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ABSTRACT 

The bioinformatics research area is now faced with an obstacle of ever-increasing 

biological data to verify their biological discovery.  As data increases, so does the 

workload for managing, processing and analysing this data. Combined with the inherent 

complexity of biological problems, traditional approaches results in long run-time and 

huge memory requirements. The emergence of accelerator technologies such as multi-

core architectures provides the opportunity to achieve significant improvements in 

execution time for many bioinformatics applications, compared to sequential general-

purpose platforms. Using multi-cores to solve large scale bioinformatics applications, 

such as sequence analysis, is therefore a promising and challenging research field, since 

large-scale computational bioinformatics problems can benefit much from this kind of 

processing power.  

In order to implement efficient and scalable code for this type of architecture, a shift of 

paradigm in applications development and novel programming techniques are required. 

In this thesis, we investigate algorithms and techniques on how to efficiently map 

bioinformatics applications onto a heterogeneous multi-core system, the Cell Broadband 

Engine (Cell/BE). In particular, we have focused on the following important and widely 

used applications, i.e. alignment of long DNA sequences, Smith-Waterman algorithm, 

BLASTP algorithm and pairwise distance matrix computations, which is an integral part 

of the multiple sequence alignment algorithms such as ClustalW. 

Aligning long DNA sequences is a common and often repeated task in molecular biology. 

We have developed a novel, efficient and scalable parallel algorithm for very long DNA 

sequence alignment on a heterogeneous multi-core system, the Cell Broadband Engine. 
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Our implementation utilizes two types of parallelization techniques: (i) SIMD 

vectorization within a processor and (ii) wavefront parallelization between processors. 

We have also introduced a partitioning scheme to overcome the local storage limitation 

of the Synergistic Processor Elements (SPEs) as well as a direct SPE to SPE DMA 

transfer communication technique. Performance evaluation shows that our 

implementation achieves almost linear speedup and leads to significant computational 

time savings for large datasets. 

Next, we have demonstrated how the PlayStation® 3, powered by the Cell Broadband 

Engine, can be used as a computational platform to accelerate the Smith-Waterman 

algorithm, a method for optimal pairwise sequence alignment. For large protein datasets, 

our implementation on the PlayStation® 3 provides a significant improvement in running 

time compared to other implementations such as SSEARCH, Striped Smith-Waterman 

and CUDA-SW. 

Furthermore, we have developed a novel implementation to accelerate a heuristic protein 

sequence database scanning algorithm, the BLASTP heuristic, on to a heterogeneous 

multi-core system, the Cell Broadband Engine. To our knowledge, this is the first ever 

reported parallelization of BLASTP on a heterogeneous multi-core system. We have also 

introduced a new parallel communication pattern, in which the Power Processor Element 

(PPE) coordinates the data transfer. Furthermore, we have utilized a data structure similar 

to compressed deterministic finite-state automaton (DFA) to fit the codeword lookup data in 

the SPEs. The BLASTP implementation on a Playstation®3 leads to significant runtime 

savings compared to corresponding sequential implementations. 
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Finally, we have developed an efficient parallel implementation that accelerates the 

distance matrix computation used in multiple sequence alignments on the x86 and Cell 

Broadband Engine architecture, a homogeneous and heterogeneous multi-core system, 

respectively. By taking advantage of multiple processors as well as SIMD vectorization, 

we are able to achieve speedups of two orders of magnitude compared to the publicly 

available implementations utilized in multiple sequence alignment algorithms. We have 

also compared the performance of our implementation on the Playstation®3 with other 

accelerator technologies, i.e. reconfigurable accelerators, such as FPGAs, and GPUs with 

CUDA programming model.  
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1.  INTRODUCTION 

1.1. OVERVIEW 

Due to the rapid progress of genome sequencing projects in the past decade, there has 

been an exponential increase in the amount of available genomic sequence data. The 

three principal comprehensive databases of nucleotide sequences currently are: 

1. GenBank[1] 

GenBank is the National Institute of Health (NIH) genetic sequence database, 

which is composed of an annotated collection of all publicly available DNA 

sequences. It is maintained at the National Center for Biotechnology Information 

(NCBI) in Maryland, USA. 

2. European Molecular Biology Laboratory (EMBL) Nucleotide Sequence 

Database[2] 

The EMBL Nucleotide Sequence Database constitutes Europe's primary 

nucleotide sequence resource. Main sources for DNA and RNA sequences are 

direct submissions from individual researchers, genome sequencing projects and 

patent applications. It is maintained at the European Bioinformatics Institute 

(EBI) in Cambridge, UK. 

3. DNA Data Bank of Japan (DDBJ)[3] 

DDBJ is based in Japan's National Institute of Genetics. DDBJ is the sole DNA 

data bank in Japan, which is officially certified to collect DNA sequences from 

researchers and to issue the internationally recognized accession number to data 

submitters. It is maintained at the National Institute of Genetics in Mishima, 

Japan. 
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These three databases form the International Nucleotide Sequence Database 

Collaboration[4], which has led to many beneficial projects, e.g.  the taxonomy project[5] 

and the feature table[6]. Since all three databases exchange the collected data on a daily 

basis, the three data banks share virtually the same data at any given time. Their objective 

is to ensure that nucleotide sequence information’s are stored publicly and freely, such 

that it is easily accessible for researchers and scientists worldwide. This policy has 

proved to be tremendously successful for the progress of science and has led to an 

enormous increase in size and usage of genome databases. 

 

Figure 1. Growth rate of the GenBank and UniProtKB/TrEMBL databases on a 

semi-log graph 
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Genome and protein databases are growing exponentially and this growth rate will 

continue for a foreseeable future. The GenBank release notes for release 172.0 in June 

2009 state that "from 1982 to the present, the number of bases in GenBank has doubled 

approximately every 18 months." This trend is also reflected in protein databases. The 

UniProtKB/TrEMBL Database[7, 8] release notes for release 40.5 in July 2009 states that 

compared to a previous release 3 months ago, the current dataset” represents an increase 

of 16%”. Figure 1 illustrates the number of base pairs and entries in the GenBank from 

1982 to June 2009 as well as the number of amino acids and entries in the 

UniProtKB/TrEMBL Database from 1996 to July 2009 on a semi-log graph. 

Furthermore, the advent of high-throughput next generation sequencing technologies also 

brought a need for high throughput in bioinformatics. Two new sequencing technologies 

were introduced in 2005, i.e. the 454 system using pyrosequencing technology [9], and 

the Solexa system, which detects fluorescence signals [10]. Both sequencing techologies 

execute millions of sequencing reactions in parallel, producing data at ultrahigh rates 

[11]. These next generation technologies offer drastically faster and cost-effective 

sequence throughput and are vastly superior to shotgun sequencing due to the high 

volume of data and the drastically short time to sequence a whole genome or disease 

genome, although genome assembly is much more computational expansive. Therefore, 

the next generation sequencing technologies will foster enormous potential applications 

of high performance computing techniques in bioinformatics. 

Bioinformatics is a growing research field which involves the use of compute-intensive 

techniques to solve and analyze biological data. Major research efforts in the field such as 

sequence alignment, prediction of gene expression, and protein-protein interactions relies 
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on fast and reliable computational approaches. Furthermore, most bioinformatics 

applications with optimal solutions are often associated with long runtimes and expensive 

resources. These are due to various factors: 

• Biological data are obtained by experiments. Hence, they are prone to errors. The 

need to deal with errors and uncertainties results in high complexity algorithms. 

• Some problems that can be solved using polynomial time algorithms have massive 

computational requirements due to large data sets that have to be analyzed. 

• Many problems are computationally intensive due to their inherent algorithmic 

complexities, e.g. protein folding[12]. Some problems are even NP-hard problems, 

which means an exact solution cannot be solved in polynomial time. 

The work presented in this thesis is mainly concerned with constructing efficient multi-

core algorithms and techniques that address bioinformatics problems, especially in the 

area of sequence alignment.  

 

1.2. MOTIVATION 

In the last few decades, scientists have tried to understand how life evolved by studying 

the flow of genetic information in a cell. DNA (deoxyribonucleic acid) is the genetic 

material, which are read and translated into proteins with specific functions. A common 

theme throughout biological systems at all levels is that structure and function are 

intimately related. Therefore, the first step would be to know and understand the DNA 

and protein structure thoroughly, as well as the organization of the whole molecule as the 

genomes of an organism. Bioinformatics is a field that would provide approaches for 

research on DNA and protein sequences as it relies on extensive computational 
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approaches to decode the information hidden behind billions of nucleotides and amino 

acids, respectively. 

 

 

 

 

 

 

 

Figure 2. DNA structure 

DNA was discovered in 1869. The two strands of a DNA molecule are tied together in a 

helical structure, known as the double helix structure[13]. Four different bases are used to 

form the DNA molecules: adenine, cytosine, guanine, thymine (A, C, G, T). Pairs are 

always formed between the bases A and T, and between G and C. Each base is attached 

to a phosphate group and a deoxyribose sugar to form a nucleotide, as shown in Figure 2. 

DNA contains the genetic instructions used in the development and functioning of all 

known living organisms and some viruses. The main role of DNA molecules is the long-

term storage of information. DNA is often compared to a set of blueprints or a recipe, or 

a code, since it contains the instructions needed to construct other components of cells, 

such as proteins and RNA molecules. The DNA segments that carry this genetic 

information are called genes. Other DNA segments have structural purposes, or are 

involved in regulating the use of this genetic information. 
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Proteins (also known as polypeptides) are organic compounds made of amino acids 

arranged in a linear chain polymer and joined together by peptide bonds between the 

carboxyl and amino groups of adjacent amino acid residues. The sequence of amino acids 

in a protein is defined by the sequence of a gene, which is encoded in the genetic code. In 

general, the genetic code specifies 20 standard amino acids, however in certain organisms 

the genetic code can include selenocysteine and pyrrolysine. Shortly after or even during 

synthesis, the residues in a protein are often chemically modified by post-translational 

modification, which alter the physical and chemical properties, folding, stability, activity, 

and ultimately, the function of the proteins. Proteins can also work together to achieve a 

particular function, and they often associate to form stable complexes. 

Like other biological macromolecules such as polysaccharides and nucleic acids, proteins 

are essential parts of organisms and participate in virtually every process within cells. 

Many proteins are enzymes that catalyze biochemical reactions and are vital to 

metabolism. Proteins also have structural or mechanical functions, such as actin and 

myosin in muscle and the proteins in the cytoskeleton, which form a system of 

scaffolding that maintains cell shape. Other proteins are important in cell signaling, 

immune responses, cell adhesion, and the cell cycle. Proteins are also necessary in 

animals' diets, since animals cannot synthesize all the amino acids they need and must 

obtain essential amino acids from food. Through the process of digestion, animals break 

down ingested protein into free amino acids that are then used in metabolism. 

Any alignment between two or more nucleotide or amino acid sequences represents an 

hypothesis regarding the evolutionary history of these sequences[14]. By aligning 

nucleotide or amino acid sequences, scientists have been able to determine and identify 
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important matched and mismatched regions. Matched regions may turn out to be 

functional homolog pairs, conserved regulatory regions or long repeats. Mismatched 

regions, on the other hand, may either be Single Nucleotide Polymorphisms (SNPs) or 

foreign fragments inserted due to transposition, sequence reversal or lateral transfer from 

another organism. Hence, comparisons of related nucleotide and protein sequences have 

assisted many recent developments in understanding the content, relationship and 

function of genetic sequences. As a direct result, sequence alignment and comparison 

techniques as well as database sequence searching techniques have been the cornerstone 

of bioinformatics.  

Given the continuing improvements in high throughput genomic sequencing and the 

exponential growth in the size of sequence databases, new advances for bioinformatics 

area are needed by the research and scientific community. High Performance Computing 

(HPC) is one of the most popular technique to improve the performance without 

sacrificing the correctness of the solution[15]. The recent emergence of accelerator 

technologies such as FPGAs, GPUs and multi-core processors have made it possible to 

achieve an excellent improvement in execution time for many bioinformatics 

applications, compared to current general-purpose platforms. Examples of bioinformatics 

application that takes advantage of HPC are MPIBlast[16], MPI-HMMER[17], ClustalW-

MPI[18, 19], PAxML[20], Folding@home[21], Phusion[22], GPU-ClustalW[23] and 

ClustalW using FPGA[24].  

Multi-core technology was first discussed in 1989[25]. Conceptually, multi-core 

architecture refers to a single processor package containing two or more processor 

execution cores or computational engines that deliver fully parallel execution of multiple 
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software threads. The operating system treats each of its execution cores as a discrete 

processor, with all associated execution resources.   

One of the ideas behind the movement to multi-core architectures is parallelism. It is one 

of the best ways to address the issue of power while maintaining performance where 

higher data throughput may be achieved with lower voltage and frequency. The result is a 

larger transistor count, but overall lower power dissipation and power density. Instead of 

classifying based upon speed, one could classify products based upon the number of 

working cores or overall data throughput. The integration of multiple cores on a chip also 

allows lower interconnect latency and therefore higher bandwidth between cores than 

their discrete counterparts. Hence, microprocessor designers and manufacturers have 

turned to building chip multi-processors[26-29]. A survey conducted in 2009[30] shows 

that 90% of common computers today uses multi-core processors and this trend is 

expected to continue. Figure 3 illustrates the survey according to [30]. 

 

Figure 3. Number of processor cores in computers according to a recent survey 
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Multi-core architectures may take on a number of forms. One form is the heterogeneous 

multi-core architecture, which can address a variety of applications. Another form is a 

large number of remedial homogeneous cores which divide and conquer computationally 

intensive applications and yet individually address less computationally intensive 

applications. Yet another form consists of a few complex homogeneous cores in which a 

single core could multitask between several remedial applications or individually handle 

computationally intensive applications. For any form of multi-core architecture, the 

application or algorithm development process must be significantly changed in order to 

fully explore the potential of multi-core processors.   

The development of new homogeneous and heterogeneous multi-core architectures 

brings a shift of paradigm in applications development. In order to implement efficient 

and scalable code for this type of architecture, novel programming techniques are 

required. This continues to remain a largely unexplored territory and is the principal 

motivation behind our work.  

 

1.3. OBJECTIVES  

The exponential growth of available biological data has caused bioinformatics to be 

rapidly moving towards a data-intensive, computational science. As a result, the 

computational power needed by bioinformatics applications is growing exponentially as 

well. Traditional approaches to sequence analysis techniques are expensive in terms of 

time and memory. HPC is a widely used method to improve performance. The emergence 

of accelerator technologies such as multi-core architecture has made it possible to achieve 

an excellent improvement in execution time for many bioinformatics applications, 
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compared to current general-purpose platforms. Therefore, using multi-cores to solve 

sequence analysis problems is a promising and challenging research field since large-

scale computational bioinformatics problems can benefit much from this kind of 

processing power. Our objectives are as follows. 

• Various parallel algorithms for solving sequence analysis problems have been 

presented for different parallel architectures, e.g. Field Programmable Gate Array 

(FPGA) and Graphical Processing Unit (GPU). However, multi-cores have their own 

characteristics. Therefore, new sequence analysis algorithms have to be presented in 

order to execute efficiently on multi-core architectures. 

• The development of sequence analysis algorithms for multi-core architecture is made 

challenging by the heterogeneous nature of the resources involved. Therefore, new 

parallel communication patterns and partitioning scheme in parallel models are 

required. 

• The emergence of commonly available accelerator technologies, such as FPGA, 

GPU, and the Cell/BE processor provide an opportunity to achieve orders-of 

magnitude performance. Hence, performance evaluation and comparison between 

these accelerator technologies is required to give a comprehensive understanding of 

the advantages and disadvantages of these accelerators as well as to provide a 

reference for mapping algorithms or applications onto them. 

 

1.4. CONTRIBUTIONS 

The contributions of our work can be briefly summarized as follows. 
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• We have developed a novel, efficient and scalable parallel algorithm for very long 

DNA sequence alignment on a heterogeneous multi-core system, the Cell Broadband 

Engine. Our implementation utilizes two types of parallelization techniques: (i) SIMD 

vectorization within a processor and (ii) wavefront parallelization between 

processors. We also introduced a partitioning scheme to overcome the local storage 

limitation of the Synergistic Processor Elements (SPEs) as well as a direct SPE to 

SPE DMA transfer communication technique. Performance evaluation shows that our 

implementation shows almost linear speedup and leads to significant computational 

time savings. 

• We have demonstrated how the PlayStation® 3, powered by the Cell Broadband 

Engine, can be used as a computational platform to accelerate the Smith-Waterman 

algorithm, an optimal pairwise sequence alignment. For large protein datasets, our 

implementation on the PlayStation® 3 provides a significant improvement in running 

time compared to other implementations such as SSEARCH, Striped Smith-

Waterman and CUDA-SW. 

• We have developed a novel implementation to accelerate a heuristic protein sequence 

database scanning algorithm, the BLASTP heuristic, on to a heterogeneous multi-core 

system, the Cell Broadband Engine. To our knowledge, this is the first ever reported 

parallelization of BLASTP on a heterogeneous multi-core system. We also introduced 

a new parallel communication pattern, in which the Power Processor Element (PPE) 

coordinates the data transfer. Furthermore, we utilized a data structure similar to 

compressed deterministic finite-state automaton (DFA) to fit the codeword lookup data 
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in the SPEs. The BLASTP implementation on a Playstation®3 leads to significant 

runtime savings compared to corresponding sequential implementations. 

• We have developed an efficient parallel implementation that accelerates the distance 

matrix computation used in multiple sequence alignments on the x86 and Cell 

Broadband Engine architecture, a homogeneous and heterogeneous multi-core 

system, respectively. By taking advantage of multiple processors as well as SIMD 

vectorization, we are able to achieve speedups of two orders of magnitude compared 

to the publicly available implementation utilized in multiple sequence alignment 

algorithms. We have also compared the performance of our implementation on the 

Playstation®3 with other accelerator technologies, i.e. FPGA and GPU. 

 

1.5. SYNOPSIS OF THESIS 

The rest of the thesis is structured as follows: 

• Chapter 2 reviews algorithm design techniques for sequence alignment problems as 

well as parallel computation models and parallel architectures. Furthermore, we 

present a general survey of the state-of-the-art accelerator technologies in High 

Performance Computing (HPC). 

• Chapter 3 introduces the Cell Broadband Engine, a recently introduced heterogeneous 

multi-core architecture system. Moreover, we discuss its characteristics, how it 

overcomes the three wall limitations as well as strategies and techniques on how to 

map applications onto such architecture in order to gain good performance. 

• Chapter 4 elaborates our parallel algorithm to align very long DNA sequences as well 

as the implementation and performance evaluation on the Cell Broadband Engine.  
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• Chapter 5 demonstrates how the PlayStation® 3, powered by the Cell Broadband 

Engine, can be used as a computational platform to accelerate the Smith-Waterman 

algorithm for large protein datasets.  

• Chapter 6 discusses our mapping of the popular heuristic protein sequence database 

scanning algorithm, the BLASTP on a heterogeneous multi-core system. The 

Playstation®3 implementation and performance evaluation are presented at the end of 

the chapter.  

• Chapter 7 elaborates our efficient parallel implementation that accelerates the 

distance matrix computation used in multiple sequence alignments on a homogeneous 

and heterogeneous multi-core system. We also present a performance evaluation of 

our implementation on the Playstation®3 with other accelerator technologies. 

• Chapter 8 concludes the achievement of our research work and suggests possible area 

of future work.  
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2.  STATE OF THE ART 

This chapter reviews algorithm design techniques, sequence alignment as a popular and 

important genome analysis task as well as parallel computation and parallel architectures. 

Furthermore, we present a general survey of the state-of-the-art accelerator technologies 

in High Performance Computing (HPC).  

 

2.1. ALGORITHM IMPLEMENTATION TECHNIQUES 

This section provides an overview of common algorithm design techniques used for 

sequence analysis. 

 

2.1.1. EXHAUSTIVE SEARCH ALGORITHMS 

Exhaustive search, or brute-force search, is a trivial but very general problem-solving 

technique that consists of systematically enumerating all possible candidates for the 

solution and checking whether each candidate satisfies the problem's statement. 

Exhaustive search algorithms are simple to implement, and guaranteed to find an optimal 

solution if it exists. However, their costs are proportional to the number of candidate 

solutions, which, in many practical problems, tend to grow exponentially as the size of 

the problem increases. Therefore, exhaustive search algorithm is typically only used for 

very small problem sizes or when the simplicity of implementation is more important 

than speed. 

 

2.1.2. BRANCH-AND-BOUND ALGORITHMS 

Branch-and-Bound is a general design technique to find optimal solutions of optimization 

problems, especially in discrete and combinatorial optimization. It consists of a 
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systematic enumeration of all candidate solutions, where large subsets of fruitless 

candidates can be discarded, by using upper and lower estimated bounds of the quantity 

being optimized.  

A branch-and-bound algorithm starts by considering the root problem (or the original 

problem with the complete feasible region) and applying the lower and upper bounding 

procedures. If the bounds match, then an optimal solution has been found and the 

procedure terminates. Otherwise, the feasible region is divided into two or more sub-

problem partitions. The algorithm is applied recursively to the sub-problems. If an 

optimal solution is found to a subproblem, it is a feasible solution to the full problem, but 

not necessarily be a global optimal solution. If the lower bound for a node exceeds the 

best known feasible solution, no globally optimal solution can exist in the sub-space of 

the feasible region represented by that particular node. Therefore, the node can pruned 

(removed from consideration). The search proceeds until all nodes have been solved or 

pruned, or until some specific threshold is met. 

Examples of branch-and-bound algorithms used in bioinformatics include computational 

assignment of protein backbone NMR peaks[31] and matching protein structures[32]. 

 

2.1.3. DYNAMIC PROGRAMMING ALGORITHMS 

Dynamic programming algorithms solve complex problems by breaking them down into 

simpler steps. It is suitable to solve problems that exhibit the properties of overlapping 

subproblems and optimal substructure. A problem that can be broken down into 

subproblems, which are reused repeatedly, indicates that the problem has overlapping 

subproblems. Whereas, a problem with optimal substructure mean that an optimal 

solution can be constructed efficiently from optimal solutions to its subproblem. 
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Examples of dynamic programming algorithms used in bioinformatics include Smith-

Waterman[33] and Needleman-Wunsch[34] for sequence alignment and Nussinov[35] 

and Zuker-Stiegler[36] for RNA folding. 

 

2.1.4. GREEDY ALGORITHMS 

Greedy algorithms make the locally optimal choice at each iteration with the hope of 

finding the global optimum. They make whatever choice seems best at the moment, 

without regard for future consequences. It iteratively makes one greedy choice after 

another, reducing each given problem into a smaller one. When the algorithm terminates, 

the local optimum is hopefully equal to the global minimum. If this is the case, then the 

algorithm is correct. Otherwise, the algorithm has produced a sub-optimal solution. 

Examples of greedy algorithms used in bioinformatics include G-PRIMER[37] and 

GreedyEM[38]. 

 

2.1.5. DIVIDE AND CONQUER ALGORITHMS 

As the name implies, a divide and conquer algorithm has two distinct phases, i.e. a divide 

phase and a conquer phase. In the divide phase, the algorithm splits the problem into 

smaller problem instances and solves them independently. The solutions of these smaller 

problems instances are combined into a solution of the original problem in the conquer 

phase.  

The divide and conquer approach is similar to dynamic programming in that the solution 

of a large problem depends on a previously obtained solutions of sub-problems. The 

significant difference, however, is that sub-problems of the divide and conquer approach 

must be completely separate and can be solved independently.  
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Example of divide and conquer algorithms used in bioinformatics include a multiple 

alignment algorithm in [39] and [40]. 

 

2.1.6. MACHINE LEARNING ALGORITHMS 

Machine learning approaches are best suited for areas where there is a large amount of 

data but little theory[41]. Machine learning algorithms try to build a model from training 

data by deriving important insights about the parameter, which is often hidden. As the 

amount of training data increases, the accuracy of the machine learning algorithm 

typically increases as well. The parameters learned during training represents knowledge, 

while application of the algorithm to new data represents the algorithm’s use of that 

knowledge. 

Examples of machine learning algorithms used in bioinformatics include identification of 

structurally conserved residues[42], Support Vector Machine (SVM)-based MiRTif[43] 

and GIST[44]. 

 

2.1.7. HEURISTIC ALGORITHMS 

Heuristic algorithms do not guarantee that the optimal best solution will be found. 

Heuristic algorithms are typically used to solve problems with the following properties: 

• Problems with large search spaces such that they cannot realistically be enumerated 

or searched exhaustively. 

• There are no known methods for finding the best solution to the problems that do not 

employ a strategy that is fundamentally similar to exhaustive search. 

Examples of heuristic algorithms used in bioinformatics include BLAST[45], 

FASTA[46], T-Coffee[47] and M-Coffee[48]. 
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2.2. SEQUENCE ALIGNMENT 

Sequence alignment is one of the most popular sequence analysis tasks, in which two or 

more sequences are compared by searching for a series of substrings that are in the same 

order in the sequences. It is utilized to infer a relationship between the sequences and also 

gives an impression on how close they are in terms of sequence similarity. Hence, it is 

essential for discovering functional, structural and evolutionary information in biological 

sequences. 

