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Summary

Fuzzy logic is a mathematical approach to emulate the human way of thinking. It
has been shown that fuzzy logic could serve as a powerful methodology for
dealing with imprecision and nonlinearity efficiently. However, the conventional
way of designing a fuzzy system has been a subjective approach. If the fuzzy
sysem somehow possesses learning abilities, an enormous amount of human
effortswould be saved from tuning the system.

Reinforcement learning is concerned with resolving a problem faced by a learner
that must learn behavior through trid-and-error interactions with a dynamic
environment. For this kind of learning problem, training data give rewards and
punishments with respect to the states reached by the learner, but do not provide
correct instructions. Q-learning is the most popular and effective model-free
agorithm for reinforcement learning. However, it does not address any of the
issues involved in generalization over large state and action spaces. Practica
learning agents require compact representations to generalize experiences in
continuousdomains.

In this thesis, a novel algorithm, tenned Dynamic Fuzzy Q-Learning (DFQL), is
proposed. From the point of view of fuzzy systems, the DFQL methodis alearning
method capable of generating and tuning fuzzy rules automatically based on
sample reinforcement signals. From the point of view of machine learning, the
DFQL method is a mechanism of introducing generalizationin the state-space and
generating continuous actions in reinforcement learning problems. The DFQL
generalizes the continuousinput space with fuzzy rules and generates continuous-
vaued actions using fuzzy reasoning. It partitions the input space online
dynamically according to both the accommodation boundary and the performance

Vii
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of learning, which allows usto circumvent the problem of setting up fuzzy rulesby
hand. The compact fuzzy system considers sufficient rules in the critical state
space which requires high resolution and does not include the redundant rulesin
the unimportant or unvisited state space so that thelearningisrapid and optimal.

The if-then fuzzy rules correspond to the initial domain knowledge about the tasks
and allow incorporation of bias into the system. Bias increments the safety of the
learning process and accelerates the learning process sinceit focuses on the search
process of promising parts of the action space immediately. These biases can
eventually be overridden by more detailed and accurate learned knowledge. The
premise of rules can be used to generate fuzzy states over the input space and the
consequents of rules can be used to generate the initial Q-values so that a greedy
policy would select the action suggested by these biases.

The general version of DFQL with an digibility mechanism leads to faster
learning and aleviate the non-Markovian effect in real-life applications. It figures
out which actionsin the sequence are primarily responsiblefor the received reward
and has the ability of exploration insengtivity, the ability to learn without
necessarily following the current policy. This method alows us to obtain a
dgnificant learning speedup using the €ligibility rate and aleviates the
experimentation-sengitiveproblem at the sametime.
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Chapter 1

| ntroduction

1 . Motivation

1.1.1 Motivation Based on Fuzzy Systems

Fuzzy logic is a mathematical approach to model the human way of thinking. It
providesa systematicand effective means of capturing the imprecise and nonlinear
nature of the real world linguistically. In the literature, there are two kinds of
justification for fuzzy theory [144]:

e Therea world is too complicated for precise descriptionsto be obtained;
therefore, fuzziness must be introduced in order to obtain a reasonable
model.

e As we move into the information era, human knowledge becomes
increasingly important. We need a theory to formulatehuman knowledgein
a systematic manner and put it into engineering systems, together with
other information like mathematical models and sensory measurements.
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Chapter 1 Introduction 2

Fuzzy Inference Systems (FISs) are knowledge-based or rule-based systems. The

essential part of the FIS is a set of linguistic rules related by the dual concept of

fuzzy implication and the compositiona rule of inference. Intrinsically, the FIS

provides an algorithm, which can convert the linguistic rules based on expert

knowledge into some automatic control action. During the last few decades, FISs
have emerged as one of the most active and fruitful areas for research in the
application of fuzzy theory. FISs have found a variety of applicationsin numerous
fieldsranging fromindustrial process control to medical diagnosis and robotics.

In general, subjective approachesto design afuzzy system aresimpleand fag, i.e,

they involve neither time-consuming iterative procedures nor a complicated rule-

generation mechanism. However, argument of what is the best approach can come
fiom disagreements among experts, from decision rules that are difficult to
structure, or due to a great member of variables necessary to solvethe control task.
If the fuzzy system somehow possesses learning abilities, an enormous amount of

human effortswould be saved fromtuning the system. These learning methods can
be characterized by the information source used for learning and classified with
respect to the degree of information of the source. Most of the learning algorithms
for fuzzy systems require precise training data sets for various applications.

Typicaly, these learning methods are based on an input-output set of training data,

based upon which we have to minimize errors between the teacher's actions and
the learner's actions. However, for some rea-world applications, precise data for
training/learning are usualy difficult and expengive, if not impossible, to obtain.

For thisreason, there has been agrowinginterest in thiskind of learning.

There are severa requirementsfor alearning algorithm to model aFI S effectively.
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Chapter 1 Introduction 3

e Evduativesgnas

The learning systems can be used to provide unknown desired outputs
based on a suitable evduation of system peformances, which gives
rewards and punishments with respect to the states reached by the learner,
but does not provide correct actions. For this kind of learning problem,
training data are very rough and coarse, and are just "evauative'" as
compared with the "ingructive’” feedback. The learning agorithm should
be capable of constructing a FIS based on this smple evaluative scalar
signal. As the less informative learning source is needed, the learning
method that uses it represents a very flexible tool. In addition to the
roughness and non-ingtructive nature of the information, a more
challenging problem the agorithm should be able to deal with is that the
signal may only be availableat atimelong after a sequence of actionshave
been taken. In other words, prediction capabilities are necessary in this
learning system.

e Structureand parameter learning
Although several sdlf-learning FISs have been designed, most of them
focus on parameter learning (e.g. adjustment of fuzzy rule parameters).
Structure learning (e.g. determination of input space partition, number of
membership functions and number of rules) remains a tria-and-error
process and it has become a very time-consuming process. It turns out that
only adjustment of parameters will not be sufficient in many cases. This
reduces the flexibility and numerical processing capability of FISs. The
agorithm should deal with not only parameter estimation but also structure
identificationof alearning FIS. If the premise structureof afuzzy systemis
determined by clustering the input via on-line self-organizing learning
approach, a more flexiblelearning scheme can be formed. Furthermore, the
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learning method should find meaningful fuzzy terms for each input
variable, from which it is possible to interpret acquired knowledge in the
form of linguisticrules.

e On-linelearning
We are interested in on-line learning, algorithms which are capable of
learning the dynamics of a system based on datawhich arriveone a atime.
Themainideaisthat we do not haveto wait for alargebatch of datapoints
before training the algorithm. No prescribed training model s are needed for
on-line learning and the system can learn adaptively from the training data
which arrive sequentially.

1.1.2 Motivation Based on Reinforcement Learning

Reinforcement Learning (RL) dates back to the early days of cybernetics and
works in Statistics, Psychology, Neuroscience and Computer Science. In the last
decade, it has attracted rapidly growing interest in machine learning and artificial
intelligence communities. The key idea of RL is that the learner learns through
trial-and-error interactionswith a dynamic environment. It is learning how to map
Stuations to actions so as to maximize some numerica reward. It should be
highlighted that the learner is not told which actionsto take, as in other types of
machine learning, but instead it discovers which actionsyield the most reward by
trying them. In the most interesting and challenging case, actions may affect not
only the immediate reward but also the next situation and, through that, al
subsequent rewards [128].

RL plays an important role in adaptive control. It will certainly help, especially
when no explicit teacher signal is available in the environment where an
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interacting learner must learn to perform an optima control action. There are
mainly two prevalent approaches to reinforcement learning, namely actor-critic
learning and Q-learning. The actor-critic modd typically includes two principal

components: the critic module and the action module. The critic module generates
an estimate of the value function from state vectors and external reinforcement
supplied by the environment asinputs. The actor attemptsto learn optimal control
or decison-making skills. Q-learning is a ssimple way of learning the action-value
function Q that maps state-actionpairsto expected returns. The learner attemptsan
action at a particular state and evaluates its consequencein terms of theimmediate
reward or penalty it receives and its estimate of the value of the state resulting
from the taken action.

We focus on the Q-learning method here since Q-learning is the most popular RL
method that directly calculates the optimal action policy without an intermediate
cost evaluation step and without the use of amode. It seemsto be moredifficult to
work with actor-critic architecturesthan Q-learning in practice. It might be very
difficult to get the relative learning rates right in actor-critic architectures so that
the two components converge together. Furthermore, Q-learning learns the values
of al actions, rather than just finding the optimal policy. The main advantage of Q-
learningover actor-critic learning is exploration insensitivity, i.e. any action can be
carried out at any time and information is gained from this experience.

For these reasons, Q-learning is the most popular and seems to be the most
effective model-free dgorithm for RL. It does not, however, address any of the
issuesinvolved in generalizationover large state and/or action spaces. In addition,
it may converge quite sowly to a good policy. There are also severd requirements
for alearning algorithm before it can be used in practice.
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e Adaptive generaization

Q-learning with standard tabular states and actions scale poorly. As the
number of state and action variablesincreases, the size of the table used to
store Q-vauesgrows exponentialy. The large number of states and actions
possibilities usually encountered in realistic applications may force us to
use some compact representation schemes than a table. The problem of
learning in large spaces is addressed through generalization techniques,
which alow compact storage of learned information and transfer of
knowledge between smilar states and actions. Furthermore, it would be
desired to employ an online adaptive construction agorithm instead of
partitioning the state space evenly prior to learning so as to improve
generalization capabilities & the state spaces that are deemed to be
important or critical.

e Continuous statesand actions

Many rea-world control problems require action of a continuous naturein
response to continuous state measurements. Most approaches use function
approximators to generalize the value function across situations. These
works, however, ill assume discrete actions and cannot handle
continuous-valued actions. In continuous action spaces, the need for
generaization over actions is important. It should be possible that actions
vary smoothly in response to smooth changesin a date.

e Integration of domain knowledge
The agorithm is used for fast on-line learningand adaptation in real time.
Initially, if the learning system knows nothing about the environment, it is
forced to act more or less arbitrarily. Integration of domain knowledge to
avoid learning from scratch isdesired. A way of dleviating the problem of
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dow convergence of RL is to use bias fromprior knowledge to figure out
which part of the action space deservesattentionin each situation.

e Eligibility traces

Most of RL methods need to be combined with eligibility traces to obtain
more genera methods that may learn more efficiently. An digibility trace
is a temporary record of the occurrence of an event. The trace marks the
memory parameters associated with the event as dligible for undergoing
learning changes. The | ear ni nglgorithm should be able to distribute credit
throughout sequences of actions, leading to faster learning and help to
aleviate the non-Markovian effect in real applications. It should have the
ability of exploration insensitivity, and the ability to learn without
necessarily following the current policy.

¢ Incremental and aggressivelearning
The learning agorithm should not be subject to destructiveinterferenceor
forgetting what it has learned so far but incrementally adapt the model
complexity. It should be capableof producing reasonablepredictionsbased
on only afew training points.

1.1.3 Motivation Based on Robot Learning

As the robotics field progresses, robots are being employed in increasingly
complicated and demanding tasks. To accomplish a given task, a robot collects or
receives sensory information concerning its externa environment and takes actions
within the dynamicaly changing environment. Both the sensing system and
control rules are often dictated by human operators, but ideally the robot should
automatically perform the given tasks without assistance from human operators.
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Consequently, the robot must be ableto perceive the environment, make decisions,
represent sensory data, acquire knowledge, and infer rules concerning the
environment. The ultimategod of roboticsresearchisto empower the robotswith
high autonomous ability to improve their behavior over time, based on their
incoming experiences.

Because we are dealing with robotic systems, there are a number of real-world
issuesthat must be addressed [28]. Some of these are:

e Training data

Generdly speaking, the robot learning problem is to infer a mapping from
sensors to actions given a training sequence of sensory inputs, action
outputs, and feedback vaues. If these sequences are provided by a teacher,
the problem corresponds to supervised learning. Here, the robot is being
passively guided through the task. A more challenging and interesting
Situation arises when a robot attempts to learn a task in an unsupervised
mode without active guidance of ateacher. It is usually assumed here that
the robot can recognize when it is performing the task properly. The robot
has to peform the task by executing trid-and-error actions thereby
exploring the state space.

e Continuousstatesand actions
In many rea-world tasks for robots, the sensory and action spaces are
continuous. These values can be discretized into finite sets if the
discretizationfollows the natura resolution of the devices. However, many
guantities are inherently continuous with a fine resolution that leads to
many discrete states. Even if they can be discretized meaningfully, it might
not be readily apparent how best to do it for a given task. Incorrect
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discretizations can limit the final form of the learned control policy,
making it impossibleto learn the optimal policy. If we discretize coarsely,
we risk aggregating states that do not belong together. If we discretize
finely, we often end up with an unmanageably huge state or action space.
Practical learning robots require compact representations to generalize
experiences in continuous domains. Furthermore, actions should vary
smoothly in responseto smooth changesin a state.

e Incremental learning
A raobot hasto collect the experience fromwhich it isto learn the task. The
data forming the experience is not available offline. The need for efficient
exploration dictates that any reasonable learning algorithm must be
incremental. Such algorithms should alow the robot to become better at
deciding which part of the environment it needsto explore next.

¢ |nitia knowledge
Many learning systems attempt to start learning with no initial knowledge.
Although this is gppedling, it introduces special problems when working
with real robots. Initidly, if the learning system knows nothing about the
environment, it is forced to act more or less arbitrarily. For example, RL
systems attempt to learn the policy by attempting al of the actionsin al of
the availablestatesin order to rank them in the order of appropriateness. In
order to learn a new policy, a large number of time-consuming learning
trials are required. On the other hand, critical behavior must be learned
with a minimal number of trials, since the robot cannot afford to fail
repeatedly. When areal robot is being controlled, abad choice can damage
the environment or the robot itself, possibly causing it to stop functioning.
In order for the learned system to be effective, we need to provide some
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sort of bias, to giveit someidea of how to act initially and how to begin to
make progress towards the goa. Systems should have the ability to use
previoudly learned knowledge to speed up the learning process of a new

policy.

e Timeconstraints

The training time available on a red robot is very limited. We are
interested in learning on-line while the robot is interacting with the
environment. Although computers are continually becoming faster, the
amount of computation that we can apply to learning is limited. Thisis
especialy important when we are using the learned control policy to
control the robot. We must be able to select a suitable control action a an
appropriate rateto allow therobot to function safely in the real world.

e Sensor noise
Most cheap-to-build robot sensors are unreliable. Thus, state descriptions
computed fromsuch sensors are bound to have inaccuracies in them, and
somekind of averagingisrequired.

1.2 Major Contributionsof Thesis

In this thesis, a novel agorithm, termed Dynamic Fuzzy Q-Learning (DFQL), is
proposed. From the viewpoint of fuzzy systems, the DFQL method is a learning
method capable of tuning a fuzzy system in a very flexible way. From the
viewpoint of machine learning, the DFQL method can be regarded as a means of
introducing generalizationin the state pace and generate continuous actionsin RL
problems. It isimplemented on mobile robots so asto learn appropriate navigation
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efficiently. The salient characteristicsof the DFQL agorithm are summarized as
follows:

e Reinforcement information source
The DFQL is based on the Q-learning, the most popular and effective
reinforcement learning. The task is described with a reinforcement
functionwhich can be a smple description of success and failure actions.
Due to the low informative degree of the information source, the method
represents avery flexibletool.

e Sdf-organizing fuzzy system structure
The DFQL provides an efficient learning way whereby not only the
conclusion part of a FIS can be adjusted online, but aso the structure of a
FIS can be constructed smultaneoudly. Based on the criteria pertinent to
some desired system performance, new fuzzy rules can be generated
automatically so asto improve generalizationcapabilitieswhen necessary.

¢ Continuousstatesand actions

In the DFQL, continuous states are handled and continuous actions are
generated by fuzzy reasoning. Fuzzy logic introduces generalizationin the
state space by means of using a vector of fuzzy variables to describe a
fuzzy state. The continuous action performed by the learner for aparticular
stateis aweighted sum of the actionselected in the fired rules that describe
this ate, whose weightsare normalized firing strengthsof the rules. Since
more than one fuzzy state may be visited at the same time, possibly with
different degrees, there will be a smooth transition between a state and its
neighbors, and, consequently, smooth changes of actionscarried out in the
different states.



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter | Introduction 12

e Incorporatinginitial knowledge
The if-then fuzzy rules correspond to the initial domain knowledge about
the tasks and alow incorporation of bias into the system. Bias accelerates
the learning process since it focuses on the search process of promising
parts of the action space immediately. These biases can eventualy be
overridden by more detailed and accurate learned knowledge. Fuzzy rules
provide anatural framework of incorporatingthe bias componentsfor rapid
and safelearning. The premiseof rules can be used to generate fuzzy states
over the input space and the consequents of rules can be used to generate

the initial Q-values so that a greedy policy would select the action
suggested by these biases.

e Eligibility trace mechanism

The DFQL can be extended to the general version with an digibility
mechanism leading to faster learning, especidly from delayed
reinforcement. It figures out which actions in the sequence are primarily
responsible for the received reward and has the ability of exploration
insengitivity, i.e. the ability to learn without necessarily following the
current policy. The capability makes it much more appealing for efficient
implementation of RL in real-life applications.

e On-lineincrementa learning
The DFQL is primarily concerned with how to obtain an optimal policy
when a model is not known in advance. The learner interacts with its
environment directly to obtain the information. No prescribed training
models are needed for on-line learning. The DFQL can learn adaptively
from the training data set sequentially. The control knowledge is
distributively represented in the fuzzy rules. With increasing fuzzy rules
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according to the system performance, the learner can incrementally adapt
the environment complexity.

e Fadt and adaptivelearning
The DFQL has a fast learning speed since structure and parameters
formulation are done automatically and systematically without partitioning
theinput space a priori. The use of fuzzy theory providesthe ability to desl
with uncertain and imprecisedatain thereal world.

The fuzzy rule format makes it easy to implement effective navigation tasks for
mobile robots. The interpolation mechanism implemented by fuzzy controllers
resultsin smooth motion of the robot. Thus, compared with the Q-learning method
with discrete actions, the DFQL method is superior by virtue of its capability of
handling continuous-valued states and actions. Because fuzzy rules can be
generated automatically accordmg to system performance, the DFQL is more
flexiblethan fuzzy Q-learning with a fixed structure. A comparativestudy with the
Continuous-Action Q-Learning approach, the only approach which is capable of
generating continuous actions by means of Q-learning, aso demondrates the
superiority of the DFQL method.

The generd verson of DFQL with an €igibility mechanism leads to faster
learning and aleviate the non-Markovian effect in real-life applications.
Simulation studies on searching for optimum paths of the robot demonstrate the
efficiency of the method for learning the appropriate policy in multi-step
prediction problems. We examine issues pertaining to efficient and genera
implementation of the DFQL for different eligibility rates for optimizing the sum
of rewards. This method alows us to obtain a significant learning speedup using
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the eligibility rate and alleviatesthe experimentation-senditive problem a the same
time, whichis superior to the other methods based on the actor-criticlearning.

