This document is downloaded from DR-NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore.

Part I: Synthesis of sex pheromone of the pine sawfly, Macrodiprion Nemoralis. Part II: Synthetic studies towards the total synthesis of iriomoteolide-1a

Chin, Yen Jin

2011

Chin, Y. J. (2011). Part I: Synthesis of sex pheromone of the pine sawfly, Macrodiprion Nemoralis. Part II: Synthetic studies towards the total synthesis of iriomoteolide-1a. Doctoral thesis, Nanyang Technological University, Singapore.
https://hdl.handle.net/10356/42900
https://doi.org/10.32657/10356/42900

PART I : SYNTHESIS OF SEX PHEROMONE OF THE PINE SAWFLY, MACRODIPRION NEMORALIS
PART II : SYNTHETIC STUDIES TOWARDS THE TOTAL SYNTHESIS OF IRIOMOTEOLIDE-1A

CHIN YEN JIN
SCHOOL OF PHYSICAL AND MATHEMATICAL SCIENCES 2011

PART I : SYNTHESIS OF SEX PHEROMONE OF THE PINE SAWFLY, MACRODIPRION NEMORALIS PART II : SYNTHETIC STUDIES TOWARDS THE TOTAL SYNTHESIS OF IRIOMOTEOLIDE-1A

CHIN YEN JIN

School of Physical and Mathematical Sciences

A thesis submitted to the Nanyang Technological University in fulfillment of the requirement for the degree of

Doctor of Philosophy

AcKnowledgements

First and foremost, I would like to express my greatest appreciation to my supervisor, Professor Loh Teck Peng for his continual guidance, vital encouragement and advice throughout my Ph.D study. I would like to extend this appreciation to the past and present group members whom have gone through the difficult times with me.

I would like to extend my heartfelt thanks to Dr. Wang Shun Yi for his constant guidance and sharing of knowledge. Moreover, special thanks to Mr Shen Zhi Liang, Mr Chok Yew Keong, Mr Chow Yeong Shenq, Mr Lum Tze Keong, Mr Luo Hai Qing and Ms Chan Li Yan for the assistances rendered in the accomplishment of my projects and their invaluable friendships.

I would also like to thank the support staff in Nanyang Technological University, namely Ms Laura Woo Lay Khoon and Ms Chen Xiao Ping for administrative works in the laboratory; Ms Goh Ee Ling in the NMR laboratory and Madam Zhu Wen Wei in the MS laboratory.

I would like to express deep gratitude to Nanyang Technological University for the post-graduate scholarship and other financial support.

Finally and most importantly, I would like to thank all my family members, especially my fiancé Vui Joo, for their undying support, warmth and words of encouragement over the past years.

Table of Contents

Acknowledgements i
Table of Contents ii
Summary v
List of Abbreviations vii
PART I : SYNTHESIS OF SEX PHEROMONE OF THE PINE SAWFLY, MACRODIPRION NEMORALIS
Chapter 1: INTRODUCTION
1.1 Background 3
1.2 Reported Synthetic Studies 4
1.3 Retrosynthetic Analysis 10
Chapter 2: SYNTHESIS OF SEX PHEROMONE OF THE PINE SAWFLY, MACRODIPRION NEMORALIS
2.1 Synthesis of Fragment A 14
2.2 Synthesis of Fragment B 16
2.3 Coupling of Fragment A and B 17
2.4 Conclusion 19
Chapter 3: EXPERIMENTAL SECTION
3.1 General Information 21
3.2 Supporting Information 25
PART II : SYNTHETIC STUDIES TOWARDS THE TOTAL SYNTHESIS OF IRIOMOTEOLIDE-1A
Chapter 1: INTRODUCTION
1.1 Background 43
1.2 Reported Synthetic Studies 45
1.3 Retrosynthetic Analysis 57
Chapter 2: SYNTHESIS OF FRAGMENT D
2.1 Synthesis of Isomer of Fragment D, 89 66
2.2 Synthesis of Fragment D 74
Chapter 3 : \quad SYNTHESIS OF FRAGMENT E
3.1 The Julia-Kocienski Coupling Strategy 80
3.2 The Olefin Metathesis Strategy 90
3.3 Synthesis of fragment \mathbf{E} 98
Chapter 4 : \quad NEW SYNTHETIC STRATEGY
4.1 Coupling of $\mathbf{8 5}$ and Fragment \mathbf{G} 108
4.2 Conclusion 110
Chapter 5 : EXPERIMENTAL SECTION
5.1 General Information 113
5.2 Supporting Information 117

Appendix

SUMMARY

Conjugate addition of Grignard reagents to α, β-unsaturated esters is one of the most convergent strategies for the construction of $\mathrm{C}-\mathrm{C}$ bonds. Our group has previously developed a highly efficient CuI-Tol-BINAP-catalyzed asymmetric conjugate using Grignard reagents. The absolute stereochemistry of the newly introduced alkyl group can easily be controlled by using the enantiomer of the ligand. Therefore, one of the highlights in this thesis is to demonstrate the versatility of our group's asymmetric conjugate addition for synthesis of natural products.

In the first part of this thesis, an elegant display of the CuI-Tol-BINAPcatalyzed asymmetric conjugate addition is established in the total synthesis of sex pheromone of the pine sawfly, Macrodiprion Nemoralis (SRRS-1). The key features of our strategy are: (I) one-pot DIBAL-H reduction-Wittig olefination, (II) olefin cross metathesis of fragment \mathbf{A} and fragment \mathbf{B}, and (III) a CuI-Tol-BINAP-catalyzed asymmetric conjugate addition using Grignard reagents in good yields and excellent stereoselectivities.

In the final part of this thesis, the key fragment of a diasteoremer of iriomoteolide-1a (136) was synthesized via a convergent synthetic strategy that featured the use of our group's asymmetric conjugate addition and Paterson aldol. The synthesis also demonstrated a successful intermolecular Yamaguchi esterification between two elaborate molecular fragments. As excellent enantio- and distereocontrol was achieved during the synthesis, a single isomer was isolated towards the end of the synthesis.

Index of Abbreviations

δ	chemical shift
Δ	reflux
${ }^{\circ} \mathrm{C}$	degree centrigrade
ABq	AB quartet
Ac	acetyl
acac	acetoacetonate
AcCl	acetyl chloride
ACCN	azo-bis-cyclohexylcarbonitrile
AcOH	acetic acid
$\mathrm{Ac}_{2} \mathrm{O}$	acetic anhydride
AIBN	azo-bis-isobutyronitrile
AllylBr	allylbromide
aq.	aqueous
$9-\mathrm{BBN}$	9-borabicyclo[3.3.1]nonane
BINAP	2,2'-Bis(diphenylphosphino)-1,1'binaphthyl
BINOL	1,1'-Bi-2-napthol
B:	Lewis base
Bn	benzyl
BOC	tert-butoxycarbonyl
br s	broad singlet
BuLi	butyl lithium
Bz	benzoyl
Cacld	calculated
Cat.	catalytic
Cbz	benzyloxycarbonyl
CDCl_{3}	deuterated chloroform
COSY	correlated spectroscopy
Cp	cyclopentadienyl
CSA	camphorsulfonic acid
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	dichoromethane
CHCl_{3}	chloroform

cm^{-1}	inverse centimeter
Cy	cyclohexane; cyclohexanyl
d	doublet
DABCO	1,4-diazabicyclo[2.2.2]octane
dba	dibenzylidene acetone
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCC	1,3-dicyclohexylcarbodiimide
dd	doublets of doublet
ddd	doublets of doublets of doublet
de	diastereomeric excess
DIBAL-H	diisobutylaluminum hydride
DIEA	diisopropylethylamine
DIPBr	B-bromodiisopinocampheylborane
DMAP	4-(N, N-dimethylamino)pyridine
DME	1,2-dimethoxyethane
DMF	dimethylformamide
DMP	Dess-Martin periodinane
DMSO	dimethyl sulfoxide
dq	doublets of quartet
dt	doublets of triplet
EDC	1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride
ee	enantiomeric excess
EI	electron impact ionization
equiv.	equivalent
ESI	electronspray ionization
Et	ethyl
ether	diethyl ether
$\mathrm{Et}_{3} \mathrm{~N}$	triethylamine
EtOAc	ethyl acetate
EtOH	ethanol
FTIR	Fourier transform infrared spectroscopy
g	gram
h	hour
H	hydrogen

hept	heptet
Hex	hexane
HMBC	heteronuclear multiple bond correlation
HMPA	hexamethylphosphoramide
HMPT	hexamethylphosphorous triamide
HMQC	heteronuclear multiple quantum correlation
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectroscopy
Hz	Hertz
IC	Inhibitory concentration
IR	infrared
Ipc	isopinocampheyl
$i-\operatorname{Pr}$	isopropyl
J	coupling constants
kg	kilogram
KHMDS	potassium bis(trimethylsilyl)amide
L.A.	Lewis acid
LDA	lithium diisopropylamide
M	concentration ($\mathrm{mol} / \mathrm{dm}^{-3}$)
M^{+}	parent ion peak (mass spectrum)
m	multiplet
m-CPBA	meta-chloroperoxybenzoic acid
Me	methyl
MeCN	acetonitrile
MEM	2-methoxyethoxy methyl
MeOH	methanol
mg	milligram
MHz	Megahertz
min	minute
mmol	millimoles
mol	moles
MS	mass spectrum
Ms	methanesulfonyl
N	concentration (normality)

NaHMDS	Sodium hexamethyl disilazide
NBS	N -bromosuccinimide
$n-\mathrm{Bu}$	n-butyl
nmr	nuclear magnetic resonance
NMP	N-methyl-2-pyrrolidone
NOESY	nuclear Overhauser enhancement spectroscopy
N.R.	no reaction
obs.	observed
OTf	trifluoromethanesulfonate
PBr_{3}	phophorus tribromide
PCC	pyridinium chlorochromate
Pd / C	palladium on carbon
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	tetrakis(triphenylphosphine)palladium(0)
Ph	phenyl
PhH	benzene
PhMe	toluene
PMB	p-methoxybenzyl
PMBz	p-methoxybenzoyl
PMP	p-methoxyphenyl
ppm	parts per million
PPTS	pyridinium p-toluenesulfonate
Py	pyridine
PYBOX	bis(oxazolinyl)pyridine
q	quartet
qd	quartets on doublet
quint.	quintet
rt.	room temperature
RBF	round bottom flask
R_{f}	retention factor
(R)-Tol-BINAP	(R)-(+)-2,2'-Bis(di-p-tolylphosphino)-1,1'-binaphthyl
s	singlet
sat'd	saturated
s-Bu	sec-Butyl
(S)-Tol-BINAP	(S)-(+)-2,2'-Bis(di-p-tolylphosphino)-1,1'-binaphthyl

t	triplet
TBAF	tetrabutylammonium fluoride
TBDPS	tert-butyldiphenyl silyl
t-BOC	tert-butoxycarbonyl
TBS	tert-butyldimethyl silyl
t-Bu	tert-butyl
td	triplets of doublet
tdd	triplets of doublets of doublet
TES	triethylsilyl
TFA	trifluoroacetic acid
TfOH	triflate acid
Tf 2 O	Triflate anhydride
THF	tetrahydrofuran
THP	tetrahydropyran
TIPS	triisopropyl silyl
TLC	thin layer chromatography
TMSCl	trimethylsilyl chloride
Ts	p-toluenesulfonyl
T.S.	transition state
vol	volume

Part I

SYNTHESIS OF SEX PHEROMONE OF

THE PINE SAWFLY, MACRODIPRION

NEMORALIS

ChAPTER 1

Introduction

1.1 BACKGROUND

1.1.1 Structural and Biological Aspects of Sex Pheromone of the Pine Sawfly, Macrodiprion nemoralis

In 1999, Hedenström ${ }^{1}$ and co-worker have identified the sex pheromone in the females of Macrodiprion nemoralis as (2S,3R,7R,9S)-3,7,9-trimethyl-2-tridecyl acetate (SRRS-1) (Figure 1.1). It has an overall chain length consisting of 13 carbons, with methyl branching on carbons 3,7 and 9 .

Figure 1.1 Sex pheromone in females of Macrodiprion nemoralis
The Diprionidae are a small family of conifer-feeding sawflies with about 128 species worldwide. ${ }^{2}$ Macrodiprion nemoralis is one of the largest diprionid species in Europe. In addition, they are commonly known as pine sawflies because they are severe pests on pine trees. ${ }^{3}$ Hence, population of the sawflies needs to be controlled. Control measures can be applied through sex pheromones by using mass trapping. In this respect, Hedenström et al. have reported that a synthetic mixture of 3,7,9-trimethyl-2-tridecyl acetate isomers was capable of strongly attracting the males of Macrodiprion nemoralis. ${ }^{1,4}$

[^0]
1.2 REPORTED Synthetic Studies

1.2.1 Reported Syntheses of Sex Pheromone of the Pine Sawfly, Macrodiprion nemoralis

Due to the potent biological activity, the stereoisomers of 3,7,9-trimethyl-2tridecyl acetate (1) have attracted interest as targets for total synthesis. There have been two total syntheses reported so far, namely, the one due to Hedenström et al. and the working of Högberg et al. ${ }^{5,6}$

The first stereoselective synthesis of the sixteen stereoisomers of 3,7,9-trimethyl-2-tridecyl acetate (1) by Karlsson and Hedenström ${ }^{5}$ in year 1999, was based on two principal modules: optically pure stereoisomers of 2,4-dimethyloctan-1-ol (3) and cis-3,4-dimethyl- γ-butyrolactone (4, Figure 1.2). The authors employed the ring opening of either $(2 S, 3 S)$ - or $(2 R, 3 R)$-3,4-dimethyl- γ-butyrolactone (4) using a pure isomer of 1-lithio-2,4-dimethyloctane, followed by Huang-Minlon reduction of the resulting keto alcohol to construct the natural product.

[^1]

2

SS-, SR-, RS-, RR-3

SS-, RR-4

Figure 1.2 Retrosynthetic analysis of sixteen stereoisomers of $\mathbf{1}$ by Hedenström
Syntheses of the four individual stereoisomers of 2,4-dimethyloctan-1-ol (3) began with acylation of the appropriate enantiomer of pseudoephedrine with propionic anhydride to furnish the corresponding amide. ${ }^{7,8}$ The amide was treated with LDA to give the (Z)-enolate, followed by alkylation with 1 -iodobutane and subsequently subjected to reductive hydrolysis with lithium-borane pyrrolidine complex to provide (R)- or (S)-2-methylhexane-1-ol (R - or S-5) respectively. The R or $S-5$ was then transformed into the corresponding iodoalkanes R - or S-6. One of the iodoalkanes R - or $S-6$ was reacted with the (Z)-enolate prepared from the enantiomer of pseudoephedrine. The resulting anti and syn products were reduced by lithiumborane pyrrolidine complex to deliver four individual stereoisomers of alcohol 3 (Scheme 1.1).

[^2]
$\boldsymbol{R R}$-, $\boldsymbol{S S}$-pseudoephedrine

1. Propionic anhydride, THF
2. a) 2 eq. LDA, LiCl b) \boldsymbol{R} - or $\boldsymbol{S}-\mathbf{6}$
3. BH_{3}. THF, pyrrolidine, BuLi

Scheme 1.1 Synthesis of four stereoisomers of 2,4-dimethyloctan-1-ol 3
The alcohols 3 were further converted into the alkyllithiums and reacted with the preferred enantiomer of cis-3,4-dimethyl- γ-butyrolactone (4). Huang-Minlon reduction of the resulting keto alcohols proceeded smoothly to provide eight erythro isomers (erythro-7) individually. The approach to the eight threo-isomers (threo-7) involved the Mitsunobu inversion at C-2 position of the corresponding erythroisomers (erythro-7). Acylation of the sixteen individual erythro-7 and threo-7 isomers provided the final sixteen stereoisomers of 3,7,9-trimethyl-2-tridecyl acetate (1) (Scheme 1.2).

Scheme 1.2 Synthesis of all sixteen stereoisomers of 3,7,9-trimethyl-2-tridecyl acetate (1)
The second total synthesis by Karlsson and Högberg was published a year later. ${ }^{6}$ The target was divided into 2 modules, the tetrahydrothiophene building block 10 and the same module 3 which was also employed by Hedenström (Scheme 1.3). This is a more direct approach to give the threo-isomers without applying the Mitsunobu reaction.

$\sqrt{8}$

9
10

Scheme 1.3 Högberg's retrosynthetic analysis of SRRS-1
The key enantiopure building block 10 was envisioned to arise from a diastereoselective asymmetric 1,3-dipolar cycloaddition between thioether $\mathbf{1 1}$ and the enantiopure camphorsultam amide 12, which provided 13 smoothly in good yield with high diastereoselectivity. ${ }^{9}$ Finally, the synthesis of building block 10 was completed by reductive removal of the camphorsultam using LiAlH_{4} and conversion of the alcohol group into a bromide (Scheme 1.4).

[^3]

Scheme 1.4 Synthesis of enantiopure tetraphydrothiophene building block 10
The alkylation between bromide 14 and the deprotonated dithiane gave $\mathbf{9}$ in excellent yield. ${ }^{10}$ Subsequent alkylation, Raney-Ni reduction under mild condition and acylation yielded the desired product (Scheme 1.5)

Scheme 1.5 Synthesis of the sex pheromone of Macrodiprion nemoralis

[^4]
1.3 Retrosynthetic Analysis

The principal challenge in the synthesis of the sex pheromone of Macrodiprion nemoralis is how to stereoselectively introducing the C3, C7 and C9 methyl groups into the molecule. We felt that the challenge could be efficiently addressed by employing the highly efficient CuI-Tol-BINAP-catalyzed asymmetric conjugate addition of Grignard reagents to α, β-unsaturated esters previously developed in our group. ${ }^{11}$ Herein, we report the enantioselective synthesis of the sex pheromone of Macrodiprion nemoralis (SRRS-1). However, the final product contains 10% amount of inseparable impurities.

To maximize synthetic convergency, $S R R S$ - $\mathbf{1}$ was divided into two modules (Scheme 1.6) via disconnection at C5-C6 bond, affording fragment \mathbf{A} and fragment \mathbf{B}. An olefin metathesis step could be performed to join these terminal olefins together. Reductive hydrogenation followed by acylation would complete the total synthesis.

Scheme 1.6 Our retrosynthetic analysis of $S R R S-1$

[^5]The key building block \mathbf{A} has a syn-1,3-dimethyl array with a vinyl group at the terminal. It can be seen to arise from the reduction of ester $\mathbf{1 8}$ to alcohol followed by elimination to give the terminal olefin. The syn-deoxypropionate unit $\mathbf{1 8}$ can be constructed from the asymmetric conjugate addition adduct 17 . Ester $\mathbf{1 7}$ can subsequently be obtained from ester 16 via a one-pot DIBAL-H reduction-Wittig olefination. The first stereogenic methyl center in ester $\mathbf{1 6}$ can be introduced from olefin 15 by an asymmetric conjugate addition (Scheme 1.7).

Scheme 1.7 Retrosynthetic analysis of fragment A
Fragment B is a terminal olefin and can be synthesized from aldehyde 23 by Wittig olefination. The desired aldehyde 23 can be readily obtained from methyl Grignard addition to ester 21 followed by DIBAL-H reduction of the conjugate addition product 22. Subsequently, the olefin 21 can be made from ester 20 via a onepot DIBAL-H reduction-Wittig olefination. The synthesis of fragment B commences with the TBS-protection of precursor 19, which is cheap and commercially available (Scheme 1.8).

Scheme 1.8 Retrosynthetic analysis of fragment B

Chapter 2

Synthesis of Sex Pheromone of the Pine Sawfly, Macrodiprion Nemoralis

2.1 Synthesis of Fragment A

One of the highlights in this total synthesis was to demonstrate the versatility of our group's CuI-Tol-BINAP catalyzed conjugate addition of Grignard reagents on natural product synthesis (Scheme 2.1). Conjugate addition of Grignard reagents to α, β-unsaturated esters is one of the most convenient synthetic methods for the construction of $\mathrm{C}-\mathrm{C}$ bonds. In addition, not only are α, β-unsaturated esters easier to handle and commercially available, a larger scope of useful chemical transformations can also be applied. Moreover, the reactions require only mild conditions and simple procedures. The absolute stereochemistry of the product can easily be controlled by using the enantiomer of the ligand or by using the geometrical isomer of the starting material. Herein, this methodology was utilized in our total synthesis.

Scheme 2.1 Asymmetric conjugate addition of Grignard reagents to α, β-unsaturated ester The preparation of key building block A started from the commercially available methyl trans-2-butenoate (15). The first stereogenic center in ester $\mathbf{1 6}$ was introduced by butyl Grignard using the (R)-enantiomer of Tol-BINAP via asymmetric conjugate addition to give methyl ester 16 in 97% ee and 86% yield (Scheme 2.2). A one-pot DIBAL-H reduction followed by Wittig olefination provided the trans-enoate isomer 17 in 66% yield ($E / Z=88: 12$). The second asymmetric conjugate addition was performed with the (S)-enantiomer of Tol-BINAP under the same catalytic conditions
to afford the syn-deoxypropionate unit 18. Neat bromine was used as an enolatetrapping reagent in the quenching step of the conjugate addition. This bromomethyl ester $\mathbf{1 8}$ was used in the next step without purification and reduced to the alcohol by DIBAL-H. Without further purification, the alcohol was added zinc dust and glacial acetic acid ${ }^{12}$ to furnish the terminal olefin \mathbf{A} in 20% yield over three steps from the trans-enoate 17 and 92% de. ${ }^{13}$ Assuming an analogous reaction mechanism, synstereochemistry was assigned based on enantiomeric Tol-BINAP ligands selected in each methyl addition leading to the deoxypropionate units \mathbf{A}.

1. DIBAL-H, Hex
$-40^{\circ} \mathrm{C}, 2 \mathrm{~h}$
2. $\mathrm{Zn}, \mathrm{AcOH}, \mathrm{THF}$ reflux 16 h 20% for 3 steps

A (de = 92\%)

(R)-Tol-BINAP

(S)-Tol-BINAP

Scheme 2.2 Synthesis of fragment A

[^6]
2.2 Synthesis of Fragment B

The synthesis of fragment \mathbf{B} commenced with the protection of (-)-methyl-Llactate (19) by tert-butyldimethylchlorosilane (Scheme 2.3). The protection proceeded smoothly and gave ester $\mathbf{2 0}$ in quantitative yield. One-pot DIBAL-H reduction-Wittig olefination afforded the trans-enoate 21 in 69% yield ($E / Z=78 / 22$). Subsequently, a methyl moiety was stereoselectively introduced into olefin 21 using (S)-Tol-BINAP via asymmetric conjugate addition to provide methyl ester 22 in 60% yield with $>99 \%$ de. Moreover, the reaction could be carried on a large scale (15 mmol). DIBAL-H reduction to aldehyde 23 followed by Wittig olefination ${ }^{14}$ furnished the desired fragment \mathbf{B}.

Scheme 2.3 Synthesis of fragment B

[^7]
2.3 Coupling of Fragment A and B

With the fragment \mathbf{A} and \mathbf{B} in hand, we then carried out intermolecular olefin cross metathesis. Olefin cross-metathesis has gained widespread application in organic synthesis since the development of ruthenium-carbene complexes. ${ }^{15}$ However, this method is plagued by several limitations, for example self-coupling, poor reactivity, low yield, polymerization and unpredictable reaction scope. Nevertheless, it is still worthwhile to incorporate metathesis into the synthesis plan because of its elegance in using a mild reaction condition and few number of steps.

All the catalyst failed to give any cross metathesis product $\mathbf{2 4}$ except for the second generation Hoveyda-Grubbs catalyst (Table 2.1, entry 4). Nonetheless, 31\% of fragment \mathbf{B} was recovered in the reaction. Attempts to obtain the product $\mathbf{2 4}$ in clean forms proved futile because there were significant amounts of self-coupled and polymerized side products. Therefore, the residue was taken directly to the next step.

[^8]Table 2.1 Cross metathesis with fragment A and B

Entry	Catalyst	Yield (\%)
1	${\text { Grubbs } 1^{\text {st }}}^{\text {Grubbs 2 }}$ nd	N.R.
2	Hoveyda-Grubbs 1 $^{\text {st }}$	N.R.
3	Hoveyda-Grubbs 2 $^{\text {nd }}$	N.R.
4	To be confirmed in the last step b (31\% recovered precursor B)	

${ }^{\text {a }}$ All the reactions were carried out in oven dried glassware with 1 equiv of \mathbf{A} and 1 equiv of \mathbf{B} with 12 $\mathrm{mol} \%$ catalyst loading. (Trifluoromethyl)benzene was degassed with argon. The catalyst was added in one portion and the reaction was stirred continuously for 12 h . ${ }^{\mathrm{b}}$ The reaction was monitored using TLC and quenched when all of \mathbf{A} has reacted.

Grubbs $1^{\text {st }}$

Grubbs $2^{\text {nd }}$

Hoveyda-Grubbs $1^{\text {st }}$

Hoveyda-Grubbs $2^{\text {nd }}$

Reductive hydrogenation followed by acylation completed the synthesis of SRRS-1 in 39\% yield over three steps (Scheme 2.4). However, the nmr spectrum of the product indicated the presence of other impurities which interfered with the nmr signals of the desired product. The product contained 10\% of inseparable impurities.

Scheme 2.4 Synthesis of SRRS-1

2.4 Conclusion

In conclusion, $S R R S$-1 was synthesized via a convergent synthetic strategy that features the use of highly efficient CuI-Tol-BINAP-catalyzed asymmetric conjugate additions of Grignard reagents, which was previously developed in our group. Excellent enantio and diastereo-control were achieved during the additions. The synthesis also demonstrated an efficient as well as practical procedure for one pot DIBAL-H reduction-Wittig olefination and a successful intermolecular olefin crossmetathesis.

CHAPTER 3

Experimental Section

3.1 GENERAL INFORMATION

Experiments involving moisture and/or sensitive compounds were performed under a positive pressure of nitrogen in flame-dried glassware equipped with a rubber septum inlet. Solvents and liquid reagents were transferred by oven-dried syringes cooled in a dessicator or via double-tipped cannular needles. Reaction mixtures were stirred with Teflon-coated magnetic stirring bars unless otherwise stated. Moisture in non-volatile reagents/compounds was removed by the addition of the stated amount of anhydrous THF, followed by the removal of the solvent and traces of moisture in vacuo by means of an oil pump ($\sim 30 \mathrm{mmHg}, 23-50^{\circ} \mathrm{C}$) and subsequent purging with nitrogen.

All experiments were monitored by analytical thin layer chromatography (refer to section under "Chromatography"). Solvents were removed in vacuo under $\sim 30 \mathrm{mmHg}$ and heated with a water bath at $23{ }^{\circ} \mathrm{C}$ using Büchi rotary evaporator cooled with circulating ethylene glycol / water mixture (1:1) at $-5^{\circ} \mathrm{C}$.

Materials

Reagents were purified prior to use unless otherwise stated following the guidelines of Perrin and Armarego ${ }^{10}$. Solvents such as hexane, ethyl acetate, dichloromethane and water were freshly distilled prior to use. Anhydrous THF was obtained by distillation under nitrogen atmosphere from a deep purple solution resulting from sodium and benzophenone. Anhydrous dichloromethane was distilled over calcium hydride under nitrogen atmosphere. Azeotropic drying of starting materials or reagents was performed by the addition of the stated amount of

[^9]anhydrous tetrahydrofuran, ensued by azeotropic removal of tetrahydrofuran with traces of moisture in vacuo followed by subsequent purging with nitrogen.

Triethylamine, toluene and dimethyl sulfoxide were distilled over calcium hydride and stored over molecular sieves to maintain dryness. DMF was distilled over Linde type $4 \AA ́$ molecular sieve prior to usage. $1 N$ and $6 N$ hydrochloric acid was diluted from concentrated 37% solution using deionised water. $3 M$ and $6 M$ sodium hydroxide solution was prepared from sodium hydroxide pearls. Saturated solutions of ammonium chloride, sodium chloride, sodium bicarbonate, sodium carbonate and sodium sulphate were prepared from their respective solids.

Chromatography

Analytical thin layer chromatography was performed using Merck $60 \mathrm{~F}_{254}$ precoated silica gel plates (0.25 mm thickness). Subsequent to elution, plates were visualized using UV radiation (254 nm) on Spectroline Model ENF-24061/F 254 nm. Further visualization was possible by staining with basic solution of potassium permanganate or acidic solution of ceric molybdate followed by heating on a hot plate.

Flash column chromatography was performed using Merck Silica Gel 60 ($0.010-0.063 \mathrm{~nm}$) with freshly distilled solvents. Columns were typically packed as slurry and equilibrated with the appropriate solvent system prior to use. The solute was loaded neat or as a concentrated solution using the appropriate solvent system. The elution was assisted by applying pressure with an air pump.

Instruments \& Equipments

Infrared Spectroscopy

Infrared spectra were recorded on a Bio-Rad FTS 165 FTIR spectrometer. The oil samples were examined under neat conditions. Solid samples were analyzed as a KBr pressed-disk.

Optical Rotation

Optical rotations were measured in CHCl_{3} on a Schmidt + Haensdch polarimeter (Polartronic MH8) with 10.0 mm cell (c given in $\mathrm{g} / 100 \mathrm{~mL}$). Absolute configurations of the products were determined by comparison with known compounds. Concentration is denoted as c and was calculated as grams per milliliters ($\mathrm{g} / 100 \mathrm{~mL}$) whereas the solvent was indicated in parentheses (c, solvent).

Mass Spectroscopy

Mass Spectrometry (EI) spectra were recorded on a Thermo Finnigan Polaris Q GCMS. Mass Spectrometry (ESI and APCI) spectra were recorded on a Thermo Finnigan LCQ Deca XP Max. High Resolution Mass Spectrometry (EI, ESI, FAB) spectra were recorded on a Thermo Finnigan MAT 95 XP. MS and High Resolution Mass Spectrometry were reported in units of mass of charge ratio $(\mathrm{m} / \mathrm{z})$.

Nuclear Magnetic Resonance Spectroscopy

Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) and carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectroscopy were performed on a Bruker Avance 300, 400 and 500 NMR spectrometers.

Chemical shifts for ${ }^{1} \mathrm{H}$ NMR spectra are reported as δ in units of parts per million (ppm) downfield from TMS ($\delta 0.0$) and relative to the signal of chloroform- d ($\delta 7.260$, singlet) as the internal standard. Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublets of doublet); ddd (doublets of doublets of doublet); dddd (doublets of doublets of doublets of doublet); dt (doublets of triplet); or m (multiplets). The number of protons (n) for given resonance is indicated by nH . Coupling constants are reported as a J value in Hz. Carbon nuclear magnetic resonance spectra (${ }^{13} \mathrm{C}$ NMR) are reported as δ in units of parts per million (ppm) downfield from $\mathrm{SiMe}_{4}(\delta 0.0)$ and relative to the signal of chloroform- d ($\delta 77.03$, triplet). The proportion of diastereomers and geometric isomers was determined from the integration of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra.

Nomenclature

Systematic nomenclature for the compounds would follow the numbering system as defined by IUPAC. Compounds were named with assistance from CS Chemdraw Ultra 8.0 software.

3.2 SUPPORTING INFORMATION

Experimental Procedures and Characterization Data of Products

(2S,3R,7R,9S)-3,7,9-trimethyltridecan-2-yl acetate (1)

To a solution of $\mathbf{A}(0.154 \mathrm{~g}, 1.00 \mathrm{mmol})$ and $\mathbf{B}(0.228 \mathrm{~g}, 1.00 \mathrm{mmol})$ in (trifluoromethyl)benzene (60 mL) was added the 2nd generation Hoveyda-Grubbs catalyst ($75 \mathrm{mg}, 0.12 \mathrm{mmol}$) and the mixture was heated at $85^{\circ} \mathrm{C}$ for 12 h under N_{2}. The mixture was cooled to r.t. and concentrated under reduced pressure. The residue was passed to a short silica plug using 100% Hexane and used for the next step without further purification. The intermediate was dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$ and $10 \% \mathrm{Pd} / \mathrm{C}(0.05 \mathrm{~g}, 0.05 \mathrm{mmol})$ was added. The reaction mixture was stirred under hydrogen atmosphere (1 atm) at r.t. for 24 h . The mixture was filtered over celite and concentrated under reduce pressure. The intermediate was stirred overnight in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(15 \mathrm{~mL})$ with acetyl chloride $(0.314 \mathrm{~g}, 4.00 \mathrm{mmol})$ at r.t. The reaction mixture was concentrated under reduced pressure and purified by flash column chromatography (Hexane/Et $\mathrm{E}_{2} \mathrm{O} 30: 1$) to afford the desired product as colourless oil ($65.9 \mathrm{mg}, 39 \%$ yield, with 31% recovered starting material - ($3 S, 5 S$)-3,5-dimethylnon-1-ene A), contains 10% trace amount of non-separable impurities.
R_{f} value (hexane/Et ${ }_{2} \mathrm{O}$ 15: 1): 0.34
$[\alpha]_{\mathrm{D}}{ }^{20}=+11.2\left(c=1.13, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.83-4.77(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.64(\mathrm{~m}, 1 \mathrm{H})$, $1.46(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.01(\mathrm{~m}, 17 \mathrm{H}), 0.93-0.80(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.7,74.4,45.2,37.2,37.0,36.6,32.9,30.0,30.0$, 29.2, 24.3, 23.0, 21.4, 20.3, 20.2, 15.9, 14.5, 14.1.