A list of key issues that are related to sequence alignment are identified in [49]. These 

key issues are summarized as follows: 

• What type of alignment should be considered? 

• What scoring system is used?  

• What algorithm is used to obtain the optimal (or good) scoring alignments? 

• What statistical methods used to evaluate the significance of an alignment score? 

 

2.2.1. TYPES OF ALIGNMENT 

In general, sequence alignment can be categorized into two groups, i.e. pairwise sequence 

alignment and multiple sequence alignment. 

 

2.2.1.1. Pairwise sequence alignment 

Consider the following pair of DNA sequences: ATAGAC and ATTAGGC. At a glance 

they look very much alike and this becomes more obvious when they are aligned 

together, as shown below. 

A−TAGAC 

ATTAGGC 
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The differences lie in the extra T in the second sequence and a change from A to G in the 

second to last position. Note that a gap, marked with a “−“ sign, is introduced in the first 

sequence in order to allow the bases before and after the gap to align perfectly. This is an 

example of a pairwise sequence alignment.  

A pairwise sequence alignment is defined as an alignment of two sequences to determine 

how similar they are. In most sequence similarity calculations, a similarity score is 

inferred from the alignment. Gap insertions are allowed until the resulting sequences are 

of the same size and the alignment must obey the restriction that gaps cannot appear in 

the same position in both sequences. The example above satisfies the definition of an 

alignment. 

Ideally, the alignment of two sequences should be in agreement with their evolution, i.e. 

the patterns of descent as well as molecular structural and functional evolution[50]. 

Unfortunately, the evolutionary traces are often very difficult to detect, e.g. amino acid 

mutations, insertions and deletions of residues, transposed gene segments and the like can 

blur the ancestral relationship beyond recognition. In the absence of observed 

evolutionary traces, pairwise sequence alignment is regarded as mimicking evolution best 

when the minimum number of mutations is used to arrive at one sequence to the other. 

An approximation of this is to find the highest similarity value determined from summing 

substitution scores along matched residue pairs minus any insertion/deletion penalties. 

Such alignment is generally called the optimal alignment. 

Unfortunately, testing all possible alignments, including the insertion of a gap at each 

position of each sequence is unfeasible. For example, 1088 possible alignments exists of a 

pairwise sequence alignment of 300 amino acid[33]. The number of calculations 
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managed to be reduced greatly by introducing gaps as assigned scoring values such that 

they can be treated in the same manner as the mutation of one residue to another. The 

technique to calculate the highest scoring or optimal alignment, generally known as the 

dynamic programming (DP) technique, has been introduced by Needleman and 

Wunsch[34] in 1970. 

There are two basic types of sequence alignment: global alignment and local alignment. 

Global alignment implies the matching of sequences over their complete lengths, whereas 

with local alignment the sequences are aligned only over the most similar parts of the 

sequences, carrying the clearest trace of evolutionary relationship. It is no always clear 

which of the two alignments (global or local) is biologically the most meaningful. In 

general, where there is a large difference in the lengths of two sequences to be compared, 

local alignment should be included in the analysis. 

The first pairwise algorithm for local alignment was developed by Smith and 

Waterman[33] in 1981 as an adaptation of the algorithm of Needleman and Wunsch. The 

Smith-Waterman technique selects the most similar region in each of the two sequences, 

which are then aligned. In 1987, Waterman and Eggert[51] generalized the local 

alignment routine by devising an algorithm that allows the calculation of user-defined 

number of top-scoring local alignments instead of only the optimal local alignment. 

 

2.2.1.2. Multiple sequence alignment 

Multiple sequence alignment is an extension of pairwise alignment to incorporate more 

than two sequences at a time. Multiple alignment methods try to align all of the 

sequences in a given query set. Multiple alignments are often used in identifying 

conserved sequence regions across a group of sequences hypothesized to be 
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evolutionarily related. Ideally, in order to generate an accurate multiple alignments, in-

depth knowledge of the evolutionary and structural relationships within the family would 

have to be utilized. However, these information are often lacking or difficult to use. 

General empirical models of protein evolution[52] are widely used instead, but these can 

be difficult to use when sequences are less than 30% identical[53]. Furthermore, 

mathematically sound methods for carrying out alignments using the models can be 

extremely demanding in computer resources for more than a handful sequences[54]. 

Therefore, heuristic methods have been developed to be able to cope with practical 

datasets. 

Progressive alignment method[55, 56] is the most commonly used heuristic method. It 

adds sequences one by one to the existing alignment to build a new alignment. Many 

implementations determine the order of the sequences to be added to the new alignment 

by using an approximation of a phylogenetic tree, which is often called a guide tree. The 

guide tree is constructed using the similarity of all possible pairs of sequences stored in 

the distance matrix. The disadvantage of the progressive alignment method is that it 

suffers from greediness. Errors made in the first alignments during the progressive 

procedure cannot be corrected later. Global sequence weighting schemes[57, 58] are 

introduced  to minimize such alignment errors . However, such schemes carry the risk of 

propagating rather than reducing error when used in progressive multiple alignment 

strategies[59]. ClustalW[58, 60] is the most widely used progressive alignment 

implementation. Up to 2009, ClustalW has over 26,000 citations in the ISI Web of 

Science. ClustalX[61] is the graphical version of ClustalW. Other multiple sequence 

alignment methods include MUSCLE[62], T-Coffee[47], and PRALINE[63]. 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



  State of the Art 
 

 
School of Computer Engineering (SCE)  22 

2.2.2. SCORING SCHEME 

Aligning two or more sequences can produce multiple possible results. In order to 

determine which of those possible alignments are optimal alignments, a scoring scheme 

is required. In general, scoring schemes used in sequence alignment consists of 

substitution matrix and gap penalties. 

 

2.2.2.1. Substitution Matrix 

Substitution matrix consists of substitution score terms for each aligned residue pair. The 

substitution score s(x,y) indicates the scores of aligning residue x with residue y. In the 

case of DNA, x,y ∈ {A, G, C, T} and in the case of proteins, x,y ∈ {A, R, N, D, C, Q, E, 

G, H, I, L, K, M, F, P, S, T, W, Y, V}.  

Various popular substitution matrices utilized in sequence alignments include: 

 

2.2.2.1.1. Unitary Scoring Matrix 

Early sequence alignment programs used unitary scoring matrix. A unitary matrix scores 

all residue matches as well as penalizes all mismatches with the same value, as shown in 

equation 1, where c and d are constants.  





≠
== )(,

)(,),( yxifd
yxifcyxs  

Equation 1. Unitary scoring matrix equation 

 

Although this scoring is sometimes appropriate for DNA and RNA comparisons, for 

protein alignments using a unitary matrix amounts to proclaiming ignorance about 

protein evolution and structure.  
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2.2.2.1.2. Log-odds ratio 

Log-odds ratio substitution matrix consists of individual scores s(x,y) for each aligned 

pair of residues. The value of s(x,y) is defined as the odds ratio between two probabilities 

that describe the probability that some residue x will change to residue y over time, as 

shown in equation 2. 

y

xy

P
M

yxs log),( =  

Equation 2. Log-odds ratio scoring matrix equation 

 

where Mxy is the probability that we expect to observe residues x and y aligned in 

homologous sequence alignments and Py is the probability we expect to observe residue y 

on average in a random sequence.  

 

2.2.2.1.3. Point Accepted Mutation (PAM) 

The PAM[64] matrix was developed by Margaret Dayhoff in the 1978. It is calculated by 

observing the differences in closely related proteins. The PAM1 matrix estimates what 

rate of substitution would be expected if 1% of the amino acids had changed. The PAM1 

matrix is used as the basis for calculating other matrices by assuming that repeated 

mutations would follow the same pattern as those in the PAM1 matrix, and multiple 

substitutions can occur at the same site. Using this logic, Dayhoff derived matrices as 

high as PAM250. Example of the PAM250 matrix is shown in Figure 4. 
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Figure 4. PAM250 matrix 

 

2.2.2.1.4. Block Substitution Matrix (BLOSUM) 

Dayhoff's methodology of comparing closely related species turned out not to work very 

well for aligning evolutionarily divergent sequences. Sequence changes over long 

evolutionary time scales are not well approximated by compounding small changes that 

occur over short time scales. The BLOSUM[52] series of matrices rectifies this problem. 

Henikoff and Henikoff constructed these matrices using multiple alignments of 

evolutionarily divergent proteins. The probabilities used in the matrix calculation are 

computed by looking at "blocks" of conserved sequences found in multiple protein 

alignments. These conserved sequences are assumed to be of functional importance 

within related proteins. To reduce bias from closely related sequences, segments in a 

block with a sequence identity above a certain threshold were clustered giving weight 1 
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to each such cluster. For the BLOSUM62 matrix, this threshold was set at 62%. Pair 

frequencies were then counted between clusters, hence pairs were only counted between 

segments less than 62% identical. One would use a higher numbered BLOSUM matrix 

for aligning two closely related sequences and a lower number for more divergent 

sequences. Example of the BLOSUM62 matrix is shown in Figure 5. 

 
Figure 5. BLOSUM62 matrix 

 

2.2.2.2. Gap Penalties 

Gaps are expected to be penalized in an alignment. The standard gap penalty w(k) 

associated with a gap of length k can either be given by a linear penalty or an affine 

penalty. Equation 3 shows the linear gap penalty equation. 

k gw(k) ⋅=  

Equation 3. Linear gap penalty equation 
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Affine gap penalty introduces the concept of gap open and gap extension penalty. 

Equation 4 shows the affine gap penalty equation, where h is the gap open penalty and g 

is the gap-extension penalty. 

kg hw(k) ⋅+=  

Equation 4. Affine gap penalty equation 

 

2.2.3. ALIGNMENT ALGORITHMS 

Below we introduce several basic types of alignment algorithms.  

 

2.2.3.1. Global alignment: Needleman-Wunsch algorithm 

The Needleman-Wunsch algorithm[34] is a dynamic programming algorithm, that 

obtains the optimal global alignment between two sequences, allowing gaps. Gotoh[65] 

modified the algorithm to run at O(mn) complexity by considering affine gap penalties.  

The main idea of this algorithm is to build up an optimal alignment using previous 

solutions for optimal alignments of smaller subsequences. Given a matrix M and two 

sequences X = {x1, x2, …, xm} and Y = {y1, y2, …, yn},  M(i,j) is the score of the best 

alignment between the segments x1…i up to xi and y1…j up to yj. Hence, M(0,0) is 

initialized to be 0 and M(i,j) is then build recursively.  

The value of M(i,j) could only be calculated if the values of M(i-1,j-1), M(i-1,j) and M(i,j-

1) are known. There are three possible ways that the best score M(i,j) of an alignment up 

to xi, yj could be obtained: 

• xi is aligned to a gap, in which case M(i,j) = M(i-1,j) – g 

• yj is aligned to a gap, in which case M(i,j) = M(i,j-1) – g 
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• xi is aligned to yj, in which case M(i,j) = M(i-1,j-1) + sub(xi,yj) 

where g is the gap penalty and sub (xi,yj) is the substitution score of aligning residues xi 

and yj. The best score up to (i,j) will be the largest of these three options. Therefore, we 

have following equation: 







−−
−−

+
=

g)M(i,j
g,j)M(i

),ysub(x),j-M(i-
  M(i,j) 

ji

1
,1

,11
max  

Equation 5. Needleman-Wunsch equation 

 

Initialization values are given as the following: for 0 ≤ i ≤ m, M(i, 0) = −i⋅g and for 0 ≤ j 

≤ n, M(0, j) = −j⋅g. Equation 5 is repeatedly applied to fill in the matrix of M(i,j) values, 

calculating the value in the bottom right-hand corner of each square of four cells from 

one of the other three values (above-left, above, or left), as shown in Figure 6. 

 

 
Figure 6. Data dependency in Needleman-Wunsch algorithm 

 

The most bottom right cell of the matrix M(m,n) is the score of the best global alignment 

for an alignment of X and Y. A traceback procedure is needed to determine the actual 

alignment(s) from the corresponding score. The traceback for the Needleman-Wunsch 

algorithm starts from the cell with the best score M(m, n) to M(0, 0).  
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2.2.3.2. Local alignment: Smith-Waterman algorithm 

A lot of biological problems, e.g. search for a common domain between two protein 

sequences, comparison of extended sections of genomic DNA sequences and similarity 

detection between two very divergent sequences, require us to look for the best alignment 

between subsequences. Such alignment is called local alignment. The Smith-Waterman 

algorithm[33] is a dynamic programming algorithm, that obtains the optimal local 

alignment between two sequences.  

The algorithm is closely related to the global alignment algorithm. There are, however, 

two main differences. The first is that the value of M(i,j) will be 0 if its value is 0 or less. 

Taking the option 0 basically corresponds to starting a new alignment. If the best 

alignment up to a certain point reaches a negative score, a new alignment is preferred, 

rather than continue and extend the old one. This is reflected in Equation 6. 









−−
−−

+
=

g)M(i,j
g,j)M(i

),ysub(x),j-M(i-
  M(i,j) ji

1
,1

,11
,0

max  

Equation 6. Smith-Waterman equation 

 

The second difference is that the best score of the alignment is no longer M(m,n), but it is 

the cell with the highest value of M(i,j) over the whole matrix. That particular cell 

indicates where the alignment ends. 

Further details of the Smith-Waterman algorithm will be elaborated in Chapter 4. 
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2.2.3.3. Algorithms with affine gap penalty 

The simplest gap model implemented in most algorithms is a simple multiplication of the 

length with the gap penalty. This type of model, however, is not ideal for biological 

sequences. In the real world, when gaps do occur, they are more likely to have a large 

gap, rather than many small gaps. For example, a biological sequence is much more 

likely to have one big gap of length k, due to a single insertion or deletion event, than it is 

to have k small gaps of length 1.  

To account for this tendency, affine gap penalty is introduced. Affine gap penalty 

consists of a gap opening penalty, α, and a gap extension penalty, β. A gap of length k 

would then have an affine gap penalty w(k) = α + (k-1) β. The value of α and β are 

usually always negative because gap extension are encouraged, rather than gap 

introduction. 

 

2.2.3.4. Heuristic alignment algorithms  

All the alignment algorithms described so far produce optimal result. However, they are 

not the fastest methods and in some cases, speed is an issue. Heuristic alignment 

algorithms offer fast solutions with a trade off of accuracy and sensitivity. The goal of 

these methods is to search as small a fraction as possible of the cells in the dynamic 

programming matrix, while still looking at all the high scoring alignments. Two of the 

best-known algorithms are the Basic Local Alignment Search Tool (BLAST)[45] and 

FAST-All (FASTA)[46]. 
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2.2.3.4.1. BLAST  

The BLAST package[45] provides programs for finding high scoring local alignments 

between a query sequence and a database. The sequences can either be DNA or protein 

sequences. The main idea of the BLAST algorithm is that true match alignments are very 

likely to contain within them a short stretch of identities or very high scoring matches. 

Such short stretches are called seeds, from which they are extended out in search of a 

good longer alignment.  

Table 1. Traditional BLAST Programs 

Program Query Database Typical Usage 

BLASTN Nucleotide Nucleotide 

Mapping oligonucleotides, 

cDNAs and PCR products to a 

genome; screening repetitive 

elements;  annotating genomic 

DNA; vector clipping 

BLASTP Protein Protein 

Identifying common regions 

between proteins; collecting 

related proteins for 

phylogenetic analysis 

BLASTX 
Nucleotide translated 

into protein 
Protein 

Finding protein-coding genes 

in genomic DNA; determining 

if a cDNA corresponds to a 

known protein 

TBLASTN Protein 
Nucleotide translated 

into protein 

Identifying transcripts from 

multiple organisms; mapping a 

protein to genomic DNA 

TBLASTX 
Nucleotide translated 

into protein 

Nucleotide translated 

into protein 

Cross-species gene prediction 

at the genome or transcript 

level 
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BLAST creates a k-length word list of the query sequence, with the default value of k = 3 

for protein sequences and k = 11 for DNA sequences. It then scans through the database 

and whenever a word in word list is found to have a score higher than a pre-determined 

threshold, the possible match is extended as an ungapped alignment in both directions, 

stopping at the maximum scoring extension. Five traditional BLAST programs are 

BLASTN, BLASTP, BLASTX, TBLASTN, TBLASTX, as shown in Table 1[66].  

New versions of BLAST have become available, e.g. WU-BLAST[67, 68] which provide 

gapped alignments, PSI-BLAST[69] which is more sensitive in picking up distant 

evolutionary relationships, mpiBLAST[70] which is an open-source parallel BLAST, G-

BLAST which is a grid-based solution[71] and FSA-BLAST[72, 73] which has 

algorithmic improvements. 

 

2.2.3.4.2. FASTA 

The FASTA package[46] is another widely used heuristic sequence algorithm. Originally, 

FASTA was introduced as FASTP and was designed for protein sequence similarity 

searching. The current FASTA package contains programs for protein-protein, DNA-

DNA, protein-translated DNA (with frameshifts), and ordered or unordered peptide 

searches. It uses a four-step approach to find local high scoring alignments, starting from 

exact short word matches, through maximal scoring ungapped extensions. There is a 

trade off between speed and sensitivity in the choice of parameter ktup: the higher the 

value of ktup, the faster the algorithm will run, albeit with less accuracy (more significant 

misses).  

The first step identifies the regions of highest density in each sequence comparison. By 

using a look up table, all identically matching words of length ktup between any two 
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sequences are located and regions with many mutually supporting word matches are 

identified. The default value of ktup is 1 or 2 for protein sequences and 4 or 6 for DNA 

sequences. The second step extends the exact word matches to find maximal scoring 

ungapped regions. The third step checks if any if these ungapped regions can be joined by 

a gapped region, allowing for gap costs. The final step realigns the highest scoring 

candidate matches in a database search using a dynamic programming algorithm. This 

step, however, is limited to a subregion of the dynamic programming matrix forming a 

band around the potential heuristic match. 

 

2.3. PARALLEL COMPUTATION MODEL AND PARALLEL 

ARCHITECTURES 

Traditionally, software has been written for serial computation to be run on a single 

computer having a single Central Processing Unit (CPU). This type of programming is 

called Sequential Programming, in which the problem is broken into a discrete series of 

instructions that are executed one after another and only one instruction may execute at 

any moment in time. Figure 7 illustrates how sequential programming execution is 

processed by the CPU. 

 
Figure 7. Sequential programming execution 
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In the simplest sense, parallel programming is the simultaneous use of multiple 

computing resources/CPUs to solve a computational problem. The problem is broken into 

discrete parts that can be solved concurrently. Each part is further broken down to a series 

of instructions, in which they are executed simultaneously on different CPUs. In other 

words, parallel programming focuses on partitioning the overall problem into separate 

tasks, allocating tasks to processors and synchronizing the tasks to get meaningful results. 

Figure 8 illustrates how a parallel program is executed by multiple CPUs. 

 

 

 
Figure 8. Parallel programming execution 

 

The main advantage of parallel programming lies with its overall ability to reduce the 

execution time required needed to obtain the solution, as well as the possibility of solving 

larger problems. Another advantage also includes the possibility of using non-local 

resources on a local area network, or even the internet when local compute resources are 

scarce. On the other hand, the limitation of parallel programming lies with the overhead 
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communication time needed for synchronization and transferring of data between 

processors.  

 

2.3.1. TERMINOLOGY 

Below are some frequently used terms in parallel computing[74]: 

2.3.1.1. Speed-up 

The run time of the sequential program divided by run time of the parallel program. 

Speed-up s can be expressed as the following equation: 

p

s

t
t

s =  

Equation 7. Speed-up equation 

Where: 

ts is the run time of the sequential program 

tp is the run time of the parallel program 

 

2.3.1.2. Parallel Overhead     

The extra work associated with parallel version compared to its sequential code, mostly 

the extra CPU time and memory space requirements from synchronization, data 

communications, parallel environment creation and cancellation, etc. 

 

2.3.1.3. Synchronization 

The coordination of simultaneous tasks to ensure correctness and avoid unexpected race 

conditions. 
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2.3.1.4. Efficiency 

The execution time using a single processor divided by the quantity of the execution time 

using a multiprocessor and the number of processors. Efficiency e can be expressed as 

the following equation: 

p

s

tn
t

e
⋅

=  

Equation 8. Efficiency equation 

Where: 

ts is the run time of the sequential program 

tp is the run time of the parallel program 

n is the number of processors used 

Combining equation 7 and 8, the efficiency equation can be simplified as follows: 

n
se =  

Equation 9. Simplified efficiency equation 

 

2.3.1.5. Scalability 

A parallel system's ability to gain proportionate increase in parallel speedup with the 

addition of more processors.  

 

2.3.1.6. Task 

A logically high level, discrete, independent section of computational work. A task is 

typically executed by a processor as a program 
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2.3.2. VON NEUMANN ARCHITECTURE 

For over 40 years, virtually all computers have followed a common machine model 

known as the von Neumann architecture[75]. A von Neumann computer uses the stored-

program concept. The CPU executes a stored program that specifies a sequence of read 

and write operations on the memory. Figure 9 shows the block diagram of the von 

Neumann architecture. 

Characteristics of von Neumann architectures: 

• Memory is used to store both program and data instructions 

• Program instructions are coded data which tell the computer to do something 

• Data is simply information to be used by the program 

• A central processing unit (CPU) gets instructions and/or data from memory, 

decodes the instructions and then sequentially performs them.  

 

 
 

Figure 9. Block diagram of the von Neumann architecture 
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2.3.3. FLYNN'S CLASSICAL TAXONOMY 

Flynn's Taxonomy is one of the best-known classification schemes in parallel 

computing[76]. It classifies multi-processor computer architectures based on the two 

independent dimensions of Instruction and Data axes. Each of these dimensions can have 

only one of two possible states: Single or Multiple. The focus is on the multiplicity of 

hardware used to manipulate the instruction and data streams[77, 78]. Flynn’s Taxonomy 

is illustrated in Table 2. 

Table 2. Flynn's Taxonomy 

 Single Instruction Multiple Instruction 

Single Data SISD MISD 

Multiple Data SIMD MIMD 

 

2.3.3.1. Single Instruction, Single Data (SISD) 

SISD refers to computers with a single instruction stream and a single data stream, as 

shown in Figure 10.  Single instruction means only one instruction stream is being acted 

on by the CPU during any one clock cycle, while single data means only one data stream 

is being used as input during any one clock cycle. SISD has a deterministic execution. 

Examples of SISD are uniprocessors and single CPU workstations and mainframes.  
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Figure 10. Single Instruction, Single Data (SISD) 

 

2.3.3.2. Single Instruction, Multiple Data (SIMD) 

As illustrated in Figure 11, SIMD refers to computers with a single instruction stream but 

multiple data streams. In other words, all processing units execute the same instruction at 

any given clock cycle but each processing unit can operate on a different data element. 

This type of architecture typically has an instruction dispatcher, a very high-bandwidth 

internal network, and a very large array of very small-capacity instruction units. SIMD is 

best suited for specialized problems characterized by a high degree of regularity. 

Examples of SIMD are processor arrays and pipelined vector processors. 

Data 

In
st

ru
ct

io
ns

 

 
CPU 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



  State of the Art 
 

 
School of Computer Engineering (SCE)  39 

 
Figure 11. Single Instruction, Multiple Data (SIMD) 

 

2.3.3.3. Multiple Instruction, Single Data (MISD) 

MISD refers to computers with a multiple instruction streams but only a single data 

stream, as shown in Figure 12.  

 
Figure 12. Multiple Instructions, Single Data (MISD) 
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next. Some conceivable application uses of MISD are multiple frequency filters operating 

on a single signal stream and multiple cryptography algorithms attempting to crack a 

single coded message. Systolic arrays are examples of MISD[76].  

 

2.3.3.4. Multiple Instruction, Multiple Data (MIMD) 

As illustrated in Figure 13, MIMD refers to computers with a multiple instruction streams 

and multiple data streams. In other words, every processor may be working with a 

different data stream and execution can be synchronous or asynchronous, deterministic or 

non-deterministic. The TOP500 table, which shows the 500 most powerful commercially 

available computer systems, indicates that as of 2009, the entire TOP500 supercomputers 

are based on MIMD architecture [79]. Examples of MIMD are supercomputers and grids.  

 
Figure 13. Multiple Instruction, Multiple Data (MIMD) 
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2.4. ACCELERATOR TECHNOLOGIES IN HIGH PERFORMANCE 

COMPUTING 

The recent emergence of accelerator technologies such as Field-Programmable Gate 

Arrays (FPGAs), Graphics Processing Unit (GPUs) and multi-core processors have made 

it possible to achieve an excellent improvement in execution time for many 

bioinformatics applications, compared to current general-purpose platforms. We review 

those accelerator technologies in the following section. 