1.3 Outlineof Theds

Thisthesisis organized in seven chapters each of which is devoted to a particular
sub-issue. A summary of the content of each chapter is given here:

e Chapter 1 presents motivations and contributionsof the thesisand gives a
brief outlineof each chapterin thethesis.

e Chapter 2 introduces the foundation of the FIS and a computation
framworkbased on the concepts of fuzzy sets, fuzzy IF-THEN rules and
fuzzy reasoning. Intrinsgcally, the FIS provides an algorithm, which can
convert the linguistic rules based on expert knowledge into some automatic
control action. In order to circumvent the problem of subjective approaches
in designing the FIS, we present the current research on finding automatic
methods of self-tuning of FISs. The main issues associated with learning
abilities of FISs are parameter estimation and structure identification. We
discuss two families of learning methods, namely supervised learning and
unsupervised learning, characterized by the information source used for
learning.

e Chapter 3 givesan overview of thefield of RL, which hasonly very smple
"evauative or "critic" information instead of "ingructive’” information
available for learning. We focus on the Q-learning method which is the
most popular and arguably the most effective model-free agorithm for RT,
learning. Furthermore, the generdization techniques, which alow compact
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storage of learned information and transfer of knowledge between similar
states and actionsare addressed in order to deal with the continuous spaces
and actionsin practice. Subsequently, we discuss a collection of robotics
applicationsand the mgjor application areain RL. Finaly, we provide an

overview of the miniaturemobilerobot (Khepera) used for the experiments
describedinthisthes's.

e Chapter 4 investigatesrequirements of learning methods of fuzzy systems
based on RL and requirements of generalizationtechniques of Q-learning.
Subsequently, we present the development of the proposed DFQL to deal
with these requirements. The DFQL architecture and on-line structure and
parameter learning algorithm for constructing the DFQL automatically and
dynamically are described in details. Finally, experiments performed on the
Khepera robot for the obstacle avoidance task are used to verify the
efficiency of the proposed DFQL. Compared with the random policy, the
Q-learning method and the Q-KOHON method, the DFQL method is

superior because of its capability of handling continuous-valued states and
actions.

e Chapter 5 describes the natura framwork incorporating the initial
knowledgeto the learning system based on fuzzy rules. We explorethe use
of reflexes to make learning safer and more efficient. The reflexes
correspond to domain knowledge about the task and alow incorporation of
bias into the system. Experiments performed on the Khepera robot for the
wall following behavior areinvestigated. A comparative study of the Fuzzy
Q-Learning, Continuous-Action Q-Learning and our approach is carried
out. All of these methods can handle continuous states and actions and
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incorporate initial knowledge for rapid learning and experimental results
demonstrate the superiority of the proposed DFQL method.

e Chapter 6 extends the DFQL learning algorithm to the genera versionwith
an €ligibility mechanism, leading to faster learning and alleviating the
experimentation-sengitive problem. We provide a literature review on the
eligibility trace mechanism and describe advantages of our design. Next,
details of the general DFQL learning agorithm are presented.
Subsequently, simulation studies of the general DFQL on optimum-path
experiments performed on the Kheperarobot demonstratethe efficiency of
the method for learning the appropriate policy with afew trials. Finally, we
discussrelated works based on two prevalent approachesto RL, namely Q-
learning and actor-criticlearning.

e Chapter 7 concludes this thesis and suggests severa promising directions
for future research based on the results presented in this thesis. Some
theoretical results concerning convergence of the system based on linear
architecturewith fuzzy basis functions are discussed. Potentia algorithms
which are used in partialy observable environments, based on planning

models and deployed for multi-agent systems are suggested.
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Chapter 2

Fuzzy Systems

It has been shown that fuzzy-logic-based modeling and control could serve as a
powerful methodology for dealing with imprecision and nonlinearity efficiently
[47,100]. In this chapter, we begin by introducing the basic concept of Fuzzy
Inference Systems (FISs). We then introduce and discuss some issues concerning
learning paradigms of fuzzy systems based on different learning methods
characterized by the information source used for learning.

2.1 General Fuzzy Systems

Fuzzy logic, first proposed by Lotfi Zadeh in 1965 [150], is primarily concerned
with representations of imprecise knowledge which is common in many real-life
systems. It facilitatesrepresentationsof knowledge through the use of fuzzy setsin
digitad computers. On this basis, fuzzy logic uses logical operators to collate and
integrate human knowledgein order to generate some kind of reasoning common
innatura intelligence.

An FISis a computation framework based on the concepts of fuzzy sets, fuzzy if-
then rules and fuzzy reasoning. FI Ss are known by other names such as fuzzy rule-
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based systems, fuzzy modelsor ssimply fuzzy systems. The essential part of the FIS
isaset of linguisticrules related by the dual concept of fuzzy implication and the
compositional rule of inference. Intrinscally, the FI'S providesan agorithm, which
can convert the linguistic rules based on expert knowledge into an automatic
control action. Many experiments have shown that FISs yield results far more
superior to those obtained by conventional approaches. In particular, the
methodology of FISs appears very useful when the processes are too complex for
analysis by conventional quantitative techniques or when the available sources of
information are interpreted qualitatively, inexactly or uncertainly. Thus, FISs may
be viewed as a step towards the approach between conventiona precise
mathematical paradigms and human-likedecisionsmaking [47,100,143,144].

2.1.1 Fuzzy S&t

Conventiona set theory is based on the premisethat an element either belongs to
or does not belong to a given set. Fuzzy set theory takes a less rigid view and
alows dements to have degrees of membership of a particular set such that
elements are not restricted to either being in or out of a set but are alowed to be
"somewhat™ in. In many cases, thisis amore natural approach.

In fuzzy set theory, a precise representation of imprecise knowledge is not
enforced since strict limits of a set are not required to be defined; instead, a
membership function is defined. A membership function describesthe relationship
between avariable and the degree of membership of the fuzzy set that corresponds
to some specific values of that variable. This degree of membership is defined in
terms of a number between 0 and 1 inclusive, where O implies total absence of
membership, 1 implies complete membership, and any value in between implies

partial membership of the fuzzy set. This may be written as
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where is the membership function and U is the universe of discourse which

definesthe total range of interest over which the variablex should be defined.

There are various possible types of fuzzy membership functions and these will
each provide a different meaning for the fuzzy values that they quantify. Fuzzy
vaues are sometimes also caled linguistic values. We describe two most
commonly used membership functions, the triangular and Gaussian membership
functions, which represent a very easy way to compute the degree of input variable
membership. A triangular membership function is specified by three parameters
{ab,c} asfollows:

@2.1)

The parameters {a,b,c) with (a<b<c) determine the x coordinates of the three

comers of the underlying triangular membership functions. A Gaussan
membership function is specified by two parameters{c, o }

,u(x; ¢ 0') = exp|:— M:' 2.2)
c

A Gaussian membership function is determined completely by ¢ and © ‘where
represents the center of a membership function and o determines the width of a

membership function. The shapes of the membership function are shown in Figure
2.1.
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Figure 2.1 Two commonfuzzy membership functions

While seemingly imprecise to a human being, fuzzy sets are mathematically
precisein that they can be fully represented by exact numbers. They can therefore
be seen as a method of combining human and machine knowledge representation
together. Given that such a natural method of representing information in a

computer exists, information processing methods can be applied to it by the use of
FISs

2.1.2 Fuzzy If-Then Rules

FISs are essentialy knowledge-based or rule-based systems, which comprise a
collection of rules each of which defines a desired action when a particular
combination of fuzzy values occurs. The rules are defined in IF-THEN form as
follows.

| f premise Then consequent (2.3)

Usudly, the inputs of the fuzzy system are associated with the premise, and the
outputs are associated with the consequent. The basic form of alinguisticruleis

(2.4)

are input and output linguistic variables

respectively, are
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linguisticvariablesor labelsof fuzzy sets characterized by appropriate membership
functions 4/ (x;) and i (y,) respectively, and R;, j=1...,| representsthe jth

fuzzy rule.

Since the output linguistic variables of a Multi-Input Multi-Output (MIMO) rule
are independent, a MIMO HS can be represented as a collection of Multi-Input
Single-Output (MI1SO) FISs by decomposing the above rule into m sub-rules with
Gk k=1..,m as the single consequent of the kth sub-rule [100144]. For

notationa simplicity, we would consider M1 SO FISsin therest of the chapter.

Another form of fuzzy IF-THEN rules has fuzzy setsinvolved only in the premise
part. This form of fuzzy IF-THEN rules can be categorized into two models,
namdy Simplified Model and Takagi-Sugeno-KanModd.

e Simplified Modd (S-modd): In SSmodel, a fuzzy singletonis used for the
output [144], i.e.

(25)
where C isafuzzy singleton.

e Takagi-Sugeno-Kan Model (TSK-modd): Takagi and Sugeno in 1985
[ 129]proposed the following fuzzy modd!:

(2.6)

The premise of thisrule is defined in the same way as that for the rule of

the standard fuzzy system. However, the consequents of the rules are

different. Ingead of a linguistic term with an associated membership

function, in the consequent, we use a function that does not have an

associated membership function. Usualy, is a polynomia in
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theinput variables, but it can be any function aslong asit can appropriately
describe the output of the mode within the fuzzy region specified by the
antecedent of the rule. If no input variables are considered, the TSK-modd
Is exactly the same as the Smodd. Therefore, the TSK-modd can be
considered as a specia case of the S model. Experiments show that the
TSK-model has advantages like computational efficiency, compatibility
with linear, adaptive and optimization techniques and continuity of the
output surface.

Both types of fuzzy IF-THEN rules have been extensively used in both modeling
and control. Through the use of linguistic labels and membership functions, a
fuzzy IF-THEN rule can easily capture the spirit of a*'rule of thumb" used by
human beings [47]. From another point of view, due to the qualifiers on the
premise parts, each fuzzy IF-THEN rule is actually a local description of the
system under consideration. On the contrary, conventional approaches of system
modeling operate on the entire scope to find a global functional or analytical
structure of anonlinear system.

2.1.3 Fuzzy Inference Systems (FISs)
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The basic configurationof FISsis shownin Figure2.2. An F'S can be defined asa
system which transforms or maps one collection of fuzzy or crisp valuesto another
collection of fuzzy or crisp values. This mapping process is performed by four
parts:.
o Fuzzification - Convertsaset of crisp variablesinto a set of fuzzy variables
to enablethe applicationof logical rules.
e Fuzzy RuleBase— Storesacollectionof logical IF-THENTules.
e Fuzzy Inference Mechanism - An algorithm which is used for calculating
the extent to which each ruleis activated for a giveninput pattern.
e Defuzzification — Converts a set of fuzzy variables into crisp values in
order to enable the output of the FIS to be applied to another non-fuzzy
system. If a crisp output is not required, then defuzzification is not

necessary.

The steps of fuzzy reasoning, i.e., inferenceoperationsupon fuzzy IF-THEN rules,
performed by FISsare:

1. Comparetheinput variableswith the membership functions on the premise
part to obtain the membership values or compatibility measures of each
linguisticlabel. Thisstep is often called fuzzification.

2. Combine (through a specific T-norm operator, usualy multiplication or
minimum) the membership values of the premise part to obtain the firing
strength of eachrule.

3. Generate the quaified consequent (either fuzzy or crigp) of each rule
depending on the firing strength.

4. Aggregate the qualified consegquent to produce a crisp output. Thisstep is
called defuzzification.
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Severd types of fuzzy reasoning have been proposed in the literature
[57,59,75,81,93,101,141]. Depending on the type of fuzzy reasoning, most FISs
can be classified into three types [46,47], i.e. Tsukarnoto-typeFI S, Mamdani-type
FIS and TSK-type FIS. Most of the differences among different type FISs come
fromthe specification of the consequent part and thus the defuzzificationschemes
are also different. In this thesis, we would use the TSK-type FIS described as
follows:

TSK-modd fuzzy IF-THEN rules, which are described in Section 2.1.2, can be
used to implement FISs [ 129] and shown in Figure 2.3. The output of each ruleisa
polynomiad in the input variables, and the final crisp output, y is the weighted

averageof eachrule's output, w = g(X,. ..,X, ), i.e.

o
y= M @.7)
2t
wherethefiring strength f j is calculated by the T-norm operation, e.g.
e Intersection:
(2.8)
e Algebraic Product:
7 =114 ) 29)

One-way to view the TSK-mode fuzzy systemisthat it is a nonlinear interpol ator
between the mappings that are defined by the functionsin the consequents of the
rules. When g is a constant, we have a zero-order Sugeno fuzzy model. The output
of azero-order Sugeno mode is asmooth function of itsinput variables aslong as
the neighboring membership functions in the antecedent have enough overlaps.
Since each rule has a crigp output, the overall output is obtained via weighted
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average, thus avoidingthe time-consuming process of defuzzifactionrequired in
other fuzzy models.

2.1.4 Design Problemsin FISs

During the last few decades, FISs have emerged as one of the most active and
fruitful areas for research in the application of fuzzy set theory. Fuzzy logic has
found a variety of applicationsin various fields ranging from industrial process
control to medical diagnosis and robotics [47,100,106,108,114,143,144,150].
Combining multi-valued logic, probability theory and artificial intelligence, FISs
are control/decisionmethodologies that simulate human thinking by incorporating
imprecision inherent in al physical systems. From Section 2.1.1,2.1.2 and 2.1.3,
we have a good foundation of how FISswork. The decisions are based on inputsin
the form of linguistic variablesderived from membership functions. The variables
are then matched with the preconditions of linguistic IF-THEN rules, and the
response of each rule is obtained through fuzzy implication. To perform a
compositional rule of inference, the response of each rule is weighted according to
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the confidence or degree of membership of itsinputs, and the centroid of responses
is calculated to generate an appropriate control signal.

Fuzzy systems that do not require analytical models have demonstrated a number
of successful applications. These applications have largely been based on
emulating the performance of a skilled human operator in the form of linguistic
rules. However, the conventional way of designing a fuzzy system has been a
subjective approach. Transferring expert knowledge into a usable knowledge base
is time-consuming and nontrivial [59]. Moreover, depending on human
Introspectionand experience may result in some severe problems because, even for
human experts, their knowledge is often incomplete and episodic rather than
systematic. At present, there is no systematic procedure to determine fuzzy logic
rulesand membership functions of an FIS. The most straightforward approach isto
define membership functionsand rules subjectively by studying a human-operated
system or an existing controller and then testing the design for a proper output. The
membership functions and rules are then adjusted if the design fails the tests.
Recently, much research on FISs design has been carried out in [47,100,144).
Unfortunately, the following issues still remain. Hence, bringing learning abilities
to FI Ss may provideamore promising approach.

e Although systematic methodsto adjust membership functions and rules are
derived in [47,144], structure identification, eg. determination of input
gpace partition, number of membership functions and number of rules are
still difficult to solve.

e Fuzzy systems with high dimensionality often suffer from the problem of
curse of dimensionality due to the rapid increase of fuzzy rules [ 119,1201.
Efficient agorithms which relieve this problem and do not increase the
complexity of the FISsare highly desired.
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e Fuzzy modeling takes advantage that it is constructed based on both
linguistic and numerical information [143]. How to utilize different types
of numerical information source seemsto be the key to construct a compact
fuzzy system.

2.2 LearningParadigmsof Fuzzy Systems

In general, subjective approaches to design fuzzy systems are ssimple and fast, i.e.,
they involve neither the-consuming iterative procedures nor complicated rule-
generation mechanisms. However, problems arise fiom disagreements among
experts, decision rulesthat are difficult to structure, or a great number of variables
necessary to solve the control task. If the fuzzy system somehow possesses
learning abilities, an enormous amount of human efforts would be saved from
tuning the system. A fuzzy system with learning abilities, i.e. an adaptive FIS
which is equipped with a learning algorithm, where the FIS is constructed from a
st of fuzzy IFF-THEN rules using fuzzy logic principles, and the learning
agorithm adjusts the parameters and the structure of the FIS based on numerical
information [143].

The current research trend is to design afuzzy logic system that has the capability
of learning itself. It is expected that the controller perform two tasks: 1) It observes
the process environment while issuing appropriate control decisionsand 2) It uses
the previous decision results for further improvement. The main issues associated
with learning abilities of FISs are: 1) Parameter estimation, which involves
determining the parameters of premises and consequents, and 2) Structure
identification, which concerns partitioning the input space and determining the
number of fuzzy rules for a specific performance [119]. We discuss the following
two families of learning methods characterized by the information source used for
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learning and classified with respect to the degree of information from the source

[47].

2.2.1 Supervised Learning

In generd, supervised learning implies that the information source used for
learning is a direct teacher, which provides, at each time step, the correct control
action to be applied by the learner. Typically, these learning methods are based on
an input-output set of the training data, on which we have to minimize errors
between the teacher's actionsand the learner's actions.

At present, the partition of input/output space, the choice of membership functions
and fuzzy logic rules fiom numerical training data are still open issues [119,120].
Recently, attentions have been focused on fuzzy neura networks (FNNs) to
acquire fuzzy rules based on the leaming ability of Artificial Neura Networks
(ANNSs) [72]. Functionaly, an FISor an ANN can be described as a function
approximator, i.e. they aim to approximate a function f: from sample
patternsdrawn from f. It has been shown by Jang and Sun in 1993 [45] that under
some minor restrictions, a smplified class of FISs and Radiad Basis Function
Neural Networks (RBFNNSs) are functionally equivalent. It is interesting to note
that the learning a gorithmsand theorems on representational power for one mode
can be gpplied to the other, and vice versa.

RBFNNS, as proposed by Moody and Darken [89] in 1989, are often considered to
be a type of ANN that employs loca receptive fields to perform function
mappings. The RBFNNSs performs function approximation by superimposing a set
of | RBFsasfollows:
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£, = exP(—i[x":"f'J } 2.10)

y=—"t" (2.11)

From Egs. (2.7), (29) and (2.11), it is obvious that the functiona equivalence
between an RBFNN and an FIS can be established if the following conditionsare
true [45]:

e The number of receptive field units, i.e. hidden neurons is equal to the
number of fuzzy if-thenrules.

e Theoutput of each fuzzy if-thenruleis composed of a constant.

e Membership functions within each rule are chosen as a Gaussian function
with the samevariance.

e The T-norm operator used to compute each rules firing strength is
multiplication.

e Both the RBF networks and the FIS under consideration use the same
method, i.e. either weighted average or weighted sum to derivetheir overal
outputs.

As aresult, RBFNNs can be viewed as a mechanism for representing rule-based
fuzzy knowledge by using its localized network structure, and performing
associated fuzzy reasoning using feedf orward computationa agorithms.
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Integrating the learning abilities of ANNSs into FISs is a promising approach
because the connectionist structure of ANNS provides powerful learning abilities
to FISs. Thetypical paradigm of FNNsisto build standard neural networks, which
are designed to gpproximate a fuzzy algorithm or a process of fuzzy inference
through the structure of neura networks [46,67,72,142]. The main idea is the
following: Assuming that some specific membership functions have been defined,
we begin with a fixed number of rules by resorting to either the trial-and error
method [24,46,113,130] or expert knowledge [63,69]. Next, the parameters are
modified by the Back Propagation (BP) learning algorithm [24,63,69,113,130] or
hybrid learning agorithm [46]. These methods can readily solve two problems of
conventional fuzzy reasoning: 1) Lack of systematic design for membership
functions and 2) Lack of adaptability for possible changes in the reasoning
environment. These two problems are intrinsically concerned with parameter
estimation. Nevertheless, structureidentification, such as partitioning the input and
output space and determination of number of fuzzy rules, is till time-consuming.
The reason is that, as shown in [149], the problem of determining the number of
hidden nodes in NNs can be viewed as a choice of the number of fuzzy rules.
Different from the aforementioned FNNs, severa adaptive paradigmshave been
presented whereby not only the connection weights can be adjusted but also the
dructure can be sdf-adaptive during learning [17,24,27,35/49,113,149]. In
[24,113], the FNNS are constructed largely to contain all possible fuzzy rules.
After training, a pruning process [I1131 or fuzzy similarity measure [24] is
performed to delete redundant rules for obtaining an optimal fuzzy rule base. In
[17], a parsmonious construction algorithm employing linear parameter ANNs
was proposed to overcome the curse of dimensionality associated with FNN
structure learning. In [27], a hierarchically self-organizing approach, whereby the
sructure is identified by input-output pairs, is developed. An on-line sdf-
congructing paradigm is proposed in [49]. The premise structure in [49] is
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determined by clustering the input via an on-line salf-organizing learning
gpproach. A hierarchical on-line salf-organizing learning agorithm for dynamic
fuzzy neural networks based on RBF neural networks, which are functionally
equivaent to TSK fuzzy systems, has been developed in [35,149]. The system
starts with no rules. Then, rules can be recruited or deleted dynamicaly according
to their significance to system performance so that not only the parameters can be
adjusted but a so the structure can be self-adaptive. Above dl, all of theselearning
algorithms belong to the class of supervised learning where the teacher associates
the learning system with desired outputs for each given input. Learning involves
memorizing the desired outputs by minimizing discrepancies between actua
outputsof the system and the desired outpui.

2.2.2 Unsupervised Learning

Unsupervised learning does not rely on a direct teacher that guides the learning
process. It has been shown that if the supervised learning can be used, e.g., when
the inputloutput training data sets are avalable, it is more efficient than
unsupervised learning [7]. However, unsupervised learning systems can be used to
provide unknown desired outputs with a suitable evduation of system
performances. In this section, we introduce two design methods that employ
evolutionary algorithms and reinforcement learning techniquesrespectively.

