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Summary 

Fuzzy logic is a mathematical approach to emulate the human way of thinking. It 

has been shown that fuzzy logic could serve as a powerful methodology for 

dealing with imprecision and nonlinearity efficiently. However, the conventional 

way of designing a fuzzy system has been a subjective approach. If the fuzzy 

system somehow possesses learning abilities, an enormous amount of human 

efforts would be saved from tuning the system. 

Reinforcement learning is concerned with resolving a problem faced by a learner 

that must learn behavior through trial-and-error interactions with a dynamic 

environment. For this kind of learning problem, training data give rewards and 

punishments with respect to the states reached by the learner, but do not provide 

correct instructions. Q-learning is the most popular and effective model-free 

algorithm for reinforcement learning. However, it does not address any of the 

issues involved in generalization over large state and action spaces. Practical 

learning agents require compact representations to generalize experiences in 

continuous domains. 

In this thesis, a novel algorithm, tenned Dynamic Fuzzy Q-Learning (DFQL), is 

proposed. From the point of view of fuzzy systems, the DFQL method is a learning 

method capable of generating and tuning fuzzy rules automatically based on 

simple reinforcement signals. From the point of view of machine learning, the 

DFQL method is a mechanism of introducing generalization in the state-space and 

generating continuous actions in reinforcement learning problems. The DFQL 

generalizes the continuous input space with fuzzy rules and generates continuous- 

valued actions using fuzzy reasoning. It partitions the input space online 

dynamically according to both the accommodation boundary and the performance 

vii 
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of learning, which allows us to circumvent the problem of setting up fuzzy rules by 

hand. The compact fuzzy system considers sufficient rules in the critical state 

space which requires high resolution and does not include the redundant rules in 

the unimportant or unvisited state space so that the learning is rapid and optimal. 

The if-then fuzzy rules correspond to the initial domain knowledge about the tasks 

and allow incorporation of bias into the system. Bias increments the safety of the 

learning process and accelerates the learning process since it focuses on the search 

process of promising parts of the action space immediately. These biases can 

eventually be overridden by more detailed and accurate learned knowledge. The 

premise of rules can be used to generate fuzzy states over the input space and the 

consequents of rules can be used to generate the initial Q-values so that a greedy 

policy would select the action suggested by these biases. 

The general version of DFQL with an eligibility mechanism leads to faster 

learning and alleviate the non-Markovian effect in real-life applications. It figures 

out which actions in the sequence are primarily responsible for the received reward 

and has the ability of exploration insensitivity, the ability to learn without 

necessarily following the current policy. This method allows us to obtain a 

significant learning speedup using the eligibility rate and alleviates the 

experimentation-sensitive problem at the same time. 
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Chapter 1 

Introduction 

1 .  Motivation 

1.1.1 Motivation Based on Fuzzy Systems 

Fuzzy logic is a mathematical approach to model the human way of thinking. It 

provides a systematic and effective means of capturing the imprecise and nonlinear 

nature of the real world linguistically. In the literature, there are two kinds of 

justification for fuzzy theory [144]: 

The real world is too complicated for precise descriptions to be obtained; 

therefore, fuzziness must be introduced in order to obtain a reasonable 

model. 

As we move into the information era, human knowledge becomes 

increasingly important. We need a theory to formulate human knowledge in 

a systematic manner and put it into engineering systems, together with 

other information like mathematical models and sensory measurements. 
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Chapter 1 Introduction 2 

Fuzzy Inference Systems (FISs) are knowledge-based or rule-based systems. The 

essential part of the FIS is a set of linguistic rules related by the dual concept of 

fuzzy implication and the compositional rule of inference. Intrinsically, the FIS 

provides an algorithm, which can convert the linguistic rules based on expert 

knowledge into some automatic control action. During the last few decades, FISs 

have emerged as one of the most active and fruitful  areas for research in the 

application of fuzzy theory. FISs have found a variety of applications in numerous 

fields ranging from industrial process control to medical diagnosis and robotics. 

In general, subjective approaches to design a fuzzy system are simple and fast, i.e., 

they involve neither time-consuming iterative procedures nor a complicated rule- 

generation mechanism. However, argument of what is the best approach can come 

fiom disagreements among experts, from decision rules that are difficult to 

structure, or due to a great member of variables  necessary to solve the control task. 

If the fuzzy system somehow possesses learning abilities, an enormous amount of 

human efforts would be saved fromtuning the system. These learning methods can 

be characterized by the information source used for learning and classified with 

respect to the degree of information of the source. Most of the learning algorithms 

for fuzzy systems require precise training data sets for various applications. 

Typically, these learning methods are based on an input-output set of training data, 

based upon which we have to minimize errors between the teacher's actions and 

the learner's actions. However, for some real-world applications, precise data for 

training/learning are usually difficult and expensive, if not impossible, to obtain. 

For this reason, there has been a growing interest in this kind of learning. 

There are several requirements for a learning algorithm to model a FIS effectively. 
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Chapter 1 Introduction 3 

Evaluative signals 

The learning systems can be used to provide unknown desired outputs 

based on a suitable evaluation of system performances, which gives 

rewards and punishments with respect to the states reached by the learner, 

but does not provide correct actions. For this kind of learning problem, 

training data are very rough and coarse, and are just "evaluative" as 

compared with the "instructive" feedback. The learning algorithm should 

be capable of constructing a FIS based on this simple evaluative scalar 

signal. As the less informative learning source is needed, the learning 

method that uses it represents a very flexible tool. In addition to the 

roughness and non-instructive nature of the information, a more 

challenging problem the algorithm should be able to deal with is that the 

signal may only be available at a time long after a sequence of actions have 

been taken. In other words, prediction capabilities are necessary in this 

learning system. 

Structure and parameter learning 

Although several self-learning FISs have been designed, most of them 

focus on parameter learning (e.g. adjustment of fuzzy rule parameters). 

Structure learning (e.g. determination of input space partition, number of 

membership functions and number of rules) remains a trial-and-error 

process and it has become a very time-consuming process. It turns out that 

only adjustment of parameters will not be sufficient in many cases. This 

reduces the flexibility and numerical processing capability of FISs. The 

algorithm should deal with not only parameter estimation but also structure 

identification of a learning FIS. If the premise structure of a fuzzy system is 

determined by clustering the input via on-line self-organizing learning 

approach, a more flexible learning scheme can be formed. Furthermore, the 
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C h a p t e r 1  I n t r o d u c t i o n  4 

learning method should find meaningful fuzzy terms for each input 

variable, from which it is possible to interpret acquired knowledge in the 

form of linguistic rules.

4

 

On-line learning 

We are interested in on-line learning, algorithms which are capable of 

learning the dynamics of a system based on data which arrive one at a time. 

The main idea is that we do not have to wait for a large batch of data points 

before training the algorithm. No prescribed training models are needed for 

on-line learning and the system can learn adaptively from the training data 

which arrive sequentially. 

1.1.2 Motivation Based on Reinforcement Learning 

Reinforcement Learning (RL) dates back to the early days of cybernetics and 

works in Statistics, Psychology, Neuroscience and Computer Science. In the last 

decade, it has attracted rapidly growing interest in machine learning and artificial 

intelligence communities. The key idea of RL is that the learner learns through 

trial-and-error interactions with a dynamic environment. It is learning how to map 

situations to actions so as to maximize some numerical reward. It should be 

highlighted that the learner is not told which actions to take, as in other types of 

machine learning, but instead it discovers which actions yield the most reward by 

trying them. In the most interesting and challenging case, actions may affect not 

only the immediate reward but also the next situation and, through that, all 

subsequent rewards [128]. 

RL plays an important role in adaptive control. It will certainly help, especially 

when no explicit teacher signal is available in the environment where an 
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Chapter I Introduction 5 

interacting learner must learn to perform an optimal control action. There are 

mainly two prevalent approaches to reinforcement learning, namely actor-critic 

learning and Q-learning. The actor-critic model typically includes two principal 

components: the critic module and the action module. The critic module generates 

an estimate of the value function from state vectors and external reinforcement 

supplied by the environment as inputs. The actor attempts to learn optimal control 

or decision-making skills. Q-learning is a simple way of learning the action-value 

function Q that maps state-action pairs to expected returns. The learner attempts an 

action at a particular state and evaluates its consequence in terms of the immediate 

reward or penalty it receives and its estimate of the value of the state resulting 

from the taken action. 

We focus on the Q-learning method here since Q-learning is the most popular RL 

method that directly calculates the optimal action policy without an intermediate 

cost evaluation step and without the use of a model. It seems to be more difficult to 

work with actor-critic architectures than Q-learning in practice. It might be very 

difficult to get the relative learning rates right in actor-critic architectures so that 

the two components converge together. Furthermore, Q-learning learns the values 

of all actions, rather than just finding the optimal policy. The main advantage of Q- 

learning over actor-critic learning is exploration insensitivity, i.e. any action can be 

carried out at any time and information is gained from this experience. 

For these reasons, Q-learning is the most popular and seems to be the most 

effective model-free algorithm for RL. It does not, however, address any of the 

issues involved in generalization over large state and/or action spaces. In addition, 

it may converge quite slowly to a good policy. There are also several requirements 

for a learning algorithm before it can be used in practice. 
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Chapter I Introduction 6 

Adaptive generalization 

Q-learning with standard tabular states and actions scale poorly. As the 

number of state and action variables increases, the size of the table used to 

store Q-values grows exponentially. The large number of states and actions 

possibilities usually encountered in realistic applications may force us to 

use some compact representation schemes than a table. The problem of 

learning in large spaces is addressed through generalization techniques, 

which allow compact storage of learned information and transfer of 

knowledge between similar states and actions. Furthermore, it would be 

desired to employ an online adaptive construction algorithm instead of 

partitioning the state space evenly prior to learning so as to improve 

generalization capabilities at the state spaces that are deemed to be 

important or critical. 

Continuous states and actions 

Many real-world control problems require action of a continuous nature in 

response to continuous state measurements. Most approaches use function 

approximators to generalize the value function across situations. These 

works, however, still assume discrete actions and cannot handle 

continuous-valued actions. In continuous action spaces, the need for 

generalization over actions is important. It should be possible that actions 

vary smoothly in response to smooth changes in a state. 

Integration of domain knowledge 

The algorithm is used for fast on-line learningand adaptation in real time. 

Initially, if the learning system knows nothing about the environment, it is 

forced to act more or less arbitrarily. Integration of domain knowledge to 

avoid learning from  scratch is desired. A way of alleviating the problem of 
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Chapter 1 Introduction 7 

slow convergence of RL is to use bias fromprior knowledge to figure out 

which part of the action space deserves attention in each situation. 

Eligibility traces 

Most of RL methods need to be combined with eligibility traces to obtain 

more general methods that may learn more efficiently. An eligibility trace 

is a temporary record of the occurrence of an event. The trace marks the 

memory parameters associated with the event as eligible for undergoing 

learning changes. The learningalgorithm should be able to distribute credit 

throughout sequences of actions, leading to faster learning and help to 

alleviate the non-Markovian effect in real applications. It should have the 

ability of exploration insensitivity, and the ability to learn without 

necessarily following the current policy. 

Incremental and aggressive learning 

The learning algorithm should not be subject to destructive interference or 

forgetting what it has learned so far but incrementally adapt the model 

complexity. It should be capable of producing reasonable predictions based 

on only a few training points. 

1.1.3 Motivation Based on Robot Learning 

As the robotics field progresses, robots are being employed in increasingly 

complicated and demanding tasks. To accomplish a given task, a robot collects or 

receives sensory information concerning its external environment and takes actions 

within the dynamically changing environment. Both the sensing system and 

control rules are often dictated by human operators, but ideally the robot should 

automatically perform the given tasks without assistance from human operators. 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 1 Introduction 8 

Consequently, the robot must be able to perceive the environment, make decisions, 

represent sensory data, acquire knowledge, and infer rules concerning the 

environment. The ultimate goal of robotics research is to empower the robots with 

high autonomous ability to improve their behavior over time, based on their 

incoming experiences. 

Because we are dealing with robotic systems, there are a number of real-world 

issues that must be addressed [28]. Some of these are: 

Training data 

Generally speaking, the robot learning problem is to infer a mapping from 

sensors to actions given a training sequence of sensory inputs, action 

outputs, and feedback values. If these sequences are provided by a teacher, 

the problem corresponds to supervised learning. Here, the robot is being 

passively guided through the task. A more challenging and interesting 

situation arises when a robot attempts to learn a task in an unsupervised 

mode without active guidance of a teacher. It is usually assumed here that 

the robot can recognize when it is performing the task properly. The robot 

has to perform the task by executing trial-and-error actions thereby 

exploring the state space. 

Continuous states and actions 

In many real-world tasks for robots, the sensory and action spaces are 

continuous. These values can be discretized into finite sets if the 

discretization follows the natural resolution of the devices. However, many 

quantities are inherently continuous with a fine resolution that leads to 

many discrete states. Even if they can be discretized meaningfully, it might 

not be readily apparent how best to do it for a given task. Incorrect 
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Chapter I Introduction 9 

discretizations can limit the final form of the learned control policy, 

making it impossible to learn the optimal policy. If we discretize coarsely, 

we risk aggregating states that do not belong together. If we discretize 

finely, we often end up with an unmanageably huge state or action space. 

Practical learning robots require compact representations to generalize 

experiences in continuous domains. Furthermore, actions should vary 

smoothly in response to smooth changes in a state. 

Incremental learning 

A robot has to collect the experience fromwhich it is to learn the task. The 

data forming the experience is not available offline. The need for efficient 

exploration dictates that any reasonable learning algorithm must be 

incremental. Such algorithms should allow the robot to become better at 

deciding which part of the environment it needs to explore next. 

Initial knowledge 

Many learning systems attempt to start learning with no initial knowledge. 

Although this is appealing, it introduces special problems when working 

with real robots. Initially, if the learning system knows nothing about the 

environment, it is forced to act more or less arbitrarily. For example, RL 

systems attempt to learn the policy by attempting all of the actions in all of 

the available states in order to rank them in the order of appropriateness. In 

order to learn a new policy, a large number of time-consuming learning 

trials are required. On the other hand, critical behavior must be learned 

with a minimal number of trials, since the robot cannot afford to fail 

repeatedly. When a real robot is being controlled, a bad choice can damage 

the environment or the robot itself, possibly causing it to stop functioning. 

In order for the learned system to be effective, we need to provide some 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 1 Introduction 10 

sort of bias, to give it some idea of how to act initially and how to begin to 

make progress towards the goal. Systems should have the ability to use 

previously learned knowledge to speed up the learning process of a new 

policy. 

Time constraints 

The training time available on a real robot is very limited. We are 

interested in learning on-line while the robot is interacting with the 

environment. Although computers are continually becoming faster, the 

amount of computation that we can apply to learning is limited. This is 

especially important when we are using the learned control policy to 

control the robot. We must be able to select a suitable control action at an 

appropriate rate to allow the robot to function safely in the real world. 

Sensor noise 

Most cheap-to-build robot sensors are unreliable. Thus, state descriptions 

computed fromsuch sensors are bound to have inaccuracies in them, and 

some kind of averaging is required. 

1.2 Major Contributions of Thesis 

In this thesis, a novel algorithm, termed Dynamic Fuzzy Q-Learning (DFQL), is 

proposed. From the viewpoint of fuzzy systems, the DFQL method is a learning 

method capable of tuning a fuzzy system in a very flexible way. From the 

viewpoint of machine learning, the DFQL method can be regarded as a means of 

introducing generalization in the state space and generate continuous actions in RL 

problems. It is implemented on mobile robots so as to learn appropriate navigation 
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Chapter 1 Introduction 11 

efficiently. The salient characteristics of the DFQL algorithm are summarized as 

follows: 

Reinforcement information source 

The DFQL is based on the Q-learning, the most popular and effective 

reinforcement learning. The task is described with a reinforcement 

function,which can be a simple description of success and failure actions. 

Due to the low informative degree of the information source, the method 

represents a very flexible tool. 

Self-organizing fuzzy system structure 

The DFQL provides an efficient learning way whereby not only the 

conclusion part of a FIS can be adjusted online, but also the structure of a 

FIS can be constructed simultaneously. Based on the criteria pertinent to 

some desired system performance, new fuzzy rules can be generated 

automatically so as to improve generalization capabilities when necessary. 

Continuous states and actions 

In the DFQL, continuous states are handled and continuous actions are 

generated by fuzzy reasoning. Fuzzy logic introduces generalization in the 

state space by means of using a vector of fuzzy variables to describe a 

fuzzy state. The continuous action performed by the learner for a particular 

state is a weighted sum of the actions elected in the fired rules that describe 

this state, whose weights are normalized firing strengths of the rules. Since 

more than one fuzzy state may be visited at the same time, possibly with 

different degrees, there will be a smooth transition between a state and its 

neighbors, and, consequently, smooth changes of actions carried out in the 

different states. 
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Incorporating initial knowledge 

The if-then fuzzy rules correspond to the initial domain knowledge about 

the tasks and allow incorporation of bias into the system. Bias accelerates 

the learning process since it focuses on the search process of promising 

parts of the action space immediately. These biases can eventually be 

overridden by more detailed and accurate learned knowledge. Fuzzy rules 

provide a natural framework of incorporating the bias components for rapid 

and safe learning. The premise of rules can be used to generate fuzzy states 

over the input space and the consequents of rules can be used to generate 

the initial Q-values so that a greedy policy would select the action 

suggested by these biases. 

Eligibility trace mechanism 

The DFQL can be extended to the general version with an eligibility 

mechanism leading to faster learning, especially from delayed 

reinforcement. It figures out which actions in the sequence are primarily 

responsible for the received reward and has the ability of exploration 

insensitivity, i.e. the ability to learn without necessarily following the 

current policy. The capability makes it much more appealing for efficient 

implementation of RL in real-life applications. 

On-line incremental learning 

The DFQL is primarily concerned with how to obtain an optimal policy 

when a model is not known in advance. The learner interacts with its 

environment directly to obtain the information. No prescribed training 

models are needed for on-line learning. The DFQL can learn adaptively 

from the training data set sequentially. The control knowledge is 

distributively represented in the fuzzy rules. With increasing fuzzy rules 
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according to the system performance, the learner can incrementally adapt 

the environment complexity. 

Fast and adaptive learning 

The DFQL has a fast learning speed since structure and parameters 

formulation are done automatically and systematically without partitioning 

the input space a priori. The use of fuzzy theory provides the ability to deal 

with uncertain and imprecise data in the real world. 

The fuzzy rule format makes it easy to implement effective navigation tasks for 

mobile robots. The interpolation mechanism implemented by fuzzy controllers 

results in smooth motion of the robot. Thus, compared with the Q-learning method 

with discrete actions, the DFQL method is superior by virtue of its capability of 

handling continuous-valued states and actions. Because fuzzy rules can be 

generated automatically accordmg to system performance, the DFQL is more 

flexible than fuzzy Q-learning with a fixed structure. A comparative study with the 

Continuous-Action Q-Learning approach, the only approach which is capable of 

generating continuous actions by means of Q-learning, also demonstrates the 

superiority of the DFQL method. 

The general version of DFQL with an eligibility mechanism leads to faster 

learning and alleviate the non-Markovian effect in real-life applications. 

Simulation studies on searching for optimum paths of the robot demonstrate the 

efficiency of the method for learning the appropriate policy in multi-step 

prediction problems. We examine issues pertaining to efficient and general 

implementation of the DFQL for different eligibility rates for optimizing the sum 

of rewards. This method allows us to obtain a significant learning speedup using 
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the eligibility rate and alleviates the experimentation-sensitive problem at the same 

time, which is superior to the other methods based on the actor-critic learning. 

Outline of Thesis 

This thesis is organized in seven chapters each of which is devoted to a particular 

sub-issue. A summary of the content of each chapter is given here: 

Chapter 1 presents motivations and contributions of the thesis and gives a 

brief outline of each chapter in the thesis. 

