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Summarv vii 

Summary 

Head and neck cancers are malignant tumours in the head and neck region. The 

accurate staging of such cancers is very important for prognosis and treatment. Recent 

findings show that tumour volume is an important factor for the diagnosis, treatment 

planning and prognosis of head and neck cancers. Imaging methods such as computed 

tomography (CT) and magnetic resonance imaging (MRI) play an important role in 

the evaluation of head and neck cancers. However, there is no quantitative imaging- 

based tumour volumetric analysis for head and neck tumours. 

In this study, an analytical framework including novel MRI segmentation 

algorithms and a three-dimensional (3-D) visualisation platform is developed for the 

quantitative 3-D volumetric evaluation of head and neck turnours. 

A semi-supervised, knowledge-based fuzzy clustering (KBFC) method is 

developed to segment nasopharyngeal carcinoma (NPC) from multispectral MR 

images. The algorithm integrates a fuzzy clustering and an image analysis procedure. 

The guidance of a priori knowledge in both the training set selection and refinement 

procedure gives this method additional power and flexibility. This method achieves 

successful lesion extraction for  NPC and significantly higher inter-operator 

reproducibility than the manual tracing method. 

In addition, an unsupervised hierarchical method is developed to segment tongue 

carcinoma from multispectral MR images. This segmentation has two steps. Step one 

is an initial segmentation using a genetic algorithm-induced fuzzy clustering (GAIFC). 

In step two, the segmented mass is fed into a neural network classifier for symmetry 

detection and necessary refinement is performed to reduce false-positives. 

Experimental results show that in comparison with the ground truth, satisfactory 
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Summary 

segmentation results are obtained using this method. The two algorithms presented are 

employed to clinically determine the tumour volume of NPC and tongue carcinoma. 

Furthermore, deformation models are applied to the fast segmentation of lesion 

horn single MR images. In this two-step segmentation scheme, region deformation 

and active contour models are employed to locate the actual lesion boundary with the 

help of  an initial outline. The method shows robustness when dealing with 

heterogeneous image, high noise and other contaminations. Moreover, a 3-D 

segmentation scheme is derived based on this method for the fast segmentation of 

tumour and lymph node from a 3-D data volume formed by a stack of two- 

dimensional (2-D) slices. 

Besides these segmentation algorithms, a 3-D visualisation platform, “Voxur-3D”, 

is established for the generation of 3-D views for 3-D medical data. The visualisation 

platform consists of functions of surface rendering for segmented medical objects and 

volume rendering for 3-D raw medical data, respectively. The results show that the 

developed platform is able to produce 3-D views with a high quality for 3-D medical 

data on brain, head and neck tumours. 

Based on the results obtained, it is concluded that the developed framework, 

consisting of several novel MRI segmentation algorithms and a 3-D visualisation 

platform, provides a feasible solution to the quantitative 3-D volumetric analysis on 

head and neck tumours. It is believed that this research effort paves the way to offer 

computer-assisted techniques for clinical management of head and neck tumour cases. 
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1.1 Motivation 1 

Chapter 1 

Introduction 

1.1 Motivation 

Malignant tumours of the head and neck can originate from the nasal cavity, paranasal, 

sinus, lip, salivary glands, oral cavity, oropharynx, nasopharynx and larynx. 

Compared to breast, prostate and colon caners, head and neck cancers are not 

common in western countries. For example, in the United States, the overall incidence 

rate of head and neck cancers is 23.5 per 100,000 population and these cancers 

account for 4.9% of all cancers in the United States [1]. In Europe, the overall 

incidence rate of head and neck cancers is 24.3 per 100,000 population and these 

cancers account for 6.9% of all cancers in Europe [2]. However in Asian countries, 

these cancers are much more common and some are leading cancers in these regions. 

According to a report of Indian National Cancer Registry Programme, from six 

registry areas in India, the median percentage of head and neck cancers to all cancers 

is 14.7% [3]. Cancers of oral cavity, tongue and hypopharynx are among the 10 

leading cancers in India [3]. In Malaysia, head and neck cancers account for 12.6% of 

all cancers and in addition, nasopharyngeal carcinoma (NPC) ranks second and 
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1.1 Motivation 2 

constitutes 8% of all cancers in males [4]. In Singapore NPC is the fifth most 

frequently encountered cancer [5]. 

The accurate prognostication and staging of head and neck cancers is very 

important in treatment planning. The Tumour Node Metastasis (TNM) classification 

system of the International Union Against Cancer (UICC) and the American Joint 

Committee on Cancer (AJCC) is widely adopted for the staging of malignant tumours. 

That is, malignant tumours are jointly staged by the evaluations of primary tumour (T- 

staging), local nodal metastasis (N-staging) and distant metastasis (M-staging). 

According to the TNM system, there are two methods of T-staging for head and neck 

tumours: 1. By measuring the tumour diameter (lip and oral cavity, oropharyngeal, 

hypopharyngeal, major salivary glands and thyroid gland cancers); 2. By analyzing 

the anatomical extent based on the structures involved (nasopharyngeal, paranasal 

sinuses and laryngeal cancers) [6]. Therefore, the quantitative estimation of tumour 

volume is important for tumour staging and prognosis. 

The present study is motivated by the following: 1. Tumour volume is an 

important prognostic indicator for head and neck cancers, even for those staged by 

anatomic extension; 2. There is a paucity of reports on quantitative tumour volume 

determination methods for head and neck neoplasms using imaging-based techniques; 

3. Tumours in main subsites of head and neck region are difficult to evaluate 

clinically. Although computed tomography (CT) and magnetic resonance imaging 

(MRI) provide important information of the internal structures, they are actually two- 

dimensional (2-D) methods. These images cannot give three-dimensional (3-D) vision 

information of tumour infiltration; 4. Computerised processing of medical images 

may enable physicians and radiologists to produce better imaging analysis; and 5. The 

progress of visualisation techniques in scientific computing and computer graphics 

make it possible to provide 3-D visual information of organ system and disease 

process. 
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1.2 Background 

1.2.1 Cancers of Head and Neck 

The sagittal view of head and neck region is shown in Figure 1.1. 

Figure 1.1 Anatomic structures of head and neck region 

a. Nasal cavity; b. Nasopharynx; c. Pharynx; d. Palate; e. Oral cavity; f. Tongue; g. Larynx. 

Head and neck cancers are often referred to as squamous cell carcinomas which 

occur in the following subsites: 

Oral cavity 

Salivary glands 

Pharynx-The pharynx has three parts: nasopharynx, oropharynx and 

Paranasal sinuses and nasal cavity 

hypopharynx. 
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1.2 Background 4 

Larynx 

Lymph nodes in the upper part of the neck 

Thyroid 

Two-thirds to three-quarters of the patients are male and one-quarter to one-third are 

female. The etiology of head and neck cancers is still not clear. However, tobacco and 

alcohol use are the most important risk factors for head and neck cancers, particularly 

those of the oral cavity, oropharynx, hypopharynx and larynx. Eighty five percent of 

head and neck cancers are linked to tobacco use. Some head and neck cancers depend 

strongly on the ethnic background of the patients. For example, NPC is much more 

common in Southern Chinese and their descendants in other parts of the world. In 

addition, head and neck cancers are more common in men and in people over age 50 

[7]. Head and neck cancers are potentially curable by surgical-, chemo- and/or radio- 

therapy. However, more than 60% of patients have advanced diseases (T3 and T4 

according to UICC criteria) and the prognosis for the patients is unfavourable [8]. The 

overall 5-year survival is about 50% [9]. 

1.2.2 The State-of-the-Art in Imaging of Head and Neck Cancers 

Therapeutic decision is based on accurate assessment of primary tumour location and 

disease extent (T-staging) as well as the presence and extent of lymph node 

involvement (N-staging). Because of the anatomic characteristics of head and neck 

region, clinical methods like inspection, palpation and endoscopy are insufficient to 

assess the true disease extent. Therefore, CT and MRI are important complementary 

techniques in staging process [8]. 

CT provides excellent delineation of the cortical bony structures of the skull base 

and facial skeleton. It is also very useful for demonstrating lymph node enlargement. 
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By selecting a bone or soft tissue window, the examiner can highlight CT image 

details that are relevant to a particular inquiry [10]. The CT characteristics of head and 

neck tumours include: 1. density changes of soft tissue; 2. the abnormality of structure 

morphology; 3. submucosa and deep soft tissue changes, and 4. the tumour invasion 

of adjacent organs [11]-[13]. An axial CT image of NPC is shown in Figure 1.2. 

MRI is superior to CT because of better soft tissue delineation. Its multiplannar 

capabilities aids in the accurate demonstration of various lesions in relation to normal 

organ structures [10]. The MRI characteristics of head and neck tumours include: 1. 

Signal intensity changes of primary tumour; 2. the abnormality of structure 

morphology (This part is similar to that of CT.), 3. the tumour invasion of adjacent 

tissue, and 4. the metastatic involvement of lymph nodes [11]-[14]. Although MRI 

produces no bony details, the excellent soft tissue resolution makes MRI a more 

suitable modality (compared to CT) in the detection of head and neck tumours [12]- 

[18]. However, there were different reports on the detection of recurrent tumour and 

post-therapeutic changes with CT and MRI [11][ 19]. An axial MR image of tongue 

carcinoma is shown in Figure 1.3. 
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In clinical practice, CT and MRI provide 2-D images. Radiologists and Clinicians 

have to view a stack of consecutive slices and then “construct” the 3-D information in 

their mind. Visualisation is the processing that shows a volumetric data set on a 

display plane “directly”. It is helpful to visualise the complex anatomic and 

pathological structures in head and neck region, from a volumetric data set, for 

accurate diagnosis and treatment planning. The potential benefits include: 1. 3-D 

models allow the surgeon to anticipate problems during the procedure, such as the 

close proximity of blood vessels or nerves to tumour; 2. Surgical or radiotherapy 

planning, for example, the best patient position, incision, and method of resection; 3. 

Improved delineation of structures may lead to improved prosthetic devices, including 

implantable ones for the temporal bone [20]. An example of 3-D visualisation is 

shown in Figure 1.4

1.2.3 Impact of Volume on Tumour Staging and Prognosis 

Accurate tumour staging is crucial because it (1) aids treatment planning; (2) gives 

some indication of prognosis; (3) assists the evaluation of treatment results; (4) 

facilitates the exchange of information between treatment centres; and (5) contributes 

to the continuing investigation of human cancer. 

As mentioned in Section 1.1, there are currently two methods of T-staging for 

head and neck tumours: By tumour measurement and by the anatomic extension of 

tumour. Hence, the tumour size is an important staging parameter in many solid 

tumours and the largest axial tumour diameter has been used for many years in the 

TNM staging system [6]. Solid tumours are three-dimensional structures with unequal 

rates of tumour spread in different directions and in different planes. Hence the largest 

axial diameter may not reflect the total tumour volume and the total burden of 

malignant cells. For instance, superficial spreading tongue carcinomas frequently 
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exceed 4 cm in diameter without deep penetration. These tumours are classified as T3 

lesions but have very low volumes. Sorensen, et al. have demonstrated that the 

differences in volumes derived from diameter measurement and computer assisted 

perimeter method were large enough to have an impact in gauging treatment response 

[21]. Pameijer, et al. found considerable variability of tumour volumes in T3-staged 

head and neck tumours. They suggested that the current TNM classification system is 

unable to group tumours with the same size into the same stage group and tumour 

volume analysis could be a useful parameter in the future research of head and neck 

tumours [22]. Furthermore, staging based on the judgment of tumour extension is also 

questionable. Chua, et al. found large tumour volume variation in different T stage 

disease of NPC, and that might be partly due to the limitation of using current staging 

system to segregate patients into large and small tumour bulk [23]. The study of 

Chang, et al. demonstrated the considerable variability in primary tumour volume of 

NPC and they suggested the further refinement of the 1997 UICC/AJCC staging 

system by incorporation of primary tumour volume [24]. 

Tumour volume has also been well recognised as one of the major prognostic 

factors in the treatment of malignancy, as increasing tumour bulk means increasing 

number of tumour clonogens that need to be sterilised [25]-[27]. This observation was 

also confirmed in studies relating tumour volume and treatment outcome in head and 

neck cancers. The study by Johnson, et al. demonstrated that the total tumour volume 

appears to be more predictive than AJCC clinical stage in advanced head and neck 

cancers and quantitative tumour volume determinations might prove to be a useful 

parameter in future analyses of head and neck cancers [28]. Kurek, et al. suggested 

that as a prognostic factor of survival, the knowledge of the initial tumour volume 

should be included in all future clinical trials regarding head and neck cancer patients 

[29]. Chua, et al. and Willner, et al. found that primary tumour volume is a very 

important and independent prognostic factor influencing the local control in NPC 
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[23][30]. The study of Chang, et al. suggested that volumetric measurement of 

primary tumours in early T-stage NPC would better refine the TNM classification 

system [31]. Sze, et al. found that the gross volume of primary tumour and involved 

retropharyngeal nodes is a strongly significant factor for predicting local control of 

NPC [32]. In addition, some studies showed that the depth of tumour (tumour 

thickness) is related to nodal metastasis in tongue carcinoma. Hence tumour thickness 

might be a better prognostic parameter compared to T-staging (largest diameter) for 

the prediction of nodal metastasis and treatment outcome [33]-[37]. Since tumour 

volume can vary considerably even with one tumour stage, tumour volume should 

always be considered as an independent prognostic parameter. 

1.2.4 Determine the Volumes of Head and Neck Tumours 

How to determine the volume of a solid tumour? Apart from the direct water 

displacement method using resected specimen, the most common way is by the 

imaging-based approaches. These approaches are summarised in Table 1.1 and their 

detailed descriptions and comparison are shown in Section 2.2. 

Table 1.1 Imaging-based approaches for tumour volume determination 
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Little research work has been performed systemically during the last decade on 

imaging-based volumetric analysis for head and neck tumours. Among those studies 

involving volume measurement for head and neck tumours, planimetry measurement 

with manually delineated tumour outline, from either CT or MRI, is the most 

commonly employed method [22][24][28]-[3 1][33]-[37]. In some studies, tumour 

infiltration or extent was first manually traced by clinicians in diagnostic MRI or CT. 

The tumour outlines were then transcribed to the planning CT and the tumor volume 

was calculated by the radio-therapy planning system, taking into account the irregular 

tumour shape commonly seen in head and neck cancers [23][32][38]. It can be 

inferred that the 3-D planimetry measurement is considered as the method with the 

highest accuracy while the 1-D and 2-D methods are not satisfying for clinical 

research and application purposes. However currently, the tumour area is obtained by 

the clinician’s manual tracing, hence there may be considerable subj ectivities which 

result in intra- and inter-operator variances. Furthermore, the tracing work is really 

tedious and tough in a large-scale clinical investigation. Therefore, it has great 

significance to develop image segmentation algorithms and schemes to extract the 

tumour area from medical images, for determining the tumour volume of head and 

neck cancers. 

1.3 Objectives 

The major aims of the present study are to investigate, develop and validate effective 

segmentation algorithms and schemes to solve the key problems in the MRI-based 3- 

D tumour volume determination for head and neck cancers, and at the same time to 

develop an effective and PC-based system for 3-D tumour volume visualisation. 

The potential benefits of the research project include the followings. A robust and 

reliable tumour volume determination method will serve as a quantitative tool for 
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tumour staging and radiation treatment evaluation. For tumours staged by measuring a 

single dimension (largest diameter), volume determination will provide more accurate 

information. In addition, a 3-D visualisation system will make the determination and 

assessment more directly perceivable. 

In order to achieve these objectives of tumour volume determination and 

visualisation, the following aspects of MR image segmentation and 3-D visualisation 

are developed in the present work: 

A semi-supervised multi-spectral method for NPC segmentation from MRI, 

An unsupervised hierarchical method for tongue carcinoma segmentation from 

MRI, 

Boundary detection-based segmentation method and its application for 3-D 

MR segmentation, and 

3-D visualisation for head and neck tumours including data interpolation and 

system design. 

1.4 Major Contributions of the Thesis 

Imaging-based tumour volumetric analysis is a popular research field in many 

universities, medical centres, and research institutes. Segmentation is a comparative 

problem because segmentation methods are highly dependent on: 1. tumour size, site 

and type; 2.  stage, vascularity and related degree of MR contrast enhancement; 3. 

imaging sequence and parameters; 4. other factors that may affect MR relaxation 

parameters and the ability to serially differentiate tissues within the tumour bed [39]. 

It can be stated that a universally accepted segmentation method for tumour 

volumetric analysis is not presently available. A review of the recent literature showed 
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that most of the MR segmentation-based tumour volume determinations were reported 

in brain tumours and pelvic neoplasms, or for the evaluation of brain morphology. 

Currently there is a paucity of reports on MRI segmentation for head and neck 

tumours, as well as a quantitative tumour volumetric analysis for head and neck 

neoplasms. 

In the present work, an intelligent MR image processing, analysis and 

visualisation framework was developed for image segmentation-based tumour volume 

determination and 3-D visualisation. Besides the necessary image pre-processing, 

three novel MRI segmentation methods for head and neck tumows were integrated in 

this framework: 

A semi-supervised multi-spectral MRI segmentation method using knowledge- 

based fuzzy clustering (KBFC) for NPC. 

An unsupervised hierarchical multi-spectral MRI segmentation method for 

tongue carcinoma. This algorithm includes two consecutive procedures: an 

initial segmentation using genetic algorithm-included fuzzy clustering (GAIFC) 

and an artificial neural network (ANN)-based symmetry detection/refinement. 

A boundary detection-based MRI segmentation for tumour and metastasised 

lymph node using region deformation and active contour model. 

Furthermore, a shape-based interpolation method was applied to slice segmentation to 

reconstruct 3-D volume for visualisation. A visualisation platform including both 

surface and volume renderings, was developed as a part of the whole system with the 

support of the Visualization Toolkit (VTK). 
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1.5 Organisation of the Thesis 

The organisation of this thesis is made in the following manner. Background aspects 

and literature review on imaging-based tumour volume determination, MR image 

acquisition, MRI segmentation and 3-D visualisation are provided in Chapter 2. Semi- 

supervised MRI segmentation for NPC using knowledge-based fuzzy clustering is 

described in Chapter 3. In this chapter, experiment of NPC tumour volume 

determination and results are presented and discussed. Unsupervised hierarchical MRI 

segmentation for tongue carcinoma is presented in Chapter 4. In this chapter, 

experiment of tongue carcinoma tumour volume determination and the corresponding 

results are also presented and discussed. Chapter 5 deals with the boundary detection- 

based MRI segmentation using region deformation and active contour model and its 

application on 3-D tumour segmentation. Chapter 6 covers the 3-D visualisation for 

head and neck tumours including theories, system implementations, and test results. 

In Chapter 7, conclusions and recommendations for future work are stated. The 

contributions made by the present study are also highlighted in Chapter 7. In the end, 

the author’s publications as well as the bibliography are given and the file format of 

medical image is demonstrated in Appendix. 
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Chapter 2 

Literature Review 

2.1 Introduction 

Tumour volume determination can be used for tumour staging and treatment planning. 

Besides this, it is also expected to improve clinical management in oncology and to 

facilitate the development and evaluation of anti-neoplasm drugs and other treatment 

modalities in cancer patients. The research on imaging-based tumour volumetric 

analysis and 3-D visualisation started in the early 1990s due to the rapid progress in 

image processing, pattern recognition, digital imaging, information technology, and 

computer graphics. In 1992, the National Institutes of Health (NIH), USA, released a 

call for proposals inviting research grant applications to advance the methods of 

imaging-based tumour volumetric analysis for optimisation of response assessment in 

cancer therapy [40]. The National Electrical Manufacturers Association (NEMA, 

USA) listed imaging-based quantitative analysis and 3-D visualisation as one of the 

future strategic directions of Digital Imaging and Communications in Medicine 

(DICOM). The Working Group 17 (3-D) of the DICOM Standards Committee is in 

charge of the representative applications of visualisation of volumetric and cine- 
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volumetric as well as diagnostic quantitative and assisted detection using automated 

segmentation and classification [4 1]. For the research topics concerning imaging- 

based 3-D tumour volumetric analysis, there are three closely intertwined basic 

scientific areas of highest priority, including automated segmentation or “tumour edge 

definition”, multimodality image registration/fusion (e.g., CT, positron emission 

tomography (PET), conventional and metabolic chemical shift MRI, and 

immunoimaging), and the design and implementation of visualisation algorithms and 

platforms. 

The work in this study was based on MR images only. Therefore the thesis is 

focused on MRI segmentation and 3-D medical visualisation. In this chapter, the 

techniques and latest developments of tumour volume analysis, MR image acquisition, 

MR image segmentation and 3-D medical visualisation are reviewed and summarised. 

2.2 Imaging-based Tumour Volume Determination 

Before the digital imaging system was widely used in hospitals, some simple 

measurements such as one-dimensional (1 -D) or 2-D greatest tumour diameters were 

performed on transilluminated films directly. In 1990, Mahaley, et al. reported a film- 

based tumour boundary tracing with the assistance of digitizing tablet and 16-button 

hand-held cursor connected to a microcomputer [42]. In 1993, interferon beta-lb 

received regulatory approval from FDA for the treatment of multiple sclerosis on the 

basis of disease activity monitored with MRI of the brain. From then on, more digital 

imaging devices were put into use and radiologic and digital evaluations of tumour 

treatment response during clinical testing have become increasingly important [43]. It 

is well recognised that imaging-based volumetric measurement represents the most 

accurate way in the assessment of tumour size. In addition, the relative immobility of 

solid tumour minimises the motion artefact during the process of scanning. 
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In general, based on CT and MR images, there are three methods used to quantify 

the tumour volume, as stated below [44]. 

a. Spherical geometric measurement (1-D) 

In this method, the tumour is assumed to be a sphere with the volume given by 

volume = D /6 , (2-1) 

where D is the diameter of maximum cross-sectional area of the tumour. 

b. ABC ellipsoid geometric measurement (2-D) 

In this method, the tumour is assumed to be an ellipsoid with the volume given by 

volume= ABC/6, 

where A is the tumour’s maximum cross-sectional diameter, B is the maximal 

perpendicular diameter to A, and C is the number of slices making up the tumour. 

c. Planimetry measurement 

In this method, the tumour volume is given by 

volume = (2-3) 

where n  is the number of slices of the object, is the measured tumour area of slice i, 

T is the thickness of a slice, and G is the gap between two consecutive slices. 

Obviously, for perfectly spherical lesions, the tumour diameter, cross-sectional 

area, and volume are mathematically related and either method a or b can be used for 

determining the tumour size. Unfortunately, biology does not produce perfect 

geometric shapes, and tumours commonly cause invaginations in the surrounding 

tissues, which makes tumour determination as much as an art rather than a science. 

Chua, et al. believed that 1-D or 2-D diameter measurement method may be less 
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applicable in tumours that tend to be infiltrative in growth pattern with an often highly 

irregular tumour contour such as NPC and other head and neck tumours [23]. An 

example is given to show the difference among the tumour volumes obtained using 

the three above mentioned methods by the same radiologist on the same data. Figure 

2.1 shows the four MR images (slice thickness, 5 mm and slice gap, 1.5 mm) with 

tongue carcinoma. 1 -D diameter and 2-D diameters measurements were performed on 

slice 3, as shown in Figure 2.2(a). Figure 2.2(b) demonstrates the manual tumour area 

tracing, also on slice 3. The calculations of corresponding volumes are summarised 

and compared in Table 2.1. The results show that the volumes produced by 1 -D and 2- 

D methods have considerable variations to that produced by planimetry measurement. 

Figure 2.1 Four MR images with tongue carcinoma from the same patient 

Figure 2.2 (a) 1-D diameter and 2-D diameters measurement; (b) manual tumour area tracing. 
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Table 2.1 The calculation of volumes by different methods 

In addition, for methods a and b, whether imaging software is used or not, the 

tumour outline needs to be traced and the diameter need to be measured manually, 

which is potentially subjective and prone to large variations in intra- and inter- 

operator performance. Thus, the reliability, reproducibility, and accuracy of the 

measurement cannot be guaranteed [45]. It is obvious that method c is more accurate 

than the other two. If the values of T and G are sufficiently small, it means the number 

of slices n making up the object is large and according to the principle of calculus, this 

result is an estimation of the actual volume. 

The keys for getting satisfactory computing results include computing accurately 

and acquiring more slices containing the tumour. For the latter, although current 

helical CT and MRI scanners can produce very thin slices, the z-axis resolution is not 

very high in routine examination due to cost and scanning time considerations. 

Therefore, the number of slices is limited. For computing accurately, it is requited 

to segment tumour tissue more accurately fi-om the images. In some early studies, 

manual tracing was widely used to draw the tumour outline to count the pixels inside 

the contour and a few semi-quantitative methods such as Cavalieri’s direct estimator 

[46] were used. In recent years, several semi-automated or automated methods were 

proposed for tumour volume determination using computer image segmentation. 
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Some examinations on brain turnours, breast cancer and cervical cancer were 

performed to compare the results of manual and semi-automated/automated methods 

for tumour volume determination. The results showed that compared to manual 

methods, single semi-automated method has lower intra-operator and inter-operator 

errors and requires less operation time. On the other hand, for the same images, 

different semi-automated methods have variable results which may be partly due to 

different segmentation algorithms [45] [47]-[57]. Fully automated methods almost 

have no intra-operator and inter-operator errors. In addition, the elimination of human 

supervision makes them suitable to process large image volumes. However, the 

measurement accuracy of automated methods is sometimes less than that of semi- 

automated methods. In addition, the automated methods often require long processing 

time [58]-[60]. 

Overall, the accuracy of depends on image segmentation since it is the most 

critical step in imaging-based tumour volumetric analysis. The imaging-based tumour 

volume determination is actually the image segmentation-based tumour volume 

determination. 