Firgt, we introduceevolutionary learning of fuzzy systems. The information source
used for learning i s a performance measure, which indicatesthe quality of alearner
on a set of states. This kind of learning method is generally associated with
evolutionary algorithms, e.g., genetic agorithms [54,71], evolutionary strategies
[29], and Learning Classifier Systems [99]. We shall furthernarrow our scope by
discussng Genetic Algorithms (GAS) for fuzzy systems only, athough other
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approaches can be used similarly. A GA is a parald global-search technique that
emulates the processes of natural evolution including crossover, mutation, and
surviva of the fittest. GA can, in effect, often seek many local minima and
increase the likelihood of finding global minima representing the problem goals
[84].

When designing a fuzzy system using GAS,the first important considerationisthe
representation strategy, that is, how to encode the fuzzy system into chromosomes
[ 115]. Thrift [134] and Hwang and Thompson [42] encode all the rules into a
chromosome while fixing the membership functions. Using severa critical points
to represent each membership function while using all the possiblerules, Karr [55]
and Karr and Gentry [56] use GA s to evolve these critical points; that is, to adjust
the membership functions. Since the membership functionsand rule set in afuzzy
system are codependent, they should be designed or evolved at the sametime. Lee
and Takagi [62] encode membership functions and al the rules into a
chromosome. They restrict adjacent membership functions to fully overlap and
aso congtrain one membership function to have its center resting & the lower
boundaries of the input range. The above-mentioned methods encode all possible
rules into a chromosome. There are some drawbacks by doing so [30]: first, the
computational efficiency associated with fuzzy logicislost using a high number of
rules and second, robustness diminishes with increasing number of rules. Thisis
especidly true when the dimension of the inputs and the number of fuzzy setsfor
each input variable become great since the number of possible rules increases
exponentially with these numbers. In most applications, not al possible rules need
to be used; only a portion of the rules are needed. So, only this portion of rules
should be encoded into the chromosome and evolved. By doing so, the length of
the chromosome will be reduced greatly and, therefore, will be suitable for bigger
problems. It is better to encode the number of rulesto be included in the rule set



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter2 FuzzySvstems 33

together with rules and/or membership functions into the chromosome to be
evolved. There are several waysto do this. Lee and Takagi [61] proposed encoding
membership functions and fitness functions in chromosomes. Shimojima et al.
[116]and Inoue et al. [43] defined membership functions for each rule and
encoded effectiveness information for each rule and membership functions.
Shimgjimaet al. used fitness functions that minimize the number of rules which
Inoueet al. used amethod called "*forgetting™.

When using GA optimization methods, we can employ a complex fitnessfunction.
The genotype representation encodes the problem into a string while the fitness
function measures the performance of the system. This means that we can
incorporate structure-level information into the objective function [61] and let the
GA optimizationmethods do the entire job: finding the correct number of rules, as
well as proper parameters of membership functionsin fuzzy systems. This seems
too good to be true. However, we should bear in mind that evolutionary algorithms
are dow and they could take a tremendous amount of time to obtain a less-than-
optimal solution.

Input space partitioning determines the premise part of a fuzzy rule set. For a
problem, some parts of pattern space might require fine partition, while other parts
require only coarse partition. Therefore, the choice of an appropriate fuzzy

partition is important and difficult. One of the flexible input space partitioning
methods is based on the GA [121]. The mgor disadvantage of these methodsis
that it is very consuming; the computation cost to evauate a partition result
encoded in each individual is very high and many generations are needed to find
the final partition. Hence, this scheme is obvioudy not suitable for online
operation. Moreover, the GA-based partitioning methods might not find
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meaningful fuzzy terms for each input variable. There could be difficulty
accommodatinga priori knowledge about the target system.

Next, we introduce another kind of learning methods using the information source
of critic, which gives rewardsand punishments with respect to the state reached by
the learner, but does not provide correct actions. These methods, cdled
reinforcement learning methods, consist of active exploration of the state and
action spacesto find what action to apply in each state [60].

Reinforcement learning (RL) plays an important role in adaptive control. It is
particularly hel pfulwhen no explicit teacher signal is availablein the environment
where an interacting agent must learn to perform an optima control action. The
world informs the agent of a reinforcement signal associated with the control
action and the resulting new state. The signal is evaluative rather than instructive.
Furthermore, the signal is often delivered infrequently and delayed i.e. it is not
avallable a each time instant. When it is available & a certain moment, it
represents the results of a series of control actions probably performed over a
lengthy period of time. There are two prevalent approaches to reinforcement
leaming, namely actor-critic learning[6] and Q-leaming [145]. The actor-critic
model  typically includes two principal components: the critic
(evauation/prediction) module and the action (control) module. The critic
generates an estimate of the value function from state vectors and external
reinforcement generated by the environment. That is, the critic plays an important
role in predicting the evaluation function. The action module attempts to learn
optima control or decison-making skills. Q-learning is a smple way of dealing
with incompl ete-information Markovian-actionproblems based on the action-value
function Q that maps state-action pairs to expected returns. The learner tries an
action a a particular state and evaluates its consequencein terms of the immediate
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reward or penalty it receives and its estimate of the state value resulting from the
taken action. Actor-critic learning architecturerequires two fundamental memory
buffers. one for the evaluation function and one for the policy. On the other hand,
Q-learning maintains only one: a pair of state and action. Instead, Q-learning
requires additional complexity in determining the policy from Q-learning.

The basic idea behind fuzzy RL is to apply fuzzy partitioning to the continuous
sate-space and to introduce linguistic interpretation. Such averaging over
neighboring partitioned subspaces can create generalization abilities [47]. Mot of
learning methods are based on the idea of actor-criticmodel. Berenji and Khedkar
propose the Generalized Approximate Reasoning for Intelligent Control (GARIC)
modd [10] which has three components:. the action selection network, the action
evaluation network and the stochastic action modifier. The action selection
network is expressed in a neuro-fuzzy fi-amework. Lin and Lee's Reinforcement
Neura -Network-based Fuzzy Logic Control System (RNN-FLCS) [68] consists of
afuzzy controller and a fuzzy predictor. The whole RNN-FLCS is expressed in a
neuro-fuzzy framework; both critic and action module share the antecedent parts of
the fuzzy rules. In addition to parameter learning, it can perform the structure
learning and find the proper fuzzy rules. Lin et al. [70] and Chiang et al. [26]
propose genetic RL algorithms for designing fuzzy systems by exploiting the
globa optimization capability of GASin order to overcome the local minima
problem in network learning due to the use of the gradient descent learning
method. Bruske et al. [23] and Rak et al. [I07] employ actor-criticmodel to learn
fuzzy controllers for autonomous robots. Jouffe's Fuzzy Actor-Critic Learning
[48] dedls with the conclusion part of fuzzy rules. Kandadai and Tien propose a
fuzzy-neurd architecture that is capable of automatically generating a fuzzy
system for use in hierarchical knowledge-based controllers[53].
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On the other hand, the other approaches alow efficient learning of fuzzy systems
based on Q-learning since Q-learning is the most popular reinforcement learning
method that directly calculates the optimal action policy without an intermediate
cost evauation step and without the use of a modd. FISs have strong
generalization abilitiesto deal with continuous inputs and outputs. Moreover, the
fuzzy Q-learning method is considered to be a more compact version of the fuzzy
actor-critic method. Glorennec and Jouffe consider a collection of fuzzy rulesas an
agent that produces continuous-valued actions in [37,48]. This approach termed
Fuzzy Q-Learning (FQL) produces an action by some rulestriggering on the same
sate-space and cooperating collectively. Similar rule structure and adaptive
rewards are used in the simulation of object chase agents [78]. Horiuchi et a.
consider a similar agorithm, termed Fuzzy Interpolation-Based Q-Learning and
further propose an extended roulette selection method so that continuous-valued
actions can be selected stochastically based on the distribution of Q-vaues [41].
Berenji [ 11] proposes another version of Q-learning dealing with fuzzy constraints.
In this case, we do not have fuzzy rules, but "*fuzzy constraints’ among the actions
that can be done in a given state. These works, however, only adjust the
parameters of fuzzy systems online. Structure identification, such as partitioning
theinput and output space and determination of the number of fuzzy rules are till
carried out offlineand it istime consuming.

In this thesis, one of the main objectivesis to design anove learning method that
is capable of learning the structure and parameters of fuzzy systems automatically
and smultaneoudy using Q-Learning. The following chapters will further
investigate this problem and present a thorough discusson on fuzzy system
learning by reinforcement methods.
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Chapter 3

Reinforcement L earning

The goal of building systemsthat can adapt to their environments and learn from
their experience has attracted researchers from many fields, including computer
science, engineering, mathematics, physics, neuroscience, and cognitive science.
Reinforcement learning (RL) is a powerful method to solve the problem faced by
an agent that must learn through trial-and-error interactions with a dynamic
environment [51,109,128]. In this chapter, we begin by presenting the basic
framework of RL and then discuss the problem of generalization in large
continuous spaces. The last section of this chapter discusses some issues in
applying RL to robotics.

3.1 Basic Framework

Basicaly, RL is concerned with learning through direct experimentation. It does
not assume the existence of a teacher that provides training examples on which
learning of a task takes place. Instead, experience is the only teacher in RL. The
learner acts autonomoudy on the process and receives reinforcements from its
actions. With historical roots on the study of biological conditioned reflexes, RL
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attracts the interest of engineers because of its theoretical relevance and potential
applicationsin fieldsas diverseas operational research and intelligent robotics.

3.1.1 Reinforcement Learning Mode

RL is concerned with solving a problem faced by an agent that must learn through
trid-and-error interactions with a dynamic environment. We are particularly
interested in a learning system which is composed of two subjects, namely the
learning agent (or ssimply the learner) and a dynamic environment. In the standard
RL model, a learner is connected to its environment via perceptions and actions.
On each step of the interaction, the learner receives as its input, X which shows
someindicationof the current state, s, of the environment. The learner then selects
an action, a, to generate an appropriate output. The action changes the state of the
environment, and the value of this state transition is communicated to the learner
through a scalar reinforcement signal, r. Those reinforcement signals encode
information about how well the learner is performing the required task, and are
usually associated with a dramatic condition-such as the accomplishment of a
subtask (reward) or completefailure (punishment). The ultimate god of the learner
is to optimize its behavior based on some performance measure (usualy
maximization of some long-run measure of reinforcement). In order to do that, the
learner must learn a policy 7z, which describes the associations between observed
states and chosen actions that lead to rewards or punishments. In other words, it
must learn how to assign credit to past actions and states by correctly estimating
cogts associated with these events.

Referring to Figure 3.1, the accumulation of experience that guides the behavior
(action policy) is represented by a cost estimator whose parameters are learned as
new experiences are carried out by the learner. The learner is aso equipped with
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sensors that define how observations about the external environment are made.
These observations can be combined with past observations or input to a state
estimator which definesaninternal state that representsthe agent's belief about the
rea state of the process. The cost estimator then maps these internal states and
presented reinforcements to associated costs, which are basically expectations
about how good or bad these states are, given the experience obtained so far.
Finally, these costs guide the action policy. A prior built-in knowledge may affect
the behavior of the learner either directly, altering the action policy or indirectly,
influencing the cost estimator or sensors.

Figure 3.1 A general modd for the reinforcement learning agent

The experience accumulation and action taking process is represented by the
following sequence:
1. The learner makes an observation and perceives any reinforcement signal
provided by the environment.
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2. Thelearner takes an action based on the former experience associated with
the current observation and reinforcement.

3. Thelearner makes anew observation and updatesits cumulated experience.

In order to control policies, we must be able to evaluate them with respect to each
other. In RL, the cost estimator is some functionof the rewards received by the
learner. There are three models that have been the subject of the majority of work
in this area. The finite-horizon modd is the easiest to understand. Theideais the
following: At a given moment in time, the learner should optimize its expected
reward for the next k steps, whichis given by

v =E(zk:rt) G.1)

It needs not wony about what will happen after that. In this and subsequent

expressions, r represents the scalar reward recelved t steps into the future. The

finite-horizon model is not always appropriate since in many cases, we may not
know the precise length of the agent's life in advance. In the average-reward
model, the learner is supposed to take actions that optimize its long-run average
reward, whichis given by

—IlclmE( er (3.2)

—>0 =0

The infinite-horizondiscounted model takes the long-run reward of the agent into
account, but rewards that are received in the future are geometrically discounted
according to the discount asfollows:

V= E(Z }/’rtj (3.3)

t=0

If we set the discount factor to be zero, when we obtain the one-step greedy policy,
i.e. the best action is the one that gives the greatest immediate reward. Vaues
greater than zero reflect how much we are concerned with actions that happen
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further in the future. The average-reward model can be seen as the limiting case of
the infinite-horizon discounted model as the discount factor approachesto 1. The
infinite-horizon discounted model has received wide attention mostly because the
theoretical aspects are better understood.

RL differs from the morewidey studied problem of supervised learning in severa
ways. The most important differenceis that thereis no presentation of input/output
pairs. Instead, after choosing an action, the learner is told the immediate reward
and the subsequent state, but is not told which action would have been in its best
long-term interest. It is necessary for the learner to gather useful experience about
the possible system dates, actions, transitions and rewards actively to act
optimally. Another difference from supervised learning is that on-line performance
isimportant; the evaluation of the system is often concurrent with learning.

3.1.2 Markov Decision Processes

RL problems are typically cast as Markov Decision Processes (MDPs), which are
widely used to modd controlled dynamica systemsin control theory, operations
research and artificial intelligence. An MDP consistsof

» A set of states S,
* A set of actions A,
* Areward functionR : Sx A—> ,and
» A state transition function F: Sx A —> , where a member of isa
probability distribution over the set S. We write P(s, a, s’) for the probability
of making a transition from state s to state s’ using action a.
The state transition function probabilistically specifies the next state of the
environment as a function of its current state and the learner’s action. The reward
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functionspecifies expected instantaneous reward as a function of the current state
and action. The model is Markov if the state transitions are independent of any
previous environment states or agent actions [9,12,105].

Given a perfect model of the environment as an MDP, we can use Dynamic
Programming (DP) techniques to determine the optimal policy. Classical DP
algorithmsare of limited utility in RL both because of their assumption of a perfect
model and the great computational expense, but they still serve as the foundation
and inspiration for the learning algorithms to follow. We restrict our attention
mainly to finding optimal policies for the infinite-horizon discounted model, but
most of these algorithms have analogs for the finite-horizon and average-case
modelsaswell. We rely on the result that for the infinite-horizon discounted
model, there existsan optimal deterministicstationary policy [9].

The optimal value of a state is the expected infinite discounted sum of reward that
theagent will gainif it startsin that state and executes the optimal policy. Using n
asacompletedecisonpalicy, itiswrittenas
V*(s)= maxE(Z;/'rtJ 3.4
i t=0

This optimal value function is unique and can be defined as the solution to the
simultaneous equations

V(s)= max(R(s,a)+ yz P(s,a,s'WV" (s‘)j , Vsel§ (3.5)

a s'eS

which statesthat the value of a state sisthe expected instantaneousreward plusthe
expected discounted value of the next state, using the best available action. Given
the optimal value function, we can specify the optimal policy as

(3.6)
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There are two main classes of well-established methods for finding out optimal
policies in MDPs: Vaue Iteration and Policy Iteration [9,12]. The value iteration
method is determined by a smple iterative algorithm that can be shown to

convergeto the correct V* vaue. The gist of the methodis asfollows:

Vaue iteration is very flexible. The assgnments to V need not be done in strict
order as shown above, but instead can occur asynchronoudly in parallel provided
that the value of every state gets updated infinitely often on an infinite run. The
computational complexity of the value-iteration algorithm with full backups, per
iteration, is quadratic in the number of states and linear in the number of actions.

The policy iteration algorithm manipulates the policy directly rather than findingit
indirectly viathe optimal valuefunction. It operatesasfollows:

choose an arbitrary policy =
loop
T=7
compute the value function of policy 7 :
solve the linear equations

V, = R(S,?Z‘(S))+ 7Zs~e s P(s,ﬂ(s), s')V,, (s')
improve the policy at each state:
7'(s) = argmax (R(s, a)+ Y e P(s,a,s'W, (s'))
until z = '
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The value function of a policy is smply the expected infinite discounted reward
that will be gained, a each state, by executing that policy. It can be determined by
solving a set of linear equations. Once we know the value of each state under the
current policy, we consder whether the value could be improved by changing the
first actiontaken. If it can, we change the policy to take the new action whenever it
isin that situation. This step is guaranteed to strictly improve the performance of
the policy. When no improvements are possible, then the policy is guaranteed to be
optimal.

3.1.3 Learning an Optimal Policy

We use DP techniques for obtaining an optimal policy for an MDP assuming that
we aready have amode. The mode consists of knowledge of the state transition
probability function P(s,a,s) and the reinforcement function R(s,a). RL is
primarily concerned with how to obtain the optimal policy when such a model is
not known in advance. The agent must interact with its environment directly to
obtain informationwhich, by means of an appropriate algorithm, can be processed
to produce an optima policy. Here we examine some online, model-free
algorithms that attempt to obtain the optimal policy. For more details of other
methods computing optimal policiesby learningmodels, see [51,1281.

The biggest problem facing an RL agent is temporal credit assgnment. We use
insghts from value iteration to adjust the estimated vaue of a state based on the
immediate reward and the estimated value of the next state. This class of
algorithms is known as Tempora Difference (TD) learning methods [123]. We
will consider two different TD learning strategies for the discounted infinite-
horizon moddl.
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e AdaptiveHeuristic Critic

The Adaptive Heuristic Critic (AHC) algorithm of [6] is an adaptive

verson of policy iteration in which the vaue-function computation is no
longer implemented by solving a set of linear equations, but instead
computed by an algorithmcalled TD(0). It has a separate memory structure
to explicitly represent the policy independent of the value function. The
policy structureis known as the actor because it is used to select actions,
and the estimated value function is known as the critic becauseit criticizes
the actions made by the actor. The critic must learn about and criticize
whatever policy is currently being followed by the actor. We can see the
analogy with modified policy iteration if we imagine these components
working in aternation. The policy n implemented by actor is fixed and the
critic learns the value function ~ for that policy. Now, we fix the critic
and let the actor learn a new policy z' that maximizes the new value

function and so on. In most implementations, however, both components
operate Smultaneoudly.

We define <s,a,r,s'> to be an experience 4-tuple summarizing a single

trangtion in the environment. Here, s is the agent's state before the
trangtion, aisitschoiceof action, r istheinstantaneousreward it receives,
and s isitsresulting state. The value of a policy is learned usng Sutton's

TD(0) agorithm [123] which usesthe following updaterule

V(9 =V(9+ a(rt (s)-V (s)) (3.7)
Whenever a state s is visited, its estimated vaue is updated to a vaue
clossrtor+ yV(s‘), sincer is the instantaneousreward received and V(S)

is the estimated value of the next actud state. This is analogous to the
sample-backup rule from vaue iteration; the only difference is that the
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sample is drawn from the real world rather than by simulating a known
model. The key ideaisthat r +y7(s') is asamplevalueof V(s) and
it ismorelikely to be correct becauseit incorporatestherea r.

The TD(O)rule as presented above is redlly an instance of a more genera
class of agorithms called TD(4), with A =0. TD(0) looks only one step
ahead when adjusting value estimates. Although it will eventudly arrive a
the correct answer, it can take quite a while to do so. The general TD(4)
ruleissimilar to the TD(O)rule given abovein that we have

Vo =Vx+awtw(s) - re)ex (38)
but it is applied to every state according to its eligibility e(x) , rather than
just to the immediately previous state, s. The eligibility of a state sis the
degreeto which it has been visited in the recent past. When areinforcement
sgnal isreceived, it is used to update all the states that have been recently
visited, according to their digibility. We can update the digibility online as
follows:

Pels)+1 If s=currentstate

3.9
yde(s)  otherwise G2

d9={

It is computationally more expensive to executethe general 7D(), though

it often converges considerably faster for large A .

e Q-learning
The work of the two components of AHC can be accomplished in a unified
manner by Watkins Q-learning algorithm [145,146]. Q-learning is
typically eaesier to implement. In order to understand Q-learning, we have
to develop some additiona notations. Let Q*(s,a) be the expected

discounted reinforcement of taking action a in state s. Continuing by
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choosing actions optimally and noting that V*(s) isthe value of sassuming
the best action is taken initially, the term V*(9)=max, Q*(s,a). Q*(s,a)
can bewrittenrecursively asfollows:

Q*(sa)=R(Sa)trQ P ('s,as)maxQ¥(s,a) (3.10)

s'eS

Note aso that since V'(s)=max,Q'(s,a) , we have

n" (9= argmax, Q*(s,a) as an optima policy. Because the Q function
makes the action explicit, we can estimate the Q values online using a
method essentially the same as TD(0). We can aso use them to definethe

policy because an action can be chosen by simply taking the one with the
maximum Q valuefor the current state.

