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Summary

Code-division multiple access (CDMA) technology is attractive as a popular

multiple access scheme for personal, cellular and satellite communication ser-

vices. Direct-sequence CDMA (DS-CDMA) is the most popular CDMA tech-

nique, which has been proposed for cellular telecommunication services due to

numerous advantages over time-division multiple access and frequency-division

multiple access. This thesis is concerned with DS-CDMA systems operating

over flat fading channel, frequency-selective fading channel with white Gaus-

sian background noise. The focus of this thesis is on blind channel estimation

and blind multiuser detection.

Based on a combination of the Toeplitz displacement and the correlation

matching estimation, a novel adaptive blind channel estimation method is de-

veloped for the DS-CDMA system employing long spreading codes. Since the

Toeplitz displacement on the correlation matrix of the output vector removes

the effects of the channel noise and other interfering users from the estima-

tion scheme, only the knowledge of the desired user’s signature waveform is

required. Compared with the conventional correlation matching method and

the subspace Toeplitz method, this method provides better MSE performance

and higher robustness to the near-far resistance.
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Bayesian Markov Chain Monte Carlo (MCMC) methodologies have recently

emerged as low cost signal processing techniques with performance approaching

to the theoretical optimum for wireless communication systems. In order to im-

prove the convergence speed of the MCMC detection method, adaptive sampling

is introduced to substitute the popular sampling process, Gibbs sampler. An

efficient blind MCMC multiuser receiver is proposed for long code DS-CDMA

system, which employs the adaptive sampling method for the Bayesian infer-

ence procedure to detect the data symbols. Compared to the Gibbs sampler

receiver, for the same long code system, the proposed receiver achieves a faster

convergence, lower computational complexity and comparable performance.

The Sequential Monte Carlo (SMC) methodologies are the other category

of Monte Carlo signal processing methods, which provide better performance

achieved by parallel processing and are better-suited to practical applications.

However, it is not efficient for application of the multiuser detection of the DS-

CDMA systems, since the computational complexity exponentially grows with

the number of users. Two schemes are proposed to reduce the high complexity of

the SMC detection. In the first one, the EM algorithm is adopted to decompose

the multiuser estimation problem into a series of single user problems, then

the symbol detection and channel estimation for every user are performed in

parallel by SMC processing and Kalman filter. In the other scheme, a different

solution is presented to decompose the superimposed observation signal, which

utilizes the Cholesky factorization to decouple the signal model into separate

components according to the number of users. Then under the decision-feedback

framework, the channel parameters and the symbols of each user are estimated

by SMC processing and Kalman filter sequentially. According to these two

schemes, the EM-SMC receiver and the DF-SMC receiver are developed with the
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substantially reduced computational complexity which is linear to the number

of users.
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Chapter 1

Introduction

1.1 Wireless CDMA system

Code division multiple access (CDMA) is among the most promising multiple

access techniques for many emerging wireless applications [1]. In a CDMA

system, users are assigned different signature waveforms or codes rather than

orthogonal frequency bands, as in frequency division multiple access (FDMA),

or orthogonal time slots, as in time division multiple access (TDMA). The

signals of different users completely overlap in both time and frequency domains.

All users transmit at the same time and each is allocated the entire available

frequency bandwidth. The demodulation and separation of the signals at the

receiver are achieved by using the pseudo-random code sequence that is uniquely

assigned to each user’s signal.

The direct-sequence code division multiple access (DS-CDMA) technique

is of increasingly importance in wireless applications for cellular telecommuni-

cations services, such as the personal communications, mobile telephony, and
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1.1. Wireless CDMA system 2

indoor wireless networks [2][3]. The advantageous properties of DS-CDMA for

these services include potentials of being implemented with lighter protocols

and higher frequency-reuse capabilities, easily supporting the transmission of

multi-rate information streams, being operated asynchronously over multi-path

fading channels, having greater flexibility in the allocation of the channels and

sharing bandwidth with narrow band services.

In a DS-CDMA system, signals are modulated with a binary pseudonoise

(PN) sequence having a nearly flat spectrum before transmission, so that the

transmission bandwidth is much wider than the message bandwidth. The re-

ceived signal is composed of the sum of all users’ signals, and is despreaded

by multiplying it with the same PN sequence. This procedure is illustrated in

Fig 1.1. The binary pulses comprising the PN sequences are known as chips to

distinguish them from the binary bits of the data signal. The number of chips

per data bit is called the spreading factor, spreading gain or processing gain of

the system. Every user is assigned a distinct spreading PN code (also called

spreading sequence) which is employed to distinguish it from other users at the

receiver.

Figure 1.1: Spreading/despreading procedure
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The properties of DS-CDMA systems have led it to expectations of large

capacity increases over TDMA and FDMA systems. Notably, DS/CDMA tech-

niques have been selected as the basic technology for the realization of the

air-interface of third-generation (3G) cellular communication networks [4] [5].

1.2 CDMA system model

1.2.1 Basic CDMA signal model

The basic CDMA channel model of K users is described as the sum of modulated

synchronous signature waveforms embedded in additive white Gaussian noise:

y(t) =
K∑

k=1

Akbksk(t) + σw(t), t ∈ [0, T ]. (1.1)

The notations introduced in (1.1) are defined as follows.

• T is the inverse of the data rate, or the symbol duration for the transmitted

data.

• sk(t) is the deterministic signature waveform assigned to the kth user.

• Ak is the received amplitude of the kth user’s signal, and A2
k is referred to

as the energy of the kth user.

• bk is the symbol transmitted by the kth user, and may be encoded from

the source data information by different encoding schemes.

• w(t) is white Gaussian noise with unit power spectral density. It models

thermal noise plus other noise source unrelated to the transmitted signals.
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In the synchronous model considered above, the closed-loop timing control

is required to keep bit epochs aligned at the receiver. In cellular systems, the

design of the reverse link is considerably simplified if the synchronization is not

needed for users. To model the asynchronous CDMA system, the offsets should

be introduced to model the lack of alignment of the bit epochs at the receiver,

i.e., τk ∈ [0, T ), k = 1, . . . , K. Then (1.1) is generalized to the asynchronous

model as

y(t) =
K∑

k=1

N−1∑
n=0

Akbk(n)sk(t− nT − τk) + σw(t) (1.2)

where bk(0), . . . , bk(n), . . . , bk(N − 1) is a stream of bits sent by user, and N is

assumed as the length of the frame.

1.2.2 Data streams

For the design and the analysis in this thesis, all the possible data streams

bk(0), . . . , bk(n), . . . , bk(N − 1), k = 1, . . . , K are assumed to be equiprobable.

For some systems of interest in the thesis, differential encoding is made on

the data stream to resolve the problem of phase uncertainties. In differential

encoding [6], the transmitted stream is not the data stream itself but its tran-

sitions, i.e.,

dk(n) = bk(n)d∗k(n− 1). (1.3)

The differential encoder is initialized with a bit dk(0) known to the receiver,

which makes decisions on the consecutive products as

dk(n)d∗k(n− 1) = bk(n). (1.4)
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Differential encoding enables differentially coherent demodulation whereby the

signal received in the previous interval is used to provide a carrier-phase refer-

ence in phase with the received waveform. Therefore, the differential encoding

is used to facilite demodulation in the presence of phase ambiguity.

1.2.3 Signature waveform

It is not necessary to place any specific structure on the signature waveforms

for many CDMA systems. In the thesis, however, the most popular structure of

the signature waveform is employed, namely, direct-sequence spread spectrum.

Direct-sequence refers to a specific approach to construct spread spectrum wave-

forms, characterized by chip waveform φ(t), the number of chips per bit P , and

the binary sequence of length P , c(p) (c(1), . . . , c(P )). The direct-sequence

spread-spectrum waveform with duration T is obtained by modulating the chip

waveform antipodally with the binary sequence, i.e.,

s(t) =
P−1∑
p=0

c(p)φ(t− pTc), (1.5)

where Tc = T/P is the chip duration.

1.2.3.1 Spreading factor and spreading codes

The number of chips per symbol, i.e., P , is named as spreading factor, spread-

ing gain, or processing gain. For a fixed duration of the chip waveform, the

bandwidth of the signature waveform is proportional to P . Large values of

P contribute to the privacy of the system because they hinder unintended re-

ceivers to unveil signature waveform and eavesdrop on the transmitted infor-
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mation. Large values of P also contribute to reduce the interference caused on

coexisting narrow band transmissions.

In a DS-CDMA system, both the spreading factor and the chip waveform

are same to all users. The different signature waveforms are distinguished by

the assignment of the binary ”sequence” or ”code” (c1, . . . , cP ). A wealth of

combinatorial techniques exists for constructing pseudo noise (PN) signature

sequences which achieve low cross-correlations for all possible offsets.

Assume the period of the pseudonoise waveform as P0, two cases are con-

sidered in the practical CDMA systems. When the period of the pseudonoise

waveform equals to the symbol period, i.e., P0/P = 1, the corresponding signa-

ture sequence is called short spreading code; When the period of the pseudonoise

waveform is larger than the symbol period, i.e., P0/P > 1, the corresponding

signature sequence is called long spreading code. It is noted that the spreading

factor is determined by the number of chips per bit rather than the periodicity

of the pseudonoise sequence. Large values of P0/P enable the approximation of

signature codes as to be more random so that the privacy is enhanced. However

the use of some demodulation strategies become more difficult when P0/P > 1,

because the crosscorrelations of the signature waveforms vary at the data rate.

Since the privacy of the system is relevant to the large value of P0/P , the ran-

dom sequences can be used to modulate the chip waveform. In the random

signature model, the spreading sequences are independent and equally likely.

1.2.3.2 Long codes vs. short codes

Both short and long spreading codes are used for the wireless networks [7]. The

major difference between them is that the short spreading code is periodic for
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every data bit and the long spreading code is aperiodic. The use of long codes

guarantees that all of the active users achieve the same performance on average,

which avoids the unfair situation that there exit some preferred users. With a

period much larger than that of a data bit, however, the long sequences appear

essentially random and destroy the bit-interval cyclostationary properties of the

CDMA signals. The statistics of the multiple-access interference (MAI) change

randomly from bit to bit and the performance is determined by the average

interference level [8]. Most of the previous reported algorithms are based on

the crucial assumption that the DS/CDMA is adopting the short codes. Many

procedures of the parameter estimation so far proposed cannot be applied to

systems with aperiodic long codes.

1.2.4 Channel fading

Fading refers to time-varying channel conditions. Any system with mobile trans-

mitters and /or receivers is subject to fading. Even if the receivers and trans-

mitters are not mobile, fading may be present in many wireless communication

systems. According to the effects on the signals, the fading is divided to flat fad-

ing and frequency-selective fading. Flat fading affects the received amplitudes

but does not introduce signature waveform distortion. Frequency-selective fad-

ing affects the received signals in both strength and shape of the waveform.

1.2.4.1 Flat fading

When propagation conditions change, for example, due to mobility, the received

amplitudes vary with time. This feature is easily incorporated in the CDMA
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model:

y(t) =
K∑

k=1

N−1∑
n=0

Ak(n)bk(n)sk(t− nT ) + σw(t), (1.6)

where N is the number of the transmitted data. Whether or not the receiver is

able to track the time-varying coefficients Ak(n), its performance will depend

on the statistical properties of those random processes. It is convenient to

express (1.6) as the product between a deterministic component and a random

component which contains the channel state information, that is

y(t) =
K∑

k=1

N−1∑
n=0

Akgk(n)bk(n)sk(t− nT ) + σw(t). (1.7)

In most systems, it is safe to assume that the random processes {gk(n)} are

independent from user to user. Furthermore, it is usually assumed that {gk(n)}
are wide-sense stationary processes.

1.2.4.2 Frequency-selective fading

In many multiuser systems, not only the received amplitudes vary with time

but so do the received signature waveforms due to channel distortion. The

additive multiple-access channel is invalidated by nonlinearities, so that the

received waveform no longer comprises the noisy superposition of the various

users’ waveforms. Fortunately, channel distortion is often accurately modeled

by a linear transformation.

The signature waveform of the kth user undergoes a linear time-varying

transformation fully characterized by the complex-valued impulse response:

hk(t, τ), (1.8)
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which denotes the response of the system at time t due to a delta function at

time τ . The effect of frequency-selective fading on the basic CDMA model is

that the signature waveform at the receiver is not sk(t) but the convolution

sk(t) ∗ hk(t, τ) =

∫ t

0

hk(t, τ)sk(τ)dτ. (1.9)

Time-varying linear distortion is particularly prevalent in mobile communi-

cation systems, and the discussion of frequency-selective fading is focused on

this scenario in the thesis.

1.3 Multiple access interference

One of the major features of modern wireless communication channels is the

significant amount of multiple access interference which must be contented

within such channels. Due to the simultaneous transmissions, the multiple

access interference is inherent in many multiple access systems in which mul-

tiple transmitter-receiver pairs are communicating through the same physical

channel using non-orthogonal multiplexing.

In DS-CDMA systems, the signals from different users cannot be kept or-

thogonal because of the random time offsets between signals. Although the

spreading waveforms are designed with low-correlation, the signature waveforms

are not truly orthogonal. As a result, the interference between direct-sequence

users is inevitable, and denoted as the multiple access interference (MAI).

The existence of the MAI has a significant impact on the capacity and per-

formance of DS-CDMA systems. As the number of interfering users increases,
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the amount of the MAI increases. In particular, if the users’ signals have widely

varying power levels, the weak users may be disturbed by the strong ones, and

the effects of MAI on system performance become more substantial. Such a

situation arises when the transmitters have different geographical locations rel-

ative to the receiver, since the signals of the transmitting users near the receiver

undergo less amplitude attenuation than the signals of users that are further

away. This is known as the near-far problem, which is illustrated in Fig 1.2.

Note that, due to the different propagation effects, this problem also occurs

even if all users are in the same distance from the receiver. For these reasons,

MAI cancellation schemes are of great interest to CDMA systems.

Figure 1.2: Near-far problem

All early works [9] [10] [11] approximate the MAI as a white Gaussian pro-

cess, and the conventional solution to the problem of MAI is the standard

single-user detection with power control. The use of power control ensures that

all users reach base station with the same power, and thus no user is unfairly
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disadvantaged relative to others [12]. However, strict power control on mobile

is not a simple task for the whole system. Moreover, power control limits the

performance of the users with good channels for their transmitted powers are

restricted by weak users [13]. The multiuser detection is currently of increas-

ing attention because of the advantages in many performance capability. The

single-user receiver treats the MAI as noise and has limitations in combating

the effects of MAI. On the other hand, multiuser receiver deals with the MAI

as a part of the information rather than noise. By processing this additional

information, advanced multiuser techniques can enhance the capacity of DS-

CDMA system significantly. A key issue in the design of a multiuser receiver is

the synthesis of high-performance algorithms for parameter estimation. As to

near-far resistance, conventional CDMA communication systems either ignore

the near-far problem or try to limit it with power control. However, even a

small amount of the near-far effect can drastically degrade the performance of

conventional receivers. For many years, this was thought to be inherent limita-

tion of CDMA systems until Verdu developed the optimum multiuser detector

[14]. Since then, many suboptimal schemes that are near-far resistant and with

lower computational complexity have been reported.

1.4 Signal detection and channel estimation

For the demodulation of DS-CDMA signals, the despreaded signal can be pro-

cessed by using all kinds of detection techniques. Signal detection means to

detect the transmitted source data from the observation of the received signals.

A channel is a transmission path from the transmitter to receiver. Channel
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estimation is important in digital communication system, especially when there

is a little or no knowledge about the transmission channel. The detection prob-

lem will be solved more easily if the channel state information is known to the

detector.

The blind channel estimation problem can be stated as follows: given samples

of the received signal, the channel estimation is to determine the channel impulse

response without the knowledge of the input signal.

In wireless CDMA communication applications, the channels exhibit differ-

ent fading, which limits the system performance. Therefore the signal detection

and channel estimation need to be performed to cope with fading problems.

Conventional approaches for channel estimation and signal detection in a

possible non-stationary environment rely on a periodic transmission of a pilot

signal (training sequence), which undesirably reduces the utilization of the avail-

able channel bandwidth. As a result, the blind approaches to channel estimation

and signal detection have received much attention recently.

There are two modes for the channel estimation and signal detection. In

the first approach, channel parameters are estimated firstly and detectors are

then constructed based on the estimated channel parameters. These approaches

simplify the design of the detectors. However, due to the separation of chan-

nel estimation and signal detection, they are suboptimal in performance and

inefficient for implementation. On the other hand, the approaches for joint esti-

mation of data and channel parameters iterate between the data detection and

channel estimation to successively improve the receiver performance.
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1.5 Objective and contributions

The main objectives of the research work in this thesis are to study the channel

estimation and multiuser detection schemes for DS-CDMA systems in fading

channels.

It is known from the previous related work of the DS-CDMA channel es-

timation algorithms that the channel estimation with random long spreading

codes is a less explored but very valuable and attractive area. And the design

of blind channel estimation algorithms that are simultaneously near-far resis-

tant and computationally efficient is an interesting and challenging research

direction. Therefore, one of our objectives is to develop blind channel estima-

tion techniques for long code DS-CDMA system in fading channels. The major

problems we will attempt to deal with are near-far problem caused by MAI

and the fading problem of the single-path channels and multipath channels. At

the same time, computation complexity issue will be also taken into account

because it is important to the practical applications.

Multiuser detection has become one of the most active research areas in

recent years, because of the capability to mitigate multiple access interference

(MAI) and enhance channel capacity. The conventional deterministic methods

for multiuser detection always face the tradeoff between the performance and

the computational complexity, and at the same time, most of these methods are

not suitable to the DS-CDMA systems with long spreading codes.

Bayesian Monte Carlo (MC) methodologies have recently emerged as low cost

signal processing techniques with performance approaching to the theoretical

optimum for wireless communication systems. Most MC techniques fall into
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one of the two categories - Markov chain Monte Carlo (MCMC) methods for

batch signal processing and sequential Monte Carlo (SMC) methods for adaptive

signal processing. The popular MCMC methods have one obvious problem, that

is, it needs the burn-in period to achieve the convergence which results in the

slow converging speed. Therefore, another objective of the thesis is to design an

efficient blind Bayesian MCMC multiuser detection method for long code DS-

CDMA system with a faster convergence speed. Both the cases of flat-fading

channels and frequency-selective fading channels are considered in our research

work.

Comparing to the MCMC methods, the SMC methods provide a better per-

formance achieved by parallel processing and are well-suited to practical appli-

cations. However, the SMC methods are inefficient in application to multiuser

detection of DS-CDMA systems, since the resulted computational complexity

grows exponentially with the number of users. Thus, developing a low complex-

ity SMC-based multiuser detection algorithm is an interesting and important

research topic. Therefore it is also one objective of the research work of the the-

sis to develop blind SMC-based multiuser detection schemes for the DS-CDMA

systems in the presence of the fading channels, which have the complexity linear

to the number of users. Both short spreading codes and long spreading codes

are concerned in the research work.

The contributions of this thesis are summarized as follows:

A new blind channel estimation scheme suitable for long code DS-CDMA

systems is presented in the thesis. The approach is based on second-order

statistics, and the spreading code of the user of interest is exploited directly via

matched filtering. We exploit the statistical properties of the correlation matrix
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obtained from the received signal after matched filtering, and operate Toeplitz

displacement to correlation matrix to remove the effects of the channel noise

and other users’ interferences. Then an adaptive algorithm based on correlation

matching estimation is developed to yield the desired channel estimator. It is

shown that the proposed estimation algorithm is computationally efficient, and

offers better performance and higher robustness against the near-far problem.

A blind Bayesian MCMC multiuser detection algorithm is proposed for long

code DS-CDMA systems in the presence of the unknown fading channels. In or-

der to take advantage of the maximum a posterior (MAP) optimality of Bayesian

inference and at the same time avoid the burn-in period which typically en-

cumbers the convergence rates of MC techniques, the application of adaptive

sampling to long code DS-CDMA system is considered. An efficient blind MC

receiver based on the adaptive sampling algorithm is proposed for the joint of

data detection and channel estimation. It is shown that the desirable improve-

ments on convergence speed are achieved by the proposed blind MC Bayesian

receiver.

A blind SMC-based formulation of multiuser detection is presented for DS-

CDMA system with unknown fading channels. Firstly, the multiuser system

is decoupled into separated single user systems by the EM decomposition algo-

rithm, and then the sequential importance sampling (SIS) and the Kalman filter

are combined to perform the data detection and channel estimation for every

single user system in parallel. With the decomposition of the superimposed

observation signals, the total computational complexity of the proposed SMC-

based method is linear with the number of the users. Based on these concepts, a

novel iterative receiver EM-SMC is developed for both channel estimation and
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data detection of DS-CDMA system. It is shown that the receiver performs

well for the flat fading channels and frequency-selective fading channels with a

significantly reduced computational complexity.

A different blind SMC-based multiuser detection algorithm is proposed for

DS-CDMA systems in both flat fading and frequency selective fading channels.

Unlike the previous SMC-based detector, we use the Cholesky factorization al-

gorithm to decompose the observed data into separate signals according to the

number of users. Then under the decision-feedback framework, the parame-

ters of each user are estimated by SMC method and Kalman filter sequentially.

Based on these concepts, a novel blind Cholesky-SMC receiver is developed

for the joint channel estimation and data detection. Because it does not need

iterations like EM-SMC receiver, this receiver achieves more reduction in com-

putational complexity. It is shown that the receiver achieves comparable perfor-

mance to the EM-SMC receiver with a more reduced computational complexity.

1.6 Organization of the thesis

The thesis is organized as follows:

Chapter 2 presents an overview of the design and analysis for multiuser

detection is briefly described. Starting with the simplest matched filter, the

optimum Maximum Likelihood detection, the major sub-optimum detection and

recently emerged Bayesian Monte Carlo techniques are introduced to provide

readers the basis of understanding.

The channel estimation problem of the long code DS-CDMA is considered

in Chapter 3. A signal model is presented for the long code DS-CDMA system
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over the fading channels. A blind channel estimation algorithm based on the

techniques of Toeplitz displacement and correlation matching is developed for

both flat fading channels and frequency-selective fading channels. Some issues

on the practical implementation are also discussed.

Based on the adaptive sampling technique, an blind Bayesian MCMC mul-

tiuser detection algorithm is proposed in Chapter 4 for long code DS-CDMA

systems. Combined with the Bayesian channel estimation, an efficient blind mul-

tiuser receiver is derived for joint channel estimation and data detection. The

convergence and the performance of the receiver are discussed in this Chapter.

A blind SMC-based formulation of multiuser detection is presented in Chap-

ter 5 for DS-CDMA system with unknown fading channels. The formulation is

based on the EM decomposition algorithm and the sequential importance sam-

pling method. Incorporated with Kalman filter technique, a blind multiuser

receiver is developed for joint channel estimation and data detection. The re-

ceiver is developed for short code DS-CDMA system, and the extension to long

code system is also provided.

By taking the cholesky factorization algorithm, another blind SMC-based

multiuser receiver is developed in Chapter 6 for channel estimation and data

detection.

Chapter 7 makes comparisons between the proposed methods, which include

the aspects of the requirements of coefficient knowledge, the implementation

complexity, and the performance of the channel estimation and the data detec-

tion.