FTIR (NaCl, neat): $v 2959,2928,2872,2858,1738,1246 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{O}_{2}(\mathrm{M}+1)$ 285.2785, found 285.2794.

(S)-methyl 3-methylheptanoate (16)

In a round bottom flask equipped with septum and stirring bar, (R)-Tol-BINAP (306 $\mathrm{mg}, 0.45 \mathrm{mmol})$ and $\mathrm{CuI}(57 \mathrm{mg}, 0.30 \mathrm{mmol})$ were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ for 20 minutes, concentrated in vacuo and then stirred in t-BuOMe (60 mL) till a bright yellow suspension was observed. Then, the mixture was cooled to $-40^{\circ} \mathrm{C}$ and n $\mathrm{BuMgBr}\left(30 \mathrm{~mL}, 3.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 90 \mathrm{mmol}\right)$ was added carefully into the reaction mixture. After stirring for 15 minutes, a solution of methyl crotonate (15) ($3.00 \mathrm{~g}, 30.0 \mathrm{mmol}$) in t-BuOMe (15 mL) was added dropwise over 10 h via syringe pump. After stirring at $-40^{\circ} \mathrm{C}$ for another 1 h , the reaction mixture was quenched with $\mathrm{MeOH}(20 \mathrm{~mL})$ and saturated $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$. The aqueous layer was extracted with
diethyl ether ($60 \mathrm{~mL} \times 3$) and the combined organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography (Hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 99: 1) to afford the desired product as coloursless oil ($4.08 \mathrm{~g}, 86 \%$ yield, $97 \% e e$).
R_{f} value (hexane/Et $\mathrm{E}_{2} \mathrm{O}$ 8: 1): 0.45
$[\alpha]_{\mathrm{D}}{ }^{25}=-3.4\left(c=1.2, \mathrm{CHCl}_{3}\right)$, lit. for (S)-enantiomer: $[\alpha]_{\mathrm{D}}{ }^{20}=-3.9\left(c=1.5, \mathrm{CHCl}_{3}\right)^{11}$ ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{dd}, J=6.0,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{dd}$, $J=8.1,14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.17(\mathrm{~m}, 6 \mathrm{H}), 0.92-0.87(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 173.8,51.3,41.6,36.5,30.3,29.1,22.7,19.7,14.0$.
FTIR (NaCl , neat): $v 1738 \mathrm{~cm}^{-1}$.
HRMS (EI) calcd. for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$ 158.1307, found [M] ${ }^{+}$158.1304.
The enantiomeric excess determined by chiral GC analysis, employing a Chiraldex GTA column (30 mx 0.25 mm), $60^{\circ} \mathrm{C}$, retention times (min): $\mathrm{t}_{1}=33.01$ (minor), $\mathrm{t}_{2}=$ 34.93 (major).
(S,E)-methyl 5-methylnon-2-enoate (17)

In a round bottom flask equipped with a rubber septum and a magnetic stirrer bar, (S)methyl 3-methylheptanoate $16(0.158 \mathrm{~g}, 1.00 \mathrm{mmol})$ was dissolved in hexane $(1.0 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (pre-cooled to $-78^{\circ} \mathrm{C}, 1.1 \mathrm{~mL}, 1.0 \mathrm{M}$ in heptane, 1.1 mmol) was added carefully over at least 2 portions. After stirring for another 1 h , MeOH (pre-cooled to $-78^{\circ} \mathrm{C}, 0.096 \mathrm{~g}, 3.3 \mathrm{mmol}$) was added carefully over 2 portions and stirred for a further half an hour until a white suspension was observed. The ylide

[^10]$\mathrm{MeO}_{2} \mathrm{CCH}=\mathrm{PPh}_{3}(0.669 \mathrm{~g}, 2.00 \mathrm{mmol})$ was added in one portion followed by THF $(5.0 \mathrm{~mL})$ and the reaction mixture was allowed to warm slowly to room temperature over 30 minutes. The reaction mixture was stirred for another 30 minutes and refluxed for an additional 6 h . After that, the reaction mixture was cooled to room temperature and diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and saturated potassium sodium tartrate $(5 \mathrm{~mL})$. The mixture was stirred until a clear biphasic separation was observed. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL} \times 2)$, brine ($15 \mathrm{~mL} \times 1$) and dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography (hexane/EtOAc 100: 1) to afford the desired trans-product as colorless oil $(0.122 \mathrm{~g}, 66 \%$ yield; 75% total yield for the mixture of E / Z isomers, $E / Z=88: 12)$.
R_{f} value (hexane $/ \mathrm{Et}_{2} \mathrm{O}$ 10: 1): 0.34
$[\alpha]_{\mathrm{D}}{ }^{20}=-1.28\left(c=1.09, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.00-6.90(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{dt}, J=1.4,15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.72(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.26(\mathrm{~m}, 6 \mathrm{H})$, $0.90-0.88(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.0,148.6,121.8,51.3,39.7,36.3,32.5,29.2,22.8$, 19.5, 14.0.

FTIR (NaCl , neat): $v 2957,2926,2872,2859,1728,1655,1321,1269,1173 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}_{2}(\mathrm{M}+1)$ 185.1542, found 185.1538.
(3S,5S)-methyl 3,5-dimethylnonanoate (18’)

In a round bottom flask equipped with a rubber septum and a magnetic stirrer bar, (S)-Tol-BINAP $(0.020 \mathrm{~g}, 0.03 \mathrm{mmol})$ and $\mathrm{CuI}(0.004 \mathrm{~g}, 0.02 \mathrm{mmol})$ were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ for 20 minutes, concentrated in vacuo and then stirred in t-BuOMe (4 mL) till a bright yellow suspension was observed. The mixture was then cooled to -20 ${ }^{\circ} \mathrm{C}$ and $\mathrm{MeMgBr}\left(0.83 \mathrm{~mL}, 3.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 2.50 \mathrm{mmol}\right)$ was added carefully into the reaction mixture. After stirring for 15 minutes, a pre-cooled solution of $\mathbf{1 7}$ $(0.184 \mathrm{~g}, 1.00 \mathrm{mmol})$ in t-BuOMe (1.2 mL) was added dropwise over 1 h via syringe pump. After stirring at $-20^{\circ} \mathrm{C}$ for another one and an half hour, the reaction mixture was quenched with $\mathrm{MeOH}(1 \mathrm{~mL})$, and $1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ solution (4 mL). The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL} \times 3)$ and the combined organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography (hexane/ $\mathrm{Et}_{2} \mathrm{O} 90: 1$) to afford the desired product as colourless oil ($0.136 \mathrm{~g}, 68 \%$ yield; $92 \% \mathrm{de}$). The distereoselectivy was determined in ${ }^{13} \mathrm{C}$ NMR using an average of two well resolved carbon signals and compared to a diastereomeric mixture of methyl 3,5-dimethylnonanoate. Assuming an analogous reaction mechanism, the syn-stereochemistry was assigned based on the enantiomeric Tol-BINAP ligand selected in 1,4-Michael addition of methylmagnesium bromide to an α, β-unsaturated ester.

R_{f} value (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 8: 1): 0.48
$[\alpha]_{\mathrm{D}}{ }^{20}=-2.97\left(c=1.8, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.03(\mathrm{~m}, 2 \mathrm{H})$, $1.57-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.19(\mathrm{~m}, 6 \mathrm{H}), 1.07-1.02(\mathrm{~m}, 2 \mathrm{H}), 0.93-0.85(\mathrm{~m}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.6,51.2,44.6,41.4,36.3,29.9,29.0,27.8,22.9$, 20.3, 20.0, 14.0.

FTIR (NaCl, neat): $v 2957,2928,2872,1742,1173 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{O}_{2}(\mathrm{M}+1)$ 201.1855, found 201.1852.
(3S,5S)-3,5-dimethylnon-1-ene (A)

In a round bottom flask equipped with septum and stirring bar, (S)-Tol-BINAP $(0.061$, $0.09 \mathrm{mmol})$ and $\mathrm{CuI}(0.011 \mathrm{~g}, 0.06 \mathrm{mmol})$ were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ for 20 minutes, concentrated in vacuo and then stirred in t-BuOMe (12 mL) till a bright yellow suspension was observed. Then, the mixture was cooled to $-20{ }^{\circ} \mathrm{C}$ and $\mathrm{MeMgBr}\left(3 \mathrm{~mL}\right.$, Aldrich 3.0 M solution in $\mathrm{Et}_{2} \mathrm{O}, 9.00 \mathrm{mmol}$) was added carefully into the reaction mixture. After stirring for 15 minutes, a solution of (S, E)-methyl 5-methylnon-2-enoate $17(0.552 \mathrm{~g}, 3.00 \mathrm{mmol})$ in t-BuOMe (3.6 mL) was added dropwise over 2 h via syringe pump. After stirring at $-20{ }^{\circ} \mathrm{C}$ for another 1 h , the reaction mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and bromine ($0.44 \mathrm{~mL}, 9.00 \mathrm{mmol}$) was added slowly. The reaction mixture was allowed to warm to $-40^{\circ} \mathrm{C} . \mathrm{MeOH}(1 \mathrm{~mL})$ was added followed by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL). The aqueous layer was extracted with diethyl ether ($20 \mathrm{~mL} \times 2$) and the combined organic extracts were washed with saturated $\mathrm{NaS}_{2} \mathrm{O}_{3}$ solution ($20 \mathrm{~mL} \times 2$), dried over anhydrous sodium sulphate, filtered and concentrated in vacuo. The crude intermediate was passed through a short silica plug using 20: 1 Hexane/Diethyl Ether and used for the next
step without purification. The intermediate was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$, cooled to $-78{ }^{\circ} \mathrm{C}$ and DIBAL-H (6 mL , Aldrich 1.0 M solution in Heptane) was added. The reaction mixture was allowed to warmed to $-40^{\circ} \mathrm{C}$ and stirred for another 2 h . After that, saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(3 \mathrm{~mL}), \mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $6 \mathrm{~N} \mathrm{HCl}(6 \mathrm{~mL})$ were added. The mixture was stirred vigorously at room temperature till a clear biphasic separation was observed. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($10 \mathrm{~mL} \times 2$), and the combined organic extracts were washed with saturated NaHCO_{3} solution (20 mL), dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting residue was passed through a short silica plug using 4: 1 Hexane/Diethyl Ether, and used for the next step without further purification. The intermediate was dissolved in THF (4 mL). Subsequently, Zn dust (1.30 g) and glacial acetic acid (2.4 mL) were added. The mixture was refluxed overnight, cooled after the reaction completed, filtered over celite and diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The combined organic extracts were washed with $1 \mathrm{~N} \mathrm{NaOH}(20 \mathrm{~mL})$ and dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The residue was purified by flash chromatography (Hexane 100%) to afford the desired product as colourless oil ($30.8 \mathrm{mg}, 20 \%$ yield, $92 \% d e$), contains a trace amount of non-separable impurities. Distereoselectivity of this product was assigned on the basis of enantiomeric Tol-BINAP ligands selected in the methyl addition leading to ($3 S, 5 S$)-methyl 3,5-dimethylnonanoate 18’.
R_{f} value (hexane 100%): 0.71
$[\alpha]_{\mathrm{D}}{ }^{20}=+14.0\left(c=0.83, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.70-5.58(\mathrm{~m}, 1 \mathrm{H}), 4.99-4.88(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.18(\mathrm{~m}$, $1 \mathrm{H}), 1.42(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 6 \mathrm{H}), 0.99-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.91-0.83(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.9,112.3,44.5,37.3,35.6,30.2,29.2,23.1,21.3$, 19.5, 14.1.

FTIR (NaCl, neat): v 2959, 2926, 2872, 2860, 1641, 1458, $1377 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{23}(\mathrm{M}+1)$ 155.1800, found 155.1803.

(S)-methyl 2-(tert-butyldimethylsilyloxy)propanoate (20)

To a round bottom flask equipped with a rubber septum and a magnetic stirrer bar was added imidazole ($0.136 \mathrm{~g}, 2.00 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. Then (-)-methyl-L-lactate (19) $(0.104 \mathrm{~g}, 1.00 \mathrm{mmol})$ was added dropwise and the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$. Tert-butylchlorodimethylsilane $(0.226 \mathrm{~g}, 1.50 \mathrm{mmol})$ was added slowly and the resulting reaction mixture was stirred overnight at room temperature. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} x \mathrm{3})$. The combined organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography (hexane/EtOAc 50: 1) to afford the desired product as pale yellow oil ($0.216 \mathrm{~g}, 99 \%$ yield).
R_{f} value (hexane/EtOAc 9: 1): 0.55 .
$[\alpha]_{\mathrm{D}}{ }^{20}=-29\left(c=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.32(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~d}, J=6.8$
$\mathrm{Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.5(\mathrm{C}), 68.4(\mathrm{CH}), 51.7\left(\mathrm{CH}_{3}\right), 25.6\left(\mathrm{CH}_{3}\right), 21.3$ $\left(\mathrm{CH}_{3}\right), 18.3(\mathrm{C}),-5.0\left(\mathrm{CH}_{3}\right),-5.3\left(\mathrm{CH}_{3}\right)$.

FTIR (NaCl , neat): $v 2953,1759,1740,1373,1362,1148 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+1)$ 219.1416, found 219.1419.

(S,E)-methyl 4-(tert-butyldimethylsilyloxy)pent-2-enoate (21)

In a round bottom flask equipped with a rubber septum and a magnetic stirrer bar, the ester $20(0.218 \mathrm{~g}, 1.00 \mathrm{mmol})$ was dissolved in hexane (1.0 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (pre-cooled to $-78{ }^{\circ} \mathrm{C}, 1.1 \mathrm{~mL}, 1.0 \mathrm{M}$ in heptane, 1.1 mmol) was added carefully over at least 2 portions. After stirring for another $1 \mathrm{~h}, \mathrm{MeOH}$ (pre-cooled to $78^{\circ} \mathrm{C}, 0.096 \mathrm{~g}, 3.3 \mathrm{mmol}$) was added carefully over 2 portions and stirred for a further half an hour until a white suspension was observed. The ylide $\mathrm{MeO}_{2} \mathrm{CCH}=\mathrm{PPh}_{3}$ $(0.669 \mathrm{~g}, 2.00 \mathrm{mmol})$ was added in one portion followed by THF $(5.0 \mathrm{~mL})$ and the reaction mixture was allowed to warm slowly to room temperature over 30 minutes. The reaction mixture was stirred for another 30 minutes and refluxed for an additional 6 h . After that, the reaction mixture was cooled to room temperature and diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and saturated potassium sodium tartrate $(5 \mathrm{~mL})$. The mixture was stirred until a clear biphasic separation was observed. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} x$ 3). The combined organic extracts were washed with saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL} \times 2)$, brine ($15 \mathrm{~mL} \times 1$) and dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography (hexane/EtOAc 100: 1) to afford the desired trans-product as colorless oil $(0.169 \mathrm{~g}, 69 \%$ yield; 88% total yield for the mixture of E / Z isomers, E / Z = 78: 22).
R_{f} value (hexane/EtOAc 10: 1): 0.54 .
$[\alpha]_{\mathrm{D}}{ }^{20}=+1.0\left(c=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.93(\mathrm{dd}, J=4,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{dd}, J=1.4,15.2$
$\mathrm{Hz}, 1 \mathrm{H}), 4.46-4.43(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.06$ (s, 3H), $0.05(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 167.2(\mathrm{C}), 152.2(\mathrm{CH}), 118.5(\mathrm{CH}), 67.6(\mathrm{CH}), 51.5$ $\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{3}\right), 23.5\left(\mathrm{CH}_{3}\right), 18.2(\mathrm{C}),-4.9\left(\mathrm{CH}_{3}\right)$.

FTIR (NaCl, neat): $v 2930,1715,1659,1368,1152,837,775 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})$ 267.1392, found 267.1394.
(3R,4S)-methyl 4-(tert-butyldimethylsilyloxy)-3-methylpentanoate (22)

In a round bottom flask equipped with a rubber septum and a magnetic stirrer bar, (S)-Tol-BINAP ($0.020 \mathrm{~g}, 0.03 \mathrm{mmol}$) and $\mathrm{CuI}(0.004 \mathrm{~g}, 0.02 \mathrm{mmol})$ were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ for 20 minutes, concentrated in vacuo and then stirred in t-BuOMe (4 mL) till a bright yellow suspension was observed. The mixture was then cooled to -20 ${ }^{\circ} \mathrm{C}$ and $\mathrm{MeMgBr}\left(0.83 \mathrm{~mL}, 3.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 2.50 \mathrm{mmol}\right)$ was added carefully into the reaction mixture. After stirring for 15 minutes, a pre-cooled solution of 21 $(0.244 \mathrm{~g}, 1.00 \mathrm{mmol})$ in t-BuOMe $(1.2 \mathrm{~mL})$ was added dropwise over 1 h via syringe pump. After stirring at $-20^{\circ} \mathrm{C}$ for another one and an half hour, the reaction mixture was quenched with $\mathrm{MeOH}(1 \mathrm{~mL})$, and $1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ solution (4 mL). The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL} \times 3)$ and the combined organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography (hexane $/ \mathrm{Et}_{2} \mathrm{O}$ 90: 1) to afford the desired product as colourless oil ($0.156 \mathrm{~g}, 60 \%$ yield; $>99 \%$ de). The distereoselectivy
was determined in ${ }^{13} \mathrm{C}$ NMR using an average of two well-resolved carbon signals and compared to a diastereomeric mixture (anti: syn 95: 5) of methyl 4-(tert-butyldimethylsilyloxy)-3-methylpentanoate. Assuming an analogous reaction mechanism, the anti-stereochemistry was assigned based on the enantiomeric TolBINAP ligand selected in 1,4-Michael addition of methylmagnesium bromide to an α, β-unsaturated ester.
R_{f} value (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 2: 1): 0.55 .
$[\alpha]_{\mathrm{D}}{ }^{20}=+24.5\left(c=1.13, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.62(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=4.4,14.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.06(\mathrm{dd}, J=9.4,14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$, $0.91(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 174.1,71.5,51.3,37.7,36.8,25.8$ (3C), 20.6, 18.0, 16.2, -4.3, -4.9.

FTIR (NaCl , neat): $v 2957,2930,1740,1252 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+1)$ 261.1886, found 261.1886.
(3R,4S)-4-(tert-butyldimethylsilyloxy)-3-methylpentanal (23)

In a round bottom flask equipped with a rubber septum and a magnetic stirrer bar, 22 $(0.260 \mathrm{~g}, 1.00 \mathrm{mmol})$ was dissolved in hexane $(4 \mathrm{~mL})$ and cooled to $-78^{\circ} \mathrm{C}$. DIBAL-H (pre-cooled to $-78^{\circ} \mathrm{C}, 1.1 \mathrm{~mL}$, Aldrich 1.0 M in heptane, 1.10 mmol) was added carefully over at least 2 portions. After stirring for another $1 \mathrm{~h}, \mathrm{MeOH}$ (pre-cooled to $78{ }^{\circ} \mathrm{C}, 0.106 \mathrm{~g}, 3.30 \mathrm{mmol}$) was added carefully over 2 portions and stirred for a
further 15 minutes till a white suspension was observed. The reaction mixture was then added saturated potassium sodium tartrate solution (5 mL), diluted with $\mathrm{Et}_{2} \mathrm{O}(5$ mL) and warmed to room temperature. The mixture was stirred until a clear biphasic separation was observed. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} x 3)$. The combined organic extracts were washed with saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL} \times 2)$, brine ($15 \mathrm{~mL} \times 1$) and dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography (Hexane/Et $\mathrm{E}_{2} \mathrm{O}$ 20: 1) to afford the desired product as pale yellow oil ($0.173 \mathrm{~g}, 75 \%$ yield $)$. R_{f} value (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 8: 1): 0.36 .
$[\alpha]_{\mathrm{D}}{ }^{20}=+26.6\left(c=1.09, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.77(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.16(\mathrm{~m}, 1 \mathrm{H})$, 2.21 (ddd, $J=2.7,8.1,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$, 0.96 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 203.1,72.0,46.7,36.0,25.8$ (3C), 21.2, 18.0, 16.9, 4.3, -4.8.

FTIR (NaCl , neat): $v 2957,2930,1726,1709 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+1)$ 231.1780, found 231.1778.

Tert-butyldimethyl((2S,3R)-3-methylhex-5-en-2-yloxy)silane (B)

In a round bottom flask equipped with a rubber septum and a magnetic stirrer bar, methyltriphenylphosphonium bromide $(1.15 \mathrm{~g}, 3.20 \mathrm{mmol})$ was stirred in anhydrous THF (5 mL) for 1 minutes, concentrated in vacuo and stirred in anhydrous THF (10
mL) at $0{ }^{\circ} \mathrm{C}$ for 10 minutes. Lithium bis(trimethylsilyl)amide ($2.88 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 2.88 mmol) was added dropwise and stirred for 1 h at $0^{\circ} \mathrm{C}$. Then, a solution of 23 ($0.370 \mathrm{~g}, 1.60 \mathrm{mmol}$) in THF (5 mL) was added slowly. The mixture was stirred for 2 h at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was diluted with $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with diethyl ether ($10 \mathrm{~mL} \times 3$). The combined organic layers were washed with water, brine, dried over sodium sulfate and concentrated under reduced pressure. The resulting residue was purified by flash chromatography (100% hexane) to give the desired product as colourless oil $(0.296 \mathrm{~g}, 81 \%$ yield $)$.
R_{f} value (hexane 100\%): 0.49
$[\alpha]_{\mathrm{D}}{ }^{20}=+12.4\left(c=1.12, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.84-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.96(\mathrm{~m}, 2 \mathrm{H}), 3.69-3.61(\mathrm{~m}$, $1 \mathrm{H}), 2.26-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.0,115.4,71.7,40.3,37.2,25.9$ (3C), 19.8, 18.1, 14.7, -4.3, -4.8.

FTIR (NaCl , neat): $v 2957,2857,1641,1252 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{OSi}(\mathrm{M}+1)$ 229.1988, found 229.1986.

Part II

SYNTHESIS STUDIES TOWARDS THE
 TOTAL SYNTHESIS OF

IRIOMOTEOLIDE-1A

ChAPTER 1

Introduction

1.1 BACKGROUND

In 2007, a series of macrolides named iriomoteolides have been isolated by Tsuda's group from the Iriomote Island of Japan.
${ }^{17}$ They are iriomoteolide-1a (26), -1 b and -1 c . These macrolides belong to the class of amphidinolides obtained from Amphidinium sp. ${ }^{18,19}$ Among them, iriomoteolide-1a (26) has been shown to exhibit potent cytotoxic activity against human B lymphocyte DG-75 cells with an IC_{50} of $2 \mathrm{ng} / \mathrm{mL}$. Moreover, it displayed remarkably potent cytotoxicity against Epstein-Barr virus (EBV)-infected human B lymphocyte Raji cells with an IC_{50} of $3 \mathrm{ng} / \mathrm{mL} .{ }^{18}$ Despite its potent activity, the biological mechanism of action of iriomoteolide-1a is currently unknown.

Figure 1.1 Proposed structure of Iriomoteolide-1a (26)
Tsuda's group proposed the structure of iriomoteolide-1a (26) to be a 20 membered carbon skeleton with nine stereogenic centers which two of them are quartenary centers. The macrolide contains a tetrahydropyran ring, an exomethylene unit, three endogenous double bonds, four hydroxyl groups and five methyl groups.

[^11]The tetrahydropyran ring is a cyclic hemiketal core, of which contained an exomethylene branch and a tertiary chiral center that is vicinal to the hemiketal ring. The structural of this natural product was elucidated primarily by 2-D NMR analysis.

Due to its challenging molecular structure and interesting biological activities, it has been a popular target of total synthesis and total syntheses of the proposed structure and the diastereomers of the molecule have been disclosed recently.

1.2 REPORTED Synthetic Studies

There are several laboratories completed the synthesis of different fragments. The first asymmetric synthesis of the C1-C12 fragment 29 by Yang's group ${ }^{20}$ has been achieved via sequential application of two catalytic, asymmetric, vinylogous aldol reactions. In Yang's retrosynthetic analysis, they planned to synthesize the cyclic hemiketal core at the late-stage by an intramolecular nucleophilic cyclization of an allymetal species derived from ally chloride $27 .{ }^{21}$ The intermediate 27 is then constructed from two principal modules: C19-C23 unit 28 and C1-C12 unit 29 (Figure 1.2). A sequential of intermolecular and intramolecular esterifications of the two modules is designed to give the macrocycle 27.

[^12]

Figure 1.2 Retrosynthetic analysis of iriomoteolide-1a by Yang.
The synthesis of the C1-C12 fragment 29 began with LiAlH_{4} reduction of $\mathbf{3 0}$ followed by oxidative cleavage of the diol with NaIO_{4} to provide aldehyde 31. The first vinylogous aldol addition of aldehyde $\mathbf{3 1}$ to the dienolate $\mathbf{3 2}$ could be accomplished with (S, S)-bisphosphoramide \mathbf{I} as the chiral ligand to obtain secondary alcohol 33 smoothly in good yield with excellent enantioselectivity. ${ }^{22}$ Consequently, the alcohol 33 was protected and the resulting protected 34 was transformed to aldehyde 35 by DIBAL-H reduction and PCC oxidation. The substrate 35 further undergoes vinylogous aldol coupling with ethyl silyl dienolate 36 to afford α, β -

[^13]unsaturated- δ-lactone $37 .{ }^{23}$ The methyl group in 38 was then introduced by 1,4addition with $\mathrm{Me}_{2} \mathrm{CuLi}$ and dehydrogenation mediated by PhSeCl . Finally, conversion of TBS group to chloride group followed by a sequence of basic hydrolysis and TBS protection to allow the preparation of 29 (Scheme 1.1).

Scheme 1.1 Synthesis of C1-C12 fragment

[^14]Ghosh's group demonstrated the second synthesis of C1-C12 fragment. ${ }^{24}$ The target was also divided into two modules with very similar building blocks employed by Yang (Scheme 1.2). The assembly of building blocks 39 and $\mathbf{4 0}$ was designed to arise from Sakurai reaction ${ }^{25}$ and macrolactonization between the C_{1}-carboxylic acid and C_{19}-hydroxyl group. The key steps involved an enzymatic kinetic resolution of a β-hydroxy amide, a Pd-catalyzed cross-coupling and a Julia-Kocienski olefination between sulfone 41 and aldehyde 42.

Scheme 1.2 Retrosynthetic analysis of iriomoteolide-1a by Ghosh.
The synthesis of sulfone 41 commenced with an enzymatic kinetic resolution of a β-hydroxy amide 43 followed by protection of alcohol and subsequently methyl Grignard addition to furnish methyl ketone 44. Addition of borane dimethylsulfide complex to ketone 44 provided a diol. The primary hydroxyl group in diol was then

[^15]selectively protected where as the secondary hydroxyl group was oxidized to ketone via Swern oxidation to furnish ketone 45. Treatment of the ketone 45 with KHMDS and phenyl triflimide gave the corresponding vinyl triflate. A Pd-catalyzed cross coupling between the triflate and trimethylsilylmethylmagnesium chloride afford the desired allyl silane 46. Deprotection of the primary silyl ether followed by Mitsunobu reaction gave the sulfone 41 (Scheme 1.3).

Scheme 1.3 Synthesis of sulfone 41
The synthesis of aldehyde $\mathbf{4 2}$ began with an enzymatic kinetic resolution of a racemic alcohol 47 through lipase PS-30 to offer alcohol 48. The primary alcohol 49 in turn could be obtained by introduction of methyl group through methyl iodide ${ }^{26}$ followed by a sequence protection of the secondary hydroxyl group and DIBALreduction. Swern oxidation of 49 and Corey-Fuchs' homologation gave alkynyl ester 50. The substrate 50 further went through conversion of the protecting group and methyl addition to provide alkene 51. Another ester reduction, alcohol protection by

[^16]tert-butyldimethylsilyl chloride and oxidative cleavage of the terminal olefin were performed by to yield the aldehyde 42 (Scheme 1.4). With the sulfone 41 and aldehyde 42 in hand, Julia-Kocienski olefination was carried out to complete the C1C12 module 39.

49

$\xrightarrow[\substack{\text { 3. DIBAL-H } \\ \text { 60\% over } 3 \text { steps }}]{\substack{\text { 1. LDA, MeI } \\ \text { 2. TBSCl }}}$

1. HF.Py
2. MOMCl, DIPEA
3. MeLi, CuI
91\%
50

Scheme 1.4 Synthesis of aldehyde 42

On a separate account, Horne ${ }^{27}$ et al. reported a relatively short synthesis of the cyclic hemiketal core 53 of iriomoteolide-1a which involving a Sakurai reaction of allylsilane 54 and aldehyde 55 that bears a chiral α-tertiary center (Scheme 1.5). The preparation of allylsilane 54 was shown in Scheme 1.6.

[^17]

Scheme 1.5 Retrosynthetic analysis of core structure 53

Scheme 1.6 Synthesis of allysilane 54
The Sakurai reaction ${ }^{28}$ between allyltrimethylsilane 54 and aldehyde 55 was the key step and utilized to prepare an α, β-unsaturated alcohol 56. Subsequent DessMartin periodinane oxidation of the resulting alcohol 56, PMB ether removal by DDQ and TES deprotection by HF.Py led to concomitant cyclization to afford the desired six-membered ring hemiketal core 53 as a single isomer (Scheme 1.7).

[^18]

Scheme 1.7 Synthesis of the hemiketal core 53

Horne et al. ${ }^{29}$ also developed an asymmetric synthesis of the C7-C23 fragment 58. The fragment 58 can be further dissected into smaller units 59 and $\mathbf{6 0}$, which can be assembled by a B-alkyl Suzuki-Miyaura cross-coupling reaction as they key step (Scheme 1.8).

[^19]

Scheme 1.8 Retrosynthetic analysis of iriomoteolide-1a

The synthesis of key building block 59 started from homologation of $\mathbf{6 1}$ with Bestmann-Ohira reagent 62. ${ }^{30}$ Hydrogenation followed by iodination and removal of acetal group afforded E - vinyl iodide 64. Subsequent TES protection on both hydroxyl groups, selective deprotection on primary TES group, Dess-Martin oxidation and further transformations yielded the unit 59 (Scheme 1.9).

[^20]

Scheme 1.9 Synthesis of unit 59
The key unit $\mathbf{6 0}$ was described to arise from aldol addition of chiral auxiliary 66 to aldehyde 65 that produced anti-aldol 67 product smoothly in excellent yield with good diastereoselectivity. Finally, the synthesis of unit $\mathbf{6 0}$ was completed by conversion of the ester group into an iodide (Scheme 1.10).

Scheme 1.10 Synthesis of unit 60

Vinyl iodide 59 and alkyl iodide $\mathbf{6 0}$ underwent Suzuki-Miyaura cross coupling smoothly to afford precursor 68 in excellent yield. Further LiAlH_{4} cleavage of the acetate group and oxidation of the alcohol functionality provided the β, α-unsaturated ketone. At last, TES protection led to concomitant cyclization and formed C7-C23 fragment 58.

Scheme 1.11 Synthesis of C7-C23 fragment 58 of iriomoteolide-1a
Very recently, Horne and coworker have been the first group to report the total synthesis of the proposed structure of iriomoteolide-1a (Scheme 1.12). ${ }^{31}$ However, he did not agree on the original structural assignment of the natural product. He observed that ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of the synthetic iriomoteolide-1a did not match with the reported for the natural product. In addition, he examined the anticancer activity for his synthetic molecule in two different cell lines (Raji and A431) and no significant cytotoxicity was found at $10 \mu \mathrm{M}$ concentration. From his studies, it is likely that the $\mathrm{C}(2)-\mathrm{C}(3)$ double bond configuration of natural product is E instead of the originally proposed Z.

