The modified K-means clustering algorithm repeats above procedures and outputs

the clusters when the cluster prototypes do not change. The processing steps of

this algorithm are summarized as:

(1) Initialize the number of clusters K = τ
√

N(1 < τ < 3) and randomly choose

the initial cluster prototypes;

(2) Compute the distances between each orientation vector and the K cluster

prototypes with equation (4.10) and assign the corresponding fingerprint to

the closest cluster;

(3) Compute the new cluster prototypes with equation (6.3);

(4) Compute the distances between the new and old prototypes with equation

(4.10). If the maximum one is larger than ε, go to step (2);

(5) If there are no small or large clusters, output the clusters. Otherwise, elimi-

nate the small clusters, split the large clusters and go to step (2).

After partitioning the orientation feature space into clusters, the 1-D dominant

ridge distance DRD is employed as an auxiliary feature to further divide the

fingerprints of each cluster into bins. Over the whole range of the DRD, B bins of

equal width are predefined in each cluster. The center of the kth bin is computed

as DRDmin + k × (DRDmax − DRDmin)/B. Since more than 3 bins close to the
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DRD of the query fingerprint are usually retrieved in the fingerprint retrieval, B is

set to larger than 20. The fingerprint in each clusters is assigned to the bin with the

closest center to its DRD. After the offline database clustering, the hierarchical

data structure of the fingerprint database is shown in Figure 6.3.

C1 C2 CKC3

Database

Clusters

Bins

Fingerprints

Figure 6.3: The hierarchical data structure of the fingerprint database.

6.3.2 The Online Query Processing

The online query processing of fingerprint retrieval is to search the fingerprint

database and select a subset of database templates close to the query fingerprint

for the fine matching. Based on the offline database clustering, the query finger-

print can be compared with the representative prototypes of the groups (clusters

and bins) instead of all database templates to speed up the query process. How-

ever, comparing to the continuous fingerprint classification, the retrieval accuracy

and efficiency will deteriorate due to the quantization of the feature space and the

number of fingerprints retrieved. We propose a hierarchical query process for the

clustering-based fingerprint retrieval that consists of three levels of database search

(see Figure 6.4). In the first level, we search the clusters by comparing the query

orientation vector with the cluster prototypes. Some ambiguous fingerprints are

located near the cluster boundary no matter how well the database is partitioned.

In Chapter 5, the multiple close prototypes are grouped to represent one cluster in
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the proposed multi-prototype clustering algorithm. Similarly, we retrieve multiple

clusters nearest to the query fingerprint instead of only the nearest one to allevi-

ate this problem. In the second level, we search the bins of the retrieved clusters

by comparing the query DRD with the bin centers and retrieve multiple nearest

bins. These coarse level searches can efficiently narrow down the search of data-

base because the number of groups is much smaller than the number of database

templates. However, the retrieval performance is limited due to the quantization

of the feature space and the number of fingerprints retrieved. In the third level, the

continuous fingerprint classification is applied on the coarsely retrieved fingerprints

(i.e., fingerprint search) to further improve the retrieval performance. The finger-

print retrieval is performed by comparing the query orientation feature with the

database templates in the retrieved bins to further narrow down the search space

of fine matching. In this way, the online query processing of fingerprint retrieval

is accelerated by database clustering without compromising the retrieval accuracy

and efficiency.
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Figure 6.4: The hierarchical online query processing by incorporating two features.

For search of clusters, we compute the orientation distances dC(Θq, Zl)(1 ≤
l ≤ K) between the query orientation vector and K cluster prototypes with the

equation (4.10) and retrieve the clusters with the distance smaller a threshold.

Since the clusters may be unevenly distributed in the orientation feature space,
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the retrieval threshold is adaptively determined as minK
l=1 dC(Θq, Zl)+σ1 where σ1

is tuned to adjust the size of retrieval neighborhood. It is more likely to retrieve

the correct database template if more clusters are retrieved (larger σ1). In the

retrieved clusters, we compute the distances between the query DRD and the

centers of all bins and retrieve the bins with the distance smaller than a threshold.

This threshold is set to produce small retrieval error in this coarse level search. It

is constantly specified as 1 pixels in our experiments on the NIST database-4.