In Chapter 8, conclusions are presented and future research directions related

to this work are recommended.
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Chapter 2

Multiuser detection for CDMA

systems

Multiuser detection (MUD) deals with the demodulation of mutually inter-

fering digital streams of information. Multiuser detection exploits the consid-

erable structure of the multiuser interference in order to increase the efficiency

with which channel resources are employed. This chapter provides an overview

of the major strategies of the multiuser detection for CDMA systems. It begins

from the conventional matched filter, then introduces the optimum Maximum

Likelihood detection, covers the major sub-optimum detection techniques, and

finally describes the Bayesian Monte Carlo detection.
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2.1 Matched filter

The matched filter (MF) is the simplest method to demodulate CDMA signals,

and was first adopted in the implementation of CDMA receivers. Therefore it is

frequently referred to as the conventional detector. The conventional detector

is a bank of matched filters, as shown in Fig 2.1. Each spreading waveform

is regenerated and correlated with the received signal in a separate detector

branch. The outputs of the matched filters are sampled at the data bit rate,

which yields ”soft” estimates of the transmitted data. The final ”hard” data

decisions are made according to the signs of the ”soft” estimates. It is shown

in Fig 2.1 that the conventional detector follows a single-user detector strategy;

each branch detects one user without regards to the existence of other users.

The success of this detector depends on the properties of the correlation between

the PN codes. We require that the autocorrelation of the spreading waveforms

is much larger than the correlation between different spreading codes, i.e., the

cross-correlation.

The matched filter was originally found in [15] as the maximal signal-to-noise

ratio solution to a radar problem. The single-user matched filter receiver was

first used for CDMA demodulation in [16]. An analysis of the capabilities of the

single-user matched filter with direct-sequence signature waveforms dates back

to [17].

The matched filter is computationally simple and requires no knowledge

beyond the signature waveforms and timing of the desired users. However, the

matched filter is optimal only for a single user in the presence of white Gaussian

noise because of its single-user detection strategy. It can be highly suboptimal

in the presence of MAI, especially when a significant near-far problem exists.
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Figure 2.1: Matched filter

As discussed in Chapter 1, the CDMA systems are subject to serious multiple

access interference, and the superposition of transmitted signals originates from

non-ideal characteristics of the transmission medium. To alleviate the effects

of the near-far problem on the matched filter, the spreading codes need to be

selected with low cross-correlation properties between users, and power control

techniques should be employed. The power control is used in the current CDMA

systems to ensure that all users arrive at the receiver with about the same

power. Very accurate and fast power control is required in the IS-95 system

with single-user matched filter [3] [18]. However, strict power control on mobiles

is not a simple task for the whole system. Moreover, power control limits the

performance of the users with good channels for their transmitted powers are

restricted by weak users [13].
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2.2 Optimum multiuser detection

There has been great interest in the development and the improvement of the

multiuser detection, which aims to mitigate multiple access interference (MAI)

and enhance channel capacity. Unlike the single-user detection, the multiuser

detection attempts to exploit the structure of the MAI, other than considering

the MAI as the Gaussian noise.

The first multiuser detection was derived and analyzed by Verdu in [14][19],

which is the optimum maximum likelihood (ML) detection. The optimum ML

detection is based on the maximum likelihood rule, i.e. the estimator value can

be found by maximizing the log-likelihood function. The derivation and analysis

of the optimum multiuser detector in the presence of frequency-flat fading is due

to [20], and frequency-selective fading is considered in [21]. The power of the

optimum ML detection was demonstrated in [22], where it is shown, under a mild

condition, that the near-far problem does not occur if the optimum maximum

likelihood (ML) detection is used. However, compared to the matched filter

detector, the optimal ML detector has an increased computational complexity

that is exponentially increasing with the number of users [23], and the optimal

ML detector requires knowledge of the received amplitudes, cross-correlations

and the noise level.

2.3 Suboptimum linear detection

Since the large gaps in performance and complexity exist between the con-

ventional matched filter and the optimum multiuser detector, the develop-

ment of suboptimum multiuser detectors are motivated to achieve good per-
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formance/complexity tradeoffs. Among the developed suboptimum multiuser

detectors, there are linear and non-linear detectors [24].

2.3.1 Decorrelating detection

The decorrelating detector consists of a bank of matched filters (one matched

filter for one user), followed by the inverted cross-correlation matrix. After

processing the output of the matched filter bank with the invertion of the cross-

correlation, each output of the decorrelating detector is free from interference

caused by any of other users. The only source of interference is the background

noise. That is why this detector is called a decorrelating detector since it decor-

relates the received multiple user signals into their individual components.

The derivation of decorrelating detector (DD) for synchronous channels was

presented in [14]. The asynchronous decorrelating detctor was obtained in [25]

[26]. Decorrelation for multiuser channels subject to intersymbol interference

was also considered in [27] [28] and [29]. Differentially-coherent decorrelating

detectors were studied in [30] for synchronous channels and in [31] [32] [33]

for asynchronous channels. The adaptive decorrelating detectors were provided

in [34] [35] [36] [37] and [38]. The capacity achievable with the decorrelating

detectors in a frequency-selective channel was considered in [39]. In [40], a

decorrelating detector which is robust against non-Gaussian noise was proposed.

The decorrelating detector does not require the knowledge of the received

amplitudes. This negligence of information means that the performance of the

DD cannot be better than the optimum detector studied previously. The DD

can be implemented in a decentralized manner since demodulation of each user

can be implemented independently.
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The decorrelaring detector is not only a simple and natural strategy but also

an optimal method according to three different criteria: least-squares, near-far

resistance, and maximum-likelihood when the received amplitudes are unknown.

However, the DD solution can be seen to eliminate all multiuser interference

at the expense of increasing noise, the noise enhancement is present in the

decorrelaring detector.

2.3.2 Suboptimum maximum likelihood detection

The optimal ML estimator has a computational complexity that is exponen-

tially increasing with the number of users. Hence, numerous suboptimal ML

algorithms were proposed, by sacrificing performance for the sake of a reduced

complexity. In [41], a maximum-likelihood procedure is proposed to estimate the

relevant parameters from the active users. A single-user ML method was pro-

posed to decompose the multiuser problem into a series of single-user problems

with reduced complexity [42]. In [43], a large-sample ML single-user delay esti-

mator was proposed to model the MAI as non-white Gaussian process. Based

on an ML criterion, a new data-aided detector over frequency-selective fading

channels was developed in [44].

2.3.3 Minimum mean squared error detection

Since the decorrelating detector leads to severe noise enhancement, it is natural

to consider another linear detector that trades off noise enhancement with some

small but tolerable multiuser interference. Therefore a minimum mean square

error (MMSE) detector was formulated in [45] [46] and [47]. Based on the mean

square error (MSE) criterion, the estimators were found by minimizing the MSE
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of the received vector. The MMSE MUD strikes a balance in mitigating both

additive noise and multiple access interference. However, the MSE detector

requires knowledge of the received amplitudes and the noise level.

The MMSE receiver has received considerable attention due to its simplicity

of implementation, better performance, and amenability to adaptive implemen-

tation. It has been shown that the MMSE receiver can be used to suppress

multiple-access interference. The MMSE receiver can be implemented adap-

tively by using a training sequence of symbols for the desired transmission, or

by blind adaptation in which the knowledge of the desired transmission’s tim-

ing and spreading waveform is used instead of training sequence. Most adaptive

multiuser detectors are based on the MMSE criterion. The early adaptive linear

MMSE multiuser detection can be found in [48]. The training-sequence based

adaptive MMSE linear multiuser detection was proposed in [46][49][50]. And the

blind adaptive MMSE multiuser detector was developed in [51]. Differentially-

coherent versions of the blind MMSE multiuser detector were developed in [52]

for frequency-flat fading channels and in [53][54] for multipath channels. The

surveys of adaptive multiuser detection techniques can be found in [55]. The

design of MMSE receiver faces the tradeoff between robustness and excess mean

square error, i.e., blind algorithms tend towards robustness while training se-

quence based algorithms can offer good excess mean-squared error. The blind

MMSE receivers in [22][51] are robust to deep fading at the cost of higher excess

mean square error. On the other hand, training sequence based MMSE receivers

[46][49] suffer from the problem of robustness to deep fading. An improved cor-

relation matrix estimation scheme [56] was proposed for blind adaptive MMSE

receivers which achieved performance comparable to the training sequence based

adaptive MMSE receivers for flat fading case.
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The training sequence based adaptive multiuser detectors can be imple-

mented by using least mean squares (LMS) or recursive least squares (RLS)

algorithm. The blind adaptive detectors can be implemented by using LMS,

RLS or the subspace tracking algorithms.

2.3.3.1 Least mean squares and recursive least squares

LMS and RLS are the estimation algorithms based on the least-squares crite-

rion, i.e., the estimate vector is obtained as solution to the square minimization

problem [57].

The LMS algorithm requires a few hundred information bits to converge to

a steady state and the convergence time grows exponentially with the number

of users even though it has O(P ) complexity, where P is the spreading gain.

Recursive least squares adaptive algorithms are well known for its invariably

fast convergence at the expense of a lower robustness and a higher complexity

[49] [58]. This algorithm relies on the transmission of known training symbols,

but without requiring any prior timing acquisition. Many extension versions of

RLS algorithm were presented to solve the two problems, such as fast RLS and

QRD-RLS etc [59].

2.3.3.2 Subspace approach

It has been shown that the blind technique based on LMS or RLS suffers from a

saturation effect in the steady state, which causes a significant gap between its

steady state performance and the performance of the true linear MMSE detector

[51].
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In a subspace-based blind approach, the vector space of the receiver vector

is decomposed into a single space (consisting of the subspace spanned by all

the CDMA signals) and a noise subspace (which is orthogonal complement to

the signal subspace). Since the desired signal is part of the signal subspace, it

must be orthogonal to the noise subspace. Hence, the estimator is taken to be

the value for which the code sequence is nearest to be orthogonal to the noise

subspace. Based on this principle, several methods for the identification and

tracking of the directions of the received data have been used for multiuser de-

tection [60] [61] [62] [63] [64] [65]. It is seen in [29] [66] that the subspace-based

detector outperforms the blind LMS or RLS detector in the steady state. How-

ever, the subspace-based algorithm is more complex due to the computational

complexity of the eigen-decomposition of the sample autocorrelation matrix.

Also the subspace-based approach has the disadvantage that it needs to know

the number of users and that it will not function if K ≥ P/2, where K is the

number of users and P is the processing gain. This problem could be over-

come in practice by identifying the most dominant users and including them

in the signal subspace and lumping the remaining users within the noise. The

subspace-based algorithm is amenable to an adaptive decentralized implemen-

tation, i.e., it can be adopted when only one user’s signal is to be estimated

based on the knowledge of the corresponding spreading code only.

2.4 Decision-driven detection

A number of literatures in multiuser detection have proposed nonlinear detec-

tors that use decisions on the bits of interfering users in the demodulation of

the bit of the interest. These are typically decision-driven in that they make use
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of bit decisions on interfering users’ bits to subtract off the received signal in a

repetitive manner much like the concept of successive decoding. It is hoped that

the correct bit decisions will lead to gradually fewer interfering users and ulti-

mately better performance. Such schemes work best in good SNR environment

and when users are well separated in power levels. The family of the decision-

driven detection includes the successive cancellation detector, multistage detec-

tor and decision-feedback detector. Successive cancellation has been studied

in [67] [68] [69] [70] [71] for the multiuser detection of CDMA channels. The

multistage detectors were proposed in [72] for synchronous channels and in [73]

[74] for asynchronous channels. The decorrealting decision-feedback detectors

for synchronous channels were presented in [75]. Various forms of asynchronous

decision-feedback multiuser detectors have been proposed and analyzed in [45]

[50] [76] [77] [78].

2.5 Bayesian multiuser detection

Bayesian Monte Carlo (MC) methodologies have recently emerged as low cost

signal processing techniques with performance approaching to the theoretical

optimum for wireless communication systems [79]. As a graphical modeling

tool, a Bayesian framework can intuitively capture the relationship among the

contributing factors in a complex system. When applied to digital wireless

communication systems, a Bayesian detector can naturally exploit the structure

of the coded signals. Bayesian detection is based on the Bayesian inference of all

unknown quantities [80], all the recent Bayesian detectors use stochastic Monte

Carlo sampling methods for Bayesian inference. The family of stochastic Monte

carlo (MC) sampling algorithms is a well-developed and widely-used subclass
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of approximate inference algorithms [81]. These methods have an important

advantage that is not subject to any linearity or Gaussianity constraints on the

model, and also possess appealing convergence properties. Monte Carlo methods

are relative slow, but provide a much better accuracy of the estimation results.

Therefore, the convergence speed of the MC sampling process has become a

major issue to be improved.

Most MC techniques fall into one of the two categories - Markov chain Monte

Carlo (MCMC) methods for batch signal processing and sequential Monte Carlo

(SMC) methods for adaptive signal processing.

The MCMC methods have been well developed and widely used to deal

with optimal signal processing problems encountered in wireless communica-

tions. Some simulation results were reported in [82] [83] [84] [85] to demon-

strate the desirable performance. The application in adaptive multiuser detec-

tion for synchronous CDMA with Gaussian and impulsive noise was presented

in [82]. A Bayesian MCMC receiver was proposed in [83] for the space-time

coded multi-carrier CDMA systems. Blind Bayesian MCMC multiuser receiver

was presented in [84] for long code multipath CDMA system. All these receivers

used the popular Monte carlo sampling method - Gibbs sampler. Another effi-

cient Monte carlo sampling method, adaptive sampling algorithm, was recently

developed in [85].

The SMC methods in the other category have also begun to show a great po-

tential for solutions to a wide range of statistical inference problems [86]. Com-

paring to the MCMC methods, the SMC methods provide a better performance

achieved by parallel processing and are well-suited to practical applications. By

iteratively generating Monte Carlo samples of the state variables or other latent
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variables, the posterior distribution of any system parameter of interest can

be approximated. The complete theoretical framework using SMC methods is

described in [87]. The SMC methods have been successfully applied to solve a

few problems in communications, such as blind equalization and detection in

fading channels [79][88][89]. The solution to the detection problem for general

MIMO systems was presented in [90]. For applications to CDMA system, the

SMC-KF reported in [91] combines the conventional Kalman filter and impor-

tance sampling technique to approximate the multi-access interference (MAI) as

circular Gaussian for the problem of single-user detection. The particle filtering

methods, one category of SMC, were developed for the multiuser framework

of CDMA system [92] [93]. However, the required computational complexity

of all these methods grows exponentially with the number of users. The work

reported in [94] [95] developed the methods based on the particle filtering with

non-exponential complexity but also with the obvious performance limitation.

2.6 Summary

Multiuser detection for CDMA systems is one of the most active research areas

of digital communications in recent years. All multiuser detection algorithms

aim to mitigate multiple access interference (MAI) and enhance channel capac-

ity. The conventional deterministic methods always face the tradeoffs between

the requirements of the prior knowledge, performance and the computational

complexity. Most of these methods were developed based on the short spread-

ing codes, so that they have the limitations for the systems with long spreading

codes. So far the techniques of multiuser detection are still far from maturity.

In this thesis, the emphasis of the research about multiuser detection is on the
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statistical algorithms based on the Bayesian Monte Carlo theories.
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Chapter 3

Blind channel estimation for

long code DS-CDMA

3.1 Introduction

Both short and long spreading codes are used for the wireless networks. The

major difference between long codes and short codes is that the short spreading

code is periodic for every data bit and the long spreading code is aperiodic.

Though short codes are an option, however, the majority of third generation

CDMA-based wireless networks will be employing long (aperiodic) spreading

sequences [7] [96]. The rationale for such a choice lies in the fact that, the use

of long codes guarantees that all of the active users achieve the same perfor-

mance on average, thus avoids the unfair situation that there exit some preferred

users. With a period much larger than a data bit, however, the long sequences
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appear essentially random and destroy the bit-interval cyclostationarity prop-

erties of the CDMA signals. The statistics of the multiple-access interference

(MAI) change randomly from bit to bit and the performance is determined by

the average interference level [8]. Most of the previous algorithms are based on

the crucial assumption that the DS-CDMA is adopting the short codes. Many

reported procedures of the parameter estimation cannot be applied to systems

with aperiodic long codes. For example, the MMSE receiver relies on the cyclo-

stationarity of the interference statistics and requires short spreading sequence,

which is the same as the subspace based algorithms. As a consequence, the

design of intelligent signal processing techniques for both channel estimation

and multiuser detection in DS-CDMA systems with aperiodic spreading codes

poses new challenges in this research area.

A few algorithms were reported for long-code CDMA systems, the results

in this area can be found in [97] [98] [99] [100]. Based on subspace algorithm

in [97], both blind and pilot-assisted procedures were proposed for channel esti-

mation in a synchronous CDMA. Blind channel estimation procedures based on

array observations were reported in [98]. The correlation-matching techniques

were employed to estimate multipath parameters blindly in [99]. A Toeplitz

displacement method for multipath channel estimation was developed in [100].

The channel acquisition problem in a single-rate reverse link cellular scenario

was considered in [101]. All these algorithms have some problems such as the

high computational complexity, near-far sensitive and the need of assumptions

on some known parameters. The least-squares criterion based algorithms for

long-code DS-CDMA systems were proposed in [102] and [103]. Estimation pro-

cedures over a frequency-selective fading channel were proposed in [102] for both

single-rate and multi-rate systems. The procedures rely on the transmission of
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training symbols, without requiring any prior timing acquisition, and can be re-

cursively implemented with a computational complexity that is quadratic with

the processing gain. However, the algorithms are near-far sensitive and based on

the assumptions that the known training symbols are available. The procedures

in [103] considered both multiuser estimation and single user estimation, and

treated the problem of joint estimation of nearly all the signal parameters and

channel noise variance simultaneously. Both algorithms are based on the crucial

fact that, even if aperiodic codes are employed, the received effective signature

waveform can be written as the product of a known time-varying code matrix

times an unknown time-invariant vector, which contains the needed information

on the estimated parameters.

From the results presented thereinbefore, it can be seen that the blind chan-

nel estimation algorithms that simultaneously are near-far resistant and have

quadratic complexity are still far from being solved for long code DS-CDMA

systems.

In this chapter, a new blind channel estimation method is developed by com-

bining the advantages from both Toeplitz displacement and correlation match-

ing techniques. The conventional correlation matching estimation method was

developed in [99] to explore the output covariance matrix to match the approxi-

mations based on the received data. Compared to the subspace-based approach,

the correlation matching estimation offers a better performance for loaded sys-

tems with only some mild assumptions. The basic idea of the proposed method

is to remove the effects of the channel noise and other users’ interferences by

applying the Toeplitz displacement operation before the estimation of channel

parameters is performed with the correlation matching method. Simulation re-
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sults are presented to compare the performances of the proposed method with

those of the conventional correlation matching and the subspace based Toeplitz

estimation. The comparison shows that the proposed method offers better MSE

performance and more robust near-far resistance.

3.2 Signal model

3.2.1 Flat fading channels

Consider a coherent DS-CDMA system over a flat fading channel with K active

users. The representation of the received signal after coherent reception is given

by

x(t) =
∞∑

n=−∞

K∑

k=1

Akc
n
k(t− nT − τk)bk(n)gk + w(t) (3.1)

where w(t) is the additive and circularly symmetric Gaussian noise process with

variance σ2
w, Ak and bk are, respectively, the amplitude of the signal and the

transmitted bit for user k. The amplitude of each user’s signal is modeled as

a fixed, but unknown quantity. The delay τk for user k is assumed to be the

integral multiples of a chip duration, and gk is the fading coefficient of the kth

user’s channel. It is assumed that the fading coefficients remain constant over

the entire data collection block. For randomized long code DS-CDMA, the

spreading waveform cn
k(t), for user k, is formed by

cn
k(t) =

P−1∑
p=0

cn
k(p)φ(t− pTc) (3.2)
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where φ(t) is the shape of the chip with a duration Tc. In our case, the rectan-

gular pulse is assumed for simplicity. The spreading waveform cn
k(p) for user k

changes from symbol to symbol and takes values of (±1/
√

P ) with equal prob-

ability, where P is the spreading gain or the number of chips per symbol, i.e.,

the symbol duration T = PTc.

The received signal is sampled at the chip rate and chip-matched by a filter-

ing process. An observation vector x(n) is formed by concatenating aP samples,

where a represents the number of symbols contained in the observation vector.

For the convenience, let us consider the expression of the observation vec-

tor for a synchronized system (τk = 0, ∀ k). The extension to asynchronous

interfaces is straight forward once the relevant matrices have been defined. The

observation vector of aP samples at the chip rate is given by

x(n) =
K∑

k=1

AkCk(n)Hkbk(n) + w(n) (3.3)

where x(n) = [x(n), · · · , x(n+aP−1)]T and w(n) = [w(n), · · · , w(n+aP−1)]T

are vectors of the received samples and noise samples of size aP ×1, and b(n) =

[b(bn/P c−1), · · · , b(bn/P c+a)]T is a (a+2)×1 vector of data bits. The operator

b·c returns the largest integer smaller than its argument. The channel matrix

Hk for user k is given by

Hk = gkIa+2, (3.4)

and Ck(n) is the spreading code matrix for user k with dimension aP × (a + 2),

which is denoted as

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



3.2. Signal model 36

Ck(n) =




0 ck(n + P ) 0

0 ck(n + 2P ) 0 0

... 0 . . .
...

0 ck(n + aP ) 0




.

where ck(n) is defined as ck(n) = [ck(n), ck(n + 1), . . . , ck(n + P − 1)]T .

Matched filters are used to fully exploit the properties of the received signals.

Without loss of generality, user 1 is assumed to be the desired user. The a× 1

observation vector y(n) is given by

y(n) = S1(n)x(n) (3.5)

= S1(n)

(
K∑

k=1

AkCk(n)Hkbk(n)

)
+ S1(n)w(n)

where the matched filtering matrix S1(n) is given by

ST
1 (n) =




c1(n + P )

c1(n + 2P ) 0

0 . . .

c1(n + aP )




. (3.6)

That is, ST
1 (n) is formed by truncating the first and the last column from

C1(n). Since the long spreading sequence changes from symbol to symbol,

therefore, the parameters of the matched filter should be update from symbol

to symbol.
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3.2.2 Frequency-selective fading channels

Now we consider that the same DS-CDMA signals transmit over a frequency-

selective fading (multipath) channel. Then the signal after coherent reception

is given by

x(t) =
∞∑

n=−∞

K∑

k=1

Akc̃
n
k(t− nT − τk)bk(n) + w(t). (3.7)

The assumptions about transmitted data, noise, and spreading waveform are

the same as above. The spreading effective waveform c̃n
k(t) in (3.7) is constructed

by the convolution of the original spreading waveform with the channel response,

that is, c̃n
k(t) = cn

k(t)∗hk(t), where hk(t) is the channel impulse response for user

k. The channel length for each user is the same as L (L < P ) chips, and the

multipath delay spread is less than a symbol interval. It is also assumed that

the fading coefficients remain constant over the entire data collection block.

The received signal is sampled at the chip rate and chip-matched by a filter-

ing process. An observation vector x(n) is formed by concatenating aP + L− 1

samples, where a represents the number of symbols contained in the observation

vector. The filtered and sampled complex channel impulse response is denoted

by hk = [hk(0), · · · , hk(L− 1)]T .