[^21]
26

Scheme 1.12 Retrosynthetic analysis of iriomoteolide-1a

The first total synthesis of the proposed structure of iriomoteolide-1a (26) has been completed via a Yamaguchi esterification, PMB deprotection with concomitant hemiketal cyclization, followed by ring closing Grubbs metathesis (Scheme 1.13).

1. $\mathrm{SO}_{3} \cdot \mathrm{Py}, \mathrm{iPr}_{2} \mathrm{NEt}, 70 \%$
2. $\mathrm{DDQ}, 67 \%$
3. 2nd generation Grubbs catalyst, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 73 \%$
proposed structure of iriomoteolide-1a (26)

Scheme 1.13 First total synthesis of 26

1.3 Retrosynthetic Analysis

The principal challenge in the synthesis of iriomoteolide-1a (26) is the stereocontrolled installation of the stereogenic centers. We felt that the challenge could be efficiently addressed by employing asymmetric Michael addition of Grignard reagents ${ }^{11}$, asymmetric crotylation ${ }^{32}$, boron-mediated Aldol protocol ${ }^{33}$ and metal-mediated asymmetric allylation ${ }^{34}$ in the control of the absolute stereochemistry of the stereogenic centers.

To maximize synthetic convergency, the ether functionality at C-13 of iriomoteolide-1a (26) was disconnected to afford the intermediate 72 (Scheme 1.14). Following the dissection of macrolactone 72, C9-C10 bond and the ester linkage at C19 can be cleaved to liberate into three main fragments - the alkene \mathbf{C}, the carboxylic acid \mathbf{D} and the aldehyde \mathbf{E}. In the forward synthesis, these connections require a metal-mediated allylation from the alkene \mathbf{C} and the aldehyde generated species derived from the fragment \mathbf{D}. Yamaguchi esterification with the aldehyde \mathbf{E} would prepare the intermediate 72 followed by an intramolecular allylation to close up the

[^22]ring. We envisaged that oxidation of the alcohol at C-13 to ketone and hemiketal cyclization will complete the synthesis of the molecule. However, we predicted that the closure of the ring by allylation might succumb to considerable level of difficulty due to the reactivity of the $\mathrm{C}-14$ that bears a chiral α-tertiary center.

ϑ

Scheme 1.14 Our retrosynthetic analysis of iriomoteolide-1a

1.3.1 Retrosynthesis of Fragment D

The fragment \mathbf{D} is a carboxylic acid containing two protected hydroxyl groups and two endogenous double bonds. It can be seen to arise from ring opening of a sixmembered ring lactone $\mathbf{8 8}$. Lactone $\mathbf{8 8}$ can subsequently be obtained from the intramolecular esterification of β-quaternary alcohol $\mathbf{8 6}$ followed by elimination. The addition of lithium 1-methoxyethenolate to ketone $\mathbf{8 4}$ would give us the desired alcohol 86. Grignard addition and oxidative cleavage would prepare the ketone $\mathbf{8 4}$ from intermediate 83. The intermediate $\mathbf{8 3}$ in turn can be synthesized from the precursor 78 through anti-Paterson aldol reaction and TBS-protection (Scheme 1.15).

78
Scheme 1.15 Retrosynthetic analysis of fragment D

1.3.2 Retrosynthesis of Fragment \mathbf{E}

The key building block \mathbf{E} is an aldehyde containing a α-tertiary center, an endogenous double bond and three protected hydroxyl groups. Disconnection of the olefinic position of $\mathbf{9 3 a}$ will result in two subunits 94 and 95 (Scheme 1.16). The key steps involve stereoselective introduction of the C-29 methyl by our group's highly efficient CuI-Tol-BINAP-catalyzed asymmetric conjugate addition, ${ }^{35,36,37}$ asymmetric crotylation and Julia-Kocienski olefination.

E

asymmetric conjugate addition

94

95

Scheme 1.16 Retrosynthetic analysis of fragment E

[^23]The subunit $\mathbf{9 4}$ can be prepared from olefin $\mathbf{1 0 0}$ via oxidative cleavage. Olefin 100 in turn can be synthesized from vinyl Grignard addition to ketone 98, which is raised from the List aldol adduct 97 between cyclohexanecarbaldehyde and hydroxyacetone 96 (Scheme 1.17).

Scheme 1.17 Retrosynthetic analysis of subunit 94
In addition, sulfone 95 can be achieved from alcohol 106 by Mitsunobu reaction. This can be easily afforded using hydroboration on the respective terminal olefin 105. The reaction of asymmetric crotylation on aldehyde 103 will give homoallylic alcohol 105. In order to prepare ester 102, we can also develop the asymmetric conjugate addition to α, β-unsaturated ester 21, which can be synthesized from commercially available starting materials 19 via one pot DIBAL-H reductionWittig olefination (Scheme 1.18).

asymmetric asymmetric crotylation

\qquad

21

Scheme 1.18 Retrosynthetic analysis of subunit 95
A more convergent strategy has also been proposed to synthesize fragment \mathbf{E} (Scheme 1.19). It can be obtained from intermediate 93c. This intermediate in turn, can be constructed from alkene $\mathbf{9 9}$ and alkene $\mathbf{1 1 0}$ via intermolecular olefin crossmetathesis reaction with E-alkene geometry at C15-C16. The strategy employs our group's asymmetric conjugate addition and Paterson aldol.

asymmetric conjugate addition

99

Scheme 1.19 Alternative retrosynthetic analysis of fragment \mathbf{E}

Similarly, we adopt the same strategy shown in Scheme 1.17 to obtain the subunit 99 (Scheme 1.20).

Scheme 1.20 Retrosynthetic analysis of subunit 99
Besides, the subunit $\mathbf{1 1 0}$ can be constructed from aldehyde $\mathbf{1 2 0}$ via two applications of Wittig homologation. Aldehyde $\mathbf{1 2 0}$ in turn can be synthesized from the Paterson aldol adduct $\mathbf{1 1 7}$ between aldehyde $\mathbf{1 1 5}$ and ethyl ketone $\mathbf{1 1 6}$ followed by reduction. DIBAL-H reduction of ester 114 will furnish aldehyde 115 . We proposed that a newly generated methyl group in ester $\mathbf{1 1 4}$ can be achieved by a direct asymmetric conjugate addition to α, β-unsaturated ester 113, which can be synthesized from commercially available starting materials $\mathbf{1 1 1}$ via one pot DIBAL-H reductionWittig olefination (Scheme 1.21).

Scheme 1.21 Retrosynthetic analysis of subunit 110

CHAPTER 2

Synthesis of Fragment D

2.1 SyNTHESIS OF ISOMER OF FRAGMENT D, 89

2.1.1 Synthesis of Subunit 78

The synthetic procedure for the alcohol 78 starting from (4methoxyphenyl)methanol (73) and acrylaldehyde (74) through slight modification of published procedures is described in Scheme 2.1. ${ }^{37}$ 4-Methoxyphenyl)methanol (73) was first reacted with acrylaldehyde (74) for six days to yield the aldehyde 75 in 64% yield. Next, the Wittig reaction of 75 with the stabilized ylide from $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$ gave the trans-enoate 76 in 86% yield $(E / Z=91 / 9)$. The ester 76 was then reduced by DIBAL-H treatment to give the free alcohol 77 in 87% yield. Finally, the trans alcohol 77 was oxidized to the aldehyde 78 with IBX as the oxidizing reagent.

Scheme 2.1 Synthesis of subunit 78

[^24]
2.1.2 Synthesis of Subunit 81

Exposure of methyl (R)-(+)-lactate (79) to N, O-dimethylhydroxylamine hydrochloride in the presence of $i-\mathrm{PrMgBr}$ afforded the Weinreb amide $\mathbf{8 0}$ in 87% yield. ${ }^{38}$ The amide $\mathbf{8 0}$ was then added to ethyl Grignard followed by benzoylation of the resulting volatile α-hydroxy ketone with benzoic anhydride to provide $(R)-\mathbf{8 1}$ (Scheme 2.2). ${ }^{39}$

79
HCl. $\mathrm{HN}(\mathrm{OMe}) \mathrm{Me}$

1) $\mathrm{EtMgBr}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}$
2) $\mathrm{Bz}_{2} \mathrm{O}, i-\mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 14 \mathrm{~h}$

81

Scheme 2.2 Synthesis of subunit 81

[^25]
2.1.3 Synthesis of Subunit $\mathbf{8 8}$

With the aldehyde $\mathbf{7 8}$ and the ketone $\mathbf{8 1}$ in hand, we then carried out the Paterson aldol reaction using Brown's dicyclohexylboron chloride (c - $\mathrm{Hex}_{2} \mathrm{BCl}$). The Paterson aldol reaction proceeded smoothly to produce the desired anti-Paterson adduct 82 with 81% yield and high level of diastereoselectivity ($>95 \%$ de). ${ }^{18,40}$

Scheme 2.3 Synthesis of subunit $\mathbf{8 2}$ using anti-Paterson aldol as the key step
The directed aldol reaction of boron enolates and aldehydes has often been employed in stereoselective organic synthesis and the syntheses of natural products, particularly those of propionate origin, owing in large part to the high levels of chemo-, regio-, diastereo- and enantioselectivity can be achieved. The boron enolate's geometry is able to resolve the relative stereochemistry of the aldol adduct with high fidelity. The (Z)-boron enolates generally afford syn aldol products, where as the (E) boron enolates give anti aldol products (Scheme 2.4). In our case, we sought to achieve selective enolisation of $\mathbf{8 1}$ to generate the corresponding (E)-boron enolate by using Brown's dicyclohexylboron chloride $\left(c-\mathrm{Hex}_{2} \mathrm{BCl}\right)$ as a mild Lewis acid with a sterically undemanding. Consequently, we would get the anti-aldol adduct.

[^26]
(E)-boron enolate

(Z)-boron enolate

Scheme 2.4 Transfer of boron enolate geometry to aldol product relative stereochemistry
High level of absolute control in the creation of the two new stereogenic centers can be achieved by using chiral aldehyde and/or ketone substrates or with chiral ligands on boron (Scheme 2.5). The use of two or more chiral components in these aldol reactions can result in exceptionally high levels of stereoselectivity. In our synthetic route, we used enantiomeric ketone $(R)-\mathbf{8 1}$. The choice of α-alkoxy substituent in ketone $\mathbf{8 1}$ is critical in determining the level of induction as, usually the use of benzylic($\mathrm{OBn}, \mathrm{OBz}$), acetonide gave the highest selectivity where was the use of silicon protecting groups often give rise to little or no selectivity. We were able to obtain the desired isomer 82 in good yield and excellent selectivity by using (R, E) boron enolate.

(S,E)-boron enolate

(R,Z)-boron enolate

(S,Z)-boron enolate

Scheme 2.5 Absolute control of the new stereogenic centers by chiral boron enolate
The origin of remote asymmetric induction in the boron mediated-aldol reactions of 81 can be traced to the relative steric and electronic contributions of the substituents $(\mathrm{H}, \mathrm{Me}, \mathrm{OBz})$ at the enolate stereocentre in the chair transition state. ${ }^{41}$ For (R, E)-boron enolate, there are two possible transition states, TS-I and TS-II (Scheme 2.6). In TS-I, the benzoate group is directed inwards in the chair arrangement and forms a stabilizing H -bond between the benzoate oxygen and the aldehyde proton, by minimizing steric interactions between the α-methyl group and axial-position ligand on boron. In TS-II, the benzoate is directed outwards. The syn- adduct is disfavoured due to a destabilizing lone-pair repulsion between the benzoate and enolate oxygen and significant steric interactions between the the α-methyl group and the axialposition ligand on boron.

[^27]

Scheme 2.6 Two possible chair transition states for aldol reaction
The newly formed hydroxyl group in 82 was protected by TBSCl in the presence of imidazole. After TBS protection, ketone 84 was then generated by the tandem reactions of MeMgBr with $\mathbf{8 3}$ and periodate cleavage. The calculated yield was 65% (Scheme 2.7).

Scheme 2.7 Synthesis of subunit 84
Our initial strategy was to synthesize the precursor of fragment D 85a by the Still-Gennari modified Horner-Wadsworth-Emmons olefination. In Still modification, Z-alkene with excellect stereoselectivity can be achieved when using unstabilized phosphonate together with strongly dissociating conditions (KHDMS and 18-crown-6 in THF). ${ }^{42}$ Unfortunately, we failed to obtain the desired cis-enoate 85 a even we used phosphonates with strong electron-withdrawing groups - trifluoroethyl (Scheme 2.8). ${ }^{43}$ The unreactive and sterically hindered ketone $\mathbf{8 4}$ could be the main limitation for the reaction.

Scheme 2.8 Failed attempt to synthesis of 85a
The failure in preparing the key intermediate 85a by Still-Gennari modified Horner-Wadsworth-Emmons olefination strategy prompted us to search for a new synthetic route to effect the construction of the fragment \mathbf{D}. The new alternative strategy was outlined in Scheme 2.9.

[^28]Ketone 84 was treated with lithium 1-methoxyethenolate and converted to β quaternary alcohol 86. The alcohol $\mathbf{8 6}$ was isolated as diastereomeric mixtures in 80% yield. Reaction of $\mathbf{8 6}$ with Amberlyst 15 in methanol afforded lactonization product 87. After the elimination of C3 hydroxyl group by thionyl chloride in the presence of pyridine, the α, β-unsaturated lactone $\mathbf{8 8}$ was observed as the only diastereomer but in moderate yield -46%. The lactone $\mathbf{8 8}$ was then subjected to basic hydrolysis mediated by a strong base such as LiOH in aqueous solution. Subsequently, the hydroxyl group on C5 was selectively protected with TBS group by exposing to TBSOTf in dicholomethane. Unfortunately, the trans α, β-unsaturated carboxylic acid 89 instead of cis α, β-unsaturated carboxylic acid \mathbf{D} was obtained as the major isomer.

D

89

Scheme 2.9 Synthesis of 89

2.2 Synthesis of Fragment D

These early unsuccessful in the formation of the fragment \mathbf{D} by both Wittig and lactonization strategies lead us to explore a new method to obtain the fragment \mathbf{D} via Corey-Funhs reaction and alkyne reduction (Scheme 2.10). The synthesis of key intermediate 85a started with DIBAL reduction of the ketone 83, followed by periodate cleavage of the diol to afford aldehyde $\mathbf{9 0}$ in 68% yield over two steps. Subsequent Corey-Fuchs reaction ${ }^{44}$ in which the anion was trapped with methyl chloroformate established the acetylenic compound 91 in 65% yield over two steps. 1,4-addition of Gilman's reagent to ester 91 furnished the desired Z-alkenoic ester 85a. ${ }^{45}$

Scheme 2.10 Synthesis of precursor of fragment D, 85a
E-alkenoic ester $\mathbf{8 5 b}$ was also synthesized in order to make a comparison with the Z-alkenoic ester 85a (Scheme 2.11).

[^29]

Scheme 2.11 Synthesis of E-alkenoic ester 85b
Resonations of protons from the methyl group at C3 position in ${ }^{1} \mathrm{H}$ NMR spectral data of the Z-alkenoic ester 85a and E-alkenoic ester 85b were compared with the reported iriomoteolide-1a. The protons resonate at 1.82 ppm for the Z alkenoic ester 85a, whereas the protons resonate at 2.13 ppm for the E-alkenoic ester 85b compared to 2.12 ppm for the natural compound 26, respectively (Figure 2.1 and Figure 2.2).

85a

Figure 2.1 Comparison ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{8 5 a}$ and $\mathbf{8 5 b}$

Figure $2.2{ }^{1} \mathrm{H}$ NMR spectrum of natural product, irimoteolide-1a
The significant difference in NMR spectral data between the Z-alkenoic ester 91a and the reported iriomoteolide-1a brings into question the original structural assignment of the natural product. It is likely that the $\mathrm{C} 2-\mathrm{C} 3$ double bond configuration of natural product is trans instead of cis (Scheme 2.13).

Scheme 2.12 The proposed structure of iriomoteolide-1a by Tsuda's group from the Amphidinium sp. strain HYA024

Scheme 2.13 The diastereomer of iriomoteolide-1a
The key building block - trans α, β-unsaturated carboxylic acid $\mathbf{8 9}$ instead of cis α, β-unsaturated carboxylic acid \mathbf{D} will be used in the assembly of diastereomer of iriomoteolide-1a (92, Scheme 2.14).

Scheme 2.14 The key intermediate 89

CHAPTER 3

Synthesis of Fragment E

Having successfully synthesized the key intermediate 89, we turned our attention to the construction of the fragment \mathbf{E}. One of the highlights in this synthesis was to demonstrate the versatility of asymmetric conjugate addition using CuI-TolBINAP on natural product synthesis.

3.1 The Julia-Kocienski Coupling Strategy

A quick glance reveals the presence of a carbon-carbon double bond with E configuration in fragment \mathbf{E}, serves as a potential site for Julia-Kocienski olefination. Upon closer examination, the precursor of fragment $\mathbf{E}, \mathbf{9 3 a}$ can be obtained from aldehyde 94 and sulfone 95 (Scheme 3.1).

94

Scheme 3.1 The Julia-Kocienski olefination strategy between precursors 94 and 95

3.1.1 Synthesis of Subunit 94

Our synthesis of the aldehyde $\mathbf{9 4}$ commences with cyclohexanecarbaldehyde and hydroacetone (96, Scheme 3.2). We applied the direct asymmetric List aldol reaction catalyzed by D-proline to provide the desired anti-diol 97 in 63% yield, with a dr >20 : 1 and ee $>99 \% .^{46}$ The latter was subjected to isopropylidene protection by 2,2-dimethoxypropane to generate isopropylidene 98 in 90% yield. ${ }^{47}$ The Grignard derived from vinyl bromide was added to intermediate $\mathbf{9 8}$ leading eventually to tertiary alcohol $99(\mathrm{dr}=5: 1)$. The diastereomeric purity of the unprotected alcohol 99 was determined by ${ }^{1} \mathrm{H}$ NMR analysis. It was easy to isolate the favored desired diastereomer 99 by flash column chromatography on silica gel. Subsequently, protection of 99 with triethylsilyl chloride under basic condition generated the olefin 100. ${ }^{48}$ Ozonolysis of the protected alkene $\mathbf{1 0 0}$ upon treatment with ozone and triphenylphosphine reduction gave good yield of the desired aldehyde 94 (Table 3.1, entry 1). The reaction was rapid and completed within ten minutes.

[^30]

Scheme 3.2 Synthesis of subunit 94
Several attempts to improve the yield of ozonolysis of alkene $\mathbf{1 0 0}$ with other reducing agents like dimethyl sulfide (Table 3.1, entry 2 and 3) and zinc (Table 3.1, entry 4) were not met with failure. Moreover, the use of dimethyl sulfide as reducing agent proved to be a problem at the purification stage of the aldehyde 94 . Albeit after flash chromatography, the aldehyde was often contaminated with some other side products.

Table 3.1 Oxidative cleavage of terminal double bond with various reagents.

Entry	Reagent	Condition	Yield (\%) ${ }^{\text {a }}$
1	$\mathrm{O}_{3}, \mathrm{PPh}_{3}$ (1 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-78{ }^{\circ} \mathrm{C}$ to rt	74
2	$\mathrm{O}_{3}, \mathrm{Me}_{2} \mathrm{~S}\left(5\right.$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-78{ }^{\circ} \mathrm{C}$ to rt	51
3	$\mathrm{O}_{3}, \mathrm{Me}_{2} \mathrm{~S}\left(10\right.$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-78{ }^{\circ} \mathrm{C}$ to rt	53
4	$\mathrm{O}_{3}, \mathrm{Zn}\left(3\right.$ equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-78{ }^{\circ} \mathrm{C}$ to rt	54

${ }^{a}$ The reaction was monitored using TLC to ensure most of the starting material has reacted prior to addition of the reducing agents.

The stereochemistries were further confirmed by X-ray structural analysis of PMB ether protected 101 (Figure 3.1).

Figure 3.1 Stereochemical Determination of 99

3.1.2 Synthesis of Subunit 95

(-)-Methyl-L-lactate (19) was protected with tert-butyldimethylsilyl chloride under basic condition followed by a one-pot DIBAL-H reduction-Wittig olefination protocol afforded the trans-enoate $21(E / Z=78 / 22)$ in 63% yield (Scheme 3.3). Then, the C29 methyl moiety was stereoselectively introduced into the unsaturated ester 21 using (R)-Tol-BINAP by asymmetric conjugate addition, to produce the syn-adduct 102 in 94% de (Table 3.2, entry 3). ${ }^{49}$ The introduction of methyl group to the transenoate 21 without the presence of Tol-BINAP ligand was attempted to yield the antiadduct with moderate yield and excellent diastereoselectivity (Table 3.2, entry 1). It might due to the steric effect of tert-butyldimethylsilyl group. Fortunately, with the enantiomeric of Tol-BINAP ligands, we can easily control the stereoselectivity of the C29 methyl moiety.

Scheme 3.3 Synthesis of intermediate 102

[^31]Table 3.2 1,4-Michael Addition of MeMgBr to $\mathbf{2 1}^{\mathrm{a}}$

$\left.\begin{array}{ccccc}\hline \text { Entry } & \text { Ester } & \text { catalyst } & \text { Yield (\%) } & \text { anti:syn }^{\boldsymbol{b}} \\ \hline 1 & \text { trans-21 } & \begin{array}{c}10 \mathrm{~mol} \% \mathrm{CuI} \\ 2\end{array} & \text { trans-21 } & 2 \mathrm{~mol} \mathrm{\%} \mathrm{CuI}+3 \mathrm{~mol} \%(S) \text {-Tol- } \\ \text { BINAP }\end{array}\right)$

[^32]Our synthesis of sulfone $\mathbf{9 5}$ was continued in Scheme 3.4. DIBAL-reduction followed by asymmetric Brown crotylation ${ }^{50}$ of aldehyde 103 using (-)-Ipc ${ }_{2} \mathrm{BOMe}$ (deprived from (+)-pinene) ${ }^{51}$ furnished the anti- γ-homoallylic alcohol 104, with 77% yield and satisfactory diastereomeric ratio of 84% de (Scheme 3.4). Asymmetric crotylation ${ }^{52}$ is a widely used method to introduce a γ-homoallylic fragment to an aldehyde. Crotylation of aldehydes proceeded through a chair-like transition state has been discussed by Brown et al. In the chair-like transition state, the R group of the

[^33]aldehyde occupies an equatorial position to minimize the steric interactions between the axial Ipc ligand and the R group. Chair transition state will produce syn adducts from (Z)-crotylborane and anti adducts from (E)-crotylborane (Figure 3.2).

Figure 3.2 Crotylation of aldehydes proceeds through a chair-like transition state

Continuing with the synthesis of sulfone 95 , the secondary hydroxyl group in 104 was protected as the triethylsilyl ether under basic condition (Scheme 3.4). Following oxidation of the terminal olefin in $\mathbf{1 0 5}$ employing hydrogen peroxide as the oxidizing agent, ${ }^{53}$ the resulting primary alcohol 106 was subjected to Mitsunobu protocol, ${ }^{54}$ affording the desired aryl sulfide 107 in good yield. Finally, completion of

[^34]the requisite sulfone 95 was achieved by oxidation using ammonium molybdate and hydrogen peroxide. ${ }^{18}$

Scheme 3.4 Synthesis of subunit 95

3.1.3 Coupling to Subunit 94 and 95

With aldehyde 94 and sulfone $\mathbf{9 5}$ in hand, we then carried out Julia-Kocienski olefination ${ }^{55}$ (Table 3.3). The use of KHMDS (in toluene) provided 93a in only 29% isolated yield with low regioselectivity. Interestingly, when KHMDS (in THF) was used, the desired product was isolated as a single isomer, albeit in low yield (27%, Table 3.3, entry 2). In addition, replacement of the TES ether protecting group with a PMB ether proved detrimental (Table 3.3, entry 3), suggesting steric effect from the adjacent tertiary protected hydroxyl group in operation.

Table 3.3 Julia-Kocienski Olefination

$\overline{{ }^{\text {a }}}$ The E / Z ratios were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product mixtures.

[^35]After we had successfully synthesized the key building block 93a, we now turned our concentration on the deprotection of isopropylidene in order to prepare an aldehyde functional group. The deprotection of isopropylidene was investigated by the treatment of $\mathbf{1 0 0}$ with 1 N HCl and 0.3 N HCl . Albeit in the low concentration of acidic condition $(0.3 \mathrm{~N} \mathrm{HCl})$, the TES group was deprotected unexpectedly to form a triol compound (Scheme 3.5). Further oxidative cleavage of $\mathbf{1 0 9}$ is foreseen to lose us one stereogenic center and a carbon. In order to prepare the fragment \mathbf{E}, we have to explore for a different protecting group.

Scheme 3.5
In summary, we have developed an asymmetric synthesis of the C13-C23 fragment 90a of iriomoteolide-1a. ${ }^{56}$

[^36]
3.2 The Olefin Metathesis Strategy

Due to the poor yield of the Julia-Kocienski reaction, we changed our strategy by obtaining the fragment \mathbf{E} via olefin metathesis between olefins 99 and $\mathbf{1 1 0}$, with E alkene at C15-C16 (Scheme 3.6).

\square

Scheme 3.6 The olefin metathesis strategy between precursors $\mathbf{9 9}$ and $\mathbf{1 1 0}$

3.2.1 Synthesis of Subunit 110

For the synthesis of the subunit 110, (S)-ethyl lactate (111) was protected with tert-butyldiphenylsilyl chloride under basic condition followed by a one-pot DIBALH reduction and Wittig olefination afforded the desired conjugated ester $113(E / Z=$ $4: 1$) in 65% yield (Scheme 3.7). We then applied the asymmetric conjugate addition with MeMgBr to 113 in the presence of $2 \mathrm{~mol} \% \mathrm{CuI}$ and $3 \mathrm{~mol} \%(R)$-Tol-BINAP ${ }^{57}$ to provide the β-methyl ester 114 in 60% isolated yield with more than $98: 2$ diastereoselectivity. ${ }^{58}$ Subsequently, DIBAL-H reduction of ester $\mathbf{1 1 4}$ furnished the corresponding aldehyde 115 in 85% yield.

Scheme 3.7 Synthetic of $\mathbf{1 1 5}$ using asymmetric conjugate addition of MeMgBr as the key step

[^37]In the next step, the isolated aldehyde 115 was subjected to Paterson aldol reaction to form the corresponding alcohol $117 .{ }^{59}$ In the attempts to improve the yields, we screened various ratios of precursors and reagents used and found that excess amount of aldehyde 115 over ketone 116 was the most desirable, yielding 85% of the aldol product with $>95 \%$ de (Table 3.4 , entry 4$)$. (S)- $\mathbf{1 1 6}$ was prepared from $(S)-(+)$-lactate in a way analogous to the preparation of $\mathbf{8 1}$ in the previous chapter (Scheme 2.2).

Table 3.4 Synthesis of alcohol 117

. ${ }^{a}$ Isolated yields. ${ }^{b}$ The percentage de was determined on the crude product by NMR spectroscopy.

PMB protection of aldol product 117 catalyzed by $3 \mathrm{~mol} \% \mathrm{Sc}(\mathrm{OTf})_{3}$ yielded the desired compound 118 in 64% (Scheme 3.8). Subsequently, aldehyde 120 was generated through DIBAL-H reduction and oxidative cleavage in 78% yield over two steps. The aldehyde 120 was then subjected to Wittig homologation using methoxymethylenetriphenylphosphorane by employing LiHMDS as the base to give

[^38]methyl ether 121. Treatment of the latter with 6 N HCl to obtain the aldehyde 122 in 63% yield over two steps. Furthermore, another Wittig homologation of aldehyde 122 gave the desired olefin $\mathbf{1 1 0}$ smoothly in 80% yield.

$\mathrm{R}^{1}=$ TBDPS
$\mathrm{R}^{2}=\mathrm{PMB}$

Scheme 3.8 Synthesis of subunit 110

3.2.2 Coupling to Subunit 99 and 110

With the two individual subunits in hand, we began coupling of the modules for the synthesis of fragment \mathbf{E} via an intermolecular cross-metathesis (Scheme 3.10). Since the development of ruthenium-carbene complexes ${ }^{15}$, intermolecular olefin metathesis has exhibited tremendous applicability on total synthesis of complex molecules. It is true for larger molecular fragments, there may have several limitations such as poor reactivity, steric hindrance, self-coupling and polymerization. Nevertheless, this coupling is still a worthy attempt because of its ease of use and its elegance in using lesser number of steps to obtain the desired product.

Our initial strategy was to couple subunit 101 with subunit 110. However, no desired product was obtained. We rationalized that it was probably due to the steric bulk of the PMB group which prevented the two subunits from coupling together (Scheme 3.9).

Scheme 3.9 Unsuccessful attempt with intermolecular cross-metathesis
The most selective cross metathesis involves the coupling of a more reactive type I olefin with a less reactive type II olefin. ${ }^{60}$ In order to do a coupling successfully, we decided to employ the unprotected tertiary allylic alcohol 99 (type II olefin: tertiary allylic alcohol) and the more reactive olefin $\mathbf{1 1 0}$ (type I olefin: terminal alkene). The Hoveyda-Grubbs second generation catalyst was used in the reaction. ${ }^{61}$ Fortunately, the desired cross metathesis product 93c was formed in 60% yield (based on recovered starting material) with excellent stereoselectivity ($>95 \%$-isomer) when 110 was subjected to cross metathesis with 2.0 equivalents of the unprotected tertiary allylic alcohol 99 under identical conditions (Scheme 3.10). ${ }^{62}$

[^39]

99

Hoveyda-Grubbs $2^{\text {nd }}$ generation catalyst ($8 \mathrm{~mol} \%$)

38\% (Based on recovered S.M. 60\%)

93c

Scheme 3.10 Synthesis of 93c via cross metathesis with subunits $\mathbf{9 9}$ and $\mathbf{1 1 0}$
In order to perform a removal of isopropylidene protecting group and oxidative cleavage to prepare fragment \mathbf{E}, the tertiary alcohol group of $\mathbf{9 3}$ c has to be protected initially. Unfortunately, we failed to protect the tertiary alcohol (Scheme 3.11).

Scheme 3.11 Failed trials to protect tertiary alcohol
We could not proceed to deprotection of isopropylidene group and oxidative cleavage with free alcohol group at the adjacent position. The failure to obtain fragment \mathbf{E} with an aldehyde group on the left side of the fragment did not discourage us to search for a new approach.

In summary, we have developed an asymmetric synthesis of the C13-C23 fragment 93c of iriomoteolide-1a. ${ }^{63}$

[^40]
3.3 Synthesis of Fragment E

In order to avoid the problem of preparation aldehyde group again, the synthetic challenge is now reduced to construct the fragment \mathbf{E} from the key intermediate 123 and 124 (Scheme 3.12). The key intermediate 123 is expected to be converted readily to the corresponding aldehyde after Bz deprotection and reduction.
asymmetric conjugate addition

Fragment E
Olefin metathesis

.
124

Scheme 3.12 The new strategy to prepare fragment \mathbf{E} between precursors 123 and 124

3.3.1 Synthesis of Subunit 123

We initially applied benzyl protection protocol on 99 by using sodium bis(trimethylsilyl)amide and benzylbromide in THF. ${ }^{64}$ However, the reaction after 24 hours at room temperature only yielded 41% of the desired benzylether 125. The reaction was repeated with less sterically demanding sodium hydride at $0^{\circ} \mathrm{C}$ for one hour, and complete conversion of $\mathbf{9 9}$ to 125 was observed with 98% yield (Scheme 3.13). ${ }^{65}$ Nonetheless, longer prolonged reaction under same condition can result in lower yield and formation of side products.

Isopropylidene deprotection was achieved under acidic condition followed by periodate cleavage of diol 126 to afford aldehyde 127. Aldehyde 127 was subsequently reduced to primary alcohol $\mathbf{1 2 8}$ by sodium borohydride as the reducing agent. Next, the primary alcohol was reacted with benzoic anhydride in the presence of N-ethyl diisopropylamine and dichloromethane to give di-protected alcohol 129 in 77% yield over three steps. ${ }^{66}$ The desired key intermediate 123 was obtained upon treatment with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) to eliminate benzyl protecting group.

[^41]

99
125

126
127

Scheme 3.13 Synthesis of subunit 123

3.3.2 Synthesis of Subunit 124

The key building block 124 was synthesized via PMB deprotection followed by protection of $\mathbf{1 3 0}$ with triethylsilyl chloride under basic condition. Both of the reactions preceeded smoothly.

