
�5�I�J�T���E�P�D�V�N�F�O�U���J�T���E�P�X�O�M�P�B�E�F�E���G�S�P�N���%�3���/�5�6���	�I�U�U�Q�T�������E�S���O�U�V���F�E�V���T�H�

�/�B�O�Z�B�O�H���5�F�D�I�O�P�M�P�H�J�D�B�M���6�O�J�W�F�S�T�J�U�Z�
���4�J�O�H�B�Q�P�S�F��

�7�J�S�U�V�B�M���U�S�B�J�O�J�O�H���T�Z�T�U�F�N���G�P�S���N�J�M�J�U�B�S�Z���P�Q�F�S�B�U�J�P�O�T���P�O

�V�S�C�B�O�J�[�F�E���U�F�S�S�B�J�O

�5�J�O�H�
���4�I�B�O�H���1�J�O�H

��������

�5�J�O�H�
���4�����1�����	���������
�����7�J�S�U�V�B�M���U�S�B�J�O�J�O�H���T�Z�T�U�F�N���G�P�S���N�J�M�J�U�B�S�Z���P�Q�F�S�B�U�J�P�O�T���P�O���V�S�C�B�O�J�[�F�E���U�F�S�S�B�J�O��

�.�B�T�U�F�Sö²�T���U�I�F�T�J�T�
���/�B�O�Z�B�O�H���5�F�D�I�O�P�M�P�H�J�D�B�M���6�O�J�W�F�S�T�J�U�Z�
���4�J�O�H�B�Q�P�S�F��

�I�U�U�Q�T�������I�E�M���I�B�O�E�M�F���O�F�U������������������������

�I�U�U�Q�T�������E�P�J���P�S�H������������������������������������������

Downloaded on 22 Apr 2025 02:44:46 SGT



c £^^tk( r̂  

VIRTUAL TRAINING SYSTEM FOR MILITARY 

OPERATIONS ON URBANIZED TERRAIN 

P/Pjuc 

TING SHANG PING 

School of Computer Engineering 

A thesis submitted to Nanyang Technological University 
in fulfillment of the requirements for the degree of 

Masters of Engineering 

2006 



ACKNOWLEDGEMENTS 

ACKNOWLEDGEMENTS 

I hope to thank my supervisor, Dr Zhou Suiping, for the invaluable 

advice and guidance during the term of the project. Throughout the 

project, he enlightened me with knowledge that I would not have 

comprehended. His passion for simulation research and approachable 

character has injected enthusiasm into my research. The numerous 

discussions with him have helped to me achieve a deeper depth in 

computer science and allowed us to provide useful contributions to the 

research community. Without his consistent support and patience, it will 

have been impossible for the project to be enriching and fulfilling. 

NANYANG TECHNOLOGICAL UNIVERSITY i 



TABLE OF CONTENTS 

TABLE OF CONTENTS 

Acknowledgements i 

Summary viii 

Chapter 1: Introduction 1 

1.1. Motivation for MOUT Research 1 

1.2. Background 2 

1.3. Purpose and Scope 5 

1.4. Resources 5 

1.5. Overview of Report 5 

Chapter 2: Literature Review 7 

2.1. Evolution of MOUT 7 

2.2. Overview of Computer Games used for Simulation Research 8 

2.2.1. Game Engines 9 

2.2.2. Review of Game Engines 15 

2.3. Case Studies 17 

2.3.1. Full Spectrum Command 17 

2.3.2. Attention Disorders in a Virtual Classroom 19 

2.3.3. Analysis of Case Studies 20 

2.4. Physics Simulation 20 

2.4.1. Karma Engine 21 

2.4.2. Qualitative Physics 22 

2.5. Software Architecture 24 

2.5.1. Simulation Interoperability Standards Organization 25 

2.5.2. Base Object Model (BOM) 26 

2.5.3. Joint Modelling and Simulation Environment for 

Wargaming and Experimentation Labs (JEWEL) 27 

Chapter 3: Twilight City Design 29 

3.1. Analysis of MOUT scenarios 29 

3.2. Virtual City Planning 31 

3.3. Training Requirements 32 

NANYANG TECHNOLOGICAL UNIVERSITY 
11 



TABLE OF CONTENTS 

3.4. Special Effects 33 

3.5. Interactive Voice Control 33 

3.6. Al and Bots Issues 33 

3.7. Customized Animation and Models 35 

3.8. Physics Simulation 35 

3.9. Architecture for Rapidly Re-configurable Simulations 36 

3.10. Al Framework for Group Coordination 37 

Chapter 4: Implementing Twilight City 38 

4.1. Construction of the Environment 38 

4.2. Al Bots Paths Allocation 39 

4.3. Speech Synthesis and Recognition 41 

4.3.1. Speech Input Program 42 

4.3.2. Commands Input 43 

4.3.3. Interaction Class 43 

4.4. Modifications 43 

4.4.1. Bots Visualiser 44 

4.4.2. Geo-spatial Referencing 44 

4.4.3. Lightning, Thunder and Rain 45 

4.4.4. Night Vision 47 

4.4.5. Parachute 48 

4.4.6. Air Strikes 49 

4.5. Vehicles 50 

4.6. Improved Bots Movement 52 

4.7. Al Framework for Group Coordination 52 

4.8. Integrated Bots Control Interface 54 

Chapter 5: Qualitative Approach For Physics Simulation 56 

5.1. Qualitative Behaviour Simulation 56 

5.1.1. Software Architecture 56 

5.1.2. Object Behavior 58 

5.2. Example Results 60 

5.3. Practical Applications 64 

5.3.1. Collapsible Structures 65 

NANYANG TECHNOLOGICAL UNIVERSITY 
111 



TABLE OF CONTENTS 

5.3.2. Road Blocks 67 

Chapter 6: Architecture for Rapidly Re-configurable Simulations.71 

6.1. Motivation 71 

6.2. Overview 72 

6.2.1. Architecture for Rapid Configuration 74 

6.2.2. Game-based Objects Standard Interface 76 

6.2.3. ARC-Based Objects Repository 78 

6.3. Example results 79 

Chapter 7: Experimentation Results 83 

7.1. Interactive Voice Controls 83 

7.1.1. Analysis and Comments 83 

7.2. Evaluation of the Modifications made 84 

7.3. Benchmarking 85 

7.4. Mean Opinion Score Tests 87 

7.5. Frame Rate Analysis 90 

Chapter 8: Conclusions and Future Work 93 

8.1. Summary 93 

8.2. Publications 95 

8.2.1. Journals 95 

8.2.2. Conferences 96 

8.3. Future Work 96 

8.3.1. Interactive Virtual Environment for the Visually Impaired 97 

8.3.2. Software Architecture 97 

8.3.3. Improved Navigation System 98 

8.3.4. Test beds with Specific Behaviours 100 

8.3.5. Steering Behaviour for Autonomous Agents 101 

8.3.6. 3D Virtual Worlds 103 

8.3.7. Conducting a Game Al Course for NTU 103 

References 105 

NANYANG TECHNOLOGICAL UNIVERSITY iv 



LIST OF FIGURES 

LIST OF FIGURES 

Figure 2-1: Modular game engine structure 9 

Figure 2-2: Quake's architecture 11 

Figure 2-3: Counter Strike - Modified Game using Quake Engine 12 

Figure 2-4: Unreal Tournament Game 13 

Figure 2-5: Unreal Architecture 14 

Figure 2-6: Jupiter Effect & Infiltration 15 

Figure 2-7: Full Spectrum Command 18 

Figure 2-8: Virtual Classroom Commercial Version 19 

Figure 2-9: Movable Objects 21 

Figure 3-1: Twilight City Top View 32 

Figure 4-1: Twilight City 38 

Figure 4-2: Interactive Voice Control Process 42 

Figure 4-3: Radar Interface in Twilight City 44 

Figure 4-4: Geo-Spatial Referencing 45 

Figure 4-5: Lightning and Rain Effects in Twilight City 46 

Figure 4-6: Night Vision in Twilight City 47 

Figure 4-7: Parachute in Twilight City 48 

Figure 4-8: Air Strikes in Twilight City 49 

Figure 4-9: Vehicles in Twilight City 51 

Figure 4-10: Follow (Top left), Gather (Top right) and Hunt (Bottom) 53 

Figure 4-11: Integrated Bots Control 55 

Figure 5-1: Qualitative Physics Framework 58 

Figure 5-2: Effects of applying forces at different contact points 60 

Figure 5-3: Different behaviors of a barrel 59 

Figure 5-4: Uses of Qualitative Physics in Twilight City 61 

Figure 5-5: Qualitative Process of Collisions 62 

Figure 5-6: Object behaviour in water 64 

Figure 5-7: Collapse of structure during an air strike 66 

Figure 5-8: Barricades and Tires 68 

Figure 5-9: Barricades Layout 70 

NANYANG TECHNOLOGICAL UNIVERSITY 
V 



LIST OF FIGURES 

Figure 6-1: Class Hierarchy of ARC based objects 73 

Figure 6-2: Architecture for Rapid Configuration 75 

Figure 6-3: Game-Based Object Standard Interface compliant classes...77 

Figure 6-4: Development process for ARC-based objects 79 

Figure 6-5: Qualitative Physics Framework 80 

Figure 6-6: ARC- based Qualitative Physics 81 

Figure 6-7: ARC- based QP Movable Objects 82 

Figure 7-1: Shattered Glass In Twilight City 85 

Figure 7-2: Mean Opinion Score Tests of Twilight City 88 

Figure 7-3: Mean Opinion Score Tests Results 90 

Figure 7-4: Frame Rate Analysis Results 92 

Figure 8-1: Simple Al Architecture 98 

Figure 8-2: Terrain with 8 waypoints connected between 2 areas 99 

Figure 8-3: MOUT Airborne Operations as Future Developments 101 

Figure 8-4: Flocking Behaviours 102 

Figure 8-5: Hierarchy of Motion Behaviours in Al Architecture 103 

NANYANG TECHNOLOGICAL UNIVERSITY vi 



LIST OF TABLES 

LIST OF TABLES 

Table 2-1: Summary of Features 15 

Table 7-1: Benchmark Analysis 87 

NANYANG TECHNOLOGICAL UNIVERSITY vii 



SUMMARY 

SUMMARY 

Military Operations in Urban Terrain (MOUT) is the term used to 

describe any type of military action where battles take place in an 

environment where man-made construction or high population density 

is the dominant feature, such as a city or town. This type of fighting 

requires strategies that differ immensely from fighting on other types 

of terrain, such as large deserts or jungles. 

Modern military forces exploit simulation technology to extend their 

capabilities for MOUT training and decision analysis. Although there are 

considerable efforts and time invested into this area, there are still 

many challenges facing existing simulation systems. To this end, we 

had identified several key areas for our research. These areas include 

developing new physics simulation techniques, designing flexible 

architectures and looking into innovative ways of building low-cost 

simulation environments. This thesis presents our research in 

developing new physics simulation techniques and designing rapidly 

reconfigurable software architectures to improve on the current state 

of the art in military simulation. At the same time, we will describe 

some of our work done in developing an interactive virtual 

environment test-bed for MOUT. 

During the course of this project, we found out that existing MOUT 

simulations are lacking in realistic physics simulation. Thus, we 

developed and incorporated qualitative methods of realistic physics 

modeling at low computational overheads into our training system. 

Such qualitative physic simulation techniques can be further extended 

into other simulation environments. 

In our efforts to create a rapidly re-configurable simulation system, we 

proposed a generic framework that can provide an agile and adaptable 

NANYANG TECHNOLOGICAL UNIVERSITY viii 



SUMMARY 

simulation system that can be transformed easily to handle frequently 

changing MOUT simulation requirements. 

Thus, we had adapted a commercial game engine to develop a virtual 

environment for multi-agent research. This innovative approach allows 

us to provide a high quality immersive simulation environment at low 

cost. Our success in building such a game engine based training 

system was noted by the Defence Science & Technology Agency 

(DSTA) and we are currently integrating our training system into their 

simulation systems. 

NANYANG TECHNOLOGICAL UNIVERSITY ix 



CHAPTER 1 - INTRODUCTION 

CHAPTER 1: INTRODUCTION 

1.1. Motivation for MOUT Research 

MOUT (Military Operations in Urban Terrain) is the term used to 

describe any type of military action where battles take place in an 

environment where man-made construction or high population density 

is the dominant feature, such as a city or town [1]. This type of 

fighting requires strategies that differ immensely from fighting on 

other types of terrain, such as large deserts or jungles. 

Fighting in urban terrain brings with it a host of challenges and 

obstacles that are not usually found on an open battlefield. High 

numbers of civilians, culturally important structures, and narrow 

streets and alleys, for example, make for difficult, dangerous fighting. 

The modern day soldier must contend with all kinds of distractions and 

stresses as he moves through a hostile city, such as differentiating 

hostile targets from innocents, constantly watching for sniper fire, and 

maintaining a state of heightened awareness at all times [2]. 

As civilian casualties and collateral damage must be avoided as much 

as possible, modern artillery and large-scale weapons are 

inappropriate for urban combat. For this reason, city fighting benefits 

the defender. Attackers lose any advantage of firepower and mobility. 

A city can ingest an invading army, paralyze it for weeks on end, and 

render it ineffective [3, 4] . 

Today's military forces are constantly refining their strategies for 

fighting in large urban environments. An invading army that needs to 

conduct operations in a hostile city must have a good grasp of MOUT 

strategies and tactics. 

NANYANG TECHNOLOGICAL UNIVERSITY 1 



CHAPTER 1 - INTRODUCTION 

1.2. Background 

In the past decade, 3D virtual environments have been successfully 

implemented in games and applications. However, there are only a 

small number of applications available for research in simulation 

environments. Virtual environments can be realized as 3D worlds 

incorporated with real life physics. They would possess a certain level 

of AI, collaborating with humans to achieve a certain objective. With 

the advancement in technology, the solutions available for building 

such systems are expensive and extremely difficult to develop. 

Fortunately, many researchers have discovered a number of 

alternatives. Research in simulation needs a rich environment that is 

complex and dynamic, making the study of human behaviour and 

collaborative agents possible. Such environments had been found in 

computer games running on personal computers (PCs). First Person 

Shooter (FPS) games are such games that are reputed to be extremely 

realistic. Game engines that provide that realism have also evolved to 

be the attractive choice to use as part of a virtual environment 

research. 

One of the major considerations in building a virtual MOUT training 

environment is the fidelity of the virtual environment. As movable 

objects such as bottles, boxes and chairs, etc. are quite common in 

real-life, it is important to incorporate these objects in the virtual 

environments. However, in the existing MOUT simulations, besides the 

avatars of the soldiers and some vehicles, most objects are static. The 

reason for this is that modelling and implementing movable objects is 

a challenging task in terms of computational costs and mathematical 

complexities. Traditional methods to implement movable objects are 

very time-consuming as they are based on exact physics models and 

numeric analysis [5]. The responsiveness of the system may be 

greatly affected by the behaviour of the movable objects. 

NANYANG TECHNOLOGICAL UNIVERSITY 2 



CHAPTER 1 - INTRODUCTION 

The usage of virtual environments in simulation studies has been 

widely investigated based on different platforms. A team of 

researchers from Carnegie Mellon University and University of 

Southern California worked together to develop Gamebots, which is a 

virtual reality platform that allows the simulation and evaluation of 

intelligent behaviours. Marc Cavazza and his team of researchers 

successfully used the Unreal Engine to create a simulation 

environment for qualitative physics. However, their research area did 

not focus on MOUT. 

In our work, we adopt an approach of using qualitative physics to 

model the behaviours of movable objects in MOUT simulations. This 

approach will help to reduce the computational cost of simulating the 

behaviour of movable objects and increase the fidelity of the system. 

Considerable efforts are needed to construct a virtual environment for 

MOUT. The models of various objects used in one application are often 

specifically designed for that application, thus are not generally 

suitable for other applications. We often have to rebuild many object 

models for a new simulation setup, which is very tedious and time 

consuming. To reduce the cost and time in building up different 

simulation environments, it is therefore highly desirable to have a 

repository of object models that are interoperable and extensible thus 

can be reused in different applications. To this end, we propose a 

generic model framework, which supports model interoperability and 

reusability for MOUT simulations. Our experiences with Twilight City, a 

virtual training environment for MOUT, show that the proposed 

framework is successful in creating a repository of models for various 

simulation setups. 

In this work, the objective is to connect existing technologies in order 

to produce a research test-bed for Military Operations on Urbanized 

Terrain (MOUT). With this test bed, we seek to advance the state of 

NANYANG TECHNOLOGICAL UNIVERSITY 3 



CHAPTER 1 - INTRODUCTION 

the art of distributed interactive simulation, which improves on current 

simulation methods on MOUT. 

NANYANG TECHNOLOGICAL UNIVERSITY 4 



CHAPTER 1 - INTRODUCTION 

1.3. Purpose and Scope 

This project aims, firstly, to develop a virtual environment for 

simulation research on MOUT by using an affordable existing 

commercial game that has multiplayer capabilities and any 

programming language that supports TCP/IP1 to be used as an 

interface to the agents. It also aims to offer a valuable research tool 

for Human-Level AI research for the students in NTU in the future. 

Secondly, we seek to develop new simulation techniques and 

architecture with the use of our test bed. 

1.4. Resources 

This project was fully implemented and developed by using software 

running personal computers. The resources used in the project are 

listed as follows: 

• Unreal Tournament 2004 

• Unreal Editor 3.0 

• WOTgreal, The Editing Tool for the Unreal Engine. V 3.006 

• 3DS Studio Max, The 3D Modeling and Animation Package 

• UMark, The Benchmarking Utility 

• Java 

1.5. Overview of Report 

The report is organized into 7 chapters: 

Chapter 1 presents the background, purpose and objectives for 

developing the interactive virtual environment, Twilight City. It also 

covers the scope and limitation of the project. 

1 TCP/IP refers to Transport Control Protocol / Internet Protocol, which is used in today's 
information highway, the internet. 

NANYANG TECHNOLOGICAL UNIVERSITY 5 



CHAPTER 1 - INTRODUCTION 

Chapter 2 introduces the game engines that are used in scientific 

research. The chapter also compares existing virtual environments in 

the market and examines the state of the art in simulation techniques 

and architectures used in the project. 

Chapter 3 talks about the virtual environment design and also 

described the design of the simulation techniques used for the project. 

Chapter 4 provides detailed description of implementing the simulation 

techniques and a short description on the construction of the Twilight 

City. 