An observation vector is formed to contain a symbols and L− 1 bits which

belong to a fraction of a symbol. Then the observation vector of aP + L − 1

samples at the chip rate is given by

x(n) =
K∑

k=1

AkCk(n)Hkbk(n) + w(n) (3.8)

where x(n) = [x(n), · · · , x(n + aP + L − 2)]T and w(n) = [w(n), · · · , w(n +
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aP + L − 2)]T are vectors of the received samples and noise samples of size

(aP + L− 1)× 1, and b(n) = [b(bn/P c− 1), · · · , b(bn/P c+ a)]T is a (a + 2)× 1

vector of data bits. The channel matrix Hk for user k is given by

Hk = Ia+2 ⊗ hk, (3.9)

and the (aP + L− 1)× (a + 2)L matrix Ck(n) is the spreading code matrix for

user k.

To derive the spreading code matrix, an (P +L−1)×L matrix C(ck(n),M)

is defined as

C(ck(n), L) =




ck(n) 0 · · · 0

ck(n + 1) ck(n)
. . .

...

...
. . . 0

ck(n + L− 1) · · · · · · ck(n)

...
...

ck(n + P − 1) · · · · · · ck(n + P − L)

0 ck(n + P − 1)
...

...
. . .

...

0 0 · · · ck(n + P − 1)




.

If C1
k,L(n) is defined to be the first P rows of C(ck(n), L) and C2

k,L(n) to be the

last L − 1 rows of C(ck(n), L), the spreading code matrix for user k, Ck(n) is
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given by




C2
k,L(n) C1

k,L(n + P ) 0

C2
k,L(n + P ) C1

k,L(n + 2P )

0
. . . . . .

C2
k,L(n + aP ) C̃

1

k,L(n + (a + 1)P )




where C̃
1

k,L(n) is composed of the first L− 1 rows of C1
k,L(n).

Similarly, L matched filters per received symbol are used to fully exploit the

properties of the received signals. The aL× 1 observation vector y(n) is given

by

y(n) = S1(n)x(n) (3.10)

= S1(n)

(
K∑

k=1

AkCk(n)Hkbk(n)

)
+ S1(n)w(n)

where the matched filtering matrix S1(n) is given by

ST
1 (n) =




C1
1,L(n + P )

C2
1,L(n + P ) · · · 0

. . . . . .

0 C1
1,L(n + aP )

C2
1,L(n + aP )




. (3.11)
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The matrices ST
1 (n) and C1(n) are related by

C1(n) =




C2
1,L(n)

... 0

0 ST
1 (n) 0

0
... C̃

1

1,L(n + (a + 1)P )




.

That is, C1(n) is formed by augmenting ST
1 (n) by 2L appropriate columns.

It is seen from (3.5) and (3.10), the system over flat fading channel and the

system over frequency-selective fading channel are described by similar equa-

tions, only with different forms of the corresponding variables.

3.3 Channel estimation

In this section, an efficient channel estimation method based on Toeplitz dis-

placement and correlation-matching estimation is developed for both the sys-

tems over flat fading channel (3.5) and over frequency-selective fading channel

(3.10).

3.3.1 Correlation-matching estimation

The conventional correlation-matching channel estimation is proposed in [99].

Compared with the subspace-based approaches, this method requires only mild

identifiability assumptions and offers better performance for loaded systems. On

the other hand, the correlation-matching method can avoid the disadvantage of

the subspace-based method since it will not function if the number of users is

larger than the spreading gain.
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The basic idea is to match the output covariance matrix (parameterized by

the unknown channel vectors) with the instantaneous approximations based on

the received data. This method is briefly described as follows.

Let us consider the matched filter output vectors y(n) given in (3.5) and

(3.10). For convenience, we present the unified expressions for both models in

the following derivation.

The covariance matrix of this observation vector is obtained as

Ry(n) = E{y(n)yH(n)}

= σ2
1S1(n)C1(n)H1H

H
1 CH

1 (n)ST
1 (n) + RI(n) + Rw(n) (3.12)

where σ2
1 = A2

1E{b2
1(n)} and Rw(n) = σ2

wS1(n)ST
1 (n) is noise autocorrelation

matrix. The contribution of other users’ interferences is

RI(n) =
K∑

k=2

σ2
kS1(n)Ck(n)HkH

H
k CH

k (n)ST
1 (n). (3.13)

Let R̂y(n) denote some estimator of Ry(n), and

E(n) = Ry(n)− R̂y(n) (3.14)

be the estimation error matrix. The cost function is defined as:

J =
1

N

N∑
n=1

J(n) =
1

N

N∑
n=1

‖E(n)‖2
F (3.15)

where N is the number of transmitted symbols. By minimizing this cost func-

tion, all channel parameters can be obtained. It is the general framework of the
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correlation-matching technique.

3.3.2 Toeplitz displacement

Now we use the Toeplitz displacement to make improvements on the conven-

tional correlation-matching channel estimation.

Toeplitz matrix is a special kind of matrix where each descending diagonal

elements from left to right are constant, e.g., m× n matrix F

F =




f0 f−1 · · · · · · f−(n−1)

f1
. . . . . .

...

...
. . . . . . . . .

...

...
. . . . . . f−1

fm−1 · · · · · · f1 f0




.

As seen from above Toeplitz matrix, the submatrix F(1 : m− 1, 1 : n− 1) is

equal to the submatrix F(2 : m, 2 : n). Here the matrix notation F(i : j, k : l)

denotes the sub-matrix formed by taking rows from i to j and columns from k

to l of matrix F. Thus, if we make such a displacement operation to a Toeplitz

matrix, the obtained result is the zero matrix, i.e.

F(2 : m, 2 : n)− F(1 : m− 1, 1 : n− 1) = 0(m−1)×(n−1) (3.16)

Here, we denote this displacement operation as Toeplitz displacement.
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3.3.3 Channel estimation algorithm

Before operating the autocorrelation of the observation vector as described in

(3.14), the Toeplitz displacement is to be applied to remove the effects of the

channel noise and other users’ interferences from the observation vector.

Let us define

SC1 =
1

N

N∑
n=1

S1(n)C1(n) (3.17)

and

SCk =
1

N

N∑
n=1

S1(n)Ck(n), k = 2, · · · , K. (3.18)

It is noted that the asymptotic approximation below follows from key assump-

tions made about the randomized spreading codes. That is, the components of

the code sequence are independently and identically distributed, and are sta-

tionary at the chip rate. Therefore we have S1(n)C1(n) = SC1 + A(n), and

S1(n)Ck(n) = SCk + Bk(n), k = 2, · · · , K, where A(n) and Bk(n) are, respec-

tively, time varying perturbation matrices, SC1 = limN→∞SC1 =

[
0 IaM 0

]

and SCk = limN→∞SCk =

[
0 0aM 0

]
. As P increases, the perturbations

A(n) and Bk(n) decrease. When P → ∞, the effects of the perturbations

can be negligible and the effects of the imperfect spreading autocorrelation are
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captured in SC1. Hence,

Ry(n) = σ2
1S1(n)C1(n)H1H

H
1 CH

1 (n)ST
1 (n) + RI(n) + Rw(n)

≈ |P→∞σ2
1SC1H1H

H
1 SCH

1 +
K∑

k=2

σ2
kSCkHkH

H
k SCH

k + σ2
wI

≈ |N→∞σ2
1SC1H1H

H
1 SC

H

1 +
K∑

k=2

σ2
kSCkHkH

H
k SC

H

k + σ2
wI. (3.19)

The last two terms in above expression are Toeplitz matrices, therefore, if the

Toeplitz displacement is performed in the correlation matrix of the observation

vector Ry(n), we can obtain

Rh(n) = Ry(n)(2 : aM, 2 : aM)−Ry(n)(1 : aM − 1, 1 : aM − 1)

= R+
y (n)−R−

y (n)

= σ2
1SC+

1 H1H
H
1 SC+H

1 − σ2
1SC−

1 H1H
H
1 SC−H

1 (3.20)

where SC+
1 and SC−

1 are formed by removing the first row and the last row

of SC1, respectively. The updated observation vector in (3.20) contains only

the information of the desired user without the information of other interfered

users and noise, thus the contributions from RI and Rw are removed. Then the

channel estimation can be performed effectively without the effects of the noise

and other users’ interference.

Let R̂y(n) denote some estimator of Ry(n) and R̂h(n) be the corresponding

estimator of Rh(n), then

R̂h(n) = R̂
+

y (n)− R̂
−
y (n)

= R̂y(n)(2 : aM, 2 : aM)− R̂y(n)(1 : aM − 1, 1 : aM − 1). (3.21)
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The estimation error matrix becomes

Eh(n) = Rh(n)− R̂h(n)

= σ2
1SC+

1 H1H
H
1 SC+H

1 − σ2
1SC−

1 H1H
H
1 SC−H

1 − R̂h(n). (3.22)

The new estimation error can be defined with the squared Frobenius norm of

Eh

Jh(n) = ‖Eh(n)‖2
F = tr[Eh(n)EH

h (n)] (3.23)

The cost function (3.23) can be built as the cumulative error

Jh =
1

N

N∑
n=1

Jh(n) =
1

N

N∑
n=1

tr[Eh(n)EH
h (n)]

=
1

N

N∑
n=1

vecH [Eh(n)]vec[Eh(n)]. (3.24)

The channel parameters can be obtained by minimizing this cost function. In

practice, the average correlation matrix R̂y is sampled and formed by

R̂y =
1

N

N∑
n=1

R̂y(n) =
1

N

N∑
n=1

y(n)yH(n). (3.25)

The estimated R̂h can be formed as

R̂h = R̂
+

y − R̂
−
y . (3.26)

We define new unknowns by

D1 = σ2
1H1H

H
1 . (3.27)
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The error matrix (3.22) becomes

Eh(n) = SC+
1 D1SC+H

1 − SC−
1 D1SC−H

1 − R̂h(n) (3.28)

and

vec(Eh(n)) = (SC+∗
1 ⊗ SC+

1 − SC−∗
1 ⊗ SC−

1 )vec(D1)− vec(R̂h(n)). (3.29)

Then let

d1 = vec(D1), (3.30)

Q = SC+∗
1 ⊗ SC+

1 − SC−∗
1 ⊗ SC−

1 . (3.31)

We have

Jh(n) = {Qd1 − vec(R̂h(n))}H{Qd1 − vec(R̂h(n))}. (3.32)

Therefore, the cost function becomes

Jh =
1

N

N∑
n=1

{Qd1 − vec(R̂h(n))}H{Qd1 − vec(R̂h(n))}. (3.33)

Thus, a quadratic cost function of new unknowns is obtained by over-parameterizing

the problem by (3.27).

3.3.4 Adaptive estimation

Based on the cost function (3.33), an adaptive algorithm can be derived by

considering Jh(n) at time n. The least mean square (LMS) recursion can be
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formulated for d1 with step size µ

d
(n+1)
1 = d

(n)
1 − µ∇dH

1
Jh(n) (3.34)

where µ∇dH
1
Jh(n) is a function of d

(n)
1 and computed by

µ∇dH
1
Jh(n) = QHQd

(n)
1 −QHvec[R̂h(n)]. (3.35)

Here, Q is approximately approached by

Q̂ = ŜC
+∗
1 ⊗ ŜC

+

1 − ŜC
−∗
1 ⊗ ŜC

−
1 (3.36)

where ŜC
+

1 and ŜC
−
1 are formed by removing the first and the last rows of ŜC1,

respectively, and

ŜC1 =
1

N

N∑
n=1

S1(n)C1(n). (3.37)

Based on (3.34) and (3.35), d1 can be updated by

d
(n+1)
1 = d

(n)
1 − µQ̂

H
Q̂d

(n)
1 + µQ̂

H
vec[R̂h(n)], (3.38)

and consequently, D
(n+1)
1 can be reconstructed from d

(n+1)
1 . Once D1 is found

by the adaptive implementation, singular value decomposition (SVD) on D1 can

be performed to obtain its eigenvector corresponding to the unique maximum

eigenvalue, which is the estimated and normalized channel vector for desired

user within a phase ambiguity.
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3.4 Considerations on implementation

Some issues have to be considered for practical implementation. The consider-

ations are as follows.

• The choice of the step size µ in the adaptive algorithm described by (3.38);

• A cleaning operation is needed for the estimated difference covariance

matrix to improve performance;

• The computational complexity of the proposed method.

3.4.1 Choice of the step size

The asymptotic behavior of the adaptive algorithm is considered for the step

size µ. Let ∆d
(n)
1 = E{d(n)

1 } − d1 be the bias at time n and assume the i.i.d.

processes of codes, inputs, and noise. By subtracting d1 on both sides of (3.38)

and taking expectation, we obtain

∆d
(n+1)
1 = [I− µE{Q̂H

Q̂}]∆d
(n)
1 + µE{Q̂H

vec[R̂h(n)]} − µE{Q̂H
Q̂}d1

≈ [I− µE{Q̂H
Q̂}]∆d

(n)
1 = (I− µU)∆d

(n)
1 (3.39)

where U is a constant matrix characterized by the given system parameters.

This equation implies that the convergence of the proposed adaptive method

depends on the eigenvalue of matrix I− µU. The necessary condition on the

step size is then |1− µλi| < 1 ∀ i, where λi’s are the eigenvalues of U. Equiva-

lently, 0 < µ < 1/λmax.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



3.4. Considerations on implementation 49

3.4.2 Cleaning operation

To further improve the channel estimate, we apply a cleaning operation to the

sample covariance matrix. Under the assumption that the Toeplitz displacement

results in a matrix free of the contribution of any interference. In practice, R̂h

will not be block diagonal. In order to impose a block diagonal structure and

remove the effects of nonideal correlation functions, we modify the construction

of R̂h

R̂h = (R̂y ¯Ψ)+ − (R̂y ¯Ψ)− (3.40)

where

Ψ(i, j) =





1, if {(m− 1)M + 1 ≤ i ≤ mM

and (m− 1)M + 1 ≤ j ≤ mM

for m ∈ [1, · · · , a]}
0, else

(3.41)

and ¯ indicates the Schur product. Then, before applying the Toeplitz dis-

placement to obtain R̂y, we will exploit the cleaning operation by replacing the

R̂h with R̂y ¯Ψ

3.4.3 Computational complexity

In the method thereinbefore, we first perform the adaptive algorithm to obtain

the estimation of Dj, then the SVD of Dj can be implemented to obtain its

eigenvector corresponding to the normalized channel vector.

For the system over the flat fading channel, in the first step, the computa-

tional complexity of the adaptive method is on the order of K(a− 1)2(a + 2)2.
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Once D is found by the adaptive implementation, the computational demand for

the SVD operation is K(a + 2)3. Therefore the computation complexity of the

proposed estimation method is the summation of K(a− 1)2(a + 2)2 multiplied

by recursion number and K(a + 2)3 for SVD operation.

As for the system over the frequency-selective fading channel, the computa-

tional complexity of the adaptive method is on the order of K(aL− 1)2(a + 2)2L2

and the computational demand for the SVD operation is K(a + 2)3L3. The over-

all computation complexity is the summation of K(aL− 1)2(a + 2)2L2 multi-

plied by the number of recursions and K(a + 2)3L3 for SVD operation.

3.5 Simulation results

In this section, we provide some computer simulation examples to demonstrate

the performance of the proposed blind channel estimation method for both

the flat fading channel and the frequency-selective (multipath) channel. The

comparisons with other related works are also made for the multipath channel.

During the simulations, long spreading codes of transmitted bits of all users

are assumed to take values from independent equiprobable random variables

+1 and -1. The data are regenerated randomly for each run of the simula-

tion and the channel coefficients for all users are also randomly produced from

independent complex Gaussian random variables.

It is noted that the estimator for channel vector has a complex scalar ambi-

guity. To simplify the presentation and avoid the norm ambiguity, the following
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MSE is used as the performance measure for flat fading channel:

MSE =
1

Nr

Nr∑
i=1

∥∥ĝi
1 − (g1/‖g1‖)

∥∥2
(3.42)

where Nr is the number of the runs in the simulation. The true channel is

denoted by g1 and the channel estimate for run i is represented by ĝi
1.

Similarly, the MSE measure expression for frequency-selective fading channel

is chosen as

MSE =
1

Nr

Nr∑
i=1

∥∥∥ĥ
i

1 − (h1/‖h1‖)
∥∥∥

2

(3.43)

where the true channel is denoted by h1 and the channel estimate for run i is

represented by ĥ
i

1, and Nr = 50 is selected for each simulation in our following

examples.

3.5.1 MSE performance of the channel estimation

Let us first consider the MSE performance of the proposed channel estimation

method by testing the adaptive method with variations of the number of users,

the number of symbols, the spreading factor and the overall number of symbols

in the observation vector. The results are discussed as follows.

3.5.1.1 MSE versus number of symbols

The convergence of the proposed algorithm is studied firstly. The simulations

are made for a = 2, SNR = 15 dB, and the spreading gain is chosen as P = 35.

The MSEs are plotted as a function of the number of symbols in Fig 3.1 and Fig

3.2. Fig 3.1 shows the results for the system considering the flat fading channels,
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while Fig 3.2 shows the results for the system considering the frequency-selective

fading channels with length L = 5. As illustrated in both Fig 3.1 and Fig 3.2,

the performance improves by increasing the number of symbols. It is also seen

from figures that convergence is achieved nearly after 160 symbols for flat-fading

channel and about 200 symbols for frequency-selective fading channel.

20 40 60 80 100 120 140 160 180 200 220 240 260

10
−2

10
−1

Number of Symbols

M
S

E

K=10
K=12

Figure 3.1: MSE versus the number of the symbols (flat fading channel)

3.5.1.2 MSE versus parameter a

Next let us consider the MSE performance as a function of a which is the

number of the whole symbols used in the observation vector. The environment

parameters are SNR = 15 dB, spreading gain P = 35, and the number of the

transmitted symbols is N = 200.

For the system over flat fading channel, it is clear that a must satisfy a > 2

in order to implement the Toeplitz displacement. Fig 3.3 shows the MSE values

versus a which varies from 2 to 5 for the flat fading channel. As illustrated in
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Figure 3.2: MSE versus the number of the symbols (frequency-selective fading
channel)

Fig 3.3, the MSE has no obvious improvement by increasing a, that is, a = 2 is

an adequate value for the channel estimation in such a system.

Fig 3.4 demonstrates the MSE values versus a for the frequency-selective

fading channels. Two different channel lengths L = 4 and L = 5 are plotted

respectively. Since the length of channel is less than the processing gain, i.e.,

L < P , the intersymbol interference to the current symbol affects less than

2P + L− 1 bits. Therefore, when a = 2, the observation vector constructed by

aP + L− 1 samples contains enough information of the current symbol for the

channel identification. It can be seen that the MSE performance is not good

enough when one complete symbol is used. However, significant improvements

can be achieved after two complete symbols are used in the estimation. No

obvious improvement is made when a > 2, therefore a = 2 is chosen as a

suitable value for the following simulations.
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Figure 3.3: MSE versus a (flat fading channel)

3.5.1.3 MSE versus spreading gain

We now consider the effects of the spreading gain on the estimation perfor-

mance. The conventional correlation matching (CM) method in [99] is developed

for multipath fading channel. And as discussed in [100], the subspace-based

Toeplitz displacement (TD) method cannot be used in the flat fading (single

path) channel. Therefore, we plot only the results of the proposed method for

the flat fading channel, whereas the results of three methods are compared for

the frequency-selective fading channel.

Given SNR = 15 dB, and 200 transmitted symbols for all users are used in

the simulations. Fig 3.5 shows the MSE versus the spreading gain for the system

over flat fading channel. Fig 3.6 shows the MSE versus the spreading gain for

the system over flat fading channel with length L = 5, which are obtained by

the proposed method, the CM method and the TD method.
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Figure 3.4: MSE versus a (frequency-selective fading channel)

Fig 3.5 and Fig 3.6 show that the MSE reduces as the spreading gain P

increases. The reason is that the spreading sequences become increasingly or-

thogonal with each other as the increase of the spreading gain.

It is seen from Fig 3.6, the proposed method provides better performance

than the subspace Toeplitz method, due to the advantages of the correlation

matching estimation compared to subspace estimation. It is also observed from

Fig 3.6, for small values of the spreading gain, the proposed algorithm is not

superior to the conventional correlation matching method, but when the spread-

ing gain P > 25, it achieves a better MSE performance compared to the CM

method. This is because that the displacement is based on the approximation:

spreading gain P → ∞. When P is small, the approximation is not accurate

enough and therefore the performance is not improved. When P is large to

achieve more accurate approximation, the proposed method can suppress the

effects of channel noise and interference by using the Toeplitz displacement op-
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Figure 3.5: MSE versus spreading gain (flat fading channel)

eration.

3.5.2 Robustness of near-far resistance

The capability of near-far resistance is tested for the proposed method now.

The simulated system is given as P = 40, SNR = 15 dB, a = 2, and 200

transmitted symbols.

The near-far ratio is defined as 20log(A1/Ak) dB, where A1 is the received

amplitude of the desired user and Ak is the received amplitude of other inter-

fering users. Let us fix the power of the desired user and change the power of

interfering users. It is assumed that all interfering users have the same power.

Similar to the discussion before, only the results of the proposed method

are shown for the system over the flat fading channel. Fig 3.7 shows the MSE

performance as the function of near-far ratio, which demonstrates the good
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Figure 3.6: MSE versus spreading gain (frequency-selective fading channel)

capability of near-far resistance in such a system.

For the system over frequency-selective fading channels, Fig 3.8 tests the

performance as the function of near-far ratio and compares the results with the

CM and TD method. Fig 3.8 shows that as the near-far ratio increases, the

proposed method achieves substantially better performance in suppressing the

strong interference. Since the MSE changes slowly as the increase of the near-far

ratio, the proposed method is very robust against near-far problem.

3.5.3 BER performance of the symbol detection

Finally, the bit-error-rate (BER) performance of symbol detection is obtained

by using the estimated channel for a RAKE receiver [104].

Fig 3.9 plots the BER versus SNR for the system over flat fading channel,

where P = 35, a = 2 and K = 10, 12. Fig 3.10 compares the BERs obtained
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Figure 3.7: MSE evolution for a near-far environment (flat fading channel)

by using three estimation methods for the system for frequency selective fading

channels, where P = 35, a = 2, L = 5 and K = 10, and the curve for perfect

knowledge of the channel is also shown in the figure as a lower bound. It can

be seen that the RAKE receivers exhibit poor performance. However, it is

also illustrated that the proposed estimation method achieves the best BER

performance among the compared methods.

3.6 Conclusions

In this chapter, we have developed an efficient blind adaptive channel estimation

method for long code DS-CDMA systems. In such systems, the users’ spreading

sequences have the periods that are much longer than the symbol duration. Be-

cause the cross-correlation functions of the random spreading sequences in such

systems vary with the time, the use of the asymptotic statistics of such spread-
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Figure 3.8: MSE evolution for a near-far environment (frequency-selective fad-
ing channel)

ing codes is made to deal with this difficult problem. By operating the Toeplitz

displacement to the second order statistics of the output vector after matched

filter, the effects of the channel noise and interference can be removed. Then the

correlation matching method is explored to obtain the channel estimates. We

have also discussed the considerations in the practical implementation. Simu-

lation results for demonstration have been shown that the proposed technique

has the promising performance and the analytical approximation is to be quite

tight. In addition, the proposed algorithm is compared with related methods re-

ported in [99] and [100] for the robustness against the near-far problem and the

performance of channel estimation and resulted symbol detection. Our theory

analysis and experimental results demonstrate the proposed method substan-

tially improves performance in the interferences suppression, and the near-far

resistance.
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Chapter 4

Blind multiuser detection based

on Bayesian MCMC inference

4.1 Introduction

Since long codes have been considered to be a main option for the next gen-

eration of CDMA based wireless networks [7], some methods for blind channel

estimation were recently reported for systems based on long codes [99][100].