Scheme 3.14 Synthesis of subunit 124

3.3.3 Coupling to Subunit 123 and 124

The unprotected alcohol 123 and alkene 124 were subjected to olefin metathesis under various conditions (Table 3.5). It was found that Hoveyda-Grubbs $2^{\text {nd }}$ generation catalyst under seal tube condition for 8 hours failed to give any desired product 131. However, when the reaction was refluxed with the same catalyst for 8 hours, the product $\mathbf{1 3 1}$ was afforded in 33% with some self-coupled products. In the effort to increase the yield of the reaction, the reaction time was shortened to 5 hours and the catalyst loading was increased to $20 \mathrm{~mol} \%$. Surprisingly, the yield of 131 was able to be increased to 65% with lesser self-coupled products. In addition, the reaction was incomplete if the reaction time was less than 4 h .

Table 3.5 Olefin metathesis of 123 and 124

${ }^{\text {a }}$ All reactions were carried out with 1.2 equiv of 123 and 1 equiv of 124. (Trifluoromethyl)benzene was degassed with nitrogen. The reaction was quenched when all of $\mathbf{1 2 3}$ has reacted.

The resulting tertiary alcohol 131 was protected as a triethylsilyl ether 132. The stage was now set to introduce the fragment \mathbf{E} which required unveiling the primary benzoyl ether protecting group in $\mathbf{1 3 2}$ to reveal the aldehyde group at fragment \mathbf{E} as described previously, via a selective deprotection of $\mathbf{1 3 2}$ to 133 and Dess-Martin oxidation of $\mathbf{1 3 3}$ by DMP reagent (Scheme 3.15).

Scheme 3.15 Synthesis of fragment \mathbf{E}
The major uncertainty in our strategy towards natural product iriomoteolide-1a lies in the crucial allylation coupling step of fragment \mathbf{C} and fragment \mathbf{E}. Given the reactivity of C-14 in fragment \mathbf{E} bears a chiral α-tertiary center. We decided to do a model study on the indium-mediated allylation of fragment E. However, attempts to realize this strategy were futile. The unexpected results shown in Table 3.6 could be due to the steric constraint caused by the adjacent quaternary carbon.

Table 3.6 Model study on indium-mediated allylation of fragment E.

Entry	Reagent	Condition	Yield (\%)
1	In (1 equiv), AllylBr (1.5 equiv), DMF	rt	N.R.
2	In (1 equiv), AllylBr (1.5 equiv), $\mathrm{H}_{2} \mathrm{O}$	rt	N.R.
3	In (1 equiv), AllylCl (1.5 equiv), $\mathrm{H}_{2} \mathrm{O}$	rt	N.R.
4	In (1 equiv), AllyI (1.5 equiv), $\mathrm{H}_{2} \mathrm{O}$	rt	N.R.
5	$\mathrm{InCl}_{3} \text { (} 0.2 \text { equiv), AllyBr (} 1.5 \text { equiv), }$ THF	rt	N.R.
6	InCl_{3} (0.2 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, AllyBr (1.5 equiv), THF	rt	N.R.
7	$\underset{\mathrm{H}_{2} \mathrm{O}}{\mathrm{In} / \mathrm{InCl}_{3} \text { (1 equiv), } \mathrm{AllyBr} \text { (1.5 equiv), }}$	rt	N.R.
8	$\mathrm{In} / \mathrm{In}(\mathrm{OTf})_{3}$ (1 equiv), $\operatorname{AllyBr}(1.5$ equiv), THF	rt	N.R.
9	$\mathrm{InCl}_{3}(20 \mathrm{~mol} \%), \mathrm{Bu}_{3} \mathrm{SnAllyl}(2.0$ equiv.), $4 \AA$ mol. Sieve / $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	N.R.

In summary, we have successfully synthesized the fragment E. However, having encounter problem in the indium-mediated allylation of fragment \mathbf{E} during initial exploration, we have decided to change our synthetic strategy in order to prevent the difficulty of joining the fragments towards the completion of the molecule. The new synthetic strategy was designed and discussed in the following chapter.

CHAPTER 4

New Synthetic Strategy

In the previous chapter, we emphasized on the original structural assignment of the natural product, iriomoteolide-1a (26). Based on the chemical shift of the methyl at $C(3)$ in the natural product, it is likely that the $C(2)-C(3)$ double bond configuration of natural product is trans instead of cis. Therefore, a new synthetic route was proposed to assemble 23-membered macrolactone 92, the revision structure of iriomoteolide-1a (Scheme 4.1). The new route was to adopt olefin metathesis to close up the ring.

F

G (89)

H (130)

Scheme 4.1 Our new retrosynthetic analysis of a diastereomer of iriomoteolide-1a, 92

Following the dissection of macrolactone 134, the ester linkage at $\mathrm{C}-1$ and C(9)-C(10) can be disconnected to liberate the fragment \mathbf{F}, the carboxylic acid $\mathbf{8 9}$ (fragment G) and the terminal alkene $\mathbf{1 3 0}$ (fragment \mathbf{H}). In the forward synthesis, these disconnections require a Yamaguchi esterification and allylation reaction. We have demonstrated the syntheses of the fragment \mathbf{G} and the fragment \mathbf{H} in the previous chapter.

4.1 Coupling of 89 and Fragment G

The two main key buildings were associated via Yamaguchi esterification to afford intermediate 136 in 91\% yield (Scheme 4.2).

136

Scheme 4.2 Coupling of fragment \mathbf{G} and fragment \mathbf{H}
The elaboration of the diastereomer of iriomoteolide-1a (92) is ongoing in our laboratory (Scheme 4.3).

Scheme 4.3 Future work

4.2 CONCLUSION

In conclusion, main fragment of revised structure of iriomoteolide-1a (92) was synthesized via a convergent strategy that features the use of our group's asymmetric conjugate addition and Paterson aldol. As excellent enantio- and diastereo-control were achieved during the synthesis, including isolation of desired isomer via column chromatography, a single isomer of $\mathbf{1 3 6}$ was isolated towards the end of the synthesis. Future work for revised structure of iriomoteolide-1a (92) will include the application of a metal-mediated allylation of aldehyde $\mathbf{1 3 8}$ using allylic metal generated species from fragment \mathbf{F} to obtain intermediate 135. We envisioned that the removal of the benzyl ether protecting group will facilitate the formation of hemiketal ring. With the two double bonds in 134, an intramolecular olefin metathesis can be performed. Final deprotection of the TBDPS and TBS protected alcohols can be carried out with TBAF and HCl respectively to afford the final natural product.

When I almost finished preparing this thesis, Ye’s group has successfully constructed the fully functionalized macrocyclic core of the molecule ${ }^{67}$. Ghosh's group has also reported on the total synthesis of the proposed structure of iriomoteolide-1a (26) ${ }^{68}$. On the other hand, Yang et al has successfully completed the synthesis of three diastereomers of iriomoteolide-1a (Figure 4.1). ${ }^{69}$ However, the spectra of all these three diastereomers were inconsistent from those spectra of the natural product. The results show that the structure of iriomoteolide-1a requires careful re-evaluation.

[^42]

Figure 4.1 Diastereomers of $\mathbf{9 2}, \mathbf{1 3 8}$ and $\mathbf{1 4 0}$ were synthesized by Yang et al

CHAPTER 5

Experimental Section

5.1 GENERAL INFORMATION

Experiments involving moisture and/or sensitive compounds were performed under a positive pressure of nitrogen in flame-dried glassware equipped with a rubber septum inlet. Solvents and liquid reagents were transferred by oven-dried syringes cooled in a dessicator or via double-tipped cannular needles. Reaction mixtures were stirred with Teflon-coated magnetic stirring bars unless otherwise stated. Moisture in non-volatile reagents/compounds was removed by the addition of the stated amount of anhydrous THF, followed by the removal of the solvent and traces of moisture in vacuo by means of an oil pump ($\sim 30 \mathrm{mmHg}, 23-50^{\circ} \mathrm{C}$) and subsequent purging with nitrogen.

All experiments were monitored by analytical thin layer chromatography (refer to section under "Chromatography"). Solvents were removed in vacuo under $\sim 30 \mathrm{mmHg}$ and heated with a water bath at $23{ }^{\circ} \mathrm{C}$ using Büchi rotary evaporator cooled with circulating ethylene glycol / water mixture (1:1) at $-5^{\circ} \mathrm{C}$.

Materials

Reagents were purified prior to use unless otherwise stated following the guidelines of Perrin and Armarego ${ }^{70}$. Solvents such as hexane, ethyl acetate, dichloromethane and water were freshly distilled prior to use. Anhydrous THF was obtained by distillation under nitrogen atmosphere from a deep purple solution resulting from sodium and benzophenone. Anhydrous dichloromethane was distilled over calcium hydride under nitrogen atmosphere. Azeotropic drying of starting materials or reagents was performed by the addition of the stated amount of

[^43]anhydrous tetrahydrofuran, ensued by azeotropic removal of tetrahydrofuran with traces of moisture in vacuo followed by subsequent purging with nitrogen.

Triethylamine, toluene and dimethyl sulfoxide were distilled over calcium hydride and stored over molecular sieves to maintain dryness. DMF was distilled over Linde type $4 \AA ́$ molecular sieve prior to usage. $1 N$ and $6 N$ hydrochloric acid was diluted from concentrated 37% solution using deionised water. $3 M$ and $6 M$ sodium hydroxide solution was prepared from sodium hydroxide pearls. Saturated solutions of ammonium chloride, sodium chloride, sodium bicarbonate, sodium carbonate and sodium sulphate were prepared from their respective solids.

Chromatography

Analytical thin layer chromatography was performed using Merck $60 \mathrm{~F}_{254}$ precoated silica gel plates (0.25 mm thickness). Subsequent to elution, plates were visualized using UV radiation (254 nm) on Spectroline Model ENF-24061/F 254 nm. Further visualization was possible by staining with basic solution of potassium permanganate or acidic solution of ceric molybdate followed by heating on a hot plate.

Flash column chromatography was performed using Merck Silica Gel 60 ($0.010-0.063 \mathrm{~nm}$) with freshly distilled solvents. Columns were typically packed as slurry and equilibrated with the appropriate solvent system prior to use. The solute was loaded neat or as a concentrated solution using the appropriate solvent system. The elution was assisted by applying pressure with an air pump.

Instruments \& Equipments

Infrared Spectroscopy

Infrared spectra were recorded on a Bio-Rad FTS 165 FTIR spectrometer. The oil samples were examined under neat conditions. Solid samples were analyzed as a KBr pressed-disk.

Optical Rotation

Optical rotations were measured in CHCl_{3} on a Schmidt + Haensdch polarimeter (Polartronic MH8) with 10.0 mm cell (c given in $\mathrm{g} / 100 \mathrm{~mL}$). Absolute configurations of the products were determined by comparison with known compounds. Concentration is denoted as c and was calculated as grams per milliliters $(\mathrm{g} / 100 \mathrm{~mL})$ whereas the solvent was indicated in parentheses $(c$, solvent).

Mass Spectroscopy

Mass Spectrometry (EI) spectra were recorded on a Thermo Finnigan Polaris Q GCMS. Mass Spectrometry (ESI and APCI) spectra were recorded on a Thermo Finnigan LCQ Deca XP Max. High Resolution Mass Spectrometry (EI, ESI, FAB) spectra were recorded on a Thermo Finnigan MAT 95 XP. MS and High Resolution Mass Spectrometry were reported in units of mass of charge ratio $(\mathrm{m} / \mathrm{z})$.

Nuclear Magnetic Resonance Spectroscopy

Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) and carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectroscopy were performed on a Bruker Avance 300,400 and 500 NMR spectrometers.

Chemical shifts for ${ }^{1} \mathrm{H}$ NMR spectra are reported as δ in units of parts per million (ppm) downfield from TMS ($\delta 0.0$) and relative to the signal of chloroform- d ($\delta 7.260$, singlet) as the internal standard. Multiplicities were given as: s (singlet); d
(doublet); t (triplet); q (quartet); dd (doublets of doublet); ddd (doublets of doublets of doublet); dddd (doublets of doublets of doublets of doublet); dt (doublets of triplet); or m (multiplets). The number of protons (n) for given resonance is indicated by nH . Coupling constants are reported as a J value in Hz . Carbon nuclear magnetic resonance spectra (${ }^{13} \mathrm{C}$ NMR) are reported as δ in units of parts per million (ppm) downfield from $\mathrm{SiMe}_{4}(\delta 0.0)$ and relative to the signal of chloroform- d ($\delta 77.03$, triplet). The proportion of diastereomers and geometric isomers was determined from the integration of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra.

Nomenclature

Systematic nomenclature for the compounds would follow the numbering system as defined by IUPAC. Compounds were named with assistance from CS Chemdraw Ultra 8.0 software.

5.2 SUPPORTING INFORMATION

Experimental Procedures and Characterization Data of Products

3-[(4-methoxybenzyl)oxy]propanal (75)

A solution of p-methoxybenzyl alcohol (18.0 mL, $20.0 \mathrm{~g}, 0.14 \mathrm{~mol}$), monochloroacetic acid ($0.82 \mathrm{~g}, 8.69 \mathrm{mmol}$) and $\mathrm{NaOH}(0.35 \mathrm{~g}, 8.69 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}$ $(1.8 \mathrm{~mL})$ was added dropwise to acrolein ($12.0 \mathrm{~mL}, 10.2 \mathrm{~g}, 0.18 \mathrm{~mol}$) over 5 min with stirring. Subsequently, acetic acid ($3.64 \mathrm{~mL}, 3.83 \mathrm{~g}, 63.7 \mathrm{mmol}$) was added and the solution was maintained at $40{ }^{\circ} \mathrm{C}$ for 6 days. After that, the solution was cooled to room temperature and the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$. The organic layer was dried over MgSO_{4}, filtered and evaporated. Purification of the residue by flash chromatography gave 17.4 g (64\%) of the aldehyde 75 as brown oil.
R_{f} value (hexane/EtOAc 4: 1): 0.18 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.77(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 43.8,55.2,63.4,72.8,113.7,129.3,129.8,159.2$, 201.2.

FTIR (NaCl , neat): $v 1724,1615,1512,1245 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}(\mathrm{M}+1)$ 195.1014, found 195.1021.

(E)-ethyl 5-(4-methoxybenzyloxy)pent-2-enoate (76)

In a round-bottomed flask equipped with a stirring bar, aldehyde 75 (17.4 g, 89.6 mmol) was dissolved in THF (100 mL) at room temperature. Methyl (triphenylphosphoranylidene) acetate ($33.4 \mathrm{~g}, 100.0 \mathrm{mmol}$) was added in one portion and the reaction mixture was allowed to react at room temperature for 16 h . After the starting material reacted completely (monitered by TLC plate), the mixture was then carefully diluted with EtOAc (100 mL) and sat. aq potassium sodium tartrate (200 mL), and stirred vigorously at r.t. till a clear biphasic separation was observed. The aqueous layer was extracted with EtOAc $(2 \times 200 \mathrm{~mL})$ and the combined organics were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. $\mathrm{The}^{\mathrm{P}}{ }_{3} \mathrm{PO}$ was removed by filtering through a short silica plug using hexanes. The filtrate was concentrated and purified by flash chromatography (hexanes to 100: 1 hexanes-EtOAc) to afford the ester 76 as a colorless oil ($20.35 \mathrm{~g}, 86 \%$ yield; $E / Z=91: 9$).
R_{f} value (hexane/EtOAc 4: 1): 0.32 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.90(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=7.12 \mathrm{~Hz}, 2 \mathrm{H}), 3.82$ (s, 3H), 3.57 (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.54-2.49(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.14 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 166.5$ (C), 159.2 (C), 145.7 (CH), 130.1 (C), 129.3 $(\mathrm{CH}), 122.9(\mathrm{CH}), 113.8(\mathrm{CH}), 72.7\left(\mathrm{CH}_{2}\right), 68.0\left(\mathrm{CH}_{2}\right), 60.2\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right), 32.6$ $\left(\mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right)$.

FTIR (NaCl , neat): $v 1717,1655,1612,1514 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~S}(\mathrm{M}+1)$ 265.1437, found 265.1440.

(E)-5-(4-methoxybenzyloxy)pent-2enal (78)

In a round bottom flask equipped with a rubber septum and a magnetic stirrer bar, 76 $(0.264 \mathrm{~g}, 1.00 \mathrm{mmol})$ was dissolved in hexane $(4 \mathrm{~mL})$ and cooled to $-40^{\circ} \mathrm{C}$. DIBAL-H (3.0 mL , Aldrich 1.0 M in heptane, 3.00 mmol) was added carefully over 2 portions. After stirring for another $2 \mathrm{~h}, \mathrm{MeOH}$ (pre-cooled to $-78^{\circ} \mathrm{C}, 0.106 \mathrm{~g}, 3.30 \mathrm{mmol}$) was added carefully over 2 portions and stirred for a further 15 minutes till a white suspension was observed. The reaction mixture was then added saturated potassium sodium tartrate solution (5 mL), diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and warmed to room temperature. The mixture was stirred until a clear biphasic separation was observed. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL} x 2)$, brine $(15 \mathrm{~mL} x 1)$ and dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting residue was purified through a short silica gel column (Hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 20: 1) to afford the desired product as pale yellow oil ($0.193 \mathrm{~g}, 87 \%$ yield). The alcohol 77 was dissolved in EtOAc (5 mL) and 2-iodoxybenzoic acid ($0.56 \mathrm{~g}, 2.00 \mathrm{mmol}$) was added to the solution at room temperature. The reaction was reflux for 2 h before cooling to $0{ }^{\circ} \mathrm{C}$ and quenched with water $(5 \mathrm{~mL})$. The aqueous mixture was extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$) and the combined organic extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography (Hexane/EtOAc 9: 1) to afford the aldehyde 78 as colourless oil ($0.180 \mathrm{~g}, 94 \%$ yield $)$.
R_{f} value (hexane/EtOAc 48: 1): 0.20 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.88$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.87-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=7.9,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{t}, J=6.22 \mathrm{~Hz}, 2 \mathrm{H}), 2.64-2.59(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 194.1$ (C), 159.3 (C), $155.4(\mathrm{CH}), 134.1(\mathrm{CH}), 129.9$ $(\mathrm{C}), 129.4(\mathrm{CH}), 113.9(\mathrm{CH}), 72.8\left(\mathrm{CH}_{2}\right), 67.6\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right), 33.1\left(\mathrm{CH}_{2}\right)$.

FTIR (NaCl , neat): $v 1690,1636,1612,1514 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3}(\mathrm{M}+1)$ 221.1189, found 221.1178.
(R)-3-oxopentan-2-yl benzoate (81)

To a cooled $\left(-20^{\circ} \mathrm{C}\right)$ mixture of methyl D-(+)-lactate (79; $\left.7.04 \mathrm{~g}, 67.6 \mathrm{mmol}\right)$ and $\mathrm{MeON}(\mathrm{Me}) \mathrm{H} \cdot \mathrm{HCl}(16.4 \mathrm{~g}, 168 \mathrm{mmol})$ in THF $(200 \mathrm{~mL})$ was added a 2 M solution of $i-\mathrm{PrMgCl}$ in THF $(168 \mathrm{~mL})$ dropwise over 30 min . The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 30 min and at $0{ }^{\circ} \mathrm{C}$ for a further 30 min before sat. aq $\mathrm{NH}_{4} \mathrm{Cl}(500 \mathrm{~mL})$ was added. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 150 \mathrm{~mL})$, followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times$ $150 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, and the residue was purified by column chromatography (hexane/EtOAc 1: 1) to give the intermediate Weinreb amide ($7.83 \mathrm{~g}, 87 \%$ yield) as a colorless oil. To a cooled (0 ${ }^{\circ} \mathrm{C}$) solution of this amide ($2.0 \mathrm{~g}, 15.0 \mathrm{mmol}$) in THF (30 mL) was added a 3 M solution of $\mathrm{EtMgBr}^{2} \mathrm{Et}_{2} \mathrm{O}(16 \mathrm{~mL})$ and the reaction mixture was allowed to warm to r.t. After 1 h , saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(80 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$, followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 40 \mathrm{~mL})$. The combined organic
extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Then, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added. To this solution was added $\mathrm{Bz}_{2} \mathrm{O}(5.11 \mathrm{~g}, 22.6 \mathrm{mmol})$, DMAP ($0.20 \mathrm{~g}, 1.64 \mathrm{mmol}$), and $i-\operatorname{Pr}_{2} \mathrm{NEt}(5.0 \mathrm{~mL}, 28.6 \mathrm{mmol})$. After stirring for 14 h , excess $\mathrm{Bz}_{2} \mathrm{O}$ was removed by the addition of ethylenediamine ($1.0 \mathrm{~g}, 16.6 \mathrm{mmol}) . \mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$ was added, the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 40 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to an oil. The residue was purified by column chromatography (hexane/EtOAc 5: 1) to afford $(R)-81$ as a colorless oil $(2.63 \mathrm{~g}, 85 \%$ yield).
R_{f} value (hexane/EtOAc 4: 1): 0.53.
$[\alpha]_{\mathrm{D}}{ }^{20}=-25.3\left(c=0.9, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.05-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.59(\mathrm{~m}, 3 \mathrm{H}), 5.33(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.46-2.68(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}): $\delta 208.4,165.8,133.3,129.7,129.4,128.4,75.0,31.4$, 16.4, 7.1.

FTIR (KBr, neat): v 3062, 2981, 2939, 1720 (C=O), 1716 (C=O), 1452, 1269, 1109, $1026,711 \mathrm{~cm}^{-1}$.

HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3}(\mathrm{M}+1)$ 207.1025, found 207.1021.
(2R,4S,5S,E)-5-hydroxy-9-(4-methoxybenzyloxy)-4-methyl-3-oxonon-6-en-2-yl benzoate (82)

To a stirred solution $\left(-78{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{8 1}(2.06 \mathrm{~g}, 10.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added chlorodicyclohexylborane ($15.0 \mathrm{~mL}, 1 \mathrm{M}$ in hexane, 15.0 mmol) and $\mathrm{Me}_{2} \mathrm{NEt}(1.5 \mathrm{~mL}$, 15 mmol). The mixture was warmed to $0{ }^{\circ} \mathrm{C}$, stirred for 2 h , and then recooled to -78 ${ }^{\circ}$ C. A solution of aldehyde $78(2.86 \mathrm{~g}, 13.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added dropwise over 2 min . After 2 h , the reaction mixture was kept in the freezer $\left(-24^{\circ} \mathrm{C}\right)$ for 20 h . The mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and quenched by dropwise addition of $\mathrm{MeOH}(30 \mathrm{~mL})$, pH 7 phosphate buffer (30 mL), and $35 \% \mathrm{H}_{2} \mathrm{O}_{2}(30 \mathrm{~mL})$, and stirred for 1 h at r.t. $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added, the organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 80 \mathrm{~mL})$. The combined organic layers were washed with brine $(60 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (from hexane/EtOAc 50: 1 to 20: 1) to afford alcohol 82 as a white solid ($3.45 \mathrm{~g}, 81 \%$ yield).
R_{f} value (hexane/EtOAc 4: 1): 0.20.
$[\alpha]_{\mathrm{D}}{ }^{20}=-19.9\left(c=0.99, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.08(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.45 \mathrm{~Hz}, 1 \mathrm{H})$, 7.47-7.44 (m, 2H), $7.23(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.76-5.70(\mathrm{~m}, 1$ H), $5.50(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.24-$ 4.21 (m, 1 H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.92-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.33$ (m, 2H), 1.59 (bs), 1.55 (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.17$ (d, $J=7.15 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 211.7$, 165.8, 135.9, 135.9, 135.7, 134.4, 133.8, 133.2, 129.7, 129.6, 129.5, 129.5, 128.4, 127.6, 127.4, 74.7, 72.2, 72.0, 48.8, 37.4, 36.4, 27.0, 19.2, 18.8, 16.8, 15.6, 14.4.

FTIR (NaCl , neat): $v 1721,1611,1514,1450 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 449.1940$, found 449.1940 .

(2R,4S,5S,E)-(tert-butyldimethylsilyloxy)-9-(4-methoxybenzyloxy)-4-methyl-3-

 oxonon-6-en-2-yl benzoate (83)

To a round bottom flask equipped with a rubber septum and a magnetic stirrer bar was added imidazole ($0.136 \mathrm{~g}, 2.00 \mathrm{mmol}$), DMAP ($0.024 \mathrm{~g}, 0.20 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2$ $\mathrm{mL})$. Then alcohol $82(0.426 \mathrm{~g}, 1.00 \mathrm{mmol})$ was added dropwise and the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$. Tert-butylchlorodimethylsilane ($0.226 \mathrm{~g}, 1.50 \mathrm{mmol}$) was added slowly and the resulting reaction mixture was stirred overnight at room temperature. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL x 3). The combined organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography (hexane/EtOAc 50: 1) to afford the desired product as pale yellow oil $(0.487 \mathrm{~g}, 90 \%$ yield $)$.
R_{f} value (hexane/EtOAc 9: 1): 0.50 .
$[\alpha]_{D}{ }^{20}=+0.97\left(c=1.2, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.65-5.57(\mathrm{~m}$, $1 \mathrm{H}), 5.44-5.33(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.27-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}), 2.90-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.31(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 209.3,165.7,159.1,133.2,133.0,130.3,130.0,129.8$, 129.7, 129.3, 128.4, 113.7, 76.3, 75.3, 72.6, 69.3, 55.2, 48.8, 32.6, 25.8, 18.0, 15.1, 14.3, -3.6, -4.2.

FTIR (NaCl, neat): $v 1721,1638,1616,1514 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na}) 563.2803$, found 563.2805.
(3S,4S,E)-4-(tert-butyldimethylsilyloxy)-8-(4-methoxybenzyloxy)-3-methyloct-5-
2-one (84)

The ketone $83(1.08 \mathrm{~g}, 2.00 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was cooled at $0{ }^{\circ} \mathrm{C}$ and methylmagnesium bromide (3.4 mL , Aldrich 3.0 M in $\mathrm{Et}_{2} \mathrm{O}, 10.0 \mathrm{mmol}$) was slowly added into the solution. The reaction mixture was stirred at room temperature for 5 h . Then, saturated aqueous $\mathrm{NH}_{4} \mathrm{C} 1(10 \mathrm{~mL})$ was added carefully with vigorous stirring, the layers were separated, and the aqueous phase was extracted thoroughly with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 10 \mathrm{~mL})$. Subsequently, the combined organic layers were washed with brine (20 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give a crude mixture of diol. The mixture was passed through a column of silica gel. The diol was used for subsequent reaction without further purification.

To a stirred solution $\left(0^{\circ} \mathrm{C}\right)$ of the diol in $\mathrm{MeOH}(16 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(16 \mathrm{~mL})$ was added $\mathrm{NaIO}_{4}(2.16 \mathrm{~g}, 10.2 \mathrm{mmol})$ in small portions. After complete addition, the mixture was stirred for $2 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(4 \times 80 \mathrm{~mL})$. The combined organic layers were washed with brine $(80 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The residues was purified by flash column chromatography (hexane/EtOAc 30:1) to afford ketone 84 as a colorless oil ($0.539 \mathrm{~g}, 65 \%$ yield over two steps).
R_{f} value (hexane/EtOAc 4: 1): 0.43.
$[\alpha]_{\mathrm{D}}{ }^{20}=-6.7\left(c=1.05, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, 5.66-5.56(m, 1H), $5.36(\mathrm{dd}, J=7.9,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.16-4.10(\mathrm{~m}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~s}$, $3 \mathrm{H}), 0.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.83$ (s, 9 H$), 0.00(\mathrm{~s}, 3 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 212.2$ (C), 159.2 (C), 133.0 (CH), 130.5 (C), 129.7 $(\mathrm{CH}), 129.3(\mathrm{CH}), 113.8(\mathrm{CH}), 76.9(\mathrm{CH}), 72.6\left(\mathrm{CH}_{2}\right), 69.4\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right), 53.0$ $(\mathrm{CH}), 32.7\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{3}\right), 18.0(\mathrm{C}), 13.2\left(\mathrm{CH}_{3}\right),-3.9\left(\mathrm{CH}_{3}\right),-5.1$ $\left(\mathrm{CH}_{3}\right)$.

FTIR (NaCl, neat): $v 3062,2960,2931,2856,1722(\mathrm{C}=\mathrm{O}), 1514,1247 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+1) 407.2616$, found 407.2618 .
(2Z,4R,5S,6E)-methyl 5-(tert-butyldimethylsilyloxy)-9-(4-methoxybenzyloxy)-3,4-dimethylnona-2,6-dienoate (85a)

To a stirred suspension of $\mathrm{CuI}(57 \mathrm{mg}, 0.30 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added MeLi $(0.27 \mathrm{~mL}, 2.2 \mathrm{M}$ in Hexane, 0.60 mmol$)$ at $0^{\circ} \mathrm{C}$. The solution was stirred for 15 min at $0{ }^{\circ} \mathrm{C}$. After that, the solution was cooled to $-50{ }^{\circ} \mathrm{C}$ and alkyne $91(44.7 \mathrm{mg}, 0.1$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added into the solution. The reaction was stirred for another 1.5 h and quenched with $\mathrm{AcOH}(33 \mu \mathrm{~L})$ and saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture
was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, dried over MgSO_{4} and concentrated in vacuo. The residue was passed through a short silica gel column.
(2E,4R,5S,6E)-methyl 5-(tert-butyldimethylsilyloxy)-9-(4-methoxybenzyloxy)-3,4-dimethylnona-2,6-dienoate (85b)

To a stirred solution of acid $\mathbf{8 9}(45 \mathrm{mg}, 0.10 \mathrm{mmol})$ in toluene (2 mL) was added $\mathrm{Et}_{3} \mathrm{~N}$ ($40 \mathrm{mg}, 0.40 \mathrm{mmol}$) and 2,4,6-trichlorobenzoylchloride ($61 \mathrm{mg}, 0.25 \mathrm{mmol}$) at room temperature. The reaction was stirred at rt for 2.5 h . After that, $\mathrm{MeOH}(10 \mathrm{mg}, 0.31$ mmol) and DMAP ($24 \mathrm{mg}, 0.20 \mathrm{mmol}$) in toluene (4 mL) were added immediately into the mixture. The reaction was stirred overnight. The mixture was quenched with saturated NaHCO_{3}, diluted with $\mathrm{Et}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The organic layers were washed with water, brine, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ $\mathrm{Et}_{2} \mathrm{O} 50: 1$) to afford ester $\mathbf{8 5 b}$ as colorless oil ($42 \mathrm{mg}, 92 \%$ yield).
R_{f} value (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 8: 1): 0.22 .
$[\alpha]_{\mathrm{D}}{ }^{20}=-0.52\left(c=0.81, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $5.68(\mathrm{~s}, 1 \mathrm{H}), 5.61-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{dd}, J=7.6,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.99-$ $3.97(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.35-2.30(\mathrm{~m}, 2 \mathrm{H})$, 2.28-2.24 (m, 1H), $2.13(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}),-$ 0.04 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.3$ (C), 162.3 (C), $159.2(\mathrm{C}), 133.5(\mathrm{CH}), 130.5$ (C), $129.3(\mathrm{CH}), 128.9(\mathrm{CH}), 116.5(\mathrm{CH}), 113.8(\mathrm{CH}), 76.5(\mathrm{CH}), 72.6\left(\mathrm{CH}_{2}\right), 69.6$ $\left(\mathrm{CH}_{2}\right), 55.3\left(\mathrm{CH}_{3}\right), 50.7\left(\mathrm{CH}_{3}\right), 50.6(\mathrm{CH}), 32.7\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}), 16.9$ $\left(\mathrm{CH}_{3}\right), 15.2\left(\mathrm{CH}_{3}\right),-3.9\left(\mathrm{CH}_{3}\right),-5.1\left(\mathrm{CH}_{3}\right)$.