Chapter 2 introduces the foundation of the FIS and a computation 

framworkbased on the concepts of fuzzy sets, fuzzy IF-THEN rules and 

fuzzy reasoning. Intrinsically, the FIS provides an algorithm, which can 

convert the linguistic rules based on expert knowledge into some automatic 

control action. In order to circumvent the problem of subjective approaches 

in designing the FIS, we present the current research on finding automatic 

methods of self-tuning of FISs. The main issues associated with learning 

abilities of FISs are parameter estimation and structure identification. We 

discuss two families of learning methods, namely supervised learning and 

unsupervised learning, characterized by the information source used for 

learning. 

Chapter 3 gives an overview of the field of RL, which has only very simple 

"evaluative" or "critic" information instead of "instructive" information 

available for learning. We focus on the Q-learning method which is the 

most popular and arguably the most effective model-free algorithm for RT, 

learning. Furthermore, the generalization techniques, which allow compact 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter I Introduction 15 

storage of learned information and transfer of knowledge between similar 

states and actions are addressed in order to deal with the continuous spaces 

and actions in practice. Subsequently, we discuss a collection of robotics 

applications and the major application area in RL. Finally, we provide an 

overview of the miniature mobile robot (Khepera) used for the experiments 

described in this thesis. 

Chapter 4 investigates requirements of learning methods of fuzzy systems 

based on RL and requirements of generalization techniques of Q-learning. 

Subsequently, we present the development of the proposed DFQL to deal 

with these requirements. The DFQL architecture and on-line structure and 

parameter learning algorithm for constructing the DFQL automatically and 

dynamically are described in details. Finally, experiments performed on the 

Khepera robot for the obstacle avoidance task are used to verify the 

efficiency of the proposed DFQL. Compared with the random policy, the 

Q-learning method and the Q-KOHON method, the DFQL method is 

superior because of its capability of handling continuous-valued states and 

actions. 

Chapter 5 describes the natural framwork incorporating the initial 

knowledge to the learning system based on fuzzy rules. We explore the use 

of reflexes to make learning safer and more efficient. The reflexes 

correspond to domain knowledge about the task and allow incorporation of 

bias into the system. Experiments performed on the Khepera robot for the 

wall following behavior are investigated. A comparative study of the Fuzzy 

Q-Learning, Continuous-Action Q-Learning and our approach is carried 

out. All of these methods can handle continuous states and actions and 
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incorporate initial knowledge for rapid learning and experimental results 

demonstrate the superiority of the proposed DFQL method. 

Chapter 6 extends the DFQL learning algorithm to the general version with 

an eligibility mechanism, leading to faster learning and alleviating the 

experimentation-sensitive problem. We provide a literature review on the 

eligibility trace mechanism and describe advantages of our design. Next, 

details of the general DFQL learning algorithm are presented. 

Subsequently, simulation studies of the general DFQL on optimum-path 

experiments performed on the Khepera robot demonstrate the efficiency of 

the method for learning the appropriate policy with a few trials. Finally, we 

discuss related works based on two prevalent approaches to RL, namely Q- 

learning and actor-critic learning. 

Chapter 7 concludes this thesis and suggests several promising directions 

for future research based on the results presented in this thesis. Some 

theoretical results concerning convergence of the system based on linear 

architecture with fuzzy basis functions are discussed. Potential algorithms 

which are used in partially observable environments, based on planning 

models and deployed for multi-agent systems are suggested. 
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Chapter 2 

Fuzzy Systems 

It has been shown that fuzzy-logic-based modeling and control could serve as a 

powerful methodology for dealing with imprecision and nonlinearity efficiently 

[47,100]. In this chapter, we begin by introducing the basic concept of Fuzzy 

Inference Systems (FISs). We then introduce and discuss some issues concerning 

learning paradigms of fuzzy systems based on different learning methods 

characterized by the information source used for learning. 

2.1 General Fuzzy Systems 

Fuzzy logic, first proposed by Lotfi Zadeh in 1965 [150], is primarily concerned 

with representations of imprecise knowledge which is common in many real-life 

systems. It facilitates representations of knowledge through the use of fuzzy sets in 

digital computers. On this basis, fuzzy logic uses logical operators to collate and 

integrate human knowledge in order to generate some kind of reasoning common 

in natural intelligence. 

An FIS is a computation framework based on the concepts of fuzzy sets, fuzzy if- 

then rules and fuzzy reasoning. FISs are known by other names such as fuzzy rule- 
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based systems, fuzzy models or simply fuzzy systems. The essential part of the FIS 

is a set of linguistic rules related by the dual concept of fuzzy implication and the 

compositional rule of inference. Intrinsically, the FIS provides an algorithm, which 

can convert the linguistic rules based on expert knowledge into an automatic 

control action. Many experiments have shown that FISs yield results far more 

superior to those obtained by conventional approaches. In particular, the 

methodology of FISs appears very useful when the processes are too complex for 

analysis by conventional quantitative techniques or when the available sources of 

information are interpreted qualitatively, inexactly or uncertainly. Thus, FISs may 

be viewed as a step towards the approach between conventional precise 

mathematical paradigms and human-like decisions making [47,100,143,144]. 

2.1.1 Fuzzy Set 

Conventional set theory is based on the premise that an element either belongs to 

or does not belong to a given set. Fuzzy set theory takes a less rigid view and 

allows elements to have degrees of membership of a particular set such that 

elements are not restricted to either being in or out of a set but are allowed to be 

"somewhat" in. In many cases, this is a more natural approach. 

In fuzzy set theory, a precise representation of imprecise knowledge is not 

enforced since strict limits of a set are not required to be defined; instead, a 

membership function is defined. A membership function describes the relationship 

between a variable and the degree of membership of the fuzzy set that corresponds 

to some specific values of that variable. This degree of membership is defined in 

terms of a number between 0 and 1 inclusive, where 0 implies total absence of 

membership, 1 implies complete membership, and any value in between implies 

partial membership of the fuzzy set. This may be written as , 
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where is the membership function and U is the universe of discourse which 

defines the total range of interest over which the variable x should be defined. 

There are various possible types of fuzzy membership functions and these will 

each provide a different meaning for the fuzzy values that they quantify. Fuzzy 

values are sometimes also called linguistic values. We describe two most 

commonly used membership functions, the triangular and Gaussian membership 

functions, which represent a very easy way to compute the degree of input variable 

membership. A triangular membership function is specified by three parameters 

{a, b, c} as follows: 

The parameters {a,b,c) with (a<b<c) determine the x coordinates of the three 

comers of the underlying triangular membership functions. A Gaussian 

membership function is specified by two parameters {c,       }

A Gaussian membership function is determined completely by c and where c 

represents the center of a membership function and determines the width of a 

membership function. The shapes of the membership function are shown in Figure 

2.1. 
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triangular Gaussian 

Figure 2.1 Two common fuzzy membership functions 

While seemingly imprecise to a human being, fuzzy sets are mathematically 

precise in that they can be fully represented by exact numbers. They can therefore 

be seen as a method of combining human and machine knowledge representation 

together. Given that such a natural method of representing information in a 

computer exists, information processing methods can be applied to it by the use of 

FISs. 

2.1.2 Fuzzy If-Then Rules 

FISs are essentially knowledge-based or rule-based systems, which comprise a 

collection of rules each of which defines a desired action when a particular 

combination of fuzzy values occurs. The rules are defined in IF-THEN form as 

follows: 

If premise Then consequent (2.3) 

Usually, the inputs of the fuzzy system are associated with the premise, and the 

outputs are associated with the consequent. The basic form of a linguistic rule is 

(2.4) 

are input and output linguistic variables 

respectively, are 
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linguistic variables or labels of fuzzy sets characterized by appropriate membership 

functions and ) respectively, and R , j = 1,. . . , l represents the jth 

fuzzy rule. 

Since the output linguistic variables of a Multi-Input Multi-Output (MIMO) rule 

are independent, a MIMO FIS can be represented as a collection of Multi-Input 

Single-Output (MISO) FISs by decomposing the above rule into m sub-rules with 

G    k ,k = 1,. . . , m as the single consequent of the kth sub-rule [100,144]. For 

notational simplicity, we would consider MISO FISs in the rest of the chapter. 

Another form of fuzzy IF-THEN rules has fuzzy sets involved only in the premise 

part. This form of fuzzy IF-THEN rules can be categorized into two models, 

namely Simplified Model and Takagi-Sugeno-Kan Model. 

Simplified Model (S-model): In S-model, a fuzzy singleton is used for the 

output [144], i.e. 

(2.5) 

where C is a fuzzy singleton. 

Takagi-Sugeno-Kan Model (TSK-model): Takagi and Sugeno in 1985 

[129]proposed the following fuzzy model: 

(2.6) 

The premise of this rule is defined in the same way as that for the rule of 

the standard fuzzy system. However, the consequents of the rules are 

different. Instead of a linguistic term with an associated membership 

function, in the consequent, we use a function that does not have an 

associated membership function. Usually, is a polynomial in 
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the input variables, but it can be any function as long as it can appropriately 

describe the output of the model within the fuzzy region specified by the 

antecedent of the rule. If no input variables are considered, the TSK-model 

is exactly the same as the S-model. Therefore, the TSK-model can be 

considered as a special case of the S-model. Experiments show that the 

TSK-model has advantages like computational efficiency, compatibility 

with linear, adaptive and optimization techniques and continuity of the 

output surface. 

Both types of fuzzy IF-THEN rules have been extensively used in both modeling 

and control. Through the use of linguistic labels and membership functions, a 

fuzzy IF-THEN rule can easily capture the spirit of a "rule of thumb" used by 

human beings [47]. From another point of view, due to the qualifiers on the 

premise parts, each fuzzy IF-THEN rule is actually a local description of the 

system under consideration. On the contrary, conventional approaches of system 

modeling operate on the entire scope to find a global functional or analytical 

structure of a nonlinear system. 

2.1.3 Fuzzy Inference Systems (FISs) 
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The basic configuration of FISs is shown in Figure 2.2. An FIS can be defined as a 

system which transforms or maps one collection of fuzzy or crisp values to another 

collection of fuzzy or crisp values. This mapping process is performed by four 

parts: 

Fuzzification - Converts a set of crisp variables into a set of fuzzy variables 

to enable the application of logical rules. 

Fuzzy Rule Base - Stores a collection of logical IF-THENrules. 

Fuzzy Inference Mechanism - An algorithm which is used for calculating 

the extent to which each rule is activated for a given input pattern. 

Defuzzification - Converts a set of fuzzy variables into crisp values in 

order to enable the output of the FIS to be applied to another non-fuzzy 

system. If a crisp output is not required, then defuzzification is not 

necessary. 

The steps of fuzzy reasoning, i.e., inference operations upon fuzzy IF-THEN rules, 

performed by FISs are: 

1. Compare the input variables with the membership functions on the premise 

part to obtain the membership values or compatibility measures of each 

linguistic label. This step is often called fuzzification. 

2. Combine (through a specific T-norm operator, usually multiplication or 

minimum) the membership values of the premise part to obtain the firing 

strength of each rule. 

3. Generate the qualified consequent (either fuzzy or crisp) of each rule 

depending on the firing strength. 

4. Aggregate the qualified consequent to produce a crisp output. This step is 

called defuzzification. 
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Several types of fuzzy reasoning have been proposed in the literature 

[57,59,75,81,93,101,141]. Depending on the type of fuzzy reasoning, most FISs 

can be classified into three types [46,47], i.e. Tsukarnoto-type FIS, Mamdani-type 

FIS and TSK-type FIS. Most of the differences among different type FISs come 

fromthe specification of the consequent part and thus the defuzzification schemes 

are also different. In this thesis, we would use the TSK-type FIS described as 

follows: 

TSK-model fuzzy IF-THEN rules, which are described in Section 2.1.2, can be 

used to implement FISs [129] and shown in Figure 2.3. The output of each rule is a 

polynomial in the input variables, and the final crisp output, y is the weighted 

average of each rule's output, w = g(x,. . . , x, ), i.e. 

where the firing strength f j is calculated by the T-norm operation, e.g. 

 Intersection: 

(2.8) 

Algebraic Product: 

One-way to view the TSK-model fuzzy system is that it is a nonlinear interpolator 

between the mappings that are defined by the functionsin the consequents of the 

rules. When g is a constant, we have a zero-order Sugeno fuzzy model. The output 

of a zero-order Sugeno model is a smooth function of its input variables as long as 

the neighboring membership functions in the antecedent have enough overlaps. 

Since each rule has a crisp output, the overall output is obtained via weighted 
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average, thus avoidingthe time-consuming process of defuzzifaction required in 

other fuzzy models. 

2.1.4 Design Problems in FISs 

During the last few decades, FISs have emerged as one of the most active and 

fruitful areas for research in the application of fuzzy set theory. Fuzzy logic has 

found a variety of applications in various fields ranging from industrial process 

control to medical diagnosis and robotics [47,100,106,108,114, 143,144, 150].

Combining multi-valued logic, probability theory and artificial intelligence, FISs 

are control/decision methodologies that simulate human thinking by incorporating 

imprecision inherent in all physical systems. From Section 2.1 .1,2.1.2 and 2.1.3, 

we have a good foundation of how FISs work. The decisions are based on inputs in 

the form of linguistic variables derived from membership functions. The variables 

are then matched with the preconditions of linguistic IF-THEN rules, and the 

response of each rule is obtained through fuzzy implication. To perform a 

compositional rule of inference, the response of each rule is weighted according to 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 2 Fuzzy Systems 26 

the confidence or degree of membership of its inputs, and the centroid of responses 

is calculated to generate an appropriate control signal. 

Fuzzy systems that do not require analytical models have demonstrated a number 

of successful applications. These applications have largely been based on 

emulating the performance of a skilled human operator in the form of linguistic 

rules. However, the conventional way of designing a fuzzy system has been a 

subjective approach. Transferring expert knowledge into a usable knowledge base 

is time-consuming and nontrivial [59]. Moreover, depending on human 

introspection and experience may result in some severe problems because, even for 

human experts, their knowledge is often incomplete and episodic rather than 

systematic. At present, there is no systematic procedure to determine fuzzy logic 

rules and membership functions of an FIS. The most straightforward approach is to 

define membership functions and rules subjectively by studying a human-operated 

system or an existing controller and then testing the design for a proper output. The 

membership functions and rules are then adjusted if the design fails the tests. 

Recently, much research on FISs design has been carried out in [47,100,144]. 

Unfortunately, the following issues still remain. Hence, bringing learning abilities 

to FISs may provide a more promising approach. 

Although systematic methods to adjust membership functions and rules are 

derived in [47,144], structure identification, e.g. determination of input 

space partition, number of membership functions and number of rules are 

still difficult to solve. 

Fuzzy systems with high dimensionality often suffer from the problem of 

curse of dimensionality due to the rapid increase of fuzzy rules [ 119,1201. 

Efficient algorithms which relieve this problem and do not increase the 

complexity of the FISs are highly desired. 
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Fuzzy modeling takes advantage that it is constructed based on both 

linguistic and numerical information [143]. How to utilize different types 

of numerical information source seems to be the key to construct a compact 

fuzzy system. 

Learning Paradigms of Fuzzy Systems 

In general, subjective approaches to design fuzzy systems are simple and fast, i.e., 

they involve neither the-consuming iterative procedures nor complicated rule- 

generation mechanisms. However, problems arise fiom disagreements among 

experts, decision rules that are difficult to structure, or a great number of variables 

necessary to solve the control task. If the fuzzy system somehow possesses 

learning abilities, an enormous amount of human efforts would be saved from 

tuning the system. A fuzzy system with learning abilities, i.e. an adaptive FIS 

which is equipped with a learning algorithm, where the FIS is constructed from a 

set of fuzzy IF-THEN rules using fuzzy logic principles, and the learning 

algorithm adjusts the parameters and the structure of the FIS based on numerical 

information [143]. 

The current research trend is to design a fuzzy logic system that has the capability 

of learning itself. It is expected that the controller perform two tasks: 1) It observes 

the process environment while issuing appropriate control decisions and 2) It uses 

the previous decision results for further improvement. The main issues associated 

with learning abilities of FISs are: 1) Parameter estimation, which involves 

determining the parameters of premises and consequents, and 2) Structure 

identification, which concerns partitioning the input space and determining the 

number of fuzzy rules for a specific performance [119]. We discuss the following 

two families of learning methods characterized by the information source used for 
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learning and classified with respect to the degree of information from the source 

[47]. 

2.2.1 Supervised Learning 

In general, supervised learning implies that the information source used for 

learning is a direct teacher, which provides, at each time step, the correct control 

action to be applied by the learner. Typically, these learning methods are based on 

an input-output set of the training data, on which we have to minimize errors 

between the teacher's actions and the learner's actions. 

At present, the partition of input/output space, the choice of membership functions 

and fuzzy logic rules fiom numerical training data are still open issues [119,120]. 

Recently, attentions have been focused on fuzzy neural networks (FNNs) to 

acquire fuzzy rules based on the leaming ability of Artificial Neural Networks 

(ANNs) [72]. Functionally, an FIS or an ANN can be described as a function 

approximator, i.e. they aim to approximate a function f: from sample 

patterns drawn from f. It has been shown by Jang and Sun in 1993 [45] that under 

some minor restrictions, a simplified class of FISs and Radial Basis Function 

Neural Networks (RBFNNs) are functionally equivalent. It is interesting to note 

that the learning algorithms and theorems on representational power for one model 

can be applied to the other, and vice versa. 

RBFNNs, as proposed by Moody and Darken [89] in 1989, are often considered to 

be a type of ANN that employs local receptive fields to perform function

mappings. The RBFNNs performs function approximation by superimposing a set 

of l RBFs as follows: 
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From Eqs. (2.7), (2.9) and (2.1 1), it is obvious that the functional equivalence 

between an RBFNN and an FIS can be established if the following conditions are 

true [45]: 

The number of receptive field units, i.e. hidden neurons is equal to the 

number of fuzzy if-then rules. 

The output of each fuzzy if-then rule is composed of a constant. 

Membership functions within each rule are chosen as a Gaussian function 

with the same variance. 

The T-norm operator used to compute each rule's firing strength is 

multiplication. 

Both the RBF networks and the FIS under consideration use the same 

method, i.e. either weighted average or weighted sum to derive their overall 

outputs. 

As a result, RBFNNs can be viewed as a mechanism for representing rule-based 

fuzzy knowledge by using its localized network structure, and performing 

associated fuzzy reasoning using feedforward computational algorithms. 
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Integrating the learning abilities of ANNs into FISs is a promising approach 

because the connectionist structure of ANNs provides powerful learning abilities 

to FISs. The typical paradigm of FNNs is to build standard neural networks, which 

are designed to approximate a fuzzy algorithm or a process of fuzzy inference 

through the structure of neural networks [46,67,72,142]. The main idea is the 

following: Assuming that some specific membership functions have been defined, 

we begin with a fixed number of rules by resorting to either the trial-and error 

method [24,46,113,130] or expert knowledge [63,69]. Next, the parameters are 

modified by the Back Propagation (BP) learning algorithm [24,63,69,113,130] or 

hybrid learning algorithm [46]. These methods can readily solve two problems of 

conventional fuzzy reasoning: 1) Lack of systematic design for membership 

functions and 2) Lack of adaptability for possible changes in the reasoning 

environment. These two problems are intrinsically concerned with parameter 

estimation. Nevertheless, structure identification, such as partitioning the input and 

output space and determination of number of fuzzy rules, is still time-consuming. 

The reason is that, as shown in [149], the problem of determining the number of 

hidden nodes in NNs can be viewed as a choice of the number of fuzzy rules. 

Different from the aforementioned FNNs, several adaptive paradigmshave been 

presented whereby not only the connection weights can be adjusted but also the 

structure can be self-adaptive during learning [17,24,27,35,49,113,149]. In 

[24,113], the FNNS are constructed largely to contain all possible fuzzy rules. 

