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Abstract

Military Operations on Urban Terrain (MOUT) are de�ned as military actions that are

planned and conducted on a terrain where man-made construction a�ects the tactical

options available to the commander. This type of conicts is characterized by street-

by-street, room-by-room �ghting. Strategies employed in MOUT di�er immensely from

�ghting on other types of terrain, such as large deserts or jungles. The importance

of MOUT warfare is increasing due to rapid world-wide urbanisation. The limitation

of urban terrains means that soldiers are expected to function in small teams without

the support of air-power or tanks. To survive, soldiers rely on small squad tactics and

individual situational awareness. Modern armies may su�er substantial casualties in

MOUT warfare. Going into MOUT operations without proper preparation could be very

dangerous to the soldiers.

Extensive training conducted with computer simulations may be able to reduce ca-

sualties in MOUT warfare. Simulations can introduce the trainees to the combat stress

and shorten response time during actual combat. Although there had been considerable

e�orts and capital invested into this area, there are still many challenges facing existing

simulation systems. One of the key challenges lies in the lack of realistic human be-

haviours. Human-like realism can improve the training relevance of MOUT simulations

and allow the trainees to gain signi�cant operational bene�ts. Human characters are

represented by bots during MOUT simulations. It is important to develop intelligent

bots in order to generate human-like behaviours.
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Our philosophy is that an intelligent bot should not only be able to generate seemingly

realistic behaviors in some given situations, it should also behave like a human in the

sense that the decision-making and cognitive processes of a bot should be similar to

that of a human being. Therefore, our approach for human-like behaviours focuses on

achieving both procedural and end-result realism for intelligent bot behaviours. We

believe that by imitating human decision making and cognitive processes under various

tactical situations, human-like bot behaviours can �nally be generated.

After interviewing soldiers from the Singapore Armed Forces (SAF) and engineers

from the Defence Science and Technology Agency (DSTA), it is suggested that certain

behaviourial skills are extremely important for human soldiers during MOUT warfare.

These key skills are decision making, navigation and situation awareness. If the key

areas can be modelled accurately, then realistic behaviours will be generated. To generate

human-like behaviours, we study the decision making and cognitive process of the soldiers

in the identi�ed key skills. Subsequently, novel features are developed to improve the

realism of bot behaviours in MOUT simulation.

The novel features designed and implemented in this work includes a) a time critical

decision making framework, b)a computational model for situation awareness and c) an

autonomous navigation system.

This report summarizes our current work on these novel features. They are designed

to support our concept of closely imitiating the behaviours of humans to produce in-

telligent bot behaviours. We developed a time critical decision making framework for

MOUT simulations called SNAP. As MOUT scenarios are generally time critical, the

SNAP framework will be useful for generating realistic decisions during MOUT sim-

ulations. SNAP generates decision from incomplete information gathered under time

constraints. The information comes from the situation awareness of the bots. A realistic

computational model for situation awareness will greatly improve the quality of the infor-

mation provided to SNAP. Therefore, we produced a computational model of situation
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awareness for MOUT. With a proper computational mechanism, accurate information

can be gathered for decision making. Within the complex and dynamic MOUT environ-

ment, the human soldiers are greatly a�ected by spatial considerations and navigation

behaviours. To address the need for bot navigation, an autonomous navigation system,

Quartz, was built. Quartz employs qualitative spatial representation and hierarchical

spatial reasoning to enable human-like path planning. Finally, a MOUT virtual environ-

ment, Twilight City, was developed to demonstrate and evaluate the e�ectiveness of our

work.
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Chapter 1

Introduction

1.1 Background

Military Operations on Urban Terrain (MOUT) is the term used to describe any type of

military action where battles take place in an environment where man-made construction

or high population density is the dominant feature, such as a city or town [1]. This type

of conicts is characterized by street-by-street, room-by-room �ghting. MOUT warfare

is not new to soldiers. However, urbanised areas and urban populations have grown

signi�cantly during the past 10 years. The urbanisation had started to exert a much

stronger inuence on military operations. The worldwide population is shifting from a

rural to an urban environment. In 2008, the world reached an important milestone: For

the �rst time in history, more than half its human population, 3.3 billion people, will

be living in urban areas. By 2030, this is expected to swell to almost 5 billion. The

urban percentage of the world’s population is projected to reach 60 percent by 2030 [2].

The increase in urban population have made overcoming challenges of combat in built-up

areas an urgent and important need. Future battles are expected to be fought in urban

areas and much more work must be done to ensure the survival of our soldiers during

urban combat.

Urban combat operations may be carried out to take advantage of certain strategic

or tactical strength of the military force. Urban operations may also be executed to take

1



Chapter 1. Introduction

control or possession of a particular urban area to reduce the strategic advantages of the

enemy. Key urban areas holds the political power and wealth of a city or country. These

urban areas may come in the form of economic institutions, transportation complexes

and industrial bases. The capture of these key areas may generate decisive psychological

advantages. More often than not, these advantages tend to determine the success of the

overall war.

Military thinkers and analyst fully understands the dangers of �ghting in urban areas.

As early as 500 B.C., Sun Tzu [4] advised that \the worst policy is to attack cities,". His

advice had been quoted in many military writings and doctrine since then. Despite the

sensible advice, wars have been waged within cities repeatedly for many centuries.

A city is the greatest challenge to any tactical force. In cities, the space separating

friendly from enemy forces compresses. The zone is often thousands of meters in open

battle but only tens of meters in the urban maze of densely aggregated buildings, streets

and back alleys. The traditional advantages of �ghting outside the killing zone disap-

pear as cities forces soldiers to conduct close combat. The compartmented nature of the

urban environment fragments forces. Short lines of sight limit the e�ective ranges of

weapons and disrupts the e�ective use of precision-guided weapons launched from aerial

platforms. Compartmented urban terrain lessens to a signi�cant degree the advantages

of superior situational awareness and electronic-communications dominance. These chal-

lenges and obstacles that are not usually found on an open battle�eld. Large numbers of

civilians, culturally important structures, narrow streets and alleys causes huge di�cul-

ties. A soldier in MOUT must contend with all kinds of distractions and stresses as he

moves through a hostile city. They include di�erentiating hostile targets from innocents,

constantly watching for sniper �re and maintaining a state of heightened awareness at

all times [7].

Urban terrain creates great di�culty for movement. Streets channelize the ground

movement. As the routes are predictable, cities o�er ideal environment for preparing

2



Chapter 1. Introduction

ambushes. The Russian Army discovered this in Chechnya. The Chechen guerrillas

anticipated their armored assault into Grozny. The guerrilas then ruthlessly ambushed

the Russians from their sides, behind, and above [5]. The space constraints of the narrow

street immobilized the Russian armored forces. Thus, the Russians had great di�culty

in moving forward or backwards and to attack or retrograde.

Urban terrain poses a great challenge for military forces to achieve a reasonable level of

command, control, communications and intelligence (C3I). No other terrain types pose a

greater challenge. The density of urban areas hinders navigation. Most global positioning

system (GPS) navigation systems needs to connect with a minimum of three satellites

to �nd out the coordinates of a location. This is often not possible while the soldiers

are within the interior of buildings or blocked by tall buildings. Even if the ground unit

managed to pinpoint their exact location in a city, it is not easy to communicate this

information to their higher command. Radios require line-of-sight before transmissions

can be done. Line-of-sight is normally impossible as the soldiers are obstructed by urban

structures such as buildings.

As civilian casualties and collateral damage must be avoided as much as possible,

modern artillery and large-scale weapons are inappropriate for urban combat. For this

reason, urban �ghting bene�ts the defender. Attackers lose the advantage of �repower

and mobility. A city can ingest an invading army, paralyze it for weeks, and render

it ine�ective [8, 9]. Today’s military forces are constantly re�ning their strategies for

�ghting in large urban environments. An invading army that needs to conduct operations

in a hostile city must have a good grasp of MOUT strategies and tactics.

Another complex issue in MOUT warfare is the presence of civilians. Under time

constraints, it can be di�cult to distinguish civilians from militants. This is due to

largely similar dress code. There is a need for the soldiers to get familiar with the

characteristics of the urban population before the battle. When attacking, the attackers
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also tend to become more exposed than the defender as they use the open streets more

often, unfamiliar with the defenders’ secret and hidden routes.

1.1.1 Notable Urban Combats

� Stalingrad, 1942-43: Soviet defense of Stalingrad in World War II killed many

soldiers from the invading German army. They later established the conditions

for a Russian counter-o�ensive that could be decisive. According to historical

estimates, more than 1.5 million people was killed in the battle that lasted more

than 30 days.

� Berlin, 1945: During the World War II, the Soviets took more than two weeks

to take over Berlin. The casualties of this battle easily numbered more than ten

thousand.

� Manila, 1945: The Japanese navy defended the city against the advancing US

troops with poorly equipped and badly trained personnel. Despite their superiority,

US forces su�ered heavy losses. In addition, much of the city population and

infrastructure was destroyed.

� Jerusalem, 1967: Israeli forces captured East Jerusalem from Jordanian control.

Israel su�ered an estimated 400 casualties while Jordan recorded huge numbers of

deaths.

� Hue, 1968: This is one of the most famous battle during the Vietnam war. North

Viet Cong forces and Vietnamese Army captured Hue in South Vietnam. During

this battle, they defended the city for about three weeks against US and South

Vietnamese soldiers. More than 400 US Marines died. An estimated 5,000 other

�ghters on both sides died.
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� Mogadishu, 1993: Eighteen US servicemen in Somalia were sent to restore order

and safeguard relief supplies. However, they were killed in a �re �ght in the capital.

1.1.2 Types of Urban Operations

To assess the issues involved in MOUT, we need to di�erentiate between the di�erent

kinds of operations that the modern soldiers could be asked to performed during \urban

operations". It is also important to recognize the conditions that a�ects the e�ectiveness

of various urban operations. Once the various operations and their optimal conditions is

understood, the feasibility of armies dominating the enemies in urban combat can also

be assessed accurately.

The �rst type of urban operations is known as the \policing operations". Like peace-

time policing, prevention of violence outbreak is the key goal of the policing operations.