FTIR (NaCl , neat): $v 2855,1717,1645,1514,1248 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M}+1) 463.2888$, found 463.2880 .
(4S,5S,E)-methyl 5-(tert-butyldimethylsilyloxy)-3-hydroxy-9-(4-
methoxybenzyloxy)-3,4-dimethylnon-6-enoate (86)

n-BuLi (15.4 mL , Aldrich 1.6 M in Hexane, 24.6 mmol) was added dropwise into a solution of diisopropylamine ($3.5 \mathrm{~mL}, 26.8 \mathrm{mmol}$) in THF (75 mL) at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After stirring for 1 h at $0{ }^{\circ} \mathrm{C}$, the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of methyl acetate ($2.22 \mathrm{~mL}, 2.04 \mathrm{~g}, 27.6 \mathrm{mmol}$) in THF (19 mL) was added into the mixture over 1 h . The reaction was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$. Subsequently, a solution of $\mathbf{8 4}(1.00 \mathrm{~g}, 2.46 \mathrm{mmol})$ in THF (19 mL) was added slowly overnight at $-78{ }^{\circ} \mathrm{C}$. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for additional 3 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was then added to the reaction mixture to quench the reaction. Then, the mixture was extracted ethyl acetate ($3 \times 75 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduce pressure to afford the crude product. The residue was purified by flash column chromatography (Hexane/EtOAc 40:1) to obtain the alcohol 86 as light yellow oil ($0.946 \mathrm{~g}, 80 \%$ yield).
R_{f} value (hexane/EtOAc 4: 1): 0.18 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $5.60(\mathrm{dt}, J=6.7,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=8.4,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{~m}$, $1 \mathrm{H}), 3.90(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.52-2.41(\mathrm{~m}$, 2H), 2.39-2.34 (m, 2H), $1.30(\mathrm{~s}, 3 \mathrm{H}), 0.93-0.89(\mathrm{~m}, 12 \mathrm{H}), 0.14-0.05(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.9,159.2,134.2,130.3,129.9,124.5,113.8,79.0$, $74.6,72.6,69.1,55.3,51.5,45.9,45.6,32.6,25.8,22.7,18.0,13.4,-3.1,-4.6$.

FTIR (NaCl , neat): $v 3456,2930,1732,1612,1514 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{45} \mathrm{O}_{6} \mathrm{Si}(\mathrm{M}+1) 481.2979$, found 481.2985.
(5S,6S)-4-hydroxy-6-((E)-4-(4-methoxybenzyloxy)but-1-enyl)-4,5-
dimethyltetrahydro-2H-pyran-2-one (87)

To a solution of $\mathbf{8 6}(0.481 \mathrm{~g}, 2.46 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added Amberlyst 15 $(1.0 \mathrm{~g}, 2.46 \mathrm{mmol})$. The reaction was stirred at room temperature for overnight. Then, Amberlyst 15 was filtered off by gravity filtration and washed with MeOH . The filtrate was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography (Hexane/EtOAc 10:1) to afford lactone 87 as colourless oil ($0.617 \mathrm{~g}, 75 \%$ yield $)$.
R_{f} value (hexane/EtOAc 1: 1): 0.23 .
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H})$, 5.84-5.79 (m, 1H), $5.49(\mathrm{dd}, J=10.6,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-4.63(\mathrm{~m}, 0.65 \mathrm{H}), 4.43(\mathrm{~s}$, $2 \mathrm{H}), 4.26-4.22(\mathrm{~m}, 0.35 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~d}, J=21.1 \mathrm{~Hz}, 0.35 \mathrm{H}), 2.68(\mathrm{~d}, J=$ $22.0 \mathrm{~Hz}, 0.65 \mathrm{H}), 2.54(\mathrm{~d}, J=21.4 \mathrm{~Hz}, 0.3 \mathrm{H}), 2.49(\mathrm{~d}, J=22.0 \mathrm{~Hz}, 0.7 \mathrm{H}), 2.40-2.36$ $(\mathrm{m}, 2 \mathrm{H}), 1.81-1.78(\mathrm{~m}, 0.35 \mathrm{H}), 1.73(\mathrm{bs}, \mathrm{OH}), 1.63-1.59(\mathrm{~m}, 0.75 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H})$, $0.94(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 169.2,159.1,133.5,130.3,129.3,129.0,113.8,84.3$, 83.4, 72.6, 69.7, 68.9, 55.3, 45.1, 32.6, 27.6, 9.8.

FTIR (NaCl , neat): $v 3433,2971,1718,1612,1513,1247 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{5}(\mathrm{M}+1) 335.1865$, found 335.1858 .
(5R,6S)-6-((E)-4-(4-methoxybenzyloxy)but-1-enyl)-4,5-dimethyl-5,6-dihydro-2H-pyran-2-one (88)

To a round bottom flask equipped with a rubber septum and a magnetic stirrer bar was added $87(0.537 \mathrm{~g}, 1.61 \mathrm{mmol})$ and pyridine $(2.68 \mathrm{~mL})$. The solution was cooled to 0 ${ }^{\circ} \mathrm{C}$ and $\mathrm{SOCl}_{2}(0.58 \mathrm{~mL}, 8.0 \mathrm{mmol})$ was added dropwise over 5 min to the solution. The reaction was then stirred at $0{ }^{\circ} \mathrm{C}$ and monitored by TLC plate. When the reaction completed, pyridine was evaporated off under reduced pressure. The mixture was diluted with diethyl ether $(20 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and extracted with diethyl ether (10 $\mathrm{mL} x 3$). The combined organic extracts were dried over anhydrous sodium sulfate,
filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography (hexane $/ \mathrm{Et}_{2} \mathrm{O} 50: 1$) to afford the desired product as colourless oil ($0.234 \mathrm{~g}, 46 \%$ yield).
R_{f} value (hexane/EtOAc 1: 1): 0.48 .
$[\alpha]_{\mathrm{D}}{ }^{20}=-34.9\left(c=1.06, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 5.87-5.78 (m, 2H), $5.60(\mathrm{dd}, J=7.4,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.52(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.38-2.29(\mathrm{~m}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.3,160.2,158.9,133.5,130.5,129.1,127.9,116.5$, 113.2, 83.4, 72.6, 69.5, 55.6, 38.2, 33.1, 22.0, 16.9.

FTIR (NaCl , neat): $v 2857,1715,1612,1514,1248 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+23) 339.1567$, found 339.1572 .

(2E,4R,5S,6E)-5-(tert-butyldimethylsilyloxy)-9-(4-methoxylbenzyloxy)-3,4-

dimethylnona-2,6-dienoic acid (89)

To a stirred solution of $\mathbf{8 8}(0.347 \mathrm{~g}, 1.10 \mathrm{mmol})$ in $\mathrm{MeOH}(23.5 \mathrm{~mL})$ was added 1 N lithium hydroxide ($11.0 \mathrm{~mL}, 11.0 \mathrm{mmol}$). The reaction was stirred at room temperature overnight. After that, the reaction was quenched with 1 N HCl .1 N HCl was added dropwise until the pH of the mixture became 5.0. Subsequently, the mixture was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were
washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting residue was used in the following reactions without further purification.

To a solution of the crude intermediate in dichloromethane (50 mL) was added TBSOTf ($0.97 \mathrm{~mL}, 5.50 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(1.05 \mathrm{~mL}, 7.50 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction was warmed to room temperature and stirred for 5 h . Consequently, MeOH $(5.0 \mathrm{~mL})$ was added into the mixture followed by $\mathrm{K}_{2} \mathrm{CO}_{3}(0.30 \mathrm{~g}, 2.20 \mathrm{mmol})$. The reaction was allowed to proceed for another 10 min prior to quenching with water (50 mL). The aqueous layer was extracted with dichloromethane, and the combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The residual crude product was purified by flash chromatography (hexane/Et $\mathrm{t}_{2} \mathrm{O}$ 8: 1) to afford the desired product as colourless oil ($0.237 \mathrm{~g}, 48 \%$ yield over 4 steps). Trans α, β-unsaturated carboxylic acid 89 instead of cis α, β-unsaturated carboxylic acid \mathbf{D} was obtained as the major isomer. R_{f} value (hexane/EtOAc 4: 1): 0.21 .
$[\alpha]_{\mathrm{D}}{ }^{20}=+23.6\left(c=0.72, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $5.71(\mathrm{~s}, 1 \mathrm{H}), 5.62-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{dd}, J=7.7,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.99-$ $3.96(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.36-2.25(\mathrm{~m}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$, 0.96 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) 0.83(\mathrm{~s}, 9 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}{ }^{3}$ NMR (100 MHz, CDCl_{3}): $\delta 172.0,165.1,159.1,133.4,130.3,129.3,129.0,116.4$, 113.7, 76.6, 72.5, 69.4, 55.2, 50.8, 32.6, 25.7, 18.0, 17.1, 15.2, -3.9, -5.2. FTIR (NaCl , neat): v 2930, 2856, 1691, 1659, 1494, $1249 \mathrm{~cm}^{-1}$.

HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M}+1) 449.2705$, found 449.2723 .
(2S,3S,E)-(tert-butyldimethylsilyloxy)-7-(4-methoxybenzyloxy)-2-methylhept-4enal (90)

The ester $83(0.54 \mathrm{~g}, 1.0 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (Aldrich 1 M solution in heptane, $3.0 \mathrm{~mL}, 3.0 \mathrm{mmol}$), pre-cooled to $-78^{\circ} \mathrm{C}$ was added dropwise. After stirring for another 1 h , the reaction was quenched with saturated aqueous potassium sodium tartrate (25 mL), warmed to r.t., and stirred vigorously till a clear biphasic separation was observed. The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/EtOAc 5: 1) to afford the intermediate diol as a colorless oil.

To a stirred solution $\left(0^{\circ} \mathrm{C}\right)$ of the diol in $\mathrm{MeOH}(8 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$ was added $\mathrm{NaIO}_{4}(1.08 \mathrm{~g}, 5.1 \mathrm{mmol})$ in small portions. After complete addition, the mixture was stirred for $2 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times$ 40 mL). The combined organic layers were washed with brine (40 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The residues was purified by flash column chromatography (hexane/EtOAc 20:1) to afford aldehyde $\mathbf{9 0}$ as a colorless oil ($0.267 \mathrm{~g}, 68 \%$ yield over two steps).
R_{f} value (hexane/EtOAc 4: 1): 0.47 .
$[\alpha]_{\mathrm{D}}{ }^{20}=+10.2\left(c=1.19, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.73(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5$
$\mathrm{Hz}, 2 \mathrm{H}), 5.70-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.48(\mathrm{dd}, J=7.2,15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.23-4.21$
$(\mathrm{m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.46-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.32(\mathrm{~m}, 2 \mathrm{H})$, $0.99(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 204.8,159.1,132.6,130.4,129.6,129.2,113.7,75.3$, 72.6, 69.4, 55.3, 52.6, 32.6, 25.7, 18.1, 10.7, -3.9, -5.0.

FTIR (KBr, neat): $v 3420,2930,2855,1726(\mathrm{C}=\mathrm{O}), 1612,1514,1247,1096 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+1) 393.2467$, found 393.2461 .
(4R,5S,E)-methyl 5-((tert-butyldimethylsilyloxy)-9-(4-methoxybenzyloxy)-4-methylnon-6-en-2-ynoate (91)

To a stirred solution of $\mathrm{CBr}_{4}(93 \mathrm{mg}, 0.28 \mathrm{mmol})$ in dichloromethane $(0.3 \mathrm{~mL})$ was added $\mathrm{Ph}_{3} \mathrm{P}(147 \mathrm{mg}, 0.56 \mathrm{mmol})$ in dichloromethane $(0.3 \mathrm{~mL})$ solution at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 10 min at room temperature and cooled to $0{ }^{\circ} \mathrm{C}$ again. Aldehyde $90(55 \mathrm{mg}, 0.14 \mathrm{mmol})$ in dichloromethane (0.3 mmol) was added into the mixture. After 2 h , the reaction was quenched with saturated NaHCO_{3} and extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$), washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The resulting crude product was purified by flash column chromatography (hexane/EtOAc 100:1 to 50: 1) to afford dibromoalkene. Dibromoalkene was used in the following reaction without further spectroscopic analyzing.

To a stirred solution of dibromoalkene in THF (1 mL) was added n - $\operatorname{BuLi}(0.19 \mathrm{~mL}$, Aldrich 1.6 M in Hexane, 0.31 mmol) at $-78{ }^{\circ} \mathrm{C}$. After the reaction was stirred for 30
min , the reaction was treated with methyl chloroformate ($26 \mathrm{mg}, 0.28 \mathrm{mmol}$) and warmed to room temperature. The reaction was allowed to stir for another 2.5 h . After that, the mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x} 10$ mL). The combined organic layers were washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography (hexane/Et $\mathrm{t}_{2} \mathrm{O} 40: 1$) to afford 91 as colourless oil (41 mg , 65% over 2 steps).
R_{f} value (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 8: 1): 0.28 .
$[\alpha]_{\mathrm{D}}{ }^{20}=-5.5\left(c=1.12, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left.300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.25(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $5.72-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{dd}, J=6.6,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.16-4.04(\mathrm{~m}, 1 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.32(\mathrm{~m}$, $2 \mathrm{H}), 1.11(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.1$ (C), 154.3 (C), 131.6 (CH), 130.5 (C), 129.7 $(\mathrm{CH}), 129.3(\mathrm{CH}), 113.7(\mathrm{CH}), 91.6(\mathrm{C}), 75.3(\mathrm{CH}), 74.0(\mathrm{C}), 72.6\left(\mathrm{CH}_{2}\right), 69.5\left(\mathrm{CH}_{2}\right)$, $55.3\left(\mathrm{CH}_{3}\right), 52.5\left(\mathrm{CH}_{3}\right), 33.8\left(\mathrm{CH}_{2}\right), 32.7(\mathrm{CH}), 25.8\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}), 15.0\left(\mathrm{CH}_{3}\right),-4.3$ $\left(\mathrm{CH}_{3}\right),-5.0\left(\mathrm{CH}_{3}\right)$.

FTIR (KBr, neat): $v 2963,2858,2237,1715,1612,1514,1251 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M}+1) 447.2562$, found 447.2567 .
(5R,9S,10R,12S,13S,E)-5-((4R,5R)-5-cyclohexyl-2,2-dimethyl-1,3-dioxolan-4-yl)-3,3-diethyl-5,9,12,13,15,15,16,16-octamethyl-10-(triethylsilyloxy)-4,14-dioxa-3,15-disilaheptadec-6-ene (93a)

To a stirred solution of sulfone 95 ($31.1 \mathrm{mg}, 0.05 \mathrm{mmol}$) in anhydrous THF (1 mL) at $-78{ }^{\circ} \mathrm{C}$ was added dropwise a solution of KHMDS $(0.1 \mathrm{~mL}, 15 \%$ in toluene, 0.06 mmol) in THF over 5 minutes. The blue solution was stirred for 30 minutes during which time the solution became green. A solution of aldehyde $\mathbf{9 4}(27.8 \mathrm{mg}, 0.075$ $\mathrm{mmol})$ in THF (0.5 mL) was added dropwise over 5 minutes and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . The cooling bath was removed and the mixture was stirred at ambient temperature overnight. The solution has changed from dark brown to light yellow. After a night, water was added and continued stirring for 1 h . The reaction was quenched with brine (10 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL}$ x 3$)$. The combined organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography (hexane $/ \mathrm{Et}_{2} \mathrm{O} 100: 1$) to afford the desired trans-product as colorless oil $(11.0 \mathrm{mg}$, 29% yield; 48% total yield for the mixture of E / Z isomers, $60: 40$).
R_{f} value (hexane/Et O_{2} 14: 1): 0.52 .
$[\alpha]_{D}{ }^{20}=-14\left(c=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.73(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.58-5.48(\mathrm{~m}, 1 \mathrm{H}), 3.85-$ $3.80(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.68(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.58(\mathrm{~m}, 10 \mathrm{H}), 1.47-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 6 \mathrm{H})$, $1.29(\mathrm{~s}, 3 \mathrm{H}), 1.19-1.17(\mathrm{~m}, 4 \mathrm{H}), 1.08(\mathrm{~d}, 2 \mathrm{H}), 0.99-0.85(\mathrm{~m}, 33 \mathrm{H}), 0.65-0.58(\mathrm{~m}, 12 \mathrm{H})$, $0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 134.9(\mathrm{CH}), 128.3(\mathrm{CH}), 106.3(\mathrm{C}), 83.9(\mathrm{CH}), 83.2$ $(\mathrm{CH}), 77.0(\mathrm{C}), 75.1(\mathrm{CH}), 71.2(\mathrm{CH}), 38.2(\mathrm{CH}), 37.3\left(\mathrm{CH}_{2}\right), 36.2\left(\mathrm{CH}_{2}\right), 35.6(\mathrm{CH})$, $34.5(\mathrm{CH}), 31.6\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right)$, $25.8\left(\mathrm{CH}_{3}\right), 25.1\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}), 15.4\left(\mathrm{CH}_{3}\right), 15.0\left(\mathrm{CH}_{3}\right), 7.2\left(\mathrm{CH}_{2}\right), 7.0$ $\left(\mathrm{CH}_{3}\right), 6.8\left(\mathrm{CH}_{2}\right), 5.3\left(\mathrm{CH}_{3}\right),-4.0\left(\mathrm{CH}_{3}\right),-4.8\left(\mathrm{CH}_{3}\right)$.

FTIR (NaCl , neat): $v 2955,1377,1254,1065,1005,835,743 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{42} \mathrm{H}_{87} \mathrm{O}_{5} \mathrm{Si}_{3}(\mathrm{M}+1) 755.5861$, found 755.5818.
(5S,6S,8R)-8-((2S,6R,E)-6-((4R,5R)-5-cyclohexyl-2,2-dimethyl-1,3-dioxolan-4-yl)-
6-(4-methoxybenzyloxy)hept-4-en-2-yl)-10,10-diethyl-2,2,3,3,5,6-hexamethyl-4,9-
dioxa-3,10-disiladodecane (93b)

To a stirred solution of sulfone $94(31.1 \mathrm{mg}, 0.05 \mathrm{mmol})$ in anhydrous THF (1 mL) at $-78{ }^{\circ} \mathrm{C}$ was added dropwise a solution of KHMDS $(0.1 \mathrm{~mL}, 15 \%$ in toluene, 0.06 mmol) in THF over 5 minutes. The blue solution was stirred for 30 minutes during which time the solution became green. A solution of aldehyde 93a ($28.2 \mathrm{mg}, 0.075$ mmol) in THF (0.5 mL) was added dropwise over 5 minutes and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . The cooling bath was removed and the mixture was stirred at ambient temperature overnight. The solution has changed from dark brown to light yellow. After a night, water was added and stirring was continued for 1 h . The reaction was quenched with brine $(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$. The combined organic extracts were dried over anhydrous sodium sulfate, filtered and
concentrated in vacuo. From the ${ }^{1} \mathrm{H}$ NMR analysis, the desired product was in trace amount.
(2R,6S,7R,9S,10S,E)-10-(tert-Butyldiphenylsilyloxy)-2-[(4R,5R)-5-cyclohexyl-2,2-dimethyl-1,3-dioxolan-4-yl]-7-(4-methoxybenzyloxy)-6,9-dimethylundec-3-en-2-ol (93c)

To a solution of $\mathbf{1 1 0}(11.2 \mathrm{mg}, 19.8 \mathrm{mmol})$ and allyllic alcohol $\mathbf{9 9}(10.0 \mathrm{mg}, 39.6$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added the 2 nd generation Hoveyda-Grubbs catalyst $(1.0 \mathrm{mg}, 1.6 \mathrm{mmol})$ and the mixture was heated at reflux for 12 h under N_{2}. The mixture was cooled to r.t. and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane/EtOAc, 100: 1 to 20: 1) to afford 93 c as colorless oil ($5.8 \mathrm{mg}, 38 \%$ yield).
R_{f} value (hexane/EtOAc 4: 1): 0.53.
$[\alpha]_{\mathrm{D}}{ }^{20}=-16.0\left(c=0.5, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73-7.86(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.54(\mathrm{~m}, 6 \mathrm{H}), 7.10(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.53-5.71(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.12(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.76(\mathrm{~m}, 4$ H), 3.26-3.33 (m, 1 H), 2.11-2.33 (m, 2 H), 1.64-1.98 (m, 4 H), 1.48 (s, 3 H), 1.111.41 (m, 15 H$), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.79-0.97(\mathrm{~m}, 9 \mathrm{H})$.
${ }^{13}{ }^{3}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.0,136.0,135.9,135.3,135.0,134.3,131.1,129.6$, $129.5,129.4,129.3,128.8,127.5,127.3,113.6,106.6,83.2,82.2,81.8,74.0,72.3$,
$70.9,55.2,37.4,36.4,35.9,35.4,32.7,31.6,30.2,29.7,27.1,26.7,26.4,25.8,25.6$, $25.5,25.0,19.9,19.4,15.6,14.8$.

FTIR (KBr, neat): v 3581, 3070, 2958, 2922, 2852, 1612, 1454, 1379, 1249, 1161, $1035 \mathrm{~cm}^{-1}$.

HRMS (ESI) calcd. for $\mathrm{C}_{48} \mathrm{H}_{71} \mathrm{O}_{6} \mathrm{Si}(\mathrm{M}+1) 771.5020$, found 771.5011 .

(S)-2-((4R,5R)-5-cyclohexyl-2,2-dimethyl-1,3-dioxolan-4-yl)-2-

(triethylsilyloxy)propanal (94)

Alkene $\mathbf{1 0 0}(0.369 \mathrm{~g}, 1.00 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ were added to a round bottom flask equipped with a magnetic stirrer bar and cooled to $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was purged with O_{2} for a few minutes followed by supplying of O_{3}. The completion of the reaction was indicated by color changing of the solution (from colorless to blue). After the completion of the reaction, the supply of O_{3} was stopped. The reaction mixture was purged with O_{2} for a few minutes and quenched with PPh_{3} $(0.289 \mathrm{~g}, 1.10 \mathrm{mmol})$. The reaction was cooled to room temperature and stirred vigorously for $10 \mathrm{~min} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated in vacuo and the resulting residue was purified by flash column chromatography (hexane/Et $\mathrm{E}_{2} \mathrm{O} 80: 1$) to afford the desired product as colorless oil ($0.274 \mathrm{~g}, 74 \%$ yield $)$.
R_{f} value (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 8: 1): 0.45.
$[\alpha]_{\mathrm{D}}{ }^{20}=-42\left(c=1.06, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.83(\mathrm{~m}$, $1 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H})$, $1.25-1.15(\mathrm{~m}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.98-0.94(\mathrm{~m}, 2 \mathrm{H}), 0.62(\mathrm{q}, J=7.7 \mathrm{~Hz}$, 6 H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.3(\mathrm{C}), 107.2(\mathrm{C}), 83.2(\mathrm{CH}), 82.9(\mathrm{CH}), 81.7(\mathrm{C})$, $36.3(\mathrm{CH}), 31.3\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 26.5\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{3}\right)$, $21.8\left(\mathrm{CH}_{3}\right), 6.9\left(\mathrm{CH}_{2}\right), 6.4\left(\mathrm{CH}_{3}\right)$.

FTIR (NaCl , neat): $v 2930,1736,1381,1217,1049,745 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{20} \mathrm{H}_{39} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+1)$ 371.2618, found 371.2603.

(S)-2-((4R,5R)-5-cyclohexyl-2,2-dimethyl-1,3-dioxolan-4-yl)-2-(4-

methoxybenzyloxy)propanal (94a)

Alkene $80(0.375 \mathrm{~g}, 1.00 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ were added to a round bottom flask equipped with a magnetic stirrer bar and cooled to $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was purged with O_{2} for a few minutes followed by supplying of O_{3}. The completion of the reaction was indicated by color changing of the solution (from colorless to blue). After the completion of the reaction, the supply of O_{3} was stopped. The reaction mixture was purged with O_{2} for a few minutes and quenched with PPh_{3} $(0.289 \mathrm{~g}, 1.10 \mathrm{mmol})$. The reaction was cooled to room temperature and stirred vigorously for $10 \mathrm{~min} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated in vacuo and the resulting residue was
purified by flash column chromatography (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 40: 1) to afford the desired product as colorless oil ($0.290 \mathrm{~g}, 77 \%$ yield $)$.
R_{f} value (hexane/ $\mathrm{Et}_{2} \mathrm{O} 4: 1$): 0.34 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.92(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.44(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=4.88 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-$ $3.86(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.08-0.84(\mathrm{~m}, 20 \mathrm{H})$.

5-((3S,4R,6S,7S)-7-(tert-butyldimethylsilyloxy)-3,6-dimethyl-4-

(triethylsilyloxy)octylsulfonyl)-1-phenyl-1H-tetrazole (95)

In a round bottom flask equipped with a rubber septum and a magnetic stirrer bar, sulfone $108(0.496 \mathrm{~g}, 1.00 \mathrm{mmol})$ was dissolved in 2 mL of dry pyridine. DMAP $(0.012 \mathrm{~g}, 0.10 \mathrm{mmol})$ and $\operatorname{TESCl}(0.301 \mathrm{~g}, 2.00 \mathrm{mmol})$ were added to the reaction mixture and stirred at room temperature. After stirring for 12 h , the reaction was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with brine. The organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 10: 1) to afford the desired product as colorless oil ($0.605 \mathrm{~g}, 99 \%$ yield).
R_{f} value (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 2: 1): 0.55 .
$[\alpha]_{\mathrm{D}}{ }^{20}=-7.0\left(c=0.9, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 3 \mathrm{H}), 3.97-3.89(\mathrm{~m}$, $1 \mathrm{H}), 3.71-3.64(\mathrm{~m}, 3 \mathrm{H}), 1.99-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.77(\mathrm{~m}, 1 \mathrm{H})$,
$1.64-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}), 0.58(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 153.4$ (C), 133.1 (C), $131.3(\mathrm{CH}), 129.6(\mathrm{CH}), 125.0$ $(\mathrm{CH}), 74.5(\mathrm{CH}), 71.6(\mathrm{CH}), 54.4\left(\mathrm{CH}_{2}\right), 37.6\left(\mathrm{CH}_{2}\right), 37.1(\mathrm{CH}), 35.1\left(\mathrm{CH}_{2}\right), 25.8$ $\left(\mathrm{CH}_{3}\right), 22.5(\mathrm{CH}), 20.7\left(\mathrm{CH}_{3}\right), 18.0(\mathrm{C}), 16.2\left(\mathrm{CH}_{3}\right), 14.3\left(\mathrm{CH}_{3}\right), 6.9\left(\mathrm{CH}_{2}\right), 5.1\left(\mathrm{CH}_{3}\right)$, $-4.2\left(\mathrm{CH}_{3}\right),-4.9\left(\mathrm{CH}_{3}\right)$.

FTIR (NaCl, neat): $v 2957,1595,1499,1339,1153,837,762 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{55} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{SSi}_{2}(\mathrm{M}+1)$ 611.3483, found 611.3475 .

(3R,4R)-4-Cyclohexyl-3,4-dihydroxybutan-2-one (97)

To a mixture of DMSO (80.0 mL) and hydroxyacetone (96: 20 mL) was added the cyclohexanecarbaldehyde (10.0 mmol) followed by D-proline ($0.35 \mathrm{~g}, 30 \mathrm{~mol} \%$), and the resulting homogeneous reaction mixture was stirred at r.t. for 60 h . Then, half saturated aqueous $\mathrm{NH}_{4} \mathrm{C} 1(60 \mathrm{~mL})$ and $\mathrm{EtOAc}(60 \mathrm{~mL})$ were added with vigorous stirring, the layers were separated, and the aqueous phase was extracted thoroughly with EtOAc ($3 \times 60 \mathrm{~mL}$). Then, the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$ $(100 \mathrm{~mL})$, brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. The solution was concentrated and the residue was purified by flash column chromatography (hexane/EtOAc from 5: $1,4: 1,2: 1,1: 1)$ to afford the anti-diol 78 as a white powder ($1.17 \mathrm{~g}, 63 \%$ yield). The enantioselectivity excess of 78 was determined by HPLC analysis (chiral Daicel

Chiralpak AS, hexanes- i - PrOH, $85: 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=285 \mathrm{~nm}): t_{\mathrm{R}}=7.70$ $\min)$.
R_{f} value (hexane/EtOAc 1: 1): 0.50 .
$[\alpha]_{\mathrm{D}}{ }^{20}=-81.6\left(c=1.0, \mathrm{CHCl}_{3}\right) .\left\{\right.$ Lit. $[\mathrm{a}]_{\mathrm{D}}+83\left(c=1.0, \mathrm{CHCl}_{3}\right)$, for $(3 S, 4 S)-4-$ cyclohexyl-3,4-dihydroxybutan-2-one ${ }^{71}$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.23(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.51-3.54(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}$, $4 \mathrm{H}), 1.53-1.93$ (m, 6 H$), 1.04-1.29(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}): $\delta 209.8,78.3,77.6,39.8,29.7,27.7,27.4,26.2,26.1$, 25.8.

FTIR (KBr, neat): $v 3381,2920,2850,1697(\mathrm{C}=\mathrm{O}), 1421,1359,1076,1039,983 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{3}(\mathrm{M}+1)$ 187.1329, found 187.1334.

1-[(4R,5R)-5-Cyclohexyl-2,2-dimethyl-1,3-dioxolan-4-yl]ethanone (98)

To a mixture of $97(1.860 \mathrm{~g}, 10.0 \mathrm{mmol})$, 2.2-dimethoxypropane $(10.408 \mathrm{~g}, 100.0$ $\mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added $\mathrm{CSA}(0.116 \mathrm{~g}, 0.05 \mathrm{mmol})$, and the reaction mixture was stirred at r.t. for overnight. Then, half saturated aqueous NaHCO_{3} (30 $\mathrm{mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ added with vigorous stirring, the layers were separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. Then, the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. The solution was concentrated and the residue was purified by flash column

[^44]chromatography (hexane/EtOAc 100: 1) to afford 98 as pale yello oil (2.042 g, 90% yield).
R_{f} value (hexane/EtOAc 4: 1): 0.692.
$[\alpha]_{\mathrm{D}}{ }^{20}=+0.87\left(c=1.2, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.32(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=8.8,7.6, \mathrm{~Hz}, 1$ H), $2.26(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.87(\mathrm{~m}, 5 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 0.92-1.25(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 209.7,109.4,82.8,82.6,37.6,29.7,29.3,28.4,26.6$, 26.2, 25.4, 24.8.

FTIR (KBr, neat): v 2927, 2854, 1708 (C=O), 1450, 1355, $1060 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{3}(\mathrm{M}+1)$ 227.1650, found 227.1647.

(R)-2-[(4R,5R)-5-Cyclohexyl-2,2-dimethyl-1,3-dioxolan-4-yl]but-3-en-2-ol (99)

Freshly prepared vinylmagnesium bromide [prepared from $\mathrm{Mg}(0.72 \mathrm{~g})$ and 1 M vinyl bromide in THF (30 mL)] was cooled to $0^{\circ} \mathrm{C}$. The ketone $98(2.26 \mathrm{~g}, 10.0 \mathrm{mmol})$ in THF (50 mL) was added dropwise and the resulting reaction mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for overnight. Then, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ was added carefully with vigorous stirring, the layers were separated, and the aqueous phase was extracted thoroughly with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. Then, the combined organic layers were washed with brine (80 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give a mixture of 99 and 99'. The mixture was purified by flash column chromatography (hexane/EtOAc
starting from 250: 1 to 20: 1) to afford (R, R, R)-99 (1.78 g, 70\% yield) and (R, R, S)-99’ ($0.35 \mathrm{~g}, 14 \%$ yield).
R_{f} value (hexane/EtOAc 4: 1): 0.60 .
$[\alpha]_{\mathrm{D}}{ }^{20}=-29.1\left(c=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.05(\mathrm{dd}, J=23.2,14.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.34(\mathrm{dd}, J=23.2$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}, J=14.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=$ 12.0, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.23 (s, 1 H), 1.66-2.04 (m, 5 H), 1.50 (s, 3 H), 1.34 (s, 3 H), 1.33 (s, 3 H), 1.23-1.28(m, 6 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.5,113.3,106.7,82.7,82.4,74.7,36.3,31.7,30.3$, 28.7, 26.4, 25.7, 25.5, 25.4, 25.0.

FTIR (KBr, neat): v3425, 2989, 2927, 2852, 1651, 1381, 1255, 1033, $758 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{O}_{3}(\mathrm{M}+1)$ 255.1958, found 255.1960.
(S)-2-[(4R,5R)-5-Cyclohexyl-2,2-dimethyl-1,3-dioxolan-4-yl]but-3-en-2-ol (99')

R_{f} value (hexane/EtOAc 4: 1): 0.63.
$[\alpha]_{\mathrm{D}}{ }^{20}=-42.2\left(c=1.5, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.01(\mathrm{dd}, J=17.1,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=17.4$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34$ (dd, $J=10.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.85(\mathrm{~m}$,
$1 \mathrm{H}), 2.56(\mathrm{~s}, 1 \mathrm{H}), 1.61-2.07(\mathrm{~m}, 5 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 6 \mathrm{H}), 1.20-1.31(\mathrm{~m}, 6$ H).
${ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}): $\delta 142.7,112.7,106.8,82.7,81.9,75.5,36.0,31.4,30.2$, 27.0, 26.8, 26.3, 25.6, 25.2, 24.8.