After training, a pruning process [I131 or fuzzy similarity measure [24] is 

performed to delete redundant rules for obtaining an optimal fuzzy rule base. In 

[17], a parsimonious construction algorithm employing linear parameter ANNs 

was proposed to overcome the curse of dimensionality associated with FNN 

structure learning. In [27], a hierarchically self-organizing approach, whereby the 

structure is identified by input-output pairs, is developed. An on-line self- 

constructing paradigm is proposed in [49]. The premise structure in [49] is 
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determined by clustering the input via an on-line self-organizing learning 

approach. A hierarchical on-line self-organizing learning algorithm for dynamic 

fuzzy neural networks based on RBF neural networks, which are functionally 

equivalent to TSK fuzzy systems, has been developed in [35,149]. The system 

starts with no rules. Then, rules can be recruited or deleted dynamically according 

to their significance to system performance so that not only the parameters can be 

adjusted but also the structure can be self-adaptive. Above all, all of these learning 

algorithms belong to the class of supervised learning where the teacher associates 

the learning system with desired outputs for each given input. Learning involves 

memorizing the desired outputs by minimizing discrepancies between actual 

outputs of the system and the desired output. 

2.2.2 Unsupervised Learning 

Unsupervised learning does not rely on a direct teacher that guides the learning 

process. It has been shown that if the supervised learning can be used, e.g., when 

the inputloutput training data sets are available, it is more efficient than 

unsupervised learning [7]. However, unsupervised learning systems can be used to 

provide unknown desired outputs with a suitable evaluation of system 

performances. In this section, we introduce two design methods that employ 

evolutionary algorithms and reinforcement learning techniques respectively. 

First, we introduce evolutionary learning of fuzzy systems. The information source 

used for learning is a performance measure, which indicates the quality of a learner 

on a set of states. This kind of learning method is generally associated with 

evolutionary algorithms, e.g., genetic algorithms [54,71], evolutionary strategies 

[29], and Learning Classifier Systems [99]. We shall furthernarrow our scope by 

discussing Genetic Algorithms (GAS) for fuzzy systems only, although other 
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approaches can be used similarly. A GA is a parallel global-search technique that 

emulates the processes of natural evolution including crossover, mutation, and 

survival of the fittest. GA can, in effect, often seek many local minima and 

increase the likelihood of finding global minima representing the problem goals 

[84].

When designing a fuzzy system using GAS, the first important consideration is the 

representation strategy, that is, how to encode the fuzzy system into chromosomes 

[115]. Thrift [134]and Hwang and Thompson [42] encode all the rules into a 

chromosome while fixing the membership functions. Using several critical points 

to represent each membership function while using all the possible rules, Karr [55] 

and Karr and Gentry [56] use GAs   to evolve these critical points; that is, to adjust 

the membership functions. Since the membership functions and rule set in a fuzzy

system are codependent, they should be designed or evolved at the same time. Lee 

and Takagi [62] encode membership functions and all the rules into a 

chromosome. They restrict adjacent membership functions to fully overlap and 

also constrain one membership function to have its center resting at the lower 

boundaries of the input range. The above-mentioned methods encode all possible 

rules into a chromosome. There are some drawbacks by doing so [30]: first, the 

computational efficiency associated with fuzzy logic is lost using a high number of 

rules and second, robustness diminishes with increasing number of rules. This is 

especially true when the dimension of the inputs and the number of fuzzy sets for 

each input variable become great since the number of possible rules increases 

exponentially with these numbers. In most applications, not all possible rules need 

to be used; only a portion of the rules are needed. So, only this portion of rules 

should be encoded into the chromosome and evolved. By doing so, the length of 

the chromosome will be reduced greatly and, therefore, will be suitable for bigger 

problems. It is better to encode the number of rules to be included in the rule set 
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together with rules and/or membership functions into the chromosome to be 

evolved. There are several ways to do this. Lee and Takagi [61] proposed encoding 

membership functions and fitness functions in chromosomes. Shimojima et al. 

[116]and Inoue et al. [43] defined membership functions for each rule and 

encoded effectiveness information for each rule and membership functions. 

Shimojima et al. used fitness functions that minimize the number of rules which 

Inoue et al. used a method called "forgetting". 

When using GA optimization methods, we can employ a complex fitness function. 

The genotype representation encodes the problem into a string while the fitness 

function measures the performance of the system. This means that we can 

incorporate structure-level information into the objective function [61] and let the 

GA optimization methods do the entire job: finding the correct number of rules, as 

well as proper parameters of membership functions in fuzzy systems. This seems 

too good to be true. However, we should bear in mind that evolutionary algorithms 

are slow and they could take a tremendous amount of time to obtain a less-than- 

optimal solution. 

Input space partitioning determines the premise part of a fuzzy rule set. For a 

problem, some parts of pattern space might require fine partition, while other parts 

require only coarse partition. Therefore, the choice of an appropriate fuzzy
partition is important and difficult. One of the flexible input space partitioning 

methods is based on the GA [121]. The major disadvantage of these methods is 

that it is very consuming; the computation cost to evaluate a partition result 

encoded in each individual is very high and many generations are needed to find 

the final partition. Hence, this scheme is obviously not suitable for online 

operation. Moreover, the GA-based partitioning methods might not find 
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meaningful fuzzy terms for each input variable. There could be difficulty 

accommodating a priori knowledge about the target system. 

Next, we introduce another kind of learning methods using the information source 

of critic, which gives rewards and punishments with respect to the state reached by 

the learner, but does not provide correct actions. These methods, called 

reinforcement learning methods, consist of active exploration of the state and 

action spaces to find what action to apply in each state [60]. 

Reinforcement learning (RL) plays an important role in adaptive control. It is 

particularly helpfulwhen no explicit teacher signal is available in the environment 

where an interacting agent must learn to perform an optimal control action. The 

world informs the agent of a reinforcement signal associated with the control 

action and the resulting new state. The signal is evaluative rather than instructive. 

Furthermore, the signal is often delivered infrequently and delayed i.e. it is not 

available at each time instant. When it is available at a certain moment, it 

represents the results of a series of control actions probably performed over a 

lengthy period of time. There are two prevalent approaches to reinforcement 

leaming, namely actor-critic learning [6] and Q-leaming [145]. The actor-critic 

model typically includes two principal components: the critic 

(evaluation/prediction) module and the action (control) module. The critic 

generates an estimate of the value function from state vectors and external 

reinforcement generated by the environment. That is, the critic plays an important 

role in predicting the evaluation function. The action module attempts to learn 

optimal control or decision-making skills. Q-learning is a simple way of dealing 

with incomplete-information Markovian-action problems based on the action-value 

function Q that maps state-action pairs to expected returns. The learner tries an 

action at a particular state and evaluates its consequence in terms of the immediate 
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reward or penalty it receives and its estimate of the state value resulting from the 

taken action. Actor-critic learning architecture requires two fundamental memory 

buffers: one for the evaluation function and one for the policy. On the other hand, 

Q-learning maintains only one: a pair of state and action. Instead, Q-learning 

requires additional complexity in determining the policy from Q-learning. 

The basic idea behind fuzzy RL is to apply fuzzy partitioning to the continuous 

state-space and to introduce linguistic interpretation. Such averaging over 

neighboring partitioned subspaces can create generalization abilities [47]. Most of 

learning methods are based on the idea of actor-critic model. Berenji and Khedkar 

propose the Generalized Approximate Reasoning for Intelligent Control (GARIC) 

model [10],which has three components: the action selection network, the action 

evaluation network and the stochastic action modifier. The action selection 

network is expressed in a neuro-fuzzy fi-amework. Lin and Lee's Reinforcement 

Neural-Network-based Fuzzy Logic Control System (RNN-FLCS) [68] consists of 

a fuzzy controller and a fuzzy predictor. The whole RNN-FLCS is expressed in a 

neuro-fuzzy framework; both critic and action module share the antecedent parts of 

the fuzzy rules. In addition to parameter learning, it can perform the structure 

learning and find the proper fuzzy rules. Lin et al. [70] and Chiang et al. [26] 

propose genetic RL algorithms for designing fuzzy systems by exploiting the 

global optimization capability of GAS in order to overcome the local minima 

problem in network learning due to the use of the gradient descent learning 

method. Bruske et al. [23] and Rak et al. [I07] employ actor-critic model to learn 

fuzzy controllers for autonomous robots. Jouffe's Fuzzy Actor-Critic Learning 

[48] deals with the conclusion part of fuzzy rules. Kandadai and Tien propose a 

fuzzy-neural architecture that is capable of automatically generating a fuzzy 

system for use in hierarchical knowledge-based controllers [53]. 
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On the other hand, the other approaches allow efficient learning of fuzzy systems 

based on Q-learning since Q-learning is the most popular reinforcement learning 

method that directly calculates the optimal action policy without an intermediate 

cost evaluation step and without the use of a model. FISs have strong 

generalization abilities to deal with continuous inputs and outputs. Moreover, the 

fuzzy Q-learning method is considered to be a more compact version of the fuzzy 

actor-critic method. Glorennec and Jouffe consider a collection of fuzzy rules as an 

agent that produces continuous-valued actions in [37,48]. This approach termed 

Fuzzy Q-Learning (FQL) produces an action by some rules triggering on the same 

state-space and cooperating collectively. Similar rule structure and adaptive 

rewards are used in the simulation of object chase agents [78]. Horiuchi et al. 

consider a similar algorithm, termed Fuzzy Interpolation-Based Q-Learning and 

further propose an extended roulette selection method so that continuous-valued 

actions can be selected stochastically based on the distribution of Q-values [41]. 

Berenji [11]proposes another version of Q-learning dealing with fuzzy constraints. 

In this case, we do not have fuzzy rules, but "fuzzy constraints" among the actions 

that can be done in a given state. These works, however, only adjust the 

parameters of fuzzy systems online. Structure identification, such as partitioning 

the input and output space and determination of the number of fuzzy rules are still 

carried out offline and it is time consuming. 

In this thesis, one of the main objectives is to design a novel learning method that 

is capable of learning the structure and parameters of fuzzy systems automatically 

and simultaneously using Q-Learning. The following chapters will further 

investigate this problem and present a thorough discussion on fuzzy system 

learning by reinforcement methods. 
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Chapter 3 

Reinforcement Learning 

The goal of building systems that can adapt to their environments and learn from 

their experience has attracted researchers from many fields, including computer 

science, engineering, mathematics, physics, neuroscience, and cognitive science. 

Reinforcement learning (RL) is a powerful method to solve the problem faced by 

an agent that must learn through trial-and-error interactions with a dynamic 

environment [51,109,128]. In this chapter, we begin by presenting the basic 

framework of RL and then discuss the problem of generalization in large 

continuous spaces. The last section of this chapter discusses some issues in 

applying RL to robotics. 

3.1 Basic Framework 

Basically, RL is concerned with learning through direct experimentation. It does 

not assume the existence of a teacher that provides training examples on which 

learning of a task takes place. Instead, experience is the only teacher in RL. The 

learner acts autonomously on the process and receives reinforcements from its 

actions. With historicalroots on the study of biological conditioned reflexes, RL 
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attracts the interest of engineers because of its theoretical relevance and potential 

applications in fields as diverse as operational research and intelligent robotics. 

3.1.1 Reinforcement Learning Model 

RL is concerned with solving a problem faced by an agent that must learn through 

trial-and-error interactions with a dynamic environment. We are particularly 

interested in a learning system which is composed of two subjects, namely the 

learning agent (or simply the learner) and a dynamic environment. In the standard 

RL model, a learner is connected to its environment via perceptions and actions. 

On each step of the interaction, the learner receives as its input, x which shows 

some indication of the current state, s, of the environment. The learner then selects 

an action, a, to generate an appropriate output. The action changes the state of the 

environment, and the value of this state transition is communicated to the learner 

through a scalar reinforcement signal, r. Those reinforcement signals encode 

information about how well the learner is performing the required task, and are 

usually associated with a dramatic condition-such as the accomplishment of a 

subtask (reward) or complete failure (punishment). The ultimate goal of the learner 

is to optimize its behavior based on some performance measure (usually 

maximization of some long-run measure of reinforcement). In order to do that, the 

learner must learn a policy , which describes the associations between observed 

states and chosen actions that lead to rewards or punishments. In other words, it 

must learn how to assign credit to past actions and states by correctly estimating 

costs associated with these events. 

Referring to Figure 3.1, the accumulation of experience that guides the behavior 

(action policy) is represented by a cost estimator whose parameters are learned as 

new experiences are carried out by the learner. The learner is also equipped with 
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sensors that define how observations about the external environment are made. 

These observations can be combined with past observations or input to a state 

estimator which defines an internal state that represents the agent's belief about the 

real state of the process. The cost estimator then maps these internal states and 

presented reinforcements to associated costs, which are basically expectations 

about how good or bad these states are, given the experience obtained so far. 

Finally, these costs guide the action policy. A prior built-in knowledge may affect 

the behavior of the learner either directly, altering the action policy or indirectly, 

influencing the cost estimator or sensors. 

Figure 3.1 A general model for the reinforcement learning agent 

The experience accumulation and action taking process is represented by the 

following sequence: 

1. The learner makes an observation and perceives any reinforcement signal 

provided by the environment. 
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2. The learner takes an action based on the former experience associated with 

the current observation and reinforcement. 

3. The learner makes a new observation and updates its cumulated experience. 

In order to control policies, we must be able to evaluate them with respect to each 

other. In RL, the cost estimator is some functionof the rewards received by the 

learner. There are three models that have been the subject of the majority of work 

in this area. The finite-horizon model is the easiest to understand. The idea is the 

following: At a given moment in time, the learner should optimize its expected 

reward for the next k steps, which is given by 

It needs not wony about what will happen after that. In this and subsequent 

expressions, r represents the scalar reward received t steps into the future. The 

finite-horizon model is not always appropriate since in many cases, we may not 

know the precise length of the agent's life in advance. In the average-reward 

model, the learner is supposed to take actions that optimize its long-run average 

reward, which is given by 

The infinite-horizon discounted model takes the long-run reward of the agent into 

account, but rewards that are received in the future are geometrically discounted 

according to the discount as follows: 

If we set the discount factor to be zero, when we obtain the one-step greedy policy, 

i.e. the best action is the one that gives the greatest immediate reward. Values 

greater than zero reflect how much we are concerned with actions that happen 
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further in the future. The average-reward model can be seen as the limiting case of 

the infinite-horizon discounted model as the discount factor approaches to 1. The 

infinite-horizon discounted model has received wide attention mostly because the 

theoretical aspects are better understood. 

RL differs from the more widely studied problem of supervised learning in several 

ways. The most important difference is that there is no presentation of input/output 
pairs. Instead, after choosing an action, the learner is told the immediate reward 

and the subsequent state, but is not told which action would have been in its best 

long-term interest. It is necessary for the learner to gather useful experience about 

the possible system states, actions, transitions and rewards actively to act 

optimally. Another difference from supervised learning is that on-line performance 

is important; the evaluation of the system is often concurrent with learning. 

3.1.2 Markov Decision Processes 

RL problems are typically cast as Markov Decision Processes (MDPs), which are 

widely used to model controlled dynamical systems in control theory, operations 

research and artificial intelligence. An MDP consists of 
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functionspecifies expected instantaneous reward as a function of the current state 

and action. The model is Markov if the state transitions are independent of any 

previous environment states or agent actions [9,12,105].

 42

 

Given a perfect model of the environment as an MDP, we can use Dynamic 

Programming (DP) techniques to determine the optimal policy. Classical DP 

algorithms are of limited utility in RL both because of their assumption of a perfect 

model and the great computational expense, but they still serve as the foundation 

and inspiration for the learning algorithms to follow. We restrict our attention 

mainly to finding optimal policies for the infinite-horizon discounted model, but 

most of these algorithms have analogs for the finite-horizon and average-case 

models as well. We rely on the result that for the infinite-horizon discounted 

model, there exists an optimal deterministic stationary policy [9]. 

The optimal value of a state is the expected infinite discounted sum of reward that 

the agent will gain if it starts in that state and executes the optimal policy. Using n 

as a complete decision policy, it is written as 

This optimal value function is unique and can be defined as the solution to the 

simultaneous equations 
/ \ 

which states that the value of a state s is the expected instantaneous reward plus the 

expected discounted value of the next state, using the best available action. Given 

the optimal value function, we can specify the optimal policy as 
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There are two main classes of well-established methods for finding out optimal 

policies in MDPs: Value Iteration and Policy Iteration [9,12]. The value iteration 

method is determined by a simple iterative algorithm that can be shown to 

converge to the correct V *  value. The gist of the method is as follows: 

Value iteration is very flexible. The assignments to V need not be done in strict 

order as shown above, but instead can occur asynchronously in parallel provided 

that the value of every state gets updated infinitely often on an infinite run. The 

computational complexity of the value-iteration algorithm with full backups, per 

iteration, is quadratic in the number of states and linear in the number of actions. 

The policy iteration algorithm manipulates the policy directly rather than finding it 

indirectly via the optimal value function. It operates as follows: 

choose an arbitrary policy 
loop 

compute the value function of policy : 
solve the linear equations 

improve the policy at each state: 
= 

until = n' 
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The value function of a policy is simply the expected infinite discounted reward 

that will be gained, at each state, by executing that policy. It can be determined by 

solving a set of linear equations. Once we know the value of each state under the 

current policy, we consider whether the value could be improved by changing the 

first action taken. If it can, we change the policy to take the new action whenever it 

is in that situation. This step is guaranteed to strictly improve the performance of 

the policy. When no improvements are possible, then the policy is guaranteed to be 

optimal. 

3.1.3 Learning an Optimal Policy 

We use DP techniques for obtaining an optimal policy for an MDP assuming that 

we already have a model. The model consists of knowledge of the state transition 

probability function P(s,a,s') and the reinforcement function R(s,a) . RL is 

primarily concerned with how to obtain the optimal policy when such a model is 

not known in advance. The agent must interact with its environment directly to 

obtain information which, by means of an appropriate algorithm, can be processed 

to produce an optimal policy. Here we examine some online, model-free 

algorithms that attempt to obtain the optimal policy. For more details of other 

methods computing optimal policies by learning models, see [5  1,1281. 

The biggest problem facing an RL agent is temporal credit assignment. We use 

insights from value iteration to adjust the estimated value of a state based on the 

immediate reward and the estimated value of the next state. This class of 

algorithms is known as Temporal Difference (TD) learning methods [123]. We 

will consider two different TD learning strategies for the discounted infinite- 

horizon model. 
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Adaptive Heuristic Critic 

The Adaptive Heuristic Critic (AHC) algorithm of [6] is an adaptive 

version of policy iteration in which the value-function computation is no 

longer implemented by solving a set of linear equations, but instead 

computed by an algorithm called TD(0) . It has a separate memory structure 

to explicitly represent the policy independent of the value function. The 

policy structure is known as the actor because it is used to select actions, 

and the estimated value function is known as the critic because it criticizes 

the actions made by the actor. The critic must learn about and criticize 

whatever policy is currently being followed by the actor. We can see the 

analogy with modified policy iteration if we imagine these components 

working in alternation. The policy n implemented by actor is fixed and the 

critic learns the value function V, for that policy. Now, we fix the critic 

and let the actor learn a new policy that maximizes the new value 

function and so on. In most implementations, however, both components 

operate simultaneously. 

We define to be an experience summarizing a single 

transition in the environment. Here, s is the agent's state before the 

transition, a is its choice of action, r is the instantaneous reward it receives, 

and s' is its resulting state. The value of a policy is learned using Sutton's 

TD(0) algorithm [123] which uses the following update rule 

V(s) = V(s)+ a(r + V ( s ) ) (3.7) 

Whenever a state s is visited, its estimated value is updated to a value 

closer to r + since r is the instantaneous reward received and V(s')

is the estimated value of the next actual state. This is analogous to the 

sample-backup rule from value iteration; the only difference is that the 
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sample is drawn from the real world rather than by simulating a known 

model. The key idea is that r + is a sample value of V( s ) a n d  

  it is more likely to be correct because it incorporates the real r. 

The TD(0) rule as presented above is really an instance of a more general 

class of algorithms called with A = 0 . TD(0)  looks only one step 

ahead when adjusting value estimates. Although it will eventually arrive at 

the correct answer, it can take quite a while to do so. The general 

rule is similar to the TD(0) rule given above in that we have 

V(x) = V(x) + a (r + (s')  - (s))e(x) (3.8) 

but it is applied to every state according to its eligibility e(x) , rather than 

just to the immediately previous state, s. The eligibility of a state s is the 

degree to which it has been visited in the recent past. When a reinforcement 

signal is received, it is used to update all the states that have been recently 

visited, according to their eligibility. We can update the eligibility online as 

follows: 

+ 1 if s = current state 
e(s) = 

otherwise  

It is computationally more expensive to execute the general though 

it often converges considerably faster for large A .  