Peacekeeping operations carried out in Bosnia and Haiti are some examples of polic-

ing missions. Policing forces are normally challenged by small groups of poorly trained

opposition. The common adversaries are generally irregular groups who are less coor-

dinated than military units. As in peacetime policing, the most important objective of

the mission is to maintain presence within the area of operations, concentrate strong

forces to overwhelm the key insurgents rapidly and bring them away from the rest of the

population quickly.

The second category of urban mission, raids, has a broad range. Raids can have many

di�ering goals. For example, the soldiers could be tasked to evacuate an embassy, rescue

hostages, arrest key enemy personnels, seizing key facilities such as ports or air�elds. The

typical characteristics of such missions is that

� The soldiers to be inserted rapidly into the enemy territory

� A mission to be completed at a target location (e.g. assault on enemy forces)
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� The extraction of soldiers is done rapidly once the mission objectives is completed

The element of surprise is the key to success in a raid. In general, the doctrine is to

insert overwhelming forces into to the target location, complete the mission objectives

and extract the raid forces before the adversarial forces is able to react. Since the end

of the Cold War, there had been countless number of raids. Civilians have been rescued

from embassies in Sierra Leone and Albania. Raid forces took control of an air�eld

during the Panama invasion to achieve a key strategic advantage. American forces had

also conducted raids to arrest certain notable Bosnian Serb war criminals.

The third kind of urban operations is known as sustained urban combat. The primary

missions of the sustained urban combat are to defend a city, take control of a city area,

or eliminate enemy forces that are hiding within a city area. Since the �ghting in Hue

during the Vietnam War, American forces had not fought in sustained urban combat for

thirty years. The Russian assault on Grozny is the one of the recent example of sustained

urban �ghting.

Sustained urban combat could be fought against enemy forces with varying skill levels.

These skill levels may range from untrained civilians to well-drilled military unit. As

described above, it is considered as one of the toughest and costly kind of military

operations. It is an arena that even untrained, irregular forces can cause substantial

losses on an well-trained attacking military force in sustained urban combat.

The modern armies will send their forces into sustained urban �ghting so as to achieve

a wide variety of objectives. However, due to the signi�cant costs of such missions, it

is very unlikely that the military commanders would choose to �ght a sustained urban

combat unless the interests at stake is of paramount importance.
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1.2 Motivation

Casualties can be avoided during MOUT warfare by providing the soldiers with exten-

sive preparation. Traditional MOUT training requires trainee soldiers to go through a

series of live exercises in an urban environment. With live training, it is di�cult for the

trainers to record the individual performance and mistakes of all the trainees. Thus,

trainees could be repeatedly given the incorrect training values in terms of tactics and

expectations without being spotted by the trainers. Virtual MOUT training could be

used to supplement live training as virtual systems are able to capture the results of the

training. Trainers can analyze and correct trainees before putting them into live training

by the information collected during virtual training. In this way, the learning curve of

the solders can be accelerated. Signi�cant costs and time can also be saved as Virtual

reality (VR) training systems is inexpensive and convenient.

VR systems may be grouped into 3 main categories [119]:

(i) Non-Immersive (Desktop) Systems: Using the desktop system, the virtual environ-

ment is viewed through a portal or window by utilising a standard high resolution

monitor. Interaction with the virtual environment can occur by conventional means

such as keyboards, mice.

(ii) Semi-Immersive Projection Systems: A semi-immersive system will comprise of

a relatively high performance graphics computing system which can be coupled

with either a large screen monitor or a large screen projector system or multiple

television projection systems. Semi-immersive systems therefore provide a greater

sense of presence than non-immersive systems and also a greater appreciation of

scale. In addition, images can be provided that are of a far greater resolution than

head mounted displays and this implementation provides the ability to share the

virtual experience.
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(iii) Fully Immersive Head-Mounted Display Systems: An HMD uses small monitors

placed in front of each eye which can provide stereo images. Stereo images are

provided in a way that a slightly di�erent image is presented to each eye. The

major di�erence is that the two screens are placed very close (50-70mm) to the

eye, although the image, will be much further away because of the HMD optical

system. Fully immersive VR systems tend to be the most demanding in terms of

the computing power and level of technology required to achieve a satisfactory level

of realism and development is constantly underway to improve the technologies.

Major areas of research and development include �eld of view vs resolution trade-

o�s, reducing the size and weight of HMDs and reducing system lag times.

For virtual MOUT training, it is important to achieve tactical immersion for the

soldiers to attain situation awareness and perform the accurate response rapidly.

With this goal in mind, we note that the bene�ts of our model improves along

with the level of immersion. However, to achieve our aim of developing low-cost

virtual simulation environments, this thesis will describe the implementation of

techniques to develop realistic bot behaviours in non-immersive simulations. It

must be emphasized that our implementation should not be regarded as the distinct

boundary for future implementations. For example, it is possible to turn a desktop

system into a semi-immersive system by simply adding shutter glasses and the

appropriate software, or a fully immersive system by connecting an HMD.

Visiongain’s �ndings had stated that global government spending on simulation

and virtual training in 2008 reached a total of $7.9bn [6]. There are already a

large selection of commercial o�-the-shelf and customised simulation tools in use

for a broad range of applications. In their analysis, they found that the increas-

ing usage of simulation by military across the globe is due to a number of factors.

Military analysts are producing numerous strategies in order to bene�t from the
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latest technological advancements in the simulation sector. They also found that

armed forces will be relying more and more on simulation to full up the capability

gaps of their training programs over our forecast period. Although modern armies

are able to utilize the existing technologies to develop realistic graphics, sounds

and equipments for simulation training. After building the realistic virtual envi-

ronment, the developers need to populate the environment with bots which may

act as adversaries, soldiers or civilians. The value of virtual MOUT training on

the human soldiers is greatly inuenced by the realism of bots behaviours during

simulations [11].

Realism can be judged by the bots’ similarity to human behaviours. Bots exhibit-

ing realistic behaviours are known as intelligent bots. This is an important area

in MOUT simulations that needs much more work. Moore’s law predicts that the

processing power of computer to double every 12 to 18 months [10]. In foreseeable

future, the processing power of the computers may reach the level of the human

brain. However, human behaviours in MOUT simulations do not merely depend on

processing speed. To generate realistic behaviours, we need to understand how hu-

man soldiers behave during real life MOUT warfare and develop techniques to model

these behaviours. Therefore, this work seek to develop techniques and frameworks

for intelligent bots behaviours for MOUT simulation. Another important issue is

that we need to de�ne a method to measure the level of realism. As realism is

a matter of perception, we believe that a qualitative method will be more useful

than a quantitative method to measure realism. We also note that, our bots are

developed to simulate MOUT soldiers, the bots behaviours must achieve tactical

realism in terms of actions and strategies. Therefore, a e�ective method to measure

realism in our work will be to analyze the results of opinion surveys from trained

soldiers who participated in our simulation experiments.
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1.3 Objective

Virtual MOUT simulations seek to provide training to the soldiers in the areas of

individual tactics, adversary behaviours and terrain reasoning. This research seeks

to enhance the value of MOUT training by making the behaviours of the bots more

realistic. Our goal is not to produce a model to generate more e�cient and optimal

behaviours. Instead, the focus will be on achieving human-like realism. In terms

of realistic behaviours, our philosophy is that an intelligent bot should not only be

able to generate seemingly realistic behaviors in some given situations, it should

also work like a human brain in the sense that the decision-making process of an

agent should be similar to that of a human being. We believe that the end-result

realism of the behaviour model ultimately relies on the structural and procedural

realism.

Our objective is to develop an approach towards building realistic human be-

haviours for bots in MOUT simulations. The proposed approach should be de-

signed to work during time critical and dynamically evolving situations. With

this goal in mind, novel techniques will be used to develop various components

of human behaviours in MOUT. The main areas to be addressed in our work is

time critical decision making, situation awareness and autonomous navigation. In

particular, a time critical decision making framework, a computational model for

situation awareness and a autonomous navigation system will be produced. These

components will work in tandem to generate realistic human behaviours in MOUT

simulations.

5.
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1.4 Challenges

Generally, MOUT simulations do not consider time constraints as a factor during

decision making. This is unrealistic as MOUT situations is often time critical.

Given the luxury of time, soldiers may be able to perform a thorough cost-bene�ts

analysis and produce the best solution. However, soldiers in a time critical sit-

uations normally uses a di�erent set of criteria in order to generate a satis�cing

solution [12]. This is an issue that need to be addressed so that realistic decision

making for bots can be generated.

For decision making to be e�ective, the bots needs to have proper situation aware-

ness. Situation awareness plays a crucial role for human soldiers to make decisions

in Military Operations on Urban Terrain (MOUT). It is therefore important to ac-

curately model situation awareness in order to generate realistic tactical behaviors

for the non-player characters (also known as bots) in MOUT simulations. This is

a very challenging problem due to the time constraints in decision-making process

and the heterogeneous cue types involved in MOUT. Although there are some theo-

retical models on situation awareness, they generally do not provide computational

mechanisms suitable for MOUT simulations.

Another area found to be lacking in current MOUT simulations that the bots are

typically not able to navigate intelligently within a complex MOUT environment.

This is due to the dynamic changes occurring during runtime. These dynamic

changes to the environment a�ects the path planning of the bots and may render a

previously sound path to become invalid. As human soldiers are able to reasonably

adapt to these changes during missions, we seek to impart our bots with similar

abilities during navigation.
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To ful�ll our objective, we will work towards overcoming these challenges in the

areas of decision making, situation awareness and path planning of the bots.

1.5 Contributions

The major contributions of our research are the time critical decision making frame-

work, the computational situation awareness model and the autonomous navigation

system.

We designed a time critical decision-making framework called SNAP [13]. With

SNAP, the bots can utilize key cues and past experiences to form solutions rapidly.

The novel features of the framework include case-based reasoning (CBR) and ex-

pectations.

We also proposed a computational model of situation awareness for the bots in

MOUT simulations. The computational model aims to form up situation awareness

quickly with some key cues of the current tactical situation. It is also designed to

work together with SNAP to produce realistic tactical behaviours.

To handle the requirements for realistic navigation, an autonomous navigation sys-

tem, Quartz, is designed. Quartz is an autonomous navigation system for MOUT

simulations. Quartz contains features such as qualitative spatial representation and

hierarchical spatial reasoning which enable fast situation analysis and human-like

path planning.

