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Abstract

Nowadays, three dimensional (3D) movies, such as “Avatar”, “Clash of the Ti-

tans” and “How to Train Your Dragon”, are leading the film industry into the 3D era.

One supporting element behind the amazing scenes of the 3D movies is the complex

surface. Apart from the film industry, complex surfaces have intensive applications in

CAD/CAM, Biomedicine, and Interactive & Digital Media (IDM). These applications

require efficient and robust methods for modeling of complex surfaces.

A complex surface is a surface that is derived from a complex structure of arbitrary

topology. A molecular surface is a complex surface geometrically constructed as the

boundary of a set of spheres, and a minimal surface can be derived from a single

contour by minimizing the surface area. A complex surface can also be built up

in free-form interactively. Users can conveniently perform local shape modifications

with parameter control. Composite surface can be utilized to locate an area on a

complex surface to facilitate the modifications. A hierarchical structure is necessary

to represent the final complex surface.

This thesis investigates the complex surface modeling techniques covering four

topics: molecular surfaces, minimal surfaces, composite surfaces, and hierarchical

NURBS (H-NURBS) surfaces.

Molecular surfaces fall into three types: van der Waals surfaces (vdWS), solvent

accessible surfaces (SAS) and solvent excluded surfaces (SES). A molecule can be

geometrically represented as a set of spheres, whose topology can be highly complex.

Different solutions for different types of molecular surfaces have been proposed. We

design a uniform explicit solution to model all three types of molecular surfaces. In our

solution, a molecular surface is decomposed and organized as a set of rational Bézier

surfaces. The singularities for an SES are specially treated to avoid self-intersections.

The study indicates that rational Bézier representation, more specifically, a bi-cubic

or 2× 4 rational Bézier surface, is sufficient for kernel modeling of molecular surfaces

and related applications.

Minimal surface modeling is to obtain a surface given a closed contour, which

is equivalent to the computation for a surface of minimal area. This is an old and

complex problem. A numerical method for minimal surfaces is studied to construct
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an aesthetically pleasing triangular mesh with a closed polygonal contour given as

boundary. From all triangular meshes with the prescribed boundary and the number

of triangles, a triangular mesh of minimal area is identified as the solution for this

problem.

The composition technique is necessary to identify a local area of a surface. We

employ the composition technique to derive a triangular sub-patch S from a triangular

Bézier surface T of degree n. By assigning three boundary curves on the domain of

T, a domain surface P of degree m can first be constructed. The composite surface

S, of degree mn, is the composition of P and T. An explicit formula for control points

of S is obtained by shifting operators. A robust algorithm is developed in this thesis

to calculate the control points.

H-NURBS allows a complex surface to be locally modified and globally trans-

planted. Based on multiresolution and refinement schemes, H-NURBS is investigated

to design a mechanism for the purpose of carrying localized geometric information. H-

NURBS based Monge mapping is developed for detail and local shape modifications.

Monge mapping on H-NURBS patch can be easily performed via simple cut-&-paste

operations. Parametric control of the local shapes is developed to facilitate easier

and better 3D local modeling. With such a technique, a complex surface can be

transplanted to any portion of another surface.
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Chapter 1

Introduction

1.1 Background

In this thesis, the term ‘complex surface’ is short for ‘complex-shaped surface’, which

is a surface that can be derived from a complex structure of arbitrary topology. A

complex surface can be a surface of irregular topology or a surface with detail features.

Nowadays, complex surfaces play important roles in many applications, among which

we can group the complex surface modeling into two types: beauty modeling and

precision modeling.

Beauty modeling is for beautifications. The focus of the beauty modeling is to create

fine details on the model and improve the realism of the model. Some special effects in

movies are impressive examples created by beauty modeling. Three dimensional (3D)

movies, such as “Avatar”, “Clash of the Titans” and “How to Train Your Dragon”,

are leading the film industry into the 3D era. To better attract audiences, the 3D

movie usually provides beautiful scenes, which consist of complex elements such as

trees, water, and monsters. To improve the realism of the scenes, each complex

element should also provide details, for example, the human faces and the animal

furs. Without effective modeling of these complex elements, movie production will

become a very difficult job.

Precision modeling, however, requires the modeling to follow exactly their physical

appearance. Precision modeling can be found in many fields including traditional

computer aided design (CAD). Computer aided surgery is a new area of precision
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Chapter 1. Introduction

modeling application, requiring the modeling of the human organism like the beating

heart and the blood vessel network. The surgical procedures necessitate highly reliable

models of the human anatomy. Computer aided drug design (CADD) uses computer

modeling techniques to design small molecules (ligands) that are complementary to

a molecular target. To make a ligand become a safe and efficacious drug, the exactly

modeling of the molecular surfaces is important.

1.2 Motivations

This thesis attempts to investigate several techniques involved in complex surface

modeling. These techniques relate to the recognition and perception of complex sur-

faces, which are important issues in the human visual system.

The human visual system can detect and discriminate between an incredibly di-

verse assortment of stimuli. Stimuli signals are first received by visual cortexes. There

is a visual cortex for each hemisphere of the brain. The left hemisphere visual cortex

receives signals from the right visual field and the right hemisphere visual cortex re-

ceives signals from the left visual field. Visual information is received at the primary

visual cortex (V1), and passed through a cortical hierarchy (V2, V3, V4 and V5).

Infero temporal cortex (IT) is crucial for visual object recognition and is considered

to be the final stage in the visual recognition process (Figure 1.1).

The human visual system represents a complex shape as many simple geomet-

ric components and organizes the spatial relationships of these components [1–3].

A complex shape is usually decomposed into simple geometric components such as

cylinders, cones, wedges and blocks. It has long been suggested that complex shape

representations are organized as hierarchical structures [3–5].

Visual shape recognition depends on a multi-stage pathway from V1 to IT. The

mechanisms by which the signals from V1 are transformed into IT are not well un-

derstood. The research in [6–8] suggests that, at intermediate stages in the V1-IT

transformation, complex objects are represented at least partly in terms of the config-

urations and positions of their contour components, and the major boundary features

could be used to reconstruct (approximately) the original shape.

2
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Figure 1.1: Human visual recognition process.

(From Wikipedia [9])

Basing on all these researches on the human visual system, we are interested in

investigating three techniques in complex surface modeling:

(1) Surface decomposition which divides a complex surface into sub-patches.

(2) Surface in hierarchy which maintains the sub-patches and modify the local fea-

tures.

(3) Surface from contours which reconstructs surface information from boundary

contours.

1.2.1 Surface decomposition

Decomposition of a complex model into simple components is an intuitive way to

represent the model. Different decompositions will create different representations of

the complex model. During decomposition, how to describe simple components and

how to organize these simple components are also crucial.

A complex model can be represented in two different ways: constructive solid

geometry (CSG) or boundary representation (B-reps). In CSG, a complex object is

represented as a solid, which can be assembled by elementary objects like cubes,

tetrahedrons, pyramids, spheres. The solid is finally modeled as a binary tree of

Boolean operations [10]. In B-reps, a complex surface is used to represent a complex
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(a) (b) (c)

Figure 1.2: Retrieval of a sub-patch from an existing surface.

(a) retrieval of a regular rectangular Bézier surface from the unit sphere via
generalized stereographic projection; (b) retrieval of a NURBS sub-patch from a

NURBS surface (red curves are isoparametric curves); and (c) retrieval of a
triangular Bernstein-Bézier sub-patch from a triangular Bernstein-Bézier surface via

function composition.

model. Usually, a complex surface is divided into sub-patches, which are boundaries

of the elementary objects that form the solid. A well-formed complex surface must

satisfy certain conditions [11]: it mush be closed, orientable, non-self-intersecting,

bounded, and connected.

In this thesis, we study the B-reps complex surfaces, which can be polynomial

parametric surfaces, such as tensor product Bézier surfaces, triangular Bernstein-

Bézier surfaces, and NURBS surfaces. In particular, we are interested in decomposing

a complex surface into sub-patches which can be achieved via function composition

in three different ways:

(1) Rectangular sub-patches: if a rectangular sub-patch of the unit sphere uses cir-

cular arcs as its boundaries (Figure 1.2(a)), the sub-patch can be described as a

rational tensor product Bézier surface using generalized stereographic projection

proposed by Dietz et al. [12, 13].

(2) NURBS sub-patches: if a sub-patch of a NURBS surface uses isoparametric

curves as its boundaries (Figure 1.2(b)), the sub-patch is also a NURBS surface.

The degrees of the sub-patch are same as the degrees of the NURBS surface.

(3) Triangular sub-patches: if a triangular sub-patch of a triangular Bernstein-

Bézier surface does not have isoparametric boundary curves (Figure 1.2(c)), the

sub-patch will be a triangular Bernstein-Bézier surface with higher degree.
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(a) (b)

Figure 1.3: Decomposing molecular surfaces.

three types of sub-patches in three different colors: (a) with probe radius 1.5Å; and
(b) with probe radius 2Å.

We can take the molecular surface as an example to show how a complex surface is

divided into patches. A solvent excluded surface (SES) is a molecular surface defined

by rolling a spherical probe along its boundary (Figure 1.3). An SES is a complex

surface, which is usually decomposed into concave patches, saddle patches and convex

patches [14]. Concave patches and convex patches are all spherical patches, each of

them is a sub-patch of a sphere. Function composition is necessary to represent each

sub-patch in rational Bézier form. Generalized stereographic projection [12, 13], will

be employed to describe a spherical patch (Figure 1.2(a)).

1.2.2 Surface in hierarchy

Typically based on a triangular discrete model [15] or an analytical model [16], the

hierarchical structure has been widely used in computer graphics in different applica-

tions. Our focus is to develop an analytical model with NURBS representation. Such

a hierarchical structure is to provide different mechanisms for local modifications.

The proposed model is named as the hierarchical NURBS (H-NURBS). Based on H-

NURBS, the function composition can be used not only for surface decompositions

but also for selecting an area for local modifications.

Figure 1.4 shows an example of local modifications. The initial surface is a NURBS

surface with some simple features (Figure 1.4(a)). After selecting a local area, we can

do a local modification to form an ear (Figure 1.4(b)). Similarly, a local modification
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(a) (b) (c) (d)

Figure 1.4: Local modifications.

red : original surface; green : local shape; other colors: modified shapes. (a) a local
shape; (b) a modification of the ear shape; (c) another local shape; and (d) a

modification of the nose shape.

for a nose shape can be created (Figure 1.4(c,d)). After modifications, each part of

the surface can be derived in a NURBS representation.

1.2.3 Surface from contours

Surface from contours means to reconstruct a surface using given contours as bound-

aries fulfilling some conditions.

With different conditions, different surfaces can be reconstructed from a single

closed contour. If we want the surface to be of minimal area, the problem becomes

the minimal surface problem or the Plateau’s problem (Figure 1.5(a)). If a closed

contour consists of four arcs (two red arcs and two blue arcs in Figure 1.5(b)), we can

create a surface of revolution, which is a saddle patch. In molecular surface modeling,

a saddle patch is created when the probe is tangent to two atoms. It is created by

rotating probe along the edge connecting the two atom centers (the black line in

Figure 1.5(b)).

Other applications of surfaces from contours require obtaining a surface from mul-

tiple closed contours. In modeling the human blood vessel network, we need to handle

the bifurcations. In Figure 1.5(c), one blood vessel ends at the red circle and two blood

vessels start at the black and blue circles, respectively. The bifurcation area can be

described as a surface using three circles as contours.
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(a) (b) (c)

Figure 1.5: Surface from contours.

(a) a minimal surface from one contour; (b) a saddle surface defined by four arcs;
and (c) a surface of minimal area using three contours as boundaries.

1.3 Objectives

The purpose of this research is to develop different complex surface modeling tech-

niques for complex surfaces.

1.3.1 Molecular surfaces

There are three types of molecular surfaces: van der Waals surface (vdWS), solvent

accessible surface (SAS) and solvent excluded surface (SES). Different approaches,

such as skin surfaces, reduced surfaces, and trimmed NURBS, have been proposed

to model these molecular surfaces. Usually, each type of molecular surfaces has one

specific surface approach for the modeling job. In this thesis, a new method to

model and render all three types of molecular surfaces is proposed with the following

objectives:

(1) To use only rational Bézier surfaces for all three types of molecular surfaces.

(2) To derive multiresolution meshes dynamically.

(3) To achieve higher computational and rending efficiency from a compact rational

Bézier representation.
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1.3.2 Minimal surfaces

A new iterative algorithm to construct a triangular mesh from a given polygonal

boundary is presented. The algorithm aims:

(1) To generate a triangular mesh with minimal area while minimizing the mean

curvature on each vertex.

(2) To obtain an initial mesh of a pre-defined number of triangles.

(3) To extend the approach for multi-contours problems.

1.3.3 Composite surfaces

A new algorithm of constructing a triangular Bézier sub-patch from a triangular

Bézier surface is proposed. The sub-patch is a composite surface of a triangular

domain surface and the triangular Bézier surface. Our algorithm aims:

(1) To handle surfaces of any degrees.

(2) To calculate the control points of the composite surface using explicit formulae.

(3) To design a geometric approach to construct control points.

1.3.4 Hierarchical NURBS

Hierarchical NURBS (H-NURBS) aims to describe complex surfaces with a new

model:

(1) To deal with NURBS surfaces, and hence to handle all existing models in current

CAD/CAM systems.

(2) To support the local shape modifications.

(3) To transplant surface features using cut-&-paste operations.

(4) To control the local shapes parametrically.

8
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1.4 Thesis organization

This is a multi-disciplinary research involving applied mathematics, computer graph-

ics, and bio-medicine. The thesis is organized as follows:

Chapter 1 gives a general introduction to our research.

Chapter 2 proposes a uniform solution for molecular surface modeling after a de-

tail review of the prior art. A kernel modeler is developed for three types of molecular

surfaces using a uniform rational Bézier representation with bi-cubic or 2 × 4 ratio-

nal Bézier surfaces. Each molecular surface is modeled as piecewise rational Bézier

surfaces. Meanwhile, to make a molecular surface compatible with B-reps, the self-

intersecting problem is specially addressed.

Chapter 3 describes a new method to model minimal surfaces. An iterative algo-

rithm is presented to construct a triangular mesh from a given polygonal boundary.

Experimental results are promising. The proposed algorithm can also be applied

to construct a triangular mesh from multi-contours. Literature review on minimal

surface is also carried out in this chapter.

Chapter 4 discusses the prior work and then presents an algorithm to obtain the

triangular Bézier sub-patches from a triangular Bézier surface. Explicit formulae for

the control points of the sub-patch are developed. A robust algorithm is provided to

obtain the control points.

Chapter 5 first reviews the relevant research and then investigates the H-NURBS

hierarchy for detail and local shape modifications. Based on the multiresolution and

refinement schemes, Monge mapping using H-NURBS is developed for easy cut-&-

paste operations. The parametric control of the local shapes is developed to facilitate

easier and better 3D local modeling.

Chapter 6 concludes the researches and highlights the future work.
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Chapter 2

Molecular Surfaces1

In this chapter, a rational Bézier surface is proposed as a uniform approach to mod-

eling all three types of molecular surfaces: van der Waals surface (vdWS), solvent ac-

cessible surface (SAS) and solvent excluded surface (SES). Each molecular surface can

be divided into molecular patches, which can be defined by their boundary arcs. The

solution consists of three steps: topology modeling, boundary modeling and surface

modeling. Firstly, using a weighted α-shape, topology modeling creates two networks

to describe the neighboring relationship of the molecular atoms. Secondly, boundary

modeling derives all boundary arcs from the networks. Thirdly, surface modeling con-

structs all three types of molecular surfaces patch-by-patch, based on the networks

and the boundary arcs. For an SES, the singularities are specially treated to avoid

self-intersections. Instead of approximation, this proposed solution can produce pre-

cise shapes of molecular surfaces. Since rational Bézier representation is much simpler

than a trimmed non-uniform rational B-spline surface (NURBS), computational load

can be significantly saved when dealing with molecular surfaces now. It is also possible

to utilize the hardware acceleration for tessellation and rendering of a rational Bézier

surface. CAGD kernel modelers typically use NURBS as a uniform representation

to handle different types of free-form surfaces. This research indicates that rational

Bézier representation, more specifically, a bi-cubic or 2 × 4 rational Bézier surface, is

sufficient for kernel modeling of molecular surfaces and related applications.

1The following publication is based on the results of this chapter:
Chen,W.Y., Zheng,J.M., and Cai,Y.Y. (2010). Kernel modeling for molecular surfaces using

a uniform solution,Computer-Aided Design, 42(4), 267-278.
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2.1 Prior art

Biological molecules like proteins are important for all biological organisms. In order

to understand the molecular functions, molecular structures are intensively studied

at different levels. Since molecules interact at their surfaces, an understanding of the

molecular surfaces can be useful for studying these interactions. Molecular surfaces

can be used in molecular visualization and analysis, function predictions and drug

design. Three types of molecular models have been proposed: van der Waals sur-

face (vdWS), solvent accessible surface (SAS), and solvent excluded surface (SES).

Different methods have been proposed to model these surfaces.

The vdWS [17, 18] is used to describe a molecule based on its atoms of van der

Waals radius. It can be defined as the union of all portions of every atomic sphere

surface that is not occluded by neighboring atoms (Figure 2.1(a)). Several methods

have been developed to model vdWS [19–21]. A simple application of a vdWS is to

compute the molecular volume, which can be described as the volume enclosed by the

vdWS. Adams [22] discussed the calculation of the volume and area of vdWS.

Although the vdWS is a reasonable model for molecules, it does not address the

issue of whether or not an atom is accessible to the solvent environment. The SAS [18,

23] was proposed, taking into account the effect of the solvent. It is described as the

surface created by the center of a probe rolling over the entire vdWS. This can be

considered as a van der Waals surface whose atomic radii have been extended by

the probe radius (Figure 2.1(b)). Hence, the modeling of an SAS can be similar to

that of a vdWS [24–28]. Calculations of the volumes and areas of SAS were studied

in [29–33].

The SES [34] is another description of the molecular surfaces which also takes

into account the solvent. It, however, is defined as the surface traced out by the

inward-facing surface of a probe (Figure 2.1(c)). The SES consists of contact surfaces

and re-entrant surfaces. Contact surfaces are the parts of the vdWS that can be

touched by a probe and the re-entrant surfaces are the inward-facing parts of the

probe atom when it is in touch with more than one atom. An SES is a smooth

molecular surface except at the singular points, which will be elaborated later. As
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proposed by Connolly [24], an SES consists of three types of regions: concave spherical

patches, convex spherical patches and saddle-shaped toroidal patches (or briefly saddle

patches). Various methods have been proposed to model SES [35–38].

(a) (b) (c)

Figure 2.1: Three types of molecular surfaces.

(a) vdWS, in blue; (b) SAS, in red; and (c) SES, with contact surfaces in green and
re-entrant surfaces in orange.

Besides the above three types of molecular surfaces, several other surfaces have

been used to describe molecules. Blobby molecules [39] used an isosurface as an alge-

braic representation of a molecule. This isosurface is defined by an implicit function,

which can be computed as a distance field for the atoms by superimposing a set of

radial basis functions (RBF). Since each atom contributes to the function, the com-

putation cost for large molecules dramatically increases. To solve this problem, the

soft objects [40–42] provided several improvements in the formulation and optimiza-

tion of the implicit functions. The final surfaces for these methods can be extracted

by marching cubes [43]. The skin surface [44] is based on a framework of Voronoi,

Delaunay and α complexes of a finite set of weighted points. One advantage of the

skin surface is that it is smooth and free of self-intersections. Therefore, it needs no

handling of the singularities. Several methods have been proposed for the triangula-

tion of the skin surface [45–50]. All these surfaces can be treated as approximations

to the three types of molecular surfaces. In this chapter, we only discuss the modeling

of the three types of molecular surfaces, i.e. vdWS, SAS, and SES.

2.2 Research aims

The three different types of molecular surfaces are all important for structure and

function analysis. Often, different methods are used to model these different types

12
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of molecular surfaces. For example, Richard’s method [34] is used to model an SAS

and Connolly’s method [14] is used to model an SES. As such, often different data

structures are required to model different surfaces. To have compatible and uniform

molecular surface representation, a simple polygonal representation [25, 51–54] is used

through approximation and tessellation. Such an approximation method may produce

an inaccurate representation, which may cause problems especially for dynamics sur-

face simulation. Besides, tessellation can easily create millions of triangular meshes.

A rational Bézier surface is more cost-effective in terms of computing compared to a

trimmed non-uniform rational B-spline surface (trimmed NURBS) [55, 56]. With a

rational Bézier surface, there is also an advantage of creating an adaptive and crack-

free tessellation model when needed. Furthermore, the hardware support for Bézier

surfaces has been developed. For example, NVIDIA’s GeForce3 supports the tessel-

lation of Bézier surfaces with OpenGL extensions for Bézier surface evaluation (both

rational and non-rational) [57].

Connolly’s method [14] modeled an SES as a collection of analytical patches with-

out handling singularities. In CAGD community, there is an increasing interest on

molecular surface modeling. Bajaj et al. [55, 56] used a trimmed NURBS (not a

NURBS) to describe the molecular surfaces with a control mesh and a set of trimmed

curves. A rational Bézier surface is more convenient in modeling and rendering with

potential hardware acceleration. A piecewise polynomial Bernstein-Bézier spline func-

tion was used by Zhao [58] for molecular surface representation. Theoretically, this

approach can only produce an approximate representation. For accurate molecular

surface representation, a rational Bézier surface is necessary.

The aims of this research are as follows:

(1) To develop a uniform approach to modeling all three types of molecular surfaces.

(2) To have an accurate representation of molecular surfaces instead of approxima-

tion.

(3) To design an effective and robust method for molecular surface representation,

using a low-degree rational Bézier surface, thus avoiding the computationally

expensive NURBS.
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The proposed research has several applications:

(1) To design a kernel modeler for molecular surfaces using a uniform rational Bézier

representation, and therefore uniform data structure.

(2) To tell exactly how many rational Bézier patches are there in the molecular

surfaces, and thus to calculate the surface areas, etc.

(3) To speed up the rendering process using graphics hardware.

(4) To support the level of detail through the subdivision of the control meshes of

the rational Bézier represented molecular surfaces.

2.3 An overview of molecular surface modeling

2.3.1 A uniform method for three types of molecular surfaces

The rational Bézier modeling method provides a uniform solution to represent all

three types of molecular surfaces. Notice that the SES consists of concave spherical

patches, convex spherical patches and saddle-shaped toroidal patches, while the vdWS

and SAS only contain convex spherical patches. Therefore, our focus is to model all

these patches in rational Bézier form. To do so, we need to set up the topology of the

boundaries.

2.3.2 Networks, arcs, and patches

The rational Bézier modeling contains three steps (Figure 2.2): topology modeling,

boundary modeling and surface modeling. In topology modeling, two networks can be

developed to reveal the neighboring relationship of the boundary atoms: the vdWS

network and the solvent network. The vdWS network is used to construct the vdWS

while the solvent network is used for both the SES and the SAS. The two networks

can be created from the existing methods, for example, regular triangulation [59],

β-shape [38, 60] and weighted α-shape [61, 62]. In our system, a weighted α-shape

is adopted. From the two networks, boundary modeling creates boundary arcs for
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Figure 2.2: A uniform solution for molecular surface modeling.

all the patches. Each patch is formed by its boundary arcs. For all three types of

molecular surfaces, three collections of boundary arcs are created: vdWS arcs, SES

arcs and SAS arcs. We can first create the intersecting circles on the atoms and

then divide the circles into arcs [55, 63]. It is a time-consuming task to calculate

the intersections of arcs and circles. We thus develop a more efficient way to create

boundary arcs via probe rotation. We identify saddle patches to find the boundary

arcs. For the SES, our method is different from Connolly’s [14] and Bajaj’s [55]. Con-

nolly constructed the torus and divided it into saddle patches. Bajaj used a single

trimmed NURBS to model the saddle toroidal patches from each edge of the regular

triangulation boundary. There are several saddle patches for one edge (two saddle

patches are created from one edge in Figure. 2.3). We, however, handle saddle patches

one by one. For the SES, we can eliminate singularities by cutting the existing SES

arcs and adding new SES arcs. After boundary modeling, we can find all the patches

based on the networks and the boundary arcs. Each patch is N -sided, with N arcs

as boundaries. Surface modeling is to create each patch using a rational Bézier sur-

face. From one boundary atom, several N -sided spherical patches can be created

(two N -sided patches are created from one atom in Figure 2.3(c, d)). Based on the

boundary arcs, Connolly [14] proved that the SES is analytical without discussing
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(a) (b) (c) (d)

Figure 2.3: Several patches created from one edge and one atom.

(a) saddle patches are created among atoms; (b) two green saddle patches are
created from the red edge; (c) convex patches can be created from atoms; and (d)

two N -sided spherical patches with blue boundary arcs are created from one atom.

the singularities. Our method not only provides a mathematical description for each

patch but also deals with all the singularities for the SES. In the trimmed NURBS

method, corresponding to a vertex of the regular triangulation boundary, a trimmed

NURBS was created to form part of the molecular surfaces. However, an atom may

contain more than one convex N -sided patch. Hence, a single trimmed NURBS may

contain several N -sided patches. It is difficult to directly know how many convex

patches a trimmed NURBS may contain. Our method models each separated patch

and thus it is straightforward to obtain the information of each patch and the neigh-

boring relationship among all patches. Moreover, the trimmed NURBS approach may

possibly produce isolated cavities inside a molecule. We are not interested in the in-

terior part of a molecule (for details see Section 2.4.1). Ryu et al. [37, 38] represented

a re-entrance patch using a single implicit equation. Our method adopts the explicit

rational Bézier representation, which enables easier tessellation and faster rendering.

We use rational Bézier surfaces to model all three types of molecular surfaces.

Generally, the shape of a molecule is controlled by its network. The boundary arcs

are created from the network and further used to create the molecular surfaces. For

the SES, the modeling of the re-entrance surface (the concave patches and the saddle

patches) was investigated by [35–38]. The convex patches are replaced by boundary

atoms for visualization. Our method, however, also models the convex patches in

rational Bézier form.

Our uniform solution contains three steps to model the molecular surfaces (Fig-

ure 2.2): topology modeling, boundary modeling and surface modeling. In next sec-

tions, we will detail the three steps.
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2.4 Topology modeling

Topology modeling aims to find the neighboring relationship of the boundary atoms.

For any molecule, the topology contains two networks: the vdWS network and the

solvent network. The vdWS network contains the neighboring relationship of the

molecular atoms and the solvent network reveals the connectivity of atoms when

the probe is rolling along the boundary. Each network contains five basic elements:

boundary vertices, singular edges, regular edges, singular triangles and regular trian-

gles. In our system, given a probe radius α0, we create these elements based on a

weighted α-shape using CGAL [64].

