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Abstract 

The security strength of Public Key Cryptosystems (PKCs) is attributed to the complex 

computations that are employed in the encryption and decryption algorithms. These al

gorithms are executed by cryptoprocessors which are used as embedded co-processors in 

devices like smartcards, smart cameras etc. Speed of operation, circuit area and security 

strength variability are vital design considerations in such applications. These criteria 

call for efficient hardware implementation of the underlying arithmetic operations of the 

algorithms. Multiplication in finite fields, widely known as finite field multiplication or 

modular multiplication, forms the core computational engine of all algorithms involved in 

PKCs. The research work in this thesis aims at developing efficient architectures for finite 

field multiplications in the prime field GF(N) and the extended binary field GF(2m). The 

research focuses particularly on high speed hardware implementations of finite field multi

plication algorithms giving due consideration to area utilization. Three different kinds of 

algorithms, called LSB-first and MSB-first, and Montgomery modular multiplications, are 

studied in this thesis. 

A modified Montgomery modular multiplication is proposed for Rivest-Shamir-Adleman 

(RSA) cryptosystems. Two fast array-based architectures, a one-dimensional serial-in 

parallel-out array and a two-dimensional pipelined parallel array, are derived from the 

proposed algorithmic modification. These architectures are evaluated for speed and area 

utilization against recently reported implementations using both FPGA and semi-custom 
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design flows. 

Though the proposed Montgomery modular multipliers operate at nearly twice the clock 

rate as the existing architectures, they do not address scalability issues. Moreover, they 

are designed to operate in GF(N), which is only suitable for RSA cryptosystems. We have 

further proposed a novel pipelined and scalable unified Montgomery modular multiplica

tion processing unit that can operate in GF(N) or GF(2m) for both RSA and Elliptic 

Curve Cryptosystems (ECCs). The proposed architectures eliminate the redundant logic 

in existing dual field architectures. Implementation using FPGA design flow shows a 

twofold speedup in GF(2m) operation with no timing degradation in GF(N) operation. 

The operation of the pipeline is derived from reservation tables and dependency graphs. A 

comprehensive analysis of the pipelined architecture is performed to study the relationship 

between latency cycles, total computational time and number of processing units in the 

pipeline. 

Novel serial-in parallel-out LSB-first and MSB-first modular multipliers are also proposed. 

The proposed multipliers can operate in arbitrary field GF(2m) with the field order m < M 

where M is the maximum permissible field order. In contrast to existing parallel gener

alized LSB-first/MSB-first multiplier, the dependency of the critical path on the size of 

the multiplier is eliminated. To the best of the author's knowledge, these are the first 

reported programmable serial-in parallel-out LSB-first and MSB-first architectures for any 

field order m reported in the literature. The proposed architectures are synthesized using 

the TSMC 0.18/iim standard cell libraries. The prelayout simulation results show an area 

savings of about 96% and a speedup of about 17 times compared to the existing parallel 

generalized multipliers. 
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Chapter 1 

Introduction 

1.1 Background 

In the present era of network communications, information security is a major concern. 

Applications like automatic teller machines, internet transactions, satellite communication 

etc., involve large amounts of sensitive data which requires encryption to prevent eaves

dropping. Several cryptosystems have already been developed and the strengths of most of 

these systems have been tested with extensive cryptanalysis [50]. All these cryptosystems 

have been implemented on software and hardware and a common rule that goes with all 

cryptosystems is that hardware implementations are faster and less vulnerable to willful 

tampering than their software counterparts [50]. 

Cryptosystems can be broadly classified as symmetric key and public key cryptosystems 

[50]. Symmetric key cryptography requires both parties - sender and receiver, to have the 

same key that encrypts and decrypts the message. Moreover, the encryption/decryption 

key should be kept private. In contrast to symmetric key cryptography, public key cryp

tography involves a 'public' encryption key and a 'private' decryption key. Thus a public 

database holds one's encryption key and based on this encryption key, a legitimate user 
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can derive the decryption key which is private to that user. 

In contrast to the symmetric key cryptosystems where key management plays a vital role 

in maintaining the secrecy of information, public key cryptosystems are less vulnerable to 

eavesdropping because the encryption and decryption keys are different and there is no 

transmission of private keys over secure channels. The transmission channel also needs 

to be highly secure in a symmetric key cryptosystem to prevent an eavesdropper from 

accessing the key which is also being transmitted [50]. Moreover, public key cryptosystems 

can be used to encrypt the secret keys for symmetric key information exchange sessions 

over insecure channels. Public key cryptosystems have superceded symmetric key cryp

tosystems for sensitive information protection, limited only by their greater computational 

complexity. 

The strength of public key cryptosystems (PKCs) like Rivest Shamir Adleman (RSA) 

algorithm, Elliptic Curve Cryptography (ECC) algorithm, Diffie-Hellman key exchange 

etc., lies in the mathematical irreversibility (in computational complexity sense) of their 

encryption in the absence of the key. For example, the strength of RSA is dependent on 

the intractable NP-complete problem of factoring a product of two large relatively-prime 

numbers. Similarly ECC and Diffie-Hellman key exchange are logarithm-based operations. 

The security strength of RSA has been proven for large prime number domain which are 

of the order 210 bits [50]. For the same security strength, ECC operates at shorter key 

lengths, making it preferable to RSA [3]. 

1.2 Motivation 

The two commonly used PKC algorithms - RSA and ECC are formulated using abstract 

algebra. It involves algebra in two kinds of finite fields (also known as Galois Fields) - prime 
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field GF(N) and extended binary field GF(2m). RSA cryptosystem generally operates in 

GF(N) whereas ECC operates in both GF(N) and GF(2m). The main problem that is 

common to both cryptosystems is the complex mathematical operations. The algorithms 

for both cryptosystems are founded on the compute intensive finite field multiplications. 

These modulo computations are the performance bottleneck not only in software but also 

in hardware implementations. 

Thus finite field arithmetic, more specifically finite field multiplication, for both ECC and 

RSA is in the spotlight of the network security research community. Hardware implemen

tation of the operations in finite field arithmetic scores over the software implementation 

mainly because of its high speed. Besides, the area and power efficiency in application-

specific integrated circuit (ASIC) make it a prerogative choice for secured information 

exchange via RFIDs and smartcards. It is evident from literature [5,6,10,11,21,22,32, 

34,35,35,36,39], [8,13-20,28,40,51,52], [23], [35] that finite field multiplication has been 

a dominant research area. Due to several new developments from a detailed literature 

survey, and in the context of hardware of public key cryptography, there is plenty of scope, 

new challenges and new perspectives for the design and development of hardware efficient 

and improved performance finite field multipliers. There is both need and potential to 

exploit the inherent properties of the modular multiplication algorithms for efficient hard

ware architectures. Larger benefits could be derived from architectural translation if the 

optimization is considered at the algorithmic level itself. 

1.3 Objectives 

Considering the ever increasing need for secure cryptoprocessors, this thesis aims to de

velop efficient hardware architectures for finite field multiplication which is instrumental to 

the advancement of Elliptic Curve Cryptosystems and RSA cryptosystems. This thesis ad-
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dresses the need for efficient cryptoprocessors by proposing novel algorithms for finite field 

multiplication and translating them into high performance architectures. Existing finite 

field multiplication algorithms will be studied in detail and the hardware implementation 

aspects of these algorithms will be explored. Scalability and parallelism are important 

factors that improve the performance of hardware implementations. These issues will also 

be addressed at the algorithmic level. In addition to algorithm development and architec

tural translation, it is also aimed to evaluate the architectures comprehensively for VLSI 

performance metrics. Standard hardware development platforms - ASIC and FPGA, will 

be used to evaluate the performance of the proposed architectures against the existing 

architectures. Due to the large number of circuits involved and the man-hour required for 

the backend process of ASIC design, all designs are coded in structural VHDL at Register 

Transfer Level (RTL) and the VLSI metrics are reported based on prelayout synthesis 

results using the TSMC 0.18/zm CMOS standard cell libraries. 

1.4 Thesis Contributions 

This research work was embarked on with a very clear focus and emphasis. The develop

ment of novel algorithms and their translation into efficient hardware architectures were 

the prime objectives, making the following important contributions possible during the 

course of research. 

Firstly, a detailed survey of fast and efficient hardware implementations of systolic and 

semisystolic finite field multipliers in GF(2m) with two algorithmic schemes - LSB-first 

and MSB-first, is conducted. These algorithms have been mapped to seven variants of 

recently proposed array-type finite-field multiplier implementations with different input-

output configurations. The relative VLSI performance merits of these ASIC prototypes 

are evaluated and compared under uniform constraints and in properly defined simulation 
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runs on a Synopsys environment using the TSMC 0.18/im CMOS standard cell library. 

The results of the simulation provide an insight into the behavior of various configurations 

of array-type finite-field multiplier so that a system architect can use them to determine 

the most appropriate finite field multiplier topology for the required design features. 

A modified Montgomery modular multiplication (MMM) algorithm is proposed in this re

search. It can be translated into high speed carry-save systolic architectures due to the elim

ination of data-dependent control signal that dominates the critical path. Two new systolic 

Montgomery multipliers are designed based on the proposed algorithm - two-dimensional 

pipelined parallel systolic architecture and serial-in parallel-out one-dimensional area-

efficient implementation. Both architectures are evaluated against recently reported Mont

gomery multipliers in terms of resource utilization of FPGA and clock frequency. The 

one-dimensional serial architecture is further assessed for ASIC performance metrics in 

TSMC 0.18 /xm against the fastest reported one-dimensional implementation. The pro

posed architectures show improved performance and low area-time product as compared 

to the existing architectures. 

The next major contribution is a novel fast kernel comprising a new processing element 

and dual field adder for a scalable and pipelined unified MMM in GF(N) and GF(2m). 

The proposed architecture has successfully reduced the slack of the MMM in GF{2m) 

without jeopardizing the timing of its operation in GF(N). Acceleration of multiplica

tion in GF(2m) for all ranges of modulus and in GF(N) for higher precision modulus is 

made possible through a new kernel of dual field adder and processing unit. The proposed 

dual field adder has been optimized to operate in an existing architecture that has been 

retimed to overcome the conflicts for speeding up the pipelined architecture. The total 

latency has been analytically expressed in terms of the input wordlength, modulus preci

sion and number of pipeline stages. The processing unit has been implemented on FPGA. 
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The experimental results show evidence of reduction in total computation time and faster 

operating clock rates over existing dual field processing unit. 

Lastly, novel generalized LSB-first and MSB-first modular multipliers in GF(2m) have 

been proposed. The proposed multipliers can operate in any arbitrary field with field or

der m up to a maximum field order, M. The proposed 128-bit multipliers speed up the 

maximum clock frequency of the existing generalized LSB-first/MSB-first multipliers by 

nearly 16.7 times. By using our proposed generalized field multiplier for the point multi

plication operation in an ECC with parametric m = 113, the total computation time is 

reduced by ten fold and the area cost is reduced by 96% as compared to that implemented 

with existing parametric finite field multiplier. This savings is attributed to serializing of 

the whole multiplication in addition to making it programmable. 

The above contributions have resulted in several international journal and conference pa

pers which are listed in the List of Author's Publications towards the end of the thesis. 

1.5 Organization of Thesis 

The thesis is organized as follows. 

Chapter 1 presents the background and motivation for the research work. The major 

contributions of the thesis are also highlighted. 

In Chapter 2, the foundational mathematical structures on finite fields, GF(N) and GF(2m) 

in particular, are presented as a preamble to cryptosystems. Two major public key cryp-

tosystems, RSA and elliptic curve cryptography are introduced followed by the principles 

and protocols of their encryption and decryption. The fundamentals of elliptic curves and 
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their applicability to public key cryptosystem are further elaborated. Finite field multi

plication algorithms in GF(N) and GF(2m), being the workhorse of these cryptosystems, 

are surveyed. Three algorithms, Montgomery modular multiplication, LSB-first and MSB-

first multiplication algorithms are described. In addition, hardware implementations of 

recently reported LSB-first and MSB-first multipliers are discussed in greater detail. The 

VLSI metrics of these architectures using TSMC 0.18^m standard cell libraries are also 

evaluated. 

Chapter 3 presents two new systolic architectures for Montgomery modular multiplication 

in GF(N) for RSA cryptosystems. First, some existing implementations of Montgomery 

modular multiplication are discussed at algorithmic level. The issues associated with the 

architectural translation of these algorithms are discussed. A modified multiplexer based 

method is then proposed which leads to two multiplier designs - one-dimensional serial 

multiplier and two-dimensional parallel multiplier. These multipliers are then evaluated 

against some of the recent most Montgomery multipliers on FPGA and ASIC platforms. 

In Chapter 4, a new scalable and pipelined unified kernel for Montgomery multiplica

tions in GF(N) and GF(2m) is proposed. MMM algorithms in GF(N) and GF{2m) are 

first revisited to study the similarities between them. After studying some existing uni

fied architectures, the impediment to the speed of even one of the fastest available unified 

architecture is identified. A kernel that employs a new processing unit is then devised to 

reduce the total time of computation of the Montgomery product. The logic of the pro

posed processing unit is described and new dependency graphs are derived from a detailed 

description of the dataflow. They are used to explain the design of a new pipelined ar

chitecture using the proposed processing unit. For different use scenarios, the reservation 

tables corresponding to the new pipeline are illustrated. The latency and pipeline stalls 

are derived analytically. Detailed qualitative and quantitative analysis and evaluation of 
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latency, critical path delay, total computation time and area using FPGA platform are 

conducted. 

Chapter 5 presents new serial-in parallel-out generalized LSB-first and MSB-first modular 

multipliers in GF(2m), for any field order m. Some preliminaries of fixed order LSB-

first/MSB-first algorithms are provided and the challenges to make them adaptable to 

varying field orders are discussed. This is followed by a scrutiny of the limitations of ex

isting generalized LSB-first/MSB-first multipliers. The proposed methods based on field 

selectable switches are then presented. Signal flow graphs are used to illustrate the data 

flow in the proposed methods. Architectural innovations for efficient implementation us

ing the standard cell libraries are discussed. A comprehensive qualitative evaluation of the 

proposed multipliers against existing multiplier, in terms of the latency and gate count, is 

carried out. The synthesis results based on standard cell implementation are also analyzed 

and discussed. 

Important conclusions from the research work are drawn in Chapter 6. It summarizes 

the key results of this research. Relevant future work is recommended. 
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Chapter 2 

Background and Literature Review 

2.1 Introduction 

This chapter surveys the RSA and ECC public key cryptosystems (PKCs) and their essen

tial operational blocks. A brief introduction of the algebraic structures, that are necessary 

to understand the encryption and decryption algorithms in PKCs, is provided. Elliptic 

curves and the associated arithmetic operations are further discussed because of their rel

ative importance in this research. The finite field multiplication is identified as a core 

operation of the PKCs. A detailed review and performance evaluation of some existing 

algorithms and architectures of finite field multiplier are performed. The survey is by no 

means complete, but it does provide a good insight into the complexity and trade-offs of 

the problems considered in this thesis. 

2.2 Algebraic Fundamentals 

Vectors are used extensively to describe generic signals and variables of the algorithms and 

architectures. The following conventions are adopted to maintain consistency in the nota

tions of vector quantities in this chapter. A fc-bit vector {xk_\Xk_2 • • • ^1^0) is represented 

by italicized capital letter X. The j-th bit of vector X is given by Xj. 
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2.2.1 Fundamentals of Groups and Finite Fields 

A group is an algebraic system denned on a set of elements, G, with a binary operation o 

satisfying the following four axioms [4,12,27]: 

• closure: \/x, y € G,x oy € G 

• associativity: x o (y o z) = (x o y) o z 

• identity: 3e E G,\/x £ G : x o e = e o x = x where e is the identity element 

• inverse: V i e G , 3ydG: xoy = yox = e. 

In addition to the above properties if a group satisfies commutative property, defined as 

Vx, y £ G, x oy = y o x, the group is called an Abelian group. 

A field is a special type of group. It is an algebraic system defined on a set of elements, F 

with two binary operations + and x. It satisfies the following axioms [4]: 

• (F, +) is an Abelian group 

• (F/ {0} , x) is an Abelian group, where {0} is the identity of addition and the zero 

of multiplication 

• distributivity: Vx, y,zEF: xx(y + z) = xxy + xxz; (x + y)xz = xxz + yxz 

A field with a finite number of elements is called a Galois Field (GF). Operations that 

are performed in a finite field are called finite field operations. Two types of finite fields 

are important to understand the core properties and implementation considerations of 

PKCs. A prime field, denoted GF(N) is a Galois field of N elements, where N is a prime 

number [37]. An m-th degree extension of the prime field is denoted by GF(pm). The m-

degree extension of a binary field, which is denoted by GF(2m) [37], is the most important 

in terms of hardware realization of finite field operations. 
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Prime Field GF(N) or FN 

A prime field GF(N) is defined on a set of numbers F = {0,1, . . . N — 1}, where JV is 

prime. All the elements, that are operated on in this field, lie in F. The results of all finite 

field operations in GF(N) are reduced by a modulus N. Finite field addition and finite 

field multiplication in GF(N) are defined as follows. 

Addition: Integer addition of a and b followed by a reduction operation. 

c=(a + b) modN (2.1) 

Multiplication: Integer multiplication of a and b followed by a reduction operation. 

c=(axb) mod N (2.2) 

These operations are the conventional integer addition and multiplication methods which 

involve carry propagation. The reduction operation at the end of the addition and multi

plication ensures that the result c belongs to F. 

Extended Binary Field GF(2m) or F2™ 

The elements in GF(2m) for ECC are commonly represented in two different ways [37] 

but in this thesis, only the polynomial basis representation is used. In this representation, 

every element in GF(2m) is expressed as a polynomial, a(x), in an indeterminate x with 

degree less than m. 

m—1 

a(x) — ^2 diX1 = am_ia;m_1 + am_2xm_2 -\ 1- a^x + a0 (2.3) 

where the coefficients, a, G {0,1} of the polynomial a(x), are the elements in GF(2). The 

finite field addition and multiplication operations in GF{2m) are defined as shown below. 
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Addition: Two elements a(x) and b(x) in GF(2m) are added to produce c(x) using a 

bitwise XOR operation. 

c(x) = a(x) + b(x) (2.4) 
m—1 m—1 m—1 

i=0 t=0 i=0 

where C{ = (a* + 6j) mod 2 = a* © 6* 

The modulo operation in finite field addition operation in GF(2m) makes it free from carry 

propagation. 

Multiplication: Multiplication of elements a(x) and b(x) in GF(2m) is more compli

cated than addition. It involves an irreducible polynomial of degree m, f(x) = xm + 

E^o* /*x*> ft e {0> 1}' t n a t ^s u s e c l f°r t n e reduction of the product a(x) x 6(x) as shown 

below. 

c(x) = (a(i) x i(i)) modf(x) (2.5) 
m—1 /m—1 m - 1 \ 

J^ QO;1 = I 53 Oî * x Yl b&% 1 raod /(x) 
i=0 \ t = 0 i=0 / 

The product, c(x), is a result of modular multiplication with f(x) as the reduction poly

nomial. The product, c(x), is also a polynomial of degree less than m. 

Note: All finite field operations, either in GF(N) or GF(2m) involve a modulus or re

duction operation. This implies that the linear congruences of all finite field operations 

are realized by modular operations. Henceforth, modular multiplication and finite field 

multiplication are used interchangeably in the thesis. These preliminary mathematical 

structures are vital in understanding some important concepts to be reviewed in the sub

sequent sections. More number theoretic fundamentals will be introduced as and when 

they are needed. 
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2.3 Public Key Cryptosystems 

Public key cryptography was first introduced by Whitfield Diffie and Martin Hellman in 

1976 [50]. Two different keys, called private key and public key, are used for the encryption 

and decryption of data in public key cryptosystems (PKCs). The two keys are used in PKC 

protocol [50] in the following way to generate cipher text. 

1. Alice and Bob agree on a public-key cryptosystem. 

2. Alice gets Bob's public key from a database. 

3. Alice encrypts her message using Bob's public key and sends the resulting cipher 

text to Bob. 

4. Bob then decrypts the cipher text to retrieve Alice's message using his private key. 

A public key is available to all users of the PKC. It is used for encryption by a sender to 

generate the cipher text. The receiver decrypts the cipher text using his own private key. 

The public and private keys are mathematically related. A public key can have only one 

corresponding private key and it is computationally intractable to derive the private key 

from the public key. 

Ease of key management and non-repudiation are the two major advantages in PKCs 

over symmetric key cryptosystems [50]. In the latter, both the sender and the receiver use 

the same key for encryption and decryption. Sharing a common key for a communication 

session poses the same threat as the secret data to be protected by the cryptosystem itself 

over the public channel. In PKC, the encryption keys of users are known to everyone. 

So any sender can encrypt and send a message to a desired receiver using the receiver's 

public key. An eavesdropper cannot decrypt it because he does not have the private key 

needed for decryption. Only a valid receiver can decrypt the message using the private key. 

Therefore, the more secure PKC is often used to exchange a secret key used for a more 
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efficient symmetric key communication session. A trustworthy governing body is usually 

engaged to generate and distribute the public keys for information exchange. 

In what follows, we will review the algorithms of two important public key cryptosystems. 

2.4 RSA Cryptosystem 

RSA algorithm is named after Rivest, Shamir and Adleman who proposed it in 1978 [41]. 

Its security is theoretically guaranteed by the difficulty in factoring large numbers [50]. The 

private and public keys are a pair of large prime numbers. The mathematical details for 

generating these keys are described in [50]. The encryption and decryption of a message is 

done by modular exponentiation of the message. A plain text, rrii is encrypted to produce 

the cipher text C; using the following equation. 

Ci = m\ mod N (2.6) 

where e is the public key and N is a large prime number. This cipher text is decrypted 

using the private key, d, by the following equation. 

rrii = cf mod N (2.7) 

The validity of (2.7) to decrypt the cipher text back to give the original message is proved 

in [50]. Since all numbers involved in the algorithm lie in the set { 0 , 1 , . . . , N — 1}, RSA 

operates in the prime field GF(N). 

The security of RSA cryptosystem is founded on a NP-hard problem commonly known 

as the Discrete Logarithmic Problem (DLP) [50]. DLP deals with computing k in ak = b 

modN when b is known or finding a when k is known. From (2.6) and (2.7), it can be seen 
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that finding message m,, when c* and e are known, is a DLP problem. Hence, to break 

RSA, DLP is encountered to determine the message m, given the cipher text Q. RSA deals 

with large integers that typically have more than 100 digits. Begin NP-hard, solving DLP 

is computationally intractable when k and N are large [50]. 

