
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Heterogeneous multi‑core systems for
bioinformatics

Adrianto Wirawan

2010

Adrianto, W. (2010). Heterogeneous multi‑core systems for bioinformatics. Doctoral thesis,
Nanyang Technological University, Singapore.

https://hdl.handle.net/10356/42096

https://doi.org/10.32657/10356/42096

Downloaded on 13 Mar 2024 17:28:07 SGT

HETEROGENEOUS MULTI-CORE

SYSTEMS FOR BIOINFORMATICS

by

Adrianto Wirawan

Supervisor: Dr. Kwoh Chee Keong and Dr. Bertil Schmidt

Division of Information Systems
School of Computer Engineering

Nanyang Technological University

A thesis submitted to the Nanyang Technological University
in fulfillment of the requirement of the degree of

Doctor of Philosophy

July 2009

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

STATEMENT OF ORIGINALITY

I hereby certify that the content of this thesis is the result of work done by myself and has

not been submitted for higher degree to any other University or Institution.

 ………………………… …………………………

 Date Signature

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Preface

School of Computer Engineering (SCE) i

ABSTRACT

The bioinformatics research area is now faced with an obstacle of ever-increasing

biological data to verify their biological discovery. As data increases, so does the

workload for managing, processing and analysing this data. Combined with the inherent

complexity of biological problems, traditional approaches results in long run-time and

huge memory requirements. The emergence of accelerator technologies such as multi-

core architectures provides the opportunity to achieve significant improvements in

execution time for many bioinformatics applications, compared to sequential general-

purpose platforms. Using multi-cores to solve large scale bioinformatics applications,

such as sequence analysis, is therefore a promising and challenging research field, since

large-scale computational bioinformatics problems can benefit much from this kind of

processing power.

In order to implement efficient and scalable code for this type of architecture, a shift of

paradigm in applications development and novel programming techniques are required.

In this thesis, we investigate algorithms and techniques on how to efficiently map

bioinformatics applications onto a heterogeneous multi-core system, the Cell Broadband

Engine (Cell/BE). In particular, we have focused on the following important and widely

used applications, i.e. alignment of long DNA sequences, Smith-Waterman algorithm,

BLASTP algorithm and pairwise distance matrix computations, which is an integral part

of the multiple sequence alignment algorithms such as ClustalW.

Aligning long DNA sequences is a common and often repeated task in molecular biology.

We have developed a novel, efficient and scalable parallel algorithm for very long DNA

sequence alignment on a heterogeneous multi-core system, the Cell Broadband Engine.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Preface

School of Computer Engineering (SCE) ii

Our implementation utilizes two types of parallelization techniques: (i) SIMD

vectorization within a processor and (ii) wavefront parallelization between processors.

We have also introduced a partitioning scheme to overcome the local storage limitation

of the Synergistic Processor Elements (SPEs) as well as a direct SPE to SPE DMA

transfer communication technique. Performance evaluation shows that our

implementation achieves almost linear speedup and leads to significant computational

time savings for large datasets.

Next, we have demonstrated how the PlayStation® 3, powered by the Cell Broadband

Engine, can be used as a computational platform to accelerate the Smith-Waterman

algorithm, a method for optimal pairwise sequence alignment. For large protein datasets,

our implementation on the PlayStation® 3 provides a significant improvement in running

time compared to other implementations such as SSEARCH, Striped Smith-Waterman

and CUDA-SW.

Furthermore, we have developed a novel implementation to accelerate a heuristic protein

sequence database scanning algorithm, the BLASTP heuristic, on to a heterogeneous

multi-core system, the Cell Broadband Engine. To our knowledge, this is the first ever

reported parallelization of BLASTP on a heterogeneous multi-core system. We have also

introduced a new parallel communication pattern, in which the Power Processor Element

(PPE) coordinates the data transfer. Furthermore, we have utilized a data structure similar

to compressed deterministic finite-state automaton (DFA) to fit the codeword lookup data in

the SPEs. The BLASTP implementation on a Playstation®3 leads to significant runtime

savings compared to corresponding sequential implementations.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Preface

School of Computer Engineering (SCE) iii

Finally, we have developed an efficient parallel implementation that accelerates the

distance matrix computation used in multiple sequence alignments on the x86 and Cell

Broadband Engine architecture, a homogeneous and heterogeneous multi-core system,

respectively. By taking advantage of multiple processors as well as SIMD vectorization,

we are able to achieve speedups of two orders of magnitude compared to the publicly

available implementations utilized in multiple sequence alignment algorithms. We have

also compared the performance of our implementation on the Playstation®3 with other

accelerator technologies, i.e. reconfigurable accelerators, such as FPGAs, and GPUs with

CUDA programming model.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Preface

School of Computer Engineering (SCE) iv

ACKNOWLEDGEMENT

First and foremost, I would like to thank God for His grace and blessings throughout the

entire study.

I wish to express my deepest gratitude to my PhD supervisor Dr. Kwoh Chee Keong and

Dr. Bertil Schmidt, for their valuable guidance, assistance and advice throughout the

entire study. Their continuous encouragement and motivational support have been the

driving force behind this study.

I would also like to thank Mr. Gerrit Voss, Mr. Tan Chee Hian, Mr. Nim Tri Hieu, Mr.

Liu Yongchao and Mr. Zhang Huiliang and all others who have supported my research.

Last but not least, I would like to thank all my family and friends for their endearing love

and faithful support.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Preface

School of Computer Engineering (SCE) v

AUTHOR’S PUBLICATION

Journal Papers

1. A. Wirawan, C.K. Kwoh, B. Schmidt: Multi Threaded Vectorized Distance

Matrix Computation on the Cell/BE and x86/SSE2 Architectures, Bioinformatics,

2010, in press. doi:10.1093/bioinformatics/btq135 (Impact factor: 4.328)

2. A. Wirawan, B. Schmidt, H. Zhang, C.K. Kwoh: High Performance Protein

Sequence Database Scanning on the Cell B.E. Processor, Scientific

Programming, Vol. 17, No. 1-2, pp. 97-111, 2009

3. A. Wirawan, C.K. Kwoh, T.H. Nim, B. Schmidt: CBESW: Sequence Alignment

on the Playstation 3, BMC Bioinformatics, Vol. 9:377, 2008 (Impact factor:

3.78).

4. Y. Liu, B. Schmidt, A. Wirawan, C.K. Kwoh, D.L. Maskell: Comparison of

Accelerator Architectures for Large-Scale Biological Sequence Alignment, IEEE

Transactions on Parallel and Distributed Systems, under review.

Conference Papers

1. A. Wirawan, B. Schmidt, C.K. Kwoh: Pairwise Distance Matrix Computation for

Multiple Sequence Alignment on the Cell Broadband Engine, The International

Conference on Computational Science 2009 (ICCS 2009), Baton Rouge,

Louisiana, Springer, LNCS, Vol. 5544, pp. 954-963, 2009.

2. A. Wirawan, B. Schmidt, C.K. Kwoh: Parallel DNA Sequence Alignment on the

Cell Broadband Engine,7th International Conference on Parallel Processing and

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Preface

School of Computer Engineering (SCE) vi

Applied Mathematics (PPAM 2007), Gdansk, Poland, Springer, LNCS Vol. 4967,

pp. 1249-1256, 2008.

3. A. Wirawan, B. Schmidt: Parallel Discovery of Transcription Factor Binding

Sites, IEEE Asia Pacific Conference on Circuits and Systems (APCCAS 2006),

Singapore, IEEE Press, 2006.

4. N.T. Hieu, C.K. Kwoh. A. Wirawan, B. Schmidt: Applications of Heterogeneous

Structure of Cell Broadband Engine Architecture for Biological Database

Similarity Search, 2nd International Conference on Bioinformatics and

Biomedical Engineering (iCBBE2008), IEEE Press, pp. 5-8, 2008.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Preface

School of Computer Engineering (SCE) vii

TABLE OF CONTENTS

ABSTRACT ... i

ACKNOWLEDGEMENT ... iv

AUTHOR’S PUBLICATION ... v

TABLE OF CONTENTS .. vii

LIST OF TABLES .. xii

LIST OF EQUATIONS ... xiii

LIST OF FIGURES ... xiv

1. INTRODUCTION ... 1

1.1. Overview .. 1

1.2. Motivation .. 4

1.3. Objectives .. 9

1.4. Contributions.. 10

1.5. Synopsis of Thesis ... 12

2. STATE OF THE ART ... 14

2.1. Algorithm implementation techniques ... 14

2.1.1. Exhaustive Search Algorithms ... 14

2.1.2. Branch-and-Bound Algorithms .. 14

2.1.3. Dynamic Programming Algorithms ... 15

2.1.4. Greedy Algorithms... 16

2.1.5. Divide and Conquer Algorithms .. 16

2.1.6. Machine Learning Algorithms ... 17

2.1.7. Heuristic Algorithms .. 17

2.2. Sequence Alignment .. 18

2.2.1. Types of Alignment ... 18

2.2.1.1. Pairwise sequence alignment ... 18

2.2.1.2. Multiple sequence alignment ... 20

2.2.2. Scoring Scheme ... 22

2.2.2.1. Substitution Matrix .. 22

2.2.2.1.1. Unitary Scoring Matrix ... 22

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Preface

School of Computer Engineering (SCE) viii

2.2.2.1.2. Log-odds ratio ... 23

2.2.2.1.3. Point Accepted Mutation (PAM) .. 23

2.2.2.1.4. Block Substitution Matrix (BLOSUM) .. 24

2.2.2.2. Gap Penalties ... 25

2.2.3. Alignment Algorithms ... 26

2.2.3.1. Global alignment: Needleman-Wunsch algorithm 26

2.2.3.2. Local alignment: Smith-Waterman algorithm ... 28

2.2.3.3. Algorithms with affine gap penalty ... 29

2.2.3.4. Heuristic alignment algorithms .. 29

2.2.3.4.1. BLAST .. 30

2.2.3.4.2. FASTA .. 31

2.3. Parallel Computation Model and Parallel Architectures 32

2.3.1. Terminology ... 34

2.3.1.1. Speed-up .. 34

2.3.1.2. Parallel Overhead ... 34

2.3.1.3. Synchronization ... 34

2.3.1.4. Efficiency ... 35

2.3.1.5. Scalability .. 35

2.3.1.6. Task .. 35

2.3.2. von Neumann Architecture .. 36

2.3.3. Flynn's Classical Taxonomy .. 37

2.3.3.1. Single Instruction, Single Data (SISD) .. 37

2.3.3.2. Single Instruction, Multiple Data (SIMD) ... 38

2.3.3.3. Multiple Instruction, Single Data (MISD) ... 39

2.3.3.4. Multiple Instruction, Multiple Data (MIMD) .. 40

2.4. Accelerator Technologies in High Performance Computing 41

2.4.1. VLSI ... 41

2.4.2. FPGA ... 42

2.4.3. GPU.. 43

2.4.4. Multi-Core.. 47

2.4.4.1. Homogeneous Multi-core .. 48

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Preface

School of Computer Engineering (SCE) ix

2.4.4.2. Heterogeneous Multi-core ... 48

2.4.4.3. Cluster of Multi-core.. 49

3. CELL BROADBAND ENGINE .. 50

3.1. Introduction .. 50

3.2. Cell/BE Architecture .. 50

3.3. Overcoming the Three Wall Limitations ... 53

3.3.1. Overcoming the Power Wall .. 53

3.3.2. Overcoming the Memory Wall .. 54

3.3.3. Overcoming the Frequency Wall ... 54

3.4. Interprocessor communication ... 55

3.4.1. DMA transfer ... 55

3.4.2. Mailboxes ... 57

3.4.3. Signal notification channels (Signals) ... 58

3.5. Developing Applications for the Cell Broadband Engine 60

3.5.1. Vectorization .. 61

3.5.2. Data Alignment .. 61

3.5.3. Double-Buffering ... 61

3.5.4. Data Reuse ... 62

3.5.5. Branch Minimization ... 62

3.6. Programming techniques for the Cell/BE .. 62

3.6.1. Function-Offload Model .. 64

3.6.2. Computation-Acceleration Model ... 66

3.6.3. Streaming Model .. 72

4. ALIGNING LONG DNA SEQUENCE ON THE CELL BROADBAND ENGINE... 74

4.1. Introduction .. 74

4.2. Smith-Waterman Algorithm .. 75

4.3. Wavefront Parallelization .. 77

4.4. SIMD Parallelization ... 79

4.5. Performance Evaluation ... 82

4.6. Summary .. 87

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Preface

School of Computer Engineering (SCE) x

5. CBESW: IMPLEMENTATION OF THE SMITH-WATERMAN ALGORITHM ON

THE PLAYSTATION®3 ... 88

5.1. Introduction .. 88

5.2. Smith-Waterman Algorithm .. 89

5.3. IMPLEMENTATION .. 90

5.3.1. Mapping to the Cell Broadband Engine ... 90

5.3.2. Query Profile .. 93

5.3.3. Saturation Arithmethic ... 95

5.4. Performance Evaluation ... 95

5.5. Summary .. 102

6. IMPLEMENTATION OF A HEURISTIC PROTEIN SEQUENCE DATABASE

SCANNING ALGORITHM ON THE CELL/BE .. 104

6.1. Introduction .. 104

6.2. BLAST-P Algorithm .. 105

6.3. IMPLEMENTATION .. 107

6.3.1. Parallelization Approach .. 107

6.3.2. Mapping to the Cell Broadband Engine ... 108

6.4. Performance Evaluation ... 113

6.5. Summary .. 117

7. PAIRWISE DISTANCE MATRIX COMPUTATION .. 119

7.1. Introduction .. 119

7.2. Multiple Sequence Alignment Algorithm .. 120

7.3. Mapping to the Cell/BE ... 123

7.3.1. Query Profile .. 123

7.3.2. SIMD-specific Implementations .. 124

7.3.3. Multithreading-specific Implementations .. 127

7.4. Mapping to the x86/SSE2 Architecture ... 129

7.5. Performance Evaluation ... 130

7.5.1. Performance Analysis .. 130

7.5.2. Comparison against X86/SSE2 Architecture ... 131

7.5.3. Comparison against Other Accelerator Technologies 134

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Preface

School of Computer Engineering (SCE) xi

7.6. Summary .. 142

8. CONCLUSION AND FUTURE WORK .. 144

8.1. Conclusion ... 144

8.2. Future Work ... 148

8.2.1. Protein-Protein Interaction Prediction using Parallel GA with Island Model

on the Cell/BE Architecture .. 148

8.2.2. Implementation of A Short Read Assembly Algorithm for de novo Genomic

Sequencing on the Cell/BE Architecture .. 150

8.2.3. Open Programming Language (OpenCL) on the Cell/BE 151

8.2.4. The future of the cell broadband engine architecture 153

REFERENCES ... 157

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Preface

School of Computer Engineering (SCE) xii

LIST OF TABLES

Table 1. Traditional BLAST Programs ... 30

Table 2. Flynn's Taxonomy .. 37

Table 3. Comparison of mailboxes and signals .. 60

Table 4. Classification of Cell/BE applications into programming techniques 63

Table 5. Performance evaluation results of the SIMD parallelization 87

Table 6. List of SPU Low-Level Specific and Generic Intrinsics used 90

Table 7. CBESW Performance Evaluation ... 97

Table 8. List of query sequences used in different performance comparisons 98

Table 9. Breakdown of execution time of BLASTP ... 107

Table 10. Performance comparison between Cell/BE BLASTP and FSA-BLASTP 115

Table 11. Average number of sequences processed by each stage of FSA-BLASTP on a

P4 and by the PPE in Cell/BE BLASTP .. 116

Table 12. Runtime statistics of three exceptional sequences. ... 117

Table 13. Performance analysis of the parallel algorithm. The term T and S describes the

runtime and speed up, respectively .. 131

Table 14. Categories of input protein dataset ... 132

Table 15. Performance evaluation results ... 133

Table 16. Runtime speedups of the three accelerators compared with the sequential

implementation ... 137

Table 17. SLOC and performance per LOC of the three accelerators 140

Table 18. Performance per dollar of the three accelerators .. 141

Table 19. Compute capability utilizations of the three accelerators 142

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Preface

School of Computer Engineering (SCE) xiii

LIST OF EQUATIONS

Equation 1. Unitary scoring matrix equation .. 22

Equation 2. Log-odds ratio scoring matrix equation .. 23

Equation 3. Linear gap penalty equation .. 25

Equation 4. Affine gap penalty equation .. 26

Equation 5. Needleman-Wunsch equation .. 27

Equation 6. Smith-Waterman equation ... 28

Equation 7. Speed-up equation ... 34

Equation 8. Efficiency equation .. 35

Equation 9. Simplified efficiency equation .. 35

Equation 10. Smith-Waterman equation for affine gap penalties 75

Equation 11. Smith-Waterman equation for linear gap penalties 75

Equation 12. Modified Smith-Waterman equation for the Cell/BE mapping 78

Equation 13. Query profile equation for sequential layout ... 93

Equation 14. Query profile equation for striped layout .. 93

Equation 15. Segment length equation used for the query profile calculation 94

Equation 16. MCUPS calculation equation .. 96

Equation 17. Distance value equation ... 121

Equation 18. Recurrence relation equation by Liu et. al. .. 122

Equation 19. Modified nid score equation .. 122

Equation 20. Modified pairwise distance value equation ... 123

Equation 21. MCUPS calculation equation for pairwise distance matrix 137

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Preface

School of Computer Engineering (SCE) xiv

LIST OF FIGURES

Figure 1. Growth rate of the GenBank and UniProtKB/TrEMBL databases on a semi-log

graph .. 2

Figure 2. DNA structure ... 5

Figure 3. Number of processor cores in computers according to a recent survey 8

Figure 4. PAM250 matrix ... 24

Figure 5. BLOSUM62 matrix ... 25

Figure 6. Data dependency in Needleman-Wunsch algorithm ... 27

Figure 7. Sequential programming execution ... 32

Figure 8. Parallel programming execution .. 33

Figure 9. Block diagram of the von Neumann architecture .. 36

Figure 10. Single Instruction, Single Data (SISD) ... 38

Figure 11. Single Instruction, Multiple Data (SIMD) ... 39

Figure 12. Multiple Instructions, Single Data (MISD) ... 39

Figure 13. Multiple Instruction, Multiple Data (MIMD) .. 40

Figure 14. Block diagram of the Cell Broadband Engine Architecture 51

Figure 15. Pseudocode of the Function Offload Model .. 64

Figure 16. Pseudocode of the Computation-Acceleration Model 67

Figure 17. Pseudocode of the Streaming Model ... 72

Figure 18. Data dependency in the SW algorithm alignment matrix 76

Figure 19. Sequence alignment of CAGTTTCG and ACAGTCGAACG 77

Figure 20. Block diagram of the wavefront algorithm ... 78

Figure 21. Pseudocode of the SIMD parallelization scheduling 81

Figure 22. Computational graph of the performance evaluation results 83

Figure 23. Speed-up graph of the performance evaluation results 84

Figure 24. CUPS graph of the performance evaluation results .. 85

Figure 25. Efficiency graph of the performance evaluation results 86

Figure 26. Mapping of the different stages of the CBESW implementation 91

Figure 27. Pseudocode of the SPE code for the Cell/BE mapping 92

Figure 28. Query profile layout .. 94

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Preface

School of Computer Engineering (SCE) xv

Figure 29. Performance comparison with the SSEARCH implementation 99

Figure 30. Performance comparison with the Striped Smith-Waterman implementation

.. 100

Figure 31. Performance comparison with the CUDA implementation on a single Nvidia

GeForce 8800GTX... 101

Figure 32. Performance comparison with the CUDASW++ implementation on a single

NVIDIA Tesla C1060 .. 102

Figure 33. The BLASTP processing pipeline ... 105

Figure 34. Mapping of the different stages of the BLASTP algorithm onto the Cell/BE

.. 109

Figure 35. Illustration of the compressed FSA data structure for w=3. 109

Figure 36. Buffering scheme... 111

Figure 37. Pseudocode of the PPE code ... 112

Figure 38. Pseudocode of the SPE code ... 112

Figure 39. Performance comparison between our Cell/BE BLASTP implementation with

the FSA-BLASTP and the NCBI-BLASTP ... 114

Figure 40. The three stages of the ClustalW algorithm. (a) Distance matrix computation.

(b) Guide tree construction. (c) Progressive alignment. 120

Figure 41. Example of a query profile for Lysine-specific histone demethylase 1 protein

(Swiss-Prot accession numbers O60341) with BLOSUM50 scoring matrix ... 124

Figure 42. Pseudocode of the SPE code ... 125

Figure 43. Block diagram of our pairwise distance matrix implementation 125

Figure 44. Pseudocode of the nid score calculation .. 126

Figure 45. Mapping of pairwise distance matrix computation algorithm onto the Cell/BE

.. 128

Figure 46. Speed-up of our x86/SSE2 implementation with up to 32 threads 133

Figure 47. Utilized parallelization and optimization approach for each 135

Figure 48. Parallel genetic algorithm with island model on the Playstation®3 149

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Introduction

School of Computer Engineering (SCE) 1

1. INTRODUCTION

1.1. OVERVIEW

Due to the rapid progress of genome sequencing projects in the past decade, there has

been an exponential increase in the amount of available genomic sequence data. The

three principal comprehensive databases of nucleotide sequences currently are:

1. GenBank[1]

GenBank is the National Institute of Health (NIH) genetic sequence database,

which is composed of an annotated collection of all publicly available DNA

sequences. It is maintained at the National Center for Biotechnology Information

(NCBI) in Maryland, USA.

2. European Molecular Biology Laboratory (EMBL) Nucleotide Sequence

Database[2]

The EMBL Nucleotide Sequence Database constitutes Europe's primary

nucleotide sequence resource. Main sources for DNA and RNA sequences are

direct submissions from individual researchers, genome sequencing projects and

patent applications. It is maintained at the European Bioinformatics Institute

(EBI) in Cambridge, UK.

3. DNA Data Bank of Japan (DDBJ)[3]

DDBJ is based in Japan's National Institute of Genetics. DDBJ is the sole DNA

data bank in Japan, which is officially certified to collect DNA sequences from

researchers and to issue the internationally recognized accession number to data

submitters. It is maintained at the National Institute of Genetics in Mishima,

Japan.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Introduction

School of Computer Engineering (SCE) 2

These three databases form the International Nucleotide Sequence Database

Collaboration[4], which has led to many beneficial projects, e.g. the taxonomy project[5]

and the feature table[6]. Since all three databases exchange the collected data on a daily

basis, the three data banks share virtually the same data at any given time. Their objective

is to ensure that nucleotide sequence information’s are stored publicly and freely, such

that it is easily accessible for researchers and scientists worldwide. This policy has

proved to be tremendously successful for the progress of science and has led to an

enormous increase in size and usage of genome databases.

Figure 1. Growth rate of the GenBank and UniProtKB/TrEMBL databases on a

semi-log graph

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Introduction

School of Computer Engineering (SCE) 3

Genome and protein databases are growing exponentially and this growth rate will

continue for a foreseeable future. The GenBank release notes for release 172.0 in June

2009 state that "from 1982 to the present, the number of bases in GenBank has doubled

approximately every 18 months." This trend is also reflected in protein databases. The

UniProtKB/TrEMBL Database[7, 8] release notes for release 40.5 in July 2009 states that

compared to a previous release 3 months ago, the current dataset” represents an increase

of 16%”. Figure 1 illustrates the number of base pairs and entries in the GenBank from

1982 to June 2009 as well as the number of amino acids and entries in the

UniProtKB/TrEMBL Database from 1996 to July 2009 on a semi-log graph.

Furthermore, the advent of high-throughput next generation sequencing technologies also

brought a need for high throughput in bioinformatics. Two new sequencing technologies

were introduced in 2005, i.e. the 454 system using pyrosequencing technology [9], and

the Solexa system, which detects fluorescence signals [10]. Both sequencing techologies

execute millions of sequencing reactions in parallel, producing data at ultrahigh rates

[11]. These next generation technologies offer drastically faster and cost-effective

sequence throughput and are vastly superior to shotgun sequencing due to the high

volume of data and the drastically short time to sequence a whole genome or disease

genome, although genome assembly is much more computational expansive. Therefore,

the next generation sequencing technologies will foster enormous potential applications

of high performance computing techniques in bioinformatics.

Bioinformatics is a growing research field which involves the use of compute-intensive

techniques to solve and analyze biological data. Major research efforts in the field such as

sequence alignment, prediction of gene expression, and protein-protein interactions relies

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Introduction

School of Computer Engineering (SCE) 4

on fast and reliable computational approaches. Furthermore, most bioinformatics

applications with optimal solutions are often associated with long runtimes and expensive

resources. These are due to various factors:

• Biological data are obtained by experiments. Hence, they are prone to errors. The

need to deal with errors and uncertainties results in high complexity algorithms.

• Some problems that can be solved using polynomial time algorithms have massive

computational requirements due to large data sets that have to be analyzed.

• Many problems are computationally intensive due to their inherent algorithmic

complexities, e.g. protein folding[12]. Some problems are even NP-hard problems,

which means an exact solution cannot be solved in polynomial time.

The work presented in this thesis is mainly concerned with constructing efficient multi-

core algorithms and techniques that address bioinformatics problems, especially in the

area of sequence alignment.

1.2. MOTIVATION

In the last few decades, scientists have tried to understand how life evolved by studying

the flow of genetic information in a cell. DNA (deoxyribonucleic acid) is the genetic

material, which are read and translated into proteins with specific functions. A common

theme throughout biological systems at all levels is that structure and function are

intimately related. Therefore, the first step would be to know and understand the DNA

and protein structure thoroughly, as well as the organization of the whole molecule as the

genomes of an organism. Bioinformatics is a field that would provide approaches for

research on DNA and protein sequences as it relies on extensive computational

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Introduction

School of Computer Engineering (SCE) 5

approaches to decode the information hidden behind billions of nucleotides and amino

acids, respectively.

Figure 2. DNA structure

DNA was discovered in 1869. The two strands of a DNA molecule are tied together in a

helical structure, known as the double helix structure[13]. Four different bases are used to

form the DNA molecules: adenine, cytosine, guanine, thymine (A, C, G, T). Pairs are

always formed between the bases A and T, and between G and C. Each base is attached

to a phosphate group and a deoxyribose sugar to form a nucleotide, as shown in Figure 2.

DNA contains the genetic instructions used in the development and functioning of all

known living organisms and some viruses. The main role of DNA molecules is the long-

term storage of information. DNA is often compared to a set of blueprints or a recipe, or

a code, since it contains the instructions needed to construct other components of cells,

such as proteins and RNA molecules. The DNA segments that carry this genetic

information are called genes. Other DNA segments have structural purposes, or are

involved in regulating the use of this genetic information.

T

C

C

T

A

G

G

A

S

P

P

S

P
S

P
S

P

S

P

S

P

S

S

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Introduction

School of Computer Engineering (SCE) 6

Proteins (also known as polypeptides) are organic compounds made of amino acids

arranged in a linear chain polymer and joined together by peptide bonds between the

carboxyl and amino groups of adjacent amino acid residues. The sequence of amino acids

in a protein is defined by the sequence of a gene, which is encoded in the genetic code. In

general, the genetic code specifies 20 standard amino acids, however in certain organisms

the genetic code can include selenocysteine and pyrrolysine. Shortly after or even during

synthesis, the residues in a protein are often chemically modified by post-translational

modification, which alter the physical and chemical properties, folding, stability, activity,

and ultimately, the function of the proteins. Proteins can also work together to achieve a

particular function, and they often associate to form stable complexes.

Like other biological macromolecules such as polysaccharides and nucleic acids, proteins

are essential parts of organisms and participate in virtually every process within cells.

Many proteins are enzymes that catalyze biochemical reactions and are vital to

metabolism. Proteins also have structural or mechanical functions, such as actin and

myosin in muscle and the proteins in the cytoskeleton, which form a system of

scaffolding that maintains cell shape. Other proteins are important in cell signaling,

immune responses, cell adhesion, and the cell cycle. Proteins are also necessary in

animals' diets, since animals cannot synthesize all the amino acids they need and must

obtain essential amino acids from food. Through the process of digestion, animals break

down ingested protein into free amino acids that are then used in metabolism.

Any alignment between two or more nucleotide or amino acid sequences represents an

hypothesis regarding the evolutionary history of these sequences[14]. By aligning

nucleotide or amino acid sequences, scientists have been able to determine and identify

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Introduction

School of Computer Engineering (SCE) 7

important matched and mismatched regions. Matched regions may turn out to be

functional homolog pairs, conserved regulatory regions or long repeats. Mismatched

regions, on the other hand, may either be Single Nucleotide Polymorphisms (SNPs) or

foreign fragments inserted due to transposition, sequence reversal or lateral transfer from

another organism. Hence, comparisons of related nucleotide and protein sequences have

assisted many recent developments in understanding the content, relationship and

function of genetic sequences. As a direct result, sequence alignment and comparison

techniques as well as database sequence searching techniques have been the cornerstone

of bioinformatics.

Given the continuing improvements in high throughput genomic sequencing and the

exponential growth in the size of sequence databases, new advances for bioinformatics

area are needed by the research and scientific community. High Performance Computing

(HPC) is one of the most popular technique to improve the performance without

sacrificing the correctness of the solution[15]. The recent emergence of accelerator

technologies such as FPGAs, GPUs and multi-core processors have made it possible to

achieve an excellent improvement in execution time for many bioinformatics

applications, compared to current general-purpose platforms. Examples of bioinformatics

application that takes advantage of HPC are MPIBlast[16], MPI-HMMER[17], ClustalW-

MPI[18, 19], PAxML[20], Folding@home[21], Phusion[22], GPU-ClustalW[23] and

ClustalW using FPGA[24].

Multi-core technology was first discussed in 1989[25]. Conceptually, multi-core

architecture refers to a single processor package containing two or more processor

execution cores or computational engines that deliver fully parallel execution of multiple

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Introduction

School of Computer Engineering (SCE) 8

software threads. The operating system treats each of its execution cores as a discrete

processor, with all associated execution resources.

One of the ideas behind the movement to multi-core architectures is parallelism. It is one

of the best ways to address the issue of power while maintaining performance where

higher data throughput may be achieved with lower voltage and frequency. The result is a

larger transistor count, but overall lower power dissipation and power density. Instead of

classifying based upon speed, one could classify products based upon the number of

working cores or overall data throughput. The integration of multiple cores on a chip also

allows lower interconnect latency and therefore higher bandwidth between cores than

their discrete counterparts. Hence, microprocessor designers and manufacturers have

turned to building chip multi-processors[26-29]. A survey conducted in 2009[30] shows

that 90% of common computers today uses multi-core processors and this trend is

expected to continue. Figure 3 illustrates the survey according to [30].

Figure 3. Number of processor cores in computers according to a recent survey

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Introduction

School of Computer Engineering (SCE) 9

Multi-core architectures may take on a number of forms. One form is the heterogeneous

multi-core architecture, which can address a variety of applications. Another form is a

large number of remedial homogeneous cores which divide and conquer computationally

intensive applications and yet individually address less computationally intensive

applications. Yet another form consists of a few complex homogeneous cores in which a

single core could multitask between several remedial applications or individually handle

computationally intensive applications. For any form of multi-core architecture, the

application or algorithm development process must be significantly changed in order to

fully explore the potential of multi-core processors.

The development of new homogeneous and heterogeneous multi-core architectures

brings a shift of paradigm in applications development. In order to implement efficient

and scalable code for this type of architecture, novel programming techniques are

required. This continues to remain a largely unexplored territory and is the principal

motivation behind our work.

1.3. OBJECTIVES

The exponential growth of available biological data has caused bioinformatics to be

rapidly moving towards a data-intensive, computational science. As a result, the

computational power needed by bioinformatics applications is growing exponentially as

well. Traditional approaches to sequence analysis techniques are expensive in terms of

time and memory. HPC is a widely used method to improve performance. The emergence

of accelerator technologies such as multi-core architecture has made it possible to achieve

an excellent improvement in execution time for many bioinformatics applications,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Introduction

School of Computer Engineering (SCE) 10

compared to current general-purpose platforms. Therefore, using multi-cores to solve

sequence analysis problems is a promising and challenging research field since large-

scale computational bioinformatics problems can benefit much from this kind of

processing power. Our objectives are as follows.