 

2.4.1. VLSI 

Very-large-scale integration (VLSI) is the process of creating integrated circuits by 

combining thousands of transistor-based circuits into a single chip. VLSI began in the 

1970s when complex semiconductor and communication technologies were being 

developed. Currently, the term is no longer as common as it once was, as chips have 

increased in complexity into billions of transistors. Early VLSI implementation of 

bioinformatics application include BioScan[80], Biological Information Signal Processor 

(BISP)[81] and Systolic Accelerator for Molecular Biological Application 

(SAMBA)[82]. 

BioScan[80] accelerates the identification of similar segments for DNA or protein 

sequences without allowing gap. It contains a total number of 12,992 processors 

consisting of 16 chips of 812 1-bit processors each. The database scanning has a limited 

query sequence of 12,992 characters. BioScan does not support dynamic programming 

algorithms. 
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BISP[81] implements a modified version of the Smith-Waterman algorithm and allows 

many parameters to be set. It consists of 256 16-bit processors and a programmable 

processor Motorola 68020, making possible the computation of unlimited sequence 

length.  

SAMBA[82] implements a parameterized Smith-Waterman algorithm. By setting 

different parameters, local or global comparisons can be performed, with or without gap 

penalty. The complete SAMBA system consists of a workstation, a systolic array of 128 

full custom hardwired 12-bit processors, and an FPGA-based interface i.e. PeRLe-1 

board.  

In general, the early VLSI implementations provide a respectable speed-up for the state 

of technology at that time. However, they are dwarfed by the implementations on current 

accelerator technologies such as FPGA, GPU and Cell/BE. Another drawback to the  

early VLSI implementations is that the core of the system relies on Application Specific 

Integrated Circuit (ASIC) component, in which the chip is devoted to a single function 

(or a restricted class of functions). Once designed and fabricated, it cannot be modified 

and is not flexible to program. 

 

2.4.2. FPGA 

FPGA is a semiconductor device that can be configured by the customer or designer after 

manufacturing. To define the behaviour of the FPGA, the user provides a hardware 

description language (HDL), such as VHDL and Verilog HDL, or a schematic 

implementation. The HDL form might be easier to work with when handling large 

structures because it's possible to just specify them numerically rather than having to 

draw every piece by hand. On the other hand, schematic entry can allow for easier 
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visualization of an implementation. They can be used to implement any logical function 

that an ASIC could perform, but the ability to update the functionality after 

manufacturing offers advantages for many applications. 

The underlying architecture of the FPGA is well-suited for parallel processing. FPGAs 

contain programmable logic components called logic blocks, and a hierarchy of 

reconfigurable interconnects that allow the blocks to be wired together, somewhat similar 

to a one-chip programmable breadboard. Logic blocks can be configured to perform 

complex combinational functions, or merely simple logic gates like AND and XOR. In 

most FPGAs, the logic blocks also include memory elements, which may be simple flip-

flops or more complete blocks of memory. 

Although FPGAs are flexible, their configuration has to be changed for each single 

algorithm. Thus, making it more complicated in general compared to writing codes for 

programmable architectures. Examples of bioinformatics application on FPGAs include 

[83-88]. 

 
2.4.3. GPU 

Programmable GPUs have received attention from the scientific computing community 

since their introduction on the market in 2000[89]. Architecturally, modern GPUs 

implement what is referred to as a streaming processor[90, 91]. This architecture gains its 

speed by devoting significantly more chip real estate to the computational engine than a 

conventional CPU. Furthermore, its attractive price to performance ratio and the fact that 

GPUs are now commodity items found in almost all computers makes it an appealing 

alternative for high performance computing. Examples of bioinformatics application on 

GPUs include [87, 92-97]. 
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However, the traditional general-purpose computing on the GPU (GPGPU) development 

is based on graphics function library, for example OpenGL and Direct 3D, which makes 

the GPU used only by the professional people familiar with graphics API, and brings 

many inconveniences to the common users. The two major GPU vendors, NVIDIA and 

AMD, recently announced their new developing platforms Compute Unified Device 

Architecture (CUDA)[98] and Close to the Metal (CTM)[99] , respectively. Unlike 

previous GPU programming models, these are proprietary approaches designed to allow a 

direct access to their specific graphics hardware. Therefore, there is no compatibility 

between the two platforms. CUDA is an extension of the C programming language; CTM 

is a virtual machine running proprietary assembler code. However, both platforms 

overcome some important restrictions on previous GPGPU approaches, in particular 

those set by the traditional graphics pipeline and the relative programming interfaces like 

OpenGL and Direct3D. 

CUDA is an extension of C/C++ which enables users to write scalable multi-threaded 

programs for CUDA-enabled GPUs. CUDA programs can be executed on GPUs with 

NVIDIA's Tesla unified computing architecture[100]. The emergence of CUDA allows a 

C-like development environment to programmers as a C compiler is used to compile 

programs, and the shader languages are replaced with C language and some CUDA 

extended libraries. This change means that programmers do not need to map programs 

into graphics APIs, making GPGPU program development more flexible and efficient. 

CUDA programs contain a sequential part, called a kernel. The kernel is written in 

conventional scalar C-code. It represents the operations to be performed by a single 

thread and is invoked as a set of concurrently executing threads. These threads are 
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organized in a hierarchy consisting of so-called thread blocks and grids. A thread block is 

a set of concurrent threads and a grid is a set of independent thread blocks. Each thread 

has an associated unique ID (threadIdx, blockIdx) ∈ {0,..., dimBlock-1} × {0,..., dimGrid-

1}. This pair indicates the ID within its thread block (threadIdx) and the ID of the thread 

block within the grid (blockIdx). Similar to MPI processes, CUDA provides each thread 

access to its unique ID through corresponding variables. The total size of a grid 

(dimGrid) and a thread block (dimBlock) is explicitly specified in the kernel function-

call: kernel<<<dimGrid, dimBlock, other configurations>>> (parameter list); 

The hierarchical organization into blocks and grids has implications for thread 

communication and synchronization. Threads within a thread block can communicate 

through a per-block shared memory (PBSM) and may synchronize using barriers. 

However, threads located in different blocks cannot communicate or synchronize 

directly. Besides the PBSM, there are four other types of memory: per-thread private 

local memory, global memory for data shared by all threads, texture memory and 

constant memory. Texture memory and constant memory can be regarded as fast read-

only caches. 

The Tesla architecture supports CUDA applications using a scalable processor array. The 

array consists of a number of streaming multiprocessors (SMs). Each SM contains eight 

scalar processors (SPs), which share a PBSM of size 16 KB. All threads of a thread block 

are executed concurrently on a single SM. The SM executes threads in small groups of 

32, called warps, in single-instruction multiple-thread (SIMT) fashion. Thus, parallel 

performance is generally penalized by data-dependent conditional branches and improves 

if all threads in a warp follow the same execution path. 
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An important aspect of CUDA programming is the management of the memory spaces 

that have different characteristics and performances, as explained below[97]. 

• Readable and writable global memory is relatively large (typically 1 GB), but has 

high latency, low bandwidth, and is not cached. The effective bandwidth of global 

memory depends heavily on the memory access pattern, e.g. coalesced access 

generally improves bandwidth. 

• Readable and writable per-thread local memory is of limited size (16 KB per 

thread) and is not cached. Access to local memory is as expensive as access to 

global memory and is always coalesced. 

• Read-only constant memory is of limited size (totally 64 KB) and cached. The 

reading cost scales with the number of different addresses read by all threads. 

Reading from constant memory can be as fast as reading from a register (e.g. if all 

threads of a half-warp read the same address). 

• Read-only texture memory is large (depending on the size of global memory) and 

is cached. Texture memory can be read from kernels using texture fetching device 

functions. Reading from texture memory is generally (not absolutely) faster than 

reading from global or local memory.  

• Readable and writable per-block shared memory is fast on-chip memory of 

limited size (16 KB per block). Shared memory can only be accessed by all 

threads in a thread block. Shared memory is divided into equally-sized banks that 

can be accessed simultaneously by each thread. Accessing the shared memory is 

as fast as accessing a register as long as there are no bank conflicts. 
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• Readable and writable per-thread registers are the fastest memory to access but is 

of very limited size.  

 

2.4.4. MULTI-CORE 

Multi-core technology was first discussed in 1989[25]. Conceptually, multi-core 

architecture refers to a single processor package containing two or more processor 

execution cores or computational engines that deliver fully parallel execution of multiple 

software threads. The operating system treats each of its execution cores as a discrete 

processor, with all associated execution resources. 

One of the ideas behind the movement to multi-core is parallelism. It is one of the best 

ways to address the issue of power while maintaining performance where higher data 

throughput may be achieved with lower voltage and frequency. The result is a larger 

transistor count, but overall lower power dissipation and power density. Instead of 

classifying based upon speed, one could classify products based upon the number of 

working cores or overall data throughput. The integration of multiple cores on a chip also 

allows lower interconnect latency and therefore higher bandwidth between cores than 

their discrete counterparts. Hence, microprocessor designers and manufacturers have 

turned to building chip multi-processors [26-29]. 

New chip architectures built for scaling out instead of scaling up will offer enhanced 

performance, reduced power consumption and more efficient simultaneous processing of 

multiple tasks. Multi-core systems embrace the scale out approach to performance. This 

architecture in essence reflects a divide and conquer strategy. By splitting the 

computational work performed by a single core in traditional microprocessors and among 
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multiple execution cores, a multi-core processor can perform more work within a given 

clock cycle. In other words, multi-core processors are able deliver higher performance 

and greater efficiency without the heat problems and other disadvantages experienced by 

single core processors run at higher frequencies to squeeze out more performance. By 

multiplying the number of cores in the processor, it is possible to tremendously increase 

computing resources, higher multithreaded throughput, and the benefits of parallel 

computing.  

Multi-core architecture may take on a number of forms, namely homogeneous multi-core, 

heterogeneous multi-core and cluster of multi-core. Examples of bioinformatics 

application on multi-cores include [87, 101-107]. 

 

2.4.4.1. Homogeneous Multi-core 

Homogeneous multi-core processor, also known as symmetric multi-core, is a processor 

which has multiple execution cores that are all exactly the same. Every single core has 

the same architecture and the same capabilities. An example of a homogeneous multi-

core system is the Intel® Core™ i7 Processor[108]. Homogeneous multi-core processor 

usually uses a shared memory. In the case of Intel® Core™ i7 Processor, all the cores 

shares the L3 cache. 

 

2.4.4.2. Heterogeneous Multi-core 

Heterogeneous multi-core processor, also known as asymmetric multi-core, is a processor 

which has multiple execution cores, but the cores might be of different implementations. 

Each core will have different capabilities. An example of a heterogeneous multi-core 

system is the Cell Broadband Engine (Cell/BE)[109], which will be discussed in detail in 
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further chapters. Heterogeneous multi-core processor usually does not utilize shared 

memory. In the case of Cell/BE, the PPE has its own L1 and L2 cache, while the SPEs 

have their own respective Local Storage. 

Recent research in heterogeneous multi-core processors has identified significant 

advantages over homogeneous multi-core processors in terms of power and throughput 

and in addressing the effects of Amdahl’s law on the performance of parallel 

applications[110]. 

 

2.4.4.3. Cluster of Multi-core 

A cluster of multi-core is a group of tightly coupled multi-core processors that work 

together closely so that in many respects they can be viewed as though they are a single 

entity. The components of a cluster are commonly, but not always, connected to each 

other through fast local area networks. Clusters are usually deployed to improve 

performance and/or availability over that provided by a single computer. An example of a 

cluster of multi-core system is a cluster of Playstation3[111]. 
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3. CELL BROADBAND ENGINE 

This chapter discusses the Cell/BE, its architecture, how it overcomes the three wall 

limitations, interprocessor communication and how to develop applications on the 

Cell/BE. Lastly, we categories and analyze programming techniques which are tailored 

for the Cell/BE.  

 

3.1. INTRODUCTION 

The Cell Broadband Engine[109], or often called as Cell/BE, is a single-chip 

heterogeneous multi-core processor which is developed by Sony, Toshiba and IBM. 

Although originally designed as a processor for Sony PlayStation3, Cell/BE has a 

general-purpose architecture, offering a unique assembly of thread-level and data-level 

parallelization options. It is operating at the upper range of existing processor frequencies 

(3.2 GHz for current models). Apart from that, the power consumption is also comparable 

to that of mobile processors. 

 

3.2. CELL/BE ARCHITECTURE 

The Cell/BE combines an IBM PowerPC Processor Element (PPE) and eight Synergistic 

Processor Elements (SPEs)[112]. An integrated high-bandwidth bus called the Element 

Interconnect Bus (EIB) connects the processors and their ports to external memory and 

I/O devices. The block diagram of the Cell/BE architecture is shown in Figure 14.  

One type of processors in the Cell/BE is the PPE, which is a 64-bit Power Architecture 

core and contains a 64-bit general purpose register set (GPR), a 64-bit floating point 

register set (FPR), and a 128-bit Altivec register set. It is fully compliant with the 64-bit 
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Power Architecture specification and can run 32-bit and 64-bit operating systems and 

applications. 

 
Figure 14. Block diagram of the Cell Broadband Engine Architecture 

 

The other type is the SPEs, which on the other hand, are independent processors. Each 

SPE is able to run its own individual application programs. Each SPE consists of a 

processor implementationed for streaming workloads, a local memory, and a globally 

coherent DMA engine. The EIB is a 4-ring structure, and can transmit 96 bytes per cycle, 

for a bandwidth of 204.8 Gigabytes/second. The EIB can support more than 100 

outstanding DMA requests.  

From an architectural standpoint, parallelism exploitations at multiple levels on the 

Cell/BE are possible. Each chip has eight SPEs with two-way instruction-level 
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parallelism on each SPE. Furthermore, the SPE supports both scalar as well as SIMD 

computations[113]. Hence, it has a high peak performance because the SPE is simpler 

and more efficient than general purpose processors in terms of the micro and memory 

architecture[114]. The Cell/BE operates on a shared, coherent memory. In this respect, it 

extends current trends in PC and server processors. The most distinguishing feature of the 

Cell/BE lies within the variety of the processors it has, i.e. the PPE and the SPEs. 

Heterogeneous multi-core systems can lead to decreased performance if both the 

operating system and application are unaware of the heterogeneity[115]. However, 

intelligent scheduling processes show the potential for power savings and speedup on a 

heterogeneous multi-core system[116]. Further work showed that heterogeneous multi-

core systems implementation targeting different cores to specific application classes can 

increase performance over that obtained by combining general-purpose cores[117]. The 

PPE is designed to run the operating system and, in many cases, the top-level control 

thread of an application, while the SPEs is optimized for compute-intensive applications, 

hence, providing the bulk of the application performance.  

The SPE implements a Cell-specific set of SIMD instructions[118]. All single precision 

floating point operations on the SPU are fully pipelined, and the SPU can issue one 

single-precision floating point operation per cycle. Double precision floating point 

operations are partially pipelined and two double-precision floating point operations can 

be issued every six cycles. With all eight SPUs active and fully pipelined double 

precision FP operation, the Cell/BE is capable of a peak performance of 21.03 Gflops. In 

single precision FP operation, the Cell/BE is capable of a peak performance of 230.4 

Gflops [119].  
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The SPE can access RAM through direct memory access (DMA) requests. The DMA 

transfers are handled by the MFC. All programs running on an SPE use the MFC to move 

data and instructions between local storage and main memory. Data transferred between 

local storage and main memory must be 128-bit aligned. The size of each DMA transfer 

can be at most 16 KB. DMA-lists can be used for transferring large amounts of data 

(more than 16 KB). A list can have up to 2,048 DMA requests, each for up to 16 KB. The 

MFC supports only DMA transfer sizes that are 1,2,4,8 or multiples of 16 bytes long. 

Kistler et al.[120] analyze the communication network of the Cell/B.E. processor and 

state that applications that rely heavily on random scatter and or gather accesses to main 

memory can take advantage of the high communication bandwidth and low latency. 

 

3.3. OVERCOMING THE THREE WALL LIMITATIONS 

The Cell/BE processor also overcomes three important limitations of contemporary 

microprocessor performance, i.e. power, memory and frequency limitations[114, 121]: 

 

3.3.1. OVERCOMING THE POWER WALL 

Since microprocessor performance is limited by achievable power dissipation rather than 

by the number of available resources (transistors and wires), the only way to significantly 

increase the performance is to improve the power efficiency at about the same rate as the 

performance increase. One way to increase power efficiency is to differentiate between 

processors optimized to run an operating system and control-intensive code, and 

processors optimized to run compute intensive applications. The Cell/BE does this by 
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providing a general-purpose PPE to run the operating system and other control-plane 

code, and eight SPEs specialized for computing data-plane applications. 

 

3.3.2. OVERCOMING THE MEMORY WALL  

Performance is often dominated by the activity of moving data between the processor and 

the main storage. Hence, movement of data must be managed explicitly, even with the 

existence of hardware cache mechanisms. The Cell Broadband Engine’s SPEs use two 

mechanisms to deal with long main-memory latencies. The first mechanism is a 3-level 

memory structure consisting of the main storage, local stores in each SPE, and large 

register files in each SPE. The second mechanism is the availability of asynchronous 

DMA transfers between main storage and local stores. These features allow programmers 

to be able to schedule simultaneous data and code transfers to cover long latencies 

effectively. Because of this organization, the Cell Broadband Engine can support 128 

simultaneous transfers between the eight SPE local stores and main storage. This 

surpasses the number of simultaneous transfers on conventional processors by a factor of 

almost twenty. 

 

3.3.3. OVERCOMING THE FREQUENCY WALL  

Conventional processors require increasingly deeper instruction pipelines to achieve 

higher operating frequencies. This technique has reached a point of diminishing returns 

and even negative returns if power is taken into account. The Cell Broadband Engine 

specializes the PPE and the SPEs for control and compute-intensive tasks, respectively. 

Hence, allowing both the PPE and the SPEs to be designed for high frequency without 
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excessive overhead. The PPE achieves efficiency primarily by executing two threads 

simultaneously rather than by optimizing single-thread performance. Each SPE achieves 

efficiency by using a large register file, which supports many simultaneous in-flight 

instructions without the overhead of register-renaming or out-of order processing. Each 

SPE also achieves efficiency by using asynchronous DMA transfers, which support many 

concurrent memory operations without speculative overheads. 

 

3.4. INTERPROCESSOR COMMUNICATION 

Although it is a multiprocessor system on a chip, the Cell/BE processor is not a 

traditional shared-memory multiprocessor. One of the major characteristics is that an SPE 

can execute programs and directly load and store data only from and to its private Local 

Storage (LS). Since SPEs lack shared memory, they must communicate explicitly with 

the PPE or other SPEs using three primary communication mechanisms: DMA transfers, 

mailbox messages, and signal-notification messages[122]. All three communication 

mechanisms are implemented and controlled by the SPE’s MFC.  

 

3.4.1. DMA TRANSFER 

DMA transfers are the most important means of communication on the Cell/BE 

processor, facilitating both bulk data transfers and synchronization. The capabilities of 

DMA transfers are summarized below: 

• DMA transfers enable exchange of data between the main memory and the local 

stores of the SPEs, as well as transfers from one local store to another. 
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• The messages can be of size 1, 2, 4, 8, and 16 bytes, and multiples of 16 bytes up 

to 16KB. Source and destination addresses of messages 16 bytes and larger have 

to be 16 bytes aligned, and addresses of messages shorter than 16 bytes require 

the same alignment as the message size. Additionally, messages of subvector 

sizes (less than 16 bytes) have to have the same alignment of source and 

destination addresses within the vector. 

• Messages larger than 16KB can only be achieved by combining multiple DMA 

transfers. DMA lists are a convenient facility to achieve this goal, as well as to 

implement strided memory access. A DMA list can combine up to 2048 DMA 

transfers. 

• DMA transfers are most efficient if they transfer at least one cache line and if they 

are aligned to the size of a cache line, which is 128 bytes. 

• By default, DMA messages are not ordered. Ordering of DMAs can be enforced 

by the use of barriers and fences. A barrier orders a message with respect to 

messages issued before as well as after a given message. A fence orders a 

message only with respect to messages issued before the given message  

• DMA transfers are non-blocking in their very nature. While DMAs are in 

progress, the SPE should be doing some useful work and only check for DMA 

completion, when it comes to processing of the transferred data. 

• DMA engines are parts of the SPEs. Each SPE can queue up to 16 requests in its 

own DMA queue. Each DMA engine also has a proxy DMA queue, which can be 

accessed by the PPE and other SPEs. The proxy queue can hold up to eight 

requests. 
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Both the SPEs and the PPE are capable of initiating DMAs, but the SPE-initiated DMAs 

are more efficient and should be given preference over the PPE-initiated DMAs. 

Nevertheless, if the need arises to use the PPE-initiated DMAs, it can be accomplished by 

means of the MFC SPE proxy command functions. 

Although each single SPE has a theoretical bandwidth of 25.6 GB/s, which is equal to the 

peak bandwidth of the main memory, a single SPE will have a hard time saturating this 

bandwidth. In order to get good utilization of the bus, one should initiate many requests 

from many SPEs, and also restrain from ordering the messages, if possible, to give the 

arbiter the most room for traffic optimization. 

One of the important aspects of the Cell/BE communication system is the efficiency of 

local store to local store communication[123]. Local store to local store communication 

may prove invaluable not only for bulk data transfers, but also for synchronization 

between SPEs.  

 

3.4.2. MAILBOXES 

Mailboxes support the sending of short, 32-bit messages from the PPE to the SPEs and 

between the SPEs. The mailboxes are First-In-First-Out (FIFO) queues, meaning the 

messages are processed in the order of their issue. Each SPE has a four-entry mailbox for 

receiving incoming messages from the PPE and other SPEs, and two one-entry mailboxes 

for sending outgoing messages to the PPE and other SPEs - one of which serves the 

purpose of raising an interrupt on the receiving device.  
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Mailbox operations have blocking nature on the SPE. An attempt to write to a full 

outbound mailbox will stall until the mailbox is cleared by a PPE read. Similarly, an 

attempt to read from an empty inbound mailbox will stall until the PPE writes to the 

mailbox. The same does not apply to the PPE. Neither an attempt to write to a full 

mailbox nor an attempt to read an empty mailbox will stall the PPE. Mailboxes are useful 

to communicate short messages, such as completion flags or progress status. They can 

also serve the purpose of communicating short data, such as storage addresses and 

function parameters. The blocking nature of the mailboxes on the SPE side makes them 

perfect for the PPE to initiate actions on the SPEs. However, they are not suitable to 

acknowledge SPE completion of operations to the PPE.  

Although mailbox message values are intended to communicate messages up to 32 bits in 

length, such as buffer completion flags or program status, they can also be used for any 

short-data transfer purpose, such as sending of storage addresses, function parameters, 

command parameters, and state-machine parameters. 

 

3.4.3. SIGNAL NOTIFICATION CHANNELS (SIGNALS) 

SPE signal-notification channels are connected to inbound registers (into the SPE). A 

signal is a short message of up to 32 bits long from the PPE, another SPE, or another 

system device. An example of this is buffer-completion synchronization flag. An SPE has 

two 32-bit signal-notification registers, each of which has a corresponding MMIO 

register that can be written with signal-notification data. They can be configured for one-

to-one signaling or many-to-one signaling. SPE software can use polling or blocking 
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when waiting for a signal to appear, or it can set up interrupts to catch signals as they 

appear asynchronously. 

A signal-notification message is sent to the SPE by writing to the main storage address of 

an MMIO register in the SPU’s MFC. The signal is latched in the MMIO register, and the 

SPU executes a read-channel (rdch) instruction to get the signal value. An SPU can 

send a signal-notification message to another SPU with its special send-signal 

instructions (for example, sndsig). An SPE read of one of its two signal-notification 

channels clears the channel. However, a PPE MMIO read does not clear the channel. 

One SPE can send a signal-notification message to another SPE using one of three special 

MFC commands: sndsig, sndsigf, and sndsigb. All of these commands are 

implemented in the same manner as a DMA put command, with the effective address of 

an MMIO register as the destination.  

Like mailboxes, signal-notification channels are useful when the SPE places 

computational results in main storage via DMA. After requesting the DMA transfer, the 

SPE waits for the DMA transfer to complete and then sends a signal to notify the PPE 

that its computation is complete. In this case, waiting for the DMA transfer to complete 

only ensures that the SPE’s LS buffers are available for reuse and does not guarantee that 

data has been coherently written to main storage. 

Although signal notifications and mailbox messages look similar, there are important 

differences. Table 3 summarizes the differences between communication using a mailbox 

and using a signal. 
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Table 3. Comparison of mailboxes and signals 

Attribute Mailboxes Signals 

Direction One inbound, two outbound, all 

accessible 

through channel interface. 

Two inbound accessible 

through channel interface, 

but can send signal using 

MFC send-signal 

commands. 

Interrupts One mailbox can interrupt PPE 

Two mailbox-available Event 

interrupts 

Two signal-notification 

Event interrupts. 