2.3 MR Image Acquisition 

MRI technology has developed into a versatile and clinically useful diagnostic 

imaging modality since its inception in the early 1970s. It has become the diagnostic 

imaging modality of choice for many injuries and diseases. Dr Paul Lauterbur & Sir 

Peter Mansfield have been awarded the Nobel Prize in Physiology or Medicine 2003 

for their discoveries concerning MRI. In contrast to X-ray CT, MRI is a non-invasive 

imaging technique that does not use ionizing radiation. Rather MRI is based on 

perturbing magnetic fields with radiowaves. MRI procedures can be manipulated in a 

number of ways to produce selected contrast between different anatomic structures. 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



2.3 MR Image Acquisition 19 

MRI system provide mechanisms for intricate control of the signal being measured 

through modulation of the magnetic field and radiofrequency pulse sequence used to 

alter the spins of protons in the structure being imaged. MRI selectively images the 

distributions of protons, hence it is an excellent soft tissue imaging modality, 

providing highly detailed structural images [61]. Techniques have rapidly developed 

for fast MRI to capture functional characteristics, such as metabolism, flow, evoked 

neurofunctional response and biochemical composition of tissue (using MR 

spectroscopy) [62]. Figure 2.3 shows the diagram of an MRI system. 

Figure 2.3 Diagram of an MRI system 

2.3.1 Basic Principles of MRI 

The basis of MRI is the directional magnetic field, or moment, associated with 

charged particles in motion. Nuclei containing an odd number of protons and/or 

neutrons have a characteristic motion or precession. Because nuclei are charged 
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particles, this precession produces a small magnetic moment. When a human body is 

placed in a large magnetic field, many of the free hydrogen nuclei align themselves 

with the direction of the magnetic field. The nuclei precess about the magnetic field 

direction like gyroscopes. This behaviour is termed Larmor precession. 

The fiequency of Larmor precession is proportional to the applied magnetic field 

strength as defined by the Larmor frequency, 

where is the gyromagnetic ratio and is the strength of the applied magnetic field. 

The gyromagnetic ratio is a nuclei specific constant. For hydrogen, = 42.6 MHz/T. 

To obtain an MR image of an object, the object is placed in a uniform magnetic 

field of between 0.5 to 1.5 Tesla. As a result, the object’s hydrogen nuclei align 

with the magnetic field and create a net magnetic moment M parallel to This 

behaviour is illustrated in Figure 2.4. Next, a radio-frequency (RF) pulse, is 

applied perpendicular to This pulse, with a frequency equal to the Larmor 

frequency, causes M to tilt away from as shown in Figure 2.5(a). 

Figure 2.4 (a) In the absence of a strong magnetic field, hydrogen nuclei are randomly aligned; 
(b) When the strong magnetic field is applied, the hydrogen nuclei precess about the direction 
of the field. 
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Once the RF signal is removed, the nuclei realign themselves such that their net 

magnetic moment M is again parallel with This return to equilibrium is referred to 

as relaxation. During relaxation, the nuclei lose energy by emitting their own RF

signal, as shown in Figure 2.5(b). This signal is referred to as the free-induction decay 

(FID) response signal. The FID response signal is measured by a conductive field coil 

placed around the object being imaged. This measurement is processed or 

reconstructed to obtain 2-D grey-scale MR images. 

Figure 2.5 (a) The RF pulse, causes the net magnetic moment of the nuclei, M, to tilt away 
from (b) When the RF pulse stops, the nuclei return to equilibrium such that M is again 
parallel to During realignment, the nuclei lose energy and a measurable RF signal. 

2.3.2 Image Acquisition 

To produce an actual MR image, the FID resonance signal must be encoded for each 

dimension. The encoding in the axial direction, the direction of is accomplished by 

adding a gradient magnetic field to Bo. This gradient causes the Larmor frequency to- 

change linearly in the axial direction. Thus, an axial slice can be selected by choosing 

the frequency of to correspond to the Larmor frequency of that slice. The 2-D 
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spatial reconstruction in each axial slice is accomplished using frequency and phase 

encoding. A “preparation” gradient is applied causing the resonant hequencies of 

the nuclei to vary according to their position in the y-direction. is then removed 

and another gradient, is applied perpendicular to As a result, the resonant 

frequencies of the nuclei vary in the x-direction due to and have a phase variation 

in the y-direction due to the previously applied Thus, x-direction samples are 

encoded by frequency and y-direction samples are encoded by phase. A 2-D Fourier 

Transform is then used to transform the encoded image to the spatial domain [63]. 

The voxel intensity of a given tissue type (i.e. white matter or grey matter) 

depends on the proton density of the tissue: The higher the proton density, the 

stronger the FID response signal. MR image contrast also depends on two other 

tissue-specific parameters: The longitudinal relaxation time (or spin-lattice relaxation 

time), T1; and the transverse relaxation time (or spin-spin relaxation time), T2. 

T1 measures the time required for the magnetic moment of the displaced nuclei to 

return to equilibrium (i.e. realign itself with Bo). T2 indicates the time required for the 

FID response signal horn a given tissue type to decay. When MR images are acquired, 

the RF pulse is repeated at a predetermined rate. The period of the RF pulse 

sequence is the repetition time TR. The FID response signals can be measured at 

various times within the TR interval. The time between which the RF pulse is applied 

and the response signal is measured is the echo delay time TE. By adjusting TR and 

TE, the acquired MR image can be made to contrast different tissue types. 

The MR images used in clinical purpose were all acquired using a multiple echo 

spin echo pulse sequence in which two or more images are acquired simultaneously. 

TR and TE are adjusted such that tissues with different properties show different 

contrasts in images of different sequences. For an example, tissues with a high proton 

density appear bright in a proton density-weighted (PDW) image while tissues with a 

long T2 appear bright in a T2-weighted image. For an image of the brain, the T2 time 
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will provide contrast such that brightness of cerebral spinal fluid is greater than grey 

matter, which in turn is brighter than while matter, which is brighter than fat. On the 

contrary, the T1-weighted image would provide contrast just the reverse of T2- 

weighted images (fat > white matter > grey matter > cerebrospinal fluid). Moreover, 

image contrast can be further enhanced with the use of paramagnetic contrast 

materials like GdDTPA (gadolinium base) or newer superparamagnetic contrast agent 

pulse fat suppression technique [61]. It is particularly useful in the imaging of 

malignant tumours. 

2.4 Methods of MRI Segmentation 

The objective of image segmentation is to find the desirable object and isolate it from 

the rest of the scene [64]. If the domain of the image is given by I, then the 

segmentation problem is to determine the sets I whose union is the entire image 

I. Thus, the sets that make up the segmentation must satisfy 

(2-5) 

where for k j ,  and each is connected. A representative diagram of 

the most common parts of a computer image analysis system is shown in Figure 2.6 

[65]. Therefore, MRI segmentation is to find the desirable object from MFU by 

analyzing extracted image features, and hence define its boundary for further 

classification, description, and interpretation. Due to recent rapid advances in MRI 

system, image processing, pattern recognition and high performance computing, MRI 

segmentation has been proposed for a number of clinical investigations of varying 

complexity. MRI segmentation is becoming an increasingly important image 

processing step for a number of areas that include identifying anatomical areas of 
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interest for diagnosis, treatment or surgery planning paradigms, pre-processing for 

visualisation and multi-modality image registration, and improved correction of 

anatomical areas of interest with localised functional metrics [39]. 

Figure 2.6 Components of an image analysis system 

According to the number of MRI sequences used in segmentation, MRI 

segmentation can be broadly divided into two categories: a single image, or greyscale, 

segmentation where a single 2-D or 3-D MR image is used, and multi-spectral image 

segmentation where MR images of multiple sequences with different greyscale 

contrasts are available. The two categories are discussed in the following sections. 

2.4.1 Greyscale Single Image Segmentation 

Single greyscale image segmentation methods can be subdivided as thresholding- 

based methods, region-based methods, edge-based methods, morphological model 

methods, random field methods, etc. 

Thresholding-based methods: Global or local thresholding derived from image 

histogram is the most intuitive approach to segmentation. However, this method is 

of limited use despite the developments in knowledge-guided and adaptive 

thresholding methods. This method is available in segmentation software which 

was reported as not released for general use (Morph, Silicon Graphics, California, 

USA) [45]. 

Edge-based methods: Edge-based methods try to find the places of rapid transition 

from one to the other region of different brightness or intensity. The main 
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principle is to apply some of the gradient operators and convolve them with the 

image. However, edge detection schemes often suffer from incorrect detection of 

edges due to noise, artefact, and variability in the threshold selection in the edge 

image. In recent years some investigators described a boundary tracing method 

using both region and contour deformation models [66]. In general, edge-based 

methods are likely to be restricted to segmentation of large, well defined structures 

such as brain tumour and parenchyma, but not to distinguish individual tissue 

types. 

Region-based methods: Region-based methods are complementary to the edge- 

based method. Here the point is to group neighbouring pixels to the region 

according to the given criteria of homogeneity. Seed-growing is a type of common 

but commercially available region-based method [39]. Results obtained with seed- 

growing are generally dependent on the operator settings and only well defined 

regions can be robustly identified. A “seeded region growing” method and the 

“improved seeded region growing” algorithm with the characteristics of rapidness, 

robustness, and without tuning parameters were reported by Adams, et al. in 1994 

[67] and Mehnert, et al. in 1997 [68], respectively. Hojjatoleslami, et al. used a 

pixel aggregation-based region growing algorithm to segment large brain lesions 

and good results were obtained [69]. Furthermore, a similar method using the 

fuzzy-connectedness principles has also been developed by Udupa, et  al   [70]. 

These algorithms show that region-based methods still have potentials for MRI 

segmentation. 

Morphological model methods: Morphological models are often used with the 

combination of other methods. A common morphological model method is the 

template matching which is used for the classification of brain structures such as 

the white matter and ventricle [71]. Kaus, et al. used  an  adaptive template- 

moderated scheme to segment brain tumour from MRI automatically and 
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hierarchically  [60]. Combining image segmentation based on statistical 

classification with a priori knowledge has been shown to significantly increase the 

robustness and reproducibility. This is known as the “knowledge-based method”, 

which utilises a probabilistic brain atlas [72] [73]. 

Random field methods: Markov random field (MRF) model is a statistical model 

which can be used within segmentation methods. MRFs are often incorporated 

into clustering segmentation algorithms such as the k-means algorithm under a 

Bayesian prior model. The segmentation is then obtained by maximizing the a 

posteriori probability of the segmentation given the image data using iterative 

methods such as iterated conditional modes or simulated annealing [74]-[76]. A 

difficulty associated with the MRF models is the proper selection of the 

parameters controlling the strength of spatial interactions. In addition, MRF 

methods usually require computationally intensive algorithms. Despite these 

disadvantages, MRF methods are widely used not only to model segmentation 

classes, but also to model intensity heterogeneity that can occur in MR images 

2.4.2 Multi-spectral Image Segmentation 

Multi-spectral image segmentation uses two or more than two imaging sequences 

which contain more information than greyscale image segmentation, that is, vector- 

based features take the place of single intensity-based features. The most common 

approach for multi-spectral segmentation is pattern recognition. Multi-spectral 

segmentation can be divided into supervised segmentation and unsupervised 

segmentation. 

Supervised segmentation methods: Classifiers and algebraic methods are two 

kinds of supervised multi-spectral segmentation methods. For classifiers methods, 
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there are three most frequently used algorithms: the maximum likelihood (ML) or 

Bayes classifier, k nearest neighbours (kNN), and artificial neural networks 

(ANN). ML is a commonly used parametric classifier which assumes that the 

pixel intensities are independent samples from a mixture of probability 

distributions, usually Gaussian. By estimating the means and covariance matrices 

for each of the tissues from a user supplied training set, the remaining pixels are 

then classified by calculating the likelihood of each tissue class, picking the tissue 

type with the highest probability. On the other hand kNN, a non-parametric 

classifier, does not rely on predefined distributions, but on the actual distribution 

of the training samples themselves. Therefore, kNN has given superior results both 

in terms of accuracy and reproducibility compared to parametric classifier [77]. 

ANN represents a paradigm for machine learning and is widely applied in medical 

imaging as a classifier. First the weights of the neural networks are determined 

using training data, and the ANN is then used to segment the new data. Due to the 

multitude of interconnections used in a neural network, spatial information can 

easily be incorporated into its classification procedures [77]. For images with 

clearly identified signature vectors, algebraic methods which work with 

projections of feature vectors may provide an elegant solution to deal with the 

partial volume effect. However, these methods are optimal only for signature 

vectors that are more or less orthogonal, which may not be the case for 

pathological tissues that exhibit similar relaxation behaviour [39]. Algebraic 

methods are not common in multi-spectral segmentation and only a few schemes 

using vector decomposition have been reported [78] [79]. 

Unsupervised segmentation methods: Unsupervised segmentation, also called 

“clustering”, automatically find the structure in the data. Three commonly used 

clustering algorithms are the k-means, the fuzzy c-means (FCM), and the 

expectation-maximisation (EM) [80]. The k-means algorithm clusters data by 
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iteratively computing a mean intensity for each class and segmenting the image by 

classifying each pixel in the class with the closest mean [80]. The FCM is a fuzzy 

generalisation of the commonly used k-means algorithm for unsupervised pattern 

recognition, which allows labels to be “fuzzy”. That is, a pixel can be partly in one 

class and partly in others. To overcome the limitations of FCM, some improved 

FCM algorithms such as semi-supervised fuzzy c-means (SFCM) and adaptive 

fuzzy c-means (AFCM) were proposed [81][82]. The EM algorithm applies the 

same clustering principles with the underlying assumption that the data follow a 

Gaussian mixture model. It iterates between computing the posterior probabilities 

and computing the maximum likelihood estimates of the means, covariances, and 

mixing coefficients of the mixture model, [80]. 

2.4.3 Areas of Improvement in MRI Segmentation 

Each of the MRI segmentation methods described above has its own advantages, 

drawbacks and the objective for processing. The development goal is to increase the 

absolute accuracy and reproducibility as well as to decrease the observer variances 

and computational complexity. The potential research areas for improvement in MRI 

segmentation include: (1) the optimal selection of features in an image to maximise 

tissue contrast differentiation or segmentation in feature space while minimizing the 

computational complexity; (2) the optimisation of the level of supervision to best 

utilise the prior knowledge of the operator while increasing inter-operator 

reproducibility; (3) the development of atlas-guided approaches which make use of 

the standardised a priori knowledge about the image. 
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2.5 Fundamentals of 3-D Visualisation in Medicine 

The complicated computing and computer graphics gave birth to the Visualisation in 

Scientific Computing which assists the investigators to better understand mass data 

from all kinds of perception and simulations. Visualisation in scientific computing is 

widely used in the medical areas and the modem imaging techniques provide 

necessary supports for the development of visualisation in scientific computing [83]. 

Generally, medical imaging modalities such as CT, MRI, PET and ultrasound 

produce a serial of 2-D tomographic images. The stack of these parallel 2-D 

tomographic images can describe the 3-D information of human body and is termed 

“volume data”. Nowadays, the high resolution of medical images in the x, y, and z 

axes leads to the mass volume data and a lot of physiological and pathological 

information is hidden inside. It is quite difficult for doctors to determine the 

pathological and spatial properties of lesions accurately by only observing a group of 

these 2-D images and “reconstructing the 3-D constructs in mind”. 3-D visualisation 

is just the technique that can present the volume data intuitively and realistically to 

assist in diagnosis and therapy. 

The main task of 3-D visualisation in medicine is to acquire the rich information 

hidden in medical volume data by interactive image and graphic techniques. Mainly, 

there are a few primary research areas for 3-D visualisation in medicine that include 

volume graphics, volume rendering equation, transform coding of volume data, 

scattered data, enrichment of volumes with knowledge, segmentation and 

classification, real-time rendering and parallelism, and special-purpose hardware [84]. 

The discussions on 3-D visualisation algorithms and 3-D visualisation in head and 

neck imaging are given in Sections 2.5.1 and 2.5.2. 
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2.5.1 3-D Visualisation Process and Algorithms 

The elementary process of 3-D visualisation is shown in Figure 2.7. The volume data 

are obtained from imaging devices in the first step. In the second step, for images with 

large amount of raw data, data refinement and selection are needed to reduce the 

amount of data while at the same time, prevent the loss of useful data. When the data 

attribution is sparse and thus insufficient for visualisation, data interpolation is needed. 

The core of the whole procedures is the visualisation mapping that transfers processed 

raw data into plotted geometric elements and attributes. In the fourth step, the 

geometric elements and attributes produced in the previous step will be transferred 

into displayed images using these fundamental techniques of computer graphics such 

as viewing transform, light calculation and scanning transform. In the implementation 

of 3-D visualisation, necessary steps include image acquisition, image merging, image 

segmentation, colour assignment, 3-D image rendering, and image display. 

Figure 2.7 Elementary process of 3D medical visualisation 

Most of the 3-D visualisation algorithms can be divided into surface rendering 

algorithms and volume rendering algorithms. 

Surface rendering: For surface rendering, intermediate geometric elements such as 

camber and plane are first constructed from 3-D spatial volume data. Frame 

rendering is then performed by the traditional computer graphics techniques. The 

most frequently used intermediate geometric element is the triangular patch, the 

same situation where a contour is extracted from the 3-D spatial volume data. The 

generation of the intermediate geometric elements can be regarded as a mapping 

that maps a part of the properties of original data into planes or cambers. 
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Therefore, the visualised graph generated by this method cannot reflect the full 

view and the details of the whole original volume data, but more distinct contour 

image can be generated [85]. In addition, the algorithm can use current graphic 

hardware that accelerates the speed of rendering and transformation. Typical 

algorithms of surface rendering include contour connecting, opaque cube, and 

matching cubes. 

Volume rendering: Volume rendering is different from surface rendering. Instead 

of constructing intermediate geometric elements, volume rendering generates 2-D 

images on the screen directly from 3-D volume data, skipping the step of mapping. 

The selected volume data are displayed on screen via the projections of 

corresponding voxels. During the projection, the transfer function which 

represents the different properties of each voxel such as greyscale, gradient, and 

coordinates, is introduced to compute the shading effect. Volume rendering can 

produce the entire image of 3-D data set, including the object surface and details 

inside with high quality. Its drawback is the large amount of computation and it is 

not supported by the traditional graphic hardware. To solve this problem, some 

special volume rendering-accelerated graphic hardware systems, such as 

VolumePro [86], were developed. The typical algorithms of volume rendering 

include ray casting, splatting, and shear warp factorisation. 

The 3-D graphs of pelvis formed by volume rendering and surface rendering are 

shown in Figures 2.8 and 2.9, respectively [87]. The graph formed by the former 

actually provides the viewer with an inside view of the rendered model. A detailed 

comparison of these two algorithms is shown in Table 2.2. 
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Figure 2.8 Shaded volume rendering of pelvis Figure 2.9 Shaded surface rendering of pelvis 

Table 2.2 Comparison of volume rendering and surface rendering 

Volume rendering 

Uses entire data set 

Conveys more information than 
surface rendering 

Contributions of all voxels in the 
volume data are summed 

A range of opacity from transparent to 
opaque is selected 

The view angles from any plane or 
projection are generated 

Surface rendering 

Only uses first defined voxel as the 
surface of the bone 

Displays gross 3-D relationships 

Fails to display lesions hidden beneath 
the bone surface 

Tends to demonstrate stair-step 
artefacts 

2.5.2 3-D Visualisation in Head and Neck Imaging 

Technical improvements in CT and MR imaging permit exquisite visualisation of 

bony and soft tissue anatomy, as well as various extra-cranial head and neck lesions. 

Recent advances in CT and MRI scanners have produced high-quality data suitable 

for 3-D visualisation. In addition, recent developments in computer graphics have 

enabled direct viewing of CT and MR imaging studies as 3-D volumes. These 
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advances provide surgeons or radiologists with reconstructed images and perspectives, 

which are not available with conventional scans, viewed from the surgical or 

radiotherapy treatment positions [88] . 

In the early 1990s, only non-real time surface rendering was used in clinical 

visualisation application for head and neck imaging. 3-D view did give better 

understanding and a direct impression of the topographic relationship of lesion within 

normal tissue. However, it offered no significant advantage over 2-D and almost no 

diagnosis was substantially changed by the addition of 3-D over 2-D for temporal 

bone studies [89]. Darling, et al. found that the primary advantage of real time surface 

rendering for head and neck imaging was the additional information of depth 

perception, contours, volumes, and extent of abnormalities [90]. 

The changes from surface rendering to volume rendering under real time control 

further improve doctor’s understanding of the complex anatomy of this region. In 

1995, Johnson, et al. performed a pilot study on the use of volume visualisation in 

image-based treatment planning for head and neck cancer [91]. Lee, et al. studied the 

utility of volume rendering technique in the practice of CT-based radiotherapy 

planning for head and neck [92]. They all found that volume visualisation might be 

useful in target definition of head and neck cancers since the spatial relationship of 

critical normal structure to the gross target tumour and nodal areas could be visualised 

more clearly. Moreover, volume rendering had several advantages over previously 

segmentation-based 3-D display techniques [91][92]. Moharir, et al. developed a 

computer assisted 3-D reconstruction technique of head and neck tumour, which 

provided a very good 3-D interactive representation of the tumours and patient 

anatomy for potential applications in treatment, research, and medical education [20]. 

Greess, et al. demonstrated the value of 3-D visualisation fkom spiral CT on various 

studies of head and neck tumours [93]. The study results of Cavalcanti, et al. showed 

that by using commercial 3-D image workstation, 3-D CT reconstructed images of 
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head and neck tumours were of the greatest benefit to the clinicians in pre and 

postoperative assessment [94]. 

The major limitation of the studies cited here is that only CT data were used for 

visualisation and very little was done using MRI. This may be partly due to the fact 

that CT images are easier for structure and tissue classification and colour designation 

according to the following simple criteria: High CT level means high density 

corresponding to bone; medium CT level means medium density corresponding to 

soft tissue or fluid; and low CT level means low density corresponding to air or 

background. The various CT windows make it easy to demonstrate the serial removal 

of soft tissue structures from the same data on a fixed perspective [92]. MRI is better 

than CT in differentiating tumour margin from normal adjacent soft tissue, but it is 

also the high resolution for soft tissue of MRI that makes the classification of 

structures and tissues difficult for visualisation. Classification using multi-threshold in 

image intensity or lookup table is not applicable and fast tissue classification 

algorithm is needed. 

2.6 Concluding Remarks 

It is noted that imaging-based (especially image segmentation-based) tumour 

volumetric analysis offers very high accuracy in determining the volume of solid 

tumour for tumour staging, treatment planning and treatment evaluations. Currently, 

the quantitative method for head and neck tumour-volume analysis using MRI is still 

not well established. MRI segmentation plays the critical role in the whole processing 

procedure. Each of the MRI segmentation methods has its own advantages, drawbacks 

and objectives for processing. The potential directions for improvement include the 

selection of optimal features, the use of hierarchical segmentation methods and 

supervision for complex images, and the introduction of the standardised  a priori 
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knowledge. It is also noted that 3-D visualisation, especially using volume rendering 

technique, has a lot of benefits to head and neck imaging for lesion diagnosis and 

treatment planning. Most of the work in 3-D visualisation was performed on CT data, 

it is therefore important to investigate 3-D head and neck visualisation using MRI data. 
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Chapter 3 

Semi-supervised MRI Segmentation and Tumour 

Volume Determination for Nasopharyngeal 

Carcinoma 

3.1 Introduction 

Nasopharyngeal carcinoma (NPC) is a malignant skull base tumour. High frequencies 

of occurrence are reported in Southeast Asia and South China. The risk does not 

diminish in Chinese migrants outside this region [11]. NPC shows an aggressive and 

infiltrative growth pattern. As shown in Figure 3.1, NPC has a high degree of region 

spread at presentation with the propensity to extend into the nasal cavity, oral pharynx, 

cervical spine, parapharyngeal space, skull base, and intra-cranial spaces. Radiation 

therapy is the mainstay of treatment and accurate tumour staging is crucial for 

effective treatment planning. According to the current Tumour Node Metastasis 

(TNM) classification of UICC/AJCC, NPC is not staged by volume determination but 

by anatomical extension. However, the determination of tumour volume could assist 

tumour staging and effective treatment planning. 
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Figure 3.1 (a) Local spread of NPC in sagittal view; (b) Local spread of NPC in axial view [95]. 

There is a lack of quantitative methods for NPC tumour volume analysis due to 

the difficulties in obtaining accurate tumour segmentation from medical images such 

as CT and MRI. Literature review shows that there is also no specially developed 

algorithm for NPC tumour segmentation due to the infiltrative growth pattern and 

irregular tumour shape, the complex anatomic structures nearby, the heterogeneous 

MRI signals or blurry tumour contour due to partial volume effect, and the overlap of 

image feature distribution. Hsu, et al. developed an automatic medical diagnosis for 

segmenting     NPC with dynamic gadolinium-enhanced MR imaging and 

pharmacokinetic analysis [96]. This method can identify the NPC regions effectively. 

However, it is indeed a type of “detection” rather than “segmentation” and only one 

section of the head can be examined. 
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Figure 3.2 (a) T1W image; (b) CETlW image; (c) Average joint histogram of 12 pairs of 
tumour-represented MRI slices. The six primary tissue types shown here are: 1. Air; 2. Other 
normal soft tissue; 3. Tumour; 4. Mucosa and soft palate; 5. Bone marrow; 6. Fat. 

Figures 3.2(a) and 3.2(b) show the fast spin echo sequenced T1-weighted (T1W) 

and contrast enhanced T1 -weighted (CET1 W, gadolinium-enhanced with fat 

suppression) images (512x512 pixels) of a pair of typical NPC slices respectively. 

Compared to brain images which have been extensively studied, images of head and 

neck region are more complex in both anatomy and tissue components. Although in 
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most of the previous brain tumour analyses, T1W (with or without contrast 

enhancement), T2-weighted (T2W), and proton density (PD) images were needed for 

multi-spectral segmentation, the T 1 W and CET1 W sequences currently available in 

the present study can also provide the feature space for tumour-represented areas. The 

average joint histogram (after logarithm processing) of 12 pairs of NPC-represented 

MRI slices is shown in Figure 3.2(c). There are six primary tissue types: (1) Air, (2) 

other normal soft tissues, (3) tumour (sometimes includes oedema, necrosis and 

involved lymph node), (4) mucosa and soft palate, (5) bone marrow, and (6) fat. Each 

MR voxel of interest has a (T1W, CET1W) location in forming a feature space 

distribution. Based on the knowledge in Figure 3.2(c) and the fact that pixels 

belonging to the same tissue type will exhibit similar relaxation behaviours (T1W and 

CET1W), they will have approximately the same location in the feature space. In 

addition, there is some overlap between classes because of the “partial-averaging”, 

where different tissue types are quantised into the same voxel and the artefacts and the 

adhesion of different tissues are taken into account. In Figures 3.2(a) and 3.2(b), 

tumour tissue and mucosa show very similar signal intensity features in the feature 

space. Therefore, in cases where tumour, mucosa and soft palate are adherent to each 

other, direct segmentation becomes difficult. 

