
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Outlier detection based on neighborhood
proximity

Nguyen, Hoang Vu

2010

Nguyen, H. V. (2010). Outlier detection based on neighborhood proximity.. Master’s thesis,
Nanyang Technological University, Singapore.

https://hdl.handle.net/10356/42448

https://doi.org/10.32657/10356/42448

Downloaded on 09 Apr 2024 15:20:56 SGT

Outlier Detection Based On
Neighborhood Proximity

a Dissertation
submitted to the School of Computer Engineering

of Nanyang Technological University

by

Nguyen Hoang Vu

(Matric No.: G0800360H)

in partial fulfillment of the requirements
for the degree of

Master of Engineering

June 2010

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Curriculum Vitae

Hoang Vu Nguyen was born on May 24th, 1985, in Ho Chi Minh city, Vietnam. He attended

Nanyang Technological University (NTU), from July 2004 to June 2008, and graduated with

a Bachelor of Engineering degree (First Class Honor). He has been working for Credit Suisse

AG since July 2008. He started a Master of Engineering (research-based) degree since January

2009 under Dr. Vivekanand Gopalkrishnan’s supervision, his long time teacher and master.

His research was on designing scalable and efficient algorithms for outlier detection. His career

objective is to discover things that no one has found out before. Because of that, research seems

to be the only job that may fulfill his desire.

i

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Acknowledgments

At first, I thought I had to make everything in this thesis be formal since it will be graded.

Thus, I wrote only a few lines in this section with very polished words. That is obviously not

my style. After reading a few theses, I learnt that “I do not need to be always formal when

going to office throughout five working days of week”. At least, my company has a “jeans day”

policy.

To me, Dr. Vivekanand Gopalkrishnan is very special. I did learn about research when I

was in secondary school as well as high school. I read so many books on Mathematics describing

the glorious scientific lives of great mathematicians. Believe me, those books are misleading!

They fail to describe how difficult it is to get even one normal paper accepted (I am not talking

about a shocking scientific discovery). I failed as they did, too. My papers got rejected so

many times that I had ever decided I was not born for research. Understanding all of these

feelings, Dr. Vivekanand had helped me to learn how to accept failure, stand up and continue

fighting till succeeding. Those are not all of the things he has given to me as to enumerate

them exhaustively, I need more space for this section. To sum up, I would like to thank him so

much for his guidance on how to become a good person and how to pursue my research dream.

Next, I am grateful to my girlfriend for her encouragement and deep understanding. Her

constant support gives me much strength to proceed my study all the way to this phase.

This study would not have been possible without the help and support of various peo-

ple. Here, I would like to express my great appreciation to other following persons who have

graciously, in different ways, helped me during the course of my study:

∙ Dr. Chang Kuiyu for being my official supervisor.

∙ Ang Hock Hee for his fruitful advices, suggestions, and collaboration.

∙ Lab technicians of CAIS, for all the technical help they have provided me.

∙ Staffs of SCE graduate office for all the administrative support they have given me.

ii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Abstract

Outliers, also called anomalies are data patterns that do not conform to the behavior that is

expected or differ too much from the rest. In some cases, outliers could be caused by errors

in data generating/collecting methods or by inherent data variability. However, in many situa-

tions, outliers are indications of interesting events that have never been known before and hence,

an adaptation of the theory to capture the new events is required to explore the underlying

mechanisms. The two-side effect of outliers necessitates the development of efficient methods

to detect them for either (a) eliminating/minimizing their impacts on general performance of

information systems or (b) capturing the underlying interesting knowledge (e.g. intrusive con-

nections in a network). In general, outlier detection has many practical applications, especially

in domains that have scope for abnormal behavior, such as fraud detection, network intrusion

detection, medical diagnosis, marketing, customer segmentation, etc.

There are many ways in practice to solve our problem of interest. This thesis deals specifi-

cally with outlier notions based on measures of neighborhood dissimilarity. Related works can

be divided into two main categories: distance-based and density-based. In our study, we place

our focus more on distance-based approaches. With considerations to the limitations of existing

works, we propose two techniques, tackling separate aspects of outlier detection.

Different neighborhood-proximity-based techniques introduce/use different notions of out-

liers. That makes their performance vary greatly through disparate datasets. Therefore, using

only one technique may not yield desired outcome. Motivated by the issue, we present a novel

scheme for classifying and combining various outlier detectors in order to exploit their own

advantages. The ensemble framework applies each detector on a randomly chosen subspace.

Hence, error suffered by one detector is unlikely repeated by others. In high-dimensional spaces,

subspace irrelevance is a local rather than a global property. Choosing different subspaces for

different detectors helps our technique to overcome the curse of dimensionality. Extensive ex-

periments point out that our method yields better detection accuracy than existing ones on

high-dimensional datasets.

iii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

The second technique utilizes an existing well-known definition of distance-based outliers

and aims to improve the temporal cost of the detection process. In particular, it is built based

on the traditional nested-loop algorithm but different from existing techniques, it is coupled

with multiple pruning rules. Hence, we are able to reduce the inherent quadratic cost to a

cost linear w.r.t. the dataset’s size. Empirical study carried out on real datasets shows that

our proposed approach consistently outperforms state-of-the-art techniques on distance-based

anomaly detection.

iv

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Contents

Curriculum Vitae . i

Acknowledgments . ii

Abstract . iii

List of Figures . viii

List of Tables . ix

1 Introduction 1

1.1 Overview . 1

1.2 Challenges . 2

1.2.1 Distance Function . 2

1.2.2 Pattern Representation . 4

1.2.3 The Need of Labeled Data for Training and Testing 4

1.3 Motivation . 5

1.4 Our Problems of Interest and Solutions . 6

1.4.1 Subspace Outlier Mining . 7

1.4.2 Reducing Temporal Cost of Distance-based Outlier Detection 8

1.5 Organization . 8

2 Background and Related Work 10

2.1 What Are Outliers? . 10

2.2 Applications of Outlier Detection . 11

2.3 Available Metrics for Evaluating Detection Techniques 12

2.3.1 ROC Curve . 12

2.3.2 Execution Time . 14

2.3.3 Analyzing The Meaning of Outliers Detected 14

2.4 Classification of Existing Techniques . 15

2.4.1 Statistics-based Techniques . 16

v

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.4.2 Clustering-based Techniques . 16

2.4.3 Distance-based Techniques . 17

2.4.4 Density-based Techniques . 21

2.4.5 Evolutionary-based Technique . 23

2.5 Summary of Related Works and Their Limitations 24

3 Ensemble Outlier Detection on Subspaces 26

3.1 Problem Formulation and Technique Descriptions 26

3.2 Methodology . 28

3.2.1 Ensemble Construction . 28

3.2.2 HeDES Framework . 30

3.2.3 Outlier Score Function . 31

3.2.4 COMBINE Functions . 34

3.2.5 Further Discussion . 36

3.3 Experimental Results . 37

3.3.1 Experiment on Ranking-based Technique 38

3.3.2 Experiment on Threshold-based Technique 39

3.3.3 Experiment on Ranking-based & Threshold-based Techniques 40

3.4 Summary . 40

4 The MIRO approach 42

4.1 Problem Formulation and Technique Descriptions 43

4.2 The MIRO Detection Approach . 45

4.2.1 Cluster-based Pruning . 45

4.2.2 Nested-loop Algorithm . 47

4.3 Theoretical Analysis . 48

4.3.1 Time Complexity of MIRO . 49

4.3.2 Time Complexity of MIRO with Ppoints 50

4.3.3 Space Complexity of MIRO . 51

4.3.4 Analysis of Parameters Used . 51

4.4 Empirical Results and Analyses . 52

4.4.1 Execution time v/s. N . 53

4.4.2 Execution time and MIRO’s pruning power v/s. k 53

4.4.3 Execution time v/s. nc . 55

4.5 Summary . 57

vi

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5 Future Work 60

5.1 Detecting Outliers in Concept-Drift Environment 60

5.2 Visualization of Detection Results . 62

5.2.1 Benefits of Result Visualization . 63

5.2.2 Possible Forms of Visualization . 64

5.3 Dimension Reduction in Outlier Detection . 66

6 Conclusion 69

7 List of Author’s Publications 71

References 73

vii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

List of Figures

2.1 An example of ROC curve. The shaded region represents for the area under the

curve (AUC). 13

2.2 Gaussian distribution. 16

2.3 Example showing a case where distance-based outlier definitions, e.g. the one in

[49], do not work. 22

3.1 Outlier score distribution of Satimage dataset using LOF as the detector. 33

3.2 AUC values of all competing approaches on the KDD Cup 1999 dataset. 41

4.1 Execution time vs. the dataset size N . 54

4.2 Execution time vs. the number of nearest neighbors k. 56

4.3 MIRO’s pruning power vs. the number of nearest neighbors k. 58

4.4 Execution Time of MIRO vs. the average cluster size nc. 59

5.1 Incremental clustering example. 61

5.2 Synthetic dataset DSsyn. 63

5.3 An example of LOCI plot. 64

5.4 An example of outlier score plot. 66

5.5 Projections where A and B yield abnormal behavior. 67

5.6 Projections where A and B behave normally. 67

viii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

List of Tables

2.1 Classification of the Query Objects. 13

3.1 Characteristics of datasets used for measuring accuracy of techniques. 37

3.2 Ranking-based technique: AUC values of LOF, Feature Bagging, Mixture Model,

Active Outlier, and Weighted Sum with R = 10. 39

3.3 Threshold-based technique: AUC values of LOCI, Feature Bagging, Active Out-

lier, and Weighted Majority Voting with R = 10. 40

3.4 Ranking-based & Threshold-based techniques: AUC values of Feature Bagging,

Mixture Model, Active Outlier, Ensemble Voting, and Mixed Ensemble with

R = 10. 41

4.1 Definitions of symbols . 43

4.2 Characteristics of datasets . 53

4.3 Benefit of using the first phase of clustering . 54

ix

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1

Introduction

1.1 Overview

Outliers, also called anomalies are patterns that do not conform to the behavior that is expected

or differ too much from the rest. While there is no universally accepted definition of what

outliers are, the notion of outliers introduced by Hawkins et al. [40] captures the spirit: “An

outlier is an observation that deviates so much from other observations as to arouse suspicions

that it was generated by a different mechanism”. Examples of outliers abound in social as

well as scientific contexts. We usually hear about UFOs (Unidentified Flying Objects). Under

Hawkins’ definition, UFOs can be considered as outliers since they are very different from any

flying entities that human has ever invented. There are ten students in a research lab; nine of

which study data clustering while only one carries out research on outlier detection. That only

student is in fact an outlier in his research lab.

The task of detecting outliers includes identifying those abnormal patterns and if possible,

extracting some interesting knowledge contained in them to support the learning process. Out-

liers arise because of various reasons such as human error, instrumental error, natural deviations

in populations, fraudulent behavior, changes in behavior or faults of systems. In many cases,

outliers are simply detected and discarded to ensure the cleanliness of data (i.e. no further

investigation is required). However, outliers could also be indication of interesting events that

have never been known before and hence, detecting outliers may lead to the discovery of crit-

ical information contained in data. In such cases, uncovering underlying cause(s) is necessary.

For example, if one happens to find an UFO, throwing it away is obviously not a good idea.

Studying its structure to understand its flying mechanism is certainly much more interesting

and beneficial.

The problem of detecting abnormal events, also called outliers has been widely studied

in different research communities as rare classes mining [48], exception mining [76], novelty

1

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1. Introduction

detection [29, 22, 34, 69], outlier detection [25, 40, 49, 67, 77, 10, 79, 47, 73], etc. It also

has many applications in various areas such as network intrusion detection, medical diagnosis,

image processing, etc. This highlights the importance of studying outlier detection.

1.2 Challenges

From the time when very first publications on abnormality detection (e.g. [40]) appear in the

literature, research on the problem has evolved tremendously in various domains. The field of

data mining itself has also observed significant development for solutions on outlier detection.

They range from exploring new ways to define abnormality [49, 68, 15, 25, 67], minimizing

the computational costs (CPU and I/O) for detecting outliers [68, 20, 15, 13, 78, 46], mining

anomalies in data streams [65, 12], ensemble outlier detection [56], subspace outlier mining [61],

to designing parameter-free detection algorithm [23].

Despite the advances seen so far, many issues of outlier detection are left open or not yet

completely resolved. In the following, we present some of the key challenges that we have to

consider whenever developing a detection solution. They pertain to almost all existing methods

in the field and are hard to be resolved completely.

1.2.1 Distance Function

Distance functions are used to measure the dissimilarity between any two data records. They

thus play a very important role for techniques working based on the measurement of similarity

among objects. In general, a distance function is required to satisfy the triangular inequality

to facilitate the searching as well as pruning processes. That makes the underlying set of data

objects along with the distance function become a metric space. Most techniques, not only

in outlier detection, specialize the metric space to vector space since a vector space besides

preserving the triangular inequality property also contains some geometric properties which are

not available in a general metric space [27]. In a vector space, data records are represented

in the form of vectors so the cost of distance computation between any two vectors are linear

to the dimension of the space. Hence, distance computation in vector spaces becomes simpler

than in general metric spaces which normally require some indexing techniques to reduce the

heavy workload of distance measurement. In the field of outlier detection, many approaches

claiming to work in any metric space such as those in [53, 78] are however implemented using

Euclidean distance, a typical distance function for vector space. There are a variety of distance

functions for vector space utilized besides Euclidean, such as Minkowski or Mahalanobis distance

2

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1. Introduction

functions. Given two data points p1 = (a1, a2, . . . , adim) and p2 = (b1, b2, . . . , bdim) in a dim-

dimensional dataset, the Euclidean distance between p1 and p2 in the simplest format has the

following form:

D(p1, p2) = (
dim∑

i=1

(ai − bi)
2)1/2

The Euclidean distance is in fact a special form of Minkowski distance. The Minkowski distance

of order m (m-norm distance) is defined as follow:

Dm(p1, p2) = (

dim∑

i=1

∣ai − bi∣m)1/m

When m → ∞, we have the infinity-norm distance:

D∞(p1, p2) = max
1≤i≤dim

(∣ai − bi∣)

On the other hand, the Mahalanobis distance between p1 and p2 is defined as:

D(p1, p2) =
√
(p1 − p2)TΣ−1(p1 − p2)

where p1 − p2 = (a1 − b1, a2 − b2, . . . , adim − bdim) and
∑

is the sample covariance matrix of

the normal data.

While Euclidean as well as Minkowski distance is used widely in outlier detection, their

performance degrades if normalization is not carried out for dataset with attributes of various

scales or containing linear correlation. Mahalanobis distance on the other hand is effective when

there exists a linear correlation among features [45]. However, as pointed out by Lazarevic et

al. [55], Mahalanobis distance performs poorly in applications where the underlying dataset

contains more than one distribution. Such kind of datasets however is very common in practical

applications.

Despite of the simplicity and advantages of using distance functions that can make up vector

spaces, not in all datasets can we construct such a space, especially for multimedia data [27].

In such cases, distance computation is far from inexpensive. Indexing techniques are then

developed to mitigate the problem. The fact that they add up additional overheads (both in

time and space) pose some impacts on the design of an efficient detection technique. This has

been addressed recently in [13]. However, more work is needed to handle the issue associated

with general metric spaces.

3

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1. Introduction

1.2.2 Pattern Representation

Selecting relevant features for the detection process, transforming features into other features,

etc. are examples of the tasks that need to be accomplished in order to find a relevant repre-

sentation for data records.

Most of detection techniques present data in the forms of feature vectors where each record

is represented as a multi-dimensional tuple. That stems from the fact this representation facil-

itates the distance computation. The features of each vector can be quantitative or qualitative.

Quantitative features can be further divided into continuous and discrete values, while quali-

tative features can be divided into nominal and ordinal ones.

Most real-life datasets are multi-dimensional and similar to other data mining applications,

choosing a suitable subset of features to use in the detection process is desirable. However, the

scope of outlier detection is to uncover abnormal patterns, pruning out some specific attributes

prior to the detection process might not be a good idea since by discarding some certain features,

we may lose some interesting knowledge (outliers may only be discovered when we look at some

certain projections of data points on some dimensions [7]). While feature selection focuses on

selecting a relevant set of features for the mining task, feature extraction calculates new features

based on the original data attributes. Once again, careful attention is needed to ensure the

validity of the detection outcome yielded by the new set of features [64].

Other methods of data transformation also play important roles in the detection process.

Here, we discuss two issues of data transformation which are data normalization and data type

transformation. Data normalization is very crucial, especially when Euclidean distance is used.

In a general dataset, features have different scales. Normalizing features to the same scale

helps to avoid the issue of feature bias. As with data type conversion, since distance functions

normally manipulate on numerical values [66], additional work is required to convert categorical

features into numerical ones. The most common method utilized is inverse document frequency

which has previously used in outlier detection problem [56, 20]. However, as shown in [66], this

process is shown to be ineffective since it is possible to create two different distance functions

for categorical and numerical attributes respectively and combine them in a single application.

The problem of detecting outliers in categorical datasets has also been addressed in [28].

1.2.3 The Need of Labeled Data for Training and Testing

Detection techniques once built need to be trained and validated on datasets. Training is

required for various purposes such as identifying good thresholds for some input parameters to

the respective detection algorithms. On the other hand, the need of data for testing is also an

4

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1. Introduction

issue. Detection techniques may be created to serve optimization requirements (e.g. optimizing

time and space). Nevertheless, the core service that a detection technique provides is uncovering

outliers. After building a method, the most important thing we are concerned is how good it is

in identifying anomalies. Consequently, to evaluate the quality of outliers, we require labeled

data. If labeled data is not available, human interpretation can be employed. The subjectivity

of this evaluation method nevertheless prevents it from becoming a common choice. Thus,

labeled data are still required. A well-labeled set of data allows us to compare our detected

result against the actual labels of data points. However, not all labeled datasets are directly

suitable for outlier detection problem. Although conversion methods can be used (Section 3.3),

we really need datasets that are specifically designed for outlier detection. Stemming from

this need, synthetic datasets are generated. Whereas some can be standardized (methods for

generating are available) such as Mixed Gauss dataset [13], their use raises the validity issue

since such datasets rarely appear in practical applications. We can also generate outliers based

on the normal behavior observed from real datasets. This method however also has its own

problem since in general outliers do not have common behavior, i.e., it is impractical to devise

mechanisms to generate outliers. The problem of having well-labeled datasets for testing is still

an open issue.

1.3 Motivation

Outliers could be caused by errors in data generating/collecting methods or by inherent data

variability. However, in many situations, outliers are indications of interesting events that have

never been known before and hence, an adaptation of the theory to capture the new events is

required to explore the underlying mechanisms. The two-side effect of outliers necessitates the

development of efficient methods to detect them for either (a) eliminating/minimizing their im-

pacts on general performance of information systems or (b) capturing the underlying interesting

knowledge (e.g. intrusive connections in a network).

Eliminating noise in data benefits many practical applications, one of which is data cluster-

ing. Many clustering techniques, like K-means, have their performance significantly impacted

due to noise present in the data [45]. Thus, purging the noise before performing the clustering

task is very crucial for the final outcome, which in turn helps us to gain some insights about the

data structure. In other words, outlier detection as a noise elimination step indirectly nurtures

the mining process by providing clean information where mining techniques can be applied

while not being impacted by data irregularities.

5

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1. Introduction

Nevertheless, nowadays, outlier detection is primarily studied as an independent knowledge

discovery process merely because outliers might be indications of interesting events that have

never been known before. For example, in network intrusion detection, attacks are always

present and evolve over time. Detecting attacks by means of outlier detection methods and

using them to derive categories of intrusions help us to better enhance our security mechanisms.

In fraud detection, detection methods are utilized to capture suspicious activities of credit card

usage and hence, prevent successive damage by giving recommendation to block such accounts.

There are many more such fields of applications where outlier detectors are employed as tools for

learning new knowledge underlying the vast information collected, e.g., customer segmentation,

medical diagnosis, to name a few.

Despite the great demand for outlier miners, it is in fact very difficult to derive a notion

of outliers which fits well with a specific application domain. Further, with the emergence of

new types of data (e.g., streams), outlier detection researchers are faced with new challenges

requiring them to keep devising new notions to effectively mine the nuggets. Besides, like

many other data mining tasks, ensuring accuracy only is far from enough in many situations

- efficiency is also an important criterion, especially when dealing with huge datasets. As

for high-dimensional data, existing techniques suffer the curse of dimensionality which limit

their applicability to the corresponding domains. This necessitates the development of relevant

approaches to handle the issue. These are to point out that outlier detection is a very active

field of data mining research and an extensive study will bring many benefits to various practical

applications as mentioned above.