To evaluate the e�ectiveness of the proposed implementation, we adapted a com-

mercial game engine to develop a virtual environment for MOUT simulations. This

innovative approach allows us to provide a high quality immersive simulation en-

vironment at low cost. This simulation environment is known as Twilight City .
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Twilight City is designed to support our major work by providing qualitative in-

formation required for SNAP. The spatial data structure of Twilight City is also

well suited for Quartz. Our success in building such a game engine based training

system was noted by the Defence Science and Technology Agency (DSTA) and a

version of our training system was integrated into their simulation systems.

1.6 Organization of Thesis

The report is organized as follows:

Chapter 1 presents the motivation, objectives, contributions for our research.

Chapter 2 provides the background on existing MOUT simulation technologies and

describes their limitations.

Chapter 3 discusses how SNAP can enable bots to imitate how humans make

decisions in time-critical situations.

Chapter 4 goes into the computational model of situation awareness and how bots

attain situation awareness during MOUT simulations.

Chapter 5 explains the fast situation analysis and human-like path planning that

can be performed with Quartz in the dynamic environment.

Chapter 6 provides detailed description of implementing the simulation techniques

and a short description on the construction of the Twilight City.

Chapter 7 discusses the experiments done on the proposed mechanisms and the

results obtained.

Chapter 8 draws the conclusions of our research and discusses some potential di-

rections for future work and enhancements.
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Background

This chapter contains the review of the MOUT simulations and relevant case stud-

ies. The key requirements for building intelligent bot behaviours for military sim-

ulations are also studied in this chapter. With these requirements in mind, we will

discuss the various techniques that may be applied to generate realistic behaviours.

Finally, a study is done on some key areas of our work. These areas include decision

making, situation awareness autonomous navigation and terrain reasoning.

2.1 Evolution of MOUT

In the entire history of the mankind, terrain has played a crucial role in inuencing

the success of battles. From amphibious warfare to �ghting in open terrain, to

navigating through dense forested areas, each terrain contains its unique set of

requirements and challenges.

In medieval times, most of the actual �ghting was done on battle�elds far from

city centers. A city’s only real military signi�cance was its forti�cations and its

garrison. A city will lose its military advantage once these defenses were taken

over.
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However, the world is rapidly becoming more and more urbanised in modern days.

Most �ghting now takes place within the streets and buildings of cities. These

urbanized areas are becoming hugely challenging military impediments. Apart

from possibly hindering a strategic route of approach towards the enemy area, the

population of a city poses major security, administrative, and logistics problems.

Urban operations is a modern kind of warfare that require an entirely new set

of strategies and tactics[94]. Tactics for �ghting in urban terrain are constantly

evolving as tough challenges arise. In the past, armies used to be able to gain com-

bat superiority from their sheer numbers, the �re power of their weapon systems,

heavy artillery and tanks. The modern armies now �nd that their old principles

and strategies do not apply during combat missions in urban environments. With

the unique cover and concealment provided by a city environment, the adversarial

forces can strike from all directions and angles and retreat into their concealment

within the civilian population rapidly. The presence of civilians in cities also a�ects

the e�ectiveness of airspace superiority and heavy artillery during urban operations.

Modern military forces are discovering that the most e�ective way to eliminate the

hostile elements residing within a city is to employ small squads of well-trained

and technologically superior soldiers that excel in room-to-room combat as shown

in Figure 2.1. It is these carefully coordinated squads of soldiers that will deter-

mine the success in the modern urban battle�elds [95]. This approach poses great

danger for the attacking forces and only highly skilled soldiers functioning in well

coordinated teams should be allowed for such combat missions.
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Figure 2.1: Soldiers �ghting in urban environment

2.2 MOUT Training through Computer Simula-
tions

Cost-e�ective methods for developing soldier decision-making and leadership skills

are especially needed in urban operations. One solution is to conduct a portion of

this training, such as mission rehearsals, in virtual environments through the use of

individual combatant simulators [14]. With e�ective MOUT simulations, soldiers

can be introduced to the stress of combat and familiarize themselves with urban

combat tactics without exposing themselves to life-threatening situations. Research

has been successful in demonstrating that virtual simulation can adequately support

the performance of a variety of activities and is perceived to be e�ective for training

both individual and collective tactical behaviours [96].
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2.2.1 Case Study: Full Spectrum Leader

Full Spectrum Leader (FSL) is a PC strategy game employed as a training tool to

simulate battle�eld co-ordination at the company level. The training aid spawned

from a technology partnering agreement between the US Army and Singapore

Armed Forces. The game is designed to develop the infantry commander’s cog-

nitive skills, tactical decision-making, resource management and adaptive think-

ing through various scenarios. These scenarios are focused on asymmetric threats

within peacekeeping and peace-enforcement operations. It allows the user to un-

derstand the importance of terrain analysis and the potential fratricide situations

that can occur during a battle.

Key Features

� Custom designed to reect current operational tactics

� Head-to-Head multiplayer capability via LAN.

� User-level editor for scenario customization.

� Instructor evaluation mode for curriculum-based usage.

FSL is developed by the Institute of Creative Technologies (ICT) in California,

US. ICT was formed by the US Army and the University of Southern California,

bringing together the Hollywood �lm community and Silicon Valley-based electronic

games developers to work on state-of-art immersive training simulation. Besides

the US Army, the Singapore Army is one of the few users to use FSL.

2.2.2 Case Study: Close Combat - Marines

Close Combat: Marines (CSM) is the �rst version of Close Combat series made

speci�cally for military training purposes. The US marines uses CSM as an inex-
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Figure 2.2: Full Spectrum Leader

pensive and easy-to-use tool to teach a Marine leader the dynamics of tactics. It

allows a soldier to �ght hundreds of scenarios, make thousands of tactical decision,

experiment with di�erent tactics and learn from his mistakes.

Key Features

� Repetition - In order to understand and identify patterns, Marines need hun-

dreds of simulated examples. In order to internalize lessons, Marines need to

�ght an active enemy and su�er from their own tactical mistakes. Through

repetition, the basic lessons become so well known that advanced tactics

and experimentation can be attempted. Only with the experience of �ght-

ing through a hundred enemy positions can a leader look for weaknesses in a

given position and initiate creative ways to exploit that weakness. Reading
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the subtle aspects of a tactical situation is a learned skill that requires far

more practice than is currently available outside of a simulation.

� E�cient use of time - Schools and units schedule training time. Weekends,

nights, travel time, and dead time can all be used for individual simulation

training. This time is usually far more plentiful than that allocated to formal

learning environments. In the operating forces, especially, opportunities for

individualized learning should be maximized.

� Peer competition -Marines can �ght each other on a simulated battle�eld.

These tactical learning experiences, heightened by professional rivalry, can

serve as a catalyst for doctrinal discussions, an opportunity to build leader

cohesion, and a chance to compare tactics and techniques among professionals.

Close Combat simulation is a great tool while deployed either on ship, exercise,

or overseas.

2.3 Behaviour Modeling in MOUT Simulations

Both FSL and CSM provides extremely immersive and engaging simulations for

training. Computer games technology are used to develop FSL and CSM. Like in

computer games, the strengths of FSL and CSM lies mainly in the realism of their

graphical aspect and game play. Since the challenge for graphical realism had been

largely addressed, we believe the next step forward is to improve the behaviours of

the bots during simulations.

A behaviour is a set of responses to external events (often referred to as the \stim-

ulus") that is designed to reach an end goal. Each behaviour has been designed

to handle di�erent responses to changing stimuli. Properly designed behaviors will

counter all possible responses in order to carry through to the desired result.
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George and Cardullo did work on modelling behavioral representation in synthetic

forces. These models should incorporate the spectrum of human bio-mechanical,

physical, psychophysical and psychological parameters, responses and interactions.

Synthetic battlespaces composed of physical (aircraft, sensors etc.), environment

(weather, dynamic terrain etc.) and these human models. Currently the human

models are not as sophisticated as the physics based physical and environmental

models. This is in part due to the fact that human behaviour represents highly

complex nonlinear and adaptable systems. Conventional approaches of state ma-

chines and expert systems have been applied to computer generated forces (CGF).

The result in some cases has been synthetic force portrayals that are not totally au-

tonomous, are unrealistic and do not support the full DoD requirements for analysis

and training.

Realistic bots behaviours can increase training value during MOUT simulations.

Laird and Wray explored the bene�ts of building intelligent bot behaviours [15].

They stated that intelligent behaviours will be able to provide variability of be-

haviors, tactical considerations, situation awareness and group coordination during

MOUT training. Our work targets similar areas of bene�ts as Laird. Ourston

and Reece shared their experiences that occurred during the development of the

Dismounted Infantry SAF (DI SAF) portion of the Distributed Warrior Network

(DWN) project [16]. They discusses some of the technical issues involved in ade-

quately modeling arti�cial combatants when combined with virtual combatants in

the same simulated battle�eld environment. Furthermore, they made recommen-

dations on future improvements on current MOUT simulations. These recommen-

dations include inside-building behaviours, visual processing, movement, damage

models and terrain reasoning. Although they are working on di�erent projects,

Laird and Reece had both highlighted the need for more realistic bot behaviours
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in MOUT simulations. This concurred with our view that much more work needs

to be done to produce intelligent behaviours in MOUT simulations.

2.4 Impact of Human Factors on Military Simu-
lation

Human factors is a critical consideration during military simulations. Military

models often prefer to concentrate on hard numbers. Although a warship can be

treated as a single entity with speci�ed parameters such as speed, armour or �re

power, urban warfare often depends on the behaviours of small squads or individual

soldiers. In these situations, training, morale, intelligence, and personalities (lead-

ership) will inuence the outcome of the combat. The sheer number of variable

creates a big problem for urban warfare simulation. Commercial wargames had

often tried to take these factors into account. A valid criticism of some military

simulations is that human factors are often ignored. This could be due to the fact

that they are very di�cult to model accurately. Furthermore, few commanders like

to accept that his troops may disobey him. To overcome this shortcoming, military

analysts had considered civilian wargames as being more realistic, in their approach

to military simulations. In 1980 , James F. Dunnigan was invited by the Pentagon

to work with Science Applications Incorporated (SAI) and Rand on wargaming

simulations. He was a prominent military analyst and founder of Simulations Pub-

lications Incorporated. With this team, they developed a more realistic military

simulation model known as SAS (Strategic Analysis Simulation). This model is

still being used.