2.4.1 Modular Exponentiation and Multiplication in RSA 

From (2.6) and (2.7), it can be inferred that modular exponentiation is the key compu

tational block in RSA cryptosystem. Modular exponentiation is implemented as repeated 

modular multiplication [36]. The following algorithm from [36] illustrates the implementa

tion of modular exponentiation using modular multiplication, m, e, c and JV in Algorithm 

Algorithm 1 Binary modular exponentiation 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Input: m, e, iV 
Output : c = me mod N 
c = m 
for % = k — 2 downto 0 do 

c = c2 mod N 
if e; = 1 then 

c = (c x m) mod N 
end if 

end for 
Return Cj 

1 represent the message, public key, cipher text and the field order respectively. In this al

gorithm, c is the output of the modular exponentiation operation. Input m is first assigned 

to c. In a loop that runs through all the bits of the exponent e, a squaring operation is 

done on c and the squared result is multiplied to m if and only if the bit in the exponent is 

equal to T . All the multiplications and squaring operations done are reduced by modulus 

operation to keep the result less than N. 

The modular exponentiation algorithm shows that modular multiplication (MM) in Line 

7 is the most important computational block. The numbers involved in cryptographic 
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operations are huge. For example, in RSA cryptosystem, the operand lengths are at least 

128 bits to give a reasonable security strength. Hence, standard division and modular mul

tiplication algorithms are not commonly used for cryptographic operations. In the above 

algorithm, modular multiplication is the key computation step and modulo operation is 

a costly operation in terms of hardware metrics. Circumventing the division problem in 

modulo operation by using fast algorithms and their corresponding efficient hardware im

plementations of modular multiplication (MM) in GF(N) is a widely researched topic in 

computer arithmetic community. From the available MM algorithms, Montgomery mod

ular multiplication (MMM) in GF(N) proposed by P. L. Montgomery in [32] is the most 

commonly used algorithm for efficient hardware implementation. It converts trial divisions 

in the modulo reduction to shifts and adds. 

The MMM algorithm is briefly described as follows. Given m bit integers A, B and N, an 

m bit integer C = AB2~m modN is determined using MMM Algorithm 2. The result from 

the MMM algorithm is AB2~m modN and not the actual modular product AB modN. To 

obtain the actual modular product, the inputs are converted to Montgomery domain [48] 

by precomputing the following modular products. 

A~ = MMM(A,22m) = A2m modN 
(2.8) 

B = MMM(B,22m) = B2m modN 

When A and B are used as inputs to the MMM algorithm, it produces C in Montgomery 

domain, which is converted to the correct result in the original field using the following 

equations. 

C = MMM(A,~B) = AB2m modN 
(2.9) 

C = MMM(C,1) = ABmodN 

As shown in Algorithm 2, the modulo operation is determined by simple vector additions 

and shifts. The additions in Lines 5 & 6 are integer additions with carry propagation. 
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A number of implementations of this algorithm are found in the literature [5,6,10,11, 

21,22,32,34,35,35,36,39]. [21] surveys different codings of this algorithm in software. 

[10,11,34-36,48] provide its hardware realizations using carry-save representation for faster 

accumulation of partial products. 

Algorithm 2 Montgomery Modular Multiplication in GF(N) 

1: Input: A = YT~l Oi2\ B = ET'1 h2\ N = E™-1 ^ 
2: Output : C = MMM{A, B) = AB2-m{mod N) 
3: 5 ^ 0 
4: for i = 0 to m — 1 do 
5: S*-S + OiB 
6: S «- 5 + S0N 
7: S*- 5/2 
8: end for 
9: if S>N then S <- S - N 

10: Return S = AB2-m(mod N) 

2.5 Elliptic Curve Cryptosystems 

Elliptic curves have been studied for many years but their application to the cryptosystems 

is relatively recent [31,33]. RSA cryptosystems (discussed in the previous section) involve 

integers that are 100 to 200 decimal digits long. As a result, the processing time of RSA 

cryptosystems is long. ECCs, on the other hand, operate on smaller numbers. The security 

strength of an ECC with keylength of 572 bits is equivalent to an RSA with keylength of 

15360 bits [3]. In the recent years, there has been a wave of research in the field of Elliptic 

curve cryptosystems. A detailed description of the mathematical structures governing the 

elliptic curves and their applicability to cryptosystems can be found in [29,33]. In this 

section, we review some mathematical properties of elliptic curves that make them suitable 

for secure cryptosystems. 
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2.5.1 Elliptic Curves 

The mathematical expressions and framework presented in this section are taken from [4,9]. 

An elliptic curve, E, over real numbers is defined as the set of points (x, y) which satisfy 

the following equation 

E:y2 = x3 + ax + b (2.10) 

where x,y,a and b are real numbers. Different values of a and b result in different elliptic 

curves. If 4a3 + 27b2 ̂  0 then x3 + ax + b does not have repeated factors. In such a case, 

the elliptic curve E : y2 = x3 + ax + b can be used to form a group. 

The curve E defined on real numbers forms a large set of points. Also, dealing with 

real numbers incurs precision errors. When all points on E are defined in a set F = 

{0 ,1 , . . . , N — 1}, where N is prime, E becomes a field defined on FN or GF(N). E is 

now defined as 

E(GF(N)) : y2 mod N = (x3 + ax + b) mod N (2.11) 

All the points on E(GF(N)) are now defined in GF(N). In a similar fashion, an elliptic 

curve E can also be defined in the field GF(2m) as shown below. 

E(GF(2m)) : (y2 + xy) mod f(x) = (x3 + ax + b) mod f(x) (2.12) 

where x and y are defined in GF(2m) as polynomial basis (Section 2.2) and f(x) is an 

irreducible polynomial defined over GF(2m). 

The number of points on E(GF(N)) and E(GF(2m)) are finite. Operations defined on 

elliptic curves are called point operations. Three point operations are crucial in ECCs. 

They are point addition (PA), point doubling (PD) and point multiplication (PM). 
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Point Operations 

Two points P(xi,yi) and Q(x2,y2) on an elliptic curve E can be added graphically as 

shown in Fig. 2.1 to give R(x3,y3). Mathematically R(x3,y3) is computed using the 

following equations. 

where P 7̂  Q and x\ ^ X2 

where A = ^ ^ 

R(x3,ys) = P(xi,yi) + Q(x2,V2) 

= (A2 -xi -x2,X{xi -x3) - j / i ) 

and P,Q e E(GF(N)) 

or (X2 + X + x1 + x2 + a,X(xl + x3) + x3 + y1) where A = g ^ 

andP ,Qe£(GF(2 m ) ) 
(2.13) 

Point doubling (PD) of a point P on an elliptic curve E is defined as 

>x 

Figure 2.1: Point addition (PA) on elliptic curves 

R = 2P where R,PeE (2.14) 
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R can be graphically calculated as shown in Fig. 2.2. Mathematically, R(x3,y3) is com

puted using the following equations. 

R(x3,y3) = P(xuy1) + P(xi,yx) 

= (X2-2xi,X(xi-x3)-yx) 

where j/i ^ 0 

where A = XJ- -
2yi 

and P e E(GF(N)) 

or (X2 + X + a,X(xi+x3)+x3 + yi) where A = xx + ^ 

and P e E(GF(2m)) 

(2.15) 

Figure 2.2: Point doubling (PD) on elliptic curves 

Point multiplication (PM) or scalar multiplication is defined as 

Q = kP = P + P + --- + P (2.16) 

where k is an integer and Q is called the scalar product. Bit-wise implementation of PM 
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is given in [26] as shown in Algorithm 3. The PM algorithm employs point addition (PA) 

Algorithm 3 Elliptic curve point multiplication 
1: Input: Point P(x,y) on elliptic curve E, 

large integer k = ki-.\ki^2 . . . kQ where fc;_! = 1 
2: Output: Q = kP 
3: Q^P 
4: for i = l — 2 downto 0 do 
5: Q «- 2Q 
6: if ki = 1 then 
7: Q <- Q + P 
8: end if 
9. end for 

10: Return Q 

and point doubling (PD) operations repeatedly in Lines 5 and 7, respectively. [25,30,42] 

list different algorithms for PA and PD. According to [25], the number of finite field 

multiplications FMULT, additions FADD, inverses FJNV and squarings FSQR involved in 

one PM operation are listed below. 

FINV = 2[log2k\ + l 

FADD = 4 [log2k\ + 6 

FMULT = 2[log2k\+A (2.17) 

FSQR = 2[log2k\+2 

It can be seen from the above equations that modular or finite field multiplication is 

the most frequently used operation that comprises a point multiplication operation. It 

will be illustrated later that modular multiplication algorithms have repeated addition 

operations. Though addition operation is simple, the numbers that are involved in PKCs 

are of the order of 128 bits, at the very least. Thus, the area-time complexity increases 

due to the wordlengths of the operands that are involved in these operations. Hence 

modular multiplication becomes the bottleneck of encryption/decryption algorithms in 

PKCs. The hardware complexity of this operation in the context of cryptosystems is an 
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actively researched topic and it is also the focus of this thesis. Before surveying some 

commonly used modular multiplication techniques in ECCs, let us study how it is applied 

in elliptic curve cryptosystems by looking into the ECC protocol. 

2.5.2 Protocol in ECC 

In ECC, an elliptic curve needs to be identified by the users first. An elliptic curve is 

defined using a septuple shown below [4,25] 

T=(q,FR,a,b,G,n,h) (2.18) 

In this septuple, q is either a prime number TV or a power-of-two integer, 2m . It defines 

the field representation FR in which the elliptic curve operates. FR is either GF(N) or 

GF(2m) depending on q. a and b are the coefficients in the curve. Their values are de

pendent on the security requirement of the ECC. G is called the base point of the elliptic 

curve. It is used for the generation of keys, n is the order of G and the bit length of n is 

equal to the key length of ECC and h is called the cofactor of the elliptic curve [4]. 

The basic principle of ECC [4] is explained by the following scenario. 

1. Alice and Bob decide on using elliptic curve cryptosystem. 

2. Bob selects a large random integer dB € [ l ,n — 1] as private key and publishes the 

scalar product QB = dsG as public key. 

3. Alice selects a random integer k and generates the ciphertext using the public key 

QB by employing (kG, {kQB)x + m) where the subscript x signifies the x-coordinate 

on the elliptic curve and m is the message. This ciphertext is sent to Bob. 
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4. Bob decrypts the cipher text by using his private key dB using the following equation. 

[m + (kQB)x] - dB [kGx] =m + (kdBG)x - (dBkG)x = m (2.19) 

Point multiplication is an integral part of ECC, starting from the key generation in Step 2 

of the above procedure to encryption and decryption in Steps 3 and 4, respectively. This 

operation forms the basis for the security offered by ECC which is termed as Elliptic Curve 

Discrete Logarithmic Problem (ECDLP). Given two points P,Q G E(GF(p)), ECDLP 

determines an integer k that satisfies Q = kP, where 0 < k < n — 1 and n is the order of 

P [4]. This equation is the point multiplication operation, that is used in ECC. When k is 

large, determining k from this equation is a difficult problem. To date, the most efficient 

general algorithm to solve the ECDLP is Pollard p algorithm [4,25], which has a run time 

of :y^p, where r is the number of parallel processors. 

2.5.3 Modular Multiplication in GF{2m) 

The mathematical formulations of an ECC reveal that modular multiplication or finite 

field multiplication is the propeller to all operations, i.e. point multiplication, addition 

and doubling. Thus modular multiplication warrants a detailed study to improve the ex

isting algorithms. 

In ECC, modular multiplication can be performed in two different fields - GF(N) and 

GF{2m). The choice of the field depends on the characteristics of the elliptic curve. RSA 

cryptosystem that was discussed in Section 2.4 employs modular multiplication in GF(N). 

We have also discussed Montgomery modular multiplication that computes modular prod

uct in GF(N). In the subsequent sections, modular multiplication in GF{2m) will be 

reviewed. 
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Important techniques for software and hardware implementations of finite field multiplica

tion in GF(2m) have been reported in the literature [8,13-20,28,40,51,52], [23], [35], [54-57]. 

Several software implementations of finite field multiplication are listed in [15] whereas ef

ficient hardware architectures are described separately in [8,13,14,16-20,28,40,51,52], 

[23], [35], [54-57]. There are generally three different categories into which reported mul

tipliers can be categorized. [8] illustrates a multiplier of the first category where reduction 

is given higher priority than multiplication. Multiplication is performed by simple AND-

XOR network. However, reduction is more complicated and efficient implementations of 

reduction are designed. In [14,16,28,35,40,52], a variety of implementations of Mastrovito, 

Karatsuba and Massey-Omura multipliers have been reported, which form the second cat

egory. The third category comprises systolic and semisystolic multipliers which perform 

multiplication and reduction simultaneously. This includes Montgomery modular multipli

cation [22,48,49], LSB-first and MSB-first modular multiplication techniques [13,17-20,51]. 

The work reported in this thesis focuses on the third category. Novel Montgomery, LSB-

first and MSB-first modular multipliers will be designed and developed. Hence, an ap

praisal of existing methods in this category will be done in detail. 

2.5.4 Montgomery Modular Multiplication in GF(2m) 

In this section, MMM in GF(2m) will be studied. Cetin Koc developed MMM for GF(2m) 

in [22]. The algorithm is straightforward and is very similar to MMM in GF(N) (Algorithm 

2). MMM in GF{2m) can be formulated as shown in Algorithm 4. 

The inputs to this algorithm, A(x), B(x) and f(x), and its output, S(x), are in polynomial 

basis representation. The main difference between MMM in GF(2m) and GF(N) is the 

addition operations that take place in Lines 5 and 6. These addition operations are per

formed in GF(2m). As a result, all vector additions are performed modulo 2, making them 

simple bitwise XOR operations. These additions do not involve any carry propagation. In 
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Algorithm 4 Montgomery Modular Multiplication in GF{2m) 

1: Input: A(x) = E?'1 a,x\ B(x) = T,?'1 hx\ f(x) = Z?'1 fix1 

Output : S(x) = A(x)B(x)x~m(mod f(x)) 

for i = 0 to m — 1 do 
S <- 5 © OiB 
S<-S® soft 
S^S/x 

end for 
Return S(x) = A(x)B{x)x-m(mod f(x)) 

addition, Line 7 of the two algorithms are different but they are mathematically equivalent 

in their respective fields. A division by x in GF(2m) is equivalent to a right shift by one 

bit, which is the same as division by 2 in GF(N). 

Considering the similarities of MMM in the two fields, [48,49] illustrate unified Mont

gomery multipliers that can operate in either field using an additional control signal called 

the field select signal. Specialized adder cells, called dual field adders, are employed. In 

these dual field adders, the field select signal forces the carry output to zero while operating 

in GF(2m) mode. A comprehensive survey of the Montgomery modular multiplication can 

be found in [21]. 

2.5.5 LSB-first and MSB-first Multipliers 

In this section, a detailed survey of existing LSB-first and MSB-first modular multipliers is 

carried out. The survey presented in this section has been published by the author in [45]. 

Different input-output configurations of these multipliers will be studied in detail. These 

multipliers were synthesized and mapped to standard cell libraries using Synopsys Design 

Compiler. The prelayout simulation results on power, area and delay of these multipliers 

are analyzed. 

The LSB-first and MSB-first modular multiplication in GF(2m), for multiplying the poly-
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nomials - a(x) and b(x), in a field defined by the reduction polynomial f(x) are formulated 

as shown below. 

LSB-first modular multiplication: 

c(x) = a(x)b{x)modf(x) (2.20) 

= b0a(x) + b\[a(x)x mod f(x)] + b2[a(x)x2 mod f(x)] + • • • 

+6m_i[a(x)xm _ 1 mod f(x)] 

MSB-first modular multiplication: 

c(x) = a(x)b(x)modf(x) (2.21) 

= {• • -[a(x)bm-ix mod f(x) + a(x)6m_2]rr mod f(x) + • • • 

+a(x)bi}x mod f(x) + a(x)bQ 

As the names suggest, one of the input operands is read from the least significant bit (lsb) 

in the LSB-first multiplication (2.20) and from the most significant bit (msb) in the MSB-

first multiplication (2.21). The algorithms for their bit-level implementation are listed in 

Algorithms 5 and 6. In these algorithms, the j - t h bit of vector X in the i-th iteration is 

represented as Xj . 

Algorithm 5 LSB-first bit-level algorithm for fixed field order 
1: Input: a(x), b(x), f(x) 
2: Output : c(x) = a(x)b(x) mod f(x) 

3: tf] = 0 for 0 < j < m - 1 

4: o S = 0 for 0 < i < m - 1 

5: af] = 0 for 0 < j < m - 1 
6: for i = 1 to m do 
7: for j = 0 to m — 1 do 

8: a? = 4 ^ + a ! ^ 
9: f = 4-\_, + ^ 

10: end for 
11: end for 
12: c{x) = t^{x) 
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Algorithm 6 MSB-first bit-level algorithm for fixed field order 
1: Input: a(x), b(x), f(x) 
2: Output : c(x) = a(x)b(x) mod f(x) 
3: tf = 0 for 0 < j < m - 1 
4: tf = 0 for 1 < j < m 
5: *5l = 0 for 0 < i < m - 1 
6: for i = 1 to m do 
7: for j = m — 1 to 0 do 
8: tj = ^m-l / j + Om-taj + *j-l 
9: end for 

10: end for 
11: C(x) = t(m\x) 

Both algorithms have been realized with bit-serial and bit-parallel architectures in [13, 

17-20,51] [23] [35]. Bit-parallel multipliers [18,51] provide higher throughput at a cost 

of increased hardware. Hardware complexity is an important criterion for public key 

cryptography on smart cards in view of the need to realize finite field operations with 

large word length on a small footprint. Therefore, bit-serial multipliers [51] are preferred 

over bit-parallel counterparts in those applications. However, latency becomes an issue in 

bit-serial multipliers. Digit-serial multipliers [13,19,20] have also been reported to reduce 

latency but digitizing the design increases hardware complexity and combinational delay as 

compared to bit-serial multipliers. Digit-serial multipliers however compute the modular 

product in lesser number of cycles. 

2.5.6 Architectures of LSB-first/MSB-first Multipliers 

In this section, some systolic and semisystolic architectures of the LSB-first and MSB-first 

multipliers will be evaluated to study their implications on hardware implementation. A 

quantitative analysis in terms of gate count and latency is presented here. Algorithm to 

architecture mapping is described briefly for each of the multipliers to be evaluated. 
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Bit-serial/parallel Array Multipliers 

In [18], a bit-level pipelined parallel-in parallel-out LSB-first semisystolic multiplier is pro

posed based on Algorithm 5. The basic cell, which computes af' and tf' at Line ' i ' is 

shown in Fig. 2.3(a) with the architecture of an m-bit multiplier. The dotted lines indicate 

cutsets where registers are placed to pipeline it. This implementation comprises m2 basic 

cells and 2m2 1-bit latches. The latency of this implementation is m +1 clock cycles. From 

Fig. 2.3(a), we see that the critical path consists of one two-input AND gate followed by 

one two-input XOR gate, i.e., A2~AND + &2-XOR-

Similarly, a bit-level pipelined MSB-first semisystolic multiplier is implemented in [18,23] 

as shown in Fig. 2.3(b). The basic cell in Fig. 2.3(b) computes tj(i) at Line ' i \ The 

critical path is limited by the delay in the basic cell and is given by A2-AND + 2A2_XOR 

which is longer than the LSB-first multiplier by A2-XOR- The number of cycles, however, 

to complete the operation remains the same, i.e., m + 1 clock cycles. In addition, the 

number of 1-bit registers is reduced to m2 in the MSB-first implementation because only 

tj for all 0 < i, j < (m — 1) have to be latched in each basic cell. 

In [51], a serial-in serial-out multiplier is described based on the MSB-first algorithm. 

The basic cell for this architecture is shown in Fig. 2.4(a). In addition to the logic of an 

MSB-first basic cell, it comprises one 2-to-l multiplexer MUX, one 2-input AND gate 

and a register. The multiplexer and register are added to propagate data in a serial-in 

serial-out fashion. Also, an m-bit control sequence 111-•-110 is sent in serially into the 

array for it to execute in a serial-in serial-out mode. 

Fig. 2.4(b) shows the serial-in serial-out architecture of an m-bit multiplier in GF(2m). 

It comprises m basic cells and has a latency of 3m clock cycles with a throughput rate of 

1/m. The combinational delay is equivalent to A2-AND + 1A2-XOR (a 3-input XOR gate 
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Figure 2.3: (a) Basic cell and architecture for LSB-first bit-parallel finite field multiplier 
[18] (b) Basic cell and architecture for MSB-first bit-parallel finite field multiplier [18] 

is considered as equivalent to two 2-input XOR gates). The logic complexity of the basic 

cell is given by three 2-input AND gates, one 3-input XOR gate, nine 1-bit latches and 

one switch (multiplexer). 

Digit Serial Systolic Multipliers 

Two digit-serial systolic multipliers are described in [13] and [20]. Both of them are based 

on the MSB-first algorithm. The dependency graph (DG) shown in Fig. 2.5(a) is modified 

in [13] and [20] to create a digit-serial multipliers. Each block in Fig. 2.5 refers to the 
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Figure 2.4: (a) Basic cell and (b) Bit-serial MSB-first finite field multiplier [51] 

basic MSB-first combinational logic shown in Fig. 2.3(b). 

The problem encountered in both architectures to make this two-dimensional DG to a 

one-dimensional signal flow graph is - how to project the DG in the east direction to ob

tain a one-dimensional signal flow. In [13], for a digit length lL', a basic module comprising 

L2 cells is selected. These cells form a square grid of L cells in the x and y directions. Extra 

circuitry consisting of 4-input XOR gates is used in the basic module to overcome the bidi

rectional signal flow in the DG of Fig. 2.5(a). In an attempt to digitize the architecture, 

nine MSB-first logic blocks shown previously in Fig. 2.3(b) are grouped into one block. 

The flow of data is controlled by additional multiplexers external to this circuitry. More 

details on the complete derivation can be found in [13]. For a digit size of L, each basic 

cell has a logic complexity of (L — 1) 2-input XOR gates, (2L2 + L) 2-input AND gates, 

(L — 1) 4-input XOR gates, 10L 1-bit latches and 2L switches (2-to-l multiplexers) [13]. 