In our work, we primarily focus on subspace outlier detection and improving the detection

process’ efficiency. While the latter aspect is very important for almost all data mining tasks,

the former stems from the fact that outliers are located in locally varying subspaces. Thus,

mining outliers in subspaces will help us to better solve the curse of dimensionality and uncover

interesting knowledge.

1.4 Our Problems of Interest and Solutions

We place our research on outlier detection based on neighborhood proximity measurements.

In other words, we focus on outliers defined by their relative distances to nearest neighbors.

Defining outliers based on nearest neighbors is a popular topic in the field and has been studied

for a long time. Many techniques have been proposed so far, e.g. [49, 68, 15, 25]. They

nonetheless suffer some cons limiting their applicability to practical applications: low accuracy

[7], and high execution time [14] in high-dimensional data.

6

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1. Introduction

1.4.1 Subspace Outlier Mining

Existing techniques usually compute distances (in full feature space) of every data sample to

its neighborhood to determine whether it is an outlier or not [7, 25, 49, 67]. This causes two

side-effects. First, for high-dimensional datasets the concept of locality as well as neighbors

becomes less meaningful [21]. Second, not all features are relevant for outlier mining. More

specifically, popular distance functions like Euclidean and Mahalanobis are extremely sensitive

to noisy features [55]. Despite the presence of the curse of dimensionality, it is difficult in

practice to choose a relevant subset of features for the learning purpose [7, 43, 56].

While the nature of data is unpredictable, there is a need for an efficient technique to

combine different outlier detection techniques to overcome the drawback of each single method

and yield higher detection accuracy. The motivation here is similar to the advent of ensemble

classifiers in the machine learning area [43, 52]. With the feasibility of ensemble learning

and subspace mining demonstrated, the natural progression would be to combine them both.

Lazarevic et al. [56] propose the first solution for semi-supervised ensemble outlier detection in

feature subspace. That work assumes the existence of outlier scores where a combine function

can be applied directly. However, this is not practically true since different detection methods

can produce outlier scores of different scales. For example, it can be recognized that the scores

produced using ktℎ Nearest Neighbor Distance-based Outlier [68] are smaller in scale than those

using Cumulative Neighborhood [11]. Furthermore, as pointed out in Section 3.2.4.1, different

detection techniques also produce different types of score vectors. In particular, some vectors are

real-valued while others are binary-valued. This leads to the need of a unified notion of outlier

score and an efficient technique to specifically deal with scores’ heterogeneity. The availability

of such notion would facilitate the task of combination.

In order to address this problem, we present the Heterogeneous Detector Ensemble on Ran-

dom Subspaces (HeDES) framework. In HeDES, each member detector operates on a randomly

sampled subspace. Therefore, error suffered by one detector in some subspace is unlikely re-

peated by others on other subspaces. Furthermore, the fact that different detector works on

disparate subspaces instead of the full-dimensional space helps HeDES to overcome the curse of

dimensionality. Additional advantage of using HeDES lies in its ability to incorporate various

heuristics for combining different types of score vectors. Extensive empirical studies show that

the HeDES framework can outperform state-of-the-art detection techniques and is therefore

suitable for outlier detection in real-world applications.

7

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1. Introduction

1.4.2 Reducing Temporal Cost of Distance-based Outlier Detection

Distance-based detection is an important branch of proximity-based outlier detection. Related

techniques usually involve in computing data points’ nearest neighbors, which is very time-

consuming (time complexity is O(N2) with N being the dataset’s size). Therefore, majority

of related works proposed aim to introduce algorithms with very low time complexity. Among

them, pruning outlier searching space and computation reduction are dominant. Computation

reduction techniques [68, 37, 20, 15, 11] usually try to limit the number of detected outliers

(e.g. top n outliers), and employ similar data structures used in Ramaswamy’s index-based

algorithm [68]. In particular, a list of top n outliers and the minimum outlier score found so far

are employed to help reduce the computational cost. Bay et al. [20] provide detailed analysis

for this type of algorithm (nested-loop) and find out that in average case, the time complexity

becomes linear with the dataset’s size. However, such linear computational cost can only be

obtained when the dataset contains many outliers, which is impractical [37]. Otherwise, its

computational cost becomes to O(N2).

Motivated by the need of an efficient method for mining distance-based outliers, we improve

the nested-loop algorithm and propose a method that is able to detect distance-based outliers

in nearly O(N) time, regardless of how many outliers there are in the considered dataset. Our

approach is a two-phased MultI-Rule Outlier (MIRO) detection approach using the outlier

scoring criterion proposed in [15]. In the first phase, we partition the data into clusters, and

make an early estimate on the lower bound of outlier scores. This phase prunes clusters that

cannot have outliers, and the second phase then processes the remaining clusters using the

traditional nested-loop algorithm. Here two pruning rules are utilized: (a) first triangular

inequality on the data point’s outlier score is used, and then (b) the outlier score is compared

with the minimum score required to be an outlier. The second check is similar to that of ORCA

[20]. However, while ORCA starts with a cutoff of 0, in MIRO, the initial cutoff is obtained

from the first phase, and hence converges faster. Though the pruning rules seem simple, their

combined effect is strong and efficiently reduces the search space.

1.5 Organization

The rest of this report is organized as follows:

∙ Chapter 2 provides a background study on the solutions for outlier detection in the lit-

erature. The study encompasses many aspects of the problem ranging from notions of

outliers to theoretical analysis of existing techniques in the field.

8

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1. Introduction

∙ Chapter 3 presents our solution, HeDES, towards ensemble outlier detection on subspaces

for improving accuracy. Taking into account the limitations of existing approaches, in

HeDES, we propose a comprehensive framework for combining detection results of het-

erogeneous detectors on random subspaces. Empirical studies on real datasets show that

HeDES is comparable with other prominent notions of outliers in terms of detection qual-

ity.

∙ Chapter 4 introduces another technique developed by us for outlier detection. While

HeDES targets at improving the detection accuracy, this method, called MIRO, tack-

les another aspect of the problem: reducing the computational complexity of detecting

distance-based anomalies using the outlier notion proposed in [15]. Along side with intro-

ducing our proposed approach, the presentation is coupled with solid theoretical as well

as empirical studies aiming at demonstrating the efficiency of MIRO compared to related

outstanding techniques in accomplishing the same task.

∙ Chapter 5 presents the future work that will be addressed in the prospective study of the

student.

∙ Chapter 6 concludes this report.

9

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2

Background and Related Work

In this chapter, we review the background of the problem of outlier detection. The structure

of our discussion is as follows. We first discuss some definitions of outlier. Following are outlier

detection’s applications. Next, available metrics for evaluating existing techniques are covered.

We then provide a way to classify them. Finally, we summarize the characteristics/limitations

of existing methods. The materials in this chapter serve as solid background to understand the

subsequent chapters in this report.

2.1 What Are Outliers?

Apart from Hawkins’ definition about outliers mentioned in Chapter 1, there are also two other

similar definitions which are introduced in [38, 19]. They are shown in Definitions 2.1 and 2.2,

respectively.

Definition 2.1 [Grubbs’ outlier definition] An outlying observation, or outlier, is one

that appears to deviate markedly from other members of the sample in which it occurs.

Definition 2.2 [Barnett and Lewis’ outlier definition] An observation (or subset of

observations) which appears to be inconsistent with the remainder of that set of data.

These definitions capture the meaning of outliers from a general point of view. To design

solutions for mining outliers, we need operational notions; those that allow us to design detection

algorithms conveniently. However, since the nature of the detection problem is dependent on

the application domain [44], across domains and even within each domain, the existing notions

of outliers vary greatly. Definitions 2.3 (by Knorr et al. [49]) , 2.4 (by Ramaswamy et al.

[68]), 2.5 (by Angiulli et al. [15, 11]) defining outliers from the distance-based domain (which

is discussed elsewhere later) point of view illustrate such variance.

10

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2. Background and Related Work

Definition 2.3 [r-neighborhood Distance-based Outlier] An sample p in a dataset DS

is a outlier if it has less then P objects lying within distance r from p.

Definition 2.4 [ktℎ Nearest Neighbor Distance-based Outlier] For a positive integer

k and a data point p ∈ DS, let Dk(p) denote the distance between the ktℎ nearest neighbor of p

and p. Then given two positive integers k and n, a point p is in the top n outliers of DS if no

more than n− 1 other points in DS having a higher value of Dk than p.

Definition 2.5 [Cumulative Neighborhood] Let wk(p) be the sum of the distances from a

point p ∈ DS to its k nearest neighbors. p is the ntℎ outlier with respect to k in DS if there

are exactly n− 1 points q ∈ DS such that wk(q) ≤ wk(p).

From these definitions, it can be observed that even within a domain there are so many

ways in practice to define what outliers exactly are. In fact, the problem of defining a unified

notion of outliers is nontrivial.

2.2 Applications of Outlier Detection

Though it is difficult to unify the existing definitions about outliers, outlier detection plays a

very important role in various emerging applications. Consequently, it can be observed that

solutions for detecting anomalies have been shifted significantly from simple statistical methods

[38, 40, 19] which are only applicable to data with low number of dimensions to techniques that

are able to deal with large and high-dimensional datasets [20, 37, 46, 78], and even data streams

[6]. Some examples of outlier detection applications are:

∙ In data clustering, outliers are detected to ensure a robust outcome of the clustering

process [30, 62, 81, 9, 42, 72, 80].

∙ In network intrusion detection, anomaly connections are identified and learnt to ensure

security of the whole system.

∙ In fraud detection, fraudulent transactions are captured to prevent abuse of stolen credit

cards or handphones.

∙ In medical diagnosis, monitoring sudden changes in heart-rate of patients is an application

of outlier detection.

∙ In stock markets, detecting changes in stock prices may signal special events of the econ-

omy, such as the current housing slump in US has caused significant reduction in market

values of financial companies which signals a possible economic recession [1].

11

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2. Background and Related Work

∙ Especially, in databases, the task of identifying outliers helps learn about new knowl-

edge contained inside the novel records or eliminate noise caused by errors in collecting

methods.

For a better view of outlier detection’s applications, we recommend readers to explore the

survey in [44] or the newer one in [26] for more information on contemporary approaches.

2.3 Available Metrics for Evaluating Detection Techniques

Similar to other data mining research, an evaluation framework is important to assess the

effectiveness and accuracy of a specific outlier detection method. According to the particular

issue(s) that a technique focus on, e.g. execution time, one or more relevant metrics are required

to assess its efficiency. Popular metrics that are currently employed to evaluate outlier detection

techniques are discussed below.

2.3.1 ROC Curve

The most widely used tool to assess detection techniques’ accuracy is ROC (Receiver Operating

Characteristic) curve [55]. This curve shows how detection rate changes as false alarm rate varies

from 0% to 100%. The definitions of detection rate and false alarm rate are shown in Table

2.1. This table actually represents a typical confusion matrix. From Table 2.1, we have:

Detection rate =
TP

TP + FN

False alarm rate =
FP

FP + TN

Intuitively, detection rate gives information about the number of correctly identified outliers,

while the false alarm rate represents the number of outliers misclassified as normal data records.

The ROC curve illustrates the tradeoff between the detection rate and the false alarm rate and is

typically displayed on a 2-D graph, where false alarm rate and detection rate are plotted on the

x-axis, and y-axis, respectively. An example of ROC curve is presented in Figure 2.1. Ideally,

the ROC curve has 0% false alarm rate while having 100% detection rate. However, such kind

of curve is hardly achieved in practice. Hence, different pairs of (false alarm rate, detection

rate) are computed to construct the curve. For a good detection technique, as the false alarm

rate increases, the detection rate should increase. In other words, the closer the curve follows

the left and the top border of the unit square, the more accurate the method is. In addition, the

area under the curve (AUC) can also be used to measure the the considered method’s ability

12

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2. Background and Related Work

Predicted as Outliers Predicted as Normal

Actual Outliers True Positives (TP) False Negatives (FN)

Actual Normal False Positives (FP) True Negatives (TN)

Table 2.1: Classification of the Query Objects.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

D
et

ec
ti

o
n

 r
at

e

Figure 2.1: An example of ROC curve. The shaded region represents for the area under the
curve (AUC).

in separating normal data records from outliers. Based on the discussed characteristics of ROC

curve, the larger the value of AUC is, the better the detection technique is. The AUC of the

ideal ROC curve is 1, whereas in general AUCs of detection algorithms are less than 1. As

shown in Figure 2.1, the shaded area corresponds to the AUC of the displayed ROC curve.

However, this metric has an inherent drawback: it is only applicable when the knowledge

about datasets (e.g. which records are outliers or normal points) is already known [56, 4, 11, 55].

In other words, the tested datasets must be well labeled. For labeled datasets that contains

more than two classes of data or do not directly correspond to anomaly detection problem,

a preprocessing step is required to convert it into binary-class data. Normally, one or more

classes whose total cardinality is less than a specified threshold (e.g. 10% of the original dataset

size) are chosen as outliers while the remaining classes are merged together to form the group

of normal data points. This procedure is first applied in outlier detection problem by Lazarevic

et al. [56] and reused in [4, 18].

As mentioned above, to construct the ROC curve for a detection technique, it is compulsory

to have different tuples of (false alarm rate, detection rate). This can be done by varying the

value of one parameter that is used as user input in the proposed algorithm, e.g. the number of

13

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2. Background and Related Work

nearest neighbors k, while fixing the values of the remaining ones. Finally, interpolating may

be employed to produce enough tuples for the curve. This method is employed in [11].

2.3.2 Execution Time

Similar to ROC curve, the plot for execution time is a 2-D graph where the x-axis usually

represents the value of a parameter used in the proposed algorithm while the y-axis stands

for the execution time. To construct such a plot, we also need to vary the value of one factor

and keep the remainings fixed to obtain different values of the technique’s execution time. The

plot of execution time expresses the sensitivity of the proposed technique on parameters that

affect its performance, e.g. the dataset’s size. It is therefore used to assess methods’ scalability.

Among the existing work, the execution time metric is widely used, e.g. in [68, 46, 20, 37],

since designing methods with inexpensive computational cost is always an issue in data mining

applications.

2.3.3 Analyzing The Meaning of Outliers Detected

While ROC curve can be employed whenever the tested dataset is labeled, this metric is often

used for datasets whose outliers are not known before or cannot be converted to binary-class

problems. More specifically, when outliers are unknown, the only way to assess the quality of a

detection technique is to analyze how meaningful and intuitive the detected outliers are. Exam-

ples of techniques employing this metric can be found in [7, 16, 67]. Recalling the experimental

result performed in [7] on Arrythmia dataset in the UCI machine learning repository [2], when

analyzing the detection result, it is found that one of the outliers has the following attribute

values: height=780 cm and weight=6 kg. The Arrythmia dataset consists of 279 attributes

corresponding to different measurements of physical and heart-beat characteristics that are uti-

lized to diagnose arrythmia. Therefore, the anomalous point detected contains attribute values

that are totally not compatible to standard human measurements. In other words, that point

is clearly an outlier.

The advantage of this metric is that it is usually based on human sense and expert knowledge

on the domain where the technique is applied. Therefore, to some certain extent, it is more

intuitive than ROC curve. However, the major problem of this evaluation metric is its difficulty

for comparing different detection approaches because of its human-subjectivity characteristic.

Furthermore, it does not scale well for applications with large number of data points where the

number of outliers detected though about 1% of the dataset size, is still high. In such cases, it

is very time-consuming and nearly infeasible to assess the detected outliers one by one.

14

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2. Background and Related Work

2.4 Classification of Existing Techniques

In general, existing detection methods can be classified to: supervised, semi-supervised, and

unsupervised. Supervised techniques [60, 31, 57, 58, 59] make an assumption that the domain

knowledge on both normal and abnormal data exists and can be used to build a data model.

That model is then used to classify data points as normal or outliers depending on how well

they fit into it. This is analogous to supervised classification.

Semi-supervised techniques [32, 41] require that labels on normal data do exist. Outliers are

then those deviating from the identified normal behavior. This approach however tends to clas-

sify previously unseen yet normal records as anomalies, causing unnecessarily high false alarm

rate. Therefore, similar to supervised approaches, semi-supervised ones also suffer the curse of

concept-drift. A typical example for illustrating this drawback of semi-supervised approaches is

taken from the current credit-crisis which creates unprecedented turmoil in the history of global

financial market. Before this disaster, the term credit-crunch is rarely mentioned or even does

not appear in our daily life. With the collapse of the banking industry as well as the lack of

confidence among banks, this term is now widely used because of its unexpected popularity to

describe a situation where credit is nearly “dry” in the market. If using semi-supervised ap-

proach to detect anomalous events in the financial market, the credit-crunch event will always

be classified as outlier despite of its so frequent appearance nowadays. That obviously causes

loss of critical knowledge.

Unsupervised techniques [25, 49, 68] do not make any explicitly assumption about available

knowledge. Each of them introduces or uses a specified notion of outliers, and then exploits

it as a key criterion to mine outliers. Some of the problems associated in unsupervised meth-

ods include notion quality (how good the notion is), time/space complexity of the proposed

techniques, and the method’s accuracy. The metrics for assessing how good an unsupervised

approach is in handling those problems are analyzed in Section 2.3. In the context of this

report and our research, unsupervised techniques are explored in more details than the others

because of its popularity. The remainder of this section is also devoted for the classification of

unsupervised approaches.

We observe that unsupervised detection techniques are usually classified into four groups:

statistics-based approach, clustering-based approach, distance-based approach, density-based

approach. However, the method by Aggarwal et al. [7] proposes a very different approach com-

pared to the rest. It defines outliers as those data points which are present in some abnormally

low density regions that are formed by taking the combination of feature ranges. We name this

method as evolutionary-based approach to express its distinction compared to the remaining

existing ones. The details of outstanding approaches are given below.

15

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2. Background and Related Work

Figure 2.2: Gaussian distribution.

2.4.1 Statistics-based Techniques

Statistics-based techniques are usually discussed in books about statistics such as the one in [40].

In a typical statistics-based approach, the considered data are assumed to follow a standard

distribution (Gaussian, Poisson etc.) and outliers are points that deviate from the distribution

model (this is done by a statistical discordancy test with two hypotheses: a working hypothesis

and an alternative hypothesis). A simple example of a statistics-based approach is shown in

Figure 2.2. The data here is assumed to follow Gaussian distribution whose mean = ¹ and

standard deviation = ¾. Outliers are then those that lie more than 3-standard deviation from

the mean. In other words, outliers are those points that lie outside the range [¹−3 ⋅¾, ¹+3 ⋅¾].
If the underlying distribution is not known before, a searching process is required to find out

the best model to fit with the data. But this process is very time consuming and does not

always work, especially for data that come from different sources with different distributions.

Furthermore, most of the distribution models typically are univariate. Therefore this approach

is not suitable for high-dimensional datasets. Also, for many KDD applications, the underlying

distribution is unknown [25]. Related work about statistics-based can be found in [19, 70, 38, 54].

This research direction has now become inactive.

2.4.2 Clustering-based Techniques

Clustering-based techniques are based on the assumption that normal data points belong to

large and dense clusters while outliers do not. The common framework for such methods are

as follows:

∙ Perform a clustering process on the data

16

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2. Background and Related Work

∙ Analyze the clusters obtained to assess their significance

∙ Outliers are objects that do not fit into any clusters or belong to clusters with low support

From the above framework, it can be observed that usually outliers are by-products of these

techniques since the main purpose of clustering is to figure out data clusters [45, 17, 30, 81].

Hence in nature, clustering methods aim to optimize the clustering process and outliers are

simply assumed to be background noise. An example of this category that can be found in [17]

typifies the common characteristics of those techniques:

∙ An explicit definition of outliers is not presented

∙ Since an exact definition of outliers is not defined, outliers are simply background noise

∙ The outliers detected will simply be discarded without any further investigation

Since these methods are not mainly used for outlier detection, further discussion will not

be provided.