The Q-learningruleis

Qsa)=Qsa)+alr +7max Q(s.a) - s ) (311)

where (s,a,r,s") is an experience 4-tuple as described earlier. If each
action is executed in each state an infinite number of times on an infinite
run and the well-known assumption in stochastic approximation theory
givenbelow isvalid:

ia, = oo and iaf <o (3.12)
=1

=1
the Q values will converge with the probability of 1 to Q* [32,145,146].
The conditions guarantee that the learning rate a is large enough and
diminishesto zero at asuitablerate. Although learning ratesthat meet these
conditions are oftenused in theoretical work, they are seldom used in
applicationsand empirica research because sequencesof learning ratesthat

meet these conditions often convergence very slowly and are not suitable
for non-stationary scenarios.
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Q-learning can aso be extended to update states that occur more than one
step previoudly, asin TD(4), whichis discussedin Chapter 6.

An interesting variation for Q-learning isthe SARSA agorithm [110,127],
which is similar to Q-learning in that it attempts to learn the state-action

value function, Q*(s,a). The main difference between SARSA and Q-
learning, however, isin theincremental update function.SARSA takesa 5-
tuple, (s,a,r,s',a"), of experience, rather than the 4-tuple that Q-learning
uses. The additional element, d, isthe action taken from the resulting

state, s, according to the current control policy. This removes the
maximization fromthe update rule, which becomes

Qs a)=Q(sa)+alr+0(s'.a)- Q(sa)) (3.13)
Moreover, it alows us to consider a SARSA(/I) algorithm, very similar to
causa 7D(4)-

AHC architecturesseem to be more difficult to work with than Q-learning
in practice. In addition, Q-learning is explorationinsensitive; thisfeatureis
discussed in Chapter 6. Furthermore, it is the extenson of autonomous
learning concept to optima control, in the sense that it is the smplest
technique that directly calculates the optimal action policy without an
intermediatecost evauation step and without the use of amodel. For these
reasons, Q-learning is the most popular and seems to be the most effective
model-free agorithm for RL learning. It does not, however, address any of
the issuesinvolved in generdizationover large state and/or action spaces.

In addition, it may converge quite slowly to a good policy.
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3.1.4 Exploration/Exploitation Tradeoff

One of the necessary conditions under which RL agorithms can find an optimal

action policy is the complete exploration of the state space, normally infeasiblein

practical situations. When control and learning are both a stake, the learning agent
must try to find a balance between the exploration of alternativesto a given policy
and the exploitation of this policy as a mechanism for assessing its associated

costs. In other words, it must realize that trying unknown alternativescan berisky,

but keeping the same policy infinitely will never lead to improvement. Thrun [135]
has surveyed avariety of these techniques, which, in addition to ensuring sufficient
exploratory behavior, exploit accumulated knowledge.

The strategy that aways sdlects the action with the highest estimated payoff
correspondsto pure exploitation. Unfortunately, pure exploitation applied fromthe
beginning of learning will not work in general. Typica suggestions to overcome
these difficulties include choosing random actions occasionaly and exploiting
actions a other times, or selecting actionsthat minimize some kind of artificially
biased values, where the bias is such that bias values of less often visited state-
action pairs become smaller. The most popular of these which is called the ¢ -
greedy strategy is to take the action with the best estimated expected reward by
default, but with a probability of ¢ and select an action a random. Some versions
of thisstrategy start with alarge value of & to encourageinitial exploration, which
isslowly decreased. An objectionto the simplestrategy isthat when it experiments
with a non-greedy action, it isno more likely to try a promising alternativethan a
clearly hopeless dternative. A dightly more sophisticated strategy is Boltzmann
exploration, where the probability of choosing actiona in state s is given by

___exp(Qfs,a)/T)
P el

(3.14)
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The temperature parameter T can be reduced over time to reduce exploration.

3.2 Generalization

All the previous discussions have tacitly assumed that it is possible to enumerate
the state and action spaces and store tables of values over them. Except in very
small environments, this means impractical memory requirements. It aso makes
inefficient use of experience. In a large smooth state space, we generally expect
smilar statesto have similar values and ssmilar optimal actions. Surely, therefore,
there should be some more compact representation than a table. The problem of
learning in large spaces is addressed through generalization techniques, which
alow compact storage of learned information and transfer of knowledge between
similar statesand actions.

3.2.1 Generdizationin States

Mahadevan and Connell propose a generalization solution on RL applied to rea
robotic navigation [80], which is based on the fact that similar sensed states must
have similar values. They define a weighted Hamming distancefor the calculation
of this similarity based on a previously assessed relative importance of sensors.
However, in thiscase, states are still represented in alookup table. In the case of a
large continuous state space, this representation is intractable. This problem is
known as the curse of dimensiondity. Generaly speaking, it is necessary to use
function approximation schemesof [18] dueto an extremely large number of states
that makes implementation of the state space by alookup tableis impossible. The
generaization issuein RL can be seen as a structural credit assignment problem,
which decides how the different aspects of an input affect the value of the outpui.
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Most of the methods that allow RL techniques to be applied in large state spaces
are modeled on vaueiteration and Q-learning. Typically, a function approximator
is used to represent the value function by mapping a state descriptionto a value.
Various approaches using neural networks techniques have been reported to work
on various problem domains [5,148]. Lin [ 65] use back propagation networks for
Q-learning. Tesauro [131] use back propagation for learning the value functionin
backgammon. Boyan and Moore [18] use locd memory-based methods in
conjunction with value iteration. Mitchell and Thrun [88] use explanation-based
neural networks for robot control. Touzet describes a Q-learning system based on
Kohonen's self-organizing map [138]. Actions are taken by choosing the node
which most closely matches the state and the maximum possible value.
Unfortunately the actions are aways piecewise constant. The Cerebellar Mode
Articulation Controller (CMAC) [112,117,127,133,145] is another algorithm that
has been proven to be popular for value-function approximation work. The CMAC
is a function approximation system which features spatia locality. It is a
compromise between a lookup table and a weight-based approximator. It can
generdlize between similar dates, but it involves discretization, making it
impossible that actions vary smoothly in response to smooth changes in a state.
The other agorithms based on local averaging have been suggested in the context
of RL [19,98]. Locally weighted regression [4] can be used as the basis of vaue-
function approximation scheme. There has been some work on using variable-
resolution discretization methods. Variable Resolution Dynamic Programming
[90] begins with a coarse discretization of the state space, on which standard
dynamic programming techniques can be applied. This discretizationis refined in
parts of the state space that are deemed to be "important””. Moore's Parti-Game
agorithm [92] aso starts with a coarse discretization of the state space. The
agorithm assumes the availability of alocal controller for the system that can be
used to make transitions from one discretized cell to another. Another related
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gpproach is proposed by Munos [94,95] that again begins with a coarse
discretization of the state space and selectively refinesthis discretization. A cell is
split (or not), depending on its influence on other cells, as determined by the
dynamics of the system and the discount factor. However, these approaches
assumethat local controllersor the mode of the system dynamics are known.

Though a large number of successful applications of RL based on function
gpproximation on various problem domains have been reported in
[5,28,31,65,88,111,112,118,131-133,137,138,148,151], there is aways some kind
of ad hoc adaptation that includes the use of nonlinear architecture or auxiliary
mechanisms for value estimation, with which theoretical proofs of convergence are
not concerned. These agorithms with nonlinear architecture lead to improved
performance. Unfortunately, it is very hard to quantify or anayze the performance
of these techniques. Boyan and Moore [18] give some examples of vaue functions
errors growing arbitrarily large when generalizationis used with value iteration.
Sutton [127]shows how modified versions of Boyan and Moore's examples can
converge successfully. Tsitsiklis and Roy [140] provide a methodological
foundation of afew different ways that compact representationscan be combined
to form the basis of arational approach to difficult control problems. Bertsekas and
Tsitsiklis [13] provide an excellent survey of the state-of-art in the area of value
function approximation. However, whether general principles, ideally supported by
theory, can help us understand when vaue functionapproximation will succeed is
still an open question. More careful research is needed in the future.

3.2.2 Generdizationin Statesand Actions

Most approaches use functionapproximators to generalize the value function

across situations. These works, however, still assume discrete actions and cannot
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handle continuous-valued actions. In continuous action spaces, the need for
generalization over actionsis important. It should be possible that actions vary
smoothly in response to smooth changes in a state. Santamatia et al. [112]go
futherand consider continuous action spaces, but their approach cannot actually
generate continuous actions except when exploring randomly a small fractionof
the time. In the other words, this approach does not yield truly continuous-action
policies. The continuous-action Q-learning approach, which is the only approach
restricted to the generation of continuous actions by means of Q-learning, is
proposed in [87]. On the other hand, fuzzy logic can be used to facilitate
generaizationin the state space and to generate continuous actionsin RL [48]. The
FIS learner has a continuous perception of the state space, and based on a strategy
for policies, it can trigger continuous actions. This proposed strategy consists of
inferring the globa policy (relative to states) from local policies associated with
each rule of the learner. In thisthesis, we discuss a novel Q-learning method that
can handle continuous states and continuous actions based on the contribution of
fuzzy logic.

3.3 Applicationsin Robotics

The study of RL agents used to have a strong biological motivation [125], but in
the last few years the enthusiasm switched towards engineering applications. One
of the most impressive applications of RL to date is that by Gerry Tesauro to the
game of backgammon [131,1321. Crites and Barto [311study the applicationof R
to the elevator dispatching. Zhang and Dietterich [151] use back propagation and
TD to learn good strategies for job-shop scheduling. Singh and Bertsekas [ 118]
apply RL to the dynamic channel allocation problem in the operation of cellular
telephone systems. Tong and Brown [137]solve the call admission control and
routing problem in multimedia networks via RL. Next, we discuss a variety of



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3 Reinforcement Learning 54

robotics applications, which is one of the major successful applicationareasin RL
[28,111].

3.3.1 Robot Learning

Many intelligent methodol ogies have often been used for robotic systemsin areas
that are critical and dangerous for human beings [2].To accomplish agiventask, a
robot collectsor receives sensory information concerning its external environment
and takes actionswithin the dynamically changing environment. Furthermore, the
intelligent robot should automatically generate its motion for performing the task.
Brooks [20] proposes a sub-sumption architecture, and later behavior-based
artificid intelligence for raobotics [21]. This kind of behavior-based artificial
intelligence stresses the importance of direct interactions between a robot and the
environment. RL is employed in Situations where a representative training set is
not availableand the agent must itself acquire this knowledge through interactions
with its environment. Therefore, autonomous learning in robotics is a natural
application area for RL. Barto [8] distinguishes firstly, non-associative RL tasks,
where the learning system receivesonly evaluativeinput; secondly, associative RL
tasks, where a controller aims to maximize the immediate reward at each step; and
thirdly, adaptive sequential decision tasks where the maximization of long term
performance may entail foregoing immediate favorable rewards. Since the first
type has been studied based on genetic agorithms, we regard it as outside the
scope of thisthess. Some interesting examples can be found in [34,97]. Most of
the works discussed here are of the second or third type of RL. We prefer RL to
genetic agorithms for the purpose of the evaluating the system online concurrent
with learning.
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Maes and Brooks [79] describe a six-legged robot that |earns to sequence its gait
by associatingimmediate positive and negative rewards with action preconditions.
Mahadevan and Connell [80] develop RL strategiesto train areal robot performing
a box-pushing task based on decompositions of the task. In contrast, Kalrnar et al.
[52] use RL in an adaptive switching strategy for subtasks. Lin [65,66] uses RL
with a neural network to learn navigationtasks. Asadaet al. [3] uses discretization
of the state space, based on domain knowledge, to learn offensive strategies for
robot soccer. Meeden et al. apply complementary reinforcement back propagation
to the temporally extended problems of obstacle avoidance. Thrun [136] describes
a hybrid approach towards enabling a mobile robot to exploit previoudy learned
knowledge by applying it to multipletasks. Gullapalli et al. [38] develop the skills
of the peg-in-holeinsertion task and the ball-balancing task viaRL. Millan [85,86]
reports an approach towards navigationin an unknown indoor environment based
on amobilerobot, which is able to optimize the total reinforcement it receivesasit
progresses towards the goal. Hailu [40] gives similar results in a similar task.
Mataric [82) describes a roboti cs experiment with an unthinkable high dimensional
state space, containing many degrees of freedom. Bonarini [15] presents some
approaches based on evolutionary RL agorithms which are capable of evolving
real-time fuzzy models that control behaviors and proposes an approach towards
designing of reinforcement functions[16]. Boada et al. [14] present an RL
algorithm which alows a robot to learn simple skills and obtain the complex skill
approach which combines the previoudy learned ones. Gausser et al. [36]
conclude some limitationsof reinforcement approaches and suggest how to bypass
them.
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3.3.2 Problems

RL is currently perhaps the most popular methodology for various types of
learning. However, there are still some difficultiesthat must be overcomein order
to implement ausefullearning system on areal robot [22].

e Lackof initia knowledge

Many learning systems attempt to learn by starting with no initia
knowledge. Although thisis appealing, it introducesspecial problemswhen
working with real robots. Initidly, if the learning system knows nothing
about the environment, it is forced to act more or less arbitrarily. RL
systems attempt to learn the policy by attempting all the actionsin al the
available states in order to rank them in the order of appropriateness. In
order to learn a new policy, large numbers of time-consuming learning
trials are required. On the other hand, critical behavior must be learned
with a minimal number of trias, since the robot cannot afford to fail too
frequently. When controlling a real robot, a bad choice can result in the
damage of the environment or the robot itself, possibly causing it to stop
functioning. In order for the learning system to be effective, we need to
provide some sort of bias, to give it some ideas of how to act initially and
how to begin to make a progresstowardsthe goal. Systems should have the
ability of using previoudy learned knowledge to speed up the learning of a
new policy.

e Continuous states and actions
In many rea-world scenarios, sensory and action spaces are continuous.
These values can be discretized into finite sets if the discretizationfollows

the natura resolution of the devices. However, many quantities are
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inherently continuous with a fine resolution that leads to many discrete
states. Evenif they can be discretized meaningfully, it might not be readily
apparent how best to do it for a given task. Incorrect discretizations can
limit the final form of the learned control policy, making it impossibleto
learn the optimal policy. If we discretize coarsely, we risk aggregating
states that do not belong together. If we discretize findy, we often end up
with an unmanageably huge state or action space. Practical |earningrobots
require compact representations capable of generalizing experiences in
continuous domains. Furthermore, actions should vary smoothly in
response to smooth changesin astate.

e Lack of training data

Since we are generating data by interacting with the real world, the rate at
which we get new training pointsis limited. Robot sensors often have an
inherent maximum sampling rate. Sensorswhich sample extremely quickly
will ssmply generate many training points that are amost identical. We are
interested in learning on-line, while the robot is interacting with the world.
This means that we cannot wait until we have a large batch of training
examples before we begin learning. Our learning system must learn
aggressively and rapidly. 1t must aso be ableto use whatever data pointsit
has efficiently, extracting as much information from them as possible, and
generalizing between similar observations when appropriate.

e Sensor noise
Finaly, RL depends on the ability to perceive the unique state of the robot
in order to map it to the appropriate action. Sensor noise and error increase
state uncertainties, which further dow down the learning process.
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In spite of its weaknesses, RL appearsto be apromisingdirection for learningwith
real robots, in particular because it uses direct information from the real world to
improve the robot's performance. In this thesis, we discuss a new learning

paradigm which offers some possi bl e sol utionsto these problems.
3.3.3 The KheperaRobot

The robot employed in the experiments described in this thesis is a miniature
mobile robot called Khepera [50] shown in Figure 3.2. It is cylindrical in shape,
measuring 55mm in diameter and 30 mm in height. Itsweight isonly 70 g and its
small size alows experiments to be performed in asmall work area. Therobot is
supported by two latera wheels that can rotate in both directions and two rigid
pivotsin the front and in the back.

Figure 3.2 Theminiaturemobilerobot: Khepera

Kheperacan be remotely controlled by a computer through a serial link depictedin
Figure 3.3. The seria connection provides electrical power and supportsfast data
communication between the robot and the computer. The control system of the
robot can run on the computer that reads in sensory data and gives motor

commands in red time while the robot moves on a nearby environment.
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Alternatively, one can download the code of the control system on the processor of
therobot and then disconnect the cable.

Figure 3.3 The Kheperarobot and itsworking environment

The basic configurationof Kheperais composed of the CPU and the sensory/motor
boards. The CPU board encloses the robot's micro-controller, system and user
memory, an A/D converter for the acquisition of analog signals coming fromthe
sensory/motor board, and an RS232 serial line miniature connector that can be
used for data transmission and power supply from anexternal computer. The
micro-controller includes all the features needed for easy interfacing with
memories, with 1/0 ports and with external interrupts.

The sensory/motor board includes two DC motors coupled with incremental
sensors, eight analogues denoted by  infra-red(IR) proximity sensor in

Figure 3.4 and an on-board power supply. Each IR sensor is composed of an
emitter and an independent receiver. The dedicated eectronic interface uses

multipliers, sample/holdsand operational amplifiers. This allows absolute ambient
light and estimation, by reflection, of the relative position of an object to the robot
to be measured. This estimation gives, in fact, information about the distance
between the robot and the obstacle. The sensor readings are integer valuesin the
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range of [0, 1023].A sensor vaue of 1023 indicatesthat the robot is very closeto
the object, and a sensor value of O indicates that the robot does not receive any

reflection of the IR signal.

Distance in front.
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Figure 3.4 Position and orientation of sensorson the Khepera

In addition to the real robot, we a so use the simulation version of the Khepera [96]
for carrying out a systematic comparison of the different approaches we are
interested in. The program simulates Kheperas connected to the computer via a
serid link in avery redlistic way in the Matlab environment. Simulated Kheperas
are controlledin the sameway asredl, physical Kheperas.



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

61

Chapter 4

Design of Dynamic Fuzzy Q-Learning
(DFQL) Algorithm

In Chapter 2, we describe the fuzzy logic systems, and the learning methods of
fuzzysystems based on Q-learning. However, al the agorithms described only
adjust the parameters of fuzzy systems and do not involve structure identification.
In Chapter 3, we introduce RL and some agorithms for generalizing experiences.
However, most of these works assume discrete actions. In order to cope with these
problems, we propose Dynamic Fuzzy Q-Learning (DFQL) in this chapter.
Detailed descriptions of the DFQL architecture, on-line structure and parameter
learning a gorithm and modeling method are presented. In order to demonstrate the
efficiency of proposed agorithms, the proposed agorithm is applied to obstacle
avoidancebehavior of the Kheperarabot.

4.1 Motivation and Development

Two main research tracks influence our work. The first one uses the concept of
fuzzy logic, and the second one uses that of machine learning. From the first point
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of view, DFQL is the learning method used to tune a fuzzy system in a very
flexibleway whereasin the second point of view, DFQL is a means of introducing

generaizationin the state space and generating continuous actionsin RL problems,

FISs, which are numerical model-free estimators and dynamica systems, are a
popular research topic due to the followingreasons. 1) Therule structureof an FHIS
makes it easy to incorporate human knowledge of the target system directly into
the fuzzy modeling process,; 2) When numerical information of a target systemis
available, mathematical modeling methods can be used for fuzzy modding.
Severd requirements for a learning agorithm must be fulfilled for appropriate
modeling of an FI S.

e Evauativesignals

For the learning problem, training data are very rough and coarse, and are
just "evauative" in contrast with the "ingtructive’ feedback in supervised
learning. The learning algorithm should be capable of constructingan FIS
based on this smple evaluative scalar signal. In addition to the roughness
and non-instructive nature of the information, a more challenging problem
the agorithm should be able to dea with is that the signal may only be
availableat atime long after a sequence of actions have occurred. In other
words, prediction capabilitiesare necessary in thislearning system.

e Structureand parameter learning
The agorithm should deal with not only parameter estimation but also
structure identification of a learning FIS. Structure identification of fuzzy
system is equivaent to partitioning the input space. The spirit of FIS
resembles that of "divide and conquer”- the antecedent of a fuzzy rule
defines a loca fuzzyregion, whilethe consequent describes the behavior
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within the region via various congtituents. If the premise structure of a
fuzzy system is determined by clustering the input via an on-line self-
organizing learning approach, a more flexible learning scheme can be
formed. Furthermore, the learning method should find meaningful fuzzy
terms for each input variable, by which it is possible to interpret the
acquired knowledgein the form of linguisticrules.

e On-linelearning
We are interested in on-line learning, so the algorithm must be capable of
learning one data point a atime. We should not have to wait until we have
alarge batch of data points before training the algorithm. It precludes the
use of learning agorithmsthat take along timeto learn such as GA. GA is
aflexibleinput space partitioning leaming method, however, it is very time
consuming and unsuitablefor on-linelearning.

