
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Fuzzy reinforcement learning and its applications
to mobile robot navigation

Deng, Chang

2005

Deng, C. (2005). Fuzzy reinforcement learning and its applications to mobile robot
navigation. Doctoral thesis, Nanyang Technological University, Singapore.

https://hdl.handle.net/10356/4204

https://doi.org/10.32657/10356/4204

Nanyang Technological University

Downloaded on 09 Apr 2024 16:15:00 SGT

Fuzzy Reinforcement Learning

and

Its Applications to Mobile Robot Navigation

Deng Chang

School of Electrical & Electronic Engineering

A thesis submitted to the Nanyang Technological University

in fulfillment of the requirement for the degree of

Doctor of Philosophy

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Acknowledgements

I would like to acknowledge the help rendered by many people who have

contributed in one way or another towards the successful completion of this thesis.

First, I would like to thank my supervisor, Associate Professor Er Meng Joo, for

giving me the freedom and encouragement to pursue my research. His continuous

and valuable guidance throughout the research is the most important factor for the

completion of this work.

Next, I would like to thank all my friends for their support and encouragement

during the course of my study.

Special thanks should go to my colleagues and technical staff at the

 Instrumentation & System Engineering Laboratory for their excellent technical

support.

I would like to acknowledge the generous support of School of Electrical and

Electronic Engineering, Nanyang Technological University for providing me an

opportunity to pursue a higher degree with a Research Scholarship, and the use of

research facilities.

And lastly, my thanks to my dearest parents. They always give me boundless and

unconditional love. My gratitude is beyond words.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Table of Contents

Acknowledgements

Table of Contents

List of Figures

List of Tables

Summary vii

Chapter 1 Introduction ... 1

. .
1.1 Motivation .. 1

.. 1 . 1. 1 Motivation Based on Fuzzy Systems 1
1.1.2 Motivation Based on Reinforcement Learning 4

... 1.1.3 Motivation Based on Robot Learning 7
.. ... 1.2 Major Contributions of Thesis 10

.. 1.3 Outline of Thesis 14

Chapter 2 Fuzzy Systems .. 17

.. 2.1 General Fuzzy Systems 17
2.1.1 Fuzzy Set ... 18

.. 2.1.2 Fuzzy If-Then Rules .20
.. 2.1.3 Fuzzy Inference Systems (FISs) .22

2.1.4 Design Problems in FISs ... 25
2.2 Learning Paradigms of Fuzzy Systems .. 27

... 2.2.1 Supervised Learning 28
... 2.2.2 Unsupervised Learning ..31

Chapter 3 Reinforcement Learning ... 37

3.1 Basic Framework ... 37
.. 3.1.1 Reinforcement Learning Model 38

.. 3.1.2 Markov Decision Processes 41

... 3.1.3 Learning an Optimal Policy .44
.. 3.1.4 Exploration/Exploitation Tradeoff 49

.. 3.2 Generalization 50

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

.. 3.2.1 Generalization in States 50
.. 3.2.2 Generalization in States and Actions 52 3.3 Applications in Robotics 53

... 3.3.1 Robot Learning 54
... 3.3.2 Problems 56

... 3.3.3 The Khepera Robot 58

........... Chapter 4 Design of Dynamic Fuzzy Q-Learning (DFQL) Algorithm 61

... 4.1 Motivation and Development .61
.. 4.2 Preceding Works 65

.. 4.3 Architecture of DFQL 67
.. 4.4 DFQL Learning Algorithm 72

.. 4.4.1 Generation of Continuous Actions .72
4.4.2 Update of q-values .. 73

.. 4.4.3 Eligibility Traces .74
................................. 4.4.4 -Completeness Criterion for Rule Generation 75

.. 4.4.5 TD Error Criterion for Rule Generation .76
.. 4.4.6 Estimation of Premise Parameters 77

... 4.4.7 Working Principle 80
.. 4.5 Discussions 83
.. 4.6 Experiments .85

... 4.6.1 Obstacle Avoidance for Khepera Robot 85

... 4.6.2 Random Policy and Tabular Q-learning 87
.. 4.6.3 Neural Q-Learning 89

.. 4.6.4 DFQL 90

Chapter 5 Embedding Initial Knowledge in DFQL ... 99

.. 5.1 Efficient Use of Initial Knowledge 99
.. 5.1.1 Build-in Bias 1 0 0

... 5.1.2 Initial Knowledge from Fuzzy Rules 1 0 1
.. 5.2 Experiments .103

... 5.2.1 Wall Following Task for Khepera Robot 103
.. 5.2.2 Basic Fuzzy Controller .105

....................................... 5.2.3 Fuzzy Q-Learning with a Fixed Structure .106
5.2.4 DFQL .. 111

.. 5.2.5 Adaptation in a New Environment 112
... 5.2.6 Continuous-Action Q-Learning 114

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6 General DFQL with Eligibility Traces .. 118

... 6.1 General DFQL 118
... 6.1.1 Eligibility Traces 118

.. 6.1.2 The General DFQL Learning Algorithm 120
.. 6.2 Experiments .123

.. 6.2.1 Optimum-Path Task 123
.. 6.2.2 Learning Details 126
.. 6.2.3 Learning Results .130

.. 6.3 Discussions 134

Chapter 7 Conclusions and Future Works .. 136

... 7.1 Conclusions .136
... 7.2 Recommendations for Further Research .139

.. 7.2.1 The Convergence Property .139
7.2.2 Partially Observable Environments .. 140

.. 7.2.3 Integrating Planning and Learning 141
... 7.2.4 Multi-Agent Systems .141

Author's Publications

Bibliography

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

List of Figures

Figure 2.1. Two common fuzzy membership functions .. 20
Figure 2.2. Fuzzy inference systems .. 22
Figure 2.3. TKS-type fuzzy reasoning ... 25
Figure 3.1 : A general model for the reinforcement learning agent 39
Figure 3.2. The miniature mobile robot: Khepera ... 58
Figure 3.3. The Khepera robot and its working environment 59
Figure 3.4. Position and orientation of sensors on the Khepera 60
Figure 4.1 : Structure of fuzzy rule sets of DFQL .. 67
Figure 4.2. Consequent parts of DFQL ... 71
Figure 4.3. Flowchart of the DFQL learning algorithm .. 82
Figure 4.4. Real environment for obstacle avoidance ... 85
Figure 4.5. Simulation environment for obstacle avoidance 86
Figure 4.6: Distance to the obstacles and local performance indices based on a

random exploration policy .. 93
Figure 4.7: Distance to the obstacles and local performance indices during learning

... with classical Q-learning -94
Figure 4.8: Distance to the obstacles and local performance indices during learning

with Q-KOHON95
Figure 4.9: Distance to the obstacles and local performance indices during learning

with DFQL .. 96
Figure 4.10. Number of fuzzy rules generated by DFQL during learning 97
Figure 4.1 1 Distance to the obstacles during learning with (a) the random policy

(b) Basic Q-learning (c) Q-KOHON, (d) DFQL 97
Figure 4.12: Discounted cumulative rewards obtained during learning with (a) the

random policy (b) Basic Q-learning (c) Q-KOHON (d) DFQL 98
Figure 5.1 : Actual environment for wall-following experiments 104
Figure 5.2. Simulation environment for wall-following experiments 104
Figure 5.3: Comparison of performances of f u z z ycontrollers for (a) 16 fuzzy rules

based on FQL (b) 81 fuzzy rules based on FQL (c) Basic fuzzy
controller with 16 fuzzy rules .. .108

Figure 5.4: Comparison of performances of fuzzy controllers for (a) 16 fuzzy rules
based on FQL (b) 81 fuzzy rules based on FQL (c) Basic fuzzy
controller with 16 fuzzy rules (d) Fuzzy controller based on DFQL
.. 109

Figure 5.5. Number of fuzzy rules generated by DFQL during learning 110
Figure 5.6. Membership functions after learning at one run 110
Figure 5.7.

v

The new training environment with obstacles 112

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Figure 5.8: Performance comparison of DFQL with training directly and retraining
in a new environment.. ... 1 13,114

Figure 5.9: Performance comparison of updating Q-values for Continuous-Action
Q-Learning and DFQL .. 1 17

Figure 6.1 : Architecture of bias component .. 127
Figure 6.2: Sampling trajectory generated during first and final episodes 130
Figure 6.3: Number of steps taken in each episode when = 0.9 (a) typical single

run (b) average of 10 runs.. .. 1 3 0
Figure 6.4: The total reinforcement received in each episode when = 0.9 (a)

typical single run (b) average of 10 runs .. 13 1
Figure 6.5: Number of fuzzyrules generated at the end of each episodes

= 0.9 (a) typical single run (b) average of 10 runs 13 1
Figure 6.6: Comparison of number of steps taken during learning when different

are used (a) = 0.0(b) = 0.5 (c) = 0.9 (d) = 1.0 133
Figure 6.7: Comparison of the total reinforcement received during learning when

different are used (a) = 0.0 (b) = 0.5 (c) = 0.9 (d) = 1.0

List of Tables

Table 5.1 : Basic fuzzy control rules for wall following105

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Summary

Fuzzy logic is a mathematical approach to emulate the human way of thinking. It

has been shown that fuzzy logic could serve as a powerful methodology for

dealing with imprecision and nonlinearity efficiently. However, the conventional

way of designing a fuzzy system has been a subjective approach. If the fuzzy

system somehow possesses learning abilities, an enormous amount of human

efforts would be saved from tuning the system.

Reinforcement learning is concerned with resolving a problem faced by a learner

that must learn behavior through trial-and-error interactions with a dynamic

environment. For this kind of learning problem, training data give rewards and

punishments with respect to the states reached by the learner, but do not provide

correct instructions. Q-learning is the most popular and effective model-free

algorithm for reinforcement learning. However, it does not address any of the

issues involved in generalization over large state and action spaces. Practical

learning agents require compact representations to generalize experiences in

continuous domains.

In this thesis, a novel algorithm, tenned Dynamic Fuzzy Q-Learning (DFQL), is

proposed. From the point of view of fuzzy systems, the DFQL method is a learning

method capable of generating and tuning fuzzy rules automatically based on

simple reinforcement signals. From the point of view of machine learning, the

DFQL method is a mechanism of introducing generalization in the state-space and

generating continuous actions in reinforcement learning problems. The DFQL

generalizes the continuous input space with fuzzy rules and generates continuous-

valued actions using fuzzy reasoning. It partitions the input space online

dynamically according to both the accommodation boundary and the performance

vii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

of learning, which allows us to circumvent the problem of setting up fuzzy rules by

hand. The compact fuzzy system considers sufficient rules in the critical state

space which requires high resolution and does not include the redundant rules in

the unimportant or unvisited state space so that the learning is rapid and optimal.

The if-then fuzzy rules correspond to the initial domain knowledge about the tasks

and allow incorporation of bias into the system. Bias increments the safety of the

learning process and accelerates the learning process since it focuses on the search

process of promising parts of the action space immediately. These biases can

eventually be overridden by more detailed and accurate learned knowledge. The

premise of rules can be used to generate fuzzy states over the input space and the

consequents of rules can be used to generate the initial Q-values so that a greedy

policy would select the action suggested by these biases.

The general version of DFQL with an eligibility mechanism leads to faster

learning and alleviate the non-Markovian effect in real-life applications. It figures

out which actions in the sequence are primarily responsible for the received reward

and has the ability of exploration insensitivity, the ability to learn without

necessarily following the current policy. This method allows us to obtain a

significant learning speedup using the eligibility rate and alleviates the

experimentation-sensitive problem at the same time.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1

Introduction

1 . Motivation

1.1.1 Motivation Based on Fuzzy Systems

Fuzzy logic is a mathematical approach to model the human way of thinking. It

provides a systematic and effective means of capturing the imprecise and nonlinear

nature of the real world linguistically. In the literature, there are two kinds of

justification for fuzzy theory [144]:

The real world is too complicated for precise descriptions to be obtained;

therefore, fuzziness must be introduced in order to obtain a reasonable

model.

As we move into the information era, human knowledge becomes

increasingly important. We need a theory to formulate human knowledge in

a systematic manner and put it into engineering systems, together with

other information like mathematical models and sensory measurements.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1 Introduction 2

Fuzzy Inference Systems (FISs) are knowledge-based or rule-based systems. The

essential part of the FIS is a set of linguistic rules related by the dual concept of

fuzzy implication and the compositional rule of inference. Intrinsically, the FIS

provides an algorithm, which can convert the linguistic rules based on expert

knowledge into some automatic control action. During the last few decades, FISs

have emerged as one of the most active and fruitful areas for research in the

application of fuzzy theory. FISs have found a variety of applications in numerous

fields ranging from industrial process control to medical diagnosis and robotics.

In general, subjective approaches to design a fuzzy system are simple and fast, i.e.,

they involve neither time-consuming iterative procedures nor a complicated rule-

generation mechanism. However, argument of what is the best approach can come

fiom disagreements among experts, from decision rules that are difficult to

structure, or due to a great member of variables necessary to solve the control task.

If the fuzzy system somehow possesses learning abilities, an enormous amount of

human efforts would be saved fromtuning the system. These learning methods can

be characterized by the information source used for learning and classified with

respect to the degree of information of the source. Most of the learning algorithms

for fuzzy systems require precise training data sets for various applications.

Typically, these learning methods are based on an input-output set of training data,

based upon which we have to minimize errors between the teacher's actions and

the learner's actions. However, for some real-world applications, precise data for

training/learning are usually difficult and expensive, if not impossible, to obtain.

For this reason, there has been a growing interest in this kind of learning.

There are several requirements for a learning algorithm to model a FIS effectively.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1 Introduction 3

Evaluative signals

The learning systems can be used to provide unknown desired outputs

based on a suitable evaluation of system performances, which gives

rewards and punishments with respect to the states reached by the learner,

but does not provide correct actions. For this kind of learning problem,

training data are very rough and coarse, and are just "evaluative" as

compared with the "instructive" feedback. The learning algorithm should

be capable of constructing a FIS based on this simple evaluative scalar

signal. As the less informative learning source is needed, the learning

method that uses it represents a very flexible tool. In addition to the

roughness and non-instructive nature of the information, a more

challenging problem the algorithm should be able to deal with is that the

signal may only be available at a time long after a sequence of actions have

been taken. In other words, prediction capabilities are necessary in this

learning system.

Structure and parameter learning

Although several self-learning FISs have been designed, most of them

focus on parameter learning (e.g. adjustment of fuzzy rule parameters).

Structure learning (e.g. determination of input space partition, number of

membership functions and number of rules) remains a trial-and-error

process and it has become a very time-consuming process. It turns out that

only adjustment of parameters will not be sufficient in many cases. This

reduces the flexibility and numerical processing capability of FISs. The

algorithm should deal with not only parameter estimation but also structure

identification of a learning FIS. If the premise structure of a fuzzy system is

determined by clustering the input via on-line self-organizing learning

approach, a more flexible learning scheme can be formed. Furthermore, the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

C h a p t e r 1 I n t r o d u c t i o n 4

learning method should find meaningful fuzzy terms for each input

variable, from which it is possible to interpret acquired knowledge in the

form of linguistic rules.

4

On-line learning

We are interested in on-line learning, algorithms which are capable of

learning the dynamics of a system based on data which arrive one at a time.

The main idea is that we do not have to wait for a large batch of data points

before training the algorithm. No prescribed training models are needed for

on-line learning and the system can learn adaptively from the training data

which arrive sequentially.

1.1.2 Motivation Based on Reinforcement Learning

Reinforcement Learning (RL) dates back to the early days of cybernetics and

works in Statistics, Psychology, Neuroscience and Computer Science. In the last

decade, it has attracted rapidly growing interest in machine learning and artificial

intelligence communities. The key idea of RL is that the learner learns through

trial-and-error interactions with a dynamic environment. It is learning how to map

situations to actions so as to maximize some numerical reward. It should be

highlighted that the learner is not told which actions to take, as in other types of

machine learning, but instead it discovers which actions yield the most reward by

trying them. In the most interesting and challenging case, actions may affect not

only the immediate reward but also the next situation and, through that, all

subsequent rewards [128].

RL plays an important role in adaptive control. It will certainly help, especially

when no explicit teacher signal is available in the environment where an

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter I Introduction 5

interacting learner must learn to perform an optimal control action. There are

mainly two prevalent approaches to reinforcement learning, namely actor-critic

learning and Q-learning. The actor-critic model typically includes two principal

components: the critic module and the action module. The critic module generates

an estimate of the value function from state vectors and external reinforcement

supplied by the environment as inputs. The actor attempts to learn optimal control

or decision-making skills. Q-learning is a simple way of learning the action-value

function Q that maps state-action pairs to expected returns. The learner attempts an

action at a particular state and evaluates its consequence in terms of the immediate

reward or penalty it receives and its estimate of the value of the state resulting

from the taken action.

We focus on the Q-learning method here since Q-learning is the most popular RL

method that directly calculates the optimal action policy without an intermediate

cost evaluation step and without the use of a model. It seems to be more difficult to

work with actor-critic architectures than Q-learning in practice. It might be very

difficult to get the relative learning rates right in actor-critic architectures so that

the two components converge together. Furthermore, Q-learning learns the values

of all actions, rather than just finding the optimal policy. The main advantage of Q-

learning over actor-critic learning is exploration insensitivity, i.e. any action can be

carried out at any time and information is gained from this experience.

For these reasons, Q-learning is the most popular and seems to be the most

effective model-free algorithm for RL. It does not, however, address any of the

issues involved in generalization over large state and/or action spaces. In addition,

it may converge quite slowly to a good policy. There are also several requirements

for a learning algorithm before it can be used in practice.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter I Introduction 6

Adaptive generalization

Q-learning with standard tabular states and actions scale poorly. As the

number of state and action variables increases, the size of the table used to

store Q-values grows exponentially. The large number of states and actions

possibilities usually encountered in realistic applications may force us to

use some compact representation schemes than a table. The problem of

learning in large spaces is addressed through generalization techniques,

which allow compact storage of learned information and transfer of

knowledge between similar states and actions. Furthermore, it would be

desired to employ an online adaptive construction algorithm instead of

partitioning the state space evenly prior to learning so as to improve

generalization capabilities at the state spaces that are deemed to be

important or critical.

Continuous states and actions

Many real-world control problems require action of a continuous nature in

response to continuous state measurements. Most approaches use function

approximators to generalize the value function across situations. These

works, however, still assume discrete actions and cannot handle

continuous-valued actions. In continuous action spaces, the need for

generalization over actions is important. It should be possible that actions

vary smoothly in response to smooth changes in a state.

Integration of domain knowledge

The algorithm is used for fast on-line learningand adaptation in real time.

Initially, if the learning system knows nothing about the environment, it is

forced to act more or less arbitrarily. Integration of domain knowledge to

avoid learning from scratch is desired. A way of alleviating the problem of

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1 Introduction 7

slow convergence of RL is to use bias fromprior knowledge to figure out

which part of the action space deserves attention in each situation.

Eligibility traces

Most of RL methods need to be combined with eligibility traces to obtain

more general methods that may learn more efficiently. An eligibility trace

is a temporary record of the occurrence of an event. The trace marks the

memory parameters associated with the event as eligible for undergoing

learning changes. The learningalgorithm should be able to distribute credit

throughout sequences of actions, leading to faster learning and help to

alleviate the non-Markovian effect in real applications. It should have the

ability of exploration insensitivity, and the ability to learn without

necessarily following the current policy.

Incremental and aggressive learning

The learning algorithm should not be subject to destructive interference or

forgetting what it has learned so far but incrementally adapt the model

complexity. It should be capable of producing reasonable predictions based

on only a few training points.

1.1.3 Motivation Based on Robot Learning

As the robotics field progresses, robots are being employed in increasingly

complicated and demanding tasks. To accomplish a given task, a robot collects or

receives sensory information concerning its external environment and takes actions

within the dynamically changing environment. Both the sensing system and

control rules are often dictated by human operators, but ideally the robot should

automatically perform the given tasks without assistance from human operators.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1 Introduction 8

Consequently, the robot must be able to perceive the environment, make decisions,

represent sensory data, acquire knowledge, and infer rules concerning the

environment. The ultimate goal of robotics research is to empower the robots with

high autonomous ability to improve their behavior over time, based on their

incoming experiences.

Because we are dealing with robotic systems, there are a number of real-world

issues that must be addressed [28]. Some of these are:

Training data

Generally speaking, the robot learning problem is to infer a mapping from

sensors to actions given a training sequence of sensory inputs, action

outputs, and feedback values. If these sequences are provided by a teacher,

the problem corresponds to supervised learning. Here, the robot is being

passively guided through the task. A more challenging and interesting

situation arises when a robot attempts to learn a task in an unsupervised

mode without active guidance of a teacher. It is usually assumed here that

the robot can recognize when it is performing the task properly. The robot

has to perform the task by executing trial-and-error actions thereby

exploring the state space.

Continuous states and actions

In many real-world tasks for robots, the sensory and action spaces are

continuous. These values can be discretized into finite sets if the

discretization follows the natural resolution of the devices. However, many

quantities are inherently continuous with a fine resolution that leads to

many discrete states. Even if they can be discretized meaningfully, it might

not be readily apparent how best to do it for a given task. Incorrect

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter I Introduction 9

discretizations can limit the final form of the learned control policy,

making it impossible to learn the optimal policy. If we discretize coarsely,

we risk aggregating states that do not belong together. If we discretize

finely, we often end up with an unmanageably huge state or action space.

Practical learning robots require compact representations to generalize

experiences in continuous domains. Furthermore, actions should vary

smoothly in response to smooth changes in a state.

Incremental learning

A robot has to collect the experience fromwhich it is to learn the task. The

data forming the experience is not available offline. The need for efficient

exploration dictates that any reasonable learning algorithm must be

incremental. Such algorithms should allow the robot to become better at

deciding which part of the environment it needs to explore next.

Initial knowledge

Many learning systems attempt to start learning with no initial knowledge.

Although this is appealing, it introduces special problems when working

with real robots. Initially, if the learning system knows nothing about the

environment, it is forced to act more or less arbitrarily. For example, RL

systems attempt to learn the policy by attempting all of the actions in all of

the available states in order to rank them in the order of appropriateness. In

order to learn a new policy, a large number of time-consuming learning

trials are required. On the other hand, critical behavior must be learned

with a minimal number of trials, since the robot cannot afford to fail

repeatedly. When a real robot is being controlled, a bad choice can damage

the environment or the robot itself, possibly causing it to stop functioning.

In order for the learned system to be effective, we need to provide some

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1 Introduction 10

sort of bias, to give it some idea of how to act initially and how to begin to

make progress towards the goal. Systems should have the ability to use

previously learned knowledge to speed up the learning process of a new

policy.

Time constraints

The training time available on a real robot is very limited. We are

interested in learning on-line while the robot is interacting with the

environment. Although computers are continually becoming faster, the

amount of computation that we can apply to learning is limited. This is

especially important when we are using the learned control policy to

control the robot. We must be able to select a suitable control action at an

appropriate rate to allow the robot to function safely in the real world.

Sensor noise

Most cheap-to-build robot sensors are unreliable. Thus, state descriptions

computed fromsuch sensors are bound to have inaccuracies in them, and

some kind of averaging is required.

1.2 Major Contributions of Thesis

In this thesis, a novel algorithm, termed Dynamic Fuzzy Q-Learning (DFQL), is

proposed. From the viewpoint of fuzzy systems, the DFQL method is a learning

method capable of tuning a fuzzy system in a very flexible way. From the

viewpoint of machine learning, the DFQL method can be regarded as a means of

introducing generalization in the state space and generate continuous actions in RL

problems. It is implemented on mobile robots so as to learn appropriate navigation

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1 Introduction 11

efficiently. The salient characteristics of the DFQL algorithm are summarized as

follows:

Reinforcement information source

The DFQL is based on the Q-learning, the most popular and effective

reinforcement learning. The task is described with a reinforcement

function,which can be a simple description of success and failure actions.

Due to the low informative degree of the information source, the method

represents a very flexible tool.

Self-organizing fuzzy system structure

The DFQL provides an efficient learning way whereby not only the

conclusion part of a FIS can be adjusted online, but also the structure of a

FIS can be constructed simultaneously. Based on the criteria pertinent to

some desired system performance, new fuzzy rules can be generated

automatically so as to improve generalization capabilities when necessary.

Continuous states and actions

In the DFQL, continuous states are handled and continuous actions are

generated by fuzzy reasoning. Fuzzy logic introduces generalization in the

state space by means of using a vector of fuzzy variables to describe a

fuzzy state. The continuous action performed by the learner for a particular

state is a weighted sum of the actions elected in the fired rules that describe

this state, whose weights are normalized firing strengths of the rules. Since

more than one fuzzy state may be visited at the same time, possibly with

different degrees, there will be a smooth transition between a state and its

neighbors, and, consequently, smooth changes of actions carried out in the

different states.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter I Introduction 12

Incorporating initial knowledge

The if-then fuzzy rules correspond to the initial domain knowledge about

the tasks and allow incorporation of bias into the system. Bias accelerates

the learning process since it focuses on the search process of promising

parts of the action space immediately. These biases can eventually be

overridden by more detailed and accurate learned knowledge. Fuzzy rules

provide a natural framework of incorporating the bias components for rapid

and safe learning. The premise of rules can be used to generate fuzzy states

over the input space and the consequents of rules can be used to generate

the initial Q-values so that a greedy policy would select the action

suggested by these biases.