FTIR (KBr, neat): v3552, 2893, 2926, 2852, 1614, 1450, $1045 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{O}_{3}(\mathrm{M}+1)$ 255.1958, found 255.1960.
((R)-2-((4R,5R)-5-cyclohexyl-2,2-dimethyl-1,3-dioxolan-4-yl)but-3-en-2-
yloxy)triethylsilane (100)

In a round bottom flask equipped with a rubber septum and a magnetic stirrer bar, alcohol 99 ($0.254 \mathrm{~g}, 1.00 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. Then 2,6-lutidine $(0.34 \mathrm{~mL}, 3.00 \mathrm{mmol})$ followed by TESOTf $(0.32 \mathrm{~mL}, 1.50 \mathrm{mmol})$ was added to the reaction mixture at $-78{ }^{\circ} \mathrm{C}$. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was quenched with water and the biphasic reaction mixture was extracted with diethyl ether (10 mL x 3). The combined organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography (hexane $/ \mathrm{Et}_{2} \mathrm{O}$ 10: 1) to afford the desired product as colorless oil ($0.361 \mathrm{~g}, 98 \%$ yield).
R_{f} value (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 8: 1): 0.65 .
$[\alpha]_{D}{ }^{20}=-17\left(c=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.16$ (dd, $J=10.8,17.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.23 (dd, $J=1.7$, $17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=1.7,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.79(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.89(\mathrm{~m}, 3 \mathrm{H})$,
$1.66-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.22-1.17(\mathrm{~m}, 3 \mathrm{H}), 0.96(\mathrm{t}$, $J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.98-0.93(\mathrm{~m}, 2 \mathrm{H}), 0.62(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 142.0(\mathrm{CH}), 113.2\left(\mathrm{CH}_{2}\right), 106.4(\mathrm{C}), 83.6(\mathrm{CH}), 83.3$ $(\mathrm{CH}), 77.4(\mathrm{C}), 35.5(\mathrm{CH}), 31.6\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 26.6$ $\left(\mathrm{CH}_{2}\right), 25.7\left(\mathrm{CH}_{3}\right), 25.7\left(\mathrm{CH}_{3}\right), 25.1\left(\mathrm{CH}_{3}\right), 7.2\left(\mathrm{CH}_{2}\right), 6.8\left(\mathrm{CH}_{3}\right)$.

FTIR (NaCl , neat): $v 2922,1639,1379,1368,1215,1249,872,743 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+1) 369.2825$, found 369.2813.
(4R,5R)-4-Cyclohexyl-5-[(R)-2-(4-methoxybenzyloxy)but-3-en-2-yl]-2,2-dimethyl-1,3-dioxolane (101)

To a mixture of DMF (10.0 mL) and $99(1.27 \mathrm{~g}, 5.0 \mathrm{mmol})$ was added $\mathrm{NaH}(0.36 \mathrm{~g}$, 60%; 9.0 mmol) carefully at $0^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperature for $1 \mathrm{~h} . \mathrm{PMBCl}$ was added dropwise by a syringe and the mixture was slowly warmed to r.t. and stirred for 20 h . Then, saturated aqueous $\mathrm{NH}_{4} \mathrm{C} 1(50 \mathrm{~mL})$ was added carefully with vigorous stirring, the layers were separated and the aqueous layer was extracted thoroughly with EtOAc $(3 \times 50 \mathrm{~mL})$. Then, the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$, brine $(80 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ filterd and concentrated. The residue was purified by flash column chromatography (hexane/EtOAc, 50: 1 to 20: 1) to afford 101 as a pale yellow powder ($1.64 \mathrm{~g}, 88 \%$ yield).
R_{f} value (hexane/EtOAc 4: 1): 0.70 .

$$
\begin{aligned}
& {[\alpha]_{\mathrm{D}}^{20}=+7.5\left(c=1.1, \mathrm{CHCl}_{3}\right) .} \\
& { }^{1} \mathrm{H} \text { NMR }\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), \\
& 6.19(\mathrm{dd}, J=17.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{ddd}, J=24.0,10.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}), \\
& 3.99(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.82(\mathrm{~m}, 4 \mathrm{H}), 1.48-2.06(\mathrm{~m}, 5 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.42 \\
& (\mathrm{~s}, 3 \mathrm{H}), 0.77-1.37(\mathrm{~m}, 9 \mathrm{H}) . \\
& { }^{13} \mathrm{C} \text { NMR }\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 158.9,139.5,131.4,129.4,117.8,113.6,106.6,83.2, \\
& 82.6,80.1,64.3,55.3,36.3,31.4,30.5,26.9,26.5,25.8,25.2,25.1,20.1 . \\
& \text { FTIR (KBr, neat): } v 3007,2927,2852,1612,1857,1369,1053,767 \mathrm{~cm}^{-1} . \\
& \text { HRMS (ESI) calcd. for } \mathrm{C}_{23} \mathrm{H}_{35} \mathrm{O}_{4}(\mathrm{M}+1) 375.2519 \text {, found } 375.2535 .
\end{aligned}
$$

(3S,4S)-methyl 4-(tert-butyldimethylsilyloxy)-3-methylpentanoate (102)

In a round bottom flask equipped with a rubber septum and a magnetic stirrer bar, (R) -Tol-BINAP $(0.020 \mathrm{~g}, 0.03 \mathrm{mmol})$ and $\mathrm{CuI}(0.004 \mathrm{~g}, 0.02 \mathrm{mmol})$ were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ for 20 minutes, concentrated in vacuo and then stirred in t-BuOMe (4 mL) till a bright yellow suspension was observed. The mixture was then cooled to $20{ }^{\circ} \mathrm{C}$ and $\mathrm{MeMgBr}\left(0.83 \mathrm{~mL}, 3.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 2.50 \mathrm{mmol}\right)$ was added carefully into the reaction mixture. After stirring for 15 minutes, a pre-cooled solution of ester $21(0.244 \mathrm{~g}, 1.00 \mathrm{mmol})$ in t-BuOMe $(1.2 \mathrm{~mL})$ was added dropwise over 1 h via syringe pump. After stirring at $-20^{\circ} \mathrm{C}$ for another one and an half hour, the reaction mixture was quenched with $\mathrm{MeOH}(1 \mathrm{~mL})$, and $1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ solution (4 $\mathrm{mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL} x \mathrm{3})$ and the combined
organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 90: 1) to afford the desired product as pale yellow oil ($0.164 \mathrm{~g}, 63 \%$ yield; $94 \% \mathrm{de}$). R_{f} value (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 8: 1): 0.27 .
$[\alpha]_{\mathrm{D}}{ }^{20}=+12\left(c=0.65, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.79-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{dd}, J=4.7,14.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.13-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}) 0.88(\mathrm{~s}$, 9H), 0.04 ($\mathrm{s}, 3 \mathrm{H}$), $0.03(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.2$ (C), $70.6(\mathrm{CH}), 51.4\left(\mathrm{CH}_{3}\right), 37.3(\mathrm{CH}), 37.2$ $\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{3}\right), 20.0\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}), 14.3\left(\mathrm{CH}_{3}\right),-4.3\left(\mathrm{CH}_{3}\right),-5.0\left(\mathrm{CH}_{3}\right)$. FTIR (NaCl , neat): $v 2930,1742,1381,1252,1038 \mathrm{~cm}^{-1}$.

HRMS (ESI) calcd. for $\mathrm{C}_{13} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+1)$ 261.1886, found 261.1886.

(3S,4S)-4-(tert-butyldimethylsilyloxy)-3-methylpentanal (103)

In a round bottom flask equipped with a rubber septum and a magnetic stirrer bar, the ester $102(0.260 \mathrm{~g}, 1.00 \mathrm{mmol})$ was dissolved in hexane $(4 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (pre-cooled to $-78^{\circ} \mathrm{C}, 1.1 \mathrm{~mL}, 1.0 \mathrm{M}$ in heptane, 1.10 mmol) was added carefully over at least 2 portions. After stirring for another $1 \mathrm{~h}, \mathrm{MeOH}$ (pre-cooled to $-78{ }^{\circ} \mathrm{C}, 0.106 \mathrm{~g}, 3.30 \mathrm{mmol}$) was added carefully over 2 portions and stirred for a further 15 minutes till a white suspension was observed. The reaction mixture was then added saturated potassium sodium tartrate solution (5 mL), diluted with $\mathrm{Et}_{2} \mathrm{O}(5$
mL) and warmed to room temperature. The mixture was stirred until a clear biphasic separation was observed. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL} \times 2)$, brine ($15 \mathrm{~mL} \times 1$) and dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography (hexane $/ \mathrm{Et}_{2} \mathrm{O}$ 20: 1) to afford the desired product as pale yellow oil ($0.200 \mathrm{~g}, 87 \%$ yield $)$.
R_{f} value (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 8: 1): 0.36 .
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.76(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.77(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.53(\mathrm{~m}, 1 \mathrm{H})$, 2.22-2.17 (m, 2H), $1.06(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.9(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.04$ (s, 3H), $0.03(\mathrm{~s}, 3 \mathrm{H})$.

(3S,4S,6S,7S)-7-(tert-butyldimethylsilyloxy)-3,6-dimethyloct-1-en-4-ol (104)

To a round bottom flask equipped with a rubber septum and a magnetic stirrer bar was added $\mathrm{KO} t \mathrm{Bu}(1.5 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 1.50 mmol$)$, dry THF (8 mL) and was allowed to cool to $-78{ }^{\circ} \mathrm{C}$. Trans-2-butene $(0.168 \mathrm{~g}, 3.00 \mathrm{mmol})$ was condensed from a gas lecture bottle into the mixture at $-78^{\circ} \mathrm{C} . n$-Butyllithium $(0.94 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane, 1.50 mmol) was then added dropwise. After complete addition of n-butyllithium, the mixture was stirred at $-45^{\circ} \mathrm{C}$ for 15 minutes. The resulting orange solution was recooled back to $-78{ }^{\circ} \mathrm{C}$, and to it was added a solution of (-)methoxydiisopinocampheylborane $(0.949 \mathrm{~g}, 3.00 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$. The solution became colorless. The reaction mixture was allowed to stir at $-78^{\circ} \mathrm{C}$ for 30 minutes
followed by addition of boron trifluoride etherate ($1.47 \mathrm{~mL}, 11.0 \mathrm{mmol})$. After that, a solution of aldehyde $\mathbf{1 0 3}$ in THF (1 mL) was added via a syringe pump over a period of 30 minutes. The mixture was allowed to stir at $-78{ }^{\circ} \mathrm{C}$ for 3 h and then treated with with 3 N NaOH solution ($3 \mathrm{~mL}, 9 \mathrm{mmol}$) and 3 mL of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ and the content was stirred for 15 minutes at room temperature. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL} x \mathrm{3})$. The combined organic extracts were washed with brine ($20 \mathrm{~mL} \times 1$) and dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography (hexane/ $\mathrm{Et}_{2} \mathrm{O} 40: 1$) to afford the desired product as pale yellow oil $(0.221 \mathrm{~g}, 77 \%$ yield; $84 \% \mathrm{de})$.
R_{f} value (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 8: 1): 0.23 .
$[\alpha]_{\mathrm{D}}{ }^{20}=+7.0\left(c=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.86-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.06(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.80(\mathrm{~m}$, $1 \mathrm{H}), 3.59-3.56(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.78(\mathrm{~m}$, $1 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.5(\mathrm{CH}), 115.6\left(\mathrm{CH}_{2}\right), 73.0(\mathrm{CH}), 71.4(\mathrm{CH}), 43.8$ $(\mathrm{CH}), 37.1\left(\mathrm{CH}_{2}\right), 36.5(\mathrm{CH}), 25.9\left(\mathrm{CH}_{3}\right), 19.2\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}), 16.7\left(\mathrm{CH}_{3}\right), 16.4$ $\left(\mathrm{CH}_{3}\right),-4.3\left(\mathrm{CH}_{3}\right),-4.8\left(\mathrm{CH}_{3}\right)$.

FTIR (NaCl, neat): $v 3381,2959,1639,1377,1043,835,773 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{16} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+1)$ 287.2406, found 287.2401.
(5S,6S,8R)-8-((S)-but-3-en-2-yl)-10,10-diethyl-2,2,3,3,5,6-hexamethyl-4,9-dioxa-

3,10-disiladodecane (105)

To a round bottom flask equipped with a rubber septum and a magnetic stirrer bar was added alcohol $104(0.287 \mathrm{~g}, 1.00 \mathrm{mmol})$, dry pyridine (2 mL) and DMAP $(0.024 \mathrm{~g}$, $0.20 \mathrm{mmol})$. TESCl $(0.301 \mathrm{~g}, 2.00 \mathrm{mmol})$ was then added and the reaction mixture was allowed to stir for 12 h at room temperature. After stirring for 12 h , the reaction mixture was added saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ mL). The mixture was stirred until a clear biphasic separation was observed. Subsequently, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} x \mathrm{3})$. The combined organic extracts were washed with brine ($15 \mathrm{~mL} \times 1$) and dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography (hexane/Et $\mathrm{t}_{2} \mathrm{O} 100: 1$) to afford the desired product as colorless oil ($0.373 \mathrm{~g}, 93 \%$ yield $)$.
R_{f} value (hexane): 0.25 .
$[\alpha]_{\mathrm{D}}{ }^{20}=+4.0\left(c=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.89-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.03-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.65(\mathrm{~m}$, $2 \mathrm{H}), 2.35-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.10-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.08$ (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$, $0.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.62(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.4(\mathrm{CH}), 114.6\left(\mathrm{CH}_{2}\right), 74.3(\mathrm{CH}), 71.4(\mathrm{CH}), 42.7$ $(\mathrm{CH}), 37.5\left(\mathrm{CH}_{2}\right), 36.9(\mathrm{CH}), 25.9\left(\mathrm{CH}_{3}\right), 21.0\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}), 16.3\left(\mathrm{CH}_{3}\right), 14.6$ $\left(\mathrm{CH}_{3}\right), 7.0\left(\mathrm{CH}_{3}\right), 5.3\left(\mathrm{CH}_{2}\right),-4.1\left(\mathrm{CH}_{3}\right),-4.8\left(\mathrm{CH}_{3}\right)$.

FTIR (NaCl , neat): $v 3073,2957,1640,1379,1037,835 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{48} \mathrm{O}_{2} \mathrm{Si} 2 \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 423.3091$, found 423.3148 .

(3S,4R,6S,7S)-7-(tert-butyldimethylsilyloxy)-3,6-dimethyl-4-

(triethylsilyloxy)octan-1-ol (106)

To a round bottom flask equipped with a rubber septum and a magnetic stirrer bar was added alkene 105 ($1.202 \mathrm{~g}, 3.00 \mathrm{mmol}$). The flask was cooled to $0{ }^{\circ} \mathrm{C}$ and hydroboration was initiated by dropwise addition of $\mathrm{BH}_{3}-\mathrm{THF}(1.0 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 1.00 mmol) for 15 minutes. The mixture was stirred at room temperature for 2 h . After stirring for 2 h , the organoborane was dissolved in 5 ml of THF. A solution of 3 $\mathrm{N} \mathrm{NaOH}(1.0 \mathrm{~mL}, 3.00 \mathrm{mmol})$ was added followed by the slow addition 1 mL of 30% of hydrogen peroxide aqueous solution. The reaction mixture was heated to $50^{\circ} \mathrm{C}$ for 1 h to ensure completion of the oxidation. The mixture was saturated with potassium carbonate. The two phases were separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} x 3)$. The combined organic extracts were washed with brine (15 mL x 1) and dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography (hexane $/ \mathrm{Et}_{2} \mathrm{O} 8: 1$) to afford the desired product as colorless oil ($0.967 \mathrm{~g}, 77 \%$ yield).
R_{f} value (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 2: 1): 0.18 .
$[\alpha]_{\mathrm{D}}{ }^{20}=-5.0\left(c=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.71-3.64(\mathrm{~m}, 3 \mathrm{H}), 3.53(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{~m}, 1 \mathrm{H}), 1.76-$ $1.70(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.96(\mathrm{~d}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=8.1 \mathrm{~Hz}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.62$ (q, $J=7.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 74.8(\mathrm{CH}), 71.8(\mathrm{CH}), 59.0\left(\mathrm{CH}_{2}\right), 37.2\left(\mathrm{CH}_{2}\right), 37.1$ $(\mathrm{CH}), 33.4(\mathrm{CH}), 32.7\left(\mathrm{CH}_{2}\right), 25.6\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}), 16.3\left(\mathrm{CH}_{3}\right), 14.3$ $\left(\mathrm{CH}_{3}\right), 6.9\left(\mathrm{CH}_{3}\right), 5.1\left(\mathrm{CH}_{2}\right),-4.2\left(\mathrm{CH}_{3}\right),-4.8\left(\mathrm{CH}_{3}\right)$.

FTIR (NaCl , neat): $v 3347,2957,1379,1063 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{51} \mathrm{O}_{3} \mathrm{Si}_{2}(\mathrm{M}+1)$ 419.3377, 419.3369.

5-((3S,4R,6S,7S)-(tert-butyldimethylsilyloxy)-3,6-dimethyl-4-

(triethylsilyloxy)octylthio)-1-phenyl-1H-tetrazole (107)

In a round bottom flask equipped with a rubber septum and a magnetic stirrer bar, triphenylphosphine ($0.393 \mathrm{~g}, 1.50 \mathrm{mmol}$) and alcohol $106(0.419 \mathrm{~g}, 1.00 \mathrm{mmol})$ were dissolved in THF (5 mL). DIAD ($0.364 \mathrm{~g}, 1.80 \mathrm{mmol}$) was next added over 2 minutes at $0{ }^{\circ} \mathrm{C}$ resulting in yellow suspension. Subsequently, a solution of 1-phenyl- 1 H -tetrazole-5-thiol in THF (1 mL) was added over 5 minutes and the reaction mixture was warmed to room temperature. After stirring for 3 h , the reaction was quenched with brine $(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} x \mathrm{3})$. The combined organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated in vacuo.

The resulting residue was purified by flash chromatography (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 20: 1) to afford the desired product as colorless oil $(0.498 \mathrm{~g}, 86 \%$ yield $)$.
R_{f} value (hexane/ $\mathrm{Et}_{2} \mathrm{O}$ 8: 1): 0.21 .
$[\alpha]_{\mathrm{D}}{ }^{20}=-14\left(c=1.1, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57-7.55(\mathrm{~m}, 5 \mathrm{H}), 3.68-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.52(\mathrm{~m}$, $1 \mathrm{H}), 3.34-3.30(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.55(\mathrm{~m}, 1 \mathrm{H})$, $1.41-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.21-1.17(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=0.66 \mathrm{~Hz}$, $3 \mathrm{H}), 0.94(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.58(\mathrm{q}, J=7.9$ $\mathrm{Hz}, 6 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.4$ (C), 133.4 (C), $130.0(\mathrm{CH}), 129.7(\mathrm{CH}), 123.8$ $(\mathrm{CH}), 74.7(\mathrm{CH}), 71.4(\mathrm{CH}), 37.2(\mathrm{CH}), 36.6\left(\mathrm{CH}_{2}\right), 36.4(\mathrm{CH}), 31.9\left(\mathrm{CH}_{2}\right), 29.9$ $\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right), 18.0(\mathrm{C}), 15.7\left(\mathrm{CH}_{3}\right), 14.7\left(\mathrm{CH}_{3}\right), 7.0\left(\mathrm{CH}_{2}\right), 5.2\left(\mathrm{CH}_{3}\right)$, $-4.1\left(\mathrm{CH}_{3}\right),-4.8\left(\mathrm{CH}_{3}\right)$.

FTIR (NaCl, neat): $v 2955,1599,1500,1383,1084,837,760 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{55} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{SSi}_{2}(\mathrm{M}+1)$ 579.3584, found 579.3567.
(3S,4R,6S,7S)-7-(tert-butyldimethylsilyloxy)-3,6-dimethyl-1-(1-phenyl-1H-tetrazol-5-ylsulfonyl)octan-4-ol (108)

In a round bottom flask equipped with rubber a septum and a magnetic stirrer bar, thiol $107(0.579 \mathrm{~g}, 1.00 \mathrm{mmol})$ was dissolved in EtOH (4 mL). A solution of hexaammonium heptamolybdate tetrahydrate $(0.024 \mathrm{~g}, 0.10 \mathrm{mmol})$ in 2 mL of 30%
hydrogen peroxide was added to the reaction mixture at room temperature and stirred overnight. The reaction was diluted with EtOAc, washed with water and brine. The organic extracts were dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography (hexane/Et $\mathrm{t}_{2} \mathrm{O} 2$:

1) to afford the desired product as yellow oil $(0.353 \mathrm{~g}, 71 \%$ yield $)$.
R_{f} value (hexane/EtOAc 2: 1): 0.30 .
$[\alpha]_{\mathrm{D}}{ }^{20}=+4.0\left(c=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.59(\mathrm{~m}, 3 \mathrm{H}), 3.87-3.81(\mathrm{~m}$, $3 \mathrm{H}), 3.60-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.86(\mathrm{~m}$, $2 \mathrm{H}), 1.70-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.5$ (C), 133.1 (C), 131.4 (CH), 129.7 (CH), 125.1 (CH), $73.1(\mathrm{CH}), 72.5(\mathrm{CH}), 54.7\left(\mathrm{CH}_{2}\right), 37.7(\mathrm{CH}), 36.9\left(\mathrm{CH}_{2}\right), 35.8(\mathrm{CH}), 25.7$ $\left(\mathrm{CH}_{3}\right), 25.3\left(\mathrm{CH}_{2}\right), 18.3\left(\mathrm{CH}_{3}\right), 18.1(\mathrm{C}), 17.7\left(\mathrm{CH}_{3}\right), 16.1\left(\mathrm{CH}_{3}\right),-4.3\left(\mathrm{CH}_{3}\right),-4.8$ $\left(\mathrm{CH}_{3}\right)$.

FTIR (NaCl , neat): $v 3418,2957,1595,1499,1339,1152,835,773 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{SSi}(\mathrm{M}+1) 496.2618$, found 497.2618 .
(1R,2R,3R)-1-cyclohexyl-3-methylpent-4-ene-1,2,3-triol (109)

To a stirred solution of $\mathbf{1 0 0}(18 \mathrm{mg}, 0.05 \mathrm{mmol})$ in ethanol $(1 \mathrm{~mL})$ was added 0.3 N $\mathrm{HCl}(2 \mathrm{~mL})$. After the reaction was complete, the reaction was diluted with water (10
mL) and EtOAc (10 mL). The mixture was extracted with EtOAc (3 x 5 mL). The combined organic layers were washed with brine, dried over MgSO_{4}, concentrated under reduced pressure. The residue was purified by flash column chromatography.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$): $\delta 6.09$ (dd, $J=10.9,17.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.35 (dd, $J=2.0$, $17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=1.9,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.31(\mathrm{~m}$, $1 \mathrm{H}), 1.78-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.44-1.22(\mathrm{~m}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, MeOD): $\delta 140.7,112.1,76.8,76.5,73.6,53.4,39.1,30.0,26.6$, 26.1, 25.5, 24.4 .

HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{3}(\mathrm{M}+1)$ 215.1638, found 215.1647.
tert-Butyl[(2S,3S,5R,6S)-5-(4-methoxybenzyloxy)-3,6-dimethylnon-8-en-2-
yloxy]diphenylsilane (110)

Methyltriphenylphosphonium bromide ($0.715 \mathrm{~g}, 2.0 \mathrm{mmol}$) was dissolved in anhydrous THF (8 mL), and to this solution, cooled to $-78^{\circ} \mathrm{C}$, was slowly added n BuLi (1.2 mL of a 1.6 M solution in hexane). After 1 h at $-78^{\circ} \mathrm{C}$, aldehyde $\mathbf{1 2 2}$ ($0.546 \mathrm{~g}, 1.0 \mathrm{mmol}$) in anhydrous THF (5 mL) was added. The mixture was slowly warmed to r.t. $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the two phases were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The organic layers were collected, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered concentrated in vacuo. The crude product was purified by silica gel chromatography (hexane/EtOAc 100:1) to afford 110 as pale yellow oil (80\% yield).
R_{f} value (hexane/EtOAc 4: 1): 0.75 .
$[\alpha]_{\mathrm{D}}{ }^{20}=-1.9\left(c=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.18(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.72-5.80(\mathrm{~m}, 1 \mathrm{H}), 4.98-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.40$ (d, $J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.81(\mathrm{~m}, 4 \mathrm{H}), 3.24-3.26(\mathrm{~m}, 1$ H), 2.05-2.22(m, 3 H$), 1.71-1.83(\mathrm{~m}, 3 \mathrm{H}), 1.25-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.84-$ 1.02 (m, 9 H).
${ }^{13}{ }^{3}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.0,137.9,135.0,134.3,131.2,129.5,129.4,115.5$, $113.8,81.5,72.4,72.3,77.8,55.2,38.5,37.4,36.8,35.4,32.4,30.3,27.0,19.8,19.3$, 17.2, 15.7, 14.7 .

FTIR (KBr, neat): $v 3070,2960,2929,2856,1514,1427,1247,1111 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{35} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{Si}+\mathrm{Na}(\mathrm{M}+\mathrm{Na}) 567.3270$, found 567.3260 .

Ethyl (S)-2-(tert-Butyldiphenylsilyloxy)propanoate (112)

To a solution of ethyl $(S)-(+)$-lactate ($\mathbf{1 1 1} ; 10.40 \mathrm{~g}, 100.0 \mathrm{mmol})$ in DMF (200 mL) was added imidazole $(10.20 \mathrm{~g}, 150 \mathrm{mmol})$, followed by the addition of TBDPSCl $(14.5 \mathrm{~g}, 96.1 \mathrm{mmol})$ in one portion at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed to r.t. and stirred for 24 h . After cooling to $0^{\circ} \mathrm{C}$, the mixture was poured into aq 0.5 N HCl $(50 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic extracts were successively washed with $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{~mL})$ and brine $(80 \mathrm{~mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under reduced pressure to give 35.60 g (quant) of crude
silyl ether $\mathbf{1 1 2}$ as a colorless liquid. The material was used in the next step after purification through a pad of silica gel (hexane/EtOAc 10: 1).
R_{f} value (hexane/EtOAc 4: 1): 0.75 .
$[\alpha]_{\mathrm{D}}{ }^{20}=-47.6\left(c=1.3, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.43(\mathrm{~m}, 6 \mathrm{H}), 4.25(\mathrm{q}, J=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dq}, J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.15(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.10$ (s, 9H).
${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.8,135.9,135.7,133.6,133.2,129.7,127.6,127.5$, 69.0, 60.6, 26.8, 21.2, 19.2, 14.0.

FTIR (KBr, neat): v 3070, 2980, 2958, 2893, 2858, 1753 (C=O), 1427, 1136, 1111, $702 \mathrm{~cm}^{-1}$.

HRMS (ESI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+1) 379.1705$, found 379.1716 .

Methyl (S,E)-4-(tert-Butyldiphenylsilyloxy)pent-2-enoate (113)

In a round-bottomed flask equipped with a stirring bar, ester 112 (19.11 g, 50.0 mmol$)$ was dissolved in hexanes (50 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. DIBAL-H (Aldrich 1 M solution in heptane, 52.5 mL , 52.5 mmol), pre-cooled to $-78^{\circ} \mathrm{C}$, was added carefully over several portions. After stirring for another $1.0 \mathrm{~h}, \mathrm{MeOH}(6.5 \mathrm{~mL})$, pre-cooled to $-78^{\circ} \mathrm{C}$, was added carefully in one portion and stirred for a further 0.5 h till a white suspension was observed. Methyl (triphenylphosphoranylidene) acetate ($25.0 \mathrm{~g}, 75.0$ $\mathrm{mmol})$ was added in one portion, followed by THF $(50 \mathrm{~mL})$ and the reaction mixture
was allowed to warm to r.t. and then allowed to reflux for an additional 6 h . The mixture was then cooled to r.t., carefully diluted with $\operatorname{EtOAc}(100 \mathrm{~mL})$ and sat. aq potassium sodium tartrate (200 mL), and stirred vigorously at r.t. till a clear biphasic separation was observed. The aqueous layer was extracted with EtOAc $(2 \times 200 \mathrm{~mL})$ and the combined organics were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. The $\mathrm{Ph}_{3} \mathrm{PO}$ was removed by filtering through a short silica plug using hexanes. The filtrate was concentrated and purified by flash chromatography (hexanes to 200: 1 hexanes-EtOAc) to afford the desired E-enoate $\mathbf{1 1 3}$ as a colorless oil ($12.42 \mathrm{~g}, 65 \%$ yield; 81% total yield for the mixture of E / Z-isomers, $80: 20$).
R_{f} value (hexane/EtOAc 4: 1): 0.72.
$[\alpha]_{\mathrm{D}}{ }^{20}=-41.8\left(c=0.9, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.45(\mathrm{~m}, 6 \mathrm{H}), 6.93(\mathrm{dd}, J=$ $15.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=15.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.51(\mathrm{~m}, 6 \mathrm{H}), 1.14(\mathrm{~d}, J=$ $10.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}{ }^{3}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 167.2,151.8,135.8,135.7,134.0,133.3,129.8,127.6$, 127.6, 118.6, 68.6, 51.5, 27.0, 23.3, 19.2.

FTIR (KBr, neat): $v 3070,2954,2927,1703(\mathrm{C}=\mathrm{O}), 1427,1112,700 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na}) 391.1705$, found 391.1729 .

Methyl (3S,4S)-4-(tert-Butyldiphenylsilyloxy)-3-methylpentanoate (114)

In a round-bottomed flask equipped with a septum and a stirring bar, (R)-Tol-BINAP ($0.408 \mathrm{~g}, 0.6 \mathrm{mmol}$) and $\mathrm{CuI}(0.076 \mathrm{~g}, 0.4 \mathrm{mmol})$ were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ for 20 min , concentrated in vacuo, and then stirred in t-BuOMe (80 mL) till a bright yellow suspension was observed. The mixture was then cooled to $-20^{\circ} \mathrm{C}$ and $\mathrm{MeMgBr}\left(20.0 \mathrm{~mL}\right.$, Aldrich 3.0 M solution in $\mathrm{Et}_{2} \mathrm{O}, 60.0 \mathrm{mmol}$) was added carefully. After stirring for 15 min , a solution of $E-113(7.37 \mathrm{~g}, 20 \mathrm{mmol})$ in t-BuOMe (24 mL) was added dropwise over 10 h via a syringe pump. After stirring at $-20^{\circ} \mathrm{C}$ for an additional 1 h , the mixture was quenched with $\mathrm{MeOH}\left(30 \mathrm{~mL}\right.$) and sat. aq $\mathrm{NH}_{4} \mathrm{Cl}$ $(100 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$ and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting residue was purified by flash chromatography (hexane/EtOAc 100: 1) to afford the desired product $\mathbf{1 1 4}$ as a colorless oil ($4.61 \mathrm{~g}, 60 \%$ yield).
R_{f} value (hexane/EtOAc 4: 1): 0.73.
$[\alpha]_{\mathrm{D}}{ }^{20}=-8.4\left(c=1.2, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.79-3.82(\mathrm{~m}$, $1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.1,135.9,134.7,133.9,129.6,129.4,127.6$, 127.4, 72.0, 51.4, 51.4, 37.1, 36.8, 27.0, 19.3, 19.1, 14.9.

FTIR (KBr, neat): $v 3070,2960,2929,1737(\mathrm{C}=\mathrm{O}), 1280,1109,702 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{Si}(\mathrm{M}+1) 385.2199$, found 385.2206.
(3S,4S)-4-(tert-Butyldiphenylsilyloxy)-3-methylpentanal (115)

In a round-bottomed flask equipped with a stirring bar, the ester $114(3.84 \mathrm{~g}, 10.0$ mmol) was dissolved in hexanes $(10 \mathrm{~mL})$ and cooled to $-78^{\circ} \mathrm{C}$. DIBAL-H (Aldrich 1 M solution in heptane, 11.0 mL , 11.0 mmol), precooled to $-78{ }^{\circ} \mathrm{C}$, was added carefully. After stirring for another 1.0 h , the reaction was quenched with sat. aq potassium sodium tartrate (50 mL), warmed to r.t., and stirred vigorously till a clear biphasic separation was observed. The aqueous layer was extracted with EtOAc ($2 \times$ $200 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. The residue was purified by flash chromatography (hexanes to hexane/EtOAc 50: 1) to afford the desired 115 as a colorless oil ($3.00 \mathrm{~g}, 85 \%$ yield). R_{f} value (hexane/EtOAc 4: 1): 0.70 .
$[\alpha]_{\mathrm{D}}^{20}=-10.5\left(c=0.8, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.73(\mathrm{~s}, 1 \mathrm{H}), 7.68-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.45(\mathrm{~m}, 6 \mathrm{H})$, 3.84-3.86 (m, 1 H), 2.65-2.67 (m, 1 H), 2.18-2.25 (m, 2 H$), 1.08(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}{ }^{3}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.8,135.9,135.8,134.4,133.8,129.7,129.6,127.6$, 127.4, 72.1, 46.2, 34.9, 27.0, 19.2, 18.4, 15.6.