In this chapter, a semi-automated, knowledge-based fuzzy clustering (KBFC) 

method including noise removal, initial segmentation, and knowledge-based 

refinement has been developed to segment NPC from MRI for tumour volume 

determination. The organisation of this chapter is as follows. Section 3.2 describes the 

noise removal and initial segmentation process using semi-supervised fuzzy c-means 

(SFCM), which are the first two steps of the KBFC method. Section 3.3 presents the 

knowledge-based image analysis for segmentation refinement, which is the third step 

of KBFC. In addition, some segmentation results are presented in this section. The 

experimental method of NPC tumour-volume determination using KBFC and its 
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validation are given in Section 3.4. Sections 3.5 and 3.6 are the discussions and 

concluding remarks, respectively. 

3.2 Noise Removal and Initial Segmentation 

3.2.1 Noise Removal 

Median filter can eliminate the background grain noise in the original MR images. 

However, it also decreases the edge details. Hence in the present study, a head mask is 

used to remove the background noise but maintain the edge details of the original 

signal. First an initial binary head mask M is generated from the original image I 

using the minimising within-group variance method for the determination of the best 

threshold value [97]. As defined in Eq. (3-l), a binary morphological opening 

operation erosion followed by dilation) using a circular structuring element B 

with the radius of 2, is then performed on M to remove the background noise and the 

resulting new mask was named as M’ : 

= B , (3-1) 

where is the erosion operator of mathematical morphology and is the 

dilation operator [97]. Figure 3.3 shows the head mask for the image in Figure 3.2. A 

background noise-free new image I’ is obtained using 

(3-2) 

where means the multiplication of corresponding pixels in the two matrices. In I’ , 

the intensities of almost all the background and air-content areas are set to zero. In the 

following procedures, the entire image is selected as the region of interest (ROI) for 

further processing. 
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(a) (b) 

Figure 3.3 The head mask (a) Before the morphological operation; (b) After the operation. 

3.2.2 Initial Segmentation Using SFCM 

1. Clustering using fuzzy c means 

SFCM is a hybrid, modified version of the fully unsupervised fuzzy c means (FCM) 

clustering method, while FCM is the fuzzy extension of k-means method, one of the 

classical clustering techniques [59]. FCM is also a clustering algorithm, but the 

resulting partition is fuzzy that the input feature vectors are not assigned exclusively 

to a single class, but partially to all classes. For example, a data point could be 

categorised into three classes with the fuzzy label y =(0.1, 0.2, 0.7)T, indicating that 

the data point has a probability of 0.1 belonging to the first class, 0.2 to the second 

class and 0.7 to the third class. If a single class must be chosen, this data point can be 

chosen to be in the class with the highest membership grade, the third class in this 

example. This process is called defuzzification which yields a crisp label. 

Formally, FCM takes a finite object data set ... Xn) as an input. 

Here, each is a feature vector and ... where is feature of 

the subset, 1 k n , and s is the dimensionality of Each X vector is labelled 
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with a fuzzy membership having a value between 0 and 1. X is partitioned into c 

subsets of u where and is the membership of pattern in class 

. The fuzzy membership grades form a U matrix consisting of n 

elements, i.e.,   and                                    with the following constraints: 

FCM consists of an iterative optimisation of an objective function      [81] : 

(3-4) 

where ... are the cluster centres that are being sought, is a 

weighting exponent of each fuzzy membership, and 

If  m=1 and 

(3-6) 

it is just the k-means problem, which is also referred to as hard c-means (HCM). For 

computational reasons, m=2 is chosen in the present method. Therefore in FCM, the 

objective function as defined by 

is used to approximate the minimum of a sum-of-weighted-distance function. In other 

words, this objective function leads to the minimal square errors of the estimated 

membership matrix. 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



3.2 Noise Removal and Initial Segmentation 43 

2. SFCM: An improvement for FCM 

From a viewpoint of reproducibility, unsupervised FCM is clearly desirable. However, 

FCM does not necessarily arrive at meaningful segmentations and often requires long 

computation time [39][81]. In particular, FCM has the tendency to prefer equal size 

clusters which is partly due to the randomly generated initial membership matrix 

for the optimisation of To overcome the limitations of FCM and at the same time, 

to avoid the tedious, costly and impractical task of having a human assign a tissue 

class to each of the object data for initialisation, SFCM has been developed. In SFCM, 

a training set from each class is selected by the operator to initialise and guide the 

segmentation algorithm. This hybrid approach helps to minimise or eliminate the 

errors introduced in the FCM clustering method by selecting and validating the 

number of clusters in the image, correct labelling of the clusters that are anatomically 

relevant, and helping to overcome the tendency to prefer equal size clusters [51]. The 

following procedure is used to minimise in SFCM [51]. 

The initial matrix is formed with columns is the number of elements in 

the training set, l means “labelled”) of labelled pixel vectors having crisp membership 

grade of 1 or 0, and the remaining means “unlabelled”) elements from 

the unlabeled pixel vectors of the object data to be classified. The initial cluster 

centres are computed from the first column of using the equation: 

k=l  k=l 
(3 -9) 

where the superscript l indicates the labelled training pixels. Then the remaining 

unlabelled columns of U are updated by calculating by the following equation: 

(3-10) 
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where the superscript u indicates the remaining unlabelled pixels. One variable weight 

vector . . . is introduced to make multiple copies of the training set in 

the U matrix to increase or decrease the effect of training pixels on the new cluster 

centres. Then, the new cluster centres are found with all columns of the updated U 

matrix using the following equation: 

(3-1 1) 

k=l k=l 

Next, Eq. (3-10) is used to calculate the with the new cluster centres so that 

Eqs. (3-10) and (3-1 1) form an iterative process that converges to a local minimum of 

the objective function The iterative process is continued until the Euclidean 

distance between the new and old unlabelled columns of the U matrices (i.e., 

- ) is less than a threshold value . The final cluster centres 

corresponding to the final U matrix are then computed. 

3. The implementation of SFCM 

The procedure for the implementation of the SFCM algorithm is as follows. 

1) With a graphic user interface (GUI), select the initial training points of each tissue 

class which is labelled with different colours, as shown in Figure 3.4. For each 

class, four to ten points are selected. If no point is selected for a tissue class, this 

tissue class does not exist in this pair of images. 

2) For every point (x, y) selected as class i, the memberships of class i in (x, y) and 

its 4-connective neighbourhood (x-1, y), (x+1, y), (x, y-1), and (x, y+l) are set to 

1. The memberships of other classes to the five pixels are set to 0. For example: 
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if (x, y) is selected as tumour tissue, then 

tumour-membership(x, , y)=tumour-membership(x, )=1 ; 

other-membership(x, y)=other-mem y)=other-membership(x, )=0; 

end. 

3) Compute the initial cluster centres from the training points using Eq. (3-9). 

4) Compute the memberships of every class fornon-training data using Eq. (3-10). 

By this step, every pixel has a computed or assigned membership of every class 

and the matrix U is obtained. 

5 )  Compute the new cluster centres from all image pixels using Eq. (3-11). The 

weight vector might be selected in proportion to cluster size, but here we use 

an equal weight vector for all classes that That means that the 

training set of every tissue class has the same contribution to the determination of 

the new cluster centres. 

6) Repeat step 4) to get a new membership matrix U using the new cluster centres. 

7) Compute Euclidean distance between the new and old non-training elements of 

end; 

else 

repeat steps 5), 6) and 7); 

end. 

8) The pixels whose tumour memberships are more than the memberships of other 

tissue classes, are classified as tumour. 

In the work of Vaidyanathan, et al., different values of =1, 10, 20 and 100) 

were tested and 100 was chosen as the proper value [51]. In the present work, 
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value of 100 was adopted such that the medical experts selected training sets can 

make more contribution to the calculation of the desired cluster centres. is the 

threshold to determine the convergence of the membership matrix U and in the 

present method,      = 0.01 was selected to ensure the good convergence of U. 
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3.3 Knowledge-based Image Analysis 

3.3.1 Knowledge-based Image Analysis 

The initial tumour segmentation using fuzzy clustering is a coarse procedure. After 

this procedure, many pixels that do not represent tumour are classified as tumour 

tissue because these non-tumour pixels have similar MRI feature vectors as those of 

the tumour pixels, due to RF non-uniformity, partial volume effect and other reasons 

mentioned in Section 3.1 (Page 39). 

The initial tumour segmentation results are shown in Figures 3.5(d) and 3.6(d). 

Figures 3.5(c) and 3.6(c) are the corresponding ground truths (GT) which are 

manually traced by an experienced radiologist. The initial segmentation shows that in 

addition to the soft palate and mucosa that are adhesive to the tumour, a number of 

spatially disjoint small areas (scatter points) are also classified as tumour. Moreover, 

there are a few small “holes” which may represent small oedema and necrosis in the 

true tumour area. Therefore, a knowledge-based analysis is introduced to refine the 

initial segmentation and the corresponding results are shown in Figures 3.5(e) and 

3.6(e). In the present study, three types of anatomic and space knowledge, namely, 

symmetry, connectivity and class center, contribute the refinement of segmentation. 

(1). Symmetry: In normal condition the nasopharynx, mucosa and soft palate are 

morphologically bilaterally symmetric while in NPC condition, the tumour always 

shows a unilateral growing pattern, which causes the unilateral disappearance of 

pharyngeal recess [98]. Therefore in the image space, most normal tissues are roughly 

symmetrical with respect to the vertical axis while tumours often have poor symmetry, 

as shown in Figures 3.5(d) and 3.6(d). In the image analysis, a fuzzy symmetric 

measure [71] is introduced and those areas with certain degree of symmetry with 

respect to the previously determined vertical axis (Y axis) will be removed. Before the 
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Figure 3.5 (a) T1W image; (b) CETlW image; (c) Ground truth; (d) Initial segmentation: 1. 
soft palate, 2. mucosa, 3. tumour, and the dash line is the symmetric axis; (e) Final result. 

Figure 3.6 (a) T1W image; (b) CETlW image; (c) Ground truth; (d) Initial segmentation: 1. 
soft palate, 2. mucosa, 3. tumour, and the dash line is the symmetric axis; (e) Final result. 
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initial segmentation, the center of the head is determined via the first moment of the 

binary head mask and then a Cartesian coordinate system is set up in the center of the 

head, according to the slant of head position. The resultant image of this step is named 

as image I. 

(2). Connectivity and class center: After the first step, the tumour mass accounts 

for most part of the pixels and in most cases the tumour tissues appear as a 

morphologically continuous region in the image. Therefore the geometric class center 

of tumour in image I is similar to the actual class center of tumour. In contrast, those 

non-tumour areas which are classified as tumour are always disconnected and the 

number of pixels in those areas is relatively small with some areas containing only a 

few pixels. Therefore, the areas which are spatially disjoint to the class center and 

contain low pixel number are removed. For implementation, the first moment of 

image I is calculated as class center and an eight-wise connected components 

operation is applied from the class center. The resultant image of this step is named as 

image II. 

(3). Mathematical morphology refinement: For the small “holes” which represent 

small oedema and necrosis (regarded as part of the tumour in most cases) inside the 

tumour area, a closing operator (dilation followed by erosion) of mathematical 

morphology is performed to fill these holes and get the complete presentation of the 

tumour. First, a dilation operator is applied to image II to fill these small holes and 

then an erosion operator is applied to eliminate the newly grown tumour outline 

created by the dilation operator. The final segmentation results are shown in Figures 

3.5(e) and 3.6(e). 
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3.3.2 Segmentation Results 

To visually evaluate the KBFC method, NPC images were segmented using both 

KBFC and maximum likelihood method (MLM, a commonly used supervised 

method), and the results were compared. A brief description of MLM is given below 

[77]: 

MLM is based on Bayes decision rule which maximises a posteriori probability. 

This rule can be written as: 

X is class 2, if (X) (X) , (3-12) 

where X is a feature vector with its elements representing the intensities for a pixel in 

each of the MR images, P stands for a priori probability for a class, and the p is the 

conditional probability of X, given that it is in that class. The conditional probabilities 

are given by the multivariate normal density function 

(3-13) 

where n is the dimension of feature vector X and d  is a distance measure (the 

Mahalanobis distance) described by 

(3-14) 

where M is the mean vector and is the covariance matrix. Both M and are 

estimated from the training set and the a priori probabilities are assumed to be equal. 

The algorithm first uses the training samples to calculate the mean vector and 

covariance matrix. Then for each pixel the probabilities for membership of each class 

is calculated using Eqs. (3-14) and (3-13). Finally a decision is made for the 

classification of each pixel using Eq. (3-12), choosing the class with the highest 

probability (maximum likelihood). For better comparison, the MLM segmented 
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results in this study are refined using the knowledge-based image analysis described 

in Section 3.3.1. 

Figures 3.7(a) and 3.7(b) show NPC with lateral extension in addition to posterior 

infiltration. The CET1W image shows a clear and homogenous enhanced tumour on 

the left side. Figures 3.7(d) and 3.7(e) show that both KBFC and MLM methods 

achieve fine segmentation results, compared with GT. Figures 3.8(a) and 3.8(b) show 

NPC with lateral and posterior extension as well as the invasion to tongue and the 

infiltration to pharynx. The CET1W image shows a large enhanced right tumour; 

however the tumour boundary is blurry and the pixel intensities inside the boundary 

are quite inhomogeneous. Figures 3.8(d) and 3.8(e) shows that KBFC achieve much 

better segmentation result than MLM, by comparing with GT. 

Figure 3.7 (a) T1W image; (b) CET1W image; (c) Ground truth;(d) Segmentation 
using KBFC; (e) Segmentation using MLM. 
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Figure 3.8 (a) T1W image; (b) CETlW image; (c) Ground truth; (d) Segmentation 
using KBFC; (e) Segmentation using MLM. 

3.4 NPC Tumour Volume Determination 

Currently, most studies on head and neck tumour volume are CT-based where tumour 

volumes are determined by summation-of-area technique, a well-established method 

of volume calculation derived from sequential CT images [22]-[26][30]. A review of 

the recent literature showed that most of the MR imaging based tumour-volume 

determination methods were reported in brain tumours [45][60] and pelvic neoplasms 

[54][55]. In this study, tumour volume was measured in 10 patients with 

nasopharyngeal carcinoma using two methods: the conventional manual tracing 

method and semi-automated computer method aided by KBFC segmentation. The 

accuracy of KBFC segmentation method was quantitatively evaluated and the inter- 

operator variances of the two methods were compared. 
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3.4.1 Materials 
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This study consisted of 10 consecutive adult patients who had MR imaging performed 

for NPC staging before radiation therapy in the National Cancer Centre of Singapore. 

They were recruited over a 15-month period (Sept 2000 to Nov 2001). There were 

seven males, three females and the median age of all patents was 42.5 years (age 

range from 29 to 69 years). All patients had a histologically confirmed diagnosis and 

imaging was performed on an average of 15.2 days (range from 9 to 23 days) 

following biopsy. Imaging was performed using a 1.5T MR scanner (Signa, GE 

Medical Systems, Milwaukee, USA) using a standard clinical imaging protocol. Fast 

spin echo sequence (repetition time range fiom 500 to 800 msec, echo time range 

from 12.0 to 14.6 msec) was used to obtain T1W and CET1W (gadolinium enhanced 

with fat suppression) images. Images were acquired in both axial and coronal planes 

but only axial T1 W and CET1 W with fat suppression images (5 12x512 pixel, field of 

view range fiom 200 to 230 mm, slice thickness of 5 mm, inter-slice gap range from 

1.8 to 2.2 mm) were used for the actual tumour volume determination in this study. 

Radiologists could however refer to all the other images acquired in the standard 

imaging protocol to aid in the accurate delineation of tumour boundary. 

3.4.2 Methodologies 

1. Tumour volume determination 

The actual tumour volume of NPC cannot be determined as this neoplasm is routinely 

treated with radiation therapy. Instead, the “ground truth” (GT) tumour volume 

against which measurement results from the semi-automated method could be 

compared, was determined by two experienced head and neck radiologists by 

manually tracing the tumour outline independently according to a common protocol as 
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described below. Both radiologists then measured the tumour volume independently 

using a semi-automated segmentation method. The time interval between manual 

tracing and semi-automated segmentation was more than two weeks to avoid any bias 

caused by the previous operation. 

(a). Manual tracing method: Manual tracing was performed using a graphic user 

interface developed by the author on a personal computer (PC, 1.7GHz Pentium 4 

CPU, Dell Computer Corp, Texas,   USA). The area inside the outline was 

automatically labelled, calculated and multiplied by the MR slice thickness plus the 

inter-slice gap to calculate a per-slice tumour volume. NPC often involves the 

adjacent retropharyngeal lymph nodes and skull base. When these nodes are in contact 

with and cannot be separated from primary tumour, the entire mass is considered as 

primary tumour. When bone marrow changes are seen in contiguity with the tumour, 

the bone changes are included in the measurement. Similarly, when the tumour is in 

contact with the carotid sheath, the carotid sheath is included in the entire tumour 

volume measurement. It should be noted that NPC is a solid tumour and the problem 

of measuring or excluding cystic components does not arise. The total tumour volume 

was obtained by summing the volume calculations for all slices. The results are 

reported in Section 3.4.3. 

(b). Semi-automated segmentation method: The semi-automated segmentation 

requires only axial images. Two radiologists independently performed KBFC to 

segment NPC using a graphic user interface developed by the author on the same PC 

mentioned above. The segmented tumour area was automatically calculated and 

multiplied by the MR slice thickness plus the inter-slice gap to calculate a per-slice 

tumour volume. The total tumour volume was obtained by summing over all the 

tumour-bearing slices. The results are reported in Section 3.4.3. 
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KBFC segmentation algorithm was validated using a phantom model. The two 

compartments in the phantom were made by moulding rubber (modelling material) 

into structures with irregular shapes and different volumes. After the volumes of these 

structures were measured by water displacement, they were embedded by flour-water 

gel. The phantom model was imaged on a 1.5-T scanner (Siemens Medical System, 

Erlangen, Germany). Images were acquired by continuous scanning with a 

256x256x128 matrix and a field of view of 16cmx16cmx16cm, giving a voxel 

resolution of 0.625mmx0.625mmx1.25mm. 

Volume validation was carried out by summation of the area of continuous slices. 

The areas were calculated by pixel counting using (1) KBFC segmentation and (2) 

manual tracing and labelling (MTL). The final volume results of the structures were 

compared with the golden standard (GS) that was obtained by water displacement. 

The results are also reported in Section 3.4.3. 

3. Validation data analysis 

To quantitatively evaluate the segmentation quality, validations at the volume level 

and the pixel level were performed. 

(a). Volume level: At the volume level, the measurement error (ME) was used to 

represent the accuracy of volume measurement [99][ 100], shown in Eq. (3-15). 

(3-15) 

where is the volume obtained by semi-automated method and is the volume 

obtained by the same operator using manual tracing method on the same patient. In 
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addition, an index of agreement (IA) was used to represent the inter-operator 

agreement [45] [101] [102], with the indexes of agreement defined by 

and 

(3-16) 

(3-17) 

where is the value of IA from the manual tracing measurement, and and 

are the volumes obtained by operator 1 and operator 2 using manual tracing 

method on the same patient, respectively; is the value of IA from the semi- 

automated measurement, and and are the volumes obtained by operator 1 and 

operator 2 using semi-automated method on the same patient, respectively. An IA 

value of 1 indicates perfect agreement while the value of -1 indicates no agreement at 

all. 

(b). Pixel level: Volume validation usually does not consider the location match 

between the manually traced tumour mass and the semi-automated segmented tumour 

mass. Therefore in this study, quantitative validation of segmentation results with GT 

at the pixel level was performed. The following were calculated: true positives (TPs, 

GT tumour pixels found algorithmically), false positives (FPs, pixels isolated as 

tumour but not within GT), false negatives (FNs, GT tumour pixels not found 

algorithmically) and true negatives (TNs, GT non-tumour pixels found 

algorithmically). The tumour regions identified by semi-automated segmentation were 

compared to the pixel level GT on a per slice basis. Two measures, percent matching 

(PM) and correspondence ratio (CR) were calculated [103][104], using the following 

equations: 
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(3-18) 

(3-19) 

The PM, shown in Eq. (3-18), is calculated as the direct ratio of the TPs to the number 

of GT tumour pixels. An ideal PM is 100%, with a value of 0 indicating that there is a 

complete miss of any GT pixels for that slice. The CR shown in Eq. (3-19) allows us 

to discuss the way in which the isolated tumour corresponds in size and location to the 

GT tumour while weighting the importance of FPs. Although a CR of 1 is ideal, any 

value can be very descriptive since it negatively weighs the value of the TPs with 50% 

of the FPs, indicating that a FP is detrimental to a certain degree. Specifically, a 

negative CR indicates a greater than two to one rate of FPs with respect to TPs. Since 

we are interested in measuring tumour volume and location for the purpose of 

treatment, it is intuitive that the immediate area around the tumour will also be treated, 

hence the weighting mechanism in CR [103][104]. 

An inter-operator variance (IOV) was used to estimate the inter-operator 

reliability (manual tracing and KBFC segmentation algorithm) at the pixel level [105], 

with the IOVs defined by 

and 

= 1 - x 100%, 

(3-20) 

(3-21) 

where is the value of IOV from the manual tracing method, and and 

are manually traced tumour masses obtained by operator 1 and operator 2 on the same 

image; is the value of IOV from the semi-automated segmentation method, and 
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are semi-automatically segmented tumour masses obtained by operator 1 

and operator 2 on the same image; is the overlap of X and Y while is 

the merging of X and Y. The IOV is generated from the set theory to evaluate the 

matching of two areas by pixel counting. A value of 0 shows the perfect reliability, 

while a value of 1 shows no reliability. 

It is noted that in clinical practice a patient is regarded as a single unit. Therefore, 

the comparisons of PM, CR or IOV values are based on the total volume rather than 

on a slice-to-slice comparison between two observers. 

4. Statistical analysis 

The values of ME, IA, PM, CR and IOV were all expressed by minimum, 

maximum, mean SD format. Two-way analysis-of-variance (ANOVA) [106] was 

perfonned on and to evaluate the difference in volume estimation 

between the manually tracing and semi-automated segmentation method, and the 

inter-operator variance at volume level between operators 1 and 2. The inter-observer 

reliabilities of manual tracing and semi-automated methods were also compared, 

using two non-parametric Kruskal-Wallis tests [106] on and as well as 

and respectively. Statistical significance was determined by a p value of less 

than 0.05. All statistical results were calculated using Matlab 6.5 (The Mathworks Inc., 

MA, USA). 

3.4.3 Results 

1. Phantom validation 

Sixty-two slices of the phantom were processed using the two methods mentioned in 

Section 3.4.2 (Page 54). The results are shown in Table 3.1. The errors of KBFC were 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



3.4 NPC Tumour Volume Determination 59 

in the range of 4.2% to 5.0%, while the errors of MTL were in the range of 3.5% to 

8.1%. Interestingly, the volumes derived fiom both manual tracing and KBFC 

methods were larger than the golden standards (GS) which were derived from water 

displacement method. It was probably due to the following reasons. FOP MTL, the 

operators may tend to draw the object margin with smooth curves so that the object 

volumes were somewhat overestimated. For KBFC, part of the object-background 

boundary may be classified as object so that the object volumes were overestimated as 

well. 

Table 3.1 Volume determination in phantom model consisting of two components 

Notes: GS, golden standard; KBFC, knowledge-based fuzzy clustering; MTL, manual tracing 

and labelling; measurement error of KBFC method; measurement error of 

MTL. 

2. NPC tumour volume 

A total of 66 axial tumour-containing slices obtained fiom 10 patients were evaluated 

using manual tracing and KBFC segmentation methods. Tumour enhancement was 

seen on 3 to 10 (mean of 6.6 and SD of 2.3) slices per patient. 

The results of tumour volume determination are presented in Tables 3.2. The two- 

way ANOVA test shows that there was no significant difference between the 

manually traced volume and KBFC segmented volume (p=0.906) and no significant 

difference existed between the volumes obtained from operator 1 and operator 2 

(p=0.878). In addition, it shows that there was no interaction between operators and 

volume measurement methods (p=0.797). 
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Table 3.2 Results of NPC tumour volume determination 

Notes: and the volume obtained by operators 1 and 2 using manual tracing; 

and the volume obtained by operators 1 and 2 using KBFC method; and the 

corresponding measurement error. 

3. Quality of semi-automated segmentation 

As an example, Table 3.3 shows the pixel numbers of TPs, FPs, and FNs as well as 

PM and CR, of seven different tumour-containing slices of a patient. The PM and CR 

of KBFC segmentation for all 10 patients compared with manual tracing segmentation 

are shown in Tables 3.4. These results show that the KBFC could achieve reasonable 

segmentation results for NPC, yet there is room for improvement. 

4. Inter-operator variation 

An example of the inter-operator variance (IOV) calculation is shown in Table 3.5. 

The IA and IOV, which represent the inter-operator variation of manual tracing 

method and KBFC segmentation method at the volume and pixel levels respectively, 

are shown in Table 3.6. Although the averaged is higher than the averaged 

Kruskal-Wallis test on and shows that at the volume level there was no 

significant difference of inter-operator variance between manual tracing and KBFC 

segmentation (p=0.064). However, Kruskal-Wallis test on and shows that 

at the pixel level the inter-operator variance of manual tracing was significantly 
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higher than that of KBFC segmentation (p=0.003). Therefore from Table 3.6, the 

Slice No. 

5 

6 

7 

8 

9 

10 

11 

Overall 

semi-automated segmentation method achieved significantly higher inter-operator 

GT TPs FPs FNs PM (%) CR 

3460 2718 993 742 78.56 0.64 

4279 3744 1456 535 87.50 0.71 

5283 4529 161 754 85.79 0.84 

6682 4969 332 1713 74.36 0.72 

445 1 4087 5 92 3 64 91.82 0.85 

3585 3278 655 307             91.44 0.82 

2390 1804 332 5 86 75.48 0.69 

27899 23796 4476 4103 83.40 0.76 

consistency than the manual tracing method. 