In the final search of the candidate fingerprints, we compute the orientation dis-

tances dC(Θq, Θj) between the query fingerprint and all fingerprints in the retrieved

bins with the equation (4.10). The fingerprints with the distance smaller than a

threshold are finally retrieved for the fine matching. In Chapter 4, an adaptive

setting method of the retrieval threshold has been introduced for the fingerprint

retrieval on continuous classification and has slightly improved the retrieval per-

formance comparing to those by the fixed distance and fixed order. Similarly, this

retrieval threshold is adaptively determined as min
Nq

j=1 dC(Θq, Θj) + σ2 where Nq

is the number of fingerprints in the retrieved bins and σ2 is tuned to adjust the

average portion of retrieved candidate fingerprints (i.e., the penetration rate).

6.4 Experimental Results

In this section, we present the experimental results and comparisons to demon-

strate the performance and advantages of the proposed clustering-based fingerprint

retrieval algorithm. The two data sets from the NIST database-4 used to test the

fingerprint retrieval algorithm in Chapter 4 are also applied to test the perfor-

mance of the proposed clustering-based fingerprint retrieval algorithm. The data

set 1 is the whole NIST database-4 which contains 2,000 pairs of fingerprints of size

480×512 pixels. These fingerprints are taken from 2,000 different fingers with two

instances per finger. Most published results of fingerprint retrieval on classification

and indexing are based on the NIST database-4. To have a comprehensive com-
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parison, we also implement our algorithm on this well-known database. However,

NIST database-4 is collected mainly for testing the Henry five classification so that

the classes: arch, tented arch, left loop, right loop and whorl are evenly distributed

in the database. The natural fingerprint distribution in these five classes is signifi-

cantly different. Therefore, the data set 2 contains 1204 pairs of fingerprints from

the NIST database-4 which are obtained by reducing the number of fingerprints

of less frequent classes according to the natural distribution. The first fingerprint

instances of these data sets are used as the database templates for retrieval while

the second instances serve as the query fingerprints.

As discussed in Chapter 4, retrieval efficiency and accuracy/error rate are two

main evaluations of the retrieval performance. The retrieval efficiency is indicated

by a so called ”penetration rate”, which is the average portion of database re-

trieved for the fine matching over all query fingerprints. It evaluates how much

the fingerprint retrieval can narrow down the search of database and is controlled

by the parameter σ1 and σ2 in our proposed approach. For a query fingerprint, the

retrieval is successful if one of the retrieved candidate fingerprints is from the same

finger as the query. It is more likely to retrieve the correct one if more database

templates are retrieved as candidates. The retrieval error/accuracy rate is thus

calculated by the percentage of the query fingerprints with false/correct retrieval

at a given penetration rate. These performance estimates are independent of the

size of database used, although the uncertainties in the estimates depend on the

size of the sample pair populations. In addition, the computation complexity of

the online fingerprint retrieval, which is called ”retrieval complexity” in this work,

is an important performance to evaluate how fast the online retrieval process is.

The orientation comparisons with Equation (4.10) cost most of the computation in

the online query processing of the proposed fingerprint retrieval algorithm. Hence,

the retrieval complexity is evaluated by the average number of such comparisons

required over all query fingerprints.
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6.4.1 Experiments on Feature Extraction

This experiment is implemented on the NIST database-4 (data set 1 ) to test the

effectiveness of two features for fingerprint retrieval: a 156-D orientation vector

constructed from the multi-scale orientation field and a 1-D DRD. The retrieval

result by the orientation feature computed on the proposed nonuniform spacing of

fingerprint is compared with that by the uniform spacing of fingerprint. To fairly

show the effectiveness of the orientation extraction for fingerprint retrieval, we ap-

ply the continuous fingerprint classification on the orientation vectors constructed

from the uniform spacing and the proposed multi-scale orientation fields. Same as

in Chapter 4, the uniform spacing orientation field is computed by dividing finger-

print into blocks of size 27×27 pixels and a 192-D orientation vector is constructed

by concatenating the phase angles after fingerprint alignment. The distance mea-

sure of equation (4.10) is used to compare the query orientation vector with all

database templates. The retrieval threshold is adaptively determined in the same

way as that used in Chapter 4. In addition, to show the improvement of retrieval

performance by adding the DRD, the fingerprints whose DRDs are close to that

of query fingerprint (their distances are smaller than 1 pixel) are retrieved for the

further fingerprint search based on the nonuniform spacing orientation vectors.