2.4.3 Distance-based Techniques

The best way to describe distance-based methods is to use the related outlier definitions. There

are currently three outstanding definitions associated with distance-based techniques which can

be found in [68, 49, 15]. The details are given in definitions 2.3, 2.4 and 2.5. Definition 2.3 is

proposed by Knorr et al. [49] and further explored in [50, 51]. The two remaining definitions are

introduced by Ramaswamy et al. [68] and Angiulli et al. [15, 11], respectively. Distance-based

outlier detection techniques in general exploit distances of data points to their corresponding

neighborhood to flag outliers. The distance, also called outlier score, can be computed using

only one neighbor [68] or k nearest neighbors [15, 11]. It can simply be used to count the

total number r-neighbors, i.e. the number of data points within distance r, of each data point

[49]. Normally, distance-based techniques do not assume any distribution of the data. However,

they suffer expensive computational cost of searching nearest neighborhood. This limitation has

recently motivated researchers to develop more efficient techniques with lower time complexity

[20, 37, 15, 13, 78]. These have excellent applicability for large and multi-dimensional datasets.

The first distance-based detection technique is introduced by Knorr et al. [49]. According

to their proposal, outliers are points from which there are fewer than P other points within

distance r (Definition 2.3). In order to detect such outliers, they introduced a nested-loop

and a cell-based algorithm. The nested-loop algorithm has time complexity O(N2) and hence

17

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2. Background and Related Work

is usually not suitable for applications on large datasets. On the other hand, the cell-based

algorithm has time complexity linear with N , but exponential with the number of dimensions

dim. In practice, this can only work efficiently when dim ≤ 4, so it is inapplicable for dealing

with high-dimensional datasets.

The second distance-based detection technique is introduced by Ramaswamy et al. [68].

Instead of counting the r-neighborhood of a data point, this technique only takes the data

point’s distance to its ktℎ nearest neighbor into account (Definition 2.4). As pointed out in [15],

this definition of outlier is not intuitive enough since information of other neighbors is simply

ignored when computing the outlier score. In [68], three algorithms are proposed: nested-

loop with O(N2) time complexity, index-based and partition-based algorithms. The general

idea of index-based algorithm is that: by maintaining a list of top n outliers, we then can

prune out data points whose outlier score computed so far is less than the minimum score

in the list. Usually this idea can be used in techniques where outlier score computed so far

is always upper bound the true score. Some of other techniques that exploit the same idea

can be found in [20, 15]. The descriptive algorithm of index-based is illustrated in Algorithm

1. It is noted that in this algorithm, OutHeap is the top n outliers based on the defined

outlier score while Min(OutHeap) returns the minimum outlier score of the heap. NN(p, k)

contains the set of k nearest neighbors of a data point p. PointHeap is a data structure for

maintaining the set of data points utilized in iterations of k nearest neighbors computation. In

[68], a spatial index structure like R∗-tree is employed to facilitate such computation. For each

data point, OutScore is its outlier score computed so far. The computation process of a data

point terminates whenever its OutScore falls below the Min(OutHeap), and hence the time

complexity is reduced. Partition-based algorithm proceeds even further in pruning the searching

space. The underlying dataset is first grouped into clusters. Each cluster is then assessed

whether it contains some candidate outliers, else it will be eliminated. With the remaining

clusters, index-based or nest-loop algorithm can be used to detect outliers. Ramaswamy’s

technique shows better performance in terms of execution time than the technique in [49].

While the outlier definition introduced in [68] only considers the distance from a data point

to its ktℎ nearest neighbor as the outlier score, techniques proposed by Angiulli et al. [15, 11]

use a much more meaningful metric by taking the total distances from a point to its k nearest

neighbors as the outlier score (Definition 2.5). The increase in the number of distances used

for computing outlier score does not lead to any increase in time complexity (compared to

Ramaswamy’s technique) since the number of nearest neighbors that must be found for each

data point in each definition is still the same, which is k. Therefore, the notion of outliers used

in [15, 11] is better and more intuitive.

18

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2. Background and Related Work

Algorithm 1: Final Processing

Set OutHeap = ∅1

Set Min(OutHeap) = 02

foreach each data point p in the dataset do3

foreach each data point q in the dataset do4

if q ∕= p then5

Update NN(p, k) using q6

if ∣NN(p, k)∣ = k and p.OutScore < Min(OutHeap) then7

continue outer loop with the next data point8

Update OutHeap using p9

As mentioned before, distance-based techniques usually involve in computing points’ nearest

neighbors, which is very time-consuming. Therefore, later techniques in distance-based outlier

aim to introduce algorithms with less time complexity than the previous ones. Among the

methods for reducing the computational cost, pruning outlier searching space and computation

reduction are dominant. Computation reduction techniques [68, 37, 20, 15, 11] usually try to

limit the number of detected outliers (e.g. top n outliers), and employ similar data structures

used in Ramaswamy’s index-based algorithm. More specifically, a list of top n outliers found

and the minimum outlier score found so far are employed to help reduce the computational

cost. Bay et al. [20] provide detailed analysis for this type of algorithm and find out that in

average case, the time complexity becomes linear with the dataset’s size. In their analysis, any

distance-based outlier definition can be used. However, their proposed technique, called ORCA

depends on some assumptions such as: (a) the data are in random order and (b) the data points’

values are independent. The analysis provided also depends on the cutoff threshold c, which

is identical to Min(OutHeap). As can be observed from the Algorithm 1, Min(OutHeap) is

usually starts at 0. However, domain knowledge or a training phase can help to achieve a better

pruning value. In particular, it is suggested that by training a subset of the original dataset, an

initial cutoff threshold can be obtained. The training phase continues if the obtained threshold

at the first attempt is not as expected. During the testing phase, the final training set is placed

at the top of the dataset so that the cutoff threshold calculated during training phase can

be retrieved very soon, and hence the pruning occurs at the very first stage of the detecting

process. Domain knowledge can also help in choosing a suitable value for Min(OutHeap).

The linear time complexity presented in [20] can only be obtained if the cut-off threshold

c converges to O(
√
N) quickly [37]. However that only happens when the dataset contains

many outliers. Motivated by this issue, Ghoting et al. [37] propose an algorithm, called RBRP

19

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2. Background and Related Work

for detecting outliers that is able to overcome the weakness of ORCA. Its asymptotic time

complexity is O(N ⋅ lgN). The key idea behind this algorithm is instead of finding the exact

nearest neighbors for each data point, the approximate ones are searched for. The approximate

nearest neighbors of a data point p is k points within distance c from p. A clustering algorithm is

employed (e.g. K-Means clustering) to partition points into bins such that points that are close

to each other in space are likely to be assigned to the same bin. Data point p’s approximate

nearest neighbors are searched in p’s bin and consecutive bins. For all normal points, the

searching time is linear w.r.t. the dataset’s size, i.e. O(N). On the other hand, we need to

perform a full scan on the entire dataset for each outlier. That searching strategy leads to

reduction in execution time.

Angiulli et al. [15] propose a detection technique using Hilbert space filling curve [71] to map

a multi-dimensional space to the interval I = [0, 1] to reduce the computational cost for finding

k nearest neighbors. This is done through two steps: map the dataset DS to D = [0, 1]dim

where dim is the number of dimensions of DS. Hilbert space filling curve is then used to map

D to I. Two data points that are close in I will be close in D but the reverse is not always true.

Searching for a data point p’s nearest neighbors becomes searching p’s approximate nearest

neighbors in I by assessing p’s predecessors and successors in I. The proposed technique

consists of two phases. During the first phase, the approximate outliers (based on approximate

outlier score) are extracted from the dataset using the mentioned mapping. The approximate

score is always upper bound the true score. In the second phase, true outliers will be extracted

from the set of approximate ones. The time complexity of the first phase is reported to be

O(dim2 ⋅ N ⋅ k) where k is the number of nearest neighbors taken into account. The second

phase has time complexity to be O(N ′ ⋅N ⋅ dim) where N ′ is the number of candidate outliers

left after the end of the first phase.

While the aforementioned techniques attempt to reduce execution time of the detection

process, Tao et al. [78] aim at reducing I/O cost. The proposed technique, SNIF, scans the

dataset two to three times, and reduces I/O cost by keeping a sample set of small size in memory

to build a summary of the original dataset. The sample’s size is proven to occupy less than 10%

of the total dataset’s size. This summarization is then used to early prune normal data points.

The I/O overhead of SNIF is proven to be O(N). However, as pointed out in [13] the time

complexity aspect of SNIF is not optimized. Motivated by that, Angiulli et al. [13] introduce a

new detection technique with linear CPU and I/O cost called DOLPHIN. DOLPHIN builds a

data structure called DBO-index in memory for scanning the considered dataset. DBO-index

exploits pivot-based index for executing range query search. Its size is empirically verified to be

less than 2% of the dataset’s size. Through extensive experimental results, DOLPHIN is shown

20

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2. Background and Related Work

to yield much better performance than existing distance-based techniques such as ORCA (the

most efficient detection technique in terms of temporal cost) and SNIF (the most efficient one

in terms of space and I/O cost).

2.4.4 Density-based Techniques

There are two outstanding definitions of density-based outliers which can be found in [25, 67].

Density-based methods (LOF [25], LOCI [67]) in general assign to each data point a factor

describing the relative density of that data point’s neighborhood. Similar to distance-based

approach, density-based detection also involves in the computation of data points’ nearest

neighbors. However, the measurement of a data point p to its nearest neighbors is then compared

to its neighbors’ same measurement. The purpose of doing so is to overcome different effects of

dense and sparse clusters on points’ neighborhood in detecting outliers. However, that comes

with a tradeoff in which the computational cost becomes even more expensive than that of

distance-based techniques. In spite of that, once again, because of their applicability for large

and high-dimensional data, such kind of methods still attract much attention from the research

community.

We here reuse a popular example that is usually used to highlight the advantage of density-

based approach (c.f., Figure 2.3). It is first proposed in [25]. Assume the distance from every

object p3 in C1 to its nearest neighbor is greater than the distance from p2 to its nearest

neighbor in C2. If a distance-based definition like the one proposed by Ng et al. [49] is used,

there will be no values of P and r such that p2 will be an outlier while every object in C1 is

not.

Breunig et al. [25] propose the first density-based detection technique. The outlier score

used, called Local Outlier Factor (LOF), is a measure of difference in neighborhood density of

a point p and the same measurement of other points in its local neighborhood. Definitions 2.6,

2.7, 2.8, 2.9 and 2.10 describe the concept of LOF. As shown in [55], LOF is able to capture

local outliers. For data points that belong to a cluster, their LOFs are approximately equal to

1, while for each outlier the corresponding value should be much higher. Experimental results

obtained in [55] demonstrate that LOF outperforms other detection techniques in most cases.

All the computations of LOF depend onMinPts, which is used for computing the neighborhood

density for each data point. The choice of MinPts, however, is not simple. According to [25],

LOF does not change monotonically as MinPts increases. A method for estimating the range

of MinPts is also discussed in the same article.

Definition 2.6 [k-distance of p] The k-distance of p, denoted as k-distance(p) is defined as

the distance d(p, o) between p and o such that

21

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2. Background and Related Work

Figure 2.3: Example showing a case where distance-based outlier definitions, e.g. the one in
[49], do not work.

∙ For at least k data points o′ ∈ DS ∖ p it holds that d(p, o′) ≤ d(p, o)

∙ For at most (k − 1) data points o′ ∈ DS ∖ p it holds that d(p, o′) < d(p, o)

Definition 2.7 [k-distance of p’s neighborhood] The k-distance of p’s neighborhood con-

tains every object whose distance from p is not greater than the k-distance, is denoted as

Nk(p) = {q ∈ DS ∖ p∣D(p, q) ≤ k − distance(p)}

Definition 2.8 [Reachability distance of p w.r.t. o] The reachability distance of data

point p with respect to o is defined as

reacℎ− distk(p, o) = max{k − distance(o), d(p, o)}

Definition 2.9 [Local reachability density of p] The local reachability density of a data

point p is the inverse of the average reachability distance from the k nearest neighbors of p

Lrdk(p) = 1/[

∑

o∈Nk(p)

reacℎ− distk(p, o)

∣Nk(p)∣]

Definition 2.10 [Local outlier factor of p]

LOFk(p) = (

∑

o∈Nk(p)

Lrdk(o)

Lrdk(p)
)/∣Nk(p)∣

22

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2. Background and Related Work

While LOF performs better in terms of accuracy than other techniques, its computational

complexity is, however, very expensive since the neighborhood measurement needs to be done

not only for each data point p itself but also for other points in p’s local neighborhood. Motivated

by that, Jin et al. [46] propose a pruning technique to reduce the LOF computation. The main

idea of this solution is to compress the data into micro-clusters and estimate an upper bound

and lower bound on LOF values for each cluster. The clusters are then pruned based on their

estimated bounds and the remaining clusters are then used to detect the top n outliers. More

specifically, a heap OutCluster of top n clusters with largest lower bounds is maintained. We

denote Min(OutCluster) as the minimum lower bound value of all clusters inside the heap.

During pruning process, a micro cluster MC will be deleted if its upper bound of LOF is smaller

than the current Min(OutCluster). Finally, assume there are Nc micro clusters left. For each

data point p in those clusters, its true LOF value is computed. The top n points with largest

LOF values will be output as the final result. The pruning technique utilized here is similar to

the one proposed in [68].

Papadimitriou et al. [67] introduce new definition of density-based outliers. Instead of using

the k nearest neighbors of a data point p in computing its outlier score, the r-neighborhood of

p (points that are within distance r from p) is employed. The outlier score of each data point,

called MDEF, is used to compare against the normalized deviation of its neighborhood’s scores.

The 3-¾ scheme is employed in the related experiments. That removes the need of using any

static cutoff or any score ranking. Besides the new definition of density-based outlier, the paper

also introduces one form of outlier abstraction, called LOCI plot. This plot describes how a data

point’s neighborhood changes as the neighborhood radius changes. It is shown to be meaningful

enough in capturing the general view about how a normal data point as well as how an outlier

behaves. Although the notion of MDEF does not involve in any k nearest neighbors searching,

the computational cost is nevertheless still very expensive. This is an inherent characteristic of

density-based detection techniques. To overcome the drawback, an approximate version of the

original algorithm is proposed named AMDEF. It aims to approximate all the factors used in

the computation of outlier score (as described in the above definitions) by employing the cell-

based data partitioning scheme. Using the approximation of outlier score is also another way

to reduce the time complexity. This technique again shows how important the partition-based

strategy is in outlier detection.

2.4.5 Evolutionary-based Technique

Both of distance-based and density-based techniques involve in the computation of distances

from each data point to its neighborhood. However, for high-dimensional dataset the concept of

23

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2. Background and Related Work

locality as well as neighbors becomes less meaningful [21]. This is because in multi-dimensional

space, data distribution becomes very sparse. Therefore, distances between data points tend

to cluster around a specific value. In particular, the distance of one data point to its nearest

neighbor approaches that to its farthest neighbor. This causes the notion of nearest neighbors

in computing the outlier score to become less meaningful. Another problem associated with

high-dimensional data is that it is difficult to define the distance function. Full-dimensional

distance function may hide the deviation of some specific attribute’s value. Aggarwal et al.

[7] propose an evolutionary-based technique to overcome the mentioned problem. Basically,

the technique performs a grid discretization of the data by dividing each attribute’s range of

values into ∅ equidepth sub-ranges. The combination of sub-ranges from different attributes

will form a sub-projection of the dataset. If a sub-projection is formed by dt sub-ranges of dt

corresponding attributes, it is called a dt-dimensional sub-projection. The underlying algorithm

receives dt which is the number of dimensions of sub-projections, and m which is the number of

sub-projections to return as two parameters. It then mines m sub-projections of dimensionality

up to dt having smallest densities. Points belonging to one of those m returned sub-projections

are flagged as outlier.

Suppose the number of dataset dimensions is dim, the total number of dt-dimensional sub-

projections is equal to Cdt
dim ⋅∅dt , which is very large. For such a large searching space, a brute

force algorithm definitely will be impractical. As an alternative, an evolutionary algorithm is

proposed. Each sub-projection Proj is transformed into a string of length dim. At a specific

itℎ attribute, if Proj contains sub-range jtℎ (1 ≤ j ≤ ∅) of that attribute, then the character

at position i in Proj’s string will receive value j. Otherwise the character will receive value ‘*’.

With the presentation of sub-projections as strings, the crossover and mutation activities can

be carried out. The execution time is empirically shown to be slightly worse than linear. The

results are analyzed and some meaningful outliers on tested real world datasets, e.g. Breast

Cancer [24], are also identified. However, this technique suffers an inherent drawback associated

with evolutionary algorithms which is its sensitivity to the selection of initial population size,

crossover and mutation probabilities [45]. This issue nonetheless has not yet been addressed.

2.5 Summary of Related Works and Their Limitations

Overall, statistics-based techniques are though simple in principles, inapplicable for data with

more than three dimensions. Clustering-based approaches lack formal notions for outliers and

consider anomalies only by-products of the clustering process. This limits their capabilities in

providing intuition on the outlier-ness of the results.

24

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2. Background and Related Work

Distance-based techniques are excellent alternatives for detecting outliers due to their in-

tuitive notions of anomalies as well as their great efficiency on large datasets. Density-based

techniques on the other hand steps further in improving the detection accuracy. They never-

theless suffer high execution time than distance-based approaches.

Existing works on distance-based detection using the outlier notion introduced in [15] have

so far improved much the issue of high execution time. However, their performance are still

contingent on the type of underlying datasets. This motivated us to develop pruning strategies

helping to further reduce the temporal cost significantly and consistently on different datasets

(c.f., Chapter 4).

All aforementioned approaches but evolutionary-based one do not handle well high-dimensional

data due to the curse of dimensionality. In particular, they work with the full set of dimensions

and hence, lose information residing in subspaces. Evolutionary-based method though being

able to handle such data, has its performance significantly impacted by inappropriate choices

of parameters while an effective guidance is unavailable. To better resolve the issue, we design

a new technique (c.f., Chapter 3) which is able to combine individual detectors’ performance

on heterogeneous subspaces to yield highly accurate outcome.

25

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3

Ensemble Outlier Detection on
Subspaces

Despite the importance of detecting outliers, defining outliers in fact is a nontrivial task which

is normally application-dependent. On the other hand, detection techniques are constructed

around the chosen definitions. As a consequence, available detection techniques vary signifi-

cantly in terms of accuracy, performance and issues of the detection problem which they address.

In this chapter, we propose a unified framework for combining different outlier detection algo-

rithms. Unlike existing work, our approach combines non-compatible techniques of different

types to improve the outlier detection accuracy compared to other ensemble and individual

approaches. Through extensive empirical studies, our framework is shown to be very effective

in detecting outliers in the real-world context.

3.1 Problem Formulation and Technique Descriptions

There are many ways in practice to define what outliers exactly are, e.g., r-neighborhood

Distance-based Outlier [49], ktℎ Nearest Neighbor Distance-based Outlier [68] (a.k.a. k-NN)

and Cumulative Neighborhood [11]. Since detection methods are usually constructed around

specific outlier notions, their detection qualities vary significantly among datasets. For example,

a recent study in [55] shows that the Nearest-Neighbor (NN) method performs well when

outliers are located in sparse regions whereas LOF performs well when outliers are located in

dense regions of normal data.

Existing techniques usually compute distances (in full feature space) of every data sample

to its neighborhood to determine whether it is an outlier or not [7, 25, 49, 67]. This causes two

side-effects. First, for high-dimensional datasets the concept of locality as well as neighbors

becomes less meaningful [21]. Second, not all features are relevant for outlier mining. More

26

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3. Ensemble Outlier Detection on Subspaces

specifically, popular distance functions like Euclidean and Mahalanobis are extremely sensitive

to noisy features [55]. Despite the presence of the curse of dimensionality, it is difficult in

practice to choose a relevant subset of features for the learning purpose [7, 43, 56].

While the nature of data is unpredictable, there is a need for an efficient technique to

combine different outlier detection techniques to overcome the drawback of each single method

and yield higher detection accuracy. The motivation here is similar to the advent of ensemble

classifiers in the machine learning area [43, 52]. With the feasibility of ensemble learning

and subspace mining demonstrated, the natural progression would be to combine them both.

Lazarevic et al. [56] propose the first solution for semi-supervised ensemble outlier detection in

feature subspace. That work assumes the existence of outlier scores where a combine function

can be applied directly. However, this is not practically true since different detection methods

can produce outlier scores of different scales. For example, it can be recognized that the scores

produced using ktℎ Nearest Neighbor Distance-based Outlier [68] are smaller in scale than those

using Cumulative Neighborhood [11]. Furthermore, as pointed out in Section 3.2.3, different

detection techniques also produce different types of score vectors. In particular, some vectors are

real-valued while others are binary-valued. This leads to the need of a unified notion of outlier

score and an efficient technique to specifically deal with scores’ heterogeneity. The availability

of such notion would facilitate the task of combination.