Table 3.3 Percentage matching (PM) and correspondence ratio (CR) calculation for 

patient 1 

Notes: GT, ground truth; TPs, true positives; FPs, false positives; FNs, false negatives; PM, 

percent matching; CR, correspondence ratio. 

Table 3.4 Percentage match and correspondence ratio comparing manual tracing and 

KBFC segmentation of two operators 

Notes: and percent matching of operators 1 and 2; and correspondence 

ratio of operators 1 and 2. 
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Table 3.5 Inter-operator variance (IOV) calculation for patient 1 

Table 3.6 Comparison of inter-operator reliabilities between manual tracing and 

KBFC segmentation 

Notes: and index of agreement of manual tracing measurement and KBFC 

measurement; and inter-operator variance of manual tracing measurement and 

semi-automatic measurement. 
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3.5 Discussion 

3.5.1 Tumour Segmentation 

Currently in clinical practice, the determination of tumour volume involves tracing the 

tumour outline and deriving tumour volume by the summation of area techniques. 

Although the tracing can reflect the operator’s comprehension and description for the 

lesion, there is always an important element of subjectivity that results in both intra- 

and inter-operator performance. In addition, whether this process is done by a 

radiologist or by a technologist, it is always tedious and time-consuming. Therefore, 

accurate segmentation results, good reproducibility, and easy implementation are 

necessary conditions for segmentation-based tumour volume determination to be a 

routine clinical examination for the staging and prognosis of solid tumour. 

Most of the studies on MR segmentation theories, algorithms and applications 

were performed on the segmentation of brain structure and brain tumour. The T1W 

and T2W MR images of the normal brain structure are shown in Figure 3.9. It can be 

seen that there are four primary tissue classes: skull, grey matter, white matter, and 

ventricle (cerebrospinal fluid, CSF). The T1W, CET1W, and T2W MR images of 

brain tumour are shown in Figure 3.10. Besides the four tissue classes mentioned, 

there are two more tissue types: tumour and oedema (sometimes the oedema does not 

exist). Compared with the head and NPC images shown in Sections 3.2 and 3.3, the 

anatomic structures of brain are simpler than those of head and neck region. In 

addition, the feature distribution of each tissue type of brain image is distinct. 

Generally in brain images, there is no tissue type which is adjacent or adhesive to the 

tumour in image domain and at the same time, shows overlapping with the tumour in 

the feature space. 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



3.5 Discussion 64 

Figure 3.9 MR images of normal brain (a) T1w image; (b) T2W image; 1. Grey matter; 2. 
White matter; 3. Ventricle; 4. Skull. 

Figure 3.10 MR images of brain tumour (a) Tlw image; (b) CETlW image; (c) T2W image; 
1. Tumour; 2. Oedema. 

Extra difficulties did exist when we tried to segment NPC tumour from MRI. The 

main problem is how to differentiate some normal structures such as mucosa and soft 

palate from the tumour. The feature distributions of mucosa and soft palate are close 

to that of the tumour and they are often adhesive to NPC in image domain. 

In this study, a knowledge-based fuzzy clustering (KBFC) method, which only 

requires two imaging sequences (T1W and CET1W), was developed. The guidance of 

the knowledge base gives this method additional power and flexibility by allowing 

semi-supervised segmentation and classification decisions to be made through 

iterative and successive refinement. It is different from most other multi-spectral 

efforts which attempt to segment tumour from the entire image in one step regardless 
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of the complex anatomic and spatial structure. The intervention of supervision is 

another important factor in tumour segmentation. In the works of Bensaid, et al. [39] 

and Clarke, et al. [81], fuzzy c-means (FCM) was shown to depend on subtleties in 

MRI performance characteristics and did not appear to be suitable for robust 

segmentation, although its reproducibility was good. In addition, initialisation is very 

important for FCM to get meaningful clustering results and reduced computation time. 

Enabling operator input to guide structure detection in the underlying data, SFCM 

utilises the operator's experience to achieve more meaningful clustering results than 

the unsupervised clustering and at the same time, reduce the operator dependency 

compared to those for fully supervised clustering. 

Post-processing is also one of the important steps in this method and several 

anatomic and space knowledge were used. In this study, symmetry analysis was 

utilised to help in the removal of the normal mucosa and soft palate from the initially 

segmented mass since symmetry is a very import criterion to differentiate normal or 

abnormal tissues for radiologist. 

Tests on 66 tumour-contained slices from the data sets of 10 NPC patients (Table 

3.4) show that the segmentation result was satisfactory and our results show 

comparable values of PM and CR to the works of Fletcher-Heath, et al. [104] and 

Clark, et al. [103]. In other words, it could express the radiologists' interpretation for 

the location and extension of tumour in a high level. Two factors could affect PM 

considerably. One may be that the segmentation algorithm can provide a more 

detailed outline of the irregular tumour boundary while manual tracing on the other 

hand tends to approximate the tumour boundary with a smooth curve. The other is the 

noise and sharp changes around the tumour-normal tissue interface. In some cases, 

fuzzy clustering was sensitive to them. The typical example of the effects fi-om these 

two factors is that in some cases, the algorithm-segmented tumour boundary is almost 

inside the GT boundary. Reducing FPs is also our target. In this study, mucosa, soft 
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palate, inflammation, and lymph nodes near primary tumour were often segmented as 

FPs. In some cases, no definite dividing landmarks exist and tumour isolation for GT 

tracing is operator-dependent. Even for the same slice operated by the same 

radiologist, the judgment may change considerably on different occasions. Using the 

anatomic and space knowledge and without interaction, the successive image analysis 

procedure complied with the basic principles such as symmetry and connectivity 

which radiologists use, to refine the initial segmentation result. Although some FPs 

still did exist, the average CR value of 0.80 was acceptable. 

Another interesting finding is GT volume-PM and GT volume-CR relationships. 

Figures 3.1 1 and 3.12 show the GT volume-PM and GT volume-CR distributions 

(volume unit: pixel; the values of GT, PM, and CR are the average of two 

measurements from Operators 1 and 2) from all these 66 slices segmented and two 

logarithmic curves were fitted. Positive correlations may exist between GT volume 

and PM and between GT volume and CR. This inference is reasonable because slices 

with small tumour volume are always those present in the inferior and superior parts 

of tumour, where segmentation is more difficult than those present in the intermediate 

part of tumour. 

3.5.2 NPC Tumour Volume Determination 

As mention in Section 3.5.1, technical considerations have prevented quantitative 

tumour volume determination from being routinely used. In the meantime, tumour 

diameter is routinely used as a surrogate measurement largely because of its 

simplicity. However staging and tumour volume estimation based on subjective and 

single dimensional measurement are often questionable. For instance, superficial 

spreading carcinomas frequently exceed 4 cm in diameter without deep penetration. 
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These tumours are classified as T3 lesions, but have very low volumes. In fact, there 

is considerable variation in tumour volume in T3 turnours. 

Figure 3.11 GT volume and PM distribution. The curve is the logarithmic curve fitted. 

Figure 3.12 GT volume and CR distribution. The curve is the logarithmic curve fitted. 
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Two-way analysis of variance (ANOVA) test on our results showed that there was 

no significant difference between manually traced and KBFC segmented volumes. 

Moreover, there was no significant variance between the volume results fiom the two 

operators. For a volume measurement tool to be clinically useful, it must show no 

significant difference among the end users. The present study has shown that semi- 

automated KBFC segmentation method meets this prerequisite. 

Most studies compared the results of manual tracing with volumes derived from 

various segmentation techniques. Volume validation does not usually encompass 

location match between the manually traced tumour and the semi-automated 

segmented tumour. In this study, we performed comparisons and derived statistical 

parameters such as true positives, false positives, false negatives and true negatives. 

Location match between manually traced tumour area and KBFC segmented area 

provides two useful parameters, namely, percent matching (PM) and correspondence 

ratio (CR). These parameters provide important information regarding how well the 

segmented tumour volume and tumour location match the results obtained through 

manual tracing. PM and CR provide a quantitative assessment of segmentation quality. 

Analysis of PM and CR may yield useful information that may help to increase 

accuracy resulting in improved inter-observer reliability. In the present study, inter- 

operator variance (IOV), a pixel matching-based indicator of inter-operator agreement 

at the pixel level, was also calculated. Although from the index of agreement (IA), the 

indicator of inter-operator agreement at the volume level, the inter-operator agreement 

of KBFC segmentation method was not significantly higher than that of manual 

tracing method, Kruskal-Wallis test on and shows that at the pixel level 

the inter-operator agreement of KBFC segmentation was significantly higher than that 

of manual tracing. 

In practice, determining tumour volume in the skull base can be a very difficult 

exercise because tumour margins cannot be determined confidently and objectively. 
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Skull base tumour can provoke signal changes in the marrow containing bones. Bone 

enhancement could either signify actual tumour invasion or represent an inflammatory 

response. In our study, only bone signal changes in contiguity with enhanced tumour 

were considered to be tumour-infiltrated. The signal changes are of special clinical 

interest because of the growing use of conformal radiation therapy and the need to 

designate the correct T-stage. Furthermore, NPC often spreads to the first echelon 

retropharyngeal lymph nodes [107]. The tumour and enlarged nodes may merge into a 

single inseparable mass. Under such circumstances, the nodal component is included 

in the determination of tumour volume. 

In a clinical investigation performed by our group, the tumour volume of 69 NPC 

patients were determined using manual tracing and KBFC segmentation methods, and 

the relationship between tumour volume and the corresponding T-staging was 

compared [108]. The average tumour volumes of T1 (12.25 cm3), T2 (20.63 cm3), T3 

(32.39 cm3), and T4 (44.61 cm3) show a progressive increase with progressively 

higher T stages. This is as expected. However, within each T stage there was a wide 

range (T1, in the range of 5.00 cm3 to 25.42 cm3; T2, in the range of 7.76 cm3 to 51.66 

cm3; T3, in the range of 6.91 cm3 to 70.08 cm3; and T4, in the range of 13.42 cm3 to 

126.21 cm3). This result is consistent to the work of Pameijer, et al. [22] and Chua, et 

al. [23]. 

A major limitation of this study is 

radiation therapy. Hence, there were 

tumour volumes. This limitation can 

the lack of a gold standard. NPC is treated with 

no surgical specimens to determine the actual 

be partially addressed by using a phantom to 

validate the segmentation methods. In some early reports, the volumes obtained from 

imaging-based approaches were compared with volumes of surgical specimen from 

water immersion [109]-[111]. Ideally a surgical procedure would provide the true 

volume, but sometimes there is an over-excision and in many cases, the specimen will 

shrink considerable after removed from the body. Therefore it may prove to be not 
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logistically feasible as a method for verification of segmentation methods [39]. 

Manual traced volumes were employed as comparison reference in more reports 

[45][53][58][60][103][104]. The main advantage of choose manual tracing is that it 

truly mimics the radiologist’s interpretation, which realistically is the only “valid 

truth” available for in vivo imaging. Moreover, the manually traced tumour region can 

be used for the validation of segmentation methods not only at the volume level but at 

the pixel level by position comparison. Hence, experts traced tumour volumes was 

chosen in evaluating segmentation performance in the presented study. 

Another limitation is the use of relatively large slice thickness and inter-slice gaps. 

The use of thinner sections would improve the overall accuracy of tumour volume 

determination. However MRI scanning using thin sections always decreases the 

signal-noise ratio of the image, increases examination cost, and introduces partial 

volume effects. In addition the increased scanning time causes more motion artefacts 

that make the images blurry. Therefore a 5-mm slice thickness and a 2-mm inter-slice 

gap are used for routine examinations. 

3.6 Concluding Remarks 

In conclusion, a knowledge-based fuzzy clustering (KBFC) method that includes 

noise removal, initial segmentation, and knowledge-based image analysis was 

established to segment NPC form T1W and CET1W MR images. After noise removal, 

an initial segmentation was performed using a semi-supervised fuzzy c-means 

(SFCM). Then an image analysis procedure which utilised anatomic and geometric 

knowledge, as well as mathematical morphological operators, was applied to refine 

the initial result and the final segmentation results were obtained. Sixty-six pairs of 

tumour-contained MRI slices from 10 NPC patients were segmented using KBFC and 

the tumour volumes were obtained by the summation-of-areas technique. Quantitative 
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validations were performed at both the volume and pixel levels by comparing KBFC 

segmentation volumes with those from manual tracing method. Test results showed 

that at the volume level there was no significant difference between the manually 

traced volume and the KBFC segmented volume. In addition, no significant difference 

existed between the inter-operator agreements of the two methods at the volume level. 

On the other hand, the matching comparison at the pixel level showed that KBFC can 

not only segment NPC from MR images in a good way, but it also has significant 

higher inter-operator agreement than manual tracing method. Therefore, it is 

concluded that the developed semi-supervised KBFC method is suitable to segment 

NPC for tumour volume determination. 
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Chapter 4 

Unsupervised MRI Segmentation and Tumour 

Volume Determination for Tongue Carcinoma 

4.1 Introduction 

Tongue carcinoma usually arises from the side of the tongue. The tumour often 

spreads to the lymph nodes on the same side of the neck. The lymph nodes on the 

opposite side of the neck may also be involved. A picture of tongue carcinoma is 

shown in Figure 4.1. Accurate tumour staging is crucial for effective treatment 

planning of surgery or radiotherapy for tongue carcinoma. According to the TNM 

tumour classification of UICC/AJCC, the largest tumour diameter is used as a 

surrogate measurement of tumour size for the staging of tongue carcinoma, as shown 

in Figure 4.2. Tongue carcinomas are classified according to the largest tumour 

diameter as follows: T1 tumours (under 2 cm), T2 tumours (between 2 cm and 4 cm), 

and T3 turnours (more than 4 cm). Tumours that infiltrate the extrinsic muscles of the 

tongue (genioglossus, hyoglossus, styloglossus and palatoglossus) and show 

involvement of the mandible are classified as T4 tumours [6]. 
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Figure 4.1 Tongue carcinoma [95] 

Figure 4.2 Greatest diameter of tongue carcinoma 
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The greatest diameter cannot reflect accurately the total tumour volume. The main 

reason is that as a solid tumour, tongue carcinoma is a 3-D structure where cancer 

cells spread in different directions at various rates and infiltrate the surrounding 

structures. Recent findings show that the depth of tumour penetration (tumour 

thickness) is an important prognostic factor [33]-[37]. These studies indicate that 

tumour thickness is a better prognostic parameter than the T stage (largest diameter) 

for the prediction of nodal metastasis of tongue carcinoma. Therefore, the acquisition 

of 3-D volume information of tongue tumour from medical images has great 

significance for staging, treatment planning and prognosis. 

The literature review shows that there is also a lack of quantitative methods for 

tongue tumour segmentation and volume analysis based on images. Kuriakose, et al. 

estimated the tumour volumes of 20 tongue carcinoma patients using manual tracing 

on CT images [112]. 

In Chapter 3, a semi-supervised method was used to segment NPC from MRI 

images. In this chapter, an unsupervised hierarchical segmentation scheme which is 

used to segment tongue carcinoma from T1W and T2W MR images is introduced. 

The kernel of this hierarchical scheme is from “coarse classification” to “fine 

clustering” based on image content, and then to “post-analysis and refinement” based 

on image morphology. The overall flowchart of this algorithm with multi-stage 

processes is shown in Figure 4.3. After image pre-processing, an initial segmentation 

is performed to get the initial extracted lesion regions. The procedure consists of two 

steps: step 1 is the unsupervised coarse classification using genetic algorithm (GA); 

and step 2 is the fine clustering using FCM, done on the basis of the results from 

coarse classification. The whole procedure combining steps 1 and 2 is also called a 

GA-induced fuzzy clustering (GAIFC). Due to the overlap of feature distribution, 

three kinds of masses may be extracted from the initial segmentation: tumour only, 

tumour in contact with normal structure, and normal structure only. To deal with this 
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problem, an automatic image analysis module using anatomic knowledge and

artificial neural network (ANN) is performed to detect the actual type of extracted 

mass and make necessary refinement. 

Figure 4.3 Flowchart of a hierarchical MRI segmentation scheme 

Chapter 4 is organised as follows. The initial segmentation using GAIFC is 

presented in Section 4.2. Methodology and implementation for mass type detection 

using ANN and the corresponding refinement is described in Section 4.3. In addition, 

some visual results of tongue carcinoma segmentation are also shown in this section. 

Section 4.4 covers the experiment and results of tongue carcinoma tumour volume 

determination. The discussion and concluding remarks of this chapter are given in 

Sections 4.5 and 4.6, respectively. 

4.2 Initial Segmentation Using GAIFC 

4.2.1 Determination of Primary Tissue Classes 

Figures 4.4(a) and 4.4(b) show the T1W and T2W images (512x512 pixels) of a pair 

of typical slices respectively after noise removal using the scheme as described in 

Section 3.3.1. The location of the tongue is generally fixed in the middle-anterior part 
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of the head, and hence, to decrease the computation cost, a rectangle region of 

256x256 pixels is used as the region of interest (ROI), shown as the dashed square in 

the Figure. Figure 4.4(c) shows the joint histogram (after normalisation) of the ROI. 

According to the figures and prior knowledge, approximately five primary tissue 

types could be found in the feature space: (1) Air (low T1 and T2 signals); (2) fat 

(high T1 signal, intermediate T2 signal; (3) tumour (intermediate T1 signal, high T2 

signal); (4) other normal soft tissue 1; and (5) other normal soft tissue 2. Each MR 

voxel of interest has a (T1W, T2W) location in R2, forming a feature space 

distribution. Based on the knowledge and the fact that pixels belonging to the same 

tissue type will exhibit similar relaxation behaviours, they will also have 

approximately the same location in the feature space. In Sections 4.2.2 and 4.2.3, the 

initial classification using GA is described. 

4.2.2 Principle of Genetic Algorithm 

Having a large amount of implicit parallelism, GA is a randomised global search and 

optimisation technique guided by the principle of evolution and natural genetics. GA 

performs search in complex, large and multimodal landscape, and provides near- 

optimal solutions for the objective or fitness function of an optimisation problem 

[113][114]. It has found many useful applications in both the scientific and 

engineering areas such as pattern recognition, machine learning, microelectronics 

fabrication, VLSI design, control, logistics, etc. 

In GA, the parameters of the search space are encoded in the form of strings 

(called chromosomes). A collection of such strings is called a population. Initially, a 

random population which represents different points in the search space is created. An 

objective and fitness function is associated with each string that represents the degree 

of goodness of the string. Based on the principle of survival of the fittest, a few of 
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these strings are selected and each of them is assigned a number of copies that go into 

the mating pool. Biologically-inspired operators like crossover and mutation are 

applied on these strings to yield a new generation of strings. In every generation, a 

new set of artificial creatures (strings) are created using parts of the fittest of the 

previous generations, and an occasional new part (mutation) is tried for good measure. 

The process of selection, crossover and mutation continues for a fixed number of 

generations or till a termination condition is satisfied. 

Figure 4.4 (a) T1W image; (b) T2W image; (c) Joint histogram (after normalisation) of the 
ROI. The five primary tissue types shown here are: 1. Air; 2. Fat; 3. Tumour; 4. Other normal 
soft tissue 1; 5. Other normal soft tissue 2. 
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GA works on the Darwinian principle of natural selection: “Survival of the fittest”. 

As a numerical optimiser, the solutions obtained by GA are not mathematically 

oriented. Instead, GA possesses an intrinsic flexibility and the freedom to choose the 

desirable optima according to the design specifications. Therefore, whether the 

criteria of concern are nonlinear, constrained, discrete, multimodal, or nonlinear 

programming hard, the GA is entirely equal to the challenge. In fact, because of the 

uniqueness of the evolutionary process and the gene structure of a chromosome, the 

GA processing mechanism can take the form of parallelism and multi-objective. 

These provide an extra dimension for solutions where other techniques may have 

failed completely [114]. 

GA differs from more traditional optimisation and search procedures in several 

fundamental ways: 1. it works with the coding of the decision variables, not the 

decision variables themselves; 2. it searches from a population of points, not a single 

point; 3. it uses objective function (fitness) information, not derivatives or other 

auxiliary information; 4. it uses probabilistic transition rules, not deterministic rules. 

4.2.3 GA-based Clustering for Coarse Classification 

1. Algorithm principles 

The ROI data which consist of n (n =256x256) pixels from each of the two features 

(T1W, T2W) form a set of pixel vectors where 

. The searching ability of GA is used in this study for the purpose of 

appropriately determining a fixed number K of cluster centres in 2-D Euclidean space 

thereby suitably clustering the set of unlabelled data [113][115]. The clustering 

metric adopted is the sum of the Euclidean distance of the points from their respective 

cluster centres. The clustering  metric M for the K clustering . . ., is given by 
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(4-1) 
i=l 

where are the cluster centres we are seeking such that the 

clustering metric M is minimised, and is the Euclidean distance. 

The basic steps of the GA-based clustering are as follows: 

1) Generation g=0. 

2) lnitialise population P(g). 

3) Compute fitness function F(P(g)). 

4) Set g=g+1. 

5) If termination criterion is achieved, go to step 10). 

6) Select P(g) from P(g-1). 

7) Crossover P(g). 

8) Mutate P(g). 

9) Go to step 3) 

10) Outputbest results and stop. 

2. Algorithm implementation 

The detailed implementation of GA-based clustering is as follows: 

String representation: Each string (chromosome) was a sequence of real number 

representing the K cluster centres. For this study of a 2-D space with five classes, 

the length of a chromosome was 2x5=10 words, where the first two words 

represented the 2-D coordinates of the first cluster center, the next two words 

represented those of the second cluster center, and so on. Each real number in the 

chromosome was an indivisible gene. For example, the chromosome 

(13.5,20.7, 81.2,227.1, 172.2,98.9, 71.1, 124.4, 56.5,76.9) 
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represents the five cluster centres: (13.5, 20.7), (81.2, 227.1), (172.2, 98.9), (71.1, 

124.4) and (56.5 76.9). 

Population initialisation: There were 50 chromosomes in the population. The K 

cluster centres encoded in each chromosome were initialised to K randomly 

chosen points from the data set. 

Fitness computation: The clustering metric M was computed using Eq. (4-1) after 

the cluster designation and the replacement of cluster centres. The fitness function 

was defined as f = 1/M . There were two phases in this procedure. In the first 

phase, each point was assigned to one of the clusters with center such that 

- - , p=1, 2, . . ., K, and p j . After the clustering was done, 

the cluster centres encoded in the chromosome were replaced by the mean points 

of the respective clusters. The new center was computed as 

(4-2) 

where i=1, 2, . . ., K, is the number of points which belong to These then 

replaced the previous in the chromosome. 

Selection (reproduction): According to the survival of the fittest concept of 

natural genetic system, roulette wheel selection [114] was used to implement the 

proportional selection strategy. A chromosome was assigned a number of copies, 

which was proportional to its fitness in the population, and then went into the 

mating pool for further genetic operations. Before roulette wheel selection, a 

linear scaling [114] of the fitness values of chromosomes was performed to reduce 

the effort of genetic drift by producing an extraordinarily good chromosome in 

early generations and to avoid the random search behaviour in later generations. 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



4.2 Initial Segmentation Using GAIFC 81 

Crossover: Crossover is a probabilistic process that exchanges information 

between two parent chromosomes for generating two child chromosomes. In this 

study, a convex crossover [116] with a fixed crossover probability of was used. 

If A and B are two parents, then the convex crossover operator is of the form 

(4-3) 

where + = 1 and > 0. The parent A is replaced by and 

the parent B is replaced by For example, assume that there are 

two parent chromosomes given by 

A= (13.5,20.7, 81.2,227.1, 172.2,98.9,71.1, 124.4, 56.5,76.9) and 

B= (22.4,23.6, 72.1,203.5,202.6,79.6, 83.3, 145.8,40.7,87.1). 

Randomly, we get 

0.81, 0.47, 0.15, 0.31, 0.68, 0.80, 0.39, 0.56, 0.78), and then 

0.19,0.53,0.85,0.69,0.32,0.20,0.61,0.44,0.22). 

Therefore, the two child chromosomes are given by 

A’=(21.5,21.3, 76.4,207.0, 193.2,92.7, 73.5, 137.5,49.5, 79.1), and 

B’= (14.4,23.0,76.9, 223.6, 181.6, 85.8, 80.9, 132.7,47.7, 84.9). 

Mutation: Mutation is the occasional random alteration of the value of a gene 

position on a chromosome. In this study, each chromosome underwent mutation of 

real number presentation with a fixed probability [116]. If at a gene position 

where mutation took place the value was v, after mutation the new value v’ 

became 

where was randomly generated from -1 to 1. 

(4-4) 
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Termination condition: After one cycle of fitness computation, population 

selection, crossover and mutation, another cycle was executed on the basis of the 

last generation. These processes were executed for 50 iterations. Then the final 

resultant string with the maximal fitness value among the chromosome 

populations represented the final cluster centres. 

3. Results of the example 

The cluster centres of the ROI shown in Figures 4.4(a) and 4.4(b) are as follows: 

(110.0, 107.3), (220.5, 94.5), (89.0, 216.0), (74.2, 54.7) and (2.6, 4.0). The 

corresponding location map of these cluster centres is shown in Figure 4.5. 

Figure 4.5 Location map of the GA classified cluster centers 
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4.2.4 Fine Clustering Using FCM 

83 

The principles of FCM were described in Section 3.2.2. The values of the U matrix 

were found by minimizing the objective function: 

where is the objective pixel in ROI, is the cluster center of class i, and     is the 

membership of pixel j to tissue class i,                   (Xj)]. An iteration process with the 

target of limiting the difference of Euclidean distance between the new and old U 

matrices (i.e., - in a threshold value was used to minimise Eq. (4-5). 

Here, the initial value of came from the results of GA-based clustering described in 

Section 4.2.3 and the initial U matrix was computed by 

Then the cluster centres were updated by 

(4-7) 

Therefore, Eq. (4-6) was used to calculate the new with the new cluster centres so 

that Eqs. (4-6) and (4-7) form an iterative process that converges to a local minimum 

of the objective function The iterative process was continued until the Euclidean 

distance between the new and old unlabeled columns of the U matrices (i.e., 

- ) was less than a threshold value =0.01. This processing is similar to 

the processing of SFCM discussed in Section 3.2.2. 