Message Accumulation No. Yes: over-write mode (one-

to-one), logical OR mode 

(many-to-one). 

Unique SPU Commands No; programs use channel 

reads and writes. 

Yes, sndsig, sndsigf, and 

sndsigb for sending signals 

to other units. 

Destructive Read Reading a mailbox consumes 

an entry. 

Reading a channel resets all 

32 bits to ‘0’. 

Channel Count Indicates number of available 

entries. 

Indicates waiting signal. 

 

Number Three mailboxes: 4-deep 

incoming, 1-deep outgoing, 1-

deep outgoing with interrupt. 

Two signal registers. 

 

3.5. DEVELOPING APPLICATIONS FOR THE CELL BROADBAND 

ENGINE 

Writing efficient and scalable code for the Cell/BE is, in many ways, different than 

programming most of the common modern architectures. The main differences come 

from the fact that, on the Cell architecture, the user has full control over the processor 
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behavior and all the hardware details are exposed to the programmer. The following 

general programming rules should be followed in order to exploit the full potential of the 

Cell/BE[123]. 

 

3.5.1. VECTORIZATION 

The SPEs are vector units. In a code that is not vectorized, every scalar operation will be 

transformed to a vector operation which results in a considerable performance loss. 

Hence, vectorizing the code will ensure a gain in performance. 

 

3.5.2. DATA ALIGNMENT 

Since the local storage on the SPEs is relatively small, most of the operations will require 

a continuous streaming of data from the main memory to the SPEs local memory. As a 

result, non optimized memory transfers will deeply impact the performance. In order to 

achieve the best transfer rates, data accesses must be aligned both on the main memory 

and the SPEs local memories. Alignment will provide a better exploitation of the memory 

storage and a better performance of DMA transfer. 

 

3.5.3. DOUBLE-BUFFERING  

As explained in the previous point, data is continuously streamed from main memory to 

SPEs. The cost of all this communication is thus, considerable. Moreover each single 

message has to be relatively small in size since local memories have limited storage 

space; this means that a high number of DMA transfers will be performed in a single 

operation, each of which will add the (fixed) cost of the DMA latency to the 
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communication phase. In order to hide the cost of the latencies and memory transfers, 

DMA transfers can be overlapped with SPE local computations using double buffering. If 

these local computations are more expensive than a single data transfer, the 

communication phase can be completely hidden. 

 

3.5.4. DATA REUSE  

To reduce the number of memory transfers, it is important to arrange the instructions in 

order to maximize the reuse of data once it has been brought into the SPEs local 

memories. Explicit unrolling provides considerable improvements in performance due to 

the high number of registers on the SPEs and to the simplicity of SPEs architecture. 

 

3.5.5. BRANCH MINIMIZATION 

SPEs can only do static branch prediction. Therefore, reducing the number of branches in 

the code usually provides performance improvements, since these prediction schemes are 

rather inefficient on programs that have a complex execution flow. 

 

3.6. PROGRAMMING TECHNIQUES FOR THE CELL/BE 

Programming is the process of writing, testing, and maintaining the source code of 

computer programs. The choice of programming techniques is to achieve an elegant, 

efficient, and maintainable software program that exhibits the desired behavior. The 

process of writing source code requires expertise in many different subjects, including 

knowledge of the application domain, compiler and the target processor. On any 

processor, coding optimizations are achieved by exploiting the unique features of the 
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hardware. In the case of the Cell/BE, the large number of SPEs, their large register file, 

and their ability to hide main-storage latency with concurrent computation and DMA 

transfers support many interesting programming models. With the computational 

efficiency of the SPEs, software developers can create programs that manage dataflow as 

opposed to leaving dataflow to a compiler or to post optimization process. 

Many of the unique features of the SPE are handled by the compiler, although 

programmers looking for the best performance can take advantage of the features 

independently of the compiler. It is almost never necessary to optimize the benefits but 

programming the SPE in assembly language as C intrinsics provides a convenient way to 

program the efficient movement and buffering of data.  

 

Table 4. Classification of Cell/BE applications into programming techniques   

Technique Applications Reference 

Function-Offload Model RAxML-Cell [124] 

Computation-Acceleration 

Model 

Smith-Waterman (short sequences) 

ClustalW 

Real-time wavelet decomposition for 

HDTV video images 

Ray Tracing 

Smoothed Particle Hydrodynamics 

[106] 

[106] 

[125] 

 

[126] 

[127] 

Streaming Model Smith-Waterman (long sequences) 

CBESW 

BLAST 

Pairwise Distance Matrix computation 

Euler particle-system simulation 

Volume Ray Casting  

[102] 

[101] 

[104] 

[103] 

[122] 

[128] 
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Table 4 shows a classification of applications, that have been recently developed on the 

Cell/BE, into programming techniques. These techniques and applications are explained 

in more detail below.  

 

3.6.1. FUNCTION-OFFLOAD MODEL  

The function-offload mode, also called the Remote Procedure Call (RPC) Model, is the 

fastest way to effectively use the Cell/BE with an already existing application. It 

specifically notes the use of program stubs via the Interface Description Language (IDL).  

_____________________________________________________________________ 
PPE code: 
Start main application 

Invoke RPC call using IDL interface 

Call SPE procedure 

Wait/synchronize  

Continue main application 

End 

 

SPE code: 
Start 

Receives RPC call 

Run SPE procedure 

Return result to PPE 

End 

________________________________________________________________________ 

Figure 15. Pseudocode of the Function Offload Model 

 

In this model, the main application runs on the PPE and calls selected performance-

critical procedures to run on one or more SPEs, which are used as accelerators. An 

interface description in the form file with an extension of .idl is required. The model 

allows a PPE program to call a procedure located on an SPE as if it were calling a local 
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procedure on the PPE. This provides an easy way for programmers to use the 

asynchronous parallelism of the SPEs without having to understand the low-level 

workings of the MFC DMA layer. However, it is essential to identify which procedures 

should be executed on the PPE and which on the SPEs. The PPE and SPE source 

modules must be compiled separately, by different compilers. The pseudocode of the 

function offload model is shown in Figure 15. 

An example of an application that uses the function-offload model is the RAxML. 

RAxML[124] (Randomized Axelerated Maximum Likelihood) is a bioinformatics 

program for large-scale ML-based (Maximum Likelihood[129]) inference of 

phylogenetic (evolutionary) trees using multiple alignments of DNA or amino acid 

sequences. The MPI version of the RAxML was ported to the PPE and both loop-level 

parallelization of tasks across SPEs and a scheduler which multiplexes more than two 

MPI processes on the PPE using an event-driven model were introduced to expose more 

task-level parallelism. The most time-consuming functions of each MPI process, namely 

newview, evaluate and makenewz, were offloaded to the SPEs. The SPE codes are 

optimized using vectorization of computation, a specialized casting transformation 

coupled with vectorization of control statements, and communication optimizations. 

Besides the fact that each function can be executed faster on an SPE, having all three 

functions offloaded to an SPE significantly reduces the amount of PPE-SPE 

communication. An SPE thread is spawned at the beginning of each MPI process. The 

thread executes the offloaded function upon receiving a signal from the PPE and returns 

the result back to the PPE upon completion. To avoid excessive overhead from repeated 

spawning and joining of threads, threads remain bound on SPEs and perform a busy-wait 
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for the PPE signal to start executing a function. Furthermore, the codes of all three 

offloaded functions are loaded on each SPE, such that each thread can execute any of the 

functions on demand, including nested combinations of these functions.  

The performance of the Cell/BE implementation of RAxML was compared to the MPI 

implementation of RAxML on two architectures: 

• A 32-bit Intel Pentium 4 Xeon with Hyperthreading technology (2-way SMT), 

running at 2GHz, with 8KB L1-D cache, 512KB L2 cache, and 1MB L3 cache.  

• A 64-bit IBM Power5 processor, a quad-thread, dual-core processor with dual 

SMT cores running at 1.65 GHz, 32KB of L1-D and L1-I cache, 1.92 MB of L2 

cache, and 36 MB of L3 cache. 

The Cell/BE processor clearly outperforms the Intel Xeon by more than a factor of two, 

while Cell/BE performs 9%-10% better compared to the IBM Power5. The computation 

uses double precision floating point arithmetic, which is not optimized for Cell SPE 

pipelines. Hence, the use of single-precision arithmetic would further widen the 

performance margin between Cell and the IBM Power5. 

 

3.6.2. COMPUTATION-ACCELERATION MODEL  

The Computation-Acceleration Model is an SPE-centric model that provides a smaller-

grained and more integrated use of SPEs than the function-offload model. The 

Computation-Acceleration Model speeds up applications that use computation-intensive 

mathematical functions without requiring a significant rewrite of the applications. Most 

computation-intensive sections of the application run on SPEs. The PPE acts as a control 

and system service facility. Multiple SPEs work in parallel. The work is partitioned 
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manually by the programmer, or automatically by the compilers. The SPEs must 

efficiently schedule MFC DMA commands that move instructions and data. This model 

either uses shared memory to communicate among SPEs, or it uses a message-passing 

model. The pseudocode of the computer-acceleration model is shown in Figure 16. 

________________________________________________________________________ 
PPE code: 
Start main application 

Construct a context and thread for each SPEs 

Create SPE threads with the context as parameter 

Wait for all SPEs to complete 

Continue main application if required 

End 

 

SPE code: 
Define local storage and buffer 

Fetch SPE context through DMA  

Fetch data through DMA 

While there are task to be executed 

 Do necessary computations 

Return result to PPE 

End 

________________________________________________________________________ 

Figure 16. Pseudocode of the Computation-Acceleration Model 

 

Examples of applications that use this technique on the Cell/BE are Smith-Waterman 

algorithm for short sequences[106], ClustalW[106], ray tracing[126], smooth particle 

hydrodynamics[127] and real-time wavelet decomposition for HDTV video images[125]. 

The Smith-Waterman algorithm[33] finds the optimal local alignment of two sequences 

by means of dynamic programming. It compares two sequences by computing a distance 

that represents the minimal cost of transforming one subsequence into another. Two basic 
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operations are used in the transformation, i.e. insertion/deletion and substitution. The 

distance between the subsequences is measured as the smallest number of operations 

required to change one subsequence into another. The Smith-Waterman implementation 

by Sachdeva et. al.[106] is capable of executing a pairwise alignment of 8 pairs of 

sequences, using one SPE for each pairwise alignment.  Their implementation requires 

both sequences to fit entirely in the SPE local store of 256 KB, which limits the sequence 

length to 2048. The alignment scores were pre-computed on the PPE, and then DMA-

transferred to the SPEs together with the query and the library sequences. Other 

parameters such as the alignment matrix and the gap penalties are also included in the 

context for every SPE. The Smith-Waterman kernel, which is based on the FASTA 

package by Eric Lindahl, was then executed in each SPE. As for the load balancing, a 

simple round-robin strategy was implemented, in which the sequences in the query 

library are allocated to the SPEs based on the sequence numbers and the SPE number. 

The implementation on the Cell/BE running on 8 SPEs performs 6.2 times and 4.7 times 

faster compared to implementations on Opteron with SSE2 code and PowerPC G5 with 

Altivec code, respectively. 

ClustalW is a progressive multiple sequence alignment application. There are three basic 

steps to this process. In the first step, all sequences are compared pairwise using a global 

alignment algorithm. A cluster analysis is then performed on each of the scores from the 

pairwise alignment to generate a hierarchy for alignment. Finally, the alignment is built 

step by step, adding one sequence at a time, according to the guide tree. The ClustalW 

implementation by Sachdeva et. al.[106] is focused on running the paralign function, 

which performs the task of comparing all input sequences against each other, on the 
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SPEs, with the rest of the code executing on the PPE. The paralign function performs a 

total of n(n−1)/2 alignments for n sequences, consuming about 60-80% of execution time. 

While pairalign itself is made up of 4 different functions, forward_pass which computes 

the maximum score and the location of the cell inside the matrix cell for two sequences, 

is the most time-consuming step of pairalign. The implementation ported the IBM Life 

Science version with vectorized forward_pass for the SPE code. The computation starts 

with the PPE creating the SPE threads and passes the maximum sequence size through a 

mailbox message. The SPEs allocate memory only once in the entire computation based 

on the maximum size, and then wait for the PPE to send a message for them to pull in the 

context data using DMA transfer and begin the computation. Work load is assigned to the 

SPEs using a simple round-robin strategy: each SPE is assigned a number from 0 to 7, 

and SPE k is responsible for comparing sequence number i against all sequences (i + 1) to 

n if (i mod 8 = k). For storing of the output values, the SPEs are also passed a pointer to 

an array of structures, which are 16-byte aligned, in which they can store the output of the 

forward pass function executed for two sequences. The ClustalW code, executing on the 

PPE side, then uses the output for the forward pass function to generate the guide tree 

from the scores received from the SPE, and to compute the final alignment. The 

implementation on the Cell/BE running on 8 SPEs performs up to 1.26 times faster when 

compared to a SSE-vectorized implementation on PowerPC G5.  

Ray tracing is a general technique from geometrical optics of modeling the path taken by 

light by following rays of light as they interact with optical surfaces. An implementation 

of ray tracing in the Cell/BE, which using the BHV traversal scheme proposed in [130], 

is described in [126]. Each SPE independently runs a full ray tracer, and parallelization is 
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achieved by SPEs working on different pixels. The implementation starts with 

subdividing the image plane into a set of image tiles. From this shared task queue, each 

SPE dynamically fetches a new tile, and renders it. An integer variable, specifying the ID 

of the next tile to be rendered, is allocated in system memory to ensure synchronization 

of the accesses to the task queue. This variable is visible among all SPEs, and each time 

an SPE queries the value of the variable, it performs an atomic fetch-and-increment. This 

atomic update mechanism allows the SPEs to work fully independently from both other 

SPEs and PPE, requiring no communication among those units. The only explicit 

synchronization is at the end of each frame, where the PPE waits to receive an ’end 

frame’ signal from each SPE. The ray tracing implementation on dual Cell/BE with 16 

SPEs is evaluated to be 7.1-15.3 times faster than a 2.4 GHz AMD Opteron-based 

system. Extrapolating the performance that would be achievable on a 3.2GHz Cell with 7 

SPEs as used in a Playstation 3 yield a speed up of 4.8-9.6 times that of an Opteron CPU. 

Smoothed Particle Hydrodynamics (SPH) is a method used mainly to simulate complex 

materials, such as water. The particles can be seen as interpolation points, approximating 

local field quantities. It has over time been applied to numerous problems, such as, 

elasticity and fracture modeling [131], hair-hair interactions [132], and simulation of 

incompressible fluids [131]. The SPH implementation on the Cell/BE[127] starts with 

creating the hash table of every particle on the PPE, serially. In the meantime, the SPEs 

pre-calculate the hash values for the neighboring cells to find interacting particles. The 

interaction list is created by iterating over the hash buckets, calculating distances between 

particles. Because of hash value collisions, it is possible that duplicate particle 

interactions are found. Therefore, in addition to checking distances between two particles, 
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their grid cell relation must be tested. This is done using workblocks of N buckets, which 

are processed in parallel on the SPEs. It ignores the symmetrical property of the inter-

particle forces in order to maximize data locality and to allow asynchronous execution of 

the SPE threads. Afterwards, the SPE threads then process particles in batches from the 

workpool to compute the time integration and collision handling for velocity reflection 

and position projection. The results are then sent back to the PPE. The SPH 

implementation on the Cell/BE with 8 SPEs performs 9.8 faster compared to a scalar 

implementation on a 2.0GHz PPC 970 processor, reaching 39.8 Hz update frequency 

with 15 avg. neighbors / particle. 

Wavelet decomposition is one of the essential methods for compressing or 

decompressing high resolution images. The real-time wavelet decomposition for HDTV 

video images [125] implementation starts with the PPE reading the image file, dividing it 

into 8 pieces and then sending the context about the divided image pieces, e.g. the size, 

address in main memory, etc to each of the 8 SPEs. Each SPE receives the context and 

obtains the divided image from the main memory. The 1D Fast Wavelet Transform 

(FWT) computations in each SPE are done using the SIMD instructions to exploit the 

data parallelism. Thus each partial image assigned to an SPE is formed into appropriate 

matrix size for the SIMD instruction by transposing the elements. The image data can be 

processed 4 pixels at a time with SIMD instructions. After the 1D FWT is completed, the 

data from each SPE is sent back to the PPE and stored in the main memory. After all of 

the SPEs finish the process, the whole image as decomposed along the x coordinates is 

ready. The same process is repeated for the decomposed image on the other dimension 

(along the x coordinates), and the 2D wavelet decomposition is thus performed. 
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3.6.3. STREAMING MODEL  

In the Streaming Model, each SPE, in either a serial or parallel pipeline, computes data 

that streams through. The PPE acts as a stream controller, and the SPEs act as stream-

data processors. For the SPEs, on-chip load and store bandwidth exceeds off-chip DMA-

transfer bandwidth by an order of magnitude. If each SPE has an equivalent amount of 

work, this model can be an efficient way to use the Cell Broadband Engine because data 

remains inside the Cell Broadband Engine as long as possible. The PPE and SPEs support 

message-passing between the PPE, the processing SPE, and other SPEs. The pseudocode 

of the streaming model is shown in Figure 17. 

________________________________________________________________________ 
PPE code: 
Start main application 

Construct a context and thread for each SPEs 

Create SPE threads with the context as parameter 

Wait for all SPEs to complete 

Continue main application if required 

End 

 

SPE code: 
Define local storage and buffer 

Fetch SPE context through DMA  

While there are task to be executed 

 Fetch data through DMA 

 Do necessary computations 

 Do SPE-PPE/SPE-SPE communication if necessary 

End 

________________________________________________________________________ 

Figure 17. Pseudocode of the Streaming Model 
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The techniques used to implement the  alignment of long DNA sequences[102], 

CBESW[101], BLAST[104] and pairwise distance matrix computation[103] are 

discussed further in Chapter 4, 5, 6 and 7, respectively.  

The Euler particle-system simulation described in [122] contains a computational kernel 

that streams packets of data through the kernel for each step in time. Using DMA 

transfers for PPE-SPE communication, the SPEs fetch the context. For each step in time 

for the block of particles, the SPEs fetch their respective data (position, velocity and 

inverse mass) by means of DMA transfer. Once it is completed, the SPEs perform the 

Euler computation and put back the position and velocity data back into system memory. 

The volume ray casting implementation[128] introduces streaming model based schemes 

and techniques to efficiently implement acceleration techniques for ray casting on 

Cell/BE. In addition to ensuring effective SIMD utilization, their method provides two 

key benefits: there is no cost for empty space skipping and there is no memory bottleneck 

on moving volumetric data for processing. Furthermore, experimental results show that 

we can interactively render practical datasets on a single Cell/BE processor. 
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4. ALIGNING LONG DNA SEQUENCE ON THE CELL 

BROADBAND ENGINE 

This chapter elaborates our implementation of a novel, efficient and scalable parallel 

algorithm for very long DNA sequence alignments on a heterogeneous multi-core 

system, the Cell Broadband Engine. The two types of parallelization utilized in the 

implementation, i.e. the wavefront and the SIMD vectorization are discussed. Lastly, 

performance comparisons to other architectures such as GPU and FPGA are provided. 

 

4.1. INTRODUCTION 

Sequence alignment is an essential tool to determine the degree of similarity between 

nucleotide or amino acid sequences which is assumed to have same ancestral 

relationships. The optimal local alignment of a pair of sequences can be computed by the 

dynamic programming (DP) based Smith-Waterman algorithm[33]. However, this 

approach is very expensive in terms of time and memory cost. One technique to speedup 

this time consuming task is to introduce heuristics in the search algorithm, e.g. BLAST 

[45]. The drawback of this approach is that the more efficient the heuristics, the worse is 

the result. In other words, these algorithms sacrifice sensitivity for speed. Hence, more 

distant sequence relationship may not be detected. 

Another popular approach to reduce computational time without sacrificing the 

performance is to use High Performance Computing. Examples of parallel architectures 

that have been evaluated for this problem include FPGAs[86], GPUs[93] and SIMD 

arrays[133]. In this chapter, we investigate how the Cell Broadband Engine can be used 
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as a computational platform to accelerate sequence alignment for very long DNA 

sequences. 

 

4.2. SMITH-WATERMAN ALGORITHM 

The Smith-Waterman algorithm is used to determine the optimal local alignment 

between two nucleotide or protein sequences. The algorithm compares two sequences by 

computing the similarity score by means of dynamic programming (DP). Two 

elementary operations are used: substitution and insertion/deletion (also called a gap 

operation). The original algorithm was proposed by Smith and Waterman[33] with a 

complexity of O(m2n) and was improved by Gotoh[65] to run at O(mn). The Smith-

Waterman Algorithm as a local alignment has been explained briefly in section 2.2.3.2. 

Consider two strings S1 and S2 with length m and n, respectively. The Smith-Waterman 

algorithm computes the similarity value M(i, j) of two sequences ending at position i and 

j of the two sequences S1 and S2, respectively. For affine gap penalties, i.e. α≠β, the 

computation of M(i, j), for 1 ≤ i ≤ m, 1 ≤ j ≤ n, is given as shown in Equation 10: 

M(i, j) = max {M(i−1, j−1)+sbt(S1[i], S2[j]),E(i, j), F(i, j), 0} 

E(i, j) = max {M(i, j − 1) − α, E(i, j − 1) − β}, 

F(i, j) = max {M(i − 1, j) − α, F(i − 1, j) − β}, 

Equation 10. Smith-Waterman equation for affine gap penalties 

where sbt is a character substitution cost table, α is the cost of the first gap; β is the cost 

of the following gaps. For linear gap penalties, i.e. α = β, the above recurrence relations 

can be simplified, as shown in Equation 11: 

M(i, j) = max{M(i − 1, j − 1) + sbt(S1[i], S2[j]), M(i, j − 1) − α, M(i − 1, j) – α, 0} 

Equation 11. Smith-Waterman equation for linear gap penalties 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



  Aligning Long DNA Sequence on the Cell Broadband Engine 
 

 
School of Computer Engineering (SCE)  76 

Initialization values are given as the following: for 0 ≤ i ≤ m, 0 ≤ j ≤ n, M(i, 0) = M(i, j) = 

E(i, 0) = F(i, j) = 0. Each position of the matrix M is a similarity value. The maximum 

local alignment score is defined as the maximal value in matrix H. The two segments of 

S1 and S2 producing this value can be determined by a trace-back procedure. The three 

arrows in Figure 18 show the data dependencies in the alignment matrix: each cell 

depends on its left, upper, and upper-left neighbors.  

a2

a3

a4

a5

a6

a1

b1 b2 b3 b4 b5 b6 b7

 
Figure 18. Data dependency in the SW algorithm alignment matrix 

 

Figure 19 illustrates an example of computing the local alignment between two DNA 

sequences CAGTTTCG and ACAGTCGAACG using the Smith-Waterman algorithm. 

The matrix M(i, j) is shown for the linear gap cost α = β = 1, and a substitution cost of +2 

if the characters are identical and -1 otherwise. The highest score in the matrix (+10) is 

the optimal score for the alignment. The trace-back procedure, shown in form of arrows, 

shows that the optimal local alignment is CAGTTTCG and CAG − −TCG. 
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  A C A G T C G A A C G 

 0 0 0 0 0 0 0 0 0 0 0 0 

C 0 0 +2 +1 0 0 +2 +1 0 0 +2 +1 

A 0 +2 +1 +4 +3 +2 +1 +1 +3 +2 +1 +1 

G 0 +1 +1 +3 +6 +5 +4 +3 +2 +2 +1 +3 

T 0 0 0 +2 +5 +8 +7 +6 +5 +4 +3 +2 

T 0 0 0 +1 +4 +7 +7 +6 +5 +4 +3 +2 

T 0 0 0 0 +3 +6 +6 +6 +5 +4 +3 +2 

C 0 0 +2 +1 +2 +5 +8 +7 +6 +5 +6 +5 

G 0 0 +1 +1 +3 +4 +7 +10 +9 +8 +7 +8 

 

Figure 19. Sequence alignment of CAGTTTCG and ACAGTCGAACG 

 

4.3. WAVEFRONT PARALLELIZATION 

Our parallel algorithm employs a static load balancing strategy, which means that the 

work load is known at the start and distributed equally across processes and processors. 

The algorithm starts by reading the input dataset. The PPE then preprocesses the set of 

input sequences such that all the SPEs will have their respective sequence parts in their 

local memory. Consider two sequences, S1 and S2 of length m and n respectively. 

Assume that p SPEs, P1, ..., Pp, are used for the computation. S1 is broadcast to all SPEs, 

while S2 is divided into p pieces, of size n/p, and each SPE Pi, 1 ≤ i ≤ p, receives the i-th 

piece of S2. Each SPE has to compute a non-overlapping m x n/p submatrix of the whole 

m x n DP matrix. This computation is performed in q + p - 1 rounds, where q = m/r and r 

denotes the number of consecutive rows calculated in one round. Hence, each round 
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computes an r x n/p submatrix in a number of SPEs in parallel in each round. The 

scheduling scheme follows a wavefront pattern and is illustrated in Figure 20. 