In [20], the DG is modified to prevent the use of 4-input XOR gates. The authors trans

form indices of the DG to form a new DG where each row in DG (see Fig. 2.5(a)) is shifted 

towards the right by one basic cell, i.e., Cell (2, m — 1) is placed under Cell (1, m — 2) 

instead of Cell (1, m — 1). The new DG is then divided into m/L parts horizontally where 

each part comprises L rows. Fig. 2.5(b) shows the DG partitioning for a 4-bit multiplier 
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Figure 2.5: (a) DG as in [13] (b) DG as in [20] 

where m = 4 and L = 2. Each part is further divided into m/L + 1 regions vertically. Due 

to the transformation of indices, the regions have different number of cells. Each basic 

module as shown in [20] has L2 cells. In contrast, the cutsets in Fig. 2.5(b) do not form 

equal regions. Latches and multiplexers are introduced between cells in the basic module 

to accommodate the cutsets. More information pertaining to the basic module and cutsets 

can be obtained from [20]. The complexity of the basic module is given by 21? 2-input 

AND gates, L2 3-input XOR gates, (8L + 2) 1-bit latches and 2L switches. 

Generalized Cellular-array Multipliers 

In [18], two generalized cellular-array multipliers are proposed based on the LSB-first and 

MSB-first algorithms presented earlier. The prefix 'generalized' refers to the applicability 

of the structure to varying field order, i.e., the multiplier is designed for multiplication over 

GF(2M) but the primitive polynomial f(x) is of order 'm' such that m<M. The higher 

order bits of all inputs are padded with zeros to make them M bits long. 

The authors of [18] first determine the order of the primitive polynomial by the bit-locator 
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cells - LCELL. The H vector from LCELLs is an M-bit binary string with only one non

zero bit. This 1 bit corresponds to the field order. For example, if p(x) = x5 + x + 1 and 

M = 9, then H = 00010000. This is followed by modifying both algorithms to incorporate 

programmability of field order m. The array is now made up of MCELLs (multiplier cells), 

which are based on the modified algorithms in [18]. Based on the architectures presented 

in [18], the complexity of the basic cell in the generalized LSB-first array multiplier is 

increased by four gates compared to the conventional LSB-first multiplier described pre

viously. Similarly the complexity is increased by 3 gates in the MSB-first programmable 

multiplier compared to its fixed order counterpart. LCELLs form extra circuitries that 

are needed for the precomputation of H vector for the generalized architectures. One 

disadvantage of generalized architectures is that the critical path is longer. It runs verti

cally in the array due to signals propagated vertically in the array. As a result, the clock 

frequency has to be reduced. The critical path is equivalent to (m — 1)/S.2-OR in both cases. 

These generalized architectures will be studied in greater detail and new architectures 

with prominent performance improvement over the architectures of [18] will be proposed 

in Chapter 5. 

2.5.7 Evaluation of LSB-first/MSB-first Multipliers 

In this section, the architectures discussed in Section 2.5.6 are evaluated using ASIC imple

mentation. These prelayout simulation results provide a reasonably good estimate of the 

relative VLSI performance in terms of metrics such as silicon area, critical path delay and 

dynamic power dissipation. Structural VHDL codes were generated automatically using 

C programs to facilitate more rigorous simulations of different architectures under varying 

field size. The designs were synthesized, optimized and simulated using Synopsys Design 

Compiler version 2004.06. The finite field multipliers were optimized with consistent con

straints set in Design Compiler. The input and output loads were set to 0.8pF and 0.9pF, 
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respectively. Cross boundary optimization was enabled to harness further area reduction. 

Power simulations were performed using Synopsys Power Compiler with a set of thousand 

random input vectors at a clock frequency of 20MHz. The area results are also obtained 

at this clock frequency. 

Nomenclature 

Nine different derivatives of finite field multipliers from Section 2.5.6 were simulated. 

The reason for choosing the different multipliers is to survey a wide variety of bit-serial, 

bit-parallel, digit-serial and generalized multipliers for a better understanding of LSB-

first/MSB-first multipliers. 

For the sake of convenience, a nomenclature is used. The names for the different mul

tipliers are discussed here. 

• MUL1: It is a parallel-in parallel-out LSB-first multiplier from [18]. 

• MUL2: It is a parallel-in parallel-out MSB-first multiplier from [18]. 

• MUL3: It is a serial-in serial-out MSB-first multiplier from [51]. 

• MUL4_BS: It is a digit serial multiplier from [13] but it is converted to a bit serial 

multiplier by setting the digit length to 1 bit. 

• MUL5-BS: It is a digit serial multiplier from [20] but it is converted to a bit serial 

multiplier by setting the digit length to 1 bit. 

• MUL4_DS: It is a digit serial multiplier from [13] with the digit size set to 8 bits. 

• MUL5_DS: It is a digit serial multiplier from [20] with the digit size set to 8 bits. 

• MUL6: It is a generalized parallel-in parallel-out LSB-first multiplier from [18] 

• MUL7: It is a generalized parallel-in parallel-out MSB-first multiplier from [18] 
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In the above list, the digit serial multipliers in [13] and [20] are implemented in two differ

ent ways. The digit serial multipliers with a digit size of 1 bit become bit serial multipliers. 

MUL4_BS and MUL5.BS are the names for these multipliers. MUL4.DS and MUL5.DS 

represent the same digit serial multipliers from [13] and [20] respectively, but with a digit 

size of 8 bits. MUL4J3S and MUL5_BS are generated to study the affect of changing a 

digit serial multiplier into a bit serial multiplier. 

MUL1, MUL2, MUL3, MUL4.BS, MUL5.BS, MUL4.DS and MUL5.DS are implemented 

for six different field orders - 57, 97, 113, 131, 163 and 193. These field orders are taken 

from the ECC standards in [3,37]. 

The last two multipliers - MUL6 and MUL7, are generalized multipliers, i.e. they should be 

able to operate for any field order less than a maximum field order. So, MUL6 and MUL7 

are implemented for a field order of 193 bits only. A keylength of 193 bits is considered 

'highly secure' in ECC as it is equivalent to a 1536-bit key length in RSA [3]. 

Table 2.1 summarizes the properties of the different multipliers. The input/output config

uration, algorithm used, cell complexity, number of cells and the latency for each of the 

multipliers are tabulated. 

Bit-level parallel-in parallel-out implementations [18] 

MUL1 and MUL2 fall in this category. Fig. 2.6(a) and (b) compare the silicon area and 

dynamic power dissipation respectively. Fig. 2.6(a) shows that MUL1 (LSB-first) occupies 

higher silicon area than MUL2 (MSB-first). The difference is attributed mainly to the extra 

latches in MUL2. It was shown previously in Section 2.5.6 that MUL2 employs m2 latches 

whereas MUL1 has 2m2 latches. However, there is a marked increase in the difference 

between the two designs as m increases. As m increases towards 193, the area of MUL2 
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Table 2.1: Summary of different multipliers 

Multiplier 

MUL1 [18] 

MUL2 [18] 

MUL3 [51] 

MUL4-BS [13] 

MUL5.BS [20] 

MUL4-DS [13] 

MUL5-DS [20] 

MUL6 [18] 

MUL7 [18] 

Algorithm 
Configuration 

LSB-first 

MSB-first 

MSB-first 

MSB-first 

MSB-first 

MSB-first 

MSB-first 

Generalized 
LSB-first 

Generalized 
MSB-first 

Input/Output 

Parallel-in 
parallel-out 

Parallel-in 
parallel-out 

Bit-serial 

Digit-serial 
converted to 

bit-serial, L = 1 

Digit-serial 
converted to 

bit-serial, L = 1 

Digit-serial 
L = 8 

Digit-serial 
L = 8 

Parallel-in 
parallel-out 

Parallel-in 
parallel-out 

Cell complexity 

2 AND2 

2 XOR2 
2 FFs 

2 AND2 

2 XORi 
1 FFs 

3 AND2 

2 XOR2 

1 2tol MUX 
7 FFs 

(2Z.2 + L) AND2 
(L - 1) XOR2 

(L - 1) XOR4 

2L2tol MUX 
10L FFs 

2L2 AND2 

L2 XOR3 

2L2tol MUX 
(8L + 2) FFs 

(2L2 + L) AND2 

(L - 1) XOR2 
(L - 1) XORt 

2L2tol MUX 
10L FFs 

2L2 AND2 

L2 XOR3 
2L2tol MUX 
(8L + 2) FFs 

5 AND2 

2 XOR2 

2 FFs 
5 AND2 
2 XOR2 

1 FFs 

No. of cells 

m 2 

m 2 

m 

m 
T 

X 

X 

X 

M 2 

M 2 

AND2: 2-input AND gate, XOfij : 2-input XOR gate, XOR3: 3-input XOR gate, XORf. 4-input XOR gate 

Latency 
cycles 
m + 1 

m * 1 

3m 

3m 

3m 

X 

X 

M + 1 

M + 1 

approaches that of MUL1 with a lower field order. Fig. 2.6(b) shows that both MUL1 and 

MUL2 dissipate around the same amount of dynamic power with MUL2 having a slight 

edge over MULl. This shows the ascendancy of MSB-first algorithm in terms of silicon 

area and dynamic power dissipation, particularly for higher field orders. The critical path 

delays of both designs are comparable and is approximately 1.36 ns. 

Serial-in serial-out implementations [13,20,51] 

MUL3 in [51] is a bit serial multiplier whereas those reported in [13] and [20] are digit 

serial multipliers. Thus based on the architectures of [13] and [20], four variants, bit-serial 

multipliers - MUL4.BS, MUL5.BS and digit-serial multipliers - MUL4.DS and MUL5_DS, 
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Figure 2.6: (a) Area results and (b) Power results of MUL1 and MUL2 

are created. The delay in all the bit-serial implementations is equal to 1.36 ns because 

the critical path is ^-AND + ^^2-XOR
 m all the designs. In contrast to the bit-serial 

implementations, the delays of digit-serial multipliers MUL4_DS and MUL5.DS are 4.16 

ns and 9.18 ns, respectively for a digit length of 8. The critical path delay in the digit 

serial multipliers depends on the digit length L. As L increases, the delay also increases. 

The serial multipliers are compared for power and area in Fig. 2.7(a) and Fig. 2.7(b), 

respectively. MUL3, MUL4_BS and MUL5-BS show almost equal power results for all 

field orders and MUL3 occupies more area than MUL4J3S and MUL5J3S. It is interesting 

to note that the bit-serial multipliers, MUL4_BS and MUL5J3S, which are the bit-serial 

derivatives of the digit-serial implementations, outperform MUL3 in terms of area which 

was designed with an intention to operate as a bit-serial multiplier. Since the complexity 

of digit-serial implementations increases as the digit length increases, they show a poor 

performance when compared to their bit-serial counterparts in terms of both power and 

area. 

Fig. 2.8 and 2.9 compare area and power of the two digit serial implementations, MUL4JDS 

and MUL5_DS. The two multipliers were compared at gate level in [20]. The ASIC imple-
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Figure 2.7: (a) Power and (b) Area results of serial multipliers 

mentation of the two designs shows that MUL4JDS is better than MUL5_DS in terms of 

area but worse off with respect to dynamic power dissipation. In Fig. 2.8 (a), combina

tional and noncombinational areas of MUL4JDS and MUL5-DS are compared. Although 
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Figure 2.9: Power dissipation of digit-serial multipliers 

MUL5-DS has lower non-combinational area, its outweighing combinational area makes it 

less area efficient than MUL4.DS as shown by the total area plot in Fig. 2.8 (b). This some

what unexpected synthesis result also explains the higher critical path delay of MUL5 JDS 

(9.18 ns as opposed to 4.16 ns of MUL4_DS). 

Generalized bit-level parallel implementations [18] 

MUL6 and MUL7 are the generalized bit-parallel implementations of the LSB-first and 

MSB-first algorithms, respectively, reported in [18] and are implemented for the highest 

order M = 193. Table 2.2 shows the results of the two designs. The results show no 

significant deviation in all VLSI metrics between the two implementations. If these results 

are compared with the fixed order bit-parallel architectures of MUL1 and MUL2, the 

critical path delay is higher. Though MUL6 and MUL7 are configurable in terms of field 

order, they are an order of magnitude (21 times) slower than their fixed order counterparts 

due to the longitudinal critical path discussed previously. The area of MUL6 and MUL7 

is also higher than MUL1 and MUL2 (1.77 and 2.72 times higher, respectively) due to the 
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Table 2.2: Results for MUL6 and MUL7 
Design Critical path delay (ns) Silicon area (/J,m2) Dynamic power (mW) 
MUL6 29.34 16358291 341.2509 
MUL7 29.55 16678856 342.4379 
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Figure 2.10: Consolidated Results: Power vs. Total Latency 

extra circuitry inside the processing elements needed to generalize the architectures for 

arbitrary field orders. 

Consolidated results 

Power vs. total latency-.Fig. 2.10 shows a scatter plot of power dissipation against latency 

of all finite field multipliers discussed in this chapter for a field order of 193. The axes are 

scaled logarithmically for clarity. This plot provides the system architect with a choice of 

finite field multipliers in a large design space to trade off between power and performance. 

For fair proposition that involves both bit serial and digit serial multipliers, total latency 

instead of critical path delay is used. It refers to the product of the critical path delay and 

number of cycles to complete a single multiplication. Serial implementations outperform 

parallel multipliers in terms of power dissipation. Despite having similar critical path de-

40 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



lays (1.36 ns) due to the use of similar basic cells, the bit-serial multipliers show thrice as 

much total latency as the bit-parallel multipliers. This is attributed to the difference in 

the number of clock cycles (3m clock cycles for bit-serial multipliers and m +1 clock cycles 

for bit-parallel multipliers) needed to complete one finite field multiplication operation. 

MUL4_BS has twice the total latency of its digit-serial counterpart, MUL4JDS. However, 

the total latency of MUL5J3S is around 1.13 times that of MUL5.DS. This contrast be

tween digit-serial multipliers is because of the critical path delays. Generalized bit-parallel 

multipliers - MUL6 and MUL7, have a total latency of 21 times their fixed bit-parallel 

counterparts - MUL1 and MUL3. This is due to the chain of LCELLs and the circuitry 

used in the array to determine the actual field order. In terms of power dissipation, par

allel implementations consume on average, around 78 times higher power than the serial 

implementations. 

Area vs. total latency: Silicon area of each multiplier is plotted against total latency 
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Figure 2.11: Consolidated Results: Area vs. Total Latency 

in Fig. 2.11. Serial multipliers again occupy the lower region of the graph with digit-serial 

multipliers occupying higher area than bit-serial implementations. Bit-serial multipliers, 
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MUL3, MUL4_BS and MUL5-BS, on an average use only 1/58 the area of bit-parallel ar

chitectures, MUL1 and MUL2. Digit serial multipliers, MUL4JDS and MUL5JDS, occupy 

about twice the area of their bit-serial designs, MUL4_BS and MUL5J3S. Generalized bit-

parallel designs occupy more area than fixed bit-parallel multipliers. The area of MUL6 

(LSB-first architecture) is double that of MUL1, and the area of MUL7 (MSB-first archi

tecture) is around 3 times that of MUL2. 

Power vs. area: Fig. 2.12 shows the relationship between the average power dissipa-
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Figure 2.12: Consolidated Results: Power vs. Area 

tion and area of each implementation. All serial multipliers are cluttered in the low power, 

lower area region whereas the parallel implementations occupy the other extreme. 

Power per gate vs. field order. Fig. 2.13 shows the power consumed per gate against 

field order for all multipliers except the generalized parallel implementations. Power per 

gate is calculated by dividing the average dynamic power by the number of gates used 

for the implementation. The total number of gates is determined from the total area di

vided by the area occupied by one two-input NAND gate in TSMC 0.18/xm technology 
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Figure 2.13: Consolidated Results: Power per gate vs. Field order 

library. Though the total power increases with the field order, power consumed by each 

gate is lower as the field order increases as evinced by the consistent trends of all designs 

in Fig. 2.13. The bit parallel multipliers exhibit higher power consumption per gate than 

the bit serial or digit serial multipliers. This implies the increased probability of spurious 

computations in some gates in architectures with more parallelism. 

2.6 Inferences and Summary 

In this chapter, a detailed literature survey was presented. The mathematical structures of 

groups and finite fields, GF(p) and GF(2m) in particular, and their arithmetic operations 

are described. A brief description of public key cryptosystems (PKCs), with emphasis on 

RSA and ECC were presented. The elliptic curve theory was also introduced to identify 

the most time critical and complex computational blocks in PKCs. 

We have identified modular multiplication or finite field multiplication as the backbone 

of modern PKCs through this review. The timing, area and power dissipation of the 
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entire cryptosystem is largely dependent on this operation as it is used repeatedly to 

perform various higher level operations during encryption and decryption. In order to 

better understand the advantages and disadvantages of the various modular multiplication 

techniques, three dominant classes of modular multiplication algorithms were rigorously 

studied. Montgomery modular multiplication in GF(N) and GF(2m) was discussed in 

detail followed by the LSB-first and MSB-first algorithms in GF(2m). An extensive sur

vey of the available LSB-first and MSB-first algorithms is also presented along with their 

standard cell implementations followed by an evaluation of VLSI metrics. 

Through this comprehensive survey, we envision the room for performance enhancement 

in the present modular multiplication methods. In the subsequent chapters of this thesis, 

incremental refinements for improvements, especially in terms of timing, will be proposed 

for the Montgomery and the LSB-first/MSB-first modular multiplication algorithms. The 

issues and limitations of existing methods will be detailed in the forthcoming chapters and 

solutions will be proposed to address them. 

In the next chapter, we will look into one of the most commonly used modular multi

plier - Montgomery modular multiplier. Modified algorithms that operate in GF(N) for 

prime N are proposed and translated into efficient array architectures. The proposed ar

chitectures will be evaluated against existing Montgomery multipliers on FPGA and ASIC 

platforms. 
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Chapter 3 

New Systolic Architectures for 

Montgomery Modular Multiplication 

3.1 Introduction 

In the last chapter, public key cryptosytems (PKCs) and the mathematics involved in dif

ferent PKCs like RSA, ECC etc. were discussed. Finite field multiplication was identified 

as the most critical computation engine due to its area cost and computation time. This 

operation involves modular multiplication in the GF(N) and GF(2m) fields and is repeat

edly used in exponentiation and point multiplication algorithms in PKCs. 

Among the different kinds of multipliers surveyed in Chapter 2, Montgomery modular 

multiplier is the most frequently used algorithm in many cryptosystems. The use of Mont

gomery modular multiplication (MMM) in the two fields - GF(N) and GF(2m) was also 

presented. In general, RSA cryptosystems employ MMM in only GF(N) and ECCs em

ploy MMM in both GF(N) and GF(2m) fields. 

In this chapter, two new modified systolic arrays to implement Montgomery modular mul-
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tiplication (MMM) in GF(N) are presented. A large portion of this chapter has been 

published in WSEAS Transaction on Circuits and Systems [47] and presented in Proc. 5th 

WSEAS Intl. Conf. on Instrumentation, Measurement, Circuits and Systems (IMCAS 

2006) [46]. To make this chapter self-contained, Section 3.2 revisits MMM in GF(N). 

Different kinds of bit-level MMM algorithms are studied and analyzed. The problem state

ment is framed in Section 3.3. The proposed MMM algorithms are derived and listed in 

Section 3.4 followed by their architectural translations in Section 3.5. The proposed archi

tectures are then evaluated for VLSI metrics against some recently reported Montgomery 

multipliers in Section 3.6. 

3.2 Montgomery Modular Multiplication Revisited 

MMM algorithm in its primitive form is listed in [5,6,10,11,21,32,34,35,39]. Firstly some 

notations are presented, that are used in this chapter. For consistency, a binary variable 

name is written in lower case letters. A vector of binary variables is represented with a 

variable name with the first letter in upper case. A binary variable, x at the i-th row 

and the j-th column in a systolic array is denoted by Xj . Vector addition in carry-save 

representation is commonly used in this chapter. A tuple (C, S) that is used to represent 

the carry and sum vectors, resulting from vector addition, implies the summation 2C + S. 

The input to output mapping of MMM is given by 

MMM(A, B, N) = ABR'1 mod N (3.1) 

where R and JV are relatively prime. If N is odd, as is the case in RSA, R can be the even 

number 2fc, k being the length of the cryptographic key. Let 

fc-i 

A = £ O J 2 ' (3-2) 
t=0 
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B = £ > 2 i (3-3) 
i=0 

N = f^na (3.4) 
i=0 

where ai,bi,rii e{0,l}. Then MMM in its primitive form is described by Algorithm 7 [39]. 

The original MMM algorithm by P. L. Montgomery in [32] involves a subtraction at the 

Algorithm 7 Montgomery Modular Multiplication - MMM.orig 
1: Input: A = E t o ^ B = l £ j bt2\ N = S *& 
2: Output : 5 = E?=o Si2* 
3: 5 ^ - 0 
4: for i = 0 to k — 1 do 
5: g <— (so + Oî o) mod 2 
6: 5 «- (5 + a{B + qN) 
7: S*- 5/2 
8: end for 
9: Return S 

end but it can be eliminated as shown in Algorithm 7 [10,11,39]. In Line 5 of Algorithm 7 

- MMM.orig, the mod operation on the sum s0 + Oî o results in a bitwise XOR operation 

without any carry propagation. However, in Line 6, a long carry chain is formed from the 

addition of fc-bit vectors - S, aiB and qN. Thus, a straight forward implementation of 

Algorithm 7 induces a long critical path [6,39]. 

In order to remove the long carry chains in Algorithm 7, Montgomery modular multi

plication in carry-save representation (MMM_CS) is proposed in [10]. This is listed in 

Algorithm 8. 

In each iteration of Algorithm 8 - MMM.CS, besides the sum signal - 5, two carry 

signals - CI and C2, are generated to compute the vector additions in carry-save represen

tation. Also, an additional stage of adders is required to add C2, CI and S in MMM_CS. 

With the carry-save format, the carry chain in Line 6 of Algorithm 7 is saved for the next 
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Algorithm 8 Carry Save Montgomery Modular Multiplication - MMM-CS 
1: Input: A = E t J 0,2*. B = £ & W , N = £ & ntf 
2: Output : C2 = Eto1 c2i2*, C\ = E t o cl*2*, 5 = £fco s ^ 
3: CI = 0,C2 = 0,5 = 0 
4: for i = 0 to k — 1 do 
5: q <— (s0 + cl0 + c20 + ajbo) mod 2 
6: (C2,C1,5) ^-C2 + Cl + 5 + a i £ + g7V 
7: C2 «- C2/2, CI 4- C l /2 ,5 <- 5/2 
8: end for 
9: Return C2,C1,5 

stage instead of being propagated in the current stage in Algorithm 8. 