The results of fingerprint retrieval on different feature sets are shown in Fig-

ure 6.5 where the penetration rate is adapted by varying the parameter σ2. We

can see that the orientation extraction by our proposed nonuniform spacing of fin-

gerprint not only produces more compact feature vector but also achieves better

performance of fingerprint retrieval than that by the uniform spacing. Similar to

Chapter 4, the 1-D DRD as an auxiliary feature consistently reduces the retrieval

errors. It also reduces about 38% orientation comparisons in the query process of

fingerprint retrieval since the average portion of the retrieved fingerprints by DRD

is about 62% of the fingerprints in the database.
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Figure 6.5: Results of fingerprint retrieval by the orientation feature computed on
the uniform and proposed nonuniform spacing and by adding the dominant ridge
distance.

6.4.2 Experiments on Clustering-Based Fingerprint Retrieval

Extensive experiments and comparisons are performed on the NIST database-4 for

the proposed clustering-based fingerprint retrieval algorithm.

The first experiment is to show the effectiveness of the proposed modified

K-means clustering technique for the fingerprint retrieval. We compare the re-

trieval performance based on the modified K-means clustering technique to that

on the traditional K-means clustering technique. To apply the traditional K-

means clustering algorithm, the orientation vector is constructed by the unit vec-

tors [cos(2Θ), sin(2Θ)] instead of the phase angles and Euclidean distance measure

is used to assign each fingerprint to the closest cluster. The number of clusters

and the cluster prototypes are initialized same for both clustering techniques. The

final numbers of clusters are 90. To better reflect the effectiveness of clustering

techniques on the fingerprint retrieval, we present the retrieval results by only

retrieving the close clusters produced by clustering the orientation feature space.

The 1-D DRD and the following fingerprint search are not used in this experiment.
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Figure 6.6 shows the experimental results of the fingerprint retrieval based on the

cluster search where the penetration rate is adapted by varying the parameter

σ1. We can see that our proposed modified K-means clustering outperforms the

traditional K-means clustering for the fingerprint retrieval.
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Figure 6.6: The results of fingerprint retrieval based on the traditional K-means
clustering technique and our proposed modified K-means clustering technique.

The second experiment is to show the improvement of retrieval performance

by applying the third level search of fingerprint database (i.e., continuous finger-

print classification) on orientation feature. In the query process of the proposed

clustering-based fingerprint retrieval, we report the retrieval results on the first two

coarse level search (cluster retrieval) and on the finest level search (cluster retrieval

& continuous classification). Figure 6.7 shows these retrieval results. We can see

that the retrieval accuracy is consistently improved, especially at the low pene-

trate rates, after applying the continuous classification of the third level search.

These results demonstrate that cluster search produces the limited retrieval perfor-

mance due to the quantization of the feature space and the number of fingerprints

retrieved although it can speed up retrieval process. The following continuous

classification can further improve the fingerprint retrieval performance.
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Figure 6.7: The results of fingerprint retrieval on the first two coarse level search
(cluster retrieval) and on the finest level search (cluster retrieval & continuous
classification).

The third experiment is to compare the performance of the clustering-based

fingerprint retrieval (with clustering) with that of fingerprint retrieval based on

continuous classification (without clustering). The same feature set is used in the

fingerprint retrieval procedures with and without clustering. The continuous fin-

gerprint classification is to exhaustively search the fingerprint database. Using

the 1-D DRD as an auxiliary feature for continuous fingerprint classification will

narrow down the search space to about 62% of database. In the query process of

the clustering-based fingerprint retrieval, the number of orientation comparisons

is the number of clusters (90 in our experiments) plus the number of fingerprints

in the retrieved bins. It varies at different penetration rates. For example, a small

number of clusters are retrieved so that the following fingerprint search is fast at

the low penetrate rate. Figure 6.8 shows the results of fingerprint retrieval on the

continuous classification (without clustering) and the clustering-based fingerprint

retrieval (with clustering). From Figure 6.8 (a), we can see that the retrieval com-

plexity is greatly reduced by using the clustering, especially at the low penetration
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rates. For example, to retrieve 5% of database, we requires 300 (N ×15%) orienta-

tion comparisons in the query process of clustering-based fingerprint retrieval that

is much smaller than 1240 (N × 62%) orientation comparisons in the continuous

fingerprint classification. Moreover, the retrieval accuracy is slightly yet consis-

tently improved by using the modified K-means clustering (see Figure 6.8 (b)).