Chapter 5 describes the usage of qualitative physics within Twilight 

City to achieve movable objects with minimal computational 

overheads. 

Chapter 6 explains the Architecture for Rapid Configuration which 

evolves the Twilight City into a rapidly reconfigurable simulation 

system. 

Chapter 7 discusses the scenarios that are tested in Twilight City and 

the experimentation results obtained. 

Chapter 8 draws conclusion of our research and discusses some 

potential direction for future work and enhancements. 

NANYANG TECHNOLOGICAL UNIVERSITY 6 



CHAPTER 2 - LITERATURE REVIEW 

CHAPTER 2: LITERATURE REVIEW 

This chapter provides a review of current state of the art in MOUT 

simulations. As we intend to adapt game engines for MOUT simulations, 

an overview of relevant commercial computer games is done. Apart 

from the implementation and design of the simulation platform, there is 

a need to further advance on existing physics simulation and software 

architectures. Thus, qualitative physics simulation techniques and 

software architecture designs are discussed in this chapter as well. 

2.1. Evolution of MOUT 

Throughout the history of the military, terrain has played a pivotal role 

in influencing the outcome of battles. From amphibious assaults to 

fighting in wide-open deserts, to hacking through dense tropical forests, 

each unique landscape presents a new set of challenges and 

requirements [5] . 

In ancient and medieval times, a city's only real military significance 

was its fortifications and its garrison. Once these obstacles were 

overcome, a city ceased to be a major military impediment. Most of the 

actual fighting was done on battlefields far from city centers. 

In modern times, however, as the world becomes more and more 

urbanized, most fighting now takes place in the cities themselves and 

these urban centers are proving to be major military obstacles that are 

not easily overcome. In addition to being large enough to completely 

block a strategic avenue of approach onto enemy soil, a city's 

population poses major security, administrative, and logistical problems 

for the invader. 

Urban operations require a completely new type of warfare. Where 

NANYANG TECHNOLOGICAL UNIVERSITY 7 



CHAPTER 2 - LITERATURE REVIEW 

armies used to win battles based on their numbers and the destructive 

power of their weapons, today's armies now find that their old 

strategies do not work when fighting in urban environments. In a city 

setting, the enemy can attack from any direction, and then disappear 

back into the civilian population quickly. Heavy artillery and airspace 

superiority becomes ineffectual in a city, where civilian casualties must 

be avoided. 

Today's military forces are discovering that the only way to effectively 

cleanse a city of its hostile elements is with the use of small, 

technologically superior squads of soldiers that excel in block-to-block 

combat. This method is much more dangerous for the invader, 

however, and requires highly trained and well-coordinated teams of 

individual soldiers. 

Tactics for fighting in urban terrain are constantly evolving as 

tomorrow's challenges arise. Where the tank and heavy artillery used to 

reign supreme on the battlefield of yesterday, it is carefully coordinated 

squads of individuals that will determine a battle's outcome in the new 

urban battlegrounds of tomorrow. 

2.2. Overview of Computer Games used for Simulation Research 

Today, commercial game software running on Personal Computers 

(PCs) are giving simulation software a run for their money with regards 

to the high standards of graphics, physics and realistic simulations. 

During the past few years, the gaming industry had even outgrown the 

movie industry. With the evolution of PCs, the most complex rendering 

pipelines can be found in the market for less than S$500. With First-

Person-Shooter (FPS) games being able to provide a high-fidelity virtual 

environment, or at least a very close match, it can be a suitable 

environment for scientific research, simulations and applications [6]. 

We aim to raise awareness on the usage of such high-power and low 

NANYANG TECHNOLOGICAL UNIVERSITY 8 



CHAPTER 2 - LITERATURE REVIEW 

cost game engines in research. In fact, simulation research around the 

world has been using computer games for research [7 , 8 ] . 

2.2.1. Game Engines 

The rationale for using a game engine in the research is that it supports 

advanced graphic rendering and animation control which makes it an 

ideal development environment. The game engine is the most crucial 

component of a computer game. I t handles rendering and include 

additional tasks such as A I , game physics, collision detection between 

game objects, etc. The most common element that a game engine 

provides is graphics rendering facilities (2D or 3D). In today's context 

where PCs are so affordable, 3D rendering capabilities which produce 

realistic virtual environments allow complex animation and human-like 

behaviours to be generated. Game engines were also designed with the 

content developed separately. This separability allows game codes to be 

used in scientific research. 

Virtual World (Level Editing) 

Game Code (Game Logic) 

Game Engine 
Network 
Code 

Operating System 

— p . Server 
< 

To Clients or other 
instances of the game 

Figure 2-1: Modular game engine structure 

NANYANG TECHNOLOGICAL UNIVERSITY 9 



CHAPTER 2 - LITERATURE REVIEW 

In a game engine structure as shown in Figure 2-1, the game logic and 

environment level are not explicitly shown. The virtual world can be 

designed and interact with the game engine together with the game 

logic. This can be seen at the top level in Figure 2-1. In addition, these 

levels allow a complex environment and game logic to be developed 

quickly without the burden of graphics programming and creating 

motion physics of characters and objects. 

In a multiplayer game, the engine can work with the server through the 

network code to render and create the global environment shared by all 

clients. There are many popular commercial game engines available, 

but two of the most popular ones are Unreal engine and Quake engine. 

They are reputed to provide an efficient and realistic framework to a 

FPS environment [9, 10, 11]. 

2.2.1.1. Quake Engine 

Quake is a client-server application, as shown in Figure 2-2. All 

simulations are performed on the server, and all input and output take 

place on the client, which is basically nothing more than a specialized 

terminal. In multiplayer games, the client and server are separate 

processes, running on different machines [12]. 

Quake was designed from the start for multiplayer gaming. It uses 

reliable packet delivery only for information such as scores and level 

changes. The Quake server maintains the game's time base and state, 

performs object movement and physics, and runs the core AI. The 

most interesting aspect of the server is the extent to which it's data-

driven. Each level (the current "world") is completely described by 

object locations and types, wall locations, and so on stored in a 

database loaded from disk. With Quake engine as the first generation 

NANYANG TECHNOLOGICAL UNIVERSITY 10 



CHAPTER 2 - LITERATURE REVIEW 

game engine, it uses the C programming language as its source 

programming language. 

I n p u t 
— K e y b o a r d 

— M o u s e 

1 

C l i e n t 

O u t p u t 
— 3 D r e n d e r 

— 2 D d r a w i n g 
— S o u n d 

t 

C o m m u n i c a t i o n s L a y e r 

4 
T r a n s p o r t 
L A N / W A N 

t 

C o m m u n i c a t i o n s L a y e r 
L 

S e r v e r 
i r 

T i m e b a s e 
G a m e s t a t e s 

A I 
M o v e m e n t 
P h y s i c s 

Figure 2-2: Quake's architecture 

Quake only has a limited number of games that have been modified. 

This is due to the complexity of its modular game engine structure 

where modification is very difficult. Thus many coders only concentrate 

on creating the map/level and agents' intelligence. The game, Counter 

Strike as shown in Figure 2-3, would be most suitable for the 3D 

environment for this project. 

NANYANG TECHNOLOGICAL UNIVERSITY 11 



CHAPTER 2 - LITERATURE REVIEW 

Figure 2-3: Counter Strike - Modified Game using Quake Engine 

2.2.1.2. Unreal Engine 

The Unreal engine was originally released by Epic in 1998 under the 

"Unreal" title [13]. The engine is designed to allow third party 

developers to create their own games either by developing a 

modification that plays under one of Epic's games, or by licensing the 

engine itself to produce a whole new game. Unreal engine basically 

powers the popular futuristic game, Unreal Tournament as shown in 

Figure 2-4. Unreal Tournament is an off-the-shelf extendable 3D game 

engine that supports networked play. 

NANYANG TECHNOLOGICAL UNIVERSITY 12 



CHAPTER 2 - LITERATURE REVIEW 

Figure 2-4: Unreal Tournament Game 

Unreal introduces gaming with an approach termed the generalized 

client-server model. Furthermore, the "game state" is self-described by 

an extensible, object-oriented scripting language which fully decouples 

the game logic from the network code. This achieves a goal of object-

orientation which allows extensibility without introducing dependencies 

on other pieces of code which are hard-wired to know about the internal 

implementation of that object. This is the most important aspect of the 

engine. As opposed to Quake engine, Unreal engine have its own 

scripting language, Unreal script. Unreal Script can be used for 

programmers to dwell into the engine's object-oriented model [14]. The 

engine's architecture is shown in Figure 2-5. 

NANYANG TECHNOLOGICAL UNIVERSITY 13 



CHAPTER 2 - LITERATURE REVIEW 

r 

LEVEL 
GAME TYPE 
GAME CODE 

Engine Network 

\ 

OpenGL, DirectX, etc. 

/ Client(s) 

— Client(s) 

^ Client(s) 
4. ij 

Underlying Hardware/Operating System 

Figure 2-5: Unreal Architecture 

The main goal of the network code is to enable the server to 

communicate a reasonable approximation of the game state to the 

clients so that the clients can render an interactive view of the world 

which is close to a shared reality with a reasonable given bandwidth 

limitations. Instructing the clients to execute their own functions does 

this. 

Unreal Tournament can be modified into many games because the 

Unreal Engine allows different game plays or scenarios to be made. By 

class extension, the programmer can modify the game to whatever 

game play limited only by imagination. For example in Figure 2-6, 

Jupiter Effect is one of the modified games from a FPS to an aircraft 

simulation game. There are also modified games developed to be 

suitable for this project. One of it is Infiltration, which has been used in 

multi agent research in universities like Carnegie Mellon University 

(CMU) and University of Southern California [15]. 

NANYANG TECHNOLOGICAL UNIVERSITY 14 



CHAPTER 2 - LITERATURE REVIEW 

Figure 2-6: Jupiter Effect & Infiltration 

2.2.2. Review of Game Engines 

Table 2-1 compares the two games against basic criteria and 

functionality of the systems. 

Game engine 

Price 
Response 
High fidelity 3D environment 
Level/Map editor 
Object Oriented Programming 
Easy to understand 
Supports multiplayer 
Customizable Game plays (game type) 
Suitability of modified games 
Debugging Facility 

Quake 

Aprox. $20 
Fast 
Yes 
Third party software 
No (modular) 
No 
Yes 
Yes 
No 
Yes 

Unreal 
Tournament 
Aprox. $20 
Fast 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Table 2-1: Summary of Features 

From Table 2-1 , there are differences between Quake and Unreal 

engine, and both provide high quality features for research purposes. 

Quake engine provides hard core coding for the programmer. It dwells 

in the C language for most part of the development and does not 

support Object Oriented programming (OOP). To modify the code and 

create a custom game play, it will be demanding for the inexperienced 

NANYANG TECHNOLOGICAL UNIVERSITY 15 



CHAPTER 2 - LITERATURE REVIEW 

programmer. Though it has a large community of coders and tools; its 

core language makes it difficult for inexperienced programmers to work 

on it. In addition, the game does not come with its own level editor 

tool. 

In contrast, Unreal Tournament (UT) is designed for programming. 

Many tools and resources are available to everyone. One competitive 

advantage over Quake on programming with Unreal Tournament is 

that, the programmer can avoid needless reinventing while benefiting 

from a proven development platform. With OOP as the core 

programming technique, a programmer can make robust changes in 

game behaviour without requiring detailed knowledge of the involved 

code. The Java like scripting language, Unreal Script, is also easy to 

understand. The game even comes with a well-designed UnrealEd2 

development environment, a level editing tool. It is used as a Web 3D 

Authoring Environment in other area of research [16]. 

The choice is clear now that there is much more for the researcher in 

UT than in Quake. Both games have their strength and weaknesses; 

however the OOP aspect of UT has a greater advantage over Quake. 

As UT was released in 1998, more powerful versions of the series such 

as Unreal Tournament 2003 (UT2003) and Unreal Tournament 2004 

(UT2004) are currently in the market. UT2004 runs on the Unreal 

Engine 2.0 instead of Unreal Engine 1.0 as in UT. Besides that, the 

game editor is also improved from UnrealEd 2.0 to the UnrealEd 3.0. 

Although UT2004 has higher hardware requirements than Unreal 

Tournament 1999 (UT1999), UT2004 dominates the Unreal Tournament 

1999 in all other areas. 

UnrealEd - A 3D Editing tool used to create maps/levels for the game. 

NANYANG TECHNOLOGICAL UNIVERSITY 16 



CHAPTER 2 - LITERATURE REVIEW 

After careful consideration, it was decided that Unreal Tournament 2004 

be used as the environment for this project. 

2.3. Case Studies 

We study some case studies on how game technologies had benefited 

other areas such as military simulation and education. 

2.3.1. Full Spectrum Command 

Full Spectrum Command is a PC strategy game employed as a training 

tool to simulate battlefield co-ordination at the company level [17]. The 

training aid spawned from a technology partnering agreement between 

the US Army and Singapore Armed Forces. The game is designed to 

develop the infantry commander's cognitive skills, tactical decision­

making, resource management and adaptive thinking through various 

scenarios. These scenarios are focused on asymmetric threats within 

peacekeeping and peace-enforcement operations. A scene in the game 

is shown in Figure 2-7. It allows the user to understand the importance 

of terrain analysis and the potential fratricide situations that can occur 

during a battle. 

NANYANG TECHNOLOGICAL UNIVERSITY 17 



CHAPTER 2 - LITERATURE REVIEW 

Figure 2-7: Full Spectrum Command 

Key Features: 

• Custom designed to reflect current operational tactics 

• Head-to-Head multiplayer capability via LAN. 

• User-level editor for scenario customization. 

• Instructor evaluation mode for curriculum-based usage. 

FSL 1.0 is developed by the Institute of Creative Technologies (ICT) in 

California, US. ICT was formed by the US Army and the University of 

Southern California, bringing together the Hollywood film community 

and Silicon Valley-based electronic games developers to work on state-

of-art immersive training simulation. Besides the US Army, the 

Singapore Army is one of the few users to use FSL 1.0. 

NANYANG TECHNOLOGICAL UNIVERSITY 18 



CHAPTER 2 - LITERATURE REVIEW 

2.3.2. Attention Disorders in a Virtual Classroom 

Research in simulation can be used for the analysis of clinical 

populations with central nervous system dysfunction. The University of 

Southern California's Integrated Media Systems Center and Digital 

Media- Works have partnered to develop The Virtual Classroom for the 

assessment of attention processes in children who suffer from attention 

deficit hyperactivity disorder. The Virtual Classroom, as shown in Figure 

2-8, provides an efficient and scalable tool for conducting attention 

testing. Within this scenario, the child's attention performance will be 

assessed while a series of common classroom distracters were 

systematically presented. 

Figure 2-8: Virtual Classroom Commercial Version 

Building a virtual environment as visually and functionally realistic as 

possible is a primary goal. Budget and resource constraints spawned 

the innovative approach of using mainstream commercially available PC 

hardware and software. The team decided to use the Unreal game 

engine as the foundation for the application's real-time rendering 

component as such software would provide the production team with a 

rapid prototyping tool capable of producing a quality product without 

placing dramatic demands on available budget and resources. 

NANYANG TECHNOLOGICAL UNIVERSITY 19 



CHAPTER 2 - LITERATURE REVIEW 

2.3.3. Analysis of Case Studies 

Evident from the case studies, the game engines and game 

environment are being used by researchers and the militaries to create 

simulation tools. This trend adds strength to the project objectives of 

employing a game engine to produce a virtual environment as a 

simulation tool. The lessons learned from the case studies are used to 

set the standards of the project development goals. This project seeks 

to provide a virtual environment that can add certain academic value to 

the MOUT simulation research of Nanyang Technological University. 

The Full Spectrum Command is a powerful training tool to the US and 

Singapore armies but the program is mainly based on jungle terrain. 

Furthermore, the program not open-source and is only available to the 

military. There are bound to be high licensing costs for the School to 

acquire the software. 

The virtual classroom provides a good case study for design of a 

modification to the Unreal Engine 2.0. The goal of studying the subjects 

through a simulation environment is similar to the objectives of the 

Twilight City. 

Thus, the development of a simulation tool with the Unreal Engine 2.0 

as a platform is a feasible approach. Furthermore, the implementation 

of this simulation tool, which focuses on MOUT environment instead of 

jungle terrain, will aid researchers in MOUT simulation and save huge 

costs at the same time. 

2.4. Physics Simulation 

One of the major considerations in building a virtual MOUT training 

environment is the fidelity of the virtual environment. As movable 

NANYANG TECHNOLOGICAL UNIVERSITY 20 



CHAPTER 2 - LITERATURE REVIEW 

objects such as bottles, boxes and chairs, etc. are quite common in 

real-life, it is important to incorporate these objects (see Figure 2-9) in 

the virtual environments. 

However, in the existing MOUT simulations, besides the avatars of the 

soldiers and vehicles, most objects are static. The reason for this is that 

modeling and implementing movable objects is a challenging task in 

terms of computational costs and mathematical complexities. 

Traditional methods to implement movable objects are based on exact 

physics models and numeric analysis, thus are very time-consuming 

[19]. The responsiveness of the system may be greatly affected by the 

behavior of the movable objects. 

Due to limitations in computational resources, simulation of movable 

objects within a simulation environment is often neglected. We 

examined the state of the art in 3D physics simulation and study 

qualitative physics methods in greater detail. 

2.4.1. Karma Engine 

A physics engine is one that implements a general mathematical model 

of real-world objects and their interactions. The application configures 

the model and defines the objects within it, and the physics engine 

evolves the positions and velocities of the objects over time in response 

NANYANG TECHNOLOGICAL UNIVERSITY 21 



CHAPTER 2 - LITERATURE REVIEW 

to input from the application. A study on a commercial physics engine, 

Karma, is done. 

Karma Engine is a physics and collision detection software package 

[18]. Software libraries provided contain routines that users can call on 

to quickly and easily add physical behaviour to their 2D or 3D 

environment. While the Karma product is suitable for a wide range of 

applications users should note that it is targeted at the games and 

entertainment markets. Karma is aimed at developers of real-time 

entertainment simulation software who are familiar with the C 

programming language and have a basic knowledge of maths. In broad 

terms Karma consists of collision detection and dynamic simulation 

modules that may be used alone or together. The Karma Bridge 

provides an API that simplifies the interoperation of Karma Dynamics 

and Karma Collision. A basic cross platform Tenderer that wraps the 

DirectX and OpenGL graphics libraries is provided. Karma computes 

exact physics and takes up a huge amount of computational resources. 