Algorithm 9 Montgomery Modular Multiplication with Precomputation - MMM.OP 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

Input: A = Ef-J 0,2*, B = £ & 6,2*. TV = E t o ^2* 
Output : C = E*=o Ci2\ S = Eto1 si2

i 

C = 0,5 = 0 
for i = 0 to fc — 1 do 

q *— (s0 + cl0 + dibo) mod 2 
if o< = 0, g = 0 then 

7 « - 0 
else if a* = 0, g = 1 then 

7«-W 
else if Oi = 1,9 = 0 then 

I *-B 
else if Oj = 1,9 = 1 then 

I ^ B + N 
end if 
(C, 5) <- C + 5 + / 
C <- C/2, S «- 5/2 

end for 
Return C, 5 

A further modification to MMM.CS is proposed in [11,34], where the sum - B + N (in 

Line 6 of Algorithm 8) is precomputed. In this algorithm, Oj and q are used to select 

either B or N or B + N or 0. So, B + N should be precomputed and stored in a buffer. 

Algorithm 9 from [11,34] illustrates this idea. The selective assignment clauses in Lines 

6 to 14 of Algorithm 9 are implemented using a 4-to-l multiplexer with select signals - a* 

and q. The output I from the multiplexer is then added to the sum and carry signals from 
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the previous iteration. The precomputation of B + N reduces the number of carry vectors 

to one as opposed to Algorithm 8. This method however has an initial latency due to the 

precomputation. 

3.3 Problem Statement 

On studying the three algorithms, following observations can be made. Algorithm 7, 

MMM_orig, suffers from long carry chains. In Algorithm 8, MMM.CS, carry-save represen

tation is used to remove the long critical paths due to the carry propagation in MMM.orig. 

There are however, three vectors at the end, two carrys and one sum vectors which need 

to be added using another set of adders. The number of carry vectors are reduced in 

Algorithm 9, MMM-OP, by precomputing B + N. Moreover, in MMM_OP, one addition 

operation is eliminated by the precomputation but an additional 4-to-l multiplexer is in

troduced in every processing element. 

However, in all the algorithms, the main limiting factor in terms of timing is their de

pendency on the intermediate signal q. In all the three algorithms, in each iteration, q 

is computed using the least significant bit (lsb) of sum, carry and input B (Line 5 in 

MMM_CS and MMM.OP). In MMM.CS, q is then used to determine the carry and sum 

signals in Line 6. Similarly, in MMM_OP, q is used to select / in Lines 6 to 14, which is 

later used for the computation of carry and sum in Line 15. 

The critical path of the primitive MMM.orig depends on the carry chain. For the rest 

of the chapter, only MMM.CS and MMM.OP are studied and evaluated because the crit

ical path of the multiplier does not depend on the carry chain. 

MMM is generally implemented as systolic arrays [5,6,10,11,32,34,35,39]. In a two-
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dimensional systolic array, a row of basic computing cells implements one iteration in the 

algorithms. A basic cell in the j-th column and the i-th row computes the sum and carry, 

(cf\sf), in each iteration. In the implementation of MMM.CS [10,39] and MMM_OP [11], 

the basic cell at the least significant position computes q. This signal is then propagated 

to the remaining basic cells in each row. The maximum operating frequency of the ar

chitecture is limited by the critical path which results from the dependency on q. As a 

result the critical path that passes through the basic cell in the lsb position comprises 3 

two-input XOR gates in MMM.CS and 2 two-input XOR gates and 1 4-to-l multiplexer in 

MMM.OP. In addition, MMM-OP requires the buffering of the precomputed result, B+N. 

This step will take up additional clock cycles between successive modular multiplication 

operations and hence the throughput rate is affected when the multiplier is used to perform 

exponentiation. 

In the next section, a modified Montgomery modular multiplication algorithm - MMM.MX, 

is proposed. The dependency on q is resolved by introducing an additional clock cycle. 

Breaking the dependency not only reduce the critical path but facilitates hardware reuse 

also. Carry-save representation is used to avoid long carry chains. Also, no precomputa-

tion is necessary in the proposed architecture. Therefore, the extra clock cycles needed 

between successive multiplications by using MMM.OP have been eliminated. In addition, 

the number of carry vectors will be reduced from two (in MMM.CS) to one in the proposed 

algorithm. 

3.4 Proposed Modified MMM 

In this section, the modified Montgomery modular multiplication algorithm - MMM.MX 

is derived. First, Lines 5 to 7 of Algorithm 7 - MMM.orig are listed below for analysis 
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Listing 1: 

Line 5: q <— (s0 + OiM ™od 2 

Line 6: 5 <- (5 + a{B + qN) 

Line 7: S <- S/2 

In Listing 1, g is computed in Line 5 by the modulo 2 summation of the lsb of 5 and aj60. 

The value is then used in Line 6 to compute S. These equations can be rewritten as follows: 

Listing 2: 

Line 5a: (Ct, St) «- C + S + a{B 

Line 5b: q <— sto 

Line 6: (C, 5) <- Ct + St + qN 

Line 7: C <- C/2, 5 «- 5/2 

The above steps are written in carry-save representation. The tuple (C, 5) in the above 

listing refers to the carry-save representation (C, 5) = 2C + S. In Listing 2, the addition 

in Line 6 of Listing 1 is split into two parts. In Line 5a, C, S and ajB are added to 

produce temporary carry, Ct and sum St. In Listing 1, the sum of SQ and aj&o is assigned 

to q. So the lsb of sum, sto obtained from Line 5a of Listing 2, can be assigned to q in 

Line 5b. With the value of q in hand, Ct and St are then added to qN in Line 6 to give 

C and S. The resulting carry and sum are then right shifted in Line 7. 

In Listing 2, the following points are observed. 

• If a register is introduced between Lines 5 and 6, q can be simply obtained from the 

lsb of the intermediate signal, St. This q can then be used for the calculation of the 

sum, S and carry, C in the next cycle. 

• Moreover, Lines 5a and 6 perform the same operation 'addition', but with different 
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operands. Thus the adder that computes Ct and St in Line 5a can be reused to 

compute C and S in Line 6. Thus a simple 2-to-l multiplexing of inputs to the adder 

will enable the same adder to be used in both cycles - Lines 5a and 6. 

The above observations result in a different Montgomery modular multiplication algorithm 

- MMM-MX as shown in Algorithm 10. The proposed algorithm has two for loops (with 

loop counters, i and j) for the bit-level scanning of inputs. These loops are present in 

MMM_CS and MMM.OP also. MMM_MX has one extra loop (with loop counter ctrl). 

This additional loop implements the control signal to multiplex the correct inputs to the 

adder that is reused in Lines 5a and 6 in L i s t i ng 2. In Algorithm 10, the inputs to the 

multiplexer - m l , in2, iriS and m4, are selected by ctrl in Lines 5 to 7. These inputs 

are then added using a gated full adder (GFA) in Line 8 to produce the logical sum and 

carry of the expression inX.inl + in3 + inA. according to the inputs selected by ctrl. When 

ctrl = '0', the intermediate carry and sum, Ct and St, are computed from the inputs, a* 

and B, the sum, S and the carry, C from the previous iteration. At the end of the first 

clock cycle, q = st0 is obtained. In the next clock cycle, when ctrl = ' 1 ' the full adder 

is used to compute C and S for the current iteration by using q, N and the intermediate 

sum and carry signals, St and Ct. The control signal then returns to 0 and the process 

continues until all bits of the input operand A have been exhausted. 

3.5 Architectures 

The systolic architecture corresponding to the conventional carry-save implementation, 

described by Algorithm 8, MMM_CS, is shown in [10] and those based on the precompu-

tation of B + TV in MMM_OP, are implemented in [10,11,34]. This section describes the 

algorithm to architecture translation of the proposed MMM_MX algorithm. MMM_MX 

is implemented as two systolic architectures. The first one is a pipelined two-dimensional 

parallel array architecture. The second one is a serial-in parallel-out one-dimensional array 
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Algorithm 10 Montgomery Modular Multiplication with Multiplexing - MMM_MX 

Input: A = Y.\ZI aa\ B = £ & b{2\ N = E t o m* 
Output : C = t t o c«2 i , S = E*=o Si* 
C «- 0, S «- 0,St <- 0, Ct 4- 0, g <- 0 
for i = 0 to A; — 1 do 

for cir/ = 0 to 1 do 
for i = 0 to fc — 1 do 

if ctrl = 0 then 
inl *— <v, in2 <— by, in3 <— s^; in4 <— Cj 

else 
in l <— q; in2 <— n,-; in3 <— sfy; in4 <— cij 

end if 
carry + sum <— GFA(inl,in2, in3, inA) 

end for 
Ct <— Carry 
St <— Sum 

end for 
C *- Ct/2 
S *- St/2 

end for 
Return C, S 
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architecture. 

Basic Computing Cell 

The basic cell or computing element that is used in the systolic array is shown in Fig. 3.1. 

It has four single bit 2-to-l multiplexers. As shown in Algorithm 10, the control signal ctrl 

bj n j sin j stj ciflj ctj 

sum 

Figure 3.1: Basic cell (BC) or computation unit 

selects between the two groups of four input signals - a*, bj, Sj, Cj or q, rij, stj, ctj. The 

four signals ml , in2, in3 and in4 are then fed to the gated full adder (GFA). In GFA, the 

following summation is performed. 

(carry, sum) <— ml • in2 + m3 + inA (3.5) 

Two-dimensional Pipelined Parallel Architecture 

The two-dimensional parallel systolic implementation 'Design 1' of MMM_MX is shown in 

Fig. 3.2. It comprises k2 replicas of the basic cell in a 2-D array. The outputs of all basic 

cells are registered using flip-flops denoted by • in Fig. 3.2. 
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Figure 3.2: Two dimensional pipelined systolic implementation - Design 1 

The assignment of intermediate vectors 5, C, St and Ct in each row of the array needs 

some explanation. Let Sum and Carry denote the fc-bit sum and carry outputs resulting 

from the basic cells. The sum output of the basic cell in the z-th row and the j'-th column, 

surrij, is connected to stf' and s ^ . Similarly the carry output of the basic cell, carryy 

is connected to ctj+\ and cirij'. Fig. 3.3(a) illustrates this assignment of Sum and 

Carry signals to the GFA at the i-th row. In the m-th clock cycle, when ctrl — 0, the 

right shifted Sum and Carry signals from the (i — l)-th row, i.e., sin^ ' and cirij are 

multiplexed into the GFA (Line 8 of Algorithm 10). According to Line 10 of Algorithm 

10, in the next clock cycle, the inputs of GFA should be assigned to the sum and carry 
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signals that were generated by the basic cells in the i-th row. Therefore, in the (m + l)-th 

cycle, Sum and Carry signals, stj and ctf^ of the basic cells in the same row are selected 

by the control signal that has just been toggled. Fig. 3.3(a) shows the Sum and Carry 

signals in the m-th and (m + l)-th clock cycles. The Sum and Carry that are generated 

by the (i — l)-th row in the (m — l)-th cycle are right shifted before it is assigned to the 

i-th row in the m-th clock cycle. The subscripts of Sum and Carry signals generated in 

the i-th row of basic cells remain in the (m + l)-th cycle indicating that they have not 

been right shifted at this juncture. 

k rows of basic cells are connected as illustrated above to form a two-dimensional pipelined 

systolic array. The reservation table of the pipeline is shown in Fig. 3.3(b). Although the 

total time taken to generate the first S and C outputs is Ik clock cycles, the latency after 

filling up the pipeline is merely two clock cycles. 
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Figure 3.3: a) Indices of Sum 5 and Carry C of the i-th row of basic cells in the m-th and 
(m + l)-th clock cycles (b) Reservation table of the pipeline of the 2-D architecture 
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One-dimensional Variant 

The two-dimensional systolic array is fast in terms of latency but it involves large area 

overhead. To reduce the area cost, a bit-serial variant of the two-dimensional systolic 

architecture - 'Design 2' is proposed. The architecture is shown in Fig. 3.4. This is a 

serial-in parallel-out multiplier. It involves only one row of basic cells. Input a* is sent 

serially in alternate clock cycles into this row of basic cells. Inputs B and iV are applied in a 

parallel fashion. Since each at takes 2 clock cycles, Design 2 would require 2k clock cycles 

to compute one Montgomery multiplication result. The chip area however, is reduced 

substantially at the expense of a lower throughput rate and higher latency. 

nn-i 
bk-i 

a i • 

ctrl 

b.rr n 1 n 0 

_ f M M ! 

BC 

r 

i 
BC 

i n i 

n 

BC 

IX 

EE 
BC 

rt 
ck-1 Sk-1 ck-2 Sk-2 C' 1 S 1 C o S o 

Figure 3.4: One-dimensional systolic implementation - Design 2 

3.6 Hardware Implementation Results 

MMM.MX 'Design 1' and 'Design 2' are evaluated against recently reported Montgomery 

modular multipliers in [6,10,11,39] for maximum clocking frequency, latency, throughput 

and area. Design 1 and Design 2 are compared against different kinds of architectures, 

with and without precomputation of B + N, carry-save/normal representations and FPGA 

specific implementations, reported in [6,10,11,39]. The MMM architectures in [6,11,39] are 

one-dimensional arrays whereas those in [10] are two-dimensional systolic architectures. [10] 

and [11] employ carry-save representation but [6] and [39] are based on carry-propagate 
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adders. Unlike the 'Conventional' carry-save architecture in [10], the 'Optimized' archi

tecture in [10] is a two-dimensional systolic array that is based on the precomputation 

of B + N. The more recent architecture in [11] is a one-dimensional variant of 'Opti

mized' architecture in [10]. Fournaris et al. [11] also compared some the latest reported 

Montgomery modular multiplier architectures with their proposed one-dimensional pre

computation based architecture. We compare the implementation of our architectures 

against the results reported in [11]. 

The comparisons are based on both FPGA and ASIC implementation. Since most im

plementations were originally implemented on FPGA platform, the proposed designs are 

first implemented on Xilinx Virtex 2 chip and synthesized using Xilinx Synthesis Tool 

(XST). They are then evaluated against the fastest implementation - 'Optimized' [11], 

in terms of ASIC performance metrics - silicon area, critical path delay and area-time 

product. Both the architectures were implemented using Synopsys Design Compiler with 

TSMC 0.18/xm standard cell library. The clock period constraint was set to a typical value 

of 50 ns. 

The designs are first qualitatively analyzed followed by a quantitative evaluation of their 

hardware implementation using FPGA and ASIC design flows. 

3.6.1 Qualitative Results 

Table 3.1 lists the time complexity of different multipliers. The critical path delay, to 

is expressed in terms of the delay of primitive logic modules, such as full/half adders 

(AFA/AHA), 2-to-l/4-to-l multiplexers {^MUx/^iMux) and 2-input XOR/AND gates 

{AXOR/^AND)- The critical path delay to determines the maximum clock frequency of 

the architecture. The total number of clock cycles required to complete one multiplication 

operation (ttotai) and the latency cycles (L) of each design are expressed as a factor of the 
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input wordlength, k. 

Table 3.1: Qualitative Timing Analysis 

Two-dimensional Arrays 

Architecture 

Design 1 

Optimized [10] 

Conventional [10] 

to 
{ns) 

1&2MUX + I A F A 

IA4MUX + 1&FA + 2AXOR 

2A™ + 1&HA 

Itotal 

(cycles) 

2k + kx 

k + m + k\ 

fc + fci 

L 

(cycles) 

2 + k[ 

l + m' + k[ 

1 + 2k[ 

One-dimensional Arrays 

Architecture 

Design 2 

Optimized [11] 

Daly [6] 

Ors [39] 

{ns) 

IA2MC/X + 1A.FV1 

IA4MC/X + 2&FA + 2&XOR 

FPGA specific 

carry chain 

2AFA + l&HA + l&AND 

Uotal 

(cycles) 

2k + ki 

k + m + ki 

k+3+j-l 

3fc + 4 

L 

(cycles) 

2k + k[ 

k + m' + k[ 

k+3+j-l 

2k+ 1 

In Table 3.1, the results of Designs 1 and 2, and the designs 'Optimized' and 'Conventional' 

from [10] and [11] are produced in redundant carry-save format. k\ is the number of ad

ditional clock cycles needed for the final CPA to convert them into normal binary form. 

The architecture 'Optimized' in both [10] and [11] involves the precomputation of B + N 

and hence another m clock cycles are incurred. The latency of fci and m are each equal to 

k full adder delays if a pipelined 1-bit ripple carry adder is used for these additions. The 

architecture described in [6] uses FPGA specific carry chain architecture. The parameter 

j is defined as j = k/p, where p is the maximum length of the carry chain for the FPGA 

device. k[ and m! in the latency column correspond to the additional clocks cycles required 

for the final CPA and precomputation, respectively. 

The expressions in Table 3.1 show that Designs 1 and 2 outperform all other designs 
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in terms of critical path delay. The critical path delay is reduced as a result of breaking up 

the computation of q from the calculation of the sum and carry signals. Lower critical path 

delay enables the circuit to operate at higher clock speed. The advantage of the pipelined 

2-D Design 1 is seen in its low latency cycles. Latency of Design 2 is 2k + k[ clock cycles 

but it consumes a smaller area than Design 1 as shown in Table 3.2. 

Table 3.2: Qualitative Area Analysis 

Two-dimensional Arrays 

Architecture 

Design 1 

Optimized [10] 

Conventional [10] 

Basic Cell 

PE: 4 2-to-l MUXs, 

1 FA, 1 AND 

PE: 1 4tol MUX, 1 FA 

qPE: 1 4tol MUX, 1 FA, 

2 XOR, 1 AND 

Precomputation CPA 

PE: 2 FA, 1 HA 

Number of cells 

k2 

(A:-I)2 

k 

1 

k2 

One-dimensional Arrays 

Architecture 

Design 2 

Optimzed [11] 

Daly [6] 

Ors [39] 

Basic Cell 

PE: 4 2-to-l MUXs, 

1FA, 1 AND 

PE: 1 4tol MUX, 1 FA 

qPE: 1 4tol MUX, 1 FA 

2 XOR, 1 AND 

Precomputation CPA 

FPGA specific CPA 

PE: 2 FA, 1HA 

Number of cells 

k 

k 

1 

-

k-2 

3.6.2 F P G A Implementation Results 

The FPGA implementation results of the proposed one-dimensional architecture - De

sign 2, are compared against the one-dimensional arrays of [6,11,39] in Table 3.3. Xilinx 
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Synthesis tools are used for synthesizing the proposed architectures and for architectures 

in [10] and [11] on Xilinx Virtex 2 chip. The results for the architectures of [39] and [6] 

are taken directly from the papers wherein the architectures are implemented on Virtex 

family FPGAs - Virtex E and Virtex chips, respectively. 

All the different architectures are implemented on Virtex family of Xilinx FPGAs. In 

the Virtex family [53], the FPGA is divided into configurable logic blocks (CLBs). Each 

CLB is further divided into slices. Each CLB in Virtex 2 and Virtex E contain 4 slices. 

In Virtex chip, each CLB comprises 2 slices. So the basic logic block is a slice. Each slice 

is composed on arithmetic logic units, memory elements (ROM and RAM), shift registers 

and multiplexers. 

The proposed architectures are implemented on the same FPGA platform as [10] and [11]. 

However, the architectures in [39] and [6] are implemented on different FPGA chips. 

Though these architectures from [39] and [6] were implemented on different FPGAs, the 

FPGA chips belong to the same family and have similar structural composition as Virtex 

2 chips. Timing is generally more susceptible to different FPGA technologies. However 

the architectures of [6] and [39] employ long carry propagation chains which almost always 

have poorer timing than the carry-save architectures of [10,11] and our proposed architec

tures. 

Table 3.3 compares the proposed 1024-bit one-dimensional Design 2 multiplier against 

1024-bit one-dimensional array architectures - 'Optimized' in [11] and carry-propagation 

adder based designs in [39] and [6]. The implementation results of the proposed archi

tecture are coherent with the qualitative results in Table 3.1 and 3.2. When a one-bit 

basic cell of the proposed architecture was implemented on FPGA, it was found to cover 3 

slices. From Table 3.2, the area of a fc-bit multiplier is proportional to k. Hence a 1024-bit 
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multiplier should cover about 3 x 1024 = 3072 slices. Prom Table 3.3, it can be seen that 

the area result from the implementation of 1024-bit multiplier is 2947 slices which is close 

to the theoretical estimate. Moreover, the delay does not depend on A: because the critical 

path passes through one stage of basic cells. 

From Table 3.3, it is observed that the proposed Design 2 is three times faster than 

the recently reported 'Optimized' [11]. The throughput of the proposed architecture is 

1.5 times that of 'Optimized' [11]. The speed up is because of the shorter critical path 

in the proposed architecture as compared to 'Optimized' in [11]. The critical path passes 

through one 2-to-l multiplexer and a gated full adder in the proposed architecture as 

against a 4-to-l multiplexer followed by a full adder in the 'Optimized' [11]. Thus, even 

though the proposed architecture takes one extra clock cycle in every iteration to compute 

the Montgomery product, due to its shorter critical path, it is still faster than all the one-

dimensional architectures shown in Table 3.3. As a result of this, the total computation 

time is reduced and the reduction in the total computation time is prominent when it is 

used for modular exponentiation, where the operands are multiplied repetitively. 

In addition to timing, the proposed architectures show an area savings of about 18% 

over 'Optimized' in [11]. This is attributed to lower cell complexity of the proposed ar

chitecture which does not employ complex 4-to-l multiplexers. The architectures in [6] 

and [39] are computationally more complex than proposed architecture because they em

ploy carry-propagation adders at every stage of the algorithm. 