Military simulation models should be used carefully. They generally attempt to aid

the decision-making and preparation process. Putting too much trust in inaccurate
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military simulation can be very dangerous. The Vietnam War was intensively

gamed between 1964 and 1969 in a series of simulations codenamed Sigma. During

this period of time, great emphasis was placed in the value of military simulations.

This can be attributed to the proven success of operations research during World

War II and the increasing capacity of modern computers in processing enormous

amount of data. When Nixon took over government in 1969, all the data relating

to both countries was fed into a computer model. The information included total

population, gross national product, military strength, manufacturing output, tanks

and aircrafts. The computer model was used to determine when can US win the

war. To the surprise of the analysts, the computer model had infamously predicted

that US should had won the war at 1964.

2.5 Behaviour Modeling for Military Simulations:
Requirements for Intelligent Bots

To produce intelligent behaviors, we intend to work on a few key areas. These areas

include decision making, autonomous navigation, terrain reasoning, expectations

and tactical behaviors.

The Defense Modeling and Simulation O�ce of the U.S. Department of Defense

requested the National Research Council (NRC) to set up the Panel on Modeling

Human behaviour and Command Decision Making: Representations for Military

Simulations. The role of the panel was to review the current state of the art in

the human behaviour representations for military simulations. The key emphasis

of their review are in the important areas of human behaviour simulation such

as cognitive and organizational behaviour. The panel was made up of experts

in organizational behaviour, individual behaviors, decision making, computational
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modeling, human factors and military simulations. The project was done over a

period of 18 months. The panel argued for the need to create models of human be-

haviour, summarized a rigid methodology for ensuring the consistent development

of useful models and identi�ed the psychological process models that can help in the

representation of realistic human-inuenced action. The panel also did a detailed

analysis of the applied and theoretical research in human behaviour modeling at

the individual, unit and command levels [18].

The panel produced a �nal report that states that, for the modeling of individual

combatants, it is important to represent the processes underlying the observable

behaviour, including attention, decision making, perception, situation awareness

and planning. The report further supports the need for our key areas of work and

the potential bene�ts that they may bring.

Tambe [19] have provided some insight into building intelligent behaviours for sim-

ulation environments. Tidhar considered the insights and produced a more detail

set of requirements. He identify four types of requirements necessary for a model

of a human involved in military scenarios: (1) ability to interact with the environ-

ment; (2) ability to exhibit rational behaviour when reasoning about the world; (3)

ability to exhibit irrational behaviour; and (4) ability to provide a good simulation

environment.

Based on their work, human use a variety of techniques and methods when reasoning

about the world. These include building and maintaining situation awareness,

planning, pursuing multiple goals simultaneously, and interleaving pro-active and

reactive behaviours. Due to these considerations, Tidhar require that the military

simulation system include the following features:

(a) Building and Maintaining Situation Awareness: The ability to analyze the

model of the world and identify particular aspects that require a response.
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(b) Decision Making and Reasoning: The ability to perform complex reasoning,

e.g., make decisions, plan, perform spatial and temporal reasoning, etc.

(c) Simultaneous Goals: The ability to hold multiple goals and interleave their

achievement.

(d) Proactive and Reactive: The ability to react to the changing world and to

interleave pursuing goals and reacting to the world.

(e) Explanations: The ability to provide clear and high level explanations of the

way reasoning is performed.

(f) Levels of Knowledge: The ability to model di�erent types and levels of knowl-

edge (e.g., knowledge about the world and about how to behave in the world).

(g) Real-Time Performance: The ability to perform activities in a time scale com-

parable to human activity.

The requirements speci�ed by Tambe and Tidhar coincide with the requirements of

this project. This further con�rms our research direction of developing intelligent

bot behaviours.

2.6 Decision Making

Decision making is a major component of our research. In particular, time critical

decision making is important to the military domain. In this section, we will review

the work done in developing human-level decision making before discussing time

critical decision making. We recognize the fact that there are a lot of di�erent

decision making approaches. For the purpose of this research, we are not aiming

at providing an exhaustive review on all decision making approaches. Therefore,

we will focus on some inuential approaches that have been applied in military

simulations.
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2.6.1 Fuzzy Logic

Fuzzy logic is an emerging �eld of theory and application that can be very important

for the control of systems. This is especially useful for those systems which cannot

be described mathematically or which are nonlinear in nature. The strength of

fuzzy logic lies in its heuristic approach to control. Instead of requiring complex

mathematical equations which describe a system’s behaviour, fuzzy logic allows a

set of common sense, plain-English rules to generate a desired system response.

Fuzzy logic is a form of multi-valued logic derived from fuzzy set theory to handle

approximate reasoning. In contrast to fuzzy logic, binary sets with binary logic

hold variables should have a membership value of only 0 or 1. In fuzzy set theory

with fuzzy logic the set membership values that comes from the range (inclusively)

between 0 and 1. Therefore, the degree of truth of a fuzzy logic statement can

range between 0 and 1 and is not constrained to the two truth values true (1), false

(0) as in classic predicate logic [26].

The �rst paper on fuzzy logic (de�ned as a multivalued logic based upon set theory)

was published by R.H. Wilkinson in 1963. He �rst proposed the concept in his

1961 Electrical Engineering master thesis [28]. He started to rede�ne the earlier

multivalued logics in terms of set theory. His main purpose was to demonstrate how

analog logic can be used to simulated any mathematical functions using hardwired

analog electronic circuits. He did this by building a number of linear voltage ramps.

These ramps were then �xed in a \logic block" using diodes and resistor circuits.

The \logic block" simulated the maximum and minimum fuzzy logic rules of the

AND and the INCLUSIVE OR operations. In 1965, Lot� Zadeh popularized the

fuzzy logic of Wilkinson’s work without using the electrical circuits set-up. The

term \fuzzy logic" emerged in the development of the theory of fuzzy sets by Lot�
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Zadeh [27]. To date, fuzzy logic has been applied to diverse �elds from control

theory to arti�cial intelligence. Despite its broad usage, fuzzy logic still raises many

questions among statisticians who prefer probabilistic logic and control engineers

who prefer traditional two valued logic.

Fuzzy provides an extremely simple way to draw de�nite conclusions from vague,

ambiguous or imprecise information. In a sense, fuzzy logic closely imitates the hu-

man decision making process with its ability to handle approximate data and �nd

precise solutions. Classical logic demands in-depth understanding of a particular

system, mathematical formulas and precise numerical values. However, fuzzy logic

incorporates an alternative manner of thinking which allows the modeling of com-

plex systems using a higher level of abstraction based from expert knowledge and

experience. Fuzzy logic enable designer to express this knowledge with subjective

concepts such as hot, hard or very bright.

Fuzzy logic shows some potential for the generation of human-level AI. Humans do

not normally think in absolute terms. Although drivers are taught to signal a turn

precisely 100 feet before the intersection, people had never got out on the road and

measure the exact distance.

The same is true with military or strategic axioms. It is \good" to get behind an

enemy. It is good to cut an enemy’s lines of supply and communication. How-

ever, there are no precise mathematical de�nitions for the terms. It is reasonable

to expect that fuzzy logic will play an important role in the human-level AI de-

velopment. The Department of Defense has funded many computer war games

(WARSIM, JWARS, TACOPS). However, they are generally lacking in strategic or

even tactical AI.

In the simulation of the command and control area, fuzzy logic had been used

for situational assessments and decision making. An example is work done by
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the JWARS o�ce to create autonomous, heterogeneous agents for the purposes of

better di�erentiating unit behaviors at the lower levels of JWARS [105]. The agents

represent a wide range of military units and use a knowledge base of facts, rules,

and associated actions to reason about their own situation, the enemy situation,

and the environment.

JWARS has developed a methodology using fuzzy logic for generating a rich set

of heterogeneous units using agents that operate within a hierarchical organization

and act cooperatively to accomplish large scale missions. Individual units can each

have their own set of rules that interpret the local information, consider constraints

placed on them by higher authority, assess the local situation in the context of

the larger situation using their own rule sets, and generate appropriate actions or

behaviors as the scenario progresses [106].

While JWARS bene�ts high-level strategic commanders, our work is focused on

aiding the squad-level tactical commanders. The main di�erences in requirements

include time latency during decision making, bot behaviours and heterogeneous

cues representation.

There are potential bene�ts in applying fuzzy logic to our work. A possible area

that may require fuzzy logic is for the bots to attain situation awareness during

MOUT simulations. The complex MOUT environment means that our bots need to

handle heterogeneous cue types and generate situation awareness from them. Fuzzy

logic could aid in the comprehension stage of generating situation awareness. Some

limitations of fuzzy logic includes stability and learning capabilities. Since fuzzy

logic is not formal, it is di�cult to ensure that a fuzzy system will function correctly.

Since fuzzy systems has also no memory to learn during problem solving and cannot

learn membership functions, we do not aim to impart learning capabilities in this
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research. The focus of our current work is to emulate the behaviours of expert

soldiers in MOUT simulations.

2.6.2 Hierarchical AI

Hierarchical approaches to developing AI systems is not a new idea. For example,

Brooks subsumption architecture uses a hierarchy of behaviours within a single

agent [29]. The application of hierarchies for military organisation is considerably

older. Throughout human history, armies have long been organised along very

strictly de�ned hierarchical principles. The ancient Roman army is a well-known

example.

Hierarchies are also very natural control structures for use in games. They allow the

development of separate AI systems for controlling high level strategic behaviours

of the army and for low level tactical behaviours which can be applied to individual

units [30]. Hierarchal AI can also be used more generally in other games where

very large organisations are modelled [31]. Games which have small groups of units

under some form of group command can also bene�t from hierarchical AI [32]. In

an AI hierarchy, the uppermost level will be some form of command agent with

overall strategic control. The lowest level will be an agent AI responsible for the

control of a individual soldier and there may be any number of intermediary layers

of AI representing command over groups of individual soldiers (such as squads) and

progressively larger groupings of combat units.