• Various parallel algorithms for solving sequence analysis problems have been

presented for different parallel architectures, e.g. Field Programmable Gate Array

(FPGA) and Graphical Processing Unit (GPU). However, multi-cores have their own

characteristics. Therefore, new sequence analysis algorithms have to be presented in

order to execute efficiently on multi-core architectures.

• The development of sequence analysis algorithms for multi-core architecture is made

challenging by the heterogeneous nature of the resources involved. Therefore, new

parallel communication patterns and partitioning scheme in parallel models are

required.

• The emergence of commonly available accelerator technologies, such as FPGA,

GPU, and the Cell/BE processor provide an opportunity to achieve orders-of

magnitude performance. Hence, performance evaluation and comparison between

these accelerator technologies is required to give a comprehensive understanding of

the advantages and disadvantages of these accelerators as well as to provide a

reference for mapping algorithms or applications onto them.

1.4. CONTRIBUTIONS

The contributions of our work can be briefly summarized as follows.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Introduction

School of Computer Engineering (SCE) 11

• We have developed a novel, efficient and scalable parallel algorithm for very long

DNA sequence alignment on a heterogeneous multi-core system, the Cell Broadband

Engine. Our implementation utilizes two types of parallelization techniques: (i) SIMD

vectorization within a processor and (ii) wavefront parallelization between

processors. We also introduced a partitioning scheme to overcome the local storage

limitation of the Synergistic Processor Elements (SPEs) as well as a direct SPE to

SPE DMA transfer communication technique. Performance evaluation shows that our

implementation shows almost linear speedup and leads to significant computational

time savings.

• We have demonstrated how the PlayStation® 3, powered by the Cell Broadband

Engine, can be used as a computational platform to accelerate the Smith-Waterman

algorithm, an optimal pairwise sequence alignment. For large protein datasets, our

implementation on the PlayStation® 3 provides a significant improvement in running

time compared to other implementations such as SSEARCH, Striped Smith-

Waterman and CUDA-SW.

• We have developed a novel implementation to accelerate a heuristic protein sequence

database scanning algorithm, the BLASTP heuristic, on to a heterogeneous multi-core

system, the Cell Broadband Engine. To our knowledge, this is the first ever reported

parallelization of BLASTP on a heterogeneous multi-core system. We also introduced

a new parallel communication pattern, in which the Power Processor Element (PPE)

coordinates the data transfer. Furthermore, we utilized a data structure similar to

compressed deterministic finite-state automaton (DFA) to fit the codeword lookup data

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Introduction

School of Computer Engineering (SCE) 12

in the SPEs. The BLASTP implementation on a Playstation®3 leads to significant

runtime savings compared to corresponding sequential implementations.

• We have developed an efficient parallel implementation that accelerates the distance

matrix computation used in multiple sequence alignments on the x86 and Cell

Broadband Engine architecture, a homogeneous and heterogeneous multi-core

system, respectively. By taking advantage of multiple processors as well as SIMD

vectorization, we are able to achieve speedups of two orders of magnitude compared

to the publicly available implementation utilized in multiple sequence alignment

algorithms. We have also compared the performance of our implementation on the

Playstation®3 with other accelerator technologies, i.e. FPGA and GPU.

1.5. SYNOPSIS OF THESIS

The rest of the thesis is structured as follows:

• Chapter 2 reviews algorithm design techniques for sequence alignment problems as

well as parallel computation models and parallel architectures. Furthermore, we

present a general survey of the state-of-the-art accelerator technologies in High

Performance Computing (HPC).

• Chapter 3 introduces the Cell Broadband Engine, a recently introduced heterogeneous

multi-core architecture system. Moreover, we discuss its characteristics, how it

overcomes the three wall limitations as well as strategies and techniques on how to

map applications onto such architecture in order to gain good performance.

• Chapter 4 elaborates our parallel algorithm to align very long DNA sequences as well

as the implementation and performance evaluation on the Cell Broadband Engine.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Introduction

School of Computer Engineering (SCE) 13

• Chapter 5 demonstrates how the PlayStation® 3, powered by the Cell Broadband

Engine, can be used as a computational platform to accelerate the Smith-Waterman

algorithm for large protein datasets.

• Chapter 6 discusses our mapping of the popular heuristic protein sequence database

scanning algorithm, the BLASTP on a heterogeneous multi-core system. The

Playstation®3 implementation and performance evaluation are presented at the end of

the chapter.

• Chapter 7 elaborates our efficient parallel implementation that accelerates the

distance matrix computation used in multiple sequence alignments on a homogeneous

and heterogeneous multi-core system. We also present a performance evaluation of

our implementation on the Playstation®3 with other accelerator technologies.

• Chapter 8 concludes the achievement of our research work and suggests possible area

of future work.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 14

2. STATE OF THE ART

This chapter reviews algorithm design techniques, sequence alignment as a popular and

important genome analysis task as well as parallel computation and parallel architectures.

Furthermore, we present a general survey of the state-of-the-art accelerator technologies

in High Performance Computing (HPC).

2.1. ALGORITHM IMPLEMENTATION TECHNIQUES

This section provides an overview of common algorithm design techniques used for

sequence analysis.

2.1.1. EXHAUSTIVE SEARCH ALGORITHMS

Exhaustive search, or brute-force search, is a trivial but very general problem-solving

technique that consists of systematically enumerating all possible candidates for the

solution and checking whether each candidate satisfies the problem's statement.

Exhaustive search algorithms are simple to implement, and guaranteed to find an optimal

solution if it exists. However, their costs are proportional to the number of candidate

solutions, which, in many practical problems, tend to grow exponentially as the size of

the problem increases. Therefore, exhaustive search algorithm is typically only used for

very small problem sizes or when the simplicity of implementation is more important

than speed.

2.1.2. BRANCH-AND-BOUND ALGORITHMS

Branch-and-Bound is a general design technique to find optimal solutions of optimization

problems, especially in discrete and combinatorial optimization. It consists of a

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 15

systematic enumeration of all candidate solutions, where large subsets of fruitless

candidates can be discarded, by using upper and lower estimated bounds of the quantity

being optimized.

A branch-and-bound algorithm starts by considering the root problem (or the original

problem with the complete feasible region) and applying the lower and upper bounding

procedures. If the bounds match, then an optimal solution has been found and the

procedure terminates. Otherwise, the feasible region is divided into two or more sub-

problem partitions. The algorithm is applied recursively to the sub-problems. If an

optimal solution is found to a subproblem, it is a feasible solution to the full problem, but

not necessarily be a global optimal solution. If the lower bound for a node exceeds the

best known feasible solution, no globally optimal solution can exist in the sub-space of

the feasible region represented by that particular node. Therefore, the node can pruned

(removed from consideration). The search proceeds until all nodes have been solved or

pruned, or until some specific threshold is met.

Examples of branch-and-bound algorithms used in bioinformatics include computational

assignment of protein backbone NMR peaks[31] and matching protein structures[32].

2.1.3. DYNAMIC PROGRAMMING ALGORITHMS

Dynamic programming algorithms solve complex problems by breaking them down into

simpler steps. It is suitable to solve problems that exhibit the properties of overlapping

subproblems and optimal substructure. A problem that can be broken down into

subproblems, which are reused repeatedly, indicates that the problem has overlapping

subproblems. Whereas, a problem with optimal substructure mean that an optimal

solution can be constructed efficiently from optimal solutions to its subproblem.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 16

Examples of dynamic programming algorithms used in bioinformatics include Smith-

Waterman[33] and Needleman-Wunsch[34] for sequence alignment and Nussinov[35]

and Zuker-Stiegler[36] for RNA folding.

2.1.4. GREEDY ALGORITHMS

Greedy algorithms make the locally optimal choice at each iteration with the hope of

finding the global optimum. They make whatever choice seems best at the moment,

without regard for future consequences. It iteratively makes one greedy choice after

another, reducing each given problem into a smaller one. When the algorithm terminates,

the local optimum is hopefully equal to the global minimum. If this is the case, then the

algorithm is correct. Otherwise, the algorithm has produced a sub-optimal solution.

Examples of greedy algorithms used in bioinformatics include G-PRIMER[37] and

GreedyEM[38].

2.1.5. DIVIDE AND CONQUER ALGORITHMS

As the name implies, a divide and conquer algorithm has two distinct phases, i.e. a divide

phase and a conquer phase. In the divide phase, the algorithm splits the problem into

smaller problem instances and solves them independently. The solutions of these smaller

problems instances are combined into a solution of the original problem in the conquer

phase.

The divide and conquer approach is similar to dynamic programming in that the solution

of a large problem depends on a previously obtained solutions of sub-problems. The

significant difference, however, is that sub-problems of the divide and conquer approach

must be completely separate and can be solved independently.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 17

Example of divide and conquer algorithms used in bioinformatics include a multiple

alignment algorithm in [39] and [40].

2.1.6. MACHINE LEARNING ALGORITHMS

Machine learning approaches are best suited for areas where there is a large amount of

data but little theory[41]. Machine learning algorithms try to build a model from training

data by deriving important insights about the parameter, which is often hidden. As the

amount of training data increases, the accuracy of the machine learning algorithm

typically increases as well. The parameters learned during training represents knowledge,

while application of the algorithm to new data represents the algorithm’s use of that

knowledge.

Examples of machine learning algorithms used in bioinformatics include identification of

structurally conserved residues[42], Support Vector Machine (SVM)-based MiRTif[43]

and GIST[44].

2.1.7. HEURISTIC ALGORITHMS

Heuristic algorithms do not guarantee that the optimal best solution will be found.

Heuristic algorithms are typically used to solve problems with the following properties:

• Problems with large search spaces such that they cannot realistically be enumerated

or searched exhaustively.

• There are no known methods for finding the best solution to the problems that do not

employ a strategy that is fundamentally similar to exhaustive search.

Examples of heuristic algorithms used in bioinformatics include BLAST[45],

FASTA[46], T-Coffee[47] and M-Coffee[48].

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 18

2.2. SEQUENCE ALIGNMENT

Sequence alignment is one of the most popular sequence analysis tasks, in which two or

more sequences are compared by searching for a series of substrings that are in the same

order in the sequences. It is utilized to infer a relationship between the sequences and also

gives an impression on how close they are in terms of sequence similarity. Hence, it is

essential for discovering functional, structural and evolutionary information in biological

sequences.

A list of key issues that are related to sequence alignment are identified in [49]. These

key issues are summarized as follows:

• What type of alignment should be considered?

• What scoring system is used?

• What algorithm is used to obtain the optimal (or good) scoring alignments?

• What statistical methods used to evaluate the significance of an alignment score?

2.2.1. TYPES OF ALIGNMENT

In general, sequence alignment can be categorized into two groups, i.e. pairwise sequence

alignment and multiple sequence alignment.

2.2.1.1. Pairwise sequence alignment

Consider the following pair of DNA sequences: ATAGAC and ATTAGGC. At a glance

they look very much alike and this becomes more obvious when they are aligned

together, as shown below.

A−TAGAC

ATTAGGC

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 19

The differences lie in the extra T in the second sequence and a change from A to G in the

second to last position. Note that a gap, marked with a “−“ sign, is introduced in the first

sequence in order to allow the bases before and after the gap to align perfectly. This is an

example of a pairwise sequence alignment.

A pairwise sequence alignment is defined as an alignment of two sequences to determine

how similar they are. In most sequence similarity calculations, a similarity score is

inferred from the alignment. Gap insertions are allowed until the resulting sequences are

of the same size and the alignment must obey the restriction that gaps cannot appear in

the same position in both sequences. The example above satisfies the definition of an

alignment.

Ideally, the alignment of two sequences should be in agreement with their evolution, i.e.

the patterns of descent as well as molecular structural and functional evolution[50].

Unfortunately, the evolutionary traces are often very difficult to detect, e.g. amino acid

mutations, insertions and deletions of residues, transposed gene segments and the like can

blur the ancestral relationship beyond recognition. In the absence of observed

evolutionary traces, pairwise sequence alignment is regarded as mimicking evolution best

when the minimum number of mutations is used to arrive at one sequence to the other.

An approximation of this is to find the highest similarity value determined from summing

substitution scores along matched residue pairs minus any insertion/deletion penalties.

Such alignment is generally called the optimal alignment.

Unfortunately, testing all possible alignments, including the insertion of a gap at each

position of each sequence is unfeasible. For example, 1088 possible alignments exists of a

pairwise sequence alignment of 300 amino acid[33]. The number of calculations

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 20

managed to be reduced greatly by introducing gaps as assigned scoring values such that

they can be treated in the same manner as the mutation of one residue to another. The

technique to calculate the highest scoring or optimal alignment, generally known as the

dynamic programming (DP) technique, has been introduced by Needleman and

Wunsch[34] in 1970.

There are two basic types of sequence alignment: global alignment and local alignment.

Global alignment implies the matching of sequences over their complete lengths, whereas

with local alignment the sequences are aligned only over the most similar parts of the

sequences, carrying the clearest trace of evolutionary relationship. It is no always clear

which of the two alignments (global or local) is biologically the most meaningful. In

general, where there is a large difference in the lengths of two sequences to be compared,

local alignment should be included in the analysis.

The first pairwise algorithm for local alignment was developed by Smith and

Waterman[33] in 1981 as an adaptation of the algorithm of Needleman and Wunsch. The

Smith-Waterman technique selects the most similar region in each of the two sequences,

which are then aligned. In 1987, Waterman and Eggert[51] generalized the local

alignment routine by devising an algorithm that allows the calculation of user-defined

number of top-scoring local alignments instead of only the optimal local alignment.

2.2.1.2. Multiple sequence alignment

Multiple sequence alignment is an extension of pairwise alignment to incorporate more

than two sequences at a time. Multiple alignment methods try to align all of the

sequences in a given query set. Multiple alignments are often used in identifying

conserved sequence regions across a group of sequences hypothesized to be

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 21

evolutionarily related. Ideally, in order to generate an accurate multiple alignments, in-

depth knowledge of the evolutionary and structural relationships within the family would

have to be utilized. However, these information are often lacking or difficult to use.

General empirical models of protein evolution[52] are widely used instead, but these can

be difficult to use when sequences are less than 30% identical[53]. Furthermore,

mathematically sound methods for carrying out alignments using the models can be

extremely demanding in computer resources for more than a handful sequences[54].

Therefore, heuristic methods have been developed to be able to cope with practical

datasets.

Progressive alignment method[55, 56] is the most commonly used heuristic method. It

adds sequences one by one to the existing alignment to build a new alignment. Many

implementations determine the order of the sequences to be added to the new alignment

by using an approximation of a phylogenetic tree, which is often called a guide tree. The

guide tree is constructed using the similarity of all possible pairs of sequences stored in

the distance matrix. The disadvantage of the progressive alignment method is that it

suffers from greediness. Errors made in the first alignments during the progressive

procedure cannot be corrected later. Global sequence weighting schemes[57, 58] are

introduced to minimize such alignment errors . However, such schemes carry the risk of

propagating rather than reducing error when used in progressive multiple alignment

strategies[59]. ClustalW[58, 60] is the most widely used progressive alignment

implementation. Up to 2009, ClustalW has over 26,000 citations in the ISI Web of

Science. ClustalX[61] is the graphical version of ClustalW. Other multiple sequence

alignment methods include MUSCLE[62], T-Coffee[47], and PRALINE[63].

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 22

2.2.2. SCORING SCHEME

Aligning two or more sequences can produce multiple possible results. In order to

determine which of those possible alignments are optimal alignments, a scoring scheme

is required. In general, scoring schemes used in sequence alignment consists of

substitution matrix and gap penalties.

2.2.2.1. Substitution Matrix

Substitution matrix consists of substitution score terms for each aligned residue pair. The

substitution score s(x,y) indicates the scores of aligning residue x with residue y. In the

case of DNA, x,y ∈ {A, G, C, T} and in the case of proteins, x,y ∈ {A, R, N, D, C, Q, E,

G, H, I, L, K, M, F, P, S, T, W, Y, V}.

Various popular substitution matrices utilized in sequence alignments include:

2.2.2.1.1. Unitary Scoring Matrix

Early sequence alignment programs used unitary scoring matrix. A unitary matrix scores

all residue matches as well as penalizes all mismatches with the same value, as shown in

equation 1, where c and d are constants.





≠
==)(,

)(,),(yxifd
yxifcyxs

Equation 1. Unitary scoring matrix equation

Although this scoring is sometimes appropriate for DNA and RNA comparisons, for

protein alignments using a unitary matrix amounts to proclaiming ignorance about

protein evolution and structure.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 23

2.2.2.1.2. Log-odds ratio

Log-odds ratio substitution matrix consists of individual scores s(x,y) for each aligned

pair of residues. The value of s(x,y) is defined as the odds ratio between two probabilities

that describe the probability that some residue x will change to residue y over time, as

shown in equation 2.

y

xy

P
M

yxs log),(=

Equation 2. Log-odds ratio scoring matrix equation

where Mxy is the probability that we expect to observe residues x and y aligned in

homologous sequence alignments and Py is the probability we expect to observe residue y

on average in a random sequence.

2.2.2.1.3. Point Accepted Mutation (PAM)

The PAM[64] matrix was developed by Margaret Dayhoff in the 1978. It is calculated by

observing the differences in closely related proteins. The PAM1 matrix estimates what

rate of substitution would be expected if 1% of the amino acids had changed. The PAM1

matrix is used as the basis for calculating other matrices by assuming that repeated

mutations would follow the same pattern as those in the PAM1 matrix, and multiple

substitutions can occur at the same site. Using this logic, Dayhoff derived matrices as

high as PAM250. Example of the PAM250 matrix is shown in Figure 4.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 24

Figure 4. PAM250 matrix

2.2.2.1.4. Block Substitution Matrix (BLOSUM)

Dayhoff's methodology of comparing closely related species turned out not to work very

well for aligning evolutionarily divergent sequences. Sequence changes over long

evolutionary time scales are not well approximated by compounding small changes that

occur over short time scales. The BLOSUM[52] series of matrices rectifies this problem.

Henikoff and Henikoff constructed these matrices using multiple alignments of

evolutionarily divergent proteins. The probabilities used in the matrix calculation are

computed by looking at "blocks" of conserved sequences found in multiple protein

alignments. These conserved sequences are assumed to be of functional importance

within related proteins. To reduce bias from closely related sequences, segments in a

block with a sequence identity above a certain threshold were clustered giving weight 1

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 25

to each such cluster. For the BLOSUM62 matrix, this threshold was set at 62%. Pair

frequencies were then counted between clusters, hence pairs were only counted between

segments less than 62% identical. One would use a higher numbered BLOSUM matrix

for aligning two closely related sequences and a lower number for more divergent

sequences. Example of the BLOSUM62 matrix is shown in Figure 5.

Figure 5. BLOSUM62 matrix

2.2.2.2. Gap Penalties

Gaps are expected to be penalized in an alignment. The standard gap penalty w(k)

associated with a gap of length k can either be given by a linear penalty or an affine

penalty. Equation 3 shows the linear gap penalty equation.

k gw(k) ⋅=

Equation 3. Linear gap penalty equation

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 26

Affine gap penalty introduces the concept of gap open and gap extension penalty.

Equation 4 shows the affine gap penalty equation, where h is the gap open penalty and g

is the gap-extension penalty.

kg hw(k) ⋅+=

Equation 4. Affine gap penalty equation

2.2.3. ALIGNMENT ALGORITHMS

Below we introduce several basic types of alignment algorithms.

2.2.3.1. Global alignment: Needleman-Wunsch algorithm

The Needleman-Wunsch algorithm[34] is a dynamic programming algorithm, that

obtains the optimal global alignment between two sequences, allowing gaps. Gotoh[65]

modified the algorithm to run at O(mn) complexity by considering affine gap penalties.

The main idea of this algorithm is to build up an optimal alignment using previous

solutions for optimal alignments of smaller subsequences. Given a matrix M and two

sequences X = {x1, x2, …, xm} and Y = {y1, y2, …, yn}, M(i,j) is the score of the best

alignment between the segments x1…i up to xi and y1…j up to yj. Hence, M(0,0) is

initialized to be 0 and M(i,j) is then build recursively.

The value of M(i,j) could only be calculated if the values of M(i-1,j-1), M(i-1,j) and M(i,j-

1) are known. There are three possible ways that the best score M(i,j) of an alignment up

to xi, yj could be obtained:

• xi is aligned to a gap, in which case M(i,j) = M(i-1,j) – g

• yj is aligned to a gap, in which case M(i,j) = M(i,j-1) – g

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 27

• xi is aligned to yj, in which case M(i,j) = M(i-1,j-1) + sub(xi,yj)

where g is the gap penalty and sub (xi,yj) is the substitution score of aligning residues xi

and yj. The best score up to (i,j) will be the largest of these three options. Therefore, we

have following equation:







−−
−−

+
=

g)M(i,j
g,j)M(i

),ysub(x),j-M(i-
 M(i,j)

ji

1
,1

,11
max

Equation 5. Needleman-Wunsch equation

Initialization values are given as the following: for 0 ≤ i ≤ m, M(i, 0) = −i⋅g and for 0 ≤ j

≤ n, M(0, j) = −j⋅g. Equation 5 is repeatedly applied to fill in the matrix of M(i,j) values,

calculating the value in the bottom right-hand corner of each square of four cells from

one of the other three values (above-left, above, or left), as shown in Figure 6.

Figure 6. Data dependency in Needleman-Wunsch algorithm

The most bottom right cell of the matrix M(m,n) is the score of the best global alignment

for an alignment of X and Y. A traceback procedure is needed to determine the actual

alignment(s) from the corresponding score. The traceback for the Needleman-Wunsch

algorithm starts from the cell with the best score M(m, n) to M(0, 0).

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 28

2.2.3.2. Local alignment: Smith-Waterman algorithm

A lot of biological problems, e.g. search for a common domain between two protein

sequences, comparison of extended sections of genomic DNA sequences and similarity

detection between two very divergent sequences, require us to look for the best alignment

between subsequences. Such alignment is called local alignment. The Smith-Waterman

algorithm[33] is a dynamic programming algorithm, that obtains the optimal local

alignment between two sequences.

The algorithm is closely related to the global alignment algorithm. There are, however,

two main differences. The first is that the value of M(i,j) will be 0 if its value is 0 or less.

Taking the option 0 basically corresponds to starting a new alignment. If the best

alignment up to a certain point reaches a negative score, a new alignment is preferred,

rather than continue and extend the old one. This is reflected in Equation 6.









−−
−−

+
=

g)M(i,j
g,j)M(i

),ysub(x),j-M(i-
 M(i,j) ji

1
,1

,11
,0

max

Equation 6. Smith-Waterman equation

The second difference is that the best score of the alignment is no longer M(m,n), but it is

the cell with the highest value of M(i,j) over the whole matrix. That particular cell

indicates where the alignment ends.

Further details of the Smith-Waterman algorithm will be elaborated in Chapter 4.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 29

2.2.3.3. Algorithms with affine gap penalty

The simplest gap model implemented in most algorithms is a simple multiplication of the

length with the gap penalty. This type of model, however, is not ideal for biological

sequences. In the real world, when gaps do occur, they are more likely to have a large

gap, rather than many small gaps. For example, a biological sequence is much more

likely to have one big gap of length k, due to a single insertion or deletion event, than it is

to have k small gaps of length 1.

To account for this tendency, affine gap penalty is introduced. Affine gap penalty

consists of a gap opening penalty, α, and a gap extension penalty, β. A gap of length k

would then have an affine gap penalty w(k) = α + (k-1) β. The value of α and β are

usually always negative because gap extension are encouraged, rather than gap

introduction.

2.2.3.4. Heuristic alignment algorithms

All the alignment algorithms described so far produce optimal result. However, they are

not the fastest methods and in some cases, speed is an issue. Heuristic alignment

algorithms offer fast solutions with a trade off of accuracy and sensitivity. The goal of

these methods is to search as small a fraction as possible of the cells in the dynamic

programming matrix, while still looking at all the high scoring alignments. Two of the

best-known algorithms are the Basic Local Alignment Search Tool (BLAST)[45] and

FAST-All (FASTA)[46].

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 30

2.2.3.4.1. BLAST

The BLAST package[45] provides programs for finding high scoring local alignments

between a query sequence and a database. The sequences can either be DNA or protein

sequences. The main idea of the BLAST algorithm is that true match alignments are very

likely to contain within them a short stretch of identities or very high scoring matches.

Such short stretches are called seeds, from which they are extended out in search of a

good longer alignment.

Table 1. Traditional BLAST Programs

Program Query Database Typical Usage

BLASTN Nucleotide Nucleotide

Mapping oligonucleotides,

cDNAs and PCR products to a

genome; screening repetitive

elements; annotating genomic

DNA; vector clipping

BLASTP Protein Protein

Identifying common regions

between proteins; collecting

related proteins for

phylogenetic analysis

BLASTX
Nucleotide translated

into protein
Protein

Finding protein-coding genes

in genomic DNA; determining

if a cDNA corresponds to a

known protein

TBLASTN Protein
Nucleotide translated

into protein

Identifying transcripts from

multiple organisms; mapping a

protein to genomic DNA

TBLASTX
Nucleotide translated

into protein

Nucleotide translated

into protein

Cross-species gene prediction

at the genome or transcript

level

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 31

BLAST creates a k-length word list of the query sequence, with the default value of k = 3

for protein sequences and k = 11 for DNA sequences. It then scans through the database

and whenever a word in word list is found to have a score higher than a pre-determined

threshold, the possible match is extended as an ungapped alignment in both directions,

stopping at the maximum scoring extension. Five traditional BLAST programs are

BLASTN, BLASTP, BLASTX, TBLASTN, TBLASTX, as shown in Table 1[66].

New versions of BLAST have become available, e.g. WU-BLAST[67, 68] which provide

gapped alignments, PSI-BLAST[69] which is more sensitive in picking up distant

evolutionary relationships, mpiBLAST[70] which is an open-source parallel BLAST, G-

BLAST which is a grid-based solution[71] and FSA-BLAST[72, 73] which has

algorithmic improvements.

2.2.3.4.2. FASTA

The FASTA package[46] is another widely used heuristic sequence algorithm. Originally,

FASTA was introduced as FASTP and was designed for protein sequence similarity

searching. The current FASTA package contains programs for protein-protein, DNA-

DNA, protein-translated DNA (with frameshifts), and ordered or unordered peptide

searches. It uses a four-step approach to find local high scoring alignments, starting from

exact short word matches, through maximal scoring ungapped extensions. There is a

trade off between speed and sensitivity in the choice of parameter ktup: the higher the

value of ktup, the faster the algorithm will run, albeit with less accuracy (more significant

misses).

The first step identifies the regions of highest density in each sequence comparison. By

using a look up table, all identically matching words of length ktup between any two

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 32

sequences are located and regions with many mutually supporting word matches are

identified. The default value of ktup is 1 or 2 for protein sequences and 4 or 6 for DNA

sequences. The second step extends the exact word matches to find maximal scoring

ungapped regions. The third step checks if any if these ungapped regions can be joined by

a gapped region, allowing for gap costs. The final step realigns the highest scoring

candidate matches in a database search using a dynamic programming algorithm. This

step, however, is limited to a subregion of the dynamic programming matrix forming a

band around the potential heuristic match.

2.3. PARALLEL COMPUTATION MODEL AND PARALLEL

ARCHITECTURES

Traditionally, software has been written for serial computation to be run on a single

computer having a single Central Processing Unit (CPU). This type of programming is

called Sequential Programming, in which the problem is broken into a discrete series of

instructions that are executed one after another and only one instruction may execute at

any moment in time. Figure 7 illustrates how sequential programming execution is

processed by the CPU.

Figure 7. Sequential programming execution

Problem

CPU

Instructions

tn t3 t2 t1

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 33

In the simplest sense, parallel programming is the simultaneous use of multiple

computing resources/CPUs to solve a computational problem. The problem is broken into

discrete parts that can be solved concurrently. Each part is further broken down to a series

of instructions, in which they are executed simultaneously on different CPUs. In other

words, parallel programming focuses on partitioning the overall problem into separate

tasks, allocating tasks to processors and synchronizing the tasks to get meaningful results.

Figure 8 illustrates how a parallel program is executed by multiple CPUs.

Figure 8. Parallel programming execution

The main advantage of parallel programming lies with its overall ability to reduce the

execution time required needed to obtain the solution, as well as the possibility of solving

larger problems. Another advantage also includes the possibility of using non-local

resources on a local area network, or even the internet when local compute resources are

scarce. On the other hand, the limitation of parallel programming lies with the overhead

 Problem Instructions

CPU

CPU

CPU

CPU

 tn t3 t2 t1

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 34

communication time needed for synchronization and transferring of data between

processors.

2.3.1. TERMINOLOGY

Below are some frequently used terms in parallel computing[74]:

2.3.1.1. Speed-up

The run time of the sequential program divided by run time of the parallel program.

Speed-up s can be expressed as the following equation:

p

s

t
t

s =

Equation 7. Speed-up equation

Where:

ts is the run time of the sequential program

tp is the run time of the parallel program

2.3.1.2. Parallel Overhead

The extra work associated with parallel version compared to its sequential code, mostly

the extra CPU time and memory space requirements from synchronization, data

communications, parallel environment creation and cancellation, etc.

2.3.1.3. Synchronization

The coordination of simultaneous tasks to ensure correctness and avoid unexpected race

conditions.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 35

2.3.1.4. Efficiency

The execution time using a single processor divided by the quantity of the execution time

using a multiprocessor and the number of processors. Efficiency e can be expressed as

the following equation:

p

s

tn
t

e
⋅

=

Equation 8. Efficiency equation

Where:

ts is the run time of the sequential program

tp is the run time of the parallel program

n is the number of processors used

Combining equation 7 and 8, the efficiency equation can be simplified as follows:

n
se =

Equation 9. Simplified efficiency equation

2.3.1.5. Scalability

A parallel system's ability to gain proportionate increase in parallel speedup with the

addition of more processors.

2.3.1.6. Task

A logically high level, discrete, independent section of computational work. A task is

typically executed by a processor as a program

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 36

2.3.2. VON NEUMANN ARCHITECTURE

For over 40 years, virtually all computers have followed a common machine model

known as the von Neumann architecture[75]. A von Neumann computer uses the stored-

program concept. The CPU executes a stored program that specifies a sequence of read

and write operations on the memory. Figure 9 shows the block diagram of the von

Neumann architecture.

Characteristics of von Neumann architectures:

• Memory is used to store both program and data instructions

• Program instructions are coded data which tell the computer to do something

• Data is simply information to be used by the program

• A central processing unit (CPU) gets instructions and/or data from memory,

decodes the instructions and then sequentially performs them.

Figure 9. Block diagram of the von Neumann architecture

CPU

Memory

Control Unit

Arithmetic
Logic Unit

Accumulator

Input

Output

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 37

2.3.3. FLYNN'S CLASSICAL TAXONOMY

Flynn's Taxonomy is one of the best-known classification schemes in parallel

computing[76]. It classifies multi-processor computer architectures based on the two

independent dimensions of Instruction and Data axes. Each of these dimensions can have

only one of two possible states: Single or Multiple. The focus is on the multiplicity of

hardware used to manipulate the instruction and data streams[77, 78]. Flynn’s Taxonomy

is illustrated in Table 2.

Table 2. Flynn's Taxonomy

 Single Instruction Multiple Instruction

Single Data SISD MISD

Multiple Data SIMD MIMD

2.3.3.1. Single Instruction, Single Data (SISD)

SISD refers to computers with a single instruction stream and a single data stream, as

shown in Figure 10. Single instruction means only one instruction stream is being acted

on by the CPU during any one clock cycle, while single data means only one data stream

is being used as input during any one clock cycle. SISD has a deterministic execution.

Examples of SISD are uniprocessors and single CPU workstations and mainframes.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 38

Figure 10. Single Instruction, Single Data (SISD)

2.3.3.2. Single Instruction, Multiple Data (SIMD)

As illustrated in Figure 11, SIMD refers to computers with a single instruction stream but

multiple data streams. In other words, all processing units execute the same instruction at

any given clock cycle but each processing unit can operate on a different data element.