Q-learning 

The work of the two components of AHC can be accomplished in a unified 

manner by Watkins' Q-learning algorithm [145,146]. Q-learning is 

typically easier to implement. In order to understand Q-learning, we have 

to develop some additional notations. Let be the expected 

discounted reinforcement of taking action a in state s. Continuing by 
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choosing actions optimally and noting that V* (s) is the value of s assuming 

the best action is taken initially, the term V* (s) = Q* (s,a). Q* (s, a) 

can be written recursively as follows: 

Q* (s, a) = R(S, a) + P ( s ,  a, st)max Q* (st, a') 
a' 

(3.10) 

Note also that since = , we have 

(s) = Q* (s, a) as an optimal policy. Because the Q function 

makes the action explicit, we can estimate the Q values online using a 

method essentially the same as TD(0). We can also use them to define the 

policy because an action can be chosen by simply taking the one with the 

maximum Q value for the current state. 

The Q-learning rule is 

Q(s, a)  = Q(s, a) + + max Q(s',a') - Q(s, (3.1 1)  
a' 

where is an experience 4-tuple as described earlier. If each 

action is executed in each state an infinite number of times on an infinite 

run and the well-known assumption in stochastic approximation theory 

given below is valid: 

the Q values will converge with the probability of 1 to Q* [32,145,146]. 

The conditions guarantee that the learning rate a is large enough and 

diminishes to zero at a suitable rate. Although learning rates that meet these 

conditions are often used in theoretical work, they are seldom used in 

applications and empirical research because sequences of learning rates that 

meet these conditions often convergence very slowly and are not suitable 

for non-stationary scenarios. 
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Q-learning can also be extended to update states that occur more than one 

step previously, as in which is discussed in Chapter 6. 

An interesting variation for Q-learning is the SARSA algorithm [110,127], 

which is similar to Q-learning in that it attempts to learn the state-action 

value function, Q* (s, a) . The main difference between SARSA and Q- 

learning, however, is in the incremental update function.SARSA takes a 5- 

tuple, (s, a, r, s', a ' )  , of experience, rather than the 4-tuple that Q-learning 

uses. The additional element, a', is the action taken from the resulting 

state, s' , according to the current control policy. This removes the 

maximization fromthe update rule, which becomes 

Q(s, a )= Q(s, a)+ + Q(s,a)) (3.13) 

Moreover, it allows us to consider a algorithm, very similar to 

causal . 

AHC architectures seem to be more difficult to work with than Q-learning 

in practice. In addition, Q-learning is exploration insensitive; this feature is 

discussed in Chapter 6. Furthermore, it is the extension of autonomous 

learning concept to optimal control, in the sense that it is the simplest 

technique that directly calculates the optimal action policy without an 

intermediate cost evaluation step and without the use of a model. For these 

reasons, Q-learning is the most popular and seems to be the most effective 

model-free algorithm for RL learning. It does not, however, address any of 

the issues involved in generalization over large state and/or action spaces. 

In addition, it may converge quite slowly to a good policy. 
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Exploration/Exploitation Tradeoff 

One of the necessary conditions under which RL algorithms can find an optimal 

action policy is the complete exploration of the state space, normally infeasible in 

practical situations. When control and learning are both at stake, the learning agent 

must try to find a balance between the exploration of alternatives to a given policy 

and the exploitation of this policy as a mechanism for assessing its associated 

costs. In other words, it must realize that trying unknown alternatives can be risky, 

but keeping the same policy infinitely will never lead to improvement. Thrun [135]

has surveyed a variety of these techniques, which, in addition to ensuring sufficient 

exploratory behavior, exploit accumulated knowledge. 

The strategy that always selects the action with the highest estimated payoff 

corresponds to pure exploitation. Unfortunately, pure exploitation applied fromthe 

beginning of learning will not work in general. Typical suggestions to overcome 

these difficulties include choosing random actions occasionally and exploiting 

actions at other times, or selecting actions that minimize some kind of artificially 

biased values, where the bias is such that bias values of less often visited state- 

action pairs become smaller. The most popular of these which is called the - 

greedy strategy is to take the action with the best estimated expected reward by 

default, but with a probability of and select an action at random. Some versions 

of this strategy start with a large value of to encourage initial exploration, which 

is slowly decreased. An objection to the simple strategy is that when it experiments 

with a non-greedy action, it is no more likely to try a promising alternative than a 

clearly hopeless alternative. A slightly more sophisticated strategy is Boltzmann 

exploration, where the probability of choosing action a in state is given by 
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The temperature parameter T can be reduced over time to reduce exploration. 

3.2 Generalization 

All the previous discussions have tacitly assumed that it is possible to enumerate 

the state and action spaces and store tables of values over them. Except in very 

small environments, this means impractical memory requirements. It also makes 

inefficient use of experience. In a large smooth state space, we generally expect 

similar states to have similar values and similar optimal actions. Surely, therefore, 

there should be some more compact representation than a table. The problem of 

learning in large spaces is addressed through generalization techniques, which 

allow compact storage of learned information and transfer of knowledge between 

similar states and actions. 

3.2.1 Generalization in States 

Mahadevan and Connell propose a generalization solution on RL applied to real 

robotic navigation [80], which is based on the fact that similar sensed states must 

have similar values. They define a weighted Hamming distance for the calculation 

of this similarity based on a previously assessed relative importance of sensors. 

However, in this case, states are still represented in a lookup table. In the case of a 

large continuous state space, this representation is intractable. This problem is 

known as the curse of dimensionality. Generally speaking, it is necessary to use 

function approximation schemes of [18] due to an extremely large number of states 

that makes implementation of the state space by a lookup table is impossible. The 

generalization issue in RL can be seen as a structural credit assignment problem, 

which decides how the different aspects of an input affect the value of the output. 
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Most of the methods that allow RL techniques to be applied in large state spaces 

are modeled on value iteration and Q-learning. Typically, a function approximator 

is used to represent the value function by mapping a state description to a value. 

Various approaches using neural networks techniques have been reported to work 

on various problem domains [5,148]. Lin [65] use back propagation networks for 

Q-learning. Tesauro [131] use back propagation for learning the value functionin 

backgammon. Boyan and Moore [18] use local memory-based methods in 

conjunction with value iteration. Mitchell and Thrun [88] use explanation-based 

neural networks for robot control. Touzet describes a Q-learning system based on 

Kohonen's self-organizing map [138]. Actions are taken by choosing the node 

which most closely matches the state and the maximum possible value. 

Unfortunately the actions are always piecewise constant. The Cerebellar Model 

Articulation Controller (CMAC) [112,117,127,133,145] is another algorithm that 

has been proven to be popular for value-function approximation work. The CMAC 

is a function approximation system which features spatial locality. It is a 

compromise between a lookup table and a weight-based approximator. It can 

generalize between similar states, but it involves discretization, making it 

impossible that actions vary smoothly in response to smooth changes in a state. 

The other algorithms based on local averaging have been suggested in the context 

of RL [19,98]. Locally weighted regression [4] can be used as the basis of value- 

function  approximation scheme. There has been some work on using variable- 

resolution discretization methods. Variable Resolution Dynamic Programming 

[90] begins with a coarse discretization of the state space, on which standard 

dynamic programming techniques can be applied. This discretization is refined in 

parts of the state space that are deemed to be "important". Moore's Parti-Game 

algorithm [92] also starts with a coarse discretization of the state space. The 

algorithm assumes the availability of a local controller for the system that can be 

used to make transitions from one discretized cell to another. Another related 
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approach is proposed by Munos [94,95] that again begins with a coarse 

discretization of the state space and selectively refines this discretization. A cell is 

split (or not), depending on its influence on other cells, as determined by the 

dynamics of the system and the discount factor. However, these approaches 

assume that local controllers or the model of the system dynamics are known. 

Though a large number of successful applications of RL based on function 

approximation on various problem domains have been reported in 

[5,28,31,65,88,1 11,112,118,131-133,137,138,148,151], there is always some kind 

of ad hoc adaptation that includes the use of nonlinear architecture or auxiliary 

mechanisms for value estimation, with which theoretical proofs of convergence are 

not concerned. These algorithms with nonlinear architecture lead to improved 

performance. Unfortunately, it is very hard to quantify or analyze the performance 

of these techniques. Boyan and Moore [18] give some examples of value functions

errors growing arbitrarily large when generalization is used with value iteration. 

Sutton [127]shows how modified versions of Boyan and Moore's examples can 

converge successfully. Tsitsiklis and Roy [140] provide a methodological 

foundation of a few different ways that compact representations can be combined 

to form the basis of a rational approach to difficult control problems. Bertsekas and 

Tsitsiklis [13] provide an excellent survey of the state-of-art in the area of value 

function approximation. However, whether general principles, ideally supported by 

theory, can help us understand when value functionapproximation will succeed is 

still an open question. More careful research is needed in the future. 

3.2.2 Generalization in States and Actions 

Most approaches use functionapproximators to generalize the value function 

across situations. These works, however, still assume discrete actions and cannot 
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handle continuous-valued actions. In continuous action spaces, the need for 

generalization over actions is important. It should be possible that actions vary 

smoothly in response to smooth changes in a state. Santamatia et al. [112]go 

futherand consider continuous action spaces, but their approach cannot actually 

generate continuous actions except when exploring randomly a small fractionof 

the time. In the other words, this approach does not yield truly continuous-action 

policies. The continuous-action Q-learning approach, which is the only approach 

restricted to the generation of continuous actions by means of Q-learning, is 

proposed in [87]. On the other hand, fuzzy logic can be used to facilitate 

generalization in the state space and to generate continuous actions in RL [48]. The 

FIS learner has a continuous perception of the state space, and based on a strategy 

for policies, it can trigger continuous actions. This proposed strategy consists of 

inferring the global policy (relative to states) from local policies associated with 

each rule of the learner. In this thesis, we discuss a novel Q-learning method that 

can handle continuous states and continuous actions based on the contribution of 

fuzzy logic. 

3.3 Applications in Robotics 

The study of RL agents used to have a strong biological motivation [125], but in 

the last few years the enthusiasm switched towards engineering applications. One 

of the most impressive applications of RL to date is that by Gerry Tesauro to the 

game of backgammon [13 1,1321. Crites and Barto [3 11 study the application of RL 

to the elevator dispatching. Zhang and Dietterich [151] use back propagation and 

TD to learn good strategies for job-shop scheduling. Singh and Bertsekas [ 118]

apply RL to the dynamic channel allocation problem in the operation of cellular 

telephone systems. Tong and Brown [137]solve the call admission control and 

routing problem in multimedia networks via RL. Next, we discuss a variety of 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 3 Reinforcement Learning 54 

robotics applications, which is one of the major successful application areas in RL 

[28,111]. 

Robot Learning 

Many intelligent methodologies have often been used for robotic systems in areas 

that are critical and dangerous for human beings [2].To accomplish a given task, a 

robot collects or receives sensory information concerning its external environment 

and takes actions within the dynamically changing environment. Furthermore, the 

intelligent robot should automatically generate its motion for performing the task. 

Brooks [20] proposes a sub-sumption architecture, and later behavior-based 

artificial intelligence for robotics [21]. This kind of behavior-based artificial 

intelligence stresses the importance of direct interactions between a robot and the 

environment. RL is employed in situations where a representative training set is 

not available and the agent must itself acquire this knowledge through interactions 

with its environment. Therefore, autonomous learning in robotics is a natural 

application area for RL. Barto [8] distinguishes firstly, non-associative RL tasks, 

where the learning system receives only evaluative input; secondly, associative RL 

tasks, where a controller aims to maximize the immediate reward at each step; and 

thirdly, adaptive sequential decision tasks where the maximization of long term 

performance may entail foregoing immediate favorable rewards. Since the first 

type has been studied based on genetic algorithms, we regard it as outside the 

scope of this thesis. Some interesting examples can be found in [34,97]. Most of 

the works discussed here are of the second or third type of RL. We prefer RL to 

genetic algorithms for the purpose of the evaluating the system online concurrent 

with learning. 
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Maes and Brooks [79] describe a six-legged robot that learns to sequence its gait 

by associating immediate positive and negative rewards with action preconditions. 

Mahadevan and Connell [80] develop RL strategies to train a real robot performing 

a box-pushing task based on decompositions of the task. In contrast, Kalrnar et al. 

[52] use RL in an adaptive switching strategy for subtasks. Lin [65,66] uses RL 

with a neural network to learn navigation tasks. Asada et al. [3] uses discretization 

of the state space, based on domain knowledge, to learn offensive strategies for 

robot soccer. Meeden et al. apply complementary reinforcement back propagation 

to the temporally extended problems of obstacle avoidance. Thrun [136] describes 

a hybrid approach towards enabling a mobile robot to exploit previously learned 

knowledge by applying it to multiple tasks. Gullapalli et al. [38] develop the skills 

of the peg-in-hole insertion task and the ball-balancing task via RL. Millan [85,86] 

reports an approach towards navigation in an unknown indoor environment based 

on a mobile robot, which is able to optimize the total reinforcement it receives as it 

progresses towards the goal. Hailu [40] gives similar results in a similar task. 

Mataric [82] describes a robotics experiment with an unthinkable high dimensional 

state space, containing many degrees of freedom. Bonarini [15] presents some 

approaches based on evolutionary RL algorithms which are capable of evolving 

real-time fuzzy models that control behaviors and proposes an approach towards 

designing of reinforcement functions [16]. Boada et al. [14] present an RL 

algorithm which allows a robot to learn simple skills and obtain the complex skill 

approach which combines the previously learned ones. Gaussier et al. [36] 

conclude some limitations of reinforcement approaches and suggest how to bypass 

them. 
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3.3.2 Problems 

RL is currently perhaps the most popular methodology for various types of 

learning. However, there are still some difficulties that must be overcome in order 

to implement a usefullearning system on a real robot [22]. 

Lack of initial knowledge 

Many learning systems attempt to learn by starting with no initial 

knowledge. Although this is appealing, it introduces special problems when 

working with real robots. Initially, if the learning system knows nothing 

about the environment, it is forced to act more or less arbitrarily. RL 

systems attempt to learn the policy by attempting all the actions in all the 

available states in order to rank them in the order of appropriateness. In 

order to learn a new policy, large numbers of time-consuming learning 

trials are required. On the other hand, critical behavior must be learned 

with a minimal number of trials, since the robot cannot afford to fail too 

frequently. When controlling a real robot, a bad choice can result in the 

damage of the environment or the robot itself, possibly causing it to stop 

functioning. In order for the learning system to be effective, we need to 

provide some sort of bias, to give it some ideas of how to act initially and 

how to begin to make a progress towards the goal. Systems should have the 

ability of using previously learned knowledge to speed up the learning of a 

new policy. 

Continuous states and actions 

In many real-world scenarios, sensory and action spaces are continuous. 

These values can be discretized into finite sets if the discretization follows 

the natural resolution of the devices. However, many quantities are 
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inherently continuous with a fine resolution that leads to many discrete 

states. Even if they can be discretized meaningfully, it might not be readily 

apparent how best to do it for a given task. Incorrect discretizations can 

limit the final form of the learned control policy, making it impossible to 

learn the optimal policy. If we discretize coarsely, we risk aggregating 

states that do not belong together. If we discretize finely, we often end up 

with an unmanageably huge state or action space. Practical learningrobots 

require compact representations capable of generalizing experiences in 

continuous domains. Furthermore, actions should vary smoothly in 

response to smooth changes in a state. 

Lack of training data 

Since we are generating data by interacting with the real world, the rate at 

which we get new training points is limited. Robot sensors often have an 

inherent maximum sampling rate. Sensors which sample extremely quickly 

will simply generate many training points that are almost identical. We are 

interested in learning on-line, while the robot is interacting with the world. 

This means that we cannot wait until we have a large batch of training 

examples before we begin learning. Our learning system must learn 

aggressively and rapidly. It must also be able to use whatever data points it 

has efficiently, extracting as much information from them as possible, and 

generalizing between similar observations when appropriate. 

Sensor noise 

Finally, RL depends on the ability to perceive the unique state of the robot 

in order to map it to the appropriate action. Sensor noise and error increase 

state uncertainties, which further slow down the learning process. 
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In spite of its weaknesses, RL appears to be a promising direction for learning with 

real robots, in particular because it uses direct information from the real world to 

improve the robot's performance. In this thesis, we discuss a new learning 

paradigm which offers some possible solutions to these problems. 

3.3.3 The Khepera Robot 

The robot employed in the experiments described in this thesis is a miniature 

mobile robot called Khepera [50] shown in Figure 3.2. It is cylindrical in shape, 

measuring 55mm in diameter and 30 mm in height. Its weight is only 70 g and its 

small size allows experiments to be performed in a small work area. The robot is 

supported by two lateral wheels that can rotate in both directions and two rigid 

pivots in the front and in the back. 

Figure 3.2 The miniature mobile robot: Khepera 

Khepera can be remotely controlled by a computer through a serial link depicted in 

Figure 3.3. The serial connection provides electrical power and supports fast data 

communication between the robot and the computer. The control system of the 

robot can run on the computer that reads in sensory data and gives motor 

commands in real time while the robot moves on a nearby environment. 
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Alternatively, one can download the code of the control system on the processor of 

the robot and then disconnect the cable. 

Figure 3.3 The Khepera robot and its working environment 

The basic configuration of Khepera is composed of the CPU and the sensory/motor 

boards. The CPU board encloses the robot's micro-controller, system and user 

memory, an  A/D converter for the acquisition of analog signals coming fromthe 

sensory/motor board, and an  RS232 serial line miniature connector that can be 

used for data transmission and power supply from an external computer. The 

micro-controller includes all the features needed for easy interfacing with 

memories, with I/0 ports and with external interrupts. 

The sensory/motor board includes two DC motors coupled with incremental 

sensors, eight analogues denoted by in 

Figure 3.4 and an on-board power supply. Each IR sensor is composed of an 

emitter and an independent receiver. The dedicated electronic interface uses 

multipliers, sample/holds and operational amplifiers. This allows absolute ambient 

light and estimation, by reflection, of the relative position of an object to the robot 

to be measured. This estimation gives, in fact, information about the distance 

between the robot and the obstacle. The sensor readings are integer values in the

 

 infra-red(IR) proximity sensor
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range of [0, 1023].A sensor value of 1023 indicates that the robot is very close to 

the object, and a sensor value of 0 indicates that the robot does not receive any 

reflection of the IR signal. 

Figure 3.4 Position and orientation of sensors on the Khepera 

In addition to the real robot, we also use the simulation version of the Khepera [96] 

for carrying out a systematic comparison of the different approaches we are 

interested in. The program simulates Kheperas connected to the computer via a 

serial link in a very realistic way in the Matlab environment. Simulated Kheperas 

are controlled in the same way as real, physical Kheperas. 
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Chapter 4 

Design of Dynamic Fuzzy Q-Learning 
(DFQL) Algorithm 

In Chapter 2, we describe the fuzzy logic systems, and the learning methods of 

fuzzysystems based on Q-learning. However, all the algorithms described only 

adjust the parameters of fuzzy systems and do not involve structure identification. 

In Chapter 3, we introduce RL and some algorithms for generalizing experiences. 

However, most of these works assume discrete actions. In order to cope with these 

problems, we propose Dynamic Fuzzy Q-Learning (DFQL) in this chapter. 

Detailed descriptions of the DFQL architecture, on-line structure and parameter 

learning algorithm and modeling method are presented. In order to demonstrate the 

efficiency of proposed algorithms, the proposed algorithm is applied to obstacle 

avoidance behavior of the Khepera robot. 

4.1 Motivation and Development 

Two main research tracks influence our work. The first one uses the concept of 

fuzzy logic, and the second one uses that of machine learning. From the first point 
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of view, DFQL is the learning method used to tune a fuzzy system in a very 

flexible way whereas in the second point of view, DFQL is a means of introducing 

generalization in the state space and generating continuous actions in RL problems. 