Thus, a more efficient technique such as qualitative physics should be 

used to improve on the existing state of the art. 

2.4.2. Qualitative Physics 

Qualitative physics is a research area that aims to provide a new 

repertoire of reasoning techniques for computers and automate human 

reasoning about the physical world. Qualitative physics attempts to 

model the real world using some qualitative rules rather than resorting 

to the exact physics [20, 21 , 22]. According to the hypothesis of 

qualitative physics, commonsense reasoning and expert reasoning are 

similar enough to justify a unified treatment. The common challenge is 

to answer qualitative questions about complex systems based on partial 

NANYANG TECHNOLOGICAL UNIVERSITY 22 



CHAPTER 2 - LITERATURE REVIEW 

knowledge. The soccer player has only a rough idea of how the ball 

moves and the basketballer knows only approximately how high the ball 

Kuipers sees qualitative reasoning as the task of formulating and 

analyzing dynamical systems that model commonsense or expert 

domains [55]. Like most qualitative physics researchers, he believes 

that ordinary differential equations are inappropriate for qualitative 

reasoning because they presuppose complete, precise models of 

dynamical systems, which are often unrealistic and unnecessary. People 

cross streets without knowing exactly how fast the traffic is moving or 

how quickly it can screech to a halt. Engineers design and repair 

artifacts whose physics is unmanageably complex or incompletely 

understood. Kuipers extends the language of ordinary differential 

equations with constructs that encode partial knowledge about variable 

values and about the structure of the equations. The task of qualitative 

reasoning is to formulate and analyze generalized equations. 

New modeling languages have been developed with the progress of 

qualitative physics. These languages describe entities and processes in 

conceptual terms and embody natural notions of causality. Qualitative 

physics has been used in various areas. For instance, Marc Cavazza and 

his team used qualitative physics in digital arts to simulate various 

fancy behaviors of objects [23, 24]. In their work, they describe a new 

approach to the creation of virtual environments, which uses qualitative 

physics to implement object behaviour [25, 26]. Qualitative Process 

Theory was adopted as a qualitative reasoning formalism, due to its 

representational properties (e.g., its orientation towards process 

ontologies and its explicit formulation of process' pre-conditions). The 

system they describe is developed using a game engine and takes 

advantage of its event-based system to integrate qualitative process 

simulation in an interactive fashion. They use a virtual kitchen as a test 

environment. 

NANYANG TECHNOLOGICAL UNIVERSITY 23 



CHAPTER 2 - LITERATURE REVIEW 

Over the last decade there have been several important efforts aimed 

at using qualitative physics in digital arts but little effort has been our 

work, we have implemented various behaviours: physical object 

behaviour, complex device behaviour (appliances) and "alternative" 

(i.e. nonrealistic) behaviours, which can all be simulated in user real­

time. As Marc Cavazza and his team were mainly focused on heat 

transfer and water flow simulation in their work, they did not consider 

simulation of movable object with qualitative physics. In our research, 

we seek to improve on simulation of movable objects through 

qualitative physics. 

2.5. Software Architecture 

Due to the rapidly changing needs of the military users, we realize that 

just building a good test bed is not enough. We need to have a scalable 

and flexible architecture that can be reconfigured swiftly to meet 

simulation requirements. Such a system is possible if composing 

existing models from a model repository can minimize development 

efforts. To achieve reusability and composability, the simulation 

systems must have interoperable models. Presently, model 

interoperability is a huge challenge due to the application specific 

nature of existing models. These models are built with a stovepipe 

development approach. As a result, replicates of existing models are 

continually being rebuilt for different applications. This needless 

reinvention causes costly and time consuming development iterations. 

To address these issues, an elegant architecture is needed to quickly 

develop virtual environments and support reuse from a common 

repository of interoperable and extensible models. We did a study on 

simulation interoperability issues and attended the Spring Simulation 

Interoperability Workshop 2006 in Huntsville, Alabama, USA. At the 

same time, we did a review on some existing systems that support 

simulation model reuse. 

NANYANG TECHNOLOGICAL UNIVERSITY 24 



CHAPTER 2 - LITERATURE REVIEW 

2.5.1. Simulation Interoperability Standards Organization (SISO) 

The Simulation Interoperability Standards Organization (SISO) is an 

international organization dedicated to the promotion of modeling and 

simulation interoperability and reuse for the benefit of a broad range of 

M&S communities. SISO's Conference Committee organizes Simulation 

Interoperability Workshops (SIWs) in the US and Europe. SISO's 

Standards Activity Committee develops and supports simulation 

interoperability standards, both independently and in conjunction with 

other organizations. SISO is recognized as a Standards Development 

Organization (SDO) by NATO and as a Standards Sponsor by IEEE. 

In 2003, the IEEE Computer Society Standards Activities Board (SAB) 

granted the SISO Standards Activities Committee (SAC) status as a 

recognized IEEE Sponsor Committee. SISO now maintains two major 

families of IEEE standards, IEEE 1278 (Distributed Interactive 

Simulation) and IEEE 1516 (High Level Architecture for Modeling and 

Simulation). 

NANYANG TECHNOLOGICAL UNIVERSITY 25 



CHAPTER 2 - LITERATURE REVIEW 

2.5.2. Base Object Model (BOM) 

The Simulation Interoperability Standards Organization (SISO) focuses 

on facilitating simulation interoperability across government and non­

government applications worldwide. One of SISO's interests is to 

explore methods that support and promote reuse of simulation 

components and encourage agile, rapid, and efficient development and 

maintenance of models. 

Base Object Models (BOMs) provide a key mechanism in facilitating 

interoperability, reuse, and composability. BOMs are specifically 

identified in the IEEE 1516.3 High Level Architecture (HLA) Federation 

Development and Execution Process (FEDEP) as a potential facilitator 

for providing reusable model components used for the rapid 

construction and modification of federates and federations. The open 

standardization of BOM representations is considered essential for 

encouraging their development, distribution and use [27]. 

The BOM concept is based on the assumption that piece-parts of 

simulations and federations can be extracted and reused as modeling 

building blocks or components. The interplay within a simulation or 

federation can be captured and characterized in the form of reusable 

patterns. These patterns of simulation interplay are sequences of 

events between simulation elements. The implementation of the 

pattern using HLA object model constructs is also captured in the BOM 

[28]. 

Although BOM is an emerging standard for model interoperability, it 

does not support game engine based interoperability. In fact, there is 

not much work done in support game engine interoperability. In our 

work, we take the lessons learnt from BOMs and improve on our own 

game engine-based models. 

NANYANG TECHNOLOGICAL UNIVERSITY 26 



CHAPTER 2 - LITERATURE REVIEW 

2.5.3. Joint Modelling and Simulation Environment for Wargaming 

and Experimentation Labs (JEWEL) 

As a small nation, Singapore has limited human resources, land and 

airspace. The strategic use of Modelling and Simulation (M&S) to help 

Singapore overcome these constraints is therefore crucial. Thus, 

Singapore formulated her simulation master plan, called the Vision for 

SAF Simulations (VSS), back in the mid-1990s. The Joint Modelling 

and Simulation Environment for Wargaming and Experimentation Labs 

(JEWEL) was conceived as the simulation environment in support of 

VSS [29, 30]. This enterprise-wide approach to simulation is analogous 

to what is happening in the business and command and control (C2) 

worlds. 

Designed with reusability and interoperability as its primary precepts, 

JEWEL would be an open software environment that allows the 

incorporation of new technologies and standards from governmental, 

commercial and R&D bodies. It would be a launching platform from 

which new application needs can be satisfied accurately and quickly. 

To maintain openness and as a result future-proof JEWEL, DSTA 

believes that substantial attention must be devoted to its information 

architecture, both in terms of representation as well as content, as 

demonstrated in their adoption of HLA and Extensible Markup 

Language (XML), among other standards. JEWEL would support the 

Singapore Armed Forces (SAF) in training, analysis, experimentation 

and acquisition. 

JEWEL is a collection of data and interface specification standards, 

frameworks and tools, and composable models and databases. 

Repositories ofc Models and databases refers to the physical set of 

reusable models and databases that are developed or acquired to 

perform specific simulation functions. A layer of frameworks and tools 

provide the glue essential for the different simulation tools to integrate 

seamlessly with one another. Some of these tools are available 

NANYANG TECHNOLOGICAL UNIVERSITY 27 



CHAPTER 2 - LITERATURE REVIEW 

commercially of the shelf while others are custom-developed for the 

JEWEL environment. In order to enhance the level of interoperability 

among simulation systems, and between simulation and C4I systems, 

it is important that these systems adopt consistent data and interface 

specification standards. This would minimise the problems associated 

with the interpretation and mapping of data as a result of 

representation differences. 

Although JEWEL can provide a environment for model interoperability 

and support re-configurable simulations, there is no work done at the 

moment to enable game engine-based simulation model 

interoperability within JEWEL. As our training system is currently being 

integrating into the JEWEL environment, we need to consider the 

design of the interoperability of our game engine based models. Thus, 

as covered in Chapter 5, we hope to build on existing work and expand 

the present suite of interoperable models to include game engine 

based models. 

NANYANG TECHNOLOGICAL UNIVERSITY ~ r. 



CHAPTER 3 -TWILIGHT CITY DESIGN 

CHAPTER 3: TWILIGHT CITY DESIGN 

The goal of our Twilight City project is to create high-fidelity training 

and analyzing system for MOUT. A typical application scenario is the 

special squad operation for saving hostages held in a building by a 

group of terrorists. Various operation tactics need to be investigated 

before the real squad operation. The constructed virtual environment 

needs to resemble the real operation environment not only in terms of 

human's visual and audio perceptions but also in terms of the behavior 

of the non-player characters (i.e., AI bots). Creating such a high-

fidelity virtual environment is a challenging task. Although there is 

some work on the application of FPS engines to military training, the 

design requirements may be different for different training tasks and 

scenarios. As pointed out by E. Lewis and M. Barlow in [31], "The 

games must have sufficient fidelity to provide valid results. This fidelity 

does not have to be complete in all aspects, just enough in the 

variables of interest." In the following sections, we identify the major 

considerations on the design of Twilight City. 

3.1. Analysis of MOUT scenarios 

Military operations in Panama, Somalia, Kuwait and Iraq demonstrate 

the current and future requirements for modern military forces to be 

able to operate effectively in an urban environment. Operations in an 

urban environment will present unique and complex challenges. Our 

MOUT training systems should be able to support MOUT operations 

which are typically stability operations and support operations, include 

Peacekeeping Operations, Combating Terrorism, Noncombatant 

Evacuations, Nation Assistance, Civil Disturbance Operations, 

Humanitarian Assistance [52]. To succeed in battle in built-up areas, 

commanders and leaders at all levels must understand the nature of 

the environment. To assist commanders, MOUT simulations must 

NANYANG TECHNOLOGICAL UNIVERSITY 29 



CHAPTER 3 -TWILIGHT CITY DESIGN 

assist int the analysis of urban terrain on enemy forces, unaligned 

elements, and friendly forces [53]. 

Terrain analysis in an urban environment differs from that of open 

terrain in many respects. The analysis of the five military aspects of 

terrain—obstacles, avenues of approach, key terrain, observation and 

fields of fire, concealment and cover (OAKOC)—still applies [54]. 

Some of the important structures often involved in MOUT operations 

are listed below with some supporting reasons. 

• Sewer and subway systems can provide infiltration routes. 

• Elevated railways and mass transit routes provide mobility on which 

the urban residents depend; if operations destroy or disable these 

facilities, congestion will occur. 

• Utilities such as electrical, gas, or water facilities may be key 

targets. 

• While forces cannot attack hospitals and clinics when not under use 

for military purposes, they may be a source of medical support for 

all factions and elements. 

• Stadiums, parks, and sports fields may serve as holding areas, 

enemy prisoner of war (EPW) facilities, or landing and pickup 

zones. 

The soldier must somewhat alter analysis of the five military aspects of 

terrain (OAKOC) to consider fully the unique aspects of urban terrain. 

More than any other environment, the urban battlefield is dynamic. 

Depending on the street layout patterns, people can create or 

improvise manmade obstacles quickly to block narrow streets or these 

obstacles may not be a significant factor where streets are wider. 

NANYANG TECHNOLOGICAL UNIVERSITY 30 



CHAPTER 3 -TWILIGHT CITY DESIGN 

Natural obstacles arguably pose less of a problem in urban terrain than 

in open terrain. Rubble caused by direct or indirect fire may impede 

both mounted and dismounted movement. In relatively rare 

circumstances, rubble may actually aid movement, such as when a 

building collapses across a canal, thereby providing access to the other 

side. These are the types of factors that make the urban environment 

dynamic 

Analysis of cover and concealment is also vital to success on the urban 

battlefield. Building characteristics, masonry, wood, brick, and even 

glass can all provide varying degrees of protection from observation, 

as well as the effects of weapons and munitions. 

To build a good MOUT simulation system, it is not enough to describe 

the general characteristics of an urban area. The number of floors and 

rooms in a building are essential to determining the proper allocation 

of forces. A staff will not be able to allocate adequate resources to 

seize an objective or to isolate a series of buildings if the MOUT 

environment does not provide this level of detail. Troops need to react 

well towards surprise attacks, poor visibility, movable objects, smoke 

and noise. Apart from dealing with environmental effects, they must 

manage their voice communications, night vision, weapons and other 

equipments. 

3.2. Virtual City Planning 

The construction of the city environment took a lot of planning before 

the network of interconnected buildings and streets were finally built. 

Various technical and design considerations were necessary to produce 

the simulation system for the MOUT environment. 

The city layout was planned with numerous interconnected buildings. A 

network of roads shall be placed in the city map to allow vehicular 

movement during the MOUT operations. Lifts will be placed in various 

NANYANG TECHNOLOGICAL UNIVERSITY 31 



CHAPTER 3 -TWILIGHT CITY DESIGN 

buildings to allow the soldiers an alternative movement route. Besides 

underground levels, a sewage system is placed into the environment 

as well. Following the principles of MOUT, some of the buildings are 

designed to act as a firebase or reconnaissance point. 

Figure 3-1: Twilight City Top View 

3.3. Training Requirements 

The MOUT environment seeks to provide a test-bed for military 

simulation on urban terrain. The environment seeks to allow as much 

flexibility as possible to the potential users in terms of the types of 

MOUT operations that can be simulated within the environment. Some 

of the MOUT operations are hostage rescue, terrorists search, ambush 

and patrol. Taking the nature of the identified MOUT operations into 

account, high-rise buildings are designed to allow sniper attacks and 

reconnaissance posts. Buildings often complicate military operations in 

urban areas. Their composition, frontages, size, and window locations 

affecting troops positioning and weapons deployment considerations. 

Sewers should be built to facilitate the sewerage sabotage by the 

terrorists. 

NANYANG TECHNOLOGICAL UNIVERSITY 32 



CHAPTER 3 -TWILIGHT CITY DESIGN 

3.4. Special Effects 

Special effects are needed to enhance the realism of Twilight City. 

These special effects can help to provide an immersive environment for 

the MOUT simulation. More importantly, the special effects such as 

smoke, shattering glass, water bodies and rain can help to the testing 

of different MOUT situations. By having shattering glasses, fire and 

smoke during an MOUT battle increases the effectiveness of the 

simulation and brings the trainee closer to real life operations. For 

example, smoke effects reduce the visibility of the soldier in the virtual 

environment and allows the trainee to experience the challenges of 

taking on the enemy when smoke screen is blocking him. 

3.5. Interactive Voice Control 

In most existing MOUT simulations, it seems that much more efforts 

are put on the visual effects rather than on the audio interactions. 

However, we believe that speech synthesis and recognition are integral 

parts of immersive MOUT simulations. With these functionalities, 

human players could communicate with the AI bots verbally, which 

may greatly enhance a human player's sense of immersion in the 

simulation. For example, instead of sending command messages to the 

AI bots in the squad through the keyboard, a human player may issue 

verbal commands to those bots. The bots can also respond to a human 

player "verbally" rather than by sending some text messages to the 

human player's screen. As will be described later, the human factor 

tests with the Twilight City show that these modules indeed help to 

enhance the realism of the virtual environment 

3.6. AI and Bots Issues 

Unreal Tournament 2004 supports the redefinition of object 

behaviours. The object-oriented language, Unreal Script, allows us to 

extend new classes, which can inherit properties of their parents while 

NANYANG TECHNOLOGICAL UNIVERSITY 33 



CHAPTER 3 -TWILIGHT CITY DESIGN 

adding new properties at the same time. User defined classes can be 

extended from the in-game classes and incorporated into the game 

play. These user-defined classes are powerful tools that are capable 

of affecting physical properties of the virtual environments and can be 

incorporated into maps to influence the AI logic. The user-defined 

classes extended from the in-game Mutator Class are commonly 

known as mutators. 

For Twilight City to act as an efficient simulation tool, some features 

must be added to the systems. For example, the game engine can be 

modified to simulate the effects of tsunamis on the Esplanade or to 

test the efficiency of an evacuation plan during a gas attack during a 

concert in Singapore Indoor Stadium. These features can be added in 

the form of modifications to the game engine. Some of the useful 

modifications to game rules and bots AI are identified below. 

Poison Gas Volume is made for the purpose of simulating the effects of 

a gas attack. The Bots Visualiser displays the locations of all the 

soldiers activated within Twilight City. Night Vision is a modification to 

the HUD to allow the testing of night mission with Night Vision 

Goggles. Parachute is a mutator that allows the simulation of airborne 

operations with parachutes in MOUT. Improved Bots Movements is a 

modification to the game engine to change the FSM structure of the 

bots logic in the game engine. This modification will result in a marked 

improvement in bots movement. The bots will become smarter and will 

demonstrate better movement such as increased dodges and jumps. 

Mutators are used to control and adjust properties and events. 

However, an entire overhaul of the game engine can be done. This is 

called a Mod (Modification). The Infiltration mod created for Unreal 

Tournament is a powerful example of such a system [17]. The Wanted 

Man Mod created in this project can be used to simulate a MOUT 

operation in which a terrorist is being hunt down by the rest of the 

NAN YANG TECHNOLOGICAL UNIVERSITY 34 



CHAPTER 3 -TWILIGHT CITY DESIGN 

soldiers. Lastly, the Hostages Rescue Operations can simulate MOUT 

hostage rescues. 