This type of architecture typically has an instruction dispatcher, a very high-bandwidth

internal network, and a very large array of very small-capacity instruction units. SIMD is

best suited for specialized problems characterized by a high degree of regularity.

Examples of SIMD are processor arrays and pipelined vector processors.

Data

In
st

ru
ct

io
ns

CPU

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 39

Figure 11. Single Instruction, Multiple Data (SIMD)

2.3.3.3. Multiple Instruction, Single Data (MISD)

MISD refers to computers with a multiple instruction streams but only a single data

stream, as shown in Figure 12.

Figure 12. Multiple Instructions, Single Data (MISD)

MISD computer is a pipeline of multiple independently executing functional units

operating on a single stream of data, forwarding results from one functional unit to the

Data

In
st

ru
ct

io
ns

CPU

CPU

CPU

CPU

Data

In
st

ru
ct

io
ns

CPU

CPU

CPU

CPU

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 40

next. Some conceivable application uses of MISD are multiple frequency filters operating

on a single signal stream and multiple cryptography algorithms attempting to crack a

single coded message. Systolic arrays are examples of MISD[76].

2.3.3.4. Multiple Instruction, Multiple Data (MIMD)

As illustrated in Figure 13, MIMD refers to computers with a multiple instruction streams

and multiple data streams. In other words, every processor may be working with a

different data stream and execution can be synchronous or asynchronous, deterministic or

non-deterministic. The TOP500 table, which shows the 500 most powerful commercially

available computer systems, indicates that as of 2009, the entire TOP500 supercomputers

are based on MIMD architecture [79]. Examples of MIMD are supercomputers and grids.

Figure 13. Multiple Instruction, Multiple Data (MIMD)

Data

In
st

ru
ct

io
ns

CPU

CPU

CPU

CPU

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 41

2.4. ACCELERATOR TECHNOLOGIES IN HIGH PERFORMANCE

COMPUTING

The recent emergence of accelerator technologies such as Field-Programmable Gate

Arrays (FPGAs), Graphics Processing Unit (GPUs) and multi-core processors have made

it possible to achieve an excellent improvement in execution time for many

bioinformatics applications, compared to current general-purpose platforms. We review

those accelerator technologies in the following section.

2.4.1. VLSI

Very-large-scale integration (VLSI) is the process of creating integrated circuits by

combining thousands of transistor-based circuits into a single chip. VLSI began in the

1970s when complex semiconductor and communication technologies were being

developed. Currently, the term is no longer as common as it once was, as chips have

increased in complexity into billions of transistors. Early VLSI implementation of

bioinformatics application include BioScan[80], Biological Information Signal Processor

(BISP)[81] and Systolic Accelerator for Molecular Biological Application

(SAMBA)[82].

BioScan[80] accelerates the identification of similar segments for DNA or protein

sequences without allowing gap. It contains a total number of 12,992 processors

consisting of 16 chips of 812 1-bit processors each. The database scanning has a limited

query sequence of 12,992 characters. BioScan does not support dynamic programming

algorithms.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 42

BISP[81] implements a modified version of the Smith-Waterman algorithm and allows

many parameters to be set. It consists of 256 16-bit processors and a programmable

processor Motorola 68020, making possible the computation of unlimited sequence

length.

SAMBA[82] implements a parameterized Smith-Waterman algorithm. By setting

different parameters, local or global comparisons can be performed, with or without gap

penalty. The complete SAMBA system consists of a workstation, a systolic array of 128

full custom hardwired 12-bit processors, and an FPGA-based interface i.e. PeRLe-1

board.

In general, the early VLSI implementations provide a respectable speed-up for the state

of technology at that time. However, they are dwarfed by the implementations on current

accelerator technologies such as FPGA, GPU and Cell/BE. Another drawback to the

early VLSI implementations is that the core of the system relies on Application Specific

Integrated Circuit (ASIC) component, in which the chip is devoted to a single function

(or a restricted class of functions). Once designed and fabricated, it cannot be modified

and is not flexible to program.

2.4.2. FPGA

FPGA is a semiconductor device that can be configured by the customer or designer after

manufacturing. To define the behaviour of the FPGA, the user provides a hardware

description language (HDL), such as VHDL and Verilog HDL, or a schematic

implementation. The HDL form might be easier to work with when handling large

structures because it's possible to just specify them numerically rather than having to

draw every piece by hand. On the other hand, schematic entry can allow for easier

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 43

visualization of an implementation. They can be used to implement any logical function

that an ASIC could perform, but the ability to update the functionality after

manufacturing offers advantages for many applications.

The underlying architecture of the FPGA is well-suited for parallel processing. FPGAs

contain programmable logic components called logic blocks, and a hierarchy of

reconfigurable interconnects that allow the blocks to be wired together, somewhat similar

to a one-chip programmable breadboard. Logic blocks can be configured to perform

complex combinational functions, or merely simple logic gates like AND and XOR. In

most FPGAs, the logic blocks also include memory elements, which may be simple flip-

flops or more complete blocks of memory.

Although FPGAs are flexible, their configuration has to be changed for each single

algorithm. Thus, making it more complicated in general compared to writing codes for

programmable architectures. Examples of bioinformatics application on FPGAs include

[83-88].

2.4.3. GPU

Programmable GPUs have received attention from the scientific computing community

since their introduction on the market in 2000[89]. Architecturally, modern GPUs

implement what is referred to as a streaming processor[90, 91]. This architecture gains its

speed by devoting significantly more chip real estate to the computational engine than a

conventional CPU. Furthermore, its attractive price to performance ratio and the fact that

GPUs are now commodity items found in almost all computers makes it an appealing

alternative for high performance computing. Examples of bioinformatics application on

GPUs include [87, 92-97].

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 44

However, the traditional general-purpose computing on the GPU (GPGPU) development

is based on graphics function library, for example OpenGL and Direct 3D, which makes

the GPU used only by the professional people familiar with graphics API, and brings

many inconveniences to the common users. The two major GPU vendors, NVIDIA and

AMD, recently announced their new developing platforms Compute Unified Device

Architecture (CUDA)[98] and Close to the Metal (CTM)[99] , respectively. Unlike

previous GPU programming models, these are proprietary approaches designed to allow a

direct access to their specific graphics hardware. Therefore, there is no compatibility

between the two platforms. CUDA is an extension of the C programming language; CTM

is a virtual machine running proprietary assembler code. However, both platforms

overcome some important restrictions on previous GPGPU approaches, in particular

those set by the traditional graphics pipeline and the relative programming interfaces like

OpenGL and Direct3D.

CUDA is an extension of C/C++ which enables users to write scalable multi-threaded

programs for CUDA-enabled GPUs. CUDA programs can be executed on GPUs with

NVIDIA's Tesla unified computing architecture[100]. The emergence of CUDA allows a

C-like development environment to programmers as a C compiler is used to compile

programs, and the shader languages are replaced with C language and some CUDA

extended libraries. This change means that programmers do not need to map programs

into graphics APIs, making GPGPU program development more flexible and efficient.

CUDA programs contain a sequential part, called a kernel. The kernel is written in

conventional scalar C-code. It represents the operations to be performed by a single

thread and is invoked as a set of concurrently executing threads. These threads are

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 45

organized in a hierarchy consisting of so-called thread blocks and grids. A thread block is

a set of concurrent threads and a grid is a set of independent thread blocks. Each thread

has an associated unique ID (threadIdx, blockIdx) ∈ {0,..., dimBlock-1} × {0,..., dimGrid-

1}. This pair indicates the ID within its thread block (threadIdx) and the ID of the thread

block within the grid (blockIdx). Similar to MPI processes, CUDA provides each thread

access to its unique ID through corresponding variables. The total size of a grid

(dimGrid) and a thread block (dimBlock) is explicitly specified in the kernel function-

call: kernel<<<dimGrid, dimBlock, other configurations>>> (parameter list);

The hierarchical organization into blocks and grids has implications for thread

communication and synchronization. Threads within a thread block can communicate

through a per-block shared memory (PBSM) and may synchronize using barriers.

However, threads located in different blocks cannot communicate or synchronize

directly. Besides the PBSM, there are four other types of memory: per-thread private

local memory, global memory for data shared by all threads, texture memory and

constant memory. Texture memory and constant memory can be regarded as fast read-

only caches.

The Tesla architecture supports CUDA applications using a scalable processor array. The

array consists of a number of streaming multiprocessors (SMs). Each SM contains eight

scalar processors (SPs), which share a PBSM of size 16 KB. All threads of a thread block

are executed concurrently on a single SM. The SM executes threads in small groups of

32, called warps, in single-instruction multiple-thread (SIMT) fashion. Thus, parallel

performance is generally penalized by data-dependent conditional branches and improves

if all threads in a warp follow the same execution path.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 46

An important aspect of CUDA programming is the management of the memory spaces

that have different characteristics and performances, as explained below[97].

• Readable and writable global memory is relatively large (typically 1 GB), but has

high latency, low bandwidth, and is not cached. The effective bandwidth of global

memory depends heavily on the memory access pattern, e.g. coalesced access

generally improves bandwidth.

• Readable and writable per-thread local memory is of limited size (16 KB per

thread) and is not cached. Access to local memory is as expensive as access to

global memory and is always coalesced.

• Read-only constant memory is of limited size (totally 64 KB) and cached. The

reading cost scales with the number of different addresses read by all threads.

Reading from constant memory can be as fast as reading from a register (e.g. if all

threads of a half-warp read the same address).

• Read-only texture memory is large (depending on the size of global memory) and

is cached. Texture memory can be read from kernels using texture fetching device

functions. Reading from texture memory is generally (not absolutely) faster than

reading from global or local memory.

• Readable and writable per-block shared memory is fast on-chip memory of

limited size (16 KB per block). Shared memory can only be accessed by all

threads in a thread block. Shared memory is divided into equally-sized banks that

can be accessed simultaneously by each thread. Accessing the shared memory is

as fast as accessing a register as long as there are no bank conflicts.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 47

• Readable and writable per-thread registers are the fastest memory to access but is

of very limited size.

2.4.4. MULTI-CORE

Multi-core technology was first discussed in 1989[25]. Conceptually, multi-core

architecture refers to a single processor package containing two or more processor

execution cores or computational engines that deliver fully parallel execution of multiple

software threads. The operating system treats each of its execution cores as a discrete

processor, with all associated execution resources.

One of the ideas behind the movement to multi-core is parallelism. It is one of the best

ways to address the issue of power while maintaining performance where higher data

throughput may be achieved with lower voltage and frequency. The result is a larger

transistor count, but overall lower power dissipation and power density. Instead of

classifying based upon speed, one could classify products based upon the number of

working cores or overall data throughput. The integration of multiple cores on a chip also

allows lower interconnect latency and therefore higher bandwidth between cores than

their discrete counterparts. Hence, microprocessor designers and manufacturers have

turned to building chip multi-processors [26-29].

New chip architectures built for scaling out instead of scaling up will offer enhanced

performance, reduced power consumption and more efficient simultaneous processing of

multiple tasks. Multi-core systems embrace the scale out approach to performance. This

architecture in essence reflects a divide and conquer strategy. By splitting the

computational work performed by a single core in traditional microprocessors and among

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 48

multiple execution cores, a multi-core processor can perform more work within a given

clock cycle. In other words, multi-core processors are able deliver higher performance

and greater efficiency without the heat problems and other disadvantages experienced by

single core processors run at higher frequencies to squeeze out more performance. By

multiplying the number of cores in the processor, it is possible to tremendously increase

computing resources, higher multithreaded throughput, and the benefits of parallel

computing.

Multi-core architecture may take on a number of forms, namely homogeneous multi-core,

heterogeneous multi-core and cluster of multi-core. Examples of bioinformatics

application on multi-cores include [87, 101-107].

2.4.4.1. Homogeneous Multi-core

Homogeneous multi-core processor, also known as symmetric multi-core, is a processor

which has multiple execution cores that are all exactly the same. Every single core has

the same architecture and the same capabilities. An example of a homogeneous multi-

core system is the Intel® Core™ i7 Processor[108]. Homogeneous multi-core processor

usually uses a shared memory. In the case of Intel® Core™ i7 Processor, all the cores

shares the L3 cache.

2.4.4.2. Heterogeneous Multi-core

Heterogeneous multi-core processor, also known as asymmetric multi-core, is a processor

which has multiple execution cores, but the cores might be of different implementations.

Each core will have different capabilities. An example of a heterogeneous multi-core

system is the Cell Broadband Engine (Cell/BE)[109], which will be discussed in detail in

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 State of the Art

School of Computer Engineering (SCE) 49

further chapters. Heterogeneous multi-core processor usually does not utilize shared

memory. In the case of Cell/BE, the PPE has its own L1 and L2 cache, while the SPEs

have their own respective Local Storage.

Recent research in heterogeneous multi-core processors has identified significant

advantages over homogeneous multi-core processors in terms of power and throughput

and in addressing the effects of Amdahl’s law on the performance of parallel

applications[110].

2.4.4.3. Cluster of Multi-core

A cluster of multi-core is a group of tightly coupled multi-core processors that work

together closely so that in many respects they can be viewed as though they are a single

entity. The components of a cluster are commonly, but not always, connected to each

other through fast local area networks. Clusters are usually deployed to improve

performance and/or availability over that provided by a single computer. An example of a

cluster of multi-core system is a cluster of Playstation3[111].

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 50

3. CELL BROADBAND ENGINE

This chapter discusses the Cell/BE, its architecture, how it overcomes the three wall

limitations, interprocessor communication and how to develop applications on the

Cell/BE. Lastly, we categories and analyze programming techniques which are tailored

for the Cell/BE.

3.1. INTRODUCTION

The Cell Broadband Engine[109], or often called as Cell/BE, is a single-chip

heterogeneous multi-core processor which is developed by Sony, Toshiba and IBM.

Although originally designed as a processor for Sony PlayStation3, Cell/BE has a

general-purpose architecture, offering a unique assembly of thread-level and data-level

parallelization options. It is operating at the upper range of existing processor frequencies

(3.2 GHz for current models). Apart from that, the power consumption is also comparable

to that of mobile processors.

3.2. CELL/BE ARCHITECTURE

The Cell/BE combines an IBM PowerPC Processor Element (PPE) and eight Synergistic

Processor Elements (SPEs)[112]. An integrated high-bandwidth bus called the Element

Interconnect Bus (EIB) connects the processors and their ports to external memory and

I/O devices. The block diagram of the Cell/BE architecture is shown in Figure 14.

One type of processors in the Cell/BE is the PPE, which is a 64-bit Power Architecture

core and contains a 64-bit general purpose register set (GPR), a 64-bit floating point

register set (FPR), and a 128-bit Altivec register set. It is fully compliant with the 64-bit

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 51

Power Architecture specification and can run 32-bit and 64-bit operating systems and

applications.

Figure 14. Block diagram of the Cell Broadband Engine Architecture

The other type is the SPEs, which on the other hand, are independent processors. Each

SPE is able to run its own individual application programs. Each SPE consists of a

processor implementationed for streaming workloads, a local memory, and a globally

coherent DMA engine. The EIB is a 4-ring structure, and can transmit 96 bytes per cycle,

for a bandwidth of 204.8 Gigabytes/second. The EIB can support more than 100

outstanding DMA requests.

From an architectural standpoint, parallelism exploitations at multiple levels on the

Cell/BE are possible. Each chip has eight SPEs with two-way instruction-level

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 52

parallelism on each SPE. Furthermore, the SPE supports both scalar as well as SIMD

computations[113]. Hence, it has a high peak performance because the SPE is simpler

and more efficient than general purpose processors in terms of the micro and memory

architecture[114]. The Cell/BE operates on a shared, coherent memory. In this respect, it

extends current trends in PC and server processors. The most distinguishing feature of the

Cell/BE lies within the variety of the processors it has, i.e. the PPE and the SPEs.

Heterogeneous multi-core systems can lead to decreased performance if both the

operating system and application are unaware of the heterogeneity[115]. However,

intelligent scheduling processes show the potential for power savings and speedup on a

heterogeneous multi-core system[116]. Further work showed that heterogeneous multi-

core systems implementation targeting different cores to specific application classes can

increase performance over that obtained by combining general-purpose cores[117]. The

PPE is designed to run the operating system and, in many cases, the top-level control

thread of an application, while the SPEs is optimized for compute-intensive applications,

hence, providing the bulk of the application performance.

The SPE implements a Cell-specific set of SIMD instructions[118]. All single precision

floating point operations on the SPU are fully pipelined, and the SPU can issue one

single-precision floating point operation per cycle. Double precision floating point

operations are partially pipelined and two double-precision floating point operations can

be issued every six cycles. With all eight SPUs active and fully pipelined double

precision FP operation, the Cell/BE is capable of a peak performance of 21.03 Gflops. In

single precision FP operation, the Cell/BE is capable of a peak performance of 230.4

Gflops [119].

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 53

The SPE can access RAM through direct memory access (DMA) requests. The DMA

transfers are handled by the MFC. All programs running on an SPE use the MFC to move

data and instructions between local storage and main memory. Data transferred between

local storage and main memory must be 128-bit aligned. The size of each DMA transfer

can be at most 16 KB. DMA-lists can be used for transferring large amounts of data

(more than 16 KB). A list can have up to 2,048 DMA requests, each for up to 16 KB. The

MFC supports only DMA transfer sizes that are 1,2,4,8 or multiples of 16 bytes long.

Kistler et al.[120] analyze the communication network of the Cell/B.E. processor and

state that applications that rely heavily on random scatter and or gather accesses to main

memory can take advantage of the high communication bandwidth and low latency.

3.3. OVERCOMING THE THREE WALL LIMITATIONS

The Cell/BE processor also overcomes three important limitations of contemporary

microprocessor performance, i.e. power, memory and frequency limitations[114, 121]:

3.3.1. OVERCOMING THE POWER WALL

Since microprocessor performance is limited by achievable power dissipation rather than

by the number of available resources (transistors and wires), the only way to significantly

increase the performance is to improve the power efficiency at about the same rate as the

performance increase. One way to increase power efficiency is to differentiate between

processors optimized to run an operating system and control-intensive code, and

processors optimized to run compute intensive applications. The Cell/BE does this by

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 54

providing a general-purpose PPE to run the operating system and other control-plane

code, and eight SPEs specialized for computing data-plane applications.

3.3.2. OVERCOMING THE MEMORY WALL

Performance is often dominated by the activity of moving data between the processor and

the main storage. Hence, movement of data must be managed explicitly, even with the

existence of hardware cache mechanisms. The Cell Broadband Engine’s SPEs use two

mechanisms to deal with long main-memory latencies. The first mechanism is a 3-level

memory structure consisting of the main storage, local stores in each SPE, and large

register files in each SPE. The second mechanism is the availability of asynchronous

DMA transfers between main storage and local stores. These features allow programmers

to be able to schedule simultaneous data and code transfers to cover long latencies

effectively. Because of this organization, the Cell Broadband Engine can support 128

simultaneous transfers between the eight SPE local stores and main storage. This

surpasses the number of simultaneous transfers on conventional processors by a factor of

almost twenty.

3.3.3. OVERCOMING THE FREQUENCY WALL

Conventional processors require increasingly deeper instruction pipelines to achieve

higher operating frequencies. This technique has reached a point of diminishing returns

and even negative returns if power is taken into account. The Cell Broadband Engine

specializes the PPE and the SPEs for control and compute-intensive tasks, respectively.

Hence, allowing both the PPE and the SPEs to be designed for high frequency without

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 55

excessive overhead. The PPE achieves efficiency primarily by executing two threads

simultaneously rather than by optimizing single-thread performance. Each SPE achieves

efficiency by using a large register file, which supports many simultaneous in-flight

instructions without the overhead of register-renaming or out-of order processing. Each

SPE also achieves efficiency by using asynchronous DMA transfers, which support many

concurrent memory operations without speculative overheads.

3.4. INTERPROCESSOR COMMUNICATION

Although it is a multiprocessor system on a chip, the Cell/BE processor is not a

traditional shared-memory multiprocessor. One of the major characteristics is that an SPE

can execute programs and directly load and store data only from and to its private Local

Storage (LS). Since SPEs lack shared memory, they must communicate explicitly with

the PPE or other SPEs using three primary communication mechanisms: DMA transfers,

mailbox messages, and signal-notification messages[122]. All three communication

mechanisms are implemented and controlled by the SPE’s MFC.

3.4.1. DMA TRANSFER

DMA transfers are the most important means of communication on the Cell/BE

processor, facilitating both bulk data transfers and synchronization. The capabilities of

DMA transfers are summarized below:

• DMA transfers enable exchange of data between the main memory and the local

stores of the SPEs, as well as transfers from one local store to another.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 56

• The messages can be of size 1, 2, 4, 8, and 16 bytes, and multiples of 16 bytes up

to 16KB. Source and destination addresses of messages 16 bytes and larger have

to be 16 bytes aligned, and addresses of messages shorter than 16 bytes require

the same alignment as the message size. Additionally, messages of subvector

sizes (less than 16 bytes) have to have the same alignment of source and

destination addresses within the vector.

• Messages larger than 16KB can only be achieved by combining multiple DMA

transfers. DMA lists are a convenient facility to achieve this goal, as well as to

implement strided memory access. A DMA list can combine up to 2048 DMA

transfers.

• DMA transfers are most efficient if they transfer at least one cache line and if they

are aligned to the size of a cache line, which is 128 bytes.

• By default, DMA messages are not ordered. Ordering of DMAs can be enforced

by the use of barriers and fences. A barrier orders a message with respect to

messages issued before as well as after a given message. A fence orders a

message only with respect to messages issued before the given message

• DMA transfers are non-blocking in their very nature. While DMAs are in

progress, the SPE should be doing some useful work and only check for DMA

completion, when it comes to processing of the transferred data.

• DMA engines are parts of the SPEs. Each SPE can queue up to 16 requests in its

own DMA queue. Each DMA engine also has a proxy DMA queue, which can be

accessed by the PPE and other SPEs. The proxy queue can hold up to eight

requests.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 57

Both the SPEs and the PPE are capable of initiating DMAs, but the SPE-initiated DMAs

are more efficient and should be given preference over the PPE-initiated DMAs.

Nevertheless, if the need arises to use the PPE-initiated DMAs, it can be accomplished by

means of the MFC SPE proxy command functions.

Although each single SPE has a theoretical bandwidth of 25.6 GB/s, which is equal to the

peak bandwidth of the main memory, a single SPE will have a hard time saturating this

bandwidth. In order to get good utilization of the bus, one should initiate many requests

from many SPEs, and also restrain from ordering the messages, if possible, to give the

arbiter the most room for traffic optimization.

One of the important aspects of the Cell/BE communication system is the efficiency of

local store to local store communication[123]. Local store to local store communication

may prove invaluable not only for bulk data transfers, but also for synchronization

between SPEs.

3.4.2. MAILBOXES

Mailboxes support the sending of short, 32-bit messages from the PPE to the SPEs and

between the SPEs. The mailboxes are First-In-First-Out (FIFO) queues, meaning the

messages are processed in the order of their issue. Each SPE has a four-entry mailbox for

receiving incoming messages from the PPE and other SPEs, and two one-entry mailboxes

for sending outgoing messages to the PPE and other SPEs - one of which serves the

purpose of raising an interrupt on the receiving device.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 58

Mailbox operations have blocking nature on the SPE. An attempt to write to a full

outbound mailbox will stall until the mailbox is cleared by a PPE read. Similarly, an

attempt to read from an empty inbound mailbox will stall until the PPE writes to the

mailbox. The same does not apply to the PPE. Neither an attempt to write to a full

mailbox nor an attempt to read an empty mailbox will stall the PPE. Mailboxes are useful

to communicate short messages, such as completion flags or progress status. They can

also serve the purpose of communicating short data, such as storage addresses and

function parameters. The blocking nature of the mailboxes on the SPE side makes them

perfect for the PPE to initiate actions on the SPEs. However, they are not suitable to

acknowledge SPE completion of operations to the PPE.

Although mailbox message values are intended to communicate messages up to 32 bits in

length, such as buffer completion flags or program status, they can also be used for any

short-data transfer purpose, such as sending of storage addresses, function parameters,

command parameters, and state-machine parameters.

3.4.3. SIGNAL NOTIFICATION CHANNELS (SIGNALS)

SPE signal-notification channels are connected to inbound registers (into the SPE). A

signal is a short message of up to 32 bits long from the PPE, another SPE, or another

system device. An example of this is buffer-completion synchronization flag. An SPE has

two 32-bit signal-notification registers, each of which has a corresponding MMIO

register that can be written with signal-notification data. They can be configured for one-

to-one signaling or many-to-one signaling. SPE software can use polling or blocking

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 59

when waiting for a signal to appear, or it can set up interrupts to catch signals as they

appear asynchronously.

A signal-notification message is sent to the SPE by writing to the main storage address of

an MMIO register in the SPU’s MFC. The signal is latched in the MMIO register, and the

SPU executes a read-channel (rdch) instruction to get the signal value. An SPU can

send a signal-notification message to another SPU with its special send-signal

instructions (for example, sndsig). An SPE read of one of its two signal-notification

channels clears the channel. However, a PPE MMIO read does not clear the channel.

One SPE can send a signal-notification message to another SPE using one of three special

MFC commands: sndsig, sndsigf, and sndsigb. All of these commands are

implemented in the same manner as a DMA put command, with the effective address of

an MMIO register as the destination.

Like mailboxes, signal-notification channels are useful when the SPE places

computational results in main storage via DMA. After requesting the DMA transfer, the

SPE waits for the DMA transfer to complete and then sends a signal to notify the PPE

that its computation is complete. In this case, waiting for the DMA transfer to complete

only ensures that the SPE’s LS buffers are available for reuse and does not guarantee that

data has been coherently written to main storage.

Although signal notifications and mailbox messages look similar, there are important

differences. Table 3 summarizes the differences between communication using a mailbox

and using a signal.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 60

Table 3. Comparison of mailboxes and signals

Attribute Mailboxes Signals

Direction One inbound, two outbound, all

accessible

through channel interface.

Two inbound accessible

through channel interface,

but can send signal using

MFC send-signal

commands.

Interrupts One mailbox can interrupt PPE

Two mailbox-available Event

interrupts

Two signal-notification

Event interrupts.

Message Accumulation No. Yes: over-write mode (one-

to-one), logical OR mode

(many-to-one).

Unique SPU Commands No; programs use channel

reads and writes.

Yes, sndsig, sndsigf, and

sndsigb for sending signals

to other units.

Destructive Read Reading a mailbox consumes

an entry.

Reading a channel resets all

32 bits to ‘0’.

Channel Count Indicates number of available

entries.

Indicates waiting signal.

Number Three mailboxes: 4-deep

incoming, 1-deep outgoing, 1-

deep outgoing with interrupt.

Two signal registers.

3.5. DEVELOPING APPLICATIONS FOR THE CELL BROADBAND

ENGINE

Writing efficient and scalable code for the Cell/BE is, in many ways, different than

programming most of the common modern architectures. The main differences come

from the fact that, on the Cell architecture, the user has full control over the processor

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 61

behavior and all the hardware details are exposed to the programmer. The following

general programming rules should be followed in order to exploit the full potential of the

Cell/BE[123].

3.5.1. VECTORIZATION

The SPEs are vector units. In a code that is not vectorized, every scalar operation will be

transformed to a vector operation which results in a considerable performance loss.

Hence, vectorizing the code will ensure a gain in performance.

3.5.2. DATA ALIGNMENT

Since the local storage on the SPEs is relatively small, most of the operations will require

a continuous streaming of data from the main memory to the SPEs local memory. As a

result, non optimized memory transfers will deeply impact the performance. In order to

achieve the best transfer rates, data accesses must be aligned both on the main memory

and the SPEs local memories. Alignment will provide a better exploitation of the memory

storage and a better performance of DMA transfer.

3.5.3. DOUBLE-BUFFERING

As explained in the previous point, data is continuously streamed from main memory to

SPEs. The cost of all this communication is thus, considerable. Moreover each single

message has to be relatively small in size since local memories have limited storage

space; this means that a high number of DMA transfers will be performed in a single

operation, each of which will add the (fixed) cost of the DMA latency to the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 62

communication phase. In order to hide the cost of the latencies and memory transfers,

DMA transfers can be overlapped with SPE local computations using double buffering. If

these local computations are more expensive than a single data transfer, the

communication phase can be completely hidden.

3.5.4. DATA REUSE

To reduce the number of memory transfers, it is important to arrange the instructions in

order to maximize the reuse of data once it has been brought into the SPEs local

memories. Explicit unrolling provides considerable improvements in performance due to

the high number of registers on the SPEs and to the simplicity of SPEs architecture.

3.5.5. BRANCH MINIMIZATION

SPEs can only do static branch prediction. Therefore, reducing the number of branches in

the code usually provides performance improvements, since these prediction schemes are

rather inefficient on programs that have a complex execution flow.

3.6. PROGRAMMING TECHNIQUES FOR THE CELL/BE

Programming is the process of writing, testing, and maintaining the source code of

computer programs. The choice of programming techniques is to achieve an elegant,

efficient, and maintainable software program that exhibits the desired behavior. The

process of writing source code requires expertise in many different subjects, including

knowledge of the application domain, compiler and the target processor. On any

processor, coding optimizations are achieved by exploiting the unique features of the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 63

hardware. In the case of the Cell/BE, the large number of SPEs, their large register file,

and their ability to hide main-storage latency with concurrent computation and DMA

transfers support many interesting programming models. With the computational

efficiency of the SPEs, software developers can create programs that manage dataflow as

opposed to leaving dataflow to a compiler or to post optimization process.

Many of the unique features of the SPE are handled by the compiler, although

programmers looking for the best performance can take advantage of the features

independently of the compiler. It is almost never necessary to optimize the benefits but

programming the SPE in assembly language as C intrinsics provides a convenient way to

program the efficient movement and buffering of data.

Table 4. Classification of Cell/BE applications into programming techniques

Technique Applications Reference

Function-Offload Model RAxML-Cell [124]

Computation-Acceleration

Model

Smith-Waterman (short sequences)

ClustalW

Real-time wavelet decomposition for

HDTV video images

Ray Tracing

Smoothed Particle Hydrodynamics

[106]

[106]

[125]

[126]

[127]

Streaming Model Smith-Waterman (long sequences)

CBESW

BLAST

Pairwise Distance Matrix computation

Euler particle-system simulation

Volume Ray Casting

[102]

[101]

[104]

[103]

[122]

[128]

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 64

Table 4 shows a classification of applications, that have been recently developed on the

Cell/BE, into programming techniques. These techniques and applications are explained

in more detail below.

3.6.1. FUNCTION-OFFLOAD MODEL

The function-offload mode, also called the Remote Procedure Call (RPC) Model, is the

fastest way to effectively use the Cell/BE with an already existing application. It

specifically notes the use of program stubs via the Interface Description Language (IDL).

PPE code:
Start main application

Invoke RPC call using IDL interface

Call SPE procedure

Wait/synchronize

Continue main application

End

SPE code:
Start

Receives RPC call

Run SPE procedure

Return result to PPE

End

__

Figure 15. Pseudocode of the Function Offload Model

In this model, the main application runs on the PPE and calls selected performance-

critical procedures to run on one or more SPEs, which are used as accelerators. An

interface description in the form file with an extension of .idl is required. The model

allows a PPE program to call a procedure located on an SPE as if it were calling a local

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 65

procedure on the PPE. This provides an easy way for programmers to use the

asynchronous parallelism of the SPEs without having to understand the low-level

workings of the MFC DMA layer. However, it is essential to identify which procedures

should be executed on the PPE and which on the SPEs. The PPE and SPE source

modules must be compiled separately, by different compilers. The pseudocode of the

function offload model is shown in Figure 15.

An example of an application that uses the function-offload model is the RAxML.

RAxML[124] (Randomized Axelerated Maximum Likelihood) is a bioinformatics

program for large-scale ML-based (Maximum Likelihood[129]) inference of

phylogenetic (evolutionary) trees using multiple alignments of DNA or amino acid

sequences. The MPI version of the RAxML was ported to the PPE and both loop-level

parallelization of tasks across SPEs and a scheduler which multiplexes more than two

MPI processes on the PPE using an event-driven model were introduced to expose more

task-level parallelism. The most time-consuming functions of each MPI process, namely

newview, evaluate and makenewz, were offloaded to the SPEs. The SPE codes are

optimized using vectorization of computation, a specialized casting transformation

coupled with vectorization of control statements, and communication optimizations.