2.4.1 Elements of a weighted α-shape

A molecule can be viewed as a set of weighted points S. Using a weighted α-shape [61,

62], six sets can be derived: singular edges SE(S), regular edges RE(S), singular

triangles ST(S), regular triangles RT(S), interior tetrahedra ITE(S) and all tetrahedra

ATE(S). The set ATE(S) contains several infinite tetrahedra which use the infinite

points as one of their vertices. The radius of the sphere circumscribing an interior

tetrahedron is smaller than the probe radius. A regular triangle is a facet of an interior

tetrahedron while a singular triangle is not contained by any interior tetrahedron. A

regular edge is an edge of a triangle (both regular and singular) while the singular

edge is not contained by any triangle. Figure 2.4(a) shows an example of the weighted

α-shape on the plane. The red solid lines are regular edges and the red dotted lines are

singular edges. The weighted α-shape is derived from the regular triangulation. From

(a) (b) (c)

Figure 2.4: Topology modeling creates networks from a weighted α-shape.

(a) elements of the weighted α-shape; (b) elements after topology modeling; and (c)
results of the trimmed NURBS method.

17



Chapter 2. Molecular Surfaces

all the tetrahedra of the regular triangulation, a weighted α-shape can be formed by

removing the tetrahedra whose circumscribed spheres are larger than the probe. The

weighted α-shape allows the probe to move to any point in the space to remove the

tetrahedra. Since we want to model the boundary surface of the molecule, we will not

allow the probe to move inside the molecule (Figure 2.4(b)). The black squares and

black dots in Figure 2.4(a) are boundary vertices of the weighted α-shape. However,

only the black dots can be touched by the probe now. Hence, we need to derive

another subset from the weighted α-shape.

In Figure 2.4(c), all the atoms are boundary atoms. Our focus is to model only the

boundary surface (arcs in red). The trimmed NURBS method creates two N -sided

spherical patches from one atom (one blue arc and one red arc). A single trimmed

NURBS surface is used to describe the two N -sided spherical patches. Therefore, it

produces cavities inside the molecule. Of course, one can modify the trimmed NURBS

method to model each N -sided spherical patch using one trimmed NURBS. However,

it is not straightforward to check whether the N -sided spherical patch is inside the

molecule or on the molecular boundary.

2.4.2 Solvent network

As shown in Figure 2.2, the solvent network is used for the SES and the SAS. It

reveals the neighboring relationship of the atoms when a probe with radius α0 rolls

along the molecular shape. We move the probe from infinity until it touches the

molecule. Five basic elements are created: solvent boundary vertices (SBV), solvent

singular edges (SSE), solvent regular edges (SRE), solvent singular triangles (SST)

and solvent regular triangles (SRT). The center of the atom that the probe can touch

is called a solvent network vertex (black dots in Figure 2.4(b)). A solvent (singular or

regular) edge is created connecting two atom centers if both atoms contact the probe

at the same time (red line segments in Figure 2.4(b)). If the probe is tangent to three

atoms, a solvent (singular or regular) triangle is created connecting the three atom

centers. In order to derive these elements, we need to obtain the solid SO(S), which

is a set of tetrahedra.
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Suppose A(S) is another set of tetrahedra, which initially contains one infinite

tetrahedron. Let triangle set C(S)= B(S)-ST(S)-RT(S), where B(S) contains all

boundary triangles of A(S). If C(S) 6= ∅, the tetrahedra sharing the triangles in C(S)

are inserted into A(S). Repeat checking C(S) and inserting tetrahedra until C(S)= ∅.

Then, SO(S)= ATE(S)-A(S).

Element SRT contains all boundary triangles of the solid SO(S) and element SST

contains all triangles in ST(S) that are outside the solid SO(S). Element SSE consists

of all the edges in SE(S) that are outside the solid SO(S). Element SRE consists of all

the edges from both SRT and SST. Element SBV contains all the vertices of the edges

and the triangles. A radius of α0 = 1.5Å is typically used to represent the effective

radius of a water molecule. Figure 2.5(b) shows an example of the solvent network

with probe radius 1.5Å.

(a) (b) (c)

Figure 2.5: Two networks created from molecule 1CRN.

(a) all the atoms; (b) the solvent network of radius 1.5Å and (c) the vdWS network
of radius 0Å.

2.4.2.1 The vdWS network

The solvent network elements are created using a probe with radius α0. Following the

same idea as above, the vdWS network elements can be created using the probe with

radius 0Å (equivalent to a point). Five basic elements are created: vdWS bound-

ary vertices (VBV), vdWS singular edges (VSE), vdWS regular edge (VRE), vdWS

singular triangles (VST) and vdWS regular triangles (VRT). The center of the atom

that the probe can touch is a vdWS network vertex. A vdWS (singular or regular)

edge is created connecting two atom centers if the two atoms are not separated. If

three atoms contact to one another, a vdWS (singular or regular) triangle is created
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by connecting the three atom centers. Figure 2.5(c) shows an example of the vdWS

network.

2.4.3 Properties of the dual-layers topology

After topology modeling, we obtain the solvent network and the vdWS network. We

will use these two networks to model the molecular surfaces. A regular edge is an

edge of the triangle (regular or singular). If the regular edge is an edge of a singular

triangle, it is possible that several singular triangles share this edge. If the regular

edge is an edge of a regular triangle, it will be on the solid SO(S). There must be an

even number of regular triangles sharing this edge (Figure 2.6). Hence, we have

Property 1: A regular edge can be shared by 2n regular triangles and m singular

triangles, where n and m are non-negative integers.

(a) (b)

Figure 2.6: A regular edge and triangles.

a regular edge (in red) shared by 2n regular triangles and m singular triangles. (a)
an example with n = m = 1; and (b) another example with n = 2, m = 1.

2.5 Boundary modeling

All boundaries of each molecular patch are circular arcs [14, 55, 56]. Boundary mod-

eling is thus to create all the boundary arcs. A boundary arc can be denoted as

[pstart, pend, d], with start point pstart, end point pend, and the start tangent direction

d. For all three types of molecular surfaces, three collections of boundary arcs will be

created: vdWS arcs, SES arcs and SAS arcs. The solvent network is used to create

the SES arcs and SAS arcs. The vdWS network is used to create the vdWS arcs.
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Clearly, when the probe rotates along an edge while keeping in touch with two atoms

of the edge, boundary arcs are created. During the boundary arc formation, the probe

has two special positions: the rotation starts and the rotation ends. We name these

positions as stations, which are spheres of the same probe radius.

2.5.1 Stations

For a topology triangle T , there is a station where the probe is tangent to the three

atoms (Figure 2.7(a)). Suppose the three atoms from the triangle are located at P1,

P2, and P3 with radii r1, r2, and r3, respectively. If the center of the station is P , it

must satisfy

|PPi| = α + ri, i = 1, 2, 3.

There are two possibilities: P = Pnormal and P = Psymmetry (Figure 2.7(c)). Pnormal

lies along the normal of the triangle while Psymmetry lies on the opposite side. The

volume of the tetrahedron PP1P2P3 is

V =
1

12

√
4DEF − FXX − DY Y − EZZ + XY Z (Eq.2.1)

where

A = |P1P2|2 , B = |P2P3|2 , C = |P1P3|2 ,

D = (α + r1)
2, E = (α + r2)

2, F = (α + r3)
2,

X = D + E − A, Y = E + F − B, Z = D + F − C.

(Eq.2.2)

We can set

Pij = Pj − Pi = PiPj , n = P12 ⊗ P13,

G = P12 · P13, H = n · n, I = P2 · P2 − P1 · P1,

J = P3 · P3 − P1 · P1, K = n · P1, L = I − E + D,

M = J − F + D, S = CL − GM, T = AM − GL.

(Eq.2.3)

where “⊗” is the cross product and “·” is the dot product.
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The point P (Pnormal or Psymmetry) satisfies

|P2P |2 − |P1P |2 = E − D,

|P3P |2 − |P1P |2 = F − D,

n · P1P = ±6V.

That is

P2 · P2 − P1 · P1 − (E − D) = 2P12 · P,

P3 · P3 − P1 · P1 − (F − D) = 2P13 · p,

n · P = ±6V + n · P1.

In matrix form, we have









P12

P13

n









P =









(P2 · P2 − P1 · P1 − E + D)/2

(P3 · P3 − P1 · P1 − F + D)/2

±6V + n · P1









Equivalently, we have M1P = V1 or M1P = V2 where

M1 =









P12

P13

n









, V1 =









L/2

M/2

6V + K









, V2 =









L/2

M/2

−6V + K









.

We thus have

|M1| = (P12 ⊗ P13) · n = |n|2 = H, M−1
1 =

1

H









P13 ⊗ n

n ⊗ P12

n









⊥

.

where “⊥” is a transpose operator of a matrix and “−1” is an inverse operator of a

matrix.
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Since

a ⊗ (b ⊗ c) = b (a · c) − c (a · b) ,

P13 ⊗ n = P13 ⊗ (P12 ⊗ P13)

= |P13|2 P12 − P13 [P13 · P12] = CP12 − GP13,

n ⊗ P12 = (P12 ⊗ P13) ⊗ P12 = P12 ⊗ (P13 ⊗ P12)

= |P12|2 P13 − P12 [P13 · P12] = AP13 − GP12,

M−1
1 = 1

H









CP12 − GP13

AP13 − GP12

n









⊥

.

Hence, the two solutions are

Pnormal = M−1
1 V1, Psymmetry = M−1

1 V2.

Therefore, the station can be determined by the following items:

Pnormal = Q + λn, Psymmetry = Q − λn,

where Q = K
H

n + S
2H

P12 + T
2H

P13 is the projection of P on the triangle, and λ = 6V
H

is

the distance from P to the triangle (Figure 2.7(b)).

Stations fall into two groups: negative stations (λ < α) and positive stations

(λ ≥ α). For negative stations, the two stations, P = Pnormal and P = Psymmetry,

intersect.

If T is a regular triangle, a station P = Pnormal is obtained. If T is a singular

triangle, two stations, P = Pnormal and P = Psymmetry, are derived (Figure 2.8). From

the solvent network, solvent stations can be created. When the probe moves from one

station to another, an SES saddle can be created. We will find the SES arcs from all

the SES saddles in the next section. The SAS arcs and vdWS arcs can be derived

similarly.
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(a) (b) (c)

Figure 2.7: Stations.

(a) one station is tangent to three atoms; (b) Q is the projection of P on the
triangle and λ is the distance from P to the triangle; and (c) two stations,

P = Pnormal and P = Psymmetry, can be derived from one triangle.

(a) (b)

Figure 2.8: Stations derived from triangles.

(a) one station is tangent to three atoms; and (b) one station P = Pnormal is derived
from one regular triangle (pink) and two stations P = Pnormal and P = Psymmetry are

obtained from one singular triangle (yellow).

2.5.2 SES saddle patches

An SES saddle can be created by rotating the probe along one network edge from one

solvent station to another. Along a singular edge, the probe will rotate for 360o. A

saddle patch can be created with two circles as the two boundaries.

From Property 1, a regular edge (Ps, Pe) can be shared by 2n regular triangles

and m singular triangles. Take Φ as a plane perpendicular to the edge PsPe and

project different elements onto this plane: the regular edge becomes a point O (the

green dot in Figure 2.9), regular triangles are regular line segments (red line segments

in Figure 2.9) and singular triangles are singular line segments (green line segments

in Figure 2.9). There are (2n + 2m) stations (black dots in Figure 2.9). All these

24



Chapter 2. Molecular Surfaces

stations are tangent to the two atoms. Hence, they are located at a same circle (red

dots in Figure 2.9). Consider the disk surrounded by the circle with center at O. All

line segments cut the disk into (2n + m) sectors. Some sectors are outside the solid

SO(S) while others are inside. Obviously, there are n sectors inside the solid if n > 0.

The boundaries of an inside sector are two regular line segments. Hence, only (n+m)

sectors lie outside the network. Within an outside sector, there are two stations. A

saddle patch can be formed rotating between the two stations. Therefore, (n + m)

saddle patches can be obtained (blue arrows in Figure 2.9). We denote each saddle

patch as [Ps, Pe, Q1, Q2, d1, d2], where PsPe is the edge, Q1 is the start station, Q2 is

the end station, d1 is the tangent direction at Q1 and d2 is the tangent direction at

Q2. The saddle patches are created clockwise if we view the plane Φ from the point

Ps to Pe.

(a) (b) (c)

(a) (b)

Figure 2.9: A regular edge and its neighboring triangles projected onto the plane Φ.

pink area: the solid; black dots: stations; red line segments: regular triangles; green
line segments: singular triangles; red dots: the circle; blue arrows: saddle patches;
green dots: regular edges. (a) first example with n = 1, m = 0; (b) second example
with n = 0, m = 1; (c) third example with n = 0, m = 2; (d) forth example with

n = 1, m = 1; and (e) fifth example with n = 2, m = 2.
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2.5.3 Boundary arcs

For the SES, different arcs will be created as boundaries of different patches. These

arcs are named as SES arcs; they can be divided into probe-arcs and atom-arcs. An

atom-arc is an arc on an atom sphere and a probe-arc is an arc on a station. For a

regular solvent edge, we can obtain different SES saddle patches. From each saddle

patch [Ps, Pe, Q1, Q2, d1, d2], we have

R1 = Q1 + Q1Pe

|Q1Pe|
α, R2 = Q1 + Q1Ps

|Q1Ps|
α, R3 = Q2 + Q2Ps

|Q2Ps|
α, R4 = Q2 + Q2Pe

|Q2Pe|
α,

D1 = R2Q1 ⊗ d1, D2 = d1, D3 = d2 ⊗ R4Q2, D4 = −d2.

Hence, we have four boundary arcs, where [R2, R1, D1] and [R4, R3, D3] are two atom-

arcs (red arcs in Figure 2.10(a)), [R2, R3, D2] and [R4, R1, D4] are two probe-arcs (blue

arcs in Figure 2.10(a)). We assign each atom-arc to the corresponding solvent network

vertex ([R2, R3, D2] for Ps and [R4, R1, D4] for Pe) and assign each probe arc to the

corresponding station ([R2, R1, D1] for Q1 and [R4, R3, D3] for Q2). For convenience,

the two atom-arcs are counter-clockwise and the two probe-arcs are clockwise when

one faces the saddle patch outside the molecule (Figure 2.10(b) and Figure 2.11(b)).

A convex patch is part of an atom sphere. When we face the convex spherical patch

outside the atom, the patch lies on the right-hand side of the atom-arcs (red arrows in

Figure 2.11(c)). A concave patch is part of a station, which is also a sphere. When we

face the concave spherical patch outside the station, the patch lies on the right-hand

side of the probe-arcs (blue arrows in Figure 2.11(c)). For a singular solvent edge,

the probe will rotate along the edge for 360o. Two atom-arcs (circles) are created.

A probe-arc is the shared boundary between a saddle patch and a concave patch

while an atom-arc is the shared boundary between a saddle patch and a convex patch

(Figure 2.12(a)).

The SAS contains only convex patches, whose boundaries are arcs, named as SAS

arcs (Figure 2.12(b)). Corresponding to each saddle patch [Ps, Pe, Q1, Q2, d1, d2], we

can create two SAS arcs as [Q1, Q2, d1] and [Q2, Q1,−d2], which are the loci of the

probe center when the probe contacts the two atoms. The two arcs are superimposed

but with different directions (green arcs in Figure 2.10(a)). Each arc is assigned to
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the corresponding network vertex: [Q1, Q2, d1] for Ps and [Q2, Q1,−d2] for Pe.

SES arcs and SAS arcs are created from solvent network edges. Similarly, vdWS

arcs can be created from vdWS network edges. The radius of the probe becomes

0Å and a saddle patch is degenerated to be an arc while the two probe-arcs become

points (Figure 2.12(c)). These vdWS arcs are assigned to its corresponding vdWS

network vertex. A vdWS arc is the boundary between two convex spherical patches

on the vdWS. It is the locus of the probe center when it contacts two atoms.

(a) (b)

Figure 2.10: Four arcs identified from a saddle.

(a) two SES atom-arcs (red), two SES probe-arcs (blue), and two SAS arcs (green);
and (b) if we face the convex patch outside the sphere (outside SES), the convex

patch is on the right hand side of atom-arcs; if we face the concave patch outside the
station (inside SES), the concave patch is on the right hand side of the probe-arcs.

(a) (b) (c)

Figure 2.11: A saddle patch created between two stations.

(a) a saddle patch is created by rotating the probe between two stations; (b) four
SES arcs are created with atom-arcs (red) counter-clockwise and probe-arcs (blue)
clockwise; and (c) the convex patch is on the right-hand side of the atom-arcs and

the concave patch is on the right-hand side of the probe-arcs.
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(a) (b) (c)

Figure 2.12: Three types of boundary arcs.

(a) SES arcs (probe-arcs in blue and atom-arcs in red); (b) SAS arcs (red); and (c)
vdWS arcs (red).

2.5.4 Singularity processing

Only SES requires singularity processing. This may be due to the self-intersections of

saddle patches and concave patches (no self-intersection for convex patches). There

exist two types of singularities: station-edge singularities and station-triangle singu-

larities. Singularity processing will remove the arc portion causing self-intersections.

New SES arcs will be added to eliminate the self-intersections. The re-entrance sur-

faces created before and after singularity processing will be illustrated below.

Suppose [P, α] is a station with radius α, same radius size with the probe. [P, α]

is created from a triangle ∆P1P2P3. The distance from P to ∆P1P2P3 is λ (Fig-

ure 2.7(b)). If the station [P, α] is tangent to two atoms [Ps, rs] and [Pe, re], we

denote the distance between P and PsPe as β (Figure 2.13(a)), then

Case 1: Station-edge singularities (β < α). A probe-arc (the blue arc in Fig-

ure 2.13(b)) intersects with the edge. A saddle patch will be created by ro-

tating the probe-arc. There will be singularities (Figure 2.14(c), Figure 2.15(b),

and Figure 2.16(b)). Two concave patches sharing this probe-arc will intersect

(Figure 2.16(c) and Figure 2.17(e,g)). The intersection is an arc.

Case 2: Station-triangle singularities (β ≥ α, λ < α). No self-intersection for the

saddle patch. However, two concave patches may intersect with each other

(Figure 2.17).
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(a) (b) (c)

Figure 2.13: A station intersects with an edge.

(a) the intersection exists only when β < α; (b) the edge cut a probe-arc (blue) into
three arcs; and (c) each probe-arc is replaced with three new probe-arcs.

2.5.4.1 Station-edge singularities removal

A saddle patch [Ps, Pe, Q1, Q2, d1, d2] is bounded by two atom-arcs and two probe-arcs.

Suppose ζ is the probe-arc on the station [Q1, α] and δ is the probe-arc on the station

[Q2, α]. Based on the definition, ζ is the intersection between the sphere [Q1, α] and

∆Q1PsPe, while δ is the intersection between the sphere [Q2, α] and ∆Q2PsPe. If

[Q1, α] and [Q2, α] intersect with PsPe, then

(1) ζ and δ intersect with PsPe. PsPe cuts ζ into three arcs ζ1, ζ2 and ζ3 (Figure 2.13

(b)) and cuts δ into three arcs δ1, δ2 and δ3 (Figure 2.13 (c)).

(2) [Q1, α] and [Q2, α] intersect at a circle which is divided by PsPe into two arcs.

Denote the one with smaller arc angle as η (the yellow arc in Figure 2.13 (c)).

(3) ζ is replaced with ζ1, η and ζ3 while δ is replaced with δ1, η and δ3.

2.5.4.2 Station-triangle singularities removal

If ϕ is a concave patch on a negative station [P, α] satisfying λ < α (Figure 2.7(b)),

ϕ may intersect with other concave patches. For any station [Q, α], according to the

definition, the portion of ϕ that inside [Q, α] should be removed.

Suppose a concave patch T is on one station S1. Another station S2 can intersect

with S1. Suppose C is the part of S1 inside S2. Then, the new concave patch should
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be Tn = T − C. There are three possible relationships between T and C:

Case 1: T and C separate. No singularity is to be processed.

Case 2: C is inside T (Figure 2.17(a,b)). The circle will be added as a new boundary

arc (Figure 2.17(c,d)).

Case 3: T and C intersect (Figure 2.17(e, g)). Part of T will be deleted by C. Several

arcs on the circle are added as new boundary arcs. The new concave Tn can be

a single patch (Figure 2.17(f)) or more than one patch (Figure 2.17(h)).

The station-triangle singularities removal only needs to be checked between any two

negative stations, after the station-edge singularities removal.

2.5.4.3 On saddle patches

The saddle patch can contain self-intersections, for patches created from singular

edges and regular edges. A self-intersecting saddle patch is created by rotating an arc

ζ along an edge PsPe. Part of the saddle patch will be deleted, if we rotate only ζ1

and ζ3.

Along a singular edge, the arc ζ rotates for 360o (Figure 2.14(b)). If ζ intersects

with the edge, the saddle patch will self-intersect (Figure 2.14(c)). By rotating only

ζ1 and ζ3, we delete the self-intersection to form the final surface. This processing

will generate two cusped points on the surface (Figure 2.14(d)).

Along a regular edge, if ζ is not intersect with PsPe (equivalently β ≥ α), there

is no self-intersection within this patch (Figure 2.15(a)). Otherwise, the saddle patch

self-intersects (Figure 2.15(b) and Figure 2.16(a,b)). Rotating only ζ1 and ζ3 will

remove the self-intersection (Figure 2.15(c) and Figure 2.16(d,e)).

(a) (b) (c) (d)

Figure 2.14: A station-edge singularity along a singular edge.

(a) along a singular edge (red); (b) a saddle is created without self-intersection; (c)
self-intersection; and (d) the self-intersection will be deleted.

30



Chapter 2. Molecular Surfaces

(a) (b) (c)

Figure 2.15: A station-edge singularity along a regular edge.

(a) if two probe-arcs are separated, there is no self-intersection; (b) if two probe-arcs
intersect, the saddle patch is self-intersecting; and (c) the self-intersection will be

deleted.

2.5.4.4 On concave patches

Two concave patches neighboring with a same saddle patch may intersect. In Fig-

ure 2.16(a), the two probe-arcs, ζ and δ of the saddle patch, intersect with each

other. Suppose one concave patch A uses ζ as a boundary while the other concave

patch B uses δ as a boundary. Consequently, the two concave patches intersect (Fig-

ure 2.16(c)). After the station-edge singularities removal, A uses ζ1, η and ζ3 as three

boundaries, and B uses δ1, η and δ3 as three boundaries. There is no intersection

between A and B (Figure 2.16(d,f)). A and B, sharing a same boundary η, become

two neighbors.

Two concave patches from a singular triangle can also intersect with each other

(green concave patches in Figure 2.17(a-d)). The molecular surface in Figure 2.17(d)

has genus one.

2.6 Surface modeling

The SES and the SAS will be created based on the solvent network and the vdWS

will be created based on the vdWS network. For the SES, using the SES arcs as

boundaries, convex spherical patches, saddle patches and concave spherical patches
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(a) (b) (c)

(d) (e) (f)

Figure 2.16: Singularities along a regular edge.

(a) the molecular surface before singularity processing; (b) a saddle patch with
self-intersection; (c) intersection between two concave patches; (d) the molecular
surface before singularity processing; (e) saddle patches without self-intersections;

and (f) two adjacent concave patches.

can be created according to the vertices, edges and triangles on the solvent network.

For the SAS, a convex spherical patch can be created from a solvent network vertex

using the SAS arcs as its boundaries. For the vdWS, a convex spherical patch can

be created for a vdWS network vertex using the vdWS arcs as its boundaries. In

this section, we will formulate all these patches in rational Bézier form. Generally, all

these patches are saddle patches or spherical patches.

2.6.1 Saddle patches

Only the SES contains saddle patches. For a regular solvent network edge, each saddle

patch is bounded by two atom-arcs and two probe-arcs. The patch will be created by

rotating a probe-arc along the atom-arcs to the other probe-arc with respect to the

edge. For a singular solvent network edge, the saddle patch is created by rotating an

arc for 360o.

We follow Wang [65] to construct an arc as a cubic rational Bézier curve with all
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.17: Station-triangle singularities.

(a) and (b) if two nearby concave patches intersect at a circle; (c) a new boundary
circle will be added as boundary arc; (d) a hole will be created in the concave patch;

(e) two nearby concave patches intersect at an arc; (f) the arc will be added as
boundary arcs; (g) two nearby concave patches intersect at two arcs; and (h) the arc

will be added as boundary arcs and the concave patch becomes two.

positive weights. If an arc starts from Ps and ends at Pe, spanning an angle of 2θ, it

can be modeled as a cubic rational Bézier curve c(t) =
3∑

i=0

B3
i (t)ci, where ci = (pi, wi)

are the control points with position pi and weight wi. The control points are on the

same plane satisfying

w1 = w2 = 2 cos θ+1
3

, w0 = w3 = 1,

p0 = R1, p3 = R2, |p0p1| = |p2p3| = |p0p3|
2 cos θ+1

.
(Eq.2.4)

All the weights are positive if and only if the arc angle 2θ < 4π/3. Eq.20 in [65]

provides a method to calculate the control points when rotating a cubic rational Bézier

curve on ZY -plane along the Z-axis. Owing to the characteristic of affine invariance,

we can develop a geometric algorithm to model a saddle patch [Ps, Pe, Q1, Q2, d1, d2]

using bi-cubic rational Bézier surfaces

C(u, v) =

3∑

i=0

3∑

j=0

B3
i (u)B3

j (v)Cij,

with control points Cij = (Pij, wij).

Suppose the arc angle of the probe-arc [R3, R4, D3] is 2θ1. We can formulate it as a

cubic rational Bézier curve to obtain control points (Figure 2.18(a)) C0j, j = 0, 1, 2, 3
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with

w01 = w02 = 2 cos θ1+1
3

,

w00 = w03 = 1.

Similarly, if the sphere-arc [R2, R3, D2] spans an angle of 2θ2, we can obtain four

control points (Figure 2.18(a)) Ci0, i = 0, 1, 2, 3 with

w10 = w20 = 2 cos θ2+1
3

,

w00 = w30 = 1.

Suppose the distance of the point P0j to the edge PePs is lj ; then the remaining

control points can be derived from

Pi+1,j = Pi,j +
lj
l0

(Pi+1,0 − Pi,0) ,

wij = wi0w0j.

In Eq.2.4, w1 and w2 (w1 = w2) will be positive if the arc angle is smaller than

(a) (b) (c)

Figure 2.18: A saddle patch in rational Bézier form.

(a) boundary arcs; (b) the saddle patch has one sub-patch; and (c) the saddle patch
has two sub-patches.

4π/3. For any probe-arc, 2θ1 < π, we have w01 = w02 > 0. However, for an atom-

arc, there are two possibilities: 2θ2 < 4π/3 and 2θ2 ≥ 4π/3. If 2θ2 < 4π/3, which

leads to w10 = w20 > 0, all weights wij will be positive. Figure 2.18(b) shows an

example of the saddle patch and its control points. Otherwise, If 2θ2 ≥ 4π/3, we

equally divide the atom-arc into two and use two rational Bézier surfaces to describe

the saddle patch. Figure 2.18(c) shows a saddle patch represented by two rational
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Bézier surfaces. Figure 2.19 shows an example of the saddle patches and their control

meshes.