After the iteration ends, the tumour tissue was labelled according to the final U 

matrix and some mathematical morphology refinements such as dilation and erosion 
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were applied to get the initial tumour segmentation. The initial segmentation result of 

the ROI shown in Figure 4.3 is shown in Figure 4.6. Another example of MR T1W 

and T2W images of posterior tongue carcinoma and the initial segmentation result are 

shown in Figure 4.7. 

Figure 4.6 Initial segmentation result of the ROI shown in Figure 4.3 

Figure 4.7 (a) T1 W image; (b) T2W image; (c) Initial result. 

4.3 ANN-based Symmetrical Detection and Refinement 

4.3.1 Symmetrical Analysis for Mass Type Detection 

In MR signal feature space for head and neck cancer imaging protocols, the 

sublingual glands which are in the lower section of the tongue, always have similar 
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MR characteristics to tumour (i.e., intermediate intensity in T1 signal and high 

intensity in T2 signal). Furthermore, in some slices, the sublingual gland is in contact 

with the primary tumour and cannot be separated from the primary tumour. Therefore, 

the results from initial automatic segmentation of these slices containing sublingual 

glands have high false positives. Figure 4.8 shows the MR images of normal 

sublingual glands and the initially extracted sublingual glands. Figure 4.9 shows the 

MR images of a common type of tumour in contact with the sublingual glands and the 

corresponding initially extracted lesion mass. 

Generally, there are three types of masses which may be automatically extracted 

during the procedure of initial segmentation. They are normal sublingual glands only, 

primary tumour only, and tumour with involved sublingual gland. In the following, 

their morphological behaviours are discussed and an ANN is used to detect the 

corresponding mass type. 

Figure 4.8 (a) T1W image; (b) T2W image; (c) Extracted sublingual glands; 1. Sublingual glands. 

Figure 4.9 (a) T1W image; (b) T2W image; (c) Extracted tumour and involved sublingual gland; 
1. Normal sublingual gland; 2. Tumour-involved sublingual gland. 
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1. Analysis criterion 

86 

Under normal conditions, the tongue, palate and sublingual glands are 

morphologically bilaterally symmetric in the oral cavity. On the other hand, the 

tongue carcinoma always shows an asymmetric growth pattern. Therefore, in the 

image domain, most normal tissues are roughly symmetrical along the vertical axis, 

while tumours often have poor symmetry. In the present study, an ANN-based 

symmetry analysis procedure is developed to detect the Symmetry of the initially 

segmented masses, make normal/abnormal decisions, and refine the last result for 

cases which are detected as tumour with the involved sublingual gland. The 

refinement criterion is based on the tongue tumour manual tracing protocol: When the 

tongue carcinoma is in contact with the ipsilateral sublingual gland, the sublingual 

gland is considered as a part of the total tumour volume. The contralateral sublingual 

gland is not included in the volume because it is a separate structure and is rarely 

involved (on MR images, the sublingual glands often appear to be in contact). 

2. Selection of the features 

There are many different shapes of extracted normal sublingual glands and tumour- 

involved sublingual glands, hence one or two features are not enough to make the 

judgment. In this study, five features are selected as the inputs of an ANN to judge the 

symmetry. Figure 4.10 is an illustration of the extracted tumour-involved sublingual 

gland. In Figure 4.10, M is the tongue midline; L is the normal part of the sublingual 

gland in the left lateral of the tongue midline; is its geometry center and is the 

mirror point of in the other lateral; R is the tumour-involved part of the sublingual 

gland in the right lateral; is its geometric center; and C is the geometric center of 

the whole mass. 

Based on these definitions, the following five features are defined: 
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i) Difference-of-masses DM: DM = - where and are the numbers of 

pixels of regions L and R, respectively. DM has a small value for structures of 

normal sublingual glands. In the case of tumor involving, DM has a large value. 

ii) Fuzzy symmetric measure FSM: FSM where and 

are the numbers of pixels of regions L and R, respectively. FSM approximately 

equals to one for normal sublingual gland structures. In abnormal cases, FSM is 

much smaller than one [71]. 

Figure 4.10 The illustration of the structures of tumour-involved sublingual glands 

iii) Distance-of-centres DC: DC = where denotes the distance. DC 

approximately equals to zero for normal sublingual gland structures. In abnormal 

cases, DC is much larger than zero. 

iv) Difference-of-standard deviations DS: DS 

where and are the standard deviations of x and y coordinates of the 
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pixels in L, and are the corresponding quantities in R. DS

approximately equals to zero for normal sublingual gland structures. DS is much 

larger than zero in the case of tumour involving. 

v) Distance-of-center-to-midline DCM: DCM is the distance from C to M. DCM 

approximately equals to zero for normal sublingual gland structures. DCM is 

much larger than zero in the case of tumour involving. 

3. Neural networks implementation 

The five features defined above were calculated and fed into a two-layer supervisory 

back propagation neural network (BPNN) as shown in Figure 4.11, where 

, , = [DM,FSM, DC, DS, DCM] is the input and y is the output. 

Supervisory learning was performed on this classifier net to determine the network 

weights using the features from three normal masses and three abnormal masses 

before the actual detection. If a mass was detected as symmetrical, the original slice 

was regarded as a normal slice. Otherwise, the original slice was an abnormal one. 

Thus the normal part of sublingual gland was removed automatically by a smooth 

transition and the tumour-involved part was retained. 

Figure 4.1 1 : Structure of a BPNN 
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The creation and training of this BPNN are described in the following Matlab 6.5 

codes: 

net = newff(minmax(training_input),[7,1],{‘tansig’, ‘purelin’), ‘trainscg’); 

% create a feed-forward BPNN, with 7 nodes in the 1st layer and I node in the 2nd layer 

% layer transfer function: hyperbolic tangent transfer function and liner transfer function 

% BPNN training function: scaled conjugate gradient back-propagation 

net. train Par am .epochs = 5000; 

% set parameter: the network is trained for 5000 epochs 

net.trainParam.goal = 1e-5; 

% set parameter: the training stops if the difference of weight matrix is less than 

net = train(net, training_input, training_output); 

% start training using the training data 

In practice, the training stopped after 550 epochs and its process is shown in Figure 

4.12. 

Figure 4.12: The training process of the BPNN 
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4.3.2 Final Segmentation Results 

Figure 4.13 shows the final segmentation result of the images shown in Figure 4.9 and 

the corresponding GT traced by an experienced head and neck radiologist. Figure 4.14 

shows the original T1W and T2W images of the tumour with the involved sublingual 

glands, the corresponding initial and final segmentation results as well as the GT. The 

algorithm successfully extracted the pathological lesion, made normal/abnormal 

decisions and performed the refinement for the final results. 

Figure 4.13 (a) Final result of images in Figure 4.9; (b) GT. 

Figure 4.14 (a) T1W image; (b) T2W image; (c) GT; (d) Initial segmentation result; 
(e) Final segmentation result. 
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Figure 4.15 shows the original T1 W and T2W images of unilateral tongue tumour, 

the corresponding initial and final segmentation results, and the GT. Since it is a 

unilateral primary tumour without involving the sublingual gland, no refinement was 

performed after the symmetrical detection. 

Figure 4.15 (a) T1 W image; (b) T2W image; (c) GT; (d) Initial segmentation result; 
(e) Final segmentation result. 

4.4 Tongue Carcinoma Tumour Volume Determination 

In this study, tumour volume was measured in 10 patients with tongue carcinoma 

using two methods: the conventional manual tracing method and the semi-automated 

computer method aided by an unsupervised hierarchical segmentation as described in 

Sections 4.2 and 4.3. The accuracy of unsupervised hierarchical segmentation method 

was quantitatively evaluated and the inter-operator variances of the two methods were 

compared. 
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4.4.1 Materials 

This study consisted of 10 consecutive adult patients who had MR imaging performed 

for tongue carcinoma staging in the National Cancer Centre of Singapore before 

radiation therapy or surgical resection. They were recruited over a 22-month period 

(June 2000 to March 2002). There were seven males, three females and the median 

age of all patients was 55 years (age range from 33 to 77 years). All patients had 

histologically confirmed diagnosis. Imaging was performed using a 1.5T MR scanner 

(Signa, GE Medical Systems, Milwaukee, USA). Fast spin echo sequence was used to 

obtain T1W (repetition time range from 420 to 720 msec, echo time range fi-om 10.2 

to 14.5 msec) and T2W (repetition time range from 4000 to 5400 msec, echo time 

range from 82.0 to 123.6 msec) images with fat saturation. Images were acquired in 

both axial and coronal planes. In this study only axial T1W and T2W images 

(512x512 pixels, field of view range from 200 to 220 mm, slice thickness range from 

4 to 5 mm, inter-slice gap range from 1.5 to 2.2 mm) were used for the actual tumour 

volume determination. The radiologists could however refer to all the other images 

acquired in the imaging protocol to aid in the accurate delineation of tumour. 

4.4.2 Methodologies 

1. Tumour volume determination 

This was a retrospective study and we did not have access to surgical specimens for 

the actual measurement of specimen volumes. Therefore, the “ground truth” (GT) 

tumour volume, against which measurement result from semi-automated methods 

could be compared, was determined by two experienced head and neck radiologists by 

manually tracing the tumour outline independently. Two PhD students of biomedical 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



4.4 Tongue Carcinoma Tumour Volume Determination 93 

engineering independently measured the tumour volume using the unsupervised 

hierarchical segmentation methods. 

a. Manual tracing method: Manual tracing was performed on T2W images using a 

graphic user interface developed by the author on a PC (1.7 GHz Pentium 4 CPU, 

Dell Computer Corp, Texas, USA). This choice was based on the good contrast 

between the high signal intensity tumour and the fat-suppressed low signal intensity 

tongue muscles. The area inside the outline was automatically labelled, calculated and 

multiplied by the MR slice thickness plus the inter-slice gap to calculate a per-slice 

tumour volume. The total tumour volume was obtained by summing the volume 

calculations for all slices. 

b. Semi-automated method: The semi-automated method requires only axial 

images. Two students pursuing PhD degree in biomedical engineering independently 

performed the unsupervised hierarchical method to segment tongue carcinoma, using 

a graphic user interface developed by the author on the same PC mentioned above. 

The segmented tumour area was automatically calculated and multiplied by the MR 

slice thickness plus the inter-slice gap to calculate a per-slice tumour volume. The 

total tumour volume was also obtained by summing the tumour bearing slices. The 

segmentation itself is unsupervised, and hence the whole tumour volume 

determination procedure should be automated. However, before segmentation, the 

operators were required to decide the ROI of fixed size and determine the tongue 

midline interactively (the reason is discussed in Section 4.5.1). Hence, the whole 

procedure is not fully automated and the inter-operator variance was evaluated. 

2. Validation of phantom volume measurement 

The unsupervised hierarchical segmentation algorithm was also validated using the 

phantom model described in Section 3.4.2. Volume validation was carried out by 
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summation of the area of continuous slices. The areas were calculated by pixel 

counting using: (1) the unsupervised hierarchical segmentation (UHS) and (2) manual 

tracing and labelling (MTL). The final volume results of the structures were compared 

with the golden standard which was obtained by water displacement. 

3. Validation data analysis 

To quantitatively evaluate the qualities of unsupervised hierarchical segmentation and 

the corresponding semi-automated tumour volume measurement, validations at the 

volume level and pixel level were performed using the same analysis presented in 

Section 3.4.2. 

4. Statistical analysis 

In this study, the same statistical analysis was performed as described in Section 3.4.2. 

4.4.3 Results 

1. Phantom validation 

Sixty-two slices of the phantom were processed using the two methods mentioned in 

Section 4.4.2. The results are shown in Table 4.1. The errors of unsupervised 

hierarchical segmentation were in the range of 4.7% to 6.9% while the errors of MTL 

were 3.5% to 8.1%. Interestingly, the volumes derived from manual tracing and 

unsupervised hierarchical methods were larger than the golden standards (GS) which 

were derived from water displacement. 
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Table 4.1 Volume determination in phantom model 

Notes: GS, golden standard; UHS, unsupervised hierarchical segmentation; MTL, manual 

tracing and labelling; measurement error of UHS method;                 measurement error 

of MTL. 

2. Tongue carcinoma tumour volume 

A total of 52 axial tumour-containing slices obtained from 10 patients were evaluated 

using manual tracing. Tumour enhancement was seen on 2 to 8 (mean of 5.2 and SD 

of  1.8)  slices  per   patient.   While   using  the  unsupervised   hierarchical   segmentation 

methods, lesion masses were extracted from 66 slices. Among these, 52 slices were 

classified as “abnormal” or “tumour-involved” and 14 were “normal sublingual 

glands”. Compared with GTs, only one slice of normal sublingual glands structure 

was classified as “abnormal” and one tumour-involved structure was wrongly 

classified as “normal”. 

The results of tumour volume determination are presented in Table 4.2. The two- 

way ANOVA test shows that there was no significant difference between the 

manually traced volume and the unsupervised hierarchical segmented volume 

(p=0.989), and no significant difference existed between the volumes obtained from 

operator 1 and operator 2 (p=0.937). In addition, there did not appear to be any 

interaction between operators and volume measurement methods (p=0.946). 
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Table 4.2 Results of tongue carcinoma tumour volume determination 

Notes: and the volume obtained by operators 1 and 2 using manual tracing; 

and the volume obtained by operators 1 and 2 using the unsupervised hierarchical 

method; and the corresponding measurement error. 

3. Quality of the segmentation algorithm 

The percent matching (PM) and corresponding ratio (CR) of the unsupervised 

hierarchical segmentation for all 10 patients compared with manual tracing 

segmentation are shown in Table 4.3. These results show that the unsupervised 

hierarchical method could achieve satisfactory segmentation results for tongue 

carcinoma. 

Table 4.3 Percentage match and correspondence ratio comparing manual tracing and 

the unsupervised hierarchical segmentation of two operators 

Notes: and percent matching of operators 1 and 2; and correspondence 

ratio of operators 1 and 2. 
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4. Inter-operator variation 

The index of agreement (IA) and inter-operator variance (IOV), which represent the 

inter-operator variation of manual tracing method and the unsupervised hierarchical 

segmentation method at both the volume and pixel levels respectively, are shown in 

Table 4.4. The averaged is higher than the averaged however, Kruskal- 

Wallis test on and shows that at the volume level there was no significant 

difference in inter-operator variance between manual tracing and the unsupervised 

hierarchical segmentation (p=0.401). Furthermore, Kruskal-Wallis test on             and 

shows that at the pixel level, the inter-operator variance of manual tracing was 

significantly higher than that of the unsupervised hierarchical segmentation (p=0.001). 

Therefore, it can be inferred that the unsupervised hierarchical segmentation method 

achieved significantly higher inter-operator consistency than the manual- tracing 

method. 

Table 4.4 Comparison of inter-operator reliabilities between manual tracing and the 

unsupervised hierarchical segmentation 

Notes: and IAs: index of agreement of manual tracing measurement and semi-automated 

measurement; and inter-operator variance of manual tracing and the 

unsupervised hierarchical segmentations. 
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4.5 Discussion 

4.5.1 Unsupervised Segmentation 

Tongue carcinoma is tumour arising from the mucosal surface of the tongue and 

frequently invades tongue muscles. Compared with  NPC,  the whole tongue 

carcinoma-affected domain is relatively simple and fixed, and only a few normal 

structures such as the sublingual gland, may be involved by the tumour. In this study, 

an unsupervised hierarchical method combining GA-induced fuzzy clustering 

(GAIFC) and artificial neural network (ANN)-based analysis procedure is developed. 

Regarding image segmentation problems, our concern lies in the segmentation 

accuracy with acceptable operator dependency and computation complexity. 

Unsupervised FCM gave very good reproducibility. However it did not necessarily 

arrive at meaningful segmentations and often required long computation time [39]. 

SFCM, a method with partial supervision, yielded improved results and reduced 

computation time by the introduction of initial training sets. However, the selection of 

training sets was operator-dependent. In our proposed method, the coarse tissue types 

were classified using GA-based initial clustering which used crisp tissue membership. 

Following this, as to what the selected training sets in SFCM acted, the results were 

fed into the successive fuzzy clustering which used fuzzy tissue membership, to guide 

the final clustering results. As a result, GAIFC achieved improved and meaningful 

results of initial segmentation as SFCM did and at the same time, reducing operator 

dependency. The relative high computation complexity was the cost of this algorithm 

due to the introduction of GA. However, the long computation time could be reduced 

by algorithm optimisation and the rapid progress of computer hardware. For instance, 

the ROI used for GA-based clustering could be re-sampled by one half or one quarter 

of the original resolution. Furthermore the result of GA-based clustering from one 
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slice could be used as the initial valve for succeeding FCM for another slice in the 

same image volume. 

The ANN-based symmetrical analysis for segmentation refinement is also an 

important part in this method. Symmetry is an important factor that helps radiologists 

to read films and make diagnosis. A fuzzy symmetry measure was used as the sole 

factor to judge the symmetry in a previous research on brain tumour extraction [71]. 

In our study, because the shapes of extracted tumour-involved sublingual glands or 

normal sublingual glands vary significantly in shape and size, one or two hard criteria 

are not enough to make the correct judgment. Therefore, more features were selected 

or calculated to help the symmetry detection and a supervisory BPNN was selected as 

a classifier net. The final results show the flexibility and learning ability of the BPNN 

for this kind of fuzzy  judgment problems. 

Besides the initially segmented masses, another parameter that affects the 

symmetry detection is the tongue midline which is used as the symmetry axis. In the 

previous chapter of NPC segmentation, the symmetry axis of the axial head image 

was automatically fitted from three points. Calculated as the corresponding first 

moments, the three points were the geometric centres of the upper half, bottom half 

and the whole part of the binary head mask. In ideal conditions the head symmetrical 

axis is quite closed to the tongue midline, and yet this processing is not universally 

reliable for the generation of tongue midline. This is because that during the scanning 

process, the tongue midline can be significantly changed by the orientation of the 

head, the distortion of non-skull covered part of head, and the swelling or atrophy of 

local internal organs. In this study, an interactive method which uses distinct 

anatomical landmarks such as lingual septum was adopted to help in the 

determination of the tongue midline. Therefore, the segmentation process itself was 

unsupervised while the whole procedure was not fully automated and the inter- 

operator variance was introduced. 
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4.5.2 Potential Development in Segmentation 

Pattern recognition is a classical and promising technique for multi-spectral image 

segmentation. An important problem in the segmentation of head and neck tumours 

from MRI is how to decrease the false positives (FPs) in the first stage of 

segmentation. According to the detailed technique considerations of this study, the 

potential developments are discussed as follows. 

1. The introduction of new features 

Currently, signal intensities are the most important features used in the multi-spectral 

segmentation of MRI. Generally, for tissues like mucosa, soft palate and sublingual 

glands which have high density of micro-vessels, the MRI signals (intermediate signal 

intensity in T1 W and high signal intensity in CET1 W or T2W) are similar to those of 

abnormal tissues such as tumour. MRI, however, has a very high resolution for soft 

tissue and sometimes there are subtle differences in the T1W images between the 

normal and abnormal tissue. The number of tissue classes used in the actual 

segmentation is limited due to the computation complexity and hence, it is difficult to 

detect the differences in the domain of intensity distribution. However, in the spatial 

frequency distribution domain, these differences may be detected using texture 

measure. Therefore, the introduction of texture feature into the original 2-D feature 

space formed by the intensities of two sequences of images may be helpful. In a 

preliminary study performed by our group, a texture combined multispectral fuzzy 

clustering was developed. A frequency spectrum-based texture measure of T1 W 

image was introduced in this algorithm as a new feature for classification and 

promising results were acquired for some slices [117]. 
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2. Machine learning technique 

From the theory of pattern recognition, the problem of high FPs in initial 

segmentation results due to misclassification. is the challenge of how to deal with the 

nonlinearity of real medical data distribution in the feature space. For most of the 

statistical methods and fuzzy logic approaches such as k nearest neighbour (kNN), 

maximal likelihood method (MLM) and FCM, a specific parameterised distribution of 

the object data is usually defined. It means that such approaches have implicitly 

imposed some a priori assumption about the data distribution and they are only useful 

when the data distributions of different tissue classes are well-known [39]. However 

for real medical data, the actual distributions of tissue classes usually do not fit to 

these assumptions well and moreover, they are not linearly separable in some cases. A 

potential solution is the supervised or unsupervised machine learning which is used to 

learn the actual data distribution of the object data intelligently and optimally turn out 

a flexible decision boundary. 

A simple application of learning-based technique is the change of feature weights. 

In most of the previous studies on multispectral MRI segmentation, the weights of all 

the features (signal intensities) used for classification were the same. In our studies, 

we found that the signal intensity distribution of lesion and its adjacent region in 

CET1W image or T2W images is quite homogenous, while it is often heterogeneous 

in T1W images. Therefore, the feature vector used for classification can be changed 

from to where is the intensity of T1W image, 

is the intensity of CET1W, m + n = 2 , and m/n = (standard deviation of 

training data of tumour T1W image)/(stand deviation of training data of tumour in 

CETl W image). This process can nonlinearly stretch the feature space that makes the 

data distribution linearly separable. 
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In recent years, a new machine learning method, support vector machine (SVM), 

has been studied and showed encouraging results for nonlinear classification and 

clustering problems [118][119]. Our group has started the study on tumour 

segmentation based on multi-feature using machine learning via one-class SVM. 

4.5.3 Tongue Carcinoma Tumour Volume Determination 

The largest tumour diameter has been used for many years in the TNM classification 

to stage the tongue carcinoma. However, it cannot reflect the total tumour volume and 

the total burden of malignant cells. For instance, superficial spreading tongue 

carcinomas frequently exceed 4 cm in diameter without deep penetration. These 

tumours are classified as T3 lesions but have very low volumes. Recent findings 

showed the significance of tumour thickness (depth) and volume for the treatment 

planning and prognosis of tongue carcinoma [33]-[37]. 

Two-way ANOVA test on our results showed that there was no significant 

difference between manually traced and semi-automated segmented volume. 

Moreover, there was no significant variance between the volume results from the two 

operators. In this study of tongue carcinoma tumour volume determination, the 

percent matching (PM) and corresponding ratio (CR) were also used to quantitatively 

evaluate the accuracy of segmentation algorithm. These parameters showed that the 

segmented tumour areas were quite close to the manually traced areas. The averaged 

values of PM and CR in this study are higher than those of NPC tumour volume study. 

The inter-operator agreements of the manual tracing and unsupervised hierarchical 

method were evaluated at both the volume and pixel levels. The results are in good 

agreement with those obtained by the NPC tumour volume study: At the volume level, 

the inter-operator agreement of semi-automated segmentation was not significantly 

higher than that of the manual tracing method. At the pixel level, the inter-operator 
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variance of semi-automated segmentation was significantly lower than that of the 

manual tracing method. It should be noted that tumour volume is obtained by adding 

scan slices bearing tumour tissue. This summation process is likely to cancel out the 

over-estimated and under-estimated tumour bearing areas of the slices that make up 

the total tumour volume. This is the most likely reason for observing no significant 

differences between the two observers at the volume level. However, at the pixel level, 

direct comparison is made on the results of each scan slice. Hence there is no 

provision for the cancelling out of errors by the summation of slices. They indicate 

that the total tumour volume determination is more relevant to clinical practice than 

the comparison of location matching, however, the latter is very important to evaluate 

a computer-based segmentation method for tumour volume estimation efficiently and 

completely. 

A major limitation of this study is the lack of a gold standard in comparing 

segmented tumour volume since this vas a retrospective study and we did not have 

access to surgical specimens for the actual measurement of specimen volumes. 

Another limitation is the use of relatively large slice thickness and inter-slice gaps. 

The thinner slice without inter-slice gap will be used for further studies. 

4.5.4 Imaging Related Errors in Tumour Volume Determination 

Besides the errors existed in MR image post-processing and segmentation, there are 

also imaging related errors in tumour volume determination. Most of these errors 

come from imaging artefacts. Artefacts are those parts of an image that do not 

reproduce the actual tissue being imaged. They can very from being relatively 

localised to a small part of an image to those that render the entire image useless. 

Sometimes artefacts are sufficiently subtle to make diagnosis difficult [63]. Artefacts 

can be caused by the patient or by extraneous effects. 
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1. Partial volume effect 

The clinical MR images are acquired as a stack of parallel slices in the axial, sagittal 

or coronal direction. In the presented study, each data set consists of 24-30 slices with 

the thickness of 5 mm and the pixel dimensions in each slice are about 0.18 The 

images displayed represent the average of the free-induction decay (FID) response 

signals from all tissues in the 5mm slice. Thus, each voxel in the images could 

represent more than one tissue type. This phenomenon is referred to as the partial 

volume effect, or partial volume averaging. When a small structure is entirely 

contained within the slice thickness with other tissue of differing signal intensity then 

the resulting signal displayed on the image is a combination of these two intensities. 

This may cause the small structure to disappear and have large error in volume 

calculation [120]. The partial volume effect is particularly noticeable in the extreme 

slices of MRI volumes, i.e., the first and the last slices of a data set or the first and the 

last slices contain one organ (structure). Figure 4.16 shows the example of partial 

volume effect in NPC imaging. 

Figure 4.16 (a) T1W MR image shows the NPC morphologically in the nasopharynx (white arrow); 
(b) However, in the corresponding T1 W post-contrast MR image, a part of the tumour does not 
show high signal intensity, due to partial volume effect (white arrow). This may cause errors in 
tumour segmentation. 
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2. RF inhomogeneity 

Sometimes, MR images contain unwanted intensity variation due to inhomogeneity in 

the “uniform” magnetic field inhomogeneity in the applied RF pulse sequence 

and nonuniformity in RF field coil(s) used to measure the FID response signal. The 

overall intensity variation is referred to as RF inhomogeneity. For example, a metal 

object that prevents the RF field from passing into a tissue will cause a signal void in 

an image. Figure 4.17 shows a T2W MRimage with RF inhomogeneity artefact. 

Figure 4.17 A T2W MR image with RF inhomogeneity artefact (white arrow) 

3. Patient-related artefacts 

People move both voluntarily and involuntarily during the course of scanning, hence 

motion is the most likely cause of image artefacts that can be contributed to the 

patient. Although patients are required to keep quite and breath-holding, head shifting, 
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coughing, swallowing and breathing are the common causes of artefacts for the 

scanning of brain, head and neck. Figure 4.18 shows an MR image with typical 

motion artefact. Sometimes the implants of orthopaedic surgery also produce false 

positive artefacts. 