Consider a dataset DS with N data samples in dim dimensions. While most of the data

samples in DS are normal, some are outliers, and our task is to detect these outliers. While

few outliers can be found when all dimensions are taken into account, most of them can only

be identified when looking at some subsets of features. In addition, some features of DS are

noisy, and cause the full distance computation to be inaccurate if they are included. Given a

set of base outlier detection technique(s), our goal is to build an efficient method to combine

the results obtained from them while overcoming their individual drawbacks when applying on

DS. The ensemble framework should: (a) alleviate of the curse of dimensionality and noisy

features, (b) efficiently combine outlier score vectors of base techniques having different scales

and different characteristics, and (c) provide higher detection quality than each individual base

technique used in the ensemble (when applied on full feature space).

In order to address this problem, we present the Heterogeneous Detector Ensemble on Ran-

dom Subspaces (HeDES) framework. The advantage of using HeDES lies in its ability to incor-

porate various heuristics for combining different types of score vectors. The main contributions

of this chapter can be summarized as follows:

27

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3. Ensemble Outlier Detection on Subspaces

∙ We introduce a unified notion of outlier score function and show how existing outlier

definitions can be represented using it. We demonstrate how to identify different types of

outlier scores in literature by using this new notion of outlier score function.

∙ We propose a generalized framework for ensemble outlier detection in feature subspaces -

HeDES. Unlike the existing simple framework in [56], HeDES is able to combine different

techniques producing outlier scores of different scales or even different types of scores

(e.g., real-valued v/s. binary-valued).

∙ We demonstrate through extensive empirical studies that the HeDES framework can out-

perform state-of-the-art detection techniques and is therefore suitable for outlier detection

in real-world applications.

The rest of this chapter is organized as follows. Details of our approach are provided in

Section 3.2 and empirical comparison with other current-best approaches is discussed in Section

3.3. Finally, the chapter is summarized in Section 3.4 with directions for future work.

3.2 Methodology

The HeDES framework is a generalized framework for mining outliers in subspaces using ensem-

ble of outlier detection techniques (henceforth termed detectors). In the following, we present

the details of constructing the ensemble and explain how it is applied in HeDES.

3.2.1 Ensemble Construction

The process of constructing the ensemble of detectors is displayed in Algorithm 2. In each of

the total R rounds, we first sample a detector T from the pool of techniques considered (T) on

a round-robin basis. Practically, R should be chosen as a multiple of the pool size. Next, we

form a subspace S where T will operate by randomly choosing Nf features from the full feature

space. Here, Nf is sampled from the uniformly distributed range [⌊dim/2⌋, dim− 1].

The pair (T, S) is then added to the ensemble. By samplingNf from the range [⌊dim/2⌋, dim−
1] instead of fixing it to ⌊dim/2⌋ like in [43], we increase the possibility of generating different

subsets of features for each detector in the ensemble. Since the detection capability of each

detector relies on its own notion of dissimilarity measure, this increases the chance that they

generalize their prediction in ways different to each other. Hence, the above process of con-

structing the ensemble takes advantage of high-dimensional feature space and weakens the curse

of dimensionality.

28

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3. Ensemble Outlier Detection on Subspaces

After identifying all the detectors to be used in the ensemble, we adjust their weights by

running the ensemble against an unlabeled training set. The intuition behind this weight-

adjust is that some detection techniques are more powerful than others on some certain types

of data. For example, recent study by Lazarevic et al. [55] shows that the Nearest-Neighbor

(NN) method outperforms LOF when outliers are located in sparse regions whereas LOF yields

higher performance than NN when outliers are located in dense regions of normal data. Even

though the detectors in the ensemble are applied on the same dataset during testing, the sub-

spaces where they operate are homogeneous. Furthermore, subspace distributions are different

whereas detectors’ prediction performance is dependent on their respective subspace. Thus,

our argument on detectors’ superiority over the others in some certain data still holds in our

ensemble learning. Since the nature of subspaces is unpredictable, assigning fixed weights for

detectors is not a good solution. Intuitively, had we known which detectors would work better,

we would give higher weights to them. In the absence of this knowledge, a possible strategy is

to use the result of detectors on a separate validation dataset, or even their performance on the

training dataset, as an estimate of their future performance.

Algorithm 2: Constructing HeDES

for i = 1 to R do1

Choose a detector Ti ∈ T2

Randomly sample Nf from [⌊dim/2⌋, dim− 1]3

Randomly sample a subset of features Si of size Nf from the feature set of DS4

Add (Ti, Si) into the ensemble5

Apply the ensemble to the synthetic training dataset6

Adjust the weight of each detector in the ensemble7

Our approach, similar to AdaBoost [35], employs the latter strategy. However, since the

training set is unlabeled, a direct weight-adjust is not straightforward. To overcome this prob-

lem, we construct a labeled synthetic training dataset from the original (unlabeled) one by

applying the technique presented in [4]. In brief, the synthetic set is comprised of normal data

drawn from the original one and artificially generated outliers. The artificial outliers here are

created by using a uniform distribution U that is defined within a bounded subspace whose

minimum and maximum are limited to be 10% beyond the observed minimum and maximum,

respectively. Let the original training set be Str, we construct the set of artificial outliers Sout

of size ∣Str∣ according to U on the bounded domain. The synthetic training set is then set to be

Str∪Sout. More details are given in [4]. The use of this set helps us estimate the performance of

each detector in the ensemble and adjust its weight correspondingly despite the lack of knowl-

edge on anomalous behavior. Since outlier detectors in the ensemble are unsupervised, they

29

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3. Ensemble Outlier Detection on Subspaces

Algorithm 3: Mining Outliers with HeDES

Normalize DS1

foreach detector type j do2

TV Sj = ∅3

for i = 1 to R do4

Choose the detector (Ti, Si) from the ensemble5

j = type of Ti6

RV Si = apply Ti to DS projected on Si7

TV Sj = TV Sj ∪ {RV Si}8

foreach detector type j do9

V Sj = SUBCOMBINE(TV Sj)10

V SFINAL = COMBINE(V S1, V S2, . . .)11

are less susceptible to the overfitting problem. In other words, the weights trained are loosely

coupled with the synthetic training set. Furthermore, this artificial data generation has been

shown in [4] to be successful in training highly accurate classifiers. Thus, the weights obtained

in the training phase are likely to have very high generalization capability on unseen test data.

By using the weight-adjusted scheme, the effect of detection techniques that are not as relevant

as the others can be reduced. This becomes even more critical when irrelevant techniques may

lead to a significantly wrong assignment of outlier score (c.f., Section 3.3).

3.2.2 HeDES Framework

Our proposed approach, HeDES, is described in Algorithm 3, and functions as follows. The

testing dataset is passed through the ensemble. For every pair (T, S) in the ensemble, we

apply T to DS projected on subspace S and obtain a raw vector score. This raw vector score

is stored together with other vector scores generated by the same detector type j in TV Sj .

After finishing R rounds, each set of vector scores (vectors in the same set are of the same

type) are combined separately using SUBCOMBINE function to yield a vector score V Sj .

Finally, the COMBINE function is invoked using all the V S’s obtained to produce the final

vector score V SFINAL. The interpretation (combination) of V S and V SFINAL depends on

the specific combine functions utilized which are explored in detail in Section 3.2.4. Note that

the two most important components in this framework are: (a) the outlier score function,

and (b) the (SUB)COMBINE functions. The main difference between the simple subspace

ensemble framework in [56] and our generalized framework lies in the multi-staged combine

function which allows much more flexible integration among the heterogeneous types of outlier

detection techniques. It is highlighted that similar to other ensemble classifiers [35, 43], ensemble

30

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3. Ensemble Outlier Detection on Subspaces

outlier detection method is a parallel learning algorithm [56]. Since each round of running is

independent of the other, a parallel implementation can be employed for faster learning.

3.2.3 Outlier Score Function

Assume a metric distance functionD exists onDS, using which we can measure the dissimilarity

between two arbitrary data samples in any arbitrary subspace. A general approach that has

been used by most of the existing outlier detection methods is to assign an outlier score (based

on the distance function) to each individual data point, and then design the detection process

based on this score [7, 25, 49]. The use of the outlier score is analogous to the mapping of

multi-dimensional datasets to ℝ space (the set of real numbers). In other words, we can define

the outlier score function (Fout) which maps each data sample in DS to a unique value in ℝ.

Intuitively, to create an outlier score function, we first identify a set of measurements based

on some specified criteria, then define a mechanism g for combining them, and finally generate

a function (Fout) based on g. Most the existing techniques utilize only a single measurement,

i.e., g becomes a uni-variable function that is related directly to the only measurement taken

into account. With reference to the k-NN [68], let the measurement considered be the distance

from a data pattern p to its ktℎ nearest neighbor (Dk), then a possible choice of Fout is Fout =

g(Dk) = Dk.

3.2.3.1 Outlier score function classification

Among existing approaches to outlier detection problem, we can classify Fout into global and

local score functions [63]. An outlier score function is called global when the value it assigns

to a data sample p ∈ DS can be used to compare globally with other data samples. More

specifically, for two arbitrary data samples p1 and p2 in DS, Fout(p1) and Fout(p2) can be

compared with each other, and if Fout(p1) > Fout(p2), p1 has a larger possibility than p2 to be

an outlier. The definitions proposed in [11, 25, 68] straightforwardly adhere to this category.

On the other hand, the definition in [49] can be converted to this category by taking the inverse

of the number of neighbors within distance r of each data point. In contrast, a local outlier

score function assigns to each data sample p, a score that can only be used to compare within

some local neighborhood. Example of such a function is proposed in [67], where the local

comparison space is the set of data samples lying within the circle centered by p and the radius

is user-defined. The choice of a global or local outlier score function clearly affects later stages

of the algorithm design process.

31

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3. Ensemble Outlier Detection on Subspaces

3.2.3.2 A classification of detection techniques using Fout

Using the notion of Fout defined above, existing outlier detection techniques can be classified

into two types: (a) Threshold-based where a local Fout is usually used, and (b) Ranking-based

where a global Fout is employed, (c.f., Definitions 3.1 and 3.2, respectively). According to this

classification, the methods proposed in [7, 11, 68] using global score functions are classified as

Ranking-based. On the other hand, LOCI with local score function is classified as Threshold-

based. Although the technique in [49] utilizes a global Fout, it is classified as Threshold-based

by letting Fout(p) = 1
∣S(p)∣ and choosing t = 1

1−P . In this case, a data sample p ∈ DS is an

outlier if Fout(p) > t , i.e., Fout(p) > 1
1−P . Note that the threshold t in LOCI is dynamic,

whereas that in [49] is static (dependant on the pre-defined variable P).

Definition 3.1 [Threshold-based] Given a (dynamic or static) threshold t, a data sample

p is an outlier of DS if Fout(p) > t.

Definition 3.2 [Ranking-based or Top-n-outlier] Given a positive integer n, a data sam-

ple p is an ntℎ outlier of DS if no more than n− 1 other points in DS have a higher value of

Fout than p. An algorithm based on this definition outputs the top n outliers.

When Fout is global, a Ranking-based technique is normally preferred since the assigned

score values of data samples can be compared globally to produce the top points with largest

scores. The resultant score vector is then real-valued and identical to the values that Fout assigns

to data samples. On the other hand, if Fout is a local one, a Threshold-based approach becomes a

reasonable choice. As a consequence, the score vector obtained contains only binary values (0 for

non-outliers and 1 for outliers) since the scores produced by Fout are already discretized through

a threshold-based test. Therefore, score vectors produced by different detection techniques are

heterogeneous and need to be processed carefully to facilitate the COMBINE process.

3.2.3.3 Issue of converting Fout to the posterior probabilities

Assume by applying an outlier detector T with outlier score function Fout onto DS, we obtain

the score vector: RV S = {Fout(p1), Fout(p2), . . . , Fout(pN)}. The problem of outlier detection is

equivalent to a binary classification problem with two classes: O (outlier class) and M (normal

class). One important question which has not been addressed well by the research community

is how to compute the posterior probability P (O∣Fout(pi)) using the knowledge on RV S. Gao

et al. [36] propose two methods attempting to solve this problem. The first method bases

on the assumption that the posterior probabilities follow a logistic sigmoid function and the

32

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3. Ensemble Outlier Detection on Subspaces

0 0.5 1
0

500

1000

1500

3.1.a: Score distribution for normal samples

0 0.5 1
0

50

100

150

3.1.b: Score distribution for outliers

Figure 3.1: Outlier score distribution of Satimage dataset using LOF as the detector.

normal and anomalous samples have similar forms of outlier score distribution (same covariance

matrix). It then tries to learn the function’s parameters using RV S. The second learner on the

other hand models the likelihood probability distributions P (Fout(pi)∣O) and P (Fout(pi)∣M) as

a Gaussian and an exponential distribution, respectively. The posterior probabilities are then

computed using Bayes theorem. Among the two methods, mixture modeling is more suitable

for ensemble learning as demonstrated in [36].

The main intuition leading to this mixture model is derived from the empirical studies using

k-NN as the score function. However, the argument used in [36] does not hold for density-based

approaches, such as LOF, where density of a data sample is compared (divided) to that of its

neighbors. Because of limited space, we omit the demonstration here. Our empirical studies

(c.f., Section 3.3) point out that processing the outlier scores directly (like in HeDES and Feature

Bagging) instead of converting to posterior probabilities will yield better detection results.

We verify our claim by running experiments on the Satimage dataset (c.f., Section 3.3) using

LOF as the outlier detector and compute the likelihood probability distribution accordingly.

The results are shown in Figure 3.1. Here the outlier scores are normalized using the min-max

normalization, and the interval [0, 1] is divided into 50 equi-width bins. As can be seen, the

outlier score distribution of outlier class does not adhere to the assumed Gaussian distribution

at all. Apart from the Satimage datasets, we also tested on several other datasets and arrived at

the same conclusion. In fact, our empirical studies (c.f., Section 3.3) point out that processing

the outlier scores directly (like in HeDES and Feature Bagging) instead of converting to posterior

probabilities will yield better detection results.

33

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3. Ensemble Outlier Detection on Subspaces

3.2.4 COMBINE Functions

Lazarevic et al. [56] introduce two combine functions (Cumulative Sum and Breadth First)

which have been successfully used in ensemble-based outlier mining. Here, we present three

novel combine functions which are Weighted Sum, Weighted Majority Voting and OR Voting.

Unlike Breadth First, these functions are invariant to the order of the detectors. Since accuracy

is the most critical factor in ensemble learning, this property becomes an advantage of our

approach. Among them, the first two functions are shown to be very efficient in ensemble

classification and have been widely employed in many practical applications [75, 35]. The

intuition for utilizing weighted combine functions were also discussed in details above. Weighted

Majority Voting is known to excel in combining class labels assigned by different classifiers

in the ensemble. On the other hand, Weighted Sum in classification is normally applied on

posterior probabilities [43]. Conversely, in HeDES, it is used to combine normalized outlier

scores produced by different detectors of the ensemble. Finally, Or Voting is a natural combine

function for integrating heterogeneous types of output scores as demonstrated later. It is

important to note here that exploring all possible combine functions is not a focus in this work.

Nevertheless, our chosen combine functions are still able to encompass almost all available types

of outlier scores in the field.

Although HeDES provides an easy extension to score vectors of various types (depending

on the purpose of learners), in our approach score vectors are either real-valued or binary-

valued. An natural approach (Ensemble Voting) to combine different types of score vectors is

to simply normalize and discretize the real-valued score vectors (convert all score vectors to

the same type), and thereafter integrate all the binary-valued score vectors (inclusive of the

discretized real-valued score vectors) using Weighted Majority Voting. However, such a natural

approach is not sufficient and does not produce good results (c.f., Section 3.3). The set of

input score vectors to the (SUB)COMBINE function is classified into two groups in which the

first group contains score vectors (TV SR) resulting from applying Ranking-based techniques,

whereas the second group contains score vectors (TV ST) of Threshold-based ones. Our strategy

is to apply some combine function on TV SR and TV ST separately to obtain V SR and V ST .

Finally, a special combine function is used to integrate V SR and V ST to produce the final

score vector V SFINAL. It is noted that the problem of combining results of Ranking-based and

Threshold-based techniques here is very similar to the problem of combining detection results

of categorical and continuous features in mixed-attribute datasets as addressed in [66]. In both

cases, we process real values and binary/categorical values separately. Eventually, a heuristic

is used to integrate the results obtained. This is the base intuition for our Or Voting combine

function.

34

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3. Ensemble Outlier Detection on Subspaces

3.2.4.1 Processing outlier score vectors

Because of the different nature between Ranking-based and Threshold-based techniques, outlier

score vectors produced by them need different treatments. Assume the data samples in DS are

p1, p2, . . . , pN . A detection technique T using a specific score function Fout is applied to identify

outliers inDS. We denote T ’s resultant score vector asRV S = {Fout(p1), Fout(p2), . . . , Fout(pN)}.
If T is a Ranking-based technique: Vectors of different Ranking-based techniques may have

different scales [68]. Hence, to apply combine functions, real-valued vectors need to have equiv-

alent scale. In other words, normalization is necessary. In HeDES, RV S is normalized using

the standardization technique. One of the most important characteristics of this normalization

technique is its ability to maintain the detectability of extreme values after performing normal-

ization [40]. As argued in [56], this facilitates combining real-valued vectors since a data sample

receiving a high score value by one detector, after summing up its score with those produced

by other detectors, may still have large values and be flagged as outliers. We define the nor-

malized value of Fout(pj) in RV S as: Scorenorm(pj) =
Fout(pj)−m

s where m = 1
N (

N∑

i=1

Fout(pi))

and s = 1
N (

N∑

i=1

∣Fout(pi)−m∣). By applying normalization, the range of outlier score becomes

independent of the technique used. Since all normalized vectors score have comparable scale,

it is feasible to integrate them.

If T is a Threshold-based technique: We preserve RV S as it is. This is because each

individual element in RV S already indicates the posterior probability of being outlier for data

points. Thus, if an ensemble employs techniques from both Ranking-based and Threshold-

based, we need a special combine function. Since Cumulative Sum and Breadth First functions

ignore the score vectors’ heterogeneity, they are not suitable for use.

3.2.4.2 Weighted Sum

This function is used for vectors in TV SR. Let us denote the weight of the detector Ti ∈ T
at round i with score vector RV Si as Wi. The final score vector of all vectors in TV SR is

defined as: V SR =
∑

iWi ×RV Si. Weighted Sum is in fact a modified version of Cumulative

Sum proposed in [56]. However, the weight-based strategy helps boost the performance of more

efficient detectors. This cannot be obtained in equi-weight schemes.

3.2.4.3 Weighted Majority Voting

This combine function is used for processing vectors in TV ST . Although similar to most of

the existing ensemble classifiers [43, 35], the problem here is much simpler since we are only

35

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3. Ensemble Outlier Detection on Subspaces

interested in two classes of data: normal (class M) and outlier (class O). Since all vectors

in TV ST only contain binary values, they are suitable for Weighted Majority Voting. As in

the case of Weighted Sum, the weight of each vector is determined by the performance of the

corresponding detection technique on training datasets.

3.2.4.4 OR Voting

This function is used for combining V SR and V ST . However, its input vectors must contain

only binary values. Therefore, we perform a discretization process on V SR where its top

values are converted to 1, and the rest are converted to 0. Under this scheme, we have:

V SFINAL = V SR ∨ V ST where “∨” is the usual Boolean operator.

3.2.4.5 Interpretation of V SFINAL

If the pool of detection techniques T contains only Ranking-based techniques, we then flag those

data samples having highest scores in V SFINAL as outliers. In case T contains only Threshold-

based techniques, outliers are those points having score in V SFINAL equal to 1. Finally, if

T contains both Ranking-based and Threshold-based methods, outliers are those whose scores

equal to 1 in V SFINAL. Thus, the flagging mechanism for “mixed” T is similar to that of

an ensemble containing only Threshold-based methods. This is because by applying the OR

function, the real-valued vector V SR is already converted to a binary-valued one. Similar to

[56], the number of outliers to flag for Ranking-based methods depends on the specific dataset

used.

3.2.5 Further Discussion

In HeDES, the feature subspaces are chosen randomly which may affect the quality and utility

of subspaces formed. We were aware of this issue and did investigate it during our study.