Eligibility trace mechanism

The DFQL can be extended to the general version with an eligibility

mechanism leading to faster learning, especially from delayed

reinforcement. It figures out which actions in the sequence are primarily

responsible for the received reward and has the ability of exploration

insensitivity, i.e. the ability to learn without necessarily following the

current policy. The capability makes it much more appealing for efficient

implementation of RL in real-life applications.

On-line incremental learning

The DFQL is primarily concerned with how to obtain an optimal policy

when a model is not known in advance. The learner interacts with its

environment directly to obtain the information. No prescribed training

models are needed for on-line learning. The DFQL can learn adaptively

from the training data set sequentially. The control knowledge is

distributively represented in the fuzzy rules. With increasing fuzzy rules

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter I Introduction 13

according to the system performance, the learner can incrementally adapt

the environment complexity.

Fast and adaptive learning

The DFQL has a fast learning speed since structure and parameters

formulation are done automatically and systematically without partitioning

the input space a priori. The use of fuzzy theory provides the ability to deal

with uncertain and imprecise data in the real world.

The fuzzy rule format makes it easy to implement effective navigation tasks for

mobile robots. The interpolation mechanism implemented by fuzzy controllers

results in smooth motion of the robot. Thus, compared with the Q-learning method

with discrete actions, the DFQL method is superior by virtue of its capability of

handling continuous-valued states and actions. Because fuzzy rules can be

generated automatically accordmg to system performance, the DFQL is more

flexible than fuzzy Q-learning with a fixed structure. A comparative study with the

Continuous-Action Q-Learning approach, the only approach which is capable of

generating continuous actions by means of Q-learning, also demonstrates the

superiority of the DFQL method.

The general version of DFQL with an eligibility mechanism leads to faster

learning and alleviate the non-Markovian effect in real-life applications.

Simulation studies on searching for optimum paths of the robot demonstrate the

efficiency of the method for learning the appropriate policy in multi-step

prediction problems. We examine issues pertaining to efficient and general

implementation of the DFQL for different eligibility rates for optimizing the sum

of rewards. This method allows us to obtain a significant learning speedup using

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1 Introduction 14

the eligibility rate and alleviates the experimentation-sensitive problem at the same

time, which is superior to the other methods based on the actor-critic learning.

Outline of Thesis

This thesis is organized in seven chapters each of which is devoted to a particular

sub-issue. A summary of the content of each chapter is given here:

Chapter 1 presents motivations and contributions of the thesis and gives a

brief outline of each chapter in the thesis.

Chapter 2 introduces the foundation of the FIS and a computation

framworkbased on the concepts of fuzzy sets, fuzzy IF-THEN rules and

fuzzy reasoning. Intrinsically, the FIS provides an algorithm, which can

convert the linguistic rules based on expert knowledge into some automatic

control action. In order to circumvent the problem of subjective approaches

in designing the FIS, we present the current research on finding automatic

methods of self-tuning of FISs. The main issues associated with learning

abilities of FISs are parameter estimation and structure identification. We

discuss two families of learning methods, namely supervised learning and

unsupervised learning, characterized by the information source used for

learning.

Chapter 3 gives an overview of the field of RL, which has only very simple

"evaluative" or "critic" information instead of "instructive" information

available for learning. We focus on the Q-learning method which is the

most popular and arguably the most effective model-free algorithm for RT,

learning. Furthermore, the generalization techniques, which allow compact

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter I Introduction 15

storage of learned information and transfer of knowledge between similar

states and actions are addressed in order to deal with the continuous spaces

and actions in practice. Subsequently, we discuss a collection of robotics

applications and the major application area in RL. Finally, we provide an

overview of the miniature mobile robot (Khepera) used for the experiments

described in this thesis.

Chapter 4 investigates requirements of learning methods of fuzzy systems

based on RL and requirements of generalization techniques of Q-learning.

Subsequently, we present the development of the proposed DFQL to deal

with these requirements. The DFQL architecture and on-line structure and

parameter learning algorithm for constructing the DFQL automatically and

dynamically are described in details. Finally, experiments performed on the

Khepera robot for the obstacle avoidance task are used to verify the

efficiency of the proposed DFQL. Compared with the random policy, the

Q-learning method and the Q-KOHON method, the DFQL method is

superior because of its capability of handling continuous-valued states and

actions.

Chapter 5 describes the natural framwork incorporating the initial

knowledge to the learning system based on fuzzy rules. We explore the use

of reflexes to make learning safer and more efficient. The reflexes

correspond to domain knowledge about the task and allow incorporation of

bias into the system. Experiments performed on the Khepera robot for the

wall following behavior are investigated. A comparative study of the Fuzzy

Q-Learning, Continuous-Action Q-Learning and our approach is carried

out. All of these methods can handle continuous states and actions and

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1 Introduction 16

incorporate initial knowledge for rapid learning and experimental results

demonstrate the superiority of the proposed DFQL method.

Chapter 6 extends the DFQL learning algorithm to the general version with

an eligibility mechanism, leading to faster learning and alleviating the

experimentation-sensitive problem. We provide a literature review on the

eligibility trace mechanism and describe advantages of our design. Next,

details of the general DFQL learning algorithm are presented.

Subsequently, simulation studies of the general DFQL on optimum-path

experiments performed on the Khepera robot demonstrate the efficiency of

the method for learning the appropriate policy with a few trials. Finally, we

discuss related works based on two prevalent approaches to RL, namely Q-

learning and actor-critic learning.

Chapter 7 concludes this thesis and suggests several promising directions

for future research based on the results presented in this thesis. Some

theoretical results concerning convergence of the system based on linear

architecture with fuzzy basis functions are discussed. Potential algorithms

which are used in partially observable environments, based on planning

models and deployed for multi-agent systems are suggested.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2

Fuzzy Systems

It has been shown that fuzzy-logic-based modeling and control could serve as a

powerful methodology for dealing with imprecision and nonlinearity efficiently

[47,100]. In this chapter, we begin by introducing the basic concept of Fuzzy

Inference Systems (FISs). We then introduce and discuss some issues concerning

learning paradigms of fuzzy systems based on different learning methods

characterized by the information source used for learning.

2.1 General Fuzzy Systems

Fuzzy logic, first proposed by Lotfi Zadeh in 1965 [150], is primarily concerned

with representations of imprecise knowledge which is common in many real-life

systems. It facilitates representations of knowledge through the use of fuzzy sets in

digital computers. On this basis, fuzzy logic uses logical operators to collate and

integrate human knowledge in order to generate some kind of reasoning common

in natural intelligence.

An FIS is a computation framework based on the concepts of fuzzy sets, fuzzy if-

then rules and fuzzy reasoning. FISs are known by other names such as fuzzy rule-

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Fuzzy Systems 18

based systems, fuzzy models or simply fuzzy systems. The essential part of the FIS

is a set of linguistic rules related by the dual concept of fuzzy implication and the

compositional rule of inference. Intrinsically, the FIS provides an algorithm, which

can convert the linguistic rules based on expert knowledge into an automatic

control action. Many experiments have shown that FISs yield results far more

superior to those obtained by conventional approaches. In particular, the

methodology of FISs appears very useful when the processes are too complex for

analysis by conventional quantitative techniques or when the available sources of

information are interpreted qualitatively, inexactly or uncertainly. Thus, FISs may

be viewed as a step towards the approach between conventional precise

mathematical paradigms and human-like decisions making [47,100,143,144].

2.1.1 Fuzzy Set

Conventional set theory is based on the premise that an element either belongs to

or does not belong to a given set. Fuzzy set theory takes a less rigid view and

allows elements to have degrees of membership of a particular set such that

elements are not restricted to either being in or out of a set but are allowed to be

"somewhat" in. In many cases, this is a more natural approach.

In fuzzy set theory, a precise representation of imprecise knowledge is not

enforced since strict limits of a set are not required to be defined; instead, a

membership function is defined. A membership function describes the relationship

between a variable and the degree of membership of the fuzzy set that corresponds

to some specific values of that variable. This degree of membership is defined in

terms of a number between 0 and 1 inclusive, where 0 implies total absence of

membership, 1 implies complete membership, and any value in between implies

partial membership of the fuzzy set. This may be written as ,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Fuzzy Systems 19

where is the membership function and U is the universe of discourse which

defines the total range of interest over which the variable x should be defined.

There are various possible types of fuzzy membership functions and these will

each provide a different meaning for the fuzzy values that they quantify. Fuzzy

values are sometimes also called linguistic values. We describe two most

commonly used membership functions, the triangular and Gaussian membership

functions, which represent a very easy way to compute the degree of input variable

membership. A triangular membership function is specified by three parameters

{a, b, c} as follows:

The parameters {a,b,c) with (a<b<c) determine the x coordinates of the three

comers of the underlying triangular membership functions. A Gaussian

membership function is specified by two parameters {c, }

A Gaussian membership function is determined completely by c and where c

represents the center of a membership function and determines the width of a

membership function. The shapes of the membership function are shown in Figure

2.1.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

C h a p t e r 2 F u z z y Svstems 20

triangular Gaussian

Figure 2.1 Two common fuzzy membership functions

While seemingly imprecise to a human being, fuzzy sets are mathematically

precise in that they can be fully represented by exact numbers. They can therefore

be seen as a method of combining human and machine knowledge representation

together. Given that such a natural method of representing information in a

computer exists, information processing methods can be applied to it by the use of

FISs.

2.1.2 Fuzzy If-Then Rules

FISs are essentially knowledge-based or rule-based systems, which comprise a

collection of rules each of which defines a desired action when a particular

combination of fuzzy values occurs. The rules are defined in IF-THEN form as

follows:

If premise Then consequent (2.3)

Usually, the inputs of the fuzzy system are associated with the premise, and the

outputs are associated with the consequent. The basic form of a linguistic rule is

(2.4)

are input and output linguistic variables

respectively, are

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Fuzzy Systems 2 1

linguistic variables or labels of fuzzy sets characterized by appropriate membership

functions and) respectively, and R , j = 1,. . . , l represents the jth

fuzzy rule.

Since the output linguistic variables of a Multi-Input Multi-Output (MIMO) rule

are independent, a MIMO FIS can be represented as a collection of Multi-Input

Single-Output (MISO) FISs by decomposing the above rule into m sub-rules with

G k ,k = 1,. . . , m as the single consequent of the kth sub-rule [100,144]. For

notational simplicity, we would consider MISO FISs in the rest of the chapter.

Another form of fuzzy IF-THEN rules has fuzzy sets involved only in the premise

part. This form of fuzzy IF-THEN rules can be categorized into two models,

namely Simplified Model and Takagi-Sugeno-Kan Model.

Simplified Model (S-model): In S-model, a fuzzy singleton is used for the

output [144], i.e.

(2.5)

where C is a fuzzy singleton.

Takagi-Sugeno-Kan Model (TSK-model): Takagi and Sugeno in 1985

[129]proposed the following fuzzy model:

(2.6)

The premise of this rule is defined in the same way as that for the rule of

the standard fuzzy system. However, the consequents of the rules are

different. Instead of a linguistic term with an associated membership

function, in the consequent, we use a function that does not have an

associated membership function. Usually, is a polynomial in

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Fuzzy Systems 22

the input variables, but it can be any function as long as it can appropriately

describe the output of the model within the fuzzy region specified by the

antecedent of the rule. If no input variables are considered, the TSK-model

is exactly the same as the S-model. Therefore, the TSK-model can be

considered as a special case of the S-model. Experiments show that the

TSK-model has advantages like computational efficiency, compatibility

with linear, adaptive and optimization techniques and continuity of the

output surface.

Both types of fuzzy IF-THEN rules have been extensively used in both modeling

and control. Through the use of linguistic labels and membership functions, a

fuzzy IF-THEN rule can easily capture the spirit of a "rule of thumb" used by

human beings [47]. From another point of view, due to the qualifiers on the

premise parts, each fuzzy IF-THEN rule is actually a local description of the

system under consideration. On the contrary, conventional approaches of system

modeling operate on the entire scope to find a global functional or analytical

structure of a nonlinear system.

2.1.3 Fuzzy Inference Systems (FISs)

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Fuzzy Systems 23

The basic configuration of FISs is shown in Figure 2.2. An FIS can be defined as a

system which transforms or maps one collection of fuzzy or crisp values to another

collection of fuzzy or crisp values. This mapping process is performed by four

parts:

Fuzzification - Converts a set of crisp variables into a set of fuzzy variables

to enable the application of logical rules.

Fuzzy Rule Base - Stores a collection of logical IF-THENrules.

Fuzzy Inference Mechanism - An algorithm which is used for calculating

the extent to which each rule is activated for a given input pattern.

Defuzzification - Converts a set of fuzzy variables into crisp values in

order to enable the output of the FIS to be applied to another non-fuzzy

system. If a crisp output is not required, then defuzzification is not

necessary.

The steps of fuzzy reasoning, i.e., inference operations upon fuzzy IF-THEN rules,

performed by FISs are:

1. Compare the input variables with the membership functions on the premise

part to obtain the membership values or compatibility measures of each

linguistic label. This step is often called fuzzification.

2. Combine (through a specific T-norm operator, usually multiplication or

minimum) the membership values of the premise part to obtain the firing

strength of each rule.

3. Generate the qualified consequent (either fuzzy or crisp) of each rule

depending on the firing strength.

4. Aggregate the qualified consequent to produce a crisp output. This step is

called defuzzification.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

C h a p t e r 2 F u z z y S y s t e m 24

Several types of fuzzy reasoning have been proposed in the literature

[57,59,75,81,93,101,141]. Depending on the type of fuzzy reasoning, most FISs

can be classified into three types [46,47], i.e. Tsukarnoto-type FIS, Mamdani-type

FIS and TSK-type FIS. Most of the differences among different type FISs come

fromthe specification of the consequent part and thus the defuzzification schemes

are also different. In this thesis, we would use the TSK-type FIS described as

follows:

TSK-model fuzzy IF-THEN rules, which are described in Section 2.1.2, can be

used to implement FISs [129] and shown in Figure 2.3. The output of each rule is a

polynomial in the input variables, and the final crisp output, y is the weighted

average of each rule's output, w = g(x,. . . , x,), i.e.

where the firing strength f j is calculated by the T-norm operation, e.g.

 Intersection:

(2.8)

Algebraic Product:

One-way to view the TSK-model fuzzy system is that it is a nonlinear interpolator

between the mappings that are defined by the functionsin the consequents of the

rules. When g is a constant, we have a zero-order Sugeno fuzzy model. The output

of a zero-order Sugeno model is a smooth function of its input variables as long as

the neighboring membership functions in the antecedent have enough overlaps.

Since each rule has a crisp output, the overall output is obtained via weighted

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Fuzzy Systems 25

average, thus avoidingthe time-consuming process of defuzzifaction required in

other fuzzy models.

2.1.4 Design Problems in FISs

During the last few decades, FISs have emerged as one of the most active and

fruitful areas for research in the application of fuzzy set theory. Fuzzy logic has

found a variety of applications in various fields ranging from industrial process

control to medical diagnosis and robotics [47,100,106,108,114, 143,144, 150].

Combining multi-valued logic, probability theory and artificial intelligence, FISs

are control/decision methodologies that simulate human thinking by incorporating

imprecision inherent in all physical systems. From Section 2.1 .1,2.1.2 and 2.1.3,

we have a good foundation of how FISs work. The decisions are based on inputs in

the form of linguistic variables derived from membership functions. The variables

are then matched with the preconditions of linguistic IF-THEN rules, and the

response of each rule is obtained through fuzzy implication. To perform a

compositional rule of inference, the response of each rule is weighted according to

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Fuzzy Systems 26

the confidence or degree of membership of its inputs, and the centroid of responses

is calculated to generate an appropriate control signal.

Fuzzy systems that do not require analytical models have demonstrated a number

of successful applications. These applications have largely been based on

emulating the performance of a skilled human operator in the form of linguistic

rules. However, the conventional way of designing a fuzzy system has been a

subjective approach. Transferring expert knowledge into a usable knowledge base

is time-consuming and nontrivial [59]. Moreover, depending on human

introspection and experience may result in some severe problems because, even for

human experts, their knowledge is often incomplete and episodic rather than

systematic. At present, there is no systematic procedure to determine fuzzy logic

rules and membership functions of an FIS. The most straightforward approach is to

define membership functions and rules subjectively by studying a human-operated

system or an existing controller and then testing the design for a proper output. The

membership functions and rules are then adjusted if the design fails the tests.

Recently, much research on FISs design has been carried out in [47,100,144].

Unfortunately, the following issues still remain. Hence, bringing learning abilities

to FISs may provide a more promising approach.

Although systematic methods to adjust membership functions and rules are

derived in [47,144], structure identification, e.g. determination of input

space partition, number of membership functions and number of rules are

still difficult to solve.

Fuzzy systems with high dimensionality often suffer from the problem of

curse of dimensionality due to the rapid increase of fuzzy rules [119,1201.

Efficient algorithms which relieve this problem and do not increase the

complexity of the FISs are highly desired.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Fuzzy Systems 27

Fuzzy modeling takes advantage that it is constructed based on both

linguistic and numerical information [143]. How to utilize different types

of numerical information source seems to be the key to construct a compact

fuzzy system.

Learning Paradigms of Fuzzy Systems

In general, subjective approaches to design fuzzy systems are simple and fast, i.e.,

they involve neither the-consuming iterative procedures nor complicated rule-

generation mechanisms. However, problems arise fiom disagreements among

experts, decision rules that are difficult to structure, or a great number of variables

necessary to solve the control task. If the fuzzy system somehow possesses

learning abilities, an enormous amount of human efforts would be saved from

tuning the system. A fuzzy system with learning abilities, i.e. an adaptive FIS

which is equipped with a learning algorithm, where the FIS is constructed from a

set of fuzzy IF-THEN rules using fuzzy logic principles, and the learning

algorithm adjusts the parameters and the structure of the FIS based on numerical

information [143].

The current research trend is to design a fuzzy logic system that has the capability

of learning itself. It is expected that the controller perform two tasks: 1) It observes

the process environment while issuing appropriate control decisions and 2) It uses

the previous decision results for further improvement. The main issues associated

with learning abilities of FISs are: 1) Parameter estimation, which involves

determining the parameters of premises and consequents, and 2) Structure

identification, which concerns partitioning the input space and determining the

number of fuzzy rules for a specific performance [119]. We discuss the following

two families of learning methods characterized by the information source used for

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

learning and classified with respect to the degree of information from the source

[47].

2.2.1 Supervised Learning

In general, supervised learning implies that the information source used for

learning is a direct teacher, which provides, at each time step, the correct control

action to be applied by the learner. Typically, these learning methods are based on

an input-output set of the training data, on which we have to minimize errors

between the teacher's actions and the learner's actions.

At present, the partition of input/output space, the choice of membership functions

and fuzzy logic rules fiom numerical training data are still open issues [119,120].

Recently, attentions have been focused on fuzzy neural networks (FNNs) to

acquire fuzzy rules based on the leaming ability of Artificial Neural Networks

(ANNs) [72]. Functionally, an FIS or an ANN can be described as a function

approximator, i.e. they aim to approximate a function f: from sample

patterns drawn from f. It has been shown by Jang and Sun in 1993 [45] that under

some minor restrictions, a simplified class of FISs and Radial Basis Function

Neural Networks (RBFNNs) are functionally equivalent. It is interesting to note

that the learning algorithms and theorems on representational power for one model

can be applied to the other, and vice versa.

RBFNNs, as proposed by Moody and Darken [89] in 1989, are often considered to

be a type of ANN that employs local receptive fields to perform function

mappings. The RBFNNs performs function approximation by superimposing a set

of l RBFs as follows:

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chavter 2 FuzzySvstems 29

From Eqs. (2.7), (2.9) and (2.1 1), it is obvious that the functional equivalence

between an RBFNN and an FIS can be established if the following conditions are

true [45]:

The number of receptive field units, i.e. hidden neurons is equal to the

number of fuzzy if-then rules.

The output of each fuzzy if-then rule is composed of a constant.

Membership functions within each rule are chosen as a Gaussian function

with the same variance.

The T-norm operator used to compute each rule's firing strength is

multiplication.

Both the RBF networks and the FIS under consideration use the same

method, i.e. either weighted average or weighted sum to derive their overall

outputs.

As a result, RBFNNs can be viewed as a mechanism for representing rule-based

fuzzy knowledge by using its localized network structure, and performing

associated fuzzy reasoning using feedforward computational algorithms.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Fuzzy Systems 30

Integrating the learning abilities of ANNs into FISs is a promising approach

because the connectionist structure of ANNs provides powerful learning abilities

to FISs. The typical paradigm of FNNs is to build standard neural networks, which

are designed to approximate a fuzzy algorithm or a process of fuzzy inference

through the structure of neural networks [46,67,72,142]. The main idea is the

following: Assuming that some specific membership functions have been defined,

we begin with a fixed number of rules by resorting to either the trial-and error

method [24,46,113,130] or expert knowledge [63,69]. Next, the parameters are

modified by the Back Propagation (BP) learning algorithm [24,63,69,113,130] or

hybrid learning algorithm [46]. These methods can readily solve two problems of

conventional fuzzy reasoning: 1) Lack of systematic design for membership

functions and 2) Lack of adaptability for possible changes in the reasoning

environment. These two problems are intrinsically concerned with parameter

estimation. Nevertheless, structure identification, such as partitioning the input and

output space and determination of number of fuzzy rules, is still time-consuming.

The reason is that, as shown in [149], the problem of determining the number of

hidden nodes in NNs can be viewed as a choice of the number of fuzzy rules.

Different from the aforementioned FNNs, several adaptive paradigmshave been

presented whereby not only the connection weights can be adjusted but also the

structure can be self-adaptive during learning [17,24,27,35,49,113,149]. In

[24,113], the FNNS are constructed largely to contain all possible fuzzy rules.

After training, a pruning process [I131 or fuzzy similarity measure [24] is

performed to delete redundant rules for obtaining an optimal fuzzy rule base. In

[17], a parsimonious construction algorithm employing linear parameter ANNs

was proposed to overcome the curse of dimensionality associated with FNN

structure learning. In [27], a hierarchically self-organizing approach, whereby the

structure is identified by input-output pairs, is developed. An on-line self-

constructing paradigm is proposed in [49]. The premise structure in [49] is

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Fuzzy Systems 3 1

determined by clustering the input via an on-line self-organizing learning

approach. A hierarchical on-line self-organizing learning algorithm for dynamic

fuzzy neural networks based on RBF neural networks, which are functionally

equivalent to TSK fuzzy systems, has been developed in [35,149]. The system

starts with no rules. Then, rules can be recruited or deleted dynamically according

to their significance to system performance so that not only the parameters can be

adjusted but also the structure can be self-adaptive. Above all, all of these learning

algorithms belong to the class of supervised learning where the teacher associates

the learning system with desired outputs for each given input. Learning involves

memorizing the desired outputs by minimizing discrepancies between actual

outputs of the system and the desired output.

2.2.2 Unsupervised Learning

Unsupervised learning does not rely on a direct teacher that guides the learning

process. It has been shown that if the supervised learning can be used, e.g., when

the inputloutput training data sets are available, it is more efficient than

unsupervised learning [7]. However, unsupervised learning systems can be used to

provide unknown desired outputs with a suitable evaluation of system

performances. In this section, we introduce two design methods that employ

evolutionary algorithms and reinforcement learning techniques respectively.

First, we introduce evolutionary learning of fuzzy systems. The information source

used for learning is a performance measure, which indicates the quality of a learner

on a set of states. This kind of learning method is generally associated with

evolutionary algorithms, e.g., genetic algorithms [54,71], evolutionary strategies

[29], and Learning Classifier Systems [99]. We shall furthernarrow our scope by

discussing Genetic Algorithms (GAS) for fuzzy systems only, although other

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Fuzzy Systems 32

approaches can be used similarly. A GA is a parallel global-search technique that

emulates the processes of natural evolution including crossover, mutation, and

survival of the fittest. GA can, in effect, often seek many local minima and

increase the likelihood of finding global minima representing the problem goals

[84].