In the previous chapter, a new blind channel estimation scheme suitable for

long code DS-CDMA systems is proposed to achieve improved performance. In

most reported methods, channel parameters are estimated firstly and then the

detectors are built relying on the estimated channels. However, due to the sepa-

ration of channel estimation and data detection, these methods are suboptimal

compared to the joint of channel estimation and data detection.
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In this chapter we address the problem of the joint of channel estimation

and data detection for the CDMA system employing the long spreading codes.

It is assumed that the blind receiver has only the knowledge of the spreading

sequences and the initial delays of the active users. The fading channels are

unknown to the receiver, and no pilot symbols are employed.

Bayesian Monte Carlo (MC) methodologies have recently emerged as low

cost signal processing techniques with performance approaching to the theo-

retical optimum for wireless communication systems [79]. Compared to the

conventional techniques used for symbol detection and channel estimation ap-

plications, the MC methods are relatively slow, but provide a much better

accuracy of the estimation results. Therefore, the convergence speed of the MC

sampling process has become a major issue to be improved.

Bayesian MC techniques fall into one of the two categories - Markov chain

Monte Carlo (MCMC) methods for batch signal processing and sequential Monte

Carlo (SMC) methods for adaptive signal processing.

Most reported MCMC methods (for example, [82][83][84]) are based on a

popular MCMC procedure - Gibbs sampler. The Gibbs sampler has been suc-

cessfully applied for the optimal receiver design in various communication sys-

tems. However one obvious problem of the Gibbs sampler is that it needs the

burn-in period to achieve the convergence and the samples generated during

the burn-in period can not be used for calculating the estimation results. These

characteristics lead to a relatively slow convergence speed and inefficiency in

the sampling operation.

The adaptive sampling algorithm is a recently developed MC sampling method

[85], and it is able to avoid searching the entire sample space so that the conver-
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gence speed can be increased by using the feedback of the available observations.

Some results have demonstrated that adaptive sampling offers highly efficient

Bayesian inference in the short code CDMA system without considering the

fading problem. However, the channel fading problems can not be ignored for

practical CDMA systems. With the consideration of the fading channels, the

procedures for adaptive sampling will become complicated. It is also beneficial

that the channel estimation should be jointly considered with data detection for

the receiver design.

In order to take advantage of the maximum a posteriori (MAP) optimality

of Bayesian inference, and at the same time avoid the burn-in period which

typically encumbers the convergence rates of MCMC techniques, the applica-

tion of adaptive sampling to long code fading CDMA system is considered in

this chapter. An efficient blind MCMC receiver based on the adaptive sampling

algorithm is proposed for the joint data detection and channel estimation. Sim-

ulation results show the desirable improvements on convergence speed and the

BER performance achieved by the proposed blind Bayesian MCMC receiver.

4.2 Signal model

4.2.1 Flat fading channels

Let us consider a coherent long code system that has K active users. The

signals are transmitted over the flat fading channel with unknown additive white
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Gaussian noise. The received signal is expressed as

r(t) =
K∑

k=1

N−1∑
n=0

Akbk(n)gkc̄
n
k(t− nT − dk) + ω(t) (4.1)

where bk(n) is the transmitted data symbol for user k, and for each user k =

1, · · · , K, the transmitted symbols {bk(n)}N−1
n=0 are differentially modulated from

the source information symbols {sk(n)}N−1
n=1 with bk(0) = 1. Such a different

encoding scheme is necessary to resolve the phase ambiguity inherent to any

blind receiver.

In (4.1), N is the length of the transmitted data frame, T is the symbol

duration, Ak is the transmitted amplitude of user k and dk denotes the delay

of the kth user’s signal. The spreading waveform c̄n
k(t) is formed by the pulse

shape φ(t) and spreading sequence c̄n
k(p) for user k is defined as

c̄n
k(t) =

P−1∑
p=0

c̄n
k(p)φ(t− pTc) (4.2)

where P is the spreading gain, i.e., the number of chips per symbol and Tc =

T/P is the chip duration. For long code DS-CDMA signals, the spreading

waveform for every user changes from symbol to symbol. The gk is the coefficient

of fading channel for user k, and ω(t) is the received zero mean additive complex

white Gaussian noise with variance σ2. Assume the initial delay 0 < dk < T ,

hence the maximum symbol delay satisfies {dk/T}max ≤ 1.

The received signal is processed by a chip-matched filter and sampled at

the chip rate. Since the maximum symbol delay is not larger than one symbol,

when the signal is sampled at the chip rate, at most two symbols’ information

can be contained in very chip duration. The signal sample at the output of the
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matched filter at time t = nT + qTc is expressed as

rq(n)=

∫ nT+(q+1)Tc

nT+qTc

r(t)φ(t− nT − qTc)dt

=

∫ nT+(q+1)Tc

nT+qTc

φ(t−nT−qTc)
K∑

k=1

N−1∑
m=0

Akbk(m)gk

P−1∑
p=0

c̄m
k (p)φ(t−mT−pTc−dk)dt+ωq(n)

=
K∑

k=1

n∑
m=n−1

Akbk(m)gk

P−1∑
p=0

c̄m
k (p)

∫ Tc

0

φ(t)φ(t+nT−mT +qTc−pTc−dk)dt+ωq(n)

=
K∑

k=1

1∑
m=0

P−1∑
p=0

Akbk(n−m)gkc̄
n−m
k (q−p)

∫ Tc

0

φ(t)φ(t+mT +pTc−dk)dt+ωq(n)

=
K∑

k=1

1∑
m=0

P−1∑
p=0

Akbk(n−m)gkc̄
n−m
k (q − p) + ωq(n). (4.3)

In the above derivation the noise sample ωq(n)=
∫ nT+(q+1)Tc

nT+qTc
ω(t) φ(t−nT −

qTc)dt, and the set of noise samples {ωq(n)} are i.i.d. zero mean complex

Gaussian random variables with variance σ2.

Let us define ζk = b(dk/Tc)c − 1 as the initial delay for user k in terms of

the number of chips. Then the observation vector can be expressed as

r(n)=
K∑

k=1

Akbk(n)Ck,0(n)gk +
K∑

k=1

Akbk(n− 1)Ck,1(n− 1)gk + w(n)

=
K∑

k=1

Ak[bk(n)Ck,0(n)+bk(n−1)Ck,1(n−1)]gk+w(n) (4.4)

where r(n) = [r1(n), r2(n), . . . , rP (n)]T , w(n) = [ω1(n), ω2(n), . . . , ωP (n)]T for

n = 0, 1, . . . , N − 1, and

Ck,0(n) = Ck(n)[1 : P ]

Ck,1(n) = Ck(n)[P + 1 : 2P ]
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where Ck(n) is defined as a 2P × 1 vector

Ck(n) = [0T
ζk×1, c̄

n
k(0), c̄n

k(1), · · · , c̄n
k(P − 1),0T

(P−ζk)×1]
T . (4.5)

Let u[i : j] denote the subvector of u obtained by taking ith to jth elements

of u. For simplicity, the noise term {w(n)} is assumed to be an i.i.d complex

white Gaussian vectors with a zero-mean and a variance σ2, i.e., w(n) satisfies

w(n) ∼ N (0, σ2I).

4.2.2 Frequency selective fading channels

Now consider the long code system with the same signals over the frequency-

selective fading channels. Assumptions on transmitted symbols, amplitudes and

spreading waveforms are all the same as previous descriptions. The transmitted

signal for user k is expressed as

xk(t) =
N−1∑
n=0

Akbk(n)c̄n
k(t− nT − dk) (4.6)

The impulse response of multipath channel hk(t) for user k is defined as

hk(t) =
L∑

l=1

αk,lδ(t− τk,l) (4.7)

where L is the total number of resolvable paths in the channel, αk,l is the

complex path gain and τk,l, τk,1 < τk,2 < · · · < τk,L, is the delay of the lth path

for user k. Then the representation of the received signal is given by

r(t) =
K∑

k=1

xk(t) ∗ hk(t) + ω(t) (4.8)
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where ∗ denotes convolution, and ω(t) is the received zero mean additive com-

plex white Gaussian noise with variance σ2. Assume the maximum channel

delay L is smaller than P , i.e., τk,L < T . Hence, the maximum symbol delay

satisfies {(dk + τk,L)/T}max ≤ 2.

Similarly, the received signal is processed by a chip-matched filter and sam-

pled at the chip rate. Since the maximum symbol delay is not larger than 2

symbols, when the signal is sampled at the chip rate, at most three symbols’

information can be contained in very chip duration. The signal sample at the

output of the matched filter at time t = nT + qTc is expressed as

rq(n)=

∫ nT+(q+1)Tc

nT+qTc

r(t)φ(t− nT − qTc)dt

=

∫ nT+(q+1)Tc

nT+qTc

φ(t− nT − qTc)
K∑

k=1

xk(t) ∗ hk(t) + ωq(n)

=

∫ nT+(q+1)Tc

nT+qTc

φ(t−nT−qTc)
K∑

k=1

N−1∑
m=0

Akbk(m)

×
L∑

l=1

P−1∑
p=0

αk,lc̄
m
k (p)φ(t−mT−pTc−dk−τk,l)dt+ωq(n)

=
K∑

k=1

n∑
m=n−2

Akbk(m)
P−1∑
p=0

c̄m
k (p)

×
∫ Tc

0

L∑

l=1

αk,lφ(t)φ(t+nT−mT +qTc−pTc−dk−τk,l)dt+ωq(n)

=
K∑

k=1

2∑
m=0

P−1∑
p=0

Akbk(n−m)c̄n−m
k (q−p)

×
∫ Tc

0

L∑

l=1

αk,lφ(t)φ(t+mT +pTc−dk−τk,l)dt+ωq(n). (4.9)

Denote

gk(x) =

∫ Tc

0

L∑

l=1

αk,lφ(t)φ(t + xTc − dk − τk,l)dt, (4.10)

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



4.2. Signal model 68

then (4.9) is equal to

rq(n) =
K∑

k=1

2∑
m=0

P−1∑
p=0

Akbk(n−m)c̄n−m
k (q − p)gk(mP + p) + ωq(n). (4.11)

In the above derivation for (4.9) and (4.11), the noise sample ωq(n)=
∫ nT+(q+1)Tc

nT+qTc

ω(t)φ(t−nT − qTc)dt, and the set of noise samples {ωq(n)} are i.i.d. zero mean

complex Gaussian random variables with variance σ2.

For convenience, ζk = b(dk + τk,1/Tc)c − 1 < P is defined as the initial delay

for user k in terms of the number of chips. Let hk = [gk(ζk +1), · · · , gk(ζk +L)]

define the channel response for the kth user, then the observation vector can be

expressed as

r(n)=
K∑

k=1

Akbk(n)Ck,0(n)hk +
K∑

k=1

Akbk(n− 1)Ck,1(n− 1)hk

+
K∑

k=1

Akbk(n− 2)Ck,2(n− 2)hk + w(n)

=
K∑

k=1

Ak[bk(n)Ck,0(n)+bk(n−1)Ck,1(n−1)+bk(n−2)Ck,2(n−2)]hk+w(n)(4.12)

where r(n) = [r1(n), r2(n), . . . , rP (n)]T , w(n) = [ω1(n), ω2(n), . . . , ωP (n)]T for

n = 0, 1, . . . , N − 1, and

Ck,0(n) = Ck(n)[1 : P, :] (4.13)

Ck,1(n) = Ck(n)[P + 1 : 2P, :]

Ck,2(n) = Ck(n)[2P + 1 : 3P, :]
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where Ck(n) is defined as a 3P × L matrix

Ck(n) =




0ζk×1 0 · · · 0

c̄n
k(0) 0

...

c̄n
k(1) c̄n

k(0)
. . .

... c̄n
k(1)

. . . 0

c̄n
k(P − 1)

... c̄n
k(0)

0 c̄n
k(P − 1) c̄n

k(1)

0
. . .

...

...
...

. . . c̄n
k(P − 1)

0 0 · · · 0




(4.14)

Let U[i : j, :] denote the submatrix of U obtained by appropriately taking row

i to row j of U. For simplicity, the noise term {w(n)} is assumed to be an i.i.d

complex white Gaussian vectors with a zero-mean and a variance σ2, i.e., w(n)

satisfies w(n) ∼ N (0, σ2I).

Based on the above signal models, the joint solution to blind data detec-

tion and channel estimation for long code CDMA systems is considered in the

following sections.

4.3 Background

In this section, we provide a simple overview of the Bayesian inference with

MCMC methods.
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4.3.1 Bayesian inference framework

As a modeling tool, Bayesian framework can intuitively capture the relationship

among the contributing factors in a complex system. The framework of the

Bayesian MCMC inference is described as follows.

Let us assume θ = [θ1, · · · , θi, · · · , θd] be a vector of unknown parameters

and Y be the observation data. In Bayesian approach, all unknown quantities

are treated as random variables with some prior distribution p(θ). Then the

Bayesian inference is made by computing the joint posterior distribution of the

unknown parameters:

p(θ|Y) ∝ p(Y|θ)p(θ). (4.15)

Now if the a posteriori marginal distribution of some unknown parameters is to

be found from the observation data Y, i.e., p(θi|Y), the direct evaluation is to

integrate the joint a posteriori density with all other parameters, i.e.,

p(θi|Y) =

∫ ∫
· · ·

∫
p(θ|Y)dθ1 · · · dθi−1dθi+1 · · · dθd. (4.16)

In most cases, the direct computation of (4.16) is not feasible, especially when

parameter dimension d is large.

4.3.2 Monte Carlo methods

In many Bayesian analysis, the computation of the marginal distribution is

as difficult as the above description, therefore some analytical or numerical

approximations have been resorted to solve the problem. In late 1980s and early

1990s, statisticians discovered that a wide variety of Monte Carlo strategies can
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be applied to overcome the computational difficulties encountered in almost all

likelihood-based interference procedures. Soon afterwards, Monte Carlo method

is demonstrated as a powerful computational tool for Bayesian inference in

many application fields. The basic idea of the MCMC method is to generate

the random samples {θ} from the joint distribution and then approximate the

marginal distribution by using these samples.

Bayesian MC techniques fall into one of the two categories - Markov chain

Monte Carlo (MCMC) methods for batch signal processing and sequential Monte

Carlo (SMC) methods for adaptive signal processing. In this chapter, we will

give the general introduction about MCMC methods, and the SMC methods

will be described in next chapter.

4.3.3 Markov chain Monte Carlo

Markov Chain Monte Carlo (MCMC) techniques [105] are well developed and

especially useful for computing Bayesian solutions based on the Markov Chain

theory. MCMC is a class of algorithms that allow one to draw random samples

from an arbitrary target probability distribution, p(θ), known up to a normalized

constant. The basic idea behind these algorithms is that one can achieve the

sampling from p(θ) by running a Markov chain whose equilibrium distribution

is exactly p(θ). The derivation of MCMC methods can be traced back to the

well-known Metropolis algorithm which was firstly used in a statistical context

in [106].
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4.3.3.1 Gibbs sampler

As one of the most popular MCMC methods, the Gibbs sampler is a special

case of the Metropolis algorithm. Given the initial values θ(0) = [θ
(0)
1 , . . . , θ

(0)
d ]T ,

the Gibbs sampler procedure iterates the following loop:

• Draw sample θ
(n+1)
1 from p(θ1|θ(n)

2 , . . . , θ
(n)
d ,Y).

• Draw sample θ
(n+1)
2 from p(θ2|θ(n+1)

1 , θ
(n)
3 , . . . , θ

(n)
d ,Y).

...

• Draw sample θ
(n+1)
d from p(θd|θ(n+1)

1 , . . . , θ
(n+1)
d−1 ,Y).

Then the sequence of sample vectors . . . , θ(n−1), θ(n), θ(n+1), . . . is a realization

of a homogeneous Markov chain.

The convergence behavior of the Gibbs sampler is analyzed in [107][108][109].

The Gibbs sampler requires an initial transient period to converge to equilib-

rium. The initial period of length n0 is known as the ”burn-in” period, and the

first n0 samples should always be discarded.

4.3.3.2 Adaptive sampling algorithm

The Gibbs sampler must have a burn-in period to reach the convergence, which

inevitably slows the convergence speed. The recently developed adaptive sam-

pling method is shown to be able to avoid this problem through the feedback

of the available observations [85].

The optimized adaptive sampling algorithm is developed from the evidence

weighting sampling method. The difference lies in the adaptive sampling algo-

rithm relates the sample allotment to the maximum a posteriori probabilities
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through an optimization formulation. The solution to this formulation gives

indication where the samples should be distributed to be more effective. The

allocation process biases the sample towards making the most significant con-

tribution to MAP solution. Therefore, samples are properly weighted, do not

introduce estimation bias, and do not need an initial transient ”burn-in” period

for convergence as in Gibbs sampler.

The Bayesian inference with adaptive sampling method is performed by the

following steps.

• Draw data samples {θ(m)}M
m=1 from the instantaneous prior sampling

probabilities of unknown parameter

π(θ) = {π(i) = p(θi)} (4.17)

where M is the total number of iterations to be performed for the probability

inference. The instantaneous sampling priors {π(i)} are periodically updated

with every 4M increment of the iteration index, i.e.,

π(i) ∝ Ni (4.18)

where Ni is defined as the current sample allocation among all available iter-

ations.

• For each sample set {θ(m)}, compute the likelihood function of the ob-

servation Y.

λ(Y|θ(m)) = {λ(m)(i) = p(Y|θ(m)
i )} (4.19)
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• The posterior probability of θ is computed by the ensemble expectation

P (θ|Y) = FEm{λ(Y|θ(m))} (4.20)

where F is the normalization factor matrix for θ.

The basic idea of the adaptive sampling method is to bias the samples to-

wards the MAP solution of parameter estimation through the adaptive sample

allotment optimization.

4.4 Bayesian multiuser detection

Bayesian detector is based on the Bayesian inference of all unknown quantities

to exploit the structure of the signals.

For the system over flat fading channel described in (4.4), we denote R=

{r(0), r(1), · · · , r(N − 1)}, and H = {gk}K
k=1. With the Bayesian inference, let

us consider the problem of estimating the a posteriori symbol probabilities

P (bk(n)|R), k = 1, · · · , K; n = 0, 1, · · · , N − 1 (4.21)

based on the received signals R without knowing the channel response H and

noise level σ2. Then the probabilities are used to estimate the data symbols

B = {bk(n)}n=0:N−1
k=1:K .

Similarly, for the system over frequency-selective fading channels described

in (4.12), our problem is to estimate the a posteriori probabilities of the symbols

based on the receiver signals R={r(0), r(1), · · · , r(N − 1)}, without knowing
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the channel response H = {hk}K
k=1 and noise level σ2.

4.4.1 Application of adaptive sampling

We incorporate the adaptive sampling method with the above detection prob-

lem. The inference procedure needs to be updated and expanded to deal with

the noise and the fading problem. Therefore, for both the flat fading channel

system (4.4) and frequency-selective fading channel system (4.12), the Bayesian

MC detection based on the adaptive sampling implements the procedures as:

• Draw data samples {B(m)}M
m=1 from the instantaneous prior sampling

probabilities of symbol

π(B) = {πk,j(n) = P (bk(n) = βj)}. (4.22)

The instantaneous sampling priors {πk,j(n)} are periodically updated with

every ∆M increment of the iteration index, i.e., πk,j(n) ∝ Nk,j,n, where Nk,j,n

is defined as the total number of instantiations in which the samples bk(n) is

equal to βj among all available M iterations.

• For each sample set {B(m)}, the likelihood function of the observation R

is computed by

λ(R|B(m),H, σ2) = {λ(m)
k,j (n) = p(R|b(m)

k (n) = βj,H, σ2)} (4.23)

• the a posteriori probability of B is obtained by the ensemble expectation

P (B|R) = FEm{λ(R|B(m),H, σ2)}. (4.24)
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4.4.2 Channel estimation

As seen from (4.23), in order to compute the conditional distribution of R,

the estimation of channels H and noise variance σ2 should be available. Thus,

the estimation of the channel and noise need to be combined with the symbol

inference procedure.

For the estimation of the channel and noise, we present the derivation for

the system (4.4) and the system (4.12) respectively.

A. Flat fading channels

These estimates can be obtained from the conditional posterior distributions

of channels and noise, that is p(gk|Hk, σ
2,B,R) and p(σ2|H,B,R), where Hk =

H\gk denotes excluding gk from H.

In principle, prior distributions are used to incorporate the prior knowledge

about the unknown parameters, and less restrictive (i.e., non-informative) pri-

ors should be employed when such knowledge is limited. The property that

the posterior distribution belongs to the same distribution family as the prior

distribution is called conjugacy. The prior distribution which is chosen to sat-

isfy the conjugacy is known to be conjugate prior. Conjugate priors are usu-

ally used to obtain simple analytical forms for the resulting posterior distri-

butions, such that the conditional posterior distributions are easy to compute

and simulate. Following the general guideline in Bayesian analysis [80], we

choose a complex Gaussian prior distribution for the unknown channel, i.e.,

p(gk) ∼ Nc(gk0, Σk0), and an inverse chi-square prior distribution for the noise

variance, i.e., p(σ2) ∼ χ−2(2ν0, λ0). According to the Bayesian theory, the con-
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ditional posterior distributions for the channels are derived as follows.

p(gk|Hk, σ
2,B,R) ∝ p(R|H, σ2,B)p(gk)

∝ exp{− 1

σ2

N−1∑
n=0

‖r(n)−
K∑

k=1

AkSk,ngk‖2}exp{−(gk − gk0)
HΣ−1

k0 (gk − gk0)}

∝ exp{−(gk − gk∗)HΣ−1
k∗ (gk − gk∗)} ∝ Nc(gk∗, Σk∗) (4.25)

with

Σ−1
k∗ = Σ−1

k0 +
1

σ2

N−1∑
n=0

SH
k,nSk,n (4.26)

gk∗ = Σk∗

[
Σ−1

k0 gk0 +
1

σ2

N−1∑
n=0

SH
k,n(r(n)−

∑

j 6=k

Sj,ngj)

]
(4.27)

where Sk,n = bk(n)Ck,0(n) + bk(n − 1)Ck,1(n − 1). The conditional posterior

distributions for the noise variance is derived by

p(σ2|H,B,R)∝ p(R|H, σ2,B)p(σ2)

∝ (
1

σ2
)NP exp{− 1

σ2

N−1∑
n=0

‖r(n)−
K∑

k=1

AkSk,ngk‖2}( 1

σ2
)ν0+1exp(−ν0λ0

σ2
)

= (
1

σ2
)ν0+NP+1exp(−ν0λ0 + s2

σ2
)

∼χ−2

(
2[ν0 + NP ],

ν0λ0 + s2

ν0 + NP

)
(4.28)

where s2 =
∑N−1

n=0 ‖r(n)−∑K
k=1 AkSk,ngk‖2.

Using the conditional posterior distributions, the estimates of the channel

response H̃ and noise variance σ̃2 can be obtained, and then the conditional
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probability of R is given as

p(R|bk(n) = βj, H̃, σ̃2) ∝ exp{− 1

2σ̃2

N−1∑
n=0

‖r(n)−
K∑

k=1

AkSk,ng̃k‖2} (4.29)

B. Frequency-selective fading channels

Similarly, the estimates of the channel and noise level are obtained from their

conditional posterior distributions, i.e., p(hk|Hk, σ
2,B,R) and p(σ2|H,B,R).