However, it is noted that there is no systematic way to rank the relevance of subspaces for

outlier detection. That is because outliers exhibit non-monotonicty property. More specifically,

if a data point p does not show any anomalous behavior in some subspace S, it may still be an

outlier in some lower-dimensional projection(s) of S (and this is also the reason why we find

outliers in subspaces). On the other hand, if p is a normal data point in all projections of S,

it can still be an outlier in S. This property prevents the selection of subspaces where outliers

show their anomalous behavior and leads to the unavoidable exploration of all subspaces to

mine full result set (which is very expensive). The issue was also mentioned in [7, 8, 56].

36

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3. Ensemble Outlier Detection on Subspaces

Dataset Number Number Number Outlier class v/s. Normal
of classes of attributes of instances

Ann-thyroid 3 21 3428 class 1, 2 v/s. 3
Lymphography 4 18 148 merged class 2 & 4 v/s. rest
Satimage 7 36 6435 smallest class v/s. rest
Shuttle 7 9 14500 class 2, 3, 5, 6, 7 v/s. 1
KDD Cup 1999 2 42 60839 class U2R v/s. normal
Breast Cancer 2 32 569 class 2 v/s. 1
Segment 7 19 2310 each class v/s. rest
Letter 26 16 6238 each class v/s. rest

Table 3.1: Characteristics of datasets used for measuring accuracy of techniques.

Since there is no efficient method to tell us exactly in which subspaces outliers are present

while the number of possible subspaces is exponential to the total number of dimensions, re-

searchers propose two types of approaches to tackle the issue: (a) utilizing combinations of

randomly chosen subspaces [56], and (b) mine all subspaces of dimensionality up to some

threshold [7, 8]. The former has its origin in ensemble classification [43] where its effectiveness

was demonstrated. It was then employed in [56] where the results obtained were also very

promising. We also have one paper currently under review exploring the latter approach. Nev-

ertheless, to the best of our knowledge, there is not existent any more informed approach for

selecting subspaces. Thus, subspace sampling as utilized in HeDES is a reasonable choice.

3.3 Experimental Results

To verify the effectiveness of the proposed combination framework, we conducted the experi-

ments on several real datasets which are taken from UCI Machine Repository 1. These datasets

are used widely in outlier detection as well as in rare class mining [56], and are summarized in

Table 3.1.

The setup procedure (converting datasets into binary-class sets, etc.) employed here follows

exactly that of Feature Bagging. In the field of outlier detection, ROC curve (as well as AUC)

is an important metric used to evaluate detection quality. Similar to [36, 55, 56, 11], AUC (area

under the ROC curve) was chosen as performance benchmark in this work because of its proved

relevance for outlier detection [56, 55].

In each experiment, we report how AUC changes when the number of rounds R is varied

for KDD Cup 1999 dataset. This dataset is chosen as the representative since it has the largest

number of instances as well as attributes among all the datasets considered, and hence is a

good representative. For other sets, the results are similar and average AUC with R = 10 is

1http://www.ics.uci.edu/ mlearn/MLRepository.html

37

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3. Ensemble Outlier Detection on Subspaces

presented (setting R to 10 was suggested in [56, 36]). For every dataset, each reported result

is a 95% confidence interval of the AUC obtained by averaging the outcomes of running the

algorithms 10 times on each of its generated binary-class sets.

In our empirical studies, two different base detectors are considered: LOF [25] and LOCI

[67], and are tested using full feature space. The former is known to be one of the best

Ranking-based techniques [55] while the latter is a well-known Threshold-based technique [67].

By choosing these high quality base detectors, we are able to highlight the improvement of

HeDES in detection accuracy. For LOF, the parameter MinPts was set to 20. For LOCI,

we chose nmin = 20, nmax = 50, ® = 1/2, and k® = 3. Those values were derived from the

corresponding works. Apart from the two base techniques, we compared our approach with

other ensemble approaches including: Feature Bagging [56], Active Outlier [4], Mixture Model

[36], and Ensemble Voting (c.f., Section 3.2.4). Feature Bagging uses two combine functions:

Cumulative Sum and Breadth First. For each dataset under consideration, we choose to display

the highest AUC value among the two for Feature Bagging. Active Outlier constructs an

ensemble after t rounds of training, i.e. the ensemble contains t detectors. Here, t was set to

R for fair comparison. Since Active Outlier does not use any base detector, its performance

remains the same regardless of which base detector is chosen for other ensemble techniques.

3.3.1 Experiment on Ranking-based Technique

This experiment aims to investigate the performance of the our proposed combine function,

Weighted Sum, when applied to the Ranking-based technique. We compared our method

against LOF, Feature Bagging (FB), Mixture Model (MM), and Active Outlier (AO). The

results are shown in Figure 3.2 and Table 3.2. It can be observed that Weighted Sum strategy

yields very good results in all test cases. Even in the case where the base technique, LOF,

performs no better than random guessing due to high dimensionality of the dataset (Satimage),

our approach is still able to bring very good improvement. The results also indicate that using

full feature space in outlier detection may yield low accuracy, especially when the number of

features is large and it is likely that some features are noisy. The performance of Mixture Model

over the datasets used is worse than Active Outlier and Feature Bagging. This agrees with our

argument about the applicability of Mixture Model on other notions of outliers. In particular,

the outlier score proposed in LOF is density-based whereas k-NN is distance-based. Extensive

studies in the field have pointed out the significant differences between these two notions.

These in addition to the results obtained show that the assumption made in Mixture Model

is not flexible enough to encompass the scores produced by LOF. For all ensemble techniques

38

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3. Ensemble Outlier Detection on Subspaces

considered (including our approach), AUC value increases as the number of detectors included

in the ensemble increases. However, Weighted Sum and Feature Bagging tend to work better

than AO. This can be attributed to the fact that ensemble learning by subspace sampling

produces more efficient learners than data sub-sampling one [43].

3.3.2 Experiment on Threshold-based Technique

In this experiment, we study the effect of our proposed combine function, Weighted Majority

Voting (WMV), for Threshold-based techniques. Thus, LOCI is selected as the base detec-

tor. Our approach’s performance is assessed against LOCI, Feature Bagging (FB, also utilizes

LOCI), and Active Outlier (AO). Mixture Model is omitted here since the posterior probabil-

ities can be derived directly from the binary-valued scores. In fact, the results achieved by

Mixture Model under this setting are the same as that of Feature Bagging. From Figure 3.2

and Table 3.3, it can be seen that Weighted Majority Voting yields the best or nearly best

results in all cases (the margin with respect to the best one is negligible). For Feature Bagging,

neither Cumulative Sum nor Breadth First works well in combining vectors of Threshold-based

techniques. This indicates that specialized schemes are required. With the results achieved in

this test, Weighted Majority Voting is shown to be a promising candidate.

Dataset LOF FB MM AO WS
Ann-thyroid 0.869 0.869 ± 0.015 0.855 ± 0.021 0.856 ± 0.023 0.892 ± 0.005
(class 1 v/s. 3)
Ann-thyroid 0.761 0.769 ± 0.003 0.759 ± 0.007 0.753 ± 0.009 0.798 ± 0.008
(class 2 v/s. 3)
Lymphography 0.924 0.967 ± 0.009 0.921 ± 0.001 0.843 ± 0.041 0.984 ± 0.004
Satimage 0.510 0.558 ± 0.031 0.562 ± 0.025 0.646 ± 0.024 0.703 ± 0.022
Shuttle 0.825 0.839 ± 0.004 0.724 ± 0.017 0.843 ± 0.006 0.861 ± 0.002
Breast Cancer 0.805 0.825 ± 0.022 0.758 ± 0.012 0.822 ± 0.015 0.866 ± 0.017
Segment 0.820 0.847 ± 0.017 0.798 ± 0.005 0.836 ± 0.002 0.882 ± 0.003
Letter 0.816 0.821 ± 0.003 0.722 ± 0.014 0.824 ± 0.002 0.848 ± 0.001

Table 3.2: Ranking-based technique: AUC values of LOF, Feature Bagging, Mixture Model,
Active Outlier, and Weighted Sum with R = 10.

Overall, we can observe that ensemble outlier detection (Feature Bagging, Weighted Ma-

jority Voting, Active Outlier) results in good improvements over the base technique. We again

observe the same pattern as in the previous experiment: the accuracy of ensemble techniques

grows as the number of detectors increases and that of Active Outlier is dominated by our

approach’s and Feature Bagging’s.

39

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3. Ensemble Outlier Detection on Subspaces

Dataset LOCI FB AO WMV
Ann-thyroid (class 1 v/s. 3) 0.871 0.873 ± 0.003 0.856 ± 0.023 0.872 ± 0.021
Ann-thyroid (class 2 v/s. 3) 0.747 0.754 ± 0.026 0.753 ± 0.009 0.812 ± 0.015
Lymphography 0.892 0.932 ± 0.007 0.843 ± 0.041 0.987 ± 0.003
Satimage 0.529 0.535 ± 0.022 0.646 ± 0.024 0.654 ± 0.024
Shuttle 0.822 0.856 ± 0.011 0.843 ± 0.006 0.873 ± 0.004
Breast Cancer 0.801 0.827 ± 0.002 0.822 ± 0.015 0.842 ± 0.001
Segment 0.835 0.852 ± 0.002 0.836 ± 0.002 0.850 ± 0.014
Letter 0.811 0.834 ± 0.016 0.824 ± 0.002 0.872 ± 0.004

Table 3.3: Threshold-based technique: AUC values of LOCI, Feature Bagging, Active Outlier,
and Weighted Majority Voting with R = 10.

3.3.3 Experiment on Ranking-based & Threshold-based Techniques

So far in our empirical studies, the ensemble contains either only Ranking-based (LOF) or

only Threshold-based (LOCI) detection techniques. We now investigate our last proposed com-

bine strategy, the OR Voting, in an ensemble where both types of techniques are considered.

Therefore, in this experiment, both LOF (Ranking-based) and LOCI (Threshold-based) are em-

ployed. We call our method under this setting Mixed Ensemble (ME). More specifically, we use

Weighted Sum for Ranking-based technique whereas with Threshold-based technique, we apply

Weighted Majority Voting. The results from each group are combined using the OR Voting. Our

proposed approach is compared against Feature Bagging (FB), Mixture Model (MM), Active

Outlier (AO) and the natural combination approach (Ensemble Voting, a.k.a. EV). Ensemble

Voting, similar to ensemble classifier using weighted majority voting (e.g., AdaBoost), is shown

to yield very high accuracy in the classification problem [35]. However, through this experiment

we point out that it is not very applicable for ensemble outlier detection. For Cumulative Sum

of Feature Bagging, we simply sum up all score vectors after performing normalization. The

AUC values of all methods are presented in Figure 3.2 and Table 3.4. Our approach (Mixed

Ensemble) once again performs very well compared to other techniques. The results also show

that when an ensemble contains both Ranking-based and Threshold-based techniques, natural

sum-up scheme of Cumulative Sum as well as usual ensemble learning based on Weighted Ma-

jority Voting does not help much. Instead, we need special combine functions to deal specifically

with different types of score vectors.

3.4 Summary

In this chapter, the problem of ensemble outlier detection in high-dimensional datasets were

studied in detail. A formal notion of outlier score which helps to identify different types of

40

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3. Ensemble Outlier Detection on Subspaces

Dataset FB MM AO EV ME
Ann-thyroid 1 0.870 ± 0.015 0.813 ± 0.013 0.856 ± 0.023 0.832 ± 0.012 0.883 ± 0.020
Ann-thyroid 2 0.768 ± 0.031 0.684 ± 0.001 0.753 ± 0.009 0.754 ± 0.012 0.792 ± 0.004
Lymphography 0.955 ± 0.033 0.735 ± 0.002 0.843 ± 0.041 0.901 ± 0.235 0.952 ± 0.014
Satimage 0.531 ± 0.003 0.517 ± 0.043 0.646 ± 0.024 0.544 ± 0.007 0.780 ± 0.005
Shuttle 0.853 ± 0.028 0.729 ± 0.013 0.843 ± 0.006 0.827 ± 0.024 0.871 ± 0.016
Breast Cancer 0.824 ± 0.013 0.755 ± 0.023 0.822 ± 0.015 0.837 ± 0.017 0.864 ± 0.015
Segment 0.845 ± 0.007 0.792 ± 0.016 0.836 ± 0.002 0.840 ± 0.004 0.852 ± 0.006
Letter 0.841 ± 0.004 0.785 ± 0.011 0.824 ± 0.002 0.836 ± 0.003 0.877 ± 0.018

Table 3.4: Ranking-based & Threshold-based techniques: AUC values of Feature Bagging,
Mixture Model, Active Outlier, Ensemble Voting, and Mixed Ensemble with R = 10.

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 10 20 30 40 50

A
cc

u
ra

cy

Number of Rounds (R)

AO FB LOF MM WS

3.2.a: Ranking-based

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 10 20 30 40 50

A
cc

u
ra

cy

Number of Rounds (R)

AO FB LOCI WMV

3.2.b: Threshold-based

 0.69

 0.7

 0.71

 0.72

 0.73

 0.74

 0.75

 0.76

 0.77

 10 20 30 40 50
A

cc
u
ra

cy
Number of Rounds (R)

AO EV FB ME MM

3.2.c: Ranking-based & Threshold-
based

Figure 3.2: AUC values of all competing approaches on the KDD Cup 1999 dataset.

outlier score vectors was introduced. Using the new notion, we presented a heterogeneous

detector ensemble on random subspaces (HeDES) framework using different relevant combine

functions to tackle the problem of heterogeneity of techniques. Extensive empirical studies

on several popular real-life datasets show that our approach can outperform contemporary

techniques in the field in terms of detection accuracy.

41

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4

The MIRO approach

In this chapter, we address the problem of efficiently detecting distance-based outliers in large

datasets. Distance-based outlier detection in general requires substantial amount of compu-

tational costs (both I/O and CPU) for mining anomalies. As a preliminary study, we aim

at designing a detection method yielding lower CPU overhead compared to other outstanding

techniques in the literature.

We employ the outlier function proposed in [15], although the ideas in MIRO can also be

adapted to other functions. The intuition and quality of detection results of the chosen outlier

definition are based on solid work in [15, 20]. This definition is also used in other popular

techniques on outlier detection, e.g. the one in [37]. Therefore, in this paper we do not again

demonstrate how well MIRO does in terms of actually discovering abnormalities in real data.

Instead, we focus on showing its superiority in terms of CPU cost.

Let us denote the set of k nearest neighbors of a data point p in DS as kNNp. We can now

define the outlier score function Fout as follows.

Definition 4.1 [Outlier Score Function] The dissimilarity of a point p with respect to its

k nearest neighbors is known by its cumulative neighborhood distance. This is defined as the

total distance from p to its k nearest neighbors in DS. In other words, we have: Fout(p) =
∑

m∈kNNp
D(p,m).

This definition has been proved by Angiulli et al. [15] to be more intuitive than the definition

used in [68]. Given two positive integers k and n, our task is to mine top n outliers that have

the largest outlier scores based on the chosen Fout. For ease of reference, symbols used in the

chapter are presented in Table 4.1.

42

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4. The MIRO approach

Symbol Definition

DS The dataset
N Number of points in the dataset
dim Dimensionality of the data space
D(p1, p2) Distance function between points p1 and p2
kNNp set of k nearest neighbors of a data point p
n Number of outliers to be mined
Fout Outlier Score Function

Table 4.1: Definitions of symbols

4.1 Problem Formulation and Technique Descriptions

Distance-based outliers which have been popularly defined as:

∙ Data points from which there are fewer than p points that are within distance r [51].

∙ Top n data points whose distance to their corresponding ktℎ nearest neighbor are largest

[68].

∙ Top n data points whose total distance to their corresponding k nearest neighbors are

largest [15, 11].

As these definitions indicate, a significant amount of distance computations need to be

performed in order to verify whether a data point is an outlier or not. This leads to high

execution times and has motivated many attempts to produce efficient algorithms to mine

outliers. Among them, outstanding work by Bay et al. [20] and Ghoting et al. [37] aim to

reduce execution time by utilizing a simple pruning nested-loop algorithm.

Reducing CPU cost of detection techniques in general generates many benefits for various

applications where the speed of detecting deviations plays a critical role (e.g. fraud detection,

intrusion detection). One of such application is outlier detection in streaming environment

[65]. In such scenarios, storing data into disks and doing post-processing is infeasible. Instead,

data objects are received at a fast rate and an algorithm with strict time bound is required to

continuously monitor and catch abnormal ones while ensuring no jamming for the subsequent

data traffic. As a consequence, CPU cost of processing becomes the main issue. To further

illustrate our point, let us consider a system in which data arrives in batch and each batch of data

is stored in a buffer memory. It is assumed that the buffer size is large enough to accommodate

each batch but if so many batches are stored at the same time, buffer will overflow. Such

scenario is very popular in applications dealing with data streams [39]. The task of the system

43

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4. The MIRO approach

is to identify abnormal records in each arrival batch. The buffer will be automatically flushed

when this monitoring process is done. However, if the detection techniques takes so much time

relatively to the speed of arrival of batches, we may lose data because of the problem of buffer

overflows. Therefore, developing a fast detection algorithm becomes a necessary needs since it

leads to higher throughput for the system. Additionally, the higher throughput will also yield

higher detection accuracy since data loss is avoided.

Our MIRO approach operates in two phases. In the first phase, we partition the data into

clusters, and make an early estimate on the lower bound of outlier scores. This phase prunes

clusters that cannot have outliers, and the second phase then processes the remaining clusters

using the traditional block nested-loop algorithm. Here two pruning rules are utilized: (a) first

triangular inequality on the data point’s outlier score is used, and then (b) the outlier score

is compared with the minimum score required to be an outlier. The second check is similar

to that of ORCA [20]. However, while ORCA starts with a cutoff of 0, in MIRO the initial

cutoff is obtained from the first phase, and hence converges faster. Though the pruning rules

seem simple, their combined effect is strong and efficiently reduces the search space. The main

contributions of this chapter can be summarized as follows:

∙ We analyze the problem of outlier detection from the outlier score perspective and in-

troduce the concepts of global and local outlier score functions. This gives a summary

classification of all existing detection techniques.

∙ We demonstrate high improvement in execution time by using multiple pruning rules

in two phases, compared with outstanding existing nested-loop distance-based methods,

ORCA [20] and RBRP [37].

∙ We illustrate the effectiveness of our pruning rules on the overall detection process and

give a detailed theoretical analysis on how those rules lead to the superior performance

of MIRO. With extremely low CPU cost, MIRO is very suitable for detecting outliers in

streaming environments as well as other real-time applications.

The rest of this chapter is organized as follows. We present our MIRO approach in Section

4.2, and theoretically analyze its complexity in Section 4.3. Then we empirically compare our

approach with other current-best approaches using real-world datasets in Section 4.4. Finally,

we provide a brief summary of the proposed technique in Section 4.5.

44

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4. The MIRO approach

4.2 The MIRO Detection Approach

Our approach operates in two phases and employs three pruning rules. In the first phase,

we partition DS into clusters, and compute upper and lower bounds of the outlier score for

each cluster. Based on these bounds, some clusters are pruned, and the remaining candidates

are sent for final processing in the traditional block nested-loop algorithm. Here two pruning

rules are utilized: (a) first triangular inequality on the data point’s outlier score is used (R1),

and then (b) the outlier score is compared with the minimum score required to be an outlier

(R2). The second check is similar to that of ORCA, however in MIRO the initial cutoff is

obtained from the first phase (instead of using 0 as in ORCA), and hence converges faster. The

additional overhead of the first phase is offset by the reduction in cost of the second phase. While

preprocessing by clustering has been proposed in RBRP, our preprocessing phase incorporates

the pruning of unnecessary clusters while RBRP’s does not. Additionally, the use of the simple

triangular inequality in the second phase and the precomputation of the initial cutoff of outlier

score before this phase commences, generates the distinct advantages of MIRO’s nested-loop

compared to that of ORCA. The detailed process is described below.

4.2.1 Cluster-based Pruning

In this phase, we first cluster the dataset DS (using Algorithm 4) and subsequently identify

upper and lower bounds of the outlier score for each resultant cluster (using Algorithm 5).

Algorithm 4 is in fact based on the clustering algorithm of RBRP, however we have made some

modifications. We denote the expected number of data points per cluster as nc. By changing nc,

we can control the degree of homogeneity of clusters, i.e., points that are close to each other in

space are likely assigned to the same cluster. It is noted that in our approach, nc has the same

role as the parameter BinSize of RBRP. Compared to RBRP, the cost of clustering is saved

for those resultant clusters y having 1 < ∣y∣/nc ≤ M , since a) they are re-clustered only once

with the number of clusters being ⌊ ∣y∣nc
⌋ ≤ M and b) the time complexity of K-Means algorithm

is proportional to the number of clusters produced. Hence, our clustering algorithm takes less

time than that of RBRP.