(a) (b)

Figure 2.19: Saddle patches as rational Bézier surfaces.

(a) patches; and (b) control meshes.

2.6.2 Spherical patches

For the SAS and the vdWS, all the patches are spherical. For the SES, the concave

patches and the convex patches are spherical. In boundary modeling, boundary arcs

are created on the spheres (atoms and stations). On a sphere, the spherical patch,

which lies on the right-hand side of its boundary arcs, is the part of the sphere

contributing to the molecular surfaces. By arranging the boundary arcs end to end,

we obtain several boundary curves of piecewise arcs. There are two types of spherical

patches: single boundary patches and multi-boundary patches. A spherical patch

bounded by one closed curve is a single boundary patch. A multi-boundary spherical

patch is a spherical patch bounded by several closed curves.

2.6.2.1 Single boundary patches

Suppose Ω is a sphere. A closed curve Υ(N) on Ω is formed by N direct arcs (the red

arrow in Figure 2.20(a)). A single boundary spherical patch Ῡ(N) is a patch using

Υ(N) as its boundary. If we face each arc from outside the sphere, Ῡ(N) is the portion

of Ω that lies on the right hand side of the arcs (the blue arrow in Figure 2.20(a)).
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Ῡ(N) is an N -sided spherical patch and each side is an arc. As a special case, a

sub-patch is defined as a rectangular spherical patch, equivalently Ῡ(4).

We need to subdivide Ῡ(N) into several sub-patches before using rational Bézier

representation. If N < 4, we can treat Ῡ(N) as a degenerated sub-patch. Otherwise,

if N > 4, subdivision is needed. A trapezoidal decomposition [66, 67] has been

developed for subdivision. Unfortunately, this may result in too many small sub-

patches. In our system, we create an arc starting from a corner point of the N -sided

patch Ῡ(N). The arc should cut Ῡ(N) into two N -sided patches,Ῡ1(N1) and Ῡ2(N2).

Rotate the cutting arc until N1 < N, N2 < N (blue arcs in Figure 2.20(b). In this

way, the N -sided spherical patch is divided into sub-patches:

Ῡ(N) =
⋃

i

Ῡi(Ni), Ni ≤ 4.

Finally, we describe each rectangular sub-patch as a rational Bézier surface following

Dietz et al. [12, 13]. A rational Bézier surface of degree (2, 4) can be used to represent

a spherical sub-patch bounded by four arcs (for details see Section 2.8). However, since

a rational Bézier curve of degree 2 cannot represent an arc of angle π, a sub-patch

will be further subdivided if it has two adjacent arcs of angle π.

(a) (b) (c)

Figure 2.20: Dividing each N -sided spherical patch into sub-patches

(a) 7 arcs form a closed curve Υ(7); (b) cutting arcs (blue) cut the patch into
sub-patches; and (c) each sub-patch is modeled as 2 × 4 rational Bézier surface.

2.6.2.2 Multi-boundary patches

A multi-boundary spherical patch can be viewed as the portion of the sphere lies at

the right hand side of all its boundary curves (Figure 2.21(a)). We can convert the
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patch into single boundary patch by to connecting two boundary curves using a new

arc (Figure 2.21(b)). Then, a multi-boundary patch can be modeled as several 2 × 4

rational Bézier surfaces (Figure 2.21(c)).

Figure 2.22 is an example for molecule 1CRN [68]. Each SES convex patch is

divided into several sub-patches.

(a) (b) (c)

Figure 2.21: Dividing a multi-boundary spherical patch into sub-patches.

(a) the spherical patch is bounded by two boundary curves; (b) the patch can be
converted into single boundary patch; and (c) the patch can be represented as

several 2 × 4 rational Bézier surfaces.

(a) (b)

Figure 2.22: Subdividing the SES convex patches of the molecule 1CRN.

(a) the atom-arcs (red) and the cutting arcs (blue) are on atoms; and (b) each
rectangular spherical sub-patch can be formulated as a rational Bézier patch.

2.6.3 Concave patches

For a solvent network station, a set of SES arcs are obtained. Figure 2.23 gives the

examples for stations from singular triangles and regular triangles.
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(a) (b)

Figure 2.23: Concave patches are formulated in rational Bézier form.

(a) a concave patch is on a station; and (b) a concave patch can be created from one
regular triangle (pink) and two concave patches can be created from one singular

triangle (yellow).

2.6.4 Convex patches

For a solvent network vertex, several SES arcs and several SAS arcs can be obtained.

For a vdWS network vertex, several vdWS arcs are created. The SES arcs form the

boundaries of a SES convex patch, the SAS arcs form the boundaries of a SAS convex

patch, and the vdWS arcs form the boundaries of a vdWS convex patch.

The arcs can be connected to form several boundary curves. For the central atom

in Figure 2.24, there are three boundary curves and two spherical patches associated

with the atom, and one of the curves is a circle. One of the patches is N -sided

(Ῡ1, the one behind), and the other one contains two boundary curves (the one in

front). The latter will first be transferred into a new N -sided spherical patch (Ῡ2)

(Figure 2.24(b,d)). Each N -sided spherical patch can be further divided into sub-

patches (Figure 2.24(c,d)). All of them can finally be represented by using a rational

Bézier surfaces.

If one uses trimmed NURBS method [55, 56] to model the example in Figure 2.24,

a single trimmed NURBS is provided to describe the two patches Ῡ1 and Ῡ2. In our

method, Ῡ1 and Ῡ2 are modeled separately. It is easy to find out the neighboring

saddle patches for Ῡ1 and Ῡ2.
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(a) (b) (c) (d)

Figure 2.24: Two separate patches created on the central atom.

(a) one singular edge and several triangles connect to the atom; (b) one spherical
patch contains two boundary curves; (c) N -sided spherical patches are divided into
several rectangular sub-patches; and (d) modeling the sub-patches using rational

Bézier surfaces.

2.7 The design of a modeling kernel for molecular

surfaces

2.7.1 Kernel structure design

A rational Bézier patch is the basic element of the molecular kernel modeler. A

standard data structure can be designed for rational Bézier patches in either degree

2 × 4 or degree 3 × 3.

In contrast to triangle meshes as the basic element in a typical tessellation of

molecular surfaces, the rational Bézier patch takes advantage of accurate represen-

tation of the molecular surfaces. No approximation is involved. The basic element

design of the rational Bézier patch will use less computational memory for molecular

surfaces representation compared to NURBS-based representation.

The basic element design of the kernel modeler makes it possible to have a uniform

solution to modeling all three molecular surfaces: the vdWS, the SAS and the SES.

Each type of molecular surfaces will have a list of molecular patches that can be

represented by the basic element in the rational Bézier form.

Figure 2.25 shows the result of the uniform solution. Each molecular patch is

divided into sub-patches in rational Bézier form: degree 2 × 4 for spherical sub-

patches and degree 3 × 3 for saddle sub-patches. Figure 2.26 shows the molecular

surfaces with the rational Bézier surfaces rendered in different colors. The rational

Bézier surface is rendered using OpenGL Shading Language (GLSL) [69].
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(a) (b) (c) (d)

Figure 2.25: Molecular surfaces.

1BH0 with 242 atoms (the first row), 1CRN with 327 atoms (the second row), and
1PTQ with 402 atoms (the third row). (a) vdWS; (b) three types of patches for the

SES; (c) the SES; and (d) the SAS.

2.7.2 The vdWS

Figure 2.27 is the flowchart to model a vdWS. From the input PDB [68] file, the

vdWS network is built. The vdWS arcs are then created. The vdWS is modeled as

a set of convex spherical patches, each of which is modeled as a set of rational Bézier

surfaces. Figure 2.25(a) and Figure 2.26(b) show examples of vdWS.

2.7.3 The SAS

Figure 2.28 is the flowchart to model an SAS. The input for SAS modeling is a PDB

file and the probe radius. Typically, a probe radius of 1.50Åis used. The solvent

network is then obtained from the weighted α-shape. After that, the SAS arcs are

created. Similar to the vdWS, the SAS consists of convex spherical patches, which are

represented in rational Bézier form. Figure 2.25(d) and Figure 2.26(c) show examples

of SAS.

2.7.4 The SES

Figure 2.29 is the flowchart to model an SES. From the solvent network, the solu-

tion firstly derives the SES arcs: probe-arcs and atom-arcs. Singularities are then
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(a) (b) (c)

Figure 2.26: Molecular surfaces for protein 279D.

the first row shows the molecular surfaces and the second row shows the surfaces in
Bézier form. (a) the vdWS; (b) the SES; and (c) the SAS.

Figure 2.27: The modeling of a vdWS.

processed to eliminate the self-intersections by removing some portions of probe-arcs

and adding new probe-arcs. After that, we can derive three types of patches: convex

spherical patches, concave spherical patches and saddle patches. A concave spherical

patch is modeled from probe-arcs while a convex spherical patch is modeled from

atom-arcs. A saddle patch is obtained from two probe-arcs and two atom-arcs. Fi-

nally, each patch can be model using rational Bézier surfaces. Table 2.1 shows the

results from the rational Bézier modeling. The first column shows testing molecules

Figure 2.28: The modeling of an SAS.
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Figure 2.29: The modeling of an SES.

with PDB IDs. The second column is the number of atoms. The third column in-

dicates the type of molecular surfaces. The fourth-sixth columns show the network

information. The seventh-ninth columns show the number of different patches. The

final column shows the total number of rational Bézier surfaces.

Table 2.1: The number of the elements for selected PDB samples.
PDB Atom Surface Vertex Edge Triangle Saddle Convex Concave Bézier

Singular Regular Singular Regular

vdWS 26 1 64 19 26 0 32 0 116

2AWU 26 SES 26 0 76 2 50 81 29 54 235

SAS 26 0 76 2 50 0 29 0 80

vdWS 92 8 255 57 128 0 111 0 479

1AL1 92 SES 82 0 247 7 160 261 89 174 767

SAS 82 0 247 7 160 0 89 0 276

vdWS 127 6 367 72 204 0 159 0 707

3BKY 127 SES 109 0 330 11 212 351 119 234 1002

SAS 109 0 330 11 212 0 119 0 361

vdWS 202 23 498 155 188 0 254 0 1044

243D 202 SES 170 0 529 28 336 588 197 392 1607

SAS 170 0 529 28 336 0 197 0 609

vdWS 240 32 636 209 222 0 308 0 1354

180D 240 SES 180 2 545 10 356 572 189 378 1614

SAS 180 2 545 10 356 0 189 0 604

vdWS 1071 121 2991 656 1538 0 1330 0 5449

1PKP 1071 SES 623 1 1901 26 1254 1963 654 1306 5558

SAS 623 1 1901 26 1254 0 654 0 2028

2.8 Bézier representations for sub-patches

An arc [qs, qe, d] can be reformulated as (qs, qc, qe), where qc is the arc center. A sub-

patch is bounded by four arcs and lies at the right hand sides of the arcs if we face

the patch from outside the sphere. Denote the four arcs as (Figure 2.30)

a1 = (q1, c1, q2) , a2 = (q2, c2, q3) , a3 = (q3, c3, q4) , a4 = (q4, c4, q1) . (Eq.2.5)
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The four arcs cuts a sphere into two patches. So there are two spherical patches using

the four arcs as boundaries. In [12, 13], a circle Ci is calculated using ai as its segment.

From four circles Ci and four corner points qi, a spherical sub-patch is derived as

a rational Bézier surface of degree (2,4) using generalized stereographic projection.

The algorithm needs to calculate the other intersection points between circles except

qi, for example the two blue points in Figure 2.30. The arc ai is formulated in

Bézier form taking into account that it does not pass the intersection points. Such

conditions uniquely define a spherical patch (the shade area in Figure 2.30). However,

the algorithm in [12, 13] needs to calculate the intersection points between circles.

As stated in Section 2.3.2, during boundary modeling, we avoid the calculations for

intersection points. And even worse, if two arcs lie on a same plane, no intersection

points can be derived.

Set q5 = q1. The plane passing ai has the normal vector ni = qiqi+1 × qici.

According to the definition of the convex patches and concave patch, the point q on

the sphere is a point of the sub-patch if and only if qi · ni ≥ 0 [55, 56]. Under such

a definition, the patch using four arcs as boundaries is unique. For convenience, we

apply a rotation such that the point (0, 0, 1) is outside the patch.

We want to formulate the arc ai in Bézier form while it passes the center points

ci. Therefore, the formulae in [12, 13] can not be directly used. In this section, new

formulae to calculate the control points for each sub-patch will be provided.

Figure 2.30: A sub-patch on the unit sphere.

black dots : corners of the patch; red dots : centers of boundary arcs; blue dots :
intersect points between circles.
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2.8.1 Generalized stereographic projection

Suppose R3 is the Cartesian space. The projective space Ē3 and its subsets P and Q

are

Ē3 = {p|p = (w, x, y, z) , w, x, y, z ∈ R} ,

P =
{
p|p ∈ Ē3, z = 0

}
,

Q =
{
p|p ∈ Ē3, x2 + y2 + z2 = w2

}
.

An element in Ē3 with homogeneous coordinates p = (w, x, y, z) is corresponding

to a point in R3. The plane P corresponds to the plane in z = 0 in R3. The sphere

Q corresponds to the unit sphere in R3.

The hyperbolic projection ϑ : Ē3 → P is defined as

ϑ : (w, x, y, z) →
(
w2 + z2, wx − yz, wy + xz, 0

)
.

The stereographic projection σ : P → Q is defined as

σ : (w, x, y, 0) →
(
w2 + x2 + y2, 2wx, 2wy, x2 + y2 − w2

)
.

The generalized stereographic projection (GSP) δ : Ē3 → Q is

δ = σϑ : (w, x, y, z) →
(
w2 + x2 + y2 + z2, 2wx − 2yz, 2wy + 2xz, x2 + y2 − z2 − w2

)
.

For any point p = (w, x, y, z), we define

p̄ = (y, z,−w,−x) ,

p⊥ = (−z, y,−x, w) ,

p̄⊥ = (p̄)⊥ = (x,−w,−z, y) ,

p∗ =







(w − z, x, y, 0), p 6= (1, 0, 0, 1),

(0, 1, 0, 0), p = (1, 0, 0, 1),

p∗⊥ =







(x, z − w, 0, y), p 6= (1, 0, 0, 1),

(0, 0,−1, 0), p = (1, 0, 0, 1).
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Then

Ē3 = span{p, p̄, p⊥, p̄⊥},

δ(λp + µp⊥) = (λ2 + µ2)δ(p),

δ(p∗) =







2(w − z)p, p 6= (1, 0, 0, 1),

p, p = (1, 0, 0, 1),
p ∈ Q.

A line with the homogeneous coordinate vector p is

L(p) =
{
λp + µp⊥|λ, µ ∈ R

}
, p ∈ E.

For any point p ∈ Q, all its pre-image is δ−1(p) = L(p∗), which is named as a projecting

line.

A plane with the homogeneous vector v ∈ Ē3 is

E(v) = {p|p · v = 0} = span{v̄, v⊥, v̄⊥}.

Notice that (p̄) = −p , we have p∗ = −
(

(p∗)
)

. Given a point p ∈ Q, E((p∗)) =

span{−p∗, (p∗)
⊥
,−p∗⊥}. Hence, the plane E((p∗)) contains the projecting line L(p∗).

From [12, 13], we have:

Lemma 2.1 For any point p = (w, x, y, 0) ∈ P , ϑ−1(p) forms a projecting line: λp +

µp⊥.

Lemma 2.2 The image of given non-projecting line L1 under δ is a circle δ(L1) on

the unit sphere Q.

Lemma 2.3 The pre-image of a circle on Q not passing through (1,0,0,1) under δ is

a doubly ruled quadric surface.

Lemma 2.4 The plane E ⊂ Ē3 contains exactly one projecting line LE . Suppose L1

and L2 are two distinct non-projecting lines on E. The images δ(E) contain δ(L1∩L2)

and δ(LE). If L1 and L2 intersect on LE , the tangents of δ(L1) and δ(L2) at δ(LE)

coincide.
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Lemma 2.5 If a line L(p) is not on a plane E(v). The intersection point of L(p) and

E(v) is

s = (v · p) p⊥ −
(
v · p⊥

)
p. (Eq.2.6)

Lemma 2.6 The plane E ⊂ Ē3 contains exactly one projecting line LE and q =

δ(LE) is a point on Q. For a line L1 in E(v), the image δ (L1) is a circle passing the

fix point q.

Lemma 2.7 If a plane E(v) contains a point p and the line L(q), which does not

contain p. Then

v = (p · q̄)q̄⊥ − (p · q̄⊥)q̄.

2.8.2 An arc as a Bézier curve

An arc on Q can be formulated as a Bézier curve

q(t) = (y0(t), y1(t), y2(t), y3(t)) =
2n∑

k=0

r2n
k B2n

k (t), ri ∈ Q. (Eq.2.7)

Correspondingly, there is a Bézier curve in Ē3

p(t) = (x0(t), x1(t), x2(t), x3(t)) =
n∑

i=0

piB
n
i (t),

pi = (pi,0, pi,1, pi,2, pi,3) ∈ Ē3,

(Eq.2.8)

such that q(t) = δ (p(t)). The product of two Bézier xs(t) · xk(t) with s, k = 0, 1, 2, 3

can be formulated as

xs·xk =

(
n∑

i=0

pi,sB
n
i (t)

)(
n∑

j=0

pj,kB
n
j (t)

)

=
2n∑

k=0













∑

i+j=k

pi,spj,t






n

i











n

j











2n

k


















B2n
k (t).
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Taking

rij =












pi,0pj,0 + pi,1pj,1 + pi,2pj,2 + pi,3pj,3

2 (pi,0pj,1 − pi,2pj,3)

2 (pi,0pj,2 + pi,1pj,3)

pi,1pj,1 + pi,2pj,2 − pi,3pj,3 − pi,0pj,0












, (Eq.2.9)

we can formulate Eq.2.7 into

q(t) = δ (p(t))

= (x2
0 + x2

1 + x2
2 + x2

3, 2x0x1 − 2x2x3, 2x0x2 + 2x1x3, x
2
1 + x2

2 − x2
3 − x2

0)

=
2n∑

k=0

B2n
k (t) 1









2n

k









∑

i+j=k






n

i











n

j




 rij.

Therefore

r2n
k =

1





2n

k






∑

i+j=k






n

i











n

j




 rij . (Eq.2.10)

2.8.2.1 An arc as a quadratic Bézier curve

A circular arc (q0, q1, q2) can be formulated as a quadratic Bézier curve. Suppose

v = (q∗1), r0 ∈ L(q∗0). From Lemma 2.7, the plane E(u1) passing L(q∗1) and r0 is

u1 = (r0 · v)v⊥ − (r0 · v⊥)v. (Eq.2.11)

From Lemma 2.5, the plane E(u1) intersects L(q∗2) at

r2 = (u1 · q∗2) q∗⊥2 −
(
u1 · q∗⊥2

)
q∗2. (Eq.2.12)

Find a plane E(u2) passing L(q∗0) and r2 as

u2 = (r2 · q∗0)q∗0
⊥ − (r2 · q∗0

⊥
)q∗0.
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The plane E(u2) will intersect with L(q∗1) at

r1 = (u2 · q∗1) q∗⊥1 −
(
u2 · q∗⊥1

)
q∗1.

So both E(u1) and E(u2) contain p0, r1 and r2. Therefore, p0, r1 and r2 are collinear:

r11

r10
− r01

r00

r11

r10
− r21

r20

=
r12

r10
− r02

r00

r12

r10
− r22

r20

=
r13

r10
− r03

r00

r13

r10
− r23

r20

= λ0,

where ri = (ri0, ri1, ri2, ri3), i = 0, 1, 2. Then

(1 − λ0)
r1i

r10
=

r0i

r00
− λ0

r2i

r20
, i = 0, 1, 2, 3.

The above four equations equal to

Figure 2.31: A line passing three projecting lines.

(1 − λ0)
r00

r10
r1 = r0 −

λ0r00

r20
r2.

Select η ∈ (0, 1) and set

p0 = r0, p1 =
(1 − η)λ0p00

−ηr20

r2.

The line segment p0p1 ∈ Ē3 can be formulated as a Bézier curve

p(t) = (x0(t), x1(t), x2(t), x3(t)) = p0B
1
0(t) + p1B

1
1(t). (Eq.2.13)
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The line segment p(t) starts at p0 ∈ L(q∗0), intersects with L(q∗1), and ends at p1 =

L(q∗2) (Figure 2.31):

p(0) = p0,

p(1) = p1,

p(η) = (1 − η)r0 + η (1−η)λ0p00

−ηr20
r2

= (1 − η)
(

r0 − λ0p00

r20
r2

)

= (1 − η)(1 − λ0)
r00

r10
r1 ∈ L(q∗1).

According to Lemma 2.2, the image of the line segment Eq.2.13 under δ is a circular

arc on Q:

q(t) = δ (p(t)) = r2
0B

2
0(t) + r2

1B
2
1(t) + r2

2B
2
2(t), r

2
i ∈ Q. (Eq.2.14)

The control points can be obtained using Eq.2.9 and Eq.2.10:

r2
0 = r00,

r2
1 = 1

2
(r01 + r10),

r2
2 = r11.

(Eq.2.15)

The circular arc Eq.2.14 satisfies

q(0) = δ(p(0)) = δ(p0) = q0,

q(η) = δ(p(η)) = q1,

q(1) = δ(p(1)) = δ(p1) = q2.

Hence the circular arc Eq.2.14 is the arc (q0, q1, q2).

2.8.2.2 An arc as a quartic Bézier curve

A circular arc (q0, q1, q2) can also be formulated as a quartic Bézier curve. Select any

two points p0 ∈ L(q∗0), p2 ∈ L(q∗2) (Figure 2.32). From Lemma 2.7, the plane E(v1)
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Figure 2.32: The doubly ruled surface passing p0 and p2.

passing L(q∗1) and p2, and the plane E(v2) passing L(q∗1) and p0 are

v1 = (p2 · q∗1)q∗1
⊥ − (p2 · q∗1

⊥
)q∗1,

v2 = (p0 · q∗1)q∗1
⊥ − (p0 · q∗1

⊥
)q∗1.

From Lemma 2.5, E(v1) intersects L(q∗0) at d0 and E(v2) intersects L(q∗2) at d2 with

d0 = (v1 · q∗0) q∗⊥0 −
(
v1 · q∗⊥0

)
q∗0,

d2 = (v2 · q∗2) q∗⊥2 −
(
v2 · q∗⊥2

)
q∗2.

The line segments p0d2 and p2d0 are mapped to the arc. The plane E(v3) passing

L(q∗2) and d0, and the plane E(v4) passing L(q∗0) and d2 are

v3 = (d0 · q∗2)q∗2
⊥ − (d0 · q∗2

⊥
)q∗2 ,

v4 = (d2 · q∗0)q∗0
⊥ − (d2 · q∗0

⊥
)q∗0 .

E(v3) intersects L(q∗1) at r1 and E(v4) intersects L(q∗1) at r2 with

r1 = (v3 · q∗1) q∗⊥1 −
(
v3 · q∗⊥1

)
q∗1 ,

r2 = (v4 · q∗1) q∗⊥1 −
(
v4 · q∗⊥1

)
q∗1 .
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Obviously, each plane contains one projecting line and four points

E(v1) : L(q∗1), p2, d0, r1, r2,

E(v2) : L(q∗1), p0, d2, r1, r2,

E(v3) : L(q∗2), d0, r1, p2, d2,

E(v4) : L(q∗0), d2, r2, p0, d0.

Therefore, E(v1) and E(v3) intersect at d0r1p2 while E(v2) and E(v4) intersect at

p0r2d2. Suppose

d0 = (d00, d01, d02, d03),

d2 = (d20, d21, d22, d23),

r1 = (r10, r11, r12, r13),

r2 = (r20, r21, r22, r23),

p2 = (p20, p21, p22, p23),

p0 = (p00, p01, p02, p03).

Since d0, r1 and p2 are collinear, and p0, r2 and d2 are collinear, we have

r1i

r10
− p2i

p20

r1i

r10
− d0i

d00

= λ2,

r2i

r20
− p0i

p00

r2i

r20
− d2i

d20

= λ0, i = 1, 2, 3. (Eq.2.16)

Taking η ∈ (0, 1) and

c0 =
ηp20λ2

(η − 1)d00

d0, c2 =
(η − 1)p00λ0

ηd20

d2, (Eq.2.17)

we have a doubly ruled quadric surface as

f(u, v) = B1
0(v)B1

0(u)p0 + B1
0(v)B1

1(u)c2 + B1
1(v)B1

0(u)c0 + B1
1(v)B1

1(u)p2.

With u, v ∈ R, f(u, v) contains four lines

f(0, v) = B1
0(v)p0 + B1

1(v)c0 ∈ L(q∗0),

f(1, v) = B1
0(v)c2 + B1

1(v)p2 ∈ L(q∗2),

f(u, 0) = B1
0(u)p0 + B1

1(u)c2,

f(u, 1) = B1
0(u)c0 + B1

1(u)p2.

Suppose the arc (q0, q1, q2) is a segment of the circle ξ ∈ Q. According to Lemma 2.3,

the image, δ(f(u, v)), u, v ∈ R, equals the circle ξ. With u = t, v = t, we have a
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Bézier curve as

p(t) = f(t, t) = B2
0(t)p0 + B2

1(t)
c0 + c2

2
+ B2

2(t)p2, t ∈ R. (Eq.2.18)

Obviously, the image, δ(p(t)), t ∈ R, is also equivalent to the circle ξ, which can be

formulated as

q(t) = δ (p(t)) = r4
0B

4
0(t) + r4

1B
4
1(t) + r4

2B
4
2(t) + r4

3B
4
3(t) + r4

4B
4
4(t), t ∈ R. (Eq.2.19)

The control points can be calculated from Eq.2.9 and Eq.2.10:

r4
0 = r00,

r4
1 = 1

2
(r01 + r10),

r4
2 = 1

6
(r02 + 4r11 + r20) ,

r4
3 = 1

2
(r21 + r12),

r4
4 = r22.

(Eq.2.20)

Eq.2.16 leads to

(1 − λ2)
r1i

r10
− p2i

p20
+ λ2

d0i

d00
= 0, (1 − λ0)

r2i

r20
− p0i

p00
+ λ0

d2i

d20
= 0, i = 0, 1, 2, 3.

Equivalently,

(1 − λ2)
p20

r10
r1 = p2 −

p20λ2

d00
d0, (1 − λ0)

p00

r20
r2 = −p00λ0

d20
d2 + p0. (Eq.2.21)

Coupling with Eq.2.17, we have

η(1 − λ2)
p20

r10

r1 = ηp2 + (1 − η)c0, (1 − η)(1 − λ0)
p00

r20

r2 = ηc2 + (1 − η)p0.
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Therefore, Eq.2.18 satisfies

p(0) = p0,

p(1) = p2,

p(η) = (1 − η)2 p0 + η (1 − η) (c0 + c2) + η2p2

= (1 − η) ((1 − η) p0 + ηc2) + η ((1 − η) c0 + ηp2)

= (1 − η) (1 − η)(1 − λ0)
p00

r20
r2 + ηη(1 − λ2)

p20

r10
r1 ∈ L(q∗1).