Besides the fact that each function can be executed faster on an SPE, having all three

functions offloaded to an SPE significantly reduces the amount of PPE-SPE

communication. An SPE thread is spawned at the beginning of each MPI process. The

thread executes the offloaded function upon receiving a signal from the PPE and returns

the result back to the PPE upon completion. To avoid excessive overhead from repeated

spawning and joining of threads, threads remain bound on SPEs and perform a busy-wait

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 66

for the PPE signal to start executing a function. Furthermore, the codes of all three

offloaded functions are loaded on each SPE, such that each thread can execute any of the

functions on demand, including nested combinations of these functions.

The performance of the Cell/BE implementation of RAxML was compared to the MPI

implementation of RAxML on two architectures:

• A 32-bit Intel Pentium 4 Xeon with Hyperthreading technology (2-way SMT),

running at 2GHz, with 8KB L1-D cache, 512KB L2 cache, and 1MB L3 cache.

• A 64-bit IBM Power5 processor, a quad-thread, dual-core processor with dual

SMT cores running at 1.65 GHz, 32KB of L1-D and L1-I cache, 1.92 MB of L2

cache, and 36 MB of L3 cache.

The Cell/BE processor clearly outperforms the Intel Xeon by more than a factor of two,

while Cell/BE performs 9%-10% better compared to the IBM Power5. The computation

uses double precision floating point arithmetic, which is not optimized for Cell SPE

pipelines. Hence, the use of single-precision arithmetic would further widen the

performance margin between Cell and the IBM Power5.

3.6.2. COMPUTATION-ACCELERATION MODEL

The Computation-Acceleration Model is an SPE-centric model that provides a smaller-

grained and more integrated use of SPEs than the function-offload model. The

Computation-Acceleration Model speeds up applications that use computation-intensive

mathematical functions without requiring a significant rewrite of the applications. Most

computation-intensive sections of the application run on SPEs. The PPE acts as a control

and system service facility. Multiple SPEs work in parallel. The work is partitioned

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 67

manually by the programmer, or automatically by the compilers. The SPEs must

efficiently schedule MFC DMA commands that move instructions and data. This model

either uses shared memory to communicate among SPEs, or it uses a message-passing

model. The pseudocode of the computer-acceleration model is shown in Figure 16.

__
PPE code:
Start main application

Construct a context and thread for each SPEs

Create SPE threads with the context as parameter

Wait for all SPEs to complete

Continue main application if required

End

SPE code:
Define local storage and buffer

Fetch SPE context through DMA

Fetch data through DMA

While there are task to be executed

 Do necessary computations

Return result to PPE

End

__

Figure 16. Pseudocode of the Computation-Acceleration Model

Examples of applications that use this technique on the Cell/BE are Smith-Waterman

algorithm for short sequences[106], ClustalW[106], ray tracing[126], smooth particle

hydrodynamics[127] and real-time wavelet decomposition for HDTV video images[125].

The Smith-Waterman algorithm[33] finds the optimal local alignment of two sequences

by means of dynamic programming. It compares two sequences by computing a distance

that represents the minimal cost of transforming one subsequence into another. Two basic

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 68

operations are used in the transformation, i.e. insertion/deletion and substitution. The

distance between the subsequences is measured as the smallest number of operations

required to change one subsequence into another. The Smith-Waterman implementation

by Sachdeva et. al.[106] is capable of executing a pairwise alignment of 8 pairs of

sequences, using one SPE for each pairwise alignment. Their implementation requires

both sequences to fit entirely in the SPE local store of 256 KB, which limits the sequence

length to 2048. The alignment scores were pre-computed on the PPE, and then DMA-

transferred to the SPEs together with the query and the library sequences. Other

parameters such as the alignment matrix and the gap penalties are also included in the

context for every SPE. The Smith-Waterman kernel, which is based on the FASTA

package by Eric Lindahl, was then executed in each SPE. As for the load balancing, a

simple round-robin strategy was implemented, in which the sequences in the query

library are allocated to the SPEs based on the sequence numbers and the SPE number.

The implementation on the Cell/BE running on 8 SPEs performs 6.2 times and 4.7 times

faster compared to implementations on Opteron with SSE2 code and PowerPC G5 with

Altivec code, respectively.

ClustalW is a progressive multiple sequence alignment application. There are three basic

steps to this process. In the first step, all sequences are compared pairwise using a global

alignment algorithm. A cluster analysis is then performed on each of the scores from the

pairwise alignment to generate a hierarchy for alignment. Finally, the alignment is built

step by step, adding one sequence at a time, according to the guide tree. The ClustalW

implementation by Sachdeva et. al.[106] is focused on running the paralign function,

which performs the task of comparing all input sequences against each other, on the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 69

SPEs, with the rest of the code executing on the PPE. The paralign function performs a

total of n(n−1)/2 alignments for n sequences, consuming about 60-80% of execution time.

While pairalign itself is made up of 4 different functions, forward_pass which computes

the maximum score and the location of the cell inside the matrix cell for two sequences,

is the most time-consuming step of pairalign. The implementation ported the IBM Life

Science version with vectorized forward_pass for the SPE code. The computation starts

with the PPE creating the SPE threads and passes the maximum sequence size through a

mailbox message. The SPEs allocate memory only once in the entire computation based

on the maximum size, and then wait for the PPE to send a message for them to pull in the

context data using DMA transfer and begin the computation. Work load is assigned to the

SPEs using a simple round-robin strategy: each SPE is assigned a number from 0 to 7,

and SPE k is responsible for comparing sequence number i against all sequences (i + 1) to

n if (i mod 8 = k). For storing of the output values, the SPEs are also passed a pointer to

an array of structures, which are 16-byte aligned, in which they can store the output of the

forward pass function executed for two sequences. The ClustalW code, executing on the

PPE side, then uses the output for the forward pass function to generate the guide tree

from the scores received from the SPE, and to compute the final alignment. The

implementation on the Cell/BE running on 8 SPEs performs up to 1.26 times faster when

compared to a SSE-vectorized implementation on PowerPC G5.

Ray tracing is a general technique from geometrical optics of modeling the path taken by

light by following rays of light as they interact with optical surfaces. An implementation

of ray tracing in the Cell/BE, which using the BHV traversal scheme proposed in [130],

is described in [126]. Each SPE independently runs a full ray tracer, and parallelization is

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 70

achieved by SPEs working on different pixels. The implementation starts with

subdividing the image plane into a set of image tiles. From this shared task queue, each

SPE dynamically fetches a new tile, and renders it. An integer variable, specifying the ID

of the next tile to be rendered, is allocated in system memory to ensure synchronization

of the accesses to the task queue. This variable is visible among all SPEs, and each time

an SPE queries the value of the variable, it performs an atomic fetch-and-increment. This

atomic update mechanism allows the SPEs to work fully independently from both other

SPEs and PPE, requiring no communication among those units. The only explicit

synchronization is at the end of each frame, where the PPE waits to receive an ’end

frame’ signal from each SPE. The ray tracing implementation on dual Cell/BE with 16

SPEs is evaluated to be 7.1-15.3 times faster than a 2.4 GHz AMD Opteron-based

system. Extrapolating the performance that would be achievable on a 3.2GHz Cell with 7

SPEs as used in a Playstation 3 yield a speed up of 4.8-9.6 times that of an Opteron CPU.

Smoothed Particle Hydrodynamics (SPH) is a method used mainly to simulate complex

materials, such as water. The particles can be seen as interpolation points, approximating

local field quantities. It has over time been applied to numerous problems, such as,

elasticity and fracture modeling [131], hair-hair interactions [132], and simulation of

incompressible fluids [131]. The SPH implementation on the Cell/BE[127] starts with

creating the hash table of every particle on the PPE, serially. In the meantime, the SPEs

pre-calculate the hash values for the neighboring cells to find interacting particles. The

interaction list is created by iterating over the hash buckets, calculating distances between

particles. Because of hash value collisions, it is possible that duplicate particle

interactions are found. Therefore, in addition to checking distances between two particles,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 71

their grid cell relation must be tested. This is done using workblocks of N buckets, which

are processed in parallel on the SPEs. It ignores the symmetrical property of the inter-

particle forces in order to maximize data locality and to allow asynchronous execution of

the SPE threads. Afterwards, the SPE threads then process particles in batches from the

workpool to compute the time integration and collision handling for velocity reflection

and position projection. The results are then sent back to the PPE. The SPH

implementation on the Cell/BE with 8 SPEs performs 9.8 faster compared to a scalar

implementation on a 2.0GHz PPC 970 processor, reaching 39.8 Hz update frequency

with 15 avg. neighbors / particle.

Wavelet decomposition is one of the essential methods for compressing or

decompressing high resolution images. The real-time wavelet decomposition for HDTV

video images [125] implementation starts with the PPE reading the image file, dividing it

into 8 pieces and then sending the context about the divided image pieces, e.g. the size,

address in main memory, etc to each of the 8 SPEs. Each SPE receives the context and

obtains the divided image from the main memory. The 1D Fast Wavelet Transform

(FWT) computations in each SPE are done using the SIMD instructions to exploit the

data parallelism. Thus each partial image assigned to an SPE is formed into appropriate

matrix size for the SIMD instruction by transposing the elements. The image data can be

processed 4 pixels at a time with SIMD instructions. After the 1D FWT is completed, the

data from each SPE is sent back to the PPE and stored in the main memory. After all of

the SPEs finish the process, the whole image as decomposed along the x coordinates is

ready. The same process is repeated for the decomposed image on the other dimension

(along the x coordinates), and the 2D wavelet decomposition is thus performed.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 72

3.6.3. STREAMING MODEL

In the Streaming Model, each SPE, in either a serial or parallel pipeline, computes data

that streams through. The PPE acts as a stream controller, and the SPEs act as stream-

data processors. For the SPEs, on-chip load and store bandwidth exceeds off-chip DMA-

transfer bandwidth by an order of magnitude. If each SPE has an equivalent amount of

work, this model can be an efficient way to use the Cell Broadband Engine because data

remains inside the Cell Broadband Engine as long as possible. The PPE and SPEs support

message-passing between the PPE, the processing SPE, and other SPEs. The pseudocode

of the streaming model is shown in Figure 17.

__
PPE code:
Start main application

Construct a context and thread for each SPEs

Create SPE threads with the context as parameter

Wait for all SPEs to complete

Continue main application if required

End

SPE code:
Define local storage and buffer

Fetch SPE context through DMA

While there are task to be executed

 Fetch data through DMA

 Do necessary computations

 Do SPE-PPE/SPE-SPE communication if necessary

End

__

Figure 17. Pseudocode of the Streaming Model

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Cell Broadband Engine

School of Computer Engineering (SCE) 73

The techniques used to implement the alignment of long DNA sequences[102],

CBESW[101], BLAST[104] and pairwise distance matrix computation[103] are

discussed further in Chapter 4, 5, 6 and 7, respectively.

The Euler particle-system simulation described in [122] contains a computational kernel

that streams packets of data through the kernel for each step in time. Using DMA

transfers for PPE-SPE communication, the SPEs fetch the context. For each step in time

for the block of particles, the SPEs fetch their respective data (position, velocity and

inverse mass) by means of DMA transfer. Once it is completed, the SPEs perform the

Euler computation and put back the position and velocity data back into system memory.

The volume ray casting implementation[128] introduces streaming model based schemes

and techniques to efficiently implement acceleration techniques for ray casting on

Cell/BE. In addition to ensuring effective SIMD utilization, their method provides two

key benefits: there is no cost for empty space skipping and there is no memory bottleneck

on moving volumetric data for processing. Furthermore, experimental results show that

we can interactively render practical datasets on a single Cell/BE processor.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Aligning Long DNA Sequence on the Cell Broadband Engine

School of Computer Engineering (SCE) 74

4. ALIGNING LONG DNA SEQUENCE ON THE CELL

BROADBAND ENGINE

This chapter elaborates our implementation of a novel, efficient and scalable parallel

algorithm for very long DNA sequence alignments on a heterogeneous multi-core

system, the Cell Broadband Engine. The two types of parallelization utilized in the

implementation, i.e. the wavefront and the SIMD vectorization are discussed. Lastly,

performance comparisons to other architectures such as GPU and FPGA are provided.

4.1. INTRODUCTION

Sequence alignment is an essential tool to determine the degree of similarity between

nucleotide or amino acid sequences which is assumed to have same ancestral

relationships. The optimal local alignment of a pair of sequences can be computed by the

dynamic programming (DP) based Smith-Waterman algorithm[33]. However, this

approach is very expensive in terms of time and memory cost. One technique to speedup

this time consuming task is to introduce heuristics in the search algorithm, e.g. BLAST

[45]. The drawback of this approach is that the more efficient the heuristics, the worse is

the result. In other words, these algorithms sacrifice sensitivity for speed. Hence, more

distant sequence relationship may not be detected.

Another popular approach to reduce computational time without sacrificing the

performance is to use High Performance Computing. Examples of parallel architectures

that have been evaluated for this problem include FPGAs[86], GPUs[93] and SIMD

arrays[133]. In this chapter, we investigate how the Cell Broadband Engine can be used

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Aligning Long DNA Sequence on the Cell Broadband Engine

School of Computer Engineering (SCE) 75

as a computational platform to accelerate sequence alignment for very long DNA

sequences.

4.2. SMITH-WATERMAN ALGORITHM

The Smith-Waterman algorithm is used to determine the optimal local alignment

between two nucleotide or protein sequences. The algorithm compares two sequences by

computing the similarity score by means of dynamic programming (DP). Two

elementary operations are used: substitution and insertion/deletion (also called a gap

operation). The original algorithm was proposed by Smith and Waterman[33] with a

complexity of O(m2n) and was improved by Gotoh[65] to run at O(mn). The Smith-

Waterman Algorithm as a local alignment has been explained briefly in section 2.2.3.2.

Consider two strings S1 and S2 with length m and n, respectively. The Smith-Waterman

algorithm computes the similarity value M(i, j) of two sequences ending at position i and

j of the two sequences S1 and S2, respectively. For affine gap penalties, i.e. α≠β, the

computation of M(i, j), for 1 ≤ i ≤ m, 1 ≤ j ≤ n, is given as shown in Equation 10:

M(i, j) = max {M(i−1, j−1)+sbt(S1[i], S2[j]),E(i, j), F(i, j), 0}

E(i, j) = max {M(i, j − 1) − α, E(i, j − 1) − β},

F(i, j) = max {M(i − 1, j) − α, F(i − 1, j) − β},

Equation 10. Smith-Waterman equation for affine gap penalties

where sbt is a character substitution cost table, α is the cost of the first gap; β is the cost

of the following gaps. For linear gap penalties, i.e. α = β, the above recurrence relations

can be simplified, as shown in Equation 11:

M(i, j) = max{M(i − 1, j − 1) + sbt(S1[i], S2[j]), M(i, j − 1) − α, M(i − 1, j) – α, 0}

Equation 11. Smith-Waterman equation for linear gap penalties

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Aligning Long DNA Sequence on the Cell Broadband Engine

School of Computer Engineering (SCE) 76

Initialization values are given as the following: for 0 ≤ i ≤ m, 0 ≤ j ≤ n, M(i, 0) = M(i, j) =

E(i, 0) = F(i, j) = 0. Each position of the matrix M is a similarity value. The maximum

local alignment score is defined as the maximal value in matrix H. The two segments of

S1 and S2 producing this value can be determined by a trace-back procedure. The three

arrows in Figure 18 show the data dependencies in the alignment matrix: each cell

depends on its left, upper, and upper-left neighbors.

a2

a3

a4

a5

a6

a1

b1 b2 b3 b4 b5 b6 b7

Figure 18. Data dependency in the SW algorithm alignment matrix

Figure 19 illustrates an example of computing the local alignment between two DNA

sequences CAGTTTCG and ACAGTCGAACG using the Smith-Waterman algorithm.

The matrix M(i, j) is shown for the linear gap cost α = β = 1, and a substitution cost of +2

if the characters are identical and -1 otherwise. The highest score in the matrix (+10) is

the optimal score for the alignment. The trace-back procedure, shown in form of arrows,

shows that the optimal local alignment is CAGTTTCG and CAG − −TCG.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Aligning Long DNA Sequence on the Cell Broadband Engine

School of Computer Engineering (SCE) 77

 A C A G T C G A A C G

 0 0 0 0 0 0 0 0 0 0 0 0

C 0 0 +2 +1 0 0 +2 +1 0 0 +2 +1

A 0 +2 +1 +4 +3 +2 +1 +1 +3 +2 +1 +1

G 0 +1 +1 +3 +6 +5 +4 +3 +2 +2 +1 +3

T 0 0 0 +2 +5 +8 +7 +6 +5 +4 +3 +2

T 0 0 0 +1 +4 +7 +7 +6 +5 +4 +3 +2

T 0 0 0 0 +3 +6 +6 +6 +5 +4 +3 +2

C 0 0 +2 +1 +2 +5 +8 +7 +6 +5 +6 +5

G 0 0 +1 +1 +3 +4 +7 +10 +9 +8 +7 +8

Figure 19. Sequence alignment of CAGTTTCG and ACAGTCGAACG

4.3. WAVEFRONT PARALLELIZATION

Our parallel algorithm employs a static load balancing strategy, which means that the

work load is known at the start and distributed equally across processes and processors.

The algorithm starts by reading the input dataset. The PPE then preprocesses the set of

input sequences such that all the SPEs will have their respective sequence parts in their

local memory. Consider two sequences, S1 and S2 of length m and n respectively.

Assume that p SPEs, P1, ..., Pp, are used for the computation. S1 is broadcast to all SPEs,

while S2 is divided into p pieces, of size n/p, and each SPE Pi, 1 ≤ i ≤ p, receives the i-th

piece of S2. Each SPE has to compute a non-overlapping m x n/p submatrix of the whole

m x n DP matrix. This computation is performed in q + p - 1 rounds, where q = m/r and r

denotes the number of consecutive rows calculated in one round. Hence, each round

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Aligning Long DNA Sequence on the Cell Broadband Engine

School of Computer Engineering (SCE) 78

computes an r x n/p submatrix in a number of SPEs in parallel in each round. The

scheduling scheme follows a wavefront pattern and is illustrated in Figure 20.

0P1
1P2

2P3

1P1
2P2

2P1

q-1P1
qP2

p-1Pp

pPp

p+1Pp

q+p-2Pp

kPi

n

r

n/p

m

Figure 20. Block diagram of the wavefront algorithm

The notation kPi denotes the sub-matrix computed by the SPE Pi at round k. Thus, at the

start, P1 starts computing 0P1 at round 0. Then, P1 and P2 computes 1P1 and 1P2,

respectively at round 1; P1, P2 and P3 computes 2P1, 2P2 and 2P3, respectively at round 2,

and so on. Due to the limitation of the local storage of SPE of 256 KB for both the

program and the data, we implemented a linear space algorithm. Hence, in each kPi, the

similarity value M(i, j) at position i and j is then computed by according to Equation 12:

M(i, j) = max {M(j−1)+sbt(S1[i], S2[j]),E, F(j),0}

E(i, j) = max {M(j − 1) − α, E },

F(i, j) = max {M(j) − α, F(j) − β}

Equation 12. Modified Smith-Waterman equation for the Cell/BE mapping

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Aligning Long DNA Sequence on the Cell Broadband Engine

School of Computer Engineering (SCE) 79

After computing the kth part of the kPi, SPE Pi sends the elements of the rightmost

column of kPi to SPE Pi+1. Using these information, SPE Pi+1 can compute the k+1Pi+1.

After q+p-1 rounds, SPE Pp receives its necessary information from Pp-1 and computes

q+p-2Pp and finishes the entire alignment. During the entire computation, each SPE

updates and stores its maximum local score. At the end of the computation, each SPE

sends its maximum local score to the PPE through the mailbox function. The PPE uses

spe_stat_out_mbox function to fetch the status of the SPU outbound mailbox for each

SPE thread and read each maximum local score. Using those scores, the PPE then

determines the global optimal score.

4.4. SIMD PARALLELIZATION

In order to further exploit the capabilities of the Cell Broadband Engine, our parallel

implementation has been modified using Single Instruction Multiple Data (SIMD)

registers of the SPEs for further optimization using the concepts of the vectorization

strategy for Smith-Waterman comparison done by Wozniak[134].

Due to the additional memory requirement for this method as well as the local storage

memory limitation of the SPEs, each SPE can only compute a submatrix of size 128x128

in each round. Hence, with 8 SPEs, we can compute an overall DP matrix of size

2048x1024. This length, however, is quite short for real life application. Hence, we have

extended the algorithm such that it can compute alignment of longer sequences. In this

new approach, the computation is split into blocks of size 2048x1024. Each block is

computed using 8 SPEs, in which the larger 2048x1024 block is divided into smaller

blocks computation of size 128x128. Once a 2048x1024 block has been computed, the

local maximum is then sent to the PPE through the mailbox function and the right-most

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Aligning Long DNA Sequence on the Cell Broadband Engine

School of Computer Engineering (SCE) 80

column of this block is saved. The next 2048x1024 block is then offloaded to the SPEs to

be computed. Due the nature of the Smith-Waterman algorithm, the block directly below

the current block will be chosen as next block (vertical priority). Once all the blocks in

the current vertical column has been computed successfully, the concatenation of the

right-most column of the vertical blocks are sent and processed to compute the next batch

of blocks.

Pseudocode of the SIMD parallelization scheduling is illustrated in Figure 21. At the end

of all block computations, the maximum of the local maximums collected by the PPE is

determined as the global optimal score.

Input:
num: Number of SPEs used, S1 and S2: Sequences S1 and S2 with lengths m

and n, respectively

Output:
Smax: Global maximum score for the optimum local alignment of S1 and S2

SPE Pseudocode:
Initialize;

While (outerloop<(n/1024)){

Fetch the right-most column of Pnum of the previous iteration from

PPE through DMA transfer;

Fetch part of S2 of the corresponding block from the PPE through

DMA transfer;

innerloop=0;

While (innerloop<(m/2048)){

Fetch part of S1 of the corresponding block from the PPE

through DMA transfer;

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Aligning Long DNA Sequence on the Cell Broadband Engine

School of Computer Engineering (SCE) 81

While (count<2048){

if (i>0){

Receive signal and data from Pi-1;

}

Compute sub-block for size 128x128;

if (i<num){

Send signal and data to Pi+1;

}

count+=128;

}

innerloop++;

Send the local maximum to PPE through mailbox;

}

outerloop++;

Send the right-most column of Pnum to PPE through DMA transfer;

}

End;

Figure 21. Pseudocode of the SIMD parallelization scheduling

Throughout the entire computation, data is sent using direct SPE to SPE communication

in order to avoid the latency of communicating through shared memory. Thus,

synchronizing the communication between SPEs is crucial. Our implementation uses the

MFC sendsignal command (mfc_sndsig) for the means of synchronization. The

mfc_sndsig requires the effective address of the target SPE signal-notification channel as

well as a 32-bit signal value. The command increments the channel count of the target

SPEs signal-notification channel by one. The SPE verifies that the previous value has

been read by performing an MFC get command from the effective address of the target

SPE signal-notification register and ensuring that it has been reset by a channel read on

the target SPE. The target SPE uses a read-channel instruction on the signal notification

channel of interest to receive the 32-bit signal value. This read-channel instruction will

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Aligning Long DNA Sequence on the Cell Broadband Engine

School of Computer Engineering (SCE) 82

return immediately, reset any set bits in the signal-notification register, and reset the

channel count if the associated signal-notification register has a waiting unread signal

value. Otherwise, the read-channel instruction will cause the SPU to stall until a write to

the signal-notification register happens.

4.5. PERFORMANCE EVALUATION

In this section, we analyze the performance of our parallel algorithm for varying number

of SPEs and varying sequence lengths using artificial DNA data sets. The experiment has

been conducted on the IBM Full System Simulator for the Cell Broadband Engine[135],

which is a generalized simulator that can be configured to simulate a broad range of full

system configurations. The simulator supports full functional simulation and is able to

simulate and capture many levels of operational details on instruction execution, cache

and memory subsystems, communications, and other important system functions.

Furthermore, it supports cycle-accurate simulation, which not only models functional

accuracy but also timing. It considers internal execution and timing policies as well as

the mechanisms of system components, such as arbiters, queues, and pipelines.

The performance statistics measured from the simulator for the parallel algorithm are

then converted to the following measurements: computational time, speed-up, cell

updates per second (CUPS), and the parallel efficiency, as shown in Figure 22-25

respectively. The term l(r) describes that the aligned sequences of length l, and r rows are

being sent from one SPE to another at one time.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Aligning Long DNA Sequence on the Cell Broadband Engine

School of Computer Engineering (SCE) 83

Computational Time Performance Graph

0

10

20

30

40

50

60

70

0 2 4 6 8

Number of SPUs

Co
m

pu
ta

tio
na

l t
im

e
(m

s)

128(1) 128(2) 256(8)
512(16) 1024(32) 2048(64)

Figure 22. Computational graph of the performance evaluation results

Figure 22 shows the computational time of our parallel algorithm on the abovementioned

datasets. By using 8 SPEs, our parallel algorithm managed to reduce the computational

time of aligning sequences of length 2048 from 64.34 milliseconds to 9.47 milliseconds

by sending 64 rows at a time.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Aligning Long DNA Sequence on the Cell Broadband Engine

School of Computer Engineering (SCE) 84

Speed-up Performance Graph

0

1

2

3

4

5

6

7

8

0 2 4 6 8
Number of SPUs

Sp
ee

d-
up

128(1) 128(2) 256(8)
512(16) 1024(32) 2048(64)

Figure 23. Speed-up graph of the performance evaluation results

The speed-up of our parallel algorithm is shown in Figure 23. By using 8 SPEs, we

managed to achieve a speed-up of up to 6.91 for aligning sequences of length 2048 by

sending 64 rows at a time.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Aligning Long DNA Sequence on the Cell Broadband Engine

School of Computer Engineering (SCE) 85

Cell updates per second (CUPS) Performance Graph

0

100

200

300

400

500

0 2 4 6 8

Number of SPUs

M
CU

Ps

128(1) 128(2) 256(8)
512(16) 1024(32) 2048(64)

Figure 24. CUPS graph of the performance evaluation results

Figure 24 shows the performance of our algorithm in terms of cell updates per second.

By using 8 SPEs, our algorithm managed to achieve a speed-up of up to 450 MCUPS for

sequence alignment of length 2048 by sending 64 rows at a time.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Aligning Long DNA Sequence on the Cell Broadband Engine

School of Computer Engineering (SCE) 86

Efficiency Performance Graph

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 2 4 6 8
Number of SPUs

Ef
fic

ie
nc

y

128(1) 128(2) 256(8)
512(16) 1024(32) 2048(64)

Figure 25. Efficiency graph of the performance evaluation results

Our algorithm also shows a good scalability as it achieves high efficiency, especially for

datasets of longer sequences, as can be seen in Figure 25. Sequence alignment of length

2048 which sends 64 rows at a time provides 86.4% efficiency.

For the SIMD parallelization, the performance statistics obtained from the simulator are

converted to computational time, and cell updates per second (CUPS). The usage of

larger blocks allows the alignment of longer sequences. In the experiment results, we

have aligned sequences of length up to 8192. However, 8192 is not a length restriction of

our algorithm but a limit imposed by the IBM Full System Simulator simulation time.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Aligning Long DNA Sequence on the Cell Broadband Engine

School of Computer Engineering (SCE) 87

Table 5. Performance evaluation results of the SIMD parallelization

Size Computational Time (ms) CUPS

2048 x 1024 0.86 2,448.65

2048 x 2048 1.49 2,808.58

4096 x 4096 5.31 3,158.31

8192 x 8192 21.34 3,169.22

As shown in Table 5, our implementation achieves a performance of up to 3,160

MCUPS. Thus, our implementation is 4-5 times faster than the Smith-Waterman

implementation using GLSL on a GeForce 7900 GTX presented in [93]. The FPGA

implementation using Verilog presented in [86] on a Virtex-II XC2V6000 is about 1.5

times faster than ours. Although FPGAs are flexible, their configuration has to be

changed for each single algorithm, which is in general more complicated than writing

code for programmable architectures such as the Cell/BE.

4.6. SUMMARY

We have presented a parallel algorithm for sequence alignment on a heterogeneous

multi-core system using both SIMD vectorization and wavefront parallelism. Our

implementation on the Cell/BE simulator shows almost linear speedup and reduces the

computational time for sequences of 2048 to only 9.47 ms, achieving 450 MCUPS in the

process. Furthermore, we have shown that by exploiting the SIMD feature of the

Cell/BE, we are able to align longer sequences with excellent performance. In aligning

two sequences of length 8192, our implementation achieves almost 3.2 GCUPS.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 CBESW: Implementation of the Smith-Waterman Algorithm on the Playstation®3

School of Computer Engineering (SCE) 88

5. CBESW: IMPLEMENTATION OF THE SMITH-

WATERMAN ALGORITHM ON THE PLAYSTATION®3

This chapter elaborates how the PlayStation® 3, powered by the Cell Broadband Engine,

can be used as a computational platform to accelerate the Smith-Waterman algorithm for

large protein datasets. Lastly, performance comparisons to other implementations such as

SSEARCH, Striped Smith-Waterman, CUDA-SW and CUDASW++ are provided.

5.1. INTRODUCTION

The optimal local alignment of a pair of sequences can be computed by the dynamic

programming (DP) based Smith-Waterman (SW) algorithm[33]. However, this approach

is expensive in terms of time and memory cost. Furthermore, the exponential growth of

available biological data[1, 136] means that the computational power needed is growing

exponentially as well.

Previous works in improving the search time of the SW algorithm include the usage of

SIMD multimedia extension of general-purpose CPUs as well as accessible accelerator

technologies, such as FPGAs, GPUs and specialized processors. Implementation by

Farrar[137] exploits the SSE2 SIMD multimedia extension of general-purpose CPUs. His

implementation makes use of query profile[138] and utilizes vector registers, which are

parallel to the query sequence and are accessed in a striped pattern. FPGA

implementations [86, 139] tend to be very expensive and hard-to-program. Hence, they

are not suitable for many users. Liu et al. [93] first reported the implementation of the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 CBESW: Implementation of the Smith-Waterman Algorithm on the Playstation®3

School of Computer Engineering (SCE) 89

Smith-Waterman algorithm on graphics hardware using OpenGL. Although it achieves a

high efficiency, programming in OpenGL requires specialized skills. Therefore,

Manavski[92] re-implemented the SW algorithm on a GPU with the recently released C-

based CUDA programming environment. Further SW implementations based on CUDA

include [97, 140].

In this chapter, we demonstrate how the PlayStation®3 (PS3), powered by the Cell

Broadband Engine[109], can be used to accelerate the Smith-Waterman algorithm.

5.2. SMITH-WATERMAN ALGORITHM

Our CBESW implementation uses the Smith-Waterman algorithm with affine gap

penalties. The concept of the Smith-Waterman algorithm is described in Chapter 4.2.

There are two basic approaches to vectorize the Smith-Waterman algorithm. All elements

in the same minor diagonal of the DP matrix can be calculated independent of each other.

Therefore, a possible vectorization approach is to compute the DP matrix in minor

diagonal order[134], as elaborated in chapter 4. Another approach vectorizes the DP

matrix computation in a column-wise order[137, 138]. By using vectors of elements

parallel to the query sequence, the much-simplified dependency relationship and parallel

loading of the vector scores from memory can be achieved, thus accelerating the DP

matrix calculation.

We have decided to use the column-based approach for vectorization on the Cell/BE.

processor since (1) the column-based approach outperforms the minor-diagonal approach

on Intel SSE2 architectures and (2) since we only need to store one column of the DP

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 CBESW: Implementation of the Smith-Waterman Algorithm on the Playstation®3

School of Computer Engineering (SCE) 90

matrix instead of two diagonals for the minor diagonal method, the column-based

approach requires less SPE memory.