3.7. Customized Animation and Models 

The Unreal Engine is developed to support futuristic First-Person-

Shooter games, so the embedded animations available are all standard 

game motions. For the MOUT simulations, there is a need to add 

custom animations to fulfill specific needs. The purpose of this area of 

research in this project is to explore and develop techniques for 

creating custom animations and models. To test the custom 

animations and models, a short clip will be made from the animations 

of some custom models. The animations and models created will aid 

greatly in enhancing the realism and accuracy of simulation. In the 

later sections, descriptions of the techniques explored and used to 

develop the animations will be covered. 

3.8. Physics Simulation 

Movable objects can increase realism during simulation. However, 

most simulated objects are non-movable due to the need to limit the 

computational overheads. To overcome this limitation, we applied 

qualitative physics to provide acceptable physics behaviors at a low 

computation cost. As this is considered a major contributed of our 

work, we shall cover this in detail in Chapter 5. 

Traditional physics-based simulation is based on the kinematics 

equations of an object. The behaviour of the object is then generated 

by numerically solving these equations, which may need huge 

computational resources for real-time simulations. Thus, it may not be 

feasible to perform such precise simulations at a large scale in real­

time applications like MOUT simulations. In most cases, achieving a 

rapid estimate of the behaviour can provide a lightweight yet good-

enough alternative as compared to the precise solutions of the 

kinematics equations. 

NANYANG TECHNOLOGICAL UNIVERSITY 35 



CHAPTER 3 -TWILIGHT CITY DESIGN 

Qualitative physics aims to perform behaviour simulation at certain 

acceptable levels of realism and accuracy so as to fulfill some 

operational requirements while keeping the computational load low. In 

essence, qualitative physics applies our knowledge of the qualitative 

(causal) relations of various factors in the physical world to the 

behaviour modelling of the objects in the virtual environment [32]. 

Human beings are more sensitive to the qualitative (causal) relations 

among various objects and factors rather than on the exact physics of 

the objects. They rely on these relations in their reasoning about the 

environment and make decisions. Therefore, qualitative physics 

focuses on the changes in the environment, e.g., changes in water 

level, position changes, orientation changes, etc. In qualitative 

physics, changes in the environment are described in terms of process. 

Examples of processes are movement of water from a high ground to a 

low ground, heat transfer from an object with higher temperature to 

another object with lower temperature, etc. Such processes are 

activated due to the relationships that exist among the objects in the 

environment. A process is determined to be active or inactive by 

assertions of some preconditions and quantity conditions. The process 

specifications allow the system to automatically infer a set of active 

processes. An active process will then perform the necessary changes 

through its influences. 

3.9. Architecture for Rapidly Re-configurable Simulations 

Unreal engine is mainly a visualization engine, which can be supported 

by external applications. These applications can be qualitative physics 

engines to provide augmented reality. The external engines can be 

used to monitor bots actions or perform voice controls as well. Work 

should be done on the software architecture of the system so that 

Twilight City can demonstrate good extendibility and cooperation with 

external modules. Therefore, the project will come up with effective 

architecture designs on which the virtual environments are developed. 

NANYANG TECHNOLOGICAL UNIVERSITY 36 



CHAPTER 3 -TWILIGHT CITY DESIGN 

The main objective that our architecture seek to fulfill is to support 

rapid development of future environments according to the changing 

requirements of modern MOUT warfare. These architecture setups will 

serve as templates and guides for future researchers. Greater detail on 

our rapidly re-configurable architecture will be covered in Chapter 6. 

3.10. Al Framework for Group Coordination 

As the Twilight City will be employed for group size operations, it will 

be beneficial to set up a framework for group movements and tactics. 

Three types of group maneuvers are identified. They are namely 

Follow, Gather and Hunt. Follow refers to a movement when the bots 

follow a leader. Gather will command the bots to gather at a specified 

location. Hunt will release the bots to search for terrorists. The 

maneuvers will be performed through the use of the FSM structure of 

the bots and voice commands will be used for the activation. These 

group coordination techniques will be useful in the scenarios described 

in the next sections. 

NANYANG TECHNOLOGICAL UNIVERSITY 37 



CHAPTER 4 - IMPLEMENTING TWILIGHT CITY 

CHAPTER 4: IMPLEMENTING TWILIGHT CITY 

This chapter describes the implementation of the Twilight City. Minor 

details like setting the virtual environment up will not be covered in 

detail as it will be a tedious procedure. The main emphasis of this 

chapter will be implementing the part of using this system as a 

simulation platform for MOUT operations. This will entice the reader or 

researcher about implementing MOUT simulations with Twilight City. 

4.1. Construction of the Environment 

The construction of a virtual environment is a tedious process, which 

involves many time-consuming and repetitive steps. A lot of the simple 

steps that can be picked by through online tutorials will not be covered 

here. Therefore, this section will focus on the major development of 

the environment building. 

Figure 4-1: Twilight City 

NANYANG TECHNOLOGICAL UNIVERSITY 38 



CHAPTER 4 - IMPLEMENTING TWILIGHT CITY 

The above environment was built up from Unreal Editor 3.0 and most 

of the models were developed within 3D Studio Max [33]. The 

buildings were completed with interiors such as corridors, staircases, 

lifts and furniture. We built up an environment of an 8km by 8km area 

with a city in the centre and vegetation on the outskirts. There are 35 

buildings in the city and the sizes of the buildings ranges from 2 to 15 

stories. Vehicles, helicopters and ships are built in 3D Studio Max and 

imported into the environment as well. We have 4 types of ships 

including a submarine. We had added over 200 civilians and soldiers 

into the city to provide crowd simulation. The development of the 

environment and its models was done over 2 years and is an ongoing 

process. Construction of human models and vehicles are time 

consuming as behaviours are to be added via Unreal Script after the 

3D models are produced. 

4.2. Al Bots Paths Allocation 

AI bots path allocation prevents the bots from standing in the corners 

and ignoring the rest of the entities. To be specific, PathNodes need to 

be laid out. Bots prefer wide paths and perform better when given lots 

of choices in paths selection. Bots will tend to take the shortest route 

when running to the mission objective. Thus, AssaultPaths should be 

set up so that the bots can coordinate their attacks among multiple 

routes. They are primarily used to recommend varied attack routes to 

the bases. The paths are assigned weights so that the bots can select 

a particular route. Leaving the paths all at equal weights and the bots 

should use them all equally. 

Bots paths are built with the Unreal Editor. We can easily place path 

nodes into Twilight City with the Unreal Editor. We can place PathNodes 

(a subclass of NavigationPoint) on surfaces which agents can walk on, or 

in volumes which agents can swim in. PlayerStarts are also 

NavigationPoints, and they perform the same navigation function. 

NANYANG TECHNOLOGICAL UNIVERSITY 39 



CHAPTER 4 - IMPLEMENTING TWILIGHT CITY 

For PathNodes to connect, they should be less than 1200 Unreal units 

apart (programmers can modify MAXPATHDIST in UnPath.h to change 

this value). Having two NavigationPoints too close together 

(overlapping) can cause AI navigation problems and should be 

avoided. When placing PathNodes, the goal is to make sure that every 

area of the level is covered by a PathNode or some other 

NavigationPoint. An area is covered if an agent could walk to some 

PathNode less than 1200 units away completely unobstructed (i.e. 

without having to step around anything). 

After placing PathNodes, we can build the connections between 

NavigationPoints by using the Build AI Paths option in the Build menu 

(or by doing a full rebuild). Once paths have been built, they can be 

seen in the various view windows by using the Show Paths option 

under the View menu. 

Paths will be displayed as lines from one NavigationPoint to another. If 

agents can traverse the path in either direction, there will be two lines, 

with an arrowhead pointing in each direction. Otherwise, the line will 

show with an arrowhead in which direction the path can be traversed. 

Even if the agents using the paths are small, it is always better to 

tweak the PathNode positions to make the connecting paths as wide as 

possible, agents will smoothly round corners, or strafe back and forth 

within a path, so larger paths will result in more natural looking 

movement. 

Once a level has a large number of paths, it can take a while to rebuild 

all the paths. To tweak path placement, use the Build Changed Paths 

button in the Build Options menu. This will only rebuild paths between 

NavigationPoints which have been added, removed, or moved. Before 

saving and playing the level, however, a full path rebuild is required. 

NANYANG TECHNOLOGICAL UNIVERSITY 40 



CHAPTER 4 - IMPLEMENTING TWILIGHT CITY 

After building paths, a window may pop up in the editor with a list of 

pathing errors. Click on an error to take you to the offending 

NavigationPoint. 

4.3. Speech Synthesis and Recognition 

To enhance the interactivity of Twilight City, we have implemented a 

speech synthesis and recognition module using Microsoft's Speech SDK 

5.1. We chose this toolkit for speech synthesis and recognition for two 

reasons. First, it has good APIs and is easy to use. Second, it reduces 

the code overhead required for an application to use the speech 

synthesis and recognition. Speech synthesis is straightforward by 

using the Text-To-Speech module in the toolkit. With the speech 

synthesis function, the bots can communicate with a human player by 

some simple words like "Yes, Sir!", "Danger!", and " I am on my way." 

etc. We believe that the voice synthesis functionality can greatly enrich 

the experiences of a human player in the environment, though it is still 

rather simple at the current stage of our project. 

The implementation of the human voice recognition function needs 

much more effort. From Figure 4-2, we can observe that human voices 

are firstly received and translated into text messages. To this end, 

voice training must be done with Microsoft Speech SDK. Then, the 

built-in Interaction class of UT 2004 is extended so that it can intercept 

not only the keyboard inputs, but also the text commands from the 

voice module. 

NANYANG TECHNOLOGICAL UNIVERSITY 41 



CHAPTER 4 - IMPLEMENTING TWILIGHT CITY 

Speech Input Program 

V 
Speech to Command Input 

V 
Interaction Class 

V 
Virtual Environment 

Figure 4-2: Interactive Voice Control Process 

A series of tests have been done to evaluate the performance of the 

voice functionalities. Our first finding is that the voice recognition 

module performs best with commands of two or three syllables, e.g., 

"Attack!", "Come to me!" etc. It is difficult for the module to recognize 

more complicated commands. On the other hand, if the command is 

too short, like "Jump!", "Run!" etc., the results are more likely 

influenced by background noises. We also found that there is a positive 

correlation between the amount of training using the Microsoft Speech 

SDK and the response time of the bots to human commands. The 

response time could reach 3 seconds if the voice module is not trained 

properly. After sufficient and careful training, a bot could react to most 

of the human commands in the Twilight City within 1 second. 

4.3.1. Speech Input Program 

The framework of the speech function starts off with the user speaking 

into a microphone. The speech input is received by using Microsoft 

Speech SDK 5.1. To use this application, voice training must be done 

with the software. After sufficient training is done, the computer will be 

trained to recognise the voice of the user. The computer receives our 

NANYANG TECHNOLOGICAL UNIVERSITY 42 



CHAPTER 4 - IMPLEMENTING TWILIGHT CITY 

speech and converts the speech into text. This text is used to binds a 

verbal command to a keyboard button like a one-to-one function. 

4.3.2. Commands Input 

A module that reads the voice inputs from the Microsoft Speech SDK 

5.1 and converts them to corresponding voice commands was 

incorporated into the framework of Twilight City. We then use scripting 

to set certain predefined events that will be activated once certain 

keys are pressed. 

4.3.3. Interaction Class 

The game codes are edited to correspond to key commands to bots 

actions. A mutator is made to extend the in-game Interaction class 

into a modified class that is able to detect and display each key is 

pressed while Twilight City is running. Interactions can intercept key 

input, and intercept string messages. This modified class is used to 

intercept the key events, which can be used to trigger actions. 

Now Twilight City can be activated by voice commands. This voice control 

module allows the development of an interactive virtual environment, which can 

communicate verbally with the human player. With the use of this function and 

the overall architecture design, this function can be used as interactive tool to in 

the analysis of virtual environments by controlling bots maneuvers. 

4.4. Modifications 

The mutators controlling world properties and rules of the virtual 

environment are vital to simulation, AI testing, animation and even 

qualitative physics. In the following sub-sections, the modifications 

produced during the course of the project are discussed. The 

modifications are extended from the game engine and written in the 

Unreal Script before being compiled by the Unreal Engine 2.0. 

NANYANG TECHNOLOGICAL UNIVERSITY 43 



CHAPTER 4 - IMPLEMENTING TWILIGHT CITY 

4.4.1. Bote Visualiser 

A radar system is created to allow the tracking of the bots in virtual 

environment as shown in Figure 4-3. The radar has a zooming 

function. The radar will display vehicles, players and game objectives. 

The radar rotates when turning. This radar system can aid greatly in 

the logging and analysis of team movements during simulations. 

Figure 4-3: Radar Interface in Twilight City 

The radar is placed on top of the head-ups display of the viewer and is 

implemented by adding a bots manager into the game engine. With 

this bots manager, the location of each individual bot is noted and 

display onto the radar screen. 

4.4.2. Geo-spatial Referencing 

Geo-spatial referencing is added to the Twilight City to allow the 

soldier to know the precise location they are at and the direction that 

they are facing. It is an important function that is specified by many 

military users. From Figure 4-4, we can see that the bot's position and 

orientation is at the bottom left corner and a horizontal artificial 

horizon is drawn across the screen. 

NANYANG TECHNOLOGICAL UNIVERSITY 44 



CHAPTER 4 - IMPLEMENTING TWILIGHT CITY 

Figure 4-4: Geo-Spatial Referencing 

4.4.3. Lightning, Thunder and Rain 

Techniques for simulating the lightning, thunder and rain are explored 

and developed in Twilight City. These are conditions that may 

determine the success of a MOUT operation as seen in Figure 4-5. 

The lightning effect is created by using a pre-programmed emitter 

which makes use of a particle system to generate streaks of lightning 

across the sky. As lightning is always followed by thunder, the thunder 

effects were produced by playing a sound file after the lightning 

strikes. 

To build the lightning effect, we first need to build a modified class call 

Lightning class and a random timed event. From the Unreal Engine, we 

can make use of the StochasticTrigger. With the StochasticTrigger, we 

can set minimum and maximum times and a probability within that 

range that an event will fire. 

We can use TriggerLights class from the Unreal Enginecan turn on, 

turn off, toggle on/off, or turn on for a time then shut themselves off. 

Subsequently, from the Unreal Editor, we can add a Dispatcher class 

NANYANG TECHNOLOGICAL UNIVERSITY 45 



CHAPTER 4 - IMPLEMENTING TWILIGHT CITY 

which can be triggered by the StochasticTrigger. This sets the 

Dispatcher dispatching the TriggerLights. Thus, with the visual effect 

from the TriggerLight class, lightning is created. 

Figure 4-5: Lightning and Rain Effects in Twilight City 

The rain is created by using an AI script which creates raindrops falling 

effect in front of the HUD (Heads Up Display) of each individual bots. 

Thus, the vision of the bots are blurred as expected during a rain. To 

set up rain, we need to add the customised Rain script into theR script 

delivers a limited range of raindrops. A few Rain classes may be 

necessary to create a heavy rain. To change the various settings for 

the rain, select all the Rain classes in your map and click on the 

properties dialog box, then click on the several Rain propety menu's 

that appear(Rain_Behaviour, Rain_Looks, Rain_Sounds). The 

intensity variable should be kept between 0 and 5 or so to keep 

rendering speed good. DropSpeed should be negative for faster rain, 

and positive for slower rain, however beware that a positive integer 

greater than 100 or so will cause the raindrops to go up and hit the 

ceiling. 

NANYANG TECHNOLOGICAL UNIVERSITY 46 



CHAPTER 4 - IMPLEMENTING TWILIGHT CITY 

4.4.4. Night Vision 

Through research and personal military experiences, NVG (night vision 

goggles) are an important tool in real life military missions. This is 

developed by altering the shading of the Heads Up Display (HUD) in 

Figure 4-6. By using image processing techniques of inverting the 

colour, we change the pixel values of the screen to make dark objects 

more prominent and to make the enemy almost white in colour so that 

they become more obvious. 

Figure 4-6: Night Vision in Twilight City 

The HUD is drawn on the Canvas. The Canvas is basically an object 

that draws thing directly on the player's screen. UT Canvas is similar 

to the Graphics object in Java applets. The HUD is basically a set of 

instructions that tell the Canvas object what to draw and where. The 

HUD is redrawn every tick. Whenever the HUD is redrawn, the 

"PostRender(Canvas Canvas)" function is called. This function is called 

by the PlayerPawn and gives us access to the Canvas class so we can 

draw things on it. 

The whole HUD process starts with the "PostRender(Canvas Canvas)" 

function which is called about every tick (in other words, as often as 

possible). All the drawing is done by the Canvas object. Thus, the 

NANYANG TECHNOLOGICAL UNIVERSITY 
47 



CHAPTER 4 - IMPLEMENTING TWILIGHT CITY 

image processing is then on the Canvas object and the visual effect of 

the NVG will then be displayed. 

4.4.5. Parachute 

The parachute allows the simulation of airborne operations with 

parachutes in MOUT. When activated, a parachute will spring out to 

break the descent of the soldiers during an airborne mission. The 

mutator alters the physics properties of gravity to reduce the speed 

and impact of the fall, Figure 4-7. 

Figure 4-7: Parachute in Twilight City 

The mutator is built by creating a parachute model with Unreal Editor 

and attaching it with behaviours from the Parachute class. The 

NANYANG TECHNOLOGICAL UNIVERSITY 48 



CHAPTER 4 - IMPLEMENTING TWILIGHT CITY 

Parachute class is extended from the underlying Mutator class via the 

Unreal Script. 

4.4.6. Air Strikes 

Modern warfare often involves bombardment via air strikes. To this 

end, we added air strikes capabilities into Twilight City. The users will 

be able to call for air strikes during their virtual MOUT missions. With 

the air strikes as in Figure 4-8, we can increase the realism of our 

simulations and add on to the variety of missions that can be 

simulated. By creating a Java adaptor that links the Unreal Engine to a 

Java-based 2D map representation of the environment, we can pin­

point the air strike locations easily. 

Figure 4-8: Air Strikes in Twilight City 

The Air Strike class is modified from the original Target Painter weapon 

in the Unreal Engine. Target Painter was originally used by the bots to 

NANYANG TECHNOLOGICAL UNIVERSITY 49 



CHAPTER 4 - IMPLEMENTING TWILIGHT CITY 

call for air strikes by painting onto exact points. We added a mutator 

to activate air strikes via a Java based external application that can 

control Target Painters in a god-like fashion. This means that air 

strikes can be called from anywhere via a 2D interface without the 

bots painting the exact point in the 3D environment. 