The two-dimensional systolic architectures were implemented for a bit-length of 128. The 

FPGA implementation results of the proposed 2-D arrays - Design 1, are compared against 

the two-dimensional 'Optimized' and 'Conventional' architectures (from [10]) in Table 3.4. 
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Table 3.3: FPGA implementation results of 1024-bit one-dimensional Montgomery modu
lar multipliers 

Architecture 

Design 2 

Optimized [11] 

Daly [6] 

Ors [39] 

Chip Area 

(slices) 

2947 

3611 

5458 

5706 

Clock Frequency (MHz) 

(MHz) 

386.84 

129.10 

54.61 

95.62 

Throughput 

(bit/sec) 

193.42 M 

129.00 M 

54.40 M 

31.83 M 

Table 3.4: FPGA implementation results of 128-bit two-dimensional Montgomery modular 
multipliers 

Architecture 

Design 1 

Optimized [10] 

Conventional [10] 

Chip Area 

(slices) 

44330 

48767 

65473 

Clock Frequency (MHz) 

(MHz) 

358.17 

168.70 

156.30 

In the 2-D arrays, the proposed multiplier also outperforms its counterparts in both aspects 

- the area and the maximum clock frequency. This can be validated using the qualitative 

results in Tables 3.1 and 3.2. From Table 3.1, the critical path of the proposed multiplier 

comprises one 2-to-l multiplexer and one gated full adder where as 'Optimized' [10] has a 

minimum delay of one 4-to-l multiplexer followed by 1 full adder and 2 XOR gates. The 

'Conventional' architecture in [10] has delay of 2 full adders and one half adder. Hence the 

gain in operating frequency of the proposed architecture can be explained by the shorter 

critical path. 

In terms of area, one-bit cell of the proposed architecture occupies 3 slices. From the 

qualitative results in Table 3.2, it can be seen that the proposed k-bit two-dimensional 

architecture would occupy an area equivalent to k2 cells. So for a 128-bit multiplier, total 
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area is equal to 1282 x 3 = 49152 slices. This theoretical value is close to the actual imple

mentation value of 44330 slices. The lower value could be accounted for by the optimization 

done by the tool. Moreover, the proposed two-dimensional architecture outperforms the 

other designs in Table 3.4 because of the simpler cell complexity of the proposed design as 

shown in Table 3.2. 

3.6.3 ASIC Implementation Results 

Since Design 1 is a two-dimensional architecture, the one-dimensional Design 2 would 

show a clear advantage over Design 1 in terms of area. The critical path delay depends 

on the basic cell complexity which is the same for both. Hence only Design 2 is used to 

illustrate the advantage of the proposed solution on an ASIC platform. Design 2 is evalu

ated against 'Optimized' [11] for post synthesis ASIC performance in Table 3.5. Synopsys 

Design Compiler v2004.12-SP2 was used to synthesize all the circuits. SAGE-X TSMC 

0.18//m standard cell library, which uses 1.8V supply, was employed for synthesis. All 

designs were optimized for a constraint set on clock period for 50 ns. The implementation 

of 'Optimized' does not comprise the precomputation carry-propagation adder. Design 2 

clearly outperforms 'Optimized' by 2.5 times in terms of the minimum clock period nec

essary to register the inputs and outputs. If the precomputation CPA in 'Optimized' is 

excluded, Design 2 shows 27% higher area but the 1024-bit CPA in 'Optimized' is a crucial 

component that provides one of the inputs to the computation core. This CPA, if imple

mented with a simple one-bit ripple-carry adder, incurs minimal area overhead but the 

latency is extended by 1024 clock cycles On the other hand, using a CLA for this purpose 

would increase the hardware complexity. If the area-time (AT) product is considered, the 

ascendancy of Design 2 over 'Optimized' [11] is evident. The area-time product of Design 

2 is only half that of 'Optimized'. 
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Table 3.5: ASIC implementation results of 1024-bit one-dimensional Montgomery modular 
multipliers 

Architecture 

Design 2 

Optimized* [11] 

Silicon Area 

(fjim2) 

954184.50 

751151.06 

Minimum Clock Period 

(ns) 

1.84 

4.76 

Area x Time) 

(nm2 x ns) 

1755699.48 

3575479.06 

* Does not include precomputation CPA 

3.7 Summary 

In this chapter, a modified Montgomery modular multiplication algorithm was proposed 

which reduces the critical path of the operation by removing its dependency on an inter

mediate signal. The algorithm does not require any precomputation and it operates in 

carry-save format. The proposed algorithm - MMM_MX was mapped to a systolic array 

architecture. A one-dimensional variant of the 2-D systolic architecture was also proposed 

to trade throughput for area. The two architectures were qualitatively and quantitatively 

evaluated against several recently reported Montgomery modular implementations. The 

proposed algorithm reduces the minimum clock period by three times when compared to 

one of the fastest algorithms when it is mapped onto FPGA and ASIC platforms. When 

prototyped on FPGA, the area-time analysis shows that the proposed designs perform well 

in terms of both critical path delay and resource utilization. ASIC implementation of the 

one-dimensional architecture shows 50% improvement in area-time product as compared 

to the fastest one-dimensional architecture available. 

The proposed architectures are fast and area-efficient. However, the proposed architec

tures are designed to operate in GF(N) only. It is worthwhile to study the flexibility 

to scale a Montgomery multiplier architecture for a parameterizable moduli N. In the 

following chapter, a new kernel for unifying Montgomery modular multiplications in both 
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GF(N) and GF(2m) is proposed. It will also address issues that impede architectural 

scalability. 
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Chapter 4 

Unified Montgomery Modular 

Multiplication 

4.1 Introduction 

The wordlength of the modulus in RSA and the order of the reduction polynomial in an el

liptic curve cryptosystem (ECC) determine the strength of these public key cryptosystems 

(PKCs). The security strength of applications varies according to the needs and values of 

the secrets to be protected. For example, the cryptoprocessors used in smart cards need 

high security strength but a login card in a low secure area may not need that tight security. 

So the flexibility to vary field orders of the cryptoprocessor is a necessary. Additionally, 

some applications may run different cryptosystems at different times. It is also desirable 

to adapt a cryptosystem to the constraints. For example an ECC with 571-bit keylength 

gives a security strength equivalent to RSA cryptosystem with a 15360-bit keylength [3]. 

In many situations, changing the hardware accelerators for the cryptosystems to address 

the above scenarios can be costly and it is not always feasible. Hence, there is a need to 

develop scalable and flexible architectures that possess the following features: 
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• Varying fields: RSA cryptosystem operates in the prime field GF(N) and ECC oper

ates in both GF(N) and the extended binary field GF(2m). Thus a cryptoprocessor 

that has the agility to switch among fields can be used versatilely in different cryp-

tosystems. 

• Varying field orders or moduli: Changing the field order (in ECC) or moduli (in 

ECC and RSA cryptosystems) varies the security strength. Lower field orders or 

moduli permit faster processing with lower power consumption at the cost of security 

strength. 

In Chapter 3, modified Montgomery modular multipliers for RSA cryptosystem were dis

cussed. The algorithm and architectures, in Chapter 3, are designed for a fixed modulus 

N. As a result they are inflexible to variable moduli. Moreover they cannot cater to ECCs 

that operate in GF(2m). In this chapter, a new and fast processing unit is proposed that 

can be used to unify Montgomery modular multiplication (MMM) in two finite fields - the 

prime field, GF(N), for prime N, and the extended binary field, GF(2m). A new pipelined 

and scalable processing kernel is generated using the new processing unit. 

A part of this chapter has been presented in the Proceedings of the 2006 IEEE Inter

national Symposium on Circuits and Systems (ISCAS 2006). This chapter is organized as 

follows. In Section 4.2 Montgomery modular multiplication in the two fields is revisited. In 

Section 4.3 the problem statement is formulated after studying the issues with the existing 

unified architecture in [48]. The proposed architecture for unified Montgomery multiplier 

is discussed in detail in Section 4.4. The new processing unit and dual field adder are 

derived in this section. The dependency graphs and reservation tables of the pipeline are 

illustrated followed by a block diagram of the multiplier architecture. In Section 4.5, the 

proposed processing kernel is first evaluated qualitatively for latency and critical path fol

lowed by an FPGA implementation to determine the area and total computation time. 

The chapter is summarized in Section 4.6. 
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4.2 Preliminaries 

4.2.1 GF{N) and GF(2m) 

The finite fields GF(N) and GF(2m) have been presented in Chapter 2. Their differences 

are discussed briefly here. 

The two fields differ primarily in the representation of their elements, which affects the 

arithmetic operations performed in the respective field. In GF(N), N is a prime num

ber and the elements are integers in {0,1,...,JV— 1}. Addition and multiplication in 

GF(N) are the conventional integer addition and multiplication operations followed by a 

reduction using the modulus N. The reduction is done to ensure that the result lies in 

{ 0 , l , . . . , i V - l } . 

In GF(2m), the elements are represented as polynomials of order m, i.e. a(x) = X^o* a>ixl-

Addition is a simple bitwise-XOR operation and multiplication involves reduction using 

an irreducible reduction polynomial p(x) = YJiLoPiX1. 

It was shown in Chapter 2 that ECCs can operate in both GF{N) and GF(2m). The 

standard elliptic curves and their corresponding reduction polynomials are defined for the 

two fields by NIST [37] and SEC [3]. RSA cryptosystems, however, operate in GF(N) 

only. 

4.2.2 Montgomery multiplication in GF(N) and GF{2m) 

Montgomery modular multiplication (MMM) was first introduced for GF(N) in [32]. A 

number of algorithmic innovations have been done to implement MMM for GF(N) in the 

most efficient way [6,10,11,34,35,39]. Let us now look into MMM algorithms in GF(N) 

and GF(2m) and then describe how they are amalgamated to obtain a unified architecture. 
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The Montgomery modular multiplication in GF(N) for the product of two m-bit binary 

inputs, A = E^o1 a^ and B = E^Lo* ^ i s defined as C = ABR-\mod N), where N 

is an odd modulus and the integer R, generally taken as 2m, is relatively prime to AT. The 

bit-level Montgomery multiplication algorithm is listed in Algorithm 11 [48]. 

Algorithm 11 Montgomery Modular Multiplication in GF(N) 

1: Input: A = E S 1 atf, B = T ^ fc*. N = 
2: Output : C = AB2-m(mod N) 
3: 5 ^ 0 
4: for i = 0 to m — 1 do 
5: S <— S + d{B\ q *— s0 

6: S <- S + qN 
7: 5 *- 5/2 
8: end for 
9: if S>N then S ^S-N 
0: Return S = AB2-m(mod N) 

= E£oV2 

In GF(2m), the inputs are represented as the polynomial bases. If A(x) = J^LQ
1aiXl, 

B{x) = YT=ol bixi a n d P(x) =xm + YT=oPixi, w h e r e ai,bi,pie{0,1}, the bit level MMM 

for GF(2m) can be formulated as in Algorithm 12 [22]. 

Algorithm 12 Montgomery Modular Multiplication in GF(N) 

1: Input: A(x) = Y?-laiX\B(x) = YT~lbiX\p{x) = Y™"1 Vixi 

2: Output : S(x) = A(x)B(x)x-m(mod p{x)) 
3: S * - 0 
4: for i = 0 to m — 1 do 
5: 5 <- 5 © ajB; g <- s0 

6: S <- 5 © gpi 
7: 5 « - 5/x 
8: end for 
9: Return 5(x) = A(x)B(x)x-m(mod p(x)) 

Both algorithms look similar. The most important difference is the addition in Lines 5 

& 6. In GF(2m) this addition is a simple bit-wise XOR operation but it involves carry 

propagation in GF(N). Another difference is the division in Line 7. The division by 2 in 

Algorithm 11 is equivalent to a right shift. This is the same as division by x in Algorithm 

70 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



cin b a 

°n 
rtt 

Y 

Y 

T 

sum 

Figure 4.1: Dual field adder in [48] 

12. Thus Line 7 performs the same operation in both the algorithms. 

4.2.3 Review of Existing Unified MMMs 

The 'kernel' that implements Lines 5 & 6 needs to be designed efficiently. This kernel 

comprises identical processing units that form a pipeline. Considering the similarities in 

Algorithms 11 and 12, by forcing the carry signal in Lines 5 & 6 of Algorithm 11 to logic 

zero, Algorithm 12 can be implemented. 

The Montgomery multiplications implemented in the unified architectures of [2,43,48,49] 

introduce dual field adders, where a control signal, called a field select signal, is used to 

transmit the carry signal generated from the adders. The carry signal is masked out when 

the multiplication in GF(2m) is required, by logically ANDing the carry and the field select 

input. Fig. 4.1 shows a one-bit slice of the dual field adder (DFA) as illustrated in [48]. 

The single bit DFA has an additional AND gate connected to the carry output of a full 
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adder. When fsel = 0, the carry signal is forced to '0'. When operating in GF(2m) mode, 

since all additions are carry-free bitwise XOR operations, fsel is set to '0'. 

Similarly, in [43], a scalable dual-field elliptic curve processor is illustrated. A dual-field 

r-bit x r-bit Montgomery multiplier based on Wallace tree carry save architecture is de

scribed. [48] describes a scalable unified architecture which employs a processing element 

with dual field adders. In a more recent paper by Savas et. al. [49], a unified architecture 

based on Montgomery Multiplication with precomputation is illustrated. This again uses 

dual field adders. A unified radix-4 architecture is described in [2] which uses a novel (4:2) 

adder. This architecture however, involves the digit coding of inputs to minimize delay 

due to a globally-broadcast field select signal 

In this chapter, a novel unified processing unit based on the architectures in [48] is pre

sented. [48] is chosen as this is the simplest and also one of the fastest available unified 

multipliers. 

4.3 Problem Statement 

The Montgomery multiplication algorithm in GF(N) that is implemented in carry-save 

format (as listed in [48]) requires two gated full adders to process every partial product 

bit in each iteration. Its GF(2m) counterpart can use the same two gated full adders for 

each partial product bit but the carry signals are forced to logic zero. To illustrate the 

dual field adder issue that is being addressed in this chapter, the communications between 

two u;-bit DFAs, DFAl and DFA2, within each processing unit (PU) of the Montogmery 

multiplier in [48], are shown in Fig. 4.2. A to-bit DFA consists of w one-bit DFA cells for 

word-level processing. DFAlj denotes the j-th single bit DFA cell of w-bit DFAl. 
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Figure 4.2: Input/output of adders (a) operation in GF(N) when fsel — 1 (b) operation 
in GF{2m) when / s d = 0 

When the multiplier is to be operated in GF(N), fsel is set to '1 ' (see Fig. 4.2(a)). 

DFAlj of the first level DFA of the PU receives three inputs - sum (SJ), carry (CJ) and 

afij and outputs the sum (slj) and carry (clj) signals to the next level. When fsel — '1 ' , 

c\j is not forced to 0. These sum and carry bits are then propagated to the corresponding 

bit slice of DFA2. The third input feeding into the j-th. cell of DFA2 is qiUj. Consequently, 

the logic circuits of the two DFAs can hardly be simplified when fsel = ' 1' as all the inputs 

are being fed with values. 

However, when GF(2m) multiplication is selected by setting fsel = 0, the carry input 

Cj of DFAlj is '0', as shown in Fig. 4.2(b). This is because the fsel of the previous 
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level of adders forces the carry, coutj to '0'. Similarly, fsel also sets the carry output 

of DFAlj, clj, to '0'. Thus, the logic functions performed in the j-th cell of DFA1 are 

slj = Sj®ciibj and clj = 0. This reduces the logic functions of DFAlj to soutj = s\j®qiUj 

and coutj — 0. One input and one output of each dual field adder cell are redundant in 

GF{2m) multiplication. 

It is important to note that MMM in GF(2m) requires only two 2-input XOR operations 

(Algorithm 12). These two XOR gates are available in one full adder. In [48], as a result 

of unification, two full adders (or 4 XOR gates) are being used to perform an operation 

that requires only two XOR operations, as illustrated in Fig. 4.2(b). The logic function of 

one XOR gate in each adder is redundant. By using two full adders for the computation 

in both GF(N) and GF(2m), the speed of computation in GF{2m) is penalized. 

This redundancy will be removed in our proposed scalable unified architecture which is 

derived based on the architecture presented in [48]. In the next section, a novel processing 

unit with modified dual field adders is derived. The proposed architecture uses one full 

adder for the multiplication in GF(2m) but the designated two full adders are employed 

in GF(N) mode, thus improving the speed of multiplication in GF(2m) without compro

mising the total time required in GF(N). The dependency graphs resulting from these 

architectural transformations will be used for a qualitative timing analysis. 

4.4 Proposed Unified Montgomery Multiplier 

4.4.1 Notations 

For the rest of the chapter, A, B, N in GF(N) are equivalent to A(x), B{x) and p(x) 

in GF(2m) respectively. All the inputs are as wide as the modulus (in GF(N)) or the 

reduction polynomial (in GF(2m)), which is m bits wide. Input A is read bit-wise. B and 
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p are read as w-bit words giving a total of e = ^ | words, i is used as a bit counter for 

A and j is used as a word counter for B and p. The sum and carry signals will also be 

produced at word level in each iteration. Each PU of the unified Montgomery multiplier 

comprises two levels of DFA cells. The 10-bit sum and carry words produced from the first 

level of DFA cells (DFA1) are represented as a tuple (CI, 51). Its equivalent normal binary 

number is 2C1 + 51. The sum and carry words generated by the second level of DFA cells 

(DFA2) are represented as TS and TC. These two outputs are shifted right before feeding 

into the corresponding cells of DFAl of the next PU. The generalized notation for the k-th. 

bit of the j-th. partial sum and carry words generated in the 'z'th iteration are represented 

.W (i) as tsjk and tCjk, respectively. 

4.4.2 Derivation of the Dual-field Logic 

TV-1> T W 1 * 

Si Bj.k 

^ 0-1) 
J.k-1 

ai Bjph.i 

C1j,k-1 

qi Pj,k 

S1 l.k-1 

m w 
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qi 
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(a) 

TSJ'"1' 
qi Pj,k 

ai B j k 

qs PJ.K-I 

ai Bj^.1 

T C (i-1) 
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Figure 4.3: Sum and carry logics in (a) GF{N) (b) GF{2m) 

With the above notations, the logic constituting the dual field adder, that is employed 

in MMM algorithms, can be scrutinized. A DFA uses gated full adder to produce the 
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intermediate output in sum log ic (represented by crossed box in Fig. 4.3) and ca r ry 

log ic (represented by empty box in Fig. 4.3). During the operation in GF(N), two sum 

and car ry log ic s are needed to compute one sum and one carry word (TSf and TCf ) . 

The first sum logic , Sl_logic, is produced from three inputs -

1. right shifted sum word from the previous iteration, TSj ~ , 

2. right shifted car ry word from the previous iteration, TCj , and 

3. CLi-Bj. 

The second sum logic , S2_logic, is generated from the following three inputs -

1. sum and carry, (Cl\ , Slf'), from Sl_logic and 

2. q-pj where q = sl^0. 

The corresponding car ry log ics , Cl . logic and C2_logic are generated based on the 

same sets of input signals accordingly. 

On the other hand, operations in GF(2m) (Fig. 4.3(b)) need no car ry l o g i c s since 

there is no carry propagation. Therefore, the value of TCj is immaterial. Instead of forc

ing TCj to 0 and using it as an input to the successive DFA cell, that DFA cell's input can 

be better utilized to receive other critical non-cosntant input. If <& can be precomputed 

in some way (to be shown later), Lines 5 and 6 in Algorithm 12 can be merged into one 

single 3-bit addition operation as TSj <— TSj © a{Bj © qiPy Hence, to compute one 

ring sum, TSj in GF(2m), only one sum log ic is sufficient. It takes the following inputs: 

1. right shifted sum from the previous iteration, TSj , 

2. cii-Bj and, 

3. q-pj 
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where q = ai-6o,o®^o,o • For the time being, let us assume we have the intermediate 

signal q, the generation of which will be discussed later. 

In order to compute the j- th sum and carry words in the i-ih iteration in GF(N), two 

sum logics are needed but a single sum logic can calculate the sum in GF(2m). Thus 

in a processing unit (PU), we need two sum and carry logics to calculate the necessary 

signals in GF(N) mode. While operating in GF(2m) mode, the second sum logic can be 

used to compute the sum for the next iteration, i.e. the (i + l)-th iteration to produce 

TS(i+i) 

Although the above proposition is viable in principle, from Fig. 4.3, the following con

tentions are observed in the inputs to the logic blocks. 

1. The first input signal to DFAlj and DFA2j are a^Bj and qiPj, respectively in GF(N) 

mode but they become aiBj and a,i+\Bj, respectively in GF(2m) mode. 

2. In GF(N) mode, the sum logics require the carry signal (TCj' in DFAlj and 

Clj in DFA2j) as their second input but this input is qtpj and qi+iPj in GF(2m) 

mode. 

3. The sum signals to sum logic - S2_logic are different for the two fields. While 

the sum output 51 of DFA1 feeds directly into the corresponding sum circuit of 

DFA2 (without any shift) in GF(N), the same sum signal needs to be shifted right 

(according to Line 7 of Algorithm 12) in the case of GF(2m). 

An external control logic can handle the first contention by multiplexing (using the field 

select signal) the inputs from serial shift registers. In order to resolve the next two con

tentions, we need multiplexers in the processing unit. The second contention can be 

resolved by selecting either the carrys that are generated in each level or the input, i.e. 

select TCj or qtpj in DFAlj and CI- or qi+iPj in DFA2j, with a multiplexer and the 
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field select signal. The third contention needs further elaboration. This contention arises 

because of the sum signals that are generated by the sum logic in the first level of DFAs, 

i.e. Slj of the PU. This signal is branched into two signals - SGFP and SGF2- SGFP is 

obtained by passing Sl\ directly whereas SGF2 is obtained by right shifting Slj by one 

bit. Depending on the field select signal, one of these two signals is multiplexed into one 

free input of the DFAs in the second level, i.e. S2_logic in DFA2 of the PU. This allows 

the sum logics to carry out the operations of the next iteration when it is operating in 

GF(2m) mode. A right shift of the sum is required according to Line 7 of Algorithm 12. 

On the other hand, when the PU is operating in GF(N) mode, the sum generated from 

Sl_logic in DFA1 should not be right shifted as its second level of DFAs has to perform 

the operation in Line 6 of Algorithm 11. The right shifting in GF(N) is deferred until 

DFA2 has completed its operation for the current iteration. By generating two signals 

TSGFP and TSGF2 from the sum of Sl_logic, and then using a multiplexer to select one 

of these signals into the free input of S2_logic of the same PU, the third contention is 

resolved. 