When designing a fuzzy system using GAS, the first important consideration is the

representation strategy, that is, how to encode the fuzzy system into chromosomes

[115]. Thrift [134]and Hwang and Thompson [42] encode all the rules into a

chromosome while fixing the membership functions. Using several critical points

to represent each membership function while using all the possible rules, Karr [55]

and Karr and Gentry [56] use GAs to evolve these critical points; that is, to adjust

the membership functions. Since the membership functions and rule set in a fuzzy

system are codependent, they should be designed or evolved at the same time. Lee

and Takagi [62] encode membership functions and all the rules into a

chromosome. They restrict adjacent membership functions to fully overlap and

also constrain one membership function to have its center resting at the lower

boundaries of the input range. The above-mentioned methods encode all possible

rules into a chromosome. There are some drawbacks by doing so [30]: first, the

computational efficiency associated with fuzzy logic is lost using a high number of

rules and second, robustness diminishes with increasing number of rules. This is

especially true when the dimension of the inputs and the number of fuzzy sets for

each input variable become great since the number of possible rules increases

exponentially with these numbers. In most applications, not all possible rules need

to be used; only a portion of the rules are needed. So, only this portion of rules

should be encoded into the chromosome and evolved. By doing so, the length of

the chromosome will be reduced greatly and, therefore, will be suitable for bigger

problems. It is better to encode the number of rules to be included in the rule set

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

C h a p t e r 2 F u z z y S v s t e m s 33

together with rules and/or membership functions into the chromosome to be

evolved. There are several ways to do this. Lee and Takagi [61] proposed encoding

membership functions and fitness functions in chromosomes. Shimojima et al.

[116]and Inoue et al. [43] defined membership functions for each rule and

encoded effectiveness information for each rule and membership functions.

Shimojima et al. used fitness functions that minimize the number of rules which

Inoue et al. used a method called "forgetting".

When using GA optimization methods, we can employ a complex fitness function.

The genotype representation encodes the problem into a string while the fitness

function measures the performance of the system. This means that we can

incorporate structure-level information into the objective function [61] and let the

GA optimization methods do the entire job: finding the correct number of rules, as

well as proper parameters of membership functions in fuzzy systems. This seems

too good to be true. However, we should bear in mind that evolutionary algorithms

are slow and they could take a tremendous amount of time to obtain a less-than-

optimal solution.

Input space partitioning determines the premise part of a fuzzy rule set. For a

problem, some parts of pattern space might require fine partition, while other parts

require only coarse partition. Therefore, the choice of an appropriate fuzzy
partition is important and difficult. One of the flexible input space partitioning

methods is based on the GA [121]. The major disadvantage of these methods is

that it is very consuming; the computation cost to evaluate a partition result

encoded in each individual is very high and many generations are needed to find

the final partition. Hence, this scheme is obviously not suitable for online

operation. Moreover, the GA-based partitioning methods might not find

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Fuzzy Systems 3 4

meaningful fuzzy terms for each input variable. There could be difficulty

accommodating a priori knowledge about the target system.

Next, we introduce another kind of learning methods using the information source

of critic, which gives rewards and punishments with respect to the state reached by

the learner, but does not provide correct actions. These methods, called

reinforcement learning methods, consist of active exploration of the state and

action spaces to find what action to apply in each state [60].

Reinforcement learning (RL) plays an important role in adaptive control. It is

particularly helpfulwhen no explicit teacher signal is available in the environment

where an interacting agent must learn to perform an optimal control action. The

world informs the agent of a reinforcement signal associated with the control

action and the resulting new state. The signal is evaluative rather than instructive.

Furthermore, the signal is often delivered infrequently and delayed i.e. it is not

available at each time instant. When it is available at a certain moment, it

represents the results of a series of control actions probably performed over a

lengthy period of time. There are two prevalent approaches to reinforcement

leaming, namely actor-critic learning [6] and Q-leaming [145]. The actor-critic

model typically includes two principal components: the critic

(evaluation/prediction) module and the action (control) module. The critic

generates an estimate of the value function from state vectors and external

reinforcement generated by the environment. That is, the critic plays an important

role in predicting the evaluation function. The action module attempts to learn

optimal control or decision-making skills. Q-learning is a simple way of dealing

with incomplete-information Markovian-action problems based on the action-value

function Q that maps state-action pairs to expected returns. The learner tries an

action at a particular state and evaluates its consequence in terms of the immediate

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Fuzzy Systems 35

reward or penalty it receives and its estimate of the state value resulting from the

taken action. Actor-critic learning architecture requires two fundamental memory

buffers: one for the evaluation function and one for the policy. On the other hand,

Q-learning maintains only one: a pair of state and action. Instead, Q-learning

requires additional complexity in determining the policy from Q-learning.

The basic idea behind fuzzy RL is to apply fuzzy partitioning to the continuous

state-space and to introduce linguistic interpretation. Such averaging over

neighboring partitioned subspaces can create generalization abilities [47]. Most of

learning methods are based on the idea of actor-critic model. Berenji and Khedkar

propose the Generalized Approximate Reasoning for Intelligent Control (GARIC)

model [10],which has three components: the action selection network, the action

evaluation network and the stochastic action modifier. The action selection

network is expressed in a neuro-fuzzy fi-amework. Lin and Lee's Reinforcement

Neural-Network-based Fuzzy Logic Control System (RNN-FLCS) [68] consists of

a fuzzy controller and a fuzzy predictor. The whole RNN-FLCS is expressed in a

neuro-fuzzy framework; both critic and action module share the antecedent parts of

the fuzzy rules. In addition to parameter learning, it can perform the structure

learning and find the proper fuzzy rules. Lin et al. [70] and Chiang et al. [26]

propose genetic RL algorithms for designing fuzzy systems by exploiting the

global optimization capability of GAS in order to overcome the local minima

problem in network learning due to the use of the gradient descent learning

method. Bruske et al. [23] and Rak et al. [I07] employ actor-critic model to learn

fuzzy controllers for autonomous robots. Jouffe's Fuzzy Actor-Critic Learning

[48] deals with the conclusion part of fuzzy rules. Kandadai and Tien propose a

fuzzy-neural architecture that is capable of automatically generating a fuzzy

system for use in hierarchical knowledge-based controllers [53].

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2 Fuzzy Systems 3 6

On the other hand, the other approaches allow efficient learning of fuzzy systems

based on Q-learning since Q-learning is the most popular reinforcement learning

method that directly calculates the optimal action policy without an intermediate

cost evaluation step and without the use of a model. FISs have strong

generalization abilities to deal with continuous inputs and outputs. Moreover, the

fuzzy Q-learning method is considered to be a more compact version of the fuzzy

actor-critic method. Glorennec and Jouffe consider a collection of fuzzy rules as an

agent that produces continuous-valued actions in [37,48]. This approach termed

Fuzzy Q-Learning (FQL) produces an action by some rules triggering on the same

state-space and cooperating collectively. Similar rule structure and adaptive

rewards are used in the simulation of object chase agents [78]. Horiuchi et al.

consider a similar algorithm, termed Fuzzy Interpolation-Based Q-Learning and

further propose an extended roulette selection method so that continuous-valued

actions can be selected stochastically based on the distribution of Q-values [41].

Berenji [11]proposes another version of Q-learning dealing with fuzzy constraints.

In this case, we do not have fuzzy rules, but "fuzzy constraints" among the actions

that can be done in a given state. These works, however, only adjust the

parameters of fuzzy systems online. Structure identification, such as partitioning

the input and output space and determination of the number of fuzzy rules are still

carried out offline and it is time consuming.

In this thesis, one of the main objectives is to design a novel learning method that

is capable of learning the structure and parameters of fuzzy systems automatically

and simultaneously using Q-Learning. The following chapters will further

investigate this problem and present a thorough discussion on fuzzy system

learning by reinforcement methods.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3

Reinforcement Learning

The goal of building systems that can adapt to their environments and learn from

their experience has attracted researchers from many fields, including computer

science, engineering, mathematics, physics, neuroscience, and cognitive science.

Reinforcement learning (RL) is a powerful method to solve the problem faced by

an agent that must learn through trial-and-error interactions with a dynamic

environment [51,109,128]. In this chapter, we begin by presenting the basic

framework of RL and then discuss the problem of generalization in large

continuous spaces. The last section of this chapter discusses some issues in

applying RL to robotics.

3.1 Basic Framework

Basically, RL is concerned with learning through direct experimentation. It does

not assume the existence of a teacher that provides training examples on which

learning of a task takes place. Instead, experience is the only teacher in RL. The

learner acts autonomously on the process and receives reinforcements from its

actions. With historicalroots on the study of biological conditioned reflexes, RL

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Reinforcement Learning 38

attracts the interest of engineers because of its theoretical relevance and potential

applications in fields as diverse as operational research and intelligent robotics.

3.1.1 Reinforcement Learning Model

RL is concerned with solving a problem faced by an agent that must learn through

trial-and-error interactions with a dynamic environment. We are particularly

interested in a learning system which is composed of two subjects, namely the

learning agent (or simply the learner) and a dynamic environment. In the standard

RL model, a learner is connected to its environment via perceptions and actions.

On each step of the interaction, the learner receives as its input, x which shows

some indication of the current state, s, of the environment. The learner then selects

an action, a, to generate an appropriate output. The action changes the state of the

environment, and the value of this state transition is communicated to the learner

through a scalar reinforcement signal, r. Those reinforcement signals encode

information about how well the learner is performing the required task, and are

usually associated with a dramatic condition-such as the accomplishment of a

subtask (reward) or complete failure (punishment). The ultimate goal of the learner

is to optimize its behavior based on some performance measure (usually

maximization of some long-run measure of reinforcement). In order to do that, the

learner must learn a policy , which describes the associations between observed

states and chosen actions that lead to rewards or punishments. In other words, it

must learn how to assign credit to past actions and states by correctly estimating

costs associated with these events.

Referring to Figure 3.1, the accumulation of experience that guides the behavior

(action policy) is represented by a cost estimator whose parameters are learned as

new experiences are carried out by the learner. The learner is also equipped with

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Reinforcement Learning 3 9

sensors that define how observations about the external environment are made.

These observations can be combined with past observations or input to a state

estimator which defines an internal state that represents the agent's belief about the

real state of the process. The cost estimator then maps these internal states and

presented reinforcements to associated costs, which are basically expectations

about how good or bad these states are, given the experience obtained so far.

Finally, these costs guide the action policy. A prior built-in knowledge may affect

the behavior of the learner either directly, altering the action policy or indirectly,

influencing the cost estimator or sensors.

Figure 3.1 A general model for the reinforcement learning agent

The experience accumulation and action taking process is represented by the

following sequence:

1. The learner makes an observation and perceives any reinforcement signal

provided by the environment.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Reinforcement Learning 40

2. The learner takes an action based on the former experience associated with

the current observation and reinforcement.

3. The learner makes a new observation and updates its cumulated experience.

In order to control policies, we must be able to evaluate them with respect to each

other. In RL, the cost estimator is some functionof the rewards received by the

learner. There are three models that have been the subject of the majority of work

in this area. The finite-horizon model is the easiest to understand. The idea is the

following: At a given moment in time, the learner should optimize its expected

reward for the next k steps, which is given by

It needs not wony about what will happen after that. In this and subsequent

expressions, r represents the scalar reward received t steps into the future. The

finite-horizon model is not always appropriate since in many cases, we may not

know the precise length of the agent's life in advance. In the average-reward

model, the learner is supposed to take actions that optimize its long-run average

reward, which is given by

The infinite-horizon discounted model takes the long-run reward of the agent into

account, but rewards that are received in the future are geometrically discounted

according to the discount as follows:

If we set the discount factor to be zero, when we obtain the one-step greedy policy,

i.e. the best action is the one that gives the greatest immediate reward. Values

greater than zero reflect how much we are concerned with actions that happen

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Reinforcement Learning 41

further in the future. The average-reward model can be seen as the limiting case of

the infinite-horizon discounted model as the discount factor approaches to 1. The

infinite-horizon discounted model has received wide attention mostly because the

theoretical aspects are better understood.

RL differs from the more widely studied problem of supervised learning in several

ways. The most important difference is that there is no presentation of input/output
pairs. Instead, after choosing an action, the learner is told the immediate reward

and the subsequent state, but is not told which action would have been in its best

long-term interest. It is necessary for the learner to gather useful experience about

the possible system states, actions, transitions and rewards actively to act

optimally. Another difference from supervised learning is that on-line performance

is important; the evaluation of the system is often concurrent with learning.

3.1.2 Markov Decision Processes

RL problems are typically cast as Markov Decision Processes (MDPs), which are

widely used to model controlled dynamical systems in control theory, operations

research and artificial intelligence. An MDP consists of

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 • A set of states S,
 • A set of actions A,
 • A reward function R : S x A—> ,and
 • A state transition function F: S x A —> , where a member of is a
 probability distribution over the set S. We write P(s, a, s’) for the probability
 of making a transition from state s to state s’ using action a.
The state transition function probabilistically specifies the next state of the
environment as a function of its current state and the learner’s action. The reward

Chapter 3 Reinforcement Learning 42

functionspecifies expected instantaneous reward as a function of the current state

and action. The model is Markov if the state transitions are independent of any

previous environment states or agent actions [9,12,105].

 42

Given a perfect model of the environment as an MDP, we can use Dynamic

Programming (DP) techniques to determine the optimal policy. Classical DP

algorithms are of limited utility in RL both because of their assumption of a perfect

model and the great computational expense, but they still serve as the foundation

and inspiration for the learning algorithms to follow. We restrict our attention

mainly to finding optimal policies for the infinite-horizon discounted model, but

most of these algorithms have analogs for the finite-horizon and average-case

models as well. We rely on the result that for the infinite-horizon discounted

model, there exists an optimal deterministic stationary policy [9].

The optimal value of a state is the expected infinite discounted sum of reward that

the agent will gain if it starts in that state and executes the optimal policy. Using n

as a complete decision policy, it is written as

This optimal value function is unique and can be defined as the solution to the

simultaneous equations
/ \

which states that the value of a state s is the expected instantaneous reward plus the

expected discounted value of the next state, using the best available action. Given

the optimal value function, we can specify the optimal policy as

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Reinforcement Learning 43

There are two main classes of well-established methods for finding out optimal

policies in MDPs: Value Iteration and Policy Iteration [9,12]. The value iteration

method is determined by a simple iterative algorithm that can be shown to

converge to the correct V * value. The gist of the method is as follows:

Value iteration is very flexible. The assignments to V need not be done in strict

order as shown above, but instead can occur asynchronously in parallel provided

that the value of every state gets updated infinitely often on an infinite run. The

computational complexity of the value-iteration algorithm with full backups, per

iteration, is quadratic in the number of states and linear in the number of actions.

The policy iteration algorithm manipulates the policy directly rather than finding it

indirectly via the optimal value function. It operates as follows:

choose an arbitrary policy
loop

compute the value function of policy :
solve the linear equations

improve the policy at each state:
=

until = n'

Chapter 3 Reinforcement Learning 44

The value function of a policy is simply the expected infinite discounted reward

that will be gained, at each state, by executing that policy. It can be determined by

solving a set of linear equations. Once we know the value of each state under the

current policy, we consider whether the value could be improved by changing the

first action taken. If it can, we change the policy to take the new action whenever it

is in that situation. This step is guaranteed to strictly improve the performance of

the policy. When no improvements are possible, then the policy is guaranteed to be

optimal.

3.1.3 Learning an Optimal Policy

We use DP techniques for obtaining an optimal policy for an MDP assuming that

we already have a model. The model consists of knowledge of the state transition

probability function P(s,a,s') and the reinforcement function R(s,a) . RL is

primarily concerned with how to obtain the optimal policy when such a model is

not known in advance. The agent must interact with its environment directly to

obtain information which, by means of an appropriate algorithm, can be processed

to produce an optimal policy. Here we examine some online, model-free

algorithms that attempt to obtain the optimal policy. For more details of other

methods computing optimal policies by learning models, see [5 1,1281.

The biggest problem facing an RL agent is temporal credit assignment. We use

insights from value iteration to adjust the estimated value of a state based on the

immediate reward and the estimated value of the next state. This class of

algorithms is known as Temporal Difference (TD) learning methods [123]. We

will consider two different TD learning strategies for the discounted infinite-

horizon model.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Reinforcement Learning 45

Adaptive Heuristic Critic

The Adaptive Heuristic Critic (AHC) algorithm of [6] is an adaptive

version of policy iteration in which the value-function computation is no

longer implemented by solving a set of linear equations, but instead

computed by an algorithm called TD(0) . It has a separate memory structure

to explicitly represent the policy independent of the value function. The

policy structure is known as the actor because it is used to select actions,

and the estimated value function is known as the critic because it criticizes

the actions made by the actor. The critic must learn about and criticize

whatever policy is currently being followed by the actor. We can see the

analogy with modified policy iteration if we imagine these components

working in alternation. The policy n implemented by actor is fixed and the

critic learns the value function V, for that policy. Now, we fix the critic

and let the actor learn a new policy that maximizes the new value

function and so on. In most implementations, however, both components

operate simultaneously.

We define to be an experience summarizing a single

transition in the environment. Here, s is the agent's state before the

transition, a is its choice of action, r is the instantaneous reward it receives,

and s' is its resulting state. The value of a policy is learned using Sutton's

TD(0) algorithm [123] which uses the following update rule

V(s) = V(s)+ a(r + V (s)) (3.7)

Whenever a state s is visited, its estimated value is updated to a value

closer to r + since r is the instantaneous reward received and V(s')

is the estimated value of the next actual state. This is analogous to the

sample-backup rule from value iteration; the only difference is that the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Reinforcement Learning 46

sample is drawn from the real world rather than by simulating a known

model. The key idea is that r + is a sample value of V(s) a n d

 it is more likely to be correct because it incorporates the real r.

The TD(0) rule as presented above is really an instance of a more general

class of algorithms called with A = 0 . TD(0) looks only one step

ahead when adjusting value estimates. Although it will eventually arrive at

the correct answer, it can take quite a while to do so. The general

rule is similar to the TD(0) rule given above in that we have

V(x) = V(x) + a (r + (s') - (s))e(x) (3.8)

but it is applied to every state according to its eligibility e(x) , rather than

just to the immediately previous state, s. The eligibility of a state s is the

degree to which it has been visited in the recent past. When a reinforcement

signal is received, it is used to update all the states that have been recently

visited, according to their eligibility. We can update the eligibility online as

follows:

+ 1 if s = current state
e(s) =

otherwise

It is computationally more expensive to execute the general though

it often converges considerably faster for large A .

Q-learning

The work of the two components of AHC can be accomplished in a unified

manner by Watkins' Q-learning algorithm [145,146]. Q-learning is

typically easier to implement. In order to understand Q-learning, we have

to develop some additional notations. Let be the expected

discounted reinforcement of taking action a in state s. Continuing by

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Reinforcement Learning 47

choosing actions optimally and noting that V* (s) is the value of s assuming

the best action is taken initially, the term V* (s) = Q* (s,a). Q* (s, a)

can be written recursively as follows:

Q* (s, a) = R(S, a) + P (s , a, st)max Q* (st, a')
a'

(3.10)

Note also that since = , we have

(s) = Q* (s, a) as an optimal policy. Because the Q function

makes the action explicit, we can estimate the Q values online using a

method essentially the same as TD(0). We can also use them to define the

policy because an action can be chosen by simply taking the one with the

maximum Q value for the current state.

The Q-learning rule is

Q(s, a) = Q(s, a) + + max Q(s',a') - Q(s, (3.1 1)
a'

where is an experience 4-tuple as described earlier. If each

action is executed in each state an infinite number of times on an infinite

run and the well-known assumption in stochastic approximation theory

given below is valid:

the Q values will converge with the probability of 1 to Q* [32,145,146].

The conditions guarantee that the learning rate a is large enough and

diminishes to zero at a suitable rate. Although learning rates that meet these

conditions are often used in theoretical work, they are seldom used in

applications and empirical research because sequences of learning rates that

meet these conditions often convergence very slowly and are not suitable

for non-stationary scenarios.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Reinforcement Learning 4 8

Q-learning can also be extended to update states that occur more than one

step previously, as in which is discussed in Chapter 6.

An interesting variation for Q-learning is the SARSA algorithm [110,127],

which is similar to Q-learning in that it attempts to learn the state-action

value function, Q* (s, a) . The main difference between SARSA and Q-

learning, however, is in the incremental update function.SARSA takes a 5-

tuple, (s, a, r, s', a ') , of experience, rather than the 4-tuple that Q-learning

uses. The additional element, a', is the action taken from the resulting

state, s' , according to the current control policy. This removes the

maximization fromthe update rule, which becomes

Q(s, a)= Q(s, a)+ + Q(s,a)) (3.13)

Moreover, it allows us to consider a algorithm, very similar to

causal .

AHC architectures seem to be more difficult to work with than Q-learning

in practice. In addition, Q-learning is exploration insensitive; this feature is

discussed in Chapter 6. Furthermore, it is the extension of autonomous

learning concept to optimal control, in the sense that it is the simplest

technique that directly calculates the optimal action policy without an

intermediate cost evaluation step and without the use of a model. For these

reasons, Q-learning is the most popular and seems to be the most effective

model-free algorithm for RL learning. It does not, however, address any of

the issues involved in generalization over large state and/or action spaces.

In addition, it may converge quite slowly to a good policy.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Reinforcement Learning 49

Exploration/Exploitation Tradeoff

One of the necessary conditions under which RL algorithms can find an optimal

action policy is the complete exploration of the state space, normally infeasible in

practical situations. When control and learning are both at stake, the learning agent

must try to find a balance between the exploration of alternatives to a given policy

and the exploitation of this policy as a mechanism for assessing its associated

costs. In other words, it must realize that trying unknown alternatives can be risky,

but keeping the same policy infinitely will never lead to improvement. Thrun [135]

has surveyed a variety of these techniques, which, in addition to ensuring sufficient

exploratory behavior, exploit accumulated knowledge.

The strategy that always selects the action with the highest estimated payoff

corresponds to pure exploitation. Unfortunately, pure exploitation applied fromthe

beginning of learning will not work in general. Typical suggestions to overcome

these difficulties include choosing random actions occasionally and exploiting

actions at other times, or selecting actions that minimize some kind of artificially

biased values, where the bias is such that bias values of less often visited state-

action pairs become smaller. The most popular of these which is called the -

greedy strategy is to take the action with the best estimated expected reward by

default, but with a probability of and select an action at random. Some versions

of this strategy start with a large value of to encourage initial exploration, which

is slowly decreased. An objection to the simple strategy is that when it experiments

with a non-greedy action, it is no more likely to try a promising alternative than a

clearly hopeless alternative. A slightly more sophisticated strategy is Boltzmann

exploration, where the probability of choosing action a in state is given by

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Reinforcement Learning 5 0

The temperature parameter T can be reduced over time to reduce exploration.

3.2 Generalization

All the previous discussions have tacitly assumed that it is possible to enumerate

the state and action spaces and store tables of values over them. Except in very

small environments, this means impractical memory requirements. It also makes

inefficient use of experience. In a large smooth state space, we generally expect

similar states to have similar values and similar optimal actions. Surely, therefore,

there should be some more compact representation than a table. The problem of

learning in large spaces is addressed through generalization techniques, which

allow compact storage of learned information and transfer of knowledge between

similar states and actions.

3.2.1 Generalization in States

Mahadevan and Connell propose a generalization solution on RL applied to real

robotic navigation [80], which is based on the fact that similar sensed states must

have similar values. They define a weighted Hamming distance for the calculation

of this similarity based on a previously assessed relative importance of sensors.

However, in this case, states are still represented in a lookup table. In the case of a

large continuous state space, this representation is intractable. This problem is

known as the curse of dimensionality. Generally speaking, it is necessary to use

function approximation schemes of [18] due to an extremely large number of states

that makes implementation of the state space by a lookup table is impossible. The

generalization issue in RL can be seen as a structural credit assignment problem,

which decides how the different aspects of an input affect the value of the output.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Reinforcement Learning 5 1

Most of the methods that allow RL techniques to be applied in large state spaces

are modeled on value iteration and Q-learning. Typically, a function approximator

is used to represent the value function by mapping a state description to a value.

Various approaches using neural networks techniques have been reported to work

on various problem domains [5,148]. Lin [65] use back propagation networks for

Q-learning. Tesauro [131] use back propagation for learning the value functionin

backgammon. Boyan and Moore [18] use local memory-based methods in

conjunction with value iteration. Mitchell and Thrun [88] use explanation-based

neural networks for robot control. Touzet describes a Q-learning system based on

Kohonen's self-organizing map [138]. Actions are taken by choosing the node

which most closely matches the state and the maximum possible value.

Unfortunately the actions are always piecewise constant. The Cerebellar Model

Articulation Controller (CMAC) [112,117,127,133,145] is another algorithm that

has been proven to be popular for value-function approximation work. The CMAC

is a function approximation system which features spatial locality. It is a

compromise between a lookup table and a weight-based approximator. It can

generalize between similar states, but it involves discretization, making it

impossible that actions vary smoothly in response to smooth changes in a state.