Q-learning is the most popular RL method that can be used to learn a mapping
from state-actionpairs to long-term expected values. Some forms of generalization
are used to extend Q-learning to deal with large continuous state and action spaces.
Severd requirementsfor alearning algorithm for practical use are:

e Adaptive Generdization

Q-learning with discretised states and actions scale poorly. As the number
of state and action variablesincrease, the size of the table used to store Q-
values grows exponentiadly. In a large, smooth state space, we generally
expect compact representations to able to generdize experience in
continuous domains. Furthermore, it would be desired to improve
generdization capabilities at state spaces that are deemed to be
"important™'.
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e Continuousstatesand actions

Many redl-world control problems require actions of a continuous nature,
in response to continuous state measurements. It should be possible that
actions very smoothly in response to smooth changes in a state. Some
problemsthat we may wish to address, such as high performance control of
mobile robots, cannot be adequately carried out with coarse coded inputs
and outputs. Motor commands need to vary smoothly and accurately in
response to continuous changesin a state.

¢ Integration of domain knowledge
The dgorithm is used for fast on-line learning so as to adapt in red time.
Initially, if the learning system knows nothing about the environment, it is
forced to act more or less arbitrarily. Integration of domain knowledge to
avoid learning from scratchishighly desired.

e Incrementa and aggressivelearning
The learning agorithm should not be subject to destructiveinterference or
forget what it has learned so far but incrementally adapt the model
complexity. It should be capable of producing reasonable predictionsbased
ononly afew training points.

In order to cope with these requirements, a novel DFQL learning algorithm is
proposed. It is an automatic method capable of self-tuning an FIS based only on
reinforcement signals. The DFQL provides an efficient learning method whereby
not only the conclusion part of an FIS can be adjusted online, but also the structure
of an FIS can be constructed smultaneously. Based on the criterion of system
performance, new fuzzy rules can be generated automatically. Continuous states
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are handled and continuous actions are generated by fuzzy reasoning. Based only
on the reinforcement signals, the proposed method consists of assigning a quality
to each loca action available in the learner's fuzzy rules. The obtained loca
policies are then used to produce a global policy that allows us to solve the
problem. Prior knowledge can be embedded into the fuzzy rules, which can reduce
thetraining time significantly.

4.2 PrecedingWorks

As foreshadowed in Chapter 2, the idea and implementation of dynamic partition
of the input spaces have been proposed in severa previousworksin the family of
supervised learning agorithms.

A kindof sequentia learning agorithms based on RBF are presented in
[64,74,104,152,153] in order to overcome the drawback that the number of hidden
units is fixed a priori in the classical approach to RBF network implementation.
The neural network, called a Minimal Resource Allocation Network (MRAN),
starts with no hidden units and grows by allocating new hidden units based on the
novelty in the observationswhich arrive sequentialy. When input-output data are
received during training, the decision to generate a new hidden unit dependson the
distance and error conditions. Furthermore, the MRAN learning agorithm
combines the growth criterion of the resource allocation network with a pruning
strategy based on the relative contribution of each hidden unit to the overal
network output. The resulting network leads toward a minimal topology for the
resource allocation network.

As mentioned in Chapter 2, it has been shown that a smplified class of FISs and
RBF Networks are functionaly equivalent [45. Therefore, the same idea of
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MRAN can be implemented in the fuzzy systems. Though fuzzy systems could
serve as a very powerful tool for syslem modeling and control, partitioning the
input space and determining an appropriate number of rulesin a fuzzy system are
still open issues. In order to cope with this problem, a learning algorithm for
dynamic fuzzy neura networks (DFNN) based on extended RBF neural networks
has been developed in [35,149]. The DFNN learning agorithm is an online
supervised structure and parameter learning agorithm for constructing the fuzzy
system automatically and dynamicaly. Fuzzy rules can be recruited or deleted
dynamically according to their significance to the system's performance so that not
only parameters can be adjusted, but a so the structure can be self-adaptive. Given
the supervised training data, the agorithm firstly decides whether or not to
generate fuzzy rules based on two proposed criteria, system errors and ¢ -
completenessof fuzzy rules. Subsequently, the algorithm will decide whether there
are redundant rulesto be deleted based on the error reduction ratio [143].

The methods of MRAN and DFNN provide theidea of dynamic partitioning of the
input spaces, though both these methods are classified as supervised learning. In
order to deal with the requirements of parameter and structure learningin FIS and
adaptive generalization in Q-learning, the idea of automatic generation of new
fuzzy rulesis used in DFQL, which is derived from the concepts of MRAN and
DFNN. The FIS we used in DFQL is functionally equivalent to RBF networks.
The incremental on-line learning scheme of DFQL is closely related to sequential
learning in MRAN and DFNN. Incrementa growth of the DFQL is accomplished
by generating fuzzy ruleswhen the regions are not sufficiently covered by the rules
or the system performance is unsatisfactory. The way of estimating premise
parametersof new rulesisrealized by the same mechanismintroduced in DFNN.
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Next, we present detailsof the architectureand algorithm of DFQL. After that, we
discuss the main differences between the DFQL and the supervised learning
algorithmsincludingMRAN and DFNN.

4.3 Architectureof DFQL

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
input fuzzification  applicationof T-norm normalization ~defuzzification

Figure 4.1 Structureof fuzzy rule setsof DFQL

DFQL is an extenson of the originad Q-Learning method into a fuzzy
environment. State-space coding is realized by the input variable fuzzy sets. A
state described by avector of fuzzy variablesis called afuzzystate. A learner may
partially visit afuzzy state, in the sense that real-valued descriptionsof the state of
the system may be matched by a fuzzy state description with a degree less than
one. Since more than one fuzzystate may be visited a the same time, possibly
with different degrees, we have a smooth transition between a state and its
neighbors, and, consequently, smooth changes of actions done in different states.
Both the actions and the Q-function are represented by an FIS whose fuzzy logic
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rules can be sdlf-constructed based on the system performance. The structureof the
fuzzy rule sets of DFQL isshownin Figure4.1.

We describe an F'S based on the TSK-type structure, which has a total of five
layers. In Section 2.2.1, we point out the equivalence between RBF networksand
the TSK-type FIS. Similarly, the FIS we used is functionally equivdent to
Ellipsoidal Basis Function (EBF) networks. Nodes in layer one are input nodes
which represent input linguistic variables. Layer fiveis the output layer. Nodesin
layer two act as membership functions which represent the terms of the respective
linguistic variables. Each node in layer threeis a rule node which represents one
fuzzy rule. Nodes in layer four normalize the outputs of layer three. Thus, al the
layer-four nodes form a fuzzy rule set. Layer four links define the consequents of
the rule nodes. In the following context, we will indicate signal propagation and
thebasic functionin each layer of the DFQL.

e Layer onetransmitsvalues of theinput linguisticvariable x,, i =1,...,n to

the next layer directly.

e Layer two peforms membership functionsto the input variables. The
membership function is chosen as a Gaussian function of the following
form:

i

,u,.j(xi)=exp|:—(—xi—_~§i] i=1,2,..m, j=1,2,...] (4.1)
o

where ; is the jth membership function of x;, ¢; and o; are the center

and width of thejth Gaussian membershipfunctionof x, respectively.
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e Layerthreeis arulelayer. The number of nodesin thislayer indicatesthe
number of fuzzy rules. If the T-norm operator used to compute each rule's
firing strength is multiplication, the output of thejth rule R; (j=1,2,...1)

inlayer 3isgiven by

fj(xl,xz,...,xn)=exp{— il(i—_——:—q)z—} j=12,...,1 (4.2)
= O'y_

¢ Normalization takes placein layer 4 and we have
¢, = lff j=12,..1 @3
Ji

i=1

e Layer five nodes define output variables. If defuzzificationis performed in
layer 5 using the center-of—gravity method, the output variable as a
weighted summation of incoming signals, is given by

l
y= Z oW, (4.4)
j=1

where y is the value of an output variable and w; is the consequent

parameter of thejth rulewhichis defined as areal-val ued constant.

The firing strength of each rule shown in Eq. (4.2) can be regarded as a function of
regularized M aha anobis distance (M-distance), i.e.

f; =exp(- md*(§)) (4.5)

where

md(j)=\/(X—cj)’Z;‘(X—cj) (4.6)
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is the M-distance, X =[x,--x,] e®", C,=[e,.c;;c, [ e ®" and z'is

defined asfollows:

B n

RN

O-lj

» 0 Lz 0 0 _
Zj = O-Zj _]=1,2,...,l (47)

0 0 - 0
o oo L

i T

Thus, the input variable fuzzy sets are used to represent appropriate high-
dimensional continuoussensory spaces. The fuzzy rule identificationis equivaent
to determination of the DFQL structure. The number and position of the input
fuzzy labelscan be set using apriori knowledge of the user. Generaly speaking, if
we do not have any knowledge about the system, identical membership functions
whose domains can cover the region of the input space evenly are chosen, and for
every possible combination of input fuzzy variables, a fuzzy rule has to be

considered. However, the number of rulesincreases exponentially with increasein
the number of input variables. As a consequence, the FIS often includes many
redundant or improper membership functions and fuzzy rules. This leads us to

develop alearning agorithm that is capable of automatically determining the fuzzy
rulesonline.

In the DFQL approach, each rule R, has m possible discrete actions

A={a,,...,a, } and it memorizes the parameter vector q associated with each of

these actions. These g values are then used to select actions so as to maximizethe
discounted sum of reward obtained while achieving the task. We build the FIS

with competing actionsfor each rule R, asfollows:
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R: If XisS, then a, with ¢(s,,a,)

or a, with ¢(S;,a,)

or a, with ¢(s;,a)
where X is the vector of input variables and S; are labels of fuzzy sets that
describe the a fuzzy state of the ith rule. Figure 4.2 shows the consequent parts of
DFQL. The continuous action performed by the learner for a particular state is a
weighted sum of the actions elected in the fired rulesthat describe this state, whose
weights are normalized firing strengths vector of the rules, ¢. Subsequently, the

TD method updates the Q-vaues of the eected actions according to their
contributions.

Q(Sp“l) 4’(31,%) LR ‘?(Spﬂm)

Rule i Continuous
Truth t Action
Values

Q'(Sbal) Q'(Spag) e Q'(Sz’am)

Figure 4.2 Consequent parts of DFQL
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4.4 DFQL Learning Algorithm

This section proposes an on-line structure and parameter learning algorithm for
congtructing the DFQL automaticaly and dynamically. The details of the DFQL
algorithm are presented as follows. After a brief description of generation of
continuous actions, the mechanism of updating Q-vauesisintroduced. Next, self-
organizing features of the FI'S based on the ¢ -completeness of fuzzy rules and the
TD error criteria are elaborated. Finally, the flowchart of the agorithm and an
overview of the one-time-step global working procedure are presented.

4.4.1 Generationof ContinuousActions

The generation of continuousactions depends upon a discrete number of actions of
every fuzzy rule and the vector of firing strengths of fuzzy rules. In order to
explore the set of possible actions and acquire experiences through the
reinforcement signals, the actionsin every rule are selected using the exploration-
exploitation strategy that is described in Section 3.1.4. Here, we use 7 to denote
the exploration/exploitation policy employed to select a loca action a from
possible discreteactionsvector A, asfollows:

4.8)

Attimegept, theinput stateis X,. Assumethat | fuzzy rules have been generated
and the normalized firing strength vector of rules is ¢,. Each rule R, has m
possible discrete actions A. Local actions selected from A compete with each other
based on their g-values, whilethe winning local action a’ of every rule cooperates
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to produce the globa action based on the rule's normalized firing strength, ¢ . The
global actionis given by
U,(x)=2 7 =Y, 0! “9)

where a; isthe sdlected action of rule R, a timestep t.

4.4.2 Updateof g-values

Asin DFQL, we definea function Q, which givesthe action quality with respect to
states. Q-values are aso obtained by the FIS outputs, which are inferred fromthe
quality of local discrete actionsthat constitutethe global continuous action. Under

the same assumptions used for generation of continuousactions, the Q functionis
given by

(4.10)

where U, is the global action, a; is the selected action of rule, R, a time step t

and g, istheg-value associated with thefuzzy state, S; and action, a; .

Based on TD learning, the Q-values corresponding to the rule optima actions
which are defined asfollows:

(411

are used to estimate the TD error whichis defined by
(4.12)
where r,,, is the reinforcement signal received & time t+1and y is the discount

factor used to determine the present vaue of future rewards. Note that we have to
estimatethiserror term only with quantitiesavailablea time step t+1.
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This TD error can be used to evauate the action just selected. If the TD eror is
positive, it suggests that the quality of thisaction should be strengthened for future
use, whereas if the TD eror is negative, it suggests that the quality should be
weakened. Thelearningruleis given by

i=12,... (4.13)

where a isthelearning rate.
4.4.3 Eligibility Traces

In order to speed up learning, eligibility traces are used to memorize previously
visited rule-action pairs, weighted by their proximity to time step t. Thetracevalue
indicates how rule-action pairs are digible for learning. Thus, it not only permits
tuning of parameters used at time step t, but also thoseinvolved in past steps. Here,
we introduce the basic method without complex implementation, similar to [48].
The more efficient and faster learning method using €ligibility traces for
complicated tasksis discussed in Chapter 6.

Let 77,(S,,a,) be the trace associated with discrete action , of rule R, & time
sept

Tr.(5,,0,) = {ATr1(Sa,) ¥4 I a,=a (4.14)
yATr,,(S,,a,) otherwise

wherethe digibility rate 4 isused to weight time steps.
The parameter updating law given by Eq. (4.13) becomes, for all rulesand actions,
9(8a,)=4,(8,a,)+ 02, 10(5,,a,) i=1,2,...,1, j=1,2 ,...,m (4.15)

and the traces are updated between action computationand its application.
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4.4.4 & -Completeness Criterionfor Rule Generation

Due to the highly complex and nonlinear characteristic of the problem space,

uniform distribution of the fuzzy setsis usually not optimal. If afuzzy partitionis
too coarse, the performance may be poor. If a fuzzy partition is too fine, many

fuzzy IF-THEN rules cannot be generated because of the lack of training patterns
in the corresponding fuzzy subspaces. For a problem, some parts of pattern space

might require fine partition, while other parts require only coarse partition.

Therefore, the choice of an appropriate fuzzy partition, i.e. structure identification
of FISisimportant and difficult. In this section and the next one, we proposetwo

criteria, namely the ¢ -completeness and TD error criteria, for generating fuzzy

rules automatically, which allow us to circumvent the problem of creating the

structure of an FIS by hand.

Definition4.1: ¢ -Completenessof Fuzzy Rules [59]:

For any input in the operating range, there exists at least one fuzzy rule so that the
match degree (or firing strength) isno lessthan ¢.

Remark: In fuzzy applications, the minimum value of ¢ is usualy selected as
e=0.5.

From the viewpoint of fuzzy rules, a fuzzy rule is a local representation over a
region defined in the input space. If a new pattern satisfies ¢ -completeness, the
DFQL will not generate a new rule but accommodate the new sample by updating
the parameters of existing rules. According to ¢ -completeness, when an input

vector X €  enters the system, we calculate the M-distance md(j) between the
observation X and centers C; (j=1,2,...,l) of existing EBF units according to Egs.

(4.6) and (4.7). Next, find
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J=agmin(md(j)) (4.16)
<j<
If
md . =md(J)>k, (4.17)

where &, isapre-specified threshold and is chosen as follows

ks =n1/&) (4.18)

then we have

f(J) <ept-k,*)=eapt- (Yinl2)) ) =2 (4.19)

This impliesthat the existing system is not satisfied with e-completenessand a
new rule should be considered.

445 TD Error Criterionfor Rule Generation

It isnot sufficientto consider & -completenessof fuzzy rulesasthe criterionof rule
generation only. New rules need to be generated in regions of the input fuzzy
subspacewhere the approximation performance of the DFQL is unsatisfactory. We
introducea separateperformanceindex, &7, for each fuzzy subspacewhich enables
the discovery of " problematic’ regions in the input space. If the performance index
indicatesthat the situationis wrongly classified, a new fuzzy ruleis crested a the
location of the input Situation. This index can be attested by any method which
captures critical aress that require high resolution. Here, we present a genera
method based on TD errors. The performanceindex is updated asfollows:

Ela =[ (K=& +8/C)')/K K>0 (4.20)
Using the squared TD error as the criterion, the normalized rule firing strength ¢°
determines how much the fuzzy rule R, affects the TD error. It should be noted

that Eq. (4.20) actsas adigital low-passfilter. In this way, TD errorsin the past are
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gradually "forgotten'™ as time passes, but are never completely lost. The more
recent the TD error isreceived, the moreit affectsthevalueof &. Theinitial value

of £ is set to zero. The parameter K controls the overall behavior of £. A small
value of K makes & adapt very rapidly and alarge valuemakes £ morestablein a
noisy environment. Thus, if &’ is bigger than a certain threshold, %, , further

segmentationsshould be considered for thisfuzzy subspaceat least.
4.4.6 Estimationof Premise Parameters

Combining the ¢ -completeness criterion and the TD error criterion together, we
obtain the following procedure of generating a new rule: When an input vector

Xe enters the system, we calculate the M-distance md(j) between the
observation X and centers C, (j=1.2,...,1) of existing EBF units. Next, find

md_;,, = md(J)>k,
where k, is a & -completeness threshold, this implies that maybe the existing
systemis not satisfied with ¢ -completenessand anew rule should be considered.
Otherwise, if
&7 >k, (4.21)
where k,isa TD error criterion threshold, this fuzzy rule R, does not satisfy the

TD error criterion and anew rule should be considered.

Once anew ruleis considered, the next step isto assign centers and widths of the
corresponding membership functionsA new rule will be formed when the input
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pattern X € R” enters the system according to two criteria of rules generation.
Next, the incoming multidimensond input vector X is projected to the
corresponding one-dimensional membership function for each input variable
i(i=1,..n). Assumethat | membership functions have been generated in the ith

input variable and the Euclidean distance ed; between the data x, and the

boundary set @, iscomputed asfollows:

ed()=|r, —@,(j) j=1.2,...1+2 (4.22)
Where @, € {X,.i €111 Cino- s Cits Xy 1 WETiN
Ji = arg . 1r27’1.i-rr11+2(edi (€D)) (4.23)
If
(4.24)

where £, is a predefined constant that controls the similarity of neighboring

membership functions, x; is deemed completely represented by the existing fuzzy
st E,

" (cijk Moy ﬁk) without generating a new membership function. Usudly, &, is
selected between 0.1 and 0.3 for normalized input variables. Decreasing k,,
indicatesthat higher similarity between two membership functionsis allowed.
Otherwise, if

ed; () >k,
anew Gaussian membership function is allocated whose center is

iy =%; (4.25)
and the widths of membership functionsin the ith input variable are adjusted as
follows:

Citks1) —Ci l}

JIn(l/ &)

maxﬂcik ~Citk-1)
Oy =

2

k=1..,1+1 (4.26)
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where ¢, ;, and ¢, are the two centers of adjacent membership functions of
the middle membership function whose center is ¢, . Note that only the new

membership function and its neighboring membership functions need to be
adjusted. The main result concerning adjusting membership functions to satisfy & -

completeness of fuzzy rules in each one-dimensional input variable can be
summarizedin the following statement.

Statement 4.1: Let N=[x__ , xmax]=[a, b] be the universe of one-dimensional
input x. If each fuzzy set g, ={(x,#k(x)jxe N}(k=1,..m) is represented as a
Gaussian membership function constructed by the preceding ¢, and ¢, , the fuzzy
Sets E, satisfy ¢ -completeness of fuzzy rules, i.e, for al xe N, there exists

ke {1,..m), suchthat z,(x)> ¢ [149].