Let C be the set of clusters obtained as a result of applying Algorithm 4 on DS with

predetermined values of M and it. For each cluster Ci ∈ C, let ∣Ci∣ denote its cardinality (or

the number of data points allocated to Ci), oCi its centroid, and rCi its radius. lCi , uCi are

the estimated lower and upper bounds of the outlier scores of all data points in Ci respectively.

These bounds are only estimations since the true bounds can only be known when the true

scores of member data points are identified. A data point p by itself is also a cluster Ci with

oCi = p, rCi = 0, lCi = uCi = Fout(p).

45

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4. The MIRO approach

Algorithm 4: Cluster

Input: M : the number of clusters, it: the number of iterations, DS: the dataset to be
clustered

Output: B: the set of clusters
Set Y = KMeans(M, it,DS)1

foreach cluster y ∈ Y do2

if ∣y∣
nc

> M then3

Cluster(M, it, y)4

else if ∣y∣
nc

> 1 then5

Set Y ′ = KMeans(⌊ ∣y∣nc
⌋, it, y)6

foreach cluster y′ ∈ Y ′ do7

Add y′ to B8

else9

Add y to B10

Definition 4.2 [Distance between clusters]

The minimum distance between clusters Ci and Cj is

minDis(Ci, Cj) = max{D(oCi , oCj)− rCi − rCj , 0},

and maximum distance between clusters Ci and Cj is

maxDis(Ci, Cj) = D(oCi , oCj) + rCi + rCj .

Given a cluster Ci ∈ C, we now need to find clusters that potentially contain k nearest

neighbors for every point in Ci. So we first find a set of clusters, MinCi , closest to Ci in terms

of minDis(), containing at least k data points, i.e., MinCi ⊆ C ∖ Ci, s.t. minDis(Cj , Ci) ≤
minDis(Ck, Ci) ∀Cj ∈ MinCi , Ck ∈ C ∖ {Ci

∪
MinCi}, the total number of data points in

MinCi ≥ k.

Similarly, we identify a set of clusters, MaxCi , closest to Ci in terms of maxDis(), which

also contains at least k data points in total.

Consider a data point p ∈ Ci. To compute the lower bound of its outlier score, we have to find

the closest clusters to p in terms of minDis(). In order to do this we consider all clusters closest

to Ci as well as other data points in Ci (as clusters). So we choose Minp = MinCi

∪
Ci ∖ p.

In order to estimate the cumulative distance from p to its k nearest neighbors, we order Minp

and choose the top z clusters M1 . . .Mz s.t.
∑z−1

i=1 Mi < k ≤ ∑z
i=1Mi. Now the lower bound

of the outlier score of p can be computed as lp =
∑z−1

i=1 ∣Mi∣ ⋅minDis(p,Mi)+ (k−∑z−1
i=1 ∣Mi∣) ⋅

minDis(p,Mz).

46

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4. The MIRO approach

Algorithm 5: PruneClusters

lCi , uCi Ã estimateBounds ∀iCi ∈ C1

Identify Co, lCo2

Prune Ci∣uCi < lCo3

Return lCo , C4

Similarly we can compute the upper bound of p’s outlier score, up =
∑z−1

i=1 ∣Mi∣⋅maxDis(p,Mi)+

(k−∑z−1
i=1 ∣Mi∣) ⋅maxDis(p,Mz), where {M1 . . .Mz} are the top z clusters in Maxp defined as

MaxCi

∪
Ci ∖ p.

Definition 4.3 [Bounds of a cluster’s outlier score] The upper and lower bounds of a

cluster’s outlier score in terms of its contained points are given as: uCi = max{up, p ∈ Ci} and

lCi = min{lp, p ∈ Ci}, respectively.

We now use a simple heuristic to prune clusters that do not contain outliers: pick clusters

with the largest lower bounds of outlier scores, until we have a total of at least n data points.

Let the last cluster picked be Co. Clusters whose upper bounds of outlier scores are smaller

than lCo cannot contain outliers, and are therefore pruned. This heuristic constitutes the first

pruning phase and is presented in Algorithm 5. The value lCo is passed as an initial seed to the

second pruning phase for faster pruning. While the above heuristic correctly prunes clusters

containing data points which are all non-outliers, it may allow clusters containing some non-

outliers. This happens for all clusters Ci, where lCi ≤ lCo ≤ uCi . This is undesirable, since not

all data points in these clusters are potential outliers. In order to resolve this issue, we propose

another heuristic called Ppoints which prunes all points p ∈ Ci, up < lCo . Time complexity of

MIRO with and without Ppoints is discussed in Section 4.3.1.

4.2.2 Nested-loop Algorithm

After the lower bound on the outlier score is obtained from the first phase, we process the

remaining clusters using the traditional nested-loop algorithm similar to ORCA. In the second

phase of MIRO (Algorithm 6) we employ two pruning rules (R1 in line 9 and R2 in line 13 of

Algorithm 6). Similar to [20], we check if the outlier score of the data point is smaller than the

current cutoff c on the outlier score (rule R2). However, while ORCA initializes c as 0, in our

second phase, we converge faster by choosing c from the first clustering phase (with or without

Ppoints).

Let us consider an arbitrary data point q. If c > kD(p, q)+Fout(q), then by our definition of

outlier score and using triangular inequality, we can show that c >
∑

m∈kNNq
D(p,m) ≥ Fout(p),

47

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4. The MIRO approach

Algorithm 6: FinalProcessing

Set c, C Ã PruneClusters()1

Set TopOut Ã ∅2

foreach remaining cluster Ci ∈ C do3

Set A Ã Ci ∪ {∪C1∈MinCi
C1} ∪ {∪C2∈MaxCi

C2}4

foreach data point p ∈ Ci do5

foreach cluster Cj ∈ A do6

foreach data point q ∈ Cj do7

if q ∕= p then8

if (c− Fout(q))/k > D(p, q) then9

Mark p as non-outlier10

Process next data point in Ci11

Update p’s k nearest neighbors using q12

if Fout(p) < c then13

Mark p as non-outlier14

Process next data point in Ci15

if p is outlier then16

Update TopOut with p17

if Min(TopOut) > c then18

Set c Ã Min(TopOut)19

i.e., c > Fout(p). Therefore p is not an outlier and can be pruned. Despite its simplicity, this

pruning rule is extremely efficient in the final processing phase as shown in Section 4.4. By

using the combination of two pruning rules, the execution time is further reduced, creating a

huge advantage over ORCA and RBRP. It is also noted that by reserving MinCi and MaxCi

for each remaining cluster Ci, we are able to limit the search space for each data point p ∈ Ci.

More specifically, to process p, in the worst case we only have to scan Ci ∪ {∪C1∈MinCi
C1} ∪

{∪C2∈MaxCi
C2}. The search space is therefore much smaller than the original dataset DS.

4.3 Theoretical Analysis

In addition to the notations stated in Table 4.1, we define the following new terms for analysis:

(a) p1 is the probability that a cluster will be pruned during the first phase, and (b) p2 is the

probability that a data point will be pruned by rule R1 before it is scanned with the (k + 1)tℎ

data point among the remaining ones. It is also noted that in practice, nc ≤ k and n ≪ N . In

the following discussion, we present detailed time and space complexity analysis for MIRO.

48

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4. The MIRO approach

4.3.1 Time Complexity of MIRO

The execution time cost of the first phase without Ppoints includes (a) the cost of cluster-

ing (Scluster), (b) the cost of computing upper and lower bounds outlier score for all clusters

(Sbounds), and (c) the pruning cost (Spruning). The expected clustering cost is O(N ⋅ logN) ac-

cording to [37]. Now, for a cluster Ci, we need to identify MinCi and MaxCi . Since the mean

size of each cluster is nc, on average we have ∣MinCi ∣ = ∣MaxCi ∣ = ⌈k/nc⌉. A näıve approach

sorts all clusters and extracts ⌈k/nc⌉ clusters for MinCi/MaxCi , at a cost of O(Nnc
⋅ log(Nnc

)).

However, we note that only ⌈k/nc⌉ clusters need to be reserved for MinCi as well as MaxCi .

Therefore a better approach is that for each cluster Cj , we compute the minimum/maximum

distance from Cj to Ci and insert the result into the corresponding set. This approach leads

to an total cost of O(12 ⋅ ⌈ k
nc
⌉ ⋅ N

nc
⋅ (Nnc

− 1)) over all clusters, which can be simplified to

O(N
2

nc
2). To estimate the cost of computing upper and lower bounds of the outlier score for

each cluster Ci, we compute the cost of measuring the same bounds for each individual data

point p ∈ Ci. To obtain p’s bounds, we also need to extract nc + ⌈ k
nc

− 1⌉ clusters (includ-

ing zero-radius ones) from a set of nc + ⌈ k
nc
⌉ clusters. Since the number of items extracted

is nearly no different from the total set of items, we apply the näıve sorting approach dis-

cussed above. As a consequence, the total cost incurred is O((nc + ⌈ k
nc
⌉) ⋅ log(nc + ⌈ k

nc
⌉)),

i.e. O(nc ⋅ log(nc)). Hence, the cost of computing Ci’s bounds = O(nc
2 ⋅ log(nc)). Therefore,

Sbounds = O(Nnc
⋅ nc

2 ⋅ log(nc)) + O(N
2

nc
2) = O(N ⋅ nc ⋅ log(nc)) + O(N

2

nc
2). To prune the clusters,

we need to compute lCo and scan the whole set of clusters to check their corresponding upper

bounds. To compute lCo , we need to extract ⌈n/nc⌉ clusters with largest lower bounds from a

set of N/nc clusters. In other words, Spruning = O(⌈ n
nc
⌉ ⋅ N

nc
)+O(Nnc

). Overall, the approximate

overhead incurred by the first phase is:

Spℎase1 = Scluster+Sbounds+Spruning = O(N ⋅ logN)+O(N ⋅nc ⋅ log(nc))+O(N
2

nc
2)+O(⌈ n

nc
⌉ ⋅

N
nc
) +O(Nnc

) = O(N ⋅ logN) +O(N ⋅ nc ⋅ log(nc)) +O(N
2

nc
2) +O((⌈ n

nc
⌉+ 1) ⋅ N

nc
).

After the first phase, the number of remaining clusters is (1−p1) ⋅ Nnc
, which implies that the

total number of remaining data points is nc ⋅ (1− p1) ⋅ N
nc

= (1− p1) ⋅N . Among them, the total

number of data points pruned out by the rule R1 with no more than k distance computations

is p2 ⋅ (1 − p1) ⋅ N . On the other hand, for each of the data points left, we need to scan the

entire cluster Ci as well as MinCi and MaxCi in the worst case, i.e., the corresponding cost is

O(nc + 2 ⋅ nc ⋅ ⌈k/nc⌉), which simplifies to O(3 ⋅ nc + 2 ⋅ k). Hence the execution time of the

second phase in the worst case can be expressed as:

Spℎase2 = O(k ⋅ p2 ⋅ (1− p1) ⋅N +(3 ⋅nc +2 ⋅ k) ⋅ (1− p2) ⋅ (1− p1) ⋅N) = O((3 ⋅nc ⋅ (1− p2)+

k ⋅ (2− p2)) ⋅ (1− p1) ⋅N).

49

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4. The MIRO approach

Hence, the approximate cost of the whole algorithm is:

Spℎase1 + Spℎase2 = O(N ⋅ logN) +O(N ⋅ nc ⋅ log(nc)) +O(N
2

nc
2) +O((⌈ n

nc
⌉+ 1) ⋅ N

nc
) +O((3 ⋅

nc ⋅ (1− p2) + k ⋅ (2− p2)) ⋅ (1− p1) ⋅N).

We can also reclassify the whole detection process into a more detailed sequence of oper-

ations: (a) clustering, (b) identifying neighboring clusters for all clusters, (c) computing the

bounds for clusters (we consider the process for each cluster as a operation, so we have N/nc

operations), (d) pruning clusters (N/nc operations on average) and (e) final processing step

((1 − p1) ⋅N operations on average). Among them, the cost of the operations (a) and (b) are

loglinear and quadratic w.r.t. N , respectively. On the other hand, each of the remaining opera-

tions incurs costs independent of N . Furthermore, when p1 has large values, the execution time

of the second phase becomes very small which compensates the overhead incurred by the first

phase. In addition, when p2 receives a large value, a larger portion of the remaining data points

after the first phase require no more than k distance computations to be identified as normal

records, and a smaller number of these remaining points require more than k distance computa-

tions. This fact leads to another reduction of execution time. Besides, the pre-computation of

cutoff c helps contribute to further reduction of the execution time. Therefore, practically each

of the operation performed in item (e) is nearly constant. By applying the accounting method

of amortized analysis, we expect the expensive cost of operations (a) and (b) would be com-

pensated by the remaining inexpensive ones, i.e. the amortized running time of each individual

operation is inexpensive and non-quadratic w.r.t. N . In the experiments carried out in Section

4.4, we always have max(p1, p2)≥ 0.7 which leads to the practical linear execution time w.r.t

N . It is also noted that based on our analysis, this quadratic overhead w.r.t. N is common for

techniques that utilize similar partition-based strategy such as the one in [68], which though

using less pruning rules than MIRO, still reports linear execution time performance w.r.t N .

4.3.2 Time Complexity of MIRO with Ppoints

In the above analysis, we assume that the Ppoints heuristic (c.f. Section 4.2.1) is not used for

the first phase. In contrast, if this heuristic is considered, we prune all points whose upper

bound of outlier score is less than the cutoff obtained by the clustering phase, so Spruning has

to be recomputed. Particularly, after applying lCo for pruning out clusters, we perform an

additional scan on the the set of clusters left. The mean number of clusters to scan is therefore

(1−p1) ⋅ N
nc
, and the expected cost for scanning each cluster is nc. Consequently, the additional

cost is O((1−p1) ⋅ Nnc
⋅nc) = O((1−p1) ⋅N). The execution time of the first phase then becomes:

Spℎase1 = O(N ⋅ logN) +O(N ⋅ nc ⋅ log(nc)) +O(N
2

nc
2) +O((⌈ n

nc
⌉+ 1) ⋅ N

nc
) +O((1− p1) ⋅N).

50

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4. The MIRO approach

From the above expression, it can be observed that the cost of Spℎase1 does not change

theoretically whether Ppoints is used or not. But Ppoints is only effective if it does indeed help

to prune out more data points after the first phase. We will examine that in Section 4.4.

4.3.3 Space Complexity of MIRO

As mentioned earlier, minimizing I/O cost is neither a focus of techniques in [20, 37, 15] nor

of MIRO. Hence, in general MIRO uses space for: (a) storing the data points, and (b) storing

the clusters created. Furthermore, the spatial cost for storing each cluster Ci can be simplified

to the cost of storing its major components which include: (a) its member data points, and

(b) MinCi as well as MaxCi . This is simplified by space-efficient hash indexes, therefore

each Ci takes O(nc + 2 ⋅ ⌈ k
nc
⌉) space on average. Hence, the space complexity of MIRO is

O(N) +O(Nnc
⋅ (nc + 2 ⋅ ⌈ k

nc
⌉)), which can be simplified to O(N).

4.3.4 Analysis of Parameters Used

4.3.4.1 Cluster size

For a fixed dataset size, as the average cluster size nc decreases, the total number of clusters will

increase. Since the size of each cluster Ci becomes smaller, in order to compute the bounds of

Ci, we need to include more clusters in MinCi as well as MaxCi . In other words, more clusters

are required for computing Ci’s bounds. That increases Sbounds and leads to the increase in

the overall execution time of our algorithm. In the extreme case, when nc = 1, the first phase

degrades to scanning the entire dataset, i.e., the total execution time becomes a normal nested-

loop algorithm and the execution time saved during the second phase becomes insufficient to

compensate this overhead. On the other hand, as nc increases, there are lesser clusters than

before. Since the size of each cluster becomes larger, we need to consider fewer clusters in the

process of computing clusters’ bounds on the outlier score. But that does not directly lead to

a decrease in cost of computing bounds since we need to process more data points per cluster.

Furthermore, as nc increases and exceeds k, the lower bound score lCo becomes smaller since we

only need to use data points in a cluster Ci to compute its bounds (the assumption here is that

in general a cluster contains data that are relatively homogeneous). That means less clusters are

pruned after the first phase hence the execution time will increase. Overall, we should choose

a reasonable value of nc such that the average number of data points per cluster is neither too

small nor too large compared to k. More specifically, we need to identify a threshold for nc

such that as nc increases above as well as decreases below this threshold, the execution time of

MIRO will increase. Consequently, picking this threshold to be nc will be a wise choice. From

51

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4. The MIRO approach

the above analysis, we conclude that the impact of nc over the overall performance of MIRO

is complex and identification of reasonable values for nc by analytical methods is practically

infeasible. Through empirical study carried out in Section 4.4, we show that k/5 is a possible

candidate value.

4.3.4.2 Number of nearest neighbors

As the number of nearest neighbors taken into account for the computation of outlier score,

k, increases, the value that Fout assigns to each individual data point p in DS will increase

correspondingly. This in turn leads to an increase in the lower bound lCo , and hence more

clusters may be pruned by the first phase of MIRO. However, as demonstrated before, an

increase of k results in having to consider more clusters when computing outlier score bounds

for an arbitrary cluster. Therefore, the cost of computing cluster’s bounds will increase. The

increase of k creates a two-fold effect: (a) a decrease in execution time since more data points

are pruned, and (b) an increase in execution time due to the increase in the cost of computing

clusters’ bounds. Our experimental result in Section 4.4 shows that MIRO’s execution time

increases as k increases, i.e., the latter factor outperforms the former one.

4.4 Empirical Results and Analyses

In order to assess the effectiveness of our proposed technique, we performed extensive experi-

ments on six real and high-dimensional datasets. For each set of input parameters that affect the

performance of the corresponding algorithm, we ran the experiment for ten times. The results

presented are from average outcomes obtained from multiple runs. Datasets used for evaluation

include CorelHistogram, ColorMoments, CoocTexture, Covertype, Server [2] and Landsat [3],

and their brief characteristics are presented in Table 4.2. All of them are original datasets

except for Server which is extracted from KDD Cup 1999 data [2], using the procedure pro-

vided in [78]. These datasets are used widely by popular techniques of the field [15, 20, 37, 78].

All experiments were conducted on a Pentium 4 computer with a 3.4 GHz processor and 1GB

RAM. It is noted that we set M = 10 and it = 5 throughout all experiments. In this section,

we present the corresponding empirical results. In particular, we demonstrate:

∙ The efficiency of MIRO in reducing the execution time of the traditional nested-loop

algorithm. We measure the scalability of MIRO’s execution time against the dataset size

(N) as well as the number of nearest neighbors (k) used. In the latter case, we present

MIRO’s performance with and without Ppoints. The result is then compared with ORCA

and RBRP to highlight the merit of our method.

52

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4. The MIRO approach

Dataset No. of attributes No. of instances

CorelHistogram 32 68,040
ColorMoments 9 68,040
CoocTexture 16 68,040
Covertype 54 581,012
Landsat 60 275,465
Server 5 500,000

Table 4.2: Characteristics of datasets

∙ The pruning power of MIRO, in both phases of processing, with and without Ppoints. In

addition, we also assess the effect of k on the pruning quality. The sensitivity of MIRO’s

execution time with respect to the cluster size (nc) is also presented.

4.4.1 Execution time v/s. N

First we evaluate the scalability of execution time of three distance-based outlier detection

techniques MIRO, RBRP and ORCA w.r.t the dataset size N . In this experiment, we chose

the number of outliers mined n = 30, number of nearest neighbors k = 50, set the size of

each cluster nc = 20, and varied N . We chose the implementation of MIRO without Ppoints

since the efficiency of Ppoints is highlighted in a later part of this section. We observe from the

result (Figure 4.1) that MIRO scales better than RBRP and ORCA on all datasets, although

its theoretical asymptotic time complexity is quadratic in N . This agrees with the amortized

analysis in Section 4.3.1.

In order to analyze the cause of MIRO’s efficiency, we also compare the execution time

with and without the first phase. Table 4.3 presents the speedup of the execution time on the

original dataset size. It can be seen that in all cases, MIRO achieves a speedup from 2 to more

than 4 times which is good enough to serve our proposed technique’s main purpose (reducing

execution time). This clearly illustrates that the clustering strategy benefits the pruning phase.