The other algorithms based on local averaging have been suggested in the context

of RL [19,98]. Locally weighted regression [4] can be used as the basis of value-

function approximation scheme. There has been some work on using variable-

resolution discretization methods. Variable Resolution Dynamic Programming

[90] begins with a coarse discretization of the state space, on which standard

dynamic programming techniques can be applied. This discretization is refined in

parts of the state space that are deemed to be "important". Moore's Parti-Game

algorithm [92] also starts with a coarse discretization of the state space. The

algorithm assumes the availability of a local controller for the system that can be

used to make transitions from one discretized cell to another. Another related

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Reinforcement Learning 52

approach is proposed by Munos [94,95] that again begins with a coarse

discretization of the state space and selectively refines this discretization. A cell is

split (or not), depending on its influence on other cells, as determined by the

dynamics of the system and the discount factor. However, these approaches

assume that local controllers or the model of the system dynamics are known.

Though a large number of successful applications of RL based on function

approximation on various problem domains have been reported in

[5,28,31,65,88,1 11,112,118,131-133,137,138,148,151], there is always some kind

of ad hoc adaptation that includes the use of nonlinear architecture or auxiliary

mechanisms for value estimation, with which theoretical proofs of convergence are

not concerned. These algorithms with nonlinear architecture lead to improved

performance. Unfortunately, it is very hard to quantify or analyze the performance

of these techniques. Boyan and Moore [18] give some examples of value functions

errors growing arbitrarily large when generalization is used with value iteration.

Sutton [127]shows how modified versions of Boyan and Moore's examples can

converge successfully. Tsitsiklis and Roy [140] provide a methodological

foundation of a few different ways that compact representations can be combined

to form the basis of a rational approach to difficult control problems. Bertsekas and

Tsitsiklis [13] provide an excellent survey of the state-of-art in the area of value

function approximation. However, whether general principles, ideally supported by

theory, can help us understand when value functionapproximation will succeed is

still an open question. More careful research is needed in the future.

3.2.2 Generalization in States and Actions

Most approaches use functionapproximators to generalize the value function

across situations. These works, however, still assume discrete actions and cannot

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Reinforcement Learning 5 3

handle continuous-valued actions. In continuous action spaces, the need for

generalization over actions is important. It should be possible that actions vary

smoothly in response to smooth changes in a state. Santamatia et al. [112]go

futherand consider continuous action spaces, but their approach cannot actually

generate continuous actions except when exploring randomly a small fractionof

the time. In the other words, this approach does not yield truly continuous-action

policies. The continuous-action Q-learning approach, which is the only approach

restricted to the generation of continuous actions by means of Q-learning, is

proposed in [87]. On the other hand, fuzzy logic can be used to facilitate

generalization in the state space and to generate continuous actions in RL [48]. The

FIS learner has a continuous perception of the state space, and based on a strategy

for policies, it can trigger continuous actions. This proposed strategy consists of

inferring the global policy (relative to states) from local policies associated with

each rule of the learner. In this thesis, we discuss a novel Q-learning method that

can handle continuous states and continuous actions based on the contribution of

fuzzy logic.

3.3 Applications in Robotics

The study of RL agents used to have a strong biological motivation [125], but in

the last few years the enthusiasm switched towards engineering applications. One

of the most impressive applications of RL to date is that by Gerry Tesauro to the

game of backgammon [13 1,1321. Crites and Barto [3 11 study the application of RL

to the elevator dispatching. Zhang and Dietterich [151] use back propagation and

TD to learn good strategies for job-shop scheduling. Singh and Bertsekas [118]

apply RL to the dynamic channel allocation problem in the operation of cellular

telephone systems. Tong and Brown [137]solve the call admission control and

routing problem in multimedia networks via RL. Next, we discuss a variety of

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Reinforcement Learning 54

robotics applications, which is one of the major successful application areas in RL

[28,111].

Robot Learning

Many intelligent methodologies have often been used for robotic systems in areas

that are critical and dangerous for human beings [2].To accomplish a given task, a

robot collects or receives sensory information concerning its external environment

and takes actions within the dynamically changing environment. Furthermore, the

intelligent robot should automatically generate its motion for performing the task.

Brooks [20] proposes a sub-sumption architecture, and later behavior-based

artificial intelligence for robotics [21]. This kind of behavior-based artificial

intelligence stresses the importance of direct interactions between a robot and the

environment. RL is employed in situations where a representative training set is

not available and the agent must itself acquire this knowledge through interactions

with its environment. Therefore, autonomous learning in robotics is a natural

application area for RL. Barto [8] distinguishes firstly, non-associative RL tasks,

where the learning system receives only evaluative input; secondly, associative RL

tasks, where a controller aims to maximize the immediate reward at each step; and

thirdly, adaptive sequential decision tasks where the maximization of long term

performance may entail foregoing immediate favorable rewards. Since the first

type has been studied based on genetic algorithms, we regard it as outside the

scope of this thesis. Some interesting examples can be found in [34,97]. Most of

the works discussed here are of the second or third type of RL. We prefer RL to

genetic algorithms for the purpose of the evaluating the system online concurrent

with learning.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Reinforcement Learning 55

Maes and Brooks [79] describe a six-legged robot that learns to sequence its gait

by associating immediate positive and negative rewards with action preconditions.

Mahadevan and Connell [80] develop RL strategies to train a real robot performing

a box-pushing task based on decompositions of the task. In contrast, Kalrnar et al.

[52] use RL in an adaptive switching strategy for subtasks. Lin [65,66] uses RL

with a neural network to learn navigation tasks. Asada et al. [3] uses discretization

of the state space, based on domain knowledge, to learn offensive strategies for

robot soccer. Meeden et al. apply complementary reinforcement back propagation

to the temporally extended problems of obstacle avoidance. Thrun [136] describes

a hybrid approach towards enabling a mobile robot to exploit previously learned

knowledge by applying it to multiple tasks. Gullapalli et al. [38] develop the skills

of the peg-in-hole insertion task and the ball-balancing task via RL. Millan [85,86]

reports an approach towards navigation in an unknown indoor environment based

on a mobile robot, which is able to optimize the total reinforcement it receives as it

progresses towards the goal. Hailu [40] gives similar results in a similar task.

Mataric [82] describes a robotics experiment with an unthinkable high dimensional

state space, containing many degrees of freedom. Bonarini [15] presents some

approaches based on evolutionary RL algorithms which are capable of evolving

real-time fuzzy models that control behaviors and proposes an approach towards

designing of reinforcement functions [16]. Boada et al. [14] present an RL

algorithm which allows a robot to learn simple skills and obtain the complex skill

approach which combines the previously learned ones. Gaussier et al. [36]

conclude some limitations of reinforcement approaches and suggest how to bypass

them.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Reinforcement Learning 56

3.3.2 Problems

RL is currently perhaps the most popular methodology for various types of

learning. However, there are still some difficulties that must be overcome in order

to implement a usefullearning system on a real robot [22].

Lack of initial knowledge

Many learning systems attempt to learn by starting with no initial

knowledge. Although this is appealing, it introduces special problems when

working with real robots. Initially, if the learning system knows nothing

about the environment, it is forced to act more or less arbitrarily. RL

systems attempt to learn the policy by attempting all the actions in all the

available states in order to rank them in the order of appropriateness. In

order to learn a new policy, large numbers of time-consuming learning

trials are required. On the other hand, critical behavior must be learned

with a minimal number of trials, since the robot cannot afford to fail too

frequently. When controlling a real robot, a bad choice can result in the

damage of the environment or the robot itself, possibly causing it to stop

functioning. In order for the learning system to be effective, we need to

provide some sort of bias, to give it some ideas of how to act initially and

how to begin to make a progress towards the goal. Systems should have the

ability of using previously learned knowledge to speed up the learning of a

new policy.

Continuous states and actions

In many real-world scenarios, sensory and action spaces are continuous.

These values can be discretized into finite sets if the discretization follows

the natural resolution of the devices. However, many quantities are

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Reinforcement Learning 5 7

inherently continuous with a fine resolution that leads to many discrete

states. Even if they can be discretized meaningfully, it might not be readily

apparent how best to do it for a given task. Incorrect discretizations can

limit the final form of the learned control policy, making it impossible to

learn the optimal policy. If we discretize coarsely, we risk aggregating

states that do not belong together. If we discretize finely, we often end up

with an unmanageably huge state or action space. Practical learningrobots

require compact representations capable of generalizing experiences in

continuous domains. Furthermore, actions should vary smoothly in

response to smooth changes in a state.

Lack of training data

Since we are generating data by interacting with the real world, the rate at

which we get new training points is limited. Robot sensors often have an

inherent maximum sampling rate. Sensors which sample extremely quickly

will simply generate many training points that are almost identical. We are

interested in learning on-line, while the robot is interacting with the world.

This means that we cannot wait until we have a large batch of training

examples before we begin learning. Our learning system must learn

aggressively and rapidly. It must also be able to use whatever data points it

has efficiently, extracting as much information from them as possible, and

generalizing between similar observations when appropriate.

Sensor noise

Finally, RL depends on the ability to perceive the unique state of the robot

in order to map it to the appropriate action. Sensor noise and error increase

state uncertainties, which further slow down the learning process.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Reinforcement Learning 5 8

In spite of its weaknesses, RL appears to be a promising direction for learning with

real robots, in particular because it uses direct information from the real world to

improve the robot's performance. In this thesis, we discuss a new learning

paradigm which offers some possible solutions to these problems.

3.3.3 The Khepera Robot

The robot employed in the experiments described in this thesis is a miniature

mobile robot called Khepera [50] shown in Figure 3.2. It is cylindrical in shape,

measuring 55mm in diameter and 30 mm in height. Its weight is only 70 g and its

small size allows experiments to be performed in a small work area. The robot is

supported by two lateral wheels that can rotate in both directions and two rigid

pivots in the front and in the back.

Figure 3.2 The miniature mobile robot: Khepera

Khepera can be remotely controlled by a computer through a serial link depicted in

Figure 3.3. The serial connection provides electrical power and supports fast data

communication between the robot and the computer. The control system of the

robot can run on the computer that reads in sensory data and gives motor

commands in real time while the robot moves on a nearby environment.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Reinforcement Learning 59

Alternatively, one can download the code of the control system on the processor of

the robot and then disconnect the cable.

Figure 3.3 The Khepera robot and its working environment

The basic configuration of Khepera is composed of the CPU and the sensory/motor

boards. The CPU board encloses the robot's micro-controller, system and user

memory, an A/D converter for the acquisition of analog signals coming fromthe

sensory/motor board, and an RS232 serial line miniature connector that can be

used for data transmission and power supply from an external computer. The

micro-controller includes all the features needed for easy interfacing with

memories, with I/0 ports and with external interrupts.

The sensory/motor board includes two DC motors coupled with incremental

sensors, eight analogues denoted by in

Figure 3.4 and an on-board power supply. Each IR sensor is composed of an

emitter and an independent receiver. The dedicated electronic interface uses

multipliers, sample/holds and operational amplifiers. This allows absolute ambient

light and estimation, by reflection, of the relative position of an object to the robot

to be measured. This estimation gives, in fact, information about the distance

between the robot and the obstacle. The sensor readings are integer values in the

 infra-red(IR) proximity sensor

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Reinforcement Learning 60

range of [0, 1023].A sensor value of 1023 indicates that the robot is very close to

the object, and a sensor value of 0 indicates that the robot does not receive any

reflection of the IR signal.

Figure 3.4 Position and orientation of sensors on the Khepera

In addition to the real robot, we also use the simulation version of the Khepera [96]

for carrying out a systematic comparison of the different approaches we are

interested in. The program simulates Kheperas connected to the computer via a

serial link in a very realistic way in the Matlab environment. Simulated Kheperas

are controlled in the same way as real, physical Kheperas.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4

Design of Dynamic Fuzzy Q-Learning
(DFQL) Algorithm

In Chapter 2, we describe the fuzzy logic systems, and the learning methods of

fuzzysystems based on Q-learning. However, all the algorithms described only

adjust the parameters of fuzzy systems and do not involve structure identification.

In Chapter 3, we introduce RL and some algorithms for generalizing experiences.

However, most of these works assume discrete actions. In order to cope with these

problems, we propose Dynamic Fuzzy Q-Learning (DFQL) in this chapter.

Detailed descriptions of the DFQL architecture, on-line structure and parameter

learning algorithm and modeling method are presented. In order to demonstrate the

efficiency of proposed algorithms, the proposed algorithm is applied to obstacle

avoidance behavior of the Khepera robot.

4.1 Motivation and Development

Two main research tracks influence our work. The first one uses the concept of

fuzzy logic, and the second one uses that of machine learning. From the first point

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 62

of view, DFQL is the learning method used to tune a fuzzy system in a very

flexible way whereas in the second point of view, DFQL is a means of introducing

generalization in the state space and generating continuous actions in RL problems.

FISs, which are numerical model-free estimators and dynamical systems, are a

popular research topic due to the following reasons: 1) The rule structure of an FIS

makes it easy to incorporate human knowledge of the target system directly into

the fuzzy modeling process; 2) When numerical information of a target system is

available, mathematical modeling methods can be used for fuzzy modeling.

Several requirements for a learning algorithm must be fulfilled for appropriate

modeling of an FIS.

Evaluative signals

For the learning problem, training data are very rough and coarse, and are

just "evaluative" in contrast with the "instructive" feedback in supervised

learning. The learning algorithm should be capable of constructing an FIS

based on this simple evaluative scalar signal. In addition to the roughness

and non-instructive nature of the information, a more challenging problem

the algorithm should be able to deal with is that the signal may only be

available at a time long after a sequence of actions have occurred. In other

words, prediction capabilities are necessary in this learning system.

Structure and parameter learning

The algorithm should deal with not only parameter estimation but also

structure identification of a learning FIS. Structure identification of fuzzy

system is equivalent to partitioning the input space. The spirit of FIS

resembles that of "divide and conquer9'- the antecedent of a fuzzy rule

defines a local fuzzyregion, whilethe consequent describes the behavior

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 63

within the region via various constituents. If the premise structure of a

fuzzy system is determined by clustering the input via an on-line self-

organizing learning approach, a more flexible learning scheme can be

formed. Furthermore, the learning method should find meaningful fuzzy

terms for each input variable, by which it is possible to interpret the

acquired knowledge in the form of linguistic rules.

On-line learning

We are interested in on-line learning, so the algorithm must be capable of

learning one data point at a time. We should not have to wait until we have

a large batch of data points before training the algorithm. It precludes the

use of learning algorithms that take a long time to learn such as GA. GA is

a flexible input space partitioning leaming method, however, it is very time

consuming and unsuitable for on-line learning.

Q-learning is the most popular RL method that can be used to learn a mapping

from state-action pairs to long-term expected values. Some forms of generalization

are used to extend Q-learning to deal with large continuous state and action spaces.

Several requirements for a learning algorithm for practical use are:

Adaptive Generalization

Q-learning with discretised states and actions scale poorly. As the number

of state and action variables increase, the size of the table used to store Q-

values grows exponentially. In a large, smooth state space, we generally

expect compact representations to able to generalize experience in

continuous domains. Furthermore, it would be desired to improve

generalization capabilities at state spaces that are deemed to be

"important".

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-learning Controllers 64

Continuous states and actions

Many real-world control problems require actions of a continuous nature,

in response to continuous state measurements. It should be possible that

actions very smoothly in response to smooth changes in a state. Some

problems that we may wish to address, such as high performance control of

mobile robots, cannot be adequately carried out with coarse coded inputs

and outputs. Motor commands need to vary smoothly and accurately in

response to continuous changes in a state.

Integration of domain knowledge

The algorithm is used for fast on-line learning so as to adapt in real time.

Initially, if the learning system knows nothing about the environment, it is

forced to act more or less arbitrarily. Integration of domain knowledge to

avoid learning from scratch is highly desired.

Incremental and aggressive learning

The learning algorithm should not be subject to destructive interference or

forget what it has learned so far but incrementally adapt the model

complexity. It should be capable of producing reasonable predictions based

on only a few training points.

In order to cope with these requirements, a novel DFQL learning algorithm is

proposed. It is an automatic method capable of self-tuning an FIS based only on

reinforcement signals. The DFQL provides an efficient learning method whereby

not only the conclusion part of an FIS can be adjusted online, but also the structure

of an FIS can be constructed simultaneously. Based on the criterion of system

performance, new fuzzy rules can be generated automatically. Continuous states

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 65

are handled and continuous actions are generated by fuzzy reasoning. Based only

on the reinforcement signals, the proposed method consists of assigning a quality

to each local action available in the learner's fuzzy rules. The obtained local

policies are then used to produce a global policy that allows us to solve the

problem. Prior knowledge can be embedded into the fuzzy rules, which can reduce

the training time significantly.

4.2 Preceding Works

As foreshadowed in Chapter 2, the idea and implementation of dynamic partition

of the input spaces have been proposed in several previous works in the family of

supervised learning algorithms.

A kind of sequential learning algorithms based on RBF are presented in

[64,74,104,152,153] in order to overcome the drawback that the number of hidden

units is fixed a priori in the classical approach to RBF network implementation.

The neural network, called a Minimal Resource Allocation Network (MRAN),

starts with no hidden units and grows by allocating new hidden units based on the

novelty in the observations which arrive sequentially. When input-output data are

received during training, the decision to generate a new hidden unit depends on the

distance and error conditions. Furthermore, the MRAN learning algorithm

combines the growth criterion of the resource allocation network with a pruning

strategy based on the relative contribution of each hidden unit to the overall

network output. The resulting network leads toward a minimal topology for the

resource allocation network.

As mentioned in Chapter 2, it has been shown that a simplified class of FISs and

RBF Networks are functionally equivalent [45]. Therefore, the same idea of

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 66

MRAN can be implemented in the fuzzy systems. Though fuzzy systems could

serve as a very powerful tool for system modeling and control, partitioning the

input space and determining an appropriate number of rules in a fuzzy system are

still open issues. In order to cope with this problem, a learning algorithm for

dynamic fuzzy neural networks (DFNN) based on extended RBF neural networks

has been developed in [35,149]. The DFNN learning algorithm is an online

supervised structure and parameter learning algorithm for constructing the fuzzy

system automatically and dynamically. Fuzzy rules can be recruited or deleted

dynamically according to their significance to the system's performance so that not

only parameters can be adjusted, but also the structure can be self-adaptive. Given

the supervised training data, the algorithm firstly decides whether or not to

generate fuzzy rules based on two proposed criteria, system errors and -

completeness of fuzzy rules. Subsequently, the algorithm will decide whether there

are redundant rules to be deleted based on the error reduction ratio [143].

The methods of MRAN and DFNN provide the idea of dynamic partitioning of the

input spaces, though both these methods are classified as supervised learning. In

order to deal with the requirements of parameter and structure learning in FIS and

adaptive generalization in Q-learning, the idea of automatic generation of new

fuzzy rules is used in DFQL, which is derived from the concepts of MRAN and

DFNN. The FIS we used in DFQL is functionally equivalent to RBF networks.

The incremental on-line learning scheme of DFQL is closely related to sequential

learning in MRAN and DFNN. Incremental growth of the DFQL is accomplished

by generating fuzzy rules when the regions are not sufficiently covered by the rules

or the system performance is unsatisfactory. The way of estimating premise

parameters of new rules is realized by the same mechanism introduced in DFNN.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-learning Controllers 67

Next, we present details of the architecture and algorithm of DFQL. After that, we

discuss the main differences between the DFQL and the supervised learning

algorithms including MRAN and DFNN.

4.3 Architecture of DFQL

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
input fuzzification application of T-norm normalization defuzzification

Figure 4.1 Structure of fuzzy rule sets of DFQL

DFQL is an extension of the original Q-Learning method into a fuzzy

environment. State-space coding is realized by the input variable fuzzy sets. A

state described by a vector of fuzzy variables is called a fuzzystate. A learner may

partially visit a fuzzy state, in the sense that real-valued descriptions of the state of

the system may be matched by a fuzzy state description with a degree less than

one. Since more than one fuzzystate may be visited at the same time, possibly

with different degrees, we have a smooth transition between a state and its

neighbors, and, consequently, smooth changes of actions done in different states.

Both the actions and the Q-function are represented by an FIS whose fuzzy logic

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 68

rules can be self-constructed based on the system performance. The structure of the

fuzzy rule sets of DFQL is shown in Figure 4.1.

We describe an FIS based on the TSK-type structure, which has a total of five

layers. In Section 2.2.1, we point out the equivalence between RBF networks and

the TSK-type FIS. Similarly, the FIS we used is functionally equivalent to

Ellipsoidal Basis Function (EBF) networks. Nodes in layer one are input nodes

which represent input linguistic variables. Layer five is the output layer. Nodes in

layer two act as membership functions which represent the terms of the respective

linguistic variables. Each node in layer three is a rule node which represents one

fuzzy rule. Nodes in layer four normalize the outputs of layer three. Thus, all the

layer-four nodes form a fuzzy rule set. Layer four links define the consequents of

the rule nodes. In the following context, we will indicate signal propagation and

the basic function in each layer of the DFQL.

Layer one transmits values of the input linguistic variable i = 1,. . . , to

the next layer directly.

Layer two performs membership functionsto the input variables. The

membership function is chosen as a Gaussian function of the following

form:

where is the jth membership function of and are the center

and width of the jth Gaussian membership function of respectively.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design o f Dynamic Fuzzy Q-Learning Controllers 69

Layer three is a rule layer. The number of nodes in this layer indicates the

number of fuzzy rules. If the T-norm operator used to compute each rule's

firing strength is multiplication, the output of the jth rule R (j = 1,2,. . .l)

in layer 3 is given by

Normalization takes place in layer 4 and we have

Layer five nodes define output variables. If defuzzification is performed in

layer 5 using the center-of-gravity method, the output variable as a

weighted summation of incoming signals, is given by

where y is the value of an output variable and is the consequent

parameter of the jth rule which is defined as a real-valued constant.

The firing strength of each rule shown in Eq. (4.2) can be regarded as a function of

regularized Mahalanobis distance (M-distance), i.e.

= exp(- (j)) (4.5)

where

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 70

is the M-distance, and is

defined as follows:

Thus, the input variable fuzzy sets are used to represent appropriate high-

dimensional continuous sensory spaces. The fuzzy rule identification is equivalent

to determination of the DFQL structure. The number and position of the input

fuzzy labels can be set using a priori knowledge of the user. Generally speaking, if

we do not have any knowledge about the system, identical membership functions

whose domains can cover the region of the input space evenly are chosen, and for

every possible combination of input fuzzy variables, a fuzzy rule has to be

considered. However, the number of rules increases exponentially with increase in

the number of input variables. As a consequence, the FIS often includes many

redundant or improper membership functions and fuzzy rules. This leads us to

develop a learning algorithm that is capable of automatically determining the fuzzy

rules online.

In the DFQL approach, each rule has m possible discrete actions

A = ,. . and it memorizes the parameter vector q associated with each of

these actions. These q values are then used to select actions so as to maximize the

discounted sum of reward obtained while achieving the task. We build the FIS

with competing actions for each rule as follows:

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 71

: If Xis then a, with a,)

or with

......
or a, with a,)

where X is the vector of input variables and are labels of fuzzy sets that

describe the a fuzzy state of the ith rule. Figure 4.2 shows the consequent parts of

DFQL. The continuous action performed by the learner for a particular state is a

weighted sum of the actions elected in the fired rules that describe this state, whose

weights are normalized firing strengths vector of the rules, Subsequently, the

TD method updates the Q-values of the elected actions according to their

contributions.

Rule
Truth
Values

Continuous
Action

Figure 4.2 Consequent parts of DFQL

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 72

4.4 DFQL Learning Algorithm

This section proposes an on-line structure and parameter learning algorithm for

constructing the DFQL automatically and dynamically. The details of the DFQL

algorithm are presented as follows. After a brief description of generation of

continuous actions, the mechanism of updating Q-values is introduced. Next, self-

organizing features of the FIS based on the -completeness of fuzzy rules and the

TD error criteria are elaborated. Finally, the flowchart of the algorithm and an

overview of the one-time-step global working procedure are presented.

4.4.1 Generation of Continuous Actions

The generation of continuous actions depends upon a discrete number of actions of

every fuzzy rule and the vector of firing strengths of fuzzy rules. In order to

explore the set of possible actions and acquire experiences through the

reinforcement signals, the actions in every rule are selected using the exploration-

exploitation strategy that is described in Section 3.1.4. Here, we use to denote

the exploration/exploitation policy employed to select a local action a from

possible discrete actions vector A, as follows:

(4.8)

At time step t, the input state is . Assume that l fuzzy rules have been generated

and the normalized firing strength vector of rules is . Each rule has m

possible discrete actions A. Local actions selected from A compete with each other

based on their q-values, while the winning local action of every rule cooperates

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 73

to produce the global action based on the rule's normalized firing strength, The

global action is given by

where is the selected action of rule at time step t.

4.4.2 Update of q-values

As in DFQL, we define a function Q, which gives the action quality with respect to

states. Q-values are also obtained by the FIS outputs, which are inferred fromthe

quality of local discrete actions that constitute the global continuous action. Under

the same assumptions used for generation of continuous actions, the Q function is

given by

(4.10)

where is the global action, is the selected action of rule, at time step t

and q, is the q-value associated with the fuzzy state, and action, .