5.3. IMPLEMENTATION

Details of the CBESW implementation are elaborated in this section. We explain the

mapping of the algorithm to the Cell/BE, the query profile utilized to speed up the

computation as well as the saturation arithmetic.

5.3.1. MAPPING TO THE CELL BROADBAND ENGINE

Our sequence alignment implementation uses affine gap penalties and utilizes the 128-bit

wide SIMD vector registers of the SPEs for optimization. The vectorization strategy is

based on a column-based approach[137, 138]. It also employs a static load balancing

strategy, which means that the work load is known at the start and distributed equally

across the SPEs. The code is written in C together with the Cell/BE SIMD Multimedia

Extension Language intrinsics and SPU intrinsics for portability. DMA transfers and

mailbox functions are used for communication purposes.

Table 6. List of SPU Low-Level Specific and Generic Intrinsics used

Category of Intrinsics SPU Low-Level Specific and
Generic Intrinsics used

Constant Formation Intrinsics. spu_splats

Arithmetic Intrinsics spu_add
spu_sub

Compare, Branch and Halt
Intrinsics

spu_cmpgt

Bits and Mask Intrinsics spu_sel

Logical Intrinsics
spu_or
spu_and
spu_nor
spu_nand

Shift and Rotate Intrinsics
spu_slqwbyte
spu_rlmaskqwbyte
spu_rlmaska

Scalar Intrinsics spu_extract

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 CBESW: Implementation of the Smith-Waterman Algorithm on the Playstation®3

School of Computer Engineering (SCE) 91

A list of SPU Low-Level Specific and Generic Intrinsics used in our vectorized

implementation, divided into categories, is shown in Table 6. Constant Formation

Intrinsics, Arithmetic Intrinsics, Compare, Branch and Halt Intrinsics, Bits and Mask

Intrinsics, Logical Intrinsics, Shift and Rotate Intrinsics and Scalar Intrinsics have been

employed to access hardware features, which are not easily accessible from a high level

language in order to obtain the best performance from the Cell/BE. More details about

the syntax and semantics of these Intrinsics can be found in [141].

Figure 26. Mapping of the different stages of the CBESW implementation

Figure 26 illustrates the mapping of different stages of SW-based protein sequence

database scanning application onto the Cell/BE. The PPE starts by reading the query and

the database from the respective files and then pre-processes the query sequences such

that they are suitable for vector operations. The pre-processed query sequence, together

with some context data, is sent to each respective SPEs, which in turn will generate its

own query profile. This process is done using DMA transfers, namely mfc_get and

mfc_put.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 CBESW: Implementation of the Smith-Waterman Algorithm on the Playstation®3

School of Computer Engineering (SCE) 92

Given a database D consisting of |D| sequences and k SPEs. Each SPE aligns the query

sequence to the database sequences. Pseudocode of the mapping is illustrated in Figure

27. Scores obtained from those alignments are sorted locally in the SPEs and the b

highest scores are sent to the PPE, where they are sorted once again to obtain the b

overall highest scores.

Figure 27. Pseudocode of the SPE code for the Cell/BE mapping

Due to the fact that the SPEs only have 256 Kbytes of local memory, which have to store

program code and data, memory allocation is crucial for the SPE. The current longest

sequence in the Swiss-Prot database is 35,213 amino acids (accession number A2ASS6).

In order to accommodate for longer protein sequence in the future, we allocate dynamic

memory for the database sequences of up to 64,000 amino acids per sequence. Due to

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 CBESW: Implementation of the Smith-Waterman Algorithm on the Playstation®3

School of Computer Engineering (SCE) 93

these limitations, the maximum query sequence length allowed for our implementation is

limited to 852.

5.3.2. QUERY PROFILE

In order to calculate M(i,j) in the SW DP matrix, the value sbt(S1[i], S2[j]) needs to be

added to M(i−1, j−1). To avoid performing this table lookup for each element in the DP

matrix, Rognes[138] and Farrar [137] suggested calculating a query profile parallel to the

query sequence beforehand.

Assuming that S1, S2 ∈ Σ* and S1 is the query sequence, the query profile is defined as a

set P = {Px | x∈Σ} consisting of Σ numerical strings of length l1 each, where l1 = S1.

Each string Px ∈ P consists of all substitution table values that are needed to compute a

complete column j of the DP matrix for which S2[j] = x. Pre-computing the query profile

greatly reduces the amount of substitution table lookup in the SW DP matrix

computation, since Σ is usually much smaller than S2.

The query profile can be calculated in a straightforward sequential layout [138] or in a

more complex striped layout [137], as shown in Figure 28. The values in the query

profile for sequential and striped layout are defined in Equation 13 and 14, respectively:

Px[i] = sbt(S1[i],x), for all 1 ≤ i ≤ l1,

Equation 13. Query profile equation for sequential layout

()()()1
1[] 1 % 1 ,x

iP i sbt S i p t x
p

   −
= − + +       

 for all 1 ≤ i ≤ l1

Equation 14. Query profile equation for striped layout

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 CBESW: Implementation of the Smith-Waterman Algorithm on the Playstation®3

School of Computer Engineering (SCE) 94

where p is the number of segments and t is the segment length.

Figure 28. Query profile layout

In the striped layout, p corresponds to the number of elements that can be processed in a

SIMD vector register (e.g. for 128-bit wide SIMD registers, p = 8 when using 16-bit

precision). The length of each segment, t is defined in Equation 15.

t = (l1 + p − 1)/p

Equation 15. Segment length equation used for the query profile calculation

Both approaches allow efficient vectorization on SSE2-compatible processors using the

corresponding SIMD instruction set. Using the pre-calculated query profile, the

computation of the DP matrix can be performed in column-wise order. Due to the

simplified dependency relationship and parallel loading of the vector scores from

memory, fast DP matrix calculations can be achieved. The advantage of the striped layout

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 CBESW: Implementation of the Smith-Waterman Algorithm on the Playstation®3

School of Computer Engineering (SCE) 95

compared to the sequential layout is that data dependencies between vector registers are

moved outside the inner loop. For instance, when calculating vectors for the DP matrices

H or F with the sequential layout, the last element in the previous vector has to be moved

to the first element in the current vector. When using the striped query layout, this needs

to be done just once in the outer loop when processing the next subject sequence

character.

5.3.3. SATURATION ARITHMETHIC

The inner loop of the algorithm requires saturation arithmetic, namely saturated additions

and saturated subtractions. The Cell/BE lacks the saturation arithmetic support, leaving

the tasks to be handled by software instead of direct hardware support. In order to tackle

this problem, we introduced two new functions, namely spu_adds and spu_subs to

handle saturated additions and saturated subtractions, respectively.

5.4. PERFORMANCE EVALUATION

In this section, we analyze the performance of our parallel algorithm for various query

sequence lengths using sequences from Swiss-Prot database. Searches for 18 query

sequences with various lengths between 63 to 852 amino acids were performed. The

accession numbers of the query sequences used are O29181, P03630, P02232, P05013,

P14942, P00762, P53675, Q8ZGB4, P10318, P07327, P01008, P10635, P58229, P25705,

P42357, P21177, Q38941 and O60341, respectively. All queries were run against Swiss-

Prot release 55.2 comprising 130,497,792 amino acids in 362,782 sequence entries. The

gap-open penalty used was 10 and the gap-extension penalty used was 2. The scoring

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 CBESW: Implementation of the Smith-Waterman Algorithm on the Playstation®3

School of Computer Engineering (SCE) 96

matrix used in the testing was BLOSUM45. All experiments were carried out on a

standalone PlayStation® 3 machine, with Yellow Dog Linux 5.0 operating system and

the Cell Software Development Kit (SDK) 2.0.

The performance statistics measured are then converted to the following measurements,

i.e. computational time and Million Cell Updates Per Second (MCUPS). Given a query

sequence of size Q and a database of size D, the MCUPS rating (million cell updates per

second) is calculated by Equation 16.

t
DQ 610××

Equation 16. MCUPS calculation equation

where

|Q| = size of query sequence in amino acids

|D| = size of database sequences in amino acids

t = run time (including input from file, initialization and result output)

Table 7 shows the performance evaluation of our implementation, in terms of

computational time and MCUPS. All queries were run against Swiss-Prot release 55.2

comprising 130,497,792 amino acids in 362,782 sequence entries. Eighteen query

sequences of length 63 to 852 amino acids were used. The gap-open penalty used is 10

and the gap-extension penalty used was 2. The BLOSUM45 scoring matrix was used.

Our CBESW implementation scales well with the number of activated SPEs, as can be

seen from the experiments using 2, 4 and 6 SPEs. By using all 6 SPEs available in the

PS3, our parallel algorithm reaches a peak performance of 3,646.48 MCUPS for a query

sequence of length 852 (accession number O60341).

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 CBESW: Implementation of the Smith-Waterman Algorithm on the Playstation®3

School of Computer Engineering (SCE) 97

Table 7. CBESW Performance Evaluation

Accession
number

Query Sequence
Length

CBESW
2 SPEs

(seconds)

CBESW
4 SPEs

(seconds)

CBESW
6 SPEs

(seconds)

CBESW
6 SPEs

(MCUPS)
O29181 63 24.56 20.83 18.45 445
P03630 127 38.14 24.67 19.05 869
P02232 143 40.46 25.83 19.17 973
P05013 189 44.59 26.94 19.60 1,258
P14942 222 47.96 27.96 20.12 1,439
P00762 246 49.77 28.33 20.24 1,586
P53765 255 50.37 28.60 20.43 1,628
Q8ZGB4 361 55.01 30.85 22.04 2,137
P10318 362 55.16 30.88 22.06 2,141
P07327 374 57.63 31.34 22.39 2,179
P01008 464 60.89 32.45 23.18 2,612
P10635 497 62.18 33.16 23.69 2,737
P58229 511 64.20 34.20 24.43 2,729
P25705 553 65.02 34.63 24.74 2,916
P42357 657 70.02 37.29 26.64 3,218
P21177 729 73.76 39.28 28.06 3,390
Q38941 850 80.15 42.62 30.45 3,642
O60341 852 80.25 42.68 30.49 3,646

We have compared the performance of our CBESW implementation with other publicly

available implementations of SW-based protein database scanning, namely

SSEARCH[142], Striped Smith-Waterman[137], CUDA[92] and CUDASW++ v1.0[97].

Performance comparison between our CBESW implementation with other

implementations are in terms of MCUPS. All queries were run against Swiss-Prot release

55.2. The query sequences, as well as their respective Swiss Prot accession numbers,

used in the different performance comparisons are shown in Table 8.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 CBESW: Implementation of the Smith-Waterman Algorithm on the Playstation®3

School of Computer Engineering (SCE) 98

Table 8. List of query sequences used in different performance comparisons

Accession
number

Query Sequence
Length SSEARCH Striped SW CUDA CUDASW++

O29181 63 √ √ √ √
P03630 127 √ √ √ √
P02232 143 √ √
P05013 189 √ √
P14942 222 √ √
P00762 246 √ √
P53765 255 √ √ √ √
Q8ZGB4 361 √ √ √ √
P10318 362 √ √
P07327 374 √ √
P01008 464 √ √
P10635 497 √ √
P58229 511 √ √ √
P25705 553 √ √
P42357 657 √ √ √ √
P21177 729 √ √ √ √
Q38941 850 √ √ √ √
O60341 852 √ √ √ √

SSEARCH[142] is a SW implementation which is part of the FASTA[143] package. The

SSEARCH performance is benchmarked on an Intel Core 2 Duo 2.4 GHz CPU with 1GB

RAM. Both execution cores were used in the experiment. Nine query sequences with

lengths of 63 to 852 amino acids and the BLOSUM45 scoring matrix were used. As

shown in Figure 29, for a query sequence of length 852 (accession number O60341),

SSEARCH achieves a performance of 121.91 MCUPS. Thus, our implementation is over

30 times faster.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 CBESW: Implementation of the Smith-Waterman Algorithm on the Playstation®3

School of Computer Engineering (SCE) 99

Figure 29. Performance comparison with the SSEARCH implementation

Figure 30 shows the performance comparison between PS3 and striped SW. Striped SW

is also benchmarked on an Intel Core 2 Duo 2.4 GHz CPU with 1GB RAM. Both

execution cores were used in the experiment. Nine query sequences with lengths of 63 to

852 amino acids and the BLOSUM45 scoring matrix were used. As can be seen from the

figure, for query sequences with length > 255 amino acids, our PS3 implementation

achieves a higher MCUPS performance compared to striped SW. The PS3 peak

performance is 1.64 times faster than striped SW for the query sequence of length 852.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 CBESW: Implementation of the Smith-Waterman Algorithm on the Playstation®3

School of Computer Engineering (SCE) 100

Figure 30. Performance comparison with the Striped Smith-Waterman

implementation

The performance comparison between the PS3 implementation and CUDA-SW on a

single NVIDIA GeForce 8800GTX is shown in Figure 31. The CUDA implementation

experiment was conducted with a GeForce 8800GTX 512 MB installed in a PC with a

Dual-Core AMD Opteron 2210 1.8GHz CPU, 2GB RAM running Fedora 6. Seventeen

query sequences with lengths of 63 to 852 amino acids were used. The scoring matrix

used for the CUDA implementation was BLOSUM 50. As can be seen from the figure,

our implementation achieves a better MCUPS performance. The PS3 peak performance is

3 times faster compared to the peak performance CUDA implementation on a single

NVIDIA GeForce 8800GTX.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 CBESW: Implementation of the Smith-Waterman Algorithm on the Playstation®3

School of Computer Engineering (SCE) 101

Figure 31. Performance comparison with the CUDA implementation on a single

NVIDIA GeForce 8800GTX

CUDASW++ implementation was benchmarked on a single NVIDIA Tesla C1060,

consisting of 240 1.3 GHz streaming processor cores, installed in Intel Quad-Core i7-920

2.66GHz CPU, 12GB RAM running Linux Fedora 10. The performance comparison

graph is shown in Figure 32. Eighteen query sequences with lengths of 63 to 852 amino

acids were used. The scoring matrix used for the CUDA implementation was BLOSUM

50. In average, performance of the CUDASW++ is 4.38 faster compared to our CBESW

implementation. As can be seen from the graph, the speed-up of CUDASW++ is more

significant at short query length. The speed up obtained by the CUDASW++ compared to

CBESW is expected, since Tesla C1060 is based on newer technology than PS3 by

almost 4 years difference.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 CBESW: Implementation of the Smith-Waterman Algorithm on the Playstation®3

School of Computer Engineering (SCE) 102

Figure 32. Performance comparison with the CUDASW++ implementation on a

single NVIDIA Tesla C1060

5.5. SUMMARY

In this chapter, we have demonstrated that the PlayStation® 3, powered by the Cell

Broadband Engine, can be effectively used to accelerate a biological sequence alignment

application. In order to derive an efficient mapping onto this type of heterogeneous multi-

core architecture, we have utilized SIMD vectorization and parallel data partitioning and

communication techniques.

Our implementation achieves a peak performance of 3,646.48 MCUPS for a query

sequence of length 852. Hence, the peak performance of our implementation is 30.1 times

and 1.64 times faster than SSEARCH and striped SW, on an Intel Core 2 Duo 2.4 GHz.

The CBESW peak performance is also 3 times faster compared to the peak performance

CUDA implementation on a single NVIDIA GeForce 8800GTX. Comparison to

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 CBESW: Implementation of the Smith-Waterman Algorithm on the Playstation®3

School of Computer Engineering (SCE) 103

CUDASW++ on a single NVIDIA Tesla C1060, which is the one of the latest SW

implementations with one of the most recent and powerful GPU, shows that it is 4.38

faster compared to our CBESW implementation.

The very rapid growth of biological sequence databases demands even more powerful

high-performance solutions in the near future. Hence, our results are especially

encouraging since high performance computer architectures are developing towards

heterogeneous multi-core systems.

Due to the 256 KB memory limitation of the SPE local store, the maximum query

sequence length in our current implementation is 852. One of the limiting factors is that

the size of the query profile grows with the length of the query sequence. Part of our

future work is therefore to tackle this limitation. A promising approach is to align subject

sequences against separate chunks of the query profile. The complete query profile only

needs to be stored once in the main memory instead of the local store of the SPE. This

frees up more memory space for the SPEs and thus allows longer query sequences. Given

a query sequence of length l, the query profile can be divided into n chunks in which each

chunks contains a query profile of size l/n. The respective SPEs can then align a part of

the chunk of the query profile it has and get the next chunk from outside memory via

concurrent DMA transfer.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Implementation of a Heuristic Protein Sequence Database Scanning Algorithm on the Cell/BE

School of Computer Engineering (SCE) 104

6. IMPLEMENTATION OF A HEURISTIC PROTEIN

SEQUENCE DATABASE SCANNING ALGORITHM ON

THE CELL/BE

This chapter discusses the implementation of a heuristic protein sequence database

scanning algorithm, the BLASTP heuristic, on the Cell/BE. Furthermore, a new parallel

communication pattern and a novel data structure utilized in the implementation are

explained in detail. Lastly, performance comparisons of our Cell/BE BLASTP

implementation on the Playstation®3 to the sequential FSA-BLASTP and NCBI-

BLASTP implementations are presented.

6.1. INTRODUCTION

Scanning genomic sequence databases is a common and often repeated task in molecular

biology. The scan operation consists of finding similarities between a particular query

sequence and all sequences of a bank. There are two basic algorithmic approaches to

perform this scanning i.e. exhaustive dynamic programming and heuristic algorithm.

Heuristic algorithm in general produces the result more rapidly compared to the

exhaustive approach, although it does not guarantee an optimal result.

The computational complexity of the exhaustive approach is quadratic with respect to the

lengths of the alignment targets (query sequence and subject sequence). In order to

reduce the complexity, filtration has been introduced as a heuristic at the cost of a

generally lower quality of the results[144]. Filtration assumes that good alignments

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Implementation of a Heuristic Protein Sequence Database Scanning Algorithm on the Cell/BE

School of Computer Engineering (SCE) 105

usually contain short exact matches. Such matches can be quickly identified using data

structures such as lookup tables. Identified matches are then used as seeds for further

detailed analysis. Several filtration tools for sequence database searching have been

introduced, e.g. [69, 145, 146]. Among them, BLAST (the Basic Local Alignment Search

Tool[45, 69]) is the most popular software and is used to run millions of queries each day.

Previous work on parallelizing BLASTP has focused on distributed memory architectures

such as clusters[147] and reconfigurable hardware[148, 149].

In this chapter, we present new approaches to parallelize the scanning of protein

databases using the BLASTP heuristic on the Cell/BE processor. This implementation is

to our knowledge the first ever reported parallelization of BLASTP on the Cell/BE.

6.2. BLAST-P ALGORITHM

The basic idea for fast sequence database search is filtration. Filtration assumes that good

alignments usually contain short exact matches. Such matches can be quickly computed

by using data structures such as lookup tables. Identified matches are then used as seeds

for further detailed analysis. The analysis pipeline of the BLASTP algorithm is shown in

Figure 33. It consists of four stages. Each stage progressively reduces the search space in

the database for significant alignment. We briefly describe each step in the following.

More details can be found in[45, 69].

Word
Matching

Stage 1

database hits Ungapped
Extension

Stage 2

HSPs Gapped
Extension

Stage 3

Traceback
& Display

Stage 4

alignmentsHSAs

Figure 33. The BLASTP processing pipeline

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Implementation of a Heuristic Protein Sequence Database Scanning Algorithm on the Cell/BE

School of Computer Engineering (SCE) 106

Stage 1: This stage identifies hits. Each hit is defined as an offset pair (i,j) for which

1

0
([], [])w

k
sbt Q i k D j k T−

=
+ + ≥∑ , where sbt is an amino acid substitution matrix (e.g.

BLOSUM65), w is the user-defined word length, T is a user-defined threshold, Q is the

query sequence and D is the database. BLASTP implements this stage by preprocessing

Q as follows. For each position i of Q the neighborhood N(Q[i…i+w−1],T) is computed

consisting of all w-mers p for which 1

0
([], [])w

k
sbt Q i k p k T−

=
+ ≥∑ . The complete neighborhood

of a query is typically stored in an efficient data structure such as a lookup table or a

finite-state automaton. The default parameter values are w=3 and T=11.

Stage 2: Stage 2 outputs HSPs (high-scoring segment pairs) between Q and D. HSPs are

identified by performing an ungapped extensions on a diagonal d which contains a non-

overlapping hit pair (i1,j1), (i2,j2) within a window A; i.e. d = i1 − j1 = i2 − j2 and w ≤ i2 − i1

≤ A. If the resulting ungapped alignment scores above a certain threshold it is passed to

Stage 3.

Stage 3: This stage outputs HSAs (high scoring alignments) between Q and D. HSAs are

identified by performing a seeded banded gapped dynamic programming based alignment

algorithm using the previously identified HSPs as seeds. Alignments that score above a

certain threshold are then passed to the final stage.

Stage 4: The final alignments of the highest scoring sequences are calculated and

displayed to the user. This requires the computation of the traceback path using the

Smith-Waterman algorithm.

An execution profiling of the BLASTP algorithm for scanning the GenBank non-

redundant protein database shows the following breakdown of execution time, as shown

in Table 9.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Implementation of a Heuristic Protein Sequence Database Scanning Algorithm on the Cell/BE

School of Computer Engineering (SCE) 107

Table 9. Breakdown of execution time of BLASTP

Stage Percentage of Execution Time

1 37%

2 31%

3 30%

4 2%

Hence, in order to efficiently map BLASTP on the Cell/BE all stages except Stage 4 need

to be parallelized.

6.3. IMPLEMENTATION

Details of our BLASTP implementation on the Cell/BE are elaborated in this section. We

discuss the parallelization approach in detail as well as the mapping of the algorithm to

the Cell/BE.

6.3.1. PARALLELIZATION APPROACH

In order to achieve an efficient parallelization of protein sequence database scanning on

the Cell/BE. processor, we need to address the following challenges.

1. Limited local storage of the SPE

A major limitation when designing SPE kernels is that their local memory is only 256

KByte for both instructions and data. Using default parameter for w and T the size of

the lookup table used for Stage 1 by NCBI BLASTP is already around 400KByte for

100 randomly selected query sequences. Therefore, we need to use an alternative data

structure which requires significantly less memory.

.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Implementation of a Heuristic Protein Sequence Database Scanning Algorithm on the Cell/BE

School of Computer Engineering (SCE) 108

2. Data transfer and coordination between PPE and SPEs.

The different stages of the BLASTP algorithm constitute a processing pipeline where

the throughput of each stage in the pipeline depends on the filtration efficiency of the

previous stage. Therefore, an efficient and flexible mechanism to transfer sequences

from the database to the SPEs needs to be implemented. The PPE needs to

coordinates this data transfer.

6.3.2. MAPPING TO THE CELL BROADBAND ENGINE

Figure 34 shows our mapping of the different stages of the BLASTP algorithm onto the

Cell/BE. Stage 4 includes a ranking procedure on all database sequences that have passed

Stages 1-3: The top 500 or less matching sequences whose scores exceed a certain

threshold are displayed in descending order. Thus, this stage is performed by PPE. SPE

kernels filter the database as follows. Information about all subject sequences from the

database that have passed Stages 1-3 on an SPE are sent to the PPE. Upon receiving this

information, the PPE completes Stages 1-4 for these subject sequences. The reason why

not only Stage 4 is performed on the PPE is that this stage requires additional information

from the previous stages and storing this on the SPEs would be too memory-intensive.

However, since this redundant computation is merely performed for very few subject

sequences the additional runtime is negligible.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Implementation of a Heuristic Protein Sequence Database Scanning Algorithm on the Cell/BE

School of Computer Engineering (SCE) 109

Traceback &
Display

Ungapped
extension

Word
Matching

Gapped
extension

SPE(1)

…Database

PPE

Ungapped
extension

Word
Matching

Gapped
extension

SPE(k)

Ungapped
extension

Word
Matching

Gapped
extension

Figure 34. Mapping of the different stages of the BLASTP algorithm onto the

Cell/BE

As mentioned above, the size of the codeword lookup data structure used by NCBI

BLAST is too large for the local store of the SPEs. Therefore, we are using a more

memory-efficient data structure for Stage 1. The utilized data structure is a compressed

deterministic finite-state automaton (DFA), which is similar to the approach used by

FSA-BLAST [72, 73]. The compressed DFA for w=3 is illustrated in Figure 35.

YY…YA……CY…CAAY…AA

i=0 i=399i

DFA[i].nextWords = CurrentBlock;

DFA[i].next = DFA[(20*i)%(20^(w-1))]

nil
Y……DCA

char * CurrentBlock[0…19]

0

13

0

7

16

33

0

26

Figure 35. Illustration of the compressed FSA data structure for w=3

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Implementation of a Heuristic Protein Sequence Database Scanning Algorithm on the Cell/BE

School of Computer Engineering (SCE) 110

Each possible prefix of lengths w−1 is represented by a state; i.e. for w=3 there are 400

states representing the prefixes AA to YY, which are stored in the array DFA[i] in Figure

35. Each state has two transitions: one to the next state (DFA[i].next) and one to a list of

20 words (DFA[i].nextWords). Each entry in this list (currentBlock[0..19]) contains a

pointer to an array of query positions. These query positions represent the neighborhood

N(w,T) of the associated w-mer. This data structure allows the compression of frequently

used query positions that are in neighborhoods of similar w-mers. For example in Figure

35, N(‘CYC’,T) = {33, 16, 7} and N={‘CYA’,T} = {16, 7}. By storing these positions in

subsequent order terminated by “0” it is possible to re-use memory for both

neighborhoods. Our experiments have shown that the size the compressed DFA is only

43.8 KByte on average. Hence, it is possible to store the complete data structure on each

SPE for most queries.

The DFA is transferred into each SPE. The PPE then reads sequences from the database

and transfers them to the SPEs by Direct Memory Access (DMA). In order to hide

latencies and achieve good load balancing, we have implemented four buffers on the PPE

per SPE and two buffers on each SPE, as shown in Figure 36. Our double buffering

scheme allows SPEs to receive a new subject sequence through DMA while processing

another previously received sequence. The PPE continuously prepares sequence data for

free buffers. Once a buffer is filled, the PPE sends a mailbox notification to the

corresponding SPE. The number of buffer in the PPE for each SPE is therefore restricted

by the size of the SPE’s Read Inbound Mailbox (which is four). Furthermore, the PPE

dynamically assigns protein sequences to buffers depending on their lengths and the

available memory. The maximum number of sequences inside a buffer is 32.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Implementation of a Heuristic Protein Sequence Database Scanning Algorithm on the Cell/BE

School of Computer Engineering (SCE) 111

PPE

:

:

DB sequences

Matching
signals

1
DB

buffers

1
2
3
4

SPE(1) 1
2

DB
buffers

Database
k

DB
buffers

1
2
3
4

DB sequences SPE(k) 1
2

DB
buffers

Matching
signals

:

:

Figure 36. Buffering scheme

All sequences inside a buffer are filtered by Stages 1-3 on one of the SPEs. If a sequence

passes all these stages, the corresponding bit in the matching signal (32 bits) is set. After

all sequences are processed, this matching signal is sent back to the PPE via a mailbox.

The PPE then identifies all sequences that have passed Stages 1-3 on SPE and perform

Stages 1-4 on them. Pseudocodes of the programs running on the PPE and each SPE are

shown in Figure 37 and 38, respectively.

1. Initialization

2. Create DFA

3. Start SPEs and send parameters and DFA lookup table to SPEs

4. Check whether there is mail from SPEs

 If there is a mail

 Collect information of sequences that passed stages 1-3 and

keep in a queue

 Mark the corresponding buffer as free

5. Check whether there is a free buffer

 If a free buffer is found

 Prepare data into it and mark it as occupied

 Else

 Do BLASTP searching stages 1-2 for sequences in the queue

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Implementation of a Heuristic Protein Sequence Database Scanning Algorithm on the Cell/BE

School of Computer Engineering (SCE) 112

6. Repeat steps 4-5 until there is no sequence in database

7. Send commands to SPEs to complete last buffered sequences

8. Wait until all buffers are marked as free

9. Do BLASTP stages 3-4

Figure 37. Pseudocode of the PPE code

1. Initialization

2. Receiving parameters and DFA from PPE

3. Receiving mail with command from PPE

4. If command is new-data-available

 DMA the new data

 If this is the 1st data

 Go to 3

 Else

 Wait for last data to be completely DMA transferred

 Do Stages 1-3 for sequences in the last data

 Return matching signal to PPE through SPU Write Outbound
 Mailbox

 Go to 3

5. If command is finish-last-sequence

 Do Stages 1-3 for sequences in the last data

 Return matching signal to PPE through SPE Write Outbound Mailbox

 Exit

Figure 38. Pseudocode of the SPE code

Because of the limited storage of each SPE (256 KBytes) it is important to analyze the

associated memory consumption. The size of SPE program is 100KByte. Thus, we have

at most 156KByte for storing the DFA data structure, the two buffers as well as other

parameters and intermediate results. Hence, we have assigned 10KByte to each buffer

and up to 80KByte to the DFA. 80KByte is sufficient for DFAs for query sequences of

up to 2000 base-pairs (bps). In our experiment, the average DFA size is 43.8KByte. If the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Implementation of a Heuristic Protein Sequence Database Scanning Algorithm on the Cell/BE

School of Computer Engineering (SCE) 113

length of a subject sequence is over 10Kbps, it will be put directly into the sequence

queue of the PPE without sending it to an SPE.

Furthermore, some database sequences exceed a certain memory threshold during they

are processed on the SPE. Such sequences will be marked and passed to the PPE for

further processing. Although, this creates additional work, the number of such sequences

is usually negligible. It is also another reason why the PPE performs all stages of the

BLASTP algorithm instead of only Stage 4. Furthermore, note that we do not return

results of matching sequences from SPEs because we do not want to increase SPE code

size by increasing program complexity to return the search results.

6.4. PERFORMANCE EVALUATION

We have implemented the described Cell/BE BLASTP program using Cell/BE SDK 3.0

and evaluated it on a PlayStation®3 (PS3), which contains a Cell/BE as its main

processor. In order to evaluate the performance on a PS3, we have installed LINUX

version 2.6.23-rc3 (gcc version 4.1.1 20061011 (Red Hat 4.1.1-30)). Please note that on

the PS3 two of eight SPEs are used by the operating system running. Therefore, our

experiments can only use up to six SPEs.

We have compared the performance of our Cell/BE BLASTP program to FSA-BLASTP

(available form www.fsa-blast.org) and NCBI-BLASTP

(www.ncbi.nlm.nih.gov/BLAST/developer.shtml). FSA-BLAST uses an optimized

sequential algorithm and is around 15% faster than NCBI-BLASTP with no loss in

accuracy[72, 73]. FSA-BLASTP and NCBI-BLASTP are tested on a HP workstation

xw4200 with Dual-core Pentium®4 (P4) CPU 3.0GHz, 2GB of RAM. Two-hit model [2]

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://www.fsa-blast.org/�
http://www.ncbi.nlm.nih.gov/BLAST/developer.shtml�

 Implementation of a Heuristic Protein Sequence Database Scanning Algorithm on the Cell/BE

School of Computer Engineering (SCE) 114

is used for all BLASTP programs. Default values of W=3 and T=11 are adopted. The

produced matching results by FSA-BLASTP and Cell/BE BLASTP are exactly the same.

The protein sequence database we used in our experiments is the GenBank Non-

Redundant Protein Database (which is downloaded from

ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.gz), containing 6,375,605 protein sequences.

We have chosen 100 random sequences from the database as queries. The lengths of the

query sequences are distributed uniformly between 1 and 2000bps.

Figure 39. Performance comparison between our Cell/BE BLASTP implementation

with the FSA-BLASTP and the NCBI-BLASTP

A performance comparison of the presented parallel Cell/BE BLASTP program to the

sequential FSA-BLASTP and NCBI-BLASTP programs are shown in Figure 39. It can

be seen that Cell/BE BLASTP is faster than FSA-BLAST in most cases. The average

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.gz�

 Implementation of a Heuristic Protein Sequence Database Scanning Algorithm on the Cell/BE

School of Computer Engineering (SCE) 115

searching times are 217.5s for FSA-BLASTP, 244.75s for NCBI-BLASTP, and 67.97s

for Cell/BE BLASTP. This corresponds to an average speedup of 3.2 and 3.6

respectively. Activating the multithread option improves the average searching times to

159.1s and 178.3s for FSA-BLASTP and NCBI-BLASTP, respectively. This corresponds

to an average speedup of 2.3 and 2.6, respectively.