We can explain this statement under several different cases:
(8 If there exists only one fuzzyset, i.e. m=1, the membership function can be

generated as follows. If |x, -a|2k,, and |b-x|2k,, , and assuming that

2
’xl—alZIb—xl‘ , we have yl(x)=exp(—(x;—i’)) where ¢, =x, and

1

For any x €[a,b] , we have

If |x, —a/<ks , we have
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(b) If there exists k € {1,..n}, such that |c, —c,_| 2|e, — ;!5 o, iS chosen as

o, =—F— For any xele 2Cpuy) ‘ we have

()2 (e, )= exp{_ [m.lg.j(%” e

We can obtainthe same result for other cases.
4.4.7 Working Principle

The flowchart of the agorithm is depicted in Figure 4.3. In order to make the
working principle easy to understand, a one-time-step global execution procedure
of DFQL is presented. The details of computing the TD error and tuning g-values
are described in steps a to d. Next, the procedure of tuning the structure of FIS
elaborated on the flowchart is given in step e This is then followed by taking
action and estimating the Q-value in steps f to g, together with the updating
eligibility tracein step h. Let t+l be the current time step and we assume that the

learner has performed action U, and has received a reinforcement signd r,,,. The

+1*

stepsare summarized here:

a Check the ¢ -completeness and TD error criteria according to the current

state, X ,,,. If anew fuzzyrule need to be generated, tune the structure of
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FIS and initialize the parameter vector q according to the algorithm
described in Section 4.3.6;

b. Approximate the optimal evaluation function corresponding to the current
state and FI'S by using the optimal local action quality definedat time step t
i.e V,(X,,) asdefinedin Eq. (4.11);

c. Computethe TD error £,,, usng Eq. (4.12);

d. Tune the parameter vector g according to Eq. (4.15) based on current
eigibility trace;

e Tuneparameter & with Eq. (4.20) being used asaTD error criterion;

f. Elect loca actions based on the new vector ¢,,, and compute the global

action U, (X m) according to the new FIS governed by Eq. (4.9);

g. Estimate the new evaluation function for the current state with the new
vector ¢,,, and the actions effectively elect Eq. (4.10). Note that

0...(x,,,,U,.,) will beused for error computation a the next time step;

h. Update the eligibility trace according to Eq. (4.14), which will be used in
parameter updating at the next time step. Eligibility trace values need to be
reset to zeros a the end of each episode.
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Figure4.3 Flowchart of the DFQL learning algorithm
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4.5 Discussions

The main differences between the DFQL and the supervised learning agorithms
including MRAN and DFNN are asfollows:

First of all, MRAN and DFNN are both supervised learning where the input-output
training data guide the learning process, while DFQL extends these earlier works
to reinforcement learning which is based on the ssmple evauative scaar signal.
Generdly speaking, a robot attempts to learn a task in an unsupervised mode
without a teacher sinceit is difficult to find the direct training data. The robot has
to perform the task by executing trial-and-error actions through evaluative
reinforcement signals. A salient point about DFQL is that the consequent parts of
DFQL are based on Q-L earning and the TD method updates these Q-values.

Second, the two criteriafor generating new rules are dightly different. New rules
are generated as they are needed to better cover the sensory space or when the
approximation performance of DFQL is unsatisfactory. Since DFQL is based on
Q-Learning, the performance is evaluated according to TD errors instead of the
output error in supervised learning.

Third, MRAN removes the units based on their relative contributionsand DFNN
deletes the rules based on the error reduction ratio, while DFQL does not. MRAN
and DFNN are suitable for sequentia learning. There may be a large batch of
training data and the sgnificance of the observations may be subsequently
reduced. On the contrary, DFQL is suitable for robotics systems which require
learning to be incrementa and rapid. Critical behavior must be learned with a
minima number of trials. For robot navigation applications, deletion would be
hazardous since they will not perceive al sensory situations repestedly after a
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fixed number of steps. The learning algorithm should not forget what it haslearned
so far but incrementally adapt the model complexity. In the future works, pruning
might be considered in other applicationsif afuzzy ruleisnot activefor a period.

Fourth, DFQL provides a method of exploitinga prior knowledge which is not the
same in different supervised learning algorithms. If the learning systems are not
able to exploit the prior knowledge in reinforcement learning, it is most certain
that the learning will not be effective. The robot either collides with obstaclesthat
terminate the learning process or exploresaimlessly without ever reaching the goal
that can take unacceptably long time to discover interesting parts of the space. A
way of overcoming this problem is to use prior knowledge as bias to figure out
which action deserves attention in each stuation. The bias components can be
incorporated in the framework of fuzzy rules based on prior knowledge. The
premise of rules can be used to generate fuzzy states over the fuzzy input space
and the consequents of rules can be used to generate the initial g values, which are
caled bias. The detailsarediscussed in Chapter 5.

Fifth, the supervised learning provides, a each time step, the desired outputs
during learning. On the contrary, the reinforcement learning only givesthe quality
of actions. In addition to the roughness and non-instructive nature of the
information, amore challenging problem is that the signal may only be availableat
atimelong after a sequence of actions have been taken. In other words, prediction
capabilities are necessary in this learning system. DFQL with digibility traces
obtain an efficient method which is able to distribute credit throughout sequences
of actions, leading to faster and more effective learning in rea applications. The
details are discussed in Chapter 6.
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4.6 Experiments

4.6.1 Obstacle Avoidancefor KheperaRobot

In this section, we describe experiments performed on the Kheperarobot. The task
Khepera has to perform is to navigate freely. Two behaviors are involved. One,
which is of higher priority, concerns moving forward. The second concerns
avoiding obstacles. The first behavior which involves moving forward when
nothing is detected by the sensorsis ssmpleand is of no interest here. The second
behavior involvesknowing how much to turn and in which direction so asto avoid
the obstacles. The environment used for implementation and simulation studiesis
shown in Figure 4.4 and Figure 4.5 respectively. It is a 25cmx 35cm arena with
lighted shaped walls. Obstacles with different shape and form are introduced at
different sectionsof the maze. Obstacles are put in the maze at the beginning of the
experiment. We use the smulated robot to find appropriate parameters and make a
systematic comparison of different approaches. These methods are aso
implemented on the red robot and the results presented as follows are based on
experimenta dataof thereal robot.

Figure 4.4 Real environment for obstacleavoidance
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Figure 4.5 Simulationenvironment for obstacleavoidance

In this experiment, the six sensors on the front of the robot are used for obstacle
detection. These sensor vaues are normalized within the interva [0, 1]. A
normalized sensor value of 1 indicatesthat the robot is very closeto obstacles, and
Oindicatesthat the robot is away from obstacles. The robot receives reinforcement
signas during the learning phase. For learning obstacle-avoidance behavior, we
compare past and present sensor values. The robot will avoid the obstacles when
the present sum of the six front sensor values is smaller then the last one and the
difference is greater than 0.1 between them. A collision occurs when the sum of
the six front sensor values is greater than 2.0. The collision is inferred from the
sensor performance. It does not necessarily mean that the robot has touched the
wall. Thereinforcement signalsare asfollows:

Let S,(¢) be the sensor value of the sensor i & time t and r be the reinforcement

sgnal:
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It (Z:=0Si(t—1)—2;0si(t))2 0.1 then r=+1;
dseif 7 S,(1)>20 thenr=-1;

ese r=0.
4.6.2 Random Policy and Tabular Q-learning

In order to make a comparison, a look-up table implementation of Q-learning is
used with the robot to generate obstacle avoidance behavior. And the experiments
are given along with those for a completely random policy. For practical reasons,
each sensor valueis coded as 1 bit. If the measured value is below the threshold
vaue of 0.2, the sensor bit valueis O, otherwiseit is 1. Therefore, the total number
of possible situations is restricted to 2° =64. The total number of actions is
reduced to three different speeds per motor, so the total number of possible actions
Is9.

Experimental resultsare presented in two ways: anindicator of the effectivenessof
obstacle avoidance 1 (t) and aloca performanceindex L(t),wheret isthe number
of robot moves executed by the avoidance behavior module from the beginning of
the experiment. The distance to the obstacles measures the correspondence of the
robot's behavior with the target behavior. When the robot encounters obstacles, the

sum of the six frontsensor valuesis memorized as D ( t Nlate that the higher the

sensor vaue, the shorter the distance is to the obstacles. The indicator I(t) is
defined as > - D(i)/t . Two local performanceindices measuring the effectiveness
of the learning process are defined as L*(t) = and L(t)=R"(t)/t
respectively, where R*(z) is the number of moves that have received positive

reinforcement signals from the beginning of the experiment and R™(¢) is the
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number of moves that have recelved negative reinforcement signals from the
beginning of the experiment. We use 3000 learning iterations and the results are
averaged over ten runs. Note that the iteration steps are increased only when the
robot detects obstacles and executes avoidance behaviors. The results for a
completely random exploration policy are givenin Figure4.6.

The basc Q-learning agorithms of [145] store Q values, i.e. the expected
reinforcement values associated with each situation-action pair are organized in a
look-up table and updated according to Eq. (3.11). In the experiments, the learning
rate a and the discount factor y are set to 0.5 and 0.9 respectively. The

exploration function uses a & -greedy strategy described in Section 3.1.4 with
randomly decreasing proportionate with the number of iterations. The results for
basic Q-learning are shown in Figure 4.7. After learning, the synthesized behavior
isimproved but not perfect. The distanceto the obstaclesmeasured during learning
is better than pure random behaviors, however, there are dill negative
reinforcements experienced. Any difficulty in the use of basc Q-learning is the
result of its standard tabular formulation. An exhaustive exploration of all
Stuation-action pairs is impossible due to time constraint. Therefore, there are an
incredibly small number of explored situation-action pairs versus unknown
dtuation-action pairs. Several refinements have been proposed in order to speed up
learning. Madadevan and Connell [80] use the Hamming distance to generdize
between similar situations; the same authors also use clustersto generalize across
sSmilar situation-action sets. Sutton [126] proposes the Dyna-Q modd in which
Stuation-action pairs are randomly carried out to speed up propagation of the Q
values through time. However, those methods use the same look-up table as in
basic Q-learning implementation and they are subject to a memory requirement for
storing al possible situation-action utility values. In practice, there are many
Stuation-action pairs that are never visited and it is pointlessto store these utility
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values. The most important problem that RL methods based on tabular formulation
facesisthe limitation of generalization. In thisexperiment, a unique bit is used to
code each sensor value. This is certainly not precise enough. However, it is
impossible to use more bits per sensor due to the curse of dimension described in
Section 3.2. In order to cope with continuous states and actions, it is necessary to
use efficient generalization processes which revolve around the use of experienced

Situation-action pairs to induce ways of dealing with new unknown situations and
actions.

4.6.3 Neural Q-Learning

Neura networks is a kind of approach suitable for generalizationof RL methods.
Numerous authors [6,65,117,131,1331 have proposed a neural implementation of
RL, which seems to offer better generdization. The memory size required by the
system to store the knowledgeis defined, aprior, by the number of connectionsin
the network. In [138], an efficient method named Q-KOHON, which is based on
the Kohonen self-organizing map (SOM) [58], is proposed. The self-organizing
map is distinguished by the devel opment of a significant spatial organizationof the
layer. Following the implementation of [138], there are 16 neurons in the map.
During the learning phase, the neurons of the SOM approximate the probability
density function of theinputs. Theinputs are situation, action and the associated Q
value. The number of neuronsis equa to the number of stored associations. The
best action selected in aworld situationis given by the neuron that has the minimal
distance to the input situation and to a Q vaue of +1.The learning algorithm
updates the Q value weight using Eg. (3.11) and the situation and action weights.
The neuron corresponding to the situation and the action effectively performed is
selected by finding the minima distance to the situation and action vectors but
nothing concerning the Q value. Together with the sdlected neuron, the four
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neighbors are also updated. The learning coefficient is 0.9 for the selected neuron

and 0.5 for the neighborhood. The results are shown in Figure 4.8. The Q-KOHON

implementation requires much less memory and learns faster than basc Q-

learning. The neural generalization process, through the continuity of the input

space, alows us to speed up the Q-learning method. The distanceto the obstacles
measured during learningisimproved and negativereinforcements received reduce
distinctly during learning.

However, Q-KOHON and most gpproaches using neural networks to generaize
Situations still assume piecewise constant actions. These approaches cannot
generate continuous actions and cannot obtain optimal performance. It should be
possible that actions vary smoothly in responseto smooth changesin a state. The
Q-KOHON implementation is not sufficient to solve an application. Q-KOHON is
capable of learning behaviors with no prior knowledge; however, more effective
learning solutions would be obtained if the initial experience can be incorporated
during learning. Although Q-KOHON solves the structural credit assignment
problem described in Section 3.2, its efficiency is drictly limited to short
sequences of actions. In this experiment, the synthesized behavior is a reactive
behavior. It does not integrate sequences of actions. A solutionwould beto change
the reinforcement function so asto take into account sequences of actions,

4.64 DFQL

The DFQL approach uses fuzzy rulesto introduce generalization in the state space
and generate continuous actions. The parameter values are the same as those used
in Q-learning. The other parameters for rule generation are: & -completeness,
£=0.5; smilarity of membership function, k., =0.3; TD error factor, K =50
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and TD eror criterion, k, =1. The digibility traces are not considered for a fair

comparison. The results are shown in Figure 4.9. At the beginning, performances
of the robot based on DFQL are worse than other methods due to exploration.
However, the performance is improved rapidly and is much better than that of
others subsequently and less negative reinforcements received than al other
implementations.

The DFQL method achievesgood performance very rapidly because the DFQL
displayslocalized generalizationin the state space and it updatesthe Q valueswith
the locdl actions involved in the selection of the globa action according to their
contributions at the same time. Furthermore, the optimal action for every possible
situation is most likely continuous. Unlike the piecewise constant outputs of Q-
KOHON, the DFQL generates the continuous actions by continuous state
perception S0 that actions can very smoothly with smooth changesin a state. We
will present comparisons between the DFQL and other methods that can aso
handle continuous actionsin the following chapters. The number of fuzzy rulesis
generated automatically based on the criteriaof ¢ -completeness and the TD errors
during learning and is shown in Figure 4.10. The compact structure of fuzzy
systems is obtained online, which does not include redundant or improper
membership functions and fuzzy rules. The number of rules does not increase
exponentialy with increasein the number of input variables. Detailed comparisons
between adaptive structure and fixed structure of fuzzy systems are discussed in
Chapter 5. A clear comparison of al the agorithms based on the distance to the
obstacles during learning is shown in the Figure 4.11. In order to show the
advantage of generalization, Figure 4.12 makes a performance comparison during
the learning phase with the random policy, Q-learning, Q-KOHON and the DFQL
based on the discounted cumulative reward. This discounted cumulative reward
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=Y If— ) corresponds to a measure of the cumulated performance of the robot. It

is the number of good actions performed that receive non-negative reinforcements
per the total number of moves.

We introduce the basic features of the DFQL algorithm above and more details of
the learning abilities are discussed in the following chapters. Furthermore, we
present a mechanism using fuzzy rules to incorporate initial knowledge for rapid
learning in Chapter 5 and we describe a more genera method combined with
eigibility traces, the basic mechanism for temporal credit assgnment, in Chapter
6.
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Figure 4.6 Distance to the obstacles and local performance indices based on a
random expl oration policy
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Chapter 5

Embedding Initial Knowledge in
DFQL

In Chapter 4, we describe the DFQL, an agorithm for generating a fuzzy system
based on Q-learning. The key idea of the DFQL agorithm is that the system can
start with no fuzzy rules and fuzzy rules can be recruited automatically according
to the system performance. However, if we can incorporate initial knowledge to
the learning system, especially in the early stages, we can greatly increase the
soeed of learning. In this chapter, we introduce a natural framework of
incorporating initial knowledge by fuzzy rules. Subsequently, the wall-following
behavior of the Kheperarobot is investigated in experiments. A comparative study
of the Jouffe's fuzzy Q-learning [48], Millan's continuous-action Q-learning [87]
and our gpproach is carried out. All these methods can handle continuous states
and actions and incorporateinitial knowledgefor rapid learning.

5.1 Efficient Useof Initial Knowledge

Q-learning is capable of learning the optimal vaue function with no prior
knowledge of the problem domain, given sufficient experience of the world.
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However, it isdifficult for arobot to gain'* sufficient™ knowledgein reality. We are
fundamentally limited in the amount of datawe can generate, especiadlyif we want
to perform learning on-line, particularly when we are dealing with rea-world
problems. Moreover, we are fundamentally limited by the number of training runs
that we can realistically hope to perform on arobot.

If we start with no knowledge of the world, we are essentially forced to act
arbitrarily. If we are taking arbitrary actions, this amounts to a random walk
through the state space, which is unlikely to reach the goa state in a reasonable
time. If we can bias the learning system, especially in the early stages of learning,
so that it is more likely to find the "interesting™* parts of the state space, we can
gresatly increasethe speed of learning.

5.1.1 Build-inBias

Becauseit isvery difficult to solve arbitrary problemsin the general case, we must
use generalizationand begin to incorporate bias that will leverage on the learning
process. One problem that prevents learners from learning anything is that they
have a hard time even finding the interesting parts of the space. As aresult, they
wander around a random never even getting near the goa. Millan [85-87] explores
the use of reflexes to make robot learning safer and more efficient. The reflexes
correspond to domain knowledge about the task and alow the incorporation of
bias into the system. Bias suggests actions for situationsthat otherwise would be
time consuming to learn. These biases can eventualy be overridden by more
detailed and accurate learned knowledge. There are two waysin which the learner
can efficiently learn from bias.
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o Saferlearning
Bias makesthe learner operational form the very beginning and increments
the safety of the learning process. The design problem initially isto provide
the learner with basic behavior, which ensure its immediate safety. Once
these basic ams have been achieved, more sophisticated skills can be
added.

e Guessing whereto search
Bias accelerates the learning process since it focusesthe search processon
promising parts of the action space immediately. The bias initializes the
system in such away that greedy policiesareimmediately operational even
if far from optimal. The learner need only explore actions around the best
ones currently known.

5.1.2 Initial Knowledgefrom Fuzzy Rules

Fuzzy rules provide a naturalframework of incorporating the bias componentsfor

RL [39]. On one hand, fuzzy systems are multi-input-sngle-output mappings from
a redl-valued vector to a real-valued scalar and precise mathematical formulas of

these mappings can be obtained. On the other hand, fuzzy systems are knowledge-

based systems constructed from human knowledge in the form of fuzzy IF-THEN

rules. An important contribution of fuzzy systems theory is that it provides a
systematic procedure for transforming from a knowledge base to some nonlinear
mapping. We use knowledge-based linguistic information to construct an initial

fuzzy system, and then adjust the parameters of the initial fuzzy logic system based
on numerical information.
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The if-then fuzzy rules corresponding to the domain knowledge pertaining to the
tasks can be incorporated into the DFQL design. The premise of rules can be used
to generate EBF units over the fuzzy input space and the consequentsof rules can
be used to generate the initia Q-values, which are cdled bias. Bias suggests
actions for situationsthatotherwisewould be time consuming to learn. Thus, bias
accelerates the learning processsinceit focuses on the search processon promising
parts of the action space immediately. The parameter vector of arule, q associated
with discreteactionsis initialized so that a greedy policy would select the action a
suggested by this rule. Similar to [87], the main idea of the method employed in
this chapter is that the Q-vaue of the selected discrete action a isinitialized to a

fixed vaue k,, while al other values are given random vaues according to a

uniformdistributionin [0, k,/ 2].