4.5. Vehicles 

Vehicles were designed and implemented into the Twilight City and can 

be utilized by the soldiers as part of their MOUT operations. The 

vehicles included into the virtual environment are light strike vehicles, 

medium strike vehicles and a custom made buggy. Furthermore, 

helicopters are included into the virtual environment to allow 

simulation of MOUT airborne operations, Figure 4-9. Motorcycles were 

also designed and incorporated into the environment. These 

motorcycles can carry a rider and a pillion each. We also made a suite 

of naval vessels to provide navy support for our simulation when 

needed. 

Like the rest of the 3D models, all the customised vehicles are built 

from 3D Studio Max and imported into Unreal Editor. Behaviours are 

mostly extended from the original vehicle classes from the Unreal 

Engine and modified. These customised behaviours are then attached 

to the appropriate 3D models then added into Twilight City via Unreal 

Editor. 

NANYANG TECHNOLOGICAL UNIVERSITY 50 



CHAPTER 4 - IMPLEMENTING TWILIGHT CITY 

~ 

-

1 

4 " 

Figure 4-9: Vehicles in Twilight City 

NANYANG TECHNOLOGICAL UNIVERSITY 51 



CHAPTER 4 - IMPLEMENTING TWILIGHT CITY 

4.6. Improved Bots Movement 

After studying bots logic and movement provided by the game engine, 

there is a motivation to adapt the FSM structure of the game engine 

towards MOUT operations. A class was extended from the bots 

controller module within the game engine. This class, the 

ImprovedFSM, will override the existing FSM architecture of the bots. 

The enemy bots will behave more like terrorists such that they will 

tend to run and hide before attacking the soldiers. The overriding of 

the Unreal Engine is possible due to the use of programming through 

object oriented techniques. The movement includes better weapon 

selections, better route selections, better dodging logic and tactical 

movements. 

4.7. Al Framework for Group Coordination 

To create group coordination for Follow, Gather and Hunt as seen in 

Figure 4-10, the FSM structures of the Unreal Engine are used to 

control each of the bots. 

NANYANG TECHNOLOGICAL UNIVERSITY 52 



CHAPTER 4 - IMPLEMENTING TWILIGHT CITY 

Figure 4-10: Follow, Gather and Hunt 

For the Follow maneuver, the leader is defined an objective to the bots 

and the bots are commanded to move towards this objective. Thus, 

with the use of the existing FSM structures, a group of bots are made 

NANYANG TECHNOLOGICAL UNIVERSITY 53 



CHAPTER 4 - IMPLEMENTING TWILIGHT CITY 

to follow a leader when a voice command is issued through the speech 

control module implemented earlier. The Gather maneuver is simply a 

modification of the follow maneuver. This time, instead of a moving 

objective, the objective is fixed. Thus, the bots will gather at a user 

defined point when the Gather command is issued. To activate Hunt, a 

voice command is given to shift the bots into a search and destroy 

state in which they will look for terrorists and attack them. 

4.8. Integrated Bots Control Interface 

The integrated bots control, as shown in Figure 4-11, allows the users 

to give extremely specific orders to the bots using TeamSay or a 

special in-game menu. For example, we can instruct Soldier A to 

defend a spot for 300 seconds and then cover Soldier B with the 

machine gun. . With this integrated functionality, we can give 

commands with time limits or delay certain commands. There are a 

whole variety of commands and combinations that we can use. The 

integrated bots control can also declare spots during runtime. The user 

can mark a spot and issue a command involving that spot to the bots. 

This feature is built using by exrtending for the existing Unreal Engine 

classes and altering the code via Unreal Script. Bots interactions are 

sent via messages between server and client-side implemenations of 

Unreal Engine. 

NANYANG TECHNOLOGICAL UNIVERSITY 54 



CHAPTER 4 - IMPLEMENTING TWILIGHT CITY 

2 Magnate 

Oblivion 

4 Svengal i 

5- Bane 

6 FYP MOUT Singapore S •& ffilitl-lJJS-l 

B- Stats 

PAUSED 

1 ALL 

2 - M a g n a t e 

3 Ob l i v i on 

4 S v e n g a l i 

5 B a n e 

6 FYP M O U T S i n g a p o r e S 

7- H e r a Is 
SniperSpo 

Figure 4-11: Integrated Bots Control 

NANYANG TECHNOLOGICAL UNIVERSITY 55 



CHAPTER 5 -QUALITATIVE APPROACH FOR PHYSICS SIMULATION 

CHAPTER 5: QUALITATIVE APPROACH FOR 
PHYSICS SIMULATION 

Movable objects such as chairs, boxes, bottles, etc. are quite common 

in real life. However, the computational cost will be high if the exact 

physics laws are used to model the behaviour of these objects. To 

reduce the computational cost of simulating moveable objects in 

Twilight City, a framework for qualitative behaviour simulation has 

been proposed and integrated into our simulation engine. Example 

results show that the proposed framework is successful in modelling 

the dynamic behaviour of various movable objects in Twilight City in 

terms of human players' perceptions and responsiveness of the 

system. 

5.1. Qualitative Behaviour Simulation 

In this section, we first describe the software architecture for 

qualitative behaviour simulation and then explain how to model the 

behaviour of a movable object using qualitative physics. 

5.1.1. Software Architecture 

To make the currently static objects movable, new object classes are 

extended from the Unreal engine's base classes. These new classes are 

added as Qualitative Physics (QP) Actors, and necessary models are 

attached to these Actors. A framework for implementing these QP 

Actors is proposed so that different movable objects could be 

simulated using a standard template. Figure 5-1 shows the software 

architecture of the framework, which consists of QP Actors and a QP 

Engine on top of the Unreal engine. The Unreal engine relies on event 

management system to support most of interactions among the 

objects in the game. To implement QP Actors, the event management 

NANYANG TECHNOLOGICAL UNIVERSITY 56 



CHAPTER 5 - QUALITATIVE APPROACH FOR PHYSICS SIMULATION 

system of the Unreal engine thus needs to be investigated and 

extended. 

The Unreal engine implements two types of events: primitive events 

built within the game engine and programmed events that can be 

scripted by developers for customization of the object interactions. To 

implement QP Actors, we need to override the native event 

management mechanism of the Unreal engine. The event handlers of 

the QP Actors are used to detect various actions such as users' actions 

and collisions, and to generate various events. These events are sent 

to the QP engine which will determine various effects on the QP Actor 

based on the logic rules. The logic rules may refer to various threshold 

values and kinematics libraries. The QP engine is built by adding 

another module into the Unreal Engine. This module process the inputs 

from the QP actors and returns appropriate to the QP actors. The QP 

engine works in tandem with the Kinematics Library and Threshold 

Values file. The Kinematics Library contains all the necessary actor 

behaviours required for their physics simulation. The behaviours are 

generated offline and repeatedly reused as deem fit by the QP engine. 

The Threshold Value file is editable by the user to allow calibration of 

the QP actor behaviours. For example, the user can increase the 

buoyancy of QP actor when in water or the user can adjust the weight 

of the QP actor. Thus, the QP Engine uses the threshold values to 

determine appropriate behaviours from the Kinematics Library and 

return relevant behavioural information to the QP actors. 

Based on the information returned by the QP Engine, the QP actors will 

then exhibit suitable behaviours in the virtual environment. 

NANYANG TECHNOLOGICAL UNIVERSITY 57 



CHAPTER 5 - QUALITATIVE APPROACH FOR PHYSICS SIMULATION 

olUdlildllvc I~I lyoioo y-v^iui 

Event Handlers 

/ \ 

v 
Object Behaviour 

\ / 

Action Controller 

\ 

s 

/ 

Threshold Values 

^y 
O 

Qualitative Physics Engine 

JC y. 

<> 
Kinematics Library 

Simulation Platform (Unreal Engine) 

Figure 5-1: Qualitative Physics Framework 

5.1.2. Object Behavior 

With qualitative physics, a continuous attribute (e.g., location) is 

quantified into a set of discrete values, and a set of desired behaviors 

are attached to these discrete values. The main idea of using 

qualitative physics is to reduce the quantitative precision of the 

behavioural descriptions but retain the main distinctions, thus the 

computational cost of simulating movable objects could be greatly 

reduced. The rationale of using qualitative physics to model movable 

objects in virtual environments is that humans in their daily lives are 

more sensitive to the qualitative (or causal) relations among various 

factors rather than the exact physics laws among these factors. 

Each QP Actor will continuously update its attribute values. Once some 

of its attribute values reach a certain threshold, the QP Actor will send 

events to the QP Module. In turn, the QP Module identifies the 

situation and status of the object. Then, an analysis of the necessary 

NANYANG TECHNOLOGICAL UNIVERSITY 58 



CHAPTER 5 - QUALITATIVE APPROACH FOR PHYSICS SIMULATION 

conditions and relationships affecting the situation is conducted with 

qualitative process methods [5] and appropriate results will be 

determined. The QP Module will send events to signal appropriate 

actions to the relevant QP Actors. 

Figure 5-2 illustrates some qualitative behaviors of a barrel. Collision 

events are generated when the barrel (a QP object) comes into contact 

with other objects. It is common knowledge that objects may react 

differently when different points of contacts are involved. For example, 

when a barrel is hit at a low point on its body, it will slide across the 

floor. However, when the same barrel is hit at a high point on its body, 

it will tend to fall over. In Figure 5-3, contact regions A and B are 

marked out. When a force hits region B, an event containing B is sent 

to the QP Module. Assuming no other forces present, the QP Module 

will decide the barrel will slide across the floor. Similarly, if a force hits 

region A, the barrel will fall over. In this situation, the force must be 

large enough to overcome the inertia of the barrel for the barrel to 

move. 

NANYANG TECHNOLOGICAL UNIVERSITY 59 



CHAPTER 5 - QUALITATIVE APPROACH FOR PHYSICS SIMULATION 

A 

B 

Slides Across 

* ~ 

A 

B 
Force 

^ 

/ \ 
/ \^ 

\ : B / 

Topples Over 
A 

B 

^ 
^ 

Force 

Figure 5-3: Effects of applying forces at different contact points 

The QP actors use preconditions to identify the current situation that 

they are in and select the type of qualitative physics process to invoke. 

Each QP process has its own set of logic and rules. During the running 

of the QP process, the QP actors will send its QP values to the QP 

engine for computation. Subsequently, the QP engine sends the 

appropriate influences to the QP actors. Thus, using the influences to 

adjust the necessary parameters, the QP actors exhibit the appropriate 

behaviours. As a result, the QP actor maintains a standard flow of 

interactions with the QP Engine for all situations. With this framework, 

an object's behavior can be easily described. For example, a heavy 

barrel will sink in water while a crate will float on water. 

5.2. Example Results 

In this section, we show some results of our qualitative simulation 

framework. 

NANYANG TECHNOLOGICAL UNIVERSITY 60 



CHAPTER 5 - QUALITATIVE APPROACH FOR PHYSICS SIMULATION 

(a) Falling Barrels (b) Falling Boxes 
Figure 5-4: Uses of Qualitative Physics in Twilight City 

Physical simulations within the Twilight City include collisions, object 

kinematics, water flows, frictional forces, torque. We placed a number 

of boxes, crates, barrels and balls within the Twilight City. Using the 

concept of Object-Oriented Programming, the various objects are 

coded to hold individual characteristics and are affected by collisions, 

friction, gravity and buoyancy. Collision events are received when the 

QP objects come into contact with other objects. In figure 5-5.a, a 

logical formula of the qualitative process of collisions is presented. The 

event handlers within our qualitative physics engine are invoked by 

each of the objects during a collision. After being invoked, the event 

handlers will check the entities involved in the collisions. The QP actors 

use the preconditions to determine the current situations. From each 

situation, they will determine if the preconditions are fulfilled. The 

preconditions for this event is there must be contact between the 

objects involved and at least one of the objects must be exerting a 

force. If one of the preconditions is not fulfilled, the event handlers will 

stop operations immediately. In our framework, when the 

preconditions are met, the qualitative physics engine will start the 

computation as required by the QP logic of the QP actors involved. For 

the situation of object collisions, the forces exerted by the objects will 

be compared and the resulting motion will be generated. The 

NANYANG TECHNOLOGICAL UNIVERSITY 



CHAPTER 5 - QUALITATIVE APPROACH FOR PHYSICS SIMULATION 

qualitative physics engine will analyze the contact regions of the 

objects as well. After its computation, the QP engine feedback the 

appropriate position and rotation parameters. The feedback values are 

also known as the influences to the object motions. In collisions, the 

influences affect the position and rotation of the object. The effects of 

the influences to the object behaviours are observed in figure 5-5.b 

and 5-5.C 

Situation: Object Collision 

Entities Involved: Object A & Object B 

Preconditions: Contact(Object A, Object B), 
(?Force(Object A)||? Force(Object B)) 

QP Logic: ?(Force(Object A)> Force(Object B)) 
?Contact_Regions(Object A) 
?Contact_Regions(Object B) 

Influences: Object Position Parameters, 
Object Rotation Parameters 

(a) Logical Formula 

(b) Before Collision: Tips of boxes are 
the contact points 

(c) After Collision: The boxes ricochet 
away while spinning 

Figure 5-5: Qualitative Process of Collisions 

NANYANG TECHNOLOGICAL UNIVERSITY 62 



CHAPTER 5 - QUALITATIVE APPROACH FOR PHYSICS SIMULATION 

Apart from simulation of the movable objects, we explored the use of 
qualitative process theory on water simulation. The movable objects 
and water are integrated within Twilight City. In figure 5-6.a, a logical 
formula of the qualitative process of object behaviours in water is 
presented. In the situation of objects within water, the qualitative 
physics objects invokes the event handlers, which reside within the 
qualitative physics engine. After being invoked, the event handlers will 
check the entities involved in the collisions. The precondition for this 
event is that there must be contact between the objects and water. 
When the preconditions are met, the QP logic within the QP actors will 
compute the influences through the use of the QP engines. The object 
buoyancy, water densities and water motion affect the behaviours of 
the QP objects. Using the object buoyancy, water density and water 
movement, the resulting motion will be generated. The QP engine 
feedback the influences to the object motions. In this situation, the 
influences refer to the position and rotation parameters of the object. 
Upon receiving the influences, the QP objects will exhibit the 
corresponding behaviours. Thus, we can observe the sinking and 
floating of different objects. Heavy barrels will sink while light boxes 
will rise as observed in figure 5-6.b and 5-6.c. 

NANYANG TECHNOLOGICAL UNIVERSITY 63 



CHAPTER 5 -QUALITATIVE APPROACH FOR PHYSICS SIMULATION 

Situation: Objects in Water 

Entities Involved: Objects & Water 

Preconditions: ?Contact(Water, Object) 

QP Logic: ?Density(Object, Water), 
?Water_Flow(Water) 

Influences: Object Position Parameters, 
Obiect Rotation Parameters 

(a) Logical Formula 

(b) Objects submerged in water (C) Different object behaviours 

Figure 5-6: Object behaviour in water 

When objects collisions happen in water, we can see two QP situations 

occurring at the same time. Thus, the QP actors will run the two QP 

logic processes concurrently and the QP engine generates a larger set 

of influences consisting of both collision and water influences. With this 

combined set of influences, the QP objects will exhibit behaviours 

expected from object collisions under water as observed in Figure 5-6. 

5.3. Practical Applications 

To further emphasize the benefits of qualitative physics, we will 

present some applications of such a technology towards MOUT 

NANYANG TECHNOLOGICAL UNIVERSITY 64 



CHAPTER 5 - QUALITATIVE APPROACH FOR PHYSICS SIMULATION 

simulation. In this section, two MOUT scenarios that are enhanced by 

qualitative physics will be discussed. 

5.3.1. Collapsible Structures 

Presently, most virtual urban environments are constructed by fitting 

3D building blocks onto a map. These buildings have realistic textures 

and allow players to navigate within them. However, from our past 

human factor tests, it is observed that the existing buildings are not 

collapsible and cannot be damaged in any way. It is unrealistic that the 

buildings remain invulnerable in all situations. Apart from affecting the 

computing performance, it is also a challenge to model the secondary 

collisions between different various movable objects built from existing 

quantitative physics techniques. Therefore, we can utilize qualitative 

physics to build up a collapsible structure that will perform realistic 

behaviours when faced with air strikes or bombings as seen in Figure 

5-7. Such collapsible structures are built from aggregating small 

movable objects. It is observed that such behaviours can be 

implemented with qualitative techniques without significant 

degradation to the performance. 

NANYANG TECHNOLOGICAL UNIVERSITY 65 



CHAPTER 5 - QUALITATIVE APPROACH FOR PHYSICS SIMULATION 

Figure 5-7: Collapse of structure during an air strike (numbered in 
sequence) 

From this example, we can see that another advantage of qualitative 

physics is its efficiency in handling non-monotonic behaviours such as 

rocking back and forth. Numerical computation can become highly 

complex when such a huge number of objects experience almost 

NANYANG TECHNOLOGICAL UNIVERSITY 66 



CHAPTER 5 - QUALITATIVE APPROACH FOR PHYSICS SIMULATION 

simultaneous collisions within a short time interval. With qualitative 

physics, we can reduce the complexity with selective activation of 

processes and simulation of object behaviours to an acceptable level 

as opposed to a precise level. Qualitative physics can model collapsible 

structures by composing a set of smaller movable objects. Thus, large-

scale implementation of the qualitative physics will improve the 

existing fidelity levels without compromising performances. 

5.3.2. Road Blocks 

Through our experiences, we found it is common to have military 

checkpoints in MOUT simulations. Current checkpoints in virtual 

environment tend to be immovable or indestructible. Such invulnerable 

checkpoints are unrealistic and ineffective because the users will not 

be able to see the actual effect of attacks on the checkpoints. We 

introduce qualitative behaviours to some barricades and tires as shown 

in Figure 5-8. To achieve such behaviours with exact physics will be 

incur high computational overheads due to the complexities involving 

the interactions of the objects during collisions. Qualitative physics is 

able to overcome such limitations. 

NANYANG TECHNOLOGICAL UNIVERSITY 67 



CHAPTER 5 -QUALITATIVE APPROACH FOR PHYSICS SIMULATION 

(a) Barricades Set up 

(b) Tires scattered 

Figure 5-8: Barricades and Tires 

NANYANO TECHNOLOGICAL UNIVERSITY 68 



CHAPTER 5 - QUALITATIVE APPROACH FOR PHYSICS SIMULATION 

These movable objects are used to form the defence layer of the 

checkpoints from onrushing car bombs. The barricades are useful as 

they allow researchers to experiment and visualize the set up of 

checkpoints. We did some experiments on the effectiveness of various 

barricades layouts at stopping onrushing vehicles as shown in Figure 

5-9. Results show that single layer barricades do not provide adequate 

resistance to onrushing vehicles as compared to multiple layered 

barricades. It is significantly harder for vehicles to barge through when 

a few barricades are placed behind each other. Interestingly it can also 

be seen that barricades are stronger when 2 barricades are placed in a 

T-shape layout. The most effective layout, so far, is to place a T-shape 

layout with a tire behind it. The vehicles get stuck when they try to run 

over the barricades. 