FISs, which are numerical model-free estimators and dynamical systems, are a 

popular research topic due to the following reasons: 1) The rule structure of an FIS 

makes it easy to incorporate human knowledge of the target system directly into 

the fuzzy modeling process; 2) When numerical information of a target system is 

available, mathematical modeling methods can be used for fuzzy modeling. 

Several requirements for a learning algorithm must be fulfilled for appropriate 

modeling of an FIS. 

Evaluative signals 

For the learning problem, training data are very rough and coarse, and are 

just "evaluative" in contrast with the "instructive" feedback in supervised 

learning. The learning algorithm should be capable of constructing an FIS 

based on this simple evaluative scalar signal. In addition to the roughness 

and non-instructive nature of the information, a more challenging problem 

the algorithm should be able to deal with is that the signal may only be 

available at a time long after a sequence of actions have occurred. In other 

words, prediction capabilities are necessary in this learning system. 

Structure and parameter learning 

The algorithm should deal with not only parameter estimation but also 

structure identification of a learning FIS. Structure identification of fuzzy 

system is equivalent to partitioning the input space. The spirit of FIS 

resembles that of "divide and conquer9'- the antecedent of a fuzzy rule 

defines a local fuzzyregion, whilethe consequent describes the behavior 
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within the region via various constituents. If the premise structure of a 

fuzzy system is determined by clustering the input via an on-line self- 

organizing learning approach, a more flexible learning scheme can be 

formed. Furthermore, the learning method should find meaningful fuzzy 

terms for each input variable, by which it is possible to interpret the 

acquired knowledge in the form of linguistic rules. 

On-line learning 

We are interested in on-line learning, so the algorithm must be capable of 

learning one data point at a time. We should not have to wait until we have 

a large batch of data points before training the algorithm. It precludes the 

use of learning algorithms that take a long time to learn such as GA. GA is 

a flexible input space partitioning leaming method, however, it is very time 

consuming and unsuitable for on-line learning. 

Q-learning is the most popular RL method that can be used to learn a mapping 

from state-action pairs to long-term expected values. Some forms of generalization 

are used to extend Q-learning to deal with large continuous state and action spaces. 

Several requirements for a learning algorithm for practical use are: 

Adaptive Generalization 

Q-learning with discretised states and actions scale poorly. As the number 

of state and action variables increase, the size of the table used to store Q- 

values grows exponentially. In a large, smooth state space, we generally 

expect compact representations to able to generalize experience in 

continuous domains. Furthermore, it would be desired to improve 

generalization capabilities at state spaces that are deemed to be 

"important". 
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Continuous states and actions 

Many real-world control problems require actions of a continuous nature, 

in response to continuous state measurements. It should be possible that 

actions very smoothly in response to smooth changes in a state. Some 

problems that we may wish to address, such as high performance control of 

mobile robots, cannot be adequately carried out with coarse coded inputs 

and outputs. Motor commands need to vary smoothly and accurately in 

response to continuous changes in a state. 

Integration of domain knowledge 

The algorithm is used for fast on-line learning so as to adapt in real time. 

Initially, if the learning system knows nothing about the environment, it is 

forced to act more or less arbitrarily. Integration of domain knowledge to 

avoid learning from scratch is highly desired. 

Incremental and aggressive learning 

The learning algorithm should not be subject to destructive interference or 

forget what it has learned so far but incrementally adapt the model 

complexity. It should be capable of producing reasonable predictions based 

on only a few training points. 

In order to cope with these requirements, a novel DFQL learning algorithm is 

proposed. It is an automatic method capable of self-tuning an FIS based only on 

reinforcement signals. The DFQL provides an efficient learning method whereby 

not only the conclusion part of an FIS can be adjusted online, but also the structure 

of an FIS can be constructed simultaneously. Based on the criterion of system 

performance, new fuzzy rules can be generated automatically. Continuous states 
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are handled and continuous actions are generated by fuzzy reasoning. Based only 

on the reinforcement signals, the proposed method consists of assigning a quality 

to each local action available in the learner's fuzzy rules. The obtained local 

policies are then used to produce a global policy that allows us to solve the 

problem. Prior knowledge can be embedded into the fuzzy rules, which can reduce 

the training time significantly. 

4.2 Preceding Works 

As foreshadowed in Chapter 2, the idea and implementation of dynamic partition 

of the input spaces have been proposed in several previous works in the family of 

supervised learning algorithms. 

A kind of sequential learning algorithms based on RBF are presented in 

[64,74,104,152,153] in order to overcome the drawback that the number of hidden 

units is fixed a priori in the classical approach to RBF network implementation. 

The neural network, called a Minimal Resource Allocation Network (MRAN), 

starts with no hidden units and grows by allocating new hidden units based on the 

novelty in the observations which arrive sequentially. When input-output data are 

received during training, the decision to generate a new hidden unit depends on the 

distance and error conditions. Furthermore, the MRAN learning algorithm 

combines the growth criterion of the resource allocation network with a pruning 

strategy based on the relative contribution of each hidden unit to the overall 

network output. The resulting network leads toward a minimal topology for the 

resource allocation network. 

As mentioned in Chapter 2, it has been shown that a simplified class of FISs and 

RBF Networks are functionally equivalent [45]. Therefore, the same idea of 
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MRAN can be implemented in the fuzzy systems. Though fuzzy systems could 

serve as a very powerful tool for system modeling and control, partitioning the 

input space and determining an appropriate number of rules in a fuzzy system are 

still open issues. In order to cope with this problem, a learning algorithm for 

dynamic fuzzy neural networks (DFNN) based on extended RBF neural networks 

has been developed in [35,149]. The DFNN learning algorithm is an online 

supervised structure and parameter learning algorithm for constructing the fuzzy 

system automatically and dynamically. Fuzzy rules can be recruited or deleted 

dynamically according to their significance to the system's performance so that not 

only parameters can be adjusted, but also the structure can be self-adaptive. Given 

the supervised training data, the algorithm firstly decides whether or not to 

generate fuzzy rules based on two proposed criteria, system errors and - 

completeness of fuzzy rules. Subsequently, the algorithm will decide whether there 

are redundant rules to be deleted based on the error reduction ratio [143]. 

The methods of MRAN and DFNN provide the idea of dynamic partitioning of the 

input spaces, though both these methods are classified as supervised learning. In 

order to deal with the requirements of parameter and structure learning in FIS and 

adaptive generalization in Q-learning, the idea of automatic generation of new 

fuzzy rules is used in DFQL, which is derived from the concepts of MRAN and 

DFNN. The FIS we used in DFQL is functionally equivalent to RBF networks. 

The incremental on-line learning scheme of DFQL is closely related to sequential 

learning in MRAN and DFNN. Incremental growth of the DFQL is accomplished 

by generating fuzzy rules when the regions are not sufficiently covered by the rules 

or the system performance is unsatisfactory. The way of estimating premise 

parameters of new rules is realized by the same mechanism introduced in DFNN. 
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Next, we present details of the architecture and algorithm of DFQL. After that, we 

discuss the main differences between the DFQL and the supervised learning 

algorithms including MRAN and DFNN. 

4.3 Architecture of DFQL 

Layer 1                       Layer 2 Layer 3 Layer 4 Layer 5 
input fuzzification application of T-norm normalization defuzzification 

Figure 4.1 Structure of fuzzy rule sets of DFQL 

DFQL is an extension of the original Q-Learning method into a fuzzy 

environment. State-space coding is realized by the input variable fuzzy sets. A 

state described by a vector of fuzzy variables is called a fuzzystate. A learner may 

partially visit a fuzzy state, in the sense that real-valued descriptions of the state of 

the system may be matched by a fuzzy state description with a degree less than 

one. Since more than one fuzzystate may be visited at the same time, possibly 

with different degrees, we have a smooth transition between a state and its 

neighbors, and, consequently, smooth changes of actions done in different states. 

Both the actions and the Q-function are represented by an FIS whose fuzzy logic 
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rules can be self-constructed based on the system performance. The structure of the 

fuzzy rule sets of DFQL is shown in Figure 4.1. 

We describe an FIS based on the TSK-type structure, which has a total of five 

layers. In Section 2.2.1, we point out the equivalence between RBF networks and 

the TSK-type FIS. Similarly, the FIS we used is functionally equivalent to 

Ellipsoidal Basis Function (EBF) networks. Nodes in layer one are input nodes 

which represent input linguistic variables. Layer five is the output layer. Nodes in 

layer two act as membership functions which represent the terms of the respective 

linguistic variables. Each node in layer three is a rule node which represents one 

fuzzy rule. Nodes in layer four normalize the outputs of layer three. Thus, all the 

layer-four nodes form a fuzzy rule set. Layer four links define the consequents of 

the rule nodes. In the following context, we will indicate signal propagation and 

the basic function in each layer of the DFQL. 

Layer one transmits values of the input linguistic variable i = 1,. . . , to 

the next layer directly. 

Layer two performs membership functionsto the input variables. The 

membership function is chosen as a Gaussian function of the following 

form: 

where is the jth membership function of and are the center 

and width of the jth Gaussian membership function of respectively. 
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Layer three is a rule layer. The number of nodes in this layer indicates the 

number of fuzzy rules. If the T-norm operator used to compute each rule's 

firing strength is multiplication, the output of the jth rule R (j = 1,2,. . .l) 

in layer 3 is given by 

Normalization takes place in layer 4 and we have 

Layer five nodes define output variables. If defuzzification is performed in 

layer 5 using the center-of-gravity method, the output variable as a 

weighted summation of incoming signals, is given by 

where y is the value of an output variable and is the consequent 

parameter of the jth rule which is defined as a real-valued constant. 

The firing strength of each rule shown in Eq. (4.2) can be regarded as a function of 

regularized Mahalanobis distance (M-distance), i.e. 

= exp(- (j)) (4.5) 

where 
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is the M-distance, and is 

defined as follows: 

Thus, the input variable fuzzy sets are used to represent appropriate high- 

dimensional continuous sensory spaces. The fuzzy rule identification is equivalent 

to determination of the DFQL structure. The number and position of the input 

fuzzy labels can be set using a priori knowledge of the user. Generally speaking, if 

we do not have any knowledge about the system, identical membership functions 

whose domains can cover the region of the input space evenly are chosen, and for 

every possible combination of input fuzzy variables, a fuzzy rule has to be 

considered. However, the number of rules increases exponentially with increase in 

the number of input variables. As a consequence, the FIS often includes many 

redundant or improper membership functions and fuzzy rules. This leads us to 

develop a learning algorithm that is capable of automatically determining the fuzzy 

rules online. 

In the DFQL approach, each rule has m possible discrete actions 

A = ,. . and it memorizes the parameter vector q associated with each of 

these actions. These q values are then used to select actions so as to maximize the 

discounted sum of reward obtained while achieving the task. We build the FIS 

with competing actions for each rule as follows: 
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: If Xis then a, with a,) 

or with 

...... 
or a, with a,) 

where X is the vector of input variables and are labels of fuzzy sets that 

describe the a fuzzy state of the ith rule. Figure 4.2 shows the consequent parts of 

DFQL. The continuous action performed by the learner for a particular state is a 

weighted sum of the actions elected in the fired rules that describe this state, whose 

weights are normalized firing strengths vector of the rules, Subsequently, the 

TD method updates the Q-values of the elected actions according to their 

contributions. 

Rule 
Truth 
Values 

Continuous 
Action 

Figure 4.2 Consequent parts of DFQL 
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4.4 DFQL Learning Algorithm 

This section proposes an on-line structure and parameter learning algorithm for 

constructing the DFQL automatically and dynamically. The details of the DFQL 

algorithm are presented as follows. After a brief description of generation of 

continuous actions, the mechanism of updating Q-values is introduced. Next, self- 

organizing features of the FIS based on the -completeness of fuzzy rules and the 

TD error criteria are elaborated. Finally, the flowchart of the algorithm and an 

overview of the one-time-step global working procedure are presented. 

4.4.1 Generation of Continuous Actions 

The generation of continuous actions depends upon a discrete number of actions of 

every fuzzy rule and the vector of firing strengths of fuzzy rules. In order to 

explore the set of possible actions and acquire experiences through the 

reinforcement signals, the actions in every rule are selected using the exploration- 

exploitation strategy that is described in Section 3.1.4. Here, we use to denote 

the exploration/exploitation policy employed to select a local action a from 

possible discrete actions vector A, as follows: 

(4.8) 

At time step t, the input state is . Assume that l fuzzy rules have been generated 

and the normalized firing strength vector of rules is . Each rule has m 

possible discrete actions A. Local actions selected from A compete with each other 

based on their q-values, while the winning local action of every rule cooperates 
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to produce the global action based on the rule's normalized firing strength, The 

global action is given by 

where is the selected action of rule at time step t. 

4.4.2 Update of q-values 

As in DFQL, we define a function Q, which gives the action quality with respect to 

states. Q-values are also obtained by the FIS outputs, which are inferred fromthe 

quality of local discrete actions that constitute the global continuous action. Under 

the same assumptions used for generation of continuous actions, the Q function is 

given by 

(4.10) 

where is the global action, is the selected action of rule, at time step t 

and q, is the q-value associated with the fuzzy state, and action, . 

Based on TD learning, the Q-values corresponding to the rule optimal actions 

which are defined as follows: 

(4.1 1) 

are used to estimate the TD error which is defined by 

(4.12) 

where is the reinforcement signal received at time t+1 and y is the discount 

factor used to determine the present value of future rewards. Note that we have to 

estimate this error term only with quantities available at time step t+1.
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This TD error can be used to evaluate the action just selected. If the TD error is 

positive, it suggests that the quality of this action should be strengthened for future

use, whereas if the TD error is negative, it suggests that the quality should be 

weakened. The learning rule is given by 

i = 1,2,.. . , l (4.13) 

where a is the learning rate. 

4.4.3 Eligibility Traces 

In order to speed up learning, eligibility traces are used to memorize previously 

visited rule-action pairs, weighted by their proximity to time step t. The trace value 

indicates how rule-action pairs are eligible for learning. Thus, it not only permits 

tuning of parameters used at time step t, but also those involved in past steps. Here, 

we introduce the basic method without complex implementation, similar to [48]. 

The more efficient and faster learning method using eligibility traces for 

complicated tasks is discussed in Chapter 6. 

Let be the trace associated with discrete action of rule at time 

step t 

, + if = 

, ) otherwise 

where the eligibility rate is used to weight time steps. 

The parameter updating law given by Eq. (4.13) becomes, for all rules and actions, 

i=1,2 ,..., 1, j=1,2 ,..., m (4.15) 

and the traces are updated between action computation and its application. 
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4.4.4 -Completeness Criterion for Rule Generation 

Due to the highly complex and nonlinear characteristic of the problem space, 

uniform distribution of the fuzzy sets is usually not optimal. If a fuzzy partition is 

too coarse, the performance may be poor. If a fuzzy partition is too fine, many 

fuzzy IF-THEN rules cannot be generated because of the lack of training patterns 

in the corresponding fuzzy subspaces. For a problem, some parts of pattern space 

might require fine partition, while other parts require only coarse partition. 

Therefore, the choice of an appropriate fuzzy partition, i.e. structure identification 

of FIS is important and difficult. In this section and the next one, we propose two 

criteria, namely the -completeness and TD error criteria, for generating fuzzy 

rules automatically, which allow us to circumvent the problem of creating the 

structure of an FIS by hand. 

Definition 4.1 : -Completeness of Fuzzy Rules [59]: 

For any input in the operating range, there exists at least one fuzzy rule so that the 

match degree (or firing strength) is no less than . 
Remark: In fuzzy applications, the minimum value of is usually selected as 

= 0.5. 

From the viewpoint of fuzzy rules, a fuzzy rule is a local representation over a 

region defined in the input space. If a new pattern satisfies -completeness, the 

DFQL will not generate a new rule but accommodate the new sample by updating 

the parameters of existing rules. According to -completeness, when an input 

vector X 5%. enters the system, we calculate the M-distance md(j) between the 

observation X and centers ( j  = 1,2,. . . ,l) of existing EBF units according to Eqs. 

(4.6) and (4.7). Next, find 
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J = arg min(md ( j ) )  (4.16) 

If 

= md(J) > (4.17) 

where is a pre-specified threshold and is chosen as follows 

= (4.1 8) 

then we have 

f(J) < exp(- ) = exp(- = (4.19) 

This implies that the existing system is not satisfied with E-completeness and a 

new rule should be considered. 

4.4.5 TD Error Criterion for Rule Generation 

It is not sufficient to consider -completeness of fuzzy rules as the criterion of rule 

generation only. New rules need to be generated in regions of the input fuzzy 

subspace where the approximation performance of the DFQL is unsatisfactory. We 

introduce a separate performance index, for each fuzzy subspace which enables 

the discovery of "problematic" regions in the input space. If the performance index 

indicates that the situation is wrongly classified, a new fuzzy rule is created at the 

location of the input situation. This index can be attested by any method which 

captures critical areas that require high resolution. Here, we present a general 

method based on TD errors. The performance index is updated as follows: 

= [(K - + K>O (4.20) 

Using the squared TD error as the criterion, the normalized rule firing strength 

determines how much the fuzzy rule affects the TD error. It should be noted 

that Eq. (4.20) acts as a digital low-pass filter. In way, TD errors in the past are 
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gradually "forgotten" as time passes, but are never completely lost. The more 

recent the TD error is received, the more it affects the value of The initial value 

of is set to zero. The parameter K controls the overall behavior of A small 

value of K makes adapt very rapidly and a large value makes more stable in a 

noisy environment. Thus, if is bigger than a certain threshold, , further 

segmentations should be considered for this fuzzy subspace at least. 

4.4.6 Estimation of Premise Parameters 

Combining the criterion and the TD error criterion together, we 

obtain the following procedure of generating a new rule: When an input vector 

X enters the system, we calculate the M-distance md(j) between the 

observation X and centers (j = 1,2,. . . ,1) of existing EBF units. Next, find 

If 

= md(J) > 

where is a -completeness threshold, this implies that maybe the existing 

system is not satisfied with -completeness and a new rule should be considered. 

Otherwise, if 

(4.21) 

where is a TD error criterion threshold, this fuzzy rule does not satisfy the 

TD error criterion and a new rule should be considered. 

Once a new rule is considered, the next step is to assign centers and widths of the 

corresponding membership functionsA new rule will be formed when the input 
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pattern X enters the system according to two criteria of rules generation. 

Next, the incoming multidimensional input vector X is projected to the 

corresponding one-dimensional membership function for each input variable 

i (i = 1,. . . n) . Assume that l membership functions have been generated in the ith 

input variable and the Euclidean distance between the data and the 

boundary set is computed as follows: 

j=1,2, ..., 1 + 2  (4.22) 

where , , . . , }, we find 

= arg , min (j)) 
j=1,2, ... n+2 

(4.23) 

If 

(4.24) 

where is a predefined constant that controls the similarity of neighboring 

membership functions, is deemed completely represented by the existing fuzzy 

set , ) without generating a new membership function. Usually, is 

selected between 0.1 and 0.3 for normalized input variables. Decreasing 

indicates that higher similarity between two membership functions is allowed. 

Otherwise, if 

) > 

a new Gaussian membership function is allocated whose center is 

= (4.25) 

and the widths of membership functions in the ith input variable are adjusted as 

follows: 
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where and are the two centers of adjacent membership functions of 

the middle membership function whose center is . Note that only the new 

membership function and its neighboring membership functions need to be 

adjusted. The main result concerning adjusting membership functions to satisfy - 

completeness of fuzzy rules in each one-dimensional input variable can be 

summarized in the following statement. 

Statement 4.1 : Let N = , x
max  

] = [a, b] be the universe of one-dimensional 

input x. If each fuzzy set = {(x, N} ( k = 1,. . . m ) is represented as a 

Gaussian membership function constructed by the preceding and , the fuzzy 

sets satisfy -completeness of fuzzy rules, i.e., for all x N , there exists 

{1, ... m), such that [149]. 