FTIR (KBr, neat): v3070, 2959, 2929, 2891, 2858, $1722(\mathrm{C}=\mathrm{O}), 1110,702 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+1) 355.2093$, found 355.2092 .

(S)-3-Oxopentan-2-yl Benzoate (116)

To a cooled $\left(-20{ }^{\circ} \mathrm{C}\right)$ mixture of ethyl (S)-lactate (111; $8.0 \mathrm{~g}, 67.6 \mathrm{mmol}$) and $\mathrm{MeON}(\mathrm{Me}) \mathrm{H} \cdot \mathrm{HCl}(16.4 \mathrm{~g}, 168 \mathrm{mmol})$ in THF $(200 \mathrm{~mL})$ was added a 2 M solution of $i-\mathrm{PrMgCl}$ in $\mathrm{Et}_{2} \mathrm{O}(168 \mathrm{~mL})$ dropwise over 30 min . The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 30 min and at $0{ }^{\circ} \mathrm{C}$ for a further 30 min before sat. aq $\mathrm{NH}_{4} \mathrm{Cl}(500 \mathrm{~mL})$ was added. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 150 \mathrm{~mL})$, followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times$ $150 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated in vacuo, and the residue was purified by column chromatography (hexane/EtOAc 1:1) to give the intermediate Weinreb amide ($7.19 \mathrm{~g}, 80 \%$ yield) as a colorless oil. To a cooled (0 ${ }^{\circ} \mathrm{C}$) solution of this amide ($2.0 \mathrm{~g}, 15.0 \mathrm{mmol}$) in THF (30 mL) was added a 3 M solution of EtMgBr in $\mathrm{Et}_{2} \mathrm{O}(16 \mathrm{~mL})$ and the reaction mixture was allowed to warm to r.t. After 1 h , saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(80 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$, followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 40 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Then, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added. To this solution was added $\mathrm{Bz}_{2} \mathrm{O}(5.11 \mathrm{~g}, 22.6 \mathrm{mmol})$, DMAP ($0.20 \mathrm{~g}, 1.64 \mathrm{mmol}$), and $i-\operatorname{Pr}_{2} \mathrm{NEt}(5.0 \mathrm{~mL}, 28.6 \mathrm{mmol})$. After stirring for 14 h , excess $\mathrm{Bz}_{2} \mathrm{O}$ was removed by the addition of ethylenediamine ($1.0 \mathrm{~g}, 16.6 \mathrm{mmol}) . \mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$ was added, the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 40 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated to an oil. The residue was purified by column chromatography (hexane/EtOAc 5: 1) to afford (S)-116 as a colorless oil ($2.17 \mathrm{~g}, 70 \%$ yield).
R_{f} value (hexane/EtOAc 4: 1): 0.52 .
$[\alpha]_{\mathrm{D}}{ }^{20}=+24.4\left(c=0.6, \mathrm{CHCl}_{3}\right) .\left\{\text { Lit. }[\alpha]_{\mathrm{D}}{ }^{20}=+25.1\left(c=4.6, \mathrm{CHCl}_{3}\right)\right\}^{72}$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.05-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.59(\mathrm{~m}, 3 \mathrm{H}), 5.33(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.46-2.68(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}): $\delta 208.4,165.8,133.3,129.7,129.4,128.4,75.0,31.4$, 16.4, 7.1.

FTIR (KBr, neat): v 3062, 2981, 2939, $1720(\mathrm{C}=\mathrm{O}), 1716(\mathrm{C}=\mathrm{O}), 1452,1269,1109$, $1026,711 \mathrm{~cm}^{-1}$.

HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3}(\mathrm{M}+1)$ 207.1013, found 207.1021.
(2S,4R,5R,7S,8S)-8-(tert-Butyldiphenylsilyloxy)-5-hydroxy-4,7-dimethyl-3-oxononan-2-yl Benzoate (117)

To a stirred solution $\left(-78{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{1 1 6}(2.06 \mathrm{~g}, 10.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ was added chlorodicyclohexylborane ($15.0 \mathrm{~mL}, 1 \mathrm{M}$ in hexane, 15.0 mmol) and $\mathrm{Me}_{2} \mathrm{NEt}(1.5 \mathrm{~mL}$, 15 mmol). The mixture was warmed to $0^{\circ} \mathrm{C}$, stirred for 2 h , and then recooled to -78 ${ }^{\circ} \mathrm{C}$. A solution of aldehyde $115(4.60 \mathrm{~g}, 13.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added dropwise over 2 min . After 2 h , the reaction mixture was kept in the freezer $\left(-24^{\circ} \mathrm{C}\right)$ for 20 h . The mixture was warmed to $0^{\circ} \mathrm{C}$ and quenched by dropwise addition of $\mathrm{MeOH}(30 \mathrm{~mL})$, pH 7 phosphate buffer (30 mL), and $35 \% \mathrm{H}_{2} \mathrm{O}_{2}(30 \mathrm{~mL})$, and stirred for 1 h at r.t. $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added, the organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 80 \mathrm{~mL})$. The combined organic layers

[^45]were washed with brine $(60 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The residue was purified by column chromatography (from hexane/EtOAc 50: 1 to 20: 1) to afford alcohol 117 as a colorless solid ($4.76 \mathrm{~g}, 85 \%$ yield).
R_{f} value (hexane/EtOAc 4: 1): 0.48.
$[\alpha]_{\mathrm{D}}{ }^{20}=+9.6\left(c=0.9, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.69(\mathrm{~m}, 13 \mathrm{H}), 5.42$ ($\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.89(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{~s}, 1 \mathrm{H}), 2.76-2.78(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.95$ (m, 2 H$), 1.56(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.07(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}): $\delta 211.7,165.8,135.9,135.9,135.7,134.4,133.8$, 133.2, 129.7, 129.6, 129.5, 129.5, 128.4, 127.6, 127.4, 74.7, 72.2, 72.0, 48.8, 37.4, $36.4,27.0,19.2,18.8,16.8,15.6,14.4$.

FTIR (KBr, neat): v 3522, 3047, 2962, 2931, 2893, 2856, 1722 (C=O), 1714 (C=O), $1379,1267,1111,702 \mathrm{~cm}^{-1}$.

HRMS (ESI) calcd. for $\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M}+1) 561.3036$, found 561.3011.
(2S,4R,5R,7S,8S)-8-(tert-Butyldiphenylsilyloxy)-5-(4-methoxybenzyloxy)-
4,7-dimethyl-3-oxononan-2-yl Benzoate (118)

$\mathrm{Sc}(\mathrm{OTf})_{3}(30.0 \mathrm{mg}, 0.06 \mathrm{mmol}, 0.06$ equiv) was added to a stirred solution of freshly azeotroped alcohol 117 ($0.560,1.0 \mathrm{mmol}, 1.0$ equiv) and PMBTCA ($0.423 \mathrm{~g}, 1.5$ mmol, 1.5 equiv) in THF (20 mL) at $0^{\circ} \mathrm{C}$. After stirring for 12 h , the reaction was
quenched by the addition of aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and the phases were separated. The aqueous phase was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$ and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/EtOAc gradient elution from 50: 1 to 20: 1) to afford PMB ether 118 as a pale yellow oil ($0.435 \mathrm{~g}, 64 \%$ yield).
R_{f} value (hexane/EtOAc 4: 1): 0.62 .
$[\alpha]_{\mathrm{D}}{ }^{20}=+15\left(c=0.7, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.56-$ $7.60(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.48(\mathrm{~m}, 8 \mathrm{H}), 7.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $5.38(\mathrm{q}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 4.21(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-$ $3.81(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.71(\mathrm{~m}, 1 \mathrm{H}), 2.99-3.07(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{dt}, J=$ $14.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.33(\mathrm{~m}, 2 \mathrm{H})$, $1.11(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 209.6,165.7,159.0,135.9,135.8,134.8,134.1,133.2$, $130.5,129.8,129.4,129.3,128.4,127.6,127.4,113.7,113.5,79.7,74.9,72.4,72.3$, $55.1,48.3,36.7,35.1,27.0,19.7,19.3,15.8,15.2,13.7$.

FTIR (KBr, neat): v 3068, 2962, 2931, 2893, 2858, 1722 (C=O), 1714 (C=O), 1265, $1111,702 \mathrm{~cm}^{-1}$.

HRMS (ESI) calcd. for $\mathrm{C}_{42} \mathrm{H}_{52} \mathrm{O}_{6} \mathrm{Si}+\mathrm{Na}(\mathrm{M}+\mathrm{Na}) 703.3431$, found 703.3442 .
(2S,4S,5R,7S,8S)-8-(tert-Butyldiphenylsilyloxy)-5-(4-methoxybenzyloxy)-

4,7-dimethylnonane-2,3-diol (119)

The ester $\mathbf{1 1 8}(1.36 \mathrm{~g}, 2.0 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and cooled to -78 ${ }^{\circ} \mathrm{C}$. DIBAL-H (Aldrich 1 M solution in heptane, $6.0 \mathrm{~mL}, 6.0 \mathrm{mmol}$), pre-cooled to $78^{\circ} \mathrm{C}$ was added dropwise. After stirring for another 1 h , the reaction was quenched with saturated aqueous potassium sodium tartrate (50 mL), warmed to r.t., and stirred vigorously till a clear biphasic separation was observed. The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/EtOAc 5: 1) to afford the desired diol 119 as a colorless oil (0.98 g).
R_{f} value (hexane/EtOAc 4: 1): 0.13 and 0.14 .
$[\alpha]_{\mathrm{D}}{ }^{20}=-7.7\left(c=1.2, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.68(\mathrm{~m}, 10 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.68 \mathrm{H})$, $7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1.32 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.68 \mathrm{H}), 6.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1.32 \mathrm{H})$, 4.68-4.70(m, 2H), 4.27-4.44(m, 2 H), 3.55-3.58(m, 1 H$), 2.72(\mathrm{~s}, 0.33 \mathrm{H}), 2.48(\mathrm{~s}$, $0.67 \mathrm{H}), 2.23(\mathrm{~s}, 0.67 \mathrm{H}), 2.20(\mathrm{~s}, 0.33 \mathrm{H}), 1.53-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2$ H), 1.06 (4) (s, 3 H), 1.05 (7) (s, 6 H$), 1.04$ (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.97$ (d, $J=7.0 \mathrm{~Hz}, 2$ H), $0.90-0.93(\mathrm{~m}, 5 \mathrm{H}), 0.81(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.3,159.1,136.0,135.9,134.7,134.6,130.4,130.1$, $129.5,129.4,128.5,127.6,127.5,127.4,127.0,113.8,113.7,83.4,80.2,76.2,75.1$,
72.6, 72.3, 72.2, 71.0, 68.9, 68.0, 65.3, 55.2 (5), 55.2 (2), 38.6, 37.0, 36.4, 34.6, 33.2, $27.0,21.0,20.0,19.4,19.3,18.4,15.8,15.5,14.5,13.5,12.0,11.4$.

FTIR (KBr, neat): v 3417, 3072, 2962, 2989, 1651, 1643, 1247, 1109, $665 \mathrm{~cm}^{-1}$.
HRMS (EI) calcd. for $\mathrm{C}_{35} \mathrm{H}_{51} \mathrm{O}_{5} \mathrm{Si}$ (M) 579.3506, found 579.3521.
(2R,3R,5S,6S)-6-(tert-Butyldiphenylsilyloxy)-3-(4-methoxybenzyloxy)-

2,5-dimethylheptanal (120)

To a stirred solution $\left(0^{\circ} \mathrm{C}\right)$ of the diol $119(0.98 \mathrm{~g}, 1.7 \mathrm{mmol})$ in $\mathrm{MeOH}(16 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(16 \mathrm{~mL})$ was added $\mathrm{NaIO}_{4}(2.16 \mathrm{~g}, 10.2 \mathrm{mmol})$ in small portions. After complete addition, the mixture was stirred for $2 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(80 \mathrm{~mL})$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 80 \mathrm{~mL})$. The combined organic layers were washed with brine (80 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The residues was purified by flash column chromatography (hexane/EtOAc 20:1) to afford aldehyde 120 as a colorless oil ($0.83 \mathrm{~g}, 78 \%$ yield over two steps).
R_{f} value (hexane/EtOAc 4: 1): 0.58 .
$[\alpha]_{\mathrm{D}}{ }^{20}=-26.6\left(c=1.3, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.73(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.69-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.37-$ $7.43(\mathrm{~m}, 6 \mathrm{H}), 7.24(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=13.5$ Hz, 1 H$), 4.40(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.86(\mathrm{~m}, 4 \mathrm{H}), 3.64-3.66(\mathrm{~m}, 1 \mathrm{H}), 2.64-$ $2.686(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.28(\mathrm{~m}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 204.7, 159.2, 135.9, 135.8, 1334.9, 134.3, 130.3, $129.5,129.4,129.3,127.5,113.8,79.5,72.8,71.2,55.2,49.3,40.3,29.1,27.0,26.6$, 19.3, 19.2, 15.0, 10.2.

FTIR (KBr, neat): v 3062, 2960, 2931, 2856, $1722(\mathrm{C}=\mathrm{O}), 1514,1247,1037,740 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{45} \mathrm{O}_{4} \mathrm{Si}(\mathrm{M}+1) 533.3087$, found 533.3092.
(3S,4R,6S,7S)-7-(tert-Butyldiphenylsilyloxy)-4-(4-methoxybenzyloxy)-3,6dimethyloctanal (122)

Methoxymethyltriphenylphosphonium chloride ($0.771 \mathrm{~g}, 2.25 \mathrm{mmol}$) was dissolved in anhydrous THF (8 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. The solution was slowly added $\mathrm{LiN}\left(\mathrm{SiMe}_{3}\right)_{2}\left(2.1 \mathrm{~mL}\right.$ of a 1 M solution in THF). After stirring 1 h at $0{ }^{\circ} \mathrm{C}$, aldehyde $120(0.532 \mathrm{~g}, 1.0 \mathrm{mmol})$ in anhydrous THF (5 mL) was added. After stirring the mixture overnight at r.t., $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added and the two phases were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, and the combined organic layers were collected, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated in vacuo. The crude product was purified by silica gel chromatography (hexane/EtOAc 100:1) to give the methyl ether 91. The product was then dissolved in EtOAc (4 mL) followed by a solution of aqueous $6 \mathrm{~N} \mathrm{HCl}(2 \mathrm{~mL})$. The mixture was stirred at r.t. until the disappearance of $\mathbf{1 2 1}$ as monitored by TLC and then saturated aqueous $\mathrm{NaHCO}_{3}(10$ mL) was added. The organic phase was separated, and the aqueous layer was extracted several times with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic layers were
collected and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated to give crude aldehyde 122. The residue was purified by flash coloumn chromatography (hexane/EtOAc 100: 1) to afford aldehyde 122 as a colorless oil (63% yield over two steps).
R_{f} value (hexane/EtOAc 4: 1): 0.59 .
$[\alpha]_{\mathrm{D}}{ }^{20}=-16.7\left(c=0.5, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.64(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.43(\mathrm{~m}, 6 \mathrm{H})$, $7.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}$, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.80(\mathrm{~m}, 4 \mathrm{H}), 3.15-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.36(\mathrm{~m}, 3 \mathrm{H}), 1.66-$ $1.71(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.941(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.940(\mathrm{~d}$, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 202.4,159.0,135.9,135.8,134.7,134.2,130.6,129.6$, $129.4,129.3,127.5,127.3,113.6,80.9,72.11,71.0,55.2,46.6,36.7,33.1,31.1,27.0$, 19.7, 19.3, 16.5, 15.3.

FTIR (KBr, neat): v2958, 2929, 2856, $1722(\mathrm{C}=\mathrm{O}), 1247 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{Si}+\mathrm{Na}(\mathrm{M}+\mathrm{Na}) 569.3063$, found 569.3083.
(R)-2-hydroxy-2-methylbut-3-enyl benzoate (123)

To a stirred solution of $\mathbf{1 2 9}(1.02 \mathrm{~g}, 3.47 \mathrm{mmol})$ in dichloromethane $(65 \mathrm{~mL})$ and pH 7.0 buffer (7 mL) was added DDQ ($3.16 \mathrm{~g}, 13.9 \mathrm{mmol}$) at room temperature. After stirring for 4 h at $40^{\circ} \mathrm{C}$, the reaction mixture was allowed to cool to room temperature. Saturated $\mathrm{NaHCO}_{3}(55 \mathrm{~mL})$ was added and stirred rigorously for 2 h and the mixture was extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$). The combined organic extracts were
washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The residual crude product was purified by flash column chromatography (hexane/EtOAc 5:1 to afford the desired product 123 as colourless oil ($0.57 \mathrm{~g}, 79 \%$ yield).
$[\alpha]_{\mathrm{D}}{ }^{20}=+17.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.05-8.02 (m, 2H), 7.59-7.54 (m, 1H), 7.46-7.41 (m, $2 \mathrm{H}), 5.99$ (dd, $J=10.8,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=0.8,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ (dd, $J=$ $0.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 1 \mathrm{H})$, $1.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.5$ (C), 141.3 (CH), $133.2(\mathrm{CH}), 129.8$ (C), 129.6 $(\mathrm{CH}), 128.4(\mathrm{CH}), 114.2\left(\mathrm{CH}_{2}\right), 72.6\left(\mathrm{CH}_{2}\right)$, $71.1(\mathrm{CH}), 24.6\left(\mathrm{CH}_{3}\right)$.

FTIR (NaCl , neat): $v 3435,1713,1694,1601,1452,1275,1115,1026,928,710 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3}(\mathrm{M}+1)$ 207.1021, found 207.1021.
(5S,6S,8R)-10,10-diethyl-2,2,5,6-tetramethyl-8-((S)-pent-4-en-2-yl)-3,3-diphenyl-

4,9-dioxa-3,10-disiladodecane (124)

To a round bottom flask equipped with a rubber septum and a magnetic stirrer bar was added alcohol $130(0.424 \mathrm{~g}, 1.00 \mathrm{mmol})$, dry pyridine (2 mL) and DMAP (0.024 g , $0.20 \mathrm{mmol})$. TESCl $(0.301 \mathrm{~g}, 2.00 \mathrm{mmol})$ was then added and the reaction mixture was allowed to stir for 12 h at room temperature. After stirring for 12 h , the reaction mixture was added saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$
mL). The mixture was stirred until a clear biphasic separation was observed. Subsequently, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with brine (15 mL x 1) and dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography (hexane $/ \mathrm{Et}_{2} \mathrm{O}$ 100: 1) to afford the desired product as colorless oil ($0.485 \mathrm{~g}, 90 \%$ yield).
R_{f} value (hexane/EtOAc 4: 1): 0.72 .
$[\alpha]_{\mathrm{D}}{ }^{20}=-17.5\left(c=0.79, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73-7.62(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 6 \mathrm{H}), 5.80-5.68(\mathrm{~m}$, $1 \mathrm{H}), 5.02-4.96(\mathrm{~m}, 2 \mathrm{H}), 3.81-3.59(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.71(\mathrm{~m}, 3 \mathrm{H})$, $1.29-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 0.90-0.84(\mathrm{~m}, 18 \mathrm{H}), 0.60-0.84(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.2,136.0,136.0,135.1,134.3,129.5,129.3,127.5$, 127.4, 115.2.

FTIR (NaCl, neat): $v 2959,1639,1589,1458,1427 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{55} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+1) 511.3980$, found 511.3971.
(4R,5R)-4-((R)-2-(benzyloxy)but-3-en-2-yl)-5-cyclohexyl-2,2-dimethyl-1,3dioxolane (125)

To a stirred solution of $\mathbf{9 6}(3.59 \mathrm{~g}, 14.1 \mathrm{mmol})$ in THF (30 mL) was carefuuly added sodium hydride ($0.68 \mathrm{~g}, 60 \%$ dispersion in mineral oil, 28.2 mmol) at $0{ }^{\circ} \mathrm{C}$. After stirring for 1 h at room temperature, benzyl bromide ($2.54 \mathrm{~mL}, 21.2 \mathrm{mmol}$) was added
and the mixture was stirred overnight at room temperature. The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic layers where washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The residual crude product was purified flash column chromatography (hexane/EtOAc 50: 1) to afford the desired product 125 as white solid ($4.76 \mathrm{~g}, 98 \%$ yield).
$[\alpha]_{D}^{20}=-0.5\left(c=0.61, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.19(\mathrm{dd}, J=11.0,17.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.39(\mathrm{dd}, J=1.3,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=1.3,17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~d}$, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=5.6,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.51(\mathrm{~m}, 6 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.42$ $(\mathrm{s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.18-0.74(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.3(\mathrm{CH}), 128.1(\mathrm{CH}), 127.9(\mathrm{CH}), 127.1(\mathrm{C}), 117.9$ $\left(\mathrm{CH}_{2}\right), 106.6(\mathrm{CH}), 83.2(\mathrm{CH}), 82.6(\mathrm{CH}), 64.7(\mathrm{C}), 36.3(\mathrm{CH}), 31.4\left(\mathrm{CH}_{2}\right), 30.4$ $\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{2}\right), 20.0\left(\mathrm{CH}_{3}\right)$.

HRMS (ESI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{O}_{3}(\mathrm{M}+1) 345.2430$, found 345.2414 .
(1R,2R,3R)-3-(benzyloxy)-1-cyclohexyl-3-methylpent-4-ene-1,2-diol (126)

1 N HCl solution (25 mL) was added to $125(1.72 \mathrm{~g}, 5.0 \mathrm{mmol})$ in ethanol (20 mL), and the reaction was allowed to stir at room temperature overnight. The reaction mixture was quenched with water (10 mL) and ethanol was then removed under reduced pressure. The remaining aqueous layer was extracted with ethyl acetate (3 x

10 mL). The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The residual crude product was purified by flash column chromatography (hexane/EtOAc 5:1) to afford the desired product 126 as white solid ($1.37 \mathrm{~g}, 90 \%$ yield).
$[\alpha]_{D}{ }^{20}=-23.1\left(c=1.11, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.36-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.09(\mathrm{dd}, J=11.1,17.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.49 (dd, $J=0.9,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.39$ (dd, $J=0.9,17.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}, \mathrm{OH}), 4.44$ (s, $2 \mathrm{H}), 3.58-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 1 \mathrm{H}), 1.88-1.58(\mathrm{~m}, 6 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.11(\mathrm{~m}$, 5H);
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.1(\mathrm{CH}), 128.5(\mathrm{CH}), 127.7(\mathrm{CH}), 127.6(\mathrm{C}), 119.3$ $\left(\mathrm{CH}_{2}\right), 82.7(\mathrm{CH}), 75.2(\mathrm{C}), 65.1\left(\mathrm{CH}_{2}\right), 59.7(\mathrm{CH}), 39.4(\mathrm{CH}), 30.2\left(\mathrm{CH}_{2}\right), 26.6\left(\mathrm{CH}_{2}\right)$, $26.3\left(\mathrm{CH}_{2}\right), 24.8\left(\mathrm{CH}_{2}\right), 18.3\left(\mathrm{CH}_{3}\right)$.

FTIR (NaCl, neat): $3410,2928,2855,1643,1452,1215,1049,754,665 \mathrm{~cm}^{-1}$
HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{3}(\mathrm{M}+1) 305.2117$, found 305.2116 .

(R)-2-(benzyloxy)-2-methylbut-3-enyl benzoate (129)

To a stirred solution of $\mathbf{1 2 6}(1.37 \mathrm{~g}, 4.50 \mathrm{mmol})$ in $\mathrm{MeOH}(25 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ was carefully added $\mathrm{NaIO}_{4}(8.66 \mathrm{~g}, 40.5 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 3 h at room temperature, the reaction mixture was quenched with water (20 mL) and stirred rigorously for 5 min . MeOH was selectively removed and the remaining aqueous layer was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic extracts
were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure.
$\mathrm{NaBH}_{4}(0.19 \mathrm{~g}, 5.00 \mathrm{mmol})$ was added slowly to the intermediate aldehyde 127 in $\mathrm{MeOH}(5 \mathrm{~mL}) 0^{\circ} \mathrm{C}$ and the reaction was stirred for 2 h at room temperature. The reaction mixture was then quenched with water (2 mL) and acetone (2 mL). MeOH was selectively removed and the remaining aqueous layer was extracted with diethyl ether ($3 \times 5 \mathrm{~mL}$). The combine organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The intermediate was used in the following reaction without further purification. Benzoic anhydride ($1.53 \mathrm{~g}, 6.80 \mathrm{mmol}$) was added to a stirred solution of the intermediate alcohol 128, DMAP ($56 \mathrm{mg}, 0.46 \mathrm{mmol}$) and N-ethyl diisopropylamine $(1.59 \mathrm{~mL}, 9.00 \mathrm{mmol})$ in dichloromethane $(25 \mathrm{~mL})$ uner N_{2} atmosphere at room temperature. The reaction mixture was stirred overnight and then concentrated in vacuo. The residual crude product was purified by flash column chromatography (hexane/EtOAc 20: 1) to afford the desired product 129 as colourless oil $(1.02 \mathrm{~g}, 77 \%$ yield over 3 steps).
$[\alpha]_{\mathrm{D}}{ }^{20}=-0.3\left(c=1.07, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (dd, $J=7.8,15.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.19(\mathrm{~m}, 5 \mathrm{H}), 5.98(\mathrm{dd}, J=11.1,17.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.38$ (d, $J=17.71 \mathrm{H}), 5.37(\mathrm{dd}, J=1.2,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 1.49(\mathrm{~s}$, 3H)
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.3(\mathrm{C}), 139.5(\mathrm{CH}), 139.2(\mathrm{C}), 133.0(\mathrm{CH}) 130.1$ (C), $129.6(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 127.2(\mathrm{CH}), 117.1\left(\mathrm{CH}_{2}\right), 69.3(\mathrm{C}), 64.9$ $\left(\mathrm{CH}_{2}\right), 20.4\left(\mathrm{CH}_{3}\right)$.

FTIR (NaCl, neat): 3030, 2984, 2938, 1722, 1600, 1452, 1273, 1113, 1026, 932, 712 cm^{-1}

HRMS (ESI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{3}(\mathrm{M}+1)$ 297.1491, found 297.1503.
(4S,5R,7S,8S)-8-(tert-butyldiphenylsilyloxy)-4,7-dimethylnon-1-en-5-ol (130)

To a stirred solution of $\mathbf{1 1 0}(0.545 \mathrm{mg}, 1.00 \mathrm{mmol})$ in dichloromethane $(20 \mathrm{~mL})$ and pH 7.0 buffer (1.75 mL) was added DDQ ($0.909 \mathrm{~g}, 4.00 \mathrm{mmol}$) at room temperature. After stirring for 1 h at $40^{\circ} \mathrm{C}$, the reaction mixture was allowed to cool to room temperature. Saturated $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ was added and stirred rigorously for 2 h and the mixture was extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The residual crude product was purified by flash column chromatography (hexane/EtOAc 5:1 to afford the desired product $\mathbf{1 3 0}$ as colourless oil ($0.395 \mathrm{~g}, 93 \%$ yield).
R_{f} value (hexane/EtOAc 4: 1): 0.53 .
$[\alpha]_{D}^{20}=-3.4\left(c=0.89, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67$ (d, $J=7.4 \mathrm{~Hz}, 4 \mathrm{H}$), $7.45-7.35(\mathrm{~m}, 6 \mathrm{H}), 5.85-$ $5.75(\mathrm{~m}, 1 \mathrm{H}), 5.04-4.99(\mathrm{~m}, 2 \mathrm{H}), 3.86-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.57(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.30$ (m, 1H), 1.96-1.70 (m, 3H), 1.31-1.25 (m, 2H), $1.06(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$, $0.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 137.7,136.0,135.9,134.5,133.8,129.7,129.6,127.6$, $127.5,115.8,73.7,73.2,38.8,36.8,36.4,36.4,27.1,19.2,18.2,17.6,15.5$.

FTIR (NaCl, neat): v3398, 3072, 2962, 2932, 1428, $1109 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{O}_{2} \mathrm{Si}(\mathrm{M}+1) 425.2877$, found 425.2876 .
(2R,6S,7R,9S,10S,E)-10-(tert-butyldiphenylsilyloxy)-2-hydroxy-2,6,9-trimethyl-7-(triethylsilyloxy)undec-3-enyl benzoate (131)

To a solution of $124(53.8 \mathrm{mg} \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and allyllic alcohol 123 ($24.7 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv) in $\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}(5.2 \mathrm{~mL})$ was added the 2nd generation Hoveyda-Grubbs catalyst $(12.7 \mathrm{mg}, 0.02 \mathrm{mmol})$ and the mixture was heated at reflux $\left(85{ }^{\circ} \mathrm{C}\right.$) for 5 h under N_{2}. The mixture was cooled to room temperature and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane/EtOAc, 100: 1 to 20:1) to afford 131 as colorless oil (47 mg , 65% yield).
R_{f} value (hexane/EtOAc 4: 1): 0.35 .
$[\alpha]_{\mathrm{D}}{ }^{20}=-16.2\left(c=0.6, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 8.05(\mathrm{~d}, J=7.68,2 \mathrm{H}), 7.68-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.55$ $(\mathrm{m}, 1 \mathrm{H}), 7.45-7.33(\mathrm{~m}, 8 \mathrm{H}), 5.74-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=15.6 \mathrm{~Hz}), 4.27(\mathrm{~d}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.56(\mathrm{~m}, 1 \mathrm{H}), 2.10-$ $2.07(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.96-0.88$ $(\mathrm{m}, 15 \mathrm{H}), 0.81(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.52(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 166.5$ (C), $135.9(\mathrm{CH}), 135.9(\mathrm{CH}), 135.0(\mathrm{C}), 134.3$ (C), $134.0(\mathrm{CH}), 133.1(\mathrm{CH}), 130.0(\mathrm{CH}), 130.0(\mathrm{C}), 129.6(\mathrm{CH}), 129.5(\mathrm{CH}), 129.4$ $(\mathrm{CH}), 128.4(\mathrm{CH}), 127.5(\mathrm{CH}), 127.3(\mathrm{CH}), 74.9(\mathrm{C}), 72.5\left(\mathrm{CH}_{2}\right), 72.1(\mathrm{CH}), 71.6$ (CH), $37.9(\mathrm{CH}), 37.1\left(\mathrm{CH}_{2}\right), 35.7\left(\mathrm{CH}_{2}\right), 34.0(\mathrm{CH}), 29.7\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{3}\right), 25.1$ $\left(\mathrm{CH}_{3}\right), 19.8(\mathrm{C}), 19.4\left(\mathrm{CH}_{3}\right), 15.3\left(\mathrm{CH}_{3}\right), 7.0\left(\mathrm{CH}_{3}\right), 5.2\left(\mathrm{CH}_{2}\right)$.

FTIR (NaCl , neat): $v 3420,2959,1717,1636,1456,1379,1271 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{43} \mathrm{H}_{64} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}(\mathrm{M}+23)$ 739.4186, found 739.4190.