The DFQL is an automatic method capable of sdf-tuning FIS, i.e, generating

fuzzy rules according to system performance. The generated basic rulesinitialized
from prior knowledge keep the learner safe and direct it in the right direction

during the early stages of learning. The basic fuzzy rules, deduced froma human

driver's intuitive experience, can yield an action that is feasible but far from
optimal. It is amost impossible or difficult to find optimal fuzzy rules through a
trid-and-error approach where a great number of variables are involved in the
control task. In view of this, RL is added to tune the fuzzy rules online, which are
eventually overwritten and improved by more accurate learned actions. Because
the basic fuzzy rules are used as starting points, it is possibleto determine optimal

parameters without too many iterations and the robot can be operated safely even
during learning.
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5.2 Experiments

5.2.1 Wall Following Task for Khepera Robot

In this section, the DFQL approach has been applied to the Khepera robot for the
wall following task. The am of the experiment is to design a ssmple controller for
wall following. In order to simplifythe problem, we only consider robots moving
in clockwise direction a a constant speed. Thus, we only need to deal with four
input variables, which are the values of sensor S; (i =0....,3). All these sensor

values can be normalized within the interval [0,1]. The output of the controller is
the steeringangle of the robot. In order for the robot to follow awall, it must move
in astraight line as much as possible while staying between a maximum distance,

d., and aminimum distance, d_, fromthat wall. The value of sensor S, d can be

regarded as the distance to the wall being followed. The robot receives a reward
after performing every action U. The reward function depends on this action and
the next Situation:
01, if (d_< d<d,)and (Ue[-8°+8"])
r=4-3.0, if (d<d_)or(d, <d) (5.1
0.0, otherwise
If an action brings the robot outside the range of [d_,d, ], the robot will stop,
move back inside the region, and receive a punishment. In these experiments,
d,=0.85 and d_=0.15.

The training environment with lighted shaped walls used for a red robot and
smulation studies are shown in Figure 51 and Figure 5.2 respectively. The
performance of the different approaches is evauated a every episode of 1000
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control steps according to two criteria, namely failures which correspond to the
tota number of steps the robot has left the "lane€® and reward which is
accumulated. In order to compare the different approaches systematically and find
appropriate parameters, we implement these methods on both smulation and the
real robot. The experimental results described as follows are based on the red
robot.

Figure5.1 Actud environment for wall-followingexperiments

Figure5.2 Simulationenvironment for wall-following experiments
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5.2.2 BasicFuzzy Controller

First, we design the fuzzycontroller based on intuitive experiences. For each input
linguigtic variable, we define two linguistic vaues. Smal and Big, whose
membership functions cover the region of the input space evenly with the value of
& -Completenessset to 0.5. Thismeansthat thereare 16 (2*) fuzzy rules. Through
trial and error, we can obtain the 16 fuzzy rules as a special case of the TSK fuzzy
controller, whose consequents are constant, asfollows:

Table 5.1 Basicfuzzy control rulesfor wall following

Rule So Sy S, S Steeringangle
1 Small Small Small Small 30
2 [ smal Smal Smal Big 30
3 [ Smal Smal Big Smal 30
4 Small Small Big Big 15
5| Smal Big Smal Small 30
6 Small Big Small Big 15
7 Small Big Big Small 15
8 Small Big Big Big 15
5| Big Smal Smal Smal 30
10] Big Small Smal Big 15
11 Big Small Big Small

12 Big Small Big Big

13 Big Big Small Small 30
14 Big Big Small Big -15
15 Big Big Big Small -15
16 Big Big Big Big -15
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If therobot only usesthe basic fuzzy controller, it can actually follow the wall, but
along inefficient trgjectories. When only the basic fuzzy controller is used, the
robot encounters 63 failures, and —130.7 of reward per episode on average.
Certainly, we can provide finer partitioning of the input space, or tune the
parameters of the membership functions and consequents so as to obtain better
performances. However, the number of rules will increase exponentialy with
increase in the number of input variables. Furthermore, tuning consequents of rules
is time consuming because of the risk of creating conflicts among the rules. It is
almost impossible or impractical to design an optimal fuzzy controller by hand due
to a great number of variablesinvolved. Similar to theideaof [87], weincorporate
RL into fuzzy controller design and the basic fuzzy rules designed fromintuitive
experiences are used as a dtarting point for learning. As a consegquence, it
overcomes some limitationsof basic RL where an extremely long learning time is
needed and unaccepted behavior may be generated during learning.

5.2.3 Fuzzy Q-Learning with a Fixed Structure

Next, we consider the FQL approach of [48] that hasafixed structureof fuzzy rule
sets. A tota of 16 fuzzy rules, same as the basic fuzzy controller, are used.
However, the consequents of the rules can be adjusted based on the fuzzy Q-
learning. Here, we ssmply use the undirected exploration method employed in [48]
to select alocal action a from possiblediscreteaction vector A, asfollows:

a, =T, , (q(S,a )= arg 12ax(q(S,a)+ n(S,a)) 5.2)

The term of exploration 1 stems from a vector of random vaues, y (exponentia

distribution) scaled up or down to take into account the range of q values as
follows:
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L if max, (¢(S,a))=min, (¢(S, )
s =18,(max, (¢(S,a)) -min, @(S,a)) (5.3)
maxy)
n=s;y¥

where s, is the noise size, with respect to the range of qualities, and s, is the
corresponding scaling factor. Decreasing the s, factor implies reducing the

exploration. We choose an explorationrate S, of 0.001in the experiments.

The set of discreteactionsis given by A =[-30, -25, -20, -15, -10, -5, 0, 5, 10, 15,
20, 25, 30]. The initid g-vaue, £, =3.0 is chosen according to the method

described in Section 5.1. The other parameters in the learning agorithm are:
Discounted factor, y =0.95 ; Trace-decay factor, A =0.7 ; TD learning rate,

a=0.05. The controller with 81 (3*) fkzy rules whose membership functions
satisfy the 0.5 & -completeness is aso considered. Average performances of the
two controllersduring 40 episodes over 10 runsare shownin Figure 5.3

At the very beginning, performances of the two controllersbased on the FQL are
worse than that of the basic fuzzy controller due to the explorationfeature of RL.
The robot has to explore different actionsin order to ensure that better actionsare
sdected in the future. However, the performance of the robot is improved
gradually and is much better than that of the basic fuzzy controller. To assessthe
effectiveness of finer partitioning of the input space, we compare the performances
of the FQL using 16 rules and 81 rules. The speed of learning 81 rulesis dower
than that of 16 rules because a lot more parameters need to be explored. However,
asymptotic performances of these two methods are amost the same. It is
impractical to partitionthe input spacefurther due to the curse of dimensionality.
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Figure 5.4 Comparison of performances of fuzzy controllersfor (a) 16 fuzzy rules
based on FQL, (b) 81 fuzzy rulesbased on FQL, (C) Basic fuzzy controller
with 16 fuzzy rules, (d) Fuzzy controller based on DFQL



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Embedding Initial Knowledge in DFQL 110

Lk
E 3D T T T T T T T
i=
E 28 B // .
E ,
= :
=
%6} / l
24 ¢ 4 .
2t .
20} 4
18t i
16 1 L] [} 1 i 1 1
0 5 10 15 20 25 30 35 40
Episodes

Figure 5.5 Number of fuzzy rules generated by DFQL during learning

1T 1
T
08 \ \ 0.8
] ™~
06 ‘ 0.6 ~
0.4 \ {1 04
0.2 ] 0.2
D | | l\\\"‘*-—--._,_ .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Membership hnctions of input variable 5, Membership functions of input variable 5,

Figure 5.6 Membership functionsafter learning at one run



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5 Embedding Initial Knowledgein DFQL 111

524 DFQL

Now, we assess the performance of DFQL approach. The parameter values are the
same as those usad in the FQL approach. The other learning parameters for rule
generation are: ¢ -completeness, ¢ =05 ; similarity of membership function,
k,; =0.3; TD error factor, K =50 and TD error criterion, k, =1. These values

give good performances of the algorithms in an initial phase. However, it should
be pointed out that we have not searched the parameter space exhaustively. The
performances of the DFQL approach shown in Figure 5.4 are also the mean values
during 40 episodes over 10 runs. As expected, the DFQL performs better than the
FQL with respect to both failures and reward. In fact, the DFQL outperforms the
FQL during the major portion of episodes and asymptotic performance of DFQL is
about 30% better than that of FQL accordingto the performance of the basic fuzzy
controller. The number of fuzzy rules generated at every episode is shown in

Figure 5.5. The membership functions produced by the DFQL after learning input
variables a one run are shown in Figure 5.6. The number of rulescan be generated
automatically online and does not increase exponentially with increase in the
number of input variables. Thus, a compact and excellent fuzzy controller can be
obtained online. The reason why the DFQL method outperforms the FQL method
is that the DFQL approach is capable of online sdf-organizing learning. Input-
output space partitioning is one of the key issues in fuzzy systems because it
determines the structure of a fuzzy system. The common approach of conventional
input-space partitioning is the so-called grid-type partitioning. The FQL with 16
rules partition the state space coarsaly, on the other hand, the speed of learning 81
rulesis dow because a lot more parameters need to be explored. The proposed
DFQL need not partition the input space a priori and is suitable for RL. It
partitionsthe input space online dynamically according to both the accommodation
boundary and the performance of RL. The compact fuzzy system considers
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sufficient rules in the critical state space which requires high resolution and does
not include the redundant rulesin the unimportant or unvisited state space so that
thelearningisrapid and optimal.

5.2.5 Adaptationin a New Environment

We test the performance of the learned DFQL navigation strategies in an
environment different from that used for training. This new environment issimilar
to the one before, except that it contains some new obstaclesdepicted in Figure5.7

Figure 5.7 Thenew training environment with obstacles

Figure 5.8 compares the performances (mean values over 20 runs) of the
robot during training directly and re-training in the new environment. During

re-training, the robot is first trained in the original simple environment and
then re-trained in the new environment so as to improve the obtained
navigation strategies. In this period, the robot only has a few more fuzzy

rules to deal with in the new regions of sensory space, and is able to adapt its

previous knowledge to the new environment quickly. It should be
highlighted that no more membership functions need to be
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generated. As a result, the learning speed of retraining is faster than that of

training directly in the new environment.
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Figure 5.8 Performance comparison of DFQL with training directly and retraining
inanew environment

5.2.6 Continuous-Action Q-Learning

The agorithm described in this thesis shows some resemblanceswith other related
works. In particular, the Continuous-Action Q-Learning approach, which is the
only approach restricted to the generation of continuous actions by means of Q-
learning is proposed in [87]. Bias represents domain knowledge in the form of
built-in reflexes, which make learning process rapid and safe. Our idea of
incorporatingbasic fuzzy rules is adopted from thisidea. However, ow approach
differs fiom it in several aspects. First, fuzzyrules are consdered in the DFQL.
Second, the DFQL develops fuzzy systemswith ellipsoidal regions of rulesinstead
of radia regions. Third, the criteriafor rule generation are different. Ow criteria
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are not only based on the accommodation boundary but aso the system
performance based on TD errors. On top of this, the most important differenceis
the updating agorithm of Q-vaues. In Continuous-Action Q-Learning, only the
nearest unit is used to select the action. The resulting continuous action is an
average of the discrete actions of the nearest units weighted by their Q-values. On
the other hand, in our approach, one discrete action is selected fromevery fuzzy
rule. The resulting continuous action is an average of the actionsweighted by the
firing strengths of fuzzy rules. Both methods update the Q-vaues of the actions
according to their contributions. For Continuous-Action Q-Learning, if the number
of discrete actions is large, more neighboring discrete actions need to be
considered. Otherwise, the continuous action is not explored sufficiently. The
discrete actions whose Q-values are not good will degrade the continuous action.
In our approach, one discrete action is selected according to the exploration-
exploitation strategy for every fuzzy rule. It is more efficient to use the firing
strengths of fuzzy rules as weights. In order to compare these two algorithms, we
only consider the difference of updating Q-values and assume that the others are

the same. For Continuous-Action Q-Learning, the exploration rateis §, =0, and

we consder one action to each side of the optima action, a, according to the

following rules:

(5.4)
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For the DFQL, the exploration rate, S, is set to 0.001 and the global action and its

Q-vaue are given by Egs. (4.9) and (4.10) respectively. The results (mean values
over 10 runs) are shown in Figure 5.9 At the very beginning, the performance of
Continuous-Action Q-Learning is better than that of DFQL because it dways
explores near optimal initial values. However, the performance is worse than that
of DFQL later since the learner may get trapped to locally optima actions.
Discrete actions whose Q-values are not good will degrade the continuous action.
Of course,we can combine the two methods together. But, it requires more
computational time and the learning results are not better than the DFQL
significantly.
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Chapter 6

General DFQL with Eligibility Traces

In Chapter 4 and 5, we introduce the DFQL agorithm and a method of embedding
initial knowledge in DFQL to speed up learning. In this chapter, we study the
effects that combine DFQL with eligibility traces. We extend the learning
algorithm to the genera version with an digibility mechanism, leading to faster
learning and aleviating the experimentation-sensitive problem. Subsequently,
smulation studies of the genera DFQL on the optimum path experiments
demondtratethe efficiency of the method for learning an appropriate policy.

6.1 General DFQL

6.1.1 Eligibility Traces

Eligibility traces are one of the basic mechanisms of RL. For example, in the
popular TD(4) agorithm, the term A refers to the use of an dligibility trace.
Almost any TD method can be combined with digibility traces to obtain a more
general method that may learn more efficiently. An eligibility traceis atemporary
record of the occurrence of an event, such as visiting a state or taking an action.
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The trace marks the memory parameters associated with the event as eligible for
undergoing learning changes. When a TD error occurs, only the eligible states or
actions are assigned credit or blamed for an error. Thus, digibility traces help
bridge the gap between events and training information. Eligibility traces are a
basic mechanismfor temporal credit assignment.

There are many RL agorithms which employ the digibility trace mechanism.
TD(2) is introduced by Sutton [123], and an aternative version known as a

replacing traceis proposed by Singh and Sutton [117]. The TD algorithm has been
shown to be convergent by severa researchers [32,102,139]. The SARSA
algorithm is due to Rummery [110,127], and can also be formulated with an
dligibility mechanism Sarsa(1). Q-learning and the igibility trace method Q(1)
are proposed by Watkins [145].Peng's Q(4) [103]can be thought of as a hybrid
arrangement of Sarsa(4) and Watkinss Q(1) and it performs significantly better
than Watkinss Q(1) and amost as well as Sarsa(1) dthough it has not been

proven to be convergent in the genera case.

All the algorithms presented so far have all been shown to be effectivein solving a
variety of RL tasks. The 7D(1) and Sarsa(4) agorithms are known as on-policy
algorithms. The value function that they learn is dependent on the policy that is
being followed during learning. Using an on-policy agorithm with an arbitrarily
bad training policy might result in non-optimal policy. Eligibility traces used in
Watkinss Q(1) are set to zero whenever an exploratory action is taken. Thus,
learning may be a little faster than one-step Q-learning in the early stage. On the
other hand, the features of Peng's O(%) make it much more appealing for our
purposes, though it cannot be implemented as ssmply as others.
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The main advantage of Peng's Q(1) over other methods with ligibility traces is
that it is less experimentation-sensitive and it is able to learn without necessarily
following the current policy. This capability makesit much more appealing for the
purpose of efficient implementation of RL in real-timeapplications. We might not
know a good policy for the task that we are attempting to learn. Using an
experimentation-sengtive agorithm with an arbitrarily bad training policy might
result in non-optimal policy. Using an experimentation-insengitive algorithm
alows us to alleviate this problem. Another advantage of Peng's Q(1) is that it
performs well empirically. Most studies have shown that it performs significantly
better than Watkinss Q(1) and amost aswell as Sarsa(4).

6.1.2 The General DFQL Learning Algorithm

We extend the DFQL learning agorithm to the genera version with an digibility
mechanism based on Peng's Q(1). Under the same assumptions stated in Chapter
4, the one-time-step global working procedure of genera learning algorithm is
proposed as follows: Let t+1 be the current time step and assume that the learner

has performed the action U, and hasreceived areinforcement signal 7, , .

a Check the fuzzy rule generation criteriaaccording to the current state x

1"

If anew fuzzy rule needsto be generated, tune the structure of the FIS and
initializethe parameter vector g of the new rule based on prior knowledge.
The initial values of digibility traces of fuzzy state action pairs are set to
zexo;

b. Approximate the optima evauation function corresponding to the current
state and FIS by using the optimal local action qudityi.e. 7,(X,,,);
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C. CompUte Et+1 I:rm-l +7Vt(Xt+1)— Qt(Xt’Ut) ;
d. Compute &, =7,, +7/Vt(Xt+1)_Vt(Xt);

e. For al fuzzy date action pairs, update the dligibility traces
Tr(S,a)=yATr(S,a), where the digibility rate A is used to weight time
stepsand y isthe discount factor for rewards. Next, update all the q values
Qo (Sa): q, (Sa)+ oz, Tr(S,a) ,where a isthelearning rate;

f. Update the q vaues of "active” fuzzy state action pairs a time step t
according to qm(S,.,af):qt+l(Si,af)+a('§t+1'¢f , Where a} is the sdlected
local action of rule R, a time step t and ¢; is the normalized firing
strength of rule R, at time step t, Next, update the ligibility trace of
"ative' fuzzydate action pairs a time step t according to
Tr(S,.,af): Tr(S,.,a,")+ ¢} . Note that dligibility trace values need to be reset
to zerosat the end of each episode;

g. Elect locd actions based on the new vector ¢,,, and compute the global
action U, (X,.,) ;

h. Esimate the new evauation function Q,,,(X,,,,U,,;) for the current state
and the actions effectively dected and 7,,,(X,,,) for the current state and
the optimal action. Note that Q,,,(X,,,,U,.;) and ¥,,,(X,,,) will be used

for error computation at the next time step.
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NOTE: In the basic DFQL, the TD error is caculated based on the action taken on
the step. The traces and g values are al updated corresponding to this TD error,
which leads to learning necessarily following the current action. An arbitrarily bad
policy might not be exploited for the learning progress.

The main improvement of the genera DFQL is that the mixture of updating
mechanism is used, which is derived fromthe unique feature of Peng's Q(4).
Unlike the basic DFQL, two TD erors are consdered in the genera DFQL,
respectively

whchis based on the Q-valueof the actua action on the step and

which is based on the Q-value of the optimal action on the step. All q vaues
associated with all the fuzzy state-action pairs are updated according to the

eligibility tracesfromthe TD error €,,,, i.€.

Next, the q values of "active’" fuzzy state-action pairs on the current step are
updated fromthe TD error &, ', i.€.

t+1 7

The advantage of considering digibility traces for al state-action pairs leads to
faster learning without necessarily following the current action because not only
the q values corresponding to the current state-action pair but aso the q values
associated with all the fuzzy state-action pairs are updated according to the
respective TD errors. Any action can be carried out a any time and knowledgeis
gained from this experience. On the other hand, the genera DFQL cannot be
implemented as ssimply as the basic DFQL.
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6.2 Experiments

6.2.1 Optimum-Path Task

In this section, we describe the optimum-path experiment performed on the
Kheperamobile robot. The task is to take the robot from a starting location to the
goa location and attempt to optimize the path. We assume that the goa locationis
specified in relative Cartesian coordinateswith respect to the starting location. The
task faced by the robot is to build a salf-adaptive controller that is capable of
searching an optimal trgectory, which would lead to a minimum cost. We carry
out the experiment in simulation environments which can provide the position
information of the robot with respect to the starting location. We are not able to
implement it in the real robot because the position information cannot be detected
due to the hardware limitation. However, positions and orientationsof areal robot
can be detected in redl timeif additiona devices are equipped, e.g. the laser device
on the top and the additiona turret of the robot used in[33] or gridslines on the
floor and the additional detector of therobot used in [77].

The learning environment consists of an indoor space and a corridor. Thetask isto
generate the shortest possible but safe trajectory from the interior of an officeto a
point a the end of the corridor, smilar to the works of [39,40,86]. It is not easy to
implement this seemingly simple task. Firstly, the task is performed using local
sensory information. The robot has neither a global view of the environment nor a
comprehensiveworld modd. Secondly, the task is a high-dimensional continuous
learning task and successful god reaching requires a non-linear mapping from this
space to the space of continuousreal-valued actions.
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Theinputsto the controller are the normalized relative position and orientation of

the robot fromthe godl, i.e., the robot's current position (x,y) and the heading
angle 6. Furthermore, each signd is represented as a vector of three components
using Millan's codification scheme [86] in order to offer greater robustness and
generalization ability. The schemeinvolvesthreelocalized processing units, whose
activation values depend on how far the normalized input value is from the
respective center positions of the processing units. These units with overlapping
localized receptive fields are evenly distributed over the interval of [0,1], and the
activation level of the unit located in the point p; is

5. ()=l Mo +w)=k] ikl =,y ]

=4 w 6.1)
0 otherwise

where w is the width of the receptive fields and k is the normalized input. The

value of w is 0.45 and the units are located on the points 0.2, 0.5 and 0.8 in the

experiments. As an example, the value of k = 0.4 is coarse coded into the pattern

(0.8025,0.9506,0.2099). Thus, the inputs to the controller consist of a vector of

nine continuousvalue components, al of real numbers which arein theinterval of

[0.1].