4.4.3 Derivation of the Dependency Graphs 

A processing unit (PU) embracing the above mentioned DFAs forms the kernel of the pro

posed unified Montgomery modular multiplier. In this new PU, two levels of DFA cells are 

required for one iteration of MMM in GF(N) (see Lines 5 to 7 in Algorithm 11). However, 

in GF(2m) mode, the second level of DFAs will be used to process the next iteration of 

MMM. While two cycles are required to complete one iteration of MMM in GF(N), only 

one cycle is required to complete one iteration of MMM in GF(2m). To accommodate 

these changes due to the use of the new dual field adders, new dependency graphs (DGs) 

need to be derived. 

Table 4.1 shows the desired input data flow while operating in GF{N) and GF(2m). This 
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table is constructed by assuming that the inputs to the PUs are 3-bit words. Each row 

represents a clock cycle and each column represents a level of DFA cells in a PU. The 

PUs are uniquely identified by PU0, PUX, etc. Since each PU has two DFA levels, the 

first DFA level of the first PU is labeled as PU0Sl and the second level as PUQS2 and 

so on for the other PUs. Each column of the table shows only the inputs - a(x),b(x) and 

p(x) to the adders. The sum and carry output signals are not shown. The j-th sum and 

carry words from level 1 of an z-th PU are denoted as Clj and Slj , respectively. These 

two numerals are often paired and expressed in a convenient tuple notation, (Clf , Slj), 

which is equivalent to the decimal sum of 2Clf + Slf. Similarly, the j-th sum and carry 

words from level 2 of an z'-th PU can also be represented as {C2f, S2f) -> 2C2f + S2f. 

The j- th right shifted carry and sum words for z'-th iteration are represented as TC* and 

TSj , respectively with the prefix T. Also, xQ represents the A;-th bit of the j-th word of 

X in the z'-th iteration. 

Let us first consider the multiplication in GF(N) and examine the process step-by-step. 

• Clock cycle 0: 

- PUoSh Computes the first level sum and carry - (C*40), 5lS,0)) = (clj§cl£°JclJ8! 

,SIQ^SIQISIOO) using the inputs ao and the 3-bit word B0 = b2bibo, and the 

sum and carry from the previous level - TS{
0
 1} and TC^ which are initialized 

asO. 

• Clock cycle 1: 

- PUQSI: Processes the next word a0-Bi = a0-(b5b4b3) to compute (Cl[', Sl\ ) = 

r r 1 ( 0 ) r 1 ( 0 ) r 1 ( 0 ) si ( 0 ) s l ( 0 ) s1 { 0 ) ) 

- PU0S2: The outputs (C40),5l[,0)) are added to q0 • N0 where q0 is buffered from 

s l $ . The result is (C2^\S2{^) = {c2$c2io}c2$,s2$s2$}s2$). This result 

needs to be right shifted (according to the MMM algorithm) to produce the 

3-bit words TC^0) and TSi°\ 

7!) 
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Table 4.1: Data flow of inputs 

GF(N) 
Clock 

cycle 

Cycle 0 

Cycle 1 

Cycle 2 

Cycle 3 

Cycle 4 

Cycle 5 

Cycle 6 

Cycle 7 

Cycle 8 

Cycle 9 

Cycle 10 

Adder levels in PUs 

PU0S1 

0 0 ( 6 2 6 1 6 0 ) 

0 0 ( 6 5 6 4 6 3 ) 

<>o(l>8l>7(>6) 

00 (61161069 ) 

PU0S2 

9 0 ( 1 2 1 1 1 0 ) 

9 0 ( 1 5 1 4 1 3 ) 

9 0 ( 1 8 1 7 1 6 ) 

9 0 ( l l l 1 1 0 l 9 ) 

PC/ lS l 

0 1 ( 6 2 6 1 6 0 ) 

0 1 ( 6 5 6 4 6 3 ) 

0 1 ( 6 3 6 7 6 0 ) 

01 (61161069 ) 

PUiS2 

9 l ( l 2 l l 1 o ) 

9 1 ( 1 5 1 4 1 3 ) 

9 l ( l 8 1 7 l e ) 

9 l ( l l l 1 1 0 l 9 ) 

PC/2S1 

0 2 ( 6 2 6 1 6 0 ) 

1 2 ( 6 5 6 4 6 3 ) 

0 2 ( 6 3 6 7 6 6 ) 

02 (61161069 ) 

PU2S2 

9 2 ( 1 2 1 1 1 0 ) 

9 2 ( 1 5 1 4 1 3 ) 

9 2 ( 1 8 1 7 1 6 ) 

9 2 ( l l l H 0 l 9 ) 

GF(2 m ) 
Clock 

cycle 

Cycle 0 

Cycle 1 

Cycle 2 

Cycle 3 

Cycle 4 

Cycle S 

Cycle 6 

Cycle 7 

Cycle 8 

Cycle 9 

Cycle 10 

Adder levels in PUs 

PU0S1 

0 0 ( 6 2 6 1 6 0 ) 

9 0 ( 1 2 1 1 1 0 ) 

0 0 ( 6 5 6 4 6 3 ) 

9 0 ( 1 5 1 4 1 3 ) 

0 0 ( 6 8 6 7 6 6 ) 

9 o ( l 8 n 7 l 6 ) 

O o ( 6 l l 6 i o b g ) 

9 o ( l l l 1 1 0 l 9 ) 

PU0S2 

0 1 ( 6 2 6 1 6 0 ) 

9 l ( l 2 i i i o ) 

0 1 ( 6 5 6 4 6 3 ) 

9 1 ( 1 5 1 4 1 3 ) 

0 1 ( 6 3 6 7 6 6 ) 

9 l ( l 8 1 7 1 6 ) 

" 1 ( I ' l l 61069) 

9 l ( l l l 1 1 0 1 g ) 

PUiSl 

0 2 ( 6 2 6 1 6 0 ) 

9 2 ( i 2 H l o ) 

0 2 ( 6 5 6 4 6 3 ) 

9 2 ( 1 5 1 4 1 3 ) 

0 2 ( 6 8 6 7 6 5 ) 

9 2 ( 1 8 1 7 1 6 ) 

02 (61161069 ) 

9 2 ( 1 1 1 1 1 0 1 9 ) 

P V l S 2 

0 3 ( 6 2 6 1 6 0 ) 

9 3 ( 1 2 1 1 1 0 ) 

0 3 ( 6 5 6 4 6 3 ) 

9 3 ( 1 5 1 4 1 3 ) 

0 3 ( 6 8 6 7 6 5 ) 

9 3 ( 1 8 1 7 1 6 ) 

03 (61161069 ) 

9 3 ( 1 1 1 1 1 0 1 9 ) 

PU2Sl 

0 4 ( 6 2 6 1 6 0 ) 

9 4 ( 1 2 1 1 1 0 ) 

0 4 ( 6 5 6 4 6 3 ) 

9 4 ( 1 5 1 4 1 3 ) 

0 4 ( 6 8 6 7 6 6 ) 

9 4 ( l 8 l 7 l 6 > 

PUiS2 

0 5 ( 6 2 6 1 6 0 ) 

9 5 < 1 2 l l 1 o ) 

SO 
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• Clock cycle 2: 

- PUQSI: Processes the next word a0 • B2 — a0 • (fes^A) to compute (Cl2°\ S l ^ ) -

- PU0S2: The outputs {Cl^, Sl^) from level 1 and Cycle 1 are added to q0 • Nt 

to produce (C2<0),S2<0)) = (c2$c2$c2& 4 ^ 4 ° ] ) 

Note: It is important to note here that SI of the next processing unit PU\ does 

not start processing the results from the level 2 DFA of PU0 obtained in Cycle 

1. This is because the sum and carry obtained from PUQS2, i.e. {C2{
0
0) ,S2{

0
0)) 

need to be right shifted first. On right shifting (C20
0),S20

0)), the 3-bit words 

TC$] and TSj0) would be TC{°] = c2$c2(°1
)c2$ and TS{

Q
Q) = d$jtf$0$. 

The most significant bit of TSQ , which is S2Q$ will only be available at the end 

of Cycle 2. Hence the results obtained from PUQS2 obtained in Cycle 1 have to 

be buffered at this point. 

• Clock cycle 3: 

- PU0Sl: Processes the next word a0-B3 = a0-(bubi0h) to compute (CV3 ', SV3 '). 

- PU0S2: The outputs, ( C l ^ S l ? 5 ) from level 1 DFA and Cycle 1 are added to 

q0 • N2 to produce (C2^0),52^0)). 

- PUiSl: Now, it processes the next iteration with the inputs a\ • Bo and the 

right-shifted vectors, TS^ and TC^ obtained the from PU0S2. The result is 

(ClfW). 

• This process continues as shown in Table 4.1. 

The data flow for the MMM in GF(2m) is also listed in Table 4.1. This process is more 

straightforward since each DFA level of a PU completes one iteration. In every column 

of Table 4.1, both a,iBj and qiNj are listed. This is because there are only three inputs 

that need to be XORed - aiBj, qiNj and the right shifted sum from the previous iteration 

TSj1'. For the time being, let us assume the availability of (ft. In Cycle 0, Algorithm 12 
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commences the computation of Sl0 ' = sl0ilsl0]{sl0fl with PU0Sl. In Cycle 1, PU0S1 com

putes the next word in the same iteration (Iteration 0) to produce Sv0
0' = slo°5slo°4slo?3-

In Cycle 2, PU0Sl carries on with the computation of the next word while the second DFA 

level of PUo can start the next iteration, i.e., Iteration 1 of Algorithm 12. It follows similar 

logical steps explained previously for GF(N). The exception is that the right shifted sum 

output from the even iteration number is needed in the successive odd iteration number. 

So the input required by DFA2 of PUX to start Iteration 1 is TS^0) = slj§slj$sl{>°{. In 

this vector, sl0^ is available only at the end of Cycle 1. As a result, the computation of 

Iteration 1 in the level 2 adders of PUo can only start in Cycle 2. This implies that the 

result from PU0S1 needs to be buffered. 

PU„S1 PU„S2 ! PU,S1 ' PU,S2 I PU„S1 I PU„S2 I PU,S1 I PU,S2 

Figure 4.4: Dependency graphs for (a) GF(N) (b) GF{2m) 

Based on the data flow discussed above, the dependency graphs (DGs) for the kernel to 

operate in the two modes can be derived. These are shown in Fig. 4.4. Each bubble 
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represents a DFA level of a PU. The PU and its DFA level are indicated at the top of each 

column of the DGs. The vertical dotted lines between the columns of bubbles are cutsets 

which will be implemented as flip-flops in the architecture. The clock cycle is enumerated 

on the right hand side of the DGs. Each solid line arrow represents two w-bit vectors, 

TSf and TCf\ for MMM in GF{N) but it represents only TSf for MMM in GF{2m). 

Additionally, each dotted line arrow in the DG for GF(N) represents a one bit signal that 

is generated after the sum vector from the second DFA level has been right shifted. In the 

case of GF(2m), each dotted line represents a one bit signal from the right shifted sum 

vector for every DFA level. 

The DGs show the temporal relationship of the operators graphically. Two levels of DFAs 

are used to compute the sum and carry for one iteration of MMM in GF(N), whereas in 

GF(2m) mode, each level of DFAs computes one iteration. Furthermore, the DGs lucidly 

illustrate the shifting and buffering of data according to the data flow in Table 4.1. In Fig. 

4.4(a), PUiSl waits until Cycle 3 to receive TS^0) (which is s2Jgs2$s2Jj1
)) from PUQS2. 

In TSi°\ s2$l and s2$ are generated at the end of Cycle 1 as shown by the solid line 

arrow pointing to the first bubble in the third column of Fig. 4.4. s2o}3 is available at the 

end of Cycle 2, as indicated by the dotted line arrow pointing towards PU\S\. In a similar 

way, the data flow for MMM in GF{2m) can also be interpreted from Fig. 4.4(b). 

4.4.4 Processing Unit for Unified Multiplier 

Based on the dual-field logic and dependency graphs proposed in Sections 4.4.2 and 4.4.3, 

a new dual field adder and processing unit for the proposed unified multiplication scheme 

are devised as shown in Fig. 4.5. The ' / ' between two signal names indicates that these 

signals are to be multiplexed using an external control logic. The small filled rectangules 

are registers. The PU consists of two levels of DFA cells separated by registers. One PU 

computes two iterations of Algorithm 12 in GF(2m), but one iteration of Algorithm 11 
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Figure 4.5: (a) Dual Field Adder for w = 1 (b) Processing unit for wordlength w = 3 

(GF(N)) in two clock cycles. The registers are inserted based on the dependency graphs 

and the data flow tables. The multiplier is made scalable to field orders or moduli by 

forming a pipelined processing kernel with a number of these processing units. The area-

time trade off will be studied to determine the optimal number of PUs to be employed in 

the pipeline. 

4.4.5 Computat ion of q 

For ease of exposition, the issue pertaining to the computation of the intermediate signal 

q was ignored in earlier presentation . In Algorithms 11 and 12, q is the least significant 

bit, So of S in Line 5. There is actually a data dependency on q in Lines 5 and 6 of 

these algorithms. The addition in Line 6 can only be executed after computing q in Line 

5. This dependency was seen in Chapter 3 also which happened to lie in the critical path 

of the systolic array implementations. 
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The dependency on q remains an issue in unified architectures. In the architecture pro

posed in [48], the least significant bit of the sum generated from the first row of DFAs 

(that computes a,iB0 +TCQ +TSQl)) is q and this value is buffered till the end of the cur

rent iteration. In the proposed architectures, the computation of q is tackled differently. 

Referring to Table 4.1, when the multiplier is operating in GF(N) mode, g0 is required in 

Cycle 1 for the first iteration involving a0. So, in Cycle 0, g0 is computed as shown below. 

go = aob0 + ts{~($ + * 4 S (4-l) 

where £s070\ and tqjJ are initialization values set to 0. For the next iteration, q\ is re

quired in Cycle 4. In Cycle 3, the required inputs, oti&o, ts^j, (please refer to notations in 

Section 4.4.1) and icoo, are available for the computation of q\. So $ is computed in the 

cycle as soon as the first byte of input B in each iteration has been received. 

The computation of <& in GF(2m) is more challenging. In GF(N), the operations in 

Lines 5 & 6 of the MMM algorithm are split into two cycles. In the first cycle, <& is 

computed along with S and in the next cycle, & is used. In the case of GF(2m), the very 

idea of the proposed logic is to execute these two lines with one single operation, i.e., it is 

aimed to add a,iB0®qiNo®TS$ in the same cycle. In other words, g» needs to be made 

available before this operation takes place. With reference to Table 4.1, in GF(2m) mode, 

go is required in Cycle 0. Here precomputation is necessary. It is important to note that 

this precomputation is required only for the first iteration, i.e., for i = 0. After the first 

iteration, the pipeline provides the latency to compute g*. For i = 0, q0 is equal to a0 • 6o 

(because the initial value of the sum is '0'). The next iteration (i = 1) starts in Cycle 2. 

The inputs required to compute gi are a\ • b0 and ts0 j . The partial product bit a\ • b0 is 

available from the inputs. The second input is the lsb of the right-shifted sum from the 

previous iteration. This is available in Cycle 1. Hence, gi can be computed in Cycle 1 and 
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Figure 4.6: Reservation table for operation in GF(N) (a) m = 8, w = 1 and k = 2 
(b)m = 8, w = 1 and fc = 3 

then be used in Cycle 2 to start iteration 1. 

4.4.6 Reservation Table of the Pipeline 

The reservation tables for the pipelined operation of the multiplier in GF(N) and GF(2m) 

are illustrated in Fig. 4.6 and 4.7, respectively. 

Fig. 4.6(a) shows the reservation table for the pipeline in GF(N) mode of operation 

for m = 8, w = 1 and k = 2. As discussed previously, PUQ starts processing Iteration 
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Figure 4.7: Reservation table for operation in GF(2m) (a) m = 10, w = 1 and k = 2 (b) 
m = 10, w — 1 and k = 3 

0 of MMM algorithm from Cycle 0 (shown as solid dot) and PU\ starts Iteration 1 from 

Cycle 3. The outputs from PUi are ready in Cycle 6 to start Iteration 2 but the pipeline is 

not free (PU0 is still processing). Therefore the pipeline is stalled (marked as O) f°r t w 0 

cycles before PUQ can begin Iteration 2 in Cycle 8. In Fig. 4.6(b), the reservation table for 

m = 8, w = 1 and k = 3 is shown. Here there is no pipeline stall due to the additional PU 

{PU2)- By the time the first output of PU2 is available, PUQ is free and ready to process 

the next iteration. In this case, however, extra computations are needed at the end to flush 

the pipeline (represented by o). This is because the input A is 8 bits long which is not a 

factor of the number of PUs in the pipeline. Analogous reservation table for the operation 

of the pipeline in GF(2m) mode can also be derived. This is illustrated in Fig. 4.7. 

The conditions for the pipeline stall can be formulated as follows. 
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3k < e for pipeline stall in GF(N) 

4k < e for pipeline stall in GF(2m) 

e is the number of words, ^ as defined previously. These conditions are important in 

evaluating the latency of the unified MMM later. 

4.4.7 Multiplier Architecture 

The block diagram of the multiplier architecture is illustrated in Fig. 4.8. The control 

architecture can be derived from the DGs in Fig. 4.4 and the data flow in Table 4.1. 

The inputs, A, B and N are stored in three sets of shift registers - SR-A, SR-B and SR-N, 

respectively. The shift register, SR-A is an m-bit linear shift register. An m-bit linear shift 

register is a cascade connection of m single bit registers. SR-B and SR-N are two banks of 

linear shift registers. Each bank consists of w parallel (e + l)-bit long linear shift registers 

to allow a u;-bit word to be shifted in parallel. The processing kernel has two PUs in the 

pipeline. Each PU is associated with a ^-computation block to compute q using the lsb 

generated from its first level of DFAs. q{ and qi+\ are computed from each ^-computation 

block. The multiplexers are allocated to resolve the signal contention problems 1 and 2 

mentioned in Section 4.4.2. Two banks of w parallel shift registers are used to store the 

sum and the carry from PU\ (labeled as SR-TC and SR-TS). (4.3) gives the length of 

shift registers, SR-TC and SR-TS, in terms of the number of words per input, e, and the 

number of PUs, k. These shift registers are required to store the results when there is a 

pipeline stall. The control architecture does not fall in the critical path of the multiplier 

as it involves only simple 2-to-l multiplexers. 

For GF(N) lSR = e- 3k for 3k > e 

ISR = 0 otherwise . . 

For GF(2m) lSR = e - 4fc for 4k > e 

ISR = 0 otherwise 
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Figure 4.8: Block diagram of the multiplier 

4.5 Results 

In this section, the hardware implications of the proposed PU, when implemented on 

FPGA platform, are studied. It is evaluated against [48] for the latency (L)'m terms of 

the number of cycles, the critical path delay (£mi„), the area cost in terms of the number 
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of FPGA slice used, and the total computation time (ttotai) for different wordlengths w, 

number of PUs, k and modulus precision, m. 

4.5.1 Critical Path and Latency 

The maximum operating frequency of the circuit is determined by the critical path delay 

tmin expressed in ns, which is defined as the maximum combinational delay between two 

registers. The tmin of the proposed PU and the one in [48] are given by 

In [48] tmin = llA2i„p + 8Aint) 

(4.4) 
Proposed tmin = 6A2inp + 5Aim, 

where A2jnp is the delay of a 2-input AND/OR gate and Ainv is the delay of an inverter. 

The delays of the XOR gates and multiplexers are estimated and expressed in terms of 

the 2-input gates and inverters. From the above expressions, it is seen that tmin of the 

proposed PU is almost half that of [48]. The reduction in tmin is because the critical path 

in [48] passes through two levels of adders but in the proposed PU, it passes through only 

one level of adders. 

The latency, LQFN,
 m terms of the total number of clock cycles required for the mul

tiplication in GF(N) is given by 

LGFN 
exPrl +3x(fc-l) + l for3fc<e 

h (4.5) 
3fcx | " f ]+e -2 for3fc>e 

where m = log2{N) is the bit width of modulus lN\ k is the number of processing units 

used in the kernel, e = \(m/w)~\ where w is the wordlength of B and p. Similarly, the 
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Figure 4.9: Total clock cycles (L) vs. modulus precision (m) for (a) w = 8 (b) w = 16 (c) 
w = 32 

following expressions give the latency of the PU when it is operating in GF(2m) mode. 

LGF2 = ' 
ex [ | ] +2x(2fc-l) for4fc<e 

4fcx[f]+e-2 for 4fc > e 
(4.6) 

The latency cycles for wordlengths, w = 8, 16 and 32, of the proposed PU are plotted 

against the modulus precision, m, in Fig. 4.9 and the results are compared against those 

of [48]. The results are obtained for a pipelined kernel comprising two PUs. For each w, 

three curves are plotted. Two of these curves labeled as 'Proposed GF(Ny and 'Proposed 

GF(2my are the results of the proposed kernel operating in GF(N) and GF(2m) modes, 

respectively. The curve labeled 'Savas' gives the results of the kernel of [48] in either 

GF(N) or GF(2m) mode since the latency for this kernel is the same in both modes of 

operation. The shape of the curves can be explained by the square relationship between 
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L and m in the expressions stated above. 
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Figure 4.10: Total clock cycles (L) vs. number of PUs (k) for w = 16 and (a) m = 160 (b) 
m = 512 (c) m = 1024 

The proposed kernel outperforms that of [48] in the case of GF(2m). It takes merely half 

the latency of that of [48] for nearly all values of m. In GF(N), the proposed kernel per

forms either equally well or slightly better than that of [48]. These results corroborate the 

claim made in the problem statement of Section 4.3. In [48] two levels of DFAs are used 

for one iteration in both GF(N) and GF(2m), but one level of DFAs is sufficient for one 

iteration in GF(2m). In the proposed PU, only one of the two levels of adders designated 

for MMM in GF(N) is used in GF(2m) operation. This advantage of the proposed PU 

in GF(2m) operation is clearly shown in Fig. 4.9. Although there is no clear saving in 

the number of latency cycles consumed in GF(N) over the kernel of [48], the reduction in 

total computation time of the proposed architecture will be exemplified later in this section. 

92 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



The number of latency cycles (L) are plotted against the number of 16-bit PUs (k) in 

the pipeline for three different modulus precisions, m = 160, 512 and 1024 in Fig. 4.10. In 

this figure, it can be seen that as k increases, L decreases for both architectures. However 

increasing k would increase the area cost. When m = 160, the proposed architecture has 

lower L as compared to [48] for k < 4. When m increases to 512 and 1024, the range of k 

where the proposed architectures perform better extends to 10 and 20, respectively. The 

proposed PU shows higher savings in latency as compared to [48] when k is small (typically 

less than 10). The shape of the curve can be explained by the inverse relationship on k 

but a direct relation on m. As m increases, the factor ^ becomes larger and the effect of 

m dominates that of k. This results in a steady value of L as m increases in Fig. 4.10. 