Hk = H\hk denotes excluding hk from H.

Again, we choose a complex Gaussian prior distribution for the unknown

channel, i.e., p(hk) ∼ Nc(hk0, Σk0), and an inverse chi-square prior distribution

for the noise variance, i.e., p(σ2) ∼ χ−2(2ν0, λ0). According to the Bayesian

theory, the conditional posterior distributions for the channels are derived as

follows.

p(hk|Hk, σ
2,B,R) ∝ p(R|H, σ2,B)p(hk)

∝ exp{− 1

σ2

N−1∑
n=0

‖r(n)−
K∑

k=1

AkSk,nhk‖2}exp{−(hk − hk0)
HΣ−1

k0 (hk − hk0)}

∝ exp{−(hk − hk∗)HΣ−1
k∗ (hk − hk∗)} ∝ Nc(hk∗, Σk∗) (4.30)

with

Σ−1
k∗ = Σ−1

k0 +
1

σ2

N−1∑
n=0

SH
k,nSk,n (4.31)

hk∗ = Σk∗

[
Σ−1

k0 hk0 +
1

σ2

N−1∑
n=0

SH
k,n(r(n)−

∑

j 6=k

Sj,nhj)

]
(4.32)
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where Sk,n = bk(n)Ck,0(n) + bk(n − 1)Ck,1(n − 1) + bk(n − 2)Ck,2(n − 2). The

conditional posterior distributions for the noise variance is derived by

p(σ2|H,B,R)∝ p(R|H, σ2,B)p(σ2)

∝ (
1

σ2
)NP exp{− 1

σ2

N−1∑
n=0

‖r(n)−
K∑

k=1

AkSk,nhk‖2}( 1

σ2
)ν0+1exp(−ν0λ0

σ2
)

= (
1

σ2
)ν0+NP+1exp(−ν0λ0 + s2

σ2
)

∼χ−2

(
2[ν0 + NP ],

ν0λ0 + s2

ν0 + NP

)
(4.33)

where s2 =
∑N−1

n=0 ‖r(n)−∑K
k=1 AkSk,nhk‖2.

After obtaining the estimates of the channel response H̃ and noise variance

σ̃2, then the conditional probability of R is given as

p(R|bk(n) = βj, H̃, σ̃2) ∝ exp{− 1

2σ̃2

N−1∑
n=0

‖r(n)−
K∑

k=1

AkSk,nh̃k‖2} (4.34)

4.4.3 Multiuser detector

With above considerations, a blind Bayesian procedure is devised for the joint

process of the symbol detection and channel estimation based on the adaptive

sampling algorithm. For convenience, we use the unified description in the

procedure for both the flat fading channel system and the frequency-selective

fading channel systems.

The complete procedure is described as follows. In the procedure, B(c) de-

notes the symbol estimates available at the current iteration, while B(m) means

the samples drawn at the mth iteration.

FOR m = 1 : M ,
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1. For k = 1, 2, · · · , K

Draw the samples g
(m)
k or h

(m)
k for channel response gk or hk from

p(gk|H(m−1)
k , σ2(m−1),B(c),R) or p(hk|H(m−1)

k , σ2(m−1),B(c),R) given

by (4.25) or (4.30).

End

2. Draw the sample σ2(m) for noise σ2 from p(σ2|H(m),B(c),R) according

to (4.28) or (4.33).

3. Draw the samples B(m) for data symbols B from instantaneous priors

πk,j(n).

4. If iteration increment reaches ∆M

• Compute a new set of sample allocation indices {Nk,j,n};

• Update the instantaneous symbol priors πk,j(n) according to

πk,j(n) ∝ Nk,j,n.

End

5. Compute likelihood weights according to (4.23) and (4.29) or (4.34), i.e.,

λ(R|b(m)
k (n), σ2(m),H(m)) = exp(− 1

2σ2(m)
‖r(n)− {

K∑

k=1

Ak[b
(c)
k (n)Ck,0(n)

+b
(c)
k (n−1)Ck,1(n−1)]g

(m)
k }‖2) (4.35)

or

λ(R|b(m)
k (n), σ2(m),H(m)) = exp(− 1

2σ2(m)
‖r(n)− {

K∑

k=1

Ak[b
(c)
k (n)Ck,0(n)

+b
(c)
k (n−1)Ck,1(n−1) + b

(c)
k (n−2)Ck,2(n−2)]h

(m)
k }‖2). (4.36)
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6. Perform symbol detection at the lth iteration by

P (bk(n) = βj|R) ∝ El{λ(R|b(l)
k,j(n), σ2,H)}, (4.37)

7. Estimate channel response {gk} or {hk} from sample means

El{g(l)
k |R} ∼=

1

l

l∑
m=1

g
(m)
k or El{h(l)

k |R} ∼=
1

l

l∑
m=1

h
(m)
k (4.38)

8. Estimate noise level σ2 from sample means

El{σ2(l)|R} ∼= 1

l

l∑
m=1

σ2(m). (4.39)

END

As an MCMC method, the adaptive sampling method generates independent

random samples and the current samples are biased by the information taken

from previous samples.

4.4.4 Comparisons to Gibbs sampler detector

Compared to the blind multiuser receivers based on Gibbs sampler [84], the

proposed receiver takes an adaptive procedure to find the most effective distri-

bution for the generation of samples. For iterations of the procedure, an op-

timized dynamic sample allocation scheme is adopted to give indication where

the samples should be distributed. Thus faster convergence of the proposed

receiver is achieved. For the proposed inference procedure, since the ”burn-in”

period is not necessary, all samples from all iterations can be used to calculate
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the Bayesian estimates of the unknown quantities.

As a result, the computation cost of the proposed receiver is lower than the

Gibbs receiver. For the Gibbs sampler, the computation of the conditional pos-

terior distributions of data B is necessary for every iteration to update the sam-

pling distribution. While for the adaptive sampling, only after every ∆M > 1

increment of the iteration index, the sampling distributions are updated ac-

cording to the previous samples. Thus the computational complexity for the

inference procedure of the proposed receiver decreases obviously.

4.5 Simulation results

This section presents simulation examples that are used to test the performance

of the proposed Bayesian multiuser detection for the long code CDMA systems

over fading channels. All users’ spreading sequences are generated randomly

from equal probability binary code {±1}, and the processing gain is chosen as

P = 10. The fading coefficients of the channels are generated according to

uncorrelated circular complex Gaussian distribution. The initial delay ζk for

user k is generated randomly from 0 to P − 1.

The simulation is setup with the following non-informative conjugate prior

distributions. For the case of flat fading channel

p(g
(0)
k ) ∼ N (gk0, Σk0) : gk0 = 0, Σk0 = 10,

p(σ2(0)) ∼ χ−2(ν0, λ0) : ν0 = 1, λ0 = 0.1;
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and for the case of frequency-selective fading channel

p(h
(0)
k ) ∼ N (hk0, Σk0) : hk0 = 0, Σk0 = 1000I,

p(σ2(0)) ∼ χ−2(ν0, λ0) : ν0 = 1, λ0 = 0.3.

For both cases, the initial values for data symbols are generated randomly.

Note that the performance of the detector is insensitive to the values of the

parameters in these priors, since the priors are non-informative.

Both the uncoded system and the coded system are tested by the simulations.

For uncoded system, the data block size is chosen as N = 128. For coded system,

one half of the constraint length-5 convolutional code [6] (with generator 23 and

35 in octal notation) is employed. We choose 128 information bits, i.e., N = 256.

The adaptive sampling is performed for 100 iterations for both systems.

4.5.1 Convergence of the data detection

The convergence behaviors of the Bayesian multiuser detector are studied firstly.

Let us consider five active users, and the amplitudes of the users and the noise

variance are given as

A2
1 = −4dB,A2

2 = −2dB,A2
3 = 0dB,

A2
4 = 2dB, A2

5 = 4dB, σ2 = −1.5dB.

For the case of the flat fading channel, we consider only the coded system.

In Fig 4.1, Fig 4.2 and Fig 4.3, we plot the first 100 samples of the symbols

b2(50), b3(80), b5(120) drawn by the Gibbs sampler and the proposed method
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respectively for the coded system. Same as the definition in the Section 4.2,

bk(n) means the nth symbol transmitted by user k.

For the case of the frequency-selective fading channel, both the uncoded

system and the coded system are simulated. Fig 4.4, Fig 4.5 and Fig 4.6 present

100 samples of b1(90), b4(45), b5(60) obtained from the Gibbs sampler and the

proposed detection procedure for uncoded system, respectively. Fig 4.7, Fig 4.8

and Fig 4.9 present 100 samples of b1(10), b2(70), b3(70) obtained from the Gibbs

sampler and the proposed detection procedure for coded system, respectively.

Fig 4.1 - Fig 4.9 show that the Gibbs sampler method needs a burn-in period

to begin the inference procedure, while the proposed method based on adaptive

sampling enters the procedure directly and reaches the convergence quickly.

Therefore, as seen from the simulation results, the proposed receiver improves

the convergence speed substantially. Since ”burn-in” period is not needed, all

the samples can be used to calculate the Bayesian estimates.

4.5.2 Channel estimation

The channel estimation results of the proposed receiver are illustrated for coded

system. Fig 4.10 and Fig 4.11 show the first 100 samples of the channel coeffi-

cients g2 and g4 drawn by the proposed method for the flat-fading channels. Fig

4.12 - Fig 4.15 present the first 100 samples of channel responses h1(1), h3(1),

h3(3) and h5(2) drawn by the proposed method for the frequency-selective fad-

ing channels. It is shown that the inference procedure converges quickly because

the samples of all the quantities converge to their real values in a few iterations.
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4.5.3 Noise level estimation

For simplicity, the estimation of noise level is tested only for system over the

coded frequence-selective fading channel. Fig 4.16 plots the first 100 samples of

noise variance σ2 drawn by the proposed method. Since the samples converge

to the real value within only several iterations, it is again demonstrated the fast

convergence speed of the inference procedure.

4.5.4 Detection performance

Let us now consider the BER performance of the proposed Bayesian multiuser

detector for the long code systems. With the assumption that all users have

the same amplitudes, we test the BER versus signal-to-noise ratio (SNR) for

the coded systems. Based on the results of the previous simulation examples,

it is enough to choose the number of iterations to be 50 because all parame-

ter samples reach convergence after 50 iterations. The simulation results for

the systems over flat fading channel and frequency-selective fading channel are

shown in Fig 4.17 and Fig 4.18, respectively.

Comparisons are made on the BER performances achieved by the proposed

receiver and the Gibbs sampler receiver. The results are presented in Fig 4.19

and Fig 4.20 for the systems over flat fading channel and frequency-selective

fading channel respectively. It is seen from these figures, that the proposed

receiver achieves the comparable performance to the Gibbs sampler receiver.
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4.5.5 Near-far resistance

The capability of near-far resistance is illustrated in Fig 4.21 for the system

over flat fading channel, and in Fig 4.22 for the system over frequency-selective

fading channel. The near-far ratio is defined as the ratio between the power

of interfering users and the power of the desired user. Let us fix the power of

the desired user and change the power of interfering users, and assume that all

interfering users have the same power. The BER performance is tested as the

function of near-far ratio for the systems with K = 5, 8 and 10. The results in

Fig 4.21 and Fig 4.22 demonstrate that the propose technique performs well in

near-far situations.

4.6 Conclusions

This chapter proposes a blind Bayesian receiver for the DS-CDMA systems em-

ploying long spreading codes in the presence of unknown fading channels. An

efficient Bayesian MCMC inference procedure is derived based on the adaptive

sampling algorithm for the joint process of multiuser detection and channel es-

timation. The implementation of the adaptive sampling is effective to improve

the convergence speed with a reduced computational complexity and compa-

rable good performance. Simulation results are provided to demonstrate the

effectiveness of the proposed technique.
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(a) Gibbs sampler

0 10 20 30 40 50 60 70 80 90 100

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

iterations

sa
m

p
le

s

(b) Adaptive sampling

Figure 4.1: Samples of data bit b2(50) = 1 in the coded system (flat fading
channel)
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(a) Gibbs sampler
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(b) Adaptive sampling

Figure 4.2: Samples of data bit b3(80) = 1 in the coded system (flat fading
channel)
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(b) Adaptive sampling

Figure 4.3: Samples of data bit b5(120) = −1 in the coded system (flat fading
channel)
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(a) Gibbs sampler
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(b) Adaptive sampling

Figure 4.4: Samples of data bit b1(90) = −1 in the uncoded system (frequency-
selective fading channel)
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(b) Adaptive sampling

Figure 4.5: Samples of data bit b4(45) = 1 in the uncoded system (frequency-
selective fading channel)
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(b) Adaptive sampling

Figure 4.6: Samples of data bit b5(60) = 1 in the uncoded system (frequency-
selective fading channel)
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(b) Adaptive sampling

Figure 4.7: Samples of data bit b1(10) = −1 in the coded system (frequency-
selective fading channel)
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(b) Adaptive sampling

Figure 4.8: Samples of data bit b2(70) = −1 in the coded system (frequency-
selective fading channel)
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(b) Adaptive sampling

Figure 4.9: Samples of data bit b3(70) = 1 in the coded system (frequency-
selective fading channel)
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Figure 4.10: Samples of flat fading channel coefficient (g2 = −0.5082− 0.2715i)
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Figure 4.11: Samples of flat fading channel coefficient (g4 = −0.1865− 0.4120i)
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Figure 4.12: Samples of multipath parameters (h1(1) = −0.5044− 0.1665i)

0 10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

iterations

sa
m

pl
es imag 

real 

Figure 4.13: Samples of multipath parameters (h3(1) = −0.5110 + 0.0072i)
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Figure 4.14: Samples of multipath parameters (h3(3) = 0.5205 + 0.0888i)
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Figure 4.15: Samples of multipath parameters (h5(2) = 0.2685 + 0.0565i)
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Figure 4.16: Samples of noise σ2 (σ2 = −1.5dB) (frequency-selective fading
channel)
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Figure 4.17: BER versus SNR (flat fading channel)
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Figure 4.18: BER versus SNR (frequency-selective fading channel)
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Figure 4.19: Comparison on BER performance, K = 10 (flat fading channel)
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Figure 4.20: Comparison on BER performance, K = 10 (frequency-selective
fading channel)
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Figure 4.21: BER versus near-far ratio, SNR = 15 dB (flat fading channel)
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Figure 4.22: BER versus near-far ratio, SNR = 15 dB (frequency-selective
fading channel)
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Chapter 5

Blind SMC multiuser detection

based on EM framework

5.1 Introduction

The Sequential Monte Carlo (SMC) methods, which are the other category

of Monte Carlo signal processing, have also begun to show a great potential

for solutions to a wide range of statistical inference problems [86]. Comparing

to the MCMC methods, the SMC provides a better performance achieved by

parallel processing and is suited to practical applications. By iteratively gen-

erating Monte Carlo samples of the state variables or other latent variables,

the posterior distribution of any system parameter of interest can be approxi-

mated. The complete theoretical framework using SMC methods is described

in [87]. The SMC methods have been successfully applied to a few problems
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in communications, such as blind equalization and detection in fading channels

[79] [88] [89] [90] [91] [110]. The solution to the detection problem for general

MIMO systems was presented in [90]. The demodulation algorithm based on

SMC and QR decomposition was developed in [111] for the MIMO systems over

flat-fading channel. For applications to CDMA systems, the SMC-KF reported

in [91] combines the conventional Kalman filter and importance sampling tech-

nique to approximate the multi-access interference (MAI) as circular Gaussian

for the problem of single-user detection. The particle filtering methods are de-

veloped for the multiuser framework of CDMA system [92] [93], the required

computational complexity of all these methods grows exponentially with the

number of users. Therefore the conventional SMC method is inefficiently used

for multiuser detection of DS-CDMA system with a large number of users.

A computationally efficient decomposition algorithm was reported in [112]

for parameter estimation of superimposed signals. This algorithm is based on

the expectation-maximization (EM) framework to decompose the observed data

into a number of signal components and then estimate the parameters of each

signal component separately. This generalized EM algorithm has been used in

some literatures [113] [114] to demonstrate the effectiveness of avoiding expo-

nential complexity in multiuser detection. Therefore, it is possible to adopt this

decomposition algorithm to divide a complicated SMC estimation problem into

smaller ones so that the total computational complexity is minimized and the

error propagation problem is avoided at the same time.

This chapter presents an SMC-based formulation of multiuser detection for

DS-CDMA system with unknown fading channels. Firstly, the multiuser sys-

tem is decomposed into separate single user systems by the EM decomposition
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algorithm. Then the SIS and the Kalman filter are combined to perform the

data detection and channel estimation for every single user system. With the

decomposition of the superimposed observation signals, the total computational

complexity of the SMC based method can be reduced from O(|A|K) to O(|A|K),

where |A| is the size of transmitted symbol set {a1, · · · , a|A|} and K is the num-

ber of the active users. Based on these concepts, a novel iterative receiver EM-

SMC is developed. Simulation results are presented to show that the receiver

performs well over fading channel with a significantly reduced computational

complexity.

5.2 Signal model

5.2.1 Flat fading channels

Let us consider a DS-CDMA system that has K active users whose signals are

transmitted over flat fading channel with additive white Gaussian noise. The

representation of the received signals is given by

r(t) =
K∑

k=1

N−1∑
n=0

gksk(n)c̄k(t− nT − τk) + ω(t) (5.1)

where T is the symbol duration, τk and sk(n) denote the delay of the signal

and the transmitted symbol for user k, respectively. It is assumed that the

transmitted symbols are independent and taken from a finite alphabet set A =

{a1, · · · , ai, · · · , a|A|}, and for each user k = 1, · · · , K, the transmitted symbols

{sk(n)}N−1
n=0 are differentially modulated with the binary information symbols

{dk(n)}N−1
n=1 . The spreading waveform, c̄k(t), for user k is formed by the pulse
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shape φ(t) and spreading sequence c̄k(p) for user k is defined as

c̄k(t) =
P−1∑
p=0

c̄k(p)φ(t− pTc) (5.2)

where P is the spreading gain, Tc = T/P is the chip duration, and gk is the

complex fading channel gain between the transmitter and the receiver for user

k.

The received signals are processed by a chip-matched filter and sampled at

the chip-rate to generate the P × 1 observation vector expressed as

r(n) =
K∑

k=1

sk(n)Ckgk + ω(n). (5.3)

Here we assume that the delay spread is small compared with the symbol in-

terval, so that the inter-symbol interference is negligible. Therefore, Ck denotes

as

Ck = [c̄k(0), c̄k(1), . . . , c̄k(P − 1)]T . (5.4)

The noise term {ω(n)}N−1
n=0 in (5.3) is assumed to be an i.i.d complex white

Gaussian vector with zero-mean and variance σ2, i.e., ω(n) ∼ N (0, σ2IP ).

Let R = {r(n)}N−1
n=0 and d(n) = {dk(n)}K

k=1. Our objective is to estimate

the a posteriori probabilities of the information symbols

P (d(n) = ai|R), ai ∈ AK , n = 1, · · · , N − 1 (5.5)

based on the received signals R without knowing the channel information {gk}K
k=1.
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5.2.2 Frequency-selective fading channels

Now consider a DS-CDMA system with the same signals which transmit through

the frequency-selective fading channel. The multipath channel for user k is

modeled by the impulse response hk(t) which is defined as

hk(t) =
L∑

l=1

αk,lδ(t− τk,l) (5.6)

where L is the total number of resolvable paths in the channel, αk,l and τk,l are,

respectively, the complex path gain and delay of the lth path for user k.

Then the representation of the received signals is given by

r(t) =
K∑

k=1

N−1∑
n=0

sk(n)ck(t− nT − τk) + ω(t) (5.7)

where the effective spreading waveform, ck(t), for user k is constructed from

convolution of the original spreading waveform and the channel response, i.e.,

ck(t) = c̄k(t) ∗ hk(t).

It is assumed that the maximum channel delay in terms of number of chips is

smaller than P , and the initial delay is much smaller than the symbol interval.

The received signals are processed by a chip-matched filter and sampled at the

chip-rate to generate the P × 1 observation vector expressed as

r(n) =
K∑

k=1

sk(n)Ckhk + ω(n) (5.8)
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where Ck denotes a P × L matrix which is expressed as

Ck =




c̄k(0) 0 . . . 0

c̄k(1) c̄k(0)
...

c̄k(1)
. . . 0

...
. . . c̄k(0)

...
... c̄k(1)

...

c̄k(P − 1) c̄k(P − 2) · · · c̄k(P − L)




(5.9)

and

hk = [hk,1, hk,2, · · · , hk,L]T . (5.10)

The noise term {ω(n)}N−1
n=0 in (5.8) is also assumed to be an i.i.d complex white

Gaussian vector with a zero-mean and a variance σ2, i.e., ω(n) ∼ N (0, σ2IP ).

It is seen that the system over flat-fading channel (5.3) and the system over

the frequency-selective fading channel (5.8) are described by similar equations,

only with different forms of the variable involved.

Again, without knowing the channel response {hk}K
k=1, the a posteriori prob-

abilities of the information symbols {dk(n)}k=1:K
n=1:N−1 are to be estimated based

on the received signals {r(n)}N−1
n=0 and the a priori information symbol proba-

bilities.

5.3 Sequential Monte Carlo method

Sequential Monte Carlo (SMC) is a family of probability approximation methods

which use Monte Carlo samples to efficiently estimate the posterior distribution

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



5.3. Sequential Monte Carlo method 109

of the unknown variables in dynamic systems [86]. SMC methods are very

flexible, easy to implement, parallelisable and applicable in very general settings.

5.3.1 Problem statement

Let us considering a dynamic system modeled in the following state-space form

state equation : zt = ft(zt−1,ut)

observation equation : yt = gt(zt,vt) (5.11)

where zt, yt, ut and vt are, respectively, the state variable, the observation, the

state noise, and the observation noise at time t, which can be either scalars or

vectors.

Let Zt = (z0, z1, · · · , zt) and Yt = (y0,y1, · · · ,yt), an online inference of

Zt is of interest. That is, at current time instant t, a timely estimate is to be

made for the function, say h(Zt), of the state variable Zt based on the currently

available observation, Yt. With the Bayes theorem, the optimal solution to this

problem is found to be

E{h(Zt)|Yt} =

∫
h(Zt)p(Zt|Yt)dZt. (5.12)

In most cases, an exact evaluation of this expectation is analytically intractable

because of the prohibitive computational complexity of such dynamic systems.

Monte Carlo methods provide us a viable alternative to the direct integration.

Specifically, if m random samples {Z(j)
t }m

j=1 are drawn from the distribution

p(Zt|Yt), E{h(Zt)|Yt} can be estimated with the functional mean of the sam-

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



5.3. Sequential Monte Carlo method 110

ples, i.e.,

Ê{h(Zt)|Yt} =
1

m

m∑
j=1

h(Z
(j)
t ) (5.13)

It is often not feasible to directly obtain samples from p(Zt|Yt) at any time t.

In applied statistics, Markov chain Monte Carlo (MCMC) methods are a popular

approach to sampling from such complex probability distributions. However,

MCMC methods are iterative algorithm unsuited to such recursive estimation

problems.

5.3.2 Importance sampling

An alterative classical solution for this case is the importance sampling method

[115]. It is easy to obtain samples from some trial distributions based on the

concept of importance sampling.