Based on TD learning, the Q-values corresponding to the rule optimal actions

which are defined as follows:

(4.1 1)

are used to estimate the TD error which is defined by

(4.12)

where is the reinforcement signal received at time t+1 and y is the discount

factor used to determine the present value of future rewards. Note that we have to

estimate this error term only with quantities available at time step t+1.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design o f Dynamic Fuzzy Q-Learning Controllers 74

This TD error can be used to evaluate the action just selected. If the TD error is

positive, it suggests that the quality of this action should be strengthened for future

use, whereas if the TD error is negative, it suggests that the quality should be

weakened. The learning rule is given by

i = 1,2,.. . , l (4.13)

where a is the learning rate.

4.4.3 Eligibility Traces

In order to speed up learning, eligibility traces are used to memorize previously

visited rule-action pairs, weighted by their proximity to time step t. The trace value

indicates how rule-action pairs are eligible for learning. Thus, it not only permits

tuning of parameters used at time step t, but also those involved in past steps. Here,

we introduce the basic method without complex implementation, similar to [48].

The more efficient and faster learning method using eligibility traces for

complicated tasks is discussed in Chapter 6.

Let be the trace associated with discrete action of rule at time

step t

, + if =

,) otherwise

where the eligibility rate is used to weight time steps.

The parameter updating law given by Eq. (4.13) becomes, for all rules and actions,

i=1,2 ,..., 1, j=1,2 ,..., m (4.15)

and the traces are updated between action computation and its application.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 75

4.4.4 -Completeness Criterion for Rule Generation

Due to the highly complex and nonlinear characteristic of the problem space,

uniform distribution of the fuzzy sets is usually not optimal. If a fuzzy partition is

too coarse, the performance may be poor. If a fuzzy partition is too fine, many

fuzzy IF-THEN rules cannot be generated because of the lack of training patterns

in the corresponding fuzzy subspaces. For a problem, some parts of pattern space

might require fine partition, while other parts require only coarse partition.

Therefore, the choice of an appropriate fuzzy partition, i.e. structure identification

of FIS is important and difficult. In this section and the next one, we propose two

criteria, namely the -completeness and TD error criteria, for generating fuzzy

rules automatically, which allow us to circumvent the problem of creating the

structure of an FIS by hand.

Definition 4.1 : -Completeness of Fuzzy Rules [59]:

For any input in the operating range, there exists at least one fuzzy rule so that the

match degree (or firing strength) is no less than .
Remark: In fuzzy applications, the minimum value of is usually selected as

= 0.5.

From the viewpoint of fuzzy rules, a fuzzy rule is a local representation over a

region defined in the input space. If a new pattern satisfies -completeness, the

DFQL will not generate a new rule but accommodate the new sample by updating

the parameters of existing rules. According to -completeness, when an input

vector X 5%. enters the system, we calculate the M-distance md(j) between the

observation X and centers (j = 1,2,. . . ,l) of existing EBF units according to Eqs.

(4.6) and (4.7). Next, find

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 76

J = arg min(md (j)) (4.16)

If

= md(J) > (4.17)

where is a pre-specified threshold and is chosen as follows

= (4.1 8)

then we have

f(J) < exp(-) = exp(- = (4.19)

This implies that the existing system is not satisfied with E-completeness and a

new rule should be considered.

4.4.5 TD Error Criterion for Rule Generation

It is not sufficient to consider -completeness of fuzzy rules as the criterion of rule

generation only. New rules need to be generated in regions of the input fuzzy

subspace where the approximation performance of the DFQL is unsatisfactory. We

introduce a separate performance index, for each fuzzy subspace which enables

the discovery of "problematic" regions in the input space. If the performance index

indicates that the situation is wrongly classified, a new fuzzy rule is created at the

location of the input situation. This index can be attested by any method which

captures critical areas that require high resolution. Here, we present a general

method based on TD errors. The performance index is updated as follows:

= [(K - + K>O (4.20)

Using the squared TD error as the criterion, the normalized rule firing strength

determines how much the fuzzy rule affects the TD error. It should be noted

that Eq. (4.20) acts as a digital low-pass filter. In way, TD errors in the past are

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 77

gradually "forgotten" as time passes, but are never completely lost. The more

recent the TD error is received, the more it affects the value of The initial value

of is set to zero. The parameter K controls the overall behavior of A small

value of K makes adapt very rapidly and a large value makes more stable in a

noisy environment. Thus, if is bigger than a certain threshold, , further

segmentations should be considered for this fuzzy subspace at least.

4.4.6 Estimation of Premise Parameters

Combining the criterion and the TD error criterion together, we

obtain the following procedure of generating a new rule: When an input vector

X enters the system, we calculate the M-distance md(j) between the

observation X and centers (j = 1,2,. . . ,1) of existing EBF units. Next, find

If

= md(J) >

where is a -completeness threshold, this implies that maybe the existing

system is not satisfied with -completeness and a new rule should be considered.

Otherwise, if

(4.21)

where is a TD error criterion threshold, this fuzzy rule does not satisfy the

TD error criterion and a new rule should be considered.

Once a new rule is considered, the next step is to assign centers and widths of the

corresponding membership functionsA new rule will be formed when the input

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design o f Dynamic Fuzzy Q-Learning Controllers 78

pattern X enters the system according to two criteria of rules generation.

Next, the incoming multidimensional input vector X is projected to the

corresponding one-dimensional membership function for each input variable

i (i = 1,. . . n) . Assume that l membership functions have been generated in the ith

input variable and the Euclidean distance between the data and the

boundary set is computed as follows:

j=1,2, ..., 1 + 2 (4.22)

where , , . . , }, we find

= arg , min (j))
j=1,2, ... n+2

(4.23)

If

(4.24)

where is a predefined constant that controls the similarity of neighboring

membership functions, is deemed completely represented by the existing fuzzy

set ,) without generating a new membership function. Usually, is

selected between 0.1 and 0.3 for normalized input variables. Decreasing

indicates that higher similarity between two membership functions is allowed.

Otherwise, if

) >

a new Gaussian membership function is allocated whose center is

= (4.25)

and the widths of membership functions in the ith input variable are adjusted as

follows:

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design o f Dynam ic Fuzzy Q-Learning Controllers 79

where and are the two centers of adjacent membership functions of

the middle membership function whose center is . Note that only the new

membership function and its neighboring membership functions need to be

adjusted. The main result concerning adjusting membership functions to satisfy -

completeness of fuzzy rules in each one-dimensional input variable can be

summarized in the following statement.

Statement 4.1 : Let N = , x
max

] = [a, b] be the universe of one-dimensional

input x. If each fuzzy set = {(x, N} (k = 1,. . . m) is represented as a

Gaussian membership function constructed by the preceding and , the fuzzy

sets satisfy -completeness of fuzzy rules, i.e., for all x N , there exists

{1, ... m), such that [149].

We can explain this statement under several different cases:

(a) If there exists only one fuzzyset, i.e. m = 1, the membership function can be

generated as follows. If - and - , and assuming that

, we have -) where = and

For any x , we have

(hi)(=)') . If - , we have

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design o f Dynamic Fuzzy Q-Learning Controllers 80

(b) If there exists k {1,. . . m} , such that - - I , is chosen as

For any , we have

We can obtain the same result for other cases.

4.4.7 Working Principle

The flowchart of the algorithm is depicted in Figure 4.3. In order to make the

working principle easy to understand, a one-time-step global execution procedure

of DFQL is presented. The details of computing the TD error and tuning q-values

are described in steps a to d. Next, the procedure of tuning the structure of FIS

elaborated on the flowchart is given in step e. This is then followed by taking

action and estimating the Q-value in steps f to g, together with the updating

eligibility trace in step h. Let t+l be the current time step and we assume that the

learner has performed action and has received a reinforcement signal . The

steps are summarized here:

a. Check the -completeness and TD error criteria according to the current

state, . If a new fuzzyrule need to be generated, tune the structure of

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 8 1

FIS and initialize the parameter vector q according to the algorithm

described in Section 4.3.6;

b. Approximate the optimal evaluation function corresponding to the current

state and FIS by using the optimal local action quality definedat time step t

i.e.) as defined in Eq. (4.1 1);

c. Compute the TD error using Eq. (4.12);

d. Tune the parameter vector q according to Eq. (4.15) based on current

eligibility trace;

e. Tune parameter with Eq. (4.20) being used as a TD error criterion;

f. Elect local actions based on the new vector and compute the global

action) according to the new FIS governed by Eq. (4.9);

g. Estimate the new evaluation function for the current state with the new

vector and the actions effectively elect Eq. (4.10). Note that

will be used for error computation at the next time step;

h. Update the eligibility trace according to Eq. (4.14), which will be used in

parameter updating at the next time step. Eligibility trace values need to be

reset to zeros at the end of each episode.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-learning Controllers 82

Figure 4.3 Flowchart of the DFQL learning algorithm

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 83

4.5 Discussions

The main differences between the DFQL and the supervised learning algorithms

including MRAN and DFNN are as follows:

First of all, MRAN and DFNN are both supervised learning where the input-output

training data guide the learning process, while DFQL extends these earlier works

to reinforcement learning which is based on the simple evaluative scalar signal.

Generally speaking, a robot attempts to learn a task in an unsupervised mode

without a teacher since it is difficult to find the direct training data. The robot has

to perform the task by executing trial-and-error actions through evaluative

reinforcement signals. A salient point about DFQL is that the consequent parts of

DFQL are based on Q-Learning and the TD method updates these Q-values.

Second, the two criteria for generating new rules are slightly different. New rules

are generated as they are needed to better cover the sensory space or when the

approximation performance of DFQL is unsatisfactory. Since DFQL is based on

Q-Learning, the performance is evaluated according to TD errors instead of the

output error in supervised learning.

Third, MRAN removes the units based on their relative contributions and DFNN

deletes the rules based on the error reduction ratio, while DFQL does not. MRAN

and DFNN are suitable for sequential learning. There may be a large batch of

training data and the significance of the observations may be subsequently

reduced. On the contrary, DFQL is suitable for robotics systems which require

learning to be incremental and rapid. Critical behavior must be learned with a

minimal number of trials. For robot navigation applications, deletion would be

hazardous since they will not perceive all sensory situations repeatedly after a

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-learning Controllers 84

fixed number of steps. The learning algorithm should not forget what it has learned

so far but incrementally adapt the model complexity. In the future works, pruning

might be considered in other applications if a fuzzy rule is not active for a period.

Fourth, DFQL provides a method of exploiting a prior knowledge which is not the

same in different supervised learning algorithms. If the learning systems are not

able to exploit the prior knowledge in reinforcement learning, it is almost certain

that the learning will not be effective. The robot either collides with obstacles that

terminate the learning process or explores aimlessly without ever reaching the goal

that can take unacceptably long time to discover interesting parts of the space. A

way of overcoming this problem is to use prior knowledge as bias to figure out

which action deserves attention in each situation. The bias components can be

incorporated in the framework of fuzzy rules based on prior knowledge. The

premise of rules can be used to generate fuzzy states over the fuzzy input space

and the consequents of rules can be used to generate the initial q values, which are

called bias. The details are discussed in Chapter 5.

Fifth, the supervised learning provides, at each time step, the desired outputs

during learning. On the contrary, the reinforcement learning only gives the quality

of actions. In addition to the roughness and non-instructive nature of the

information, a more challenging problem is that the signal may only be available at

a time long after a sequence of actions have been taken. In other words, prediction

capabilities are necessary in this learning system. DFQL with eligibility traces

obtain an efficient method which is able to distribute credit throughout sequences

of actions, leading to faster and more effective learning in real applications. The

details are discussed in Chapter 6.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 85

4.6 Experiments

4.6.1 Obstacle Avoidance for Khepera Robot

In this section, we describe experiments performed on the Khepera robot. The task

Khepera has to perform is to navigate freely. Two behaviors are involved. One,

which is of higher priority, concerns moving forward. The second concerns

avoiding obstacles. The first behavior which involves moving forward when

nothing is detected by the sensors is simple and is of no interest here. The second

behavior involves knowing how much to turn and in which direction so as to avoid

the obstacles. The environment used for implementation and simulation studies is

shown in Figure 4.4 and Figure 4.5 respectively. It is a 25cmx 35cm arena with

lighted shaped walls. Obstacles with different shape and form are introduced at

different sections of the maze. Obstacles are put in the maze at the beginning of the

experiment. We use the simulated robot to find appropriate parameters and make a

systematic comparison of different approaches. These methods are also

implemented on the real robot and the results presented as follows are based on

experimental data of the real robot.

Figure 4.4 Real environment for obstacle avoidance

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 86

Figure 4.5 Simulation environment for obstacle avoidance

In this experiment, the six sensors on the front of the robot are used for obstacle

detection. These sensor values are normalized within the interval [0, 1]. A

normalized sensor value of 1 indicates that the robot is very close to obstacles, and

0 indicates that the robot is away from obstacles. The robot receives reinforcement

signals during the learning phase. For learning obstacle-avoidance behavior, we

compare past and present sensor values. The robot will avoid the obstacles when

the present sum of the six front sensor values is smaller then the last one and the

difference is greater than 0.1 between them. A collision occurs when the sum of

the six front sensor values is greater than 2.0. The collision is inferred from the

sensor performance. It does not necessarily mean that the robot has touched the

wall. The reinforcement signals are as follows:

Let be the sensor value of the sensor i at time t and r be the reinforcement

signal:

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 87

else if (t) 2.0 then = ;
i=O

else

4.6.2 Random Policy and Tabular Q-learning

In order to make a comparison, a look-up table implementation of Q-learning is

used with the robot to generate obstacle avoidance behavior. And the experiments

are given along with those for a completely random policy. For practical reasons,

each sensor value is coded as 1 bit. If the measured value is below the threshold

value of 0.2, the sensor bit value is 0, otherwise it is 1. Therefore, the total number

of possible situations is restricted to = 64 . The total number of actions is

reduced to three different speeds per motor, so the total number of possible actions

is 9.

Experimental results are presented in two ways: an indicator of the effectiveness of

obstacle avoidance I (t) and a local performance index L(t), where t is the number

of robot moves executed by the avoidance behavior module from the beginning of

the experiment. The distance to the obstacles measures the correspondence of the

robot's behavior with the target behavior. When the robot encounters obstacles, the

sum of the six frontsensor values is memorized as D (t) .Note that the higher the

sensor value, the shorter the distance is to the obstacles. The indicator I(t) is

defined as i=l Two local performance indices measuring the effectiveness

of the learning process are defined as (t) = and (t) =

respectively, where is the number of moves that have received positive

reinforcement signals the beginning of the experiment and is the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 8 8

number of moves that have received negative reinforcement signals from the

beginning of the experiment. We use 3000 learning iterations and the results are

averaged over ten runs. Note that the iteration steps are increased only when the

robot detects obstacles and executes avoidance behaviors. The results for a

completely random exploration policy are given in Figure 4.6.

The basic Q-learning algorithms of [145] store Q values, i.e. the expected

reinforcement values associated with each situation-action pair are organized in a

look-up table and updated according to Eq. (3.1 1). In the experiments, the learning

rate a and the discount factor y are set to 0.5 and 0.9 respectively. The

exploration function uses a -greedy strategy described in Section 3.1.4 with

randomly decreasing proportionate with the number of iterations. The results for

basic Q-learning are shown in Figure 4.7. After learning, the synthesized behavior

is improved but not perfect. The distance to the obstacles measured during learning

is better than pure random behaviors, however, there are still negative

reinforcements experienced. Any difficulty in the use of basic Q-learning is the

result of its standard tabular formulation. An exhaustive exploration of all

situation-action pairs is impossible due to time constraint. Therefore, there are an

incredibly small number of explored situation-action pairs versus unknown

situation-action pairs. Several refinements have been proposed in order to speed up

learning. Madadevan and Connell [80] use the Hamming distance to generalize

between similar situations; the same authors also use clusters to generalize across

similar situation-action sets. Sutton [126]proposes the Dyna-Q model in which

situation-action pairs are randomly carried out to speed up propagation of the Q

values through time. However, those methods use the same look-up table as in

basic Q-learning implementation and they are subject to a memory requirement for

storing all possible situation-action utility values. In practice, there are many

situation-action pairs that are never visited and it is pointless to store these utility

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 8 9

values. The most important problem that RL methods based on tabular formulation

faces is the limitation of generalization. In this experiment, a unique bit is used to

code each sensor value. This is certainly not precise enough. However, it is

impossible to use more bits per sensor due to the curse of dimension described in

Section 3.2. In order to cope with continuous states and actions, it is necessary to

use efficient generalization processes which revolve around the use of experienced

situation-action pairs to induce ways of dealing with new unknown situations and

actions.

4.6.3 Neural Q-Learning

Neural networks is a kind of approach suitable for generalization of RL methods.

Numerous authors [6,65,117,13 1,13 81 have proposed a neural implementation of

RL, which seems to offer better generalization. The memory size required by the

system to store the knowledge is defined, a prior, by the number of connections in

the network. In [138], an efficient method named Q-KOHON, which is based on

the Kohonen self-organizing map (SOM) [58], is proposed. The self-organizing

map is distinguished by the development of a significant spatial organization of the

layer. Following the implementation of [138], there are 16 neurons in the map.

During the learning phase, the neurons of the SOM approximate the probability

density function of the inputs. The inputs are situation, action and the associated Q

value. The number of neurons is equal to the number of stored associations. The

best action selected in a world situation is given by the neuron that has the minimal

distance to the input situation and to a Q value of +1. The learning algorithm

updates the Q value weight using Eq. (3.1 1) and the situation and action weights.

The neuron corresponding to the situation and the action effectively performed is

selected by finding the minimal distance to the situation and action vectors but

nothing concerning the Q value. Together with the selected neuron, the four

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 90

neighbors are also updated. The learning coefficient is 0.9 for the selected neuron

and 0.5 for the neighborhood. The results are shown in Figure 4.8. The Q-KOHON

implementation requires much less memory and learns faster than basic Q-

learning. The neural generalization process, through the continuity of the input

space, allows us to speed up the Q-learning method. The distance to the obstacles

measured during learning is improved and negative reinforcements received reduce

distinctly during learning.

However, Q-KOHON and most approaches using neural networks to generalize

situations still assume piecewise constant actions. These approaches cannot

generate continuous actions and cannot obtain optimal performance. It should be

possible that actions vary smoothly in response to smooth changes in a state. The

Q-KOHON implementation is not sufficient to solve an application. Q-KOHON is

capable of learning behaviors with no prior knowledge; however, more effective

learning solutions would be obtained if the initial experience can be incorporated

during learning. Although Q-KOHON solves the structural credit assignment

problem described in Section 3.2, its efficiency is strictly limited to short

sequences of actions. In this experiment, the synthesized behavior is a reactive

behavior. It does not integrate sequences of actions. A solution would be to change

the reinforcement function so as to take into account sequences of actions.

4.6.4 DFQL

The DFQL approach uses fuzzy rules to introduce generalization in the state space

and generate continuous actions. The parameter values are the same as those used

in Q-learning. The other parameters for rule generation are: -completeness,

= 0.5 ; similarity of membership function, = 0.3 ; TD error factor, K = 50

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 9 1

and TD error criterion, = 1. The eligibility traces are not considered for a fair

comparison. The results are shown in Figure 4.9. At the beginning, performances

of the robot based on DFQL are worse than other methods due to exploration.

However, the performance is improved rapidly and is much better than that of

others subsequently and less negative reinforcements received than all other

implementations.

The DFQL method achievesgood performance very rapidly because the DFQL

displays localized generalization in the state space and it updates the Q values with

the local actions involved in the selection of the global action according to their

contributions at the same time. Furthermore, the optimal action for every possible

situation is most likely continuous. Unlike the piecewise constant outputs of Q-

KOHON, the DFQL generates the continuous actions by continuous state

perception so that actions can very smoothly with smooth changes in a state. We

will present comparisons between the DFQL and other methods that can also

handle continuous actions in the following chapters. The number of fuzzy rules is

generated automatically based on the criteria of -completeness and the TD errors

during learning and is shown in Figure 4.10. The compact structure of fuzzy

systems is obtained online, which does not include redundant or improper

membership functions and fuzzy rules. The number of rules does not increase

exponentially with increase in the number of input variables. Detailed comparisons

between adaptive structure and fixed structure of fuzzy systems are discussed in

Chapter 5. A clear comparison of all the algorithms based on the distance to the

obstacles during learning is shown in the Figure 4.1 1. In order to show the

advantage of generalization, Figure 4.12 makes a performance comparison during

the learning phase with the random policy, Q-learning, Q-KOHON and the DFQL

based on the discounted cumulative reward. This discounted cumulative reward

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 92

t
corresponds to a measure of the cumulated performance of the robot. It

t

is the number of good actions performed that receive non-negative reinforcements

per the total number of moves.

We introduce the basic features of the DFQL algorithm above and more details of

the learning abilities are discussed in the following chapters. Furthermore, we

present a mechanism using fuzzy rules to incorporate initial knowledge for rapid

learning in Chapter 5 and we describe a more general method combined with

eligibility traces, the basic mechanism for temporal credit assignment, in Chapter

6.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 93

Figure 4.6 Distance to the obstacles and local performance indices based on a

random exploration policy

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 94

Learning steps

Figure 4.7 Distance to the obstacles and local performance indices during learning

with basic Q-learning

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 95

Learning steps

Figure 4.8 Distance to the obstacles and local performance indices during learning

with Q-KOHON

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-learning Controllers 96

Learning steps

Learning steps

Figure 4.9 Distance to the obstacles and local performance indices during learning

with DFQL

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-learning Controllers 97

Learning steps

Figure 4.10 Number of fuzzy rules generated by DFQL during learning

- - Basic Q
. Random

I I I I I
0 500 1000 1500 2000 2500 3000

Learning sfeps

Figure 4.1 1 Distance to the obstacles during learning with (a) the random policy,

(b) Basic Q-learning, (c) Q-KOHON, (d) DFQL

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4 Design of Dynamic Fuzzy Q-learning Controllers 98

Learning steps

Figure 4.12 Discounted cumulative rewards obtained during learning with (a) the

random policy, (b) Basic Q-learning, (c) Q-KOHON, (d) DFQL

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5

Embedding Initial Knowledge in
DFQL

In Chapter 4, we describe the DFQL, an algorithm for generating a fuzzy system

based on Q-learning. The key idea of the DFQL algorithm is that the system can

start with no fuzzy rules and fuzzy rules can be recruited automatically according

to the system performance. However, if we can incorporate initial knowledge to

the learning system, especially in the early stages, we can greatly increase the

speed of learning. In this chapter, we introduce a natural framework of

incorporating initial knowledge by fuzzy rules. Subsequently, the wall-following

behavior of the Khepera robot is investigated in experiments. A comparative study

of the Jouffe's fuzzy Q-learning [48], Millan's continuous-action Q-learning [87]
and our approach is carried out. All these methods can handle continuous states

and actions and incorporate initial knowledge for rapid learning.

5.1 Efficient Use of Initial Knowledge

Q-learning is capable of learning the optimal value function with no prior

knowledge of the problem domain, given sufficient experience of the world.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Embedding Initial Knowledge in DFQL 100

However, it is difficult for a robot to gain "sufficient" knowledge in reality. We are

fundamentally limited in the amount of data we can generate, especially if we want

to perform learning on-line, particularly when we are dealing with real-world

problems. Moreover, we are fundamentally limited by the number of training runs

that we can realistically hope to perform on a robot.

If we start with no knowledge of the world, we are essentially forced to act

arbitrarily. If we are taking arbitrary actions, this amounts to a random walk

through the state space, which is unlikely to reach the goal state in a reasonable

time. If we can bias the learning system, especially in the early stages of learning,

so that it is more likely to find the "interesting" parts of the state space, we can

greatly increase the speed of learning.

5.1.1 Build-in Bias

Because it is very difficult to solve arbitrary problems in the general case, we must

use generalization and begin to incorporate bias that will leverage on the learning

process. One problem that prevents learners from learning anything is that they

have a hard time even finding the interesting parts of the space. As a result, they

wander around at random never even getting near the goal. Millan [85-87] explores

the use of reflexes to make robot learning safer and more efficient. The reflexes

correspond to domain knowledge about the task and allow the incorporation of

bias into the system. Bias suggests actions for situations that otherwise would be

time consuming to learn. These biases can eventually be overridden by more

detailed and accurate learned knowledge. There are two ways in which the learner

can efficiently learn from bias.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Embedding Initial Knowledge in DFQL 101

Safer learning

Bias makes the learner operational form the very beginning and increments

the safety of the learning process. The design problem initially is to provide

the learner with basic behavior, which ensure its immediate safety. Once

these basic aims have been achieved, more sophisticated skills can be

added.