More detailed statistics of the performance comparison are shown in Table 10. The

performance is measured in terms of seconds and the speedup of the Cell/BE BLASTP

implementation over the FSA-BLASTP implementation. From the table, we can see that

Cell/BE BLASTP spends more time on Stage 4. This is because the PPE is a less

powerful processor than a P4. The speedup of Cell/BE BLASTP mostly comes from

stage 1-3 which are running on six PPEs of the PS3 in parallel.

Table 10. Performance comparison between Cell/BE BLASTP and FSA-BLASTP

Query length

range

FSA-BLASTP Cell/BE BLASTP
Speedup

Stages

1-2
Stage3 Stage4 Total

Stages

1-2

Stage

3

Stage

4
Total

1-300 40.1 5.66 0.30 46.5 28.9 1.77 0.74 32.9 1.41

301-500 74.0 23.09 0.32 97.8 35.4 3.10 0.81 40.9 2.39

501-800 110.3 46.57 0.50 157.8 44.5 4.30 1.10 51.5 3.06

801-1100 151.0 50.98 0.92 203.4 52.8 4.74 1.83 61.1 3.33

1101-1400 183.0 76.32 1.80 261.6 61.8 10.25 4.18 79.0 3.31

1401-1700 216.9 109.01 3.22 329.6 67.2 15.19 7.98 92.4 3.57

1701-2000 241.8 141.53 2.02 385.9 83.9 18.77 4.57 109.0 3.54

The average number of sequences that are processed in each stage by FSA-BLASTP and

in the PPE by Cell/BE BLASTP are shown in Table 11. In FSA-BLASTP, every database

sequence is processed by Stages 1-2. The PPE in Cell/BE BLASTP only processes a very

small faction of database sequences since most sequences have been filtered by SPEs in

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Implementation of a Heuristic Protein Sequence Database Scanning Algorithm on the Cell/BE

School of Computer Engineering (SCE) 116

parallel. This reduced number of sequences contributes to the less total runtime of

Cell/BE BLASTP. However, the ideal speedup of around six is not reached since the

parallel SPE filters add some data transfer and coordination overhead and the PPU is less

powerful than a P4. It should also be noted that the speedup for shorter query sequences

is generally lower since the runtime is too short to effectively compensate for the

associated overheads. Furthermore, the number of database sequences for the Cell/BE

BLASTP implementation is larger than the number of found matching sequences. This

can be explained as follows. Firstly, if a sequence is too long to be sent to the SPE, it will

be processed by the PPE directly. In the experiment, 72 sequences are longer than the

maximum buffer length (10KByte). Secondly, some sequences in Stages 1-3 in the SPE

exceed the maximum available memory space. These sequences are returned as matches

and need further processing on the PPE.

Table 11. Average number of sequences processed by each stage of FSA-BLASTP

on a P4 and by the PPE in Cell/BE BLASTP

Query

length

FSA-BLASTP Cell/BE BLASTP (only on PPE)
Matching

output Stages1-2
Stage3

Stages1-2
Stage3

Semi Gapped Semi Gapped

1-300

6,375,605

96954 9443 2113 2062 1731 328

301-500 334494 13749 2591 2570 1462 324

501-800 617225 19602 5480 5471 3713 443

801-1100 586139 24163 5408 5402 3569 471

1101-1400 761097 34028 7193 7189 5178 443

1401-1700 1096186 43616.1 15404 15402 12901 438

1701-2000 1206705 38761 6734 6733 4126 428

In addition, some query sequences require more processing time by both FSA-BLASTP

and Cell/BE BLASTP than queries of similar lengths. The runtime statistics of the three

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Implementation of a Heuristic Protein Sequence Database Scanning Algorithm on the Cell/BE

School of Computer Engineering (SCE) 117

such exceptional sequences is shown in Table 12. It can be seen that for these three

queries, a bigger number of database sequences need to be processed than average. This

increases both CPU and PPE workload.

Table 12. Runtime statistics of three exceptional sequences.

Query

length
Method

Time

Stages 1-2
Stage3

Stage4 Total
Semi Gapped

605

FSA-BLAST 63.55 160.89 6.40 0.80 232.13

Cell/BE 58.65 11.63 1.85 1.88 75.61

1455
FSA-BLAST 138.97 348.58 0.38 24.96 513.43

Cell/BE 84.48 65.49 1.28 66.17 219.43

1945
FSA-BLAST 225.87 316.33 1.02 2.63 546.35

Cell/BE 132.11 109.53 1.36 6.98 251.52

Query

length
Method

Number of sequences
Matching

output Stages 1-2
Stage3

Semi Gapped

605

FSA-BLAST 6,375,605 1,890,358 33,061 500

Cell/BE 5,536 5,536 2,288 500

1455
FSA-BLAST 6,375,605 2,981,242 23,895 500

Cell/BE 8,344 8,344 4,115 500

1945
FSA-BLAST 6,375,605 1,555,474 170,541 500

Cell/BE 27,681 27,677 25,473 500

6.5. SUMMARY

In this chapter, we have presented parallelization strategies for scanning protein sequence

databases on the Cell/BE. using the BLASTP heuristic. In order to derive efficient

mappings onto this type of heterogeneous multi-core architecture, we have utilized SIMD

vectorization, parallel data partitioning and communication schemes, and a compressed

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Implementation of a Heuristic Protein Sequence Database Scanning Algorithm on the Cell/BE

School of Computer Engineering (SCE) 118

deterministic finite state automaton for hit detection in order to reduce memory

consumption. Our BLASTP implementation on a PS®3 achieves an average speedup of

3.2 compared to the optimized FSA-BLASTP and 3.6 compared to NCBI-BLASTP. The

very rapid growth of biological sequence databases demands even more powerful high-

performance solutions in the near future. Hence, our results are especially encouraging

since high performance computer architectures are developing towards heterogeneous

multi-core systems. Therefore, the techniques presented in this chapter are of particular

importance since they compare and analyze the efficiency of parallelization approaches

on different parallel architectures.

.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 119

7. PAIRWISE DISTANCE MATRIX COMPUTATION

This chapter elaborates our parallel implementation that accelerates the distance matrix

computation used in multiple sequence alignments on the x86 and Cell Broadband

Engine architecture, a homogeneous and heterogeneous multi-core system, respectively.

Furthermore, we compare the performance of our implementation on the Playstation®3

with other accelerator technologies, i.e. FPGA and GPU.

7.1. INTRODUCTION

Multiple sequence alignment (MSA) of many nucleotides or amino acids is an important

tool in bioinformatics. It identifies patterns or motifs to characterize protein families, and

is therefore utilized to detect homology between sequences as well as to perform

phylogenetic analysis. Previous work on MSA heuristics to reduce the exponential

complexity of computing optimal MSAs include MSA[46], ClustalW[58], T-Coffee[47],

MAFFT[150], DIALIGN P[151] and PRALINE[63].

ClustalW is considered to be one of the most popular MSA tools. It is based on the

progressive alignment method. Software approaches to improve the performance of

ClustalW have been introduced, including caching [152, 153] and parallel processing [18,

154, 155]. Recent usage of easily accessible accelerator technologies to improve the

ClustalW algorithm include FPGA[156] and GPU[93].

Our profiling of ClustalW reveals that the distance matrix computation is the most time

consuming phase and takes typically more than 90% of the overall runtime. Therefore,

accelerating this phase would greatly improve the performance as a whole.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 120

In this chapter, we introduce our implementation that accelerates the distance matrix

computation on the Cell/BE and the commonly used Intel x86 architecture.

7.2. MULTIPLE SEQUENCE ALIGNMENT ALGORITHM

ClustalW[58] has over 26,000 citations in the ISI Web of Science and is considered to be

one of the most popular MSA tools. It implements a progressive alignment method[56],

i.e. it adds sequences one by one to the existing alignment to build a new alignment. The

order of the sequences to be added to the new alignment is indicated by a pre-computed

phylogenetic tree, which is called a guide tree. The guide tree is constructed using the

similarity of all possible pairs of sequences stored in the distance matrix.

(a) (b) (c)

Figure 40. The three stages of the ClustalW algorithm. (a) Distance matrix

computation. (b) Guide tree construction. (c) Progressive alignment.

The ClustalW algorithm consists of 3 phases, as shown in Figure 40:

1. Distance matrix computation:

Each pairs of sequences are aligned separately to calculate their respective

distance values. These values are stored in a so-called distance matrix.

2. Guide tree construction:

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 121

The guide tree is calculated from the distance matrix using a neighbor joining

algorithm[157]. The guide tree defines the order which the sequences are aligned

in the next stage.

3. Progressive alignment:

The sequences are progressively aligned in accordance to the guide tree.

Given n number of sequences of length m, the distance matrix computation has a

quadratic complexity of O(n2m2). Profiling the three the above mentioned phases of

ClustalW using gprof also shows that the distance matrix computation is the most

computationally intensive phase and takes up more than 90% of the overall runtime.

Hence, it can be concluded that accelerating the distance matrix computation would

provide a good speed up for the ClustalW.

Given a set of n sequences S = {S1, S2, …, Sn}, for two sequences Si, Sj ∈ S, the distance

value d(Si,Sj) can be defined as Equation 17 below:

{ }ji

ji
ji ll

SSnid
SSd

,min
),(

1),(−=

Equation 17. Distance value equation

where nid(Si,Sj) denotes the number of exact matches in the optimal local alignment of Si

and Sj with respect to the given scoring system and li and lj denotes the length of Si and Sj,

respectively.

Liu et.al.[93] states that given two sequences S1 and S2 with affine gap penalties α and β

and the substitution table sbt, a matrix NA(i,j) (1≤ i ≤ l1, 1≤ j ≤ l2) can be recursively

defined as shown in Equation 18.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 122

=),(jiN A








=−
=−

+−−=+−−
=

),(),(,),1(
),(),(,)1,(

])[],[()1,1(),(,),()1,1(
0),(,0

21

jiFjiHifjiN
jiEjiHifjiN

jSiSsbtjiHjiHifjimjiN
jiHif

AF

AE

AAA

A

where









+−−

=

])[],[()1,1(
),,(
),,(

,0

max),(

21 jSiSsbtjiH
jiF
jiEjiH

A

A

{ }βα −−−−=)1,(,)1,(max),(jiEjiHjiE A

{ }βα −−−−=),1(,),1(max),(jiFjiHjiF A



 == otherwise

jSiSifjim ,0
][][,1),(21







−−=−
−−=−

=
=

β
α

)1,(),(,)1,(
)1,(),(,)1,(

1,0
max),(

jiEjiEifjiN
jiHjiEifjiN

jif
jiN

E

AAE







−−=−
−−=−

=
=

β
α

),1(),(,),1(
),1(),(,),1(

1,0
max),(

jiEjiFifjiN
jiHjiFifjiN

iif
jiN

E

AAF

Equation 18. Recurrence relation equation by Liu et. al.

For local alignment of sequences S1 and S2, given affine gap penalties α and β and the

substitution table sbt, the nid (S1,S2) equation can be modified as shown in Equation 19.

),(),(maxmax21 jiNSSnid A=

Equation 19. Modified nid score equation

where (imax,jmax) denote the coordinates of the maximum value in the corresponding

matrix HA.

Thus, the distance value d(Si,Sj) can then be redefined as shown in Equation 20.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 123

{ }ji

A
ji ll

jiN
SSd

,min
),(

1),(maxmax−=

Equation 20. Modified pairwise distance value equation

A more detailed explanation and proof of these formulas is described in[93].

7.3. MAPPING TO THE CELL/BE

This section explains the mapping of our Cell/BE implementation in details in terms of

three subgroups, i.e. query profile, SIMD vectorization and multi-threading.

7.3.1. QUERY PROFILE

To speed up the computation, a query profile is pre-computed. A query profile is

computed only once for the entire search and will save one memory lookup in the inner

loop of the algorithm. Instead of indexing the original substitution matrix by the query

sequence symbol and the database sequence symbol, the query profile is indexed by the

query sequence position and the database sequence symbol. It contains the substitution

score for matching each of the possible amino acid symbols with each symbol in the

query sequence. The scores for matching a residue with each residue in the query

sequence is followed by the scores for matching the next residue with each residue in the

query sequence, and so on. Using this method, therefore, random accesses to the

substitution matrix due to table lookup is replaced with sequential ones to the query.

Figure 41 shows an example of a query profile for Lysine-specific histone demethylase 1

protein (Swiss-Prot accession numbers O60341) with BLOSUM50 scoring matrix.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 124

 M L S … P S M

A -1 -2 +1 … -1 +1 -1

B -3 -4 0 … -2 0 -3

C -2 -2 -1 … -4 -1 -2

…
 …

…

…
 …

…

…

X -1 -1 -1 … -1 -1 -1

Y 0 -1 -2 … -3 -2 0

Z -1 -3 0 … -1 0 -1

Figure 41. Example of a query profile for Lysine-specific histone demethylase 1

protein (Swiss-Prot accession numbers O60341) with BLOSUM50 scoring matrix

For the Cell/BE implementation, the query profile computation is done in the PPE and is

distributed to the respective SPEs using DMA transfer. For the SSE2 implementation,

each thread contains its respective query profile information need to complete the

computation.

7.3.2. SIMD-SPECIFIC IMPLEMENTATIONS

Our Cell/BE implementation takes advantage of the 128-bit Single Instruction Multiple

Data (SIMD) vector registers of each SPEs. The Cell/BE mapping uses half word values

(16 bits) for the computation, which is the smallest element supported by the Cell/BE

instruction set. This allows eight cells to be processed per vector register. SPU

intrinsics[141] are used improve the efficiency of the program. The SPE pseudocode is

shown in Figure 42.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 125

Figure 42. Pseudocode of the SPE code

Based on Equation 20, nid(Si,Sj) is computed without computation of the actual

traceback. Since all elements in the same minor diagonal of the dynamic programming

matrix can be computed independent of each other in parallel, the computation is done in

minor diagonal order, as illustrated in Figure 43.

 Sj[1] Sj[2] Sj[3] Sj[4] Sj[5] Sj[6] Sj[7] Sj[8] Sj[9] …

Si[1] …

Si[2] …

Si[3] …

Si[4]

Si[5]

Si[6] …

Si[7] …

Si[8] …

…

…

…

…

…

…

…

…

…

…

Figure 43. Block diagram of our pairwise distance matrix implementation

The minor diagonal approach is shown as dotted lines. The query profile is stored in a

column based manner. For each computation of a minor diagonal, query profile values

Initialization;

Fetch the context data from the mailbox;

Fetch the set of sequences using DMA transfer;

While there are sequences to be processed

 Calculate nid score;

Compile the nid scores into a list nidlist;

Send nidlist to PPE using DMA transfer;

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 126

for the respective cells needed for the computation are fetched and stored inside a score

profile vector register.

Figure 44. Pseudocode of the nid score calculation

Given are sequences Si and Sj of lengths l1 and l2, respectively and vector registers vH,

vE, vF, vNA, vNE and vNF containing the values HA, E, F, NA, NE and NF, respectively. For

each iteration c (1 ≤ c ≤ (l1+l2-1)), the values of HA(i,j), E(i,j), F(i,j), NA(i,j), NE(i,j) and

NF(i,j) are computed for all 1≤ i ≤l1 and 1≤ j ≤ l2. Calculations of the vH, vE, and vF

vectors are done by utilizing the spu_cmpgt intrinsic, which compares each element of

a vector with the corresponding element of another vector, to create vector masks. The

masks are then used as patterns to generate the resulting vector using the spu_sel

intrinsic, which selects the corresponding bit from either vector in accordance to a

Initialization;

Load gOpen to vector vGapOpen;

Load gExtend to vector vGapExtend;

For a = 1 to l1/k

 Initialize vector registers for 1 round (k rows);

For b = 1 to l2+k-1

Load the necessary vector registers for anti diagonal

computations;

 Fetch respective query profile scores;

Calculate vector register of E vE;

Calculate vector register of NE vNE;

 Calculate vector register of F vF;

Calculate vector register of NF vNF;

 Calculate vector register of HA vH;

 Calculate vector register of NA vNA;

End For

End For

Extract nid as NA (imax,jmax);

Return nid;

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 127

provided pattern vector. The masks used in the vE, vF and vH computations are used to

determine the value of the corresponding vNE, vNF and vNA vectors, respectively. The nid

score is extracted as NA(imax,jmax), where (imax,jmax) denotes the coordinates of the

maximum value in the corresponding matrix HA.

Cell/BE does not support saturation arithmetic which are needed in the calculations to

anticipate overflow problems. Hence, we utilized several spu intrinsics, i.e. spu_sel,

spu_splats, spu_rlmaska, spu_nor and spu_and in conjunction with the

existing spu_add and spu_sub to handle saturated additions and saturated

subtractions, respectively.

7.3.3. MULTITHREADING-SPECIFIC IMPLEMENTATIONS

Our Cell/BE implementation utilizes the additional instructions of the PPE relating to

control of the SPEs to implement the multi-threading. The PPE, which is capable of

running a conventional operating system, has control over the SPEs and can start, stop,

interrupt, and schedule processes running on the SPEs. Unlike SPEs, the PPE can read

and write the main memory and the local memories of SPEs through the standard

load/store instructions.

Given k SPEs, Figure 45 illustrates the mapping of our multi-thread implementation onto

the Cell/BE.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 128

Figure 45. Mapping of pairwise distance matrix computation algorithm onto the

Cell/BE

The PPE reads the input dataset, preprocesses it and divides the dataset into equal size

blocks for each SPE to process. Since the blocks are independent of each other, no thread

synchronization is necessary during the calculations. The mailbox functions

spe_in_mbox_write and spu_read_in_mbox are used to ensure that all the

SPEs obtain their respective contexts in their local memory. Using the context data, each

SPE then transfers any required information and necessary sequences.

To improve transfer efficiency, the database sequences in main memory and in the local

storage are aligned within the cache line and data structures are initialized during the

transfer of the sequence. Once it has finished calculating all its respective nid(Si,Sj)

scores, each SPE sends the scores to the PPE in form of a list. The PPE compiles the lists

and calculate the distance values and stores them in the distance matrix. The matrix is

then outputted in a text file.

Compute
nid (Sa,Sb)

scores

Fetch
context &
sequences

Compile
& send
nid list

SPE 1

…

PPE
Read
 dataset

Preprocess
dataset

PPE
Calculate
distance
values

Store
values

in matrix

 Write
matrix
to file

Compute
nid (Sa,Sb)

scores

Fetch
context &
sequences

Compile
& send
nid list

SPE k

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 129

7.4. MAPPING TO THE X86/SSE2 ARCHITECTURE

Our SSE2 implementation uses pthread[158] to implement the multi-threading. The

input dataset are preprocessed and sorted according to length. Each thread contains a

copy of the database sequence, query sequence and its respective query profile. Since the

dataset are sorted, the dataset into divided into roughly equal size workload for each

thread to process. To avoid deadlock, pthread_mutex_lock and pthread_mutex_unlock

operations are utilized.

SSE2 is a Single Instruction Multiple Data (SIMD) instruction set extension to the x86

architecture which allows the processors to operate on data in parallel. The SSE2

instructions support 8 bit elements in the vector registers. This allows 16 cells to be

processed per vector register. Based on Equation 20, nid(Si,Sj) is computed without

computation of the actual traceback. Since all elements in the same minor diagonal of the

dynamic programming matrix can be computed independent of each other in parallel, the

computation is done in minor diagonal order.

Given are sequences Si and Sj of lengths l1 and l2, respectively and vector registers vH,

vE, vF, vNA, vNE and vNF containing the values HA, E, F, NA, NE and NF, respectively.

For each iteration c (1 ≤ c ≤ (l1+l2-1)), the values of HA(i,j), E(i,j), F(i,j), NA(i,j), NE(i,j)

and NF(i,j), are computed for all 1≤ i ≤l1 and 1≤ j ≤ l2.

Unlike Cell/BE, Intel’s SSE2 instructions support saturation arithmetic. Hence, saturated

subtractions and additions functions, _mm_subs_epu8 and _mm_adds_epu8, respectively,

are utilized to ensure that the values of the vector are within valid range

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 130

7.5. PERFORMANCE EVALUATION

In this section, we evaluate and compare our implementations. The first comparison is

between our Cell/BE implementation and our x86/SSE2 implementation, a heterogeneous

and homogeneous multi-core system, respectively. The second comparison is between

our Cell/BE implementation and other accelerator technologies, i.e. FPGA and CUDA-

enabled GPU.

7.5.1. PERFORMANCE ANALYSIS

A set of performance evaluation experiments has been conducted using different numbers

of protein sequences i.e. 400 sequences of average length 408, 600 sequences of average

length 462, 800 sequences of average length 454, and 1000 sequences of average length

446 as described in [93]. The experiments were carried out on a standalone PS®3 with

Fedora Core 9.0 operating system and the Cell Software Development Kit (SDK) 3.1.

The sequential ClustalW application, available online at http://www.bii.a-

star.edu.sg/achievements/applications/clustalw/ , was benchmarked on an Intel Pentium 4

3.0 GHz processor with 1 GB RAM running on Windows XP.

Table 13 shows the performance analysis of our Cell/BE implementation using the above

mentioned datasets. It compares the run times of our implementation and the baseline

ClustalW on various processors. The performance analysis breaks down the speed up

obtained by each phase of the improvement made by the implementation. The non-

vectorized code is implemented according to the algorithm described in section 7.2,

without the use of SIMD vectorization. The vectorized code is implemented according to

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://www.bii.a-star.edu.sg/achievements/applications/clustalw/�
http://www.bii.a-star.edu.sg/achievements/applications/clustalw/�

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 131

section 7.3.2. The term n(m) describes a dataset containing n sequences with an average

length of m.

Table 13. Performance analysis of the parallel algorithm. The term T and S

describes the runtime and speed up, respectively

#sequences

(average length)

Processor 400

(408)

600

(462)

800

(454)

1000

(446)

 T S T S T S T S

Baseline

ClustalW

Pentium 4

3.0 GHz
833.1 N.A 1697.0 N.A 2966.6 N.A 4409.6 N.A

Baseline

ClustalW
PPE 667.86 1.24 1361.13 1.24 2379.0 1.24 3536.2 1.24

Non-vectorized

code
PPE 357.89 1.87 717.83 1.89 1702.08 1.80 1871.08 1.89

Vectorized code PPE+1SPE 57.15 6.26 113.41 6.33 168.54 7.83 237.12 7.89

Vectorized code PPE+6SPEs 11.01 5.19 20.36 5.57 29.53 5.71 40.82 5.81

7.5.2. COMPARISON AGAINST X86/SSE2 ARCHITECTURE

A set of performance evaluation experiments has been conducted using six protein

sequence datasets, which are divided into three representative datasets as shown in Table

14. Category A represents datasets of small number of long sequences, category B

represents datasets of medium number of medium-length sequences and category C

represents datasets of large number of short sequences. The datasets consist of sequences

selected from the Human Immunodeficiency Virus (HIV) dataset downloaded from NCBI

[159].

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 132

Table 14. Categories of input protein dataset

Dataset Number of Sequences Average Length Category

1 400 856 A

2 1000 858 A

3 2000 266 B

4 4000 247 B

5 4000 83 C

6 8000 73 C

Our SSE2 implementation is benchmarked on IBM System x3650 with dual Xeon Quad

Core E5430 2.66GHz and 6 GB RAM running CentOS 5.0 operating system. The

Cell/BE experiments were carried out on a standalone PS®3 featuring a Cell/BE with

frequency 3.2GHz and 256MB XDR Main RAM with Fedora Core 9.0 operating system

and the Cell Software Development Kit (SDK) 3.1. The sequential ClustalW application,

available online at http://www.bii.a-star.edu.sg/achievements/applications/clustalw/, was

benchmarked on an Intel Pentium 4 3.0 GHz processor with 1 GB RAM running on

Windows XP.

Figure 46 shows the speed-ups obtained by our SSE2 implementation up to 32 threads

against our single-threaded vectorized version. Over the six datasets, our SSE2

implementation with 32 threads achieved an average speed-up of 6.6x over our single-

threaded vectorized version.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://www.bii.a-star.edu.sg/achievements/applications/clustalw/�

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 133

Figure 46. Speed-up of our x86/SSE2 implementation with up to 32 threads

Table 15. Performance evaluation results

Number of

Sequences

Average

Length

SSE2

implementation

with 32 threads

Cell/BE

implementation

on the PS3®

ClustalW on P4

3.0 GHz

400 856 20.23 16.79 3114

1000 858 122.80 101.21 19670

2000 266 55.64 56.83 4386

4000 247 190.30 173.26 19424

4000 83 32.70 39.04 1595

8000 73 96.07 125.14 5165

Table 15 shows the performance evaluation of our implementations using the above

mentioned datasets on different architectures, i.e. the SSE2 implementation with 32

threads, PS3® implementation with 6 SPEs and a baseline ClustalW on a P4. The term

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 134

n(m) describes that dataset contains n sequences with an average length of m. The speed-

up of our SSE2 and Cell/BE implementations are benchmarked against the baseline

ClustalW.

Throughout the benchmark, SSE2 implementation shows a comparable performance with

the Cell/BE implementation. The Cell/BE implementation shows a better performance for

datasets with fewer but longer sequences (category A), while the SSE2 implementation

shows a better performance for datasets with more but shorter sequences (category C).

This is due to the communication overhead for the PS3®, which involved DMA transfers

of required data and sequences between the PPE and the SPEs. Over the six datasets, the

SSE2 and Cell/BE implementations achieve an average of 99.6x and 108.5x speed-up

over the phase one of the baseline ClustalW, respectively.

7.5.3. COMPARISON AGAINST OTHER ACCELERATOR TECHNOLOGIES

Our Cell/BE implementation was then compared to the FPGA and GPU implementations

described in [87], in terms of speedups, programming productivity (in terms of

implementation effort), cost efficiency, compute capability efficiency and power cost

efficiency. Figure 47 shows the parallelization approaches utilized in each accelerator

architecture.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 135

Figure 47. Utilized parallelization and optimization approach for each

accelerator architecture

Our linear systolic array implementation is programmed using the Verilog HDL and

targeted to the Xilinx XC5VLX330 FPGA device. The optimal performance can be

obtained by fitting 16 linear systolic arrays of PEs with each array comprising 26 PEs and

running at the maximum allowable frequency of 65MHz. The PE implementation has a

16-bit datapath and 12-bit nid path. A substitution table of size 32 × 32 with a resolution

16-bit is locally stored in each PE and the precision of the gap penalties is set to be 8-bit.

To ease the access to sequences stored in the external RAM, each sequence is

preprocessed and stored in one or more memory pages (1024 bytes for one page),

depending on its length. When a new alignment starts, the alignment control logic reads

in the memory pages occupied by the corresponding sequences from the external RAM.

In this case, it takes a number of clock cycles to load in the sequences, but simplifies the

system implementation.

Sequential Algorithm

Optimization of the sequential
algorithm to allow more
efficient parallelization

Fine-grained SIMD
parallelization using linear

systolic array in Verilog HDL

Coarse-grained SIMD
parallelization using multi-

thread with CUDA

Coarse-grained MIMD
parallelization using multi-
thread with Cell/BE SDK

Single or multi-lane linear
systolic arrays of PEs

Coalesced global memory,
efficient shared memory and

register utilization

PPE, multiple SPEs, efficient
DMA transfer

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 136

Our CUDA implementation is benchmarked on a GeForce GTX 280 graphics card, with

30 streaming multiprocessors (SMs) comprising 240 scalar processors (SPs) and 1GB

GDDR3 RAM, installed in a PC with an AMD Opteron 248 2.2 GHz processor running

the Linux OS. The core frequency of the graphics card is 602MHz and the frequency of

unified processors is 1296MHz. The performance evaluation of our Cell/BE

implementation is carried out on a standalone PlayStation®3 featuring a Cell/BE with

frequency 3.2GHz and 256MB XDR Main RAM running on the Linux OS.

The sequential runtime of pairwise distance computation in ClustalW (version 2.0.9) is

profiled on a desktop computer with a P4 3.0GHz processor and 1GB RAM running the

Linux OS. Because a FPGA development board equipped with the Xilinx XC5VLX330

FPGA device is not available as our resource, the runtime of the FPGA implementation is

estimated through simulation. However, even though the runtime of the FPGA

implementation is not so accurate, it still will not weaken the effect that gives readers a

qualitative and intuitive performance comparison of these accelerators.

To remove the dependency on the input sequences used for the different tests, cell

updates per second (CUPS) is a commonly used performance measure in bioinformatics.

A CUPS represents the time for a complete computation of one cell in matrix H and NH,

including all memory operations and the corresponding computation of the values in the

E, NE, F and NF matrices. Given a sequence dataset S={S1, S2, …, Si, …, Sn}, which

consists of n sequences, the MCUPS (million cell updates per second) value of the

pairwise distance computation for S is calculated by the following equation:

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 137

1 1
610

n n

i j
i j i

l l

t
= = +

×

×

∑ ∑

Equation 21. MCUPS calculation equation for pairwise distance matrix

where li and lj denote the lengths of the sequences Si and Sj respectively and t is the

runtime in second.

Table 16. Runtime speedups of the three accelerators compared with the sequential

implementation

Sequence

Number

Average

Length

P4 FPGA GPU Cell/BE

Time(s) Time(s) Speedup Time(s) Speedup Time(s) Speedup

400 856 3114 2.59 1202.32 9.64 323.19 16.79 185.44

1000 858 19670 15.49 1269.85 58.54 336.01 101.21 194.35

2000 266 4386 8.68 505.30 31.39 139.71 56.83 77.17

4000 247 19424 31.46 617.42 99.33 195.55 173.26 112.10

4000 83 1595 11.29 141.28 26.25 60.75 39.04 40.85

8000 73 5165 39.42 131.02 68.61 75.28 125.14 41.27

Table 16 demonstrates the runtime speedups of the three accelerators compared with the

sequential implementation. The FPGA implementation outperforms that of GPU and

Cell/BE to a great extent for all the datasets, with a highest speedup of 1269.85, a lowest

speedup of 131.02 and the average speedups of 1236.08, 561.36 and 136.15 for datasets

of Category A, B and C respectively. The Cell/BE implementation demonstrates the

lowest performance with a highest speedup of 106.49, a lowest speedup of 37.05 and the

average speedups of 102.11, 70.12 and 38.51 for datasets of Category A, B and C

respectively. The GPU implementation performs better than the Cell/BE implementation

and worse than the FPGA implementation, with a highest speedup of 336.01, a lowest

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 138

speedup of 60.75 and the average speedups of 329.60, 167.63 and 68.02 datasets of

Category A, B and C respectively. For each accelerator, its speedup degrades as the

datasets change from Category A to Category C, which can be explained by the larger

amount of computation when the average length of a dataset is longer.

Different physical characteristics of these accelerators determine the different

programming models and languages. FPGA applications are mostly programmed using

HDLs. In this chapter, Verilog HDL is used for the FPGA implementation. As a standard

HDL, Verilog HDL is very similar in syntax to the C programming language and is easy

to learn for designers with C programming experience and is easy to use for digital

system implementation. It allows different levels of abstraction to be mixed in the same

model: behavioral (or algorithmic) level, dataflow level, get level and switch level. Very

efficient hardware implementation can be developed in Verilog HDL, but it requires a

great deal of programming and implementation effort. CUDA is an extension of C/C++

which enables users to write scalable multi-threaded programs for CUDA-enabled

GPUs[160]. CUDA programs can be executed on GPUs with NVIDIA’s Tesla unified

computing architecture[161]. Cell/BE accommodates different instruction set

architectures (ISAs) for the PPE and SPEs. The PPE ISA is an extension of the PowerPC

ISA and the extensions consist of the vector/SIMD multimedia extensions and C/C++

intrinsics for the vector/SIMD multimedia extensions. The SPE ISA is a new SIMD ISA,

called the Synergistic Processor Unit Instruction Set Architecture, with accompanying

C/C++ intrinsics. Most coding for the Cell/BE might be done by using a high-level

languages such as C/C++, but to produce efficient, optimized code, an extra effort is

required for software implementationers to understand and exploit the PPE and SPE

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 139

machine instructions. Generally, for complex applications or algorithms, software

implementation using high-level languages on GPUs or Cell/BE is much easier than

hardware implementation using HDLs on FPGAs. Even though high-level languages for

FPGA implementation are being rapidly developed, the effort to implement and verify

the FPGA implementation is still large. Hence, the implementation effort must be taken

into account when making decisions about what kind of accelerator technologies is

selected as a solution.