This means that the curve p(t), t ∈ [0, 1] uses p0 ∈ L(q∗0), p1 ∈ L(q∗2) as two ends while

passing L(q∗1). Hence, q(t), t ∈ [0, 1] is the arc (q0, q1, q2).

2.8.3 A sub-patch in Bézier form

In Ē3, a Bézier surface is

p(u, v) = (x0(u, v), x1(u, v), x2(u, v), x3(u, v))

=
n∑

i=0

m∑

j=0

pijB
n
i (u)Bm

j (v),

pij = (pij,0, pij,1, pij,2, pij,3) ∈ Ē3.

(Eq.2.22)

On Q, we have the corresponding Bézier surface as

q(u, v) = δ (p(u, v)) =
2n∑

k=0

2m∑

l=0

rklB
2n
k (u)B2m

l (v), rkl ∈ Q. (Eq.2.23)

The product of two Bézier can be formulated as

xsxt =

(
n∑

a=0

m∑

b=0

pab,sB
n
a (u)Bm

b (v)

)(
n∑

c=0

m∑

d=0

pcd,tB
n
c (u)Bm

d (v)

)

,

=
2n∑

k=0

2m∑

l=0












∑

a+c=k

∑

b+d=l
pab,spcd,t









m

b

















m

d

















n

a

















n

c

















2n

k

















2m

l




















B2n
k (u)B2m

l (v).
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Setting

rab
cd =












pab,0pcd,0 + pab,1pcd,1 + pab,2pcd,2 + pab,3pcd,3

2 (pab,0pcd,1 − pab,2pcd,3)

2 (pab,0pcd,2 + pab,1pcd,3)

pab,1pcd,1 + pab,2pcd,2 + pab,3pcd,3 − pab,0pcd,0












,

we have

q(u, v) = δ (p(u, v))

= (x2
0 + x2

1 + x2
2 + x2

3, 2x0x1 − 2x2x3, 2x0x2 + 2x1x3, x
2
1 + x2

2 + x2
3 − x2

0)

=
2n∑

k=0

2m∑

l=0

B2n
k (u)B2m

l (v)












∑

a+c=k

∑

b+d=l









m

b

















m

d

















n

a

















n

c









rab
cd









2n

k

















2m

l




















.

Then

rkl =

∑

a+c=k

∑

b+d=l

rab
cd






m

b











m

d











n

a











n

c











2n

k











2m

l






. (Eq.2.24)

Four arcs are given in Eq.2.5. Following Section 2.8.2.1, we formulate a1 in Bézier

form with control points p1, p2 and formulate a3 in Bézier form with control points

p3, p4. Take

p00 = p1, p02 = p4,

p10 = p2, p12 = p3,

Following Section 2.8.2.2, we formulate a2 in Bézier form with control points p2, p5, p3

and formulate a4 in Bézier form with control points p4, p6, p1. Take

p00 = p1, p01 = p6, p02 = p4,

p10 = p2, p11 = p5, p12 = p3,
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A Bézier surface in Ē3 is

p(u, v) = (x0(u, v), x1(u, v), x2(u, v), x3(u, v))

=
1∑

i=0

2∑

j=0

pijB
1
i (u)B2

j (v), pij = (pij,0, pij,1, pij,2, pij,3) ∈ Ē3.
(Eq.2.25)

On Q, we have the corresponding Bézier surface as

q(u, v) = δ (p(u, v)) =

2∑

k=0

4∑

l=0

rklB
2n
k (u)B2m

l (v), rkl ∈ Q. (Eq.2.26)

Combining Eq.2.24 and Eq.2.26, we formulate a sub-patch, whose boundary arcs are

given in Eq.2.5, as a Bézier surface of degree (2, 4).

2.9 Discussion and applications

A SES is a rolling ball surface (RBS) of a sphere set. Sphere set is widely used in

different applications. In mathematics, a typical sphere packing problem is to fill in

the maximum proportion of a space using a sphere set. In computer graphics, the

sphere tree approximating to an object can be used for collision detections and shadow

calculations.

Our uniform solution can be easily extended to RBS modeling. There are two

choices for RBS: hollow model and non-hollow model. As shown in Figure 2.33, RBS

has two steps: network modeling and surface modeling. Hollow model will allow

hollow cavities (Figure 2.34(a)) and non-hollow model will only model outside surface

(Figure 2.34(b)). The non-hollow model is equivalent to SES model.

The trimmed NURBS method can also model the hollow RBS. We take the model

in Figure 2.34(c) as an example to illuminate how trimmed NURBS method modeled

a hollow cavity. From a vertex (a blue dot), trimmed NURBS method created a

single trimmed NURBS surface to describe the two separate spherical patches (one is

a green arc and the other is a red arc). It is difficult to check which patch is inside.

Therefore, trimmed NURBS method can not provide non-hollow model directly.

If an object is described by a sphere set, we derive the non-hollow RBS model.

Figure 2.35 shows the different results by changing the ball radius. Figure 2.35(a,b) are

55



Chapter 2. Molecular Surfaces

Figure 2.33: Flowchart for rolling ball surfaces.

(a) (b) (c)

Figure 2.34: Two types of networks for sphere set.

red disk: the rolling ball; blue dots: vertices for both hollow networks and
non-hollow networks; black square: vertices for hollow networks; red arcs and green

arcs: contact surfaces. (a) hollow networks; (b) non-hollow networks; and (c)
contact surfaces from hollow networks.

the boundary surfaces using a selected α value and Figure 2.35(c,d) are the boundary

surfaces using the value 2α. Figure 2.36 shows the hollow model and the non-hollow

model created from the same sphere set. In order to view the hollow inside the solid,

we cut out part of the boundary. As we can see, the non-hollow model (Figure 2.36(d))

is a sub-set of the hollow model (Figure 2.36(b)). Table 2.2 lists the element numbers

for these examples.

2.10 Summary

We have proposed a uniform solution to modeling three types of molecular surfaces.

Each molecular surface (vdWS, SES and SAS) can be created through topology mod-
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(a) (b) (c) (d)

Figure 2.35: Beethoven model.

(a) and (b) rolling ball surface with ball radius α; and (c) and (d) rolling ball
surface with ball radius 2α.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.36: The hollow model and the non-hollow model.

(a) and (e) three types of patches for the hollow model; (b) and (f) the hollow RBS;
(c) and (g) three types of patches for the non-hollow model; (d) and (h) the

non-hollow RBS.

eling, boundary modeling and surface modeling. In the first step, topology modeling

creates two topological networks using a weighted α-shape. The networks are used to

maintain the neighboring relationship of the atoms. The vdWS network is used for

the vdWS. The solvent network is used for the SES and the SAS. For each network,

there are boundary vertices, edges and triangles. In the second step, three types of

Table 2.2: The number of the elements for the examples.

Sphere Saddle Convex Concave Bézier
All Boundary Patch Bézier Patch Bézier Patch Bézier

Figure 2.35(a,b) 1393 1005 3459 3490 1155 3553 2307 2397 9440
Figure 2.35(c,d) 1393 668 2193 2229 733 2248 1463 1570 6047
Figure 2.36(a,b) 800 780 3780 3780 1235 3946 2520 2520 10246
Figure 2.36(c,d) 800 780 2340 2340 780 2380 1560 1560 6280
Figure 2.36(e,f) 1002 811 3612 3612 1206 3615 2408 2408 9635
Figure 2.36(g,h) 1002 723 2169 2169 723 2184 1446 1446 5799
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boundary arcs are created: SES arcs, SAS arcs and vdWS arcs. SES arcs and SAS

arcs are created from the solvent network. From the vdWS network, vdWS arcs are

created. Singularity processing is used to further modify the SES arcs by removing

the self-intersections. In the third step, all the arc-bounded patches are modeled in

rational Bézier form. Each molecular surface is modeled as a collection of rational

Bézier surfaces.

There are several applications that can be developed using the proposed method.

We can calculate the area of a single rational Bézier patch. By summing up the area

of all the rational Bézier patches, we can obtain the molecular surfaces area. Though

the area so calculated is an estimation here, the uniform solution is able to achieve

high accuracy as the rational Bézier surface can be tessellated at any desired approx-

imation. A dynamic molecular modeling technique can also be studied. Based on the

topological networks, we can construct a dynamic molecular surfaces from the motion

of atoms with the same molecule. The chemical properties (hydrophobic/hydrophilic,

electrostatic, etc.) can be studied based on the atom property and patch geometry.

For a rectangular sub-patch, we have modeled it in rational Bézier form using a gen-

eralized stereographic projection. Currently the weights of the control point may be

negative and we are keen to model them with positive weights.
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Minimal Surfaces2

This chapter is concerned with the problem of constructing an aesthetically pleasing

triangular mesh with a given closed polygonal contour in three dimensional space as

boundary. Triangular meshes of minimal area from all triangular meshes with the

prescribed boundary are suggested as the candidates for this problem. An iterative

algorithm of constructing such a triangular mesh from a given polygonal boundary is

presented. Experimental examples show that the proposed algorithm is reliable and

effective. Some related theoretical issues, possible extensions and applications are also

discussed.

3.1 Background

One of the main tasks in geometric modeling is the generation of aesthetically pleasing

surfaces [70]. The surfaces are usually created from some inputs such as a set of 3D

points or curves that serve as constraints or guidance for the surfaces. However, the

selection of the most appealing surface or the most reasonable surface from the given

constraints is subjective. There is no best answer for all situations. In practice, many

energy functionals have been used, which are defined in terms of elastic membranes

or thin plates or geometric invariants like curvatures. The surface with the minimal

energy is selected.

2The following publication is based on the results of this chapter:
Chen,W.Y., Cai,Y.Y., and Zheng,J.M. (2008). Constructing Triangular Meshes of Minimal

Area, Computer-Aided Design and Applications, 5(1-4), 508-518.
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Figure 3.1: The Helicoid and Catenoid surfaces.

This chapter studies the problem of how to construct the visually pleasing shapes

from prescribed boundary and the minimal surfaces are considered to be the natural

solutions. Figure 3.1 shows two famous minimal surfaces: the Helicoid and Catenoid

surfaces. Minimal surfaces refer to the surfaces that minimize surface area. The

physical models of minimal area surfaces can be made by dipping a closed, curved wire

frame into a solution of soap and water and withdrawing it. A soap film is formed,

which is a minimal surface whose boundary is the wire frame. The naturalness of

minimal surfaces may be partially explained by this fact from physics: the surface

tension that governs the film’s shape is proportional to the area, the film tries to

minimize the tension everywhere subject to the fixed boundary constraint, and thus

the shape tends to form the surface of minimal area among nearby surfaces with the

same boundary. Due to their special properties, minimal surfaces often become the

candidates of ideal models in many applications. For example, minimal surfaces were

used in architecture for light roof constructions, form-finding models for tents, nets

and air halls. In computer graphics, polyhedra of minimal surface area were suggested

as natural candidates for object models [71] and the triangular tiles of minimal surface

area were used to interpolate parallel slices [72].

Mathematically, minimal surfaces are characterized as surfaces whose mean cur-

vature vanishes everywhere, reflecting the fact that there is no pressure differential

across the surface. Finding a surface that minimizes the area is actually a problem of

calculus of variations [73]. In particular, the problem of finding the minimal surface for

a given boundary curve is known as the Plateau problem after the Belgian Physicist
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Plateau who carried out extensive experiments with soap films in the mid-nineteenth

century. Out of his investigations there developed a conjecture that every closed,

non-self-intersecting curve can be spanned by a minimal surface. The conjecture was

mathematically proved in 1930 by Rado [74] and in 1931 by Douglas [75] indepen-

dently. In general, exact solutions are usually complicated and difficult to find. Many

numerical methods have been developed to approximate the exact minimal surfaces.

For example, Douglas used the finite element method to find a numerical solution of

the Plateau problem [76] and Wilson used the boundary element method to produce

an approximate minimal surface [77]. Wang et al. [78] combined the Trefftz finite el-

ement formulation with the radial basis functions and the analogue equation method

to analyze minimal surface problems. Different functional energies have been used in

developing numerical methods. Area functional, mean curvature flow and the Dirich-

let energy are the typical energies. Tsuchiya [79–81] proposed two numerical methods:

one minimizes the surface area and the other minimizes the Dirichlet energy. Both

solutions converge to the minimal surface in a suitable function space. Dziuk [82]

used the mean curvature flow to compute stable minimal surfaces by a semi implicit

finite element scheme. The minimal surfaces spanned by a polygon were studied by

Hinze and a numerical method was proposed based on a theoretical result that the

minimal surfaces spanning the polygon correspond in a one to one manner to the

critical points of Shiffman’s function [83].

Polynomial approximation to minimal surfaces is also of interest. Monterde et

al. studied the Plateau-Bézier problem that finds the surface of minimal surface

area among all the Bézier surfaces with prescribed border [84–86]. Given three or

four Bézier curves, the triangular Bézier patch or tensor-product Bézier patch which

minimizes the Dirichlet energy can be found. It is shown that the resulting Bézier

surface patch does not minimize the area in general but has the area close to the

minimum.

We present a new method for constructing a triangular mesh of minimal area

from a given polygonal boundary. Unlike previous numerical approaches that are

based on the sophisticated mathematics, the new approach is in the fashion of digital
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geometry processing [87–89], which is conceptually simple and easy to implement.

The work by Pinkall and Polthier presents a numerical minimization procedure to

find discrete minimal surfaces bounded by a number of boundary curves [90]. The

method begins with an initial mesh and iteratively updates the mesh by minimizing

the Dirichlet integral. Beginning with only the boundary polygon, our method has

three basic processes: area minimizing, Laplacian fairing and edge swapping. The

first two processes are used to optimize the geometry of the mesh and the third one

is used to adjust the connectivity of the triangular mesh. We also gives a simple

initialization step which can control the level of detail of the resulting mesh. The

experimental results have demonstrated that the new approach performs very stably

and effectively. Since nowadays triangular meshes are widely used in computer aided

design and computer graphics because of their simplicity and powerful capability

to model complicated shapes, the new method can find applications where smooth,

visual appealing shapes are required. In addition, the method can also be used as a

visualization tool in minimal surface study [91].

3.2 Preliminaries and notations

Let Ω, a closed subset of R2, be the parameter domain of the surfaces, with boundary

∂Ω. Let Γ be the given 3D curve defined over ∂Ω. The Plateau problem is to find

a parametric surface r(u, v), (u, v) ∈ Ω, which is the solution of the minimization

problem:

min
r

∫∫

Ω

‖ru(u, v) × rv(u, v)‖dudv = min
r

∫∫

Ω

√
EG − F 2dudv (Eq.3.1)

with r(u, v)|∂Ω = Γ, where E, F and G are the coefficients of the first fundamental

form of r(u, v).

As can been seen, the area expression in (Eq.3.1) is in general complicated. A good

number of numerical approximation approaches of minimal surfaces do not minimize

the area functional directly. Instead, they try to minimize the following functional

called the Dirichlet functional (or thin-plate energy of surface r(u, v) in geometric
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modeling):
∫∫

Ω

(E + G)dudv =

∫∫

Ω

(r2
u(u, v) + r2

v(u, v))dudv. (Eq.3.2)

The area functional and the Dirichlet functional have the following relation:

∫∫

Ω

√
EG − F 2dudv ≤

∫∫

Ω

√
EGdudv ≤ 1

2

∫∫

Ω

(E + G)dudv.

Obviously, both functionals are the same if and only if E = G and F = 0, which

implies that the surface r(u, v) is a conformal mapping. In addition, while the area

functional is independent of the parameterization of the surface, the Dirichlet one

depends on the parameterization. However, the Dirichlet functional is easier to man-

age and there holds an important result: both the area and Dirichlet functional have

the same extremals in the unrestricted case [92]. In the Bézier case (i.e., the min-

imal surfaces are restricted to polynomial surfaces), the Dirichlet extremals are an

approximation to the extremals of the areal functional [85].

The variational derivative of the Dirichlet functional corresponds to the Laplacian

and can be expressed as

∆r(u, v) = ruu + rvv,

where ∆ is the Laplacian operator. Therefore, if a surface r(u, v) is harmonic, i.e.,

∆r(u, v) = 0, it minimizes the Dirichlet energy. Furthermore, if r(u, v) is also confor-

mal, then it is a minimal surface.

3.3 Construction of optimal triangular meshes

We now describe our approach dealing with the discrete version of the Plateau prob-

lem. Suppose that we are given a simple polygon Γ with n vertices and an integer

m(≥ n) that has the same parity as n. There are an infinite number of triangular

meshes with m triangles spanning Γ. Our task is to find one triangular mesh from the

set of such triangular meshes, which has the minimal area. Note that the requirement

of the same parity of m and n is due to the Euler-Poincaré formula. In addition,

though we can construct a triangular mesh with n − 2 triangles for the given bound-

63



Chapter 3. Minimal Surfaces

ary Γ, we should in general have sufficient number of triangles to make the mesh look

smooth. Therefore in this chapter we ignore the case of m = n−2 and always assume

that m ≥ n. When m ≥ n, the triangular mesh will contain some vertices other than

the given ones of the boundary. The coordinates of the new vertices provide degrees

of freedom for optimizing the shape of the triangular mesh. Number m can also

be viewed as a control for levels of detail in approximation of a continuous minimal

surface.

A triangular mesh contains two aspects of information: geometry and connectivity.

Geometry is defined by the coordinates of vertices of the mesh and it tells the location

of the mesh in 3D space. Connectivity defines how the vertices are joined to form

the mesh. Our aim is to create a triangular mesh which is optimal in both geometry

and connectivity. Optimizing geometry and connectivity simultaneously is a very

difficult problem. Our strategy is to separate geometry and connectivity. For the

given connectivity of vertices of the mesh, we optimize geometry (i.e., the coordinates

of vertices) and for fixed vertices of the mesh, we find an optimal triangulation. In

this chapter the former will be implemented by the processes of area minimizing

and Laplacian fairing and the latter by the process of edge swapping. These three

processes are the main ingredients of our proposed algorithm. Below they will be

explained first and then the algorithm is presented.

3.3.1 Area minimizing

Let a triangular mesh M be represented as a triple < I, P, T >, where I = {1, 2, ..., N}

is its vertex index set, P : I → R3 is a mapping from the vertex indices to their

locations in 3D space, T is its triangle set, and each triangle t ∈ T is represented as

an ordered vertex index triple t =< i, j, k > meaning that the triangle is defined by

vertices P (i), P (j) and P (k). Without causing ambiguity, we use Pi to replace P (i)

for simplicity. In triple < I, P, T >, we assume that the first n vertices Pi, i = 1, · · · , n

are the given vertices on the boundary Γ.
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The area A of mesh M is just the sum of all triangles’ areas:

A =
∑

t=<i,j,k>∈T

1

2
|PjPk × PjPi| =

∑

t=<i,j,k>∈T

1

2

√

(PjPk × PjPi)2. (Eq.3.3)

With the boundary vertices fixed, area A is a function of vertices Pn+1, · · · , PN . The

process of area minimizing is to find appropriate positions for Pn+1, · · · , PN such that

the area functional A will be minimized.

Let NT (i) ⊆ T be the set of all the triangles that contain vertex Pi and
∂A

∂Ph

=
(

∂A

∂(Ph)x

,
∂A

∂(Ph)y

,
∂A

∂(Ph)z

)T

. By some simplification, we have for h = n + 1, · · · , N

∂A

∂Ph

=
1

2

∑

t=<i,j,k>∈T

∂

∂Ph

√

(PjPk × PjPi)2

=
1

2

∑

t=<h,j,k>∈NT (h)

1

2

∂
∂Ph

(PjPk × PjPh)
2

√

(PjPk × PjPh)2

=
1

2

∑

t=<h,j,k>∈NT (h)

(PjPk)
2PjPh − (PjPk · PjPh)PjPk
√

(PjPk × PjPh)2
.

(Eq.3.4)

Setting all these derivatives to zero leads to (N −n) equations with (N −n) variables.

The solution renders us an optimal mesh. However, the equations are non-linear. It

is difficult to solve such a non-linear system. For a mesh with a large data set, the

situation even becomes worse.

Here we propose a local mechanism and iteratively approximate the solution.

Rewrite (Eq.3.4) as

∂A

∂Ph

=
1

2
CPh +

1

2

∑

t=<h,j,k>∈NT (h)

(PjPk · Pj)PjPk − (PjPk)
2Pj

√

(PjPk × PjPh)2
,

where

C =
∑

t=<h,j,k>∈NT (h)

(PjPk)
2









1 0 0

0 1 0

0 0 1









− (PjPk)(PjPk)
T

√

(PjPk × PjPh)2
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is a 3 × 3 matrix. Letting
∂A

∂Ph

= 0, we have

Ph = −C−1
∑

t=<h,j,k>∈NT (h)

(PjPk · Pj)PjPk − (PjPk)
2Pj

√
(PjPk × PjPh)2

.

The above equation cannot be considered to be an explicit solution for Ph because

the right-hand side of the equation also contains Ph. However, it gives us a way to

update vertex Ph in the fashion of signal processing [87]. That is, we compute the

new vertex P̄h from the old Ph and its 1-ring neighboring vertices by

P̄h = −C−1
∑

t=<h,j,k>∈NT (h)

(PjPk · Pj)PjPk − (PjPk)
2Pj

√
(PjPk × PjPh)2

. (Eq.3.5)

When formula (Eq.3.5) applies to all the interior vertices Pn+1, · · · , PN once, this

completes one iteration. The process continues until the area change by one iteration

is smaller than a prescribed tolerance.

3.3.2 Laplacian fairing

We also examine the Dirichlet approach. Since the Dirichlet functional (Eq.3.2) de-

pends on the parameterization of the surface, it cannot be used directly for a mesh

model. However, we consider its variational derivative—the Laplacian. For a tri-

angular mesh, a discrete Laplacian should be used. Let N(i) ⊆ I be the index set

of the 1-ring neighboring vertices of vertex i. The Laplacian operator ∆() can be

approximated at each vertex by the umbrella operator:

∆(Pi) =
∑

j∈N(i)

wij(Pj − Pi)

where the weights wij are positive numbers that sum to one for each i. There are many

ways to choose the weights based on the neighborhood structures. In this chapter, we

choose

wij =
Sij
∑

k∈N(i)

Sik

where Sij is the area of the two triangles that share the edge connecting Pi and Pj.
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Now for all interior vertices Pi, i = n + 1, · · · , N of mesh M , let their Laplacian

∆(Pi) equal zero. This results in N−n equations with N−n unknowns. Unfortunately,

the equations are non-linear due to the fact that our chosen Laplacian operator is non-

linear. Then we take a similar approach that we used in Section 3.3.1. We update Pi

to P̄i by averaging its old neighboring vertices:

P̄i =
∑

j∈N(i)

wijPj,

where wij are computed from old Pi and Pj. When all the interior vertices are updated,

this completes one iteration. Similarly, the iteration continues until the area change is

smaller than the prescribed tolerance. Since the above updating is similar to Laplacian

filtering, the process is called Laplacian fairing.

3.3.3 Edge swapping

Given a set of points in 3D space, there are many ways to connect them to form a

triangular mesh. Obviously, the number of possible triangulations is huge. Not all

of them possess equally pleasing shapes and for a particular application some will be

much more acceptable than others. This suggests that we need to find an optimal

triangulation in some sense.

Here we intend to improve a given mesh by changing its connectivity via a simple

local transformation, called the edge swapping. Refer to Figure 3.2. The edge swap-

ping transforms two triangles sharing one edge shown on the left into another two

triangles shown on the right. Note that during this transformation, the four vertices

remain unchanged. What has changed is the connectivity among the vertices. The

edge swapping should only be performed if it improves the mesh. For our application,

the improvement is measured by the area reduction.

For the given mesh M , our edge swapping algorithm is performed using Lawson’s

local optimization approach [93]. It visits each interior edge of M and checks whether

the edge swapping reduces the area of the mesh. If the area can be reduced, the

algorithm swaps the edge. After the algorithm visits all the edges in this way, it
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Figure 3.2: Edge swapping.

completes one iteration. If the algorithm makes any swaps during the first iteration,

it conducts a second iteration of edge visits. This process continues until no swap is

made in one iteration.

This process is simple and fast. It always terminates in a finite number of it-

erations. However, it is essentially a “best-first” algorithm, which usually has the

drawback that it may return a local optimum. To get globally optimal solutions,

simulated annealing technique may be considered [94], but the computational cost is

much higher.

3.3.4 Algorithm

Note that area minimizing, Laplacian fairing and edge swapping cannot be applied

to boundary condition directly because the three processes all assume that there has

already existed a triangular mesh. Therefore we need an initialization step to create

an initial triangular mesh from input.

Here we give a simple way to create our initial triangular mesh. Given the bound-

ary P1 · · ·Pn and m as the number of triangles, we first compute the central point of

the polygon by averaging the vertices: Pc =
n∑

i=1

Pi/n. Then for each vertex Pi, we

connect it to Pc and also add s interior vertices P j
i along line segment PiPc:

P j
i = Pi +

j

s + 1
(Pc − Pi), j = 1, 2, · · · , s,

where s = ⌊m−n
2n

⌋ stands for how many rings will be added. Next, for each j, we

join P j
1 , P j

2 , · · · , P j
n by the order to form a polygon. This results in a mesh which

contains triangles and possibly quadrilaterals. For the quadrilateral facets such as

P j
i P j

i+1P
j+1
i+1 P j+1

i , we split them into two triangles by inserting a diagonal edge such

as P j
i P j+1

i+1 . So far we have created a triangular mesh which consists of (2s + 1)n
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Pi

Pi+1

Pc

Pi-1

Pi
1

Pi+1
1

Pi
2

Pi+1
2

(a) (b)

Figure 3.3: Initial mesh.

(a) creating an initial mesh with s = 2; and (b) refining an individual triangle.

triangles (refer to Figure 3.3(a)). If (2s+1)n does not equal to m, we need to further

insert m − (2s + 1)n triangles to match m. This can be done by arbitrarily choosing

(m−(2s+1)n)/2 triangles (for example, those on the outer ring) and split each of them

into 3 sub-triangles with a new vertex at the center of the triangle (see Figure 3.3(b)).

It should be pointed out that this initialization method is simple and easy to

create a mesh with required number of triangles, but it is not optimized and can be

improved by taking the shape of the boundary into consideration and/or employing

some optimization criteria such as those used in Delaunay triangulation. The current

initialization method may generate an initial mesh which is far from satisfactory, but

our subsequent techniques are able to correct it. The experimental examples have

demonstrated that our proposed algorithm can always return the triangular meshes

of minimal area. Figure 3.4 shows one of such examples, in which the initial mesh

contains self-intersection. In addition, the initialization step also sets the topology

of the final minimal surface besides providing an initial mesh. This is because the

subsequent processes do not change the topology of the mesh as a surface. Therefore

if a special topology is expected, a different initialization is needed.