4.5.2 F P G A Implementation Results 

The proposed PU and the PU in [48] are implemented on FPGA platform using Xilinx 

Synthesis Tool - ISE (version 8.1). The PUs are synthesized on three different Virtex chips 

(by Xilinx) - VirtexE XVC100E, Virtex2 XC2V1000 and Virtex4 XC4VLX100. All the 

three FPGAs belong to the same family of Xilinx FPGAs - Virtex. Each configurable 

logic block (CLB) of these FPGAs comprise the same structure. Each CLB has four slices, 

where a slice is the basic area unit of an FPGA. Each slice comprises look up tables, mul

tiplexers, carry chain logic and registers. The main difference between the three FPGAs is 

the process technology and supply voltage requirements. Virtex4 is the most recent of the 

three, thus having a sub-micron technology. The process technologies of VirtexE, Virtex2 

and Virtex4 are 180nm, 150nm and 90nm respectively. Also the supply voltages of the 

three chips are 1.8V, 1.5V and 1.2V respectively. 

Table 4.2 lists the mapping results of the proposed PU and the PU in [48] for three different 

wordlengths, w =8, 16 and 32. The metrics - critical path delay (tmin) in ns and logic uti

lization in terms of the number of slices (A) are listed. The savings of each metric in % are 
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Table 4.2: FPGA implementation results of processing unit 

8-bit PU 

Chip 

Virtex 2 

Virtex 4 

Virtex E 

*min\P'S) 

Prop. 

2.73 

1.911 

4.724 

[48] 

3.229 

2.592 

7.76 

Savings 

% 

15.45 

26.27 

39.12 

A (slices) 

Prop. 

67 

67 

67 

[48] 

69 

45 

45 

Savings 

% 

2.89 

-48.88 

-48.88 

16-bit PU 

Chip 

Virtex 2 

Virtex 4 

Virtex E 

Prop. 

2.758 

1.929 

5.324 

[48] 

3.11 

2.592 

7.76 

Savings 

% 

11.31 

25.57 

31.39 

Prop. 

130 

133 

134 

[48] 

110 

90 

90 

Savings 

% 

-18.18 

-47.77 

-48.88 

32-bit PU 

Chip 

Virtex 2 

Virtex 4 

Virtex E 

Prop. 

3.083 

1.911 

4.884 

[48] 

3.139 

2.466 

7.01 

Savings 

% 

1.78 

22.50 

30.32 

Prop. 

264 

271 

272 

[48] 

224 

184 

184 

Savings 

% 

-17.85 

-47.28 

-47.82 
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also listed alongside each metric. The savings is calculated as < me ^SzsiH^lSMi x 100 >. 

A positive percentage indicates an improvement of the proposed architecture over that 

of [48] and vice versa. 

tmin in Table 4.2 shows that the critical path of the proposed PU is smaller than the 

PU in [48] for all values of w and all the three Virtex chips. Critical path delay determines 

the minimum clock period (or the maximum frequency) for the circuit to function. The 

percentage savings are higher in 8-bit and 16-bit PUs as compared to 32-bit PUs. The 

critical path is reduced in the proposed PU because it passes through just one level of 

DFAs as opposed to two levels in [48] (see Section 4.5.1). Also, it can be seen that the 

proposed architecture performs faster on Virtex4 as compared to Virtex2 and VirtexE. 

This is attributed to the advanced process technology used in Virtex4 chips. 

In terms of logic slice utilization, the proposed PU shows a higher area cost as compared 

to that of [48]. The increase in area is mainly due to the extra registers that are used to 

split the two levels of DFAs in the proposed PU. The area cost is less inferior when it is 

implemented in Virtex2. 

4.5.3 Total Computat ion Time 

The actual time taken for one complete multiplication is given by the total computation 

time. Expressed in ns, it is defined as the minimum clock period (tmin) multiplied by the 

total number of latency cycles (L) as follows: 

ttotal = tmin x L (4-7) 

In Fig. 4.9 of Section 4.5.1, the variation of the total number of cycles (L) with respect 

to the modulus precision (m) was shown. Similarly, in Fig. 4.10, the variation of L with 

95 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



modulus precision (m) modulus precision (m) modulus precision (m) 

Figure 4.11: Total computation time {ttotai) vs. modulus precision (m) for (a) w = 8 (b) 
w = 16 (c) w = 32 

respect to the number of PUs, k in the pipeline was shown. The advantage of the proposed 

PU in terms of L is evident from these graphs. Now, in Fig. 4.11 and 4.12, the combined 

effect of tmin and L on the total computation time is shown. In these graphs, ttotai is 

plotted against m and k. The advantage of the proposed PU is further exemplified with 

the consideration of tmin. This shows the timing ascendancy of the proposed architecture. 

It is now amplified as well in GF(N), especially when the modulus precision is high. 

4.5.4 Area Time Product 

Area time product is defined as 

AT = Areaxttotal (4.8) 

= Area x tmin x L 
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Table 4.3: Comparison of Area Time Product (A x ttotai) 

8(b) 

8-bit PU 

16-bit PU 

32-bit PU 

Proposed GF(N) 

7617835.68 

3825013.92 

2551960.32 

Proposed GF(2 m ) 

3836720.16 

1940309.28 

1709111.04 

Savas [48] 

9393290.16 

4773288.624 

2463287.856 

Savings 

in GF(N) 

18.90% 

19.86% 

-3.59% 

Savings 

in GF(2 m ) 

59.15% 

59.35% 

30.61% 

For the sake of comparison, the area and tmin values are taken from Virtex-2 based imple

mentations given in Table 4.2 previously. The latency values of the proposed architecture 

are calculated using the expressions for latency in Section 4.5.1 and those of [48] are com

puted using the expressions given in [48]. The AT results are computed for modulus/field 

order of m = 572 and 8 PUs in the pipeline. Table 4.3 lists the AT values for PUs of three 

different PUs - 8, 16 and 32 bit. AT values for the proposed architecture are different for 

the two fields GF(N) and GF(2m) because of the different latencies in the two fields. The 
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multipliers in [48], however, give the same AT values for both the fields. 

The advantage of the proposed architectures can be clearly seen in the savings' columns. In 

both GF(N) and GF(2m), the proposed architectures show tremendous savings for 8-bit 

and 16-bit PUs. In the case of 32-bit PUs, the savings is negative in the case of GF(N) 

whereas in GF(2m) the proposed architectures still show 30% savings. The drop in savings 

can be attributed to higher cell complexity of the proposed multiplier, especially in terms 

of registers. 

4.5.5 Discussion 

These results show that the proposed PU is faster than the PU of [48]. However there 

is premium on area cost due to the addition of registers between two levels of DFAs in 

the PU. When the proposed PU operates in GF(N), it takes equal amount of time to 

compute the modular product as compared to PU in [48]. However, the advantage of the 

proposed PU is exemplified when it operates in GF(2m). It outperforms [48] for all values 

of field orders by nearly two times. Thus the proposed architectures are well suited for fast 

generalized Montgomery modular multiplication where area is not a constraint. 

4.6 Summary 

In this chapter, a new scalable and pipelined architecture is described which uses the 

proposed novel processing unit and dual field adder for unified Montgomery Modular mul

tiplication. The novelty stems from the efficient use of the XOR gates in the full adder 

for GF(2m) operation. This helps to reduce the minimum clock period and hence the 

total time of computation for GF(2m) without slowing down the speed of computation in 

GF(N). The analytical relationship between the latency of computation in both fields and 

the modulus precision, input wordlength as well as the number of pipeline stages (or pro-
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cessing units) is derived. The processing unit was implemented on FPGA and the tradeoffs 

for higher speed to area utilization were analyzed against existing processing unit. In com

parison with the reported architecture, the speedup ratio in GF(2m) is nearly double. It 

was also observed that in GF(N) mode, the proposed architecture is faster particularly 

for high modulus precision. 

Montgomery modular multiplication has been discussed in detail. In the next chapter, 

the LSB-first/MSB-first modular multiplication algorithms will be studied for generic el

liptic curves. Novel serial modular multiplication methods will be explored to improve the 

timing and area of the existing generalized multipliers. 
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Chapter 5 

LSB-first/MSB-first Multipliers for 

Generic Curves 

5.1 Introduction 

In Chapter 3 and 4, Montgomery modular multiplication was discussed for different op

erating fields, like GF(2m) and GF(N), and different cryptosystems, like RSA and ECC. 

A scalable and unified architecture was discussed in Chapter 4 that can accommodate 

different fields and varying modulus precisions or field orders. In this chapter, LSB-first 

and MSB-first modular multiplication algorithms are investigated for ECC operating in 

GF(2m). 

In Chapter 2, a detailed literature survey shows that LSB-first and MSB-first modular 

multiplication algorithms in GF(2m) are generally implemented using systolic/semisystolic 

arrays [13,17-20,51]. The systolic arrays are either bit/digit-serial [13,19,20,51] or paral

lel [13,17,18,51]. All these architectures are designed for a fixed field order m which leads to 

inflexible applicability of the architecture. In [18], a pipelined parallel LSB-first/MSB-first 

modular multiplier is designed for a large field order M and the architecture is generalized 
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so that it can be programmed to operate in any field order m < M. The programming 

is done by generating vectors that run through a long chain of M processing elements for 

each iteration of the algorithm, resulting in a long critical path. 

In this chapter, two new fast serial-in parallel-out finite field LSB-first and MSB-first 

modular multipliers are presented that can operate for any field order m < M, M being 

the maximum field order. The limitations of the existing generalized LSB-first/MSB-first 

multipliers in [18] are studied and simple switch based methods to overcome these limita

tions are proposed. The proposed methods reduce the long critical path delays tc in [18] 

and reduce the area tremendously. 

The rest of the chapter is organized as follows. The fundamental LSB-first and MSB-

first algorithms for a fixed field order m and their data dependencies are first discussed 

in Section 5.2. In this section, existing LSB-first and MSB-first multipliers in [18] for any 

generic field order are reviewed. The issues with the architectures in [18] are discussed in 

Section 5.3 and the problem statement is formulated. The proposed method and architec

tures are presented in Section 5.4. The hardware complexity of the proposed architectures 

is evaluated against [18] in Section 5.5. The chapter is concluded in Section 5.6. 

5.2 Preliminaries 

In Chapter 2, the LSB-first and MSB-first algorithms were explained in detail. Let us 

briefly revisit the two algorithms for a fixed field order m and discuss the algorithm pre

sented in [18] that generalizes the algorithms to any field order m < M. 
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5.2.1 Fixed Order Algorithms 

The inputs to the LSB-first and the MSB-first modular multiplications in GF{2m) are 

represented in polynomial basis as shown below. 

a(x) = ET^1aix
i for a i € {0,1} 

b(x) = E ^ o 1 ^ for biE {0,1} (5.1) 

f(x) = ZZofi*' for / , € {0,1} 

a(x) and b(x) are the multiplicand and the multiplier and f(x) is an irreducible polynomial 

that defines the finite field GF(2m) of the arithmetic operation. It is used in the reduction 

operation during modular multiplication. 

The LSB-first and MSB-first modular multiplication for the product of two polynomi

als - a(x) and b(x) in a field defined by the reduction polynomial f(x) are formulated as 

shown below. 

LSB-first modular multiplication: 

c(x) = a(x)b(x)mod f(x) (5.2) 

= boa(x) + bi[a(x)x mod f{x)] + b2[a(x)x2 mod f(x)] + • • • 

-\-bm-i[a(x)xm~x mod f(x)] 

MSB-first modular multiplication: 

c(x) = a(x)b(x) mod f(x) (5.3) 

= {• • -[a(x)bm-ix mod f(x) + a(x)6m_2]x mod /(re) -I 

+a(x)bi}x mod f(x) + a(x)b0 

(5.2) and (5.3) are defined for the polynomial operands of a fixed field order, m. As the 

names suggest, one of the input operand is read from the least significant bit (lsb) in the 

LSB-first algorithm and from the most significant bit (msb) in the MSB-first algorithm. 
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These fixed order algorithms are implemented as either two-dimensional or one-dimensional 

systolic arrays in [13,17-20,51]. The bit-level algorithms to implement them are listed in 

Algorithms 13 and 14. If a parallel two-dimensional systolic array is considered for the 

implementation, each iteration can be represented by a column of m processing elements. 

The iteration number, i can be used to refer to a column of parallel processing elements that 

compute the results for the z-th iteration. The index, j of a processing element identifies 

its position in a column of the array. Thus, tj refers to the j - t h bit of an intermediate 

vector T in the z-th iteration. In the systolic array, it refers to the intermediate value t 

from the j - t h processing element located in the i-ih column. Henceforth, unless otherwise 

specified, tj is akin to the j - t h bit of the word T expressed in binary notation, where the 

least significant bit, designated as the 0-th bit, is t0-

Algorithm 13 LSB-first bit-level algorithm for fixed field order 
1: Input: a(x), b(x), f(x) 
2: Output : c(x) — a(x)b(x) mod f(x) 
3: t,-(0) = 0for 0 < j < m - l 

4: a{l\ = 0 for 0 < i < m - 1 

5: af] = 0 for 0 < j < m - 1 
6: for i = 1 to m do 
7: for j = 0 to m — 1 do 

8: af = 4:p + <t-ifi 
9: tf = af1 V l + t ^ 

10: end for 
11: end for 
12: C(x) = tW(x) 

5.2.2 Problem of Field Order Generalization 

Both algorithms 13 and 14 are applicable for a fixed field order, m. There is a critical data 

dependency that limits them from being adaptable to any arbitrary field. In the LSB-first 

algorithm, each iteration computes two m-bit words - A^ in Line 8 and T^ in Line 9. 

In Line 8, the msb of A from the (i — l)-th iteration, i.e. a^i -th bit, is used to compute 

the vector, A in the i-ih iteration. Similarly, in the MSB-first algorithm, the computation 
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Algorithm 14 MSB-first bit-level algorithm for fixed field order 
1: Input: a(x), b(x), f(x) 
2: Output : c(x) = a(x)b(x) mod f(x) 
3: tf] = 0 for 0 < j < m - 1 

4: tf = 0 for 1 < j < m 
5: fl\ = 0 for 0 < i < m - 1 
6: for i = 1 to m do 
7: for j = m — 1 to 0 do 
8: ij = £m_i Jj + Om-iClj + tj_i 
9: end for 

10: end for 
11: C(x) = 6m\x) 

of T"W in Line 7 contains a dependency on the msb of T^1 ^. 

It can be inferred that the field order plays a vital role in the computation of interme

diate iterations in both algorithms. The result from the current iteration is dependent 

on the most significant bit of the m-bit words, A^l~1^ in the LSB-first implementation or 

T^-1) in the MSB-first implementation. The most significant bit is the (m — l)-th bit of 

these words where m is the field order. In a multiplier designed for a fixed field order m, 

it is straight forward to propagate the msb to the next row of computing elements. 

Let us now define a generalized multiplier. It is a multiplier that is designed for a large field 

order M which can be programmed to operate in any field order m < M with low VLSI 

area and timing overheads. Unlike the fixed order multipliers, all the intermediate results 

in a generalized multiplier are M bits long. The (m— l)-th bit of these intermediate M-bit 

results needs to be selected correctly in every iteration. In the generalized multipliers, the 

msb of any intermediate vector is not the (m — l)-th bit required in the next iteration. 

The (m — l)-th bit detection and selection from the M-bit intermediate vectors in every 

iteration poses difficulty in the design of fast and low complexity generalized multipliers 

for the LSB-first and MSB-first algorithms. 
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5.2.3 Existing Generalized LSB-first/MSB-first Multipliers 

The existing generalized LSB-first and MSB-first modular multipliers in [18] were simulated 

and the results were analyzed in the literature survey chapter of this thesis (see Chapter 

2). In [18], Algorithms 13 and 14 are generalized to cater for any arbitrary field order 

m < M where M is the maximum field order that can be programmed. Each of the m-bit 

inputs, a(x), b(x) and f(x), are padded with zeros in the most significant positions to 

make them M-bit words, A, B and F, respectively An M-bit word H, is precomputed as 

shown below using F. All the bits of H are set to '0' except the m-th bit, hm, which is set 

to ' 1 ' by detecting the first occurrence of T in F . This determines the actual field order, 

m. This vector is then used in the generalized multiplication algorithms. 

hi = W7ZT • /,-, 0 < j < M — 1 and s_i = 0 
3 3 d ~ (5.4) 

Pj = pj-i © fj, 0 < j < M - 1 and p_i = 0 

Let us review the generalized MSB-first multiplication algorithm of [18] to study its limi

tations. In I tera t ion i, the following computations take place. 

Vj = tffi • hi + Vi-\ ,5 5) 

where 0 < i < M - l , 0 < j < M - l , T^1) = 0, y_j = 0 and c{x) = T^M~x\ From (5.5), 

the computation of the intermediate variable tj is dependent on yj. yj and hj are used 

in (5.5) to select tj£li from the intermediate vector T. More importantly, yj is computed 

using yj-i- In [18], (5.5) is implemented as a parallel pipelined architecture. Each column 

of processing units computes just one iteration. Due to the dependency between yj and 

yj-i, a long chain of M — 1 OR gates are connected end to end from one processing unit 

to the next in each column. Similar issue is also observed in the implementation of the 

generalized LSB-first algorithm of [18]. 
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5.3 Problem Statement 

The end to end connection of OR gates due to the Y computation in each iteration in the 

existing generalized algorithms [18], results in a long critical path delay, tc = (M — 1)A0R-

The critical path delay is defined as the longest combinational delay between two registers 

in the architecture. It determines the maximum operating frequency of the generalized 

multiplier. Thus the size of the generalized multiplier matters as tc now depends on M 

regardless of the field order. Parallel architectures are adopted in [18] to take advantage 

of pipelining. Their parallel implementations incur an impractically high area overhead. 

Generally, pipelining reduces the latency for multiple multiplications after the pipeline is 

filled by the first computation. However, the architectures in [18] are designed such that 

the pipeline is effective only if one of the input operands remains the same in subsequent 

field multiplication operations (FM). 

Consider the pipelined parallel generalized MSB-first multiplier of [18]. It comprises M 

pipeline stages. Each stage computes a M-bit vector T using two M-bit vectors, A and P 

and an one-bit input fej where 0 < i < (M — 1). Since only one bit of the input operand, 

B is computed at a time in any stage, even if the new values of A and P input vectors are 

ready, the next input operand B cannot be fed until all M bits of the operand B for the 

current FM operation have entered the pipeline. In this case, the pipeline has to wait for 

M + 1 cycles for the current operation to complete before it can commence the next FM 

operation. Only under the special condition that B remains constant for all consecutive 

FM operations to be computed, A and P can enter the pipeline continuously to produce 

one modular product per clock cycle after the first product is generated. Unfortunately, 

the inputs to successive FM operations for point multiplication (PM) operation during 

encryption/decryption are always different [25]. Consequently, the latency of the architec

tures in [18] is always M + 1 cycles. 
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The investment on parallel architecture to pipeline the operations might not benefit as 

much because of the limitation posed by FM. In the subsequent sections, a method to over

come the above mentioned issues with these architectures will be discussed. Novel serial-in 

parallel-out one-dimensional array architectures will be developed that show tremendous 

cost savings in area. Besides, it can operate at higher clock speeds. To the best of 

our knowledge, this is the first time programmable serial-in parallel-out generalized LSB-

first/MSB-first multipliers being reported. 

5.4 Proposed Method and Architectures 

The main issue with the generalized architectures in [18] is that in each iteration a vector 

Y is computed to select the (m — l)-th bits of the intermediate vectors. The critical paths 

are mainly due to the propagation of the value of yj in (5.5) from the first processing 

element in each column to the last. This data dependency has to be eliminated in order 

to make the critical path independent of M. 

In the proposed methods, the dependency on Y is eliminated by using the H vector gen

erated in (5.4). As mentioned earlier, all the bits in H except hm are set to T . If H is 

shifted right by 1 bit, we obtain the vector S where only sm-i = 1. The computation of 

S is a one time operation only that is done at the beginning of the point multiplication 

operation as the field order m remains the same for the entire point multiplication opera

tion. During field multiplication, S that is stored can be used to select the (m — l)-th bit 

of the intermediate vector as shown below. 

asw = o-j if Sj = 1 (5.6) 

where j runs from 0 to M — 1. asw is computed in every iteration using the vector A from 

the (i — l)-th iteration. The LSB-first multiplication for any generic field m < M can be 
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accomplished by using asw as shown below. In I tera t ion i, the following operations take 

place. 

af-tn®$-l) (5.7) 

Oj_i © asw • fj (5.8) 

where 0 < i < m - 1, 0 < j < M - 1 and T^1) = 0. At the end of the iteration, A® is 

left shifted by one bit. 

A^ « 1 (5.9) 

Equations (5.7) and (5.8) can be implemented in a serial-in parallel out fashion using a 

one-dimensional array of processing elements. In this array, i is the iteration index for the 

bit-serial input, b(x). The subscript j is used to locate the j-th processing element. In 

(5.6), since only sm_i = 1, the (m — l)-th bit of A^l~l>> is assigned to asw which is used in 

(5.8) to compute the vector A®. 

The MSB-first multiplication can also be similarly formulated using 5 as shown below. 

S is used to select the (m — l)-th bit of T in this case. 

tsw = *5i-1) ifsj = l (5.10) 

tsw is then used in I te ra t ion i to compute T ^ as shown below. 

tf = t^fj + btn-iaj + tf-V (5.11) 

After the vector T^ has been computed, it is left shifted by one bit, i.e., T^ « 1. 

A*) _ li ~ 

(») 
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Equations (5.6) and (5.10) can be implemented using M parallel switches that are tied 

to one output signal asw or tsw. Using this switch array, the LSB-first/MSB-first multipli

cations can be generalized for any field order up to a maximum field order of M without 

the need to propagate the control vector, Y all the way through M processing elements 

as in [18]. However, there are still intriguing architectural issues pertaining to the latency, 

critical path delay and the technology mapping to standard cell libraries in its implemen

tation. These issues will be addressed to arrive at an efficient parametric architecture for 

the generalized field order modular multiplication. For ease of exposition, the generalized 

modular multiplication architecture is divided into two parts - the multiplier block and the 

switch array abbreviated as the S-array. 