4.4.2 Execution time and MIRO’s pruning power v/s. k

We now analyze the effect of the number of nearest neighbors (k) on execution time. This

experiment is conducted on the entire datasets, and n = 30, nc = 20 as in the previous case.

The results (Figure 4.2) show that the execution time for every technique increases with k, but

MIRO scales better (with and without Ppoints) compared to RBRP and ORCA. The reason is

once again attributed to the effective pruning power of MIRO in both phases of processing. It

53

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4. The MIRO approach

1 2 3 4 5 6 7

x 10
4

500

1000

1500

2000

2500

3000

Dataset Size (N)

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

MIRO
RBRP
ORCA

4.1.a: CorelHistogram

1 2 3 4 5 6 7

x 10
4

0

200

400

600

800

1000

1200

1400

Dataset Size (N)

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

MIRO
RBRP
ORCA

4.1.b: ColorMoments

1 2 3 4 5 6 7

x 10
4

200

400

600

800

1000

1200

1400

1600

Dataset Size (N)

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

MIRO
RBRP
ORCA

4.1.c: CoocTexture

0 1 2 3 4 5 6

x 10
5

0

2

4

6

8

10

12

14
x 10

4

Dataset Size (N)

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

MIRO
RBRP
ORCA

4.1.d: Covertype

1 1.5 2 2.5 3

x 10
5

500

1000

1500

2000

2500

3000

3500

4000

Dataset Size (N)

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

MIRO
RBRP
ORCA

4.1.e: Landsat

1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

500

1000

1500

2000

2500

3000

3500

Dataset Size (N)

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

MIRO
RBRP
ORCA

4.1.f: Server

Figure 4.1: Execution time vs. the dataset size N .

Dataset Speedup

CorelHistogram 2.92
ColorMoments 3.03
CoocTexture 2.85
Covertype 4.41
Landsat 2.14
Server 2.42

Table 4.3: Benefit of using the first phase of clustering

54

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4. The MIRO approach

is also clear that by using Ppoints, we are able to obtain better or equal performance in term of

execution time. This observation is further analyzed later when we discuss the effect of k on

MIRO’s pruning power.

Figure 4.3 presents two pruning probabilities in one plot for each dataset: the probability

of pruning a cluster in the first phase (p1), and the probability that a data point will be pruned

out by rule R1 before it is scanned with the (k + 1)tℎ data point among the remaining ones

(p2), as the number of nearest neighbors is varied. In all cases, very high values of p1 and/or

p2 are achieved, with p1 increasing when Ppoints is utilized. As explained in Section 4.3, a high

value of p1 implies that we need to process less data points in the nested-loop phase, while a

high value of p2 shows that majority of the data records left in the second phase need no more

than k distance computations per record. While we do not obtain high values for both p1 and

p2 at the same time, we observe that in every case at least one of them receives a value greater

than 0.7. This reflects a very high efficiency in pruning and explains why MIRO takes lesser

execution time compared to RBRP and ORCA. In addition, the value of p1 tends to increase as

k increases (except in the case of Landsat dataset), which means more clusters will be pruned

after the first phase when k receives higher value. This agrees with the discussion in Section

4.3.4. Furthermore, when p1 without Ppoints already has relatively large value, applying Ppoints

does not help much in increasing the pruning power of the first phase. This point is reflected by

the tendency of p1 with and without Ppoints to converge towards each other as p1 increases. We

also observe that when the pruning effect without using Ppoints is low, i.e., when p1 is low, there

will be a significant improvement in execution time if Ppoints is employed instead. This can

be attributed to the fact that adjoining clusters’ lower and upper outlier score bounds are too

interleaved with each other which creates redundancy if we include the whole of each candidate

cluster in the final processing step. In contrast, if the value of p1 is already high, which means

lCo has been identified wisely, using Ppoints may not improve MIRO’s performance by much,

although the pruning effect obtained is still equal or better. The reason is that increase in

pruning power in such cases is not enough to compensate the additional time spent to run

Ppoints. However, it is noted that when p1 receives a higher value, the cost of executing Ppoints,

which is O((1 − p1) ⋅N), becomes lower. Therefore, it can be concluded that applying Ppoints

does not degrade performance by much, but may lead to significantly better performance.

4.4.3 Execution time v/s. nc

We now study the effect of the average cluster size (nc) on the execution time of MIRO. In this

experiment, we set n = 30. By varying k, we run MIRO with nc ≥ 1 and ≤ k and take note

55

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4. The MIRO approach

20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

Number of Nearest Neighbors (k)

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

MIRO
MIRO with P

points

RBRP
ORCA

4.2.a: CorelHistogram

20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

Number of Nearest Neighbors (k)

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

MIRO
MIRO with P

points

RBRP
ORCA

4.2.b: ColorMoments

20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

Number of Nearest Neighbors (k)

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

MIRO
MIRO with P

points

RBRP
ORCA

4.2.c: CoocTexture

20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5
x 10

5

Number of Nearest Neighbors (k)

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

MIRO
MIRO with P

points

RBRP
ORCA

4.2.d: Covertype

20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

Number of Nearest Neighbors (k)

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

MIRO
MIRO with P

points

RBRP
ORCA

4.2.e: Landsat

20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

Number of Nearest Neighbors (k)

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

MIRO
MIRO with P

points

RBRP
ORCA

4.2.f: Server

Figure 4.2: Execution time vs. the number of nearest neighbors k.

56

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4. The MIRO approach

the value of nc which yields smallest CPU cost. The result obtained suggests that nc should be

k/5. As a representative, we only show the execution time of MIRO on all datasets for k = 50

(Figure 4.4). In this figure, the left y-axis corresponding to the Covertype dataset, and the

right y-axis for the rest. We can see that MIRO’s execution time is nearly linear with nc ≥ 10.

With nc = 9, the execution time begins increasing (this increase is slightly small for Covertype

dataset) and becomes worst at nc = 1 where the performance downgrades to that of a normal

nested-loop algorithm. These findings agree with our discussion in Section 4.3.4. Figure 4.4

confirms that with k = 50, the best choice of nc is k/5 = 10. A good selection of nc helps

to balance the tradeoff between the time spent on computing clusters’ bounds, as well as the

pruning effect of the first phase of MIRO. In practice, we can also determine nc by performing

a training process on a subset of the original dataset with nc = k/5 as the initial seed.

4.5 Summary

This chapter presents a new combination of several pruning strategies to produce an efficient

distance-based outlier detection technique. The proposed technique, MIRO, consists of two

pruning phases of processing which lead to amortized efficiency. During the first phase, a

partition-based technique is employed to extract candidate clusters for the later processing

step. Furthermore, an additional benefit of the first phase is that we are able to compute an

initial value of the outlier cutoff threshold which is utilized in the nested-loop phase. In the

second phase of MIRO, two pruning rules are employed to further reduce the overall temporal

cost. Extensive empirical studies demonstrate that MIRO can outperform outstanding related

techniques in the field.

57

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4. The MIRO approach

20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Number of Nearest Neighbors (k)

P
ro

b
a

b
ili

ty

p
1
 without P

points

p
1
 with P

points

p
2

4.3.a: CorelHistogram

20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Number of Nearest Neighbors (k)
P

ro
b

a
b

ili
ty

p
1
 without P

points

p
1
 with P

points

p
2

4.3.b: ColorMoments

20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Number of Nearest Neighbors (k)

P
ro

b
a

b
ili

ty

p
1
 without P

points

p
1
 with P

points

p
2

4.3.c: CoocTexture

20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Number of Nearest Neighbors (k)

P
ro

b
a

b
ili

ty

p
1
 without P

points

p
1
 with P

points

p
2

4.3.d: Covertype

20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Number of Nearest Neighbors (k)

P
ro

b
a

b
ili

ty

p
1
 without P

points

p
1
 with P

points

p
2

4.3.e: Landsat

20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Number of Nearest Neighbors (k)

P
ro

b
a

b
ili

ty

p
1
 without P

points

p
1
 with P

points

p
2

4.3.f: Server

Figure 4.3: MIRO’s pruning power vs. the number of nearest neighbors k.

58

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4. The MIRO approach

1 5 10 15 20 25 30 35 40 45 50

2

5

10

15
x 10

4

Cluster Size (n
c
)

E
xe

cu
tio

n
 t
im

e
 (

s)

0

500

1000

1500

2000

2500

3000

3500

E
xe

cu
tio

n
 t
im

e
 (

s)

CorelHistogram
ColorMoments
CoocTexture
Covertype
Landsat
Server

Figure 4.4: Execution Time of MIRO vs. the average cluster size nc.

59

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5

Future Work

We would like to explore the following research directions which we firmly believe to be very

important for outlier detection research.

5.1 Detecting Outliers in Concept-Drift Environment

A concept can be seen as a mapping between a set of (functions on) independent variables and

a dependent variable. In many cases, it is assumed that this mapping is constant and does

not change with time. However in many domains, e.g. data streams, this is not necessarily

true. When this mapping in the phenomenon of interest changes over time, concept-drift is

said to have occurred. Being able to detect concept-drift means being able to track the changes

and update the concept mapping (model) accordingly. As an example, consider an education

subsidy policy based on educational levels of various ethnic groups. A recent study in the U.S.

[33] shows that from 1990 to 2005, there was a general increase in the percentage of adults (aged

25 and over), who had completed high school. The study also found that while the percentages

of White, Black, Hispanic, Asian/Pacific Islander, and American Indian/Alaska Native adults

with bachelor’s degrees have increased, the distribution in each individual group is different.

During this period, the gap between White and Black adults who had completed high school

has narrowed down from 15% to 9%, while there was no significant change in the White-

Hispanic high school completion gap (31% in 1990 and 32% in 2005). It is also observed that

the percentages of Blacks and Whites who completed higher (tertiary) degrees have increased,

while those of other races/ethnicities were similar in the same period. This study demonstrates

a few keys points: (a) there is a drift in the education levels of U.S. citizens, and (b) the

drift differs among ethnic groups. By capturing the knowledge of this concept-drift, it may

be possible to devise more effective schemes to increase overall national education quality. For

example, the study indicates that the high school educational policies for Blacks have been

60

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5. Future Work

Figure 5.1: Incremental clustering example.

effective, but Hispanics may need more incentives. The study also shows that further graduate

education subsidies for Natives, Hispanics and Asians would be more valuable, rather than an

across-the-board option.

Besides concept-drift, model building methods on data streams also have other problems.

As mentioned in [45], incremental clustering methods share a common property which is also

a drawback: they are order-dependent. An approach is order-independent if it generates the

same result regardless of the order in which data are presented, otherwise it is said to be order-

dependent. In other words, the result generated by an order-dependent technique depends on

the arrangement of new coming data points. If that arrangement is changed, we might obtain

a different result. We use the example shown in Figure 5.1 for illustrating this property. If

the order of incoming data is 1, 2, 3, 4, 5 and 6, the two clusters created by the underlying

clustering algorithm are as denoted by the two circles. On the other hand, if the order is 1, 4,

5, 2, 3, and 6, the two triangles outline the resultant clusters.

Let assume we want to build a technique to detect outliers in data streams that contain

concept-drift. Because of drift, it is dangerous if no outlier concept updating strategy is avail-

able. In other words, we may miss some important knowledge which is initially not available

in the monitored streams. It is therefore more reasonable if we have a mechanism to take

advantage of outliers detected to improve the designed model (including updating concepts

about outliers) instead of simply discarding them. Despite the importance of detecting outliers

in concept-drift environment, there are currently very few related articles in the field whereas

there are still several open issues. Particularly, a technique that is capable of detecting outliers

in a concept-drift environment has to specifically handle the following points:

∙ Adaptation to concept-drift: Concept-drift causes the underlying model to become

outdated, since new concepts appear in data. The technique therefore should be able to

detect these changes and perform necessary updates to cope with the current trend in

data.

61

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5. Future Work

∙ Memory constraints: In a streaming environment, data grow with time and it is im-

possible to store them on disk. The designed technique should contain a mechanism to

extract and store only the relevant characteristics of historical data for future learning.

Furthermore, assume the detected algorithm is A. For each incoming data point p, the

number of times p is scanned by A should be minimized. In the ideal case, A is expected

to be a single-pass algorithm, i.e. each incoming data point is scanned only one time.

This requirement once again stems from the limited memory constraints.

∙ Resistance to order-dependent effect: The order-dependent effect stems from the

nature of data streams themselves, and hence, is very difficult to eliminate completely.

Designing a scheme for reducing that effect which leads to more stable model for the

learning process is therefore desired.

Besides the issues mentioned above, it is also noted that outlier score of each incoming

data point can only be computed using incomplete knowledge about the data stream [66].

This fact is natural and the outlier score here hence is just temporary score. However, as

long as the score is able to reflect the current trend in the data stream, the model can be

considered as functioning successfully. Furthermore, by nature, the updating outlier concept

should not exclude the process of updating concepts of normal data except for the case when

knowledge about normal samples is not important for our learning purpose. In other words,

the current trend of data should be captured so that the result of prediction becomes more

accurate. Therefore, a designed technique for dealing with such kind of problem will converge

very closely to an algorithm used to deal with concept-drift. More specifically, there may be

a convergence between concept-drift research and detecting outliers in streaming environment

research.

5.2 Visualization of Detection Results

When the purpose of detecting outliers is just for cleaning the dataset to perform other data

mining tasks (e.g. clustering), the descriptions of outliers detected are usually not required.

On the other hand, when we want to know the characteristics of outliers detected to make

some critical decisions, being able to visualize the detection results will make the learning

process far more efficient and effective than simply presenting the anomalous points per se.

However, creating such visualization is nontrivial. The first visualization tool is introduced by

Papadimitriou et al. [67], called LOCI plot. The LOCI plot summarizes information about the

points in its vicinity, determining clusters, micro-clusters, their diameters and their inter-cluster

distances. The modified definition of LOCI plot is provided in Definition 5.1.

62

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5. Future Work

Figure 5.2: Synthetic dataset DSsyn.

Definition 5.1 [LOCI plot] For any data point p in the dataset, the plot of the density of

r-neighborhood of p against r is called its LOCI plot.

One may find that the above definition is slightly different from the original one but the idea

is still the same: LOCI plot is a plot that describes the relationship between the neighborhood

of a data point and the radius of that neighborhood. Figure 5.3 shows an example of the LOCI

plot (proposed in [67]) of three data points A, B and C of the synthetic dataset DSsyn (Figure

5.2, also proposed in proposed in [67]). DSsyn contains a big cluster, a micro-cluster and an

outlier (C). For A which belongs to the big cluster, its LOCI plot does not contain any sudden

change as the radius of neighborhood r increases. In contrast, the LOCI plot of data point

B belonging to the micro-cluster contains a “jump” at r = 30. This phenomenon reflects the

fact that we will encounter more data points belonging to the big cluster at r = 30. Similarly,

the LOCI plot of outlier C contains two sudden “jumps” at r = 10 and r = 30 respectively.

Once again, this can be attributed to the fact that the minimum distance between C and the

micro-cluster is 10 while it is 30 for the big cluster. If such plot can be constructed during

runtime, we will then be able to select the suitable value for the neighborhood radius. More

specifically, the maximum value of r should be less than or equal to the value where a jump

occurs in the plot (for Figure 5.3, r ≤ 10). Furthermore, by examining the plot, we are able to

explore more about the intuition of flagging a data record as outlier. In the remaining of this

section we discuss about the benefits of outlier visualization tools and suggest possible ways to

construct such representation.

5.2.1 Benefits of Result Visualization

First, detection results themselves are less human intuitive if the users have no idea about the

behavior of other data records in the dataset. They do not know why a data point should be an

63

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5. Future Work

5.3.a: LOCI plot of pat-
tern A

5.3.b: LOCI plot of pat-
tern B

5.3.c: LOCI plot of pat-
tern C

Figure 5.3: An example of LOCI plot.

outlier and why others are not. On the other hand, data points will be nearly the same without

being embedded into a specific context. In that case, an intuitive representation is required

to provide users a general idea about the data’s outlier-ness. Furthermore, visualization is

useful for decision making. For instance, when it is still not clear which threshold(s) to use

in extracting outliers as well as how many outliers we should flag, then a plot of outlier score

against some parameter(s) we need to consider or a plot of outlier score for the entire dataset

may help. Finally, even when the visualization tools cannot be constructed at runtime (e.g. in

fast streaming data), they are still beneficial for the learning process in which knowledge on

outliers are studied to overcome the problem of concept-drift and hence, improving the accuracy

of detection techniques in later stages of detection. Being able to visualize the detection results

brings an entirely new perspective to outlier detection, exploration, and identification of novel

and exciting knowledge.

5.2.2 Possible Forms of Visualization

In this part, we present some possible schemes that can be used as an visualization tool. The

details are as follows:

∙ A plot of data points neighborhood against some parameter(s): LOCI plot [67]

is a typical example for such kind of plots. They help us in determining which parameter

should be used in the detecting process. In Figure 5.3, at radius r = 10 there is a jump

of neighborhood of the anomalous data point. Hence r should be chosen to be ≤ 10 so

that the designed technique is still able to detect that outlier. As mentioned above, this

tool can be not only constructed during training phase but also used at runtime to assist

in choosing suitable values for the key parameters affecting the algorithm performance.

Therefore, better decision can be made by using such visual representation.

64

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5. Future Work

∙ A plot of outlier score for the entire dataset: A plot of outlier score for the entire

dataset will provide us an insight about what threshold values we should use for the

outlier score (if the detection technique falls into Threshold-based) or how many outliers

we should detect (if the detection technique falls into Ranking-based). A too high or too

low threshold can therefore be avoided. If Threshold-based is used, this plot can be used

not only in training phase but also in testing phase. For instance, we add the outlier

scores found so far to the plot and hence, we can dynamically choose a suitable cutoff

value for outlier scores for the rest of the dataset. In case Ranking-based is used, we can

estimate in testing phase how many percents of the dataset outliers are present. Using

this percentage, in runtime we can choose the number of outliers we need to detect. An

example of such plot is shown in Figure 5.4 where the underlying score function used is

LOF. There are three obvious outliers with outstandingly largest LOF values while the

other three (denoted as potential outliers) are just slightly larger than the rest. Hence,

setting the number of outliers to mine to be 3 is more reasonable and intuitive than 6 in

this case.

∙ Summarized descriptions of both normal and abnormal data points: Similar to

clustering, normal and abnormal groups of data points can be described using conjunctive

logical expressions, expressing in the form of decision tree [45]. This form of representation

can be used to create a ‘signature’ to characterize outliers. However it may become lengthy

if the outliers detected cannot be grouped together. Fawcett et al. [32] introduce the first

rule-based system for detecting fraudulent activity or news story monitoring. The rule-

based module may be either a classifier learning classification rules from both normal and

abnormal training data or a recognizer trained on normal data only and learning rules

to pinpoint changes that identify fraudulent activity. The learned rules create profiling

monitors for each rule modeling the behavior of a single entity, such as a phone account.

When the activity of the entity deviates from the expected, the output from the profiling

monitor reflects this. In fact, the proposed rule-based systems is very similar to decision

trees as they both test a series of conditions before producing a conclusion (class) about

data records.

∙ A ROC plot: As mentioned in Section 3.2, this plot can be constructed easily when

underlying datasets are well labeled. ROC plot can be constructed in training phase to

test the quality of the detection technique. Apart from that, users can also choose the

combination of (detection rate, false alarm rate) which reflects their acceptable trade-off.

For example, based on ROC curve in Figure 2.1, users may decide to choose the tuple

(detection rate = 0.7, false alarm rate = 0.3) as the level of tolerance during testing phase.

65

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5. Future Work

0 50 100 150 200 250 300 350 400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Data point ID

L
O

F

Obvious outliers

Potential Outliers

Figure 5.4: An example of outlier score plot.

So far in this section, we have introduced some possible forms of outlier visualization. To

the best of our knowledge, LOCI is the only technique that provide such detailed graphical and

interactive representation. Obviously, the future of detection result visualization is limited only

by our imaginations. More research is required to build and assess the effectiveness of such

tools.