However, it is difficult to measure the accurate amount of implementation effort

quantitatively for programming applications or algorithms. In this chapter, source lines of

code (SLOC) is exploited as our implementation effort metric, which predicts the amount

of effort required to develop a program by counting the number of effective lines in the

program’s source code in software engineering. Table 17 shows the SLOC and

performance per line of code (LOC) of the different implementations written in Verilog

HDL on FPGA, written in CUDA on GPUs and written on Cell/BE using the PowerPC

instruction set for PPE and the synergistic processing units instruction set for SPEs. For

the FPGA implementation, the SLOC of those modules generated by Xilinx CORE

generator are not counted in.

As shown in Table 17, the FPGA implementation requires a lot more LOC than GPU and

Cell/BE, and the LOC of the GPU implementation are approximately equivalent to those

of the Cell/BE implementation. This suggests that GPU and Cell/BE require

approximately equivalent implementation effort for a specific algorithm or application

suitable for GPUs and Cell/BE, and that it require much more control logic and effort to

directly implementation hardware in HDL languages on FPGAs than to program

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 140

equivalently functional software on GPUs or Cell/BE. After comparing the performance

per LOC, we find that the GPU implementation shows the best performance per LOC for

all the datasets. FPGA outperforms Cell/BE for datasets of Category A and B, but for

dataset of Category C, Cell/BE does better than FPGA.

Table 17. SLOC and performance per LOC of the three accelerators

Accelerators SLOC
MCUPS per LOC

400(856) 1000(858) 2000(266) 4000(247) 4000(83) 8000(73)

FPGA 4024 5.61 5.90 4.05 3.88 1.23 1.09

GPU 819 7.41 7.67 5.51 6.03 2.60 3.08

Cell/BE 987 3.53 3.68 2.52 2.85 1.43 1.38

These accelerators are all commonly available commercial hardware with different unit

costs. When selecting accelerators, the unit cost coming along with the high performance

must be taken into consideration. For the Xilinx XC5VLX330-1FFG1760C FPGA

device, the unit price is US$8,382 from the Digi-Key Corporation

(http://www.digikey.com/) and a PNY GeForce GTX 280 graphics card is available for

about US$500 and a PlayStation®3 80GB system for about US$400 at Amazon

(http://www.amazon.com/).

Table 18 gives the performance per dollar comparison of these accelerators. Even though

the FPGA implementation gains the best performance but brings in very high unit cost,

which results in its lowest performance per US$ compared to GPU and Cell/BE. With a

medium unit cost and relatively higher performance, the GPU implementation shows the

highest performance per US$, which is on average 4.47, 4.98 and 8.43 times better than

the FPGA implementation and 2.58, 1.90 and 1.41x better than the Cell/BE

implementation for datasets of Category A, B and C respectively.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://www.digikey.com/�
http://www.amazon.com/�

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 141

Table 18. Performance per dollar of the three accelerators

Accelerators
Unit

Price

MCUPS per US$

400(856) 1000(858) 2000(266) 4000(247) 4000(83) 8000(73)

FPGA 8,382 2.70 2.83 1.95 1.86 0.59 0.52

GPU 500 12.14 12.56 9.02 9.88 4.26 5.04

Cell/BE 400 8.84 9.21 6.30 7.13 3.57 3.45

To compare the compute capability utilizations of those accelerators, the theoretical peak

performance of each accelerator is estimated for sequence alignments. For the

implementation on FPGA, there are 16 linear systolic PE arrays with each array

consisting of 26 PEs, running at the maximum allowable frequency of 65MHz. Because

one cell can be computed in one clock cycle, if excluding the overhead incurred by

sequence partition and sequence loading operations, the maximum compute capability

can be estimated as 16 × 26 × 65 MCUPS = 27040 MCUPS. For the implementation on

GPU and Cell/BE, due to the conditional branching instructions, the computing time of

one cell is estimated by averaging the computing time of multiple cells. For the

implementation on GPU, the average computing time of one cell is 35 clock cycles,

measured using the clock () function in the kernel. Because there are 240 SPs on the

graphics card and the frequency of unified processors is 1296 MHz, without considering

the concurrency of all threads in a warp, the estimated theoretical compute capability

should be at least 240 × 1296 / 35 MCUPS = 8886 MCUPS. For the implementation on

the Cell/BE, the average computing time of one cell is measured using the SPU 32-bit

decrementer functions, namely the spu_read_decrementer and

spu_write_decrementer, yielding a result of 30 clock cycles. The PS3 consists of

6 SPEs, each with a 3.2 GHz clock, and the vector computation uses 16 bit values, which

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 142

means 8 cells are processed per vector register. Thus, the estimated theoretical compute

capability is computed to be at least 6 × 8 × 3200 / 30 MCUPS = 5120 MCUPS. Table 19

demonstrates the compute capability utilization of the three accelerators.

Table 19. Compute capability utilizations of the three accelerators

Accelerators
Max.

MCUPS

Compute Capability Utilization (%)

400(856) 1000(858) 2000(266) 4000(247) 4000(83) 8000(73)

FPGA 27040 83.54 87.83 60.32 57.69 18.28 16.24

GPU ≥ 8886 ≤ 68.31 ≤ 70.67 ≤ 50.57 ≤ 55.59 ≤ 23.97 ≤ 28.36

Cell/BE ≥ 5120 ≤ 68.18 ≤ 71.03 ≤ 48.63 ≤ 55.01 ≤ 27.57 ≤ 26.61

7.6. SUMMARY

We have presented a parallel algorithm on a homogeneous and a heterogeneous multi-

core system for computation of distance matrix used in multiple sequence alignment

algorithms. A performance analysis is done to break down the speed up obtained by each

phase of the improvement. Three kinds of protein sequence datasets are used to evaluate

the performance of our implementation. Our x86/SSE2 and Cell/BE implementations

achieve an average of 99.6x and 108.5x speed-up over the phase one of the baseline

ClustalW, respectively.

We also compare the performance of our Cell/BE implementation with other emerging

accelerator technologies, i.e. FPGA and CUDA-enabled GPU. The comparison gives a

comprehensive understanding of the advantages and disadvantages of these accelerators

and also provides a reference for mapping algorithms or applications onto them. In

addition to speedup, these accelerators are compared from a wide range of factors,

including programming model and language, implementation effort, performance per

dollar and compute capability utilization.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Pairwise Distance Matrix Computation

School of Computer Engineering (SCE) 143

The experimental results show that the FPGA obtains the best performance in terms of

runtime with speedups of up to four orders of magnitude compared to only three-orders

of magnitude on GPU and Cell/BE. However, raw speedup is not the only aspect that

determines the best accelerator choice for a developer. Our results show that the FPGA

approach has a poor or medium programming productivity due to its large design effort

requirement and poor cost efficiency due to its high unit cost. Furthermore, GPUs have

medium performance, usually provide good programming productivity and good cost

efficiency; while the Cell/BE has a slightly lower performance than a GPU, but provides

medium programming productivity and medium cost efficiency. In addition, compute

capability efficiency indicates the extent of which these accelerators exploit the available

compute resources for a specific design or implementation. Our observations show that

FPGAs are usually able to furthest exploit the compute capability of the device. GPUs

and Cell/BE are also able to exploit the device compute capability to a great extent and

show almost the same efficiency in our experiments. Finally, in consideration of energy

and environmental factors, power cost efficiency indicates the tradeoff between

performance and power dissipation. As shown in our results, FPGAs usually give the best

power cost efficiency due to its highest performance and lowest power dissipation,

compared with GPUs and Cell/BE; Cell/BE gives better power cost efficiency than

GPUs, due to its much lower power dissipation compared with GPUs; and GPUs give the

worst power cost efficiency due to its very high power dissipation.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Conclusion and Future Work

School of Computer Engineering (SCE) 144

8. CONCLUSION AND FUTURE WORK

This chapter concludes the report by discussing the conclusion and future works of the

study.

8.1. CONCLUSION

Biological data available in genomic sequence databases are growing exponentially. This

growth rate will continue since more sequencing projects will be finished in the near

future. As data increases, so does the workload for managing, processing and analysing

this data. Hence, due to this continuing improvements in high-throughput genomic

sequencing and the ever-expanding sequence databases, bioinformatics to be rapidly

moving towards a data-intensive, computational science. As a result, advances in

computational power and methods for bioinformatics applications, such as genomic

sequence analysis, are needed as well. Traditional approaches to sequence analysis

techniques are expensive in terms of time and memory. High performance computing is a

widely used method to improve performance. The emergence of accelerator technologies

such as multi-core architecture has made it possible to achieve an excellent improvement

in execution time for many bioinformatics applications, compared to current general-

purpose platforms. Therefore, using multi-cores to solve sequence analysis problems is a

promising and challenging research field, since large-scale computational bioinformatics

problems can benefit much from this kind of processing power.

Multi-core architectures may take on a number of forms. One form is the heterogeneous

multi-core architecture, which can address a variety of applications. Due to the

characteristics of heterogeneous multi-core architectures, the application or algorithm

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Conclusion and Future Work

School of Computer Engineering (SCE) 145

development process must be significantly changed in order to fully explore its potential.

Hence, it brings a shift of paradigm in applications development since in order to

implement efficient and scalable code for this type of architecture, novel programming

techniques are required. New sequence analysis algorithms have to be presented in order

to execute efficiently on multi-core architectures and new parallel communication

patterns and partitioning scheme in parallel models are required. In this thesis, we have

investigated various algorithms and techniques how to efficiently map bioinformatics

applications onto heterogeneous multi-core systems.

Aligning long DNA sequences is a common and often repeated task in molecular biology.

In this thesis, we have developed a novel, efficient and scalable parallel algorithm for

very long DNA sequence alignment on a heterogeneous multi-core system, the Cell

Broadband Engine. Our implementation utilizes two types of parallelization techniques:

(i) SIMD vectorization within a processor and (ii) wavefront parallelization between

processors. We also introduced a partitioning scheme to overcome the local storage

limitation of the Synergistic Processor Elements (SPEs) as well as a direct SPE to SPE

DMA transfer communication technique. Performance evaluation shows that our

implementation shows almost linear speedup and leads to significant computational time

savings.

Next, we have demonstrated how the PlayStation® 3, powered by the Cell Broadband

Engine, can be used as a computational platform to accelerate the Smith-Waterman

algorithm, an optimal pairwise sequence alignment. For large protein datasets, our

implementation on the PlayStation® 3 provides a significant improvement in running

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Conclusion and Future Work

School of Computer Engineering (SCE) 146

time compared to other implementations such as SSEARCH, Striped Smith-Waterman

and CUDA-SW.

Furthermore, we have developed an novel implementation to accelerate a heuristic

protein sequence database scanning algorithm, the BLASTP heuristic, on to a

heterogeneous multi-core system, the Cell Broadband Engine. To our knowledge, this is

the first ever reported parallelization of BLASTP on a heterogeneous multi-core system.

We also introduced a new parallel communication pattern, in which the Power Processor

Element (PPE) coordinates the data transfer. Furthermore, we utilized a data structure

similar to compressed deterministic finite-state automaton (DFA) to fit the codeword lookup

data in the SPEs. The BLASTP implementation on a Playstation®3 leads to significant

runtime savings compared to corresponding sequential implementations.

Finally, we have developed an efficient parallel implementation that accelerates the

distance matrix computation used in multiple sequence alignments on the x86 and Cell

Broadband Engine architecture, a homogeneous and heterogeneous multi-core system,

respectively. By taking advantage of multiple processors as well as SIMD vectorization,

we are able to achieve speedups of two orders of magnitude compared to the publicly

available implementation utilized in multiple sequence alignment algorithms. We have

also compared the performance of our implementation on the Playstation®3 with other

accelerator technologies, i.e. FPGA and GPU. In general, Cell/BE offers a lower

performance compared to other accelerator architectures. However, it is able to exploit

the device compute capability to a great extent and even show better efficiency for

Category C dataset. Furthermore, it requires less implementation effort in terms of LOC

and provides acceptable performance-to-cost ratio due to its low cost.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Conclusion and Future Work

School of Computer Engineering (SCE) 147

The speed-up of various bioinformatics implementations on the Cell/BE show that the

Cell Broadband Engine Architecture is an attractive avenue for bioinformatics

applications. It supports single and double precision floating point computation.

Considering that the total power consumption of Cell/BE is less than half of a

contemporary superscalar processor[106], Cell/BE can be considered as a promising

power-efficient platform for future bioinformatics computing. Due to its low cost

compared to other accelerator technologies, Cell/BE also provides a good performance-

to-cost ratio.

The disadvantage of the Cell/BE Architecture is that it is a challenging environment for

software development, i.e. it favors peak computational throughput over simplicity of

program code. Another drawback is the 256 KB local store limitation of the SPE,

requiring partitioning of input as well as data dependency checking mechanism in most

applications. Data transfer through DMA also needs careful consideration as the data

must be aligned equally in a 16byte grid and is restricted to 1,2,4,8, or n*16 bytes. Lastly,

the capability of Cell/BE in performing double precision calculations as inferior

compared to single precision. One way to handle this is to use iterative refinement, which

means values are calculated in double precision only when necessary.

Overall, we conclude that the Cell/BE is an attractive and suitable platform for

bioinformatics algorithms. However, in order the reach its optimal potential, the

programmer needs to be able to work out a solution to overcome its limitations, e.g. local

store and data transfer, which may result in the increase of complexity of the program

code.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Conclusion and Future Work

School of Computer Engineering (SCE) 148

8.2. FUTURE WORK

Our future work includes three parts. The first part is to identify more bioinformatics

applications that benefit much from the heterogeneous multi-core architecture. This will

include Protein-Protein Interaction (PPI) prediction, which is a very important part in the

field of bioinformatics and structural biology. The second one is to integrate our pairwise

distance matrix computation algorithm with multiple sequence alignment tools. The third

one is to apply new communication and dynamic load balancing techniques to our

algorithms.

8.2.1. PROTEIN-PROTEIN INTERACTION PREDICTION USING PARALLEL

GA WITH ISLAND MODEL ON THE CELL/BE ARCHITECTURE

In recent years, analysis of protein-protein interactions (PPIs) is an emerging issue to

elucidate the mechanism of many biological processes, such as enzyme-substrate binding

and immune response. Understanding protein-protein interactions is important in

investigating intracellular signaling pathways and therefore is a very important aspect in

the field of bioinformatics and structural biology.

Proteins that interact are more likely to co-evolve[162-165], therefore it is possible to

make inferences about interactions between pairs of proteins based on their phylogenetic

distances. It has also been observed in some cases that pairs of interacting proteins have

fused orthologues in other organisms. In addition, a number of bound protein complexes

have been structurally solved and can be used to identify the residues that mediate the

interaction so that similar motifs can be located in other organisms.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Conclusion and Future Work

School of Computer Engineering (SCE) 149

Wang et. al.[166] proposes a novel hybrid Genetic Algorithm (GA)/Support Vector

Machine (SVM) method that can predict the interactions between proteins intermediated

by the protein-domain relations. A protein is represented by the domains contained

inside, which can consider the effects of domain duplication. To simulate the

combination of different domains, a transformation of the domain composition was taken

subsequently. Lastly, a genetic algorithm was used to seek the optimized transformation,

which had been adopted as the input vector of a predictor constructed using support

vector machines method.

It would be interesting to see how such PPI prediction algorithm using a parallel Genetic

Algorithm would be mapped on to the Playstation®3. The Playstation®3 with its 6 SPEs

would benefit an island model approach of genetic algorithm, in which each SPEs is

modeled as an island. Figure 48 illustrates this concept. The island model is scalable to

continents, or even galaxies, with a multiple hierarchal clusters of the Playstation®3.

Figure 48. Parallel genetic algorithm with island model on the Playstation®3

SPE

SPE SPE

SPE SPE

SPE

 PS3

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Conclusion and Future Work

School of Computer Engineering (SCE) 150

The remaining work to develop such implementation is to present a communication and

load balancing strategy between islands and between continents (if applies), as well as a

parallel genetic algorithm for mapping onto the SPEs.

8.2.2. IMPLEMENTATION OF A SHORT READ ASSEMBLY ALGORITHM

FOR DE NOVO GENOMIC SEQUENCING ON THE CELL/BE

ARCHITECTURE

Determining the complete genome sequence of a species is an important application of

bioinformatics. New sequencing technologies have emerged recently[167], for example,

pyrosequencing (454 Sequencing) [168] and sequencing by synthesis (Solexa) [169].

Compared to the traditional Sanger[170] method, these technologies are capable of

generating sequence data at a fraction of the cost and much quicker produce shorter

reads, currently ∼200 bp for pyrosequencing and 35 bp for Solexa[171].

A critical stage in genome sequencing is the assembly of shotgun reads, or piecing

together fragments randomly extracted from the sample, to form a set of contiguous

sequences (contigs) representing the DNA in the sample. Traditional methods for whole-

genome shotgun fragment assembly rely on the overlap-layout-consensus approach [172],

representing each read as a node and each detected overlap as an arc between the

appropriate nodes. In sequencing projects that use Sanger technology, genomes are

typically covered 6- to 10-fold. To assemble such data sets, the algorithms described

above put great emphasis on the optimal exploitation of all reads. Issues like the

correction of sequencing errors and the assembly of reads containing mismatches

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Conclusion and Future Work

School of Computer Engineering (SCE) 151

increase the complexity of these algorithms. Due to their complexity, existing assemblers

are incapable of assembling very large numbers of reads.

Therefore, very short reads are not well suited to the traditional approach. Because of

their length, they must be produced in large quantities and at greater coverage depths than

traditional Sanger sequencing projects.

Zerbino and Birney[173] developed a novel set of algorithms called Velvet to manipulate

de Bruijn graphs for genomic sequence assembly. A de Bruijn graph is a compact

representation based on short words (k-mers) that is ideal for high coverage, very short

read (25–50 bp) data sets. Velvet represents a new approach to assembly that can leverage

very short reads in combination with read pairs to produce useful assemblies.

Heterogeneous multi-core systems have been shown to be able to improve the

performance of multiple application due to its characteristics. Therefore, it would be

interesting to see how a short read assembly algorithm can be mapped on the a

heterogeneous multi-core system to improve its performance. To our knowledge, an

implementation of a short read assembly algorithm for de novo genomic sequencing on a

heterogeneous multi-core system such as the Cell Broadband Engine would be the first

ever implementation and therefore be a novel contribution for the scientific community.

8.2.3. OPEN PROGRAMMING LANGUAGE (OPENCL) ON THE CELL/BE

OpenCL is a framework for writing programs that execute across heterogeneous

platforms consisting of CPUs, GPUs, and other processors. It seeks to provide a

framework for parallel programming on heterogeneous systems by using task-based and

data-based parallelism.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Conclusion and Future Work

School of Computer Engineering (SCE) 152

The OpenCL 1.0 specification is made up of three main parts: the language specification,

platform layer API and runtime API[174]. The language specification describes the

syntax and programming interface for writing compute kernels that run on supported

accelerators. The language used is based off of a subset of ISO C99. C was chosen as the

basis for the first OpenCL compute kernel language due to its prevalence and familiarity

in the developer community. To foster consistent results across different platforms, a

well-defined IEEE 754 numerical accuracy is defined for all floating point operations

along with a rich set of built-in functions. The developer has the option of pre-compiling

their OpenCL compute kernel or letting the OpenCL runtime compile their kernels on

demand.

The platform layer API gives the developer access to routines that query for the number

and types of devices in the system. The developer can then select and initialize the

necessary compute devices to properly run their work load. It is at this layer that compute

contexts and work-queues for job submission and data transfer requests are created.

Finally, the runtime API allows the developer to queue up compute kernels for execution

and is responsible for managing the compute and memory resources in the OpenCL

system.

Programming the Cell/BE is complicated both by the need to explicitly manage DMA

data transfers for SPE computation, as well as the multiple layers of parallelism provided

in the architecture, including heterogeneous cores, multiple SPE cores, multithreading,

SIMD units, and multiple instruction issue. There is a significant amount of ongoing

research in programming models and tools that attempts to make it easy to exploit the

computation power of the Cell/BE architecture[175].

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Conclusion and Future Work

School of Computer Engineering (SCE) 153

Currently, an OpenCL implementation for Cell/BE is not yet available. IBM has said it is

"in the works", but there is no hint as to when it will be available. Therefore, an OpenCL

framework on the Cell/BE, which allow any program written with the framework

runnable on the Cell/BE with little to no modification of the source code, would be very

helpful for programmers to be able to exploit the computation power of the Cell/BE

architecture to the fullest.

8.2.4. THE FUTURE OF THE CELL BROADBAND ENGINE ARCHITECTURE

In 2008, IBM announced a revised variant of the Cell/BE called the PowerXCell 8i[176],

which is available in QS22 Blade Servers from IBM. The PowerXCell 8i is manufactured

on a 65 nm process, and adds support for up to 32 GB of slotted DDR2 memory. It is

similar to the Cell/BE, in which it consists of eight Synergistic Processor Elements

(SPEs) and one PowerPC® Processor Element (PPE). The PowerXCell 8i also improves

one of the drawbacks of the Cell/BE by dramatically improving the double-precision

floating-point performance on the SPEs from a peak of about 12.8 GFLOPS to 102.4

GFLOPS total for eight SPEs.

The IBM Roadrunner supercomputer[177, 178], currently the world's second fastest[79],

consists of 12,240 PowerXCell 8i processors, along with 6,562 dual-core AMD Opteron

processors. Beside the QS22 and RoadRunner computers, the PowerXCell processor is

also available as an accelerator on a PCI Express card and is used as the core processor in

the QPACE project[179].

The PowerXCell 32iv chip, which was marked to be the next extension of the

PowerXCell 8i, however, had its development halted by IBM. According to IBM, the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Conclusion and Future Work

School of Computer Engineering (SCE) 154

design of the processor did not provide expected performance and Cell/BE would

reappear in another form. The PowerXCell 32i was projected to feature four PowerPC

processor elements (PPE) as well as 32 synergistic processing elements (SPEs).

Another unfortunate development from the PS3 front is also disconcerting. The latest PS3

Firmware system software update 3.21 released on April 2010[180] disables the Install

Other OS feature that was available on the PS3 systems due to security concerns. This

feature allowed PS3 users to install other operating systems such as Linux on the PS3 and

use it as an entry-level personal computer which can be used as a complete development

environment for the Cell/BE. Most of the experiments of our implementations are based

on such setting. PS3 users currently using the Other OS feature can choose not to upgrade

their systems. However, doing so would banned them from accessing the PlayStation

Network and other gaming and entertainment contents. While this will have little impact

on the PS3 as a supercomputer, it may be the end of the PS3 as a low-cost development

environment for the Cell/BE.

Although the future of the Cell/BE development looks bleak at the moment, the design,

concept and algorithm elaborated in this thesis on various bioinformatics applications

would still be relevant for other next-generation accelerator technologies, such as

Larrabee [181].

Larrabee is a General Purpose GPU (GPGPU) chip that Intel is developing from its

current line of integrated graphics accelerators. It is planned to be released in 2010 and is

expected to be a platform for research and development in computer graphics and HPC.

Larrabee's design of using many small, simple cores is similar to the multi-core concepts

behind the Cell/BE. Further similarities in the use of a high-bandwidth ring bus to

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Conclusion and Future Work

School of Computer Engineering (SCE) 155

communicate between cores also indicate that communication design and methods

introduced by our Cell/BE implementations are applicable to next generation hardware

such as Larrabee.

Below are some significant differences in implementation which should make

programming Larrabee simpler.

• The Cell/BE is a heterogeneous multi core processor, which consists of one PPE

and several SPE processors. Additionally, the PPE can run an OS. In contrast,

Larrabee’s cores are homogeneous, and it is not expected to run an OS.

• Each SPE has a local store, for which explicit DMA operations are used for all

accesses to DRAM. Ordinary reads/writes to DRAM are not allowed. In Larrabee,

all on-chip and off-chip memories are under automatically-managed coherent

cache hierarchy, so that its cores virtually share a uniform memory space through

standard copy (MOV) instructions. Larrabee cores each have 256K of local L2

cache, and an access which hits another L2 segment takes longer to access

• Because of the cache coherency noted above, each program running in Larrabee

has virtually a large linear memory just as in traditional general-purpose CPU;

whereas an application for Cell/BE should be programmed taking into

consideration limited memory footprint of the local store associated with each

SPE but with theoretically higher bandwidth. However, since local L2 is faster to

access, an advantage can still be gained from using Cell/BE-style programming

methods.

• Cell/BE uses DMA for data transfer to/from on-chip local memories, which

enables explicit maintenance of overlays stored in local memory to bring memory

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 Conclusion and Future Work

School of Computer Engineering (SCE) 156

closer to the core and reduce access latencies, but requiring additional effort to

maintain coherency with main memory; whereas Larrabee uses a coherent cache

with special instructions for cache manipulation, which mitigate miss and eviction

penalties and reduce cache pollution (e.g. for rendering pipelines and other

stream-like computation) at the cost of additional traffic and overhead to maintain

cache coherency.

• Each SPE in the Cell/BE runs only one thread at a time, in-order. A core in

Larrabee runs up to four threads, but only one at a time. Larrabee's hyperthreading

helps hide the latencies inherent to in-order execution.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

School of Computer Engineering (SCE) 157

REFERENCES

1. Benson, D.A., et al., GenBank. Nucl. Acids Res., 2008. 36(suppl_1): p. D25-30.

2. Kulikova, T., et al., EMBL Nucleotide Sequence Database in 2006. Nucl. Acids

Res., 2007. 35(suppl_1): p. D16-20.

3. Sugawara, H., et al., DDBJ working on evaluation and classification of bacterial

genes in INSDC. Nucl. Acids Res., 2007. 35(suppl_1): p. D13-15.

4. International Nucleotide Sequence Database Collaboration. http://www.insdc.org/.

2009 [cited; Available from: http://www.insdc.org/.

5. National Center for Biotechnology Information.

http://www.ncbi.nlm.nih.gov/sites/entrez?db=taxonomy. 2009 [cited; Available

from: http://www.ncbi.nlm.nih.gov/sites/entrez?db=taxonomy.

6. National Center for Biotechnology Information.

http://www.ncbi.nlm.nih.gov/collab/FT/index.html. 2009 [cited; Available from:

http://www.ncbi.nlm.nih.gov/collab/FT/index.html.

7. Apweiler, R., et al., The Universal Protein resource (UniProt) 2009. Nucleic

Acids Research, 2009. 37(SUPPL. 1): p. D169-D174.

8. Apweiler, R., et al., UniProt: The universal protein knowledgebase. Nucleic

Acids Research, 2004. 32(DATABASE ISS.): p. D115-D119.

9. Margulies, M., et al., Genome sequencing in microfabricated high-density

picolitre reactors. Nature, 2005. 437(7057): p. 376-380.

10. Porreca, G.J., et al., Multiplex amplification of large sets of human exons. Nat

Meth, 2007. 4(11): p. 931-936.

11. Bentley, D.R., Whole-genome re-sequencing. Current Opinion in Genetics &

Development, 2006. 16(6): p. 545-552.

12. Crescenzi, P., et al., On the complexity of protein folding. Journal of

Computational Biology, 1998. 5(3): p. 423-465.

13. Watson, J. and F. Crick, A structure of deoxyribonucleic acid. Nature, 1953. 171:

p. 737-738.

14. Setubal, J. and J. Meidanis, Introduction to computational molecular biology.

1997: PWS Publishing Company.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://www.insdc.org/�
http://www.insdc.org/�
http://www.ncbi.nlm.nih.gov/sites/entrez?db=taxonomy�
http://www.ncbi.nlm.nih.gov/sites/entrez?db=taxonomy�
http://www.ncbi.nlm.nih.gov/collab/FT/index.html�
http://www.ncbi.nlm.nih.gov/collab/FT/index.html�

 References

School of Computer Engineering (SCE) 158

15. Bader, D.A., Computational biology and high-performance computing.

Communications of the ACM, 2004. 47(11): p. 34-40.

16. Darling, A., L. Carey, and W. Feng. The Design, Implementation, and Evaluation

of mpiBLAST. in 4th International Conference on Linux Clusters: The HPC

Revolution 2003 in conjunction with ClusterWorld Conference & Expo. 2003.

17. Kofune, Y., T. Koita, and A. Fukuda. Performance evaluation of MPI-HMMER

on the OBIGrid. in Proceedings of the International Conference on Parallel and

Distributed Processing Techniques and Applications, PDPTA'04. 2004.

18. Li, K.-B., ClustalW-MPI: ClustalW analysis using distributed and parallel

computing. Bioinformatics, 2003. 19(12): p. 1585-1586.

19. Kim, H.C., et al. Massive multiple sequence alignment of 16S bacterial ribosomal

RNAs using ClustalW-Message Passing Interface (MPI) based on beowulf linux

system. in 2005 IEEE Computational Systems Bioinformatics Conference,

Workshops and Poster Abstracts. 2005.

20. Stamatakis, A.P., T. Ludwig, and H. Meier. A fast program for maximum

likelihood-based inference of large phylogenetic trees. in Proceedings of the ACM

Symposium on Applied Computing. 2004.

21. Pande, V. Folding@Home: Using Worldwide distributed computing to break

fundamental barriers in molecular simulation. in Proceedings of the IEEE

International Symposium on High Performance Distributed Computing. 2006.

22. Mullikin, J.C. and Z. Ning, The phusion assembler. Genome research, 2003.

13(1): p. 81-90.

23. Liu, W., et al. GPU-ClustalW: using graphics hardware to accelerate multiple

sequence alignment. in High Performance Computing - HiPC 2006. 13th

International Conference. Proceedings, 18-21 Dec. 2006. 2006. Bangalore,

India: Springer-Verlag.

24. Oliver, T., et al., Using reconfigurable hardware to accelerate multiple sequence

alignment with ClustalW. Bioinformatics, 2005. 21(16): p. 3431-3432.

25. Gelsinger, P.P., et al., Microprocessors circa 2000. IEEE Spectrum, 1989. 26(10):

p. 43-7.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

School of Computer Engineering (SCE) 159

26. Intel, A new era of architectural innovation arrives with Intel dual-core

processors, in Technology@Intel Magazine. 2005. p. 1-11.

27. Advanced Micro Devices, Multi-core processors-the next evolution in computing,

in Website: http://multicore.amd.com/WhitePapers/Multi-Core Processors

WhitePaper.pdf. 2005, White Paper.

28. Sun Microsystems, Introduction to throughput computing. 2003, White Paper.

29. Kalla, R., B. Sinharoy, and J.M. Tendler, IBM Power5 chip: a dual-core

multithreaded processor. IEEE Micro, 2004. 24(2): p. 40-7.

30. Mirman, I. Dual- and quad-core systems dominate today. 2009 [cited; Available

from: http://www.cilk.com/multicore-blog/bid/8097/Don-t-get-caught-with-your-

multicore-pants-down.

31. Lin, G., et al., Computational assignment of protein backbone NMR peaks by

efficient bounding and filtering. Journal of bioinformatics and computational

biology, 2003. 1(2): p. 387-409.

32. Konc, J. and D. Janezic, A branch and bound algorithm for matching protein

structures, in Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2007. p.

399-406.

33. Smith, T. and M. Waterman, Identification of common molecular subsequences. J

Mol Biol, 1981. 147(1): p. 195-197.

34. Needleman, S.B. and C.D. Wunsch, A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal of Molecular

Biology, 1970. 48(3): p. 443-453.