0P1
1P2

2P3

1P1
2P2

2P1

q-1P1
qP2

p-1Pp

pPp

p+1Pp

q+p-2Pp

kPi

n

r

n/p

m

 
Figure 20. Block diagram of the wavefront algorithm 

 

The notation kPi denotes the sub-matrix computed by the SPE Pi at round k. Thus, at the 

start, P1 starts computing 0P1 at round 0. Then, P1 and P2 computes 1P1 and 1P2, 

respectively at round 1; P1, P2 and P3 computes 2P1, 2P2 and 2P3, respectively at round 2, 

and so on. Due to the limitation of the local storage of SPE of 256 KB for both the 

program and the data, we implemented a linear space algorithm. Hence, in each kPi, the 

similarity value M(i, j) at position i and j is then computed by according to Equation 12: 

M(i, j) = max {M(j−1)+sbt(S1[i], S2[j]),E, F(j),0} 

E(i, j) = max {M(j − 1) − α, E }, 

F(i, j) = max {M(j) − α, F(j) − β} 

Equation 12. Modified Smith-Waterman equation for the Cell/BE mapping 
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After computing the kth part of the kPi, SPE Pi sends the elements of the rightmost 

column of kPi to SPE Pi+1. Using these information, SPE Pi+1 can compute the k+1Pi+1. 

After q+p-1 rounds, SPE Pp receives its necessary information from Pp-1 and computes 

q+p-2Pp and finishes the entire alignment. During the entire computation, each SPE 

updates and stores its maximum local score. At the end of the computation, each SPE 

sends its maximum local score to the PPE through the mailbox function. The PPE uses 

spe_stat_out_mbox function to fetch the status of the SPU outbound mailbox for each 

SPE thread and read each maximum local score. Using those scores, the PPE then 

determines the global optimal score. 

 

4.4. SIMD PARALLELIZATION 

In order to further exploit the capabilities of the Cell Broadband Engine, our parallel 

implementation has been modified using Single Instruction Multiple Data (SIMD) 

registers of the SPEs for further optimization using the concepts of the vectorization 

strategy for Smith-Waterman comparison done by Wozniak[134]. 

Due to the additional memory requirement for this method as well as the local storage 

memory limitation of the SPEs, each SPE can only compute a submatrix of size 128x128 

in each round. Hence, with 8 SPEs, we can compute an overall DP matrix of size 

2048x1024. This length, however, is quite short for real life application. Hence, we have 

extended the algorithm such that it can compute alignment of longer sequences. In this 

new approach, the computation is split into blocks of size 2048x1024. Each block is 

computed using 8 SPEs, in which the larger 2048x1024 block is divided into smaller 

blocks computation of size 128x128. Once a 2048x1024 block has been computed, the 

local maximum is then sent to the PPE through the mailbox function and the right-most 
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column of this block is saved. The next 2048x1024 block is then offloaded to the SPEs to 

be computed. Due the nature of the Smith-Waterman algorithm, the block directly below 

the current block will be chosen as next block (vertical priority). Once all the blocks in 

the current vertical column has been computed successfully, the concatenation of the 

right-most column of the vertical blocks are sent and processed to compute the next batch 

of blocks.  

Pseudocode of the SIMD parallelization scheduling is illustrated in Figure 21. At the end 

of all block computations, the maximum of the local maximums collected by the PPE is 

determined as the global optimal score.  

_______________________________________________________________________ 
Input:  
num: Number of SPEs used, S1 and S2: Sequences S1 and S2 with lengths m 

and n, respectively 

 

Output:  
Smax: Global maximum score for the optimum local alignment of S1 and S2 

 

SPE Pseudocode: 
Initialize; 

While (outerloop<(n/1024)){ 

Fetch the right-most column of Pnum of the previous iteration from 

PPE through DMA transfer; 

 

Fetch part of S2 of the corresponding block from the PPE through 

DMA transfer; 

 

innerloop=0; 

 

While (innerloop<(m/2048)){ 

Fetch part of S1 of the corresponding block from the PPE 

through DMA transfer; 
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While (count<2048){ 

if (i>0){ 

Receive signal and data from Pi-1; 

} 

Compute sub-block for size 128x128; 

if (i<num){ 

Send signal and data to Pi+1; 

} 

count+=128; 

} 

innerloop++; 

Send the local maximum to PPE through mailbox; 

} 

outerloop++; 

Send the right-most column of Pnum to PPE through DMA transfer; 

} 

End; 

_______________________________________________________________________ 

Figure 21. Pseudocode of the SIMD parallelization scheduling 

 

Throughout the entire computation, data is sent using direct SPE to SPE communication 

in order to avoid the latency of communicating through shared memory. Thus, 

synchronizing the communication between SPEs is crucial. Our implementation uses the 

MFC sendsignal command (mfc_sndsig) for the means of synchronization. The 

mfc_sndsig requires the effective address of the target SPE signal-notification channel as 

well as a 32-bit signal value. The command increments the channel count of the target 

SPEs signal-notification channel by one. The SPE verifies that the previous value has 

been read by performing an MFC get command from the effective address of the target 

SPE signal-notification register and ensuring that it has been reset by a channel read on 

the target SPE. The target SPE uses a read-channel instruction on the signal notification 

channel of interest to receive the 32-bit signal value. This read-channel instruction will 
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return immediately, reset any set bits in the signal-notification register, and reset the 

channel count if the associated signal-notification register has a waiting unread signal 

value. Otherwise, the read-channel instruction will cause the SPU to stall until a write to 

the signal-notification register happens. 

 

4.5. PERFORMANCE EVALUATION 

In this section, we analyze the performance of our parallel algorithm for varying number 

of SPEs and varying sequence lengths using artificial DNA data sets. The experiment has 

been conducted on the IBM Full System Simulator for the Cell Broadband Engine[135], 

which is a generalized simulator that can be configured to simulate a broad range of full 

system configurations. The simulator supports full functional simulation and is able to 

simulate and capture many levels of operational details on instruction execution, cache 

and memory subsystems, communications, and other important system functions. 

Furthermore, it supports cycle-accurate simulation, which not only models functional 

accuracy but also timing. It considers internal execution and timing policies as well as 

the mechanisms of system components, such as arbiters, queues, and pipelines. 

The performance statistics measured from the simulator for the parallel algorithm are 

then converted to the following measurements: computational time, speed-up, cell 

updates per second (CUPS), and the parallel efficiency, as shown in Figure 22-25 

respectively. The term l(r) describes that the aligned sequences of length l, and r rows are 

being sent from one SPE to another at one time. 
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Computational Time Performance Graph
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Figure 22. Computational graph of the performance evaluation results 

 

Figure 22 shows the computational time of our parallel algorithm on the abovementioned 

datasets. By using 8 SPEs, our parallel algorithm managed to reduce the computational 

time of aligning sequences of length 2048 from 64.34 milliseconds to 9.47 milliseconds 

by sending 64 rows at a time.  
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Speed-up Performance Graph
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Figure 23. Speed-up graph of the performance evaluation results 

 

The speed-up of our parallel algorithm is shown in Figure 23. By using 8 SPEs, we 

managed to achieve a speed-up of up to 6.91 for aligning sequences of length 2048 by 

sending 64 rows at a time.  
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Cell updates per second (CUPS) Performance Graph
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Figure 24. CUPS graph of the performance evaluation results 

 

Figure 24 shows the performance of our algorithm in terms of cell updates per second. 

By using 8 SPEs, our algorithm managed to achieve a speed-up of up to 450 MCUPS for 

sequence alignment of length 2048 by sending 64 rows at a time.  
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Figure 25. Efficiency graph of the performance evaluation results 

 

Our algorithm also shows a good scalability as it achieves high efficiency, especially for 

datasets of longer sequences, as can be seen in Figure 25. Sequence alignment of length 

2048 which sends 64 rows at a time provides 86.4% efficiency. 

For the SIMD parallelization, the performance statistics obtained from the simulator are 

converted to computational time, and cell updates per second (CUPS). The usage of 

larger blocks allows the alignment of longer sequences. In the experiment results, we 

have aligned sequences of length up to 8192. However, 8192 is not a length restriction of 

our algorithm but a limit imposed by the IBM Full System Simulator simulation time. 
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Table 5. Performance evaluation results of the SIMD parallelization 

Size Computational Time (ms) CUPS 

2048 x 1024 0.86 2,448.65 

2048 x 2048 1.49 2,808.58 

4096 x 4096 5.31 3,158.31 

8192 x 8192 21.34 3,169.22 

 

As shown in Table 5, our implementation achieves a performance of up to 3,160 

MCUPS. Thus, our implementation is 4-5 times faster than the Smith-Waterman 

implementation using GLSL on a GeForce 7900 GTX presented in [93]. The FPGA 

implementation using Verilog presented in [86] on a Virtex-II XC2V6000 is about 1.5 

times faster than ours. Although FPGAs are flexible, their configuration has to be 

changed for each single algorithm, which is in general more complicated than writing 

code for programmable architectures such as the Cell/BE. 

 

4.6. SUMMARY 

We have presented a parallel algorithm for sequence alignment on a heterogeneous 

multi-core system using both SIMD vectorization and wavefront parallelism. Our 

implementation on the Cell/BE simulator shows almost linear speedup and reduces the 

computational time for sequences of 2048 to only 9.47 ms, achieving 450 MCUPS in the 

process. Furthermore, we have shown that by exploiting the SIMD feature of the 

Cell/BE, we are able to align longer sequences with excellent performance. In aligning 

two sequences of length 8192, our implementation achieves almost 3.2 GCUPS. 
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5. CBESW: IMPLEMENTATION OF THE SMITH-

WATERMAN ALGORITHM ON THE PLAYSTATION®3 

 

This chapter elaborates how the PlayStation® 3, powered by the Cell Broadband Engine, 

can be used as a computational platform to accelerate the Smith-Waterman algorithm for 

large protein datasets. Lastly, performance comparisons to other implementations such as 

SSEARCH, Striped Smith-Waterman, CUDA-SW and CUDASW++ are provided.  

 

5.1. INTRODUCTION 

The optimal local alignment of a pair of sequences can be computed by the dynamic 

programming (DP) based Smith-Waterman (SW) algorithm[33]. However, this approach 

is expensive in terms of time and memory cost. Furthermore, the exponential growth of 

available biological data[1, 136] means that the computational power needed is growing 

exponentially as well.  

Previous works in improving the search time of the SW algorithm include the usage of 

SIMD multimedia extension of general-purpose CPUs as well as accessible accelerator 

technologies, such as FPGAs, GPUs and specialized processors. Implementation by 

Farrar[137] exploits the SSE2 SIMD multimedia extension of general-purpose CPUs. His 

implementation makes use of query profile[138] and utilizes vector registers, which are 

parallel to the query sequence and are accessed in a striped pattern. FPGA 

implementations [86, 139] tend to be very expensive and hard-to-program. Hence, they 

are not suitable for many users. Liu et al. [93] first reported the implementation of the 
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Smith-Waterman algorithm on graphics hardware using OpenGL. Although it achieves a 

high efficiency, programming in OpenGL requires specialized skills. Therefore, 

Manavski[92] re-implemented the SW algorithm on a GPU with the recently released C-

based CUDA programming environment. Further SW implementations based on CUDA 

include [97, 140]. 

In this chapter, we demonstrate how the PlayStation®3 (PS3), powered by the Cell 

Broadband Engine[109], can be used to accelerate the Smith-Waterman algorithm.  

   

5.2. SMITH-WATERMAN ALGORITHM 

Our CBESW implementation uses the Smith-Waterman algorithm with affine gap 

penalties. The concept of the Smith-Waterman algorithm is described in Chapter 4.2. 

There are two basic approaches to vectorize the Smith-Waterman algorithm. All elements 

in the same minor diagonal of the DP matrix can be calculated independent of each other. 

Therefore, a possible vectorization approach is to compute the DP matrix in minor 

diagonal order[134], as elaborated in chapter 4. Another approach vectorizes the DP 

matrix computation in a column-wise order[137, 138]. By using vectors of elements 

parallel to the query sequence, the much-simplified dependency relationship and parallel 

loading of the vector scores from memory can be achieved, thus accelerating the DP 

matrix calculation.  

We have decided to use the column-based approach for vectorization on the Cell/BE. 

processor since (1) the column-based approach outperforms the minor-diagonal approach 

on Intel SSE2 architectures and (2) since we only need to store one column of the DP 
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matrix instead of two diagonals for the minor diagonal method, the column-based 

approach requires less SPE memory.  

 
5.3. IMPLEMENTATION 

Details of the CBESW implementation are elaborated in this section. We explain the 

mapping of the algorithm to the Cell/BE, the query profile utilized to speed up the 

computation as well as the saturation arithmetic. 

5.3.1. MAPPING TO THE CELL BROADBAND ENGINE 

Our sequence alignment implementation uses affine gap penalties and utilizes the 128-bit 

wide SIMD vector registers of the SPEs for optimization. The vectorization strategy is 

based on a column-based approach[137, 138]. It also employs a static load balancing 

strategy, which means that the work load is known at the start and distributed equally 

across the SPEs. The code is written in C together with the Cell/BE SIMD Multimedia 

Extension Language intrinsics and SPU intrinsics for portability. DMA transfers and 

mailbox functions are used for communication purposes. 

Table 6. List of SPU Low-Level Specific and Generic Intrinsics used  

Category of Intrinsics SPU Low-Level Specific and  
Generic Intrinsics used 

Constant Formation Intrinsics. spu_splats 

Arithmetic Intrinsics spu_add 
spu_sub 

Compare, Branch and Halt 
Intrinsics 

spu_cmpgt 

Bits and Mask Intrinsics spu_sel 

Logical Intrinsics 
spu_or 
spu_and 
spu_nor 
spu_nand 

Shift and Rotate Intrinsics 
spu_slqwbyte 
spu_rlmaskqwbyte 
spu_rlmaska 

Scalar Intrinsics spu_extract 
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A list of SPU Low-Level Specific and Generic Intrinsics used in our vectorized 

implementation, divided into categories, is shown in Table 6. Constant Formation 

Intrinsics, Arithmetic Intrinsics, Compare, Branch and Halt Intrinsics, Bits and Mask 

Intrinsics, Logical Intrinsics, Shift and Rotate Intrinsics and Scalar Intrinsics have been 

employed to access hardware features, which are not easily accessible from a high level 

language in order to obtain the best performance from the Cell/BE. More details about 

the syntax and semantics of these Intrinsics can be found in [141]. 

 

Figure 26. Mapping of the different stages of the CBESW implementation 

 

Figure 26 illustrates the mapping of different stages of SW-based protein sequence 

database scanning application onto the Cell/BE. The PPE starts by reading the query and 

the database from the respective files and then pre-processes the query sequences such 

that they are suitable for vector operations. The pre-processed query sequence, together 

with some context data, is sent to each respective SPEs, which in turn will generate its 

own query profile. This process is done using DMA transfers, namely mfc_get and 

mfc_put.  
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Given a database D consisting of |D| sequences and k SPEs. Each SPE aligns the query 

sequence to the database sequences. Pseudocode of the mapping is illustrated in Figure 

27. Scores obtained from those alignments are sorted locally in the SPEs and the b 

highest scores are sent to the PPE, where they are sorted once again to obtain the b 

overall highest scores. 

 
Figure 27. Pseudocode of the SPE code for the Cell/BE mapping 

 

Due to the fact that the SPEs only have 256 Kbytes of local memory, which have to store 

program code and data, memory allocation is crucial for the SPE. The current longest 

sequence in the Swiss-Prot database is 35,213 amino acids (accession number A2ASS6). 

In order to accommodate for longer protein sequence in the future, we allocate dynamic 

memory for the database sequences of up to 64,000 amino acids per sequence. Due to 
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these limitations, the maximum query sequence length allowed for our implementation is 

limited to 852. 

 

5.3.2. QUERY PROFILE 

In order to calculate M(i,j) in the SW DP matrix, the value sbt(S1[i], S2[j]) needs to be 

added to M(i−1, j−1). To avoid performing this table lookup for each element in the DP 

matrix, Rognes[138] and Farrar [137] suggested calculating a query profile parallel to the 

query sequence beforehand.  

Assuming that S1, S2 ∈ Σ* and S1 is the query sequence, the query profile is defined as a 

set P = {Px | x∈Σ} consisting of Σ numerical strings of length l1 each, where l1 = S1. 

Each string Px ∈ P consists of all substitution table values that are needed to compute a 

complete column j of the DP matrix for which S2[j] = x. Pre-computing the query profile 

greatly reduces the amount of substitution table lookup in the SW DP matrix 

computation, since Σ is usually much smaller than S2.   

The query profile can be calculated in a straightforward sequential layout [138] or in a 

more complex striped layout [137], as shown in Figure 28. The values in the query 

profile for sequential and striped layout are defined in Equation 13 and 14, respectively:  

Px[i] = sbt(S1[i],x), for all 1 ≤ i ≤ l1, 

Equation 13. Query profile equation for sequential layout 

( )( )( )1
1[ ] 1 % 1 ,x

iP i sbt S i p t x
p

   −
= − + +       

 for all 1 ≤ i ≤ l1 

Equation 14. Query profile equation for striped layout 
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where p is the number of segments and t is the segment length. 

 
Figure 28. Query profile layout 

 

In the striped layout, p corresponds to the number of elements that can be processed in a 

SIMD vector register (e.g. for 128-bit wide SIMD registers, p = 8 when using 16-bit 

precision). The length of each segment, t is defined in Equation 15. 

t = (l1 + p − 1)/p 

Equation 15. Segment length equation used for the query profile calculation 

 

Both approaches allow efficient vectorization on SSE2-compatible processors using the 

corresponding SIMD instruction set. Using the pre-calculated query profile, the 

computation of the DP matrix can be performed in column-wise order. Due to the 

simplified dependency relationship and parallel loading of the vector scores from 

memory, fast DP matrix calculations can be achieved. The advantage of the striped layout 
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compared to the sequential layout is that data dependencies between vector registers are 

moved outside the inner loop. For instance, when calculating vectors for the DP matrices 

H or F with the sequential layout, the last element in the previous vector has to be moved 

to the first element in the current vector. When using the striped query layout, this needs 

to be done just once in the outer loop when processing the next subject sequence 

character. 

 

5.3.3. SATURATION ARITHMETHIC 

The inner loop of the algorithm requires saturation arithmetic, namely saturated additions 

and saturated subtractions. The Cell/BE lacks the saturation arithmetic support, leaving 

the tasks to be handled by software instead of direct hardware support. In order to tackle 

this problem, we introduced two new functions, namely spu_adds and spu_subs to 

handle saturated additions and saturated subtractions, respectively. 

 

5.4. PERFORMANCE EVALUATION 

In this section, we analyze the performance of our parallel algorithm for various query 

sequence lengths using sequences from Swiss-Prot database. Searches for 18 query 

sequences with various lengths between 63 to 852 amino acids were performed. The 

accession numbers of the query sequences used are O29181, P03630, P02232, P05013, 

P14942, P00762, P53675, Q8ZGB4, P10318, P07327, P01008, P10635, P58229, P25705, 

P42357, P21177, Q38941 and O60341, respectively. All queries were run against Swiss-

Prot release 55.2 comprising 130,497,792 amino acids in 362,782 sequence entries. The 

gap-open penalty used was 10 and the gap-extension penalty used was 2. The scoring 
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matrix used in the testing was BLOSUM45. All experiments were carried out on a 

standalone PlayStation® 3 machine, with Yellow Dog Linux 5.0 operating system and 

the Cell Software Development Kit (SDK) 2.0.  

The performance statistics measured are then converted to the following measurements, 

i.e. computational time and Million Cell Updates Per Second (MCUPS). Given a query 

sequence of size Q and a database of size D, the MCUPS rating (million cell updates per 

second) is calculated by Equation 16. 

t
DQ 610××

 

Equation 16. MCUPS calculation equation 

 

where 

|Q| = size of query sequence in amino acids 

|D| = size of database sequences in amino acids 

t = run time (including input from file, initialization and result output) 

Table 7 shows the performance evaluation of our implementation, in terms of 

computational time and MCUPS. All queries were run against Swiss-Prot release 55.2 

comprising 130,497,792 amino acids in 362,782 sequence entries. Eighteen query 

sequences of length 63 to 852 amino acids were used. The gap-open penalty used is 10 

and the gap-extension penalty used was 2. The BLOSUM45 scoring matrix was used. 

Our CBESW implementation scales well with the number of activated SPEs, as can be 

seen from the experiments using 2, 4 and 6 SPEs. By using all 6 SPEs available in the 

PS3, our parallel algorithm reaches a peak performance of 3,646.48 MCUPS for a query 

sequence of length 852 (accession number O60341). 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



                                 CBESW: Implementation of the Smith-Waterman Algorithm on the Playstation®3 
 

 
School of Computer Engineering (SCE)  97 

Table 7. CBESW Performance Evaluation  

Accession 
number 

Query Sequence  
Length 

CBESW 
2 SPEs 

(seconds) 

CBESW 
4 SPEs 

(seconds) 

CBESW 
6 SPEs 

(seconds) 

CBESW  
6 SPEs 

(MCUPS) 
O29181 63 24.56 20.83 18.45 445 
P03630 127 38.14 24.67 19.05 869 
P02232 143 40.46 25.83 19.17 973 
P05013 189 44.59 26.94 19.60 1,258 
P14942 222 47.96 27.96 20.12 1,439 
P00762 246 49.77 28.33 20.24 1,586 
P53765 255 50.37 28.60 20.43 1,628 
Q8ZGB4 361 55.01 30.85 22.04 2,137 
P10318 362 55.16 30.88 22.06 2,141 
P07327 374 57.63 31.34 22.39 2,179 
P01008 464 60.89 32.45 23.18 2,612 
P10635 497 62.18 33.16 23.69 2,737 
P58229 511 64.20 34.20 24.43 2,729 
P25705 553 65.02 34.63 24.74 2,916 
P42357 657 70.02 37.29 26.64 3,218 
P21177 729 73.76 39.28 28.06 3,390 
Q38941 850 80.15 42.62 30.45 3,642 
O60341 852 80.25 42.68 30.49 3,646 
 

We have compared the performance of our CBESW implementation with other publicly 

available implementations of SW-based protein database scanning, namely 

SSEARCH[142], Striped Smith-Waterman[137], CUDA[92] and CUDASW++ v1.0[97]. 

Performance comparison between our CBESW implementation with other 

implementations are in terms of MCUPS. All queries were run against Swiss-Prot release 

55.2. The query sequences, as well as their respective Swiss Prot accession numbers, 

used in the different performance comparisons are shown in Table 8. 
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Table 8. List of query sequences used in different performance comparisons 

Accession 
number 

Query Sequence 
Length SSEARCH Striped SW CUDA CUDASW++ 

O29181 63 √ √ √ √ 
P03630 127 √ √ √ √ 
P02232 143   √ √ 
P05013 189   √ √ 
P14942 222   √ √ 
P00762 246   √ √ 
P53765 255 √ √ √ √ 
Q8ZGB4 361 √ √ √ √ 
P10318 362   √ √ 
P07327 374   √ √ 
P01008 464   √ √ 
P10635 497   √ √ 
P58229 511 √ √  √ 
P25705 553   √ √ 
P42357 657 √ √ √ √ 
P21177 729 √ √ √ √ 
Q38941 850 √ √ √ √ 
O60341 852 √ √ √ √ 

 

SSEARCH[142] is a SW implementation which is part of the FASTA[143] package. The 

SSEARCH performance is benchmarked on an Intel Core 2 Duo 2.4 GHz CPU with 1GB 

RAM. Both execution cores were used in the experiment. Nine query sequences with 

lengths of 63 to 852 amino acids and the BLOSUM45 scoring matrix were used. As 

shown in Figure 29, for a query sequence of length 852 (accession number O60341), 

SSEARCH achieves a performance of 121.91 MCUPS. Thus, our implementation is over 

30 times faster. 
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Figure 29. Performance comparison with the SSEARCH implementation 

 

Figure 30 shows the performance comparison between PS3 and striped SW. Striped SW 

is also benchmarked on an Intel Core 2 Duo 2.4 GHz CPU with 1GB RAM. Both 

execution cores were used in the experiment. Nine query sequences with lengths of 63 to 

852 amino acids and the BLOSUM45 scoring matrix were used. As can be seen from the 

figure, for query sequences with length > 255 amino acids, our PS3 implementation 

achieves a higher MCUPS performance compared to striped SW. The PS3 peak 

performance is 1.64 times faster than striped SW for the query sequence of length 852.  
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Figure 30. Performance comparison with the Striped Smith-Waterman 

implementation 

 

The performance comparison between the PS3 implementation and CUDA-SW on a 

single NVIDIA GeForce 8800GTX is shown in Figure 31. The CUDA implementation 

experiment was conducted with a GeForce 8800GTX 512 MB installed in a PC with a 

Dual-Core AMD Opteron 2210 1.8GHz CPU, 2GB RAM running Fedora 6. Seventeen 

query sequences with lengths of 63 to 852 amino acids were used. The scoring matrix 

used for the CUDA implementation was BLOSUM 50. As can be seen from the figure, 

our implementation achieves a better MCUPS performance. The PS3 peak performance is 

3 times faster compared to the peak performance CUDA implementation on a single 

NVIDIA GeForce 8800GTX. 
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Figure 31. Performance comparison with the CUDA implementation on a single 

NVIDIA GeForce 8800GTX 

 

CUDASW++ implementation was  benchmarked on a single NVIDIA Tesla C1060, 

consisting of 240 1.3 GHz streaming processor cores, installed in Intel Quad-Core i7-920 

2.66GHz CPU, 12GB RAM running Linux Fedora 10. The performance comparison 

graph is shown in Figure 32. Eighteen query sequences with lengths of 63 to 852 amino 

acids were used. The scoring matrix used for the CUDA implementation was BLOSUM 

50. In average, performance of the CUDASW++ is 4.38 faster compared to our CBESW 

implementation. As can be seen from the graph, the speed-up of CUDASW++ is more 

significant at short query length. The speed up obtained by the CUDASW++ compared to 

CBESW is expected, since Tesla C1060 is based on newer technology than PS3 by 

almost 4 years difference. 
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Figure 32. Performance comparison with the CUDASW++ implementation on a 

single NVIDIA Tesla C1060 

 

5.5. SUMMARY 

In this chapter, we have demonstrated that the PlayStation® 3, powered by the Cell 

Broadband Engine, can be effectively used to accelerate a biological sequence alignment 

application. In order to derive an efficient mapping onto this type of heterogeneous multi-

core architecture, we have utilized SIMD vectorization and parallel data partitioning and 

communication techniques.  