5.3 Dimension Reduction in Outlier Detection

Similar to other data mining applications, choosing a suitable subset of features to apply in

the detection process is very important. For high dimensional dataset the concept of locality

as well as neighbors becomes less meaningful [21]. This is because in high dimensional space,

data distribution becomes very sparse. Therefore, the distance between data points tend to

cluster around a specific value. It has been shown recently that by examining the data in

their subspaces, we are able to develop more effective techniques for clustering [74, 75] as

well as similarity search in multi-dimensional datasets [5, 9]. Furthermore, in high dimensional

datatsets, it is more difficult to detect points that are outliers because of the averaging behavior

of the noisy and irrelevant dimensions. Another problem caused by the curse of dimensionality

is that the considered dataset may contain some noisy attributes which may deteriorate the

impact of the distance function used, especially for those distance functions that are very

sensitive to noise (e.g. Euclidian distance). Pruning out some specific attributes prior to the

detection process is also not straightforward. In outlier detection, we are interested in abnormal

points; by discarding some certain features we may loose some interesting knowledge. We use

66

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5. Future Work

5.5.a: Projection where A
is outlier

5.5.b: Projection where B
is outlier

Figure 5.5: Projections where A and B yield abnormal behavior.

5.6.a: Dense Projection 5.6.b: Sparse Projection

Figure 5.6: Projections where A and B behave normally.

the examples in Figure 5.5 and 5.6 (proposed in [7]) to illustrate our argument. According

to Figure 5.5, it can be seen that in the two projections, data points A and B yield abnormal

behavior, i.e. they are outliers. However, in the other two projections (Figure 5.6), A and B have

normal behavior. Careless elimination of dimensions where anomalous behavior is uncovered

leads to loss of critical knowledge. Thus, choosing a combination of features to mine is a very

complicated process.

Despite of this issue’s importance, there is less effort done so far. To the best of our

knowledge, there are only two existing articles by Aggarwal et al. [7] (EvoSearch) and Lazarevic

et al. [56] (FeatureBagging) which address this problem. Both the proposed approaches first

fix the number of dimensions dt to use in the detection process and then mine outliers using the

chosen attributes and hence, do not perform any test of significance on each individual feature.

However, there are some differences between them. Particularly, while the former technique

utilizes a evolutionary approach to mine outliers over the entire search space of dt-projections,

FeatureBagging on the other hand mines outliers using a predetermined set of attributes. That

makes FeatureBagging’s mechanism of selecting relevant attributes less systematic and intuitive.

As pointed out in Section 2.4, EvoSearch is sensitive to the selection of initial population size,

67

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5. Future Work

crossover and mutation probabilities. Further more, the fix of the number of dimensions to

mine is also not intuitive since outliers may present in projections differing in the number of

dimensions. Assume the dimensionality of the considered dataset is dim. A test on all 1-

dimensional, 2-dimensional, . . . , to dim-dimensional projections is desired. This is however too

expensive. We already have research about frequent itemset mining in which combinations of

items with high frequency is mined. The problem in high-dimensional outlier detection on the

other hand can be seen as infrequent itemset mining where each item is a dataset attribute.

More work is needed to discover the possibility of applying already well-established theories of

frequent itemset mining in high-dimensional outlier detection problem.

68

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6

Conclusion

In this report, we have provided a comprehensive study on the existing work in outlier detection.

In addition, we have analyzed the limitations of the related approaches which serve as a guide

for the design of our solution.

As of now, we have developed an efficient algorithm, HeDES, that is able to combine the

detection results of different techniques to improve the overall accuracy. Similar to Feature

Bagging [56], HeDES builds different detectors in the ensemble by choosing different random

subspaces. That helps to avoid the repetition of the same detection errors by detectors. At the

same time, it somehow overcomes the curse of dimensionality. Unlike Feature Bagging, HeDES

does not assume the availability of outlier scores produced by different algorithms. Instead,

it works based on a careful classification of outlier scores as well as different treatments for

different types of scores. Empirical comparison with all existing techniques has pointed out

that HeDES is able to outperform all of them in terms of detection accuracy.

As an achievement of our research, we have also addressed the issue of reducing the compu-

tational complexity in distance-based outlier detection. Our proposed solution, MIRO, operates

in two phases: clustering and nested-loop. During clustering phase, data are grouped into clus-

ters using a divisive clustering algorithm. Thus, data points which are near to each other are

likely to lie in the same cluster. The upper and lower outlier score bounds of each cluster are

estimated and pruning is performed based on those bounds. As a result of cluster pruning,

only a few clusters are left before we enter the nested-loop phase. In the nested-loop phase, two

pruning rules based on triangular inequalities are employed to early terminate the neighborhood

search of normal data points. Computational cost is therefore further reduced. Comprehensive

studies on real datasets have confirmed the efficiency of MIRO compared to outstanding tech-

niques in the field. For future work, we want to tackle the issue of reducing I/O cost using the

same notion of distance-based outliers. For the notion proposed by Ng et al. [49], a technique

69

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6. Conclusion

that perform excellently in both worlds (CPU and I/O costs) can be found in [13]. However, it

is inapplicable to the outlier definition that we are interested in. That motivates us to explore

such a solution which if available will bring great benefits to distance-based outlier detection

community.

In the future, we would like to explore solutions for addressing the issues of concept drift,

dimension reduction, and detection result visualization. By solving them, we will be able to

extend the applicability of anomaly detection in different contexts, and hence, broadens its

application domains.

70

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 7

List of Author’s Publications

Accepted Papers

∙ Hoang Vu Nguyen, Vivekanand Gopalkrishnan, Praneeth Namburi. Online Outlier De-

tection Based on Relative Neighbourhood Dissimilarity. In Proceedings of the 9th Inter-

national Conference on Web Information Systems Engineering, pages 50–61, 2008.

∙ Hoang Vu Nguyen, Vivekanand Gopalkrishnan. Efficient Pruning Schemes for Distance-

Based Outlier Detection. In Proceedings of the 13th European Conference on Principles

and Practice of Knowledge Discovery in Databases, pages 160–175, 2009.

∙ Hoang Vu Nguyen, Vivekanand Gopalkrishnan. On Scheduling Data Loading and View

Maintenance in Soft Real-time Data Warehouses. In Proceedings of the 15th International

Conference on Management of Data, 2009.

∙ Hoang Vu Nguyen, Hock Hee Ang, Vivekanand Gopalkrishnan. Mining Outliers with

Ensemble of Heterogeneous Detectors on Random Subspaces. In Proceedings of the 15th

International Conference on Database Systems for Advanced Applications, pages 368–383,

2010.

∙ Hoang Vu Nguyen, Vivekanand Gopalkrishnan. Feature Extraction for Outlier Detection

in High-Dimensional Spaces. In Proceedings of the 4th International Workshop on Feature

Selection in Data Mining, pages 64–73, 2010.

Work Under Submission

∙ Hoang Vu Nguyen, Vivekanand Gopalkrishnan. On Efficient Distance-Based Outlier De-

tection in High-Dimensional Spaces.

71

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 7. List of Author’s Publications

∙ Hoang Vu Nguyen, Vivekanand Gopalkrishnan, Ira Assent. An Unbiased Distance-Based

Outlier Detection Approach for High-Dimensional Data.

72

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

References

[1] Bloomberg news. http://www.bloomberg.com.

[2] UCI machine learning repository. http://www.ics.uci.edu/˜mlearn/MLRepository.

html.

[3] Vision research lab. http://vision.ece.ucsb.edu.

[4] N. Abe, B. Zadrozny, and J. Langford. Outlier detection by active learning. In Proceedings

of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 504–509, 2006.

[5] C. C. Aggarwal. Re-designing distance functions and distance-based applications for high

dimensional data. ACM SIGMOD Record, 30(1):13–18, 2001.

[6] C. C. Aggarwal. On abnormality detection in spuriously populated data streams. In

Proceedings of the 5th SIAM International Conference on Data Mining, 2005.

[7] C. C. Aggarwal and P. S. Yu. An effective and efficient algorithm for high-dimensional

outlier detection. International Journal on Very Large Data Bases, 14(2):211–221, 2005.

[8] C. C. Aggarwal and P. S. Yu. Outlier detection with uncertain data. In Proceedings of the

8th SIAM International Conference on Data Mining, pages 483–493, 2008.

[9] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of

high dimensional data for data mining applications. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, pages 94–105, 1998.

[10] D. W. Aha and R. L. Bankert. Feature selection for case-based classification of cloud

types: An empirical comparison. In Proceedings of the AAAI Workshop on Case-Based

Reasoning, pages 106–112, 1994.

73

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

REFERENCES

[11] F. Angiulli, S. Basta, and C. Pizzuti. Distance-based detection and prediction of outliers.

IEEE Transactions on Knowledge and Data Engineering, 18(2):145–160, 2006.

[12] F. Angiulli and F. Fassetti. Detecting distance-based outliers in streams of data. In

Proceedings of the 16th ACM Conference on Information and Knowledge Management,

pages 811–820, 2007.

[13] F. Angiulli and F. Fassetti. Very efficient mining of distance-based outliers. In Proceedings

of the 16th ACM Conference on Information and Knowledge Management, pages 791–800,

2007.

[14] F. Angiulli and F. Fassetti. DOLPHIN: An efficient algorithm for mining distance-based

outliers in very large datasets. ACM Transactions on Knowledge Discovery from Data,

3(1), Article 4, 2009.

[15] F. Angiulli and C. Pizzuti. Outlier mining in large high-dimensional data sets. IEEE

Transactions on Knowledge and Data Engineering, 17(2):203–215, 2005.

[16] A. Arning, R. Agrawal, and P. Raghavan. A linear method for deviation detection in

large databases. In Proceedings of the 2nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 164–169, 1996.

[17] D. Barbará and P. Chen. Using the fractal dimension to cluster datasets. In Proceedings

of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 260–264, 2000.

[18] D. Barbará, C. Domeniconi, and J. P. Rogers. Detecting outliers using transduction and

statistical testing. In Proceedings of the 12th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 55–64, 2006.

[19] V. Barnett and T. Lewis. Outliers in Statistical Data, 3rd edn. John Wiley and Sons, 1994.

[20] S. D. Bay and M. Schwabacher. Mining distance-based outliers in near linear time with

randomization and a simple pruning rule. In Proceedings of the 9th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, pages 29–38, 2003.

[21] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is “nearest neighbor”

meaningful?. In Proceedings of the 7th International Conference on Database Theory, pages

217–235, 1999.

74

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

REFERENCES

[22] C. M. Bishop. Novelty detection and neural network validation. IEE Proceedings on Vision,

Image and Signal Processing, 141(4):217–222, 1994.

[23] C. Böhm, K. Haegler, N. S. Müller, and C. Plant. Coco: coding cost for parameter-free

outlier detection. In Proceedings of the 15th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 149–158, 2009.

[24] T. Bozkaya and Z. M. Özsoyoglu. Indexing large metric spaces for similarity search queries.

ACM Transactions on Database Systems, 24(3):361–404, 1999.

[25] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: Identifying density-based local

outliers. In Proceedings of the ACM SIGMOD International Conference on Management

of Data, pages 93–104, 2000.

[26] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Computing

Surveys, 41(3), Article 15, 2009.

[27] E. Chávez, G. Navarro, R. A. Baeza-Yates, and J. L. Marroqun. Searching in metric spaces.

ACM Computing Surveys, 33(3):273–321, 2001.

[28] K. Das, J. Schneider, and D. B. Neill. Anomaly pattern detection in categorical datasets. In

Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 169–176, 2008.

[29] D. Dasgupta and S. Forrest. Novelty detection in time series data using ideas from im-

munology. In Proceedings of the International Conference on Intelligent Systems, pages

82–87, 1996.

[30] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering

clusters in large spatial databases with noise. In Proceedings of the 2nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 226–231, 1996.

[31] T. Fawcett and F. J. Provost. Adaptive fraud detection. Journal of Data Mining and

Knowledge Discovery, 1(3):291–316, 1997.

[32] T. Fawcett and F. J. Provost. Activity monitoring: Noticing interesting changes in be-

havior. In Proceedings of the 5th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 53–62, 1999.

[33] N. C. for Education Statistics. Status and Trends in the Education of Racial and Ethnic

Minorities. http://nces.ed.gov/pubs2007/minoritytrends/ind_1_1.asp, 2007.

75

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

REFERENCES

[34] J. Francis, D. Addison, S. Wermter, and J. MacIntyre. Effectiveness of feature extraction in

neural network architectures for novelty detection. In Proceedings of the 9th International

Conference on Artificial Neural Networks, pages 976–981, 1999.

[35] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and

an application to boosting. Journal of Computer and System Sciences, 55(1):119–139,

1997.

[36] J. Gao and P.-N. Tan. Converting output scores from outlier detection algorithms into

probability estimates. In Proceedings of the 6th IEEE International Conference on Data

Mining, pages 212–221, 2006.

[37] A. Ghoting, S. Parthasarathy, and M. E. Otey. Fast mining of distance-based outliers in

high dimensional datasets. In Proceedings of the 6th SIAM International Conference on

Data Mining, 2006.

[38] F. E. Grubbs. Procedures for detecting outlying observations in samples. Technometrics,

11(1):1–21, 1969.

[39] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data

streams: Theory and practice. IEEE Transactions on Knowledge and Data Engineering,

15(3):515–528, 2003.

[40] D. Hawkins. Identification of Outliers. Chapman and Hall, London, 1980.

[41] S. Hawkins, H. He, G. Williams, and R. Baxter. Outlier detection using replicator neural

networks. In Proceedings of the 4th International Conference on Data Warehousing and

Knowledge Discovery, pages 170–180, 2002.

[42] A. Hinneburg and D. A. Keim. An efficient approach to clustering in large multimedia

databases with noise. In Proceedings of the 4th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 58–65, 1998.

[43] T. K. Ho. The random subspace method for constructing decision forests. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998.

[44] V. J. Hodge and J. Austin. A survey of outlier detection methodologies. Artificial Intelli-

gence Review, 22(2):85–126, 2004.

[45] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Computing

Surveys, 31(3):264–323, 1999.

76

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

REFERENCES

[46] W. Jin, A. K. H. Tung, and J. Han. Mining top-n local outliers in large databases. In

Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 293–298, 2001.

[47] G. H. John. Robust decision trees: Removing outliers from databases. In Proceedings of the

1st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 174–179, 1995.

[48] M. V. Joshi, R. C. Agarwal, and V. Kumar. Mining needle in a haystack: Classifying rare

classes via two-phase rule induction. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 91–102, 2001.

[49] E. M. Knorr and R. T. Ng. Algorithms for mining distance-based outliers in large datasets.

In Proceedings of the 24th International Conference on Very Large Data Bases, pages 392–

403, 1998.

[50] E. M. Knorr and R. T. Ng. Finding intensional knowledge of distance-based outliers. In

Proceedings of the 25th International Conference on Very Large Data Bases, pages 211–222,

1999.

[51] E. M. Knorr, R. T. Ng, and V. Tucakov. Distance-based outliers: Algorithms and appli-

cations. International Journal on Very Large Data Bases, 8(3-4):237–253, 2000.

[52] E. B. Kong and T. G. Dietterich. Error-correcting output coding corrects bias and variance.

In Proceedings of the 12th International Conference on Machine Learning, pages 313–321,

1995.

[53] H.-P. Kriegel, M. Schubert, and A. Zimek. Angle-based outlier detection in high-

dimensional data. In Proceedings of the 14th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 444–452, 2008.

[54] J. Laurikkala, M. Juhola, and E. Kentala. Informal identification of outliers in medi-

cal data. In Proceedings of the Workshop on Intelligent Data Analysis in Medicine and

Pharmacology, pages 20–24, 2000.

[55] A. Lazarevic, L. Ertz, V. Kumar, A. Ozgur, and J. Srivastava. A comparative study of

anomaly detection schemes in network intrusion detection. In Proceedings of the 3rd SIAM

International Conference on Data Mining, 2003.

77

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

REFERENCES

[56] A. Lazarevic and V. Kumar. Feature bagging for outlier detection. In Proceedings of the

11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 157–166, 2005.

[57] W. Lee, S. J. Stolfo, and K. W. Mok. Mining audit data to build intrusion detection

models. In Proceedings of the 4th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 66–72, 1998.

[58] M. Markou and M. Singh. Novelty detection: a review. Signal Processing, 83(12):2481 –

2497, 2003.

[59] P. McBurney and Y. Ohsawa, editors. Chance Discovery. Advanced Information Process-

ing. Springer, 2003.

[60] B. Morin and H. Debar. Correlation of intrusion symptoms: An application of chronicles. In

Proceedings of the 6th International Symposium on Recent Advances in Intrusion Detection,

pages 94–112, 2003.

[61] E. Müller, I. Assent, U. Steinhausen, and T. Seidl. Outrank: ranking outliers in high

dimensional data. In Proceedings of the 24th IEEE International Conference on Data

Engineering Workshops, pages 600–603, 2008.

[62] R. Ng and J. Han. Efficient and effective clustering methods for spatial data mining. In

Proceedings of the 20th International Conference on Very Large Data Bases, pages 144–155,

1994.

[63] H. V. Nguyen and V. Gopalkrishnan. Efficient pruning schemes for distance-based outlier

detection. In Proceedings of the 13th European Conference on Principles and Practice of

Knowledge Discovery in Databases, pages 160–175, 2009.

[64] H. V. Nguyen and V. Gopalkrishnan. Feature extraction for outlier detection in high-

dimensional spaces. In Proceedings of the 4th International Workshop on Feature Selection

in Data Mining, pages 64–73, 2010.

[65] H. V. Nguyen, V. Gopalkrishnan, and P. Namburi. Online outlier detection based on

relative neighbourhood dissimilarity. In Proceedings of the 9th International Conference

on Web Information Systems Engineering, pages 50–61, 2008.

[66] M. E. Otey, A. Ghoting, and S. Parthasarathy. Fast distributed outlier detection in mixed-

attribute data sets. Journal of Data Mining and Knowledge Discovery, 12(2-3):203–228,

2006.

78

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

REFERENCES

[67] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos. LOCI: Fast outlier

detection using the local correlation integral. In Proceedings of the 19th IEEE International

Conference on Data Engineering, pages 315–324, 2003.

[68] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from large

data sets. In Proceedings of the ACM SIGMOD International Conference on Management

of Data, pages 427–438, 2000.

[69] S. J. Roberts. Novelty detection using extreme value statistics. IEE Proceedings on Vision,

Image and Signal Processing, 146(3):124–129, 1998.

[70] P. Rousseeuw and A. Leroy. Robust Regression and Outlier Detection, 3rd edn. John Wiley

and Sons, 1996.

[71] H. Sagan. Space Filling Curves. Springer-Verlag, 1994.

[72] G. Sheikholeslami, S. Chatterjee, and A. Zhang. Wavecluster: A wavelet based clustering

approach for spatial data in very large databases. International Journal on Very Large

Data Bases, 8(3-4):289–304, 2000.

[73] D. B. Skalak and E. L. Rissland. Inductive learning in a mixed paradigm setting. In

Proceedings of the 8th National Conference on Artificial Intelligence, pages 840–847, 1990.

[74] A. Strehl and J. Ghosh. Cluster ensembles a knowledge reuse framework for combining

partitionings. In Proceedings of the 18th National Conference on Artificial Intelligence,

pages 93–102, 2002.

[75] A. Strehl and J. Ghosh. Cluster ensembles - a knowledge reuse framework for combining

multiple partitions. Journal of Machine Learning Research, 3:583–617, 2003.

[76] E. Suzuki and J. M. Zytkow. Unified algorithm for undirected discovery of exception rules.

In Proceedings of the 4th European Conference on Principles and Practice of Knowledge

Discovery in Databases, pages 169–180, 2000.

[77] J. Tang, Z. Chen, A. W. C. Fu, and D. Cheung. A robust outlier detection scheme in large

data sets. In Proceedings of the 6th Pacific-Asia Conference on Knowledge Discovery and

Data Mining, pages 1–8, 2002.

[78] Y. Tao, X. Xiao, and S. Zhou. Mining distance-based outliers from large databases in

any metric space. In Proceedings of the 12th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 394–403, 2006.

79

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

REFERENCES

[79] P. H. S. Torr and D. W. Murray. Outlier detection and motion segmentation. In Proceedings

of 6th SPIE Conference on Sensor Fusion, pages 432–443, 1993.

[80] W. Wang, J. Yang, and R. R. Muntz. Sting: A statistical information grid approach to

spatial data mining. In Proceedings of the 23rd International Conference on Very Large

Data Bases, pages 186–195, 1997.

[81] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: A new data clustering algorithm and

its applications. Journal of Data Mining and Knowledge Discovery, 1(2):141–182, 1997.

80

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