Figure 4.18 A T2W MR image of tongue carcinoma with typical motion artefact 

4.6 Concluding Remarks 

In conclusion, an unsupervised hierarchical method that includes noise removal, 

initial segmentation, symmetry detection and refinement has been developed to 

segment tongue carcinoma from T1 W and T2W MR images. After noise removal, an 

initial segmentation was performed using a GA-induced fuzzy clustering (GAIFC). 

Following this, an ANN-based symmetry detection procedure, which utilised 

anatomic and geometry knowledge, was applied to detect the initially extracted mass 

and then make necessary refinement to obtain the final segmentation results. Lesions 

were initially extracted from 66 MRI slices from 10 tongue carcinoma patients and 52 
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were detected as tumour slices using the developed method. The tumour volumes 

were obtained by summation-of-areas technique and quantitative validations were 

performed at both the volume and pixel levels, by comparing the computer segmented 

volumes with those from manual tracing method. Test results showed that at the 

volume level there was no significant difference between the manually traced volumes 

and the computer segmented volumes. In addition, at the volume level, there was no 

significant difference between the inter-operator agreements of the two methods. The 

matching comparison at the pixel level showed that the unsupervised hierarchical 

segmentation can not only well segment tongue carcinoma from MR images, but also 

have significant higher inter-operator agreement than the manual tracing method. 

Therefore, the developed unsupervised hierarchical method is found to be suitable to 

segment tongue carcinoma for tumour volume determination. Factors such as 

deformation are taken into account in the next chapter, titled “Deformation Model- 

based MRI Segmentation”. 
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Chapter 5 

Deformation Model-based MRI Segmentation 

5.1 Introduction 

In Chapters 3 and 4, the semi-supervised and unsupervised MRI segmentation 

methods were presented. Both methods use classification/clustering-based techniques, 

which require at least two imaging sequences and explore the features derived from 

image contents. Besides pathological lesions such as tumour, lymph node, oedema, 

and inflammation, other irrelevant tissue types can be classified using these methods. 

However, in a lot of image segmentation cases, it is unnecessary to analyse every part 

of the image. The interest may be only in segmenting one or a few objects of the 

image. In addition, sometimes the area of interest only accounts for a small part of the 

whole image, therefore the clustering may not give meaningful results. One possible 

way in dealing with such problems is to use deformation models, by which the actual 

object edge and the boundary can be found and located in a local area by minimal 

interaction [121] [122]. 

As mentioned in Section 2.4.1 (page 25), the traditional edge-based methods try to 

find the places of rapid transition from one to other region of different brightness or 
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intensity by applying some gradient operators to the images. These methods do not 

perform well if the sampled data have typical shortcomings such as sampling artefacts, 

spatial aliasing and noise. For example, these methods only consider the local 

intensity information that makes incorrect assumptions during an integrated process 

and generate infeasible object boundaries. As a result, these model-free techniques 

usually require considerable amount of post-processing or expert interpretation. 

Therefore, the challenges are to extract the boundary elements belonging to the same 

structure or tissue type and integrate these elements into a coherent and consistent 

model of the structure of the tissue type [121]. 

In general, deformation models are physically motivated, model-based techniques 

for delineating region boundaries using closed parametric curves or surfaces that 

deform under the influence of internal and external forces [80]. The idea of using a 

model-based optimisation method to find the object boundary in images became 

popular after Kass, et al. presented the famous active contour model that solved the 

problem by minimising an energy function of the boundary [123]. Based on the basic 

idea of Kass, et al., deformable contour models with different energy functions have 

been proposed and processed by various optimising methods including the finite 

element method [124], dynamic programming [125] and greedy algorithm [126]. The 

above methods use image edge information, especially the local grey level gradient, in 

the energy function to attract the contour from an initially drawn plan to the real 

boundary. However, the high grey level gradient of the image may be caused by 

object boundaries as well as noise and object texture, and therefore the optimisation 

functions may have many local optima. In addition, these models require the initial 

plan to be “close enough” to the real boundary or the functions may not converge. A 

replacement is to use region information which utilises some statistic measures of 

region greyscale distribution to guide the region converge [122]. The region 

information can partly overcome the drawbacks of contour deformation because it 
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provides more constraints of shapes on the boundary and the region models can 

tolerate certain types of noises and textures. 

Some pioneering investigations put forth the strategy of integrating both edge and 

region information into the deformation model for the segmentation of biomedical 

images and obtained meaningful results [66][122][127]-[130]. In this study, it is 

required to get the lymph node volume information, since the size of the node can be 

an indictor of tumour activity, and enlarged nodes are generally targeted for further 

study or treatment. In addition, some T2W images of tongue carcinoma were 

seriously contaminated by salt and pepper noise and motion artefacts resulting in the 

tumour not being well segmented using the fuzzy clustering method. Therefore, a 

boundary extraction method based on region and contour deformation models is 

presented in this chapter. Using this method, the T2W MR images of tongue 

carcinoma with severe salt and pepper noise and motion artefacts was successfully 

segmented, and a fast segmentation scheme was applied to a stack of 2-D MRI slices 

to segment the lymph node. 

The organisation of this chapter is as follows. Section 5.2 describes the region and 

contour deformation models, respectively. Detailed implementation steps of this 

algorithm are presented in Section 5.3. Several applications such as the segmentation 

of NPC from CET1W images, the segmentation of tongue carcinoma from T2W MR 

images, and the fast segmentations of lymph node volume as well as intra-cranial 

aneurysm are shown in Section 5.4. Finally, discussion and concluding remarks are 

presented in Sections 5.5 and 5.6, respectively. 
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5.2 Region and Contour Deformation Models 

111 

5.2.1 Region Deformation Model 

An object can be regarded as a region which is homogeneous in some properties. The 

property with some disparity between an object and its surrounding area should be 

chosen to identify the object. The boundary of an object can be considered as a sub- 

region of the object which borders other objects. The goal of region deformation is to 

find a region of maximum area whose boundary has the same properties as the region, 

based on an initial estimation of the object. Therefore, a property disparity between a 

region and its boundary, and the area of the region can be used to make the judgment. 

In this study, the greyscale statistical distribution is chosen as the discrimination 

parameter since both the tumour and the lymph node have a high contrast to the 

surrounding tissues. 

1. Greyscale distribution disparity of the region and its boundary 

Let I be the pixel set of an image, i I be a pixel; is the greyscale of pixel i with 

0                      An object in the image can be described as a homogenous region O, 

and the boundary of O is a simple closed curve B. The Kolmogrov-Smirnov (KS) test 

is well known in nonparametric statistics and can be used to test if two sets of 

probability distribution belong to the same probability distribution [122][ 13 1]. In this 

study, KS test is used to test whether the boundary pixel set and the object pixel set 

have the same greyscale distribution. 

First, the Kolmogrov-Smirnov distances D is defined as 
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where and are the greyscale cumulative fiequency distribution functions (CFDF) 

of boundary B and object O, respectively. Here, and  can be calculated by 

and 

where and represent the greyscale fiequency distribution functions (FDFs) of B 

and O, respectively and 0 255. Then a lower case d which only depends on 

the pixel numbers of B and O, is defined as 

(5-4) 

where c is the test significance level, A is the number of pixels which form O, and L is 

the number of pixels which form B. The hypothesis       =       is only accepted when 

2. Two basic operations for region converge 

After putting an initial closed contour and calculating the KS test, two basic 

morphological operations are used to deform the region for the final converge of the 

region to meet       =      , based on the different results of the KS test. 

When D > d , the region plan covers a region somewhat different from the desired 

object, and a shrinking operation is used to deform the region. It means that the 

current contour will shrink inward for one pixel. In practice, the region boundary 

elements are deleted and their nearest inner neighbours are used as the new boundary 

elements. However, it is not necessary to delete all the boundary elements, but only 
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those which have a different property within the region. Figure 5.1 shows how to 

determine which boundary elements should be deleted. Here, O is the object, B is its 

boundary, and j  is a pixel of B. A small window  is set withj being the center. If the 

greyscale distribution of is close to that of O , j  is kept; otherwise it is deleted. In 

practice, the greyscale mean and standard deviation of and object O are compared. 

The shrinking operation is performed till D < d . 

Figure 5.1 Object described as a region with a closed curve as its boundary 

When D < d , the region plan may exactly cover the actual object or may be 

completely inside the object and not cover the whole object. Because of this kind of 

possibility, a growing operation is performed such that the current contour will grow 

outward for one pixel. In practice, the region boundary elements are assigned as the 

object pixels and their nearest outer neighbours were used as the new boundary 

elements. The growing operation is performed till D > d . 

In practice, a coarse region is put totally inside or outside the actual object, or to 

partly cover the actual object, and the KS test is performed. There might be two 

results: (a) If initially D > d , the shrinking operation is performed till D < d . Then a 

cycle of growing operation is performed. After an iteration containing one growing 
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operation and one shrinking operation, the new region area is compared with the 

previous one. The process stops if the region area does not change. (b) If initially 

D < d , the growing operation is performed till D > d following the steps as 

described in (a). 

5.2.2 Contour Deformation Model 

The extracted boundary using region deformation is always in a zigzag form that it 

cannot well fit the actual tumour boundary which is fairly smooth. Therefore, a 

contour deformation model is used with this global geometric constrain to modify the 

contour extracted by region deformation [122]. 

1. Contour deformation by Snake Method 

The snake method [123] (active contour model) is an energy-minimisation spline 

technique which uses information on both the shape of the object of interest and the 

object’s image properties to determine the segmentation of the object. In 2-D images, 

a snake is a sequentially connected set of pixels which form a closed curve with each 

of the pixels locates at one pixel in the image. The energy of the snake is guided 

by internal and external forces and can be defined by 

where v(s) = (x(s),y(s)) is the parametric equation of the contour, and s is the arc 

length; is the internal energy, and is the external energy. 

The internal energy can be written as 
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where and are the first and second derivatives of v, which are used to control the 

smoothness of the contour; and and are weights. The external energy is from 

the image edge information and can be written as 

where V is the gradient operator, I is the image, and the weight. Since in actual 

images the transition of greyscale from background to object is not a sudden change, 

the second-order derivatives of I, was used to construct Therefore Eq. (5-7) 

can be re-written as 

where is a Gaussian function with standard deviation and is the convolution. 

In order to enhance the effect of zero-crossing places in the external energy 

distribution, the following equation was used instead: 

(5-9) 

In practice, the discrete forms of Eqs. (5-5), (5-6), and (5-9) can be written, 

respectively, as 

(5-10) 

(5-1 1) 
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(5-13) 

Therefore, minimising will smooth out a contour and move it to the nearby edge. 

2. Minimisation of 

A greedy algorithm proposed by William [126] is used to search the minimal energy 

contour. It is an iterative procedure that during each of the iteration, a neighbourhood 

of each contour pixel is examined and the pixel in the neighbourhood giving the 

smallest value of the energy term is chosen as the new location of the pixel. 

Figure 5.2 shows how this algorithm works. The energy function is computed for 

the current location of and each of its neighbows. The location having the smallest 

value is chosen as the new position of The location of has already been 

moved to its new position before the current iteration if necessary. Its location is used 

with that of each of the proposed locations for to compute the first order continuity 

term. The location of has not yet been moved. Its location, along with that of 

is used to compute the second order constraint for each pixel in the neighbourhood of 

For i = 0, only old values are used. For this reason,     is processed twice. 

1 

Figure 5.2 The iteration of greedy algorithm 

In the prototype of greedy algorithm and the works of Chan, et al. [122] and Law, 

et al. [66][130], not all the pixels in the contour were examined for energy 
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minimisation. The initial contour for contour deformation is sampled to a point 

sequence with k pixels in intervals to use the fast snake model. After convergence, 

these points are connected sequentially to recover the actual contour. As a 

consequence, the recovered actual contour is not smooth enough. Hence, every pixel 

of the contour is examined in the present study. 

5.3 Application: NPC and Tongue Carcinoma Segmentation 

The scheme of segmentation of NPC and tongue carcinoma using deformation model 

is as follows. First a closed curve was manually drawn over the tumour region as the 

initial boundary. Then a region deformation was performed. A contour deformation 

was then applied using the result from region deformation as the initial contour. Since 

the process of region deformation can approximately locate the resulting contour to 

the actual boundary, the successive process of contour deformation can stop within a 

few cycles of iterations. In the implementation, the parameters , and 

were fixed at 1, 1, and 10 respectively [66]. This setting shows that in contour 

deformation, the contour location to the actual edge is more important than the 

smoothness of the contour. The value of the standard deviation of a Gaussian 

function was 4. 

The test significance level c was determined by experiment. First, an experienced 

radiologist carefully drew the boundary of tumour from five MR images with NPC 

and tongue carcinoma. From the obtained closed contour and the included object, the 

corresponding KS distance D was calculated from Eq. (5-1). Let D = d,    then the 

value of c was obtained from Eq. (5-4). From the five manually drawn closed 

contours and the included objects, five c values were obtained and they were 

nominated as and Let and 
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hence an sequence of integers, “c”, was got: 

, where Int is the integer operation, Min is the 

minimum value operation and Max is the maximum value operation. Then, every 

element in c was used as the c value to perform the region deformation in the above 

mentioned five MR images, from the same initial plan. In every image, the 

corresponding ratio (CR) value was calculated from Eq. (3.19) by comparing the mass 

obtained from region deformation with the mass obtained from manual tracing at the 

pixel level, according to the different c value. The c value which achieved the highest 

CR value in an image was nominated as c*. From the obtained five c* values, the one 

with the highest occurrence was chosen. In the present study, the value of c was 

determined as 4, according to our experiment. 

5.3.1 NPC Segmentation 

A contrast enhanced T1-weighted (CETlW) MR image of NPC is shown in Figure 

5.3(a). The tumour enhancement can be seen on the right lateral section (arrow). 

However, the tumour boundary is quite blurry and the enhanced region is 

heterogeneous that even expert radiologists cannot trace the tumour boundary well. 

The initially drawn contour (totally outside), the result after region deformation, the 

result after successive contour deformation, the contour traced by a radiologist, and 

the result obtained using seeded region growing [67] are shown sequentially in 

Figures 5.3(b) to 5.3(f). Region deformation model can successfully find the actual 

tumour enhanced region, although its result is a little inside the actual tumour- 

enhanced region. After the successive contour deformation, the extracted contour fits 

the boundary of actual tumour enhanced region quite well. On the other hand, seeded 

region growing obtains poor result for this type of image with blurry boundary and 

heterogeneous tumour enhancement. 
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Figure 5.3 (a) Original CETlW MR image; (b) Initial boundary; (c) Result after region 
deformation; (d) Result after contour deformation; (e) Boundary traced by radiologist; (f) Result 
using seeded region growing. 

Figure 5.4(a) shows another CET1W MR image of NPC. The tumour 

enhancement can be seen on the left lateral section (arrow) and the boundary of 

enhanced region is more distinct than that of Figure 5.3(a). The initially drawn 

contour (totally inside), the result after region deformation, the result after successive 

contour deformation, the contour traced by a radiologist, and the result obtained using 

seeded region growing [67] are shown sequentially in Figures 5.4(b) to 5.4(f). They 

demonstrate that region and the successive contour deformation successfully find the 

actual tumour-enhanced region and extract the tumour boundary, whereas the seeded 

region growing algorithm is not so robust. 
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Figure 5.4 (a) Original CET1W MR image; (b) Initial boundary; (c) Result after region 
deformation; (d) Result after contour deformation; (e) Boundary traced by radiologist; (f)Result 
using seeded region growing. 

5.3.2 Tongue Carcinoma Segmentation 

A T2-weighted (T2W) MR image of tongue carcinoma with motion blur is shown in 

Figure 5.5(a). The tumour enhancement is on the left lateral section (arrow). The 

initially drawn contour (totally outside), the result after region deformation, the result 

after successive contour deformation, the contour traced by a radiologist on original 

image without motion blur, and the result obtained by the multispectral unsupervised 

hierarchical method (described in Chapter 4) using T1W and T2W images without 

motion blur are shown sequentially in Figures 5.5(b) to 5.5(f). These figures show that 
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both region plus contour deformation models and the unsupervised hierarchical 

method achieve fine segmentation results. However, the former utilised only one 

sequence of MR image with motion artefact, while the latter needed two sequences of 

MR images as well as post-processing such as mathematical morphological operations. 

Figure 5.5 (a) Original T2W MR image with motion blur; (b) Initial boundary; (c) Result after 
region deformation; (d) Result after contour deformation; (e) Boundary traced by radiologist; 
(f) Result using the unsupervised hierarchical segmentation method. 

Another T2W MR image of tongue carcinoma with Gaussian blur is shown in 

Figure 5.6(a). The tumour enhancement is on the left lateral section (arrow) with very 

unclear tumour boundary. The initially drawn contour (totally inside), the result after 

region deformation, the result after successive contour deformation, the contour traced 

by a radiologist on original image without Gaussian blur, and the result obtained by 

the semi-supervised knowledge-based fuzzy clustering method (KBFC, described in 

Chapter 3) using T1W and T2W images without Gaussian blur are shown sequentially 
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in Figures 5.6(b) to 5.6(f). These figures show that by only exploring one sequence of 

image with Gaussian blur, the deformation-based method can find the actual tumour- 

enhanced region and extract the boundary which was quite close to the manually 

traced region. For the result from KBFC, although the tumour mass is almost 

segmented, a part of mucosa (black star in Figure 5.6(e)) which is enhanced and 

attached to tumour in the pharynx is also classified as tumour. Therefore, it is highly 

false positive. From these examples, it can be realized that the performance of 

deformation models on boundary detection from regions with blurry boundary and 

heterogeneous greyscales is fairly good. 

Figure 5.6 (a) Original T2W MR image with Gaussian blur; (b) Initial boundary; (c) Result 
after region deformation; (d) Result after contour deformation; (e) Boundary traced by 
radiologist; (f) Result using KBFC method. 
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5.4 Application: Fast 3-D Segmentation 

The head and neck tumours frequently have accompanying swell of lymph nodes. 

According to the Tumour Node Metastasis (TNM) classification, the node volume is 

also an important diagnostic and prognostic indicator. A particularly important 

measure is the change in size of a node over time because this change can be used to 

determine treatment and evaluate patient response to a particular course of radiation- 

or chemotherapy. Therefore, during the treatment and the management of a patient 

with head and neck cancer, determination of lymph node volume is always required. 

The lymph node is always of high contrast over the surrounding tissues in CET1 W 

and T2W images and is an isolated structure. Hence, deformation models can be used 

for accurate semi-automated segmentation. Although radiologists can manually draw 

the initial boundary for the extraction of actual boundary, it is really a tedious process 

to draw the initial contours on a stack of serial 2-D MR images, especially when the 

studied lymph node has a large volume and thin slices are used. A fast 3-D 

segmentation scheme is applied in the present study to segment lymph node from a 

series of 2-D axial MR images with minimal interaction and significantly decreased 

processing time. 

5.4.1 Segmentation Scheme 

A stack of parallel 2-D axial MR images produce a 3-D representation of the lymph 

node. If the inter-slice spacing is kept within a certain value, the successive 2-D MR 

images always have some similarities between each other in terms of size, shape, and 

greyscale distribution. Therefore the change in various properties of lymph node 

between one slice and its neighbouring one will be usually small. 
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Figure 5.7 Block diagram of fast 3-D segmentation 

The major steps of the proposed fast 3-D segmentation scheme are shown in 

Figure 5.7. Slice i is selected from a stack of n slices, where 1 < i < n . After an initial 

plan was manually set on slice i, region and contour deformations were performed to 

extract the actual lymph node boundary. Then the extracted boundary was used as the 

initial plan on neighbouring slices i+l and i-1, and region and contour deformations 

were also performed on i+1/i-1 to extract the actual boundary. This procedure was 

continued till all the slices were processed. By this method, the lymph node shape 

information between neighbouring MR images is utilised such that only one coarse 

manual initial plan is required for the whole stack of image. Moreover, the processing 

time is considerately decreased. An illustration of this scheme is also shown in Figure 

5.8. 
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Figure 5.8 Illustration of applied fast 3-D segmentation scheme 

5.4.2 Experiments and Results 

1.3-D segmentation of lymph node 

The MRI scanning of a tongue carcinoma patient was examined and the enhancement 

of the swollen posterior left neck node was found on T2W sequence from slice 12 to 

17 (4 mm of slice thickness without gap). The initial plan was set on slice 15 and the 

3-D segmentation was performed. The results are shown in Figures 5.9 and 5.10. 

Figure 5.9 (a) Initial plan on slice 15; (b) Final boundary extracted using region and contour 
deformations on slice 15; (c) Initial plan on slice 16. 
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Figure 5.10 Final results from slice 12 to slice 17 (a-f), respectively. 

From Figure 5.9 it is observed that the initial plan on slice 16, which was the final 

boundary on slice 15, was quite close to the actual lymph node boundary on slice 16. 

Because of this, the boundary on slice 16 converged within a few cycles. The total 

processing time of the fast 3-D segmentation on this example was 29 s (including the 

time spent on initial plan drawing) while it took 113 s to complete the segmentation 

one slice by one slice (including the time spent on the drawing of six initial plans). 

2.3-D segmentation of brain aneurysm 

In this chapter, both region and contour deformations were used for the boundary 

extraction. Region deformation was used to keep the shape constraint while contour 

deformation was used to control the location of the curve to the actual edge and the 

smoothness of the curve. However, our experiments showed that if the object size is 

not large and thin slicing is used, good 3-D segmentation results can be achieved 
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using only region deformation. In this study, a time-of-flight (TOF) 3-D magnetic 

resonance angiography (MRA) volume data of brain aneurysm with 18 lesion- 

contained slices (1 mm slice thickness without gap) was segmented using the fast 3-D 

segmentation scheme with region deformation only. Segmentation results fiom 

selected six slices are shown in Figure 5.1 1. 

Figure 5.11 Selected segmentation results from six slices (a)-(f) Slice 1,4, 7, 10, 13, 
and 16 of 18 slices, respectively. 

5.5 Discussion 

Segmenting structures from medical images and reconstructing a compact geometric 

representation of these structures is not easy due to the sheer size of the dataset and 

the complexity and variability of the anatomic shapes of interest. Furthermore, the 

typical shortcomings of sampled data, such as sampling artefacts, spatial aliasing and 

noise, may cause the boundaries of structures to be indistinct and disconnected. The 

challenge is to extract boundary elements into a coherent and consistent model of the 
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object. The traditional low-level image processing techniques which consider only 

local edge information can make incorrect assumptions during this integration process 

and generate infeasible object boundaries. As result, these model-free techniques 

usually require considerate amount of human intervention. Moreover, the subsequent 

analysis and interpretation of the segmented objects is hindered by pixel- or voxel- 

level structure representations generated by a lot of image processing operations. 

The widely recognised potency of deformable models stemmed from their ability 

to segment, match and track images of anatomic structures by exploring (bottom-up) 

constraints derived from the image data together with (top-down) a priori knowledge 

(usually the initial input from an operator) about the locations, sizes and shapes of 

these structures. Deformation models are capable of accommodating the often 

significant variability of biological objects over time and across different individuals. 

Furthermore, deformation models support highly intuitive interaction mechanisms that 

allow medical experts and practitioners to bring their expertise to bear on the model- 

based image interpretation task when necessary [121]. 

Based on Kass, et al.’s basic idea, contour deformation models with different 

energy functions have been proposed and processed by various optimising methods. 

Most of these approaches utilised image edge information, typically the local grey 

level gradient, in the energy function to attract the contour to- the object boundary. 

However, the high grey level gradient of the image may be due to object boundaries 

as well as noise and object textures, and hence the optimisation functions may have 

many local optima. Consequently, such models require the initial plan to be “close 

enough” to the real boundary. One possible way is to integrate region and contour 

deformations to locate the boundary of an object. Because region information 

provides more constraints on the boundary of the object, the region model can tolerate 

certain noises and textures. The two-step method presented in this study gives an 

effective alternative to minimise the manual work. The region deformation can 
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provide a good enough initial contour plan for the next contour deformation because 

the region model presented is a constrained optimisation problem, in which 

maximising the region area is the objective with region and its boundary having the 

same greyscale distribution as the constraint. Some techniques also used the statistical 

information inside the object in their region models, however they assumed that the 

interior of the object follows a normal distribution and the parameters are kept 

unchanged during the deformation procedure [132] [133]. In our region model, there is 

no assumption on greyscale distribution of the object since we only tested whether the 

boundary and the whole object have the same greyscale distribution. In addition the 

greyscale distribution of the object keeps changing during the deformation process. 

Therefore this model is more applicable to various types of images. 

Only a part of the image is analysed using the presented deformation model-based 

method, hence the processing speed of this method is 10 seconds or so (CPU, Intel 

Pentium-4 3.06 GHz; Memory, 512 MB), which is faster than the clustering-based 

methods described in Chapters 3 and 4. The factor that affects the speed of the 

algorithm is the difference of included area between the initial contour and the finally 

calculated contour. Figure 5.12 shows a CET1W MR image of brain tumour with two 

different initial plans. The times for tumour extraction were 7 seconds (started from 

the outer contour) and 12 seconds (started from the inter contour), respectively. 

Figure 5.12 A CETlW MR image of brain tumour with two different initial plans 
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The major drawback of the region deformation may be the operator dependency 

because the manual input of initial contour plan is needed to guide the deformation. A 

quantitative study on the inter-operator variance of the segmentation using region 

deformation is expected in the further investigation. However, the manual input of 

initial contour is the way how the medical experts contribute their prior knowledge to 

the abnormality extraction. It is based on the knowledge constraints in the image that 

the region deformation can achieve meaningful and flexible results, not affected by 

the local intensity shifts and the artefacts. For an instance, in some images the normal 

and abnormal objects have similar signal properties and are adjacent to or in contact 

with each other. The operator can draw the initial contour through the expected 

boundary between the normal and abnormal objects and start the region deformation. 

Then the contour will converge to the boundary of the desired abnormal object 

without spreading to the undesired object. 

5.6 Concluding Remarks 

In this chapter a two-step deformation model-based method has been used to locate 

the boundary of an object. The objective of this method is to segment not a whole 

image but some individual objects from an image. An initial plan of this boundary is 

required as in other deformation models. In the first step of region deformation, the 

KS test was used to detect if the boundary of a region and the enclosed region have 

the same greyscale statistical distribution. An iterative shrinking-growing operation 

was used by controlling the result of KS test to deform the rough initial contour to 

locate the boundary of an object. In the second step, the active contour model was 

used to refine the result from the first step according to the constraint of the 

minimisation of snake energy. Overall, the region deformation keeps the local shape 

constraint of an object from statistics. It depends only on the interior of the object and 
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makes no assumption about the greyscale distribution of the region. On the other hand, 

the contour deformation controls the location of the curve to the actual edge and the 

smoothness of the curve. 