Let us assume a trial distribution q(Zt|Yt), which is the so-called impor-

tance sampling distribution, or importance function, and denote the importance

weights as

wt =
p(Zt|Yt)

q(Zt|Yt)
. (5.14)

Consequently, if we generate a set of random samples {Z(j)
t }m

j=1 according to

the importance function q(Zt|Yt) and associate the weights

w
(j)
t =

p(Z
(j)
t |Yt)

q(Z
(j)
t |Yt)

(5.15)
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to the sample Z
(j)
t , the quantity of interest, E{h(Zt)|Yt}, can be estimated by

Ê{h(Zt)|Yt} =
1

Wt

m∑
j=1

h(Z
(j)
t )w

(j)
t (5.16)

where Wt =
∑m

j=1 w
(j)
t . The pair (Z

(j)
t , w

(j)
t ), j = 1, · · · ,m, is called a properly

weighted sample with respect to distribution p(Zt|Yt).

Importance sampling is a general Monte carlo integration method. However,

in its simplest form, it is not adequate for recursive estimation. That is because

each time new data Yt+1 become available, the importance weights need to be

recomputed over the entire state sequence. The computational complexity of

this operation increases with time.

5.3.3 Sequential importance sampling

Because the state equation of the system possesses a Markovian structure, a

recursive importance sampling strategy, sequential importance sampling (SIS),

can be implemented. The importance sampling can be modified so that it

becomes possible to compute the estimation of p(Zt|Yt) without modifying the

past generated samples and weights. This means that the importance function

at time t, q(Zt|Yt), admits as marginal distribution of the importance function

at time t− 1, q(Zt−1|Yt−1).

q(Zt|Yt) = q(Zt−1|Yt)q(zt|Zt−1,Yt) (5.17)

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



5.3. Sequential Monte Carlo method 112

By iterating we can obtain

q(Zt|Yt) = q(z0)
t∏

s=1

q(zs|Zs−1,Ys). (5.18)

It is easy to see that this importance function allows us to update recursively

the importance weights in time, that is

w
(j)
t = w

(j)
t−1 ·

p(Z
(j)
t |Yt)

p(Z
(j)
t−1|Yt−1)q(z

(j)
t |Z(j)

t−1,Yt)
. (5.19)

The SIS, which is a constrained version of importance sampling, is the basis

of all the SMC techniques.

5.3.4 SMC framework

Based on the SIS method, we describe a general framework of the SMC methods

as follows.

Suppose a set of properly weighted samples {(Z(j)
t−1, w

(j)
t−1)}m

j=1 (with respect

to p(Zt−1|Yt−1)) is given at time (t − 1). Based on these previous samples, an

SMC algorithm generates a set of properly weighted samples, {(Z(j)
t , w

(j)
t )}m

j=1,

at time t with respect to p(Zt|Yt). It is noted that for most applications we are

only able to evaluate p(Zt|Yt) up to a normalizing constant, which is sufficient

for using (5.16) in Monte Carlo estimation. For j = 1, · · · ,m, the algorithm is

described as follows.

• Draw a sample z
(j)
t from a trial distribution q(zt|Z(j)

t−1,Yt) and let Z
(j)
t =

(Z
(j)
t−1, z

(j)
t );
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• Compute the importance weight according to (5.19).

The algorithm is initialized by drawing a set of i.i.d. samples z
(1)
0 , . . . , z

(m)
0

from p(z0|y0). When y0 represents the ”null” information, p(z0|y0) corresponds

to the prior distribution of z0. It is proven in [86] that the above algorithm

indeed generates properly weighted samples with respect to the distribution

p(Zt|Yt).

5.3.5 Resampling procedure

The importance sampling weight w
(j)
t measures the ”quality” of the correspond-

ing imputed sequence Z
(j)
t . A relatively small weight implies that the sample

is drawn far from the main body of the posterior distribution and has a small

contribution in the final estimation. Such a sample is said to be ineffective.

If there are too many ineffective samples, the Monte Carlo procedure becomes

inefficient. To avoid the degeneracy, a useful resampling method for reducing in-

effective samples and enhancing effective ones was suggested in [116]. Roughly

speaking, resampling is to multiply the streams with the larger importance

weights, while eliminate the ones with small importance weights. A simple but

efficient resampling procedure consists of the following steps.

• Sample a new set of streams {Ẑ(j)

t }m
j=1 from {Z(j)

t }m
j=1 with a probability

proportional to the importance weights {w(j)
t }m

j=1.

• Assign equal weight to each stream in the new samples, i.e., ŵ
(j)
t = 1/m

for j = 1, . . . , m.

Resampling can be implemented at every fixed-length time interval, e.g.,

every five steps, or it can be conducted dynamically. It is shown in [88] that
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the samples drawn by the above resampling procedure are also indeed properly

weighted with respect to p(Zt|Yt), provided that m is sufficiently large.

Heuristically, resampling procedure can provide chances for effective sample

streams to amplify themselves, hence rejuvenate the sampler to produce a better

result for future states as system evolves.

5.4 EM-SMC receiver

In this section, we consider the SMC formulation for multiuser detection and

channel estimation of DS-CDMA systems. The applications of SMC to mul-

tiuser systems were considered in [90]-[93]. The main problem of these reported

work is that the computational complexity of such SMC receivers grows expo-

nentially with the number of inputs. The reason for the high complexity of the

conventional SMC methods is that the algorithms make decision for all users

at a time, thus the prediction and the update at each step involve m × |A|K

complexity for computing the trial sample distributions, and for some particle

filtering methods, the additional selection step is implemented in O(m× |A|K)

operations. Therefore, it is difficult to directly use the conventional SMC meth-

ods to support a large number of users in DS-CDMA systems.

In this section, a novel receiver framework is proposed to combine the EM

algorithm and SMC estimation to avoid the exponential complexity of the con-

ventional SMC methods.
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5.4.1 Decomposition of the superimposed signals based

on EM algorithm

For developing the new SMC detection scheme with a reasonable complexity,

we consider to decompose the multiuser system into K single user systems

firstly. Therefore, the EM algorithm is applied here for the decomposition of

the superimposed signals.

The expectation maximization algorithm, developed in [117], is a popular

numerical method for locating modes of likelihood functions. The basic idea

is, rather than directly maximizing the likelihood function of the observed data

which are complicated and intractable, specifying the augmented data to sim-

plify the calculation and then performing a series of maximization. Each it-

eration of the EM consists of two steps: the E-step (expectation) which ap-

proximates the augmented data with conditional expectation, and the M-step

(maximization) which maximizes the augmented data likelihood.

In [112], the EM method suggests a specific way of decomposing superim-

posed signals. Based on this method, the observation data is decomposed into

their signal components, and then the parameters of each signal component can

be estimated separately.

A. Flat fading channels

According to the algorithm, the observation vector given in (5.3) at the

output of filter can be decomposed into K components such that

r(n) =
K∑

k=1

xk(n) (5.20)
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where

xk(n) = sk(n)Ckgk + ωk(n) (5.21)

and ωk(n) are obtained by arbitrarily decomposing the total noise ω(n) into K

components, that is,

ω(n) =
K∑

k=1

ωk(n). (5.22)

One convenient way is to make ωk(n) be statistically independent, zero-mean,

and Gaussian with a covariance Nk = βkσ
2, where the weight coefficients

{βk}K
k=1 are real-valued scalars satisfying

K∑

k=1

βk = 1, βk ≥ 0 (5.23)

To achieve the maximum convergence rate, the weight coefficients {βk}K
k=1 are

chosen to be equal for different values of k, i.e., β1 = · · · = βK = 1/K [118].

Then our EM framework assumes the following form for the qth iteration:

E-Step: For k = 1, 2, · · · , K, compute

x̂
(q)
k (n) = ŝ

(q)
k (n)Ckĝ

(q)
k + βk

[
r(n)−

K∑

l=1

ŝ
(q)
l (n)Clĝ

(q)
l

]
(5.24)

M-Step: For k = 1, 2, · · · , K, obtain the ML estimate of {s(q+1)
k (n), g

(q+1)
k }

based on the x̂
(q)
k (n).

B. Frequency-selective fading channels

Similarly, the observation vector given in (5.8) at the output of the filter is
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decomposed into K components such that

r(n) =
K∑

k=1

xk(n) (5.25)

where

xk(n) = sk(n)Ckhk + ωk(n), (5.26)

and ωk(n) are obtained by decomposing the total noise ω(n) into K components,

i.e.,

ω(n) =
K∑

k=1

ωk(n). (5.27)

Similarly, ωk(n) is assumed as statistically independent, zero-mean, and Gaus-

sian with a covariance Nk = βkσ
2, where the weight coefficients {βk}K

k=1 are

chosen to be equal for different values of k, i.e., β1 = · · · = βK = 1/K.

Then the corresponding EM framework has the following form for the qth

iteration:

E-Step: For k = 1, 2, · · · , K, compute

x̂
(q)
k (n) = ŝ

(q)
k (n)Ckĥ

(q)

k + βk

[
r(n)−

K∑

l=1

ŝ
(q)
l (n)Clĥ

(q)

l

]
(5.28)

M-Step: For k = 1, 2, · · · , K, obtain the ML estimate of {s(q)
k (n),h

(q)
k }

based on the x̂
(q)
k (n).

As seen from above two frameworks, for every E-step and M-step, there are

only one unknown user’s parameters to be estimated at a time. Therefore, the

complicated multi-parameter optimization is decoupled into K separate opti-

mizations.
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5.4.2 Framework of EM-SMC receiver

After the above EM decomposition, the SMC method is used to approach the

optimum ML estimations {ŝ(q)
k (n), ĝ

(q)
k } or {ŝ(q)

k (n), ĥ
(q)

k } for every user sepa-

rately. Note that in the conventional SMC approach, K unknown users need

to be detected all together to result in a computation complexity exponentially

increasing with K. In contrast, the proposed method implements SMC estima-

tion for every unknown user separately and in parallel. This difference is the

key leading to the efficient implementation of the proposed SMC approach in

terms of both complexity and performance.

The entire framework of this approach is presented in Fig 5.1. The algo-

rithm achieves improvement in the subsequent parameter estimates by using

the feedback of the current parameter estimates to more effectively decompose

the observed data. θ̂
(q)
k in the feedback path represents the estimates of un-

known parameters for user k. For flat fading system, θ̂
(q)
k = {ŝ(q)

k (n), q̂
(q)
k },

and for frequency-selective fading system, θ̂
(q)
k = {ŝ(q)

k (n), ĥ
(q)

k }. One important

property of the computational structure is that θ̂
(q)
k for different values of k can

be estimated simultaneously by parallel computation.

5.4.3 SMC detection

Now let us consider the estimation of the unknown parameters θ̂
(q)
k based on

each signal component x̂
(q)
k (n). According to the description of SMC method in

section 4, we develop a blind SMC estimation algorithm to solve this problem,

which combines the SIS for the data detection and the Kalman filter (KF) for

the channel estimation.
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Figure 5.1: The EM-SMC receiver framework

For simplicity of presentation, the hat and superscript of the expressions

thereafter are omitted when the systems described in (5.21) and (5.26) are

considered. To be convenient, only the model (5.26) is taken in developing the

following SMC inference procedure. The results for the model (5.21) are similar

and simpler.

Denote Xk,n , {xk(0),xk(1), · · · ,xk(n)} and Dk,n , {dk(1), · · · , dk(n)}.
The objective is to use SMC method to perform a blind estimate of the a

posteriori symbol probability

P (dk(n) = ai|Xk,n), ai ∈ A; n = 1, · · · , N − 1 (5.29)

based on the observation component Xk,n up to time n and a priori symbol

probability of Dk,n, without knowing the channel response hk.

Let {s(j)
k (n)}m

j=1 be samples drawn by the SMC at time n and denote S
(j)
k,n =
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{s(j)
k (0), · · · , s

(j)
k (n)}. For each value of n, a set of Monte Carlo samples of

transmitted symbols, {S(j)
k,n, w

(j)
k,n}m

j=1, which are properly weighted with respect

to the distribution p(Sk,n|Xk,n), are to be obtained. For every symbol ai ∈ A,

the a posteriori probability of the information symbol dk(n) can be estimated

as

P (dk(n) = ai|Xk,n) = P (sk(n)s∗k(n− 1) = ai|Xk,n)

= E{1(sk(n)s∗k(n− 1) = ai)|Xk,n}
∼= 1

Wk,n

m∑
j=1

1(s
(j)
k (n)s

(j)∗
k (n− 1) = ai)w

(j)
k,n (5.30)

where Wk,n ,
∑m

j=1 w
(j)
k,n and 1(·) is an indicator function defined as

1(x = a) =





1, if x = a

0, if x 6= a.
(5.31)

Based on the general principle of the SMC, the samples {s(j)
k (n)}m

j=1 are

drawn from the trial sampling density

q(s
(j)
k (n)|S(j)

k,n−1,Xk,n) , p(s
(j)
k (n)|S(j)

k,n−1,Xk,n) (5.32)

and the importance weight can be updated according to

w
(j)
k,n ∝ w

(j)
k,n−1p(Xk,n|S(j)

k,n−1,Xk,n−1) (5.33)

= w
(j)
k,n−1

∑
ai∈A

p(xk(n)|S(j)
k,n−1, sk(n) = ai,Xk,n−1)P (sk(n) = ai|S(j)

k,n−1,Xk,n−1)

= w
(j)
k,n−1

∑
ai∈A

α
(j)
k,n,i. (5.34)

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



5.4. EM-SMC receiver 121

The derivation of (5.33) is found in Appendix. To compute the predictive den-

sity p(xk(n)|S(j)
k,n−1, sk(n) = ai,Xk,n−1), a Gaussian distribution is assigned to

the channel hk, i.e.,

hk ∼ Nc(h̄k, Σ̄k). (5.35)

Then, the distribution of hk, conditioned on S
(j)
k,n and Xk,n, can be computed as

p(hk|S(j)
k,n,Xk,n) ∝ p(Xk,n|S(j)

k,n,hk)p(hk)

∼ Nc(h
(j)
k,n,Σ

(j)
k,n) (5.36)

where

h
(j)
k,n , Σ

(j)
k,n

[
Σ̄−1

k h̄k +
1

Nk

n∑
i=0

Ψ
(j)H
k,i xk(i)

]
(5.37)

Σ
(j)
k,n ,

[
Σ̄−1

k +
1

Nk

n∑
i=0

Ψ
(j)H
k,i Ψ

(j)
k,i

]−1

(5.38)

and

Ψ
(j)
k,i = s

(j)
k (i)Ck. (5.39)

Hence, the conditional density p(xk(n)|S(j)
k,n−1, sk(n) = ai,Xk,n−1) is given by

p(xk(n)|S(j)
k,n−1, sk(n) = ai,Xk,n−1)

=

∫
p(xk(n)|S(j)

k,n−1, sk(n)=ai,Xk,n−1,hk)p(hk|S(j)
k,n−1,Xk,n−1)dhk. (5.40)

Because it is an integral of a Gaussian probability density function (pdf) with

respect to another Gaussian pdf, the resulting pdf is still Gaussian, i.e.,

p(xk(n)|S(j)
k,n−1, sk(n) = ai,Xk,n−1) ∼ Nc(µ

(j)
k,n,i,Θ

(j)
k,n,i) (5.41)
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with a mean

µ
(j)
k,n,i , E

{
xk(n)|S(j)

k,n−1, sk(n) = ai,Xk,n−1

}

= Φk,ih
(j)
k,n−1 (5.42)

and a covariance

Θ
(j)
k,n,i , Cov

{
xk(n)|S(j)

k,n−1, sk(n) = ai,Xk,n−1

}

= NkIp + Φk,iΣ
(j)
k,n−1Φ

H
k,i (5.43)

where

Φk,i = aiCk. (5.44)

Then, α
(j)
k,n,i in (5.34) can be computed by

α
(j)
k,n,i = |Θ(j)

k,n,i|−1exp
{
−(xk(n)− µ

(j)
k,n,i)

H(Θ
(j)
k,n,i)

−1(xk(n)− µ
(j)
k,n,i)

}

×P (sk(n) = ai|S(j)
k,n−1,Xk,n−1)

= |Θ(j)
k,n,i|−1exp

{
−(xk(n)− µ

(j)
k,n,i)

H(Θ
(j)
k,n,i)

−1(xk(n)− µ
(j)
k,n,i)

}

×P (dk(n) = ais
(j)∗
k (n− 1)) (5.45)

which holds because sk(n) is independent of Xk,n−1 given S
(j)
k,n−1, and {sk(n)}

is a first-order Markov chain due to the differential encoding rule. P (dk(n) =

ais
(j)∗
k (n− 1)) is the a priori probability of the unknown symbol.
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The trial distribution in (5.32) can be computed as

p(s
(j)
k (n)|S(j)

k,n−1,Xk,n)

∝ p(xk(n)|S(j)
k,n−1, s

(j)
k (n) = ai,Xk,n−1)P (s

(j)
k (n) = ai|S(j)

k,n−1,Xk,n−1)

= α
(j)
k,n,i. (5.46)

It is noted that the a posteriori mean and covariance of the channel in (5.37)

and (5.38) can be updated recursively by Kalman filter as follows. At the nth

step, the new sample of s
(j)
k (n) and the past samples S

(j)
k,n−1 are combined to

form S
(j)
k,n. Let µ

(j)
k,n and Θ

(j)
k,n be the quantities computed by (5.42) and (5.43)

for the imputed s
(j)
k (n). Based on a matrix inversion lemma, (5.37) and (5.38)

become

h
(j)
k,n = h

(j)
k,n−1 + Ω

(j)
k,n(Θ

(j)
k,n)−1(xk(n)− µ

(j)
k,n) (5.47)

Σ
(j)
k,n = Σ

(j)
k,n−1 −Ω

(j)
k,n(Θ

(j)
k,n)−1Ω

(j)H
k,n (5.48)

with

Ω
(j)
k,n = Σ

(j)
k,n−1Ψ

(j)H
k,n . (5.49)

Finally, the SMC blind detector for each decomposed signal component is given

as follows.

FOR k = 1, · · · , K,

Initialization:

For j = 1, · · · ,m

• Set the initial values of channel vector as h
(j)
k ∼ Nc(0, 100IL);

• Initial all importance weights as w
(j)
k,−1 = 1.
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End

Estimation:

For n = 0, · · · , N − 1

I. Update weighted samples

For j = 1, · · · ,m

1. For each ai ∈ A

• Compute µ
(j)
k,n,i, Θ

(j)
k,n,i according to (5.42) and (5.43);

• Compute trial sampling distribution α
(j)
k,n,i according to

(5.45).

End

2. Draw a sample s
(j)
k (n) according to the trial sampling distribution

(5.46).

3. Compute the importance weight

ŵ
(j)
k,n = w

(j)
k,n−1

∑
ai∈A

α
(j)
k,n,i; (5.50)

Normalize as

w
(j)
k,n =

ŵ
(j)
k,n∑m

j=1 ŵ
(j)
k,n

. (5.51)

4. If the imputed samples s
(j)
k (n) = ai

• Set µ
(j)
k,n = µ

(j)
k,n,i,Θ

(j)
k,n = Θ

(j)
k,n,i;

• Update the a posteriori mean h
(j)
k,n and covariance Σ

(j)
k,n of the
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channel according to (5.47) and (5.48).

End

5. Compute the a posteriori probability of the information symbol

dk(n) according to (5.30).

End (for I)

II. Resampling

If n is a multiple of the resampling interval

For j = 1, · · · ,m

• Draw a new set of {S(j)
k,n,h

(j)
k,n,Σ

(j)
k,n}m

j=1 from the original set

with a probability proportional to the importance weights {w(j)
k,n}m

j=1;

• Assign equal weight for each new samples, i.e., ŵ
(j)
k,n = 1/m.

End

End (for II)

End

END

It is observed that, for each signal component, i.e., each user in our system,

the dominant computation for the SMC receiver needs N × m × |A| one-step

predictions for computing α
(j)
k,n,i and N ×m one-step Kalman filter updates for

{(h(j)
k,n,Σ

(j)
k,n)}. Since the m samples operate independently, the proposed SMC

estimation is well suited for parallel implementation.
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5.4.4 Computational complexity

For the entire detection algorithm, it is known that the computational com-

plexity of the conventional SMC method is in the order of O(|A|K), because

the dominant computation for computing trial distribution is in the order of

N × m × |A|K . However, the computational complexity required by the pro-

posed one is Q × O(|A| × K), where Q is the number of the EM iterations.

When the number of users is large, the total computational complexity of the

proposed method is obviously much lower than that of the conventional SMC

method. The simulations in the next section will demonstrate that the value of

required Q is a small number. Thus, the proposed EM-SMC algorithm can be

applied to the DS-CDMA system with a manageable computational complexity.

5.5 Extension to system with long codes

The above EM-SMC receiver is developed for the system with short spreading

codes. As we see, the bit-interval cyclostationarity properties of the short codes

are not necessary for this SMC-based method and the intersymbol interference

(ISI) is negligible for the system model. Therefore, this method can be extended

to the long code systems by changing the spreading waveform (5.2) to

c̄n
k(t) =

P−1∑
p=0

c̄n
k(p)φ(t− pTc). (5.52)

Correspondingly, the spreading vector/matrix Ck should be changed to Ck(n),

whose elements are substituted from {c̄k(p), p = 0, 1, · · · , P − 1} to {c̄n
k(p), p =

0, 1, · · · , P − 1}. Then, the proposed algorithm can be accommodated to the
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CDMA system employing long spreading codes.

5.6 Simulation results

This section provides simulation results to illustrate the performance of the blind

EM-SMC multiuser receiver in both flat fading channels and frequency-selective

fading channels for DS-CDMA system. The channels are assumed to be block

fading, that is the fading coefficients remain constant over the entire block of N

symbols. And the fading coefficients of the channels are generated according to

uncorrelated circular complex Gaussian distribution. All the users’ spreading

sequences are chosen as short sequence with a processing gain P = 10, and are

generated randomly from equal probability binary code and then normalized to

{±1/
√

P}. A rate 1/2 constraint length-5 convolutional code (with generator

23 and 35 in octal notation) is employed. We choose 128 information bits, i.e.,

the coded bit block size is N = 256. Two types of channels are considered, i.e,

flat fading channel and frequency-selective fading channel with L = 3.

5.6.1 Convergence

Let us first study the convergence of the proposed algorithm with the iterations

of the EM signal decomposition. The number of Monte Carlo samples is chosen

as m = 50, and the number of the users is K = 8. The performance of the

proposed receiver in terms of the BERs versus signal-to-noise ratios (SNR) for

different numbers of iterations is shown in Fig 5.2 and Fig 5.3. Fig 5.2 shows

the performance of the system over the flat fading channel, while Fig 5.3 shows

the performance of the system over the frequency-selective fading channel. It
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is observed from both the figures that the BER performance can be improved

when the number of iterations increases. However, little gain can be obtained

after 4 iterations, i.e., the receiver reaches the convergence with only several

iterations. The good capability of convergence ensures the superiority of the

proposed EM-SMC to the conventional SMC method in terms of computational

complexity. In the following simulations, the number of EM steps is taken as 6.
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Figure 5.2: BER versus SNR for various number of iterations (flat fading chan-
nel)

5.6.2 Selection of the number of Monte Carlo samples

Next we consider the selection for the number of Monte Carlo samples. Fig 5.4

and Fig 5.5 present the BER performance as a function of the number of Monte

Carlo samples for the system with SNR = 10, 12 and 15 dB, respectively.