We can explain this statement under several different cases: 

(a) If there exists only one fuzzyset, i.e. m = 1, the membership function can be 

generated as follows. If - and - , and assuming that 

, we have - ) where = and 

For any x , we have 

(hi)(=)') . If - , we have 
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(b) If there exists k {1,. . . m} , such that - - I , is chosen as 

For any , we have 

We can obtain the same result for other cases. 

4.4.7 Working Principle 

The flowchart of the algorithm is depicted in Figure 4.3. In order to make the 

working principle easy to understand, a one-time-step global execution procedure 

of DFQL is presented. The details of computing the TD error and tuning q-values 

are described in steps a to d. Next, the procedure of tuning the structure of FIS 

elaborated on the flowchart is given in step e. This is then followed by taking 

action and estimating the Q-value in steps f to g, together with the updating 

eligibility trace in step h. Let t+l be the current time step and we assume that the 

learner has performed action and has received a reinforcement signal . The 

steps are summarized here: 

a. Check the -completeness and TD error criteria according to the current 

state, . If a new fuzzyrule need to be generated, tune the structure of 
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FIS and initialize the parameter vector q according to the algorithm 

described in Section 4.3.6; 

b. Approximate the optimal evaluation function corresponding to the current 

state and FIS by using the optimal local action quality definedat time step t 

i.e. ) as defined in Eq. (4.1 1); 

c. Compute the TD error using Eq. (4.12); 

d. Tune the parameter vector q according to Eq. (4.15) based on current 

eligibility trace; 

e. Tune parameter with Eq. (4.20) being used as a TD error criterion; 

f. Elect local actions based on the new vector and compute the global 

action ) according to the new FIS governed by Eq. (4.9); 

g. Estimate the new evaluation function for the current state with the new 

vector and the actions effectively elect Eq. (4.10). Note that 

will be used for error computation at the next time step; 

h. Update the eligibility trace according to Eq. (4.14), which will be used in 

parameter updating at the next time step. Eligibility trace values need to be 

reset to zeros at the end of each episode. 
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Figure 4.3 Flowchart of the DFQL learning algorithm 
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4.5 Discussions 

The main differences between the DFQL and the supervised learning algorithms 

including MRAN and DFNN are as follows: 

First of all, MRAN and DFNN are both supervised learning where the input-output 

training data guide the learning process, while DFQL extends these earlier works 

to reinforcement learning which is based on the simple evaluative scalar signal. 

Generally speaking, a robot attempts to learn a task in an unsupervised mode 

without a teacher since it is difficult to find the direct training data. The robot has 

to perform the task by executing trial-and-error actions through evaluative 

reinforcement signals. A salient point about DFQL is that the consequent parts of 

DFQL are based on Q-Learning and the TD method updates these Q-values. 

Second, the two criteria for generating new rules are slightly different. New rules 

are generated as they are needed to better cover the sensory space or when the 

approximation performance of DFQL is unsatisfactory. Since DFQL is based on 

Q-Learning, the performance is evaluated according to TD errors instead of the 

output error in supervised learning. 

Third, MRAN removes the units based on their relative contributions and DFNN 

deletes the rules based on the error reduction ratio, while DFQL does not. MRAN 

and DFNN are suitable for sequential learning. There may be a large batch of 

training data and the significance of the observations may be subsequently 

reduced. On the contrary, DFQL is suitable for robotics systems which require 

learning to be incremental and rapid. Critical behavior must be learned with a 

minimal number of trials. For robot navigation applications, deletion would be 

hazardous since they will not perceive all sensory situations repeatedly after a 
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fixed number of steps. The learning algorithm should not forget what it has learned 

so far but incrementally adapt the model complexity. In the future works, pruning 

might be considered in other applications if a fuzzy rule is not active for a period. 

Fourth, DFQL provides a method of exploiting a prior knowledge which is not the 

same in different supervised learning algorithms. If the learning systems are not 

able to exploit the prior knowledge in reinforcement learning, it is almost certain 

that the learning will not be effective. The robot either collides with obstacles that 

terminate the learning process or explores aimlessly without ever reaching the goal 

that can take unacceptably long time to discover interesting parts of the space. A 

way of overcoming this problem is to use prior knowledge as bias to figure out 

which action deserves attention in each situation. The bias components can be 

incorporated in the framework of fuzzy rules based on prior knowledge. The 

premise of rules can be used to generate fuzzy states over the fuzzy input space 

and the consequents of rules can be used to generate the initial q values, which are 

called bias. The details are discussed in Chapter 5. 

Fifth, the supervised learning provides, at each time step, the desired outputs 

during learning. On the contrary, the reinforcement learning only gives the quality 

of actions. In addition to the roughness and non-instructive nature of the 

information, a more challenging problem is that the signal may only be available at 

a time long after a sequence of actions have been taken. In other words, prediction 

capabilities are necessary in this learning system. DFQL with eligibility traces 

obtain an efficient method which is able to distribute credit throughout sequences 

of actions, leading to faster and more effective learning in real applications. The 

details are discussed in Chapter 6. 
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4.6 Experiments 

4.6.1 Obstacle Avoidance for Khepera Robot 

In this section, we describe experiments performed on the Khepera robot. The task 

Khepera has to perform is to navigate freely. Two behaviors are involved. One, 

which is of higher priority, concerns moving forward. The second concerns 

avoiding obstacles. The first behavior which involves moving forward when 

nothing is detected by the sensors is simple and is of no interest here. The second 

behavior involves knowing how much to turn and in which direction so as to avoid 

the obstacles. The environment used for implementation and simulation studies is 

shown in Figure 4.4 and Figure 4.5 respectively. It is a 25cmx 35cm arena with 

lighted shaped walls. Obstacles with different shape and form are introduced at 

different sections of the maze. Obstacles are put in the maze at the beginning of the 

experiment. We use the simulated robot to find appropriate parameters and make a 

systematic comparison of different approaches. These methods are also 

implemented on the real robot and the results presented as follows are based on 

experimental data of the real robot. 

Figure 4.4 Real environment for obstacle avoidance 
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Figure 4.5 Simulation environment for obstacle avoidance 

In this experiment, the six sensors on the front of the robot are used for obstacle 

detection. These sensor values are normalized within the interval [0, 1]. A 

normalized sensor value of 1 indicates that the robot is very close to obstacles, and 

0 indicates that the robot is away from obstacles. The robot receives reinforcement 

signals during the learning phase. For learning obstacle-avoidance behavior, we 

compare past and present sensor values. The robot will avoid the obstacles when 

the present sum of the six front sensor values is smaller then the last one and the 

difference is greater than 0.1 between them. A collision occurs when the sum of 

the six front sensor values is greater than 2.0. The collision is inferred from the 

sensor performance. It does not necessarily mean that the robot has touched the 

wall. The reinforcement signals are as follows: 

Let be the sensor value of the sensor i at time t and r be the reinforcement 

signal: 
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else if ( t )  2.0 then = ; 
i=O 

else 

4.6.2 Random Policy and Tabular Q-learning 

In order to make a comparison, a look-up table implementation of Q-learning is 

used with the robot to generate obstacle avoidance behavior. And the experiments 

are given along with those for a completely random policy. For practical reasons, 

each sensor value is coded as 1 bit. If the measured value is below the threshold 

value of 0.2, the sensor bit value is 0, otherwise it is 1. Therefore, the total number 

of possible situations is restricted to = 64 . The total number of actions is 

reduced to three different speeds per motor, so the total number of possible actions 

is 9. 

Experimental results are presented in two ways: an indicator of the effectiveness of 

obstacle avoidance I ( t )  and a local performance index L(t), where t is the number 

of robot moves executed by the avoidance behavior module from the beginning of 

the experiment. The distance to the obstacles measures the correspondence of the 

robot's behavior with the target behavior. When the robot encounters obstacles, the 

sum of the six frontsensor values is memorized as D ( t ) .Note that the higher the 

sensor value, the shorter the distance is to the obstacles. The indicator   I(t)        is 

defined as i=l Two local performance indices measuring the effectiveness 

of the learning process are defined as (t ) = and ( t )  = 

respectively, where is the number of moves that have received positive 

reinforcement signals the beginning of the experiment and is the 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 4 Design of Dynamic Fuzzy Q-Learning Controllers 8 8 

number of moves that have received negative reinforcement signals from the 

beginning of the experiment. We use 3000 learning iterations and the results are 

averaged over ten runs. Note that the iteration steps are increased only when the 

robot detects obstacles and executes avoidance behaviors. The results for a 

completely random exploration policy are given in Figure 4.6. 

The basic Q-learning algorithms of [145] store Q values, i.e. the expected 

reinforcement values associated with each situation-action pair are organized in a 

look-up table and updated according to Eq. (3.1 1). In the experiments, the learning 

rate a and the discount factor y are set to 0.5 and 0.9 respectively. The 

exploration function uses a -greedy strategy described in Section 3.1.4 with 

randomly decreasing proportionate with the number of iterations. The results for 

basic Q-learning are shown in Figure 4.7. After learning, the synthesized behavior 

is improved but not perfect. The distance to the obstacles measured during learning 

is better than pure random behaviors, however, there are still negative 

reinforcements experienced. Any difficulty in the use of basic Q-learning is the 

result of its standard tabular formulation. An exhaustive exploration of all 

situation-action pairs is impossible due to time constraint. Therefore, there are an 

incredibly small number of explored situation-action pairs versus unknown 

situation-action pairs. Several refinements have been proposed in order to speed up 

learning. Madadevan and Connell [80] use the Hamming distance to generalize 

between similar situations; the same authors also use clusters to generalize across 

similar situation-action sets. Sutton [126]proposes the Dyna-Q model in which 

situation-action pairs are randomly carried out to speed up propagation of the Q 

values through time. However, those methods use the same look-up table as in 

basic Q-learning implementation and they are subject to a memory requirement for 

storing all possible situation-action utility values. In practice, there are many 

situation-action pairs that are never visited and it is pointless to store these utility 
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values. The most important problem that RL methods based on tabular formulation 

faces is the limitation of generalization. In this experiment, a unique bit is used to 

code each sensor value. This is certainly not precise enough. However, it is 

impossible to use more bits per sensor due to the curse of dimension described in 

Section 3.2. In order to cope with continuous states and actions, it is necessary to 

use efficient generalization  processes which revolve around the use of experienced 

situation-action pairs to induce ways of dealing with new unknown situations and 

actions. 

4.6.3 Neural Q-Learning 

Neural networks is a kind of approach suitable for generalization of RL methods. 

Numerous authors [6,65,117,13 1,13 81 have proposed a neural implementation of 

RL, which seems to offer better generalization. The memory size required by the 

system to store the knowledge is defined, a prior, by the number of connections in 

the network. In [138], an efficient method named Q-KOHON, which is based on 

the Kohonen self-organizing map (SOM) [58], is proposed. The self-organizing 

map is distinguished  by the development of a significant spatial organization of the 

layer. Following the implementation of [138], there are 16 neurons in the map. 

During the learning phase, the neurons of the SOM approximate the probability 

density function of the inputs. The inputs are situation, action and the associated Q 

value. The number of neurons is equal to the number of stored associations. The 

best action selected in a world situation is given by the neuron that has the minimal 

distance to the input situation and to a Q value of +1. The learning algorithm 

updates the Q value weight using Eq. (3.1 1) and the situation and action weights. 

The neuron corresponding to the situation and the action effectively performed is 

selected by finding the minimal distance to the situation and action vectors but 

nothing concerning the Q value. Together with the selected neuron, the four 
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neighbors are also updated. The learning coefficient is 0.9 for the selected neuron 

and 0.5 for the neighborhood. The results are shown in Figure 4.8. The Q-KOHON 

implementation requires much less memory and learns faster than basic Q- 

learning. The neural generalization process, through the continuity of the input 

space, allows us to speed up the Q-learning method. The distance to the obstacles 

measured during learning is improved and  negative reinforcements received reduce 

distinctly during learning. 

However, Q-KOHON and most approaches using neural networks to generalize 

situations still assume piecewise constant actions. These approaches cannot 

generate continuous actions and cannot obtain optimal performance. It should be 

possible that actions vary smoothly in response to smooth changes in a state. The 

Q-KOHON implementation is not sufficient to solve an application. Q-KOHON is 

capable of learning behaviors with no prior knowledge; however, more effective 

learning solutions would be obtained if the initial experience can be incorporated 

during learning. Although Q-KOHON solves the structural credit assignment 

problem described in Section 3.2, its efficiency is strictly limited to short 

sequences of actions. In this experiment, the synthesized behavior is a reactive 

behavior. It does not integrate sequences of actions. A solution would be to change 

the reinforcement function so as to take into account sequences of actions. 

4.6.4 DFQL 

The DFQL approach uses fuzzy rules to introduce generalization in the state space 

and generate continuous actions. The parameter values are the same as those used 

in Q-learning. The other parameters for rule generation are: -completeness, 

= 0.5 ; similarity of membership function, = 0.3 ; TD error factor, K = 50 
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and TD error criterion, = 1. The eligibility traces are not considered for a fair 

comparison. The results are shown in Figure 4.9. At the beginning, performances 

of the robot based on DFQL are worse than other methods due to exploration. 

However, the performance is improved rapidly and is much better than that of 

others subsequently and less negative reinforcements received than all other 

implementations. 

The DFQL method achievesgood performance very rapidly because the DFQL 

displays localized generalization in the state space and it updates the Q values with 

the local actions involved in the selection of the global action according to their 

contributions at the same time. Furthermore, the optimal action for every possible 

situation is most likely continuous. Unlike the piecewise constant outputs of Q- 

KOHON, the DFQL generates the continuous actions by continuous state 

perception so that actions can very smoothly with smooth changes in a state. We 

will present comparisons between the DFQL and other methods that can also 

handle continuous actions in the following chapters. The number of fuzzy rules is 

generated automatically based on the criteria of -completeness and the TD errors 

during learning and is shown in Figure 4.10. The compact structure of fuzzy 

systems is obtained online, which does not include redundant or improper 

membership functions and fuzzy rules. The number of rules does not increase 

exponentially with increase in the number of input variables. Detailed comparisons 

between adaptive structure and fixed structure of fuzzy systems are discussed in 

Chapter 5. A clear comparison of all the algorithms based on the distance to the 

obstacles during learning is shown in the Figure 4.1 1. In order to show the 

advantage of generalization, Figure 4.12 makes a performance comparison during 

the learning phase with the random policy, Q-learning, Q-KOHON and the DFQL 

based on the discounted cumulative reward. This discounted cumulative reward 
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t 
corresponds to a measure of the cumulated performance of the robot. It 

t 

is the number of good actions performed that receive non-negative reinforcements 

per the total number of moves. 

We introduce the basic features of the DFQL algorithm above and more details of 

the learning abilities are discussed in the following chapters. Furthermore, we 

present a mechanism using fuzzy rules to incorporate initial knowledge for rapid 

learning in Chapter 5 and we describe a more general method combined with 

eligibility traces, the basic mechanism for temporal credit assignment, in Chapter 

6. 
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Figure 4.6 Distance to the obstacles and local performance indices based on a 

random exploration policy 
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Learning steps 

Figure 4.7 Distance to the obstacles and local performance indices during learning 

with basic Q-learning 
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Learning steps 

Figure 4.8 Distance to the obstacles and local performance indices during learning 

with Q-KOHON 
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Learning steps 

Learning steps 

Figure 4.9 Distance to the obstacles and local performance indices during learning 

with DFQL 
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Learning steps 

Figure 4.10 Number of fuzzy rules generated by DFQL during learning 
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Figure 4.1 1 Distance to the obstacles during learning with (a) the random policy, 

(b) Basic Q-learning, (c) Q-KOHON, (d) DFQL 
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Learning steps 

Figure 4.12 Discounted cumulative rewards obtained during learning with (a) the 

random  policy, (b) Basic Q-learning, (c) Q-KOHON, (d) DFQL 
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Chapter 5 

Embedding Initial Knowledge in 
DFQL 

In Chapter 4, we describe the DFQL, an algorithm for generating a fuzzy system 

based on Q-learning. The key idea of the DFQL algorithm is that the system can 

start with no fuzzy rules and fuzzy rules can be recruited automatically according 

to the system performance. However, if we can incorporate initial knowledge to 

the learning system, especially in the early stages, we can greatly increase the 

speed of learning. In this chapter, we introduce a natural framework of 

incorporating initial knowledge by fuzzy rules. Subsequently, the wall-following 

behavior of the Khepera robot is investigated in experiments. A comparative study 

of the Jouffe's fuzzy Q-learning [48], Millan's continuous-action Q-learning [87] 
and our approach is carried out. All these methods can handle continuous states 

and actions and incorporate initial knowledge for rapid learning. 

5.1 Efficient Use of Initial Knowledge 

Q-learning is capable of learning the optimal value function with no prior 

knowledge of the problem domain, given sufficient experience of the world. 
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However, it is difficult for a robot to gain "sufficient" knowledge in reality. We are 

fundamentally limited in the amount of data we can generate, especially if we want 

to perform learning on-line, particularly when we are dealing with real-world 

problems. Moreover, we are fundamentally limited by the number of training runs 

that we can realistically hope to perform on a robot. 

If we start with no knowledge of the world, we are essentially forced to act 

arbitrarily. If we are taking arbitrary actions, this amounts to a random walk 

through the state space, which is unlikely to reach the goal state in a reasonable 

time. If we can bias the learning system, especially in the early stages of learning, 

so that it is more likely to find the "interesting" parts of the state space, we can 

greatly increase the speed of learning. 

5.1.1 Build-in Bias 

Because it is very difficult to solve arbitrary problems in the general case, we must 

use generalization and begin to incorporate bias that will leverage on the learning 

process. One problem that prevents learners from learning anything is that they 

have a hard time even finding the interesting parts of the space. As a result, they 

wander around at random never even getting near the goal. Millan [85-87] explores 

the use of reflexes to make robot learning safer and more efficient. The reflexes 

correspond to domain knowledge about the task and allow the incorporation of 

bias into the system. Bias suggests actions for situations that otherwise would be 

time consuming to learn. These biases can eventually be overridden by more 

detailed and accurate learned knowledge. There are two ways in which the learner 

can efficiently learn from bias. 
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Safer learning 

Bias makes the learner operational form the very beginning and increments 

the safety of the learning process. The design problem initially is to provide 

the learner with basic behavior, which ensure its immediate safety. Once 

these basic aims have been achieved, more sophisticated skills can be 

added. 

Guessing where to search 

Bias accelerates the learning process since it focuses the search process on 

promising parts of the action space immediately. The bias initializes the 

system in such a way that greedy policies are immediately operational even 

if far from optimal. The learner need only explore actions around the best 

ones currently known. 

Initial Knowledge from Fuzzy Rules 

Fuzzy rules provide a naturalframework of incorporating the bias components for 

RL [39]. On one hand, fuzzy systems are multi-input-single-output mappings from

a real-valued vector to a real-valued scalar and precise mathematical formulas of 

these mappings can be obtained. On the other hand, fuzzy systems are knowledge- 

based systems constructed from human knowledge in the form of fuzzy IF-THEN 

rules. An important contribution of fuzzy systems theory is that it provides a 

systematic procedure for transforming from a knowledge base to some nonlinear 

mapping. We use knowledge-based linguistic information to construct an initial 

fuzzy system, and then adjust the parameters of the initial fuzzy logic system based 

on numerical information. 
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The if-then fuzzy rules corresponding to the domain knowledge pertaining to the 

tasks can be incorporated into the DFQL design. The premise of rules can be used 

to generate EBF units over the fuzzy input space and the consequents of rules can 

be used to generate the initial Q-values, which are called bias. Bias suggests 

actions for situations thatotherwise would be time consuming to learn. Thus, bias 

accelerates the learning process since it focuses on the search process on promising 

parts of the action space immediately. The parameter vector of a rule, q associated 

with discrete actions is initialized so that a greedy policy would select the action a 

suggested by this rule. Similar to [87], the main idea of the method employed in 

this chapter is that the Q-value of the selected discrete action a is initialized to a 

fixed value , while all other values are given random values according to a 

uniform distribution in [0, / 2 ] .