(a) Multiple Layered Barricade Layout 

NANYANG TECHNOLOGICAL UNIVERSITY 69 



CHAPTER 5 - QUALITATIVE APPROACH FOR PHYSICS SIMULATION 

(c) Stopping the Test Vehicle with the T-shape Layout 

Figure 5-9: Barricades Layout 

NANYANO TECHNOLOGICAL UNIVERSITY 70 



CHAPTER 6 - ARCHITECTURE FOR RAPIDLY RE-CONFIGURABLE SIMULATIONS 

CHAPTER 6: ARCHITECTURE FOR RAPIDLY 
RE-CONFIGURABLE SIMULATIONS 

Apart from achieving low cost and high fidelity simulations, MOUT 

simulation systems are also expected to reconfigure rapidly with the 

frequent shifts in operational needs. We found that existing software 

architectures may not be optimized for re-configuration with a game 

engine based system approach. To this end, we describe our work on 

building agile and reconfigurable systems to construct game engine 

based MOUT virtual environments rapidly. This work leads us to 

propose the Architecture for Rapid Configuration (ARC) to support 

model interoperability and reusability for MOUT simulations. Along with 

ARC, we will explain how two other components, namely Game-based 

Object Standard Interfaces (GOSI) specifications and the ARC-based 

Objects Repository (ARCOR), work in tandem with the ARC. In our 

previous work, we have constructed Twilight City, a virtual training 

environment for MOUT. Our experiences show that the proposed 

architecture has transformed Twilight City into an agile simulation 

system that can build virtual environments at the required urgency. 

6.1. Motivation 

Our experience in constructing Twilight City shows that it is very time 

consuming to build the simulation environment from scratch due the 

large number of object models involved. In the meantime, we also 

noticed that although the behaviors of various objects seem different, 

they share a common structure in terms of how to respond to various 

events in the simulation, thus can be modeled using a generic 

framework. In particular, to increase realism of Twilight City, there is a 

need to increase the number of movable objects yet keeping the 

computational costs low. Thus, we used qualitative physics for 

modelling movable objects in Twilight City. In this chapter, we will 

NANYANG TECHNOLOGICAL UNIVERSITY 71 



CHAPTER 6 - ARCHITECTURE FOR RAPIDLY RE-CONFIGURABLE SIMULATIONS 

show how the proposed ARC helps to model the movable objects using 

qualitative physics. On the other hand, to facilitate the building of 

interoperable, reusable and composable models, ARCOR, a repository 

of models will be accumulated to aid rapid model development. 

Together with the ARC framework and GOSI specifications, the ARCOR 

will help to create a re-configurable test bed that offers flexibility and 

rapid model development at a low cost. 

6.2. Overview 

At the conceptual level, the ARC is designed to facilitate task 

abstraction and modularity in design. The ARC provides a framework 

to allow the various objects to operate in tandem. The GOSI 

specifications control the interaction between modules and acts as the 

linkages that hold the framework together. Finally, the ARCOR holds a 

rich repository of objects that can be activated to compose ARC-based 

simulation entities rapidly. 

We adopt an object-oriented modelling approach to creating reusable 

and composable objects in MOUT simulations. With this approach, 

complex simulation models are broken down into some basic building 

blocks. For the purpose of this project, anything that exists individually 

within the virtual environment is known as an entity. Examples of 

entities are human, bots, movable objects, vehicles, etc. Entities 

contain components known as objects. Objects are responsible for the 

behaviors of the entities. In our test bed, objects are the superset 

from which actors and models are extended from via separate 

branches from the abstract base class, Object. Actors only store the 

current state of the simulated entity. Interaction models are the data 

exchange layers between logic models, actors and the virtual 

environment. Logic models should only exchange data via interaction 

models. With the relevant data, they will then perform reasoning and 

decision making. Thus, an entity within Twilight City will contain an 

NANYANG TECHNOLOGICAL UNIVERSITY 72 



CHAPTER 6 - ARCHITECTURE FOR RAPIDLY RE-CONFIGURABLE SIMULATIONS 

actor attached with logic models and interaction models working in 

tandem to provide realistic behaviors. 

The class hierarchy in Figure 6-1 shows how the object models are 

extended from the base class. Weapons and human actors are 

extended from the base actor class. Models such as Path Finding and 

brain are also extended from the base model classes. Characters such 

as terrorists and soldiers are sub classes of the human actor class. 

Similarly, different weapons such as bombs for the terrorists and rifles 

for the soldiers can be produced from extending the weapon class. 

After the required objects are formed, the resulting entity is formed 

putting the objects together. For example, the soldier entity is built up 

by the rifle, human motion and soldier brain objects. Likewise, the 

terrorist entity is an aggregation of the bomb, human motion and 

terrorist brain objects. 

Objects 

Actors Models 

Human 
z 

Interaction 
\ 

Logic 

oldier 1 Terrorist | 

Weapons 

7|\~ 

Bomb 

Brain 

Rifle 

Z — - ^ 

Soldier Terrorist 

Path Finding 

7K 

Human 
s 

Vehicle 

o 
Tank Car 

Figure 6-1: Class Hierarchy of ARC based objects 

NANYANG TECHNOLOGICAL UNIVERSITY 73 



CHAPTER 6 - ARCHITECTURE FOR RAPIDLY RE-CONFIGURABLE SIMULATIONS 

6.2.1. Architecture for Rapid Configuration 

Actor, logic models and interaction models are the building blocks of 

the ARC. ARC clearly defines the relationship between the actors, logic 

models and interaction models. Entities hold their objects in the ARC 

framework. The explicit definition of task allocation allows ease in 

model substitution and ensures modularity in the design. Being 

modular, it is easy to modify specific components of an ARC-based 

object without affecting the rest of the components. 

Being able to access the game engine APIs, actors provide an entity 

with the capabilities to move around, interact with other actors, affect 

the environment, and do other useful game-related things. The high-

level artificial intelligence processes such as physics reasoning and 

behaviors are contained within model classes. Models are attached to 

actor classes in a plug-and-play manner to provide the actors with the 

behaviors or reasoning techniques. The capabilities of each model 

should be distinct to ensure modularity. With modularity, we can 

compose the basic model classes into complex behavior classes. 

Models are further defined into the interaction models and the logic 

models. In figure 6-2, we illustrate ARC with a simple diagram. 

NANYANG TECHNOLOGICAL UNIVERSITY 74 



CHAPTER 6 - ARCHITECTURE FOR RAPIDLY RE-CONFIGURABLE SIMULATIONS 

Bots 

Actors 

Box Vehicle 

Monitor 

Logic 
Models Group 

Qualitative 
Physics 

Brain 

Tactics 

Commands 

Information 

^ 

Events 

TtT 

Control 

JL 
Interaction 

Models Group 

Bots 
Interaction 

Physics 
Interaction 

7K 
Monitor 

V 

Simulation Environment 

Figure 6-2: Architecture for Rapid Configuration 

ARC allows coordination between the logic and interaction models. The 

interaction models retrieve information from the actors and the 

environment for the logic models to perform their reasoning 

NANYANG TECHNOLOGICAL UNIVERSITY 75 



CHAPTER 6 - ARCHITECTURE FOR RAPIDLY RE-CONFIGURABLE SIMULATIONS 

techniques and decision making. The logic models control the actor 

and affect the simulation environment via the interaction models. 

Being a modular framework, ARC allows the easy migration and 

swapping of models within an entity while minimizing the propagation 

effect sustained by the remaining models. The ease in model swapping 

provided by ARC can provide flexibility to the simulation system to 

switch their entity behaviors rapidly. With a common architecture, it 

will also be more convenient for the construction of interoperable 

models for sharing and reuse. 

6.2.2. Game-based Objects Standard Interface 

To be a rapidly re-configurable system, the frequent model swapping is 

expected. If there is no standardization of model data exchange 

methods, huge effort of time and effort will be incurred each time a 

model is migrated. Therefore, we propose the Game-based Objects 

Standard Interfaces (GOSI), which contains standard interfaces 

specifying data exchange methods. The GOSI specifications will specify 

the interfaces that objects can follow. The objects will adopt interfaces 

according to their specific functions. As an example, Figure 6-3 shows 

the GOSI interfaces for the actors, interaction and logic models of 

movable boxes. 

NANYANG TECHNOLOGICAL UNIVERSITY 76 



CHAPTER 6 - ARCHITECTURE FOR RAPIDLY RE-CONFIGURABLE SIMULATIONS 

Actor MovableBox{ 
// Execute Game Engine API 
void Rotate (PsiVelocity, 
PhiVelocity, ThetaVelocity); 
void MoveTo(x, y, z); 
//Internal functions 
void BeginPlay(); 
void PostBeginPlayO; 
void Tick(); 
//Information functions 
void GetMovableBoxWeight(); 
void GetMovableBoxDensityO; 
void GetMovableBoxForce(); 
//Attributes 
int x, y, z; 
float density, weight; 
float length, width, height; 
} 

Interaction Model Boxlnteract{ 
// Executing functions 
void BoxRotate (PsiVelocity, PhiVelocity, 
ThetaVelocity); 
void BoxMove(Displacement); 
//Information functions 
void GetBoxWeightO; 
void GetBoxForce(); 
//Attributes 
float weight, density, force; 
} 

Logic Model BoxPhysics{ 
// Physics reasoning functions 
Strength AngularEffect (Force, Weight); 
Displacement DisplacementEffect(Force, 
Weight); 
} 

Figure 6-3: Game-Based Object Standard Interface compliant classes 

AngularEffect and DisplacementEffect can be broken down into 

separate logic models. The two components perform distinct functions 

and can be composed to form the BoxPhysics model. When the 

BoxPhysics model is broken down into AngularEffect and 

DisplacementEffect logic models, the two logic models will again follow 

a set of GOSI interfaces. 

Defining GOSI specifications will be our ongoing efforts to standardize 

data exchange. Presently, GOSI is largely working within the MOUT 

simulation domain. GOSI relies on the fact that general MOUT 

operational concepts are similar across projects [16 ] . For example, 

most MOUT simulation projects will need human behaviors, weapons, 

sensors and missions. By standardizing object interfaces according to 

their domain, scope and function, we can control information 

exchanges between models and achieve interoperability, reusability 

and composability. To share models across different game engines, we 

NANYANG TECHNOLOGICAL UNIVERSITY 77 



CHAPTER 6 - ARCHITECTURE FOR RAPIDLY RE-CONFIGURABLE SIMULATIONS 

can use wrappers to convert the game-specific code to suit another 

game engine. 

6.2.3. ARC-Based Objects Repository 

With ARC providing the architecture to fit the entities and GOSI to 

provide the linkages between the models, we need to set up a 

repository to store all the ARC-Based Objects for future re-use. From 

figure 6-1, it is seen that the ARC-Based objects are held within a class 

hierarchy. To facilitate the rapid retrieval of objects within ARCOR, we 

maintain the class hierarchy relationship of the objects instead of 

storing the objects with respect to the project that they are 

contributed from. The capabilities and limitations of the objects in the 

repository should be documented to provide a better understanding of 

the objects. To aid in the validation and verification process, the 

projects that the objects had been used for should recorded as well. 

The more frequently used the models are, the greater is our 

confidence level with the models. 

The recursive development flow with an ARC-based approach for MOUT 

simulations is shown in Figure 6-4. The simulation is made up of many 

entities. Each entity exhibits distinct behaviors as controlled by its 

objects. We compose entities by assembling the objects in an ARC 

framework. From Figure 6-4, we can see that after identifying the 

purpose of an object, the conceptual model for the object will be 

defined. Then the ARCOR is scanned for an object corresponding to the 

conceptual model. If an appropriate object is found, the object will be 

used to assemble the framework of the ARC-based entity. Otherwise, a 

new object needs to be built. This new object shall adopt an 

appropriate interface based on the GOSI specifications. Subsequently, 

we shall attempt to further break down the object into smaller 

components which can be composed together to form the original 

object. As shown by the dotted line in Figure 6-4, we will then do a 

recursive search for the composable components. The development 

NANYANG TECHNOLOGICAL UNIVERSITY 78 



CHAPTER 6 - ARCHITECTURE FOR RAPIDLY RE-CONFIGURABLE SIMULATIONS 

process for the ARC-based objects will be repeated recursively until the 

entity obtains all required objects. If the object cannot be further 

broken down, the object shall be developed from scratch. Thus, all 

objects are constructed either by composing existing objects or from 

scratch. All newly built objects will be added into the ARCOR for future 

re-use. 

Identify Purpose <k" 

Conceptual Object 
Model 

±. 
Assemble into 

ARC-based framework 

No 

^L 
ARC-based objects 

developed 

Figure 6-4: Development process for ARC-based objects 

6.3. Example results 

In this section, we describe how the proposed framework helps to 

extend our previous work on Twilight City. In Twilight City, we adopted 

an approach of Qualitative Physics (QP) to model the behaviours of 

movable objects. This approach will help to reduce the computational 

NANYANG TECHNOLOGICAL UNIVERSITY 79 



CHAPTER 6 - ARCHITECTURE FOR RAPIDLY RE-CONFIGURABLE SIMULATIONS 

cost of simulating the behaviours of movable objects and increase the 

fidelity level. We implemented a QP engine to simulate the behaviour 

of various movable objects. Figure 6-5 shows how the QP simulation 

on movable objects is achieved. This part of work had been presented 

in the 39th Annual Simulation Symposium [5]. 

.. _ . 
vjuamauve rnysics Mtiurs 

. . - -

•••... 
Object Behavior 

i r 

Action Controller 

i r 

Threshold Values 
Library 

w 

Qualitative Physics Engine 

s\ 

Kinematics Library 

• • ' 

Simulation Platform (UT Engine) 

Figure 6-5: Qualitative Physics Framework 

Using ARC, we streamlined the development process of QP entities 

within Twilight City. We rebuilt the QP components in accordance to 

the ARC framework. The interactions between components captured 

within the dotted circle in Figure 6-5 were changed due to the 

influence of ARC. Instead of both the event handlers and object 

behavior communicating to the Qualitative Physics Engine separately, 

the object behavior can only communicate with the QP engine via the 

event handlers. The Event Handlers in Figure 6-6 are built using the 

interaction models from the previous project within the ARCOR. These 

interaction models are constructed based on the GOSI template to 

ensure composability and interoperability. Similarly, the Object 

NANYANG TECHNOLOGICAL UNIVERSITY 80 



CHAPTER 6 - ARCHITECTURE FOR RAPIDLY RE-CONFIGURABLE SIMULATIONS 

Behavior module is built up by composing the logic models stored in 

within the ARCOR. Qualitative Physics Actors are extended from the 

existing actors as well. 

Qualitative Physics Actors 

Event Handlers 

$ 

Object Behavior 

Qualitative Physics Engine 

Figure 6-6: ARC- based Qualitative Physics 

With the ARC framework and ARCOR, the development time for 

creating various movable objects in Twilight City was shortened from a 

projected 8 months to the actual 2 months. Figure 6-7 shows some 

examples of movable objects that we implemented in Twilight City. 

(a) Movable Computers (b) Tumbling Tires 

NANVANG TECHNOLOGICAL UNIVERSITY 81 



CHAPTER 6 - ARCHITECTURE FOR RAPIDLY RE-CONFIGURABLE SIMULATIONS 

(c) Falling chairs 

Figure 6-7: ARC- based QP Movable Objects 

There are many other benefits of using the ARC framework, e.g., the 

rapid generation of terrorist behaviors in Twilight City. The terrorist 

behaviors are extended from the generic human entity and are 

combined with existing models such as the shooting actions of the 

soldier models. When there is a need to change the behavioral 

patterns of terrorists, we can conveniently adapt to this change by 

extending the existing models in the ARCOR. At the current stage of 

our project, we have implemented more than 50 ARC-based models. 

We expect that the current model repository will greatly shorten the 

development time of various MOUT simulation set-ups and fulfil the 

goal of building a rapidly configurable simulation system. 

NANYANG TECHNOLOGICAL UNIVERSITY 82 



CHAPTER 7 - EXPERIMENTATION RESULTS 

CHAPTER 7: EXPERIMENTATION RESULTS 

This chapter puts the capabilities of Twilight City to test with various 

methods and scenarios. We use subjective perception tests, automated 

testing and performance testing in our efforts to test and benchmark 

the effectiveness of Twilight City. 

7.1. Interactive Voice Controls 

It is important to test our voice commands that are incorporated into 

Twilight City. With a microphone, simple verbal commands are given 

and the performance of the module is evaluated. The testing should be 

done in a quiet room so that background noises are minimized. 

7.1.1. Analysis and Comments 

The voice control module works wells within Twilight City. The speech 

control of many bots movement such as shooting, jumping or dancing 

is tested. However, two issues were identified during the testing 

phase. 

Firstly, some of the voice commands are too complicated and it is 

difficult for the system to recognize them. The users may need to 

repeat the commands a couple of times. Using a more powerful 

microphone and simple commands with shorter syllabus later solved 

this problem. However, the commands cannot be too simple as well. 

Being too simple, the unwanted actions may be triggered by 

background noises that are falsely recognized as voice commands. 

Therefore, besides the use of a good microphone, the selection of the 

verbal commands used is important too. After rigorous testing with 

different command patterns, it is observed that the voice control 

module performs best with commands of two or three syllabuses. 

NANYANG TECHNOLOGICAL UNIVERSITY 83 



CHAPTER 7 - EXPERIMENTATION RESULTS 

The second issue is latency in performance of the module. There is a 

delay of around 3 seconds between the commands being issued and 

actions being performed. This turnaround time problem is investigated 

and improvements were made. The algorithm of the module includes a 

feedback module that displays the buttons being pressed during 

simulation. The structure of this module had too many unnecessary If-

Else statements. After the streamlining of the code, the performance 

of the voice control module showed significant improvement. The 

performance of the voice control module is tested on different 

hardware specifications and it is observed that the module shows 

better response times with faster processors. Apart from that, the 

quality of microphone is important in the speech recognition time of 

the system as well. Results had also shown that there is a positive 

correlation in the amount of voice training and the performance of the 

voice control module 

7.2. Evaluation of the Modifications made 

The shattering glass effect is tested to demonstrate the hearing sense 

of the bots as shown in Figure 7-1. If the bots-hearing radius is within 

the noise radius of the shattering glass then the bots will turn to the 

noise and scan for activity in the area. This is tested in a room that 

consists of a soldier with its back facing the human player. If the 

human player shatters the glass, the bots will turn around and fire at 

the human player. 