Our implementation achieves a peak performance of 3,646.48 MCUPS for a query 

sequence of length 852. Hence, the peak performance of our implementation is 30.1 times 

and 1.64 times faster than SSEARCH and striped SW, on an Intel Core 2 Duo 2.4 GHz. 

The CBESW peak performance is also 3 times faster compared to the peak performance 

CUDA implementation on a single NVIDIA GeForce 8800GTX. Comparison to 
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CUDASW++ on a single NVIDIA Tesla C1060, which is the one of the latest SW 

implementations with one of the most recent and powerful GPU, shows that it is 4.38 

faster compared to our CBESW implementation.  

The very rapid growth of biological sequence databases demands even more powerful 

high-performance solutions in the near future. Hence, our results are especially 

encouraging since high performance computer architectures are developing towards 

heterogeneous multi-core systems.  

Due to the 256 KB memory limitation of the SPE local store, the maximum query 

sequence length in our current implementation is 852. One of the limiting factors is that 

the size of the query profile grows with the length of the query sequence. Part of our 

future work is therefore to tackle this limitation. A promising approach is to align subject 

sequences against separate chunks of the query profile. The complete query profile only 

needs to be stored once in the main memory instead of the local store of the SPE. This 

frees up more memory space for the SPEs and thus allows longer query sequences. Given 

a query sequence of length l, the query profile can be divided into n chunks in which each 

chunks contains a query profile of size l/n. The respective SPEs can then align a part of 

the chunk of the query profile it has and get the next chunk from outside memory via 

concurrent DMA transfer. 
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6. IMPLEMENTATION OF A HEURISTIC PROTEIN 

SEQUENCE DATABASE SCANNING ALGORITHM ON 

THE CELL/BE 

 

This chapter discusses the implementation of a heuristic protein sequence database 

scanning algorithm, the BLASTP heuristic, on the Cell/BE. Furthermore, a new parallel 

communication pattern and a novel data structure utilized in the implementation are 

explained in detail. Lastly, performance comparisons of our Cell/BE BLASTP 

implementation on the Playstation®3 to the sequential FSA-BLASTP and NCBI-

BLASTP implementations are presented. 

 

6.1. INTRODUCTION 

Scanning genomic sequence databases is a common and often repeated task in molecular 

biology. The scan operation consists of finding similarities between a particular query 

sequence and all sequences of a bank. There are two basic algorithmic approaches to 

perform this scanning i.e. exhaustive dynamic programming and heuristic algorithm. 

Heuristic algorithm in general produces the result more rapidly compared to the 

exhaustive approach, although it does not guarantee an optimal result.  

The computational complexity of the exhaustive approach is quadratic with respect to the 

lengths of the alignment targets (query sequence and subject sequence). In order to 

reduce the complexity, filtration has been introduced as a heuristic at the cost of a 

generally lower quality of the results[144]. Filtration assumes that good alignments 
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usually contain short exact matches. Such matches can be quickly identified using data 

structures such as lookup tables. Identified matches are then used as seeds for further 

detailed analysis. Several filtration tools for sequence database searching have been 

introduced, e.g. [69, 145, 146]. Among them, BLAST (the Basic Local Alignment Search 

Tool[45, 69]) is the most popular software and is used to run millions of queries each day.  

Previous work on parallelizing BLASTP has focused on distributed memory architectures 

such as clusters[147] and reconfigurable hardware[148, 149]. 

In this chapter, we present new approaches to parallelize the scanning of protein 

databases using the BLASTP heuristic on the Cell/BE processor. This implementation is 

to our knowledge the first ever reported parallelization of BLASTP on the Cell/BE. 

 

6.2. BLAST-P ALGORITHM 

The basic idea for fast sequence database search is filtration. Filtration assumes that good 

alignments usually contain short exact matches. Such matches can be quickly computed 

by using data structures such as lookup tables. Identified matches are then used as seeds 

for further detailed analysis. The analysis pipeline of the BLASTP algorithm is shown in 

Figure 33. It consists of four stages. Each stage progressively reduces the search space in 

the database for significant alignment. We briefly describe each step in the following. 

More details can be found in[45, 69]. 

Word
Matching

Stage 1

database hits Ungapped
Extension

Stage 2

HSPs Gapped
Extension

Stage 3

Traceback
& Display

Stage 4

alignmentsHSAs

 
Figure 33. The BLASTP processing pipeline 
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Stage 1: This stage identifies hits. Each hit is defined as an offset pair (i,j) for which 

1

0
( [ ], [ ])w

k
sbt Q i k D j k T−

=
+ + ≥∑ , where sbt is an amino acid substitution matrix (e.g. 

BLOSUM65), w is the user-defined word length, T is a user-defined threshold, Q is the 

query sequence and D is the database. BLASTP implements this stage by preprocessing 

Q as follows. For each position i of Q the neighborhood N(Q[i…i+w−1],T) is computed 

consisting of all w-mers p for which 1

0
( [ ], [ ])w

k
sbt Q i k p k T−

=
+ ≥∑ . The complete neighborhood 

of a query is typically stored in an efficient data structure such as a lookup table or a 

finite-state automaton. The default parameter values are w=3 and T=11. 

Stage 2: Stage 2 outputs HSPs (high-scoring segment pairs) between Q and D. HSPs are 

identified by performing an ungapped extensions on a diagonal d which contains a non-

overlapping hit pair (i1,j1), (i2,j2) within a window A; i.e. d = i1 − j1 = i2 − j2 and w ≤ i2 − i1 

≤ A. If the resulting ungapped alignment scores above a certain threshold it is passed to 

Stage 3.  

Stage 3: This stage outputs HSAs (high scoring alignments) between Q and D. HSAs are 

identified by performing a seeded banded gapped dynamic programming based alignment 

algorithm using the previously identified HSPs as seeds. Alignments that score above a 

certain threshold are then passed to the final stage.   

Stage 4: The final alignments of the highest scoring sequences are calculated and 

displayed to the user. This requires the computation of the traceback path using the 

Smith-Waterman algorithm. 

An execution profiling of the BLASTP algorithm for scanning the GenBank non-

redundant protein database shows the following breakdown of execution time, as shown 

in Table 9.  
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Table 9. Breakdown of execution time of BLASTP 

Stage Percentage of Execution Time 

1 37% 

2 31% 

3 30% 

4 2% 

 

Hence, in order to efficiently map BLASTP on the Cell/BE all stages except Stage 4 need 

to be parallelized. 

 

6.3. IMPLEMENTATION 

Details of our BLASTP implementation on the Cell/BE are elaborated in this section. We 

discuss the parallelization approach in detail as well as the mapping of the algorithm to 

the Cell/BE. 

 

6.3.1. PARALLELIZATION APPROACH 

In order to achieve an efficient parallelization of protein sequence database scanning on 

the Cell/BE. processor, we need to address the following challenges. 

1. Limited local storage of the SPE

A major limitation when designing SPE kernels is that their local memory is only 256 

KByte for both instructions and data. Using default parameter for w and T the size of 

the lookup table used for Stage 1 by NCBI BLASTP is already around 400KByte for 

100 randomly selected query sequences. Therefore, we need to use an alternative data 

structure which requires significantly less memory.         

.  
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2. Data transfer and coordination between PPE and SPEs.  

The different stages of the BLASTP algorithm constitute a processing pipeline where 

the throughput of each stage in the pipeline depends on the filtration efficiency of the 

previous stage. Therefore, an efficient and flexible mechanism to transfer sequences 

from the database to the SPEs needs to be implemented. The PPE needs to 

coordinates this data transfer. 

 

6.3.2. MAPPING TO THE CELL BROADBAND ENGINE 

Figure 34 shows our mapping of the different stages of the BLASTP algorithm onto the 

Cell/BE. Stage 4 includes a ranking procedure on all database sequences that have passed 

Stages 1-3: The top 500 or less matching sequences whose scores exceed a certain 

threshold are displayed in descending order. Thus, this stage is performed by PPE. SPE 

kernels filter the database as follows. Information about all subject sequences from the 

database that have passed Stages 1-3 on an SPE are sent to the PPE. Upon receiving this 

information, the PPE completes Stages 1-4 for these subject sequences. The reason why 

not only Stage 4 is performed on the PPE is that this stage requires additional information 

from the previous stages and storing this on the SPEs would be too memory-intensive. 

However, since this redundant computation is merely performed for very few subject 

sequences the additional runtime is negligible. 
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Figure 34. Mapping of the different stages of the BLASTP algorithm onto the 

Cell/BE 

 

As mentioned above, the size of the codeword lookup data structure used by NCBI 

BLAST is too large for the local store of the SPEs. Therefore, we are using a more 

memory-efficient data structure for Stage 1. The utilized data structure is a compressed 

deterministic finite-state automaton (DFA), which is similar to the approach used by 

FSA-BLAST [72, 73]. The compressed DFA for w=3 is illustrated in Figure 35.  

YY…YA……CY…CAAY…AA

i=0 i=399i

DFA[i].nextWords = CurrentBlock;

DFA[i].next = DFA[(20*i)%(20^(w-1))] 

nil
Y……DCA

char * CurrentBlock[0…19]

0

13

0

7

16

33

0

26

 
Figure 35. Illustration of the compressed FSA data structure for w=3 
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Each possible prefix of lengths w−1 is represented by a state; i.e. for w=3 there are 400 

states representing the prefixes AA to YY, which are stored in the array DFA[i] in Figure 

35. Each state has two transitions: one to the next state (DFA[i].next) and one to a list of 

20 words (DFA[i].nextWords). Each entry in this list (currentBlock[0..19]) contains a 

pointer to an array of query positions. These query positions represent the neighborhood 

N(w,T) of the associated w-mer. This data structure allows the compression of frequently 

used query positions that are in neighborhoods of similar w-mers. For example in Figure 

35, N(‘CYC’,T) = {33, 16, 7} and N={‘CYA’,T} = {16, 7}. By storing these positions in 

subsequent order terminated by “0” it is possible to re-use memory for both 

neighborhoods. Our experiments have shown that the size the compressed DFA is only 

43.8 KByte on average. Hence, it is possible to store the complete data structure on each 

SPE for most queries. 

The DFA is transferred into each SPE. The PPE then reads sequences from the database 

and transfers them to the SPEs by Direct Memory Access (DMA). In order to hide 

latencies and achieve good load balancing, we have implemented four buffers on the PPE 

per SPE and two buffers on each SPE, as shown in Figure 36. Our double buffering 

scheme allows SPEs to receive a new subject sequence through DMA while processing 

another previously received sequence. The PPE continuously prepares sequence data for 

free buffers. Once a buffer is filled, the PPE sends a mailbox notification to the 

corresponding SPE. The number of buffer in the PPE for each SPE is therefore restricted 

by the size of the SPE’s Read Inbound Mailbox (which is four). Furthermore, the PPE 

dynamically assigns protein sequences to buffers depending on their lengths and the 

available memory. The maximum number of sequences inside a buffer is 32.   
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Figure 36. Buffering scheme 

 

All sequences inside a buffer are filtered by Stages 1-3 on one of the SPEs. If a sequence 

passes all these stages, the corresponding bit in the matching signal (32 bits) is set. After 

all sequences are processed, this matching signal is sent back to the PPE via a mailbox. 

The PPE then identifies all sequences that have passed Stages 1-3 on SPE and perform 

Stages 1-4 on them. Pseudocodes of the programs running on the PPE and each SPE are 

shown in Figure 37 and 38, respectively.  

 

1. Initialization 

2. Create DFA 

3. Start SPEs and send parameters and DFA lookup table to SPEs 

4. Check whether there is mail from SPEs 

    If there is a mail 

        Collect information of sequences that passed stages 1-3 and 

keep in a queue 

        Mark the corresponding buffer as free 

5. Check whether there is a free buffer 

    If a free buffer is found 

         Prepare data into it and mark it as occupied 

    Else 

         Do BLASTP searching stages 1-2 for sequences in the queue 
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6. Repeat steps 4-5 until there is no sequence in database 

7. Send commands to SPEs to complete last buffered sequences 

8. Wait until all buffers are marked as free 

9. Do BLASTP stages 3-4 

Figure 37. Pseudocode of the PPE code  

 
1. Initialization 

2. Receiving parameters and DFA from PPE 

3. Receiving mail with command from PPE 

4. If command is new-data-available 

       DMA the new data 

       If this is the 1st data 

           Go to 3 

       Else 

            Wait for last data to be completely DMA transferred 

            Do Stages 1-3 for sequences in the last data 

            Return matching signal to PPE through SPU Write Outbound   
            Mailbox 

            Go to 3 

5. If command is finish-last-sequence 

       Do Stages 1-3 for sequences in the last data 

       Return matching signal to PPE through SPE Write Outbound Mailbox 

       Exit         

Figure 38. Pseudocode of the SPE code 

 

Because of the limited storage of each SPE (256 KBytes) it is important to analyze the 

associated memory consumption. The size of SPE program is 100KByte. Thus, we have 

at most 156KByte for storing the DFA data structure, the two buffers as well as other 

parameters and intermediate results. Hence, we have assigned 10KByte to each buffer 

and up to 80KByte to the DFA. 80KByte is sufficient for DFAs for query sequences of 

up to 2000 base-pairs (bps). In our experiment, the average DFA size is 43.8KByte. If the 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



  Implementation of a Heuristic Protein Sequence Database Scanning Algorithm on the Cell/BE 
 

 
School of Computer Engineering (SCE)  113 

length of a subject sequence is over 10Kbps, it will be put directly into the sequence 

queue of the PPE without sending it to an SPE.  

Furthermore, some database sequences exceed a certain memory threshold during they 

are processed on the SPE. Such sequences will be marked and passed to the PPE for 

further processing. Although, this creates additional work, the number of such sequences 

is usually negligible. It is also another reason why the PPE performs all stages of the 

BLASTP algorithm instead of only Stage 4. Furthermore, note that we do not return 

results of matching sequences from SPEs because we do not want to increase SPE code 

size by increasing program complexity to return the search results. 

 

6.4. PERFORMANCE EVALUATION 

We have implemented the described Cell/BE BLASTP program using Cell/BE SDK 3.0 

and evaluated it on a PlayStation®3 (PS3), which contains a Cell/BE as its main 

processor. In order to evaluate the performance on a PS3, we have installed LINUX 

version 2.6.23-rc3 (gcc version 4.1.1 20061011 (Red Hat 4.1.1-30)). Please note that on 

the PS3 two of eight SPEs are used by the operating system running. Therefore, our 

experiments can only use up to six SPEs.  

We have compared the performance of our Cell/BE BLASTP program to FSA-BLASTP 

(available form www.fsa-blast.org) and NCBI-BLASTP 

(www.ncbi.nlm.nih.gov/BLAST/developer.shtml). FSA-BLAST uses an optimized 

sequential algorithm and is around 15% faster than NCBI-BLASTP with no loss in 

accuracy[72, 73]. FSA-BLASTP and NCBI-BLASTP are tested on a HP workstation 

xw4200 with Dual-core Pentium®4 (P4) CPU 3.0GHz, 2GB of RAM. Two-hit model [2] 
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is used for all BLASTP programs. Default values of W=3 and T=11 are adopted. The 

produced matching results by FSA-BLASTP and Cell/BE BLASTP are exactly the same. 

The protein sequence database we used in our experiments is the GenBank Non-

Redundant Protein Database (which is downloaded from 

ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.gz), containing 6,375,605 protein sequences. 

We have chosen 100 random sequences from the database as queries. The lengths of the 

query sequences are distributed uniformly between 1 and 2000bps.  

 
Figure 39. Performance comparison between our Cell/BE BLASTP implementation 

with the FSA-BLASTP and the NCBI-BLASTP 

 
A performance comparison of the presented parallel Cell/BE BLASTP program to the 

sequential FSA-BLASTP and NCBI-BLASTP programs are shown in Figure 39. It can 

be seen that Cell/BE BLASTP is faster than FSA-BLAST in most cases. The average 
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searching times are 217.5s for FSA-BLASTP, 244.75s for NCBI-BLASTP, and 67.97s 

for Cell/BE BLASTP. This corresponds to an average speedup of 3.2 and 3.6 

respectively. Activating the multithread option improves the average searching times to 

159.1s and 178.3s for FSA-BLASTP and NCBI-BLASTP, respectively. This corresponds 

to an average speedup of 2.3 and 2.6, respectively. 

More detailed statistics of the performance comparison are shown in Table 10. The 

performance is measured in terms of seconds and the speedup of the Cell/BE BLASTP 

implementation over the FSA-BLASTP implementation. From the table, we can see that 

Cell/BE BLASTP spends more time on Stage 4. This is because the PPE is a less 

powerful processor than a P4. The speedup of Cell/BE BLASTP mostly comes from 

stage 1-3 which are running on six PPEs of the PS3 in parallel.  

Table 10. Performance comparison between Cell/BE BLASTP and FSA-BLASTP 

Query length 

range 

FSA-BLASTP Cell/BE BLASTP 
Speedup 

Stages 

1-2 
Stage3 Stage4 Total 

Stages 

1-2 

Stage

3 

Stage

4 
Total 

1-300 40.1 5.66 0.30 46.5 28.9 1.77 0.74 32.9 1.41 

301-500 74.0 23.09 0.32 97.8 35.4 3.10 0.81 40.9 2.39 

501-800 110.3 46.57 0.50 157.8 44.5 4.30 1.10 51.5 3.06 

801-1100 151.0 50.98 0.92 203.4 52.8 4.74 1.83 61.1 3.33 

1101-1400 183.0 76.32 1.80 261.6 61.8 10.25 4.18 79.0 3.31 

1401-1700 216.9 109.01 3.22 329.6 67.2 15.19 7.98 92.4 3.57 

1701-2000 241.8 141.53 2.02 385.9 83.9 18.77 4.57 109.0 3.54 

 

The average number of sequences that are processed in each stage by FSA-BLASTP and 

in the PPE by Cell/BE BLASTP are shown in Table 11. In FSA-BLASTP, every database 

sequence is processed by Stages 1-2. The PPE in Cell/BE BLASTP only processes a very 

small faction of database sequences since most sequences have been filtered by SPEs in 
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parallel. This reduced number of sequences contributes to the less total runtime of 

Cell/BE BLASTP. However, the ideal speedup of around six is not reached since the 

parallel SPE filters add some data transfer and coordination overhead and the PPU is less 

powerful than a P4. It should also be noted that the speedup for shorter query sequences 

is generally lower since the runtime is too short to effectively compensate for the 

associated overheads. Furthermore, the number of database sequences for the Cell/BE 

BLASTP implementation is larger than the number of found matching sequences. This 

can be explained as follows. Firstly, if a sequence is too long to be sent to the SPE, it will 

be processed by the PPE directly. In the experiment, 72 sequences are longer than the 

maximum buffer length (10KByte). Secondly, some sequences in Stages 1-3 in the SPE 

exceed the maximum available memory space. These sequences are returned as matches 

and need further processing on the PPE. 

Table 11. Average number of sequences processed by each stage of FSA-BLASTP 

on a P4 and by the PPE in Cell/BE BLASTP 

Query 

length 

FSA-BLASTP Cell/BE BLASTP (only on PPE) 
Matching 

output Stages1-2 
Stage3 

Stages1-2 
Stage3 

Semi Gapped Semi Gapped 

1-300 

6,375,605 

96954 9443 2113 2062 1731 328 

301-500 334494 13749 2591 2570 1462 324 

501-800 617225 19602 5480 5471 3713 443 

801-1100 586139 24163 5408 5402 3569 471 

1101-1400 761097 34028 7193 7189 5178 443 

1401-1700 1096186 43616.1 15404 15402 12901 438 

1701-2000 1206705 38761 6734 6733 4126 428 

 

In addition, some query sequences require more processing time by both FSA-BLASTP 

and Cell/BE BLASTP than queries of similar lengths. The runtime statistics of the three 
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such exceptional sequences is shown in Table 12. It can be seen that for these three 

queries, a bigger number of database sequences need to be processed than average. This 

increases both CPU and PPE workload. 

Table 12. Runtime statistics of three exceptional sequences. 

Query 

length 
Method 

Time 

Stages 1-2 
Stage3 

Stage4 Total 
Semi Gapped 

605 

 

FSA-BLAST 63.55 160.89 6.40 0.80 232.13 

Cell/BE 58.65 11.63 1.85 1.88 75.61 

1455 
FSA-BLAST 138.97 348.58 0.38 24.96 513.43 

Cell/BE 84.48 65.49 1.28 66.17 219.43 

1945 
FSA-BLAST 225.87 316.33 1.02 2.63 546.35 

Cell/BE 132.11 109.53 1.36 6.98 251.52 

 

Query 

length 
Method 

Number of sequences 
Matching 

output Stages 1-2 
Stage3 

Semi Gapped 

605 

 

FSA-BLAST 6,375,605 1,890,358 33,061 500 

Cell/BE 5,536 5,536 2,288 500 

1455 
FSA-BLAST 6,375,605 2,981,242 23,895 500 

Cell/BE 8,344 8,344 4,115 500 

1945 
FSA-BLAST 6,375,605 1,555,474 170,541 500 

Cell/BE 27,681 27,677 25,473 500 

 

6.5. SUMMARY 

In this chapter, we have presented parallelization strategies for scanning protein sequence 

databases on the Cell/BE. using the BLASTP heuristic. In order to derive efficient 

mappings onto this type of heterogeneous multi-core architecture, we have utilized SIMD 

vectorization, parallel data partitioning and communication schemes, and a compressed 
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deterministic finite state automaton for hit detection in order to reduce memory 

consumption. Our BLASTP implementation on a PS®3 achieves an average speedup of 

3.2 compared to the optimized FSA-BLASTP and 3.6 compared to NCBI-BLASTP. The 

very rapid growth of biological sequence databases demands even more powerful high-

performance solutions in the near future. Hence, our results are especially encouraging 

since high performance computer architectures are developing towards heterogeneous 

multi-core systems. Therefore, the techniques presented in this chapter are of particular 

importance since they compare and analyze the efficiency of parallelization approaches 

on different parallel architectures. 

. 
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7. PAIRWISE DISTANCE MATRIX COMPUTATION 

This chapter elaborates our parallel implementation that accelerates the distance matrix 

computation used in multiple sequence alignments on the x86 and Cell Broadband 

Engine architecture, a homogeneous and heterogeneous multi-core system, respectively. 

Furthermore, we compare the performance of our implementation on the Playstation®3 

with other accelerator technologies, i.e. FPGA and GPU.  

 

7.1. INTRODUCTION 

Multiple sequence alignment (MSA) of many nucleotides or amino acids is an important 

tool in bioinformatics. It identifies patterns or motifs to characterize protein families, and 

is therefore utilized to detect homology between sequences as well as to perform 

phylogenetic analysis. Previous work on MSA heuristics to reduce the exponential 

complexity of computing optimal MSAs include MSA[46], ClustalW[58], T-Coffee[47], 

MAFFT[150], DIALIGN P[151] and PRALINE[63].  

ClustalW is considered to be one of the most popular MSA tools. It is based on the 

progressive alignment method. Software approaches to improve the performance of 

ClustalW have been introduced, including caching [152, 153] and parallel processing [18, 

154, 155]. Recent usage of easily accessible accelerator technologies to improve the 

ClustalW algorithm include FPGA[156] and GPU[93].  