This may be resulted by exploiting the similarities among the database templates

through the clustering to facilitate an effective fingerprint retrieval. These results

demonstrate that the proposed clustering-based approach not only speeds up the

retrieval process but also improves the retrieval accuracy.
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Figure 6.8: Results of the continuous fingerprint classification (without clustering)
and our proposed fingerprint retrieval (with clustering): (a) retrieval complexity
and (b) retrieval error rate.

The forth experiment is performed to test the effects of different number of

clusters on the performance of fingerprint retrieval. Although it is not necessary to

specify the optimal number of clusters for our fingerprint retrieval, the final number

of clusters may have some effects on the retrieval results. The number of clusters

varies from 20 to 135 in our experiments and their results of fingerprint retrieval

are shown in Figure 6.9. The retrieval error rate is reduced when increasing the

number of cluster from 20 to 90 and cannot be further reduced with the number

of clusters increased to 135 (see Figure 6.9a). From Figure 6.9b, we can see that

the retrieval complexity is reduced by increasing the number of clusters from 20

to 60 and deteriorates by further increasing it to 90 and 135.
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Figure 6.9: Results of fingerprint retrieval on the different number of clusters: (a)
retrieval accuracy and (b) retrieval complexity.

In addition, we have manually checked the fingerprint images that can or cannot

be correctly retrieved by our proposed algorithm. The retrieval performance can be

affected by the image quality of both the query fingerprint and the corresponding

database templates. Figure 6.10 shows some examples of the fingerprint images

that can be correctly retrieved even at the low penetration rate of %5 while Figure

shows some examples of the fingerprint images that cannot be correctly retrieved

even at the high penetration rate of 40%.

(a)

(b)

Figure 6.10: 4 sample fingerprints with (a) correct retrieval at 5% penetration rate
and (c) false retrieval at 40% penetration rate.
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6.4.3 Comparisons with Other Approaches

In this subsection, the proposed clustering-based fingerprint retrieval approach is

compared with some state-of-the-art approaches of fingerprint retrieval on exclusive

and continuous classifications as well as fingerprint indexing in the literature in

terms of retrieval accuracy and efficiency.

Two state-of-the-art approaches of continuous fingerprint classification in [14,

66] are tested on the data set 2. The approach [14] performs better than the

approach [66]. To compare with them, we also perform our clustering-based fin-

gerprint retrieval algorithm on the data set 2. Figure 6.11 shows the retrieval

results reported in [14] and the experimental results of our proposed approach on

the same data set. We can see that consistent performance improvement of our ap-

proach is visible at all penetration rates in Figure 6.11 and significant performance

improvement is achieved at low penetration rates.
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Figure 6.11: Results of fingerprint retrieval in our approach and the approach [14]
on data set 2.

A fingerprint retrieval approach based on indexing the triplets of minutia points

is proposed in [9]. The result of fingerprint retrieval is further improved by adding
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two new features in [96]. The best performed approach [96] is tested on the second

1000 pairs of fingerprints from the NIST database-4. As stated in [96], the retrieval

accuracies on the penetration rates of 5%, 10%, 15% and 20% are 83.3%, 88.1%,

91.1% and 92.6%, respectively. Figure 6.12 shows the results reported in [96] and

the retrieval results of our proposed approach on the same data set. We can see

that our proposed fingerprint retrieval approach outperforms the minutia-based

fingerprint indexing approach [96].
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Figure 6.12: Results of fingerprint retrieval reported in [96] and our proposed
approach on the same data set.

The exclusive fingerprint classification has been widely studied and many clas-

sification results are reported in the literature. However, the query process of

exclusive classification is more efficient than that of our approach on the three

levels of database search. To be comparable with the exclusive classification in

terms of retrieval complexity, we perform our clustering-based fingerprint retrieval

by only the first two coarse levels of search in the query process (denoted by “our

approach on 2nd level”). Without the continuous classification of the third level

search, the retrieval accuracy and efficiency decreases due to the quantization. Our

retrieval results on the three levels of hierarchical query process are also provided
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for further comparison (denoted by “our approach on 3nd level”). We compare the

clustering-based fingerprint retrieval approach with some published approaches of

exclusive fingerprint classification according to the error rate at about the same

penetration rate. Most published exclusive classification approaches classify fin-

gerprints into 4 (arch and tented arch are merged into arch) or 5 common classes.