Once an initial triangular mesh is created, the edge swapping, Laplacian fairing

and area minimizing are used to improve the connectivity and positions of vertices. It

can be observed that Laplacian fairing works as a filtering and its numerical perfor-

mance is much more stable than that of area minimizing. This suggests that we should

apply Laplacian fairing first and then use area minimizing. Therefore we propose our
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(a) (b) (c)

Figure 3.4: Removal of self-intersections.

(a) the input boundary; (b) the generated initial mesh; and (c) the final minimal
area surface.

algorithm as follows:

Step 1: Initialization
Edge swapping

Step 2: DO{
Laplacian fairing
Edge swapping
}WHILE (area change > ǫ1)

Step 3: DO{
Laplacian fairing
Area minimizing
Edge swapping
}WHILE (area change > ǫ2)

Step 4: DO{
Area minimizing
Edge swapping
}WHILE (area change > ǫ3)

Step 5: Output

Algorithm 3.1: Minimal area mesh

In the above algorithm, ǫ1, ǫ2 and ǫ3 are three prescribed tolerances to control when

the iterations should stop. Step 1 creates an initial mesh with the given boundary

polygon. Step 2 is kind of discrete Dirichlet approach which gives a good approxima-

tion to the solution. Step 3 combines Laplacian fairing and area minimizing together

as an intermedius step. Step 4 further refines the approximation by minimizing the

area functional. In all these steps, the edge swapping is added to improve the con-

nectivity of the mesh.
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3.4 Experimental examples

This section provides some examples to demonstrate the algorithm. In particular, the

first two examples are designed to check the validity of the algorithm. Their input

boundary polygons were generated from the classic Helicoid and Catenoid minimal

surfaces. In addition, we also examine the mean curvature of the resulting triangular

meshes. The concept of mean curvature for a mesh surface and its computational

formula are from discrete differential geometry [95]. The absolute value of mean

curvature ki at vertex Pi on a mesh is computed by

|ki| =
1

4Ai

∣
∣
∣
∣
∣
∣

∑

j∈N(i)

(cotαij + cotβij)(Pj − Pi)

∣
∣
∣
∣
∣
∣

,

where Ai is the sum of areas of triangles that contain vertex Pi, and αij, βij are two

angles corresponding to edge PiPj (refer to Figure 3.5 for illustration).

Pj

Pj-1

Pj+1

Pi

βij

αij

Figure 3.5: Illustration of symbols in the mean curvature formula.

The input polygon in the first example is shown in Figure 3.6(a), which consists

of 186 points. There points were obtained by sampling the boundary of a patch of

the Helicoid surface. The patch is defined by parametric equations

x = u cos v, y = u sin v, z = v, (u, v) ∈ [2, 10] × [−1, 10]

and has an area of 536.7. Now we use our algorithm to find an open triangular mesh

with the input polygon as boundary. The triangular mesh should contain a required

number of triangles and have the minimal area. In this example, we let the number
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Reconstructing the Helicoid surface from a polygon.

(a) the input boundary; (b) the output of initialization; (c) the output of Laplacian
fairing; (d) the mean curvature of the mesh in (c); (e) the output of area

minimizing; and (f) the mean curvature of the mesh in (e).

of triangles be 2050 and three tolerance ǫ1, ǫ2, ǫ3 be 0.01. The results are shown in

Figure 3.6, where (b), (c) and (e) are the outputs of Step 1 (initialization), Step

2 (Laplacian fairing) and Step 3 (area minimizing), respectively. The areas of the

triangular meshes in Figure 3.6(c) and (e) are 536.17 and 536.07, which are even

smaller than the actual area of the Helicoid patch. This can be explained by the fact

that our input polygon is only an approximation to the exact patch boundary. The

maximum absolute values of mean curvature of the meshes in Figure 3.6(c) and (e) are

0.1 and 0.0007. Figure 3.6(d) and (f) are the mean curvature images of (c) and (e), in

which color blue stands for low mean curvature and color red for high mean curvature.

It is clearly seen from the curvature images that the mesh shown in Figure 3.6(c) is

further improved by area minimizing which outputs Figure 3.6(e). Both the area

and the mean curvature indicate that the triangular mesh in Figure 3.6(e) is a good

solution.

The second example is to reconstruct the Catenoid surface from a given polygon

as boundary. The polygon contains 156 points that were originally sampled from the
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: Reconstructing the Catenoid surface from a polygon.

(a) the input boundary; (b) the output of initialization; (c) the output of Laplacian
fairing; (d) the mean curvature of the mesh in (c); (e) the output of area

minimizing; and (f) the mean curvature of the mesh in (e).

boundary of a Catenoid patch defined by

x = cosh v cos u, y = cosh v sin u, z = v, (u, v) ∈
[

−3π

5
,
3π

5

]

× [−2, 2].

The area of the patch is 58.98. We apply our algorithm to the polygon with 2040

triangles and ǫ1 = ǫ2 = ǫ3 = 0.01. The results are shown in Figure 3.7, where (a)

is the input polygon, (b) is the mesh outputted from Step 1, (c) is the result from

Step 2, which has an area of 58.95 and the maximal mean curvature of 0.23, (e) is

the final mesh outputted from Step 3, which has an area of 58.2 and the maximal

mean curvature of 0.004, (d) and (f) are the mean curvature images of (c) and (e),

respectively. These statistics demonstrate the effectiveness of the algorithm.

Two more examples are shown in Figure 3.8, where the left column shows two

input polygons consisting of 160 and 97 vertices, respectively, the middle and right

columns show the final minimal area meshes of different numbers of triangles. The

statistics are shown in Table 3.1 and Table 3.2. It can been seen that the area of

output triangular meshes decreases when the level of detail increases.
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(a) (b) (c)

Figure 3.8: Construction with different levels of detail.

(a) the input polygons; (b) a minimal area mesh; and (c) another minimal area
mesh.

Table 3.1: Statistics for the example shown in the top row of Figure 3.8.

resulting mesh on the middle resulting mesh on the right
number of triangles 800 2400

area 9.9 9.87
maximal mean curvature 0.004 0.001

3.5 Extensions and applications

Although the chapter focuses on the construction of triangular meshes from a single

contour, it is possible to extend the idea and the three processes to finding the minimal

surfaces from multi-contours or with other constraints.

Figure 3.9 shows one example, where the input consists of two contours and the

minimal surface interpolating the contours is constructed using our algorithm. Here

we only need one extra process. That is to generate an initial triangular mesh from

the given contours. Figure 3.10 gives another example with two contours. Different

output surfaces after each step are viewed at different angle to check the differences.

Figure 3.11 gives an example with three contours. Table 3.3 lists the statistics for

Table 3.2: Statistics for the example shown in the bottom row of Figure 3.8.

resulting mesh on the middle resulting mesh on the right

number of triangles 485 1455
area 1191.3 1187.8

maximal mean curvature 4.8 × 10−5 1.1 × 10−5
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(a) (b) (c)

Figure 3.9: Minimal area mesh with two contours.

(a) two input contours; (b) the resulting mesh; (c) the shading image.

(a) (b) (c) (d)

Figure 3.10: Different views of the algorithm results with two contours.

the first row lists the results after Step 2; the second row provides the results after
Step 3; results after Step 4 are given in the third row. (a) the resulting mesh; (b)

the shading image; (c) the resulting mesh from another view; (d) the shading image
from another view.

the above two examples. In the two examples (Figure 3.10 and Figure 3.11), a curve

(piecewise line segments) is created by connecting the contours one by one to form a

single closed contour. Then a mesh is initialized after Step 1 of the Algorithm 3.1.

After Step 2 of the Algorithm 3.1, the area of the mesh is not small enough. After Step

3 of the Algorithm 3.1, the area of the mesh is smaller but the maximal mean curvature

may increase or decrease. The maximal mean curvature after Step 3 is smaller than

the maximal mean curvature after Step 2 in Figure 3.10 (1.013 vs 1.286), while the

maximal mean curvature after Step 3 is bigger than the maximal mean curvature

75



Chapter 3. Minimal Surfaces

after Step 2 in Figure 3.11 (5.012 vs 3.534). However, both the area and the maximal

mean curvature will decrease after Step 4.

If contours are far away from each other, the minimal area mesh is degenerated

to special cases, as shown in Figure 3.12.

(a) (b) (c) (d)

Figure 3.11: Different views of the algorithm results with three contours.

the first row lists the results after Step 2; the second row provides the results after
Step 3; results after Step 4 are given in the third row. (a) the resulting mesh; (b)

the shading image; (c) the resulting mesh from another view; (d) the shading image
from another view.

Figure 3.12: Results while contours are far from each other.
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Table 3.3: Statistics for the examples.

triangle after Step 2 after Step 3 after Step 4
number Area Maximal mean Area Maximal mean Area Maximal mean

curvature curvature curvature
Figure 3.10 2102 6.223 1.286 5.195 1.013 4.99 0.049
Figure 3.11 3214 9.903 3.534 6.506 5.012 6.414 0.015

3.6 Summary

In this chapter, we have proposed an algorithm to construct triangular meshes of

minimal area from all the possible triangular meshes with the prescribed boundary and

number of triangles. The core techniques of the algorithm are three processes: area

minimizing, Laplacian fairing, and edge swapping. They are combined to provide an

automatic approach. The algorithm has been shown by the examples to be reliable and

effective. On the other hand, since these three processes can be done very fast, they

can be used in interactive environments. Especially in digital geometry modeling, after

users sketch the boundary and specify the level of detail, the three processes can then

be interactively performed in various orders to achieve users’ specific requirements.
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Composite Surfaces3

An explicit formula is given to derive a triangular sub-patch S from a triangular

Bézier surface T. Based on de Casteljau recursions and shifting operators, the control

points for the triangular sub-patch S are the convex combinations of the construction

points, which are the convex combinations of control points of the triangular Bézier

surface T. Further more, the control points for S can be formulated as the linear

combinations of the power points, which can be calculated using pyramid algorithms.

Although the formulae are complex, a robust algorithm is provided to calculate the

control points of the sub-patch S.

4.1 Background

Many applications in CAD/CAM or computer graphics industry require creating ge-

ometric entities such as curves or patches on surfaces. Isoparametric curves on a

surface are easy to derive, however in many cases, the curves needs to be in a general

position such as the intersection curve of two surfaces, the boundary for surface trim-

ming. DeRose [96] examined the curves on triangular Bézier surfaces via functional

composition. Jüttler and Wang [97] analyzed the curves on a sphere. Both approaches

generate curves on surfaces by parameter space representation.

Beside curves, sub-patches on surfaces are also important. Two types of surfaces

3The following paper submitted for possible publication is based on the results of this chapter:
Chen,W.Y., Yu,R.D., Zheng,J.M., Cai,Y.Y., and Au,C. Triangular Bézier sub-surfaces on a

triangular Bézier surface, Journal of Computational and Applied Mathematics.
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are wildly used: triangular Bernstein-Bézier surface (TB or TBB surface) and tensor

product Bézier surface (PB or TPB surface). For instance, the subdivision of a Bézier

surface [98] falls into this category and so are the conversions between TB surfaces

and PB surface. Brueckner [99] represented a TB surface as a trimmed PB surface.

Waggenspack and Anderson [100] transformed a PB surface to a TB representation.

Jie [101] extended the equations to rational cases. However, in most cases, the sub-

patches do not have isoparametric boundary curves. For example, the explicit formula

of Goldman and Filip [102] converted a PB surface of degree (m, n) into two TB

surfaces of degree m + n. Hu [103] developed a method to divide a TB surface into

three PB surfaces. In another way, Sheng and Hirsch [104] divided a trimmed surface

into many TB surfaces.

As pointed out by DeRose [96], subdivision, reparametrization and continuity

constructions are possible applications of composition. Lasser [105] extracted a PB

surface from a TB surface using de Casteljau algorithm. Feng and Peng [106] con-

sidered a simpler case using shifting operator to derive the composition of a linear

triangle with a TB surface.

An explicit formula and an algorithm for deriving a TB patch from a TB sur-

face using the shifting operators and the de Casteljau algorithm are presented. The

geometric algorithm is analyzed and some examples are provided.

4.2 Preliminaries and notations

A triangular Bernstein-Bézier surface [107] T(u, v, w) denoted as TB surface, of degree

n can be defined by

T(u, v, w) =
∑

i+j+k=n

Bn
ijk(u, v, w)Tijk, u, v, w ∈ DT . (Eq.4.1)

where Tijk ∈ R3 are control points and Bn
ijk(u, v, w) are Bernstein polynomial basis

defined as

Bn
ijk(u, v, w) =

n!

i!j!k!
uivjwk, i + j + k = n, u, v, w ≥ 0, u + v + w = 1.
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and

DT = {(u, v, w)| u + v + w = 1, u, v, w ∈ [0, 1]}

is a triangle domain. A point in the domain is called a parameter point. A domain

surface P(u, v, w) is a sub-surface of DT .

P(u, v, w) =
∑

i+j+k=n

Bn
ijk(u, v, w)Pijk, u, v, w ≥ 0 u + v + w = 1. (Eq.4.2)

where Pijk are parameter points, and the index (i, j, k) is called a parameter index.

Several parameter indices are grouped together to form a parameter index vector Γm
n

of degree m and size n:

Γm
n = (Im

n ,Jm
n ,Km

n ) ,

Im
n = (I1, · · · , In),Jm

n = (J1, · · · , Jn),K
m
n = (K1, · · · , Kn),

Il + Jl + Kl = m, Il, Jl, Kl ∈ {0, · · · , m}.

(Eq.4.3)

Γm
n contains n parameter indices. The norms for parameter index vector are

|Im
n | =

n∑

l=1

Il, |Jm
n | =

n∑

l=1

Jl, |Km
n | =

n∑

l=1

Kl, |Γm
n | = |Im

n | + |Jm
n | + |Km

n | = mn.

Based on Eq.4.3, a parameter point vector Pn
Γm

n
= Pn

Im
n Jm

n Km
n

and its sub-vector Ps
Γm

n
=

Ps
Im
n Jm

n Km
n

can be obtained satisfying

Pn
Γm

n
= Pn

Im
n Jm

n Km
n

= [(uI1J1K1
, vI1J1K1

, wI1J1K1
), · · · , (uInJnKn, vInJnKn, wInJnKn)]

Ps
Γm

n
= Ps

Im
n Jm

n Km
n

= [(uI1J1K1
, vI1J1K1

, wI1J1K1
), · · · , (uIsJsKs, vIsJsKs, wIsJsKs)] ,

s = 0, 1, · · · , n,

(uIiJiKi
, vIiJiKi

, wIiJiKi
) ∈ DT , i = 0, 1, · · · , n.

Hence, Ps
Γm

n
contains s parameter points. The parameter index vector can be used for

the production of n Bernstein polynomials of degree m:

n∏

l=1

Bm
IlJlKl

(u, v, w) = Cmn
Im
n Jm

n Km
n
Bmn

|Im
n |,|Jm

n |,|Km
n |(u, v, w). (Eq.4.4)
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where

Cmn
Γm

n
= Cmn

Im
n Jm

n Km
n

=

(
n∏

l=1

m!

Il!Jl!Kl!

)/(
(mn)!

|Im
n |! |Jm

n |! |Km
n |!

)

.

Lemma 4.8 Suppose R + S + T = mn , then

∑

|Im
n |=R,|Jm

n |=S,|Km
n |=T

Cmn
Im
n Jm

n Km
n

= 1. (Eq.4.5)

Proof: Suppose we have mn different balls and put them into 3 different boxes

B1, B2, B3. There are (mn)!
R!S!T !

different cases for B1 containing R balls, B2 containing

S balls, B3 containing T balls with R + S + T = mn.

In another way, we can divide the mn balls into n groups G1, ..., Gn while each

group Gl contains m balls. The box B1 contains Il balls from Gl, the box B2 contains

Jl balls from Gl, and the box B3 contains Kl balls from Gl. Then the numbers of

balls in B1, B2, B3 are |Im
n | = R, |Jm

n | = S, |Km
n | = T where Im

n = (I1, · · · , In),J
m
n =

(J1, · · · , Jn),Km
n = (K1, · · · , Kn), Il + Jl + Kl = m .

Distribute m balls in Gl into the three boxes, there are m!
Il!Jl!Kl!

different cases.

Therefore, for a given (Im
n ,Jm

n ,Km
n ), there are

n∏

l=1

m!
Il!Jl!Kl!

different cases to put mn

different balls into B1, B2, B3. Hence, we get

∑

|Im
n |=R,|Jm

n |=S,|Km
n |=T

(
n∏

l=1

m!

Il!Jl!Kl!

)

=
(mn)!

R!S!T !
.

This is equivalent to Eq.4.5.

Eq.4.6 is employed to product n objects

(
∑

i+j+k=m

xijk

)n

=
∑

R+S+T=mn




∑

|Im
n |=R,|Jm

n |=S,|Km
n |=T

n∏

l=1

xIlJlKl



 (Eq.4.6)

Set Tij = Ti,j,n−i−j, then, Eq.4.1 equals

T(u, v) =

n∑

i+j+k=0

T n
ijk(u, v, 1 − u − v)Tij , u, v ≥ 0, u + v ≤ 1. (Eq.4.7)
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The TB surface can be rewritten using shifting operators [108]

T(u, v, w) = (uE1 + vE2 + wE3)
nT000 (Eq.4.8)

where the shifting operators are

E1Tijk = Ti+1,j,k, E2Tijk = Ti,j+1,k, E3Tijk = Ti,j,k+1.

With T0
ijk = Tijk , given a parameter point vector Pn

Im
n Jm

n Km
n

for a TB surface, the de

Casteljau algorithm [109] yields

Tn
ijk(P

n
Im
n Jm

n Km
n
)

= uInJnKnT
n−1
i+1,j,k(P

n−1
Im
n Jm

n Km
n
) + vInJnKnT

n−1
i,j+1,k(P

n−1
Im
n Jm

n Km
n
)

+wInJnKnT
n−1
i,j,k+1(P

n−1
Im
n Jm

n Km
n
).

(Eq.4.9)

Alternatively, Eq.4.9 can be rewritten using shifting operators

Tn
ijk(P

n
Im
n Jm

n Km
n
)

= (uInJnKnE1 + vInJnKnE2 + wInJnKnE3)T
n−1
ijk (Pn−1

Im
n Jm

n Km
n
)

=
n∏

l=1

(uIlJlKl
E1 + vIlJlKl

E2 + wIlJlKl
E3)Tijk.

(Eq.4.10)

Finally, suppose Ms
d ⊂ Zd is a power index set

Ms
d =

{

M|M = (M1, M2, · · · , Md) ,
d∑

i=1

Mi = s, Mi = 0, 1, · · · , s

}

.

If M ∈ Ms
d ⊂ Zd, M is a 1 × d vector and the summation of its coordinates is s.

From Lemma 4.9, there are






d − 1 + s

s




 elements in Ms

d.

Lemma 4.9 The number of different choices of the d variables (N1, ..., Nd) satisfying
d∑

i=1

Ni = s is





s + d − 1

d − 1




 =






s + d − 1

s




 .
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Proof: This equals putting s balls into d boxes. List the s balls in a line and use

d − 1 bars to separate these balls. Firstly, there are s + d − 1 positions for balls and

bars. Select d − 1 positions for the bars. Then put all balls to the left positions.

Finally, the s balls are separated into d sets. Hence, we have






s + d − 1

d − 1




 choices.

4.3 Triangle sub-patch from a triangle surface

In this section, an approach to extracting a triangle sub-patch from a triangle surface

is presented. If a TB surface T(x, y, z) is defined over a triangular domain DT , by

assigning an area on the domain, a triangle sub-patch exists on the TB surface. The

sub-patch is trimmed from the TB surface. We would like to represent the sub-patch

as a new TB surface.

4.3.1 Domain surface

The domain surface is an area of the domain of the TB surface T(x, y, z). On the

domain DT , three boundary curves C1, C2, C3 forms a closed sub-domain DC1,C2,C3
.

The surface DC1,C2,C3
is a domain surface (Figure 4.1(a)).

Suppose the three boundary curves C1 (u) , C2 (u) , C3 (u) are of degree n1, n2, n3,

respectively. Set m = max(n1, n2, n3), we can elevate the degrees of C1 (u) , C2 (u) , C3 (u)

all to m. Suppose the control point of Ci (u) (i = 1, 2, 3) are Pi,j, j = 0, ..., m and the

corresponding influence points are

Qi,j = Ci(
j

m
), (Eq.4.11)

Arrange the control point and the influence points as (Figure 4.1(b))

Pijk,Qijk ∈ DT , min(i, j, k) = 0. (Eq.4.12)
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: Domain surface.

(a) three boundary curves form a closed sub-domain; (b) the control point (blue
dots) and the influence points (black squares); (c) the interior control point (red
dots); and (d-f) different parameter curves by different interior control point.

Select the interior control point Pijk, min(i, j, k) 6= 0 as (Figure 4.1(c))

Pijk = 1
3

(
k

m−i
Qi,0,m−i + j

m−i
Qi,m−i,0

)
+ 1

3

(
k

m−j
Q0,j,m−j + i

m−j
Qm−j,j,0

)

+1
3

(
j

m−k
Q0,m−k,k + i

m−k
Qm−k,0,k

)
,

(Eq.4.13)

Then the domain surface can be modeled as a TB surface (Figure 4.1(d))

P(u, v, w) =
∑

i+j+k=n

Bn
ijk(u, v, w)Pijk, u, v, w ≥ 0 u + v + w = 1.

The interior control point are the linear combinations of the influence points. A

combination involves the six points along the u, v, w directions (Figure 4.2). And, the

number of interior control point is (m − 1)(m − 2)/2. For example, if m = 3, the only

interior control point is

P111 = (Q102 + Q120 + Q012 + Q210 + Q201 + Q021)/6.

But for m = 1, 2, no interior control point are involved.
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The interior control point can be further modified if needed. Figure 4.1(e) and

Figure 4.1(f) show two different choices of the interior control point. Different choice

of the interior control point may lead to different parameter curves of the domain

surface, hence affect the parameterization of the composite surface (To be illustrated

later).

All the control point of the domain surface are derived from Eq.4.12 and Eq.4.13.

They are named as parameter control point or parameter points.

Figure 4.2: Construction of interior points.

4.3.1.1 Sub-patch via composition

The following theorem describes the composition of a TB surface T(x, y, z) and a

domain surface. The surface P(u, v, w) is a sub-domain of the TB surface T(x, y, z).

Therefore, the composition S(u, v, w) = T(P(u, v, w)) is a sub-surface of the TB

surface T(x, y, z) (Figure 4.3).

Theorem 4.1 (Composition of two TB surfaces). Suppose T(x, y, z) be a TB surface

of degree n with control points Tijk ∈ R3, i + j + k = n. And P(u, v, w) is a domain

surface of degree m with parameter points

Pijk = (xijk, yijk, zijk) , i + j + k = m, xijk + yijk + zijk = 1.

Then, the composition S(u, v, w) = T(P(u, v, w)) is a TB surface of degree mn:

S(u, v, w) =
∑

R+S+T=mn

Bmn
RST (u, v, w)SRST , (Eq.4.14)
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with control points

SRST =
∑

|Im
n |=R,|Jm

n |=S,|Km
n |=T

Cmn
Im
n Jm

n Km
n
Sn

Im
n Jm

n Km
n
, (Eq.4.15)

where the construction point Sn
Im
n Jm

n Km
n

= Tn
000(P

n
Im
n Jm

n Km
n
) is defined over the parameter

vector

Pn
Im
n Jm

n Km
n

= [PIlJlKl
| l = 1, · · · , n ] . (Eq.4.16)

And Γm
n = (Im

n ,Jm
n ,Km

n ) is defined in Eq.4.3.

Figure 4.3: Composition of two TB surfaces.

Proof: Set P(u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w)). Then

x(u, v, w) =
∑

i+j+k=m

Bm
ijk(u, v, w)xijk,

y(u, v, w) =
∑

i+j+k=m

Bm
ijk(u, v, w)yijk,

z(u, v, w) =
∑

i+j+k=m

Bm
ijk(u, v, w)zijk.

(Eq.4.17)

Following Eq.4.8, the TB surface T(x, y, z) can be represented as

T(x, y, z) = (xE1 + yE2 + zE3)
n
T000. (Eq.4.18)
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Therefore, applying Eq.4.17 and Eq.4.18 yields

S(u, v, w) = T(P(u, v, w))

=









(x(u, v, w), y(u, v, w), z(u, v, w))









E1

E2

E3

















n

T000

=









∑

i+j+k=m

(xijk, yijk, zijk) Bm
ijk(u, v, w)









E1

E2

E3

















n

T000

=

(

∑

i+j+k=m

Bm
ijk(u, v, w) (xijkE1 + yijkE2 + zijkE3)

)n

T000.

Applying Eq.4.6 gives

S(u, v, w)

=
∑

R+S+T=mn




∑

|Im
n |=R,|Jm

n |=S,|Km
n |=T

n∏

l=1

(

Bm
IlJlKl

(u, v, w)
(
xIlJlKl

E1 + yIlJlKl
E2 + zIlJlKl

E3

))



T000.

With Eq.4.4 and Eq.4.10, the composition is

S(u, v, w)

=
∑

R+S+T=mn

(

∑

|Im
n |=R,|Jm

n |=S,|Km
n |=T

(

Cmn
Im
n Jm

n Km
n
Bmn

RST (u, v, w)Tn
ijk(P

n
Im
n Jm

n Km
n
)
)
)

=
∑

R+S+T=mn

(

∑

|Im
n |=R,|Jm

n |=S,|Km
n |=T

(

Cmn
IJK

·Tn
ijk(P

n
Im
n Jm

n Km
n
)
)
)

Bmn
RST (u, v, w)

=
∑

R+S+T=mn

SRST Bmn
RST (u, v, w).

This completes the proof.

As shown in Eq.4.9, the construction point Sn
Im
n Jm

n Km
n

is a linear combination of the

control points Tijk. From Eq.4.5, the control points SRST in Eq.4.15 are the linear

combinations of Sn
Im
n Jm

n Km
n
. Therefore, SRST are the linear combinations of the original

control points. As a result, the construction points are computed and which will be

used to derive the control point SRST .
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4.3.2 Number of different construction points

There are (m + 1)(m + 2)/2 parameter points from the domain surface. Hence, for

every parameter point PIlJlKl
, there are (m + 1)(m + 2)/2 different choices. There-

fore, for every parameter point vector Pn
Im
n Jm

n Km
n

consisting of n parameter points,

the total number of choices is [(m + 1)(m + 2)/2]n which implies [(m + 1)(m + 2)/2]n

cases of construction points Sn
Im
n Jm

n Km
n

= Tn
000(P

n
Im
n Jm

n Km
n
).

Define a power index set Bm
n = Mn

(m+1)(m+2)/2 ⊂ Z(m+1)(m+2)/2 as

Bm
n =

{

(β0,0,m, β0,1,m−1, β1,0,m−1, · · · , β0,m,0, β1,m−1,0, · · · , βm,0,0)|
∑

i+j+k=m

βijk = n, βijk > 0

}

.