For control of small squads, Sterren considers a de-centralized approach whereby

squad agents communicate and form emergent strategies, such as for �re-and-move

behaviours. The advantages and disadvantages of the decentralized approach are il-

lustrated using an example of having the squad wait in ambush. The key limitation
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appears to be that there is no single AI responsible for the strategic deployment of

the squad. A solution to this is presented in the following paper, [32]. Sterren mod-

i�es the architecture from a self-organising one into a simple hierarchical one. This

presents two distinct command styles, Firstly, the authoritarian style, where the

member agents always perform the actions they are commanded to do. Secondly,

the coaching style, where a higher level squad AI sends requests to the bots. These

bots then evaluate them according to their current circumstances before deciding

which action to perform. It is suggested that a third style is a hybrid of the above

two styles might be the most successful.

At the top level is a human or AI game player, which makes the highest level deci-

sions. Below the top level, there are AIs for individual armies, divisions, brigades,

companies, platoons and squads as required by the sizes of the forces involved and

the complexity of the game. Finally, at the bottom level of the hierarchy are AIs

to control the behaviours of individual soldiers.

Ramsey [34] presents a similar approach, less speci�cally focused on military or-

ganisation, which he names it the \Multi-Tiered AI Framework", MTAIF. It con-

tains four levels of intelligence: strategic, operational, tactical and individual unit.

Within this generalised framework, the AI structure is quite similar to that advo-

cated by Kent[30]. However, the tasks to be carried out by the di�erent units have

greater variety. They include resource gathering, city and empire building. This

paper provides much discussion to solving the problems of message passing and

coordination with large hierarchies. One notable aspect of these AI architectures is

the absence of any form of learning. One of the rare instances of automated learning

during war games simulation is seen in an online report [35]. This report presents

work on developing command agents for strategy simulations using Cognitive Work

Analysis and Machine Learning approaches.

29



Chapter 2. Background

A limitation of hierarchical reasoning is that the solution is not chosen based on

external objective measures. In fact the solution is chosen based on the number of

remaining solutions available. Therefore, the quality of the solution could drift into

poorer solution due to dynamic changes in the environment. We will need to ensure

our architecture can mitagate this risk. As discussed in this section, hierarchical

AI is important in modelling the human-like behaviours. The later sections will

discuss how hierarchical structures may be crucial in forming our frameworks for

decision making or autonomous navigation.

2.6.3 Military Decision-Making Process

The military decision-making process (MDMP) is a single, established, and proven

analytical process [107]. The MDMP is a tool that assists the commander and sta�

in developing plan and estimates. Formal problem-solving process may begin once

a new mission is received. While the MDMP seeks to produce an order immedi-

ately, the analytical aspects of the MDMP continue at all levels during operations.

The MDMP helps the commander study the battle�eld situation and reach logical

decisions. The process helps them apply thorough, sound judgment, good logic,

and professional knowledge to achieve a solid decision. The full MDMP is a se-

quential, deliberate and time-consuming process. It is only used when adequate

planning time and su�cient sta� support are given to study numerous friendly and

enemy courses of action (COAs). This typically occurs when developing estimates

for the commander, formulating operation plans and during sta� training designed

speci�cally to teach the MDMP. The MDMP is shown in Figure 2.3.

However, the MDMP cannot produce plans and orders quickly enough for the squad

level soldiers. Theoretically, the MDMP enables a commander to employ tactically

sound plans leading to success on the battle�eld. However, recent research reveals
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Figure 2.3: Military Decision-Making Process
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that the MDMP actually has the opposite outcome in most cases. The MDMP is

a sta�-driven planning that inadvertently isolates the ground commander from the

plan formulation.

A group of research scientists from Klein Associates in Fairborn, Ohio, conducted

studies of military organizations and planning. It made some surprising �ndings.

First, with its focus on the sta� process, the MDMP separated the unit commander

from planning in most of the reviewed cases. Thus, junior sta� o�cers, despite

being the least experienced individuals, had to derive a workable plan. Second,

contrary to conventional belief, the MDMP produced cautious and rigid plans that

were not suited to the dynamic demands of the situation. Researchers attributed

this to blind compliance with the doctrinal planning templates. Lastly, the MDMP

slowed an organizations operational speed and a�ected its ability to react to rapidly

changing situations. In MOUT situations, decisions must be made rapidly as the

environment is constantly changing. Therefore, MDMP is not a suitable approach

for MOUT simulations.

2.6.4 Recognition primed decision

The recognition-primed decision (RPD) model [40] proposed by Gary Klein em-

phasizes the role of experiences in human’s decision-making process in various time

critical situations. The model also suggests that humans make quick decisions in

such situations by matching the current situation with past experiences and select-

ing solutions to similar situations. Similar ideas were also advocated in [41, 42, 43].

Recognition-primed decision (RPD) is a model of how people make rapid and e�ec-

tive decisions when faced with complex situations. In the RPD model, the human

subject is expected to develop a probable course of action. The proposed course of
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action is then compared to the constraints enforced by the situation and the �rst

course of action that is not rejected will be selected as the solution. This technique

is rapid but may result poor decisions in certain unique or misidenti�ed circum-

stances at times. Nevertheless, this approach has its bene�ts and does seems to be

a valid model to simulate the human decision-making process.

The RPD model identi�es a possible solution to a situation as the �rst one that is

retrieved immediately from previous experience. RPD develops a decision in two

manners. Firstly, the course of action that is reasonable is recognized. Secondly,

the course of action is evaluated through imagination to determine if the necessary

actions are reasonable.

In the RPD model, experience plays an important role in the decision-making

processes. RPD reveals a critical di�erence between how experts and novices handle

recurring situations. Experienced individuals can typically recognise the situation

better and generate quicker decision. This is because the situation may match a

previous situation that they had been through before. Without the bene�t of such

experiences, novices are forced to consider a huge range of possibilities. Generally,

they tend to select the �rst course of action that should be able to work. The

inexperienced individuals also have to apply the method of using trial and error

with their imagination.

Recognition primed decision making closely match the decision making process of

the commanders in various organizations that are involved in time critical situations

such as �re �ghting, search and rescue missions, police raids and other emergency

operations. The RPD model can be used to simulate the decision making processes

of both the experienced and the inexperienced personnel. The recognition primed

decision life threatening situations. The studies developed from the model can be
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used as samples for the organizations to predict the possible outcomes of important

operations.

Although RPD shares similar goals as the current research, it is not ideal for MOUT

simulations. Firstly, RPD is not built to handle the time constraints during MOUT

simulation. Secondly, there is no computational model for RPD in MOUT simula-

tions. A model that can address these weaknesses is needed.

2.6.5 SOAR

Soar is a symbolic cognitive architecture, created by John Laird, Allen Newell

and Paul Rosenbloom at Carnegie Mellon University [112]. It provides a method to

develop realistic cognition through a computer programming architecture for human

level AI. Since its beginnings, it has been commonly applied by AI researchers to

develop various aspects of human behaviors.

The Soar project aims to be able to manage the full suite of capabilities of an intel-

ligent bot. With the proper capabilities, the bots should be able to handle not only

the routine tasks but also the challenging open-ended problems. In order to achieve

the goal, it needs to be able to generate data representations and use the relevant

information to generate the necessary knowledge in their correct form (such as pro-

cedural, declarative, episodic). Soar should also address the group of mechanisms

representing the process of the human mind. An important principle for the Soar

architecture is the idea that general intelligence is best simulated through a sym-

bolic system. This is called the physical symbol system hypothesis. The principles

of cognition guiding Soar architecture can be linked to the psychological theory

proposed by Allen Newell in Uni�ed Theories of Cognition [113].

In Soar, all long-term knowledge is encoded as production rules, while the cur-

rent situation (perception, situational awareness, mission information, and goals)
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is encoded in declarative data structures comprising its state. Problem solving is

basically an exhaustive process of searching through a pre-de�ned problem space

(the repository of various states that can be accessed by the system at a given time)

to �nd a goal state (which holds the solution to overcome the current problem).

This is achieved by constantly searching for the states that can help to bring the

system nearer to its intended goal gradually. Each search is made up of a decision

cycle containing an elaboration phase. The elaboration phase consists of a variety

of knowledge on the problem that exist on Soar’s working memory and a decision

procedure. This decision procedure weighs the �ndings from the previous phase

and assigns preferences to decide the correct action to be taken. The rules in Soar

match against the state and propose operators to apply to the current situation.

Primitive operators send commands to the motor system. Complex operators are

dynamically converted to subgoals that are then pursued by once again having rules

select and apply operators in the subgoals, eventually resulting in operators that

execute primitive actions.

Soar seeks to achieve general intelligence for agents in various situations. However,

there is no claim that this ultimate goal has already been achieved. Researchers

who are familiar with the system recognize that Soar is still lacking in some key

aspects of intelligence. Some examples of missing capabilities include automated

generation of new data representations during simulation and application hierar-

chical clustering to enable rapid cognition. Furthermore, the application of SOAR

in MOUT simulations is still limited at the moment. Although Wray employed

the SOAR architecture to create the MOUTBots, his main focus was to build bots

that can exhibit variable behaviours as a result of a random probability function.

While his aim was to generate variable behaviours, our work is to generate realistic

behaviours. His work also did not consider the requirement of handling the rapidly

changing environment and time critical decision making during MOUT combat.
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2.6.6 Time Critical Decision Making

Soldiers often need to recognize the current situation with incomplete information.

After situation recognition, they have to make rapid decisions under time pressure,

uncertainty, high stakes and changing conditions [36, 37, 38, 39]. As pointed out

by Klein in [40], human rely much more on experiences rather than deliberative

rational analysis of all possible alternatives to make time-critical decisions.

In MOUT simulations, the virtual urban environments are populated by various

characters. While some of these characters are controlled by human players (i.e.,

the trainees), most of them are non-player characters (or bots) which are usually

represented by AI-driven agents. For an MOUT simulation to be e�ective, it is

important for these bots to demonstrate some human-like tactical behaviors. Al-

though di�erent approaches may be used to this end, we believe that human-like

behaviors should be generated by human-like decision-making processes.