NANYANG TECHNOLOGICAL UNIVERSITY 84 



CHAPTER 7 - EXPERIMENTATION RESULTS 

Figure 7-1: Shattered Glass in Twilight City 

The raining effect shows a problem during testing. The raindrops are 

not the results of a particle system. Instead, the rainfall effect is a 

visualization trick of having raindrops in front of the bots so that they 

will have a field of view with a rainy weather. The raining effect only 

affects the field of view of the bots but not the entire virtual 

environment. The problem arises when the raining effect continues 

while the bots are actually under shelter. To solve this problem, a 

volume controlled by a script is used to disable the rainfall effect when 

the bots is inside the volume. 

7.3. Benchmarking 

During the testing phase, benchmarking analysis was carried out to 

evaluate the performance of Twilight City against the performance of 

the game levels created commercially by the Unreal Engine 2.0 

developers. The benchmarking process is used as a quality assurance 

tool to ensure that this project have fully utilized the capabilities of the 

NANYANG TECHNOLOGICAL UNIVERSITY 85 



CHAPTER 7 - EXPERIMENTATION RESULTS 

Unreal Engine to build a virtual environment which will not lose out to 

those created by the game developers. Four commercial maps were 

short-listed. They are RobotFactory, UrbanStrike, MotherShip and 

Fallen City. The maps were chosen as they are of comparable size with 

Twilight City. The maps were compared in terms of image processing, 

rendering performance, rendering and speed of game play. The tool 

used for this analysis is Umark. UMark is the benchmarking software 

that allows gamers and hardware reviewers to easily configure and run 

benchmarks on Unreal Tournament 2004. UMark is not built upon its 

own benchmarking engine, it uses UT200x's benchmarking engine to 

run the tests. Running benchmarks with UMark is just like running 

UT2003.exe or UT2004.exe with benchmarking options passed to it. 

The scores were obtained by taking the result of a function involving 

the average frame rates and its variance as calculated from the 

difference between the minimum and maximum frame rates. The 

higher performance scores indicate a map running with higher frame 

rate at better consistency. We made use of the standard test values 

that comes with UMark. While UT2004 didn't include standard .ini files 

for benchmarking, UMark has its own files for UT2004, in which will 

hopefully become the de facto standard for UT2004 benchmarking. For 

example, when we choose "High Performance" or "High Image 

Quality", we are telling UMark to use the UMark standard .ini files. 

When "High Performance" is selected, it uses "MinDetail.ini" and 

"MinDetailUser.ini" configuration files to run the tests with. 

Respectively, when "High Image Quality" is selected, it uses 

"MaxDetail.ini" and "MaxDetailUser.ini". The performance scores of the 

different maps were processed and compared with Twilight City and 

displayed on Table 7-1. The scores were averages of benchmarking 

values from high performance, high image quality, normal settings and 

32 bots. 

NANYANG TECHNOLOGICAL UNIVERSITY 86 



CHAPTER 7 - EXPERIMENTATION RESULTS 

MotherShip 
30.1 

fr­

iable 7-1: Benchmark Analysis 

As observed from the benchmark statistics, Twilight City performed 

better than maps of similar sizes made commercially. The results not 

only prove that the potential of the Unreal Engine was maximized. It 

also provides a quality assurance on performance standards of Twilight 

City. 

7.4. Mean Opinion Score Tests 

To further evaluate the performance of Twilight City, we have installed 

it on some PCs (DELL with Pentium IV 2.4GHz CPU) in the Parallel and 

Distributed Computing Center (PDCC) at Nanyang Technological 

University and the Modeling & Simulation Department of the Defense 

Science and Technology Agency of Singapore. 26 subjects (aged 

between 20 to 40 years old) were asked to play with Twilight City for 

about half an hour (see Figure 7-2). Then the subjects' opinions on 

various aspects of Twilight City were collected. As the system is meant 

mainly for military purpose, all the subjects have more than 2 years of 

military training experiences. The military experience of the human 

subjects will help to validate the accuracy of the behaviours simulation 

in Twilight City. Besides that, 16 of the subjects also had experience 

with military simulation systems before. 

NANYANG TECHNOLOGICAL UNIVERSITY 

U 
s-
O 

a 
ISl 

u 
o 

OH 

Twilight City 
34.23 

Urban Strike 

27.15 

RobotF actor 
32.1 

Fallen City 
25.0 



CHAPTER 7 - EXPERIMENTATION RESULTS 

Figure 7-2: Mean Opinion Score Tests of Twilight City 

It should be noted that the emphasis of these tests is not on the 

behavior of the AI bots that we have developed. Though the bots in 

Twilight City have demonstrated a certain level of tactical intelligence, 

we feel that the behaviors of the bots are still very limited and thus the 

bots are still not intelligent enough to collaborate or fight against real 

human players in more complex scenarios. Thus, the emphasis of 

these tests is on a subject's perception of the visual effects of the 

virtual environment and various artifacts that we have introduced. The 

subjects were asked to give their opinions on the following questions: 

1. How do you feel the responsiveness of Twilight City? 

2. 2. Is Twilight City a good urban warfare simulation tool? 

3. How do you feel the voice module (accuracy and responsiveness)? 

4. How do you feel the behavior (realism and responsiveness) of the 

movable objects? 

The subjects answer these questions by giving a score (5-Exellent, 4-

Good, 3-Fair, 2-Poor, 1-Bad) to the performance of Twilight City on 

NANYANG TECHNOLOGICAL UNIVERSITY 88 



CHAPTER 7 - EXPERIMENTATION RESULTS 

each of these aspects. Figure 7-3 summarizes the results of these 

tests. 

20 

| 15 

I 10 
jD 

£ 5 

Responsiveness of Twilight City 
(MOS = 4.65) 

Subject's Opinion 

Twilight City as a realistic urban simulation tool (MOS = 
4.39) 

20 - p 

c 

F
re

qu
 • 

1 2 3 4 5 

Subject's Opinion 

1fi 
ID 

1A 

g 10-
S 8 -
CD 6 -

«*• 4 -

2 -
n 

Realism of Movable Objects (MOS = 4.58) 

U i i i i 

1 2 3 4 5 

Subject's Opinion 

NANYANG TECHNOLOGICAL UNIVERSITY 89 



CHAPTER 7 - EXPERIMENTATION RESULTS 

Responsiveness of Voice Module 
( MOS • 4.46 ) 

20 -. 

£ 15-
C 
m 
3 10 -
a-
0) 

it 5 
0 -

1 2 3 4 5 

Subject's Opinion 

Figure 7-3: Mean Opinion Score Tests Results 

The subjects are satisfied with the responsiveness of Twilight City and 

the behavior of the movable objects that we have introduced. They 

also feel that these movable objects greatly enhance the realism of 

Twilight City as compared to other FPS games they have played. 

However, subjects suggested that movable objects should be modelled 

to show damages after collisions. For example, a part of the box 

should be chipped off upon colliding with the wall. Though some 

subjects suggest that the voice module has noticeable delays and 

failed to produce correct results in some cases, the results show that 

the voice module is generally acceptable by most subjects. In general, 

the subjects feel that Twilight City is a good prototype system for 

MOUT simulations. The movable objects, various artifacts and the 

voice module are important to MOUT simulations. However, more voice 

commands need to be added, and more training of the voice module 

are also needed. 

7.5. Frame Rate Analysis 

For the purpose of quantitative analysis of the performances of 

qualitative physics, we can monitor the frame rate of the systems 

during runtime. We can extract this frame rate data from the Unreal 

Engine for the purpose of our tests. Although the frame rate can be 

NANYANG TECHNOLOGICAL UNIVERSITY 90 



CHAPTER 7 - EXPERIMENTATION RESULTS 

affected by a number of display factors, physics simulation impairs 

frame rates badly. 

For comparison purposes, we implemented three set-ups for a 

particular scenario within Twilight City. In our tests, all other factors 

are kept constant and the only variation is the physics simulation 

methods. The first scenario is set up without any physics simulation to 

act as the control. The second scenario is built with the physics engine 

residing in Unreal Engine. The physics engine, Karma, drives the 

physics simulation through quantitative methods. The third set up is 

built from the qualitative methods discussed in this chapter. 

As there are limited amount of physics simulation in the existing unreal 

environments, we need to construct our own test environment. 

Twilight City is utilized as the test bed for the purpose of this 

experiment. We introduced 132 movable objects within each of the 

environments using various physics simulation methods. Actions such 

as calling for air strike on collapsible structures and running down 

barricades are performed. The experiment was done on a computer 

with Intel T2500@2.GHz processor and 2GHz RAM. With each set-up, 

we did five runs and computed the average frame rate. The results of 

the frame rate analysis are shown in Figure 7-4. 

When average frame rates fall below 30, lag is observed during the 

rendering. The default minimum desired frame rate in Unreal Engine is 

set at 35 by Epic Games. Thus, frame rates above 35 can be 

considered as acceptable. 

NANYANG TECHNOLOGICAL UNIVERSITY 91 



CHAPTER 7 - EXPERIMENTATION RESULTS 

80 

a, 70 

| 60 

| 50 

2 40 

S > 3 0 

S 20 
< 10 

0 

Frame Rate Analysis 

16 

Number Of Bote 

32 

• No Physics 

• Qualitative Physics 

• Exact Physics 

Figure 7-4: Frame Rate Analysis Results 

The results of the experiment show that qualitative physics incurs 

significantly lesser computational overheads as compared to 

quantitative physics. In fact, it is impractical to perform quantitative 

physics simulation of a large number of objects, as the load will drive 

the frame rates below the acceptable level of 35. It should be noted 

that quantitative simulations are more accurate than qualitative 

simulations. We should continue to utilize quantitative techniques 

when dealing with a small number of movable objects. The benefit of 

qualitative physics towards performance becomes more evident as the 

number of movable object increases. Therefore, it is particularly useful 

to apply qualitative techniques when the amount of simulated objects 

is large. 

NANYANG TECHNOLOGICAL UNIVERSITY 92 



CHAPTER 8 - CONCLUSION AND FUTURE WORK 

CHAPTER 8: CONCLUSIONS AND FUTURE 
WORK 

This chapter provides a summary of the work done and the 

achievements of this project. The problems encountered during the 

implementation of Twilight City are discussed as well. 

8.1. Summary 

Chapter 3 described the design aspect of the Twilight City. 

Descriptions covered were on the overall architecture and the 

individual modules of Twilight City. This chapter described on the 

design of the virtual environment as a platform that allows simulation 

analysis to occur. 

Chapter 4 touched on the implementation aspect of Twilight City. 

Directions and the requirements to setup the virtual environment 

framework were discussed and carried out. The main emphasis of the 

chapter is the implementation of simulation techniques that were used 

to develop and implement Twilight City as an efficient simulation tool. 

Various simulation techniques and game engine modifications were 

implemented to enhance the effectiveness of using a virtual 

environment used for MOUT simulation purposes. 

Chapter 5 discussed a major contribution of our project towards MOUT 

simulations. Qualitative physics in Twilight City had acted as a 

successful proof of concept demonstrator of integrating the qualitative 

approach for future simulations. The reasoning techniques and the 

implementation were explained in this chapter. 

In Chapter 6 we proposed an ARC framework to promote 

interoperability, reusability and composability among various models 

across different MOUT simulations With ARC, we would be able to 

NANYANG TECHNOLOGICAL UNIVERSITY 93 



CHAPTER 8 - CONCLUSION AND FUTURE WORK 

rapidly re-configure our simulation testbed to meet the frequently 

changing requirements of the military simulation community. 

Chapter 7 presented our experimentation and benchmarking tests on 

Twilight City. Twilight City performed well with the MOUT operations 

objectives implemented. Such tests increased the confidence level on 

the effectiveness of Twilight City and gave us a better understanding 

of its limitations as well. 

In this project, we proposed the usage of a game engine based 

interactive virtual environment for Military Operations on Urbanized 

Terrain (MOUT) simulation. Our work revolved around building an 

interactive virtual MOUT test bed with voice control capabilities, 

architecture design, group coordination and game modifications. The 

Twilight City was produced as a product of this project. It provided a 

virtual environment for MOUT simulation, which came with special 

effects, custom animations, mutators and voice control modules. The 

architecture for rapid re-configuration was implemented within the 

Twilight City. Feedback from Artificial Intelligence (AI) researchers 

showed that the proposed interactive virtual environment provide 

better support in terms of MOUT simulation compared with the existing 

techniques. We incorporated qualitative physics for movable objects in 

Twilight City. This technique proved to be successful in reducing the 

computational overheads of physics simulations at acceptable realism 

levels. We proposed an architecture for rapidly re-configurable 

simulations to promote interoperability, reusability and composability 

among various models across different MOUT simulations. A model 

repository was developed which defines various commonly used object 

classes for MOUT simulations. With this repository, new models could 

be easily built by reusing or extending the existing models, which help 

to reduce the cost and time to build a new simulation environment. 

NANYANG TECHNOLOGICAL UNIVERSITY 94 



CHAPTER 8 - CONCLUSION AND FUTURE WORK 

The interactive virtual environments could support the definitions and 

authoring of a wide variety of behaviours. Along with the behaviours, 

virtual environments could be used for military training where the 

soldiers could be trained to be familiar with certain scenarios and 

location without having to be there physically. Furthermore, virtual 

environments allow easy and cheap storage of 3D representations of 

various locations. Success stories of simulation based on game engines 

includes [1] , [7-10]. Due to the portability of the software, the 

simulation and training could be done on different systems on different 

parts of the world through network connections. This allowed teams to 

bridge their spatial issues. The virtual environments developed from 

Unreal Engine during the course of the project are of excellent quality, 

further reinforcing the relevance of Unreal Engine to future 

researchers. This approach had potential contributions in MOUT 

simulation, training. The current implementation provided a good 

framework for future work. 

The interactive MOUT virtual environment had successfully shown its 

worth and capabilities, which allow researchers to easily build a MOUT 

infrastructure for use. As we are now in the process of integrating our 

work into DSTA military simulation systems, we can safely conclude 

that the results have met the purpose of the project. 

8.2. Publications 

We produced some papers to share our results. Through these 

publications, we know that our work will be able to benefit the 

community as a whole. 

8.2.1. Journals 

• Twilight City - A virtual environment for MOUT, Suiping Zhou, 

Shang-Ping Ting, Zhuoqian Shen, Linbo Luo (Accepted by 

International Journal of Computer and Applications) 

NANYANG TECHNOLOGICAL UNIVERSITY 95 



CHAPTER 8 - CONCLUSION AND FUTURE WORK 

• A Qualitative Approach to Behaviour Simulation in Virtual 

Environments, Shang-Ping Ting, Suiping Zhou (Under review by 

Simulation - Transactions of the Society for Computer Simulation 

International) 

• Quartz: An Autonomous Navigation System for MOUT, Shang-Ping 

Ting, Suiping Zhou, (Invited for Computer Animation and Virtual 

Worlds Journal, impact factor: 1.091) 

8.2.2. Conferences 

• Qualitative Physics for MOUT, Suiping Zhou, Shang-Ping Ting, 39th 

Annual Simulation Symposium, April 2 - 6 , 2006, Huntsville, AL, 

USA 

• A Generic Model Framework for MOUT Simulations, Suiping Zhou, 

Shang-Ping Ting, 2006 International Conference on 

CYBERWORLDS, Nov 28-30, 2006, Lausanne, Switzerland 

• An Architecture for Rapidly Re-configurable MOUT Simulation, 

Shang-Ping Ting, Suiping Zhou, 40th Annual Simulation Symposium, 

March 26 - 28, 2007, Norfolk, VA 

• Quartz: An Autonomous Navigation System for MOUT, Shang-Ping 

Ting, Suiping Zhou, 20th International Conference on 

Computer Animation and Social Agents (CASA2007), 11-13 Jun, 

2007, Hasselt, Belgium. (Ranked among 35 Best Papers, Invited for 

Computer Animation and Virtual Worlds Journal) 

8.3. Future Work 

Although the test-bed has fulfilled the basic requirements for 

researcher to work on multi-agent research on MOUT, there is still 

some room for improvement. The following sections propose a number 

NANYANG TECHNOLOGICAL UNIVERSITY 96 



CHAPTER 8 - CONCLUSION AND FUTURE WORK 

of recommendations that can be implemented to further improve the 

capabilities of the test bed and further propel the project into new 

heights, especially for NTU. 

8.3.1. Interactive Virtual Environment for the Visually Impaired 

An interactive virtual environment for the blind can be constructed to 

incorporate the speech function with the virtual environments. This 

map caters to the need of the visually impaired. A blind person can 

navigate through the map through speech and the computer will 

update him of his location upon request. The blind user can use the 

maps to understand the layout of a place without having to physically 

going to the place. Presently, a blind person can only understand the 

layout of a building by walking through the place or by feeling models 

of the place. However, models are not easily transferred and physically 

going to places merely to understand its layout is a tiring task. With 

the blind maps set up, the disabled can access the 3D environments 

anytime and anywhere they want. 

8.3.2. Software Architecture 

Research on software architecture of virtual environments should be 

considered in future. The current software architecture used is a 

simple way of implementing game objects. However, there is actually 

more to it when more and more objects are introduced. This would 

clog up the whole environment and slow down the process. Good 

software architecture is required to deal with this issue, as it should 

act like the brain of the program. Having good software architecture 

will improve the system's performance too, as it will be generic to 

allow modules to be connected to it without changing anything to it. 

Furthermore, software architecture also refers to implementations of 

projects that require a mixture of programming platforms. In such 

cases, we will need to set up the most efficient software structure in 

terms of processing and connection speeds. 

NANYANG TECHNOLOGICAL UNIVERSITY 97 



CHAPTER 8 - CONCLUSION AND FUTURE WORK 

For example, when a human needs to pick up an item, he needs to 

intuitively think of moving his arms down to the object's location and 

then open his hands to grip the object. Picking up the object and 

moving his arm back follows this. All this action requires coordination 

between the arm, hand and the brain. 