Based on the (m + 1)(m + 2)/2 parameter points Pijk = (xijk, yijk, zijk) from the

domain surface P(u, v, w), the power point set Qm
n (P) is defined as

Qm
n (P) =

{

Q
B

∣
∣
∣
∣
∣
Q

B
=

∏

i+j+k=m

(xijkE1 + yijkE2 + zijkE3)
βijkT000, B ∈ Bm

n

}

. (Eq.4.19)

Each element in power point set Qm
n (P) is a power point.

Lemma 4.10 A construction point is a power point: Sn
Im
n Jm

n Km
n
∈ Qm

n (P).

Proof: From each construction point Sn
Im
n Jm

n Km
n

= Tn
000(P

n
Im
n Jm

n Km
n
), suppose the pa-

rameter point Pijk = (xijk, yijk, zijk) repeats βi,j,k
Im
n Jm

n Km
n

times in the parameter point

vector Pn
Im
n Jm

n Km
n
, which means that the parameter index (i, j, k) repeats βi,j,k

Im
n Jm

n Km
n

times

in the parameter index vector Im
n Jm

n Km
n . Then, every construction point Sn

Im
n Jm

n Km
n

can

be formulated as

Sn
Im
n Jm

n Km
n

= Tn
000(P

n
Im
n Jm

n Km
n
)

=
n∏

l=1

(xIlJlKl
E1 + yIlJlKl

E2 + zIlJlKl
E3)T000

=
∏

i+j+k=m

(xijkE1 + yijkE2 + zijkE3)
β

i,j,k
Imn Jm

n Km
n T000

= QBImn Jm
n Km

n
,

(Eq.4.20)

where BIm
n Jm

n Km
n
∈ Bm

n is a power index for Pn
Im
n Jm

n Km
n

BIm
n Jm

n Km
n

=
(

β
0,0,m
Im

n Jm
n Km

n
, β

0,1,m−1

Im
n Jm

n Km
n

, β
1,0,m−1

Im
n Jm

n Km
n

, · · · , β
0,m,0
Im

n Jm
n Km

n
, β

1,m−1,0
Im

n Jm
n Km

n
, · · · , β

m,0,0
Im

n Jm
n Km

n

)

.
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This ends the proof.

From Lemma 4.10, the number of construction points is the number of points

in Qm
n (P), (i.e. the number of points in Bm

n ). Therefore the number of different

construction points is

|Qm
n (P)| = |Bm

n | =
∣
∣Mn

(m+1)(m+2)/2

∣
∣ =






(m + 1)(m + 2)/2 − 1 + n

(m + 1)(m + 2)/2 − 1




 . (Eq.4.21)

For example, if m = 1, the number of construction points is (n + 1)(n + 2)/2 which

is the same as the number of control points Tijk.

4.3.3 Geometric algorithm for power points

A geometric algorithm is employed to derive the power point set Qm
n (P). For a

given B ∈ Bm
n , the power point QB ∈ Qm

n (P) can be derived using the Pyramid

algorithms [110]. Suppose

B = (β0,0,m, β0,1,m−1, β1,0,m−1, · · · , β0,m,0, β1,m−1,0, · · · , βm,0,0) . (Eq.4.22)

The parameter index vector In
B

is defined by repeating (i, j, k) for βijk times

In
B

=






(0, 0, m) , · · · , (0, 0, m)
︸ ︷︷ ︸

β0,0,m

, (0, 1, m − 1) , · · · , (0, 1, m − 1)
︸ ︷︷ ︸

β0,1,m−1

, · · · , (0, m, 0) , · · · , (m, 0, 0)
︸ ︷︷ ︸

βm,0,0






. (Eq.4.23)

The parameter point vector Pn
B

is defined by repeating Pijk for βijk times

Pn
B

= Pn
IJK

=




P0,0,m, · · · ,P0,0,m
︸ ︷︷ ︸

β0,0,m

,P0,1,m−1, · · · ,P0,1,m−1
︸ ︷︷ ︸

β0,1,m−1

, · · · ,P0,m,0, · · · ,Pm,0,0
︸ ︷︷ ︸

βm,0,0




 .

(Eq.4.24)

Set the level n intermediate points as Rn
ijk = Tijk. Suppose the α-th parameter point

of Pn
B

is Pα = (xα, yα, zα). Then there are (α + 2) (α + 1)/2 intermediate points Rα
ijk

at level α and Rα
ijk are the linear combinations of Rα+1

ijk as

Rα
ijk = xα+1R

α+1
i+1,j,k + yα+1R

α+1
i,j+1,k + zα+1R

α+1
i,j,k+1, i + j + k = α, α = 0, · · · , n − 1.
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Then the 0 level intermediate point R0
000 = QB ∈ Qm

n (P).

Figure 4.4 shows an example with n = 3. The parameter vector P3
B

contains 3

parameter points P1,P2,P3. There are 10 intermediate points R3
ijk in level 3, and 6

intermediate points R2
ijk in level 2, and 3 intermediate points R1

ijk in level 1, and the

construction point R0
000 in level 0. So using Pyramid algorithms, all the power points

Qm
n (P) can be obtained easily.

Figure 4.4: Pyramid algorithms for a construction point with n = 3.

4.3.4 Control points by power points

In Eq.4.15, different parameter point vector Pn
Im
n Jm

n Km
n

= [PIlJlKl
| l = 1, · · · , n ] may

lead to the same construction point Sn
Im
n Jm

n Km
n

= Tn
000(P

n
Im
n Jm

n Km
n
). For example,

m = n = 2, R =
∣
∣I2

2

∣
∣ = 0, S =

∣
∣J2

2

∣
∣ = 1, T =

∣
∣K2

2

∣
∣ = 3.

The construction points are

P̄n
I22J

2
2K

2
2

= [P002,P011] , P̃
n
I22J

2
2K

2
2

= [P011,P002] ,

which are equal to the power point Pn
B

= {P002,P011} with B = (1, 1, 0, 0, 0, 0), hence

S013 is defined by only one power point. Reformulating Eq.4.15 using power points
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from QB ∈ Qm
n (P) in Eq.4.19 yields a control point SRST

SRST =
∑

B∈Bm
n

F RST
B

GRST
B

QB. (Eq.4.25)

For a power vector B in Eq.4.22, fB is defined

fB = β0,0,m









0

0

m









+β0,1,m−1









0

1

m − 1









+ · · ·+β0,m,0









0

m

0









+ · · ·+βm,0,0









m

0

0









.

If a power point QB, is used to construct SRST , then we have

fB − (R, S, T )T = 0.

Hence, each power point is used for only one control point. By defining F RST
B

as

F RST
B

=







0, fB − (R, S, T )T 6= 0,

1, fB − (R, S, T )T = 0.
(Eq.4.26)

The power points used for control points can be labeled. Given a power index B, we

get n parameter indices: the number of the index (i, j, k) is βijk with

i + j + k = m,
∑

βijk = n.

From this power index, n parameter index (i, j, k) and n!
∏

(βijk!)
different parameter

index vectors can be obtained completely. And from Eq.4.15 and Eq.4.23, for all these

parameter index vectors Im
n Jm

n Km
n , the coefficients of the construction point Sn

Im
n Jm

n Km
n

are Cmn
Im
n Jm

n Km
n
, which are equal to

Cmn
Im
n Jm

n Km
n

=

∏

i+j+k=m

(
βijk∏

l=1

(
m!

i!j!k!

)
)

(mn)!
R!S!T !

.
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As a result, for control point SRST , the coefficient of the power point QB is

GRST
B

=

∏

i+j+k=m

(
βijk∏

l=1

(
m!

i!j!k!

)
)

(mn)!
R!S!T !

n!
∏

(βijk!)
. (Eq.4.27)

Figure 4.5: Geometric algorithm for control points with m = n = 2.

(a) the intermediate points at level 2 and 1; (b-g) construction points from triangles;
(h) the control point from construction points; and (i) the control point.

Control points can be geometrically constructed from the power points. Consider

m = 2, n = 2. Set Tijk, i+j+k = 2 be the control points for the TB surface T(x, y, z)

and Pijk = (xijk, yijk, zijk) , i + j + k = 2 be the control points for the domain surface
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Figure 4.6: A 3D example of geometric algorithm with m = n = 2.

(a) the intermediate points at level 2 and 1; (b-g) construction points from
triangles;(h) the control point from construction points; and (i) the control point.

P(u, v, w) . Set

S2
IJK

= T2
000(P

2
IJK

) = T2
000(PI1J1K1

,PI2J2K2
) = FI1J1K1,I2J2K2

= (xI1J1K1
E1 + yI1J1K1

E2 + zI1J1K1
E3) (xI2J2K2

E1 + yI2J2K2
E2 + zI2J2K2

E3)T000

= xI1J1K1
xI2J2K2

T200 + yI1J1K1
yI2J2K2

T020 + zI1J1K1
zI2J2K2

T002

+(xI1J1K1
yI2J2K2

+ yI1J1K1
xI2J2K2

)T110 + (xI1J1K1
zI2J2K2

+ zI1J1K1
xI2J2K2

)T101

+(zI1J1K1
yI2J2K2

+ yI1J1K1
zI2J2K2

)T011

= (xI1J1K1
, yI1J1K1

, zI1J1K1
)









T200 T110 T101

T110 T020 T011

T101 T011 T002

















xI2J2K2

yI2J2K2

zI2J2K2









.
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Hence there are 21 different power points. The 15 control points are

S004 = F002,002 S022 =
(
F002,020 + 2F011,011

)/
3 S400 = F200,200

S103 = F002,101 S301 = F101,200 S310 = F110,200

S013 = F002,011 S211 =
(
F011,200 + 2F101,110

)/
3 S220 =

(
F020,200 + 2F110,110

)/
3

S202 =
(
F002,200 + 2F101,101

)/
3 S121 =

(
F020,101 + 2F011,110

)/
3 S130 = F020,110

S112 =
(
F002,110 + 2F011,101

)/
3 S031 = F011,020 S040 = F020,020

There are 21 cases for B = (β0, β1, β2, β3, β4, β5) ∈ B2
2 .

B1 = (0, 0, 0, 0, 0, 2) ,

B2 = (0, 0, 0, 0, 1, 1) ,

B3 = (0, 0, 0, 1, 0, 1) ,

B4 = (0, 0, 1, 0, 0, 1) ,

B5 = (0, 1, 0, 0, 0, 1) ,

B6 = (1, 0, 0, 0, 0, 1) ,

B7 = (0, 0, 0, 0, 2, 0) ,

B8 = (0, 0, 0, 1, 1, 0) ,

B9 = (0, 0, 1, 0, 1, 0) ,

B10 = (0, 1, 0, 0, 1, 0) ,

B11 = (1, 0, 0, 0, 1, 0) ,

B12 = (0, 0, 0, 2, 0, 0) ,

B13 = (0, 0, 1, 1, 0, 0) ,

B14 = (0, 1, 0, 1, 0, 0) ,

B15 = (1, 0, 0, 1, 0, 0) ,

B16 = (0, 0, 2, 0, 0, 0) ,

B17 = (0, 1, 1, 0, 0, 0) ,

B18 = (1, 0, 1, 0, 0, 0) ,

B19 = (0, 2, 0, 0, 0, 0) ,

B20 = (1, 1, 0, 0, 0, 0) ,

B21 = (2, 0, 0, 0, 0, 0) .

Hence, we have

QB1
= F002,002, QB2

= F002,110, QB3
= F002,200, QB4

= F002,011,

QB5
= F002,101, QB6

= F002,002, QB7
= F110,110, QB8

= F110,200,

QB9
= F110,011, QB10

= F110,101, QB11
= F110,002, QB12

= F200,200,

QB13
= F200,011, QB14

= F200,101, QB15
= F200,002, QB16

= F011,011,

QB17
= F011,101, QB18

= F011,002, QB19
= F101,101, QB20

= F101,002,

QB21
= F002,002.

Corresponding to the parameter set Pn
Bi

, the power point QBi
can be derive from the

Pyramid algorithms. At level one, there are totally 18 intermediate points at level 1

as

G
ijk
rst = xrstTi+1,j,k + yrstTi,j+1,k + zrstTi,j,k+1, i + j + k = 1, r + s + t = 2,

where G
ijk
rst means using the parameter point Prst on the triangle ∆Ti+1,j,kTi,j+1,kTi,j,k+1.
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Figure 4.5(a) shows the 18 intermediate points, we can derive 6 intermediate points

at level 1 base on each of the three triangles

∆T200T110T101, ∆T110T020T011, ∆T101T011T002.

Finally, the 21 construction points at level 0 can be derived as

Frst,ijk = xijkG
100
rst + yijkG

010
rst + zijkG

001
rst , i + j + k = 2.

The construction point Frst,ijk means using the parameter point Pijk on the triangle

∆G100
rst G

010
rst G

001
rst . Figure 4.5(b) shows the construction points

F002,002,F002,110,F002,200,F002,011,F002,101,F002,002

from the triangle ∆G100
002G

010
002G

001
002 . Figure 4.5(c) shows the construction points

F110,110,F110,200,F110,011,F110,101,F110,002,F200,200

from the triangle ∆G100
011G

010
011G

001
011. Figure 4.5(d) shows the construction points

F200,200,F200,011,F200,101,F200,002

from the triangle ∆G100
200G

010
200G

001
200. Figure 4.5(e) shows the construction points

F011,011,F011,101,F011,002

from the triangle ∆G100
011G

010
011G

001
011. Figure 4.5(f) shows the construction points

F101,101,F101,002

from the triangle ∆G100
101G

010
101G

001
101. Figure 4.5(g) shows the construction point F002,002

which is from the triangle∆G100
002G

010
002G

001
002. Figure 4.5(h) shows that 9 construction

points are control points and other control points are formed as the center point of
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the line segments. Figure 4.5(i) shows all the 15 control points. Figure 4.6 is a 3D

example corresponding to Figure 4.5.

4.4 Functions and algorithms

In the previous section, the formula for the control points of the composition (Eq.4.15)

is derived. Since the control points are the linear combinations of the power points

(Eq.4.25), a geometric algorithm for the power points and control points is presented.

However, Eq.4.25 is complex, especially when m and n are big. Hence, computations

of the control points with some useful functions are presented in this section.

4.4.1 Power index set

The power point set is based on the power index set. A function is provided to

derive all the power indices for Ms
d. The Algorithm 4.1 returns a matrix of size






d − 1 + s

s




 × d. Each row is a vector of given dimension d. Each row is an

element of Ms
d.

If d = 3, s = 2, c = 6, Algorithm 4.1 provides

i = 3 v = 2 l = 2 e = 1 ⇒ M1,3 = 2

l = 1 e = 2 ⇒ M2,3 = M3,3 = 1

l = 0 e = 3 ⇒ M4,3 = M5,3 = M6,3 = 0

i = 2 v = 0 l = 0 e = 1 ⇒ M1,2 = 0

v = 1 l = 1 e = 1 ⇒ M2,2 = 1

l = 0 e = 1 ⇒ M3,2 = 0

v = 2 l = 2 e = 1 ⇒ M4,2 = 2

l = 1 e = 1 ⇒ M5,2 = 1

l = 0 e = 1 ⇒ M6,2 = 0

i = 1 v = 0 ⇒ M1,1 = 0

v = 0 ⇒ M2,1 = 0

v = 1 ⇒ M3,1 = 1

v = 0 ⇒ M4,1 = 0

v = 1 ⇒ M5,1 = 1

v = 2 ⇒ M6,1 = 1







⇒ M2
3 =



















0 0 2

0 1 1

1 0 1

0 2 0

1 1 0

1 0 0
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FUNCTION: M = GetPowerMatrix(d, s)

c =

(
d − 1 + s

s

)

;

FOR i = d to 1 DO
r = 1;
WHILE r < c DO

v = 0;
FOR j = i + 1 to d DO

v+ = M(r, j) ;
END
v = s − v;
IF i == 1 DO

M(r, i) = v ;
r + +;
CONTINUE;

END
FOR l = v to 0 DO

e =

(
i − 2 + v − l

v − l

)

;

FOR k = 1 to e DO
M(r, i) = l ;
r + +;

END
END

END
END

Algorithm 4.1: Algorithm for power matrix Ms
d

4.4.2 Point index

The point index is computed based on the parameter point list P, control point list

T and the control point list S as below:

P = {P00m,P0,1,m−1,P1,0,m−1, · · · ,P0,m,0,P1,m−1,0, · · · ,Pm00} ,

T = {T00n,T0,1,n−1,T1,0,n−1, · · · ,T0,n,0,T1,n−1,0, · · · ,Tn00} ,

S = {S0,0,mn,S0,1,mn−1,S1,0,mn−1, · · · ,S0,mn,0,S1,mn−1,0, · · · ,Smn,0,0} .

(Eq.4.28)

Pijk is the Im
ijk-th point in P (Algorithm 4.2),

Im
ijk = 1 + i +

1

2
(m − k)(m − k + 1) = 1 + i +

1

2
(i + j)(i + j + 1) (Eq.4.29)

FUNCTION: index = PointIndex(i, j, k)

index = 1 + i + 1
2
(i + j)(i + j + 1);

Algorithm 4.2: Algorithm for point index
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4.4.3 Power points

Writing M , N and Q as

M = (m + 1)(m + 2)/2, N =




M − 1 + n

n



, Q = (mn + 1) (mn + 2) /2. (Eq.4.30)

Then, the power index set B of size N × M and all the parameter indices I of size

M × 3 are obtained

B = GetPowerMatrix (M,n) ,

I = GetPowerMatrix (3,m) ,
(Eq.4.31)

A power point can be computed for each row of the geometric algorithm (Algo-

rithm 4.3). The power point list PP contains N points.

FUNCTION: PP =GetAllPowerPoints(T, n,P, m,B, I, M, N)

FOR i = 1 to N DO
L = n;
IP = T;
FOR j = 1 to M DO

r = B(i, j);
(u0, v0, w0) =P(PointIndex(I(j, 1), I(j, 2), I(j, 3)))
FOR k = 1 to r DO

L = L − 1;
NL = GetPowerMatrix(3,L);
FOR each row (i0, j0, k0) in NL DO

I0 = PointIndex(i0, j0, k0);
I1 = PointIndex(i0 + 1, j0, k0);
I2 = PointIndex(i0, j0 + 1, k0);
I3 = PointIndex(i0, j0, k0 + 1);
TP(I0) = u0 ∗ IP(I1) + v0 ∗ IP(I2) + w0 ∗ IP(I3);

END
IP = TP;

END
END
PP (i)= IP;

END
Algorithm 4.3: Algorithm for power points
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4.4.4 Power points to control points

Each control point SRST is a linear combination of the power points. For each point

of S in Eq.4.28, A set of index is assigned to indicate which power vectors are con-

tributing to this point. Setting J = B · I, the i-th row of B corresponding to the i-th

row of J which is corresponding to an index for S, say (R, S, T ). Hence, i-th row of

B contributes to the only one control point (R, S, T ). Since S contains Q, a matrix

CM of with MN rows can be established (Algorithm 4.4). Each row contains all the

i-th row of J. For example, if m = n = 2, we have

CM =






21 20 18 15 11 6 14 10 5 4 12 8 3 2 1

0 0 0 19 17 16 0 13 9 0 0 0 7 0 0






⊤

.

The fifth row of CM has values 11 and 17 which implies that the fifth control point

S112 is constructed by the 11th and 17th power points. And S013 is the second point

which is constructed by the 20-th power point.

FUNCTION: CM =GetCorrespondenceMatrix(B, I, m, n, M, N)

J = B · I;
X[1 : Q] = 0;
FOR i = 1 to N DO

(i0, j0, k0) = J(i);
j = PointIndex(i0, j0, k0);
X(j) + +;
CM(j, X(j)) = i;

END
Algorithm 4.4: Algorithm for correspondence

4.4.5 Coefficients of the power points

For each power point, a coefficient following Eq.4.15 is calculated in Algorithm 4.5.

4.4.6 Complete control points

With the previous 5 functions, Algorithm 4.6 provides the construction points S.
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FUNCTION: CV =GetCoefficientVector(B, I, m, n, M, N)

FOR s = 1 to N DO
B = B(s) = (B1, · · · , BM);
(R, S, T ) = B · I;
a = 1;
b = 1;
FOR i = 0 to m DO

FOR j = 0 to m − i DO
k = m − i − j;
l= PointIndex(i, j, k);
b = b · (Bl!);
For t = 1 to Bl DO

a = a · m!
i!j!k!

;
END

END
END
CV(s) = a·n!·R!·S!·T !

b·(mn)!
;

END
Algorithm 4.5: Algorithm for coefficient

FUNCTION: S =GetAllControlPoints(T, n,P, m)

Get M, N, Q in Eq.4.30;
B, I in Eq.4.31;
A = GetAllPowerPoints(T, n,P, m,B, I, M, N);
CM = GetCorrespondenceMatrix(B, I, m, n, M, N);
CV = GetCoefficientVector(B, I, m, n, M, N);
FOR i = 1 to Q DO

S(i) = 0;
X = CM(i);
j = 0;
WHILE X(j) > 0 DO

B = A(X(j));
b = CV(X(j));
S(i) = S(i) + B ∗ b;

END
END

Algorithm 4.6: Algorithm for complete control points
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4.5 Examples and discussion

In this part, examples from reference 16 are cited and the proposed algorithm is

applied to show the geometric properties of the control points.

Example 1: Set m = 1, the domain surface P(u, v, w) is defined by three parameter

control point

P100 = (x100, y100, z100),

P010 = (x010, y010, z010),

P001 = (x001, y001, z001).

Then, the control point for the composition will be

SRST =
∑

|Im
n |=R,|Jm

n |=S,|Km
n |=T

C1n
Im
n Jm

n Km
n
Tn

000(P
n
Im
n Jm

n Km
n
).

When |Im
n | = R, |Jm

n | = S, |Km
n | = T ∀Il, Jl, Kl ∈ {0, 1} Il, Jl, Kl ∈ {0, 1}, the power

vector for the parameter vector Pn
Im
n Jm

n Km
n

is B
Im
n Jm

n Km
n

= (R, S, T ). Hence

PRST = Tn
000(P

n
Im

n Jm
n Km

n
) =

n∏

l=1

(xIlJlKl
E1 + yIlJlKl

E2 + zIlJlKl
E3)T000

= (x100E1 + y100E2 + z100E3)
R

(x010E1 + y010E2 + z010E3)
S

(x001E1 + y001E2 + z001E3)
T

T000

Therefore,

SRST =
∑

|Im
n |=R,|Jm

n |=S,|Km
n |=T

C1,n
Im
n Jm

n Km
n
Tn

000(P
n
Im
n Jm

n Km
n
)

= PRST

∑

|Im
n |=R,|Jm

n |=S,|Km
n |=T

C1n
Im
n Jm

n Km
n

= PRST .

This result is the same as that of Chang and Davis [111]. In this case, the number

of different construction points is (n + 2)(n + 1)/2, and they are just the control

point for the composition (Figure 4.7). While m = 1, n = 2, the algorithms yields
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Figure 4.7: A triangular sub-patch from a TB surface.

(a) (b) (c)

Figure 4.8: A composite surface with m = 1, n = 2.

(a) the domain surfaces; (b) the power points; and (c) the composition surface with
the control mesh.

M = 3, N = Q = 6 and

J = B · I =



















0 0 2

0 1 1

1 0 1

0 2 0

1 1 0

2 0 0



























0 0 1

0 1 0

1 0 0









=



















2 0 0

1 1 0

1 0 1

0 2 0

0 1 1

0 0 2



















,CM =



















6

5

3

4

2

1



















,CV =



















1

1

1

1

1

1



















.

The value from CM,CV indicate that each control point equals one power point.

Figure 4.8 shows the example.

Example 2: This example shows the surface subdivision.

Set m = 1, the TB surface P1(u, v, w) is defined by three parameter points

(0, 0, 1), (0, 1, 0), (0.5, 0.5, 0).
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Figure 4.9: Subdivision of a TB surface.

And another TB surface P2(u, v, w) is defined by three parameter points

(0, 0, 1), (1, 0, 0), (0.5, 0.5, 0).

From Example 1,

D1
RST = (E3)

R (E2)
S (0.5E1 + 0.5E2)

T
T000 =

T∑

i=0






T

i




Ti,S+(T−i),R

/

2T ,

And

D2
RST = (E3)

R (E1)
S (0.5E1 + 0.5E2)

T
T000 =

T∑

i=0






T

i




TS+i,T−i,R

/

2T ,

Then these two composition surfaces

Si(u, v, w) =
∑

R+S+T=mn

Bmn
RST (u, v, w)Di

RST , i = 1, 2

form a subdivision of the original surface (Figure 4.9). Figure 4.10 shows the subdi-

vision of a leaf surface into 6 sub-patches.
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(a) (b)

Figure 4.10: Subdivision of a leaf surface.

(a) the leaf surface with its control nets; and (b) the 6 sub-patches with their control
nets.

(a) (b) (c)

Figure 4.11: A composite surface with m = 2, n = 2.

(a) the domain surface; (b) the power points; and (c) the composition surface and
the control mesh.

Example 3: Consider m = 2, n = 2. Then M = 6, N = 21, Q = 15, And

J=B · I=
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0 0 1 0 0 1
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1 0 0 0 0 1

0 0 0 0 2 0
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0 0 0 2 0 0

0 0 1 1 0 0
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1 0 1 0 0 0
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4 0 0

3 1 0

2 2 0

3 0 1

2 1 1

2 0 2

2 2 0

1 3 0

2 1 1

1 2 1
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0 4 0

1 2 1
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0 1 3

0 0 4
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11 17

6 16
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10 13

5 9
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.

Hence, 21 different power points and 15 control points are generated. Figure 4.11

shows the surface.
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(a) (b) (c)

Figure 4.12: Composite surfaces.

first row: m = 3, n = 3. second row: m = 3, n = 5. third row m = 4, n = 3. (a) the
domain surface; (b) the power points; and (c) the composition surfaces and the

control meshes.

In fact, the proposed algorithm can handle any couple of m, n. Figure 4.12 shows

some other examples with m = 3, n = 3, m = 3, n = 5 and m = 4, n = 3.

Example 4: Different parameterization of the composite surface.

Different choices of the interior control point for the domain surfaces may lead

to different parameterizations of the composite surfaces. The interior control point

can be used as parameters to make adjustment of the composite surface. Figure 4.13

shows an example of a composition with m = n = 5. Figure 4.13(b-f) are the dif-

ferent choices of interior control point. In each case, the domain surface is uniform

sample on the surface (the green curves are parameter curves). Uniform parameter

curves (Figure 4.13(b)) in domain surface leads to uniform parameter curves (Fig-

ure 4.13(h)) in the composite surface. Moving the interior control point causes the

change in the density of parameter curve for both the domain surface (Figure 4.13(c)
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and Figure 4.13(d)) and the composite surface (Figure 4.13(i) and Figure 4.13(j)).

It can also cause the parameter curves intersecting with each other (Figure 4.13(e),

Figure 4.13(f), Figure 4.13(k) and Figure 4.13(l)).