As an interesting and challenging problem, how to generate human-like tactical

decisions for the bots in time-critical and stressful situations has attracted many

researchers and developers in the military training and game AI communities. Laird

and Wray had done much work in recording and encoding the variability in human

behaviour models for military simulations [11, 36]. Their models mainly focus

on the deliberative reasoning processes, which we feel are not adequate to model

human’s decision-making process in time critical situations.

Humans often makes assessment on their current situations and generate certain

expectations on the impending events in their situations. Schmitt and Klein em-

phasized the impact of stress and uncertainty on decision making [82]. It can be

observed that expectancies plays a key role in inuencing the judgment and, there-

fore, the decisions of soldiers. Warwick incorporated expectancies in his design of

36



Chapter 2. Background

the memory representation in RPD computational models [81]. The expectations

produced can be used to select the course of actions in his framework. Ji developed

a fuzzy logic-based RPD model that attempts to employ expectancies for the ver-

i�cation of the accuracy of judgments. Adjusting in the course of actions may be

required if the expectations conicts with the observed facts [83].

To improve the intelligence of his bots, Laird added anticipation to Quakebots [104].

His bot is distinguished by its ability to build its own map as it explores a level, use

a wide variety of tactics based on its internal map, and in some cases, anticipate

its opponent’s actions. Laird found that instead of trying to encode behaviors

for each speci�c situation, a better idea is to attempt to add a general capability

for anticipating an opponent’s actions. From an AI perspective, anticipation is

a form of planning; a topic that researchers in AI have studied for 40 years. The

power of chess and checkers programs comes directly from their ability to anticipate

their opponent’s responses to their own moves. Anticipation for bots in �rst-person

shooters (FPS) has a few twists that di�erentiate it from the standard AI techniques

such as alpha-beta search.

In terms of challenges and end results, our work on modeling expectations is similar

to Laird’s e�orts to add anticipation to his bots. However, while his goal is to

produce intelligent bots to win FPS games, our goals are to simulate the end-result

and procedural realism of a human soldier in MOUT warfare. The aim of including

expectations is to further streamline the decision making process of our model

towards the human brain. The expectations will serve to inuence the course of

actions and verify judgments.

In terms of how to represent human’s experiences in our proposed behaviour model-

ing framework, we borrow ideas from some social and cognitive psychology studies.
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It has been observed that humans possess categorical scripts in their memory to in-

terpret and predict the world situations and new information is processed according

to how it �ts into these scripts called schema [44]. Since these schema are context

speci�c, they are dependent on an individual’s experience with and exposure to a

subject area rather than simply some \raw intelligence" [46, 47]. In the proposed

framework, we explored the concept of schema to organized the experiences of a

bot in MOUT simulations.

Gladwell observed that humans often perform thin slicing, that is, they rely on

some key cues of a complex and uncertain situation to achieve rapid situation

awareness and to make intuitive decisions [48]. He also pointed out that collect-

ing more information may not help to make decisions more accurate. Consistent

with this idea, based on numerous case studies, Evans emphasized that military

commanders must not be overloaded with information during time critical situa-

tions [49]. We believe that handling time critical decisions is an important aspect of

human decision-making in time-critical and complex situations. To our best knowl-

edge, our current work is the �rst to incorporate this aspect in modeling human

decision-making process for MOUT simulations.

2.7 Situation Awareness

Endsley’s framework of situation awareness is a widely accepted abstract framework

of situation awareness [97]. According to Endsley, there are three main stages for

the formation of situation awareness which include perception, comprehension and

projection. In the perception stage, key cues from the environment are picked up

by a persons sensory and attention system. These cues will then be used for the

person to understand the current situation in the comprehension stage. A person
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also has the capability to predict how situation may evolve (i.e., projection into the

future). It should be noted that Endsley’s framework describe situation awareness

at high and abstract level, thus it leaves much room for a modeler when developing

computational models of situation awareness for speci�c applications.

Like in the perception stage of the Endsley’s model, Hill attempts to model the

perceptual attention in virtual humans [98]. Similarly in [99], Herrero et al. in-

troduced human-like hearing perception for intelligent virtual agents. With similar

goals in mind, we adapted the sensory functions of the Unreal game engine to create

the sight and hearing senses for our bots [100]. The comprehension stage of the

Endsley’s framework requires the transformation of the perceived information into

relevant values for situation understanding. McCarley et al. [101] and Warwick et

al. [102] separately developed computational models to support situation aware-

ness. With their models, they seek to achieve greater simulation realism. However,

their models are not catered towards the speci�c needs of MOUT simulations. For

instance, McCarley’s model does not work with the case based reasoning process,

and Warwick’s model can not handle heterogeneous cue types which are typical for

MOUT.

For evaluation purpose, Endsley designed the Situation Awareness Global Assess-

ment Technique (SAGAT) [103]. SAGAT provides an objective measure of situa-

tion awareness based on queries made in simulation freeze. We will apply SAGAT

methods to evaluate the e�ectiveness and realism of our proposed model.

2.8 Autonomous Navigation Systems

In MOUT simulations, the virtual urban environments are populated with charac-

ters and buildings. While some characters are controlled by human players, most of
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the characters are non-player characters (also know as bots) which should demon-

strate some level of human-like tactical behaviours, e.g., tactical path planning

and movement. Therefore, autonomous navigation systems are crucial to MOUT

simulations [50].

Autonomous navigation system has been studied extensively by researchers in the

entertainment industry and the academia. Existing path �nding algorithms such

as the A* algorithm [51] and the Dijkstra’s algorithm [52] are essentially aimed at

�nding the shortest path in static environments. These algorithms are not adequate

to generate realistic movements for the bots in MOUT simulations mainly due to

their high computational cost in large and dynamic environments.

Penn and Turner proposed an exosomatic visual architecture to model pedestrian

walking behaviours [53, 54]. However, we feel that their model is not adequate for

tactical movements. In [55], Cohn suggested that it is relatively easy to translate

common sense knowledge into some qualitative terms as compared to quantitative

terms. This implies that qualitative spatial reasoning may be more suitable for gen-

erating realistic and human-like behaviours. How to e�ciently generate human-like

tactical behaviours for the bots attracts many researchers particularly in the game

industry as an interesting and challenging problem. Reece, Kraus and Dumanoir

proposed a multi-step path-�nding process for tactical movement planning [56].

However, their approach is inadequate to deal with dynamic environments.

Voronoi diagrams have been proposed for spatial analysis in urban environments

[57]. Schussman and Bertram further re�ned Voronoi diagrams to construct a

hierarchical data structure for gridless, scattered data [58]. However, their approach

was not used for path planning algorithms.
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2.9 Terrain Reasoning

Terrain reasoning is the capability of the bot to consider the impact of terrain

during its planning, decision-making, action selection and team communications.

For the bot behaviours to be intelligent during simulations, terrain reasoning is

essential [85].

Consider the following scenario. A bot begins with an arbitrary position and ori-

entation in an out-door environment. There is a goal location. The bot moves

toward the goal avoiding obstacles, ducking under low branches, climbing over ob-

jects, avoiding di�cult terrain where feasible and squeezing through tight spaces

where necessary. In some situations the bot tries to avoid the sensory �eld of one

or more hostile agents.

The aim of terrain reasoning is not to tell the bot how to achieve its goal. Instead,

we make the bot aware of its environment and associate a set of actions with

di�erent perceptions. a decision is made as to where the agent should move. This

decision is made incrementally after each step the agent takes so that a dynamically

changing environment can be supported [120]. For example, chasms may open up,

trees may fall down, pits or craters appear or the goal may change.

Terrain reasoning systems are generally made up of the below components:

� Terrain representation

� Functions that can query, construct or manipulate the terrain representation

Terrain reasoning should be addressed with custom adaptations to suit the speci�c

situation that the bot is in. This will ensure that the terrain reasoning can be �ne

tuned for the speci�c needs of the AI and characteristics of the simulations.
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A commonly used method to describe terrain are waypoints. Similar ideas such as

cells or grids had also been widely used [56, 59]. Waypoints represent the subset of

the accessible terrain for various entities in the simulation. Viable movement are

denoted by the connections between these waypoints. The resulting graph formed

by the waypoints provides the valid paths for the bots to traverse during simulation.

The waypoints can become part of more abstract representations such as areas

and portals. Therefore, waypoints are a robust and exible terrain representation.

Other than the shortest path from one point to the other, waypoint graphs contains

much more information. The combination of waypoints can represents the shape of

the simulated terrain. When added with line-of-�re and line-of-sight data, waypoint

graphs can be even be utilized to express various actions that combine to make up

tactics.

The relationship between the waypoint graph and tactical behaviours allows mod-

elers to form meaningful properties. These properties can be eventually used for

the computation required to generate the tactical behaviours from the bots.

Every waypoint has three characteristics that should be considered:

� Local environment. Waypoints describe, for example, the lighting of the loca-

tion, the movement types required (squatting, swimming, climbing), whether

a door is present.

� Membership(s) of higher-level terrain concepts. Waypoints can be organised

for the representation of complex terrain such as a room, a river, or the army

camp.

� Relations with other waypoints. There are alot of relations between waypoints:

is there a possible line-of-sight, time taken to travel from one waypoint to the

other.
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Bot with good terrain reasoning should be able to understand terrain and relevant

concepts such cover, movement time, terrain zones. In MOUT simulations, AI and

terrain play a particularly big role. E�ective terrain reasoning results in a richer

bot behaviours. Terrain reasoning is made up of terrain representation and related

algorithms. These algorithms help the bots to create, query and manipulate the

terrain representation. Apart from providing an e�ective method for navigation,

waypoint graphs had been proven to be a convenient means for terrain reasoning

and representation [121].

Many military tactics places great considerations on the terrain. In military simu-

lation, the waypoint information can help the bots to determine the e�ectiveness of

these tactics. With the relevant equations to express the waypoint graph proper-

ties, the tactical terrain concepts such as sniping points, ambush zones and bomb

attacks can be rapidly computed and easily identi�ed by the bots.

The reasoning about tactical concepts can be easily extended to include player and

bots behaviour local to the waypoint. This activity information allows the bots

to adapt its tactics during simulation. Adaptation is a result of re-enforcement

learning. The greater understanding of the tactical signi�cance of various locations

also help the bots to adapt their tactical behaviours in the simulations.