5.4.1 Multiplier Block 

For the discussion of the multiplier block architecture, it is assumed that two vectors, S 

and P are available. The generation of these vectors by the S-array block will be discussed 

later. 

Signal Flow Graphs 

The signal flow graphs (SFGs) of the proposed algorithms are shown in Fig. 5.1. For the 

LSB-first algorithm in Fig. 5.1(a), each circle represents a computation element that exe

cutes (5.7) and (5.8) in each iteration. The input operand, b(x) is read into the processing 

elements serially along with the M-bit parallel inputs, A, F and T. In every iteration, 

the array produces two M-bit intermediate vectors, A and T. A bank of M switches are 

parallelly controlled by the vector S. In any iteration, only one switch is activated by 

sm_i = 1 to produce asw = am_i. The value of asw is then simultaneously broadcast to the 

entire linear array. The current outputs of A and T are also registered and fed back to the 

processing elements via registers or flip flops (FFs) represented by the symbol • in Fig. 5.1 

for the next iteration. The SFG of the MSB-first architecture can be similarly explained 
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and it is shown in Fig. 5.1(b). In MSB-first architecture, the signal being selected in the 

switch array is im_i. In addition, only one intermediate vector, T needs to be registered 

and fedback for each iteration. 

(a) 

(b) 

Figure 5.1: Signal flow graphs (a) LSB-first multiplier (b) MSB-first multiplier for GF(2M) 

Implementation of SFGs 

The SFGs shown in Fig. 5.1 are a direct translation of Equations (5.6)-(5.11). The switches 

in these SFGs are mapped to tristate buffers from the standard cell libraries by the silicon 

compiler in an application-specific integrated circuit (ASIC) design flow. The direct im

plementation of the proposed SFGs for M = 256 using Synopsys Design Compiler (DC) 

failed to optimize the design on Sun Solaris 8 system, even after 86 hours of synthesis time 

using TSMC 0.18 jim standard cell library for 1.8V power supply. 

On detailed analysis by different experimentation, it was found that a fan-in problem oc

curs in the implementation. DC is able to synthesize the same architectures with M = 128. 

110 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



The difference between the two cases, i.e. when M = 256 and M = 128, is the fan-in to 

the common bus, asw in LSB-first or taw in MSB-first. If LSB-first multiplier is considered, 

with M = 256, the 1-bit signal bus, asw, is driven by 256 tristate buffers. When M — 128, 

the fan-in to aaw is reduced to just 128. The library that was employed does not seem 

to allow such high fan-in values. Besides TSMC 0.18 \im library, CMP 90 nm digital 

library was are tried. Synopsys DC failed to synthesize the circuit using this library. This, 

however, was not a problem when a Synopsys custom library called class.db was used for 

the synthesis because a multiplier with M = 572 could be synthesized effectively. 

The synthesis problem is resolved by a multiplexer based bus architecture. This is ex

plained using the LSB-first multiplier but it is equally applicable to the MSB-first multi

plier. The PE array is apportioned into p parallel processing blocks (PBs) of M/p PEs. 

Each PB generates a ternary output, aswk G {0,1, Z} for k = 0,1, ..,p — 1 where Z stands 

for a high impedance state in tri-state buffer. Only one of the p sections will generate a 

valid binary (0 or 1) aaw signal and the remaining outputs will be in high impedance state. 

The asw is fedback to the PE array through the p-input multiplexor using the control 

vector P. This vector determines which of the p PBs contains the (m — l)-th bit. This 

control vector is generated along with S. 

Since the maximum field order for an ECC in GF(2m) listed in NIST is 572 [37], with 

M — 572, p = 4, DC is able to synthesize and map the design to TSMC 0.18 jim standard 

cell library without problem using a minimal 4-input multiplexor and a two-bit control 

vector P. P selects the valid aSWk from the four PB and assigns it to asw thus generating 

am-\. Fig. 5.2 shows the architecture of the LSB-first algorithm for a maximum field order 

of 572. Fig. 5.3(a) shows a single processing element (PE). There are 143 such PEs in 

each of the four PBs of Fig. 5.2. Each PB generates 143-bit wide vectors £571:429, • • •, <i43:0 

and 0571:429, • • •, ai43:o- The output vector T is registered in a bank of registers and fed 

111 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



back to the PB for the next iteration. According to Equations (5.6)-(5.8), the vectors, A 

and S are fed to the field select blocks (FSBs). Each PB is connected to a FSB of 143 field 

selectors (FSs). Fig. 5.3(b) shows the architecture of a single FS cell. The selector logic 

in each FS cell of the LSB-first multiplier is explained as follows. In the first iteration, 

i = 0, according to (5.6), the input to the PE array is the operand, a{x) whereas in the 

subsequent iterations, i.e., for i > 0, the vector A from (5.8) of the (i — l)-th iteration is 

fed into the array. Therefore, an OR gate is used in each FS cell to propagate either aj 

or a,j . a,j is obtained from the computation of (5.8) in the processing array whereas 

aj is an one time input from a(x). A simple external logic circuit is used to set a, to the 

j-th bit of a(x) only for the first cycle of computation. After the first cycle, aj is reset 

to 0 and af~ is assigned to asj in the FS. The signal aSj is sent to the corresponding 

PE for the next iteration. It is also tristate buffered to aswk at the same time. The four 

FSBs generate four single-bit signals - aswo, ••-, asw3. For instance, if M = 572, when 

m = 471, aSW3 — a^o and asw0, asw\ and astu2 are pulled to a high impedance 'Z' state. 

asw3 is multiplexed into asw by P = 11. 

It is however, important to note that three out of the four inputs to the multiplexer 

are high impedance states in this design abstraction. In the actual ASIC implementation, 

the high impedance states are resolved and the multiplexer is mapped to standard logic 

structure. P(l : 0) is first converted into four enabling signals and then it is used to select 

one of aswo, asw\, aSW2 and aSW3 to asw. 

Fig. 5.4 shows the hardware architecture of the proposed MSB-first algorithms for M = 

572. Fig. 5.5 shows the corresponding processing element and field selector cell. The 

architecture is analogous to the LSB-first multiplier discussed above. The field selection 

block is simpler because only the T vector is selected in each iteration. 
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Figure 5.2: Proposed LSB-first multiplier for arbitrary m < 572 
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Figure 5.3: (a) Processing element (b) Field selector for the proposed LSB-first mulitplier 

5.4.2 The S-Array 

The vectors 5 and P are generated in the S-array. When the H vector from (5.4) is shifted 

right by 1 bit, it results in 5. This logic expression can be implemented using a simple ar

ray of AND and OR gates. It is similar to that shown in [18] but the direct implementation 

as illustrated in [18] creates a long critical path that passes through M 2-input OR gates. 

The resultant critical path delay is tc = (M — 1)AQR. This worst case delay is dependent 

on the value of M. If the S-array is implemented this way in the proposed architectures, it 
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Figure 5.4: Proposed MSB-first multiplier for arbitrary m < 571 
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Figure 5.5: (a) Processing element (b) Field selector for the proposed MSB-first mulitplier 

turns out to be the timing stumbling block since the multiplier block passes through just 

one layer of processing elements and is independent of M. 

The operating frequency of the entire multiplier is penalized if this long array of OR 

gates is used to generate S. Introducing registers after every OR gate results in a high 

latency of M cycles. To reduce tc of the S-array and make it independent of M, the array 

of AND and OR gates is optimized such that the critical path of the S-array is just equal 

to the critical path of the multiplier block. In this way, the latency is also reduced. 
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The array of AND gates is divided into p equal length blocks. Each block is called 

the S-subarray. For example if M = 572, p = 4, every 143 bits are processed in one 

S-subarray. Each S-subarray is further divided into smaller units called the S-cells 

with no more than 8 OR gates in each cell. This is because the critical path of the mul

tiplier block is approximately the delay of eight 2-input AND gates. So, it can have a 

maximum of eight 2-input OR gates connected end to end. In this particular example, 

the 143-bit S-subarray is divided into 17 8-bit and one 7-bit S-cells connected serially 

via registers. In addition to the AND gates that generate S, each S-subarray generates 

a P-propagate signal (pp) and a block select signal (bs). When m is detected in a 

S-subarray, bs of that subarray is set to '1 ' . Its pp output is also set to 1 to reset the 

values of 6s in the succeeding S-subarrays. Once a pp of 1 is received by a S-subarray, 

it resets its 6s ouput to zero and propagates the pp signal to the S-subarray to its right. 

When all the bits of F have been read, one of the four 6s signals is set to '1 ' . These signals 

are used to generate the 2-bit vector P as shown in Fig. 5.6(c). 
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Figure 5.6: (a) Logic in S-cell (b) Logic in S-subarray (c) S and P vectors generation 
circuit for M = 572 
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5.5 Results and Discussion 

The proposed serial-in parallel-out architectures are compared with the generalized pipelined 

architectures for the LSB-first and MSB-first modular multiplications discussed in [18]. 

There are other generic implementations in [8] but they are based on partial reduction 

methodology wherein the reduction is performed after the multiplication. Our work is 

the first reported programmable LSB-first/MSB-first serial-in parallel-out architectures 

for generic elliptic curves. 

5.5.1 Gate Count 

Table 5.1 evaluates the primitive computation elements required for the complexity analysis 

of the proposed architectures against the existing generalized cellular LSB first/MSB-first 

architecture of [18]. In Table 5.1, the 'multiplier block' executes the basic operations in 

each iteration of the algorithms whereas the 'S-array' performs the precomputation to de

termine the control vectors, S and P for our proposed architectures and it is equivalent to 

the H computation in [18]. Each basic cell (BC) in the proposed architectures comprises 

one processing element (PE) followed by one field selector logic (FS). In [18], a BC im

plements the logical functions of each iteration like those shown in (5.5) for the MSB-first 

multiplication. The total gate count for the combinational logic is expressed in terms of 

the number of equivalent 2-input gates (A2) and inverters {A\). From TSMC 0.18 library, 

a 2-input XOR is assumed to have 3 2-input gates and 2 inverters. A 4-to-l multiplexor is 

equivalent to 11 2-input gates and 4 inverters. A tristate buffer is assumed to be a 2-to-l 

multiplexor comprising 3 2-input gates and 1 inverter. The results in Table 5.1 show that 

for the highest possible standard field order of 572 bits [37], a tremendous area savings of 

99% can be obtained over those reported in [18]. 
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Table 5.1: Complexity analysis 

Mult ipl ier 

core 

S-array 

block 

Number of 

basic cells (BCs) 

Basic cell (BC) 

Number of cells 

Cell 

Tota l ga te count 

(Combina t iona l ) 

Latency of mult iplier 

Min imum clock period 

Proposed 

LSB-first 

M BCs, 

1 4- to- l MUX 

2 XOR, 2 AND, 1 O R 

1 Tr i s t a t e buffer, 2 FFs 

MSB-first 

M BCs, 
1 4- to- l MUX 

2 XOR, 2 AND 

1 Tr i s t a t e buffer, 2 F F s 

M / 8 S-cells, 2 OR 

9 AND, 1 OR, 2 inverters , 2 FFs 

( ^ M + 1 3 ) A 2 + 

m cycles 

9^2»np + l ^ t r i s t o t e + A i n t e r c o n n e c t 

[18] 

LSB-first 

M 2 BCs 

2 XOR, 4 AND, 1 OR, 

2 FFs 

MSB-first 

M 2 BCs 

2 X O R 4 AND, 

1 OR, 1 F F 

M cells 

1 AND, 1 OR, 1 inverter 

( l l M 2 + 2MJ A2 + 

(2M2 + 1 M ) A i 

M + 1 cycles 

( M - I ) A O R 

5.5.2 Latency and critical pa th delay 

Latency is defined as the number of clock cycles required to compute a valid output for 

a given input. The proposed algorithm has an initial latency of Ls clock cycles when 

it computes S and P. Ls depends on the number of S ce l l s that are employed in the 

S-subarray. These vectors are computed only once in the entire encryption/decryption 

process. In addition to Ls, the multiplier itself possesses a latency of LMM = m + 1 cycles. 

The proposed architectures generate parallel outputs in fewer number of clock cycles than 

those of [18]. It was shown in Section 5.2.3 that the latency of the pipelined architectures 

of [18] is always equal to M + 1 cycles. The pipelining does not improve the latency due 

to the limitations of the algorithms and architectures itself. In the proposed architectures, 

one of the inputs b(x), which is an m-bit vector, is received serially. Instead of having to 

wait for the entire array to be processed for M cycles in [18], the product of the proposed 

multiplier is available after m +1 clock cycles. The initial latency of Ls cycles to setup the 

S-array is a one-time investment. Upon amortizing over the entire encryption/decryption 

process, its contribution to the total computation time is negligible. This is because Ls 

which is a one-time initialization setup time is very small compared to the total computa

tional time required for the entire encryption and decryption operations. 

117 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Critical path is the longest combinational delay between two registers. The critical path 

delay tc is independent of M and is equal to Atriatate + 9A2i„p + Ainterconnect, considering 

A4_to_i_Mt/x = 5A2i„p and AXOR = 2A2inp where A is the critical path of a logic gate. 

One of the main issues with the multipliers of [18], as discussed in Section 5.2.3, is the 

long tc of (M — l)Aofl. In the proposed algorithms, the critical path runs through one 

processing element and one field select block followed by a 4-to-l multiplexer. This critical 

delay path remains the same for all values of M. In addition, the interconnect will add 

some delay and this would depend on the wire load model of the library. However, the 

component from interconnect delay would be far less compared to M — 1 OR gate delay 

in architectures in [18]. 

The generalized MSB-first multipliers based on the proposed algorithm and [18] were im

plemented for M = 572 (the largest field order in NIST [37] and SEC [3]). The designs 

were synthesized using Synopsys Design Compiler v2004.12-SP2 and the TSMC 0.18 //m 

standard cell library which uses 1.8 V supply. Input and output loads of 0.8 pF and 0.9 

pF were applied to both designs and the clock period was set to 50 ns. The synthesis was 

performed on Sun Solaris 8 dual-processor systems having a RAM of 4 GB. Synopsys De

sign Compiler could not synthesize the parallel architecture of [18] due to the complexity 

of the design requiring a memory (RAM) of over 4.4 GB. The proposed multiplier was 

synthesizable and the synthesized circuit has tc = 2.81ns. This shows the complexity and 

practicality of realizing the fully parallel architectures of [18] for large M. 

For the sake of comparison, the two generalized MSB-first multipliers were implemented 

again for M = 128 on the same platform and constraints as stated above. The minimum 

clock period reported by our architecture and that of [18], on optimizing under similar op

erating conditions, are 1.98ns and 18.7ns, respectively. That is, our proposed architecture 

can run at 16.7 times faster clock rate than the architecture of [18]. In order to validate 
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the delay of the proposed architecture with respect to the qualitative results in Table 5.1, 

a smaller multiplier for M = 16 was synthesized. The delay was obtained to be 1.75ns. 

This shows that even if M increases to 128 from 16, i.e. 8 times, the delay increases by 

just 1.13 times. Thus the delay is almost independent of M. 

In terms of area, the proposed 128-bit multiplier occupied 64026 i/m2 of silicon area whereas 

the architecture in [18] covered 3555525.75 /j,m2 which is 98% more than the proposed ar

chitecture. To validate the qualitative area results in Table 5.1, it was found that the 

proposed 16 bit multiplier covers 8558 //m2. On linear approximation of this result, it 

can be seen that the area of 128 bit multiplier is equal to SSI x 128 which gives 68464 

fim2. This is close to the actual implementation result, i.e. 64026 /xm2 reported by Design 

Compiler. 

For point multiplication (PM) that executes finite field multiplication (FM) repeatedly, 

the proposed architectures outperform those of [18] in terms of the total computation time 

Ttotai- According to [25], a PM involves at least 6 [log2k\ + 10 FMs where the size of k is 

of the order of m. Thus, Ttotai required in one PM is 

Ttotai = ((6 \log2k\ + 10) x LMM + Ls) x tc (5.12) 

where Ls are the latency cycles incurred by the 5-array only once at the beginning of the 

PM. If we consider an ECC with m = 113 from [3], a multiplier that supports a maximum 

field order of M — 128 would suffice. For this case, Ttotai-proposed-MSB = 11.4/xs and 

Ttotai-[i8] — 121.88/xs. A speed up by nearly ten times is achieved. The speedup factor 

increases for higher values of M. In addition to this speed up, the proposed architecture 

saves logic area by over 96% as compared to its MSB-first counterpart in [18]. 
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5.6 Summary 

In this chapter, we discussed novel finite field LSB-first/MSB-first multiplication algo

rithms for arbitrary field order m for m < M, M being the highest possible field order. 

Efficient multiplier architectures were derived for the algorithms by considering the fea

sibility of implementation of the multipliers using semi-custom design flow with standard 

cell libraries. On implementing a 128-bit multiplier using TSMC 0.18 fim libraries, a speed 

up of 16.7 times in operating frequency and an area savings of over 96% was achieved. In 

addition, superior performance of the proposed multipliers is also seen in the point multi

plication operation. Our analysis infers that for an ECC operating in the CF(2113) field, 

the proposed architectures can operate atleast ten times faster than those cited in [18] with 

an area savings of over 96%. 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

The work presented in this thesis is aimed at developing improved algorithms and ef

ficient architectures for finite field multiplication in GF(N) and GF(2m) for encryp

tion/decryption in RSA and elliptic curve cryptosystems. The main focus of the study 

is on three most commonly used modular multipliers called Montgomery modular multi

plication, LSB-first and MSB-first modular multiplication algorithms. New architectures 

were designed and developed by exploiting the properties of the algorithms. Both FPGA 

and ASIC platforms were used to evaluate the proposed architectures against existing ar

chitectures. 

The outcomes of this research work are summarized as follows. 

A detailed survey of several important LSB-first and MSB-first modular multipliers for 

GF(2m) was conducted. Multipliers with different input-output topologies, like bit-parallel, 

bit-serial and digit-serial, were analyzed and evaluated qualitatively and quantitatively 

against each other by implementing them using TSMC 0.18/xm standard cell library. Syn-
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opsys Design Compiler and Power Compiler were used to report the three VLSI perfor

mance metrics - silicon area, delay and dynamic power dissipation. These metrics were 

computed for multipliers operating in different fields that are defined by elliptic curve 

standards' institutions. The different multipliers were analyzed in various perspectives like 

area vs. delay, area vs. power dissipation, power dissipation vs. delay etc. and the results 

were consolidated as a designer's chart. 

Next, a modified Montgomery modular multiplication algorithm for RSA cryptosystem 

was proposed. It improves the clock rate by about two times as compared to existing fast 

Montgomery multipliers by eliminating its data dependency on intermediate control sig

nal. The algorithm was translated into two systolic array architectures - two-dimensional 

pipelined parallel array and one-dimensional serial-in parallel-out array. The two dimen

sional array provided Montgomery product every two clock cycles once the pipeline is 

filled. The one-dimensional serial array was more area efficient than its parallel counter

part but it incurred more latency cycles. The proposed architectures were implemented on 

FPGA and ASIC platforms and compared against some of the fastest available recently 

cited Montgomery multipliers. The proposed architectures show improved clock rates and 

occupy lower logic areas. 

Scalability and adaptability to varying field orders and modulus precisions was also con

sidered in this research, leading to the development of pipelined Montgomery modular 

multipliers that can operate in different fields and cryptosystems. A novel fast processing 

unit, that can operate in both GF(N) and GF(2m) to compute Montgomery modular mul

tiplication, was proposed. A modified dual field adder was proposed to reduce the critical 

path delay of existing unified architecture by removing the logic redundancy in GF(2m) 

mode of operation. To accommodate the proposed dual field adders, new dependency 

graphs were developed. Using the revised dependency graphs and reservations tables, a 
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new processing unit for the pipelined kernel was developed. The proposed architectures 

reduced the minimum clock period and hence the total time required for computation in 

GF(2m) mode without slowing down the speed of computation in GF(N) mode. There is 

however a tradeoff in area. The latency is analytically formulated in terms of the modulus 

precision, the number of processing units in the pipeline and the wordlength of the inputs. 

The proposed processing unit accelerates the GF(2m) Montgomery multiplication by two 

times over the existing unified architecture while keeping the same speed of operation as 

existing unified architecture for GF(N) multiplication. 

Last but not the least, our research on the generalized LSB-first and MSB-first modular 

multipliers in GF(2m) for arbitrary field orders also matured into novel serial-in parallel-

out generalized multipliers that can be adapted to any generic field order m up to and 

including the maximum field order, M. Switch arrays were designed to select the actual 

field order to reduce the critical path. Unlike the existing generalized parallel multipliers 

which have long critical paths dependent on M, the proposed architectures have a short 

constant critical path delay. There was some library mapping problems, possibly caused 

by the large circuit fan-in, that prevented the proposed architectures to be directly syn

thesized using Synopsys Design Compiler with TSMC 0.18^m standard cell library. The 

problem was resolved by a smart architectural tweak. The final implementation of the pro

posed 128-bit multipliers showed a speed up of about 16.7 times over existing architectures 

with an area savings of nearly 96%. 

6.2 Recommendations for Future Work 

The research work presented in this thesis has some rooms for further improvement and 

the scope of study can be extended to advanced research topics. The following potential 

ideas are recommended for future work. 
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1. In this research work, the algorithm and architectural refinements are primarily de

rived and driven from the area and timing perspectives. Power dissipation and re

dundancy for counter cyptanalysis are also important criteria worth investigating for 

the proposed architectures. Furthermore, recently reported power based side channel 

attacks on cryptosystems can be studied to design and develop power efficient and 

secure arithmetic circuits for PKCs. 

2. The architectures that were proposed in this thesis were implemented either on FPGA 

platform or using semi-custom design flow. Standard cell libraries were used for gate 

level synthesis. Several interesting optimizations are possible when the modular 

multiplication algorithms are studied at transistor level. Full-custom design and 

development of core computational cells based on a rich combination of different 

logic styles for modular multiplication is certainly a prospective research area. 

3. Dynamic reconfiguration in FPGA platforms is another area that cryptoprocessors 

can avail. Cryptoprocessors can be made reconfigurable by dynamically reconfiguring 

parts of FPGA with computational blocks that satisfy the user constraints. Based 

on the area-time-power constraint of the applications, an intelligent mapper can 

be developed to select the most suitable instances from a pool of architectures to 

configure an amorphic cryptoprocessor architecture. 
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