Our profiling of ClustalW reveals that the distance matrix computation is the most time 

consuming phase and takes typically more than 90% of the overall runtime. Therefore, 

accelerating this phase would greatly improve the performance as a whole.  
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In this chapter, we introduce our implementation that accelerates the distance matrix 

computation on the Cell/BE and the commonly used Intel x86 architecture.  

 

7.2. MULTIPLE SEQUENCE ALIGNMENT ALGORITHM 

ClustalW[58] has over 26,000 citations in the ISI Web of Science and is considered to be 

one of the most popular MSA tools. It implements a progressive alignment method[56], 

i.e. it adds sequences one by one to the existing alignment to build a new alignment. The 

order of the sequences to be added to the new alignment is indicated by a pre-computed 

phylogenetic tree, which is called a guide tree. The guide tree is constructed using the 

similarity of all possible pairs of sequences stored in the distance matrix.  

 

 
(a)     (b)    (c) 

Figure 40. The three stages of the ClustalW algorithm. (a) Distance matrix 

computation. (b) Guide tree construction. (c) Progressive alignment. 

 

The ClustalW algorithm consists of 3 phases, as shown in Figure 40: 

1. Distance matrix computation:  

Each pairs of sequences are aligned separately to calculate their respective 

distance values. These values are stored in a so-called distance matrix. 

2. Guide tree construction:  
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The guide tree is calculated from the distance matrix using a neighbor joining 

algorithm[157]. The guide tree defines the order which the sequences are aligned 

in the next stage. 

3. Progressive alignment:  

The sequences are progressively aligned in accordance to the guide tree. 

 

Given n number of sequences of length m, the distance matrix computation has a 

quadratic complexity of O(n2m2). Profiling the three the above mentioned phases of 

ClustalW using gprof also shows that the distance matrix computation is the most 

computationally intensive phase and takes up more than 90% of the overall runtime. 

Hence, it can be concluded that accelerating the distance matrix computation would 

provide a good speed up for the ClustalW. 

Given a set of n sequences S = {S1, S2, …, Sn}, for two sequences Si, Sj ∈  S, the distance 

value d(Si,Sj) can be defined as Equation 17 below: 

{ }ji

ji
ji ll

SSnid
SSd

,min
),(

1),( −=  

Equation 17. Distance value equation 

 

where nid(Si,Sj) denotes the number of exact matches in the optimal local alignment of Si 

and Sj with respect to the given scoring system and li and lj denotes the length of Si and Sj, 

respectively. 

Liu et.al.[93] states that given two sequences S1 and S2 with affine gap penalties α and β 

and the substitution table sbt, a matrix NA(i,j) (1≤ i ≤ l1, 1≤ j ≤ l2) can be recursively 

defined as shown in Equation 18. 
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Equation 18. Recurrence relation equation by Liu et. al. 

 

For local alignment of sequences S1 and S2, given affine gap penalties α and β and the 

substitution table sbt, the nid (S1,S2) equation can be modified as shown in Equation 19. 

),(),( maxmax21 jiNSSnid A=  

Equation 19. Modified nid score equation 

 

where (imax,jmax) denote the coordinates of the maximum value in the corresponding 

matrix HA. 

Thus, the distance value d(Si,Sj) can then be redefined as shown in Equation 20. 
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Equation 20. Modified pairwise distance value equation 

 

A more detailed explanation and proof of these formulas is described in[93]. 

 

7.3. MAPPING TO THE CELL/BE 

This section explains the mapping of our Cell/BE implementation in details in terms of 

three subgroups, i.e. query profile, SIMD vectorization and multi-threading. 

 

7.3.1. QUERY PROFILE 

To speed up the computation, a query profile is pre-computed. A query profile is 

computed only once for the entire search and will save one memory lookup in the inner 

loop of the algorithm. Instead of indexing the original substitution matrix by the query 

sequence symbol and the database sequence symbol, the query profile is indexed by the 

query sequence position and the database sequence symbol. It contains the substitution 

score for matching each of the possible amino acid symbols with each symbol in the 

query sequence. The scores for matching a residue with each residue in the query 

sequence is followed by the scores for matching the next residue with each residue in the 

query sequence, and so on. Using this method, therefore, random accesses to the 

substitution matrix due to table lookup is replaced with sequential ones to the query. 

Figure 41 shows an example of a query profile for Lysine-specific histone demethylase 1 

protein (Swiss-Prot accession numbers O60341) with BLOSUM50 scoring matrix. 
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 M L S … P S M 

A -1 -2 +1 … -1 +1 -1 

B -3 -4 0 … -2 0 -3 

C -2 -2 -1 … -4 -1 -2 

…
 …
 

…
 

…
  …
 

…
 

…
 

X -1 -1 -1 … -1 -1 -1 

Y 0 -1 -2 … -3 -2 0 

Z -1 -3 0 … -1 0 -1 

Figure 41. Example of a query profile for Lysine-specific histone demethylase 1 

protein (Swiss-Prot accession numbers O60341) with BLOSUM50 scoring matrix 

 

For the Cell/BE implementation, the query profile computation is done in the PPE and is 

distributed to the respective SPEs using DMA transfer. For the SSE2 implementation, 

each thread contains its respective query profile information need to complete the 

computation. 

 

7.3.2. SIMD-SPECIFIC IMPLEMENTATIONS 

Our Cell/BE implementation takes advantage of the 128-bit Single Instruction Multiple 

Data (SIMD) vector registers of each SPEs. The Cell/BE mapping uses half word values 

(16 bits) for the computation, which is the smallest element supported by the Cell/BE 

instruction set. This allows eight cells to be processed per vector register. SPU 

intrinsics[141] are used improve the efficiency of the program. The SPE pseudocode is 

shown in Figure 42. 
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Figure 42. Pseudocode of the SPE code 

 

Based on Equation 20, nid(Si,Sj) is computed without computation of the actual 

traceback. Since all elements in the same minor diagonal of the dynamic programming 

matrix can be computed independent of each other in parallel, the computation is done in 

minor diagonal order, as illustrated in Figure 43.  

 Sj[1] Sj[2] Sj[3] Sj[4] Sj[5] Sj[6] Sj[7] Sj[8] Sj[9] … 

Si[1]          … 

Si[2]          … 

Si[3]          … 

Si[4]           

Si[5]           

Si[6]          … 

Si[7]          … 

Si[8]          … 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
  

 

Figure 43. Block diagram of our pairwise distance matrix implementation 

The minor diagonal approach is shown as dotted lines. The query profile is stored in a 

column based manner. For each computation of a minor diagonal, query profile values 

Initialization; 

Fetch the context data from the mailbox; 

Fetch the set of sequences using DMA transfer; 

While there are sequences to be processed 

 Calculate nid score; 

Compile the nid scores into a list nidlist; 

Send nidlist to PPE using DMA transfer; 
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for the respective cells needed for the computation are fetched and stored inside a score 

profile vector register. 

 
Figure 44. Pseudocode of the nid score calculation 

 

Given are sequences Si and Sj of lengths l1 and l2, respectively and vector registers vH, 

vE, vF, vNA, vNE and vNF containing the values HA, E, F, NA, NE and NF, respectively. For 

each iteration c (1 ≤ c ≤ (l1+l2-1)), the values of HA(i,j), E(i,j), F(i,j), NA(i,j), NE(i,j) and 

NF(i,j) are computed for all 1≤ i ≤l1 and 1≤ j ≤ l2. Calculations of the vH, vE, and vF 

vectors are done by utilizing the spu_cmpgt intrinsic, which compares each element of 

a vector with the corresponding element of another vector, to create vector masks. The 

masks are then used as patterns to generate the resulting vector using the spu_sel 

intrinsic, which selects the corresponding bit from either vector in accordance to a 

Initialization; 

Load gOpen to vector vGapOpen; 

Load gExtend to vector vGapExtend; 

For a = 1 to l1/k 

 Initialize vector registers for 1 round (k rows); 

For b = 1 to l2+k-1 

Load the necessary vector registers for anti diagonal  

computations; 

  Fetch respective query profile scores; 

Calculate vector register of E vE; 

Calculate vector register of NE vNE; 

  Calculate vector register of F vF; 

Calculate vector register of NF vNF; 

  Calculate vector register of HA vH; 

  Calculate vector register of NA vNA; 

End For 

End For 

Extract nid as NA (imax,jmax); 

Return nid;  
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provided pattern vector. The masks used in the vE, vF and vH computations are used to 

determine the value of the corresponding vNE, vNF and vNA vectors, respectively. The nid 

score is extracted as NA(imax,jmax), where (imax,jmax) denotes the coordinates of the 

maximum value in the corresponding matrix HA. 

Cell/BE does not support saturation arithmetic which are needed in the calculations to 

anticipate overflow problems. Hence, we utilized several spu intrinsics, i.e. spu_sel, 

spu_splats, spu_rlmaska, spu_nor and spu_and in conjunction with the 

existing spu_add and spu_sub to handle saturated additions and saturated 

subtractions, respectively. 

 

7.3.3. MULTITHREADING-SPECIFIC IMPLEMENTATIONS 

Our Cell/BE implementation utilizes the additional instructions of the PPE relating to 

control of the SPEs to implement the multi-threading. The PPE, which is capable of 

running a conventional operating system, has control over the SPEs and can start, stop, 

interrupt, and schedule processes running on the SPEs. Unlike SPEs, the PPE can read 

and write the main memory and the local memories of SPEs through the standard 

load/store instructions. 

Given k SPEs, Figure 45 illustrates the mapping of our multi-thread implementation onto 

the Cell/BE. 
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Figure 45. Mapping of pairwise distance matrix computation algorithm onto the 

Cell/BE 

 

The PPE reads the input dataset, preprocesses it and divides the dataset into equal size 

blocks for each SPE to process. Since the blocks are independent of each other, no thread 

synchronization is necessary during the calculations. The mailbox functions 

spe_in_mbox_write and spu_read_in_mbox are used to ensure that all the 

SPEs obtain their respective contexts in their local memory. Using the context data, each 

SPE then transfers any required information and necessary sequences.  

To improve transfer efficiency, the database sequences in main memory and in the local 

storage are aligned within the cache line and data structures are initialized during the 

transfer of the sequence. Once it has finished calculating all its respective nid(Si,Sj) 

scores, each SPE sends the scores to the PPE in form of a list. The PPE compiles the lists 

and calculate the distance values and stores them in the distance matrix. The matrix is 

then outputted in a text file.  
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7.4. MAPPING TO THE X86/SSE2 ARCHITECTURE 

Our SSE2 implementation uses pthread[158] to implement the multi-threading. The 

input dataset are preprocessed and sorted according to length. Each thread contains a 

copy of the database sequence, query sequence and its respective query profile. Since the 

dataset are sorted, the dataset into divided into roughly equal size workload for each 

thread to process. To avoid deadlock, pthread_mutex_lock and pthread_mutex_unlock 

operations are utilized.  

SSE2 is a Single Instruction Multiple Data (SIMD) instruction set extension to the x86 

architecture which allows the processors to operate on data in parallel. The SSE2 

instructions support 8 bit elements in the vector registers. This allows 16 cells to be 

processed per vector register. Based on Equation 20, nid(Si,Sj) is computed without 

computation of the actual traceback. Since all elements in the same minor diagonal of the 

dynamic programming matrix can be computed independent of each other in parallel, the 

computation is done in minor diagonal order. 

Given are sequences Si and Sj of lengths l1 and l2, respectively and vector registers vH, 

vE, vF, vNA, vNE and vNF containing the values HA, E, F, NA, NE and NF, respectively. 

For each iteration c (1 ≤ c ≤ (l1+l2-1)), the values of HA(i,j), E(i,j), F(i,j), NA(i,j), NE(i,j) 

and NF(i,j), are computed for all 1≤ i ≤l1 and 1≤ j ≤ l2.  

Unlike Cell/BE, Intel’s SSE2 instructions support saturation arithmetic. Hence, saturated 

subtractions and additions functions, _mm_subs_epu8 and _mm_adds_epu8, respectively, 

are utilized to ensure that the values of the vector are within valid range 
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7.5. PERFORMANCE EVALUATION 

In this section, we evaluate and compare our implementations. The first comparison is 

between our Cell/BE implementation and our x86/SSE2 implementation, a heterogeneous 

and homogeneous multi-core system, respectively. The second comparison is between 

our Cell/BE implementation and other accelerator technologies, i.e. FPGA and CUDA-

enabled GPU. 

 

7.5.1. PERFORMANCE ANALYSIS  

A set of performance evaluation experiments has been conducted using different numbers 

of protein sequences i.e. 400 sequences of average length 408, 600 sequences of average 

length 462, 800 sequences of average length 454, and 1000 sequences of average length 

446 as described in [93]. The experiments were carried out on a standalone PS®3 with 

Fedora Core 9.0 operating system and the Cell Software Development Kit (SDK) 3.1. 

The sequential ClustalW application, available online at http://www.bii.a-

star.edu.sg/achievements/applications/clustalw/ , was benchmarked on an Intel Pentium 4 

3.0 GHz processor with 1 GB RAM running on Windows XP.  

Table 13 shows the performance analysis of our Cell/BE implementation using the above 

mentioned datasets. It compares the run times of our implementation and the baseline 

ClustalW on various processors. The performance analysis breaks down the speed up 

obtained by each phase of the improvement made by the implementation. The non-

vectorized code is implemented according to the algorithm described in section 7.2, 

without the use of SIMD vectorization. The vectorized code is implemented according to 
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section 7.3.2. The term n(m) describes a dataset containing n sequences with an average 

length of m. 

Table 13. Performance analysis of the parallel algorithm. The term T and S 

describes the runtime and speed up, respectively  

#sequences 

(average length) 

Processor 400 

(408) 

600 

(462) 

800 

(454) 

1000 

(446) 

  T S T S T S T S 

Baseline  

ClustalW 

Pentium 4  

3.0 GHz 
833.1 N.A 1697.0 N.A 2966.6 N.A 4409.6 N.A 

Baseline  

ClustalW 
PPE 667.86 1.24 1361.13 1.24 2379.0 1.24 3536.2 1.24 

Non-vectorized  

code 
PPE 357.89 1.87 717.83 1.89 1702.08 1.80 1871.08 1.89 

Vectorized code PPE+1SPE 57.15 6.26 113.41 6.33 168.54 7.83 237.12 7.89 

Vectorized code PPE+6SPEs 11.01 5.19 20.36 5.57 29.53 5.71 40.82 5.81 

 

7.5.2. COMPARISON AGAINST X86/SSE2 ARCHITECTURE 

A set of performance evaluation experiments has been conducted using six protein 

sequence datasets, which are divided into three representative datasets as shown in Table 

14. Category A represents datasets of small number of long sequences, category B 

represents datasets of medium number of medium-length sequences and category C 

represents datasets of large number of short sequences. The datasets consist of sequences 

selected from the Human Immunodeficiency Virus (HIV) dataset downloaded from NCBI 

[159]. 
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Table 14. Categories of input protein dataset  

Dataset Number of Sequences Average Length Category 

1 400 856 A 

2 1000 858 A 

3 2000 266 B 

4 4000 247 B 

5 4000 83 C 

6 8000 73 C 

 

Our SSE2 implementation is benchmarked on IBM System x3650 with dual Xeon Quad 

Core E5430 2.66GHz and 6 GB RAM running CentOS 5.0 operating system. The 

Cell/BE experiments were carried out on a standalone PS®3 featuring a Cell/BE with 

frequency 3.2GHz and 256MB XDR Main RAM with Fedora Core 9.0 operating system 

and the Cell Software Development Kit (SDK) 3.1. The sequential ClustalW application, 

available online at http://www.bii.a-star.edu.sg/achievements/applications/clustalw/, was 

benchmarked on an Intel Pentium 4 3.0 GHz processor with 1 GB RAM running on 

Windows XP. 

Figure 46 shows the speed-ups obtained by our SSE2 implementation up to 32 threads 

against our single-threaded vectorized version. Over the six datasets, our SSE2 

implementation with 32 threads achieved an average speed-up of 6.6x over our single-

threaded vectorized version. 
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Figure 46. Speed-up of our x86/SSE2 implementation with up to 32 threads 

 

Table 15. Performance evaluation results  

Number of 

Sequences 

Average 

Length 

SSE2 

implementation 

with 32 threads 

Cell/BE 

implementation 

on the PS3® 

ClustalW on P4 

3.0 GHz 

400 856 20.23 16.79 3114 

1000 858 122.80 101.21 19670 

2000 266 55.64 56.83 4386 

4000 247 190.30 173.26 19424 

4000 83 32.70 39.04 1595 

8000 73 96.07 125.14 5165 

 

Table 15 shows the performance evaluation of our implementations using the above 

mentioned datasets on different architectures, i.e. the SSE2 implementation with 32 

threads, PS3® implementation with 6 SPEs and a baseline ClustalW on a P4. The term 
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n(m) describes that dataset contains n sequences with an average length of m. The speed-

up of our SSE2 and Cell/BE implementations are benchmarked against the baseline 

ClustalW. 

Throughout the benchmark, SSE2 implementation shows a comparable performance with 

the Cell/BE implementation. The Cell/BE implementation shows a better performance for 

datasets with fewer but longer sequences (category A), while the SSE2 implementation 

shows a better performance for datasets with more but shorter sequences (category C). 

This is due to the communication overhead for the PS3®, which involved DMA transfers 

of required data and sequences between the PPE and the SPEs. Over the six datasets, the 

SSE2 and Cell/BE implementations achieve an average of 99.6x and 108.5x speed-up 

over the phase one of the baseline ClustalW, respectively. 

 

7.5.3. COMPARISON AGAINST OTHER ACCELERATOR TECHNOLOGIES 

Our Cell/BE implementation was then compared to the FPGA and GPU implementations 

described in [87], in terms of speedups, programming productivity (in terms of 

implementation effort), cost efficiency, compute capability efficiency and power cost 

efficiency. Figure 47 shows the parallelization approaches utilized in each accelerator 

architecture. 
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Figure 47. Utilized parallelization and optimization approach for each 

accelerator architecture 

 

Our linear systolic array implementation is programmed using the Verilog HDL and 

targeted to the Xilinx XC5VLX330 FPGA device. The optimal performance can be 

obtained by fitting 16 linear systolic arrays of PEs with each array comprising 26 PEs and 

running at the maximum allowable frequency of 65MHz. The PE implementation has a 

16-bit datapath and 12-bit nid path. A substitution table of size 32 × 32 with a resolution 

16-bit is locally stored in each PE and the precision of the gap penalties is set to be 8-bit. 

To ease the access to sequences stored in the external RAM, each sequence is 

preprocessed and stored in one or more memory pages (1024 bytes for one page), 

depending on its length. When a new alignment starts, the alignment control logic reads 

in the memory pages occupied by the corresponding sequences from the external RAM. 

In this case, it takes a number of clock cycles to load in the sequences, but simplifies the 

system implementation.  

 
Sequential Algorithm 

Optimization of the sequential 
algorithm to allow more 
efficient parallelization 

Fine-grained SIMD 
parallelization using linear 

systolic array in Verilog HDL 

Coarse-grained SIMD 
parallelization using multi-

thread with CUDA 

Coarse-grained MIMD 
parallelization using multi-
thread with Cell/BE SDK 

Single or multi-lane linear 
systolic arrays of PEs 

Coalesced global memory, 
efficient shared memory and 

register utilization 

PPE, multiple SPEs, efficient 
DMA transfer  
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Our CUDA implementation is benchmarked on a GeForce GTX 280 graphics card, with 

30 streaming multiprocessors (SMs) comprising 240 scalar processors (SPs) and 1GB 

GDDR3 RAM, installed in a PC with an AMD Opteron 248 2.2 GHz processor running 

the Linux OS. The core frequency of the graphics card is 602MHz and the frequency of 

unified processors is 1296MHz. The performance evaluation of our Cell/BE 

implementation is carried out on a standalone PlayStation®3 featuring a Cell/BE with 

frequency 3.2GHz and 256MB XDR Main RAM running on the Linux OS.  

The sequential runtime of pairwise distance computation in ClustalW (version 2.0.9) is 

profiled on a desktop computer with a P4 3.0GHz processor and 1GB RAM running the 

Linux OS. Because a FPGA development board equipped with the Xilinx XC5VLX330 

FPGA device is not available as our resource, the runtime of the FPGA implementation is 

estimated through simulation. However, even though the runtime of the FPGA 

implementation is not so accurate, it still will not weaken the effect that gives readers a 

qualitative and intuitive performance comparison of these accelerators. 

To remove the dependency on the input sequences used for the different tests, cell 

updates per second (CUPS) is a commonly used performance measure in bioinformatics. 

A CUPS represents the time for a complete computation of one cell in matrix H and NH, 

including all memory operations and the corresponding computation of the values in the 

E, NE, F and NF matrices. Given a sequence dataset S={S1, S2, …, Si, …, Sn}, which 

consists of n sequences, the MCUPS (million cell updates per second) value of the 

pairwise distance computation for S is calculated by the following equation: 
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Equation 21. MCUPS calculation equation for pairwise distance matrix 

 

where li  and lj denote the lengths of the sequences Si and Sj respectively and t is the 

runtime in second. 

Table 16. Runtime speedups of the three accelerators compared with the sequential 

implementation  

Sequence 

Number 

Average 

Length 

P4 FPGA GPU Cell/BE 

Time(s) Time(s) Speedup Time(s) Speedup Time(s) Speedup 

400  856 3114  2.59 1202.32 9.64 323.19 16.79 185.44 

1000  858 19670  15.49 1269.85 58.54 336.01 101.21 194.35 

2000  266 4386  8.68 505.30 31.39 139.71 56.83 77.17 

4000  247 19424  31.46 617.42 99.33 195.55 173.26 112.10 

4000 83 1595 11.29 141.28 26.25 60.75 39.04 40.85 

8000  73 5165  39.42 131.02 68.61 75.28 125.14 41.27 

 

Table 16 demonstrates the runtime speedups of the three accelerators compared with the 

sequential implementation. The FPGA implementation outperforms that of GPU and 

Cell/BE to a great extent for all the datasets, with a highest speedup of 1269.85, a lowest 

speedup of 131.02 and the average speedups of 1236.08, 561.36 and 136.15 for datasets 

of Category A, B and C respectively. The Cell/BE implementation demonstrates the 

lowest performance with a highest speedup of 106.49, a lowest speedup of 37.05 and the 

average speedups of 102.11, 70.12 and 38.51 for datasets of Category A, B and C 

respectively. The GPU implementation performs better than the Cell/BE implementation 

and worse than the FPGA implementation, with a highest speedup of 336.01, a lowest 
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speedup of 60.75 and the average speedups of 329.60, 167.63 and 68.02 datasets of 

Category A, B and C respectively. For each accelerator, its speedup degrades as the 

datasets change from Category A to Category C, which can be explained by the larger 

amount of computation when the average length of a dataset is longer. 

Different physical characteristics of these accelerators determine the different 

programming models and languages. FPGA applications are mostly programmed using 

HDLs. In this chapter, Verilog HDL is used for the FPGA implementation. As a standard 

HDL, Verilog HDL is very similar in syntax to the C programming language and is easy 

to learn for designers with C programming experience and is easy to use for digital 

system implementation. It allows different levels of abstraction to be mixed in the same 

model: behavioral (or algorithmic) level, dataflow level, get level and switch level. Very 

efficient hardware implementation can be developed in Verilog HDL, but it requires a 

great deal of programming and implementation effort. CUDA is an extension of C/C++ 

which enables users to write scalable multi-threaded programs for CUDA-enabled 

GPUs[160]. CUDA programs can be executed on GPUs with NVIDIA’s Tesla unified 

computing architecture[161]. Cell/BE accommodates different instruction set 

architectures (ISAs) for the PPE and SPEs. The PPE ISA is an extension of the PowerPC 

ISA and the extensions consist of the vector/SIMD multimedia extensions and C/C++ 

intrinsics for the vector/SIMD multimedia extensions. The SPE ISA is a new SIMD ISA, 

called the Synergistic Processor Unit Instruction Set Architecture, with accompanying 

C/C++ intrinsics. Most coding for the Cell/BE might be done by using a high-level 

languages such as C/C++, but to produce efficient, optimized code, an extra effort is 

required for software implementationers to understand and exploit the PPE and SPE 
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machine instructions. Generally, for complex applications or algorithms, software 

implementation using high-level languages on GPUs or Cell/BE is much easier than 

hardware implementation using HDLs on FPGAs. Even though high-level languages for 

FPGA implementation are being rapidly developed, the effort to implement and verify 

the FPGA implementation is still large. Hence, the implementation effort must be taken 

into account when making decisions about what kind of accelerator technologies is 

selected as a solution.  