The penetration rate is 20% if a perfect classifier is applied to partition NIST

database-4 into the five common classes which are evenly distributed in the data-

base. It will increase up to 28% if two classes (arch and tented arch) are merged

into one. As the fingerprint frequency in each class does not reflect the real distri-

bution, many researchers weight the classification results or constructed a subset

(the data set 2) according to the natural fingerprint distribution for testing. For

the weighted classification results or on the data set 2, the penetration rates are

29.48% and 29.69% for the 4 and 5 common classes, respectively. To fairly com-

pare our results with those of exclusive classification approaches, our approach

retrieves fingerprints at the penetration rates of or slightly smaller than 20%, 28%,

29.48% and 29.69% in the experiments. Table 6.1 shows the error rates of 12 pub-

lished exclusive classification approaches and our proposed approach on the NIST

database-4 (’whole’) or its second half . All error rates in the same column are at

the same penetration rate (PR). The number of classes labelled by the exclusive

classification approaches and whether weighting is used in the error calculation are

denoted in the second row of Table 6.1 such as ’4 w. class’.

It should be noted that the error of exclusive fingerprint classification is not

fully equivalent to the error of fingerprint retrieval for the application to identifi-

cation. The exclusive classification for fingerprint retrieval is successful only if the

query fingerprint and the corresponding one in the database are consistently classi-

fied in the same class. There are about 17% of fingerprints in the NIST database-4

labelled as two classes by human experts. The error rates of the exclusive classifi-

cation approaches [12, 15, 47, 49, 55, 105, 108] are calculated by assuming a correct

classification if the fingerprint classifier output is any one of two class hypotheses.

This assumption gives lower error rate than that obtained using only one class label.
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Table 6.1: Error rates of some exclusive fingerprint classification approaches and
our clustering-based fingerprint retrieval approach on the NIST database-4

method PR=20 PR=29.5 PR=28 PR=29.7 test set

year and source 5 class 5 w. class 4 class 4 w. class

Candela et al. 95 [12] − − 11.4 6.1 2nd half

Karu & Jain 96 [55] 14.6 11.9 8.6 9.4 whole

Hong & Jain 99 [40] 12.5 10.6 7.7 − whole

Jain et al. 99 [49] 10 7.0 5.2 − 2nd half

Jain & Minut 02 [47] − − 8.8 9.3 whole

Cappelli et al. 99 [14] − 12.9 − − set 2

Cappelli et al. 99 [15] 7.9 6.5 5.5 − 2nd half

Senior 01 [91] − − − 5.1 2nd half

Yao et al. 01 [105] 10.7 9.0 6.9 − 2nd half

Marcialis et al. 01 [74] 12.1 9.6 − − 2nd half

Zhang & Yan 04 [108] 15.7 − 7.3 − whole

Park & Park 05 [85] 9.3 − 6.0 − whole

Tan et al. 05 [97] 8.4 − 6.7 − whole

Our approach on 2nd level 5.2 3.3 3.5 3.2 whole

Our approach on 2nd level 4.6 2.9 3.2 2.8 set 2

Our approach on 3rd level 4.2 2.9 3.1 2.9 whole
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In addition, the error rates of the exclusive classification approaches [49, 74, 105]

are obtained at 1.8% rejection rate, which slightly increases their penetration rates.

Nevertheless, the experimental results in Table 6.1 demonstrate that the proposed

fingerprint retrieval approach achieves lower error rate than the various exclusive

classification approaches.