The experimental results show that the presented deformation model-based 

method accurately extracted the boundaries from those objects with very unclear 

object-background interface, inhomogeneous region contents, and motion as well as 

Gaussian blur. Based on the deformation models, a fast 3-D segmentation scheme, 

which uses the extracted object boundary as the initial plan for the next/previous slice, 

was applied to segment the boundaries of lymph node and intracranial aneurysm from 

a stack of 2-D slices. 

In conclusion, although the deformation model-based method needs a certain 

degree of interaction, it is a suitable solution to segment a single medical structure 

even with unclear object boundary, inhomogeneous region contents and artefacts. The 

derived fast 3-D segmentation scheme can segment the single object volume from a 

stack of 2-D slices within a reasonable processing time. 
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Chapter 6 

3-D Visualisation for Head and Neck Tumours 

6.1 

Visualisation is defined as the act or process of interpreting in visual terms or putting

Introduction 

into a visual form. Schroeder, et al. gave a simple but clear concept defining 

visualisation as the transformation of data or information into pictures, engaging the 

primary human sensory apparatus, vision, as well as the processing power of the 

human mind [85]. 

The visual interpretation of traditional 2-D CT and MRI scans are usually 

sufficient for the diagnosis of head and neck tumours. However, physicians, surgeons, 

or radiologists have to mentally reconstruct a series of 2-D images into a 3-D picture. 

Head and neck tumours reside in an area of intricate anatomy. Hence, complex 

pathologic entitles can sometimes be difficult to delineate. Moreover, modern imaging 

techniques can produce very thin slices fiom several imaging sequences (even 

isotropic 3-D imaging). It can be quite troublesome and time-consuming to browse the 

large volume data by 2-D slice format. Therefore, the important role of 3-D 

visualisation in medicine is to facilitate communication of anatomic and physiological 
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information to clinicians in a more natural and direct way of data exploration [134]. In 

addition, for efficient treatment planning procedures, 3-D visualisation becomes very 

useful [20]. Some therapeutic modalities, such as conformal radiation therapy and 

navigation-based neuro-surgery, require accurate knowledge of tumour volume and 

spatial location for maximum efficacy. A 3-D model of a patient’s anatomy may help 

in such cases and can serve as a method for monitoring tumour size. 

A short introduction of the two classes of fundamental visualisation techniques, 

surface rendering and volume rendering, has been given in Section 2.5.1. Currently, 

commercial solutions for head and neck tumour volume visualization packages are not 

available. Hence in the present study, research effort was undertaken to develop a 

novel visualisation packet, which can be used to show the 3-D view of segmented 

tumour and raw volume data (with the combination of segmentation results) with a 

visualisation software development toolkit. 

Currently, there are several widely used visualisation software development 

toolkits with advanced design and rich functions including A Visualisation 

Workbench (AVW) Library developed by Mayo Clinic, Interactive Data Language 

(IDL) developed by Research System Inc., Matlab developed by MathsWorks Inc., 

the Visulization Toolkit (VTK) developed by Kitware Inc., and so on. AVW Library, 

IDL, and Matlab are all commercial visualisation application development kits which 

are not open-source for user’s improvement, extension, and the integration of 

visualisation hardware acceleration system. On the contrary, VTK is an open-source 

and free visualisation development kit. Besides that the user can make improvement 

and extension based on its source code, the object-oriented design and implementation 

of VTK makes it convenient for the integration of visualisation hardware acceleration 

system. Hence, VTK was selected to facilitate the development of a 3-D medical 

visualisation scheme and platform in the present study. 
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The organisation of this chapter is as follows. Section 6.2 describes the system 

analysis of VTK. The design of a visualisation platform Voxur-3D, including the data 

format supported by VTK and the modules of the developed visualisation platform, is 

presented in Section 6.3. Section 6.4 presents the visualisation of segmented tumours 

using surface rendering. Since the slice thickness is quite large for a lot of data, an 

interpolation procedure which is used to reconstruct the tumour volume is also 

included in this section. The visualisation of whole volume data using volume 

rendering is given in Section 6.5. In this section, the different effects of volume 

renderings with and without the combinations of segmentation information are 

compared. The last two sections, Sections 6.6 and 6.7 are the discussion and the 

concluding remarks, respectively. 

6.2 System Analysis of VTK 

6.2.1 Overview 

VTK is neither an executive program nor a fast graphic engine, but an object-oriented 

software development system for 3-D computer graphics, image processing, and 

visualisation [135]. It consists of a C++ class library using dynamic linking and 

device-independent techniques, and an encapsulation layer formed by a few 

interpreted languages such as Tcl/Tk, Java, and Python. A few main characteristics of 

VTK are described below [85]. 

Open source code, which is convenient for the user’s improvement and 

extension for the toolkit itself; 

Provide efficient interaction functions as well as several advanced and 

effective visualisation algorithms, such as matching cubes and dividing cubes 

for surface rending, and ray casting and texture mapping for volume rendering; 
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Object-oriented system design and implementation; 

Platform (Windows, Linux, or Unix) and low layer graphic library (OpenGL, 

Mesa) independent; 

The construction of system prototypes and even applications using interpretive 

languages attached such as Tcl/Tk, Java, and Python. 

Relevant technical details of VTK [85][135]-[137] were made use of in the 

development of the proposed 3-D tumour visualisation scheme. 

6.2.2 System Architecture of VTK 

VTK consists of two major components: a compiled core (implemented in C++) and 

an automatically generated interpreted layer which currently supports Tcl/Tk, Java, 

and Python [136]. 

The data structure, algorithms, and time-critical system functions of VTK are 

implemented in the C++ core. Common design pattern such as object factories and 

virtual functions ensure portability and extensibility. Since VTK is independent of any 

graphical user interface (GUI), it does not depend on the windowing system. Hooks 

into the window ID and event loop let developers plug VTK into their own 

applications. 

While the compiled C++ core provides speed and efficiency, the interpreted layer 

offers flexibility and extensibility. For example, professional applications can be built 

rapidly and efficiently using GUI prototyping tools such as Tcl/Tk, Python/Tk, or 

Java. 

The system frame of VTK-based applications is shown in Figure 6.1. The VTK 

formed by the core layer and the interpreted layer is independent from the GUI (GUI 
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provides the encapsulations for different applications by abstract graphic model) and 

provides the application layer with visualised programming interface. In addition, the 

application layer has the abilities of not only operating the C++ class library via the 

interpreted layer and direct calling the programming interface of the C++ class library, 

but also dealing with the operating system in the bottom level. This architecture of 

VTK gives the users convenience and flexibility to the construction of VTK-based 

applications. 

Figure 6.1 System frame of VTK-based applications 

6.2.3 Object Models of VTK 

There are two distinct parts to the object design of VTK. The first is the graphic 

model which is an abstract model for 3-D graphics. The second is the visualisation 

model which is a data-flow of the visualisation process [137]. 

1. The graphics model 

The graphics model captures the essential features of a 3-D graphic system in a form 

that is easy to use. The abstraction is based on the movie-making industry with some 
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influence from GUI windowing systems. There are ten basic objects in the model and 

their relationships are shown in Figure 6.2 [136][137]. 

Actor (vtkActor, vtkActor2D, vtkVolume): an object drawn by a renderer in a 

scene. 

Light (vtkLight): illuminates the actors in a scene. 

Camera (vtkCamera): defines the viewing position, focal point, and other 

camera characteristics. 

Property (vtkProperty, vtkProperty2D): represents the rendered attributes of an 

actor including object colour, lighting, texture map, drawing style, and shading 

style. 

Mapper (vtkMapper, vtkMapper2D): represents the geometric definitions of an 

actor and maps the object through a lookup table. 

Transform (vtkTransform): an object that consists of a 4x4 transformation 

matrix and methods to modify the matrix. It specifies the position and 

orientation of actors, cameras, and lights. 

Lookup Table (vtkLookupTable, vtkColourTransformation): implements the 

mapping from actor data value to real colour. It is one of the most important 

techniques of visualisation. 

Renderer (vtkRenderer): coordinates the rendering of light, cameras, and 

actors. 

Render Window (vtkRenderWindow): manages a window on display device. 

One or more renderers draw into a render window to generate a scene. 

Render Window Interactor (vtkRenderWindowInteractor): manages the 

interaction with the actor, such as manipulating the camera, invoking user- 
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defined methods, picking the objects, and changing some of the properties of 

actors. 

Figure 6.2 The relationship of graphical models in VTK 

2. The visualisation model 

The role of the graphics model is to transform graphical data pictures, while the role 

of the visualisation model is to transform various types of information into graphical 

data by means of data flow, and then put them into graphics model  for rendering. The 

visualisation model consists of two basic types of objects: data object and process 

object. The data object perfoms the encapsulation for various data types. The data 

types supported by VTK include scalar (single data value), vector (3-D direction and 

magnitude), normal (3-D direction), texture coordinate (n-dimensional index into 

texture map), tensor (an nxn matrix), and field data (an array of arrays, each array can 

be of different data type). The process object is the data processing module in the 

whole visualisation process. According to the data input and output, the process object 

can be classified into three types: source (no data input and one or more outputs), 

filter (one or more data inputs and outputs), and mapper (one or more data inputs and 

no output). 
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6.2.4 Pipeline of VTK 

139 

The data pipeline of VTK is shown in Figure 6.3. The generation of data is from the 

start point of the pipeline to the end point. However, the requirement of data update is 

from the end point of the pipeline to the start point. There will be a requirement of 

data update when the rendering for an actor begins. This requirement is transferred 

following the reverse direction of data generation. The requirement transfer stops 

when the data in a node of the pipeline is the latest data and then from this node, the 

new data is generated step by step following the original direction of data generation. 

This procedure makes the guarantee that the rendered data are the latest according to 

the adjustment of the rendering conditions. By this inverse update algorithm, the 

update of data can commence from the node which is affected by exterior conditions 

instead of the data source. This processing significantly decreases the redundant 

computation and improves the real time performance for 3-D rendering and 

interaction. 

Figure 6.3 Data pipeline of VTK 

6.3 Design of the Visualisation Platform 

6.3.1 Overview 

In this study, a PC and VTK-based 3-D visualisation platform, Voxur-3D, was 

developed to visualise both segmented tumour volumes and entire 3-D medical 
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volume data. Marching cubes method [138], an algorithm of surface rendering, was 

integrated into the platform for the rendering of the segmented tumour volume. Ray 

casting method [139], an algorithm of volume rendering, was integrated for the 

rendering of the entire 3-D medical volume data. Three main modules, i.e., data 

management, image display and rendering, and image control are included in this 

platform. 

The development environments of Voxur-3D are as follows. Hardware 

configuration: CPU, Intel Pentium IV 3.06GHz; RAM, 512MB; Hard disk, 80GB; 

Monitor, 15-inch LCD (1024x768) or 17-inch CRT (1280x1024); Display adapter, 

MicroStar GeForce4 Ti 4200 with video memory of 128M. Operating system: MS- 

Windows XP. Development tools: MS-Visual C++ 6.0 and VTK 4.0. 

6.3.2 Module Descriptions 

1. Data management module 

The main function of the data management module is to read a stack of image files 

from hard disks or optical disks and then transform these files to a single volume data 

file for further processing. The image file types supported are as follows: BMP 

(bitmap) file, TIFF (tag image file format) file, and DICOM (digital imaging and 

communications in medicine) file. Both BMP and TIFF files are common 8-bit 

greyscale image formats while DICOM file are 16-bit image format specially 

designed for medical images only. The output volume data file for further processing 

is ANALYZE 7.5 format. ANALYZE file format developed by Mayo Clinic supports 

both single image and volume data and has been widely used in clinical and medical 

research fields. Hence, it is regarded as the standard volume data format for medical 

objects. A single ANALYZE formatted data consists of two files: a data file and a 
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header file. The couple of files have the same name and are distinguished by the 

extensions .img for data file and .hdr for the header file [145]. 

A brief introduction of ANALYZE file format for medical images is given in the 

appendix. 

The VTK also provides its own file format. It supports not only image data but 

non-image data including the physiological signals (such as ECG, EEG, etc.), results 

of image processing (such as segmented contour, isosurface, etc.), external signals 

(such as the position of electrode, etc.), and so on [136]. However the VTK file format 

is not supported by many other tools. It was not included in this platform. 

2. Image display and rendering 

This module includes the display of 2-D images and the rendering of 3-D data. The 

rendering function of 3-D data is the most important part in this platform and the 

detailed implementations are presented in Section 6.3.4. 

3. Image control module 

The image control module includes the controls for 2-D and 3-D images. The 

operations for 2-D images include zoom out, zoom in, transition, and the adjustment 

of display window and level. Compared with 2-D images, more control functions are 

provided for 3-D images. In addition to zoom out, zoom in, transition, rotation, and 

cropping operations, the adjustments for colour/intensity opacity, gradient opacity, 

intensity-colour mapping, and shading methods are also included. These adjustments 

are important to achieve better rendering effects, especially for the volume rendering 

of 16-bit medical data. 
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6.3.3 System Architecture 

The system architecture of the visualisation platform developed in the present study is 

shown in Figure 6.4. 

Figure 6.4 System architecture of the visualisation platform 

The process of visualisation from reading the input to displaying the rendered image 

can be broken down into five main steps. They are: 

a. Reading input images to generate a single volume data; 

b. Smoothing the volume data with a Gaussian kernel; 

c. Creating and initializing a volume mapper (with colour and opacity functions); 

d. Defining cropping attributes; and, 

e. Rendering (volume or surface). 
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Following these, an image capturing function which has been made optional to the 

user may be called. In addition, if the user uses a mouse for interactions such as zoom 

in, zoom out, transition and rotation, a user interaction function will be called to 

transfer updated rendering parameters to the rendering function and trigger a new 

rendering process. In VTK, processing the data deeply involves migrating across data 

types, which are defined as VTK classes. At each step, a different object needs to be 

created and every object should use member functions unique to it for processing the 

input data and generating output. This output might in turn form the input for another 

object. 

6.3.4 Implementation 

1. Surface rendering 

The visualisation pipeline of surface rendering is shown in Figure 6.5. According to 

the pipeline, the marching cubes algorithm is implemented by VTK classes by the 

detailed code embedded within their member functions. 

The surface rendering begins with the extraction of multi-contours, followed by 

the creation of a vtkSurface object. The vtkSurface object has to be assigned by a 

mapper and some properties before it can be used for rendering. Since marching cubes 

is the algorithm for surface rendering, a vtkSurfaceReconstructionMapper object is 

created which takes the vtkImageLuminance object (the 3-D matrix of intensity values 

obtained from the extracted 3-D isosurfaces) as the input. An instance of 

vtkVoxelContoursToSurfaceFilter is also created and assigned to the mapper. The 

vtkSurfaceProperty object is initialised with the colour and shading functions. The 

above mentioned objects are set as the input for the vtkSurface instance, which in turn 

is added to the render window. The final output displays the 3-D surface using the 
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marching cubes function, with the appropriate shading parameters and colours defined 

in the functions, for each scalar value in the 3-D isosurfaces. 

Figure 6.5 Clinical surface rendering pipeline 

2. Volume rendering 

The visualisation pipeline of volume rendering is shown in Figure 6.6. The 

implementation of volume rendering is different from that of surface rendering. 

Without contour extraction, the visualisation process begins with the direct creation of 

a vtkVolume object which is assigned by a mapper and some properties before it can 

be used for rendering. Since ray casting is the chosen algorithm for volume rendering, 

a vtkVolumeRayCastMapper object is created which takes the vtkImageLuminance 

object (the 3-D matrix of intensity values obtained from reading the volume data) as 

the input. An instance of vtkVolumeRayCastCompositeFunction is also created and 

assigned to the vtkVolumeObject. The vtkVolumeProperty object is initialised with 

the colour and opacity functions. These objects are then set as the input for the 

vtkVolume instance, which in turn is added to the render window. The final output 
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displays the volume data set using the ray casting function with the appropriate 

opacities and colours defined in the functions, for each scalar value. 

Figure 6.6 Clinical volume rendering pipeline 

6.4 Visualisation of Segmented Tumours 

6.4.1 Inter-slice Interpolation 

Clinically, the inter-slice spacing of MRI images is much larger than intra-slice 

sampling resolution. Therefore, in order to obtain the accurate volume estimation and 

smooth 3-D reconstruction result with high quality, an interpolation procedure as 

shown in Figure 6.7 is always needed to get higher inter-slice resolution and decrease 

the uncertainty between slices. The techniques of inter-slice interpolation are divided 

into two categories: statistics-based greyscale interpolation and shape-based 

interpolation. Compared to statistics-based methods, shape-based interpolation 

methods can provide higher interpolation quality for fine detail and edge preservation 

with the high computation cost for complex geometry relationship, dynamic elastic 

and morphology model [140]-[143]. In the present study, a shape-based interpolation 
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method using a novel distance transform and morphing was applied with the 

supposition that under a certain resolution, the shape of objects within two 

neighbouring slices should change smoothly [144]. 

Figure 6-7 Illustration of inter-slice interpolation 

1. Distance transform 

The distance transform [64] is a powerful tool in image analysis. The distance 

transform used in this study is different from the traditional ones. It allows for both 

positive and negative distances: Distance within the area of the object from its 

boundary is positive and that out of the area of the object or in the background is 

negative. We assume that the boundary of the object is between the positive boundary 

and the negative boundary. 

Definition: I = I(x, y, z) is thecross sectional image, O = O(x, y, z) is the object 

region in I and D = D(x, y, z) is thedistance map of I, where (x,y,z) are the voxel 

coordinates (z is the slice serial number). The distance from the boundary of the object 

is defined by 
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(6-1) 

where d(x,y,z) is the shortest distance from voxel (x,y,z) to the boundary of object 

O. Therefore, via distance transform, an image matrix is transformed to a distance 

map that every element of the map represents the distance from this element to the 

object boundary. 

2. Morphing iteration 

The aim of this procedure is to interpolate intermediate slices between two slices. The 

methodology in controlling the object shape is that one slice changes a little at a time 

in the direction forward to the next object shape. In each of the iteration, the 

maximum valued voxels of the distance image are modified according to their signs. 

The positive maximum valued voxels are eroded and negative maximum valued 

voxels are dilated. From the result we can get an intermediate slice or morph. 

Assume that the two neighbour slices are represented by and 

and the distance transform of is A masking step 

is performed using as a mask to cover the distance map to 

according to the following operation 

(6-2) 

where means the multiplication of corresponding voxels. Hence, 

contains the shape information of both objects O1 and           The non-zero voxels are 

the object voxels of . The positive voxels represent that they are in the 

corresponding object region of O1, while the negative voxels are out of the object 
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region of The absolute values of non-zero voxels of are the distances from the 

boundary of Therefore is the link between the objects in the two 

slices. Let 

where Abs is absolute value operation and Max is the maximum value operation. The 

value of represents the shape difference between the two objects. 

To get the interpolated slices, is iteratively morphed by eroding and 

dilating according to the value of shown in Figure 6.8. At the end of iteration, 

we get the n-th intermediate slice or the n-th morph. The result of the n-th iteration is 

(6-4) 

where 

(6-5) 

where N[.] includes the current voxel and its 4-neighbor voxels. 

Finally, the intermediate slices are computed by a simple comparison given by 

After the distance transform and morphing, the morph includes the 

shape information of both objects. It changes the shape of the first object towards the 

shape of the second object. Figure 6.9 shows the interpolated slices between two 
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original segmented tumour slices (isotropic, inter-slice spacing: 7 mm). The selected 

interpolated slices among five original segmented tumour slices are shown in Figure 

6.10. The results show that complex interpolation problems such as irregular shape, 

branching, hollow regions, and invaginations can be processed properly. 

Figure 6.8 Sketch of shape morphing 

Figure 6.9 Interpolated slices between two original segmented tumour slices (white star) 
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Figure 6.10 Selected interpolated slices among five original segmented tumour slices (white star) 

6.4.2 Selected Results 

Figure 6.1 1 shows the 3-D views of visualised tumour of superficial spreading tongue 

carcinoma using marching cubes based surface rendering with different smoothing 

effects. Without smoothing, the visualised tumour has staircase like surface since the 

inter-slice resolution is lower than the intra-slice resolution. After Gaussian smoothing, 

the transition of tumour boundary is less distinct and shows the natural surface 

curvature. 

Figure 6.11 3-D views of tongue carcinoma (a) Without smoothing; (b) With Gaussian 
smoothing and standard deviation=2.0; (c) With Gaussian smoothing and standard 
deviation=5.0. 
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Two 3-D views of visualised NPC tumours are shown in Figure 6.12. The tumour 

volume in Figure 6.12(a) is without interpolation while another tumour volume in 

Figure 6.12(b) is with interpolation. It is evident that NPC tumours are of very 

irregular shapes and have the growth pattern of infiltration. Although smoothing is 

used, the staircase-like tumour surface also appears in Figure 6.11(a). With 

interpolation, the tumour surface in Figure 6.12(b) shows a smooth transition, 

however it does not looks natural. Figure 6.12(c) shows a 3-D view of a visualised 

brain tumour (1-mm of slice thick ness without gap). Compared with NPC tumour, 

the shape of this brain tumour is more regular. Since the slice thickness is very thin 

and there is no inter-slice gap, the reconstructed tumour surface shows a very natural 

curvature and smooth transition. 

Figure 6.12 3-D views of NPC and brain tumour (a) NPC without interpolation; (b) Another 
NPC with interpolation; (c) Brain tumour without interpolation. 

6.5 Visualisation of 3-D Medical Data 

In this section, the visualisation results of volume rendering for a few 3-D medical 

data such as brain structure, head and neck tumours, and brain tumours are presented. 

The rendering effects for 3-D medical data with and without the combinations of 

segmentation  results are also compared. 
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6.5.1 Visualisation of Brain Structure 

Figure 6.13 shows the 3-D views of a normal skull-removed 3-D MRI brain data (This 

data can be downloaded from http://www.siggraph.org/education/materials/vol- 

viz/volume _visualisation _data _sets.htm). Figure 6.13(a) is one of the 2-D slices and 

Figures 6.13(b)-6.13(d) are the greyscale 3-D views from three different viewpoints. 

The size of the data (sagittal slice) is 109x256x256 (X-Y-Z) and the voxel resolution 

is 1.4 mm x 1 mm x 1 mm (X-Y-Z) with the voxel length of 16 bits. 

Figure 6.13 (a) 2-D slice; (b) 3-D left view; (c) 3-D back view; (d) 3-D overhead view. 

Figure 6.14 shows the colour shaded 3-D views of this 3-D MRI brain data. 

Figures 6.14(a)-6.14(c) are the 3-D views from three different viewpoints and Figure 

6.14(d) is the 3-D view of the cropped data. From these figures, it can be seen that 

better visualisation effects and more elaborate anatomic details can be demonstrated 
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using colour shading. By cropping function, the internal structure of an opaque object 

can be observed. 

Figure 6.14 (a) 3-D left view; (b) 3-D back view; (c) 3-D overhead view; (d) Cropped data. 

6.5.2 Visualisation of NPC and Tongue Carcinoma 

1. Visualisation of NPC from 3-D MRI data 

The 3-D views of a contrast-enhanced 3-D spoiled gradient recalled echo (SPGR) 

MRI head data obtained from the Singapore National Cancer Centre are shown in 

Figure 6.15. One of the 2-D slices is shown in Figure 6.15(a), the colour shaded 3-D 

view is shown in Figure 6.15(b), and Figure 6.15(c) is the colour shaded 3-D view of 

cropped data and the enhancement of nasal mucosa and inflammation can be clearly 
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observed in blue colour. However, the tumour enhancement cannot be observed 

clearly. In addition, Figure 6.15(d) is the overhead view of this data after the 

adjustment of intensity-opacity function for the removal of the brain tissue. From 

Figure 6.15(d), we can observe the complex bone-soft tissue structures around the 

skull base and nasopharynx region. The size of the data (axial slice) is 256x256x30 

(X-Y-Z) and the voxel resolution is 0.86 mm x 0.86 mm x 3 mm (X-Y-Z) with the 

voxel length of 16 bits. 

Figure 6.15 (a) 2-D slice of NPC (black arrow); (b) 3-D view; (c) 3-D view of cropped 
data; (d) Overhead view of this data after the adjustment of intensity-opacity function. 

The 3-D views of this data with the combinations of segmentation results are 

shown in Figure 6.16. The combination method is to use the segmentation information 

and remap the segmented tumour to the same locations of the original data by a high 

greyscale value. In this figure, Figure 6.16(a) is the colour shaded 3-D view which is 
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close to Figure 6.15(b), Figures 6.16(b) and 6.16(c) are the colour shaded 3-D view of 

cropped data from two different viewpoints and the tumour enhancement is clearly 

seen in green colour, and Figure 6.16(d) is the overhead view of this data after the 

adjustment of intensity-opacity function so that the brain tissue almost disappears. 

From Figure 6.16(d), a part of the NPC (in blue colour) is observed and the other part 

is covered by the structures around the skull base. 

It can be observed that compared with traditional 2-D slices, 3-D views from 

volume rendering supplies better anatomical descriptions for both pathological and 

normal structures. In addition, compared with the examples shown in Figure 6.15, the 

segmentation combined 3-D medical data are introduced in the example shown in 

Figure 6.16 for volume rendering and the improved visual results are obtained. 

Figure 6.16 (a) 3-D view; (b) and (c) 3-D views of cropped data from different viewpoints; 
(d) Overhead view of this data after the adjustment of intensity-opacity function. 
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2. Visualisation of NPC from 3-D CT data 

Figure 6.17 shows the 3-D views of a CT head data obtained from the Singapore 

National Cancer Centre. Where, Figure 6.17(a) is one of the 2-D slices, Figures 

6.17(b)-6.17(d) are the 3-D views from different viewpoints with different settings of 

intensity-opacity function. The size of the data (axial slice) is 512x512x46 (X-Y-Z) 

and the voxel resolution is 0.43 mm x 0.43 mm x 4 mm (X-Y-Z) with the voxel 

length of 16 bits. In Figure 6.17(a), the NPC extension to the pharyngeal recess (black 

arrow) and the NPC caused bone erosion (white arrow) can be clearly observed. In 

Figure 6.17(b), the opacity map is adjusted to render skin and fat transparent. As a 

result, superficial structures such as the external jugular veins and anterior jugular 

veins are visualised. In Figure 6.17(c), the presence of head and neck musculature is 

minimised and high contrast soft tissue structures such as lymph node and vessels are 

seen. In Figure 6.17(d), the overhead view at bone window clearly shows bone 

erosion caused by the tumour. 