The DFQL is an automatic method capable of self-tuning FIS, i.e., generating 

fuzzy rules according to system performance. The generated basic rules initialized 

from prior knowledge keep the learner safe and direct it in the right direction 

during the early stages of learning. The basic fuzzy rules, deduced froma human 

driver's intuitive experience, can yield an action that is feasible but far from

optimal. It is almost impossible or difficult to find optimal fuzzy rules through a 

trial-and-error approach where a great number of variables are involved in the 

control task. In view of this, RL is added to tune the fuzzy rules online, which are 

eventually overwritten and improved by more accurate learned actions. Because 

the basic fuzzy rules are used as starting points, it is possible to determine optimal 

parameters without too many iterations and the robot can be operated safely even 

during learning. 
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5.2 Experiments 

5.2.1 Wall Following Task for Khepera Robot 

In this section, the DFQL approach has been applied to the Khepera robot for the 

wall following task. The aim of the experiment is to design a simple controller for 

wall following. In order to simplifythe problem, we only consider robots moving 

in clockwise direction at a constant speed. Thus, we only need to deal with four 

input variables, which are the values of sensor ( i  = 0,. . . ,3). All these sensor 

values can be normalized within the interval [0,1]. The output of the controller is 

the steering angle of the robot. In order for the robot to follow a wall, it must move 

in a straight line as much as possible while staying between a maximum distance, 

, and a minimum distance, , fromthat wall. The value of sensor d can be 

regarded as the distance to the wall being followed. The robot receives a reward 

after performing every action U. The reward function depends on this action and 

the next situation: 

0.1,       if       d (U 

-3.0,   if (5.1) 

0.0, otherwise 

If an action brings the robot outside the range of the robot will stop, 

move back inside the region, and receive a punishment. In these experiments, 

and 

The training environment with lighted shaped walls used for a real robot and 

simulation studies are shown in Figure 5.1 and Figure 5.2 respectively. The 

performance of the different approaches is evaluated at every episode of 1000 
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control steps according to two criteria, namely failures which correspond to the 

total number of steps the robot has left the "lane" and reward which is 

accumulated. In order to compare the different approaches systematically and find 

appropriate parameters, we implement these methods on both simulation and the 

real robot. The experimental results described as follows are based on the real 

robot. 

Figure 5.1 Actual environment for wall-following experiments 

Figure 5.2 Simulation environment for wall-following experiments 
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5.2.2 Basic Fuzzy Controller 

First, we design the fuzzycontroller based on intuitive experiences. For each input 

linguistic variable, we define two linguistic values: Small and Big, whose 

membership functions cover the region of the input space evenly with the value of 

-Completeness set to 0.5. This means that there are 16 fuzzy rules. Through 

trial and error, we can obtain the 16 fuzzy rules as a special case of the TSK fuzzy 

controller, whose consequents are constant, as follows: 

Table 5.1 Basic fuzzy control rules for wall following 

Rule Steering angle 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Small 

Small 

Small 

Small 

Small 

Small 

Small 

Small 

Big 

Big 

Big 

Big 

Big 

Big 

Big 

Big 

Small 

Small 

Small 

Small 

Big 

Big 

Big 

Big 

Small 

Small 

Small 

Small 

Big 

Big 

Big 

Big 

Small 

Small 

Big 

Big 

Small 

Small 

Big 

Big 

Small 

Small 

Big 

Big 

Small 

Small 

Big 

Big 

Small 

Big 

Small 

Big 

Small 

Big 

Small 

Big 

Small 

Big 

Small 

Big 

Small 

Big 

Small 

Big 

30 

3 0 

30 

15 

3 0 

15 

15 

15 

3 0 

15 

0 

0 

3 0 

-15 

-15 

-15 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 5 Embedding Initial Knowledge in DFQL 106 

If the robot only uses the basic fuzzy controller, it can actually follow the wall, but 

along inefficient trajectories. When only the basic fuzzy controller is used, the 

robot encounters 63 failures, and -130.7 of reward per episode on average. 

Certainly, we can provide finer partitioning of the input space, or tune the 

parameters of the membership functions and consequents so as to obtain better 

performances. However, the number of rules will increase exponentially with 

increase in the number of input variables. Furthermore, tuning consequents of rules 

is time consuming because of the risk of creating conflicts among the rules. It is 

almost impossible or impractical to design an optimal fuzzy controller by hand due 

to a great number of variables involved. Similar to the idea of [87], we incorporate 

RL into fuzzy controller design and the basic fuzzy rules designed fromintuitive 

experiences are used as a starting point for learning. As a consequence, it 

overcomes some limitations of basic RL where an extremely long learning time is 

needed and unaccepted behavior may be generated during learning. 

5.2.3 Fuzzy Q-Learning with a Fixed Structure 

Next, we consider the FQL approach of [48] that has a fixed structure of fuzzy rule 

sets. A total of 16 fuzzy rules, same as the basic fuzzy controller, are used. 

However, the consequents of the rules can be adjusted based on the fuzzy Q- 

learning. Here, we simply use the undirected exploration method employed in [48] 

to select a local action a from possible discrete action vector A, as follows: 

The term of exploration stems from a vector of random values, (exponential 

distribution) scaled up or down to take into account the range of q values as 

follows: 
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where is the noise size, with respect to the range of qualities, and is the 

corresponding scaling factor. Decreasing the factor implies reducing the 

exploration. We choose an exploration rate of 0.001 in the experiments. 

The set of discrete actions is given by A = [-30, -25, -20, -15, -10, -5, 0, 5, 10, 15, 

20, 25, 30]. The initial q-value, = 3.0 is chosen according to the method 

described in Section 5.1. The other parameters in the learning algorithm are: 

Discounted factor, y = 0.95 ; Trace-decay factor, = 0.7 ; TD learning rate, 

a = 0.05. The controller with 81 f k z y  rules whose membership functions 

satisfy the 0.5 -completeness is also considered. Average performances of the 

two controllers during 40 episodes over 10 runs are shown in Figure 5.3 

At the very beginning, performances of the two controllers based on the FQL are 

worse than that of the basic fuzzy controller due to the exploration feature of RL. 

The robot has to explore different actions in order to ensure that better actions are 

selected in the future. However, the performance of the robot is improved 

gradually and is much better than that of the basic fuzzy controller. To assess the 

effectiveness of finer partitioning of the input space, we compare the performances 

of the FQL using 16 rules and 81 rules. The speed of learning 81 rules is slower 

than that of 16 rules because a lot more parameters need to be explored. However, 

asymptotic performances of these two methods are almost the same. It is 

impractical to partition the input space further due to the curse of dimensionality. 
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Figure 5.3 Comparison of performances of fuzzy controllers for (a) 16 fuzzy rules 
based on FQL, (b) 81 fuzzy rules based on FQL, (c) Basic fuzzy controller 
with 16 fuzzy rules 
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Figure 5.4 Comparison of performances of fuzzy controllers for (a) 16 fuzzy rules 
based on FQL, (b) 8 1 fuzzy rules based on FQL, (c) Basic fuzzy controller 
with 16 fuzzy rules, (d) Fuzzy controller based on DFQL 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 5 Embedding Initial Knowledge in DFQL 110 

16 
0 5 10 15 20 25 30 35 40 

Episodes 

Figure 5.5 Number of fuzzy rules generated by DFQL during learning 

Membership hnctions of input variable Membership functions of input variable 

Figure 5.6 Membership functions after learning at one run 
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5.2.4 DFQL 

Now, we assess the performance of DFQL approach. The parameter values are the 

same as those used in the FQL approach. The other learning parameters for rule 

generation are: -completeness, = 0.5 ; similarity of membership function,

= 0.3 ; TD error factor, K = 50 and TD error criterion, = 1. These values 

give good performances of the algorithms in an initial phase. However, it should 

be pointed out that we have not searched the parameter space exhaustively. The 

performances of the DFQL approach shown in Figure 5.4 are also the mean values 

during 40 episodes over 10 runs. As expected, the DFQL performs better than the 

FQL with respect to both failures and reward. In fact, the DFQL outperforms the 

FQL during the major portion of episodes and asymptotic performance of DFQL is 

about 30% better than that of FQL according to the performance of the basic fuzzy 

controller. The number of fuzzy rules generated at every episode is shown in 

Figure 5.5. The membership functions produced by the DFQL after learning input 

variables at one run are shown in Figure 5.6. The number of rules can be generated 

automatically online and does not increase exponentially with increase in the 

number of input variables. Thus, a compact and excellent fuzzy controller can be 

obtained online. The reason why the DFQL method outperforms the FQL method 

is that the DFQL approach is capable of online self-organizing learning. Input- 

output space partitioning is one of the key issues in fuzzy systems because it 

determines the structure of a fuzzy system. The common approach of conventional 

input-space partitioning is the so-called grid-type partitioning. The FQL with 16 

rules partition the state space coarsely, on the other hand, the speed of learning 81 

rules is slow because a lot more parameters need to be explored. The proposed 

DFQL need not partition the input space a priori and is suitable for RL. It 

partitions the input space online dynamically according to both the accommodation 

boundary and the performance of RL. The compact fuzzy system considers 
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sufficient rules in the critical state space which requires high resolution and does 

not include the redundant rules in the unimportant or unvisited state space so that 

the learning is rapid and optimal. 

5.2.5 Adaptation in a New Environment 

We test the performance of the learned DFQL navigation strategies in an 

environment different from that used for training. This new environment is similar 

to the one before, except that it contains some new obstacles depicted in Figure 5.7 

Figure 5.7 The new training environment with obstacles 
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Figure 5.8 compares the performances (mean values over 20 runs) of the 
robot during training directly and re-training in the new environment. During 

re-training, the robot is first trained in the original simple environment and 

then re-trained in the new environment so as to improve the obtained 

navigation strategies. In this period, the robot only has a few more fuzzy 

rules to deal with in the new regions of sensory space, and is able to adapt its 

previous knowledge to the new environment quickly. It should be 

highlighted that no more membership functions need to be 
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generated. As a result, the learning speed of re-training is faster than that of 

training directly in the new environment. 
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Figure 5.8 Performance comparison of DFQL with training directly and retraining 

in a new environment 

5.2.6 Continuous-Action Q-Learning 

The algorithm described in this thesis shows some resemblances with other related 

works. In particular, the Continuous-Action Q-Learning approach, which is the 

only approach restricted to the generation of continuous actions by means of Q- 

learning is proposed in [87]. Bias represents domain knowledge in the form of 

built-in reflexes, which make learning process rapid and safe. Our idea of 

incorporating basic fuzzy rules is adopted from this idea. However, ow approach 

differs fiom it in several aspects. First, fuzzyrules are considered in the DFQL. 

Second, the DFQL develops fuzzy systems with ellipsoidal regions of rules instead 

of radial regions. Third, the criteria for rule generation are different. Ow criteria 
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are not only based on the accommodation boundary but also the system 

performance based on TD errors. On top of this, the most important difference is 

the updating algorithm of Q-values. In Continuous-Action Q-Learning, only the 

nearest unit is used to select the action. The resulting continuous action is an 

average of the discrete actions of the nearest units weighted by their Q-values. On 

the other hand, in our approach, one discrete action is selected fromevery fuzzy 

rule. The resulting continuous action is an average of the actions weighted by the 

firing strengths of fuzzy rules. Both methods update the Q-values of the actions 

according to their contributions. For Continuous-Action Q-Learning, if the number 

of discrete actions is large, more neighboring discrete actions need to be 

considered. Otherwise, the continuous action is not explored sufficiently. The 

discrete actions whose Q-values are not good will degrade the continuous action. 

In our approach, one discrete action is selected according to the exploration- 

exploitation strategy for every fuzzy rule. It is more efficient to use the firing 

strengths of fuzzy rules as weights. In order to compare these two algorithms, we 

only consider the difference of updating Q-values and assume that the others are 

the same. For Continuous-Action Q-Learning, the exploration rate is = 0 ,  and 

we consider one action to each side of the optimal action, a, according to the 

following rules: 
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For the DFQL, the exploration rate, is set to 0.001 and the global action and its 

Q-value are given by Eqs. (4.9) and (4.10) respectively. The results (mean values 

over 10 runs) are shown in Figure 5.9 At the very beginning, the performance of 

Continuous-Action Q-Learning is better than that of DFQL because it always 

explores near optimal initial values. However, the performance is worse than that 

of DFQL later since the learner may get trapped to locally optimal actions. 

Discrete actions whose Q-values are not good will degrade the continuous action. 

Of course , we can combine the two methods together. But, it requires more 

computational time and the learning results are not better than the DFQL 

significantly. 
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Figure 5.9 Performance comparison of updating Q-values for Continuous-Action 

Q-Learning and DFQL 
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Chapter 6 

General DFQL with Eligibility Traces 

In Chapter 4 and 5, we introduce the DFQL algorithm and a method of embedding 

initial knowledge in DFQL to speed up learning. In this chapter, we study the 

effects that combine DFQL with eligibility traces. We extend the learning 

algorithm to the general version with an eligibility mechanism, leading to faster 

learning and alleviating the experimentation-sensitive problem. Subsequently, 

simulation studies of the general DFQL on the optimum path experiments 

demonstrate the efficiency of the method for learning an appropriate policy. 

6.1 General DFQL 

6.1.1 Eligibility Traces 

Eligibility traces are one of the basic mechanisms of RL. For example, in the 

popular algorithm, the term refers to the use of an eligibility trace. 

Almost any TD method can be combined with eligibility traces to obtain a more 

general method that may learn more efficiently. An eligibility trace is a temporary 

record of the occurrence of an event, such as visiting a state or taking an action. 
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The trace marks the memory parameters associated with the event as eligible for 

undergoing learning changes. When a TD error occurs, only the eligible states or 

actions are assigned credit or blamed for an error. Thus, eligibility traces help 

bridge the gap between events and training information. Eligibility traces are a 

basic mechanism for temporal credit assignment. 

There are many RL algorithms which employ the eligibility trace mechanism. 

is introduced by Sutton [123], and an alternative version known as a 

replacing trace is proposed by Singh and Sutton [117]. The TD algorithm has been 

shown to be convergent by several researchers [32,102,139]. The SARSA 

algorithm is due to Rummery [110,127], and can also be formulated with an 

eligibility mechanism Q-learning and the eligibility trace method 

are proposed by Watkins [145].Peng's [103]can be thought of as a hybrid 

arrangement of and Watkins's and it performs significantly better 

than Watkins's and almost as well as although it has not been 

proven to be convergent in the general case. 

All the algorithms presented so far have all been shown to be effective in solving a 

variety of RL tasks. The and algorithms are known as on-policy 

algorithms. The value function that they learn is dependent on the policy that is 

being followed during learning. Using an on-policy algorithm with an arbitrarily 

bad training policy might result in non-optimal policy. Eligibility traces used in 

Watkins's are set to zero whenever an exploratory action is taken. Thus, 

learning may be a little faster than one-step Q-learning in the early stage. On the 

other hand, the features of Peng's                          make it much more appealing for our 

purposes, though it cannot be implemented as simply as others. 
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The main advantage of Peng's over other methods with eligibility traces is 

that it is less experimentation-sensitive and it is able to learn without necessarily 

following the current policy. This capability makes it much more appealing for the 

purpose of efficient implementation of RL in real-time applications. We might not 

know a good policy for the task that we are attempting to learn. Using an 

experimentation-sensitive algorithm with an arbitrarily bad training policy might 

result in non-optimal policy. Using an experimentation-insensitive algorithm 

allows us to alleviate this problem. Another advantage of Peng's is that it 

performs well empirically. Most studies have shown that it performs significantly 

better than Watkins's and almost as well as 

6.1.2 The General DFQL Learning Algorithm 

We extend the DFQL learning algorithm to the general version with an eligibility 

mechanism based on Peng's Under the same assumptions stated in Chapter 

4, the one-time-step global working procedure of general learning algorithm is 

proposed as follows: Let t+l be the current time step and assume that the learner 

has performed the action and has received a reinforcement signal . 

a. Check the fuzzy rule generation criteria according to the current state . 

If a new fuzzy rule needs to be generated, tune the structure of the FIS and 

initialize the parameter vector q of the new rule based on prior knowledge. 

The initial values of eligibility traces of fuzzy state action pairs are set to 

zero; 

b. Approximate the optimal evaluation function corresponding to the current 

state and FIS by using the optimal local action quality i.e. ); 
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c. Compute '= + - ; 

e. For all fuzzy state action pairs, update the eligibility traces 

Tr(S,a)= where the eligibility rate A is used to weight time 

steps and y is the discount factor for rewards. Next, update all the q values 

(s, a )  = (s, a )  + a ) ,  where a is the learning rate; 

f. Update the q values of "active" fuzzy state action pairs at time step t 

according to , ) = , where is the selected 

local action of rule at time step t and is the normalized firing 

strength of rule at time step t, Next, update the eligibility trace of 

"active" f u z z ystate action pairs at time step t according to 

= . Note that eligibility trace values need to be reset 

to zeros at the end of each episode; 

g. Elect local actions based on the new vector and compute the global 

action ; 

h. Estimate the new evaluation function , ) for the current state 

and the actions effectively elected and for the current state and 

the optimal action. Note that and will be used 

for error computation at the next time step. 
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NOTE: In the basic DFQL, the TD error is calculated based on the action taken on 

the step. The traces and q values are all updated corresponding to this TD error, 

which leads to learning necessarily following the current action. An arbitrarily bad 

policy might not be exploited for the learning progress. 

The main improvement of the general DFQL is that the mixture of updating 

mechanism is used, which is derived from the unique feature of Peng7s 

Unlike the basic DFQL, two TD errors are considered in the general DFQL, 

respectively 

whch is based on the Q-value of the actual action on the step and 

which is based on the Q-value of the optimal action on the step. All q values 

associated with all the fuzzy state-action pairs are updated according to the 

eligibility traces from the TD error , i.e.

Next, the q values of "active" fuzzy state-action pairs on the current step are 

updated from the TD error ' , i.e. 

The advantage of considering eligibility traces for all state-action pairs leads to 

faster learning without necessarily following the current action because not only 

the q values corresponding to the current state-action pair but also the q values 

associated with all the fuzzy state-action pairs are updated according to the 

respective TD errors. Any action can be carried out at any time and knowledge is 

gained from this experience. On the other hand, the general DFQL cannot be 

implemented as simply as the basic DFQL. 
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6.2 Experiments 

6.2.1 Optimum-Path Task 

In this section, we describe the optimum-path experiment performed on the 

Khepera mobile robot. The task is to take the robot from a starting location to the 

goal location and attempt to optimize the path. We assume that the goal location is 

specified in relative Cartesian coordinates with respect to the starting location. The 

task faced by the robot is to build a self-adaptive controller that is capable of 

searching an optimal trajectory, which would lead to a minimum cost. We carry 

out the experiment in simulation environments which can provide the position 

information of the robot with respect to the starting location. We are not able to 

implement it in the real robot because the position information cannot be detected 

due to the hardware limitation. However, positions and orientations of a real robot 

can be detected in real time if additional devices are equipped, e.g. the laser device 

on the top and the additional turret of the robot used in [33] or grids lines on the 

floor and the additional detector of the robot used in [77]. 

The learning environment consists of an indoor space and a corridor. The task is to 

generate the shortest possible but safe trajectory from the interior of an office to a 

point at the end of the corridor, similar to the works of [39,40,86]. It is not easy to 

implement this seemingly simple task. Firstly, the task is performed using local 

sensory information. The robot has neither a global view of the environment nor a 

comprehensive world model. Secondly, the task is a high-dimensional continuous 

learning task and successful goal reaching requires a non-linear mapping from this 

space to the space of continuous real-valued actions. 
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The inputs to the controller are the normalized relative position and orientation of 

the robot from the goal, i.e., the robot's current position (x,y)  and the heading 

angle Furthermore, each signal is represented as a vector of three components 

using Millan's codification scheme [86] in order to offer greater robustness and 

generalization ability. The scheme involves three localized processing units, whose 

activation values depend on how far the normalized input value is from the 

respective center positions of the processing units. These units with overlapping 

localized receptive fields are evenly distributed over the interval of [0,1], and the 

activation level of the unit located in the point is 

otherwise 

where w is the width of the receptive fields and k is the normalized input. The 

value of w is 0.45 and the units are located on the points 0.2, 0.5 and 0.8 in the 

experiments. As an example, the value of k = 0.4 is coarse coded into the pattern 

(0.8025,0.9506,0.2099). Thus, the inputs to the controller consist of a vector of 

nine continuous value components, all of real numbers which are in the interval of 

[0.1].