6.5 Summary

The techniques that facilitate an efficient and effective search of fingerprint data-

base in an AFIS have been extensively studied in the past decades. The exclusive

fingerprint classification based on the Henry classification scheme cannot suffi-

ciently narrow down the search of database due to the small number of classes and

the uneven fingerprint distribution. Although the continuous fingerprint classifi-

cation avoids the problems of exclusive classification and achieves better retrieval

performance, it neglects the similarities among the database templates so that

its retrieval performance is also limited. In this chapter, we have developed an

clustering-based fingerprint retrieval algorithm which applies a clustering tech-

nique to exploit the similarities among the database templates for an efficient

fingerprint retrieval. The local ridge orientation field and 1-D dominant ridge dis-

tance are used as the representation feature for fingerprint retrieval. In orientation

extraction, we propose a nonuniform spacing of fingerprint by a circular tessella-

tion to compute a multi-scale orientation field as the main retrieval feature. The

orientation extraction by the nonuniform spacing not only produces more compact

feature vector but also achieves more effective fingerprint retrieval than that by

the uniform spacing. The 1-D dominant ridge distance is employed as an auxiliary

retrieval feature which not only reduces the orientation comparisons in the query

process but also consistently improves the retrieval accuracy. A modified K-means

clustering is proposed to partition the multi-dimensional orientation feature space

into clusters. It outperforms the traditional K-means clustering for the fingerprint
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retrieval. Based on the offline database clustering, a hierarchical query processing

is proposed to perform the cluster search followed by continuous fingerprint classifi-

cation of the retrieved clusters. It not only greatly reduces the retrieval complexity

but also improves the retrieval accuracy comparing to the continuous fingerprint

classification. The extensive experimental studies and comparisons consistently

demonstrate the effectiveness and superiority of the clustering-based fingerprint

retrieval framework.
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Chapter 7

Conclusions and

Recommendations

7.1 Conclusions

In this thesis, we have presented some algorithms for fingerprint image processing,

fingerprint retrieval and database clustering. The main contribution of this thesis is

to present the fingerprint retrieval algorithms based on the continuous classification

and database clustering by using the local ridge orientation field and ridge distance

of fingerprint as the representation features. These algorithms are proved to be

effective, efficient and promising to facilitate the search of database in an AFIS. In

developing these fingerprint retrieval algorithms, we have investigated the following

problems:

� We have proposed some techniques to robustly and reliably estimate two lo-

cal parameters of fingerprint: local ridge orientation and local ridge distance,

which play important roles for fingerprint analysis and effective fingerprint

retrieval. A new orientation smoothing method based on the adaptive neigh-

borhood not only attenuates the noise well but also maintains the orientation

localization in the high curvature area. The local ridge distance is estimated

146
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based on more than one x-signatures which results in more robustness to

noise and irregular ridge flows than only one x-signature. In addition, an

effective method has been proposed to consistently locate a reference point

and compute a corresponding reference direction for all types of fingerprints.

The reference point is located based on multi-scale analysis of the orienta-

tion consistency, while the reference direction is computed by analysis of the

orientation differences between 16 redial directions from the reference point

and the local ridge orientations along these radii. They can be used for the

alignment of fingerprints to achieve the invariance of pose transformation in

feature extraction.

� We have developed a fingerprint retrieval algorithm based on continuous clas-

sification which achieves good retrieval performance. An orientation vector

is constructed from the local ridge orientation field as the main retrieval fea-

ture. The dominant ridge distance of fingerprint is proposed as an auxiliary

feature. It is more robust to noise than the simple average ridge distance and

consistently improves the retrieval accuracy. These two coarse level features

are not closely correlated with the minutiae features. Thus, the proposed

retrieval approach can be cooperated with the minutiae based matching al-

gorithms to develop an efficient and effective fingerprint identification system.

In addition, we have proposed an orientation distance measure based on the

inconsistency of orientation differences, which quantifies more effectively the

distance between two orientation vectors than the traditional Euclidean and

Manhattan distance measures. A regional feature weighting scheme by the

entropy also leads to a visible enhancement of the retrieval performance.

The suggested retrieval threshold setting slightly improves the retrieval per-

formance comparing to those by the fixed distance and fixed order. This

fingerprint retrieval algorithm has been performed on the NIST database-

4 and FVC2000 Db2 a and Db3 a. Experimental results and comparisons

demonstrate that the proposed approach outperforms some state-of-the-art
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approaches of continuous fingerprint classification and minutia-based finger-

print indexing in terms of retrieval efficiency and accuracy.

� Using one prototype to represent each cluster in most partitional cluster-

ing algorithms may not adequately model the clusters of complex structure.