The waypoint based terrain reasoning are used in real-time. As an example, they

can be used to predict threat locations and select the proper tactics. Terrain

reasoning can also be used to pre-process terrain information in order to allow the

simulation to o�-load certain data that can assist the run-time bot behaviours.

2.10 Most Recent Research

In this section, we include the latest work published in related areas of our research.

Some of these work had been published after the submission of this thesis.
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Luo had been doing ongoing work on modeling agents with human-like decision

making and behavior execution capabilities in crowd simulation [87, 88]. He aimed

to provide a generic framework that reects the major cognitive and physical pro-

cesses as observed from human behaviors in real-life situations. The design of the

framework is based on some basic assumptions and related cognitive theories on

human behaviors in various real-life situations. Recently, Hu presented a novel

pattern-based framework to address the challenge in modeling lower-level pedes-

trian navigational behaviors [89]. In this framework, an agents perceived informa-

tion and subjective judgment on the situation are summarized as spatial-temporal

patterns. An agent will match the perceived patterns with some prototypical cases

in its experience. That is, an agents decision-making process is essentially treated

as a pattern-matching process. Both Linbo and Hu’s work shares similar goals in

generating human-like behaviours. We will study their work and �nd out if they

can be used to improve human-like decision making in MOUT context.

In 2009, Gemrot and his team presented Pogamut 3, an open source platform for

rapid development of behaviour for virtual agents embodied in a 3D environment

of the Unreal Tournament 2004 videogame [90]. Pogamut 3 is designed to support

research as well as educational projects. Pogamut is a useful toolkit for developing

educational scenarios concerning orientation in urban areas. These improvement

make Pogamut 3 applicable beyond the domain of computer games. With similar

goals in mind, Gorman produced QASE API to o�er a general purpose library for

the creation of game agents, in the hope that the availability of such software would

help stimulate further interest in the �eld [91]. Though geared towards machine

learning, the API would be exible enough to facilitate multiple forms of arti�cial

intelligence, making it suitable for application in research and in undergraduate
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courses centering upon traditional AI and agent-based systems. Such contribu-

tions will facilitate and encourage greater research in bot behaviours modeling and

enhance the value of our work.

Hingston designed a Turing test to di�erentiate between bots and human players

in computer games [93, 92]. In his new version of the bot Turing test, the judges

are simply game players and judging is an inherent part of the game. His method

is obviously a bot version of the famous Turing Test, �rst proposed by Alan Turing

as a thought experiment in which a judge has a chat session with a human and

a computer program, and then has to nominate which was which [24]. A major

di�erence is that Turing’s test was proposed as a test of the computers intelligence,

while the his method is a test of the bots ability to give the appearance of being

human. It is noted from his results that the opinions of human subject matter

experts is a better measure of human realism as compared to other quantitative

means. His method is mainly useful in computer games. In our experiments, we will

adopt a similar approach to validate our model for human-like realism in MOUT

simulations.
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SNAP -Time Critical Decision
Making Framework

Deliberative reasoning based on the rational analysis of various alternatives often

requires too much information and may be too slow in time critical situations. In

these situations, humans rely mainly on their intuitions rather than some structured

decision-making processes. An important and challenging problem in MOUT simu-

lations are how to generate realistic tactical behaviors for the non-player characters

(also known as bots), as these bots often need to make quick decisions in time-

critical and uncertain situations. In this section, we describe our work on SNAP,

a time critical decision-making framework for the bots in MOUT simulations. The

novel features of SNAP include case-based reasoning (CBR) and rapid cognition.

CBR is used to make quick decisions by comparing the current situation with past

experience cases. Rapid cognition is used to model human’s ability to quickly form

up situation awareness under uncertain and complex situations using key cues from

partial information. To assess the e�ectiveness of SNAP, we have integrated it into

Twilight City, a virtual environment for MOUT simulations. Experimental results

show that SNAP is very e�ective in generating quick decisions during time critical

situations for MOUT simulations.
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3.1 Motivation

The key to producing realistic behaviours lies largely in the decision making pro-

cess of the bots. Currently, conventional game AI techniques had been used to

design bots in MOUT simulations. Although game AI is able to provide chal-

lenging opponents for gamers, they may not be realistic for simulation training.

Building realistic behaviours for simulations require special considerations for the

situations involved. An important factor that di�erentiates the behaviours of hu-

man in MOUT situations and normal life is the time constraints. As human are

likely to make di�erent decisions given di�erent time frames. An optimal decision

can be made with a long time frame and a satis�cing decision is produced un-

der time constraints. Although there is already a lot of work done in producing

optimal decisions in computer simulations, the research on producing satis�cing

behaviours in MOUT simulations is still lacking. Producing optimal behaviours

under time constraints is unrealistic and serves little operational bene�ts to the

soldiers. Our work seeks to bridge this gap by producing a time critical decision

making framework, SNAP, for bots in MOUT simulations.

3.2 Features of SNAP

The novel features of the framework include case-based reasoning (CBR) and rapid

cognition. CBR is used to make quick decisions by comparing the current situation

with past experience cases. CBR is the process of solving new problems based on

the solution of similar past problems. It has been argued that CBR is not only an

e�ective method for machine reasoning. It is also a pervasive way for humans to

make decisions in everyday situations [41].
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In the proposed framework, rapid cognition is used to model human’s ability to

quickly form up situation awareness under uncertain and complex situations using

key cues from partial information. In his book, Blink [48], Gladwell discussed

how humans are able to achieve rapid situation awareness using only a narrow

slice of information. Using this limited information, humans can focus on the

most signi�cant information (or key cues) about a situation, and make judgments

quickly. As argued in his book, Gladwell suggests that collecting more information

merely reinforces our judgment but does not help to make it more accurate. We

adopt a similar approach to imitate human’s rapid situation recognition capability

in complex and uncertain situations.

Now let us use a simple example to illustrate how these two features (CBR and

rapid cognition) of the proposed framework could help a bot to make decisions in

time-critical situations in MOUT simulations. Figure 3.1 shows a soldier bot and

a militant bot in a close combat situation.

Figure 3.1: Close Combat
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The soldier bot, Ted, needs to make a rapid decision to �ght with the militant. Using

the CBR process, Ted will retrieve past experiences that are similar to the current

situation and reuse the previous solutions. If needed (i.e., the current situation

is new), the proposed solution can be revised to adapt to the current situation.

Once the revised solution had been successfully adapted for the new situation, it

will be retained in the memory of the Ted for future engagement. The matching

of the current situation with past experiences is done by picking up key cues from

the partial information gathered within the limited time, i.e., by rapid cognition.

These cues may include the location of the militant, whether the militant is in open

area or hiding behind a wall, the weapon being used and strength of the �re, etc.

Another important feature of SNAP is expectations. Real MOUT situations are

highly dynamic, thus the decision making process of a soldier is never a one-step

process. A solution may become invalid as the situation evolves. In this case,

a soldier may re-assess the current situation and attempt to �nd new solutions.

We believe that expectation plays an important role in this regard. In MOUT

warfare, by matching the current situation cues with his/her experience cases, a

human soldier may have a quick assessment of the current situation and �nd a

solution to deal with the current situation. In the meantime, the soldier will also

form up expectations on the likely future events. As the situation evolves, if the

expectations are not ful�lled or violated, the soldier may infer that his/her initial

solution may be invalid due to dynamic situational changes. Then the soldier may

abort the previous solution and �nd a new solution. Without a mechanism to assess

their solutions during execution, the bots can only know the validity of the solution

after the execution of the complete solution. This could result in the bots blindly

executing the initial solutions even though they are no longer e�ective.
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Therefore, we propose to handle the dynamic situational changes with expectations.

In this work, we consider expectations as some events that are likely to occur in

the near future. Bots continuously observe the ongoing situation after a solution

is selected. If the observations are consistent with expectations, then the solution

will be enhanced. Observations that do not match expectations may lead to the

invalidation of the solution. In this case, the bots re-assess the situation to �nd new

solutions and form up new expectations. The feature of expectations is designed

to work in tandem with the existing features of CBR and rapid cognition. Rapid

cognition will pick up key cues from partial information and pass these cues into the

CBR process. CBR will match the cues with past experiences to retrieve the relevant

experience cases. Expectations are formed up along with the past experiences. The

bots will use these expectations to assess the validity of the solutions in the face of

rapidly changing situations.

Now let us use a simple example to illustrate how these features of the SNAP

framework could help a bot to make decisions in time-critical and dynamic MOUT

situations. Figure 3.2 shows a sniper bot aiming at a soldier bot.

The soldier bot needs to make a rapid decision to counter the sniper. Using the CBR

process, it will retrieve past experiences that are similar to the current situation

and reuse the previous solutions. If needed (i.e., the current situation is new), the

proposed solution can be revised to adapt to the current situation. Once the revised

solution had been successfully adapted to the new situation, it will be retained in

the memory for future engagement. The matching of the current situation with past

experiences is done by picking up key cues from the partial information gathered

within the limited time. These cues may include the location of the sniper, whether

the sniper is in open area or hiding behind a wall, the weapon being used and

strength of the �re, etc.
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Figure 3.2: Enemy sniper bot taking aim at soldier bots

Figure 3.3 shows the simulation time line of a group of soldier bots being attacked by

a sniper and their subsequent actions. It is likely that the enemy sniper is attacking

the soldier from a building. According to doctrine, a human soldier will attempt to

take cover and form up with his squad before performing a counter sniper operation

to neutralize the enemy threat. During the counter sniper operation, the soldier is

expected to overpower the enemy through speed and superior �re power. If there

are more enemies or stronger �repower than the soldier expects, then the initial

solution to perform a counter sniper operation may become invalid. The soldier

bots select the solution to perform a counter sniper operation at T1. With this in

mind, they hold a set of expectations on the enemy behaviour, e.g., the enemies are

adopting a hit-and-run tactics and will not be waiting at the sniper location. They

do not expect to face heavy enemy �res during the counter sniper operation. At T2,

an unexpected threat of Close Combat Fire is observed. This new threat violates

the current expectation and therefore invalidates the counter sniper solution. The
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Figure 3.3: Dynamic changes during MOUT simulations
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violation of the expectation implies that there might be an ambush waiting for the

counter sniper squad and a new solution will need to be generated.