The robot's angular rotation, which determines its next direction, is the only output 

of the controller. For every step, the robot first completely rotates based on the 

specified angle. After rotation has ceased, it will move to a new location by 

translating forward a fixed distance if the robot does not collide with obstacles. 

Whenever the robot detects a collision, an emergency behavior will stop the robot. 

Here, the emergency activation occurs with the reflectance value of any IR sensors 

greater than 1000. 
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The robot receives reinforcement signals when it approaches the goal location and 

avoids obstacles. It is important to note that the robot does not seek to optimize 

each immediate reinforcement signal, but to optimize the total amount of 

reinforcement obtained along the path to the goal. The reinforcement function is 

directly derived fi-om the task definition, which is to reach the goal along 

trajectories that are sufficiently short and, at the same time, have a wide clearance 

to the obstacles. Thus, the reinforcement signal r has two components. The first 

component penalizes the robot whenever it collides with or approaches an obstacle. 

If the robot collides, it is penalized by a fixed value; otherwise, if the distance 

between the robot and obstacles is less than a certain threshold, =300, the 

generated penalty increases as the distance between the robot and the obstacle 

decreases. The component of the reinforcement that teaches the robot to keep away 

fromobstacles is: 

if collision 

otherwise 

where d, is the shortest distance, i.e. the maximum reading value, provided by any 

IR sensors while performing the action. It should be pointed out that only virtual 

collision occurs, which makes the learning process safe. The other component 

teaches the robot how to approach the goal. The second component of the 

reinforcement function is proportional to the angle between the robot heading 

and the line connecting the goal and the robot location , which is given by 

The total immediate reinforcement r is the sum of the two components, r = + . 
Th is  reinforcement function does not teach the robot directly how to reach the 

goal; it only trains the robot how to approach the goal without collisions. 
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6.2.2 Learning Details 

The learner's aim is to learn to perform those actions that optimize the total 

reinforcement in the long term. That is, the learner has to learn a policy that 

maximizes the total reinforcement which is the sum of immediate reinforcements 

the learner receives till the robot reaches the goal, i.e. 

where T is the total number of moves required to reach the goal. Here, the discount 

factor is y = 1 . 

We seek to make RL effective for real robots and require that learning takes place 

online from a relative small amount of experiences. As we consider sophisticated 

tasks, it will be almost certain that the learner will not be effective in a reasonable 

amount of time. It either collides with obstacles that terminate the learning process 

or explores aimlessly without ever reaching the goal that can take unacceptable 

long time to discover interesting parts of the space. As mentioned in Chapter 5, a 

way of alleviating the problem of slow convergence of RL is to use bias from prior 

knowledge to figure out which part of the action space deserves attention in each 

situation. The architecture of the bias component is similar to [39] and shown in 

Figure 6.1. It consists of two fuzzy behavior, namely obstacle avoidance and goal 

following. The output of the total behavior is obtained by combining 

corresponding priority functions for each behavior. Since the bias is used to 

provide only an initial value, it suffices to consider a fixed blending scheme with 

constant desirability parameters = 0.9 and = 0.1, one for each behavior. 

The blender fuses the outputs of each behavior according to 

u = + (6.5) 
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where and are the outputs of obstacle avoidance and goal following 

respectively. 

Figure 6.1 Architecture of bias component 

Here we use the simple basic fuzzy controller for this specific task because it is 

sufficient to provide the starting points for learning. As we consider sophisticated 

environments, any efficient navigation strategy, e.g. those of [25,76], can be 

regarded as the basic fuzzy controller, as long as it provides at least one free way 

or path through which the robot can reach the goal without collisions. The basic 

fuzzy controller, though eventually overwritten and improved by more accurate 

learned actions through exploration, keep the robot safe and direct it in the right 

direction while it is trying  to learn. 

This control task takes place in multi-dimensional continuous state space and 

prefers continue actions. Millan's method [86] uses the unique feature of the 

Nodmad 200 robot: the turret motor. Since the turret motor orients the sensors 

independent of the robot heading, the robot can take similar actions for similar 

situations independently of its current direction of travel. However, for most 

robots, the state-space data generated would be different every time a robot visits 

the same location at different heading angles. Therefore, the entire state space is 

extremely huge but many states will never be visited. It is necessary to choose the 

way of using an online adaptive state construction algorithm instead of partitioning 

the state space evenly prior to learning. Hence, the fuzzy control rules are not 
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predefined, but are created dynamically when the robot explores its environment. 

As foreshadowed, a fuzzy  rule is a local representation over a region defined in the 

input space. When a new fuzzy rule is generated, membership functions of the 

input variables are chosen in the form of Gaussian functions and the receptive 

fields of this model in the input space can be regarded as radial basis function 

( R B F ) units. The strength of the activation value of the RBF basis function, i.e., 

the overall truth value of the premise of fuzzy rules is given by 

( x )= e x p ( - - (6.6) 

where is the center vector of the ith RBF unit and a is the receptive width of 

the unit. In order to avoid complex computation, the receptive widths are kept 

fixed to a = 0.3 in this case. When a new input situation arrives, check the two 

criteria of rule generation. If the highest firing strength value of fuzzy rules is less 

than 0.5 or collisions are detected based on the reinforcement signal received, a 

new fuzzy rule, i.e., a new RBF unit is generated. 

The local action space for every rule is a set of rotation 

angles A = [- 20,-10,0,10,20]. The selected local action of every rule cooperates to 

produce the continuous global action based on the rules' normalized firing 

strengths. The local actions are selected using exploration-exploitation strategy 

based on the state-action quality, i.e., q values. Here, the simple -greedy method 

is used for action selection: a greedy action is chosen with the probability of 1 - 

and a random action is used with the probability of . The exploration probability 

2 
is set by = --- , where T is the number of trials. The exploration probability is 

10+T 

intended to control the necessary trade-off between exploration and control, which 

is gradually eliminated after each trial. 
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The q values of the fuzzy state-action pairs can be set to optimistic initial values 

when the fuzzy state-actions are visited at first in order to accelerate the learning 

speed. When a new fuzzy rule is generated, the action selected based on the basic 

fuzzy controller fromprior knowledge and the q value is estimated on the basis of 

the distance fi-om the location to the goal. This enables the basic fuzzy controller to 

control the robot when new an input state is encountered. When the fuzzy state has 

been visited before but the local action is selected at first, the q value is initialized 

to the minimum value of q values in this state. After initialization, all q values of 

the fuzzy state-action pairs are updated according to the algorithm described in 

Section 6.1.2 and the learning step size is set to a = 0.3 in this task. 

In the works of [39,86], the simplest TD method, i.e. TD(0) is used. In order to 

speed up learning, whenever the goal is reached, the learning algorithm updates the 

utility values of all RBF units that are along the path to the goal in reverse 

chronological order. Towards this objective, the robot has to store all information 

along the current path. Here, however, the eligibility trace method is incorporated 

into our algorithm and it is not necessary to store data of the current path and 

update values after reaching the goal. Methods using eligibility traces offer 

significantly faster learning, particularly when rewards are delayed by many steps 

and they are suitable for online applications. Furthermore, they should perform 

better in non-Markovian environments than the TD(0) method. The term refers 

to the use of an eligibility trace and we choose = 0.9 first. 
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6.2.3 Learning Results 

Figure 6.2 Sampling trajectory generated during first and final episodes 

Figure 6.3 Number of steps taken in each episode when 0.9 (a) typical single 
run, (b) average of 10 runs 
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Figure 6.4 The total reinforcement received in each episode when = 0.9 (a) 
typical single run, (b) average of 10 runs 

Figure = 0.9 (a) 
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Figure 6.2 shows sample robot trajectories during first and final episodes. The first 

time the robot tries to reach the goal, it depends almost all the time on the basic 

fuzzy controller, which forces it to go into the concave region since the 

information of the environment is unknown. In the final robot trajectory, the robot 

has learned to smooth out the trajectory by circumventing the concave region and 

to avoid colliding with the door edges by passing through the middle of the door. 

The learning curves which correspond to the mean values during 30 episodes over 

10 runs and one typical single run are shown in Figure 6.3-6.5. During the first few 

episodes, the total reinforcement obtained is worse and more steps are taken along 

each trajectory. When the episodes proceeded, the performance of the robot is 

gradually improved. The number of fuzzy rules grows when the robot is exploring 

the environment. The average performance after 30 learning episodes is much 

better than that in the initial phase. Note fromthe single run curve that the system 

performances on single episodes are sometimes extremely bad. On these episodes, 

the robot practically takes a different action and departs from the already learned 

path. In the following episodes, however, it returns to its previous performance and 

follows the learned path. 

In order to examine the effects of A values on the learning speed and quality, 

various values of A are used while the other parameters are left the same. Smaller 

learning step size, might be used for bigger values of but it is kept constant 

for consistency. The learning curves that correspond to the mean values during 30 

episodes over 10 runs are shown in Figures 6.6-6.7. The value of A = 0 gives the 

worst performance. Increasing A improves the leaning speed. The values of 

equal to 0.9 or equal to 1.0 are similarly effective, greatly outperforming the 

performance for = 0 and better than that for A = 0.5. The main result is that 

using large A always significantly improves the performance because the 

parameter is used to distribute credit throughout the sequence of actions, leading 
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to faster learning and also help to alleviate the non-Markovian effect [103]. But, it 

is not quite consistent with the empirical results of [128], in which the performance 

is best for intermediate near 1 but the worst for = 1 . It seems more likely that 

the optimal value of simply depends strongly on the particular problem. 

Another point is that bias values are used and this task actually is in non- 

Markovian environments. 

Figure 6.6 Comparison of number of steps taken during learning when different 
are used = 0.0 = 0.5 = 0.9 = 1.0 
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Figure 6.7 Comparison of the total reinforcement received during learning when 
different A are used (a) A = 0.0 (b) A = 0.5 (c) A = 0.9 (d) A = 1.0 

Discussions 

As mentioned in Section 3.1.3, there are mainly two prevalent approaches to RL, 

namely Q-learning and actor-critic learning. The advantage of DFQL is the 

generation of continuous actions by means of Q-learning. There are other RL 

algorithms for handing continuous space and action spaces, but almost all of them 

are based on actor-critic architecture, e.g. the two representative fuzzy RL 

algorithms [10,68] discussed in Section 2.2.2. These works are based on 

Williams's REINFORCE algorithms [148]. Actions are generated with a normal 

distribution whose mean and variance vary according to the success or failure of 

actions. The drawback of these actor-critic architectures is that they usually suffer 

from local minima problems in network learning due to the use of gradient descent 
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learning method. Actor-critic architectures seem to be more difficult to work with 

than Q-learning in practice. It can be very difficult to get the relative learning rates 

right in actor-critic architectures so that the two components converge together. 

Q-learning learns the values of all actions, rather than just finding the optimal 

policy. The main advantage of Q-learning over actor-critic learning is exploration 

insensitivity, i.e. any action can be carried out at any time and knowledge is gained 

from this experience. For these reasons, Q-learning is the most popular and seems 

to be the most effective model-free algorithm for learning from delayed 

reinforcement. On the other hand, because actor-critic learning updates the state 

value at any state based on the actual action selected, it is exploration-sensitive. 

As we noted in the previous sections, we might not know a good policy for the task 

that we are attempting to learn. Using experimentation-sensitive algorithm with an 

arbitrarily bad training policy might result in a non-optimal policy. However, using 

experimentation-insensitive method, freesus from worrying about the quality of 

the policy that we adopt during training. In the works of [39,86], the learning 

architecture is also an actor-critic system. In order to avoid bad effects of an 

exploration policy, only the simplest TD method, i.e., TD(0), is used. In our 

algorithm, the general learning algorithm is extended to the version with an 

eligibility mechanism based on Peng7s . The learning algorithm 

exhibits beneficial performance characteristics attributable to the use of 

returns for > 0.  At the same time, similar Q-learning, learning construct 

the function of state-action pairs rather than the state, making it capable of 

discriminating between the effects of choosing different actions in each state. 

Thus, while learning is experimentation-sensitive, unlike Q-learning, it 

seems reasonable to expect it to be less so than actor-critic learning [103]. 
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Conclusions and Future Works 

This chapter summarizes the contributions made by this thesis. We then go on to 

discuss several possible ways in which this work might be extended in the future. 

7.1 Conclusions 

In this thesis, a novel algorithm termed Dynamic Fuzzy Q-Learning (DFQL) has 

been designed and developed. 

There are two main research tracks that influence our work. The first is related to 

learning paradigms of fuzzy systems. Chapter 2 introduces the basic concept of 

FISs and discusses several issues concerning the learning ability of fuzzy systems 

based on different families of learning methods characterized by the information 

source used for learning. The second track is related to the use of generalization in 

reinforcement learning. Chapter 3 presents the basic framework of reinforcement 

learning and discusses the problem of generalization in large continuous spaces. 

Furthermore, problems in applying reinforcement learning to robotics are 

described. 
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In Chapter 2, we describe the learning methods of fuzzy systems based on Q- 

learning. However, all the algorithms described only adjust the parameters of fizzy 

systems and do not involve structure identification. In Chapter 3, we introduce 

algorithms for generalization of experiences in RL. However, most of these works 

assume discrete actions. In order to cope with these problems, Chapter 4 

introduces the development of the proposed DFQL. Detailed descriptions of the 

DFQL architecture, on-line structure and parameter learning algorithm and 

modeling method are presented. From the point of view of fuzzy systems, the 

DFQL method is a learning method capable of generating and tuning fizzy rules 

automatically based on simple reinforcement signals. From the point of view of 

machine learning, the DFQL method is a mechanism of introducing generalization 

in the state-space and generating continuous actions in RL problems. The DFQL 

generalizes the continuous input space with fuzzy rules and generates continuous- 

valued actions using fuzzy reasoning. Based on the criteria of -completeness and 

the TD errors, new fuzzy rules can be generated automatically, which allows us to 

circumvent the problem of setting up fuzzy rules by hand. 

One of the main hurdles to implementing RL systems is overcoming the lack of 

initial knowledge. If we know nothing of the task beforehand, it is often difficult to 

make any progress with learning or to keep the robot safe during the early stages of 

learning. Chapter 5 describes the natural framework of incorporating the initial 

knowledge as bias to the learning system based on fuzzy rules. It focuses on the 

search process on promising parts of the action space immediately and reduces the 

training time significantly. 

In order to learn more efficiently, especially from delayed reinforcement signals, 

an RL system can be combined with eligibility traces, which are a basic 

mechanism for temporal credit assignment. Chapter 6 extends the DFQL to the 
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general version with an eligibility mechanism, leading to faster learning and 

alleviating the experimentation-sensitive problem where an arbitrarily bad training 

policy might result in a non-optimal policy. 

The main characteristics of DFQL are summarized as follows: 

The DFQL is able to construct a FIS based on evaluative scalar 

reinforcement signals. 

New fuzzy rules can be generated based on the distance driven and error 

driven criteria so as to adjust the structure and parameter of FIS 

automatically. 

Continuous states are handled and continuous actions are generated through 

fuzzy reasoning in the DFQL. 

The if-then fuzzy rules allow the addition of initial knowledge as biases to 

the DFQL for rapid and safe learning during the early stages of learning. 

The general method of DFQL with an eligibility mechanism leads to more 

efficient learning and the ability to learn without necessarily following the 

current policy. 

In order to test the performance of DFQL, three typical behaviors of mobile robots 

have been investigated. In Chapter 4, experiments performed on the Khepera robot 

for the obstacle avoidance behavior demonstrate the efficiency of DFQL. 

Compared with the random policy, the Q-learning method and the Q-KOHON 

method, the DFQL method is superior because of its capability of handling 

continuous-valued states and actions. In Chapter 5,  the wall-following behavior of 

the Khepera robot is investigated in experiments. Thanks to the flexibility of 

DFQL, experimental results and comparative studies show the superiority of the 

proposed DFQL over the conventional Fuzzy Q-Learning in terms of both 

asymptotic performance and speed of learning. A comparative study of the 
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Continuous-Action Q-Learning and our approach also demonstrates the superiority 

of the DFQL method. Furthermore, the adaptive capability of DFQL has been 

tested in a new environment. In Chapter 6, simulation studies on optimum path 

experiments demonstrate that the robot is able to learn the appropriate navigation 

policy with a few trials. We examine the issues of efficient and general 

implementation of the DFQL for different eligibility rates for optimizing the sum 

of rewards. 

Recommendations for Further Research 

There are several promising directions for further work based on the results 

presented in this thesis. We look briefly at some of these directions and discuss 

their potential usefulness

7.2.1 The Convergence Property 

The DFQL method is a heuristic learning method for real-life applications, where 

state spaces and action spaces are continuous, especially for robotics systems. 

Experiments have been carried out to demonstrate its usefulness. Although the 

DFQL method has been shown to work in a number of real and simulated domains, 

there is no formal guarantee of convergence. As described in Section 3.2, the 

analysis of the performance of general function approximation based on nonlinear 

architecture in RL is still an open question, although there are a large number of 

successful applications in practice. On the other hand, a fuzzy system can be 

represented as a linear architecture with fuzzy basis functionsThe DFQL can be 

regarded as a useful method for selecting features, i.e. fuzzy basis functions  and 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 7 Conclusions and Future Works 140 

finding initial values of parameters. By virtue of the value iteration algorithm with 

linear architectures [140], the convergence property can be established. 

Tsitsiklis and Roy [140]discuss compact representations which approximate a 

value function using a linear combination of features. We consider compact 

representations consisting of linear combinations of fuzzy basis functions. Let us 

view the state space as S = {1,.. . , n} . With the fuzzy basis functions architecture 

[143], the statelstate-action value takes on the following form: 

where K is the number of pre-selected fuzzy rules, W is the parameter vector, 

is the firing strength of the kth rule. For convenience, we will assume that 

) = 1 for k (1,. . . , K}, where s,, . . . are pre-selected states in S. We can 

define a fuzzy basis function as a feature and a feature mapping 

= (s), . . . , (s)) . If with defined by min ) , there exists a 
,..., K )  

y' such that 0.5 , the assumption in [140] which restricts the 

type of features is satisfied. Based on the value iteration algorithm of [140], the 

convergence property can be established. 

7.2.2 Partially Observable Environments 

In many real-world environments, it will not be possible for the learner to have 

perfect and complete perception of the state of the environment. Unfortunately, 

complete observability is necessary for learning methods based on MDPs. The 

model in which the learner makes observations of the state of environment but 
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these observations provide incomplete information is called a partially observable 

Markov decision process. The way to behave effectively in hidden state tasks is to 

use memory of previous actions and observations to disambiguate the current state 

[83,122,147]. However, most of these methods are based on discrete states and 

actions. It would be also considered to employ fuzzy  logic to deal with continuous 

state and action spaces. 

7.2.3 Integrating Planning and Learning 

As foreshadowed, it is possible for the learner to learn an optimal policy without 

knowing the models of environments and without learning those models. However, 

these methods make inefficient use of the data they gather and therefore often 

require a great deal of experiences to achieve good performance. The other kind of 

learning methods uses experience to learn the model of the environment and 

improve the policy based on RL at the same time [91,124], so as to achieve a better 

policy with fewer environmental interactions. However, these algorithms rely on 

the assumption of discrete states. Additional research based on our approach may 

produce more general results. 

7.2.4 Multi-Agent Systems 

In the last few years, research on multi-agent systems has become increased 

important. Problems are better solved by teams of agents, such as parking cleaning, 

vigilance of large spaces and distributed artificial intelligence. RL agents come 

forward as an interesting option, due to their implicit capacity to act in 

environments. This capacity is very attractive in multi-agent systems, because the 

dynamics of the environment makes the creation of a model extremely difficult. 
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Many researchers have tackled the problem in [1,44,73]. The DFQL learning 

algorithm can be furtherdeployed for multi-agent systems. 
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