Guessing where to search

Bias accelerates the learning process since it focuses the search process on

promising parts of the action space immediately. The bias initializes the

system in such a way that greedy policies are immediately operational even

if far from optimal. The learner need only explore actions around the best

ones currently known.

Initial Knowledge from Fuzzy Rules

Fuzzy rules provide a naturalframework of incorporating the bias components for

RL [39]. On one hand, fuzzy systems are multi-input-single-output mappings from

a real-valued vector to a real-valued scalar and precise mathematical formulas of

these mappings can be obtained. On the other hand, fuzzy systems are knowledge-

based systems constructed from human knowledge in the form of fuzzy IF-THEN

rules. An important contribution of fuzzy systems theory is that it provides a

systematic procedure for transforming from a knowledge base to some nonlinear

mapping. We use knowledge-based linguistic information to construct an initial

fuzzy system, and then adjust the parameters of the initial fuzzy logic system based

on numerical information.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Embedding Initial Knowledge in DFQL 102

The if-then fuzzy rules corresponding to the domain knowledge pertaining to the

tasks can be incorporated into the DFQL design. The premise of rules can be used

to generate EBF units over the fuzzy input space and the consequents of rules can

be used to generate the initial Q-values, which are called bias. Bias suggests

actions for situations thatotherwise would be time consuming to learn. Thus, bias

accelerates the learning process since it focuses on the search process on promising

parts of the action space immediately. The parameter vector of a rule, q associated

with discrete actions is initialized so that a greedy policy would select the action a

suggested by this rule. Similar to [87], the main idea of the method employed in

this chapter is that the Q-value of the selected discrete action a is initialized to a

fixed value , while all other values are given random values according to a

uniform distribution in [0, / 2] .

The DFQL is an automatic method capable of self-tuning FIS, i.e., generating

fuzzy rules according to system performance. The generated basic rules initialized

from prior knowledge keep the learner safe and direct it in the right direction

during the early stages of learning. The basic fuzzy rules, deduced froma human

driver's intuitive experience, can yield an action that is feasible but far from

optimal. It is almost impossible or difficult to find optimal fuzzy rules through a

trial-and-error approach where a great number of variables are involved in the

control task. In view of this, RL is added to tune the fuzzy rules online, which are

eventually overwritten and improved by more accurate learned actions. Because

the basic fuzzy rules are used as starting points, it is possible to determine optimal

parameters without too many iterations and the robot can be operated safely even

during learning.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Embedding Initial Knowledge in DFQL 103

5.2 Experiments

5.2.1 Wall Following Task for Khepera Robot

In this section, the DFQL approach has been applied to the Khepera robot for the

wall following task. The aim of the experiment is to design a simple controller for

wall following. In order to simplifythe problem, we only consider robots moving

in clockwise direction at a constant speed. Thus, we only need to deal with four

input variables, which are the values of sensor (i = 0,. . . ,3). All these sensor

values can be normalized within the interval [0,1]. The output of the controller is

the steering angle of the robot. In order for the robot to follow a wall, it must move

in a straight line as much as possible while staying between a maximum distance,

, and a minimum distance, , fromthat wall. The value of sensor d can be

regarded as the distance to the wall being followed. The robot receives a reward

after performing every action U. The reward function depends on this action and

the next situation:

0.1, if d (U

-3.0, if (5.1)

0.0, otherwise

If an action brings the robot outside the range of the robot will stop,

move back inside the region, and receive a punishment. In these experiments,

and

The training environment with lighted shaped walls used for a real robot and

simulation studies are shown in Figure 5.1 and Figure 5.2 respectively. The

performance of the different approaches is evaluated at every episode of 1000

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Embedding Initial Knowledge in DFQL 104

control steps according to two criteria, namely failures which correspond to the

total number of steps the robot has left the "lane" and reward which is

accumulated. In order to compare the different approaches systematically and find

appropriate parameters, we implement these methods on both simulation and the

real robot. The experimental results described as follows are based on the real

robot.

Figure 5.1 Actual environment for wall-following experiments

Figure 5.2 Simulation environment for wall-following experiments

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Embedding Initial Knowledge in DFQL 105

5.2.2 Basic Fuzzy Controller

First, we design the fuzzycontroller based on intuitive experiences. For each input

linguistic variable, we define two linguistic values: Small and Big, whose

membership functions cover the region of the input space evenly with the value of

-Completeness set to 0.5. This means that there are 16 fuzzy rules. Through

trial and error, we can obtain the 16 fuzzy rules as a special case of the TSK fuzzy

controller, whose consequents are constant, as follows:

Table 5.1 Basic fuzzy control rules for wall following

Rule Steering angle

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Small

Small

Small

Small

Small

Small

Small

Small

Big

Big

Big

Big

Big

Big

Big

Big

Small

Small

Small

Small

Big

Big

Big

Big

Small

Small

Small

Small

Big

Big

Big

Big

Small

Small

Big

Big

Small

Small

Big

Big

Small

Small

Big

Big

Small

Small

Big

Big

Small

Big

Small

Big

Small

Big

Small

Big

Small

Big

Small

Big

Small

Big

Small

Big

30

3 0

30

15

3 0

15

15

15

3 0

15

0

0

3 0

-15

-15

-15

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Embedding Initial Knowledge in DFQL 106

If the robot only uses the basic fuzzy controller, it can actually follow the wall, but

along inefficient trajectories. When only the basic fuzzy controller is used, the

robot encounters 63 failures, and -130.7 of reward per episode on average.

Certainly, we can provide finer partitioning of the input space, or tune the

parameters of the membership functions and consequents so as to obtain better

performances. However, the number of rules will increase exponentially with

increase in the number of input variables. Furthermore, tuning consequents of rules

is time consuming because of the risk of creating conflicts among the rules. It is

almost impossible or impractical to design an optimal fuzzy controller by hand due

to a great number of variables involved. Similar to the idea of [87], we incorporate

RL into fuzzy controller design and the basic fuzzy rules designed fromintuitive

experiences are used as a starting point for learning. As a consequence, it

overcomes some limitations of basic RL where an extremely long learning time is

needed and unaccepted behavior may be generated during learning.

5.2.3 Fuzzy Q-Learning with a Fixed Structure

Next, we consider the FQL approach of [48] that has a fixed structure of fuzzy rule

sets. A total of 16 fuzzy rules, same as the basic fuzzy controller, are used.

However, the consequents of the rules can be adjusted based on the fuzzy Q-

learning. Here, we simply use the undirected exploration method employed in [48]

to select a local action a from possible discrete action vector A, as follows:

The term of exploration stems from a vector of random values, (exponential

distribution) scaled up or down to take into account the range of q values as

follows:

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Embedding Initial Knowledge in DF'QL 107

where is the noise size, with respect to the range of qualities, and is the

corresponding scaling factor. Decreasing the factor implies reducing the

exploration. We choose an exploration rate of 0.001 in the experiments.

The set of discrete actions is given by A = [-30, -25, -20, -15, -10, -5, 0, 5, 10, 15,

20, 25, 30]. The initial q-value, = 3.0 is chosen according to the method

described in Section 5.1. The other parameters in the learning algorithm are:

Discounted factor, y = 0.95 ; Trace-decay factor, = 0.7 ; TD learning rate,

a = 0.05. The controller with 81 f k z y rules whose membership functions

satisfy the 0.5 -completeness is also considered. Average performances of the

two controllers during 40 episodes over 10 runs are shown in Figure 5.3

At the very beginning, performances of the two controllers based on the FQL are

worse than that of the basic fuzzy controller due to the exploration feature of RL.

The robot has to explore different actions in order to ensure that better actions are

selected in the future. However, the performance of the robot is improved

gradually and is much better than that of the basic fuzzy controller. To assess the

effectiveness of finer partitioning of the input space, we compare the performances

of the FQL using 16 rules and 81 rules. The speed of learning 81 rules is slower

than that of 16 rules because a lot more parameters need to be explored. However,

asymptotic performances of these two methods are almost the same. It is

impractical to partition the input space further due to the curse of dimensionality.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Embedding Initial Knowledge in DFQL 108

Figure 5.3 Comparison of performances of fuzzy controllers for (a) 16 fuzzy rules
based on FQL, (b) 81 fuzzy rules based on FQL, (c) Basic fuzzy controller
with 16 fuzzy rules

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Embedding Initial Knowledge in DFQL 109

Figure 5.4 Comparison of performances of fuzzy controllers for (a) 16 fuzzy rules
based on FQL, (b) 8 1 fuzzy rules based on FQL, (c) Basic fuzzy controller
with 16 fuzzy rules, (d) Fuzzy controller based on DFQL

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Embedding Initial Knowledge in DFQL 110

16
0 5 10 15 20 25 30 35 40

Episodes

Figure 5.5 Number of fuzzy rules generated by DFQL during learning

Membership hnctions of input variable Membership functions of input variable

Figure 5.6 Membership functions after learning at one run

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Embedding Initial Knowledge in DFQL 111

5.2.4 DFQL

Now, we assess the performance of DFQL approach. The parameter values are the

same as those used in the FQL approach. The other learning parameters for rule

generation are: -completeness, = 0.5 ; similarity of membership function,

= 0.3 ; TD error factor, K = 50 and TD error criterion, = 1. These values

give good performances of the algorithms in an initial phase. However, it should

be pointed out that we have not searched the parameter space exhaustively. The

performances of the DFQL approach shown in Figure 5.4 are also the mean values

during 40 episodes over 10 runs. As expected, the DFQL performs better than the

FQL with respect to both failures and reward. In fact, the DFQL outperforms the

FQL during the major portion of episodes and asymptotic performance of DFQL is

about 30% better than that of FQL according to the performance of the basic fuzzy

controller. The number of fuzzy rules generated at every episode is shown in

Figure 5.5. The membership functions produced by the DFQL after learning input

variables at one run are shown in Figure 5.6. The number of rules can be generated

automatically online and does not increase exponentially with increase in the

number of input variables. Thus, a compact and excellent fuzzy controller can be

obtained online. The reason why the DFQL method outperforms the FQL method

is that the DFQL approach is capable of online self-organizing learning. Input-

output space partitioning is one of the key issues in fuzzy systems because it

determines the structure of a fuzzy system. The common approach of conventional

input-space partitioning is the so-called grid-type partitioning. The FQL with 16

rules partition the state space coarsely, on the other hand, the speed of learning 81

rules is slow because a lot more parameters need to be explored. The proposed

DFQL need not partition the input space a priori and is suitable for RL. It

partitions the input space online dynamically according to both the accommodation

boundary and the performance of RL. The compact fuzzy system considers

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Embedding Initial Knowledge in DFQL 112

sufficient rules in the critical state space which requires high resolution and does

not include the redundant rules in the unimportant or unvisited state space so that

the learning is rapid and optimal.

5.2.5 Adaptation in a New Environment

We test the performance of the learned DFQL navigation strategies in an

environment different from that used for training. This new environment is similar

to the one before, except that it contains some new obstacles depicted in Figure 5.7

Figure 5.7 The new training environment with obstacles

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Figure 5.8 compares the performances (mean values over 20 runs) of the
robot during training directly and re-training in the new environment. During

re-training, the robot is first trained in the original simple environment and

then re-trained in the new environment so as to improve the obtained

navigation strategies. In this period, the robot only has a few more fuzzy

rules to deal with in the new regions of sensory space, and is able to adapt its

previous knowledge to the new environment quickly. It should be

highlighted that no more membership functions need to be

Chapter 5 Embedding Initial Knowledge in DFQL 113

generated. As a result, the learning speed of re-training is faster than that of

training directly in the new environment.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Embedding Initial Knowledge in DFQL 114

Figure 5.8 Performance comparison of DFQL with training directly and retraining

in a new environment

5.2.6 Continuous-Action Q-Learning

The algorithm described in this thesis shows some resemblances with other related

works. In particular, the Continuous-Action Q-Learning approach, which is the

only approach restricted to the generation of continuous actions by means of Q-

learning is proposed in [87]. Bias represents domain knowledge in the form of

built-in reflexes, which make learning process rapid and safe. Our idea of

incorporating basic fuzzy rules is adopted from this idea. However, ow approach

differs fiom it in several aspects. First, fuzzyrules are considered in the DFQL.

Second, the DFQL develops fuzzy systems with ellipsoidal regions of rules instead

of radial regions. Third, the criteria for rule generation are different. Ow criteria

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Embedding Initial Knowledge in DFQL 115

are not only based on the accommodation boundary but also the system

performance based on TD errors. On top of this, the most important difference is

the updating algorithm of Q-values. In Continuous-Action Q-Learning, only the

nearest unit is used to select the action. The resulting continuous action is an

average of the discrete actions of the nearest units weighted by their Q-values. On

the other hand, in our approach, one discrete action is selected fromevery fuzzy

rule. The resulting continuous action is an average of the actions weighted by the

firing strengths of fuzzy rules. Both methods update the Q-values of the actions

according to their contributions. For Continuous-Action Q-Learning, if the number

of discrete actions is large, more neighboring discrete actions need to be

considered. Otherwise, the continuous action is not explored sufficiently. The

discrete actions whose Q-values are not good will degrade the continuous action.

In our approach, one discrete action is selected according to the exploration-

exploitation strategy for every fuzzy rule. It is more efficient to use the firing

strengths of fuzzy rules as weights. In order to compare these two algorithms, we

only consider the difference of updating Q-values and assume that the others are

the same. For Continuous-Action Q-Learning, the exploration rate is = 0 , and

we consider one action to each side of the optimal action, a, according to the

following rules:

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Embedding Initial Knowledge in DFQL 116

For the DFQL, the exploration rate, is set to 0.001 and the global action and its

Q-value are given by Eqs. (4.9) and (4.10) respectively. The results (mean values

over 10 runs) are shown in Figure 5.9 At the very beginning, the performance of

Continuous-Action Q-Learning is better than that of DFQL because it always

explores near optimal initial values. However, the performance is worse than that

of DFQL later since the learner may get trapped to locally optimal actions.

Discrete actions whose Q-values are not good will degrade the continuous action.

Of course , we can combine the two methods together. But, it requires more

computational time and the learning results are not better than the DFQL

significantly.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Embedding Initial Knowledge in DFQL 117

Figure 5.9 Performance comparison of updating Q-values for Continuous-Action

Q-Learning and DFQL

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6

General DFQL with Eligibility Traces

In Chapter 4 and 5, we introduce the DFQL algorithm and a method of embedding

initial knowledge in DFQL to speed up learning. In this chapter, we study the

effects that combine DFQL with eligibility traces. We extend the learning

algorithm to the general version with an eligibility mechanism, leading to faster

learning and alleviating the experimentation-sensitive problem. Subsequently,

simulation studies of the general DFQL on the optimum path experiments

demonstrate the efficiency of the method for learning an appropriate policy.

6.1 General DFQL

6.1.1 Eligibility Traces

Eligibility traces are one of the basic mechanisms of RL. For example, in the

popular algorithm, the term refers to the use of an eligibility trace.

Almost any TD method can be combined with eligibility traces to obtain a more

general method that may learn more efficiently. An eligibility trace is a temporary

record of the occurrence of an event, such as visiting a state or taking an action.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6 General DFQL with Eligibility Traces 119

The trace marks the memory parameters associated with the event as eligible for

undergoing learning changes. When a TD error occurs, only the eligible states or

actions are assigned credit or blamed for an error. Thus, eligibility traces help

bridge the gap between events and training information. Eligibility traces are a

basic mechanism for temporal credit assignment.

There are many RL algorithms which employ the eligibility trace mechanism.

is introduced by Sutton [123], and an alternative version known as a

replacing trace is proposed by Singh and Sutton [117]. The TD algorithm has been

shown to be convergent by several researchers [32,102,139]. The SARSA

algorithm is due to Rummery [110,127], and can also be formulated with an

eligibility mechanism Q-learning and the eligibility trace method

are proposed by Watkins [145].Peng's [103]can be thought of as a hybrid

arrangement of and Watkins's and it performs significantly better

than Watkins's and almost as well as although it has not been

proven to be convergent in the general case.

All the algorithms presented so far have all been shown to be effective in solving a

variety of RL tasks. The and algorithms are known as on-policy

algorithms. The value function that they learn is dependent on the policy that is

being followed during learning. Using an on-policy algorithm with an arbitrarily

bad training policy might result in non-optimal policy. Eligibility traces used in

Watkins's are set to zero whenever an exploratory action is taken. Thus,

learning may be a little faster than one-step Q-learning in the early stage. On the

other hand, the features of Peng's make it much more appealing for our

purposes, though it cannot be implemented as simply as others.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6 General DFQL with Eligibility Traces 120

The main advantage of Peng's over other methods with eligibility traces is

that it is less experimentation-sensitive and it is able to learn without necessarily

following the current policy. This capability makes it much more appealing for the

purpose of efficient implementation of RL in real-time applications. We might not

know a good policy for the task that we are attempting to learn. Using an

experimentation-sensitive algorithm with an arbitrarily bad training policy might

result in non-optimal policy. Using an experimentation-insensitive algorithm

allows us to alleviate this problem. Another advantage of Peng's is that it

performs well empirically. Most studies have shown that it performs significantly

better than Watkins's and almost as well as

6.1.2 The General DFQL Learning Algorithm

We extend the DFQL learning algorithm to the general version with an eligibility

mechanism based on Peng's Under the same assumptions stated in Chapter

4, the one-time-step global working procedure of general learning algorithm is

proposed as follows: Let t+l be the current time step and assume that the learner

has performed the action and has received a reinforcement signal .

a. Check the fuzzy rule generation criteria according to the current state .

If a new fuzzy rule needs to be generated, tune the structure of the FIS and

initialize the parameter vector q of the new rule based on prior knowledge.

The initial values of eligibility traces of fuzzy state action pairs are set to

zero;

b. Approximate the optimal evaluation function corresponding to the current

state and FIS by using the optimal local action quality i.e.);

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6 General DFQL with Eligibility Traces 121

c. Compute '= + - ;

e. For all fuzzy state action pairs, update the eligibility traces

Tr(S,a)= where the eligibility rate A is used to weight time

steps and y is the discount factor for rewards. Next, update all the q values

(s, a) = (s, a) + a) , where a is the learning rate;

f. Update the q values of "active" fuzzy state action pairs at time step t

according to ,) = , where is the selected

local action of rule at time step t and is the normalized firing

strength of rule at time step t, Next, update the eligibility trace of

"active" f u z z ystate action pairs at time step t according to

= . Note that eligibility trace values need to be reset

to zeros at the end of each episode;

g. Elect local actions based on the new vector and compute the global

action ;

h. Estimate the new evaluation function ,) for the current state

and the actions effectively elected and for the current state and

the optimal action. Note that and will be used

for error computation at the next time step.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6 General DFQL with Eligibility Traces 122

NOTE: In the basic DFQL, the TD error is calculated based on the action taken on

the step. The traces and q values are all updated corresponding to this TD error,

which leads to learning necessarily following the current action. An arbitrarily bad

policy might not be exploited for the learning progress.

The main improvement of the general DFQL is that the mixture of updating

mechanism is used, which is derived from the unique feature of Peng7s

Unlike the basic DFQL, two TD errors are considered in the general DFQL,

respectively

whch is based on the Q-value of the actual action on the step and

which is based on the Q-value of the optimal action on the step. All q values

associated with all the fuzzy state-action pairs are updated according to the

eligibility traces from the TD error , i.e.

Next, the q values of "active" fuzzy state-action pairs on the current step are

updated from the TD error ' , i.e.

The advantage of considering eligibility traces for all state-action pairs leads to

faster learning without necessarily following the current action because not only

the q values corresponding to the current state-action pair but also the q values

associated with all the fuzzy state-action pairs are updated according to the

respective TD errors. Any action can be carried out at any time and knowledge is

gained from this experience. On the other hand, the general DFQL cannot be

implemented as simply as the basic DFQL.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6 General DFQL with Eligibility Traces 123

6.2 Experiments

6.2.1 Optimum-Path Task

In this section, we describe the optimum-path experiment performed on the

Khepera mobile robot. The task is to take the robot from a starting location to the

goal location and attempt to optimize the path. We assume that the goal location is

specified in relative Cartesian coordinates with respect to the starting location. The

task faced by the robot is to build a self-adaptive controller that is capable of

searching an optimal trajectory, which would lead to a minimum cost. We carry

out the experiment in simulation environments which can provide the position

information of the robot with respect to the starting location. We are not able to

implement it in the real robot because the position information cannot be detected

due to the hardware limitation. However, positions and orientations of a real robot

can be detected in real time if additional devices are equipped, e.g. the laser device

on the top and the additional turret of the robot used in [33] or grids lines on the

floor and the additional detector of the robot used in [77].

The learning environment consists of an indoor space and a corridor. The task is to

generate the shortest possible but safe trajectory from the interior of an office to a

point at the end of the corridor, similar to the works of [39,40,86]. It is not easy to

implement this seemingly simple task. Firstly, the task is performed using local

sensory information. The robot has neither a global view of the environment nor a

comprehensive world model. Secondly, the task is a high-dimensional continuous

learning task and successful goal reaching requires a non-linear mapping from this

space to the space of continuous real-valued actions.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6 General DFQL with Eligibility Traces 124

The inputs to the controller are the normalized relative position and orientation of

the robot from the goal, i.e., the robot's current position (x,y) and the heading

angle Furthermore, each signal is represented as a vector of three components

using Millan's codification scheme [86] in order to offer greater robustness and

generalization ability. The scheme involves three localized processing units, whose

activation values depend on how far the normalized input value is from the

respective center positions of the processing units. These units with overlapping

localized receptive fields are evenly distributed over the interval of [0,1], and the

activation level of the unit located in the point is

otherwise

where w is the width of the receptive fields and k is the normalized input. The

value of w is 0.45 and the units are located on the points 0.2, 0.5 and 0.8 in the

experiments. As an example, the value of k = 0.4 is coarse coded into the pattern

(0.8025,0.9506,0.2099). Thus, the inputs to the controller consist of a vector of

nine continuous value components, all of real numbers which are in the interval of

[0.1].

The robot's angular rotation, which determines its next direction, is the only output

of the controller. For every step, the robot first completely rotates based on the

specified angle. After rotation has ceased, it will move to a new location by

translating forward a fixed distance if the robot does not collide with obstacles.

Whenever the robot detects a collision, an emergency behavior will stop the robot.

Here, the emergency activation occurs with the reflectance value of any IR sensors

greater than 1000.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6 General DFQL with Eligibility Traces 125

The robot receives reinforcement signals when it approaches the goal location and

avoids obstacles. It is important to note that the robot does not seek to optimize

each immediate reinforcement signal, but to optimize the total amount of

reinforcement obtained along the path to the goal. The reinforcement function is

directly derived fi-om the task definition, which is to reach the goal along

trajectories that are sufficiently short and, at the same time, have a wide clearance

to the obstacles. Thus, the reinforcement signal r has two components. The first

component penalizes the robot whenever it collides with or approaches an obstacle.

If the robot collides, it is penalized by a fixed value; otherwise, if the distance

between the robot and obstacles is less than a certain threshold, =300, the

generated penalty increases as the distance between the robot and the obstacle

decreases. The component of the reinforcement that teaches the robot to keep away

fromobstacles is:

if collision

otherwise

where d, is the shortest distance, i.e. the maximum reading value, provided by any

IR sensors while performing the action. It should be pointed out that only virtual

collision occurs, which makes the learning process safe. The other component

teaches the robot how to approach the goal. The second component of the

reinforcement function is proportional to the angle between the robot heading

and the line connecting the goal and the robot location , which is given by

The total immediate reinforcement r is the sum of the two components, r = + .
Th is reinforcement function does not teach the robot directly how to reach the

goal; it only trains the robot how to approach the goal without collisions.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6 General DFQL with Eligibility Traces 126

6.2.2 Learning Details

The learner's aim is to learn to perform those actions that optimize the total

reinforcement in the long term. That is, the learner has to learn a policy that

maximizes the total reinforcement which is the sum of immediate reinforcements

the learner receives till the robot reaches the goal, i.e.

where T is the total number of moves required to reach the goal. Here, the discount

factor is y = 1 .

We seek to make RL effective for real robots and require that learning takes place

online from a relative small amount of experiences. As we consider sophisticated

tasks, it will be almost certain that the learner will not be effective in a reasonable

amount of time. It either collides with obstacles that terminate the learning process

or explores aimlessly without ever reaching the goal that can take unacceptable

long time to discover interesting parts of the space. As mentioned in Chapter 5, a

way of alleviating the problem of slow convergence of RL is to use bias from prior

knowledge to figure out which part of the action space deserves attention in each

situation. The architecture of the bias component is similar to [39] and shown in

Figure 6.1. It consists of two fuzzy behavior, namely obstacle avoidance and goal

following. The output of the total behavior is obtained by combining

corresponding priority functions for each behavior. Since the bias is used to

provide only an initial value, it suffices to consider a fixed blending scheme with

constant desirability parameters = 0.9 and = 0.1, one for each behavior.