A multi-prototype clustering algorithm has been developed to discover the

clusters of arbitrary shape and size. The squared error clustering is used to

produce a number of subclusters represented by prototypes because of its low

computational cost and memory space and yet good performance. A separa-

tion measure is proposed to evaluate how well two prototypes are separated

by a sparse region. Multiple prototypes with small separation are organized

to model a given number of clusters in the agglomerative method. New pro-

totypes are iteratively added to improve the poor cluster boundaries resulted

by the poor initial settings. The proposed algorithm requires less memory

space and computation cost than the commonly used hierarchical clustering

algorithms such as Single-link and Complete-link while preserves much of the

speed and efficiency of the squared-error clustering algorithm. Experimental

results on both synthetic and real data sets show the effectiveness of the

proposed multi-prototype clustering algorithm.

� We have developed a clustering-based fingerprint retrieval algorithm which

applies a clustering technique to exploit the similarities among the database

templates for an efficient fingerprint retrieval. We propose a nonuniform

spacing of fingerprint by a circular tessellation to compute a multi-scale ori-

entation field as the main retrieval feature. The orientation extraction by the

nonuniform spacing not only produces more compact feature vector but also

achieves better retrieval performance than that by the uniform spacing. The

1-D dominant ridge distance is used as an auxiliary retrieval feature which

not only reduces the orientation comparisons in the query process but also

consistently improves the retrieval accuracy. A modified K-means clustering

is proposed to partition the multi-dimensional orientation feature space into
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a number of clusters. It outperforms the traditional K-means clustering for

the fingerprint retrieval. Based on the offline database clustering, a hierar-

chical query processing is proposed to perform the cluster search followed

by continuous fingerprint classification of the retrieved clusters. It not only

greatly reduces the retrieval complexity but also improves the retrieval ac-

curacy comparing to the continuous fingerprint classification. The extensive

experimental studies and comparisons consistently demonstrate the effective-

ness and superiority of the clustering-based fingerprint retrieval algorithm.

7.2 Recommendations for Further Research

A lot of works have been done to facilitate an efficient and effective search of

database in an AFIS and have achieved good performances. With the growing

demands of the efficiency and accuracy of personal identification from various

fingerprint databases, there are still some problems available to be solved to make

the automatic identification system more efficient and effective in practice. In the

following, we will discuss and recommend some research directions which may be

further pursued in the future.

� To achieve the invariance of pose transformation, translation and rotation

are needed to bring two fingerprints into alignment. Although fingerprint

alignment based on a reference point and a reference direction is an efficient

solution, the reliable and consistent detection of the reference point and

direction is not a easy task for the partial and poor quality fingerprint images.

Therefore, it is beneficial to propose some techniques which can capture the

global structure information of fingerprint ridge flow patterns invariant to the

translation and rotation without alignment. The fingerprint representation

based these techniques will be able to work on the partial and poor quality

fingerprint images in the fingerprint retrieval.

� It is well known that the feature extraction plays an important role for the
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effective fingerprint retrieval and identification. The local parameters: ridge

orientation and distance used in our retrieval algorithm are two conventional

coarse level features of fingerprint. Other features which can be robustly and

reliably estimated and have more representative power of fingerprint can be

investigated to further improve the effectiveness of the fingerprint retrieval

and identification.

� A good clustering technique which can work well to discover the underlying

structure of fingerprint database will be beneficial to facilitate an efficient

and effective search of fingerprint database. A modified K-means clustering

approach has been proposed to exploit the similarities among the database

templates to facilitate an efficient and effective fingerprint retrieval in this

thesis. Other clustering techniques can be investigated to further improve

the performance of fingerprint retrieval from large database.

� The fingerprint retrieval algorithms proposed in this thesis are a kind of

coarse level matching and can be coupled with a fine matching algorithm to

obtain an AFIS. Since the retrieval features in our algorithms are not strongly

correlated with the minutiae features, the existing 1:1 minutiae based ver-

ification (matching) algorithm can be used for the fine matching. It will

be attractive and beneficial for the search of fingerprint database by incor-

porating the fingerprint retrieval with the fine matching algorithm. Some

important issues can be further investigated for the effective incorporation.

For example, one is that how much the search space of the fine matching is

needed in order to benefit the most in the efficiency and accuracy of an AFIS.

Another one is to show the correlation between the features used in finger-

print retrieval and fine matching affect the effectiveness of the fingerprint

search in an automatic identification system.
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