However, it is difficult to measure the accurate amount of implementation effort 

quantitatively for programming applications or algorithms. In this chapter, source lines of 

code (SLOC) is exploited as our implementation effort metric, which predicts the amount 

of effort required to develop a program by counting the number of effective lines in the 

program’s source code in software engineering. Table 17 shows the SLOC and 

performance per line of code (LOC) of the different implementations written in Verilog 

HDL on FPGA, written in CUDA on GPUs and written on Cell/BE using the PowerPC 

instruction set for PPE and the synergistic processing units instruction set for SPEs. For 

the FPGA implementation, the SLOC of those modules generated by Xilinx CORE 

generator are not counted in.  

As shown in Table 17, the FPGA implementation requires a lot more LOC than GPU and 

Cell/BE, and the LOC of the GPU implementation are approximately equivalent to those 

of the Cell/BE implementation. This suggests that GPU and Cell/BE require 

approximately equivalent implementation effort for a specific algorithm or application 

suitable for GPUs and Cell/BE, and that it require much more control logic and effort to 

directly implementation hardware in HDL languages on FPGAs than to program 
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equivalently functional software on GPUs or Cell/BE. After comparing the performance 

per LOC, we find that the GPU implementation shows the best performance per LOC for 

all the datasets. FPGA outperforms Cell/BE for datasets of Category A and B, but for 

dataset of Category C, Cell/BE does better than FPGA. 

Table 17. SLOC and performance per LOC of the three accelerators   

Accelerators SLOC 
MCUPS per LOC 

400(856) 1000(858) 2000(266) 4000(247) 4000(83) 8000(73) 

FPGA 4024 5.61 5.90 4.05 3.88 1.23 1.09 

GPU 819 7.41 7.67 5.51 6.03 2.60 3.08 

Cell/BE 987 3.53 3.68 2.52 2.85 1.43 1.38 

 

These accelerators are all commonly available commercial hardware with different unit 

costs. When selecting accelerators, the unit cost coming along with the high performance 

must be taken into consideration. For the Xilinx XC5VLX330-1FFG1760C FPGA 

device, the unit price is US$8,382 from the Digi-Key Corporation 

(http://www.digikey.com/) and a PNY GeForce GTX 280 graphics card is available for 

about US$500 and a PlayStation®3 80GB system for about US$400 at Amazon 

(http://www.amazon.com/).  

Table 18 gives the performance per dollar comparison of these accelerators. Even though 

the FPGA implementation gains the best performance but brings in very high unit cost, 

which results in its lowest performance per US$ compared to GPU and Cell/BE. With a 

medium unit cost and relatively higher performance, the GPU implementation shows the 

highest performance per US$, which is on average 4.47, 4.98 and 8.43 times better than 

the FPGA implementation and 2.58, 1.90 and 1.41x better than the Cell/BE 

implementation for datasets of Category A, B and C respectively. 
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Table 18. Performance per dollar of the three accelerators  

Accelerators 
Unit 

Price 

MCUPS per US$ 

400(856) 1000(858) 2000(266) 4000(247) 4000(83) 8000(73) 

FPGA 8,382 2.70 2.83 1.95 1.86 0.59 0.52 

GPU 500 12.14 12.56 9.02 9.88 4.26 5.04 

Cell/BE 400 8.84 9.21 6.30 7.13 3.57 3.45 

 

To compare the compute capability utilizations of those accelerators, the theoretical peak 

performance of each accelerator is estimated for sequence alignments. For the 

implementation on FPGA, there are 16 linear systolic PE arrays with each array 

consisting of 26 PEs, running at the maximum allowable frequency of 65MHz. Because 

one cell can be computed in one clock cycle, if excluding the overhead incurred by 

sequence partition and sequence loading operations, the maximum compute capability 

can be estimated as 16 × 26 × 65 MCUPS = 27040 MCUPS. For the implementation on 

GPU and Cell/BE, due to the conditional branching instructions, the computing time of 

one cell is estimated by averaging the computing time of multiple cells. For the 

implementation on GPU, the average computing time of one cell is 35 clock cycles, 

measured using the clock () function in the kernel. Because there are 240 SPs on the 

graphics card and the frequency of unified processors is 1296 MHz, without considering 

the concurrency of all threads in a warp, the estimated theoretical compute capability 

should be at least 240 × 1296 / 35 MCUPS = 8886 MCUPS. For the implementation on 

the Cell/BE, the average computing time of one cell is measured using the SPU 32-bit 

decrementer functions, namely the spu_read_decrementer and 

spu_write_decrementer, yielding a result of 30 clock cycles. The PS3 consists of 

6 SPEs, each with a 3.2 GHz clock, and the vector computation uses 16 bit values, which 
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means 8 cells are processed per vector register. Thus, the estimated theoretical compute 

capability is computed to be at least 6 × 8 × 3200 / 30 MCUPS = 5120 MCUPS. Table 19 

demonstrates the compute capability utilization of the three accelerators. 

Table 19. Compute capability utilizations of the three accelerators 

Accelerators 
Max. 

MCUPS 

Compute Capability Utilization (%) 

400(856) 1000(858) 2000(266) 4000(247) 4000(83) 8000(73) 

FPGA 27040 83.54 87.83 60.32 57.69 18.28 16.24 

GPU ≥ 8886 ≤ 68.31 ≤ 70.67 ≤ 50.57 ≤ 55.59 ≤ 23.97 ≤ 28.36 

Cell/BE ≥ 5120 ≤ 68.18 ≤ 71.03 ≤ 48.63 ≤ 55.01 ≤ 27.57 ≤ 26.61 

 

7.6. SUMMARY 

We have presented a parallel algorithm on a homogeneous and a heterogeneous multi-

core system for computation of distance matrix used in multiple sequence alignment 

algorithms. A performance analysis is done to break down the speed up obtained by each 

phase of the improvement. Three kinds of protein sequence datasets are used to evaluate 

the performance of our implementation. Our x86/SSE2 and Cell/BE implementations 

achieve an average of 99.6x and 108.5x speed-up over the phase one of the baseline 

ClustalW, respectively. 

We also compare the performance of our Cell/BE implementation with other emerging 

accelerator technologies, i.e. FPGA and CUDA-enabled GPU. The comparison gives a 

comprehensive understanding of the advantages and disadvantages of these accelerators 

and also provides a reference for mapping algorithms or applications onto them. In 

addition to speedup, these accelerators are compared from a wide range of factors, 

including programming model and language, implementation effort, performance per 

dollar and compute capability utilization.  
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The experimental results show that the FPGA obtains the best performance in terms of 

runtime with speedups of up to four orders of magnitude compared to only three-orders 

of magnitude on GPU and Cell/BE. However, raw speedup is not the only aspect that 

determines the best accelerator choice for a developer. Our results show that the FPGA 

approach has a poor or medium programming productivity due to its large design effort 

requirement and poor cost efficiency due to its high unit cost. Furthermore, GPUs have 

medium performance, usually provide good programming productivity and good cost 

efficiency; while the Cell/BE has a slightly lower performance than a GPU, but provides 

medium programming productivity and medium cost efficiency. In addition, compute 

capability efficiency indicates the extent of which these accelerators exploit the available 

compute resources for a specific design or implementation. Our observations show that 

FPGAs are usually able to furthest exploit the compute capability of the device. GPUs 

and Cell/BE are also able to exploit the device compute capability to a great extent and 

show almost the same efficiency in our experiments. Finally, in consideration of energy 

and environmental factors, power cost efficiency indicates the tradeoff between 

performance and power dissipation. As shown in our results, FPGAs usually give the best 

power cost efficiency due to its highest performance and lowest power dissipation, 

compared with GPUs and Cell/BE; Cell/BE gives better power cost efficiency than 

GPUs, due to its much lower power dissipation compared with GPUs; and GPUs give the 

worst power cost efficiency due to its very high power dissipation. 
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8.  CONCLUSION AND FUTURE WORK 

This chapter concludes the report by discussing the conclusion and future works of the 

study. 

 

8.1. CONCLUSION 

Biological data available in genomic sequence databases are growing exponentially. This 

growth rate will continue since more sequencing projects will be finished in the near 

future. As data increases, so does the workload for managing, processing and analysing 

this data. Hence, due to this continuing improvements in high-throughput genomic 

sequencing and the ever-expanding sequence databases, bioinformatics to be rapidly 

moving towards a data-intensive, computational science. As a result, advances in 

computational power and methods for bioinformatics applications, such as genomic 

sequence analysis, are needed as well. Traditional approaches to sequence analysis 

techniques are expensive in terms of time and memory. High performance computing is a 

widely used method to improve performance. The emergence of accelerator technologies 

such as multi-core architecture has made it possible to achieve an excellent improvement 

in execution time for many bioinformatics applications, compared to current general-

purpose platforms. Therefore, using multi-cores to solve sequence analysis problems is a 

promising and challenging research field, since large-scale computational bioinformatics 

problems can benefit much from this kind of processing power.  

Multi-core architectures may take on a number of forms. One form is the heterogeneous 

multi-core architecture, which can address a variety of applications. Due to the 

characteristics of heterogeneous multi-core architectures, the application or algorithm 
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development process must be significantly changed in order to fully explore its potential. 

Hence, it brings a shift of paradigm in applications development since in order to 

implement efficient and scalable code for this type of architecture, novel programming 

techniques are required. New sequence analysis algorithms have to be presented in order 

to execute efficiently on multi-core architectures and new parallel communication 

patterns and partitioning scheme in parallel models are required. In this thesis, we have 

investigated various algorithms and techniques how to efficiently map bioinformatics 

applications onto heterogeneous multi-core systems. 

Aligning long DNA sequences is a common and often repeated task in molecular biology. 

In this thesis, we have developed a novel, efficient and scalable parallel algorithm for 

very long DNA sequence alignment on a heterogeneous multi-core system, the Cell 

Broadband Engine. Our implementation utilizes two types of parallelization techniques: 

(i) SIMD vectorization within a processor and (ii) wavefront parallelization between 

processors. We also introduced a partitioning scheme to overcome the local storage 

limitation of the Synergistic Processor Elements (SPEs) as well as a direct SPE to SPE 

DMA transfer communication technique. Performance evaluation shows that our 

implementation shows almost linear speedup and leads to significant computational time 

savings. 

Next, we have demonstrated how the PlayStation® 3, powered by the Cell Broadband 

Engine, can be used as a computational platform to accelerate the Smith-Waterman 

algorithm, an optimal pairwise sequence alignment. For large protein datasets, our 

implementation on the PlayStation® 3 provides a significant improvement in running 
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time compared to other implementations such as SSEARCH, Striped Smith-Waterman 

and CUDA-SW. 

Furthermore, we have developed an novel implementation to accelerate a heuristic 

protein sequence database scanning algorithm, the BLASTP heuristic, on to a 

heterogeneous multi-core system, the Cell Broadband Engine. To our knowledge, this is 

the first ever reported parallelization of BLASTP on a heterogeneous multi-core system. 

We also introduced a new parallel communication pattern, in which the Power Processor 

Element (PPE) coordinates the data transfer. Furthermore, we utilized a data structure 

similar to compressed deterministic finite-state automaton (DFA) to fit the codeword lookup 

data in the SPEs. The BLASTP implementation on a Playstation®3 leads to significant 

runtime savings compared to corresponding sequential implementations. 

Finally, we have developed an efficient parallel implementation that accelerates the 

distance matrix computation used in multiple sequence alignments on the x86 and Cell 

Broadband Engine architecture, a homogeneous and heterogeneous multi-core system, 

respectively. By taking advantage of multiple processors as well as SIMD vectorization, 

we are able to achieve speedups of two orders of magnitude compared to the publicly 

available implementation utilized in multiple sequence alignment algorithms. We have 

also compared the performance of our implementation on the Playstation®3 with other 

accelerator technologies, i.e. FPGA and GPU. In general, Cell/BE offers a lower 

performance compared to other accelerator architectures. However, it is able to exploit 

the device compute capability to a great extent and even show better efficiency for 

Category C dataset. Furthermore, it requires less implementation effort in terms of LOC 

and provides acceptable performance-to-cost ratio due to its low cost. 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



  Conclusion and Future Work 

 

 
School of Computer Engineering (SCE)  147 

The speed-up of various bioinformatics implementations on the Cell/BE show that the 

Cell Broadband Engine Architecture is an attractive avenue for bioinformatics 

applications. It supports single and double precision floating point computation. 

Considering that the total power consumption of Cell/BE is less than half of a 

contemporary superscalar processor[106], Cell/BE can be considered as a promising 

power-efficient platform for future bioinformatics computing. Due to its low cost 

compared to other accelerator technologies, Cell/BE also provides a good performance-

to-cost ratio.  

The disadvantage of the Cell/BE Architecture is that it is a challenging environment for 

software development, i.e. it favors peak computational throughput over simplicity of 

program code. Another drawback is the 256 KB local store limitation of the SPE, 

requiring partitioning of input as well as data dependency checking mechanism in most 

applications. Data transfer through DMA also needs careful consideration as the data 

must be aligned equally in a 16byte grid and is restricted to 1,2,4,8, or n*16 bytes. Lastly,  

the capability of Cell/BE in performing double precision calculations as inferior 

compared to single precision. One way to handle this is to use iterative refinement, which 

means values are calculated in double precision only when necessary. 

Overall, we conclude that the Cell/BE is an attractive and suitable platform for 

bioinformatics algorithms. However, in order the reach its optimal potential, the 

programmer needs to be able to work out a solution to overcome its limitations, e.g. local 

store and data transfer, which may result in the increase of complexity of the program 

code. 
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8.2. FUTURE WORK 

Our future work includes three parts. The first part is to identify more bioinformatics 

applications that benefit much from the heterogeneous multi-core architecture. This will 

include Protein-Protein Interaction (PPI) prediction, which is a very important part in the 

field of bioinformatics and structural biology. The second one is to integrate our pairwise 

distance matrix computation algorithm with multiple sequence alignment tools. The third 

one is to apply new communication and dynamic load balancing techniques to our 

algorithms. 

 

8.2.1. PROTEIN-PROTEIN INTERACTION PREDICTION USING PARALLEL 

GA WITH ISLAND MODEL ON THE CELL/BE ARCHITECTURE 

In recent years, analysis of protein-protein interactions (PPIs) is an emerging issue to 

elucidate the mechanism of many biological processes, such as enzyme-substrate binding 

and immune response. Understanding protein-protein interactions is important in 

investigating intracellular signaling pathways and therefore is a very important aspect in 

the field of bioinformatics and structural biology.  

Proteins that interact are more likely to co-evolve[162-165], therefore it is possible to 

make inferences about interactions between pairs of proteins based on their phylogenetic 

distances. It has also been observed in some cases that pairs of interacting proteins have 

fused orthologues in other organisms. In addition, a number of bound protein complexes 

have been structurally solved and can be used to identify the residues that mediate the 

interaction so that similar motifs can be located in other organisms. 
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Wang et. al.[166] proposes a novel hybrid Genetic Algorithm (GA)/Support Vector 

Machine (SVM) method that can predict the interactions between proteins intermediated 

by the protein-domain relations. A protein is represented by the domains contained 

inside, which can consider the effects of domain duplication. To simulate the 

combination of different domains, a transformation of the domain composition was taken 

subsequently. Lastly, a genetic algorithm was used to seek the optimized transformation, 

which had been adopted as the input vector of a predictor constructed using support 

vector machines method.  

It would be interesting to see how such PPI prediction algorithm using a parallel Genetic 

Algorithm would be mapped on to the Playstation®3. The Playstation®3 with its 6 SPEs 

would benefit an island model approach of genetic algorithm, in which each SPEs is 

modeled as an island. Figure 48 illustrates this concept. The island model is scalable to 

continents, or even galaxies, with a multiple hierarchal clusters of the Playstation®3.  

 

 

 

 

 

 

 

 

 

 

 

Figure 48. Parallel genetic algorithm with island model on the Playstation®3 
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The remaining work to develop such implementation is to present a communication and 

load balancing strategy between islands and between continents (if applies), as well as a 

parallel genetic algorithm for mapping onto the SPEs. 

 

8.2.2. IMPLEMENTATION OF A SHORT READ ASSEMBLY ALGORITHM 

FOR DE NOVO GENOMIC SEQUENCING ON THE CELL/BE 

ARCHITECTURE 

Determining the complete genome sequence of a species is an important application of 

bioinformatics. New sequencing technologies have emerged recently[167], for example, 

pyrosequencing (454 Sequencing) [168] and sequencing by synthesis (Solexa) [169]. 

Compared to the traditional Sanger[170] method, these technologies are capable of 

generating sequence data at a fraction of the cost and much quicker produce shorter 

reads, currently ∼200 bp for pyrosequencing and 35 bp for Solexa[171].  

A critical stage in genome sequencing is the assembly of shotgun reads, or piecing 

together fragments randomly extracted from the sample, to form a set of contiguous 

sequences (contigs) representing the DNA in the sample. Traditional methods for whole-

genome shotgun fragment assembly rely on the overlap-layout-consensus approach [172], 

representing each read as a node and each detected overlap as an arc between the 

appropriate nodes. In sequencing projects that use Sanger technology, genomes are 

typically covered 6- to 10-fold. To assemble such data sets, the algorithms described 

above put great emphasis on the optimal exploitation of all reads. Issues like the 

correction of sequencing errors and the assembly of reads containing mismatches 
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increase the complexity of these algorithms. Due to their complexity, existing assemblers 

are incapable of assembling very large numbers of reads. 

Therefore, very short reads are not well suited to the traditional approach. Because of 

their length, they must be produced in large quantities and at greater coverage depths than 

traditional Sanger sequencing projects.  

Zerbino and Birney[173] developed a novel set of algorithms called Velvet to manipulate 

de Bruijn graphs for genomic sequence assembly. A de Bruijn graph is a compact 

representation based on short words (k-mers) that is ideal for high coverage, very short 

read (25–50 bp) data sets. Velvet represents a new approach to assembly that can leverage 

very short reads in combination with read pairs to produce useful assemblies. 

Heterogeneous multi-core systems have been shown to be able to improve the 

performance of multiple application due to its characteristics. Therefore, it would be 

interesting to see how a short read assembly algorithm can be mapped on the a 

heterogeneous multi-core system to improve its performance. To our knowledge, an 

implementation of a short read assembly algorithm for de novo genomic sequencing on a 

heterogeneous multi-core system such as the Cell Broadband Engine would be the first 

ever implementation and therefore be a novel contribution for the scientific community. 

 

8.2.3. OPEN PROGRAMMING LANGUAGE (OPENCL) ON THE CELL/BE 

OpenCL is a framework for writing programs that execute across heterogeneous 

platforms consisting of CPUs, GPUs, and other processors. It seeks to provide a 

framework for parallel programming on heterogeneous systems by using task-based and 

data-based parallelism. 
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The OpenCL 1.0 specification is made up of three main parts: the language specification, 

platform layer API and runtime API[174]. The language specification describes the 

syntax and programming interface for writing compute kernels that run on supported 

accelerators. The language used is based off of a subset of ISO C99. C was chosen as the 

basis for the first OpenCL compute kernel language due to its prevalence and familiarity 

in the developer community. To foster consistent results across different platforms, a 

well-defined IEEE 754 numerical accuracy is defined for all floating point operations 

along with a rich set of built-in functions. The developer has the option of pre-compiling 

their OpenCL compute kernel or letting the OpenCL runtime compile their kernels on 

demand. 

The platform layer API gives the developer access to routines that query for the number 

and types of devices in the system. The developer can then select and initialize the 

necessary compute devices to properly run their work load. It is at this layer that compute 

contexts and work-queues for job submission and data transfer requests are created. 

Finally, the runtime API allows the developer to queue up compute kernels for execution 

and is responsible for managing the compute and memory resources in the OpenCL 

system. 

Programming the Cell/BE is complicated both by the need to explicitly manage DMA 

data transfers for SPE computation, as well as the multiple layers of parallelism provided 

in the architecture, including heterogeneous cores, multiple SPE cores, multithreading, 

SIMD units, and multiple instruction issue. There is a significant amount of ongoing 

research in programming models and tools that attempts to make it easy to exploit the 

computation power of the Cell/BE architecture[175]. 
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Currently, an OpenCL implementation for Cell/BE is not yet available. IBM has said it is 

"in the works", but there is no hint as to when it will be available. Therefore, an OpenCL 

framework on the Cell/BE, which allow any program written with the framework 

runnable on the Cell/BE with little to no modification of the source code, would be very 

helpful for programmers to be able to exploit the computation power of the Cell/BE 

architecture to the fullest. 

 

8.2.4. THE FUTURE OF THE CELL BROADBAND ENGINE ARCHITECTURE 

In 2008, IBM announced a revised variant of the Cell/BE called the PowerXCell 8i[176], 

which is available in QS22 Blade Servers from IBM. The PowerXCell 8i is manufactured 

on a 65 nm process, and adds support for up to 32 GB of slotted DDR2 memory. It is 

similar to the Cell/BE, in which it consists of eight Synergistic Processor Elements 

(SPEs) and one PowerPC® Processor Element (PPE). The PowerXCell 8i also improves 

one of the drawbacks of the Cell/BE by dramatically improving the double-precision 

floating-point performance on the SPEs from a peak of about 12.8 GFLOPS to 102.4 

GFLOPS total for eight SPEs.  

The IBM Roadrunner supercomputer[177, 178], currently the world's second fastest[79], 

consists of 12,240 PowerXCell 8i processors, along with 6,562 dual-core AMD Opteron 

processors. Beside the QS22 and RoadRunner computers, the PowerXCell processor is 

also available as an accelerator on a PCI Express card and is used as the core processor in 

the QPACE project[179].  

The PowerXCell 32iv chip, which was marked to be the next extension of the 

PowerXCell 8i, however, had its development halted by IBM. According to IBM, the 
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design of the processor did not provide expected performance and Cell/BE would 

reappear in another form. The PowerXCell 32i was projected to feature four PowerPC 

processor elements (PPE) as well as 32 synergistic processing elements (SPEs).  

Another unfortunate development from the PS3 front is also disconcerting. The latest PS3 

Firmware system software update 3.21 released on April 2010[180] disables the Install 

Other OS feature that was available on the PS3 systems due to security concerns. This 

feature allowed PS3 users to install other operating systems such as Linux on the PS3 and 

use it as an entry-level personal computer which can be used as a complete development 

environment for the Cell/BE. Most of the experiments of our implementations are based 

on such setting. PS3 users currently using the Other OS feature can choose not to upgrade 

their systems. However, doing so would banned them from accessing the PlayStation 

Network and other gaming and entertainment contents. While this will have little impact 

on the PS3 as a supercomputer, it may be the end of the PS3 as a low-cost development 

environment for the Cell/BE. 

Although the future of the Cell/BE development looks bleak at the moment, the design, 

concept and algorithm elaborated in this thesis on various bioinformatics applications 

would still be relevant for other next-generation accelerator technologies, such as 

Larrabee [181]. 

Larrabee is a General Purpose GPU (GPGPU) chip that Intel is developing from its 

current line of integrated graphics accelerators. It is planned to be released in 2010 and is 

expected to be a platform for research and development in computer graphics and HPC. 

Larrabee's design of using many small, simple cores is similar to the multi-core concepts 

behind the Cell/BE. Further similarities in the use of a high-bandwidth ring bus to 
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communicate between cores also indicate that communication design and methods 

introduced by our Cell/BE implementations are applicable to next generation hardware 

such as Larrabee.  

Below are some significant differences in implementation which should make 

programming Larrabee simpler. 

• The Cell/BE is a heterogeneous multi core processor, which consists of one PPE 

and several SPE processors. Additionally, the PPE can run an OS. In contrast, 

Larrabee’s cores are homogeneous, and it is not expected to run an OS. 

• Each SPE has a local store, for which explicit DMA operations are used for all 

accesses to DRAM. Ordinary reads/writes to DRAM are not allowed. In Larrabee, 

all on-chip and off-chip memories are under automatically-managed coherent 

cache hierarchy, so that its cores virtually share a uniform memory space through 

standard copy (MOV) instructions. Larrabee cores each have 256K of local L2 

cache, and an access which hits another L2 segment takes longer to access 

• Because of the cache coherency noted above, each program running in Larrabee 

has virtually a large linear memory just as in traditional general-purpose CPU; 

whereas an application for Cell/BE should be programmed taking into 

consideration limited memory footprint of the local store associated with each 

SPE but with theoretically higher bandwidth. However, since local L2 is faster to 

access, an advantage can still be gained from using Cell/BE-style programming 

methods. 

• Cell/BE uses DMA for data transfer to/from on-chip local memories, which 

enables explicit maintenance of overlays stored in local memory to bring memory 
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closer to the core and reduce access latencies, but requiring additional effort to 

maintain coherency with main memory; whereas Larrabee uses a coherent cache 

with special instructions for cache manipulation, which mitigate miss and eviction 

penalties and reduce cache pollution (e.g. for rendering pipelines and other 

stream-like computation) at the cost of additional traffic and overhead to maintain 

cache coherency. 

• Each SPE in the Cell/BE runs only one thread at a time, in-order. A core in 

Larrabee runs up to four threads, but only one at a time. Larrabee's hyperthreading 

helps hide the latencies inherent to in-order execution. 
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