The robot's angular rotation, which determinesits next direction, is the only output

of the controller. For every step, the robot first completely rotates based on the
specified angle. After rotation has ceased, it will move to a new location by

trandating forward a fixed distance if the robot does not collide with obstacles.

Whenever the robot detectsa collision, an emergency behavior will stop the robot.

Here, the emergency activation occurs with the reflectancevalue of any IR sensors
greater than 1000.
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The robot receives reinforcement signals when it approaches the goa location and
avoids obstacles. It is important to note that the robot does not seek to optimize
each immediate reinforcement signal, but to optimize the total amount of
reinforcement obtained aong the path to the goal. The reinforcement function is
directly derived fi-om the task definition, which is to reach the goa aong
trgjectories that are sufficiently short and, at the same time, have a wide clearance
to the obstacles. Thus, the reinforcement signa r has two components. The first
component penalizes the robot whenever it collideswith or approaches an obstacle.
If the robot collides, it is pendlized by a fixed value; otherwise, if the distance
between the robot and obstacles is less than a certain threshold, 4, =300, the
generated penalty increases as the distance between the robot and the obstacle

decreases. The component of the reinforcement that teaches the robot to keep away
fromobstaclesis:

-3 if collison
r,=9-1+(1023-4d,)/1023 ifd, >d, (6.2)
0 otherwise

where d, isthe shortest distance, i.e. the maximum reading value, provided by any

IR sensors while performing the action. It should be pointed out that only virtua
collison occurs, which makes the learning process safe. The other component
teaches the robot how to approach the goa. The second component of the
reinforcement function is proportiona to the angle between the robot heading 6,

and the line connecting the goal and the robot location @, , which is given by

- abs(@h -0, )
7, = ——== 6.3
’ 180 (©3)
The total immediate reinforcement r is the sum of the two components, r =r, tr,.
This reinforcement function does not teach the robot directly how to reach the

god; it only trainsthe robot how to approach the goal without collisions.
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6.2.2 LearningDetails

The learner's am is to learn to perform those actions that optimize the total
reinforcement in the long term. That is, the learner has to learn a policy that
maximizes the total reinforcement which is the sum of immediate reinforcements
the learner receivestill the robot reachesthe god, i.e.

=3 ) (6.4)
where T isthe total number of moves required to reach the god. Here, the discount
factorisy =1.

We seek to make RL effectivefor real robots and requirethat learning takes place
online from a relative small amount of experiences. As we consider sophisticated
tasks, it will be amost certain that the learner will not be effectivein a reasonable
amount of time. It either collideswith obstacles that terminatethe learning process
or explores aimlessly without ever reaching the god that can take unacceptable
long time to discover interesting parts of the space. As mentioned in Chapter 5, a
way of alleviatingthe problem of dow convergenceof RL isto use biasfrom prior
knowledge to figure out which part of the action space deserves attention in each
dtuation. The architecture of the bias component is similar to [39] and shown in
Figure6.1. It consists of two fuzzy behavior, namely obstacle avoidance and goa
following. The output of the total behavior is obtained by combining
corresponding priority functions for each behavior. Since the bias is used to
provide only an initia value, it sufficesto consider a fixed blending scheme with

constant desirability parameters p, =09 and p, =0.1, one for each behavior.
The blender fuses the outputs of each behavior accordingto

u :paua +pgug (65)
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where u, and u, are the outputs of obstacle avoidance and god following

respectively.

Figure6.1 Architectureof bias component

Here we use the simple basic fuzzy controller for this specific task because it is
sufficient to provide the starting points for learning. As we consider sophisticated
environments, any efficient navigation strategy, eg. those of [25,76], can be
regarded as the basic fuzzy controller, aslong as it provides a least one freeway
or path through which the robot can reach the goa without collisions. The basic
fuzzy controller, though eventually overwritten and improved by more accurate
learned actions through exploration, keep the robot safe and direct it in the right
directionwhileitistrying tolearn.

This control task takes place in multi-dimensional continuous state space and
prefers continue actions. Millan's method [86] uses the unique feature of the
Nodmad 200 robot: the turret motor. Since the turret motor orients the sensors
independent of the robot heading, the robot can take similar actions for similar
situations independently of its current direction of travel. However, for most
robots, the state-space data generated would be different every time arobot visits
the same location a different heading angles. Therefore, the entire state space is
extremely huge but many states will never be visited. It is necessary to choose the
way of using an online adaptive state constructionalgorithm instead of partitioning
the state space evenly prior to learning. Hence, the fuzzy control rules are not
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predefined, but are created dynamically when the robot exploresits environment.

Asforeshadowed, afuzzy ruleis alocal representationover aregion defined in the
input space. When a new fuzzy rule is generated, membership functions of the

input variables are chosen in the form of Gaussian functions and the receptive
fields of this mode in the input space can be regarded as radia basis function

(RBF)units. The strength of the activation value of the RBF basis function, i.e,
the overal truth value of the premiseof fuzzy rulesis given by

fi(Xkexp(lr el /o?) (656)

where ¢; is the center vector of the ith RBF unit and a is the receptive width of

the unit. In order to avoid complex computation, the receptive widths are kept
fixed to a=0.3 in this case. When a new input situation arrives, check the two
criteriaof rule generation. If the highest firing strength value of fuzzy rulesisless
than 0.5 or collisions are detected based on the reinforcement signal received, a
new fuzzy rule, i.e., anew RBF unit is generated.

The locad action space for every rule is a set of rotation
anglesA= [— 20,-10,0,10,20]. The selected local action of every rule cooperatesto
produce the continuous globa action based on the rules normaized firing
strengths. The local actions are selected using an exploration-exploitationstrategy
basaed on the state-action quality, i.e., q vaues. Here, the simple ¢ -greedy method
Is used for action selection: agreedy actionis chosen with the probability of 1- ¢,
and arandom action is used with the probability of &. The exploration probability

issetby ¢ = TO_2+TF , where Tis the number of trials. The exploration probabilityis

intended to control the necessary trade-off between exploration and control, which
isgradually eiminated after eachtrial.
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The q values of the fuzzy state-action pairs can be set to optimisticinitial values
when the fuzzy state-actions are visited at first in order to acceleratethe learning
speed. When a new fuzzy rule is generated, the action selected based on the basic
fuzzy controller fromprior knowledge and the g valueis estimated on the basis of
the distancefi-om the location to the goal. This enablesthe basic fuzzy controller to
control the robot when new an input state i s encountered. When the fuzzy state has
been visited before but the local actionis selected at first, the q valueisinitialized
to the minimum value of g valuesin this state. After initiaization, al g values of
the fuzzy state-action pairs are updated according to the algorithm described in
Section 6.1.2 and thelearningstep sizeis set to a= 0.3 inthistask.

In the works of [39,86], the smplest TD method, i.e. TD(0)is used. In order to
speed up learning, whenever the god is reached, the learning algorithm updatesthe
utility values of all RBF units that are dong the path to the goa in reverse
chronologica order. Towards this objective, the robot has to store all information
along the current path. Here, however, the digibility trace method is incorporated
into our agorithm and it is not necessary to store data of the current path and
update values after reaching the goa. Methods using eligibility traces offer
significantly faster learning, particularly when rewards are delayed by many steps
and they are suitable for online applications. Furthermore, they should perform

better in non-Markovian environments than the TD (0) method. The termA  refers

totheuse of an digibility trace and we choose 4 = 0.9 first.
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6.2.3 Learning Results

Figure 6.2 Sampling trajectory generated during first and final episodes

Figure 6.3 Number of steps taken in each episode when 4 = 0.9 (a) typical single
run, (b) averageof 10 runs
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Figure 6.4 The tota reinforcement received in each episode when 4 =0.9 (a)
typica singlerun, (b) average of 10 runs
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Figure 6.5 Number of fuzzy rules generated at the end of each episodes 4 =0.9(a)
typical single run, (b) average of 10 runs
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Figure 6.2 shows samplerobot trajectoriesduring first and final episodes. The first
time the robot tries to reach the god, it depends amost all the time on the basic
fuzzy controller, which forces it to go into the concave region since the
information of the environment is unknown. In the final robot trgjectory, the robot
has learned to smooth out the trgjectory by circumventingthe concave region and
to avoid colliding with the door edges by passing through the middie of the door.
The learning curves which correspond to the mean values during 30 episodes over
10 runs and one typica singlerun are shown in Figure 6.3-6.5. Duringthefirst few
episodes, the total reinforcement obtained is worse and more steps are taken along
each trgjectory. When the episodes proceeded, the performance of the robot is
gradualy improved. The number of fuzzy rules growswhen the robot is exploring
the environment. The average performance after 30 learning episodes is much
better than that in the initial phase. Note fromthe single run curvethat the system
performances on single episodes are sometimes extremely bad. On these episodes,
the robot practically takes a different action and departs from the already learned
path. In the following episodes, however, it returnsto its previous performance and
followsthelearned path.

In order to examine the effects of A values on the learning speed and quality,
variousvauesof A are used while the other parameters are left the same. Smaller
learning step size, « might be used for bigger valuesof 1, but it is kept constant
for consistency. The learning curves that correspond to the mean values during 30
episodes over 10 runs are shown in Figures 6.6-6.7. The value of A =0 givesthe
worst performance. Increasing A improves the leaning speed. The values of 4
equal to 0.9 or equa to 1.0 are smilarly effective, greatly outperforming the
performance for A =0 and better than that for A =0.5. The main result is that
using large A aways sgnificantly improves the performance because the
parameter A isused to distributecredit throughout the sequence of actions, leading
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to faster learning and aso help to aleviate the non-Markovian effect [103]. But, it
Is not quite consistent with the empirical resultsof [128], in which the performance
is best for intermediate A near 1 but theworst for A =1. It seemsmore likely that
the optimal value of A smply depends strongly on the particular problem.
Another point is that bias values are used and this task actualy is in non-
Markovian environments.
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Figure 6.6 Comparison of number of stepstaken during learning when different A
areused (@) A =00 (b)A=05(c)1=0.9 (d)A1=10
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Figure 6.7 Comparison of the total reinforcement received during learning when
different A areused (a)A =0.0 (b)A=05(c)A =09 (d)A=10

6.3 Discussions

As mentioned in Section 3.1.3, there are mainly two prevalent approaches to RL,
namely Q-learning and actor-critic learning. The advantage of DFQL is the
generation of continuous actions by means of Q-learning. There are other RL
algorithms for handing continuous space and action spaces, but amost all of them
are based on actor-critic architecture, e.g. the two representative fuzzy RL
algorithms [10,68] discussed in Section 2.2.2. These works are based on
Williamss REINFORCE agorithms [148]. Actions are generated with a normal
distribution whose mean and variance vary according to the success or failure of
actions. The drawback of these actor-critic architecturesis that they usually suffer
from local minimaproblemsin network |earning due to the use of gradient descent
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learning method. Actor-critic architecturesseem to be more difficult to work with
than Q-learningin practice. It can be very difficult to get the relative learning rates
right in actor-criticarchitecturesso that the two components converge together.

Q-learning learns the values of al actions, rather than just finding the optimal
policy. The main advantage of Q-learning over actor-critic learning is exploration
insengtivity, i.e. any action can be carried out a any time and knowledgeis gained
from this experience. For these reasons, Q-learning is the most popular and seems
to be the most effective mode-free agorithm for learning from delayed
reinforcement. On the other hand, because actor-critic learning updates the state
value & any state based on the actua action selected, it is exploration-sensitive.

Aswe noted in the previoussections, we might not know agood policy for the task
that we are attempting to learn. Using experimentation-sensitive algorithm with an
arbitrarily bad training policy might result in anon-optimal policy. However, using
experimentation-insengitive method, freesus from worrying about the quality of
the policy that we adopt during training. In the works of [39,86], the learning
architecture is also an actor-critic system. In order to avoid bad effects of an
exploration policy, only the smplest TD method, i.e, TD(0), is used. In our
algorithm, the general learning algorithm is extended to the version with an
eligibility mechanism based on Peng's O(1). The Q(1) learning agorithm
exhibits beneficia performance characteristics attributable to the use of 7D(1)
returns for 4 >0. At the same time, similar Q-learning, Q(1) learning construct
the function of state-action pairs rather than the state, making it capable of
discriminating between the effects of choosing different actions in each state.
Thus, while Q(1) learning is experimentation-sengtive, unlike Q-learning, it

seems reasonableto expect it to be less so than actor-critic learning [103].
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Conclusionsand FutureWorks

This chapter summarizes the contributionsmade by this thess. We then go on to
discuss severa possiblewaysin which thiswork might be extended in the future.

7.1 Conclusons

In this thesis, a novel algorithm termed Dynamic Fuzzy Q-Learning (DFQL) has
been designed and devel oped.

There are two main research tracks that influence our work. The first is related to
learning paradigms of fuzzy systems. Chapter 2 introduces the basic concept of
FISs and discusses several issues concerning the learning ability of fuzzy systems
based on different families of learning methods characterized by the information
source used for learning. The second track is related to the use of generalization in
reinforcement learning. Chapter 3 presents the basic framework of reinforcement
learning and discusses the problem of generaization in large continuous spaces.
Furthermore, problems in applying reinforcement learning to robotics are
described.
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In Chapter 2, we describe the learning methods of fuzzy systems based on Q-
learning. However, dl the algorithms described only adjust the parameters of fizzy
systems and do not involve structure identification. In Chapter 3, we introduce
algorithmsfor generalization of experiencesin RL. However, most of these works
assume discrete actions. In order to cope with these problems, Chapter 4
introduces the development of the proposed DFQL. Detailed descriptions of the
DFQL architecture, on-line structure and parameter learning algorithm and
modeling method are presented. From the point of view of fuzzy systems, the
DFQL method is a learning method capable of generating and tuning fizzy rules
automatically based on smple reinforcement signals. From the point of view of
machine learning, the DFQL method is a mechanism of introducing generalization
in the state-gpace and generating continuous actions in RL problems. The DFQL
generalizes the continuous input space with fuzzy rules and generates continuous-
valued actions using fuzzy reasoning. Based on the criteriaof ¢ -completeness and
the TD errors, new fuzzy rules can be generated automatically, which alows usto
circumvent the problem of setting up fuzzy rules by hand.

One of the main hurdles to implementing RL systems is overcoming the lack of
initial knowledge. If we know nothing of the task beforehand, it is often difficultto
make any progresswith learning or to keep the robot safe during the early stages of
learning. Chapter 5 describes the natural framework of incorporating the initial
knowledge as bias to the learning system based on fuzzy rules. It focuses on the
search process on promising parts of the action space immediately and reducesthe
training time significantly.

In order to learn more efficiently, especialy from delayed reinforcement signals,
an RL system can be combined with dligibility traces, which are a basic
mechanism for tempora credit assgnment. Chapter 6 extends the DFQL to the
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genera verson with an €eligibility mechanism, leading to faster learning and
alleviating the experimentation-sengitive problem where an arbitrarily bad training
policy might result in anon-optimal policy.

Themain characteristicsof DFQL are summarized asfollows.

e The DFQL is able to condtruct a FIS based on evauative scalar
reinforcement signals.

e New fuzzy rules can be generated based on the distance driven and error
driven criteria so as to adjust the sructure and parameter of FIS
automatically.

¢ Continuous states are handled and continuousactionsare generated through
fuzzy reasoning in the DFQL.

e Theif-then fuzzy rules alow the addition of initial knowledge as biasesto
the DFQL for rapid and safelearning during the early stages of learning.

e The genera method of DFQL with an eligibility mechanism leads to more
efficient learning and the ability to learn without necessarily following the
current policy.

In order to test the performance of DFQL, three typical behaviors of mobilerobots
have been investigated. In Chapter 4, experiments performed on the Kheperarobot
for the obstacle avoidance behavior demonstrate the efficiency of DFQL.
Compared with the random policy, the Q-learning method and the Q-KOHON
method, the DFQL method is superior because of its capability of handling
continuous-valued states and actions. In Chapter 5, the wall-followingbehavior of
the Khepera robot is investigated in experiments. Thanks to the flexibility of
DFQL, experimental results and comparative studies show the superiority of the
proposed DFQL over the conventional Fuzzy Q-Learning in terms of both
asymptotic performance and speed of learning. A comparative study of the
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Continuous-Action Q-Learning and our approach also demonstrates the superiority
of the DFQL method. Furthermore, the adaptive capability of DFQL has been
tested in a new environment. In Chapter 6, smulation studies on optimum path
experiments demonstrate that the robot is able to learn the appropriate navigation
policy with a few trials. We examine the issues of efficient and generd
implementation of the DFQL for different eligibility rates for optimizing the sum
of rewards.

7.2 Recommendationsfor Further Research

There are several promising directions for further work based on the results
presented in this thesis. We look briefly a some of these directions and discuss
their potentia usefulness

7.2.1 The ConvergenceProperty

The DFQL method is a heuristic learning method for real-life applications, where
state spaces and action spaces are continuous, especially for robotics systems.
Experiments have been carried out to demondtrate its usefulness. Although the
DFQL method has been shown to work in anumber of real and smulated domains,
there is no formal guarantee of convergence. As described in Section 3.2, the
analysis of the performance of general function approximation based on nonlinear
architecturein RL is still an open question, although there are a large number of

successful applications in practice. On the other hand, a fuzzy system can be
represented as a linear architecture with fuzzy basis functionsThe DFQL can be
regarded as a useful method for selecting features, i.e. fuzzy basis functionsand
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findinginitial valuesof parameters. By virtue of the valueiteration algorithm with
linear architectures [140], the convergence property can be established.

Tsitsiklis and Roy [140]discuss compact representations which approximate a
value function using a linear combination of features. We consider compact
representationsconsisting of linear combinations of fuzzy basis functions. Let us

view the state space as S={1....,n}. With the fuzzy basis functions architecture
[143], the statel state-action value takes on the following form:

W, f.s

7.00)= S0, 6)= 3, L)

k= ka (S
whereK isthe number of pre-selected fuzzy rules, Wis the parameter vector, f,
is the firing strength of the kth rule. For convenience, we will assume that

f.(s,)=1for ke (1...,K}, wheres,,...,s, are pre-sdected states in S We can

define a fuzzy bass function(/}k(s) as a feature and a feature mapping

®(s)=($1(S).. b (). If with ¥ defined by ¥ = min, ¢k(sk) there exists a

y' e[y,1) such that ¥ 2 05(1+ J the assumption in [140] which restricts the
Y

type of featuresis satisfied. Based on the value iteration algorithm of [140], the
convergence property can be established.

7.2.2 Partialy Observable Environments

In many real-world environments, it will not be possible for the learner to have
perfect and complete perception of the state of the environment. Unfortunately,
complete observability is necessary for learning methods based on MDPs. The
model in which the learner makes observations of the state of environment but
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these observations provide incompleteinformationis called a partially observable
Markov decision process. The way to behave effectively in hidden state tasksis to
use memory of previous actions and observations to disambiguate the current state
[83,122,147]. However, most of these methods are based on discrete states and
actions. It would be aso considered to employ fuzzy logic to deal with continuous
state and action spaces.

7.2.3 Integrating Planning and Learning

As foreshadowed, it is possible for the learner to learn an optimal policy without
knowing the models of environmentsand without learning those models. However,
these methods make inefficient use of the data they gather and therefore often
requirea great deal of experiencesto achieve good performance. The other kind of
learning methods uses experience to learn the model of the environment and
improvethe policy based on RL at the same time [91,124],s0 asto achieve a better
policy with fewer environmental interactions. However, these agorithms rely on
the assumption of discrete states. Additiona research based on our approach may
produce more general results.

7.2.4 Multi-Agent Systems

In the last few years, research on multi-agent systems has become increased
important. Problems are better solved by teamsof agents, such as parking cleaning,
vigilance of large spaces and distributed artificial intelligence. RL agents come
forward as an interesting option, due to their implicit capacity to act in
environments. This capacity is very attractivein multi-agent systems, because the
dynamics of the environment makes the creation of a model extremdly difficult.
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Many researchers have tackled the problem in [1,44,73]. The DFQL learning
algorithm can be furtherdeployed for multi-agent systems.
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