As illustrated in the figures, for both flat fading and frequency-selective fading
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Figure 5.3: BER versus SNR for various number of iterations (frequency-
selective fading channel)

systems, the BERs decrease as the number of samples increases and achieve

convergence when m reaches about 50. In the following simulations, therefore,

the number of Monte Carlo samples is taken as m = 50.

5.6.3 BER performance

Let us now test the BER performance of the proposed method with different

number of users. The BER performances as the function of SNR are tested

for the proposed detector with K = 8, 10 and 12. Fig 5.6 and Fig 5.7 plot

the results of systems in the flat fading channel and frequency-selective fading

channel, respectively.
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Figure 5.4: BER versus the number of Monte Carlo samples, K = 8 (flat fading
channel)

5.6.4 Near-far resistance

The capability of near-far resistance is illustrated in Fig 5.8 for the system

over flat fading channel, and in Fig 5.9 for the system over frequency-selective

fading channel. The near-far ratio is defined as the ratio between the power of

interfering users and the power of the desired user. Let us fix the power of the

desired user and change the power of interfering users. It is assumed that all

interfering users have the same power. The BER performance is tested as the

function of near-far ratio for the systems with K = 8, 10 and 12. The results

in Fig 5.8 and Fig 5.9 demonstrate that the proposed receiver achieves a very

good near-far resistance.
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Figure 5.5: BER versus the number of Monte Carlo samples, K = 8 (frequency-
selective fading channel)

5.6.5 Comparisons of BER performance

Finally, comparisons are made on the performances achieved by the proposed

receiver and other reported receivers. Fig 5.10 and Fig 5.11 present the perfor-

mances achieved by the Gibbs sampler [84], QRD-M-EKF [119], particle filtering

(PF) [95], the proposed EM-SMC receiver and the conventional SMC receiver

[90]. The Gibbs sampler is a kind of Bayesian MCMC methodologies described

in [84]. QRD-M-EKF is a deterministic method developed in [119], which is

based on EKF and QRD-M algorithm.

For a fair comparison, the Gibbs sample of MCMC receiver is performed for

100 iterations with the first 50 iterations as the burning-in period. The number

of Monte Carlo samples used for both the PF method [95] and the conventional

SMC method [90] is 50, which is the same as that used for the proposed receiver.

The number of paths M for the tree-search detection QRD-M-EKF is selected
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Figure 5.6: BER versus the SNR (flat fading channel)

to be 32. The results for the flat fading system are shown in Fig 5.10, while the

results for the frenquency-selective fading system are shown in Fig 5.11.

Fig 5.10 and Fig 5.11 show that the proposed receiver achieves the best per-

formance among the methods which have the similar complexity. Fig 5.10 and

Fig 5.11 also show that the performance of proposed receiver is close to conven-

tional SMC receiver with a little inferiority. The simulation results demonstrate

that the proposed EM-SMC detector achieves nearly the same performance as

that achieved by the conventional SMC detector with a much lower computa-

tional complexity, and also outperforms the other deterministic and MC sam-

pling based detectors with the similar computational complexity.
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Figure 5.7: BER versus the SNR (frequency-selective fading channel)

5.7 Conclusions

In this chapter, a blind multiuser receiver is developed based on the EM frame-

work to decompose the observation signals. The methods of Bayesian SMC

estimation are applied to detect the unknown transmitted symbols according

to the decomposed signal components. With a substantially reduced computa-

tional complexity, the proposed EM-SMC receiver outperforms other methods

with similar complexity and achieves the comparable performance as that ob-

tained by the conventional SMC detector. With the parallel computational

property, the proposed receiver is proved to be well suited to DS-CDMA mul-

tiuser systems.
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Figure 5.8: BER versus the near-far ratio, SNR = 15 dB (flat fading channel)
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Figure 5.9: BER versus the near-far ratio, SNR = 15 dB (frequency-selective
fading channel)
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Figure 5.10: Comparisons on BER performance, K = 8 (flat fading channel)
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Figure 5.11: Comparisons on BER performance, K = 8 (frequency-selective
fading channel)
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Chapter 6

Blind SMC multiuser detection

based on decision feedback

6.1 Introduction

As discussed in the previous chapter, conventional SMC method is inefficient

for multiuser detection of DS-CDMA system with a large number of users. The

reason for the high computational complexity of conventional SMC method

is that the binary data of all users in a symbol interval are considered as a

super symbol by using the conventional representation of the system model.

Thus we can reduce the computational complexity by finding the decomposed

representation of the system model.

Chapter 5 proposed a low complexity SMC-based receiver, EM-SMC, to

the multiuser detection of DS-CDMA system, which uses the EM algorithm to
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decompose the system into separate single user systems, before the SMC method

is applied to perform the parameter estimation in parallel. With the application

of the proposed EM-SMC receiver, the exponential computational complexity is

reduced to be linear with the number of users. However, since the algorithm is

based on the EM framework which decomposes the system approximately, the

detection of EM-SMC needs to be iterated until the convergence is accomplished.

Thus, the whole computational complexity is the product of the complexity of

one user detection multiplied by not only the number of users but also the

number of the EM iterations.

In order to reduce the computational complexity further while keeping the

competitive performance, system decomposition without approximation is nec-

essary. Based on the similar consideration, an SMC demodulation algorithm

is proposed in [111] by utilizing the existing BLAST detection scheme which is

based on the QR decomposition. However, only flat fading channels are consid-

ered in this algorithm, and the channel parameters need to be estimated before

detection through the training sequences, thus it’s not a blind method.

In this chapter, we derive another new SMC-based formulation to blind mul-

tiuser detection of DS-CDMA systems in both flat fading and frequency selective

fading channels. A novel transformation of system models is implemented be-

fore the SMC estimation, which is based on the Cholesky factorization of the

cross-correlation. We make use of the Cholesky factorization algorithm to de-

compose the observed data into the separate signals according to the number

of users. Compared to the QR decomposition used in [111], there is no need

to compute the inverse of the cross-correlation matrix for Cholesky decomposi-

tion, thus the computation complexity is effectively reduced. Then under the
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decision-feedback framework, the parameters of each user are estimated by SMC

method sequentially. The new detection algorithm samples one user at a time

and therefore permits efficient implementation that reduces the computational

complexity associated with the SMC inference. Because there is no need for iter-

ations, much lower complexity can be achieved compared to the EM-SMC. The

computational complexity of the new SMC detection is in the order of O(|A|K),

which is the product of the complexity of one user detection multiplied by only

the number of users.

Based on these concepts, an efficient blind DF-SMC receiver is developed.

Simulation results are presented to show that the receiver performs well for

both flat fading channels and frequency selective fading channels with a further

reduced computational complexity.

6.2 Signal model

6.2.1 Flat fading channels

Let us consider a DS-CDMA system that has K active users whose signals are

transmitted over flat fading channel with additive Gaussian noise. Let T denote

the symbol duration and sk(t) the normalized spreading waveform assigned to

the kth user. Then the received signal r(t) at the nth symbol interval is given

by

r(t) =
K∑

k=1

gkbk(n)sk(t) + ω(t). (6.1)

It is assumed that the transmitted symbols are independent, and taken from a

finite alphabet set A = {a1, · · · , ai, · · · , a|A|}. For each user k = 1, · · · , K, the
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transmitted symbols {bk(n)}N−1
n=0 are differentially modulated from the source

information symbols {dk(n)}N−1
n=1 , gk is the fading coefficient of the kth user’s

channel, and ω(t) is the received zero mean additive complex white Gaussian

noise with variance σ2.

The cross-correlation between the signature waveforms of the users is given

by the cross-correlation matrix R, where the element Ri,j represents the cross-

correlation between the signature waveforms of the ith and jth users. The Ri,j

is defined according to

Ri,j =< si, sj >=

∫ nT

(n−1)T

si(t)sj(t)dt. (6.2)

We process the received signal with a bank of matched filters, then the set

of matched filter outputs y(n) = [y1(n), · · · , yK(n)]T is obtained, where

yk(n) =< r(t), sk(t) >=

∫ nT

(n−1)T

r(t)sk(t)dt (6.3)

It is convenient to express the K × 1 vector y(n) in the form as:

y(n) = RHb(n) + w(n) (6.4)

where H = diag{g1, · · · , gK} is the K×K diagonal matrix of the channel state

information, b(n) = [b1(n), · · · , bK(n)]T is the data vector, and w(n) is the

K × 1 complex Gaussian noise vector with covariance matrix equal to σ2R.

Let Y = {y(n)}N−1
n=0 , and d(n) = {dk(n)}K

k=1. Our objective is to estimate
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the a posteriori probabilities of the information symbols

P (d(n) = ai|Y), ai ∈ AK , n = 1, · · · , N − 1 (6.5)

based on the received signals Y without knowing the channel information H.

6.2.2 Frequency-selective fading channels

Now we consider the DS-CDMA system with the same signals which transmit

through the frequency-selective fading channels. That is, the transmitted signal

of kth user at nth symbol interval is

xk(t) = bk(n)sk(t), (6.6)

and the multipath channel is modeled by

hk(t) =
L∑

l=1

gk,lδ(t− τk,l) (6.7)

where L is the number of paths in each user’s channel, gk,l and τk,l are, respec-

tively, the complex gain and delay of lth path of the kth user’s signal. Then

the total received signal at the receiver is the superposition of the signals from

the K users plus the additive ambient noise given by

r(t) =
K∑

k=1

xk(t) ∗ hk(t) + ω(t)

=
K∑

k=1

bk(n)
L∑

l=1

gk,lsk(t− τk,l) + ω(t) (6.8)
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where ∗ denotes the convolution, and ω(t) is zero mean additive complex white

Gaussian noise with variance σ2.

The received signals are processed by a bank of matched filters for each path

of each user to generate the observation vector expressed as

yk,l(n) = < r(t), sk(t− τk,l) >=

∫ nT

(n−1)T

r(t)sk(t− τk,l)

=
K∑

k′=1

bk′(n)
L∑

l′=1

gk′,l′ρ(k,l)(k′,l′) + wk,l(n) (6.9)

where ρ(k,l)(k′,l′) is defined as the correlation between the spreading waveforms

of the kth user’s lth path and the k′th user’s l′th path.

ρ(k,l)(k′,l′) =

∫ nT

(n−1)T

sk(t− τk,l)sk′(t− τk′,l′)dt (6.10)

We denote the set of the matched filter outputs as the KL vector y(n), that is,

y(n) = [y1,1(n), · · · , y1,L(n), · · · , yK,1(n), · · · , yK,L(n)]T (6.11)

and the correlation matrix as KL×KL matrix R, i.e.,

R =




ρ(1,1)(1,1) · · · ρ(1,1)(1,L) · · · ρ(1,1)(K,1) · · · ρ(1,1)(K,L)

ρ(2,1)(1,1) · · · ρ(2,1)(1,L) · · · ρ(2,1)(K,1) · · · ρ(2,1)(K,L)

...
...

...
...

...
...

...

ρ(K,L)(1,1) · · · ρ(K,L)(1,L) · · · ρ(K,L)(K,1) · · · ρ(K,L)(K,L)




. (6.12)

Then we obtain the expression for the observation vector as:

y(n) = RHb(n) + w(n) (6.13)
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where b(n) = [b1(n), · · · , bK(n)]T is the data vector, and the KL×K matrix H

is the channel response information, expressed by H = diag{g1, · · · ,gK} with

gk = [gk,1, · · · , gk,L]T .

The noise term w(n) = [w1,1(n), · · · , w1,L(n), · · · , wK,1(n), · · · , wK,L(n)]T is

the KL complex Gaussian vector with a zero-mean and a covariance matrix σ2R.

Again, without knowing the channel response H, the a posteriori probabilities

of the information symbols {dk(n)}k=1:K
n=1:N−1 are to be estimated based on the

received signals {y(n)}N−1
n=0 and the a priori information symbol probabilities.

6.3 Cholesky factorization

Now let us consider the problem of blind multiuser detection for the systems

described by (6.4) and (6.13). Before the derivation of the SMC-based formu-

lation for the detection problem, we first introduce the theory of the Cholesky

factorization.

Cholesky factorization is one of the most efficient techniques for the solution

of linear system equations. We describe the corresponding proposition here.

Proposition: For every positive definite matrix B, there exists a unique

lower triangular matrix L ( i.e., Li,k = 0 for i < k ) with positive diagonal

elements such that

B = LHL. (6.14)

It means that Cholesky factorization decomposes the positive-definite Matrix

B into a lower triangular matrix L and the conjugate transpose of the lower
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triangular matrix LH .

In developing the SMC-based detection method, we start with the Cholesky

factorization of the cross-correlation matrix R as

R = FHF (6.15)

Next, the matched filter outputs y(n) are processed by multiplying the matrix

(FH)−1, we obtain

ȳ(n) = (FH)−1y(n)

= (FH)−1RHb(n) + (FH)−1w(n)

= FHb(n) + w̄(n) (6.16)

which is called the output of the whitened matched filter. Because there is a one-

to-one correspondence between ȳ(n) and y(n), both models contain the same

information about the data. The covariance matrix of w̄(n) is

E[w̄(n)w̄(n)H ] = σ2(FH)−1RF−1 = σ2I (6.17)

For the flat fading channel system (6.4), I is a K × K identity matrix, and

for the frequency-selective fading channel system (6.13), the I is a KL × KL

identity matrix.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



6.4. Decomposition of the models 144

6.4 Decomposition of the models

As seen from the model (6.16), the matrix F is lower triangular matrix, therefore

the system can be decomposed into the components for each user as follows:

A. Flat fading channels

x1(n) = ȳ1(n) = F1,1g1b1(n) + w̄1(n) (6.18)

for k = 2 : K

xk(n) = ȳk(n)−
k−1∑
i=1

Fk,igibi(n) = Fk,kgkbk(n) + w̄k(n) (6.19)

end

where Fi,j is the element of the ith row and jth column for the matrix F,

ȳi(n) and w̄i(n) are the ith elements of the vector ȳ(n) and the vector w̄(n)

respectively. Now ȳk(n) contains contributions from users 1, . . . , k but not from

users k + 1, . . . , K.

B. For frequency-selective fading channels

x1(n) = ȳ1(n) = F1,1g1b1(n) + w̄1(n) (6.20)

for k = 2 : K

xk(n) = ȳk(n)−
k−1∑
i=1

Fk,igibi(n) = Fk,kgkbk(n) + w̄k(n) (6.21)

end

where Fi,j is the L× L submatrix of the matrix F, i.e., Fi,j = F((i− 1)L + 1 :

iL, (j − 1)L + 1 : jL), ȳi(n) and w̄i(n) are the L × 1 subvectors of the vector

ȳ(n) and the vector w̄(n), respectively. That is, ȳi(n) = ȳ(n)((i− 1)L + 1 : iL)

and w̄i(n) = w̄(n)((i − 1)L + 1 : iL). Here we denote U(i : j, k : l) as the
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submatrix of the matrix U by taking the rows from i to j and columns from k

to l of U, and u(i : j) is denoted as the subvector of the vector u by taking the

elements from i to j of u. Similarly, ȳk(n) contains contributions from users

1, . . . , k but not from users k + 1, . . . , K.

6.5 DF-SMC receiver

According to the decomposed signal model, we derive the SMC-based detection

with the decision-feedback framework. It should be understood that under this

framework, the symbols are detected sequentially from the first user to the last

user. An SMC inference for the first user is made, then since the decision for

the first user is available, the SMC inference for the second user can be made

by using the feedback of the first user’s inference results. Similarly, for the kth

user, the inference can be made depend on all the previous users’ feedback.

The complete framework is illustrated in Fig 6.1, where the parameters have

the different expressions for different fading channel systems as shown in the

corresponding models.

Here, the SMC inference methods are used to achieve the optimum esti-

mations for {bk(n), gk}K
k=1 or {bk(n),gk}K

k=1 according to the models (6.19) or

(6.21). For convenience, only the model (6.21) is taken in developing the fol-

lowing SMC inference procedure. The results for the model (6.19) are simi-

lar and simpler. We now consider the estimation of the unknown parameters

{bk(n),gk}K
k=1 based on each signal component {xk(n)}K

k=1.

Denote Xk,n , {xk(0),xk(1), · · · ,xk(n)} and Dk,n , {dk(1), · · · , dk(n)}.
The objective is to use SMC method to perform a blind estimation to compute
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Figure 6.1: The DF-SMC receiver framework

the a posteriori symbol probability

P (dk(n) = ai|Xk,n), ai ∈ A; n = 1, · · · , N − 1 (6.22)

based on the observation component Xk,n up to time n and a priori symbol

probability of Dk,n, without knowing the channel response gk.

Let {b(j)
k (n)}m

j=1 be samples drawn by the SMC at time n and denote B
(j)
k,n =

{b(j)
k (0), · · · , b

(j)
k (n)}. For each value of n, a set of Monte Carlo samples of

transmitted symbols, {B(j)
k,n, w

(j)
k,n}m

j=1, which are properly weighted with respect

to the distribution p(Bk,n|Xk,n), are to be obtained. For every symbol ai ∈ A,

the a posteriori probability of the information symbol dk(n) can be estimated

as

P (dk(n) = ai|Xk,n) = P (bk(n)b∗k(n− 1) = ai|Xk,n)

= E{1(bk(n)b∗k(n− 1) = ai)|Xk,n}
∼= 1

Wk,n

m∑
j=1

1(b
(j)
k (n)b

(j)∗
k (n− 1) = ai)w

(j)
k,n (6.23)
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where Wk,n ,
∑m

j=1 w
(j)
k,n and 1(·) is an indicator function.

The samples {b(j)
k (n)}m

j=1 are drawn from the trial sampling density

q(b
(j)
k (n)|B(j)

k,n−1,Xk,n) , p(b
(j)
k (n)|B(j)

k,n−1,Xk,n) (6.24)

and the importance weight can be updated according to

w
(j)
k,n ∝ w

(j)
k,n−1p(Xk,n|B(j)

k,n−1,Xk,n−1)

= w
(j)
k,n−1

∑
ai∈A

p(xk(n)|B(j)
k,n−1, bk(n) = ai,Xk,n−1)P (bk(n) = ai|B(j)

k,n−1,Xk,n−1)

= w
(j)
k,n−1

∑
ai∈A

α
(j)
k,n,i . (6.25)

To compute the predictive density p(xk(n)|B(j)
k,n−1, bk,n(n) = ai,Xk,n−1), a

Gaussian distribution is assigned to the channel gk, i.e.,

gk ∼ Nc(ḡk, Σ̄k). (6.26)

Then, the distribution of gk, conditioned on B
(j)
k,n and Xk,n, can be computed as

p(gk|B(j)
k,n,Xk,n) ∝ p(Xk,n|B(j)

k,n,gk)p(gk)

∼ Nc(g
(j)
k,n,Σ

(j)
k,n) (6.27)

where

g
(j)
k,n , Σ

(j)
k,n

[
Σ̄−1

k ḡk +
1

σ2

n∑
i=0

Ψ
(j)H
k,i xk(i)

]
(6.28)

Σ
(j)
k,n ,

[
Σ̄−1

k +
1

σ2

n∑
i=0

Ψ
(j)H
k,i Ψ

(j)
k,i

]−1

(6.29)
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and

Ψ
(j)
k,i = b

(j)
k (i)Fk,k. (6.30)

Hence, the conditional density p(xk(n)|B(j)
k,n−1, bk(n) = ai,Xk,n−1) is given

by

p(xk(n)|B(j)
k,n−1, bk(n) = ai,Xk,n−1)

=

∫
p(xk(n)|B(j)

k,n−1, bk(n)=ai,Xk,n−1,gk)p(gk|B(j)
k,n−1,Xk,n−1)dgk.(6.31)

Because it is an integral of a Gaussian probability density function (pdf) with

respect to another Gaussian pdf, the resulting pdf is still Gaussian, i.e.,

p(xk(n)|B(j)
k,n−1, bk(n) = ai,Xk,n−1) ∼ Nc(µ

(j)
k,n,i,Θ

(j)
k,n,i) (6.32)

with a mean

µ
(j)
k,n,i , E

{
xk(n)|B(j)

k,n−1, bk(n) = ai,Xk,n−1

}

= Φk,ig
(j)
k,n−1 (6.33)

and a covariance

Θ
(j)
k,n,i , Cov

{
xk(n)|B(j)

k,n−1, bk(n) = ai,Xk,n−1

}

= σ2IL + Φk,iΣ
(j)
k,n−1Φ

H
k,i (6.34)

where

Φk,i = aiFk,k. (6.35)
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Then, α
(j)
k,n,i in (6.25) can be computed by

α
(j)
k,n,i = |Θ(j)

k,n,i|−1exp
{
−(xk(n)− µ

(j)
k,n,i)

H(Θ
(j)
k,n,i)

−1(xk(n)− µ
(j)
k,n,i)

}
P (dk(n)

= aib
(j)∗
k (n− 1)) (6.36)

It is noted that the a posteriori mean and covariance of the channel in (6.28)

and (6.29) can be updated recursively as follows. At the nth step, the new

sample of b
(j)
k (n) and the past samples B

(j)
k,n−1 are combined to form B

(j)
k,n. Let

µ
(j)
k,n and Θ

(j)
k,n be the quantities computed by (6.33) and (6.34) for the imputed

b
(j)
k (n). Based on a matrix inversion lemma, (6.28) and (6.29) become

g
(j)
k,n = g

(j)
k,n−1 + Ω

(j)
k,n(Θ

(j)
k,n)−1(xk(n)− µ

(j)
k,n) (6.37)

Σ
(j)
k,n = Σ

(j)
k,n−1 −Ω

(j)
k,n(Θ

(j)
k,n)−1Ω

(j)H
k,n (6.38)

with

Ω
(j)
k,n = Σ

(j)
k,n−1Ψ

(j)H
k,n . (6.39)

Finally, the SMC blind detector for each decomposed signal component is

summarized as follows.

Initialization:

For j = 1, · · · ,m

• Set the initial values of channel vector as g
(j)
k ∼ Nc(0, 100IL);

• Initial all importance weights as w
(j)
k,−1 = 1.

End

Estimation:
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For n = 0, · · · , N − 1

I. Update weighted samples

For j = 1, · · · ,m

1. For each ai ∈ A

• Compute µ
(j)
k,n,i, Θ

(j)
k,n,i according to (6.33) and (6.34);

• Compute trial sampling distribution α
(j)
k,n,i according to

(6.36).

End

2. Draw a sample b
(j)
k (n) from the set A with the probability

P (bk(n) = ai|B(j)
k,n−1,Xk,n) ∝ α

(j)
k,n,i, ai ∈ A. (6.40)

3. Compute the importance weight

ŵ
(j)
k,n = w

(j)
k,n−1

∑
ai∈A

α
(j)
k,n,i, (6.41)

Normalize as

w
(j)
k,n =

ŵ
(j)
k,n∑m

j=1 ŵ
(j)
k,n

. (6.42)

4. If the imputed samples b
(j)
k (n) = ai

• Set µ
(j)
k,n = µ

(j)
k,n,i,Θ

(j)
k,n = Θ

(j)
k,n,i;

• Update the a posteriori mean g
(j)
k,n and covariance Σ

(j)
k,n of the
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channel according to (6.37) and (6.38).

End

5. Compute the a posteriori probability of the information symbol

dk(n) according to (6.23).

