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Summary

The significant growth in the volume of image data has driven the demand for efficient

techniques to index and access the image collections. These techniques are used in fields

including applications such as online image libraries, e-commerce, biomedicine, military and

education, among others. In view of this, content-based image retrieval (CBIR) has been

developed as a scheme for managing, searching, filtering, and retrieving the image collections.

CBIR is a process of retrieving a set of desired images from the database on the basis of

visual content such as color, texture, shape, and spatial relationship that are present in the

images. The problem is challenging due to the semantic gap between the low-level visual

features and the high-level human perception. With the objective to reduce the semantic gap,

this thesis investigates several challenging problems in current CBIR systems. It covers the

fo 110wing three main aspects: relevance feedback in CBIR (Chapters 4 and 5), relevance

feedback in region-based image retrieval (Chapter 6), and peer tagging and knowledge

propagation (Chapter 7).

The frrstcontribution of this thesis is the development of a new soft relevance framework

in interactive CBIR systems. A soft relevance notion is proposed to integrate the users' fuzzy

perception of visual content into the framework of relevance feedback. A progressive fuzzy

radial basis function network (PFRBFN) is proposed to learn the user information need by

optimizing a cost function. A gradient descent-based learning strategy is then employed to

estimate the underlying network parameters due to its algorithmic simplicity.

The second contribution of the thesis is the proposal of a new pseudo-label fuzzy support
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111

vector machine (PLFSVM) framework to perform content-based image retrieval. The

technique addresses the small sample problem by incorporating pseudo-labeled images to

enlarge the training data set. An unsupervised clustering algorithm is used to select pseudo­

labeled images by studying the characteristics of the labeled images. The relevance of the

pseudo-labeled images is estimated using the fuzzy membership function, and integrated into

the fuzzy support vector machine (FSVM) for learning.

The third contribution of this thesis is the development of a new framework that integrates

relevance feedback into region-based image retrieval (RBIR) systems. A variable-length

radial basis function network (VLRBFN) is constructed and progressively trained to achieve

improved retrieval results. A new kernel function of the VLRBFN centered on region-based

representation is introduced to handle variable-length computation of image similarity. An

unsupervised clustering algorithm is developed for VLRBFN center selection based on the

characteristics of region-based representation. The importance of the constituent regions in

each RBF unit is estimated using a hybrid of probabilistic estimation and perceptual

determination scheme. A gradient descent-based learning strategy is then employed to

estimate the underlying network parameters.

The last part of this thesis deals with the issue of semantic gap from the perspective of

peer tagging and knowledge propagation. Unique issues associated with peer tagging are

discussed including human-computer interface (HeI) for image tagging, tag generation and

formation, and tag clustering. In contrast to the conventional labor-intensive process of

manual image annotation, peer tagging provides a practical alternative for keyword annotation.

Further, a knowledge propagation scheme is presented that automatically propagates

keywords from a subset of labeled images to the unlabeled images. It is based on image

content analysis and training of keyword classifiers. In particular, genetic algorithm (GA) is

utilized to find the salient regions in the labeled images of the same semantic concepts. Since
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