Having good software architecture will improve the system's 

performance too, as it will be generic to allow modules to be connected 

to it without changing anything to it. Modules are like motor system, 

knowledge database, navigation system and etc. A simple AI 

architecture can be generated as shown in Figure 8-1. This 

architecture may not meet some specifications but is a basic idea to 

build on. 

Javabot 

' 
Knowledge 
Database 

Roles 

weather 1 

Threats 

Map 

Decision Making 

1 
Behaviours 

1 
Motor System 

* 

Simple AI Architecture 

Figure 8-1: Simple AI Architecture 

8.3.3. Improved Navigation System 

There are various techniques that can be used in building a navigation 

system. To have an efficient and effective navigation system, an agent 

should find its path from point A to point B with the shortest time. It is 

always fastest to look up a path from a pre-calculated table. This 

would allow path finding of 10 to 200 times faster than the well-known 

A-Star algorithm [36]. With this method, the CPU usage for computing 

NANYANG TECHNOLOGICAL UNIVERSITY 98 



CHAPTER 8 - CONCLUSION AND FUTURE WORK 

paths is reduced tremendously. There are some disadvantages to path 

look-up tables too. Memory usage will have to be increased. However, 

many optimization techniques can be implemented to minimize this. 

To achieve this improvement, the paths that are pre-computed are 

stored in a matrix [37]. This is also known as a path look-up matrix. 

To generate the look-up tables, the area-based path look-up algorithm 

is used. With this approach, the path look-up is done in two levels. 

This can be seen in Figure 8-2. 

Waypoint 

Path nodes 

Figure 8-2: Terrain with 8 waypoints connected between 2 areas, but only 4 
waypoints are sufficient for all inter-area connections 

At the higher level, the terrain is seen as a set of portals, connected by 

clusters of waypoints or areas. To get from point A to B at that level, 

the portals for those points are determined. Then, the shortest path is 

determined between the nearby portals using a portal path look-up 

table. At the lower level, the portal path is translated into waypoints 

path. For each of these paths, the path in each area to the portal is 

retrieved. The portal is the waypoint that bridges the two paths 

forming a single path. This technique would allow small look-up tables, 

NANYANG TECHNOLOGICAL UNIVERSITY 99 



CHAPTER 8 - CONCLUSION AND FUTURE WORK 

one for the portal paths, the other for the within area paths, rather 

than one large look-up table. This would save a lot of memory too. 

For a terrain of 2000 nodes (N), partitioned into 133 areas (P) 

connected by 90 portals (M), the memory consumption is about 

463KB! This figure can be calculated from the following formula [36]. 

N/M (areas) x M2 (matrix size) x (per-area travel info) + P2 

(connections) x inter-area travel info where per-area travel info and 

inter-area travel info are derived from some game content. 

With this navigation system in place, we have an extremely fast path 

finding with relatively low memory cost. For this virtual environment, it 

is an important aspect to conserve memory and CPU usage. 

Furthermore, this technique is fairly easy to implement and is an 

enhancement to the current grid system, therefore it is recommended 

for future research work. 

8.3.4. Test beds with Specific Behaviours 

Through the use of modification of the game code, future research 

should involve creating test beds on Twilight City with specific 

behaviours such as flocking. The hostage rescue operation that was 

implemented is a good example of a test bed for simulation of rescue 

missions. More test beds such as those for airborne operations or 

ambush operations can be produced. These proposed test beds could 

be built from the existing development. As an interactive environment 

is already in place, the future developers only need to have an 

understanding of Unreal Script to create slight modifications to the 

currently available framework to produce the necessary mission 

frameworks. The test beds can be used in multi-agent research in 

other institutions especially in games AI. With the implementation of 

the test beds, the researcher can use the simulation results to perform 

analysis and evaluation of the operations involved. In the long term, 

NANYANG TECHNOLOGICAL UNIVERSITY 100 



CHAPTER 8 - CONCLUSION AND FUTURE WORK 

with a large package of scenarios, NTU can produce a truly complete 

simulation tool for all types of MOUT operations. 

Figure 8-3: MOUT Airborne Operations as Future Developments 

8.3.5. Steering Behaviour for Autonomous Agents 

Efforts can be spent to investigate the steering behaviours of 

autonomous agents However, problems evolved when more agents are 

required to follow the leader. The agents would bump into each other 

or the leader so often that the group movement or the objective of 

following the leader is lost. 

Flocking is a computer model for the coordinated motion of groups (or 

flocks) of entities. Flocking represents typical group movement, as 

seen in bird flocks and fish schools, as combinations of simple steering 

behaviours for individual agents based on the position and velocities of 

nearby flock mates. Although individual flocking behaviours 

(sometimes called rules) are quite simple, they combine together to 

NANYANG TECHNOLOGICAL UNIVERSITY 101 



CHAPTER 8 - CONCLUSION AND FUTURE WORK 

give flocks very interesting overall behaviours, which would be 

extremely complicated to program. However, flocking behaviour can 

be implemented by utilizing 3 general rules described by Reynolds 

[41]: 

• Separation: steer to avoid crowding local flock mates. 

• Alignment: steer towards the average heading of local flock 

mates. 

• Cohesion: steer to move toward the average position of local 

flock mates. 

**. 
<& 

a . . 

<£* *$». 

«, 
~ 0 . ' 

« £ * , 

Figure 8-4: Flocking Behaviours 

In Figure 8-4, which was extracted from the website of Reynolds [42], 

it shows the leader (grey), being followed by autonomous agents 

(green). The agents would not bump into each other and also move in 

a coordinated manner. This steering behaviour has already been used 

in multi-agent research in other institutions. 

With the steering behaviour, the researcher can use this information to 

integrate with AI architecture as shown in Figure 8-5, which is 

extracted from [43]: 

NANYANG TECHNOLOGICAL UNIVERSITY 102 



CHAPTER 8 - CONCLUSION AND FUTURE WORK 

(Action Selection: strategy, goals, planning 

(Steering: path determination 

7 
^Locomotion: animation, articulation 

Figure 8-5: Hierarchy of Motion Behaviours in Al Architecture 

It is thus recommended that future research to be done in this area. 

8.3.6. 3D Virtual Worlds 

With the increasing advancement in computer technology, there will be 

a strong demand for virtual environments of real locations for training, 

design or navigation purposes. Fantasy virtual worlds are in demand as 

well. Therefore, there is obvious tangible and economical value in 

virtual environments. Virtual environments can be designed to aid 

other areas of research or for exchange or monetary benefit. Thus, 

there is motivation to start developing virtual worlds. The framework 

and techniques learnt during this project can be used as a platform for 

future students to work on. 

8.3.7. Conducting a Game Al Course for NTU 

In view of the courses conducted in NTU, there is a lack of a course 

that allows creativity to be developed, especially in games. Early this 

year, the game scene in Singapore has been hyped up dramatically 

due to the support of the government. This is further justified when 

one of the Ministers promoted the World Cyber Games competition 

held early September 2004. Game Al is one of the courses that allow 

creativity and innovation for students as well as researchers to 

flourish. One example would be a course held in Rochester Institute of 

Technology, Australia [44]. 

; 

) 

) 

NANYANG TECHNOLOGICAL UNIVERSITY 103 



CHAPTER 8 - CONCLUSION AND FUTURE WORK 

The school conducted a game AI course that delves into the use of 

artificial intelligence in the creation of modern computer games. The 

focus is using existing tools for programming assignments in 

interactive fiction, first person shooter, real-time strategy, and 

simulations. The course included topics such as pattern matching, 

intelligent group movement, tactical reasoning, artificial life, and 

learning. It would be a great impact for the institutions, working hand 

in hand with commercial game companies to build powerful and 

dynamic environments for everyone. 

NANYANG TECHNOLOGICAL UNIVERSITY 104 



APPENDIX 

REFERENCES 

[1] FM 90-10, Military Operations on Urbanized Terrain (MOUT). Headquarters, 

Department of the Army, Washington, D.C., 1979 

[2] FM 3-06, Urban Operations. Headquarters, Department of the Army, 

Washington, D.C., 2003 

[3] C. P. Stacey, Official History of the Canadian Army in the Second World War 

Volume III: The Victory Campaign: The Operations in North West Europe 

1944-1945, 1960 

[4] J. R. Ballard, Fighting For Fallujah, A New Dawn for Iraq, 2006 

[5] "The Art of War", translated by Lionel Giles, 1910 

[6] R. Adobbati, A.N. Marshall, A. Scholer, S. Tejada, G.A. Kaminka, S. Schaffer, 

C. Sollitto, "GameBots: A 3D virtual world test bed for multiagent research", In 

Proceedings for the Second International Workshop on Infrastructure for 

Agents, 2001, Montreal, Canada 

[7] J. Akahani, K. Isbister, "Digital City Project: NTT Open Laboratory", NTT 

Communication Science Laboratories 2-4, 2000, Kyoto, JAPAN 

[8] L.B. McDonald, J. Weeks, T. Harris, "Security Forces Distributed Mission 

Training Technology Development", Proceedings of the 2000 Fall Simulation 

Interoperability Workshop, Sept 2000, Orlando, Florida 

[9] P. Prasithsangaree, J. Manojlovich, J.L. Chen, M. Lewis, "UTSAF: A 

Simulation Bridge between OneSAF and the Unreal Game Engine," IEEE 

International Conference on Systems, Oct 5-8, 2003, Washington, D.C., USA. 

NANYANG TECHNOLOGICAL UNIVERSITY 105 



APPENDIX 

[10] M. van Lent, R. McAlinden, P. Brobst, G. Barry, Silverman, K. O'Brien, C. 

Jason, "Enhancing the behavioral fidelity of synthetic entities with human 

behavior models". In Proceedings of the Thirteenth Conference on Behavior 

representation in Modeling and Simulation, pages 125-133, 2004 

[11] J. E. Laird, M. Assanie, B. Bachelor, N. Benninghoff, S. Enam, B. Jones, A. 

Kerfoot, C. Lauver, B. Magerko, J. Sheiman, D. Stokes, S. Wallace, "A Test 

Bed for Developing Intelligent Synthetic Characters", In Spring Symposium on 

Artificial Intelligence and Interactive Entertainment, AAAI, 2002 

[12] M. Lewis, J. Jacobson, "Game Engines in Scientific Research", 

Communications of the ACM, pages 27-31, Jan 2002 

[13] T. Sweeney, "Unreal Technology Features", Epic Games, Inc. 29 Jun, 1998 

[14] J. Jacobson, Using "CaveUT" to Build Immersive Displays With the Unreal 

Tournament Engine and a PC Cluster, Proceedings of the 2003 symposium 

on Interactive 3D graphics, Pages 221 - 222, 2003 

[15] Infiltration, http://infiltration.sentrystudios.net/ 

[16] D. Arendash, "The Unreal Editor as a Web 3D Authoring Environment", 

Proceedings of the Ninth International Conference on 3D Web technology. 

Pages 119-126,2004 

[17] B. Scott, C. Richard, "Training Effectiveness Evaluation of the Full Spectrum 

Command Game", Final report Jun 2002-Oct 2003, Jan, 2004 

[18] Karma, MathEngine Karma User Guide, 2002 

[19] V. Machado, B. Bredeweg, "Towards Interactive Tools for Constructing 

Qualitative Simulations", Fifteenth International Workshop on Qualitative 

Reasoning, 17-19 May, 2001, San Antonio, Texas 

NANYANG TECHNOLOGICAL UNIVERSITY 106 



APPENDIX 

[20] B. Bredeweg and K. Forbus, "Qualitative Modeling in Education", Al 

Magazine, Volume 24, Number 4, pages 35-46, 2003 

[21] P. Salles, B. Bredeweg, and R. Winkels, "Deriving Explanations from 

Qualitative Models", Artificial Intelligence in Education: Knowledge and 

Media in Learning Systems, lOS-Press/Ohmsha, pages 474-481, 1997, 

Japan, Osaka 

[22] K.D. Forbus, "Qualitative process theory", Artificial Intelligence, volume 24, 

number 1-3, 1984, pages 85-168. 

[23] M. Cavazza, S. Hartley, J-L.Lugrin, P. Libardi, M.L. Bras, "New Behavioral 

Approaches for Virtual Environments", ICEC 2004: 23-31 

[24] M. Cavazza, S. Hartley, J-L. Lugrin, M. L. Bras "Qualitative physics in virtual 

environments", Intelligent User Interfaces, pages 54-61, 2004, 

[25] M. Cavazza, S. Hartley, J.-L. Lugrin, M. Le Bras, "Alternative Reality: 

Qualitative Physics for Digital Arts", Proceedings of the 17th International 

Workshop on Qualitative Reasoning 2003, Brasilia, Brazil 

[26] M. Cavazza, S. Hartley, J.-L. Lugrin, M. Le Bras, "Alternative Reality: A New 

Platform for Digital Arts", ACM Symposium on Virtual Reality Software and 

Technology, pages 100-108, Oct, 2003, Osaka, Japan 

[27] P. L. Gustavson, "BOM Study Group Final Report", Simulation 

Interoperability Workshop, March 2001 

[28] S. Reichenthal: "The Simulation Reference Markup Language (SRML): A 

Foundation for Representing BOMs and Supporting Reuse", 02FSIW- 038, 

Fall Simulation Interoperability Workshop, Sept, 2002,Orlando, Florida, 

NANYANG TECHNOLOGICAL UNIVERSITY 107 



APPENDIX 

[29] S. M. Loh, R. Thiang, K. O. Chiam, Behavioral Layering for Re-Use in 

Multiple Resolutions", The Interservice/lndustry Training, Simulation & 

Education Conference (l/ITSEC), 21-25 Nov, 2003, Orlando, Florida 

[30] S. J. Thio, S. T. Kong, S. F. Tan, L. C. Yeo, "JEWEL - M&S Environment 

for the SAF", The Interservice/lndustry Training, Simulation & Education 

Conference (l/ITSEC), 1-7 Dec 2006, Orlando, Florida 

[31] E. Lewis and M. Barlow, "The Use of Games to Investigate Tactical 

Decision-making", SimTecT 05, 10-12 May, 2005, Sydney, Australia 

[32] K. D. Forbus, "Qualitative process theory", Artificial Intelligence, volume 24, 

number 1-3, pages 85-168, 1984 

[33] Animation Export Tools, Unreal Developer Network, 

http://udn.epicgames.com/Two/ActorX 

[34] F. Hill, "Attacking Asymmetrical Warfare Simulation Issues", Spring 2004 

Simulation Interoperability, Apr 2004, Washington, D.C 

[35] S. TZU, 1982. The Art of War, trans. Samuel B. Griffith, Oxford University 

Press, New York, p. 78. 

[36] W. Sterren, "Al Game Programming Wisdom 2", pg 115-116, 2003. 

[37] S. Surasmith, "Preprocessed Solution for Open Terrain Navigation", "Al 

Game Programming Wisdom", Charles River Media, 2002. 

[38] J. Laird "Research in Human-Level A.I. Using Computer Games," 

Communications of the ACM, January, Vol. 45(1), pp. 32-35, 2002. 

NANYANG TECHNOLOGICAL UNIVERSITY 108 



APPENDIX 

[39] M. Koster, J. Teich: "(Self) reconfigurable Finite State Machines: Theory and 

Implementation". IEEE Automation and Test in Europe Conference and 

Exhibition, Paris, France. 2002. 

[40] S. S. Shah, E. W. Endsley, M. R. Lucas, D. M. Tilbury, "Reconfigurable logic 

control using modular Finite state machines: Design, verification, 

implementation, and integrated error handling". In Proceedings of the 

American Control Conference, 2002. 

[41] C. W. Reynolds, "Flocks, herds, and schools: a distributed behavioral 

model". Computer Graphics (ACM SIGGRAPH '87 Conference 

Proceedings), 21(4):25-34, July 1987. 

[42] C. W. Reynolds, "Leader Following Steering Behaviour", 

http://www.red3d.com/cwr/steer/LeaderFollow.html, 2004. 

[43] C. W. Reynolds, "Steering behaviors for autonomous characters", Game 

Developers Conference Proceedings, 2000. 

[44] J. D. Bayliss, "Artificial Intelligence for Computer Game Programming", 

Rochester Institute of Technology, http://www.cs.rit.edu/~jdb/gameAI, 2004. 

[45] S. P. Zhou, S. P. Ting, "Qualitative Physics for Movable Objects in MOUT", 

39th Annual Simulation Symposium, April 2 - 6, 2006, Huntsville, AL, USA 

[46] S. P. Zhou, S. P. Ting, "A Generic Model Framework for MOUT Simulations", 

International Conference on CYBERWORLDS, Nov 28-30, 2006, Lausanne, 

Switzerland 

[47] S. P. Zhou, S. P. Ting, Z. Q. Shen, L. B. Luo, "Twilight City - A virtual 

environment for MOUT" (Accepted by International Journal of Computer and 

Applications) 

NANYANG TECHNOLOGICAL UNIVERSITY 



APPENDIX 

[48] S. P. Zhou, S. P. Ting, "A Qualitative Approach to Behaviour Simulation in 

Virtual Environments", (Under review by Simulation - Transaction of the 

Simulation Computer Society) 

[49] S. P. Ting, S. P. Zhou, "An Architecture for Rapidly Re-configurable MOUT 

Simulations", 40th Annual Simulation Symposium, 26 - 28 Mar, 2007, Norfolk, 

VA 

[50] S.P. Ting, S.P. Zhou, "Quartz: An Autonomous Navigation System 

for MOUT" , 2007 (Invited for Computer Animation and Virtual 

Worlds Journal) 

[51] S.P. Ting, S.P. Zhou, Quartz: An Autonomous Navigation System 

for MOUT, 20th International Conference on 

Computer Animation and Social Agents (CASA2007), 11-13 Jun, 

2007, Hasselt, Belgium. (Ranked among 35 Best Papers, Invited 

for Computer Animation and Virtual Worlds Journal) 

[52] FM 90-10-1, An Infantry man's Guide to Combat in Built-up Areas 

[53] A. Al Ahuja, "Determining battlefield effects in an urban environment: MOUT 

terrain analysis - Military Operations in Urban Terrain", Military Intelligence 

Professional Bulletin, July-Sept 2003,11 May. 2007 

[54] FM 34-130, Intelligence Preparation of the Battlefield, 8 July 1994 

[55] B. Kuipers, "Qualitative Reasoning: Modeling and Simulation with Incomplete 

Knowledge", The MIT Press, Cambridge, Massachusetts, 1994 

NANYANG TECHNOLOGICAL UNIVERSITY 110 