Example 5: Surface extensions

We can also allow the domain surface to extend outside DT . In this case, the

composite surface will not be a sub-patch of the TB surface. Figure 4.14(a) shows a

TB surface with three boundary curves in red, blue and yellow. In Figure 4.14(b),

a domain surface in black is defined as an extension of the domain DT . The com-

posite surface (Figure 4.14(e)) becomes a nature extension of the original TB surface

(Figure 4.14(d)) at the yellow boundary. Figure 4.14(c) and Figure 4.14(f) show the

extension of the blue boundary.

4.6 Summary

In this chapter, an approach to generate a TB sub-patch from a TB surface is pre-

sented. Firstly, the TB sub-patch can be formed by composition of the TB surface and

the domain surface. Secondly, an explicit formula for computing the control points of

the composition is derived. These new control points are the linear combinations of

the control points of the TB surface while the coefficients are given by the parameter

points of the domain surface. Thirdly, the geometric algorithm for the power points

is analyzed. The power points can be calculated using the Pyramid algorithms. Then

the control points of the TB sub-patch are the linear combinations of these power

points. Several examples are examined.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.13: Different parameterization of the composite surface.

(a) an area bounded by three curves; (b-f) different choices of interior control point;
(g) the sub-patch defined by the three curves in (a); and (h-l) different

parameterization of the sub-patch.
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(a) (b) (c)

(d) (e) (f)

Figure 4.14: Surface extensions.

(a) a surface with three boundary curves in red, blue and yellow; (b) one domain
surface in black; (c) another domain surface in green; (d) the surface; (e) the

composite surface from (b); and (f) the composite surface from (c).
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H-NURBS Surfaces4

Texture mapping is an efficient and effective tool in computer graphics and animation.

While computationally very cost-effective, texture mapping may produce non-realistic

appearances of shapes in a 3D environment, especially when viewing closely. To

improve the realism of 3D modeling, bump mapping technique is developed to add

details with the 3D models on top of texture mapping. Bump mapping, however, offers

only simple and visual enhancement. Displacement mapping technique can further

improve the localized detail of geometry. In this chapter, Monge mapping technique

is developed for detail and local shape modifications of NURBS represented geometry

in a 3D environment. Based on multiresolution and refinement schemes, hierarchical

NURBS (H-NURBS) is first investigated to design a mechanism for the purpose of

carrying localized geometric information. Monge mapping on H-NURBS patch can be

easily performed via simple cut-&-paste operations. Parametric control of the local

shapes is developed to facilitate easier and better 3D local modeling.

4The following publications are based on the results of this chapter:
Chen,W.Y., Zheng,J.M., and Cai,Y.Y., (2008). Generalized hierarchical NURBS for interac-

tive shape modification,Proceedings of The 7th ACM SIGGRAPH International Conference on

Virtual-Reality Continuum and Its Applications in Industry, ACM.
Chen,W.Y., Zheng,J.M., and Cai, Y.Y., (2010). Monge Mapping Using Hierarchical

NURBS,The Visual Computer, 26(6-8), 779-789.
Chen,W.Y., Cai,Y.Y., and Zheng,J.M., (2010). Freeform-based form feature modeling using

a hierarchical & multi-resolution NURBS method,Proceedings of The 9th ACM SIGGRAPH

International Conference on Virtual-Reality Continuum and Its Applications in Industry, ACM.
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5.1 Prior art

Stereographic visualization is quickly entering homes and offices with 3D TVs and

displays commercially available. In a high definition (HD) environment, detail of 3D

geometry becomes necessary in modeling and visualization. In computer graphics,

techniques, such as texture mapping [112, 113], bump mapping [114], and displace-

ment mapping [115, 116], have been developed to improve the realism of the 3D scene.

However, these methods focus on efficient rendering.

In 3D modeling, complex objects can be represented using Non-uniform Rational

B-spline (NURBS). NURBS has been a de facto standard in CAD and CG industries

[117]. Most of the current commercial modeling and animation systems take NURBS

as a fundamental representation for free-form shapes. NURBS can easily achieve any

Level of Detail (LOD). The modification of a complex NURBS shape is, however, not

that straightforward. Control point (or equivalent) modification is often used in an

interactive fashion. Knots insertion technique is applied in order to limit the shape

change in a controlled region which might not be intuitive to most of the end users.

Typically, designers have to do trial and error before getting a satisfied change.

5.1.1 Texture mapping

Shape features of an object usually can be described as surfaces. The modeling and

rendering of these surfaces, especially complex ones, are crucial to improve the realism

of the scene especially in 3D. Texture mapping [112, 113] is very efficient to create the

appearance of complexity without modeling and rendering of the complex surfaces.

Basically, texture mapping adds 2D detail using images on top of surfaces. In general

forms of texture mapping, attributes such as specular reflection [118], normal [114],

transparency [119], and diffuse reflection [120] can be added to surfaces.

5.1.2 Bump mapping

Surface normal plays a vital role in graphics rendering. It is an intuitive way to change

the lighting effect. Bump mapping [114] adds perturbations to the surface normal,

making a smooth surface appear bumpy. A traditional bump map uses an image to
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define the bumps: the brighter the color, the higher the bump. Normal mapping [121]

uses the actual normal instead of just a perturbation of the normal to make a smooth

surface appear bumpy.

5.1.3 Displacement mapping

A height map is a grayscale texture where the brightness of each pixel represents its

height. Displacement mapping is the first technique using a height map to represent a

fine scale surface. It is initially introduced by Cook in the context of Shade Trees [115]

and later in REYES architecture [116]. Different from bump mapping and texture

mapping, displacement mapping uses a height map to change the geometric position

of the surface points. A common displacement mapping subdivides a surface into a

large number of mesh points and displaces each surface point in its normal direction

according to the value of the height map. This can produce a great sense of depth and

detail. However, the rendering is either space-inefficient or computationally expensive.

The height map is also used in other techniques. The View-dependent Displace-

ment Mapping (VDM) method [122] preprocesses a height map to get a set of VDM

images based on different view directions and different curvatures. Although VDM

method provides good quality, it requires more space to store the preprocessed VDM

data. Relief Texture Mapping (RTM) [123] uses multiple height maps to do the

rendering.

5.1.4 Level of detail

LOD is applied to display geometry detail at different levels. Generally, texture

mapping, bump mapping, and displacement mapping are independent of LOD. With

the help of Mipmapping [124], these techniques can have some kind of LOD. However,

these techniques have a focus on rendering rather than modeling and cannot achieve

local modifications of a model. Texture mapping, bump mapping, and displacement

mapping are not designed for local depth geometry modeling.
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5.2 Research aims

This chapter focuses on the local shape modeling based on hierarchical NURBS (H-

NURBS) representation. Monge mapping technique will be developed for the purpose

of detail and local shape modeling with NURBS represented geometry in a 3D environ-

ment. More specifically, multiresolution and refinement schemes will be investigated

to design an H-NURBS based mechanism to carry localized geometric information.

Cut-&-paste operations and parametric control with Monge mapping will be devel-

oped on H-NURBS to facilitate easier and better 3D local modeling.

5.3 Hierarchical NURBS

A NURBS surface of order m × n is defined as

R(u, v) =
P(u, v)

W (u, v)
=

∑

i

∑

j

PijwijNi,m(u)Nj,n(v)

∑

i

∑

j

wijNi,m(u)Nj,n(v)
, (Eq.5.1)

where Pij are the control points, wij are the weights, Ni,m(u) are the normalized

B-spline basis functions of order m over knot vector u = {· · · , u1, u2, · · · , uk, · · ·},

and Ni,n(v) are the normalized B-spline basis functions of order n over knot vector

v = {· · · , v1, v2, · · · , vl, · · ·}.

5.3.1 Refinement of a NURBS surface

B-spline basis function can be refined. If we insert a set of new knots into the original

knot vector u, yielding a new refined knot vector ū, which is a superset of u, the

original B-spline basis functions Ni,m(u) defined over u can be formulated as a linear

combination of the refined basis functions N̄r,m(u) defined over the new knot vector

ū,

Ni,m(u) =
∑

r

αi(r)N̄r,m(u). (Eq.5.2)
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Similarly, if we refine v to yield v̄, we have

Nj,n(v) =
∑

s

αj(s)N̄s,n(v). (Eq.5.3)

The above two coefficients αi(r) and αj(s) are known as the discrete B-spline and

they can be computed by Oslo algorithm [125, 126]. NURBS refinement is derived

from B-spline basis functions. If we substitute Eq.5.2 and Eq.5.3 into Eq.5.1, we can

reexpress the NURBS surface as

R(u, v) =

∑

r

∑

s

P̄rsw̄rsN̄r,m(u)N̄s,n(v)

∑

r

∑

s

w̄rsN̄r,m(u)N̄s,n(v)
, (Eq.5.4)

where the new control points P̄rs and weights w̄rs satisfy

(P̄rsw̄rs, w̄rs) =
∑

i

∑

j

αi(r)αj(s)(Pijwij , wij). (Eq.5.5)

In the rest of the chapter, we take N j,n
i,m = Ni,m(u)Nj,n(v).

5.3.2 From H-spline to H-NURBS

For NURBS curves and surfaces, study shows that refinement [109, 117, 127] is an

effective and interactive approach for local editing and manipulating. In this process,

the influence of each control point is restricted to a surface area. For NURBS curves,

refinement is obviously a local operation. As shown above, for tensor-product surfaces,

however, refinement is not local. Inserting one knot causes the creation of new control

points along a whole row or a whole column. To localize the effect of refinement, Forsey

and Bartels [128] introduce a hierarchical B-spline surface concept for refinements

through the use of overlays. The overlay keeps the original surface as the basic

description of the surface and it is used as the replacement of local portions. This

could restrict the influence of refinement to the locality at which the overlay is defined.

In other words, the overlay will superimpose only the local area in the original surface.

The approach can be repeated on the overlay which is, in turn, regarded as a surface

subjected to refinement for the creation of further overlays. The result of this is that

113



Chapter 5. H-NURBS Surfaces

the surface will contain a collection of overlays at different levels of refinement.

Hierarchy and local refinement have been widely studied. Local B-spline mul-

tiresolution [16, 129, 130] is a solution to provide a tool for decomposing data into a

hierarchy. To achieve a better control with multiresolution models, reverse subdivision

method is used to construct local multiresolution filters for B-spline [16]. Local re-

finement is extended to surfaces of arbitrary topology by Gonzalez-Ochoa and Peters

[131]. The hierarchical triangular spline [132] is introduced to enable LOD construc-

tion and surface editing by interpolating the points of a hierarchy of locally refined

meshes. From an arbitrary triangular mesh, Yvart et al. [133] propose a method to fit

a refinable triangular spline surface of arbitrary topology. However, all these methods

cannot be directly used for NURBS.

Three essential features of H-spline are (1) only the modified portions of a hierar-

chical surface are needed in a data structure; (2) each level of refinement is represented

as an offset from reference position derived from a level of lower refinement; and (3)

editing can be done by operating on points selected directly from the composite sur-

face itself, rather than through control points. The three features lead H-spline to a

compact and efficient means for fitting surfaces to data [134]. However, H-spline is

not general enough as the name itself indicates that surface representation is limited

to B-spline only. In addition, the H-spline implementation is also limited to point-

based superimposition. This chapter addresses the generalization: 1) from H-spline

to H-NURBS; 2) from point-based to parameter-based shape modifications; and 3)

from superimposition to Monge mapping.

5.3.3 From B-patch to C-patch

With H-NURBS, we are able to modify surfaces on a patch-by-patch basis. Typically

defined on a rectangular parametric domain, a base patch (B-patch) is a local area

(NURBS represented) to be modified. An attaching patch (A-patch) defined by Monge

patch is used to be integrated into the new design at the B-patch. The integration

provides the combined patch (C-patch). The process of integration is called Monge

mapping, which can be used to add detail or reduce the detail by adjusting three pa-
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rameters. In [135], we have proposed two mechanisms to do local shape modifications

for H-NURBS: the base plus detail mechanism and the replacement mechanism. The

limitation with the approach is that not only the boundary conditions for A-patch

are restrictive but also the adjustments of C-patch are not very intuitive. In Monge

mapping, the A-patch is much easy to obtain and three parameters can be adopted

to adjust the shape of the C-patch.

5.4 Monge patch in NURBS Form

Named after Gaspard Monge (1746-1818), a Monge patch (u, v, f(u, v)) is defined

from a function f ,

f : U ⊂ R2 → R, (u, v) ∈ U.

A Monge patch can be described as the summary of one reference and one offset. Each

surface point can be viewed as the offset from the point (u, v, 0) along the z direction

for the length f(u, v). We can generalize the Monge patch for NURBS surfaces by

providing the offset information for each control points.

5.4.1 Local coordinates of the control points

The control point Pij in Eq.5.1 corresponds to a Greville point Ωij [109] on the surface

R(u, v) as

Ωij = R(φi, ϕj), (Eq.5.6)

where (φi, ϕj) is the Greville abscissae given by

φi =
1

m

i+m−1∑

k=i

uk, ϕj =
1

n

j+n−1
∑

k=j

vk.

A local coordinate system and the s-curvature for each control point is necessary for

Monge mapping.

Definition 5.1 The local coordinate system (Xij,Yij,Zij) at the control points Pij
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Figure 5.1: s-neighbors of a Greville point.

a Greville point Ωij(the triangle), 1-neighbor (dots) and 2-neighbor (squares).

is 





Xij = Ru(φi, ϕj),

Yij = Rv(φi, ϕj),

Zij = Nij,

(Eq.5.7)

where Nij is the normal direction at Ωij.

Definition 5.2 The s-neighbor Ωs
ij is

Ωs
ij = {Ωi0j0 |i0 = i ± s or j0 = j ± s,

0 ≤ i0 ≤ k, 0 ≤ j0 ≤ l} ,
(Eq.5.8)

Figure 5.1 shows the 1-neighbor Ω1
ij and the 2-neighbor Ω2

ij .

Definition 5.3 The s-curvature hs
ij at Pij is the average of the mean curvatures at

all points in Ωs
ij . The curvature descriptor θijs is the average of the mean curvatures

with all s-neighbor (t ≤ s) as

θijs =
1

s + 1

(

hij +
s∑

t=1

ht
ij

)

. (Eq.5.9)

Suppose that P(Ωij) is the portion of the surface around the Greville point Ωij. In

general, if θijs is near to zero, P(Ωij) is flat, otherwise, P(Ωij) is curved.

5.4.2 Monge patch and Monge mapping

Adding a NURBS surface R1(u, v) onto another NURBS surface R2(u, v) is an in-

tuitive way to modify the local detail of R2(u, v). The sum of two NURBS surfaces
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produces a new surface,

R3(u, v) = R1(u, v) + R2(u, v) =
P1(u, v)

W1(u, v)
+

P2(u, v)

W2(u, v)
. (Eq.5.10)

However, if the two NURBS surfaces are of different weights, in order to get the new

NURBS, we have to calculate the production of two B-spline W2(u, v)·W1(u, v), which

is very complex [136, 137]. Moreover, it is difficult to adjust the shape of R3(u, v) by

directly summing the two surfaces.

Monge mapping uses a Monge patch to modify a NURBS surface while avoiding

the product operation and provides parameters to adjust the final shape. A Monge

patch contains two types of information: at which directions the control points move

and how far they move.

Definition 5.4 A Monge patch M(u, v) is a NURBS surface that can be formulated

as the sum of a planar reference patch S(u, v) and an A-patch A(u, v) as

M(u, v) = S(u, v) + A(u, v) =

k∑

i=1

l∑

j=1

Sijw̄ijN
j,n
i,m

k∑

i=1

l∑

j=1

w̄ijN
j,n
i,m

+

k∑

i=1

l∑

j=1

Aijw̄ijN
j,n
i,m

k∑

i=1

l∑

j=1

w̄ijN
j,n
i,m

.

If the B-patch B(u, v) is

B(u, v) =

k∑

i=1

l∑

j=1

BijwijN
j,n
i,m

k∑

i=1

l∑

j=1

wijN
j,n
i,m

, (Eq.5.11)

Monge mapping derives the C-patch C(u, v) as

C(u, v) = B(u, v)⊕ A(u, v) =

∑

i

∑

j

CijŵijN
j,n
i,m

∑

i

∑

j

ŵijN
j,n
i,m

,

where

Cij = Bij + αij

∣
∣Aij

∣
∣ dij,
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with

dij =
A0

ijXij+A1
ijYij+A2

ijZij

|A0
ijXij+A1

ijYij+A2
ijZij| ,

αij = ηe−λθ2
ijs , η, λ ∈ R, λ ≥ 0, s = 0, 1, 2, 3, ...,

(Eq.5.12)

and Aij = (A0
ij , A

1
ij, A

2
ij), (Xij ,Yij,Zij) is the local coordinate system at Bij, θijs is

defined in Eq.5.9, and η, λ, s are shape parameters.

5.4.3 Boundary conditions

The index (i, j) is a boundary index if

i = 1, · · · , m − 1, k − m + 2, · · · , k,

or j = 1, · · · , n − 1, l − n + 2, · · · , l.
(Eq.5.13)

The set Ψ consists of all boundary indices. A control point (weight) with a bound-

ary index is a boundary control point (weight), otherwise, it is an inner control point

(weight).

Definition 5.5 Two NURBS surfaces are matched if and only if they share the same

u-order, the same v-order, the same u-knots and the same v-knots.

During a local modification, Monge mapping replaces the B-patch using the C-patch.

To keep the continuity between the C-patch and its neighboring patches, the C-patch

and the B-patch should be matched while sharing the same boundary points (weights)

as follows:

dij = 0, ŵij = wij , (i, j) ∈ Ψ. (Eq.5.14)

5.4.4 Monge patch from an image

Using a gray image as height field, NURBS surface fitting techniques can provide a

Monge patch with control point Mij = (xij , yij, zij). The Monge patch is formulated

in the form of Sij = (xij , yij, 0) and Aij = (0, 0, zij), from Eq.5.12, Monge mapping

will only move a control point Bij along its local Zij coordinate. Figure 5.2 gives

some Monge patches as bi-cubic NURBS surfaces.
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Figure 5.2: Monge patches from images.

the first row shows the gray images and the second row presents the NURBS
surface. (a) a hand print; (b) a tree; and (c) a pig.

5.4.5 Monge patch from a NURBS surface

We need to modify the selected NURBS patch R(u, v) in order to obtain a Monge

patch S(u, v). The key issue is how to derive the reference patch. A plane Γ can be

derived by fitting its boundary points. Suppose PΓ(p) is the projection of the point p

on the plane and the domain of R(u, v) is [umin, umax]× [vmin, vmax]. A planar surface

can be obtained as

Q(u, v) =
1∑

i=0

1∑

j=0

Qij(1 − u)1−iui(1 − v)1−jvj,

where

Q00 = PΓ (R(umin, vmin)) , Q01 = PΓ (R(umin, vmax)) ,

Q10 = PΓ (R(umax, vmin)) , Q11 = PΓ (R(umax, vmax)) .

We can apply a transformation on the coordinate system such that the planar

surface is the XY-plane, then derive the control points for the reference patch as

Sij = Q

(
φi − umin

umax − umin
,

ϕj − vmin

vmax − vmin

)

.

Thus, the Monge patch is defined by taking

Mij =







Sij, (i, j) ∈ Ψ,

Pij, (i, j) /∈ Ψ.
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5.4.6 Postprocessing of an A-patch

In above two sections, the A-patch is derived as an offset from the XY-plane. Algo-

rithm 5.1 reformulates the A-patch using the idea of local coordinate system. After

this, each control point of an A-patch is an offset in a local coordinate system. Later

when applying Monge mapping, we can directly use the local coordinate system.

Step 1: Calculate the Greville abscissae (φi, ϕj) for each control point Aij .

Step 2: Derive a corresponding point on the planar surface Q(φi, ϕj).

Step 3: Obtain the local coordinate system at Q(φi, ϕj) as (Xij,Yij,Zij).

Step 4: Replace Aij with its new coordinates under (Xij,Yij,Zij).

Algorithm 5.1: Postprocessing of an A-patch.

5.5 H-NURBS based patch formation

5.5.1 B-patch Formation

A B-patch B(u, v), defined in a rectangular domain, is a selected NURBS patch to be

modified. NURBS refinement allows forming much compact B-patches for local shape

modifications. A B-patch can be formed in two styles: patch-based formation and

point-based formation. Figure 5.3 shows the patch-based formation of a B-patch for

a nose shape. The red lines are iso-curves and the green patches are selected patches.

Before refinement, by selecting two corner patches (Figure 5.3(a)), we can define a

local area containing the nose shape (Figure 5.3(b)). On the selected patch, a local

refinement is performed (Figure 5.3(c)). Following the same way, a new local area can

be selected (Figure 5.3(d)). Figure 5.3(e) shows the final B-patch. Figure 5.4 shows

the point-based formation of a B-patch for the nose shape. A B-patch can be formed

by selecting two corner points (Figure 5.4(b)). In this procedure, the local refinement

is automatically performed (Figure 5.4(c)).
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Figure 5.3: Patch-based formation of the B-patch.

the second row is the zoomed view of the rectangular portion in the first row. (a)
two patches at level 0 are selected as the corner patches; (b) several patches are

merged to one patch; (c) the selected patch is refined; (d) a new patch is formed at
level 1; and (e) the B-patch.

Figure 5.4: Point-based formation of the B-patch.

the second row is the zoomed view of the rectangular portion in the first row. (a)
two points are selected as corner points; (b) a B-patch is selected using the two

corner points; and (c) the B-patch is formed by local refinement.

121



Chapter 5. H-NURBS Surfaces

5.5.2 A-patch formation

An A-patch P(u, v), which is derived from a Monge patch, is to be added onto the

B-patch. We can create the A-patch either from any existing NURBS surface (Sec-

tion 5.4.5) or from an image (Section 5.4.4). With the former method, we can easily

achieve cut-&-paste operations. However, the A-patch and the B-patch may neither be

matched nor share the same boundary weights. Surface approximation (Section 5.6)

will be applied to produce a new A-patch before applying Monge mapping. With the

latter method, during the surface fitting, we can adopt the orders, knots and boundary

weights from a selected B-patch, therefore it requires no surface approximation.

Generally, before applying Monge mapping, we need to do the following three

steps

Step 1: Degree elevation is used on the A-patch to match the orders.

Step 2: Translating, scaling and knots inserting are applied to match the u-knots

and v-knots of both A-patch and B-patch.

Step 3: Surface approximation is employed on the A-patch to match the weights

when necessary.

The second step requires a local refinement on both A-patch and B-patch. After

the second step, the number of the control points of A-patch is the same as the number

of the control points of B-patch. If the B-patch is provided by Eq.5.11, the A-patch

is formulated as

P(u, v) =

k∑

i=1

l∑

j=1

Pijw̃ijN
j,n
i,m

k∑

i=1

l∑

j=1

w̃ijN
j,n
i,m

. (Eq.5.15)

A new A-patch A(u, v), which meets the boundary conditions, will be constructed

(Section 5.6).

A(u, v) =

k∑

i=1

l∑

j=1

Aijw̄ijN
j,n
i,m

k∑

i=1

l∑

j=1

w̄ijN
j,n
i,m

. (Eq.5.16)
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5.5.3 C-patch formation

The B-patch B(u, v) and the A-patch A(u, v) share the same number (k × l) of con-

trol points. Monge mapping calculates the C-patch C(u, v) using Eq.5.12. Different

choices of the weights ŵij produce different shapes. Since we want to keep the conti-

nuity of the C-patch with nearby patches of the B-patch, we adopt the weights from

the B-patch, ŵij = wij .

5.6 Approximation for Monge mapping

From the B-patch B(u, v) and the A-patch P(u, v), surface approximation aims to

derive a new A-patch A(u, v), such that the A-patch satisfies the boundary conditions.

P(u, v) will be approximated by Ã(u, v) which is further approximated by A(u, v).

5.6.1 Approximations by boundary control points

Ã(u, v) is an approximation to P(u, v) satisfying Ãij = 0 on the boundary,

Ã(u, v) =

k∑

i=1

l∑

j=1

Ãijw̃ijN
j,n
i,m

k∑

i=1

l∑

j=1

w̃ijN
j,n
i,m

, (Eq.5.17)

Ã(u, v) can be derived by minimizing the following function

min

∫∫

R2

∣
∣
∣Ã(u, v) − P(u, v)

∣
∣
∣

2

dudv. (Eq.5.18)

5.6.2 Approximations by weights

w̃ij, the weights of Ã(u, v), may be different from wij , the weights of B(u, v), both

on the boundary points and the inner points. We will approximate Ã(u, v) to using

a new A-patch A(u, v) with weights w̄ij . There are three options for w̄ij:

i) No change with the weights of Ã(u, v) (w̄ij = w̃ij).

ii) The boundary weights changed (w̄ij = wij) and the inner weights unchanged

(w̄ij = w̃ij).
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iii) All the weights changed (w̄ij = wij).

For each option, we can solve the following problem to get A(u, v)

min

∫∫

R2

∣
∣
∣Ã(u, v) − A(u, v)

∣
∣
∣

2

dudv. (Eq.5.19)

This minimizes the distance between Ã(u, v) and A(u, v). We adopt option 3 in this

work.

5.6.3 Surface approximations

We need to solve two approximations (Eq.5.18 and Eq.5.19) to get the desired A-

patch. Both approximations only change N number of inner control points(N =

(k − 2m + 2)(l − 2n + 2)). We will show how to derive unknown inner control points

from Eq.5.19, and the other one is similar. We have

min

∫∫

R2

∣
∣
∣
∣
∣
∣
∣
∣
∣

k∑

i=1

l∑

j=1

Ãijw̃ijN
j,n
i,m

k∑

i=1

l∑

j=1

w̃ijN
j,n
i,m

−

k∑

i=1

l∑

j=1

Aijw̄ijN
j,n
i,m

k∑

i=1

l∑

j=1

w̄ijN
j,n
i,m

∣
∣
∣
∣
∣
∣
∣
∣
∣

2

dudv, (Eq.5.20)

where Ãij, w̃ij, w̄ij are provided. Suppose

Aij = (D0
ij , D

1
ij, D

2
ij), Ãij = (D̃0

ij, D̃
1
ij , D̃

2
ij).

We generalize Eq.5.20 to

min L = min
∫∫

R2

∣
∣
∣
∣
∣

k∑

i=1

l∑

j=1

Ãijw̃ijN
j,n
i,m

k∑

i=1

l∑

j=1

w̄ijN
j,n
i,m

−
k∑

i=1

l∑

j=1

Aijw̄ijN
j,n
i,m

k∑

i=1

l∑

j=1

w̃ijN
j,n
i,m

∣
∣
∣
∣
∣

2

dudv.

(Eq.5.21)

Thus, we have 3N different equations

∂L

∂Dk0

i0j0

= 0, k0 = 0, 1, 2, (i0, j0) /∈ Ψ. (Eq.5.22)
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From each (k0, i0, j0), we get

∂L

∂D
k0
i0j0

= 2
∫∫

R2

w̄i0j0N
j0,n
i0,m

k∑

i=1

l∑

j=1

w̃ijN
j,n
i,m·

(
k∑

i=1

l∑

j=1

D̃k0

ij w̃ijN
j,n
i,m

k∑

i=1

l∑

j=1

w̄ijN
j,n
i,m

−
k∑

i=1

l∑

j=1

Dk0

ij w̄ijN
j,n
i,m

k∑

i=1

l∑

j=1

w̃ijN
j,n
i,m

)

dudv = 0.