The blender fuses the outputs of each behavior according to

u = + (6.5)

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6 General DFQL with Eligibility Traces 127

where and are the outputs of obstacle avoidance and goal following

respectively.

Figure 6.1 Architecture of bias component

Here we use the simple basic fuzzy controller for this specific task because it is

sufficient to provide the starting points for learning. As we consider sophisticated

environments, any efficient navigation strategy, e.g. those of [25,76], can be

regarded as the basic fuzzy controller, as long as it provides at least one free way

or path through which the robot can reach the goal without collisions. The basic

fuzzy controller, though eventually overwritten and improved by more accurate

learned actions through exploration, keep the robot safe and direct it in the right

direction while it is trying to learn.

This control task takes place in multi-dimensional continuous state space and

prefers continue actions. Millan's method [86] uses the unique feature of the

Nodmad 200 robot: the turret motor. Since the turret motor orients the sensors

independent of the robot heading, the robot can take similar actions for similar

situations independently of its current direction of travel. However, for most

robots, the state-space data generated would be different every time a robot visits

the same location at different heading angles. Therefore, the entire state space is

extremely huge but many states will never be visited. It is necessary to choose the

way of using an online adaptive state construction algorithm instead of partitioning

the state space evenly prior to learning. Hence, the fuzzy control rules are not

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6 General DFQL with Eligibility Traces 128

predefined, but are created dynamically when the robot explores its environment.

As foreshadowed, a fuzzy rule is a local representation over a region defined in the

input space. When a new fuzzy rule is generated, membership functions of the

input variables are chosen in the form of Gaussian functions and the receptive

fields of this model in the input space can be regarded as radial basis function

(R B F) units. The strength of the activation value of the RBF basis function, i.e.,

the overall truth value of the premise of fuzzy rules is given by

(x)= e x p (- - (6.6)

where is the center vector of the ith RBF unit and a is the receptive width of

the unit. In order to avoid complex computation, the receptive widths are kept

fixed to a = 0.3 in this case. When a new input situation arrives, check the two

criteria of rule generation. If the highest firing strength value of fuzzy rules is less

than 0.5 or collisions are detected based on the reinforcement signal received, a

new fuzzy rule, i.e., a new RBF unit is generated.

The local action space for every rule is a set of rotation

angles A = [- 20,-10,0,10,20]. The selected local action of every rule cooperates to

produce the continuous global action based on the rules' normalized firing

strengths. The local actions are selected using exploration-exploitation strategy

based on the state-action quality, i.e., q values. Here, the simple -greedy method

is used for action selection: a greedy action is chosen with the probability of 1 -

and a random action is used with the probability of . The exploration probability

2
is set by = --- , where T is the number of trials. The exploration probability is

10+T

intended to control the necessary trade-off between exploration and control, which

is gradually eliminated after each trial.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6 General DFQL with Eligibility Traces 129

The q values of the fuzzy state-action pairs can be set to optimistic initial values

when the fuzzy state-actions are visited at first in order to accelerate the learning

speed. When a new fuzzy rule is generated, the action selected based on the basic

fuzzy controller fromprior knowledge and the q value is estimated on the basis of

the distance fi-om the location to the goal. This enables the basic fuzzy controller to

control the robot when new an input state is encountered. When the fuzzy state has

been visited before but the local action is selected at first, the q value is initialized

to the minimum value of q values in this state. After initialization, all q values of

the fuzzy state-action pairs are updated according to the algorithm described in

Section 6.1.2 and the learning step size is set to a = 0.3 in this task.

In the works of [39,86], the simplest TD method, i.e. TD(0) is used. In order to

speed up learning, whenever the goal is reached, the learning algorithm updates the

utility values of all RBF units that are along the path to the goal in reverse

chronological order. Towards this objective, the robot has to store all information

along the current path. Here, however, the eligibility trace method is incorporated

into our algorithm and it is not necessary to store data of the current path and

update values after reaching the goal. Methods using eligibility traces offer

significantly faster learning, particularly when rewards are delayed by many steps

and they are suitable for online applications. Furthermore, they should perform

better in non-Markovian environments than the TD(0) method. The term refers

to the use of an eligibility trace and we choose = 0.9 first.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6 General DFQL E with Eligibility Traces 130

6.2.3 Learning Results

Figure 6.2 Sampling trajectory generated during first and final episodes

Figure 6.3 Number of steps taken in each episode when 0.9 (a) typical single
run, (b) average of 10 runs

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6 General DFQL with Eligibility Traces 131

Figure 6.4 The total reinforcement received in each episode when = 0.9 (a)
typical single run, (b) average of 10 runs

Figure = 0.9 (a)

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6 General DFQL with Eligibility Traces 132

Figure 6.2 shows sample robot trajectories during first and final episodes. The first

time the robot tries to reach the goal, it depends almost all the time on the basic

fuzzy controller, which forces it to go into the concave region since the

information of the environment is unknown. In the final robot trajectory, the robot

has learned to smooth out the trajectory by circumventing the concave region and

to avoid colliding with the door edges by passing through the middle of the door.

The learning curves which correspond to the mean values during 30 episodes over

10 runs and one typical single run are shown in Figure 6.3-6.5. During the first few

episodes, the total reinforcement obtained is worse and more steps are taken along

each trajectory. When the episodes proceeded, the performance of the robot is

gradually improved. The number of fuzzy rules grows when the robot is exploring

the environment. The average performance after 30 learning episodes is much

better than that in the initial phase. Note fromthe single run curve that the system

performances on single episodes are sometimes extremely bad. On these episodes,

the robot practically takes a different action and departs from the already learned

path. In the following episodes, however, it returns to its previous performance and

follows the learned path.

In order to examine the effects of A values on the learning speed and quality,

various values of A are used while the other parameters are left the same. Smaller

learning step size, might be used for bigger values of but it is kept constant

for consistency. The learning curves that correspond to the mean values during 30

episodes over 10 runs are shown in Figures 6.6-6.7. The value of A = 0 gives the

worst performance. Increasing A improves the leaning speed. The values of

equal to 0.9 or equal to 1.0 are similarly effective, greatly outperforming the

performance for = 0 and better than that for A = 0.5. The main result is that

using large A always significantly improves the performance because the

parameter is used to distribute credit throughout the sequence of actions, leading

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6 General DFQL with Eligibility Traces 133

to faster learning and also help to alleviate the non-Markovian effect [103]. But, it

is not quite consistent with the empirical results of [128], in which the performance

is best for intermediate near 1 but the worst for = 1 . It seems more likely that

the optimal value of simply depends strongly on the particular problem.

Another point is that bias values are used and this task actually is in non-

Markovian environments.

Figure 6.6 Comparison of number of steps taken during learning when different
are used = 0.0 = 0.5 = 0.9 = 1.0

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6 General DFQL with Eligibility Traces 134

Figure 6.7 Comparison of the total reinforcement received during learning when
different A are used (a) A = 0.0 (b) A = 0.5 (c) A = 0.9 (d) A = 1.0

Discussions

As mentioned in Section 3.1.3, there are mainly two prevalent approaches to RL,

namely Q-learning and actor-critic learning. The advantage of DFQL is the

generation of continuous actions by means of Q-learning. There are other RL

algorithms for handing continuous space and action spaces, but almost all of them

are based on actor-critic architecture, e.g. the two representative fuzzy RL

algorithms [10,68] discussed in Section 2.2.2. These works are based on

Williams's REINFORCE algorithms [148]. Actions are generated with a normal

distribution whose mean and variance vary according to the success or failure of

actions. The drawback of these actor-critic architectures is that they usually suffer

from local minima problems in network learning due to the use of gradient descent

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6 General DFQL with Eligibility Traces 135

learning method. Actor-critic architectures seem to be more difficult to work with

than Q-learning in practice. It can be very difficult to get the relative learning rates

right in actor-critic architectures so that the two components converge together.

Q-learning learns the values of all actions, rather than just finding the optimal

policy. The main advantage of Q-learning over actor-critic learning is exploration

insensitivity, i.e. any action can be carried out at any time and knowledge is gained

from this experience. For these reasons, Q-learning is the most popular and seems

to be the most effective model-free algorithm for learning from delayed

reinforcement. On the other hand, because actor-critic learning updates the state

value at any state based on the actual action selected, it is exploration-sensitive.

As we noted in the previous sections, we might not know a good policy for the task

that we are attempting to learn. Using experimentation-sensitive algorithm with an

arbitrarily bad training policy might result in a non-optimal policy. However, using

experimentation-insensitive method, freesus from worrying about the quality of

the policy that we adopt during training. In the works of [39,86], the learning

architecture is also an actor-critic system. In order to avoid bad effects of an

exploration policy, only the simplest TD method, i.e., TD(0), is used. In our

algorithm, the general learning algorithm is extended to the version with an

eligibility mechanism based on Peng7s . The learning algorithm

exhibits beneficial performance characteristics attributable to the use of

returns for > 0. At the same time, similar Q-learning, learning construct

the function of state-action pairs rather than the state, making it capable of

discriminating between the effects of choosing different actions in each state.

Thus, while learning is experimentation-sensitive, unlike Q-learning, it

seems reasonable to expect it to be less so than actor-critic learning [103].

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 7

Conclusions and Future Works

This chapter summarizes the contributions made by this thesis. We then go on to

discuss several possible ways in which this work might be extended in the future.

7.1 Conclusions

In this thesis, a novel algorithm termed Dynamic Fuzzy Q-Learning (DFQL) has

been designed and developed.

There are two main research tracks that influence our work. The first is related to

learning paradigms of fuzzy systems. Chapter 2 introduces the basic concept of

FISs and discusses several issues concerning the learning ability of fuzzy systems

based on different families of learning methods characterized by the information

source used for learning. The second track is related to the use of generalization in

reinforcement learning. Chapter 3 presents the basic framework of reinforcement

learning and discusses the problem of generalization in large continuous spaces.

Furthermore, problems in applying reinforcement learning to robotics are

described.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 7 Conclusions and Future Work 137

In Chapter 2, we describe the learning methods of fuzzy systems based on Q-

learning. However, all the algorithms described only adjust the parameters of fizzy

systems and do not involve structure identification. In Chapter 3, we introduce

algorithms for generalization of experiences in RL. However, most of these works

assume discrete actions. In order to cope with these problems, Chapter 4

introduces the development of the proposed DFQL. Detailed descriptions of the

DFQL architecture, on-line structure and parameter learning algorithm and

modeling method are presented. From the point of view of fuzzy systems, the

DFQL method is a learning method capable of generating and tuning fizzy rules

automatically based on simple reinforcement signals. From the point of view of

machine learning, the DFQL method is a mechanism of introducing generalization

in the state-space and generating continuous actions in RL problems. The DFQL

generalizes the continuous input space with fuzzy rules and generates continuous-

valued actions using fuzzy reasoning. Based on the criteria of -completeness and

the TD errors, new fuzzy rules can be generated automatically, which allows us to

circumvent the problem of setting up fuzzy rules by hand.

One of the main hurdles to implementing RL systems is overcoming the lack of

initial knowledge. If we know nothing of the task beforehand, it is often difficult to

make any progress with learning or to keep the robot safe during the early stages of

learning. Chapter 5 describes the natural framework of incorporating the initial

knowledge as bias to the learning system based on fuzzy rules. It focuses on the

search process on promising parts of the action space immediately and reduces the

training time significantly.

In order to learn more efficiently, especially from delayed reinforcement signals,

an RL system can be combined with eligibility traces, which are a basic

mechanism for temporal credit assignment. Chapter 6 extends the DFQL to the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 7 Conclusions and Future Works 138

general version with an eligibility mechanism, leading to faster learning and

alleviating the experimentation-sensitive problem where an arbitrarily bad training

policy might result in a non-optimal policy.

The main characteristics of DFQL are summarized as follows:

The DFQL is able to construct a FIS based on evaluative scalar

reinforcement signals.

New fuzzy rules can be generated based on the distance driven and error

driven criteria so as to adjust the structure and parameter of FIS

automatically.

Continuous states are handled and continuous actions are generated through

fuzzy reasoning in the DFQL.

The if-then fuzzy rules allow the addition of initial knowledge as biases to

the DFQL for rapid and safe learning during the early stages of learning.

The general method of DFQL with an eligibility mechanism leads to more

efficient learning and the ability to learn without necessarily following the

current policy.

In order to test the performance of DFQL, three typical behaviors of mobile robots

have been investigated. In Chapter 4, experiments performed on the Khepera robot

for the obstacle avoidance behavior demonstrate the efficiency of DFQL.

Compared with the random policy, the Q-learning method and the Q-KOHON

method, the DFQL method is superior because of its capability of handling

continuous-valued states and actions. In Chapter 5, the wall-following behavior of

the Khepera robot is investigated in experiments. Thanks to the flexibility of

DFQL, experimental results and comparative studies show the superiority of the

proposed DFQL over the conventional Fuzzy Q-Learning in terms of both

asymptotic performance and speed of learning. A comparative study of the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 7 Conclusions and Future Works 139

Continuous-Action Q-Learning and our approach also demonstrates the superiority

of the DFQL method. Furthermore, the adaptive capability of DFQL has been

tested in a new environment. In Chapter 6, simulation studies on optimum path

experiments demonstrate that the robot is able to learn the appropriate navigation

policy with a few trials. We examine the issues of efficient and general

implementation of the DFQL for different eligibility rates for optimizing the sum

of rewards.

Recommendations for Further Research

There are several promising directions for further work based on the results

presented in this thesis. We look briefly at some of these directions and discuss

their potential usefulness

7.2.1 The Convergence Property

The DFQL method is a heuristic learning method for real-life applications, where

state spaces and action spaces are continuous, especially for robotics systems.

Experiments have been carried out to demonstrate its usefulness. Although the

DFQL method has been shown to work in a number of real and simulated domains,

there is no formal guarantee of convergence. As described in Section 3.2, the

analysis of the performance of general function approximation based on nonlinear

architecture in RL is still an open question, although there are a large number of

successful applications in practice. On the other hand, a fuzzy system can be

represented as a linear architecture with fuzzy basis functionsThe DFQL can be

regarded as a useful method for selecting features, i.e. fuzzy basis functions and

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 7 Conclusions and Future Works 140

finding initial values of parameters. By virtue of the value iteration algorithm with

linear architectures [140], the convergence property can be established.

Tsitsiklis and Roy [140]discuss compact representations which approximate a

value function using a linear combination of features. We consider compact

representations consisting of linear combinations of fuzzy basis functions. Let us

view the state space as S = {1,.. . , n} . With the fuzzy basis functions architecture

[143], the statelstate-action value takes on the following form:

where K is the number of pre-selected fuzzy rules, W is the parameter vector,

is the firing strength of the kth rule. For convenience, we will assume that

) = 1 for k (1,. . . , K}, where s,, . . . are pre-selected states in S. We can

define a fuzzy basis function as a feature and a feature mapping

= (s), . . . , (s)) . If with defined by min) , there exists a
,..., K)

y' such that 0.5 , the assumption in [140] which restricts the

type of features is satisfied. Based on the value iteration algorithm of [140], the

convergence property can be established.

7.2.2 Partially Observable Environments

In many real-world environments, it will not be possible for the learner to have

perfect and complete perception of the state of the environment. Unfortunately,

complete observability is necessary for learning methods based on MDPs. The

model in which the learner makes observations of the state of environment but

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chavter 7 Conclusions and Future Works 141

these observations provide incomplete information is called a partially observable

Markov decision process. The way to behave effectively in hidden state tasks is to

use memory of previous actions and observations to disambiguate the current state

[83,122,147]. However, most of these methods are based on discrete states and

actions. It would be also considered to employ fuzzy logic to deal with continuous

state and action spaces.

7.2.3 Integrating Planning and Learning

As foreshadowed, it is possible for the learner to learn an optimal policy without

knowing the models of environments and without learning those models. However,

these methods make inefficient use of the data they gather and therefore often

require a great deal of experiences to achieve good performance. The other kind of

learning methods uses experience to learn the model of the environment and

improve the policy based on RL at the same time [91,124], so as to achieve a better

policy with fewer environmental interactions. However, these algorithms rely on

the assumption of discrete states. Additional research based on our approach may

produce more general results.

7.2.4 Multi-Agent Systems

In the last few years, research on multi-agent systems has become increased

important. Problems are better solved by teams of agents, such as parking cleaning,

vigilance of large spaces and distributed artificial intelligence. RL agents come

forward as an interesting option, due to their implicit capacity to act in

environments. This capacity is very attractive in multi-agent systems, because the

dynamics of the environment makes the creation of a model extremely difficult.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 7 Conclusions and Future Works 142

Many researchers have tackled the problem in [1,44,73]. The DFQL learning

algorithm can be furtherdeployed for multi-agent systems.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Author's Publications

Journal Papers

Meng Joo Er and Chang Deng, "Online Tuning of Fuzzy Inference Systems Using

Dynamic Fuzzy Q-Learning," IEEE Transactions on Systems, Man and

Cybernetics, Part B ,Vol. 34, No. 3, pp. 1478-1489, June, 2004.

Meng Joo Er and Chang Deng, "Obstacle Avoidance of a Mobile Robot Using

Hybrid Learning Approach," IEEE Transactions on Industrial Electronics, Vol. 52,

No. 3, pp. 898-905, June, 2005.

Conference Papers

Chang Deng and Meng Joo Er, "Supervise Learning Neuro-Fuzzy Control of

Mobile Robots," accepted for presentation at the Asian Control Conference

(ASCC), 2002, Singapore, 24-27 Sep., 2002.

Meng Joo Er and Chang Deng, "Comparative Study of Tracking Control Schemes

for Robotic Manipulators," accepted for presentation at the Asian Control

Conference (ASCC), 2002, Singapore, 24-27 Sep., 2002.

Chang Deng and Meng Joo Er, "An Intelligent Robotic System Based on Neuro-

Fuzzy Approach," accepted for presentation at the International Conference on

Control, Automation, Robotics and Vision (ICARCV), 2002, 2-5 Dec., Singapore,

2002.

Chang Deng and Meng Joo Er, "Automatic Generation of Fuzzy Rules Using

Dynamic Fuzzy Neural Networks with Reinforcement Learning," accepted for

presentation at IFAC International Conference on Intelligent Control Systems and

Signal Processing (ICONS) 2003, pp. 520-525,08-11 Apr., Faro, Portugal, 2003.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Meng Joo Er and Chang Deng, "Mobile Robot Control Using Generalized

Dynamic Fuzzy Neural Networks" (invited paper), accepted for presentation at

IFAC International Conference on Intelligent Control Systems and Signal

Processing (ICONS) 2003, pp. 191-196,08-11 Apr., Faro, Portugal, 2003.

Chang Deng and Meng Joo Er, "Automatic Generation of Fuzzy Rules Using

Dynamic Fuzzy Q-Learning", accepted for presentation at IEEE International

Conference on Systems, Man and Cybernetics, SC Track, 5-8 Oct., Washington,

D. C., USA, 2003.

Chang Deng and Meng Joo Er, "Mobile Robot Control Using Dynamic Fuzzy Q-

Learning," accepted for presentation at the WSEAS on E-Activities (E-

Activities 2003) and the WSEAS on Electronics, Control and Signal Processing

(ICECS 2003), 7-9 Dec, Singapore, 2003.

Chang Deng and Meng Joo Er, "Efficient Implementation of Dynamic Fuzzy Q-

Learning," accepted for presentation at 2003 Joint Conference of the Fourth

International Conference on Information, Communications and Signal Processing

and Fourth Pacific-Rim Conference on Multimedia, 15- 18 Dec, Singapore, 2003.

Meng Joo Er and Chang Deng, "Obstacle Avoidance of a Mobile Robot Using

Hybrid Learning Approach," accepted for presentation at the International

Conference on Computational Intelligence, Robotics and Autonomous Systems

(CIRAS), 15-1 8 Dec, Singapore, 2003.

Chang Deng and Meng Joo Er, "Real-time Dynamic Fuzzy Q-Learning and

Control of Mobile Robots," accepted for presentation at the Asian Control

Conference (ASCC), 1 1 - 15 July, Australia, 2004.

Chang Deng and Meng Joo Er, "Dynamic Fuzzy Q-Learning and Control of

Mobile Robots," accepted for presentation at the International Conference on

Control, Automation, Robotics and Vision (ICARCV), 6-9 Dec, China, 2004.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Bibliography 145

Bibliography

[1] O.Abul, F. Polat and R. Alhajj, "Multiagent reinforcement learning using

function approximation," IEEE Trans. on Systems, Man and Cybernetics, Part

C, Vol. 30, pp. 485-496,2000.

[2] R. C. Arkin,Behavior-Based Robotics, Cambridge, Mass.: MIT Press, 1998.

[3] M. Asada, S. Noda, S. Tawaratsumida, and K. Hosoda, "Purposive behavior

acquisition for a real robot by vision-based reinforcement learning," Machine

Learning, Vol. 23, pp.279-303, 1996.

[4] C. G. Atkeson, A. W. Moore, and S. Schaal, "Locally weighted learning,"

Artificial Intelligence Review, Vol. 1 1, pp. 1 1-1 13, 1997.

[5] L. Baird and A. Moore, "Gradient descent for general reinforcement learning,"

in Advances in Neural Information Processing Systems, Vol. 11, MIT Press,

1999.

[6] A. G. Barto, R. S. Sutton, and C. W. Anderson, "Neuronlike adaptive elements

that can solve difficult learning control problems," IEEE Trans. Systems, Man

and Cybernetics, Vol. 13, pp. 834-846, 1983.

[7] A. G. Barto and M. I. Jordan, "Gradient following without back propagation in

layered network", in Proc. IEEE Annu. Conf. Neural Network, San Diego,

CA, pp.629-636, 1987.

[8] A. G. Barto, "Connectionist learning for control: an overview," in W. T. Miller

R. S. Sutton and P. J. Werbos (Eds.), Neural Networks for Control, MIT Press,

Cambridge, MA, 1990.

[9] R. Bellman, Dynamic programming, Princeton University Press, Princeton, NJ,

1957.

[10] H. R. Berenji and P. Khedkar, "learning and tuning fuzzy logic controllers

through reinforcements," IEEE Trans. Neural Networks, Vol. 5, pp. 724-740,

1992.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Bibliography 146

[11] H. R. Berenji, "Fuzzy Q-Learning: a new approach for fuzzy dynamic

programming," in Proc. IEEE Int. Conf. Fuzzy Systems, pp. 486-491, 1994.

[12] D. P. Bertsekas, Dynamic programming and optimal control, Athena

Scientific, Belmont, MA, 1995.

[13] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming, MIT,

Athena Scientific, Belmont, MA, 1996.

[14] M. J. L. Boada, R. Barber and M. A. Salichs, "Visual approach skill for a

mobile robot using learning and fusion of simple skills," Robotics and

Autonomous Systems, Vol. 38, pp. 157-170,2002.

[15] A. Bonarini, "Evolutionary leaning, reinforcement learning, and fuzzy rules

for knowledge acquisition in agent-based systems," Proceeding of IEEE, Vol.

89, pp. 1334-1346,2001,

[16] A. Bonarini and C. Bonacina and M. Matteucci, "An approach to the design

of reinforcement functions in real world, agent-based applications", IEEE

Trans. Systems, Man and Cybernetics, Part B, Vol. 3 1, pp. 288-300,2001.

[17] K. M. Bossley, D. J. Mills, M. Brown and C. J. Harris, "Construction and

design of parsimonious neuro-fuzzy systems", in Neural Network Engineering

in Dynamic Control Systems, K. J. Hunt, G. W. Irwin and K. Warwick (Ed.),

Berlin, Spring Verlag, pp. 153-178, 1995.

[18] J. A. Boyan and A. W. Moore, "Generalization in reinforcement learning:

safely approximating the value function," in Advances in Neural Information

Processing Systems, G. Tesauro, D. S. Touretzky, and T. K. Leen, (Eds),

Cambridge, MA, MIT Press, 1995.

[19] S. J. Bradtke, "Reinforcement learning applied to linear quadratic regulation,"

in S. J. Hanson, J. d. Cowan and C. L. Giles (Eds.), Advances in Neural

Information Processing systems, San Mateo, CA, Morgan Kaufmann,Vol. 5,

pp. 295-302, 1993.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Bibliography 147

[20] R. A. Brooks,'' A robust layered control system for a mobile robot," IEEE

Tran. Robot. Automat. Vol. 2, pp. 14-23, 1986.

[21] R. A. Brooks, "Intelligence without representation," Artificial Intell. J., Vol.

47, pp. 139-159, 1991.

[22] R. A. Brooks and M. J. Mataric, "Real robots, real learning problems," in

Robot Learning, J. H. Connell and S. Mahadevan (Eds.), Kluwer Academic,

Boston, 1993.

[23] J. Bruske, I. Ahrns and G. Sommer, "An integrated architecture for learning of

reactive behaviors based on dynamic cell structures", Robotics and

Autonomous Systems, Vol. 22, pp. 87-101,1997.