35. Nussinov, R. and I. Tinoco Jr, Sequential folding of a messenger RNA molecule.

Journal of Molecular Biology, 1981. 151(3): p. 519-533.

36. Zuker, M. and P. Stiegler, Optimal computer folding of large RNA sequences

using thermodynamics and auxiliary information. Nucleic Acids Research, 1981.

9(1): p. 133-148.

37. Wang, J., K.B. Li, and W.K. Sung, G-PRIMER: Greedy algorithm for selecting

minimal primer set. Bioinformatics, 2004. 20(15): p. 2473-2475.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://multicore.amd.com/WhitePapers/Multi-Core�
http://www.cilk.com/multicore-blog/bid/8097/Don-t-get-caught-with-your-multicore-pants-down�
http://www.cilk.com/multicore-blog/bid/8097/Don-t-get-caught-with-your-multicore-pants-down�

 References

School of Computer Engineering (SCE) 160

38. Blekas, K., D.I. Fotiadis, and A. Likas, Greedy mixture learning for multiple motif

discovery in biological sequences. Bioinformatics, 2003. 19(5): p. 607-617.

39. Stoye, J., V. Moulton, and A.W.M. Dress, DCA: An efficient implementation of

the divide-and-conquer approach to simultaneous multiple sequence alignment.

Computer Applications in the Biosciences, 1997. 13(6): p. 625-626.

40. Sammeth, M., B. Morgenstern, and J. Stoye, Divide-and-conquer multiple

alignment with segment-based constraints. Bioinformatics, 2003. 19(SUPPL. 2).

41. Baldi, P. and S. Brunak, Bioinformatics : the machine learning approach.

Adaptive computation and machine learning. 2001, Cambridge, Mass.: MIT

Press.

42. Pugalenthi, G., et al., Identification of structurally conserved residues of proteins

in absence of structural homologs using neural network ensemble.

Bioinformatics, 2009. 25(2): p. 204-210.

43. Hwang, T., et al., Robust and efficient identification of biomarkers by classifying

features on graphs. Bioinformatics, 2008. 24(18): p. 2023-2029.

44. Pavlidis, P., I. Wapinski, and W.S. Noble, Support vector machine classification

on the web. Bioinformatics, 2004. 20(4): p. 586-587.

45. Altschul, S.F., et al., Basic local alignment search tool. Journal of Molecular

Biology, 1990. 215(3): p. 403-410.

46. Lipman, D.J., S.F. Altschul, and J.D. Kececioglu, A tool for multiple sequence

alignment. Proceedings of the National Academy of Sciences of the United States

of America, 1989. 86(12): p. 4412-4415.

47. Notredame, C., D.G. Higgins, and J. Heringa, T-coffee: A novel method for fast

and accurate multiple sequence alignment. Journal of Molecular Biology, 2000.

302(1): p. 205-217.

48. Wallace, I.M., et al., M-Coffee: Combining multiple sequence alignment methods

with T-Coffee. Nucleic Acids Research, 2006. 34(6): p. 1692-1699.

49. Durbin, R., et. al, Biological sequence analysis: probabilistic models of proteins

and nucleic acids. . 1998: Cambridge University Press, Cambridge.

50. Hancock, J.M. and M.J. Zvelebil, Dictionary of Bioinformatics and

Computational Biology. 2004: Wiley-Liss.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

School of Computer Engineering (SCE) 161

51. Waterman, M.S. and M. Eggert, A new algorithm for best subsequence alignments

with application to tRNA-rRNA comparisons. Journal of Molecular Biology,

1987. 197(4): p. 723-728.

52. Henikoff, S. and J.G. Henikoff, Amino acid substitution matrices from protein

blocks. Proceedings of the National Academy of Sciences of the United States of

America, 1992. 89(22): p. 10915-10919.

53. Sander, C. and R. Schneider, The HSSP database of protein structure-sequence

alignments. Nucleic Acids Research, 1994. 22(17): p. 3597-3599.

54. Carrillo, H. and D.J. Lipman, The multiple sequence alignment problem in

biology. SIAM J. Appl. Math., 1988. 48(5): p. 1073-1082.

55. Hogeweg, P. and B. Hesper, The alignment of sets of sequences and the

construction of phyletic trees: An integrated method. Journal of Molecular

Evolution, 1984. 20(2): p. 175-186.

56. Feng, D.F. and R.F. Doolittle, Progressive sequence alignment as a

prerequisitetto correct phylogenetic trees. Journal of Molecular Evolution, 1987.

25(4): p. 351-360.

57. Altschul, S.F., R.J. Carroll, and D.J. Lipman, Weights for data related by a tree.

Journal of Molecular Biology, 1989. 207(4): p. 647-653.

58. Thompson, J.D., D.G. Higgins, and T.J. Gibson, CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through sequence

weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids

Res., 1994. 22(22): p. 4673-4680.

59. Heringa, J., Two strategies for sequence comparison: Profile-preprocessed and

secondary structure-induced multiple alignment. Computers and Chemistry, 1999.

23(3-4): p. 341-364.

60. Larkin, M.A., et al., Clustal W and Clustal X version 2.0. Bioinformatics, 2007.

23(21): p. 2947-2948.

61. Thompson, J.D., et al., The CLUSTAL_X windows interface: flexible strategies for

multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res.,

1997. 25(24): p. 4876-4882.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

School of Computer Engineering (SCE) 162

62. Edgar, R.C., MUSCLE: Multiple sequence alignment with high accuracy and high

throughput. Nucleic Acids Research, 2004. 32(5): p. 1792-1797.

63. Simossis, V.A. and J. Heringa, PRALINE: A multiple sequence alignment toolbox

that integrates homology-extended and secondary structure information. Nucleic

Acids Research, 2005. 33(SUPPL. 2): p. W289-W294.

64. Dayhoff, M.O., R.M. Schwartz, and B.C. Orcutt, A model of evolutionary change

in proteins. Atlas of protein sequence and structure, Nat. Biomed. Res, 1978.

5(suppl 3): p. 345-351.

65. Gotoh, O., An improved algorithm for matching biological

sequences. J Mol Biol, 1982. 162(3): p. 705-708.

66. Korf, I., M. Yandell, and J. Bedell, BLAST. 2003: O'Reilly \& Associates,

Inc.

67. Gish, W. http://blast.wustl.edu. 1996-2003 [cited; Available from:

http://blast.wustl.edu.

68. Lopez, R., et al., WU-Blast2 server at the European Bioinformatics Institute.

Nucleic Acids Research, 2003. 31(13): p. 3795-3798.

69. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: A new generation of

protein database search programs. Nucleic Acids Research, 1997. 25(17): p.

3389-3402.

70. Darling, A., L. Carey, and W. Feng, The Design, Implementation, and Evaluation

of mpiBLAST. ClusterWorld, 2003.

71. Yang, C.T., T.F. Han, and H.C. Kan. G-BLAST: A grid-based solution for

mpiBLAST on computational grids. in IEEE Region 10 Annual International

Conference, Proceedings/TENCON. 2007.

72. Cameron, M., H.E. Williams, and A. Cannane, Improved gapped alignment in

BLAST. IEEE/ACM Transactions on Computational Biology and Bioinformatics,

2004. 1(3): p. 116-129.

73. Cameron, M., H.E. Williams, and A. Cannane, A deterministic finite automaton

for faster protein hit detection in BLAST. Journal of Computational Biology,

2006. 13(4): p. 965-978.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://blast.wustl.edu/�
http://blast.wustl.edu/�

 References

School of Computer Engineering (SCE) 163

74. Grama, A., et al., Introduction to Parallel Computing, 2nd Edition. 2003: Addison

Wesley.

75. Aspray, W., The stored program concept. IEEE Spectrum, 1990. 27(9): p. 51.

76. Quinn, M.J., Parallel Programming in C with MPI and OpenMP. 2004: McGraw-

Hill.

77. Flynn, M.J., Some Computer Organizations and Their Effectiveness. IEEE

Transactions on Computers, 1972. C-21(9): p. 948-960.

78. Duncan, R., Survey of parallel computer architectures. Computer, 1990. 23(2): p.

5-16.

79. Top500. Top 500 supercomputer sites. 2010 [cited; Available from:

www.top500.org.

80. White, C.T., et al. BioSCAN. A VLSI-based system for biosequence analysis. in

IEEE International Conference on Computer Design - VLSI in Computers and

Processors. 1991.

81. Chow, E.T., et al., A systolic array processor for biological information signal

processing, in Proceedings of the 5th international conference on

Supercomputing. 1991, ACM: Cologne, West Germany.

82. Guerdoux-Jamet, P. and D. Lavenier, SAMBA: Hardware accelerator for

biological sequence comparison. Computer Applications in the Biosciences,

1997. 13(6): p. 609-615.

83. Oliver, T., L.Y. Yeow, and B. Schmidt, Integrating FPGA acceleration into

HMMer. Parallel Computing, 2008. 34(11): p. 681-691.

84. Derrien, S. and P. Quinton, Hardware Acceleration of HMMER on FPGAs.

Journal of Signal Processing Systems, 2008.

85. Aung, Y., et al., C-Based Design Methodology for FPGA Implementation of

ClustalW MSA, in Pattern Recognition in Bioinformatics. 2007. p. 11-18.

86. Oliver, T.F., B. Schmidt, and D.L. Maskell, Reconfigurable architectures for bio-

sequence database scanning on FPGAs. IEEE Transactions on Circuits and

Systems II: Express Briefs, 2005. 52(12): p. 851-855.

87. Liu, Y., et al., Comparison of Accelerator Architectures for

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://www.top500.org/�

 References

School of Computer Engineering (SCE) 164

Large-Scale Biological Sequence Alignment. IEEE Trans. Parallel Distrib. Syst., 2009.

Under review.

88. Boukerche, A., et al., An FPGA-Based Accelerator for Multiple Biological

Sequence Alignment with DIALIGN, in High Performance Computing – HiPC

2007. 2007. p. 71-82.

89. Owens, J.D., et al., A Survey of General-Purpose Computation on Graphics

Hardware. Computer Graphics Forum, 2007. 26(1): p. 80-113.

90. Buck, I., et al. Brook for GPUs: Stream computing on graphics hardware. in

ACM Transactions on Graphics. 2004.

91. McCool, M.D., Z. Qin, and T.S. Popa. Shader metaprogramming. in Proceedings

of the SIGGRAPH/Eurographics Workshop on Graphics Hardware. 2002.

92. Manavski, S.A. and G. Valle, CUDA compatible GPU cards as efficient hardware

accelerators for Smith-Waterman sequence alignment. BMC Bioinformatics,

2008. 9.

93. Liu, W., et al., Streaming Algorithms for Biological Sequence Alignment on

GPUs. IEEE Transactions on Parallel and Distributed Systems., 2007.

94. Chen, C., et al., GPU-MEME: Using graphics hardware to accelerate motif

finding in DNA sequences, in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics). 2008. p. 448-459.

95. Schatz, M.C., et al., High-throughput sequence alignment using Graphics

Processing Units. BMC Bioinformatics, 2007. 8.

96. Zheng, H., et al. Cone beam reconstruction speedup using trigonometric

relevancy and GPU technology. in 2nd International Conference on

Bioinformatics and Biomedical Engineering, iCBBE 2008. 2008.

97. Liu, Y., D. Maskell, and B. Schmidt, CUDASW++: optimizing Smith-Waterman

sequence database searches for CUDA-enabled graphics processing units. BMC

Research Notes, 2009. 2(1): p. 73.

98. Nickolls, J., et al., Scalable Parallel Programming with CUDA. ACM Queue,

2008. 6(2): p. 40 - 53.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

School of Computer Engineering (SCE) 165

99. Justin, H., AMD CTM overview, in ACM SIGGRAPH 2007 courses. 2007, ACM:

San Diego, California.

100. Lindholm, E., et al., NVIDIA Tesla: A Unified Graphics and Computing

Architecture. IEEE Micro, 2008. 28(2): p. 39 - 55.

101. Wirawan, A., et al., CBESW: Sequence alignment on the playstation 3. BMC

Bioinformatics, 2008. 9: p. 377.

102. Wirawan, A., C.K. Kwoh, and B. Schmidt, Parallel DNA Sequence Alignment on

the Cell Broadband Engine. Lecture Notes on Computer Science, 2008. 4967: p.

1249-1256.

103. Wirawan, A., C.K. Kwoh, and B. Schmidt, Pairwise Distance Matrix

Computation for Multiple Sequence Alignment on the Cell Broadband Engine.

Lecture Notes on Computer Science, 2009. 5544: p. 954-963.

104. Wirawan, A., et al., High Performance Protein Sequence Database Scanning on

the Cell B.E. Processor. Scientific Programming, 2009. 17(1-2): p. 97-111.

105. Nim, T.H., et al. Applications of heterogeneous structure of cell broadband

engine architecture for biological database similarity search. in 2nd International

Conference on Bioinformatics and Biomedical Engineering, iCBBE 2008. 2008.

106. Sachdeva, V., et al. Exploring the viability of the Cell Broadband Engine for

bioinformatics applications. in IEEE International Parallel and Distributed

Processing Symposium. 2007. Long Beach, CA, USA: IEEE.

107. Stamatakis, A., et al., Exploring new search algorithms and hardware for

phylogenetics: RAxML meets the IBM cell. Journal of VLSI Signal Processing

Systems for Signal, Image, and Video Technology, 2007. 48(3): p. 271-286.

108. Intel. Intel® Core™ i7 Processor Extreme Edition and Intel® Core™ i7

Processor Datasheet. 2009 [cited; Available from:

http://download.intel.com/design/processor/datashts/320834.pdf.

109. Kahle, J.A., et al., Introduction to the Cell multiprocessor. IBM Journal of

Research and Development, 2005. 49(4-5): p. 589-604.

110. Kumar, R., et al., Heterogeneous chip multiprocessors. Computer, 2005. 38(11):

p. 32-38.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://download.intel.com/design/processor/datashts/320834.pdf�

 References

School of Computer Engineering (SCE) 166

111. Buttari, A., J. Dongarra, and J. Kurzak, Limitations of the PlayStation 3 for High

Performance Cluster Computing. 2007, Innovative Computing Laboratory,

University of Tennessee Knoxville.

112. Pham, D., et al. The design methodology and implementation of a first-generation

CELL processor: a multi-core SoC. in Proceedings of the IEEE 2005 Custom

Integrated Circuits Conference. 2005. San Jose, CA, USA: IEEE.

113. Bader, D.A., et al., High performance combinatorial algorithm design on the Cell

Broadband Engine processor. Parallel Computing, 2007. 33(10-11): p. 720-740.

114. Hofstee, H.P. Power efficient processor architecture and the cell processor. in

Proceedings. 11th International Symposium on High-Performance Computer

Architecture, 12-16 Feb. 2005. 2005. San Francisco, CA, USA: IEEE (Comput.

Soc.).

115. Balakrishnan, S., et al. The impact of performance asymmetry in emerging

multicore architectures. in Proceedings - International Symposium on Computer

Architecture. 2005.

116. Kumar, R., et al. Single-ISA heterogeneous multi-core architectures for

multithreaded workload performance. in Conference Proceedings - Annual

International Symposium on Computer Architecture, ISCA. 2004.

117. Kumar, R., D.M. Tullsen, and N.P. Jouppi. Core architecture optimization for

heterogeneous chip multiprocessors. in Parallel Architectures and Compilation

Techniques - Conference Proceedings, PACT. 2006.

118. Mueller, S.M., et al. The vector floating-point unit in a synergistic processor

element of a CELL processor. in Proceedings. 17th IEEE Symposium on

Computer Arithmetic, 27-29 June 2005. 2005. Cape Cod, MA, USA: IEEE

Computer Society.

119. Chen, T., et al., Cell broadband engine architecture and its first implementation.,

in IBM developerWorks. 2005.

120. Kistler, M., M. Perrone, and F. Petrini, Cell multiprocessor communication

network: Built for speed. IEEE Micro, 2006. 26(3): p. 10-23.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

School of Computer Engineering (SCE) 167

121. Hofstee, P. and M. Day. Hardware and software architectures for the CELL

processor. in Proceedings of the 3rd IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis. 2005. Jersey City, USA.

122. International Business Machines, Cell Broadband Engine Programming Tutorial

v1.1., in IBM developerWorks. 2006.

123. Buttari, A., et al., A Rough Guide to Scientific Computing On the PlayStation 3.

2007, Innovative Computing Laboratory, University of Tennessee Knoxville.

124. Blagojevic, F., et al. RAxML-cell: parallel phylogenetic tree inference on the cell

broadband engine. in 2007 IEEE International Parallel and Distributed

Processing Symposium, 26-30 March 2007. 2007. Long Beach, CA, USA: IEEE.

125. Asahara, A., et al. Cell-broadband-engine-based realtime wavelet decomposition

for HDTV video images and beyond. in 2006 IEEE International Conference on

Multimedia and Expo, 9-12 July 2006. 2006. Toronto, Ont., Canada: IEEE.

126. Benthin, C., et al. Ray tracing on the cell processor. in IEEE Symposium on

Interactive Ray Tracing 2006, 18-20 Sept. 2006. 2006. Salt Lake City, UT, USA:

IEEE.

127. Hjelte, N., Smoothed Particle Hydrodynamics on the Cell Broadband Engine.

2006, Umeå University, Department of Computer Science.

128. Kim, J. and J. JaJa, Streaming model based volume ray casting implementation

for Cell Broadband Engine. Scientific Programming, 2009. 17(1-2): p. 173-184.

129. Felsenstein, J., Evolutionary Trees from DNA Sequences: A Maximum-Likelihood

Approach. 1981: United States. p. 27p.

130. Wald, I., S. Boulos, and P. Shirley, Ray tracing deformable scenes using dynamic

bounding volume hierarchies. ACM Transactions on Graphics, 2007. 26(1): p. 18

pp.

131. Monaghan, J.J., Smoothed particle hydrodynamics. Reports on Progress in

Physics, 2005. 68(8): p. 1703-59.

132. Hadap, S. and N. Magnenat-Thalmann. Modeling dynamic hair as a continuum. in

European Association for Computer Graphics. 22nd Annual Conference.

EUROGRAPHICS 2001, 4-7 Sept. 2001 Computer Graphics Forum. 2001.

Manchester, UK: Blackwell Publishers for Eurographics Assoc.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

School of Computer Engineering (SCE) 168

133. Di Blas, A., et al., The UCSC Kestrel parallel processor. IEEE Transactions on

Parallel and Distributed Systems, 2005. 16(1): p. 80-92.

134. Wozniak, A., Using video-oriented instructions to speed up sequence comparison.

Comput. Appl. Biosci., 1997. 13(2): p. 145-150.

135. International Business Machines, Cell Broadband Engine Programming Tutorial

v1.1., in IBM developerWorks. 2005.

136. Benson, D.A., et al., GenBank. Nucleic Acids Research, 2000. 28(1): p. 15-18.

137. Farrar, M., Striped Smith-Waterman speeds database searches six times over

other SIMD implementations. Bioinformatics, 2007. 23(2): p. 156-161.

138. Rognes, T. and E. Seeberg, Six-fold speed-up of Smith-Waterman sequence

database searches using parallel processing on common microprocessors.

Bioinformatics, 2000. 16(8): p. 699-706.

139. Li, I.T.S., W. Shum, and K. Truong, 160-fold acceleration of the Smith-Waterman

algorithm using a field programmable gate array (FPGA). BMC Bioinformatics,

2007. 8.

140. Liu, Y., B. Schmidt, and D. Maskell, CUDASW++2.0: enhanced Smith-

Waterman protein database search on CUDA-enabled GPUs based on SIMT and

virtualized SIMD abstractions. BMC Research Notes, 2010. 3(1): p. 93.

141. IBM, C/C++ Language Extensions for Cell Broadband Engine Architecture

v.2.5. 2008: IBM developerWorks.

142. Pearson, W.R., Searching protein sequence libraries: Comparison of the

sensitivity and selectivity of the Smith-Waterman and FASTA algorithms.

Genomics, 1991. 11(3): p. 635-650.

143. Pearson, W.R., Rapid and sensitive sequence comparison with FASTP and

FASTA. Methods in Enzymology, 1990. 183: p. 63-98.

144. Brenner, S.E., C. Chothia, and T.J.P. Hubbard, Assessing sequence comparison

methods with reliable structurally identified distant evolutionary relationships.

Proceedings of the National Academy of Sciences of the United States of

America, 1998. 95(11): p. 6073-6078.

145. Kent, W.J., BLAT - The BLAST-like alignment tool. Genome research, 2002.

12(4): p. 656-664.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

School of Computer Engineering (SCE) 169

146. Li, M., et al., PatternHunter II: Highly sensitive and fast homology search.

Journal of bioinformatics and computational biology, 2004. 2(3): p. 417-439.

147. Oehmen, C. and J. Nieplocha, ScalaBLAST: A scalable implementation of BLAST

for high-performance data-intensive bioinformatics analysis. IEEE Transactions

on Parallel and Distributed Systems, 2006. 17(8): p. 740-749.

148. Jacob, A., et al. FPGA-accelerated seed generation in Mercury BLASTP. in

Proceedings 2007 IEEE Symposium on Field-Programme Custom Computing

Machines, FCCM 2007. 2007.

149. Jacob, A., et al., Mercury BLASTP: Accelerating Protein Sequence Alignment.

ACM Trans. Reconfigurable Technol. Syst., 2008. 1(2): p. 1-44.

150. Katoh, K., et al., MAFFT: A novel method for rapid multiple sequence alignment

based on fast Fourier transform. Nucleic Acids Research, 2002. 30(14): p. 3059-

3066.

151. Schmollinger, M., et al., DIALIGN P: Fast pair-wise and multiple sequence

alignment using parallel processors. BMC Bioinformatics, 2004. 5.

152. Catalyurek, U., et al. Improving Performance of Multiple Sequence Alignment

Analysis in Multi-client Environments. in Proceedings of the First International

Workshop on High Performance Computational Biology (HiCOMB 2002, IPDPS

2002). 2002.

153. Catalyurek, U., et al. A component-based implementation of multiple sequence

alignment. in Proceedings of the ACM Symposium on Applied Computing. 2003.

154. Chaichoompu, K., S. Kittitornkun, and S. Tongsima. MT-ClustalW:

Multithreading multiple sequence alignment. in 20th International Parallel and

Distributed Processing Symposium, IPDPS 2006. 2006.

155. Luo, J., et al. Parallel multiple sequence alignment with dynamic scheduling. in

International Conference on Information Technology: Coding and Computing,

ITCC. 2005.

156. Oliver, T., et al. Multiple sequence alignment on an FPGA. in Proceedings of the

International Conference on Parallel and Distributed Systems - ICPADS. 2005.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

 References

School of Computer Engineering (SCE) 170

157. Saitou, N. and M. Nei, The neighbor-joining method: a new method for

reconstructing phylogenetic trees. Molecular biology and evolution, 1987. 4(4): p.

406-425.

158. Lewis, B. and D.J. Berg, Multithreaded Programming with Pthreads, 1998.

159. NCBI. NCBI Homepage. [cited; Available from: http://www.ncbi.nlm.nih.gov/.

160. Lindholm, E., et al., NVIDIA Tesla: A unified graphics and computing

architecture. IEEE Micro, 2008. 28(2): p. 39-55.

161. Ucb/Eecs, et al., The landscape of parallel computing research: a view from

Berkeley. 2006.

162. Dandekar, T., et al., Conservation of gene order: A fingerprint of proteins that

physically interact. Trends in Biochemical Sciences, 1998. 23(9): p. 324-328.

163. Enright, A.J., et al., Protein interaction maps for complete genomes based on

gene fusion events. Nature, 1999. 402(6757): p. 86-90.

164. Marcotte, E.M., et al., Detecting protein function and protein-protein interactions

from genome sequences. Science, 1999. 285(5428): p. 751-753.

165. Pazos, F. and A. Valencia, Similarity of phylogenetic trees as indicator of protein-

protein interaction. Protein Engineering, 2001. 14(9): p. 609-614.

166. Wang, B., et al. Prediction of protein interactions by combining genetic algorithm

with SVM method. in 2007 IEEE Congress on Evolutionary Computation, CEC

2007. 2008.

167. Metzker, M.L., Emerging technologies in DNA sequencing. Genome research,

2005. 15(12): p. 1767-1776.

168. Margulies, M., et al., Genome sequencing in microfabricated high-density

picolitre reactors. Nature, 2005. 437(7057): p. 376-380.

169. Bentley, D.R., Whole-genome re-sequencing. Current Opinion in Genetics and

Development, 2006. 16(6): p. 545-552.

170. Sanger, F., S. Nicklen, and A.R. Coulson, DNA sequencing with chain-

terminating inhibitors. Proceedings of the National Academy of Sciences of the

United States of America, 1977. 74(12): p. 5463-5467.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://www.ncbi.nlm.nih.gov/�

 References

School of Computer Engineering (SCE) 171

171. Dohm, J.C., et al., SHARCGS, a fast and highly accurate short-read assembly

algorithm for de novo genomic sequencing. Genome research, 2007. 17(11): p.

1697-1706.

172. Batzoglou, S., Algorithmic challenges in mammalian genome sequence assembly.

Encyclopedia of genomics, proteomics and bioinformatics, 2005(PART 4).

173. Zerbino, D.R. and E. Birney, Velvet: Algorithms for de novo short read assembly

using de Bruijn graphs. Genome research, 2008. 18(5): p. 821-829.

174. Khronos Group. OpenCL - The open standard for parallel programming of

heterogeneous systems. 2009 [cited; Available from:

http://www.khronos.org/opencl/.

175. O'Brien, K., et al., Supporting OpenMP on cell, in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics). 2008. p. 65-76.

176. IBM. PowerXCell 8i. 2008 [cited; Available from: https://www-

01.ibm.com/chips/techlib/techlib.nsf/products/PowerXCell_8i.

177. IBM, Fact Sheet & Background: Roadrunner Smashes the Petaflop Barrier.

2008.

178. IBM. IBM Roadrunner. 2009 [cited; Available from:

http://en.wikipedia.org/wiki/IBM_Roadrunner.

179. Wikipedia. IBM Roadrunner. 2009 [cited; Available from:

http://en.wikipedia.org/wiki/IBM_Roadrunner.

180. Sony. Support: System Software Updates. 2010 [cited; Available from:

http://us.playstation.com/support/systemupdates/ps3/index.htm.

181. Larry, S., et al., Larrabee: a many-core x86 architecture for visual computing.

ACM Trans. Graph., 2008. 27(3): p. 1-15.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://www.khronos.org/opencl/�
http://en.wikipedia.org/wiki/IBM_Roadrunner�
http://en.wikipedia.org/wiki/IBM_Roadrunner�
http://us.playstation.com/support/systemupdates/ps3/index.htm�

	Abstract
	Acknowledgement
	Author’s Publication
	Table of Contents
	List of Tables
	List of Equations
	List of Figures
	1. Introduction
	1.1. Overview
	1.2. Motivation
	1.3. Objectives
	1.4. Contributions
	1.5. Synopsis of Thesis

	2. STATE of the Art
	2.1. Algorithm implementation techniques
	2.1.1. Exhaustive Search Algorithms
	2.1.2. Branch-and-Bound Algorithms
	2.1.3. Dynamic Programming Algorithms
	2.1.4. Greedy Algorithms
	2.1.5. Divide and Conquer Algorithms
	2.1.6. Machine Learning Algorithms
	2.1.7. Heuristic Algorithms

	2.2. Sequence Alignment
	2.2.1. Types of Alignment
	2.2.1.1. Pairwise sequence alignment
	2.2.1.2. Multiple sequence alignment

	2.2.2. Scoring Scheme
	2.2.2.1. Substitution Matrix
	2.2.2.1.1. Unitary Scoring Matrix
	2.2.2.1.2. Log-odds ratio
	2.2.2.1.3. Point Accepted Mutation (PAM)
	2.2.2.1.4. Block Substitution Matrix (BLOSUM)

	2.2.2.2. Gap Penalties

	2.2.3. Alignment Algorithms
	2.2.3.1. Global alignment: Needleman-Wunsch algorithm
	2.2.3.2. Local alignment: Smith-Waterman algorithm
	2.2.3.3. Algorithms with affine gap penalty
	2.2.3.4. Heuristic alignment algorithms
	2.2.3.4.1. BLAST
	2.2.3.4.2. FASTA

	2.3. Parallel Computation Model and Parallel Architectures
	2.3.1. Terminology
	2.3.1.1. Speed-up
	2.3.1.2. Parallel Overhead
	2.3.1.3. Synchronization
	2.3.1.4. Efficiency
	2.3.1.5. Scalability
	2.3.1.6. Task

	2.3.2. von Neumann Architecture
	2.3.3. Flynn's Classical Taxonomy
	2.3.3.1. Single Instruction, Single Data (SISD)
	2.3.3.2. Single Instruction, Multiple Data (SIMD)
	2.3.3.3. Multiple Instruction, Single Data (MISD)
	2.3.3.4. Multiple Instruction, Multiple Data (MIMD)

	2.4. Accelerator Technologies in High Performance Computing
	2.4.1. VLSI
	2.4.2. FPGA
	2.4.3. GPU
	2.4.4. Multi-Core
	2.4.4.1. Homogeneous Multi-core
	2.4.4.2. Heterogeneous Multi-core
	2.4.4.3. Cluster of Multi-core

	3. cell broadband engine
	3.1. Introduction
	3.2. Cell/BE Architecture
	3.3. Overcoming the Three Wall Limitations
	3.3.1. Overcoming the Power Wall
	3.3.2. Overcoming the Memory Wall
	3.3.3. Overcoming the Frequency Wall

	3.4. Interprocessor communication
	3.4.1. DMA transfer
	3.4.2. Mailboxes
	3.4.3. Signal notification channels (Signals)

	3.5. Developing Applications for the Cell Broadband Engine
	3.5.1. Vectorization
	3.5.2. Data Alignment
	3.5.3. Double-Buffering
	3.5.4. Data Reuse
	3.5.5. Branch Minimization

	3.6. Programming techniques for the Cell/BE
	3.6.1. Function-Offload Model
	3.6.2. Computation-Acceleration Model
	3.6.3. Streaming Model

	4. ALIGNING Long DNA Sequence on the Cell Broadband Engine
	4.1. Introduction
	4.2. Smith-Waterman Algorithm
	4.3. Wavefront Parallelization
	4.4. SIMD Parallelization
	4.5. Performance Evaluation
	4.6. Summary

	5. CBESW: Implementation of the Smith-Waterman Algorithm on the Playstation®3
	5.1. Introduction
	5.2. Smith-Waterman Algorithm
	5.3. IMPLEMENTATION
	5.3.1. Mapping to the Cell Broadband Engine
	5.3.2. Query Profile
	5.3.3. Saturation Arithmethic

	5.4. Performance Evaluation
	5.5. Summary

	6. Implementation of A Heuristic Protein Sequence Database Scanning algorithm on the Cell/BE
	6.1. Introduction
	6.2. BLAST-P Algorithm
	6.3. IMPLEMENTATION
	6.3.1. Parallelization Approach
	6.3.2. Mapping to the Cell Broadband Engine

	6.4. Performance Evaluation
	6.5. Summary

	7. Pairwise Distance Matrix Computation
	7.1. Introduction
	7.2. Multiple Sequence Alignment Algorithm
	7.3. Mapping to the Cell/BE
	7.3.1. Query Profile
	7.3.2. SIMD-specific Implementations
	7.3.3. Multithreading-specific Implementations

	7.4. Mapping to the x86/SSE2 Architecture
	7.5. Performance Evaluation
	7.5.1. Performance Analysis
	7.5.2. Comparison against X86/SSE2 Architecture
	7.5.3. Comparison against Other Accelerator Technologies

	7.6. Summary

	8. Conclusion and Future Work
	8.1. Conclusion
	8.2. Future Work
	8.2.1. Protein-Protein Interaction Prediction using Parallel GA with Island Model on the Cell/BE Architecture
	8.2.2. Implementation of A Short Read Assembly Algorithm for de novo Genomic Sequencing on the Cell/BE Architecture
	8.2.3. Open Programming Language (OpenCL) on the Cell/BE
	8.2.4. The future of the cell broadband engine architecture

	References