The limitation of this CT-based study is that the tumour cannot be directly 

differentiated from the surrounding soft tissue by visual observation at soft tissue 

window since without the contrast agent, the intensity of NPC is close to that of the 

surrounding soft tissues. On the other hand, if the intensity-opacity function is 

adjusted to bone window, the soft tissues as well as the tumour are invisible since the 

intensities of tumour and soft tissue are significantly less than those of bone structures. 

The 3-D views of this CT data with the combinations of segmentation results are 

shown in Figure 6.18. The combination method is to use the segmentation information 

and remap the segmented tumour to the same locations of the original data by a high 

greyscale value. The 3-D view of the partly cropped data using skin-fat window is 

depicted in Figure 6.18(a) and the tumour (blue colour) is seen in the cropped part. 

The overhead view of this data after axial cropping using soft tissue window is shown 

in Figure 6.18(b) and the tumour (blue colour) is seen. The front view of this data 
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using soft tissue-bone window is presented in Figure 6.18(c) and the tumour (blue 

colour) hidden behind the nasal cavity is observed. The bottom view of this data using 

bone window is depicted in Figure 6.18(d) and the tumour (light green colour) can be 

clearly observed. The present work is very useful to the clinicians for clinical 

diagnosis and treatment planning. The 3-D views shown in Figures 6.15 to 6.18 had 

been presented in a lecture for fresh medical doctors. 

Figure 6.17 (a) 2-D slice of NPC with bone erosion; (b)-(d) 3-D views from different 
viewpoints with different settings of intensity-opacity function. 

3. Visualisation of tongue carcinoma from 3-D MRI data 

The 3-D view of a 3-D T2W MRI head data obtained from the Singapore National 

Cancer Centre with the combinations of segmentation results is shown in Figure 6.19. 

The size of the data (axial slice) is 256x256x24 (X-Y-Z) and the voxel resolution is 
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Figure 6.18 (a) 3-D view of cropped data at skin-fat window; (b) Overhead view of 
cropped data at soft tissue window; (c) Front view at soft tissue-bone window; (d) Bottom 
view at bone window. 

0.76 mm x 0.76 mm x 5 mm (X-Y-Z) with the voxel length of 16 bits. One of the 2-D 

slices is shown in Figure 6.19(a) and the tumour enhancement (black arrow) with the 

enlarged cervical lymph node enhancement (white arrow) is observed. The 3-D view 

of this data is illustrated in Figure 6.19(b). The 3-D view of this data after fence 

cropping shown in Figure 6.19(c) displays a tumour mass at the posterior part of the 

tongue. The 3-D view of this data after the adjustment of intensity-opacity function is 

shown in Figure 6.19(d). In this figure, the enhanced tumour (white arrow) and the 

enlarged posterior cervical lymph node (red arrow) are visualised. This 3-D view 

corresponds to the 2-D slices well. The views in Figures 6.19(c) and 6.19(d) are 

clinically relevant and useful that they could be utilised for comparative evaluation 

after the surgical procedure. 
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Figure 6.19 (a) 2-D slice of tongue carcinoma with enlarge cervical lymph node; (b) 3-D 
views of this data; (c) 3-D view after fence cropping; (d) 3-D view after the adjustment of 
intensity-opacity function. 

6.5.3 Visualisation of Brain Tumour 

The 3-D views of a 3-D time-of-flight (TOF) MR angiography (MRA) brain data with 

brain aneurysm (acquired from the attached image database of Vitrea System, Vital 

Image Inc., MN, USA) are shown in Figure 6.20. Figure 6.20(a) corresponds to one of 

the 2-D slices and Figures 6.20(b)-6.20(d) display the 3-D views from the same 

viewpoint with different settings of intensity-opacity function. The size of the data 

(axial slice) is 512x512x74 (X-Y-Z) and the voxel resolution is 0.31 mm x 1 mm x 1 

mm (X-Y-Z) with the voxel length of 16 bits. In Figure 6.20(a), the aneurysm and the 

vessels have high contrast to the surrounding brain- tissues. In Figure 6.20(b), the 
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visible brain tissues make most of the brain vessels and the aneurysm invisible. By the 

adjustment of intensity-opacity function, the brain vessel network is visible in Figure 

6.20(c). In Figure 6.20(d), the brain tissues and the skull are almost removed, and the 

brain vessel network and the aneurysm are visualised clearly. Thus, the adjustment of 

intensity-opacity function enhances visualisation effect and enables better treatment 

planning. The different 3-D views in Figure 6.20 are the result of the present effort. 

Figure 6.20 (a) 2-D slice of brain aneurysm; (b)-(d) 3-D views from the same viewpoint 
with different settings of intensity-opacity function. 

The 3-D views of a 3-D MR brain data with intracranial tumour (acquired from 

the attached image database of Vitrea System) are shown in Figure 6.21. One of the 2- 

D slices is displayed in Figure 6.21(a) and the 3-D views with different settings of 

intensity-opacity function and cropping are shown in Figures 6.21 (b)-6.21 (d). The 

size of the data (sagittal slice) is 119x256x256 (X-Y-Z) and the voxel resolution is 
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1.67 mm x 0.90 mm x 0.90 mm (X-Y-Z), with the voxel length of 16 bits. In Figure 

6.21(a), the enhanced tumour is clearly seen. Figure 6.21(b) is a 3-D view where the 

tumour is hidden inside the skull and brain tissues so that it is invisible. Figure 6.21(c) 

is the 3-D view of this data with the same intensity-opacity function setting but using 

fence cropping. In this figure, the tumour is visible at the cropping site. Figure 6.21(d) 

shows the 3-D view of this data with the adjusted intensity-opacity fimction and sub- 

volume cropping. In this figure brain tissue is almost invisible and part of the crania is 

removed, hence the whole tumour is visible from the viewpoint of the cropping site. 

Figure 6.21 (a) 2-D slice of brain tumour; (b)-(d) 3-D views from the same viewpoint with 
different settings of intensity-opacity function and cropping. 
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6.6 Discussion 

6.6.1 Visualisation Platform and Techniques 

1. Hardware support 

In this study, VTK, a visualisation software development kit, was used to build a 

visualisation platform and all the rendering algorithms integrated in VTK are 

implemented by software. Therefore, although the common 2-D/3-D graphic 

hardware make surface rendering perform well even on PC system, the real time 

volume rendering is still a big problem because of the huge computation. For an 

instance, in order to render a data volume with the size of 512x512x512 and voxel 

value length of 16-bit at the rate of 30 frame/sec, 256MB system memory, memory 

transfer rate at 8GB/sec, and instruction rate at 40GHz are needed [146]. In particular, 

when real time interaction such as the virtual endoscope is needed, the speed of 

software rendering is far from satisfaction using common computing system. When 

the interaction operations such as zoom in, zoom out, rotation or cropping are 

performed in our platform Voxur-3D, the view of the rendered object shall be very 

blurry. 

Besides the algorithm optimisation, two methods are used to improve the real time 

performance of volume rendering. One method is to use the high performance 

computing system such as special graphic workstation or parallel processing system. 

The other approach is to use the rendering accelerator hardware on common PC 

system. For the first method, the limitations are the high cost, very little flexibility, 

and implementation difficulties. 

Liu, et al. developed a visualisation framework “4DView” using the integration of 

VTK and the volume rendering accelerator VolumePro 500 on a common PC system 

[146]. VolumePro 500 developed by TeraRecon Inc. was the first PCI-based single 
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chip real time volume rendering accelerator. It achieved a rendering rate of 30 

frame/sec for a data volume with the size of 256x256x256 using shear-warp ray 

casting algorithm. For VolumePro 1000, a rendering rate of 30 frame/sec was 

achieved for a data volume with the size of 512x512x512 [147]. By the integration of 

VolumePro 500 and VTK, the 4DView achieved real time surface rendering and 

volume rendering for 3-D medical data on the common PC system at a high 

performance-to-cost ratio. Therefore in future development, the support from 

hardware can be employed to improve the performance of visualisation platform. 

2. Visualisation techniques 

One difficulty for common users to manipulate the medical visualisation system is the 

configure of visualisation control parameters, including window/level in 2-D image 

display, intensity-opacity function, intensity-colour function, gradient opacity 

function, shading properties, etc. If the user does not understand the relationship 

between voxel value and the corresponding tissue type, it is very hard to obtain idea€ 

3-D view to demonstrate potentially useful information hidden in the data via the 

adjustment of a set of control parameters. In addition, some parameters are related to 

each other. The frequent manual adjustment of control parameters is very 

inconvenient for clinicians and this process would tend to decrease the efficiency in 

diagnosis. In this study, a general set of control parameters provided by VTK was 

used to display the initial 3-D view. However, some further adjustments are needed 

according to different data. 

The concept of default display protocol (DDP) was proposed for not only the 

display of 2-D images, but also the generated 3-D view [148]. In other words, a set of 

recommended rendering parameters are integrated and provided to achieve the ideal 

rendering result according to the particular imaging modality (CT or MRI), imaged 
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organ (brain, head, bone, spine, abdomen, cardiac, etc.), and imaging aim 

(morphology, perfusion, or function evaluation). In the commercial visualisation 

software Vitrea System, a set of DDPs were provided for users. The 3-D view of a 

cervical lymphoma using VolumePro and the DDP of head and neck CT is shown in 

Figure 6.22 [149]. In every DDP, the recommended scanning/acquisition parameters 

are also attached. However, currently there is no known published document on how 

to configure, combine, and test DDP, especially the rendering control parameters 

corresponding to the different object data. 

Figure 6.22 3-D view of cervical lymphoma 

Another challenge is how to distinctly visualise the abnormal part in head and 

neck region. From the experiment results shown in Sections 6.5.2 and 6.5.3, it is 

easier to view and recognise brain tumours than to recognise head and neck tumours. 

That may be due to some head and neck tumours being located in areas often 

obscured by surrounding tissues and bone structures, head and neck tumours often 

being adjacent to surrounding soft tissues so that the visual differentiation is difficult, 

and sometimes, the closeness of intensity of tumour tissue to those of surround tissues, 

therefore making it difficult to differentiate the tumour from the surrounding tissues 

by the generated colour 3-D views even if there are morphological changes. 
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Some potential methods for improvement include the introduction of cropping 

function, the integration of tumour segmentation results into the raw 3-D medical data, 

etc. Another promising enhancement can be the employment of virtual endoscopy and 

navigation. The oral cavity, nasal cavity, nasopharynx, pharynx, and larynx are either 

open structures or hollow alleyways for food, drink or air. Therefore it is suitable to 

perform the examination and diagnosis using virtual endoscopy and navigation from 

the original 3-D data. Chen, et al. developed an interactive virtual laryngoscopy based 

on a self-adaptive automated image segmentation, feature extraction, and efficient 

visualisation system [150]. The studies of Fried, et al. and Wang, et al. showed that 

virtual laryngoscopy might well provide clinical benefit in preoperative planning, 

staging, and intra-procedural guidance for head and neck disease [151][152]. 

Currently there is no report on virtual nasopharyngoscopy and hence it merits a 

further study. As mentioned above, virtual endoscopy needs frequent interaction and 

hence, hardware support is necessary. 

6.6.2 3-D Medical Data Acquisition and Interpolation 

The quality of 3-D medical data is also very important for visualisation. From the 

visualisation results presented in Sections 6.4 and 6.5, the 3-D data forrned by thin 

slices produce elaborate and realistic effects of visualisation, such as Figures 6.12(c), 

6.13, 6.14, 6.20, and 6.21. On the other hand, the 3-D views generated using thick 

slices look not so smooth and the serrate boundaries are always observed. In the 

embedded rendering algorithms of VTK, nearest neighbour interpolation is used for 

the dimension whose resolution is less than others to avoid the distortion of actual 

geometric shape. In the commercially available 3-D medical visualisation software 

Vitrea System, interpolation on original slices is performed after the data is imported 
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from DICOM server to produce the 3-D isotropic data for further processing and 

visualisation. 

Thin slices with thickness of 1-2 mm and no inter-slice gap are preferred for 

visualisation. However, slices with thickness of 3-5 mm and inter-slice gap of 0-2 mm 

are clinically widely applicable for routine diagnostics because of the high signal-to- 

noise ratio, low examination cost and short scanning time. In the present study, 

distance transform and morphing were applied in a shape-based interpolation 

procedure for the segmented tumour slices in surface rendering. By this method, 

smooth intermediate slices were obtained. However, some questions surface, such as 

(a) the long computing time for image distance transform, (b) the transition of a part 

of object boundary in some interpolated slices being rigid due to the discrete changes 

of object difference for morphing control, and (c) the interpolated slices are 

estimations and the quantitative evaluation of interpolation quality is difficult because 

to obtain the GT of intermediate slices is hard, unless thin-sliced imaging is 

performed. In the present study, no interpolation was performed as the pre-processing 

for the 3-D medical data formed by original stacked slices before volume rendering. If 

the resolution of one dimension is about 1/5 to 1/6 or more of the other dimensions, 

the quality of generated 3-D views processed by nearest neighbour is acceptable. If 

the resolution of one dimension is less than 1/8 of the other dimensions, the serration 

effect of generated 3-D views is obvious as shown in Figures 6.17(c) and 6.18(c). In 

this situation, linear or bilinear interpolations on original stacked slices can be utilised 

to improve the rendering effects. 

6.7 Concluding Remarks 

In conclusion, a 3-D visualisation platform Voxur-3D that integrates marching cubes 

for surface rendering and ray casting for volume rendering was established to generate 
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the 3-D views of segmented medical objects and 3-D entire medical data. The 

development of this platform was based on the Visualization Toolkit (VTK) and 

Microsoft Visual C++. In summary, VTK is an object-oriented software development 

system for 3-D computer graphics, image processing, and visualisation. It consists of 

a C++ class library using dynamic linking and device-independent techniques, and an 

encapsulation layer formed by a few interpreted languages. In addition, the design of 

Voxur-3D including module description, system architecture, and the implementation 

was introduced. This platform was used to visualise segmentation tumours and 3-D 

medical data of head and neck tumours, brain tumours, and brain structures. An 

interpolation procedure based on distance transform and morphing was developed and 

applied to get higher inter-slice resolution for surface rendering. The results showed 

that the developed platform was able to produce 3-D views for 3-D medical data. In 

particular, the segmentation information was combined into the original 3-D clinical 

data of head and neck tumours. Consequently, the visualisation effect of the most 

pathologically significant object, tumour, was enhanced. For the purpose of accurate 

diagnosis and treatment planning, further investigations of certain specific 

visualisation techniques such as default display protocol (DDP), virtual laryngoscopy 

and nasopharyngoscopy are needed to better visualise the tumours and the anatomic 

structures in head and neck region, illustrating the relative positions and connections 

of vessels, nerves, lymph nodes, muscles, and bones. 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



7.1 Conclusions 168 

Chapter 7 

Conclusions and Recommendations 

7.1 Conclusions 

This thesis presents an in-depth research on the imaging-based tumour volumetric 

analysis of head and neck cancers. A novel image processing and analysis solution 

module on MRI segmentation, tumour volume estimation, and 3-D visualisation has 

been developed for fulfilling the increasing requirements on tumour volumetric 

analysis tool in clinical practice. The following contributions are the newly developed 

techniques integrated in the solution module: 

(1). A knowledge-based fuzzy clustering (KBFC) method that includes noise 

removal, initial segmentation, and knowledge-based image analysis was 

established to segment NPC from T1W and CET1W MR images. It first 

segments the MR images using semi-supervised fuzzy c-means and then, a 

knowledge-based image analysis procedure that integrates three types of 

anatomic and space knowledge contributes the refinement of segmentation. 

KBFC is a suitable segmentation method which not only well segments 
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NPC from MR images, but also achieves significant higher inter-operator 

agreement than manual tracing methods. 

(2). An unsupervised hierarchical method that includes noise removal, initial 

segmentation, symmetry detection and refinement has been developed to 

segment tongue carcinoma from T1W and T2W MR images. The initial 

segmentation is performed using a genetic algorithm-induced fuzzy 

clustering. An artificial neural network-based symmetry detection 

procedure, which utilises anatomic and geometry knowledge, is then 

applied to detect the initially extracted mass and make necessary 

refinement to obtain the final segmentation results. This method not only 

well segments tongue carcinoma from MR images, but also has high inter- 

operator agreement by using minimal interaction. 

(3). A two-step deformation model-based method has been applied to locate 

the boundary of an object for the segmentation of certain individual objects 

from an image. The region deformation keeps the local shape constraint of 

an object from statistics. On the other hand, the contour deformation 

controls the location of the curve to the actual edge and at the same time, 

the smoothness of the curve. This method accurately extracts the 

boundaries from those objects with a highly unclear object-background 

interface, inhomogeneous region contents, and motion as well as Gaussian 

blur. Based on the deformation models, a fast 3-D segmentation scheme 

using the extracted object boundary as the initial plan for the next/previous 

slice is applied to segment the boundary of lymph node and intracranial. 

aneurysm from a stack of 2-D slices. 

(4). Finally, a 3-D visualisation platform Voxur-3D that integrates marching 

cubes for surface rendering and ray casting for volume rendering is 

established to generate the 3-D views of segmented medical objects and 
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whole 3-D medical data. The development of this platform is based on the 

Visualization Toolkit (VTK) and Microsoft Visual C++. The results show 

that the developed platform is able to produce 3-D views for 3-D medical 

data. In particular, we combined the segmentation information into the 

original 3-D clinical data of head and neck tumours. As a result, the 

visualisation effect of the most pathologically interested object, the tumour, 

is enhanced. 

In the present work, an in-depth study of two main problems has been carried out 

for the development of an intelligent MR image analysis framework for the 

quantitative evaluation of tumour 3-D volume. This includes 1) the development of 

novel, suitable and accurate image segmentation methods for tumour volume 

evaluation, and 2) the validations for these methods by measuring the tumour volumes 

using a large amount of clinical MR images of NPC and tongue carcinoma. They form 

the major contributions of this thesis. To the best of our knowledge, such an intensive 

research work on quantitative volumetric analysis and visualisation for head and neck 

tumours is not found in literature. 

The most significant contributions of the solutions developed in the present 

research are: 

(a). The solution module developed in the present study provides a novel 

intelligent image processing and analysis approach to quantitate and 

visualise tumour volume from MRI with minimal interaction. 

(b). This developed segmentation and visualisation tool can be easily extended 

to analyse other solid tumours as well as the organs for the purpose of 

volume and deformation evaluations. 
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7.2 Recommendations for Future Work 

The task of tumour volumetric analysis using image processing and analysis on MRI 

can be broadly divided into image segmentation and 3-D visualisation. A high quality 

of image segmentation is undoubtedly the first important factor for good performance 

of tumour volumetric analysis. Also, a high quality of 3-D visualisation provides 

clinicians the most natural and direct method to explore the plentiful information 

hidden in medical data volume. Based on these and other factors related to this study, 

recommendations for further research are listed below. 

(a). Feature definition and extraction based on the information obtained from 

multi-sequence (three or more) MRI can be developed to provide better 

discrimination of different kinds of abnormalities such as tumour, oedema, 

necrosis, and post-treatment impairment. In particular, the discrimination 

of radiation impairment and recurrent tumour is very important for the 

follow-up management of cancer patients. 

(b). Work can be done on the quantitative description of knowledge model to 

better introduce the prior knowledge to assist the segmentation and 

decrease the false positives and false negatives. 

(c). Severe noise and imaging artefacts can affect the imaging quality as well 

as the image segmentation for volumetric analysis. The systematic and 

quantitative investigation is desirable on the mathematical description of 

the image noise, the estimation and modelling of the “true” observed noise, 

noise reduction and the noise tolerance of the segmentation methods. 

(d). The use of machine learning and soft computing-based techniques such as 

support vector machine (SVM) and support vector data description (SVDD) 
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on image segmentation can be studied to overcome the limitations in 

statistical model-based clustering methods. 

(e). New visualisation techniques such as hardware supported real time volume 

rendering, default display protocol, and virtual laryngoscopy and 

nasopharyngoscopy merit further studies to provide better visualisation 

result for tumour examination, detection, and diagnosis. 

(f). In the present study, the imaging-based volumetric analysis including 

tumour segmentation, volume estimation, and 3-D visualisation was 

performed on MR images of pre-treated head and neck tumours only. The 

analysis on images of post-treated tumours should be carried out in the 

further study to evaluate the treatment outcome and manage the follow-up. 

By these developed tools, the systemic investigation of the relationship 

between the tumour volume and TNM staging result can be carried out on 

head and neck cancers. 

In closing, research effort was undertaken on applying engineering principles and 

technologies to solve challenging medical problems, particularly for the tumour 

volumetric analysis of head and neck cancers by the close collaboration with the 

physicians. It is believed that significant contributions have been made in the present 

research work, paving the way for intelligent and quantitative diagnosis for the head 

and neck cancer patients while attempting to render efficient and cost-effective 

services in healthcare delivery. 
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Appendix 

Medical Image File Format for the Study 

There are a few commonly used file formats for medical image, such as DICOM 
(Digital Imaging and Communication in Medicine) developed by the American 
College of Radiology (ACR) and the National Electrical Manufacturers Association 
(NEMA), ANALYZE developed by Mayo Clinic, HUGO developed by Medical 
Virtual Reality Studio Gmbh in Germany, etc. Here, the ANALYZE 7.5 file format 
used in the present study is given. 

ANALYZE 7.5 File Format 

The image database is the system of files that the ANALYZETM package uses to 
organise and access image data on the disk. Facilities are provided for converting data 
from a number of sources for use with the package. A description of the database 
format is provided to aid developers in porting images from other sources for use with 
the ANALYZETM system. An ANALYZETM image database consists of at least two 
files: 

an image file 
aheaderfile 

The files have the same name being distinguished by the extensions .img for the 
image file and .hdr for the header file. Thus, for the image database heart, there are 
the UNIX files heart.img and heart.hdr. The ANALYZETM programs all refer to this 
pair of files as a single entity named heart. 

Image File 
The format of the image file is very simple containing usually uncompressed pixel 
data for the images in one of several possible pixel formats: 

1 bit 
8 bit 8 bits per pixel (unsigned char) 
16 bit 16 bits per pixel (signed short) 
32 bit 
64 bit 
24 bit RGB, 8-bits per channel Red, Green, Blue. 

packed binary (slices must begin on byte boundaries) 

32 bits per pixel signed integers, or floating point 
64 bits per pixel; double precision, floating point, or complex 

Head File 
The header file is represented here as a ‘C’ structure which describes the dimensions 
and history of the pixel data. The header structure consists of three substructures: 

header_key describes the header 
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image_dimension    describes image sizes 
data_history optional . 

The description of data structure of ANALYZETM 7.5 file format is as follows. 

/* ANALYZETM 7.5 Header File Format 
* 
* 
* 

* Biomedical Imaging Resource 
* Mayo Foundation 
* 
* 
* dbh.h 
* 
* 
* 

* databse sub-definitions 
*/ 
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Comments 
The header format is flexible and can be extended for new user-defined data types. 
The essential structures of the header are the header_key and the image_dimension. 
The required elements in the header_key substructure are: 

int sizeof_header Must indicate the byte size of the header file. 
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int extents 

char regular 

Should be 163 84, the image file is created as contiguous 
with a minimum extent size. 
Must be 'r' to indicate that all images and volumes are 
the same size. 

The image_dimension substructure describes the organisation and size of the images. 
These elements enable the database to reference images by volume and slice number. 
Explanation of each element follows: 

short int dim[]; /* array of the image dimensions */ 
dim[0] 
dim[1] 
dim[2] 
dim[3] 
dim[4] 

Number of dimensions in database; usually 4 
Image X dimension; number of pixels in an image row 
Image Y dimension; number of pixel rows in slice 
Volume Z dimension; number of slices in a volume 
Time points, number of volumes in database. 

specifies the spatial units of measure for a voxel 
specifies the name of the calibration unit 

char vox_units[4] 
char cal_units[4] 
short int datatype /* datatype for this image set */ 

/*Acceptable values for datatype are*/ 

#define DT_UNKNOWN 0 /*Unknown data type*/ 
#define DT_BINARY 1 /*Binary (1 bit per voxel)*/ 
#define DT_UNSIGNED_CHAR 2 /*Unsigned character (8 bits per 
voxel)*/ 
#define DT_SIGNED_SHORT 4 /*Signed short (16 bits per voxel)*/ 
#define DT_SIGNED_INT 8 /*Signed integer (32 bits per voxel)*/ 
#define DT_FLOAT 16 /*Floating point (32 bits per voxel)*/ 
#define DT_COMPLEX 32 /*Complex (64 bits per voxel; 2 
floating point numbers) 
#define DT_DOUBLE 64 /*Double precision (64 bits per 
voxel)*/ 
#define DT_RGB 128    /* */ 
#define DT_ALL 255    /* */ 

#define DT_NONE 0 

short int bitpix;        /* number of bits per pixel; 1,8, 16,32, or 64. */ 
short int dim_un0;     /* unused */ 
float pixdim[]; Parallel array to dim[], giving real world measurements in mm. 

and ms. 
pixdim[1]; voxel width in mm. 
pixdim[2]; voxel height in mm.
pixdim[3]; slice thickness in mm. 

float vox_offset; byte offset in the .img file at which voxels start. This value can 
be negative to specify that the absolute value is applied for 
every image in the file. 

float calibrated Max, Min specify the range of calibration values 
int glmax, glmin; The maximum and minimum pixel values for the entire database. 

The data_history substructure is not required, but the orient field is used to indicate 
individual slice orientation and determines whether the Movie program will attempt to 
flip the images before displaying a movie sequence. 
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orient: 
0 transverse unflipped 
1 coronal unflipped 
2 sagittal unflipped 
3 transverse flipped 
4 coronal flipped 
5      sagittal flipped 

slice orientation for this dataset. 
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