[24] C. T. Chao, Y. J. Chen and C. C. Teng, "Simplification of fuzzy-neural

systems using similarity analysis", IEEE Trans. Systems, Man and

Cybernetics, B, Vol. 26, pp. 344-354, 1996.

[25] R. Chatterjee and F. Matsuno, "Use of single side reflex for autonomous

anvigation of mobile robots in unknown environments," Robotics and

Autonomous Systems, Vol. 35, pp. 77-96,2001.

[26] C. K. Chiang, H. Y. Chung and J. J. Lin, "A self-learning fuzzy logic

controller using genetic algorithms with reinforcements," IEEE Trans. Fuzzy

Systems, Vol.5, pp.460-467, 1997.

[27] K. B. Cho and B. H. Wang, "Radial basis function based adaptive fuzzy

systems and their applications to system identification and prediction", Fuzzy

Sets and Systems, Vol. 83, pp. 325-339, 1996.

[28] J. Connell and S. Mahadevan, Robot Learning, Kluwer Academic, Boston,

1993.

[29] O.Cordon and F. Herrera, "A hybrid genetic algorithms evolution strategy

process for learning fuzzy logic controller knowledge bases", in Genetic

Algorithms and Soft Computing, Berlin, Germany, Physica Verlag, pp. 251-

278,1996.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Bibliography 148

[30] O. Cordon, F. Herrera, and M. Lozano, "On the bidirectional integration of

fuzzy logic and genetic algorithms," in 2nd Online Workshop Evolutionary

Computat. (WEC2), Nagoya, Japan, pp. 13-1 7, 1996.

[31] R. H. Crites and A. G. Barto, "Improving elevator performance using

reinforcement learning," In D. S. Touretzky, M. C. Mozer and M. E. Hasselmo

(Eds), Advances in Neural Information Processing Systems: 1995 Conference,

pp. 1017-1023, MIT Press, 1996.

[32] P. Dayan, "The convergence of for general A ," Machine Learning,

Vol. 8, pp. 341-362, 1992.

[33] D. Floreano and F. Mondada, "Evolution of homing navigation in a real

mobile robot," IEEE Trans. Systems, Man and Cybernetics, Part B, Vol. 26,

1996.

[34] T. Fukuda and N. Kubota, "An intelligent robotic system based on a fuzzy

approach", Proceeding of IEEE, Vol. 87, pp.1448-1470, 1999.

[35] Y. Gao, "Adaptive Identification and Control of Nonlinear Systems Using

Generalized Fuzzy Neural Network," PhD thesis, Nanyang Technological

University, Singapore, 2003.

[36] P. Gaussier, A. Revel, C. Joulain and S. Zrehen, "Living in a partially

structured environment: How to bypass the limitations of classical

reinforcement techniques," Robotics and Autonomous Systems, Vol. 20, pp.

225-250, 1997.

[37] P.Y. Glorennec and J. Jouffe, "Fuzzy Q-learning", Proceedings of the sixth

IEEE international conference on fuzzy systems, 1997.

[38] V. Gullapalli, J. A. Frankin and H. Benbrahim, "Acquiring robot skills via

reinforcement learning," IEEE Control Systems Magazine, Vol. 14, pp. 13-24,

1994.

[39] G. Hailu and G. Sommer, "Learning by biasing", Proceeding of the 1998

IEEE Inter. Conf. on robotics and automation, pp. 2168-2173, 1998.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Bibliography 149

[40] G. Hailu, "Symbolic structures in numeric reinforcement for learning

optimum robot trajectory," Robotics and Autonomous Systems, Vol. 37, pp.

53-68,2001.

[41] T. Horiuchi, A. Fujino, O .Katai and T. Sawaragi, "Fuzzy interpolation-based

Q-learning with profit sharing plan scheme", in Proc. IEEE Int. Conf. Fuzzy

Systems, pp. 1707-1712, 1997.

[42] W. R. Hwang and W. E. Thompson, "Design of intelligent fuzzy logic

controllers using genetic algorithms," in Proc. IEEE Int. Conf. Fuzzy Systems,

Orlando, FL, pp.1383-1388, 1994.

[43] H. Inoue, K. Kamei, and K. Inoue, "Automatic generation of fuzzy rules using

hyper-elliptic cone membership function by genetic algorithms," in Proc.

IFSA World Congress, Prague, Czech Republic, Vol. pp. 383-388,1997.

[44] Y. Ishiwaka, T. Sato and Y. Kakazu, "An approach to the pursuit problem on

a heterogeneous multiagent system using reinforcement learning," Robotics

and Autonomous, Vol. 43, pp. 245-256,2003.

[45] J. S. R. Jang and C. T. Sun, "Functional equivalence between Radial Basis

Function networks and fuzzy inference systems", IEEE Trans. Neural

Networks, Vol. 4, pp. 156-158, 1993.

[46] J. S. R. Jang, "ANFIS: Adaptive-network-based fuzzy inference system",

IEEE Trans. Systems, Man and Cybernetics, Vol. 23, pp. 665-684, 1993.

[47] J. S. R. Jang, C. T. Sun and E. Mizutani, "Neuro-fuzzy and soft computing".

Englewood Cliffs, New Jersey, Prentice Hall, 1997.

[48] L. Jouffe, " Fuzzy inference system learning by reinforcement methods",

IEEE Trans. Systems, Man, and Cybernetics, Part C, Vol. 28, pp. 338-355,

1998.

[49] C. F. Juang and C. T. Lin, "An on-line self-constructing neural fuzzy

inference network and its applications", IEEE Trans. Fuzzy Systems, Vol. 6,

pp. 12-32, 1998.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Bibliography 150

[50] K-Team S. A., "Khepera 2 user manual," Switzerland, 2002.

[51] L. P. Kaelbing, M. L. Littman and A. W. Moore, "Reinforcement leaming: A

survey," Journal of Artificial Intelligent Research, Vol. 4, pp. 237-285, 1996.

[52] Z. Kalmar and C. Szepesvari and A. Lorinca, " Module-based reinforcement

learning: experiments with a real robot," Machine Learning, Vol. 3 1, pp. 55-

85, 1998.

[53] R. M. Kandadai and J. M. Tien, "A knowledge-base generation hierarchical

fuzzy-neural controller," IEEE Trans. Neural Networks, Vol. 8, pp. 153 1-1 541,

1997.

[54] C. Karr, "Applying genetics to fuzzy logic", A1 Expert, Vol. 6, pp. 38-43,

1991.

[55] C .L. Karr, "Adaptive control with fuzzy logic and genetic algorithms", in

Fuzzy Sets, Neural Networks, and Soft Computing, R. R. Yager and L. A.

Zadeh, Eds. New York: Van Nostrand Reinhold, 1993.

[56] C. L. Karr and E. J. Gentry, "Fuzzy control of pH using genetic algorithms,"

IEEE Trans. Fuzzy Systems, vol. 1, pp. 4653,1993.

[57] E. Kim, S. Ji and M. Park, "A new approach to fuzzy modeling", IEEE Trans.

Fuzzy Systems, Vol.5, pp.328-337, 1997.

[58] T. Kohonen, Self-organization and associative memory, Springer-Verlag,

1988.

[59] C. C. Lee, "Fuzzy logic in control systems: fuzzy logic controller", IEEE

Trans. Systems, Man and Cybernetics, Vol. 20, pp.404-436, 1990.

[60] C. C. Lee, "A self learning rule-based controller employing approximate

reasoning and neural net concepts," Int. J. Intell. Syst., Vol. 6, pp. 71-93, 1991.

[61] M. A. Lee and H. Takagi, "Integrating design stages of fuzzy systems using

genetic algorithms", in Proceeding of IEEE Int. Conf. Fuzzy Systems, pp.

612-617,1993.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Bibliography 151

[62] M. A. Lee, H. Takagi, "Dynamic control of genetic algorithms using fuzzy

logic techniques," in Proc. Int. Conf. Genetic Algorithms, Urbana-Champaign,

IL, pp. 76-83, 1993.

[63] R. P. Li and M. Mukaidono, "A new approach to rule learning based on fusion

of fuzzy logic and neural networks7', IEICE Trans. Inf. Syst., Vol. E78-d, pp.

1509-1514, 1995.

[64] Y. Li, N. Sundararajan and P. Saratchandran, "Analysis of minimal radial

basis function network algorithm for real-time identification of nonlinear

dynamic systems," IEE Proc. Control Theory Appl., Vol. 147, pp. 476-484,

2000.

[65] L. J. Lin, "Self-improving reactive agents based on reinforcement learning,

planning and teaching," Machine Learning, Vol. 8, pp.293-321, 1992.

[66] L. J. Lin, "Hierarchical learning of robot skills by reinforcement," Proceeding

of IEEE Conf. Neural Network, pp. 18 1 - 1 87, 1993.

[67] C. T. Lin, "Neural fuzzy control systems with structure and parameter

learning", Singapore, World scientific, 1994.

[68] C. T. Lin and C. S. G. Lee, "Reinforcement structure/parameter learning for

neural-network-based fuzzy logic control systems," IEEE Trans. Fuzzy

Systems, Vol. 2, pp. 46-63, 1994.

[69] Y. H. Lin and G. A. Cunningham, "A new approach to fuzzy-neural system

modeling", IEEE Trans. Fuzzy Systems, Vol. 3, pp. 190-197, 1995.

[70] C. T. Lin and C. P. Jou, "GA-based fuzzy reinforcement learning for control

of a magnetic bearing system," IEEE Trans. Systems, Man and Cybernetics,

Vol. 30, pp. 276-289,2000.

[71] D. A. Linkens and H. O.Nyongesa, "Genetic algorithms for fuzzy control,

offline/online system development and application," IEE Proc. Control Theory

and Applications, Vol. 142, pp. 161 -1 85, 1995.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Bibliography 152

[72] D. A. Linkens and H. O .Nyongesa, "Learning systems in intelligent control:

On appraisal of fuzzy, neural and genetic algorithm control applications", in

Proc. Inst. Elect. Eng. Control Theory Applications, Vol. 143, pp. 367-386,

1996.

[73] M. L. Littman and C. Szepesvari, "A generalized reinforcement learning

model: convergence and applications," Proc. The 13 th Intl. Conf. Machine

Learning, pp. 3 10-3 18, 1996.

[74] Y. Lu, N. Sundararajan and P. Saratchandran, "Performance evaluation of a

sequential minimal radial basis function (RBF) neural network learning

algorithm," IEEE Trans. Neural Networks, Vol. 9, pp. 308-3 18, 1998.

[75] J. Lygeros, "A formal approach to fuzzy modeling", IEEE Trans. Fuzzy

Systems, Vol. 5, pp.37-327, 1997.

[76] H. Maaref and C. Barret, "Sensor-based fuzzy navigation of an autonomous

mobile robot in an indoor environment," Control Engineering Practice, Vol. 8,

pp. 757-768,2000.

[77] P. Machler, "Robot odometry correction using grid lines on the floor,"

MCPA, Italy, 1997.

[78] Y. Maeda, "Modified Q-Learning method with fuzzy state division and

adaptive rewards," Proceeding of the 2002 IEEE world congress on

computational intelligence, pp. 1556-1 56 1,2002.

[79] P. Maes and R. A. Brooks, "Learning to coordinate behaviors," in

Proceedings of the Eighth National Conference on Artificial Intelligence,

pp.796-802, Menlo Park, C A , AA A A I Press, 1990.

[80] S. Mahadevan and J. Connell, "Automatic programming of behavior-based

robots using reinforcement learning," Artificial Intelligence, Vol. 55, pp. 3 11-

365,1992.

[81] E. H. Mamdani and S. Assilian, "An experiment in linguistic synthesis with a

fuzzy logic controller", Int. J. Man-Machine Studies, Vol. 7, pp. 1-13 , 1975.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Bibliography 153

[82] M. J. Mataric, "Reward functions for accelerated learning," in W. W. Cohen

and H. Hirsh (Eds.), Proceeding of the llth Inter. Conf. Machine Learning,

Morgan Kaufmann 1 994.

[83] R. A. Mccallum, "Hidden state and reinforcement learning with instance-

based state indentification," IEEE Trans. on Systems, Man and Cybernetics,

Part B, Vol. 26, pp. 464-473, 1996.

[84] Z. Michalewicz, "Genetic Algorithms + Data Structures + Evolution

Programs", Ed. Berlin, Germany: Springer Verlag, 1996.

[85] J. D. R. Millan, "Reinforcement learning of goal-directed obstacle-avoiding

reaction strategies in an autonomous mobile robot," Robotics and Autonomous

Systems, Vol. 15, pp. 275-299, 1995.

[86] J. D. R. Millan, "Rapid, safe, and incremental learning of navigation

strategies," IEEE Trans. Systems, Man and Cybernetics, Vol. 26, pp. 408-420,

1996.

[87] J. D. R. Millan, D. Posenato and E. Dedieu, "Continuous-action Q-learning",

Machine Learning, Vol. 49, pp. 247-265,2002.

[88] T. M. Mitchell and S. Thrun, "Explanation-based neural network learning for

robot control", in Advances in Neural Information Processing Systems, San

Mateo, CA, Morgan Kaufmann,Vol. 5, 1993.

[89] J. Moody and C. J. Darken, "Fast learning in network of locally-tuned

processing units", Neural Computation, Vol. 1, pp. 28 1-294, 1989.

[90] A. W. Moore, "Variable resolution dynamic programming: Efficiently

learning action maps in multivariate real-valued spaces," in Proc.

International Machine Learning Workshop, 1991.

[91] A. W. Moore and C. G. Atkeson, "Prioritized sweeping: Reinforcement

learning with less data and less real time," Machine learning Vol. 13, pp. 103-

130,1993.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Bibliography 154

[92] A. W. Moore and C. G. Atkeson, "The parti-game algorithm for variable

resolution reinforcement learning in multidimensional state spaces," Machine

Learning, Vol. 21, pp. 199-233, 1995.

[93] G. C. Mouzouris and M. Mendel, "Dynamic non-singleton fuzzylogic system

for nonlinear modeling", IEEE Trans. Fuzzy Systems, Vol. 5, pp. 199-208,

1997.

[94] R. Munos, "A study of reinforcement learning in the continuous case by the

means of viscosity solutions," Machine Learning, Vol. 40, pp. 265-299,2000.

[95] R. Munos and A. Moore, "Variable resolution discretization in optimal

control," Machine Learning, Vol. 49, pp. 291-323,2002.

[96] T. Nilsson, http://www.kiks.f2s.com

[97] S. Nolfi and D. Floreano, Evolutionary Robotics: the Biology, Intelligence,

and Technology of Self-Organizing Machines, Cambridge, Mass.: MIT Press,

2000.

[98] D. Ormoneit and S. Sen, "Kernel-based reinforcement learning," Machine

Learning, Vol. 49, pp. 161-178,2002.

[99] A. Parodi and P. Bonelli, "A new approach to fuzzy classifier system7', in

Proc. Int. Conf. Genetic Algorithms, San Mateo, CA, pp. 223-230, 1993.

[100] K. M. Passino and S. Ywkovich, "Fuzzy control", Addison Wesley

Longman, Inc., 1998.

[101] W. Pedrycz, " Fuzzy modeling: fundamental construction and evaluation",

Fuzzy Sets and Systems, Vol. 41, pp.1-15, 1991.

[102] J. Peng, "Efficient dynamic programming-based learning for control", Ph.D

thesis, Northeastern University, Boston, MA, 1993.

[103] J. Peng and R. J. Williams, "Incremental multi-step Q-learning," Machine

Learning, Vol. 22, pp. 283-290, 1996.

[104] J. Platt, "A resource allocating network for function interpolation," Neural

Computa., Vol. 3, pp. 213-225, 1991.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Bibliography 155

[105] M. L. Puterman, Markov decision processes-Discrete stochastic dynamic

programming, John Wiley & Sons, Inc., New York, NY, 1994.

[106] G. V. S. Raju and J. Zhou, "Adaptive hierarchical fuzzy controller", IEEE

Trans. Systems, Man and Cybernetics, Vol, 23, pp. 937-980, 1993.

[107] H. Rak and H. S. Cho, "A sensor-based navigation for a mobile robot using

fuzzy logic and reinforcement learning," IEEE Trans. Systems, Man, and

Cybernetics, Vol. 25, pp. 464-477, 1995.

[109] R. Ranscheit and E. M. Schard, "Experiments with the use of a rule-based

self-organizing controller for robotics applications'', Fuzzy Sets and Systems,

Vol. 26, pp. 195-214,1988.

[109] C. Ribeiro, "Reinforcement learning agents," Artificial Intelligence Review,

Vol. 17, pp.223-250,2002.

[110] G. A. Rumrnery, "Problem solving with reinforcement learning," Ph.D

thesis, Cambridge University, 1995.

[111] M.Rylatt, C. Czarnecki and T. Routen, "Connectionist learning in behavior-

based mobile robot: a survey," Artificial Intelligence Review, Vol. 12, pp. 445-

468,1998.

[112] J. C. Santamaria, R. S. Sutton and A. Ram, "Experiments with reinforcement

learning in problems with continuous state and action spaces," Adaptive

Behavior, Vol. 6 , pp. 163-217, 1998.

[113] J. J. Shann and H. C. Fu, "A fuzzy neural networks for rule acquiring in

fuzzy control systems", Fuzzy Sets and systems, Vol. 71, pp. 345-357,1995.

[114] S. Shao, "Fuzzy self-organizing controller and its application for dynamic

processes", Fuzzy Sets and Systems, Vol. 26, pp. 15 1-164, 1988.

[115] Y. Shi, R. Eberhart and Y. Chen, "Implementation of evolutionary fuzzy

systems", IEEE Trans. Fuzzy Systems, Vol. 7, pp. 109- 1 19,1999.

[116] K. Shimojima, T. Fukuda, and Y. Hasegawa, "RBF-fuzzy system with GA

based unsupervised/supervised learning method," in Proc. Int. Joint Conf. 4th

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Bibliography 156

IEEE Int. Conf. Fuzzy Syst./2nd Int. Fuzzy Eng. Symp. (FUZZ/IEEE-TFES),

Yokohama, Japan, Vol. I, pp. 253-258., 1995.

[117] S. P. Singh and R. S. Sutton, "Reinforcement learning with replacing

eligibility traces," Machine Learning, Vol. 22, pp. 123-158, 1996.

[118] S. P. Singh and D. Bertsekas, "Reinforcement learning for dynamic channel

allocation in cellar telephone systems," in Advances in Neural Information

Processing Systems: 1996 Conference, pp. 947-980, MIT Press, 1997.

[119] M. Sugeno and G. T. Kang, "Structure identification of fuzzy model", Fuzzy

Sets and Systems, Vol. 28, pp.15-33, 1988.

[120] M. Sugeno and K. Tanaka, "Successive identification of a fuzzy model and

its applications to prediction of a complex system", Fuzzy Sets and Systems,

Vol. 42, pp. 315-334, 1991.

[121] C. T. Sun and J. S. Jang, "A neuro-fuzzy classifier and its applications", in

Proc. IEEE Int. Conf. Fuzzy Systems, Vol. 1, pp. 94-98, 1993.

[122] R. Sun and C. Seessions, "Self-segmentation of sequences: Automatic

formation of hierarchies of sequential behaviors," IEEE Trans. on Systems,

Man and Cybernetics, Part B , Vol. 30, pp. 403-41 8,2000.

[123] R. S. Sutton, "Learning to predict by the method of temporal differences",

Machine Learning, Vol. 3, pp. 9-44, 1988.

[124] R. S. Sutton, "Integrated architectures for learning, planning, and reacting

based on approximating dynamic programming," Proc. Intl. Conf. Machine

Learning, 1990.

[125] R. S. Sutton and A. G. Barto, "Time-derivative models of pavlovian

reinforcement," Learning and Computational Neuroscience: Foundations for

Adaptive Networks, MIT Press, 1990.

[126] R. S. Sutton, "Reinforcement Learning Architectures for Animats," Proc. of

the Inter. Conf. on Simulation of Adaptive behavior, From Animals to

Animats, J. A. Meyer and S. W. Wilson (Eds.), pp. 288-296,1992.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Bibliography 157

[127] R. S. Sutton, "Generalization in reinforcement learning: successful examples

using sparse coarse coding", in Touretzky, D. S., Mozer, M. C., and Hasselma,

M. E. (eds), Advances in Neural Information Processing Systems Vol. 8, pp.

1038-1044,1996.

[128] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction, the

MIT Press, Cambridge, Massachusetts, 1998.

[129] T. Takagi and M. Sugeno, "Fuzzy identification of systems and its

applications to modeling and control", IEEE Trans. Systems, Man and

Cybernetics, Vol. 15, pp. 116-132, 1985.

[130]T. Takagi and M. Sugeno, "NN-driven fuzzy reasoning", Int. J. Approx.

Reason., Vol. 5, pp. 191-211, 1991.

[13 1] G. J. Tesauro, "Practical issues in temporal difference leaming," Machine

Learning, Vol. 8, pp. 257-277, 1992.

[132] G. J. Tesauro, "TD-Gammon, a self-teaching backgammon program,

achieves master-level play," Neural Computation, Vol. 6, pp. 215-219, 1994.

[133] C. L. Tham, "Reinforcement leaming of multiple tasks using a hierarchical

CMAC architecture," Robotics and Autonomous Systems, Vol. 15, pp. 247-

274,1995.

[134] P. Thrift, "Fuzzy logic synthesis with genetic algorithms," in Proc. Int.

Conf. Genetic Algorithms (ICGA), San Diego, CA, pp.509-5 13, 1991.

[135] S. B. Thrun, "The role of exploration in learning control", in White, D. A.,

and Sofge, D. A. (Eds), Handbook of Intelligent Control: Neural, Fuzzy and

Adaptive Approaches, Van Nostrand Reinhold, New York, NY, 1992.

[136]S. Thrun, "An approach to learning mobile robot navigation", Robotics and

Autonomous Systems Vol.15, pp. 301-319,1995.

[137] H. Tong and T. X. Brown, "Reinforcement learning for call admission

control and routing under quality of service constraints in multimedia

networks," Machine Learning, Vol. 49, pp. 11 1-139,2002.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Bibliography 158

[138] C. F. Touzet, "Neural reinforcement learning for behavior synthesis",

Robotics and Autonomous, Vol. 22, pp. 25 1-28 1, 1997.

[139] J. N. Tsitsiklis, "Asynchronous stochastic approximation and Q-learning,"

Machine Learning, Vol. 16, pp. 185-202, 1994.

[140] J. N. Tsitsiklis and B. V. Roy, "Feature-based methods for large scale

dynamic programming," Machine Learning, Vol. 22, pp. 59-94, 1996.

[141] Y. Tsukamoto, "An approach to fuzzy reasoning method", in "Advances in

Fuzzy Set Theory and Applications", M. M. Gupta, R.K. Ragade and R.R.

Yager (Ed.), Amsterdam, North Holland, pp. 137- 149, 1979.

[142] L. X. Wang and J. M. Mendel, "Fuzzy basis function, universal

approximation, and orthogonal least squares learning", IEEE Trans. Neural

Networks, Vol. 3, pp. 807-814,1992.

[143] L. X. Wang, "Adaptive fuzzy systems and control: design and stability

analysis", New Jersey, Prentice Hall, 1994.

[144] L. X. Wang, "A course in fuzzy systems and control", New Jersey, Prentice

Hall, 1997.

[145] C. J. C. H. Watkins, "Learning from delayed rewards," Ph.D. dissertation,

Cambridge Univ. Cambridge, U. K., 1989.

[146] C. J. C. H. Watkins and P. Dayan, "Q-learning," Machine Learning, Vol. 8,

pp.279-292, 1992.

[147] S. Whitehead and L. Lin, "Reinforcement learning of non-Markov decision

process," Artificial Intelligence, Vol. 73, pp. 271-306, 1995.

[148] R. J. Williams, "Simple statistical gradient-following algorithms for

connectionist reinforcement learning," Machine Learning, Vol. 8, pp. 229-256,

1992.

[149] S. Wu, M. J. Er and Y. Gao, "A fast approach for automatic generation of

fuzzy rules by generalized dynamic fuzzy neural networks", IEEE Trans.

Fuzzy Systems, Vol. 9, pp.578-693,2001.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Bibliography 159

[150]L. A. Zadeh, "Fuzzy sets", Information and control, Vol. 8, pp. 338-358,

1965.

[151]W. Zhang and T. G. Dietterich, "A reinforcement learning approach to job-

shop scheduling," in Proceeding of the International Joint Conference on

Artificial Intelligence, 1995.

[152]Y. Lu, "Development and application of a sequential minimal redial basis

function (RBF) neural network learning algorithm," M. Eng Thesis, EEE, NTU,

1997.

[153] Y. Lu, N. Sundararajan and P. Saratchandran, "A sequential learning scheme

for function approximation using minimal radial basis function neural

networks," Neural Computation, Vol. 9, No. 2, pp. 461-478, MIT Press, USA,

1997.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