(Eq.5.23)

Since Ni0,m(u) is zero outside [ui0, ui0+m] and Nj0,n(v) is zero outside [vj0, vj0+n], re-

formulate the above equations into

ui0+m∫

ui0

vj0+n∫

vj0

w̄i0j0N
j0,n
i0,m

i0+m−1∑

i=i0−m+1

j0+n−1∑

j=j0−n+1

w̃ijN
j,n
i,m

i0+m−1∑

i=i0−m+1

j0+n−1∑

j=j0−n+1

D̃k0

ij w̃ijN
j,n
i,m

i0+m−1∑

i=i0−m+1

j0+n−1∑

j=j0−n+1

w̄ijN
j,n
i,mdudv

=
ui0+m∫

ui0

vj0+n∫

vj0

w̄i0j0N
j0,n
i0,m

i0+m−1∑

i=i0−m+1

j0+n−1∑

j=j0−n+1

w̃ijN
j,n
i,m

i0+m−1∑

i=i0−m+1

j0+n−1∑

j=j0−n+1

Dk0

ij w̄ijN
j,n
i,m

i0+m−1∑

i=i0−m+1

j0+n−1∑

j=j0−n+1

w̃ijN
j,n
i,mdudv.

(Eq.5.24)

Denote the left hand side of Eq.5.24 as fk0

i0,j0
and rewrite the right hand side as

i0+m−1∑

i1=i0−m+1

j0+n−1∑

j1=j0−n+1

Dk0

i1j1

(
ui0+m∫

ui0

vj0+n∫

vj0

w̄i0j0N
j0,n
i0,mw̄i1j1N

j1,n
i1,m

(
i0+m−1∑

i=i0−m+1

j0+n−1∑

j=j0−n+1

w̃ijN
j,n
i,m

)2

dudv



 .

(Eq.5.25)

Set the coefficients of Dk0

i1j1
be hi1,j1

i0,j0
, Eq.5.24 becomes

min(i0+m−1,k−m+1)
∑

i1=max(i0−m+1,m)

min(j0+n−1,l−n+1)
∑

j1=max(j0−n+1,n)

Dk0

i1j1
· hi1,j1

i0,j0
= fk0

i0,j0
. (Eq.5.26)
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Suppose

gi1,j1
i0,j0

=







hi1,j1
i0,j0

, |i1 − i0| ≤ m − 1, |j1 − j0| ≤ n − 1,

0, otherwise,

Dk0

j1
=
(
Dk0

m,j1
, · · · , Dk0

k−m+1,j1

)
,

Fk0

j1
=
(
fk0

m,j1
, · · · , fk0

k−m+1,j1

)
,

G
j1
i0j0

=
(

gm,j1
i0,j0

, · · · , gk−m+1,j1
i0,j0

)

,

Dk0 =
(
Dk0

n ,Dk0

n+1, · · · ,Dk0

k−n+1

)
,

Fk0 =
(
Fk0

n ,Fk0

n+1, · · · ,Fk0

k−n+1

)
,

Gi0j0 =
(
Gn

i0j0
,Gn+1

i0j0
, · · · ,Gk−n+1

i0j0

)
.

Eq.5.26 becomes

fk0

i0,j0
=

l−n+1∑

j1=n

k−m+1∑

i1=m

Dk0

i1j1
· gi1,j1

i0,j0

=
l−n+1∑

j1=n

Dk0

j1
·Gj1

i0j0
= Dk0 · Gi0j0.

(Eq.5.27)

Finally, Eq.5.22 can be rewritten in a matrix form

G · Dk0 = Fk0 , k0 = 0, 1, 2. (Eq.5.28)

where the matrix G is of size N × N .

Gi0j0 is the K-th row of G with K = i0 − m + (j0 − n)(k − 2m + 2). Since Gi0j0

contains only (2m − 1) (2n − 1) nonzero value at most, G is a sparse matrix. By

solving Eq.5.28, we can get Aij .

5.7 Patch-based Monge mapping

As shown in Eq.5.12, the control point Cij is derived by moving the control point

Bij along the direction dij and the coefficient αij decides the moving distance. For

complete control points, instead of changing the value αij for each control point Bij,

we adjust only three parameters to obtain different αij for different Bij .
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Figure 5.5: The rilievo and intaglio effects.

(a) η = −1.5; (b) η = −1; (c) η = −0.5; (d) η = 0.5; (e) η = 1; and (f) η = 1.5.

5.7.1 The coefficients

The control point Cij is derived from the control point Bij , which corresponds to the

point Ωij . The curvature descriptor θijs reflects the curvature of the area around Ωij.

If θijs is relatively high, a small change of the control point Bij may change the surface

a lot, hence αij should be smaller. Therefore we choose the normal distribution

αij = ηe−λθ2
ijs , η, λ ∈ R, λ ≥ 0, s = 0, 1, 2, 3, ... (Eq.5.29)

The three parameters η, λ and s decide the final shape of the C-patch.

5.7.2 The influence of parameter η

The parameter η affects the whole C-patch. Figure 5.5 shows an example of applying

the A-patch shown in Figure 5.2(b). Different η values lead to different C-patches. If

η is negative, the C-patch provides the intaglio effects (Figure 5.5(a-c)). Otherwise,

if η is positive, rilievo effects can be obtained (Figure 5.5(d-f)).

5.7.3 The influence of parameter λ

The parameter λ affects the portion of the B-patch where the mean curvature is

nonzero. Figure 5.6 shows an example of applying the A-patch shown in Figure 5.2(c).

Figure 5.6(a) is the B-patch whose mean curvature is nonzero only at the central part.
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Figure 5.6: C-patch under different values of λ.

(a) the B-patch; (b) λ = 0; (c) λ = 0.1; (d) λ = 0.2; (e) λ = 0.3; (f) λ = 0.4; (g)
λ = 0.5; and (h) λ = 0.6.

As the increase of λ, only the central part is changed. Compared with the features in

the central part of Figure 5.6(b), the central part of Figure 5.6(h) is smoother.

5.7.4 The influence of parameter s

The parameter s controls the neighborhood area of each point. It determines the

influence of the mean curvature, due to the fact that the mean curvature of each

point affects not only the corresponding point but also the nearby points. Figure 5.7

shows an example of applying the A-patch shown in Figure 5.2(a). Figure 5.7(a,b)

are two sides of the B-patch. The C-patch is derived with η = 1, λ = 0, s = 0 (Fig-

ure 5.7(c,d)). If we increase the η value from 1 to 3, the C-patch is self-intersecting

(Figure 5.7(e,f)) where the original curvature is high. By increasing the λ value to

0.1, we can eliminate the self-intersection but we lost the details of the high curva-

ture portion (Figure 5.7(g,h)). To change the shape in the high curvature portion,

we can increase the s value to 5 (Figure 5.7(i,j)). Therefore, by selecting a combi-

nation of η, λ and s, we can eliminate the self-intersection and achieve desire shapes

(Figure 5.7(k,l)).
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Figure 5.7: C-patch under different values of s.

(a,b) different views of the B-patch; (c,d) η = 1, λ = 0, s = 0; (e,f)
η = 3, λ = 0, s = 0; (g,h) η = 3, λ = 0.1, s = 0; and (i,j) η = 3, λ = 0, s = 5; (k,l)

η = 4, λ = 0.1, s = 11.

5.7.5 Cut-&-paste operations

In displacement mapping, displacement points are limited to move along its normal

direction. Our Monge mapping allows the control points to move along any predefined

directions. This is useful in cut-&-paste operations.

With the patch formation technique, we can easily identify a region or a feature

(Figure 5.8(a)) as an A-patch from an existing model. The identification can be

either done by selecting the region with two corner patches or with two corner points

(Section 5.5). This A-patch will be represented by a Monge patch (Figure 5.8(b)).

A B-patch (Figure 5.8(d)) can be similarly selected either using two corner patches

or two corner points. However, direct cut of the A-patch and paste it to the B-

patch may produce undesired results. For example, the selected A-patch can be much

bigger than the B-patch in terms of scale. This can be seen from the reference patch

(Figure 5.8(c)) of the A-patch and the green area with the B-patch (Figure 5.8(d)).

The parameter control technique can be applied here to adjust the shape. H-NURBS

mechanism enables cut-&-paste operations in an efficient and effective fashion.
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Figure 5.8: Cut-&-paste operations.

(a) a feature selected from a NURBS model; (b) the corresponding Monge patch
with the reference patch in green and iso-curves in red; (c) the reference patch and

its control points; (d) selected B-patch; and (e) the result of cut-&-paste operations.

5.7.6 Examples

We show some examples by using H-NURBS to achieve complex shape modeling.

We can maintain the hierarchy and describe the whole surface using H-NURBS. H-

NURBS based Monge mapping can be used to create special effects on existing models.

The Monge mapping becomes easy if the selected B-patch is planar. When the B-patch

is curved, we need to adjust three parameters in Eq.5.29. Different combinations of η,

λ and s may lead to different shapes. A comparison of Monge mapping and texture

mapping is listed in Figure 5.9.

Monge mapping can be used to either add detail to a surface or model an object.

Figure 5.10 shows how we use Monge mapping to create a dolphin model. The H-

NURBS created reaches level 2.

Figure 5.11 shows the Monge patches reconstructed from the images of the di-

nosaur fossils. These patches are mapped on to different parts of the torus (Fig-

ure 5.12). As a final example, Figure 5.13 shows how the Monge mapping is applied

on a curved surface. Since the curvature of the B-patch varies a lot, we need to select

a proper λ to avoid the self-intersections. The second row of Figure 5.13 shows the

head portion of the dinosaur fossil. The mouth portion is divided into two parts to
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Figure 5.9: Monge mapping vs. texture mapping.

the first row is Monge mapping and the second row is texture mapping.

Figure 5.10: Creating an H-NURBS model for a dolphin.

the first row labels all the B-patches and the second row labels all the C-patches.
(a) select a B-patch at level 0 and create the body; (b) select a B-patch at level 1

and modify the head part; and (c) select a B-patch at level 2 and modify the mouth
part.

avoid self-intersection, which is similar to the example in Figure 5.7, where the hand

print is divided into two.

5.8 Summary

In a 3D environment, NURBS is a proven tool for powerful shape modeling. NURBS

represented shapes, however, can be difficult to end users (CAD or media design-

ers) for local shape controls and local modifications to obtain a desired result due
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Figure 5.11: Monge patches for dinosaur fossils.

Figure 5.12: Torus of dinosaur fossils.

(a) Torus of dinosaur fossils; (b) H-NURBS patches; (c) the first fossil; (d) the
second fossil; (e) the third fossil; and (f) the fourth fossil.

Figure 5.13: Monge mapping on a curved surface.

the second row is the head part of the first row. (a) η = 0.2, λ = 0, s = 0; (b)
η = 0.4, λ = 0.4, s = 1; and (c) η = 0.6, λ = 0.4, s = 2.
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to its complexity. This chapter proposes Monge mapping using parameters to do

shape modifications basing on H-NURBS. Instead of direct modifying control points

or feature-based design (e.g., corner rounding, extrusion, etc.), Monge mapping al-

lows local shape construction by adjusting three parameters to achieve various effects.

The local shape construction is achieved by adding height field information from an

attaching patch (A-patch) onto a base patch (B-patch). The B-patch is the local

shape to modify and the A-patch can be derived from any 2D image or from existing

NURBS model. With such mechanism, cut-&-paste operations become easy.
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Conclusions and Future Work

This thesis discusses the modeling of four types of complex surfaces: molecular sur-

faces, minimal surfaces, composite surfaces, and H-NURBS surfaces. Figure 6.1 shows

the screen snap shots of four programs developed for the modeling of the four types

of complex surfaces. Each program is developed with:

• Implementation platform: Normal PC.

• Coding platform: Microsoft Visual C++ 2005.

• Operating system: Windows XP.

• CPU: Intel(R) Core(TM)2 Duo CPU T8100.

• RAM: 2GB.

6.1 Contributions

We develop a set of algorithms to explore the techniques for complex surface modeling.

Four types of complex surfaces are covered in this thesis. The followings are our

contributions:

6.1.1 Molecular surfaces

We have proposed a uniform approach to modeling three types of molecular surfaces.

Each molecular surface (vdWS, SES and SAS) can be created through topology mod-
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(a) (b)

(c) (d)

Figure 6.1: Screen snap shots of the four complex surfaces

(a) molecular surface; (b) minimal surface; (c) composite surface; and (d)
H-NURBS.

eling, boundary modeling and surface modeling. In the first step, topology modeling

creates two topological networks using a weighted α-shape. The networks are used to

maintain the neighboring relationship of the atoms. The vdWS network is used for

the vdWS. The solvent network is used for the SES and the SAS. For each network,

there are boundary vertices, edges and triangles. In the second step, three types of

boundary arcs are created: SES arcs, SAS arcs and vdWS arcs. SES arcs and SAS

arcs are created from the solvent network. From the vdWS network, vdWS arcs are

created. Singularity processing is used to further modify the SES arcs by removing

the self-intersections. In the third step, all the arc-bounded patches are modeled in

rational Bézier form. Each molecular surface is modeled as a collection of rational

Bézier surfaces.
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6.1.2 Minimal surfaces

We have proposed an algorithm to construct triangular meshes of minimal area from

all possible triangular meshes with the prescribed boundary and number of triangles.

The core techniques of the algorithm are three processes: area minimizing, Laplacian

fairing, and edge swapping. They are combined to provide an automatic approach.

The algorithm has been shown by the examples to be reliable and effective. On the

other hand, since these three processes can be done very fast, they can be used in

interactive environments. Especially in digital geometry modeling, after users sketch

the boundary and specify the level of detail, the three processes can then be interac-

tively performed in various orders to achieve users’ specific requirements.

6.1.3 Composite surfaces

An approach to generate a TB sub-patch from a TB surface is presented. Firstly, the

TB sub-patch can be formed by composition of the TB surface and the domain surface.

Secondly, an explicit formula for computing the control points of the composition is

derived. These new control points are the linear combinations of the control points of

the TB surface while the coefficients are given by the parameter points of the domain

surface. Thirdly, the geometric algorithm for the power points is analyzed. The power

points can be calculated using the Pyramid algorithms. Then the control points of

the TB sub-patch are the linear combinations of these power points. Several examples

are examined.

6.1.4 H-NURBS surfaces

In a 3D environment, NURBS is a proven tool for powerful shape modeling. NURBS

represented shapes, however, can be difficult to end users (CAD or media designers)

for local shape controls and local modifications to obtain a desired result due to its

complexity. This thesis proposes Monge mapping using parameters to do shape mod-

ifications basing on H-NURBS. Instead of direct modifying control points or feature-

based design (e.g., corner rounding, extrusion, etc.), Monge mapping allows local

shape construction by adjusting three parameters to achieve various effects. The
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local shape construction is achieved by adding height field information from an at-

taching patch (A-patch) onto a base patch (B-patch). The B-patch is the local shape

to modify and the A-patch can be derived from any 2D image or from existing NURBS

model. With such mechanism, the cut-&-paste operations become easy.

6.2 Future Work

6.2.1 Future work for molecular surfaces

In Section 2.8, a rectangular spherical patch, bounded by four arcs, is modeled as

a rational Bézier surface P(u, v) of degree (2, 4) following the idea of generalized

stereographic projection (GSP) [12, 13].

P(u, v) =

2∑

i=0

4∑

j=0

wijPijNi(u)Nj(v)

2∑

i=0

4∑

j=0

wijNi(u)Nj(v)

,

where Pij are control points and wij are weights. For each patch, there are 15 control

points and 15 weights. GSP method first describes the unit sphere as a rational surface

S of degree (2, 2) and derives a surface Q of degree (1, 2) from the four boundary

arcs. Finally, the spherical patch is obtained as a composition of S and Q. Such a

composition can not guarantee that all 15 weights are positive. It is useful to find out

one method to provide all positive weights.

The uniform model builds a network to derive a molecular surface. Since the

atoms always keep moving, the network of the molecule will dynamically change.

Consequently, the molecular surface will also dynamically change. With the current

method, every change of the molecule leads to the re-calculation of the network and

molecular surface. Therefore, it is necessary to find our a dynamic algorithm to

simplify the calculation.

The uniform model can be used in ligand-protein docking. We need to develop a

new docking algorithm. The algorithm may include some aspects: identify pockets,

locate the binding sites, define a new scoring function and take biochemical properties
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(hydrophobic/hydrophilic, electrostatic, etc.) of the molecule into account. Then, we

also have to compare our algorithm with the existing algorithms.

6.2.2 Future work for minimal surfaces

The algorithm for minimal surfaces has some theoretical issues we are yet to address.

One of them is the convergence analysis of the algorithm. Though the algorithm suc-

ceeds for all our testing examples, we do not know exactly what conditions guarantee

the convergence. Meanwhile, the existence and uniqueness properties of our minimal

surface is another issue. The existence of triangular meshes of minimal area can be

proved. In fact, the area functional (Eq.3.3) can be considered as a continuous real

function defined on R3(N−n) since we have N − n free vertices Pn+1, · · · , PN and each

vertex has three coordinates. The area cannot be negative and thus it is bounded

from below. Furthermore, when we look for a minimum, we can restrict the function

to a suitable compact subset such that if a vertex goes outside of the compact subset,

then the area functional becomes greater than some bound. Thus calculus affirms

that a minimum exists and it can be attained.

Applications of the algorithm to other fields are also possible and we are currently

studying the application to mesh fairing and modeling of human vessel network. In

our current algorithm, area minimization is equivalent to minimize the mean curvature

of each point to zero. More general, a constant mean curvature (CMC) problem is

to provide a surface with mean curvature at each point equal to a constant value.

This problem is equivalent to minimize the area functional while preserving volume.

Further development of our algorithm will be able to model CMC surface.

6.2.3 Future work for composite surfaces

Three boundary curves connected end-to-end on the domain defined a trimmed surface

from a triangular Bernstein-Bézier surface. The trimmed surface is a sub-patch of the

TB surface, and it can be obtained via composition. However, the control points of

the sub-patch can not be uniquely decided by the trimmed curves. Therefore, there

are lots of Bézier representations for the sub-patch. From the application point of
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view, by assigning three trimmed curves, we should give a solution. Coupling with

minimal energy conditions might be a future research direction to get an optimal

solution to trim a sub-patch from the triangular Bézier surface.

6.2.4 Future work for H-NURBS surfaces

The Monge mapping provides easy cut-&-paste operations. It can cut a shape from

one existing model (A-patch) and paste the shape onto a local area of another model

(B-patch). The result (C-patch) is dynamically control by three parameters. It will

not be easy to make A-patch and C-patch exactly the same during cut-&-paste op-

erations. Hence, a new mechanism for transplanting purpose can be a new research

area. Coupling with some techniques such as the surface blending and the Poisson

operator, it is possible to make the C-patch exactly the same as an A-patch if exact

shapes are pasted after the transplantation.
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metric Design, 3, 83–127.

[108] Chang, G. (1984). Bernstein Polynomials via the Shifting Operator. American

Mathematical Monthly, 91(10), 634–638.

[109] Farin, G. & Farin, G. (2002). Curves and Surfaces for CAGD: a Practical Guide.

Morgan Kaufmann Pub.

[110] Goldman, R. (2003). Pyramid Algorithms: A Dynamic Programming Approach

to Curves and Surfaces for Geometric Modeling. Morgan Kaufmann Pub.

[111] Chang, G. & Davis, P. (1984). The Convexity of Bernstein Polynomials over

Triangles. Journal of Approximation Theory, 40(1), 11–28.

[112] Catmull, E. (1974). A Subdivision Algorithm for Computer Display of Curved

Surfaces. Ph.D. thesis, The University of Utah.

[113] Heckbert, P. (1989). Fundamentals of Texture Mapping and Image Warping.

Master’s thesis, University of California at Berkeley.

148



REFERENCES

[114] Blinn, J. (1978). Simulation of Wrinkled Surfaces. In Proceedings of the 5th

Annual Conference on Computer Graphics and Interactive Techniques, (286–

292).

[115] Cook, R. (1984). Shade Trees. In Proceedings of the 11th Annual Conference

on Computer Graphics and Interactive Techniques, (223–231).

[116] Cook, R., Carpenter, L., & Catmull, E. (1987). The Reyes Image Rendering Ar-

chitecture. In Proceedings of the 14th Annual Conference on Computer Graphics

and Interactive Techniques, (102).

[117] Piegl, L. & Tiller, W. (1997). The NURBS Book. Springer Verlag.

[118] Blinn, J. & Newell, M. (1976). Texture and Reflection in Computer Generated

Images. Communications of the ACM, 19(10), 542–547.

[119] Gardner, G. (1985). Visual Simulation of Clouds. ACM SIGGRAPH Computer

Graphics, 19(3), 297–304.

[120] Miller, G. & Hoffman, C. (1984). Illumination and Reflection Maps: Simulated

Objects in Simulated and Real Environments. In SIGGRAPH 84 Advanced

Computer Graphics Animation seminar notes, volume 190.

[121] Fournier, A. (1992). Normal Distribution Functions and Multiple Surfaces. In

Graphics Interface’92 Workshop on Local Illumination, (45–52).

[122] Tong, X., Wang, L., & Wang, X. (2003). View-Dependent Displacement Map-

ping. ACM Transactions on Graphics, 22(3), 334.

[123] Oliveira, M., Bishop, G., & McAllister, D. (2000). Relief Texture Mapping. In

Proceedings of the 27th Annual Conference on Computer Graphics and Interac-

tive Techniques, (359–368).

[124] Williams, L. (1983). Pyramidal Parametrics. In Proceedings of the 10th Annual

Conference on Computer Graphics and Interactive Techniques, (1–11).

[125] Bartels, R., Beatty, J., & Barsky, B. (1995). An Introduction to Splines for Use

in Computer Graphics and Geometric Modeling. Morgan Kaufmann Pub.

[126] Cohen, E., Lyche, T., & Riesenfeld, R. (1980). Discrete B-splines and Subdivi-

sion Techniques in Computer-Aided Geometric Design and Computer Graphics.

Computer Graphics and Image Processing, 14(2), 87–111.

149



REFERENCES

[127] Lane, J. & Riesenfeld, R. (1980). A Theoretical Development for the Computer

Generation and Display of Piecewise Polynomial Surfaces. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2(1), 35–46.

[128] Forsey, D. & Bartels, R. (1988). Hierarchical B-spline Refinement. ACM SIG-

GRAPH Computer Graphics, 22(4), 205–212.

[129] Olsen, L., Samavati, F., & Bartels, R. (2005). Multiresolution B-splines Based

On Wavelet Constraints. In poster presentation at the Third Eurographics Sym-

posium on Geometry Processing.

[130] Olsen, L., Samavati, F., & Bartels, R. (2007). Multiresolution for Curves and

Surfaces Based on Constraining Wavelets. Computers & Graphics, 31(3), 449–

462.

[131] Gonzalez-Ochoa, C. & Peters, J. (1999). Localized-Hierarchy Surface Splines

(LeSS). In Proceedings of the 1999 Symposium on Interactive 3D Graphics,

(7–15).

[132] Yvart, A., Hahmann, S., & Bonneau, G. (2005). Hierarchical Triangular Splines.

ACM Transactions on Graphics, 24(4), 1374–1391.

[133] Yvart, A., Hahmann, S., & Bonneau, G. (2005). Smooth Adaptive Fitting of

3D Models Using Hierarchical Triangular Splines. In International Conference

on Shape Modeling and Applications, (13–22).

[134] Forsey, D. & Bartels, R. (1995). Surface Fitting with Hierarchical Splines. ACM

Transactions on Graphics, 14(2), 134–161.

[135] Chen, W., Cai, Y., & Zheng, J. (2008). Generalized Hierarchical NURBS for

Interactive Shape Modification. In Proceedings of The 7th ACM SIGGRAPH

International Conference on Virtual-Reality Continuum and Its Applications in

Industry, (24).

[136] Mørken, K. (1991). Some Identities for Products and Degree Raising of Splines.

Constructive Approximation, 7(1), 195–208.

[137] Strøm, K. (1993). Products of B-patches. Numerical Algorithms, 4(3), 323–337.

150


	Hardbound_chenwenyu2.pdf
	thesis_2011.04.20_hardcopy.pdf
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Motivations
	Surface decomposition
	Surface in hierarchy
	Surface from contours

	Objectives
	Molecular surfaces
	Minimal surfaces
	Composite surfaces
	Hierarchical NURBS

	Thesis organization

	Molecular Surfaces
	Prior art
	Research aims
	An overview of molecular surface modeling
	A uniform method for three types of molecular surfaces
	Networks, arcs, and patches

	Topology modeling
	Elements of a weighted -shape
	Solvent network
	Properties of the dual-layers topology

	Boundary modeling
	Stations
	SES saddle patches
	Boundary arcs
	Singularity processing

	Surface modeling
	Saddle patches
	Spherical patches
	Concave patches
	Convex patches

	The design of a modeling kernel for molecular surfaces
	Kernel structure design
	The vdWS
	The SAS
	The SES

	Bézier representations for sub-patches
	Generalized stereographic projection
	An arc as a Bézier curve
	A sub-patch in Bézier form

	Discussion and applications
	Summary

	Minimal Surfaces
	Background
	Preliminaries and notations
	Construction of optimal triangular meshes
	Area minimizing
	Laplacian fairing
	Edge swapping
	Algorithm

	Experimental examples
	Extensions and applications
	Summary

	Composite Surfaces
	Background
	Preliminaries and notations
	Triangle sub-patch from a triangle surface
	Domain surface
	Number of different construction points
	Geometric algorithm for power points
	Control points by power points

	Functions and algorithms
	Power index set
	Point index
	Power points
	Power points to control points
	Coefficients of the power points
	Complete control points

	Examples and discussion
	Summary

	H-NURBS Surfaces
	Prior art
	Texture mapping
	Bump mapping
	Displacement mapping
	Level of detail

	Research aims
	Hierarchical NURBS
	Refinement of a NURBS surface
	From H-spline to H-NURBS
	From B-patch to C-patch

	Monge patch in NURBS Form
	Local coordinates of the control points
	Monge patch and Monge mapping
	Boundary conditions
	Monge patch from an image
	Monge patch from a NURBS surface
	Postprocessing of an A-patch

	H-NURBS based patch formation
	B-patch Formation
	A-patch formation
	C-patch formation

	Approximation for Monge mapping
	Approximations by boundary control points
	Approximations by weights
	Surface approximations

	Patch-based Monge mapping
	The coefficients
	The influence of parameter 
	The influence of parameter 
	The influence of parameter s
	Cut-&-paste operations
	Examples

	Summary

	Conclusions and Future Work 
	Contributions
	Molecular surfaces
	Minimal surfaces
	Composite surfaces
	H-NURBS surfaces

	Future Work
	Future work for molecular surfaces
	Future work for minimal surfaces
	Future work for composite surfaces
	Future work for H-NURBS surfaces


	References