6. Compute bk(n) according to bk(n) = dk(n)b∗k(n− 1)

End (for I)

II. Resampling

If n is a multiple of the resampling interval

For j = 1, · · · ,m

• Draw a new set of {B(j)
k,n,g

(j)
k,n,Σ

(j)
k,n}m

j=1 from the original set

with a probability proportional to the importance weights {w(j)
k,n}m

j=1;

• Assign equal weight for each new samples, i.e., ŵ
(j)
k,n = 1/m.

End

End (for II)

End

It is observed that, for each signal component, the dominant computation

for the SMC receiver needs N×m×|A| one-step predictions for computing α
(j)
k,n,i

and N × m one-step updates for {(g(j)
k,n,Σ

(j)
k,n)}. Since the m samples operate

independently, the sampling is well suited for parallel implementation. For the

entire detection algorithm, the proposed new method samples one user at a time

and therefore permits efficient implementation. The required computational

complexity is reduced to be in the order of O(|A| × K). Compared to the
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EM-SMC, the proposed method achieves a lower complexity, since there is no

iteration for convergence. Thus, the proposed DF-SMC detection algorithm

can be applied to the DS-CDMA system with a manageable computational

complexity.

6.6 Extension to system with long codes

The above proposed detection algorithm is developed for the system with short

spreading codes. It is seen that, the bit-interval cyclostationarity properties of

the short codes are not necessary for this SMC-based method, and the inter-

symbol interference (ISI) is not considered for the system model. Therefore, we

can extend this method to the long code CDMA systems by making necessary

changes.

For long spreading codes, the spreading waveform generally changes from

bit to bit, thus the cross-correlation matrix is a function of the symbol index

n, that is, R(n). For the case of the flat fading channel, the elements of the

cross-correlation matrix are changed from (6.2) to

Ri,j(n) =

∫ nT

(n−1)T

si(t)sj(t)dt. (6.43)

For the case of frequency-selective fading channel, the corresponding elements

of the cross-correlation matrix are changed from (6.10) to

ρ(k,l)(k′,l′)(n) =

∫ nT

(n−1)T

sk(t− τk,l)sk′(t− τk′,l′)dt. (6.44)

Correspondingly, the whitened matched filter is also the function of the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



6.7. Simulation results 153

symbol index n, that is, F(n). With these substitutions, the proposed detection

algorithm can be applied to the CDMA system employing long spreading codes

directly. Of course, the whitened matched filter should be update every symbol,

so that the implementation costs are inevitably increased.

6.7 Simulation results

This section provides simulation results to illustrate the performance of the blind

DF-SMC multiuser receiver in both flat fading channels and frequency-selective

fading channels for DS-CDMA system. The channels are assumed to be block

fading, that is the fading coefficients remain constant over the entire block of

N symbols. The fading coefficients of the channels are generated according to

uncorrelated circular complex Gaussian distribution. All the users’ spreading

sequences are chosen as short sequence with a processing gain P = 10, and they

are generated randomly from equal probability binary code and then normalized

to {±1/
√

P}. A rate 1/2 constraint length-5 convolutional code (with generator

23 and 35 in octal notation) is employed. We choose 128 information bits, i.e.,

the coded bit block size is N = 256. Two types of channels are considered, i.e,

flat fading channel and frequency-selective fading channel with L = 3.

6.7.1 Selection of the number of Monte Carlo samples

Let us first consider the selection of the number of Monte Carlo samples. Fig

6.2 and Fig 6.3 present the bit-error-rate (BER) performance as the function

of the number of the Monte Carlo samples for flat-fading system and frequency

selective fading system, respectively. As illustrated in the figures, for both flat
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fading system and frequency-selective fading system, the performance improves

as the number of samples increases, and the performance achieves convergence

when m is about 50. Therefore, in the following simulations, the number of

Monte Carlo samples is taken as m = 50.
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Figure 6.2: BER versus the number of Monte Carlo samples, K = 8 (flat fading
channel)

6.7.2 BER performance

Let us now test the BER performance of the proposed method for different

number of users. Fig 6.4 and Fig 6.5 illustrate the BER performance of the

proposed blind detector in the flat fading channel and frequency-selective fading

channel, respectively. The BER performances as the function of SNR are plotted

in the figures for different number of users, i.e., K = 8, 10 and 12.
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Figure 6.3: BER versus the number of Monte Carlo samples, K = 8 (frequency-
selective fading channel)

6.7.3 Near-far resistance

The capability of near-far resistance is illustrated in Fig 6.6 for the system

over flat fading channel, and in Fig 6.7 for the system over frequency-selective

fading channel. The near-far ratio is defined as the ratio between the power of

interfering users and the power of the desired user. Let us fix the power of the

desired user and change the power of interfering users. It is assumed that all

interfering users have the same power. The BER performance is tested as the

function of near-far ratio for the systems with K = 8, 10 and 12. The results

in Fig 6.6 and Fig 6.7 demonstrate the good near-far resistance of the proposed

receiver.
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Figure 6.4: BER versus the SNR (flat fading channel)

6.7.4 Comparisons of performance

Finally, comparisons are made on the performances achieved by the new pro-

posed receiver, the receiver derived in previous chapter and other reported re-

ceivers. Fig 6.8 and Fig 6.9 present the performances achieved by the Gibbs

sampler [84], QRD-M-EKF [119], the EM-SMC receiver, the conventional SMC

receiver [90] and the DF-SMC receiver.

For a fair comparison, the Gibbs sampler is performed for 100 iterations

with the first 50 iterations as the burning-in period. The number of Monte

Carlo samples used for both the EM-SMC receiver and the conventional SMC

receiver [90] is 50, which is the same as that used for the proposed receiver. The

number of paths M for the tree-search detection QRD-M-EKF is selected to be

32. The results for the flat fading system are shown in Fig 6.8, while the results

for the frequency-selective fading system are shown in Fig 6.9.
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Figure 6.5: BER versus the SNR (frequency-selective fading channel)

Fig 6.8 and Fig 6.9 show that the proposed receiver also outperforms the

other deterministic and MC sampling based detectors, and achieves the com-

parable performance with the EM-SMC receiver and the conventional SMC

receiver. When the SNR is in small values, the proposed DF-SMC receiver is

a little inferior to the other two SMC-based receivers. When the value of the

SNR becomes larger, the performance of the DF-SMC receiver becomes supe-

rior to that of the other two receivers. It is also seen from the figures, with the

increase of the SNR, the improvement made by the proposed receiver is more

obvious. This is because the decision-feedback framework attempts to cancel

all multiuser interference provided that the feedback data are correct. With the

MAI cancellation, the detection of each user is similar to that for single user

system. For systems (6.19) and (6.21), without the MAI effects, the detection

performance can improve more significantly when the SNR increases. When

the background noise is hypothetically absent, i.e. σ = 0, the detector should
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Figure 6.6: BER versus the near-far ratio, SNR = 15 dB (flat fading channel)

guarantee error-free demodulation approximately.

6.8 Conclusions

In this chapter, a blind multiuser receiver is developed for the DS-CDMA system

over both the flat fading channels and the frequency-selective fading channels

based on the Bayesian SMC inference method. The Cholesky factorization is

utilized before the implementation of the SMC detection to achieve significant

reduction in computational complexity. As seen in the simulation results, the

proposed receiver obtains a performance that is better than that achieved by

the conventional SMC receiver and the EM-SMC receiver when SNR is large

enough. And with much smaller computational complexity, the proposed re-

ceiver is proved to be well suited to DS-CDMA multiuser systems.
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Figure 6.7: BER versus the near-far ratio, SNR = 15 dB (frequency-selective
fading channel)
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Figure 6.8: Comparisons on BER performance, K = 8 (flat fading channel)
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Figure 6.9: Comparisons on BER performance, K = 8 (frequency-selective
fading channel)

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 7

Comparisons of multiuser

receivers

In this chapter, some general conclusions and comparisons are made among

the multiuser receivers which are proposed in previous chapters. The com-

parisons include the requirements of coefficient knowledge, the implementation

complexity, and the performance of the receiver. The corresponding simulation

results are provided to illustrate the conclusions.

7.1 Requirements

Firstly, we discuss the required knowledge of the coefficients for the various

proposed methods. Since our methods are all blind, the training sequence is

not needed for any receiver. For all these methods, we have the assumptions

that the number of users, the length of the channels and the spreading gain of the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



7.1. Requirements 162

signature waveforms are the available knowledge for the systems. Therefore, the

main considerations in the following discussion involve the signature waveform,

timing, received amplitudes and noise level.

For the algorithm developed in Chapter 3, which is denoted as TD-CM, the

contribution focuses on the channel estimation rather than multiuser detection,

therefore we consider only the requirements for the channel estimation. The

prior knowledge which should be required includes the received amplitudes of

the desired user, the timing of desired user and the signature waveform of desired

user, since the effects of the interfering users and noise are removed by the

Toeplitz displacement.

The Bayesian MCMC detector developed in Chapter 4, which is denoted as

MCMC-AS here, is based on the adaptive sampling method. In order to update

the a posteriori conditional distributions of the channel and noise, the received

amplitudes, the timing and the signature waveforms of all users are required.

As for both the Bayesian SMC detectors proposed in Chapter 5 and Chapter

6, the received amplitudes, the timing and the signature waveforms of all users

are necessary for the requirements of the signal decomposition before the SMC

detection. For the SMC detection procedure, the knowledge of noise level need

to be available.

For clarity, the comparison of the requirements for various methods is shown

in Table 7.1.
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Table 7.1: Comparison of requirements for the proposed multiuser detectors

TD-CM MCMC-AS EM-SMC DF-SMC
Signature waveform

of desired user
√ √ √ √

Signature waveform
of interfering users

√ √ √
Timing of

desired user
√ √ √ √

Timing of
interfering users

√ √ √
Received amplitude

of desired user
√ √ √ √

Received amplitude
of interfering users

√ √ √
Noise level

√ √

7.2 Complexity

The computation complexity for the TD-CM channel estimation has been dis-

cussed in section 3.4.3. Since TD-CM method focuses on only the channel es-

timation and the detector need to be designed separately based on the channel

estimates, the complexity of the entire receiver not only depends on the com-

plexity of TD-CM, but also the chosen detection algorithm. However Bayesian

Monte Carlo method is applied in this thesis for developing the detection algo-

rithm directly. Therefore, it’s not very meaningful to compare just the TD-CM

method with the proposed Monte Carlo receivers. As for the three Monte Carlo

receivers proposed in this thesis, the computational complexity of the DF-SMC

receiver is lower than that of the EM-SMC receiver which has been discussed

in the Chapter 6; while the complexity of the MCMC-AS receiver is lower than

those of both two SMC based receivers. The reason is that the computation

of the sampling distributions is necessary in every iteration for the SMC based
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methods, while for the MCMC-AS receiver, the sampling distributions are up-

dated only after every several iterations.

The similar conclusion can be made for comparing the implementation com-

plexity of the proposed receivers. As for the implementation framework of the

receiver, the simplest one is the MCMC detector based on the adaptive sampling

method, which is implemented only through the proposed detection procedure.

For the receiver employing TD-CM channel estimator, a set of matched filters

are necessary to exploit the properties of the signals, and the estimator should

be combined with other separate detector. EM-SMC receiver needs the itera-

tions of the EM decomposition, in each iteration, the detection procedures of all

users are performed in parallel. DF-SMC requires the whitened matched filter

(WMF) to decompose the superimposed signals, while the decomposed signals

for each user are detected sequentially.

7.3 Performance

The performances of various proposed multiuser receivers have been discussed

in previous chapters, respectively. Here we make some comparisons for these

multiuser receivers to obtain some conclusions about their performances.

In the simulations, we experiment with a DS-CDMA system which employs

the long spreading codes. The number of users is 10. The spreading codes are

generated randomly from equal probability binary code and then normalized

to {±1/
√

P}. Both the cases of the flat fading channels and the frequency-

selective fading channels are considered, and for the frequency-selective fading

channels, the length of channel is taken as L = 3. The fading coefficients of
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the channels are generated according to uncorrelated circular complex Gaussian

distribution. For convenience, the initial delay for each user is assumed as 0.

The initial values for the setup of the detection procedures are the same as in

the previous chapters.

7.3.1 Channel estimation

Let us firstly consider the performance of channel estimation obtained by the

proposed methods. In order to achieve the good performance for the TD-CM

channel estimation, we choose the spreading gain to be 35 for all the methods.

7.3.1.1 MSE performance

The MSE results for the flat fading channel and for the frequency-selective

fading channel are plotted in Fig 7.1 and Fig 7.2 respectively. It is shown

that, the TD-CM obtains the best MSE performance among all the receivers,

the EM-SMC receiver performs better channel estimation than the MCMC-AS

receiver. The DF-SMC receiver has relative poor performance when the SNR

is small, and with the increase of SNR, it achieves better performance than the

MCMC-AS receiver and EM-SMC receiver.

7.3.1.2 Near-far resistance

The robustness of near-far resistance for channel estimation is compared in Fig

7.3 for the system over flat fading channel, and in Fig 7.4 for the system over

frequency-selective fading channel. We fix the power of the desired user and

change the power of interfering users. It is assumed that all interfering users
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Figure 7.1: MSE versus SNR (flat fading channel)

have the same power. The MSE performance is tested as the function of near-far

ratio for the systems with SNR = 10 dB. It is shown in Figure 7.3 and Figure

7.4, the TD-CM and MCMC-AS methods have the comparable capability of

the near-far resistance which is more robust than the two SMC-based methods.

At the same time, the EM-SMC and DF-SMC methods obtain the comparable

robustness of near-far resistance.

7.3.2 Signal detection

Since the method proposed in Chapter 3 is about channel estimation rather than

multiuser detection, we consider only the Bayesian methods in the comparisons

for the detection performance. As well as the method proposed in [65] which is

denoted as LZ here, is implemented for the purpose of comparison. LZ method

performs identification by exploiting the statistics of the covariance matrix of

the outputs and is known to be a conventional (non-sampling) algorithm with
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Figure 7.2: MSE versus SNR (frequency-selective fading channel)

the simplicity essential to practical implementation. The performance of LZ

method is shown together with the proposed Monte Carlo Receivers in the

following comparisons to demonstrated the advantages in performance of the

proposed Bayesian Monte Carlo based receivers. For all these detectors, the

spreading gain is assumed as P = 10.

7.3.2.1 BER performance

Now let us consider the BER performance of the proposed multiuser detectors

for the system.

With the assumption that all users have the same amplitudes, we test the

BER versus signal-to-noise ratio (SNR) for the coded system. For the MCMC-

AS detector, we choose the number of iterations to be 50, while for both the

EM-SMC detector and the DF-SMC, the numbers of the Monte Carlo samples

are chosen as 50.
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Figure 7.3: MSE versus near-far ratio, SNR = 10 dB (flat fading channel)

Fig 7.5 shows the results for the flat fading system, while Fig 7.6 shows the

results for the frequency-selective fading system. As seen from these two figures,

all the proposed Bayesian receivers outperform the LZ, and the two SMC-based

detectors outperform the MCMC-AS detector. It is also seen that the EM-SMC

detector achieves better performance than the DF-SMC detector when the SNR

is relative small, and the DF-SMC detector is superior to the EM-SMC detector

when the SNR becomes larger.

7.3.2.2 Near-far resistance

The capabilities of near-far resistance are compared in Fig 7.7 and Fig 7.9

for the system over flat fading channel, and in Fig 7.8 and Fig 7.10 for the

system over frequency-selective fading channel. The desired user is at fixed

power and all interfering users have the same power. The BER performance is

tested as the function of near-far ratio for the systems with SNR = 8 dB and
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Figure 7.4: MSE versus near-far ratio, SNR = 10 dB (frequency-selective
fading channel)

SNR = 15 dB respectively. Obviously, the figures show that the LZ has the

weakest robustness to the near-far resistance among all receivers. It is seen in

Figure 7.7 and Figure 7.8, when SNR = 8 dB, the MCMC-AS receiver is the

most robust for the near-far resistance among the receivers. At the same time,

the capability of near-far resistance of EM-SMC receiver is superior to that of

the DF-SMC receiver. Figure 7.9 and Figure 7.10 demonstrate that, with the

larger SNR, i.e., 15 dB, the MCMC-AS receiver is a little better than the other

two receivers for the near-far resistance, and the two SMC-based detectors have

the comparable capability of the near-far resistance.
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Figure 7.5: BER versus SNR (flat fading channel)
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Figure 7.6: BER versus SNR (frequency-selective fading channel)
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Figure 7.7: BER versus near-far ratio, SNR = 8 dB (flat fading channel)
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Figure 7.8: BER versus near-far ratio, SNR = 8 dB (frequency-selective fading
channel)
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Figure 7.9: BER versus near-far ratio, SNR = 15 dB (flat fading channel)
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Figure 7.10: BER versus near-far ratio, SNR = 15 dB (frequency-selective
fading channel)
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Chapter 8

Conclusions and future work

In this chapter, we draw the conclusions of the thesis. The contents of the

previous chapters are reviewed. Some suggestions for future work are provided.

8.1 Conclusions

This thesis deals with the problem of the channel estimation and multiuser de-

tection for the DS-CDMA system over the fading channels. Several methods

are developed for both cases of the flat fading channels and frequency-selective

fading channels in order to improve the performance and/or reduce the compu-

tational complexity of the multiuser detection.

An efficient blind adaptive channel estimation method has been presented

for the DS-CDMA system employing long spreading codes. The Toeplitz dis-

placement is operated to the second order statistics, i.e., correlation matrix of

the output vector after matched filter, so that the effects of the channel noise
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and other interfering users can be removed from the identification scheme. Then

the correlation matching technique is explored to blindly estimate the channel

parameters, that is, the channel parameters are estimated by minimizing the

norm of the error matrix between the output correlation matrix (parameter-

ized by the unknown channel coefficients) and its instantaneous approximation.

Based on this approach, one LMS type recursion is derived to formulate the

adaptive estimation algorithm. The performance of the proposed method is

examined in both flat fading and frequency-selective fading channels by simu-

lations. The comparisons are made with the conventional correlation matching

method and the subspace Toeplitz method. The simulation results show the

proposed method achieves substantial improvements on the MSE performance

and near-far resistance.

A blind Bayesian MCMC multiuser receiver has been proposed for the DS-

CDMA systems employing long spreading codes. The receiver deals with the

joint of channel estimation and the symbol detection. The detection is based

on the Bayesian MCMC methodology and uses the recently developed adaptive

sampling procedure. Incorporated with the Bayesian channel estimation, an

efficient blind multiuser receiver is derived. Compared to the Bayesian MCMC

receivers based on current popular MCMC procedure, Gibbs sampler, the pro-

posed receiver utilizes an adaptive procedure to find the most effective distribu-

tion for the generation of samples, thus achieves faster convergence and higher

efficiency of sampling. On the other hand, the computation cost of updating

the sampling distribution for the proposed receiver is lower than that for Gibbs

receivers. Simulation results are provided to demonstrate that the proposed

receiver is highly efficient in the convergence and performance.
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A blind Bayesian SMC multiuser receiver has been developed for the joint

of channel estimation and symbol detection. The conventional SMC estimation

is not efficient in application to multiuser detection of CDMA system, because

the required computational complexity grows exponentially with the number of

users. In order to deal with the problem, the EM algorithm is adopted to decom-

pose the superimposed observation signal into separate signals which contain

only the information of one user. Then a Bayesian SMC procedure is developed

to detect the unknown transmitted symbols according to the decomposed sig-

nal components. Combined with the Kalman filter for channel estimation, the

symbol detection and channel estimation for every user are performed in par-

allel. Based on these concepts, a novel iterative SMC-based receiver EM-SMC

is developed with the substantially reduced computational complexity which

is linear to the number of users. The performance of the proposed EM-SMC

receiver is examined and compared with other receivers. The simulation results

demonstrated that EM-SMC receiver outperforms other methods with similar

complexity and achieves about the comparable performance as that obtained

by the conventional SMC detector.

Again in order to deal with the complexity problem of the conventional SMC

method, another scheme is provided to develop the efficient SMC-based receiver.

A different solution is presented to decompose the superimposed observation

signal, which utilizes the Cholesky factorization to decouple the signal model

into separate components according to the number of users. Then under the

decision-feedback framework, the parameters of each user are estimated by SMC

method and Kalman filter sequentially. According to these considerations, a new

blind SMC-based multiuser receiver is proposed with complexity linear to the

number of users. Because of no need for iterations like EM-SMC receiver, this
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receiver achieves more reduction in computational complexity. The performance

of this receiver is examined and compared with some other receivers again. As

seen in the simulation results, the proposed receiver is a little inferior to the

conventional SMC receiver and the EM-SMC receiver when the SNR of the

system is small. However the proposed receiver obtains the performance that is

better than that achieved by the conventional SMC receiver and the EM-SMC

receiver with the large SNRs. With much smaller computational complexity, the

proposed receiver is proved to be better suited to DS-CDMA multiuser systems.

• Comparisons are made for the multiuser receivers which are proposed in

the thesis. The requirements of coefficient knowledge, the implementation com-

plexity, and the performance of channel estimation and symbol detection are

considered together for all the receivers discussed in this thesis. All the require-

ments for various receivers are listed for comparison. The implementation com-

plexities of the receiver frameworks are discussed generally. The performances

of all the receivers are compared by the simulation results, which include the

MSE performance of the channel estimation, BER performance of the symbol

detection and the near-far resistance capability.

8.2 Future research suggestions

This thesis has solved some of the problems in the blind multiuser detection

and channel estimation for DS-CDMA systems. The research and development

in this area have been and will be one of the most active and vibrant branches

of digital communications for a long period. And so far there are still many

unsolved problems in these topics which need further investigation, and much
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more work should be done to develop better algorithms to deal with these

problems. Based on the present work, future research can be recommended as

follows.

• In this thesis, the communication channels are assumed to be slowly vary-

ing for both flat-fading channels and frequency-selective fading channels. That

is, they remain constant for the entire symbol block. Hence, the proposed meth-

ods accommodate only the delay-insensitive DS-CDMA communication appli-

cation in slow fading channels. Further research should be conducted on the

effective methods that are suitable for a fast fading environment.

• All the work in the thesis considers that the channel ambient noise is

Gaussian. However, in many physical channels where multiuser detection may

be applied, such as urban and indoor radio channels, the ambient noise is known

to be non-Gaussian, due to the impulsive nature of the man-made electromag-

netic interference and a great deal of natural noises as well. Therefore, the

extension of the proposed methods to the non-Gaussian CDMA channels is an

interesting further research direction.

• Since the use of the spatial processing with the antenna arrays can sub-

stantially enhances the capacity of DS-CDMA systems, it is also an interesting

and important future research direction to combine the proposed methods with

array signal processing techniques.

• The techniques of delayed-weight estimation and delayed-sample estima-

tion can be used to enhance the SIS which is the basis of all SMC methods.

Thus, in order to improve the SMC-based methods developed in Chapter 5 and

Chapter 6, the combination of the proposed SMC-based methods with these

techniques deserves to be considered.
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• In order to reduce the high complexity of the SMC application to multiuser

CDMA system, it may be a feasible solution to develop a new novel dynamic

model which describes the variation of each user’s signal separately, so that

only one unknown user’s symbol is detected one time. The possible method is

to make some transformations of the common dynamic state-space model. This

viewpoint to multiuser systems is an interesting and challenging future research

topic.
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Appendix

The derivation of the importance weight

According to the (5.18), the importance weight should be updated by
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