(2R,6S,7R,9S,10S,E)-10-(tert-butyldiphenylsilyloxy)-2,6,9-trimethyl-2,7-

bis(triethylsilyloxy)undec-3-enylbenzoate (132)

To a round bottom flask equipped with a rubber septum and a magnetic stirrer bar was added alcohol 131 ($143 \mathrm{mg}, 0.20 \mathrm{mmol}$) and dry pyridine (1 mL). The mixture was then cooled to $-78{ }^{\circ} \mathrm{C}$. TESOTf ($274 \mathrm{mg}, 1.00 \mathrm{mmol}$) was then added and the reaction mixture was allowed to stir for 16 h at $-78{ }^{\circ} \mathrm{C}$. After stirring for 16 h , the reaction mixture was added saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ mL). The mixture was stirred until a clear biphasic separation was observed. Subsequently, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with brine (15 mL x 1) and dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The resulting residue was purified by flash chromatography (hexane/Et $\mathrm{t}_{2} \mathrm{O}$ 100: 1) to afford the desired product as colorless oil ($149 \mathrm{mg} \mathrm{g}, 90 \%$ yield).
R_{f} value (hexane/EtOAc 4: 1): 0.70.
$[\alpha]_{\mathrm{D}}{ }^{20}=-21.1\left(c=0.86, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.04(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.68-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.43-$ $7.42(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 8 \mathrm{H}), 5.67-5.51(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.79-3.76$ (m, 1H), 3.68-3.55 (m, 1H), 2.06-2.03 (m, 1H), 1.76-1.67 (m, 2H), 1.56-1.52 (m, $1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.25-1.04(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 0.95-0.77(\mathrm{~m}, 27 \mathrm{H}), 0.62-0.54$ (m, $12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 136.0,136.0,135.9,135.1,132.8,129.7,129.6,129.5$, $129.4,128.3,127.5,127.4,127.3,75.0,73.9,72.4,72.0,38.3,37.2,35.7,34.4,27.1$, 25.0, 20.1, 19.4, 15.2, 15.1, 7.0, 6.6, 5.2.

FTIR (NaCl , neat): $v 2957,1724,1630,1458,1271 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{49} \mathrm{H}_{78} \mathrm{O}_{5} \mathrm{Si}_{3} \mathrm{Na}(\mathrm{M}+23)$ 853.5067, found 853.5055.
(2R,6S,7R,9S,10S,E)-10-(tert-butyldiphenylsilyloxy)-2,6,9-trimethyl-2,7-bis(triethylsilyloxy)undec-3-en-1-ol (133)

The ester $132(125 \mathrm{mg}, 0.15 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and cooled to $78{ }^{\circ} \mathrm{C}$. DIBAL-H (Aldrich 1 M solution in heptane, $0.45 \mathrm{~mL}, 0.45 \mathrm{mmol}$), pre-cooled to $-78{ }^{\circ} \mathrm{C}$ was added dropwise. After stirring for another 1 h , the reaction was quenched with saturated aqueous potassium sodium tartrate (15 mL), warmed to r.t., and stirred vigorously till a clear biphasic separation was observed. The aqueous layer was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the combined organic layers were
dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/EtOAc 10: 1) to afford the desired alcohol 133 as colorless oil ($93 \mathrm{mg}, 86 \%$ yield). The alcohol was used in the following reaction without further spectroscopic analyzing.
R_{f} value (hexane/EtOAc 4: 1): 0.52.
(2R,6S,7R,9S,10S,E)-10-(tert-butyldiphenylsilyloxy)-2,6,9-trimethyl-2,7-

bis(triethylsilyloxy)undec-3-enal (E)

To a solution of alcohol $133(90 \mathrm{mg}, 0.123 \mathrm{mmol})$ in dichloromethane (3 mL) was added Dess-Martin periodinane ($78 \mathrm{mg}, 0.185 \mathrm{mmol}, 1.5$ equiv.) at $0^{\circ} \mathrm{C}$. The reaction was allowed to proceed for 0.5 hour at room temperature before quenching with a preformed mixture of saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution $(5 \mathrm{~mL})$ and saturated NaHCO_{3} solution $(5 \mathrm{~mL})$. Upon turning to a colourless solution, the aqueous layer was extracted with diethyl ether $(3 \times 10 \mathrm{~mL})$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$ and dried over anhydrous magnesium sulphate, filtered and concentrated in vacuo. The residual crude product was purified by flash column chromatography (Hexane/EtOAc 12: 1) and the aldehyde \mathbf{E} was obtained as colourless oil (78 mg , 87% yield).
R_{f} value (hexane/EtOAc 4: 1): 0.53 .
$[\alpha]_{D}{ }^{20}=+3.86\left(c=1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 9.35(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.28(\mathrm{~m}, 6 \mathrm{H})$, $5.82-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.32-5.26(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.59(\mathrm{~m}, 1 \mathrm{H}), 2.30-$ $1.96(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.28(\mathrm{~m}, 5 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.00-0.91(\mathrm{~m}, 27 \mathrm{H}), 0.65-0.55(\mathrm{~m}$, $12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.6,136.0,135.9,133.2,130.8,129.5,129.5,129.4$, $127.5,127.5,127.3,80.2,74.9,72.5,53.4,35.5,34.2,29.7,27.1,23.4,18.9,18.4$, 15.6, 15.3, 7.0, 6.6, 5.3, 1.0.

FTIR (NaCl , neat): $v 2957,1732,1628,1460,1427 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{42} \mathrm{H}_{73} \mathrm{O}_{4} \mathrm{Si}_{3}(\mathrm{M}+1) 725.4707$, found 725.4710.

(2E,4R,5S,6E)-((4S,5R,7S,8S)-8-(tert-butyldiphenylsilyloxy)-4,7-dimethylnon-1-

 en-5-yl) 5-(tert-butyldimethylsilyloxy)-9-(4-methoxybenzyloxy)-3,4-dimethylnona-2,6-dienoate (136)

To a stirred solution of acid $\mathbf{8 9}(82.0 \mathrm{mg}, 0.184 \mathrm{mmol})$ in toluene $(5.5 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(93.3 \mathrm{mg}, 0.92 \mathrm{mmol})$ and 2, 4, 6-trichlorobenzoylchloride $(47.7 \mathrm{mg}, 0.195$ mmol) at room temperature. After 2 h at room temperature, a solution of alcohol 130 ($78.1 \mathrm{mg}, 0.184 \mathrm{mmol}$) and DMAP ($60 \mathrm{mg}, 0.50 \mathrm{mmol}$) in toluene (3.0 mL). After 12 h at room temperature, the mixture was quenched with saturated NaHCO_{3} and diluted with $\mathrm{Et}_{2} \mathrm{O}$, the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over MgSO_{4} and concentrated under reduced pressure. The resulting residue was purified by flash
column chromatography (hexane/EtOAc 20: 1) to afford 136 as colourless oil (143 $\mathrm{mg}, 91 \%$ yield).
R_{f} value (hexane/EtOAc 4: 1): 0.69.
$[\alpha]_{\mathrm{D}}{ }^{20}=-11.1\left(c=0.81, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67(\mathrm{dd}, J=1.7,6.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 6 \mathrm{H})$, $7.25(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.70-5.67(\mathrm{~m}, 2 \mathrm{H}), 5.65-5.03(\mathrm{~m}$, $1 \mathrm{H}), 5.38(\mathrm{dd}, 1 \mathrm{H}), 5.00-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.90-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.95-3.93(\mathrm{~m}$, $1 \mathrm{H}), 3.88-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{t}, J=6.75 \mathrm{~Hz}, 2 \mathrm{H}), 2.36-2.32(\mathrm{~m}, 3 \mathrm{H})$, 2.25-2.21 (m, 2H), $2.11(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})$. $0.93(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}),-0.05(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.6,161.7,159.1,137.3,135.9,135.9,135.0,134.2$, 133.7, 130.5, 129.5, 129.4, 129.3, 129.0, 127.5, 127.3, 117.3, 115.8, 113.7, 76.6, 75.7, 72.6, 72.2, 69.5, 55.2, 50.6, 37.6, 36.3, 36.2, 32.6, 29.4, 27.1, 25.8, 19.5, 19.3, 18.0, $16.6,15.5,15.2,1.00,-3.8,-5.1$.

FTIR (NaCl, neat): v 2960, 2931, 1732, 1623, 1514, 1470, $1249 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd. for $\mathrm{C}_{52} \mathrm{H}_{79} \mathrm{O}_{6} \mathrm{Si}_{2}(\mathrm{M}+1) 855.5428$, found 855.5415.

Appendix

List of Publications

International Refereed Papers:

1. Chin Yen Jin, Wang Shun Yi, Loh Teck Peng, Org. Lett. 2009, 11, 3674.

Synthesis of Iriomoteolide-1a C13-C23 Fragment via Asymmetric Conjugate Addition and Julia-Kocienski Coupling Reaction.
2. Wang Shun Yi, Chin Yen Jin, Loh Teck Peng, Synthesis, 2009, 3557 (invited paper).

Synthesis of C13-C23 Fragment of Iriomoteolide-1 a.
3. Wang Shun Yi, Song Ping, Chin Yen Jin, Loh Teck Peng. Submitted for Publication.

A General Strategy for the Introduction Stereogenic Centers Bearing Methyl Group: Total Synthesis of Phytophora Mating Hormone $\alpha 1$.

Conference papers:

4. Chin Yen Jin, Loh Teck Peng. A Forefront Study of Chemical Functionalization in Living Cell: Stereoselective Indium-Mediated Allylation Reaction in Aqueous Media. Abstracts of Papers, PERCH-CIC Congress V, Pattaya, Thailand, 6 - 9 May 2007.
5. Chin Yen Jin, Loh Teck Peng. A Forefront Study of Chemical Functionalization in Living Cell: Small Peptide-Catalyzed Direct Asymmetric Aldol Reaction. Abstracts of Papers, International Symposium on Catalysis and Fine Chemical 2007, Singapore, 16 - 21 December 2007.
6. Chin Yen Jin, Loh Teck Peng. A Forefront Study of Chemical Functionalization in Living Cell: Small Peptide-Catalyzed Direct Asymmetric Aldol Reaction. Abstracts of Papers, NTU-Waseda Joint Symposium in Chemical and Lifesciences, Singapore, 22 March 2008.
7. Chin Yen Jin, Wang Shun Yi, Loh Teck Peng. Synthesis of Iriomoteolide-1a C13-C23 Fragment via Asymmetric Conjugate Addition and JuliaKocienski Coupling Reaction. Abstracts of Papers, NTU-Kyushu University Joint Symposium, Singapore, 28 January 2010.
8. Chin Yen Jin, Wang Shun Yi, Loh Teck Peng. Synthesis of Iriomoteolide-1a C13-C23 Fragment via Asymmetric Conjugate Addition and JuliaKocienski Coupling Reaction. Abstracts of Papers, $239^{\text {th }}$ American Chemical Society National Meeting \& Exposition, San Francisco, California, United State, 21 - 25 March 2010.
9. Chin Yen Jin, Wang Shun Yi, Loh Teck Peng. Synthesis of Iriomoteolide-1a C13-C23 Fragment via Asymmetric Conjugate Addition and JuliaKocienski Coupling Reaction. Abstracts of Papers, 6 ${ }^{\text {th }}$ Asian-European

Symposium on Metal Mediated Efficient Reactions, Singapore, 7 - 9 June 2010.

[^0]: ${ }^{1}$ Wassgren, A.-B.; Bergström, G.; Sierpinski, A.; Anderbrant, O.; Högberg, H.-E.; Hedenström, E. Naturwissenschaften 2000, 87, 24.
 ${ }^{2}$ Bergström, G. Pure Appl. Chem., 2007, 79, 2305.
 ${ }^{3}$ (a) Smith, D. R. In Sawfly Life History Adaptations to Woody Plants; Wagner, M. R.; Raffa, K. F., Eds.; Academic: San Diego, 1993; pp3-32. (b) Anderbrant, O. In Sawfly Life History Adaptations to Woody Plants; Wagner, M. R.; Raffa, K. F., Eds.; Academic: San Diego, 1993; pp 119-154.
 ${ }^{4}$ See some examples: (a) Hertz, A.; Heitland, W.; Anderbrant, O.; Edlund, H.; Hedenström, E. Agricultural and Forest Entomology, 2000, 2, 123. (b) Lyytikäinen-Saarenmaa, P.; Anderbrant, O.; Löfqvist, J.; Hedenström, E.; Högberg, H.-E. For. Ecol. Manage., 1999, 124, 113. (c) Bergström, G.;

[^1]: Wassgren, A.-B.; Anderbrant, O.; Fägerhag, J.; Edlund, H.; Hedenström, E.; Högberg, H.-E.; Geri, C.; Auger, M. A.; Varama, M.; Hansson, B. S.; Löfqvist, J. Experientia, 1995, 51, 370.
 ${ }^{5}$ Karlsson, S.; Hedenström, E. Acta. Chem. Scand. 1999, 53, 620.
 ${ }^{6}$ Karlsson, S.; Högberg, H.-E. Synthesis, 2000, 1863.

[^2]: ${ }^{7}$ Myers, A. G.; Yang, B. H.; Chen, H.; Gleason, J. L. J. Am. Chem. Soc. 1994, 116, 9361.
 ${ }^{8}$ Myers, A. G.; Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.; Gleason, J. L. J. Am. Chem. Soc. 1997, 119, 6496.

[^3]: ${ }^{9}$ Karlsson, S.; Högberg, H.-E. Org. Lett. 1999, 1, 1667.

[^4]: ${ }^{10}$ Seebach, D.; Willert, I.; Beck, A. K.; Gröbel, B.-T. Helv. Chim. Acta 1978, 61, 2510.

[^5]: ${ }^{11}$ (a) Wang, S. Y.; Ji, S. J.; Loh, T. P. J. Am. Chem. Soc. 2007, 129, 276. (b) Wang, S. Y.; Lum, T. K.; Loh, T. P. Adv. Synth. Catal. 2008, 350, 673. (c) Lum, T. K.; Wang, S. Y.; Loh, T. P. Org. Lett. 2008, 10, 761 .

[^6]: ${ }^{12}$ Fukuyama, T.; Chen, X. J. Am. Chem. Soc. 1994, 116, 3125.
 ${ }^{13}$ Diastereoselectivity was determined in ${ }^{13} \mathrm{C}$ NMR spectra by comparing an average of carbon signal with respective diastereomeric mixtures of the deoxypropionate units.

[^7]: ${ }^{14}$ (a) Lebel, H.; Guay, D.; Paquet, V.; Huard, K. Org. Lett., 2004, 6, 3047. (b) Satyanarayana, M.; Rzuczek, S. G.; Lavoie, E. J.; Pilch, D. S.; Liu, A.; Liu, L. F.; Rice, J. E. Bioorg. Med. Chem. Lett. 2008, 8, 3802.

[^8]: ${ }^{15}$ (a) Chatterjee, A. K.; Choi, T. L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc. 2003, 125, 11360.
 (b) Cossy, J.; Bouz, S.; Hoveyda, A. H. J. Organomet. Chem. 2001, 634, 216. (c) Blackwell, H. E.; O’Leary, D. J.; Chatterjee, A. K.; Washenfelder, R. A.; Bussmann, D. A.; Grubbs, R. H. J. Am. Chem. Soc. 2000, 122, 58. (d) Chatterjee, A. K.; Sander, D. P.; Grubbs, R. H. Org. Lett. 2002, 4, 1939. (e) Chatterjee, A. K.; Grubbs, R. H. Org. Lett. 1999, 1, 1751.

[^9]: ${ }^{10}$ Perrin, D. D. and Armarego, W. L. Purification of Laboratory Chemicals; $3{ }^{\text {rd }}$ ed., Pergamon Press, Oxford. 1988.

[^10]: ${ }^{11}$ Wang, S. Y.; Lum, T. K.; Loh, T. P. Adv. Synth. Catal. 2008, 350, 673.

[^11]: ${ }^{17}$ The investigation of the Amphidinium strain HYA024 led to isolation of iriomoteolide-1a (26), -1b and -1c. (a) Isolation and structural elucidation of iriomoteolide-1a (26): Tsuda, M.; Oguchi, K.; Iwamoto, R.; Okamoto, Y.; Kobayashi, J.; Fukushi, E.; Kawabata, J.; Ozawa, T.; Masuda, A.; Kitaya, Y.; Omasa, K. J. Org. Chem. 2007, 72, 4467. (b) Isolation and structural elucidation of iriomoteolide1b and 1c: Tsuda, M.; Oguchi, K.; Iwamoto, R.; Okamoto, Y.; Fukushi, E.; Kawabata, J.; Ozawa, T.; Masuda, A. J. Nat. Prod. 2007, 70, 1661.
 ${ }^{18}$ (a) Review see: Kobayashi, J.; Tsuda, M. Nat. Prod. Rep. 2004, 21, 77. (b) Kobayashi, J.; Kubota, T. J. Nat. Prod. 2007, 70, 451.
 ${ }^{19}$ For some selected synthesis of amphidinolides, see: (a) Va, P.; Roush, W. R. J. Am. Chem. Soc. 2006, 128, 15960. (b) Kim, C. H.; An, H. J.; Shin, W. K.; Yu, W.; Woo, S. K.; Jung, S. K.; Lee, E. Angew. Chem. Int. Ed. 2006, 45, 8091. (c) Jin, J.; Chen, Y.; Li, Y.; Wu, J.; Dai, W.-M. Org. Lett. 2007, 9, 2585.

[^12]: ${ }^{20}$ Fang, Li.; Xue, H.; Yang, J. Org. Lett. 2008, 10, 4645.
 ${ }^{21}$ (a) Heumann, L. V.; Keck, G. E. Org. Lett. 2007, 9, 1951. (b) Smith, A. B.; Razler, T. M.; Meis, R. M.; Pettit, G. R. Org. Lett. 2006, 8, 797.

[^13]: ${ }^{22}$ (a) Denmark, S. E.; Beutner, G. L. Angew. Chem. Int. Ed. 2008, 47, 1560. (b) Denmark, S. E.; Beutner, G. L.; Wynn, T.; Eastgate, M. D. J. Am. Chem. Soc. 2005, 127, 3774. (c) Denmark, S. E.; Beutner, G. L. J. Am. Chem. Soc. 2003, 125, 7800.

[^14]: ${ }^{23}$ (a) Bazán-Tejeda, E.; Bluet, G.; Broustal, G.; Campagne, J.-M. Chem. Eur. J. 2006, 12, 8358. (b) Bazán-Tejeda, E.; Campagne, J.-M. Org. Lett. 2001, 3, 3807.

[^15]: ${ }^{24}$ Ghosh, A. K.; Yuan, H. Tetrahedron Lett. 2009, 50, 1416.
 ${ }^{25}$ Hosomi, A.; Sakurai, H. Tetrahedron Lett. 1976, 1295.

[^16]: ${ }^{26}$ (a) Seebach, D.; Aebi, J.; Wasmuth, D. Organic Synthesis; John Wiley and Sons: New York, 1990. Collect. Vol. III. Pp 153-159. (b) Hermann, J. L.; Schlessinger, R. A. Tetrahedron Lett. 1973, 14, 2429.

[^17]: ${ }^{27}$ Xie, J.; Horne, D. A. Tetrahedron Lett. 2009, 50, 4485.

[^18]: ${ }^{28}$ Hosomi, A.; Sakurai, H. Tetrahedron Lett. 1976, 17, 1295.

[^19]: ${ }^{29}$ Xie, J.; Ma, Y.; Horne, D. A. Org. Lett. 2009, 11, 5082.

[^20]: ${ }^{30}$ (a) Ohira, S. Synth. Commun. 1989, 19, 561. (b) Muller, S.; Liepold, B.; Roth, G. J.; Bestmann, H. J. Synlett 1996, 521.

[^21]: ${ }^{31}$ Xie, J.; Ma. Y.; Horne, D. A. Chem. Commun, 2010, 46, 4770.

[^22]: ${ }^{32}$ For reviews, see (a) Brown H. C.; Ramachandran, P. V. J. Organomet.Chem. 1995, 500, 1. (b) Brown H. C.; Ramachandran, P. V. Pure Appl.Chem. 1994, 66, 201. (c) Hoffmann, R. W. Pure Appl.Chem. 1988, 60, 123. For other asymmetric crotylation, see (d) Roush, W. R.; Palkowitz, A. D.; Palmer, M. J. J. Org. Chem. 1987, 109, 953. (e) Roush, W. R.; Adam, M. A.; Walts, A. E.; Harris, D. J. J. Am. Chem. Soc. 1986, 108, 3422. (f) Roush, W. R.; Halterman, R. L. J. Am. Chem. Soc. 1986, 108, 294.
 ${ }^{33}$ (a) Evans, D. A.; Cote, B.; Coleman, P. J.; Connell, B. T. J. Am. Chem. Soc. 2003, 125, 10893. (b) Paterson, I. Pure Appl. Chem. 1992, 64, 1821. (c) Van Draanen, N. A.; Arseniyadis, S.; Crimmins, M. T.; Heathcock, C. H. J.Org. Chem. 1991, 56, 2499. (d) Kim, B. M., Williams, S. F.; Masamune, S. Comprehensive Organic Synthesis (eds. Trost, B. M. \& Fleming, I.) 301-320 (Pergamon Press, Oxford, United Kingdom, 1991). (e) Paterson, I.; Goodman, J. M.; Isaka, M. Tetrahedron Lett. 1989, 30, 7121. ${ }^{34}$ (a) Teo, Y.-C.; Goh, E.-L.; Loh, T.-P. Tetrahedron Lett. 2005, 46, 6209. (b) Teo, Y.-C.; Goh, E.-L.; Loh, T.-P. Tetrahedron Lett. 2005, 46, 4573. (c) Teo, Y.-C; Goh, J.-D.; Loh, T.-P. Org. Lett, 2005, 7, 2743. (d) Teo, Y.-C.; Tan, K.-T.; Loh, T.-P. Chem. Commun. 2005, 10, 1318. (e) Lu, J.; Ji, S.-J.; Teo, Y.-C.; Loh, T.-P. Tetrahedron Lett. 2005, 46, 7435. (f) Lu, J.; Hong, M.-L.; Ji, S.-J.; Teo, Y.-C.; Loh, T.-P. Chem. Commun. 2005, 33, 4217. (g) Lu, J.; Ji, S.-J.; Teo, Y.-C; Loh, T.-P. Org. Lett. 2005, 7, 159. (h) Lu, J.; Ji, S.-J.; Loh, T.-P. Chem. Commun. 2005, 18, 2345. (i) Lu, J.; Hong, M.-L.; Ji, S.-J.; Loh, T.-P. Chem. Commun. 2005, 8, 1010. (f) Gung , B. W.; Xue, X.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 10692. (g) Roush, W. R.; Walts, A. E.; Hoong, L. K. J. Am. Chem. Soc. 1985, $107,8186$. (h) Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc. 1993, 115, 8467. (i) Costa, A. L.; Piazza, M. G.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Am. Chem. Soc. 1993, 115, 7001.

[^23]: ${ }^{35}$ (a) Wang, S. Y.; Ji, S. J.; Loh, T. P. J. Am. Chem. Soc. 2007, 129, 276. (b) Wang, S. Y.; Lum, T. K.; Ji, S. J.; Loh, T. P. Adv. Synth. Catal. 2008, 350, 673. (c) Lum, T. K.; Wang, S. Y.; Loh, T. P. Org. Lett. 2008, 10, 761. (d) Bates, R. W.; Sridhar, S. J. Org. Chem. 2008, 73, 8104.
 ${ }^{36}$ For asymmetric addition of Grignard reagents to α, β-unsaturated thioesters, see: Macia Ruiz, B.; Geurts, K.; Fernandez-Ibanez, M. A.; Horst, B.; Minnaard, A. J.; Feringa, B. L. Org. Lett. 2007, 9, 5123.
 ${ }^{37}$ For asymmetric addition of Grignard reagents to sulfones, see: Minnaard, A. J.; Feringa, B. L. Org. Lett. 2008, 10, 4219.

[^24]: ${ }^{37}$ (a) Herb, C.; Maier, M. E. J. Org. Chem. 2003, 68, 8129. (b) Cordero, F. M.; Pisaneschi, F.; Gensini, M.; Goti, A.; Brandi, A. Eur. J. Org. Chem. 2002, 1941. (c) Pearson, W. H.; Lian, W. Angew. Chem. Int. Ed. 1998, 37, 1724. (d) Bartels, B.; Hunter, R. J. Org. Chem. 1993, 58, 6756. (e) Furuyama, M.; Shimizu, I. Tetrahedron: Asymmetry 1998, 9, 1351.

[^25]: ${ }^{38}$ Paterson, I.; Wallace, D. J.; Cowden, C. J. Synthesis 1998, 639.
 ${ }^{39}$ The literature method used ethyl (S)-(-)-lactate as the starting material: Williams, M. J.; Jobson, R.
 B.; Yasuda, N.; Marchesini, G.; Dolling, U.-H.; Grabowski, E. J. Tetrahedron Lett. 1995, 36, 5461.

[^26]: ${ }^{40}$ (a) Paterson, I.; Wallace, D. J.; Velázquez, S. M. Tetrahedron Lett. 1994, 35, 9083. (b) Cowden, C. J.; Paterson, I. Org. React. 1997, 51, 1. (c) Brown, H. C.; Dhar, R. K.; Ganesan, K. Singaram, B. J. Org. Chem. 1992, 57, 499.

[^27]: ${ }^{41}$ Bernardi, A.; Capelli, A. M.; Comotti, A.; Gennari, C.; Gardner, M.; Goodman, J. M.; Paterson, I. Tetrahedron 1991, 47, 3471. (b) Bernardi, A.; Gennari, C.; Goodman, J. M.; Paterson, I. Tetrahedron: Asymmetry 1995, 6, 2613.

[^28]: ${ }^{42}$ Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405.
 ${ }^{43}$ Patois, C.; Savignac, P.; About-Jaudet, E.; Collignon, N. Organic Syntheses, 1998, 9, 88. (b) Patois, C.; Savignac, P.; About-Jaudet, E.; Collignon, N. Organic Syntheses, 1996, 73, 152.

[^29]: ${ }^{44}$ Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 13, 3769.
 ${ }^{45}$ (a) Gilman, H.; Jones, R. G.; Woods, L. A. J. Org. Chem. 1952, 17, 1630. (b) Corey, E. J.; Katzenellenbogen, J. A. J. Am. Chem. Soc. 1969, 91, 1851. (c) Temmen, O.; Zoller, T.; Uguen, D. Tetrahedron Lett. 2002, 43, 3181. (d) Caussanel, F.; Wang, K.; Ramachandran, S. A.; Deslongchamps, P. J. Org. Chem. 2006, 71, 7370.

[^30]: ${ }^{46}$ The diastereoselectivity and enantioselectivity were determined by comparison with the NMR spectroscopic and HPLC analytical results of diastereomers obtained from this paper: Nots, W.; List, B. J. Am. Chem. Soc. 2000, 122, 7386.
 ${ }^{47}$ Nicolaou, K. C.; Li, H.-M.; Nold, A. L.; Pappo, D.; Lenzen, A. J. Am. Chem. Soc. 2007, 129, 10356. ${ }^{48}$ (a) Askin, D.; Angst, D.; Danishefsky, S. J. Org. Chem. 1987, 52, 622. (b) Franck, X.; Figadere, B.; Cavé, A. Tetrahedron Lett. 1995, 36, 711. (c) Seebach, D.; Chow, H. F.; Jackson, R. F. W.; Sutter, M. A.; Thaisrivongs, S.; Zimmermann, J. Liebigs Ann. Chem. 1986, 1281. (d) Nishikawa, T.; Urabe, D.; Isobe, M. Angew. Chem. Int. Ed. 2004, 43, 4785.

[^31]: ${ }^{49}$ Diastereoselectivity was determined by ${ }^{13} \mathrm{C}$ NMR by comparing an average of carbon signals with respective diastereomeric mixtures of the acyclic carbon chain. The stereochemistry was assigned on the basis of enantiomeric Tol-BINAP ligands.

[^32]: ${ }^{\text {a }}$ All reactions were performed with $21(0.5 \mathrm{mmol})$ and $\mathrm{MeMgBr}(2.5 \mathrm{mmol}, 3 \mathrm{M}$ in diethyl ether) in t $\mathrm{BuOMe}(1 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. ${ }^{\mathrm{b}}$ Determined by crude ${ }^{13} \mathrm{C}$ NMR.

[^33]: ${ }^{50}$ (a) Brown, H. C.; Randad, R. S. Tetrahedron 1990, 46, 4157. (b) Brown, H. C.; Racherla, U. S.; Khanna, V. V. J. Org. Chem. 1992, 57, 6608. (c) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, ${ }_{51}^{108, ~ 5919 . ~(d) ~ B r o w n, ~ H . ~ C . ; ~ B h a t, ~ K . ~ S . ~ J . ~ A m . ~ C h e m . ~ S o c . ~ 1986, ~ 108, ~} 293$.

 (-)- $\mathrm{Ipc}_{2} \mathrm{BOMe}$

 $(+)-\mathrm{Ipc}_{2} \mathrm{BOMe}$
 ${ }^{52}$ For reviews, see (a) Brown H. C.; Ramachandran, P. V. J. Organomet.Chem. 1995, 500, 1. (b) Brown H. C.; Ramachandran, P. V. Pure Appl.Chem. 1994, 66, 201. (c) Hoffmann, R. W. Pure Appl.Chem. 1988, 60, 123. For other asymmetric crotylation, see (d) Roush, W. R.; Palkowitz, A. D.; Palmer, M. J. J. Org. Chem. 1987, 109, 953. (e) Roush, W. R.; Adam, M. A.; Walts, A. E.; Harris, D. J. J. Am. Chem. Soc. 1986, 108, 3422. (f) Roush, W. R.; Halterman, R. L. J. Am. Chem. Soc. 1986, 108, 294.

[^34]: ${ }^{53}$ Kabalka, G. W.; Shoup, T. M.; Goudgaon, N. M. J. Org. Chem. 1989, 54, 5930.
 ${ }^{54}$ Paquette, L. A.; Chang, S. K. Org. Lett. 2005, 7, 3111.

[^35]: ${ }^{55}$ Esteban, J.; Costa, A. M.; Vilarrasa, J. Org. Lett. 2008, 10, 4843.

[^36]: ${ }^{56}$ Chin, Y.-J.; Wang, S.-Y.; Loh, T.-P. Org. Lettl. 2009, 11, 3674.

[^37]: ${ }^{57}$ The ligands are shown below:

 (R)-Tol-BINAP

 (S)-Tol-BINAP
 ${ }^{58}$ Diastereoselectivity was determined by ${ }^{13} \mathrm{C}$ NMR by comparing an average of carbon signals with respective diastereomeric mixtures of the acyclic carbon chain. The stereochemistry was assigned on the basic of enantiomeric Tol-BINAP ligands.

[^38]: ${ }^{59}$ (a) Paterson, I.; Wallace, D. J.; Velázquez, S. M. Tetrahedron Lett. 1994, 35, 9083. (b) Paterson, I.; Wallace, D. J.; Cowden, C. J. Synthesis 1998, 639. (c) Cowden, C. J.; Paterson, I. Org. React. 1997, 51, 1.

[^39]: ${ }^{60}$ Chatterjee, A. K.; Choi, T. L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc. 2003, 125, 11360.
 ${ }^{61}$ (a) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168. (b) Hoye, T. R.; Zhao, H. Org. Lett. 1999, 1, 1123.
 ${ }^{62}$ For an example of cross metathesis reactions between olefins bearing a quartenary carbon atom and an α-olefin in the total synthesis of a natural product, see: Kanada, R. M.; Itoh, D.; Nagai, M.; Niijima, J.; Asai, N.; Mizui, Y.; Abe, S.; Kotake, Y. Angew. Chem. Int. Ed. 2007, 46, 4350.

[^40]: ${ }^{63}$ Invited paper: Wang, S.-Y.; Chin, Y.-J.; Loh, T.-P. Synthesis 2009, 21, 3557.

[^41]: ${ }^{64}$ (a) Oishi, T.; Suzuki, M.; Watanabe, K.; Murata, M. Tetraedron Lett.2006, 47, 3975. (b) Kang, E. J.; Cho, E. J. Lee, Y. E.; Ji, M. K.; Shin, D. M.; Chung, Y. K.; Lee, E. J. Am. Chem. Soc., 2004, 126, 2680.
 ${ }^{65}$ Gelin, M.; Ferrières, Plusquellec, D. Eur. J. Org. Chem. 2000, 1423.
 ${ }^{66}$ Zhang, H.-X.; Reddy, M. S.; Phoenix, S.; Deslongchamps, P. Angew. Chem. Int. Ed. 2008, 120, 1292.

[^42]: ${ }^{67}$ Li, S.; Chen, Z.; Xu, Z.-S.; Ye, T. Chem. Commun. 2010, 46, 4773.
 ${ }^{68}$ Ghosh, A. K.; Yuan, H. Org. Lett. 2010, 12, 3120.
 ${ }^{69}$ Fang, L.; Yang, J.; Yang, F. Org. Lett. 2010, 12, 3124.

[^43]: ${ }^{70}$ Perrin, D. D. and Armarego, W. L. Purification of Laboratory Chemicals; $3{ }^{\text {rd }}$ ed., Pergamon Press, Oxford. 1988.

[^44]: ${ }^{71}$ (a) Notz, W.; List, B. J. Am. Chem. Soc. 2000, 122, 7386.

[^45]: ${ }^{72}$ Paterson, I.; Wallace, D. J.; Cowden, C. J. Synthesis 1998, 639.