3.3 Design of SNAP

Figure 3.4: Decision Making Framework

In this section, we describe SNAP, a time critical decision-making framework for

MOUT simulations. It aims to generate human-like tactical behaviours for bots in

a complex virtual urban warfare environment. The two major features of SNAP

are the CBR decision-making process and rapid cognition.

As shown in Figure 3.4, the SNAP framework consists of �ve main components:

Goal, Observe, Situation Awareness, Experience Repository and Action. The Goal

component de�nes the goals of the bots. It will determine which information is

relevant for situation awareness (more details will be given in Section 3.3.2). The

Observe component collects information about the environment and sends the col-

lected information to the Situation Awareness component. The components inside

the dash line box form the CBR process. By matching the current situation cues
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with the experience cases in the Experience Repository, a solution will be proposed

for execution by the Action component. The Observe component will monitor the

situation and update the Action component on the results of the proposed solution.

Depending on its result, the proposed solution may be revised and the updated so-

lution will be retained in the Experience Repository as a new experience case for

future usage.

3.3.1 Case-Based Reasoning Process

The CBR process consists of four steps: retrieve, reuse, revise, and retain. Given

the goal and observations from the environment, to form up situation awareness,

a bot �rst needs to retrieve past experiences from its Experience Repository. In

our implementation, experience cases are represented by a set of hthreat; solution i

sets as shown in Figure 3.5. The threat of an experience case is represented by

the precondition cues which act like a pattern (or schema) for the bot to recognize

the threat. In SNAP, these precondition cues mainly consist of the levels of some

qualitative descriptions about the situation, e.g., whether the enemy is close or far

away, whether the strength of a sniper’s �re is high or low, etc. Qualitative mea-

sures are used here simply because humans reply more on qualitative rather than

quantitative measures to make sense of a situation. Then, situation awareness is

formed by matching the evidence cues of the current situation with the precondition

cues. We will further explain this in Section 3.3.2.

The threat in an experience case holds pre-condition cues which act like a pattern

(or schema) for the bot to recognize the threat. In SNAP, these pre-condition

cues mainly consist of some descriptions about the situation. The cue values can

be nominal, quantitative or qualitative. Similarity matching is then conducted by

matching the evidence cues of the current situation with the pre-condition cues.
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The key cues picked up by the bots are used to form an evidence set. When the

evidence cues match the precondition cues of an experience case, the corresponding

solution of the case will be used. The solution generally activates a new mission.

Figure 3.5: An Experience Case

Each mission is organized into several phases to represent the temporal relationships

between di�erent parts of the mission. In each phase, there are some expectations

providing constraints to the mission. The expectations are monitored while the

mission is being executed. If the expectations are not met, the next phase may

not be executed and the current mission could be under threat. In this case, the

proposed solution may need to be revised. In our current implementation, the

revision is done by human experts. These experts will analyze the situation and

provide a new solution for the bot. Subsequently, the updated solution will be

retained in the Experience Repository as a new case of experience for future use.

Now let us use a simple example to further illustrate the main features of the CBR

process of SNAP. Suppose that Ted, a soldier bot, is patrolling a street. He is able

to identify a sniper-assault threat by observing a militant bot �ring a sniper gun.
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In this case, spotting the militant bot and the sniper �re are the two precondition

cues. Thus, the precondition set for sniper-assault threat is:

[Bot(A; Militant; Male; Snipergun; V eryFar ) ^WeaponF ire (Snipergun)]

Now suppose that Ted ’s current evidence set (we will explain how it is formed in

Section 3.3.2) is:

[Bot(A; Militant; Male; Snipergun; V eryFar ) ^WeaponF ire (Snipergun)]

The evidence set states that Ted had spotted a militant bot at a \very far" distance

and also observed sniper �re. The bot uses a spatial representation based on human

spatial cognition. The bots can represent things in two fundamental ways: where

something is relative to the agents location, or egocentrically (e.g., something is to

my left); or where something is in absolute terms relative to a world coordinate

system, or allocentrically (e.g., something is at a speci�c latitude/longitude).

This combination of egocentric and allocentric representations has previously been

used successfully in systems such as TAC-AIR Soar [114]. The egocentric represen-

tation of an item includes both the distance to the item and its relative bearing.

Distance and bearing are generally represented qualitatively. Qualitative represen-

tations provide certain advantages for applying reasoning and logic to planning and

decision-making. In detail, distance is represented as descriptive distance to the

target. Studies had shown that soldiers tend to demonstrate the ability to generate

numerical distance estimates that scale linearly with increasing distance within the

ranges typically encountered in MOUT [115].
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Figure 3.6: Descriptive Spatial Representation
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A descriptive distance, as seen in Figure 3.6, is how distant something is relative to

the current visual horizon, and ranges across \here" (within 1/8 the distance to the

horizon), \near" (between 1/8 and 1/4 the distance to the horizon), far (between

1/4 and 1/2 the distance to the horizon), and \very far"(beyond 1/2 the distance

to the horizon). The nearest distance, ‘here", is used to indicate that a particular

location is within the immediate proximity of the bot, corresponding to the region

described by as personal space. The second two distances, \near" and \far", divide

the space used for local navigation. \Very far" is generally used for very distant

objects and architecture.

In the current example, the enemy sniper is described to be �ring at a distance

corresponding a sniper assault. As the evidence cues match the precondition cues

of the sniper-assault threat, the experience case for the sniper-assault threat is

retrieved from the Experience Repository. The attached solution will be reused

by the Action component, i.e., the sequence of actions contained in the solution

will be executed. In our current implementation, the normal tactic to counter the

sniper threat consists of the action sequence as shown in Figure 3.7. Note that with

this tactic, we assume that Ted has some other team members so that they can

approach the sniper with pincer movement.

The �rst action is to create a smoke screen by throwing a smoke grenade. This

will cause the enemy sniper to lose his aiming precision. With the smoke screen,

the soldier agents can then rush to a cover before identifying the sniper location.

Finally, the soldier agents will approach the sniper with a pincer movement which

is a military strategy to attack the anks of the enemy simultaneously in a pincer

movement [60].

As each action in the sequence is executed, the Observe component of SNAP will
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Figure 3.7: Solution for Counter Sniper

monitor if the expectation cues of the action are satis�ed. For example, the expec-

tation set for Action 2 is:

[:WeaponF ire (SniperF ire ) ^ :Hit (Bot)]

It states that there should not be sniper �re near the bot and that the bot should

not be hit. When the observation cues satis�es the expectation cues, the action is

deemed to be successful and the next action in the sequence will be carried out.

3.3.2 Rapid Cognition

Rapid cognition allows the bots to recognize the current situation quickly based on

some key cues from the partial information about the environment. It is achieved by

the Goals, Observe and Situation Awareness components of the SNAP framework.

First, the Goal component determines the constraint set of a bot according to

the mission and roles of the bot. Secondly, the Observe component monitors the

virtual environment and forms the observation set. Finally, Situation Awareness

component uses the observation set to detect any violation of the constraint set.

The observations that violate the constraints will be used to form the evidence.
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For example, consider a soldier bot Ted in a patrolling mission. The constraint set

of Ted can be expressed as:

[:WeaponF ire (All ) ^ :V ehicle(Militant ) ^ :Bots(Militant )]

This constraint set means that Ted, as a soldier patrolling on the street, will not

allow any type of weapon �re, enemy vehicles and militants to appear. These con-

straints are expressed with some qualitative cues, which will be used to compare

with the observation cues. The Observe component monitors the virtual environ-

ment. Suppose the observation set of Ted about the current situation is:

[Bot(A; Militant; Male; Snipergun )^WeaponF ire (Snipergun)^V ehicle(Friendly )

BotGroup(Civilian; 50) ^ :::]

It means that Ted has seen that \bot A who is a male militant with a sniper gun, the

militant is shooting with his gun, there is a friendly vehicle coming by, and a group

of civilians are around, and ..." This set of observation cues is used to compare with

Ted ’s constraint set. The observations Bot(A; Militant; Male; Sniper gun ) and

WeaponF ire (Sniper gun) violate constraints :WeaponF ire (All ) and :Bots(Militant )

respectively. Thus, the following evidence set is formed:

[Bot(A; Militant; Male; Sniper gun ); WeaponF ire (Sniper gun)]

This evidence set is then used by the Situation Awareness component to match with

the precondition cues of Ted ’s experiences as earlier described in Section 3.3.1.
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3.3.3 Expectations

When a threat is identi�ed, expectations will tell the bots what is likely to happen

next. As seen in Figure 3.5, each experience case contains expectations. The expec-

tations consists of a group of events associated with the identi�ed threat. Based on

past experiences, the bots expects these events to occur in near future. Each event

in an expectation is represented by its corresponding cue set (called Event Set in

this paper). The event set contains key cues that the bots should monitor in order

to con�rm their expectations.

Now let us use a simple example to further illustrate how expectations work together

with other modules of SNAP. Suppose that Ted, a soldier bot, is patrolling a street.

He is able to identify a sniper-assault threat by observing a militant bot �ring a

sniper gun. In this case, spotting the militant bot and the sniper �re are the two

precondition cues. Thus, the precondition set for sniper-assault threat is:

[Bot(Militant; Snipergun ) ^WeaponF ire (Snipergun)]

Now suppose that Ted ’s current evidence set is:

[Bot(A; Militant; Male; Snipergun ) ^WeaponF ire (Snipergun)]

The evidence set states that Ted had spotted a militant bot and also observed sniper

�re. As the evidence cues match the precondition cues of the sniper-assault threat,
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the experience case for the sniper-assault threat is retrieved from the Experience

Repository. The attached solution will be reused by the Action component, i.e.,

the sequence of actions contained in the solution will be executed.

During the execution of the solution, the expectation frame is monitored. This is

done by monitoring the cues from the event sets of the expectations

Solution Validation with Expectations

The Observe component monitors the evolving situation and forms the observation

set. The observation set is made up of a set of key cues picked up by the bot. These

key cues are used for matching with the cues in the event sets that form up the

expectations. The successful matching of the cues means that the expected events

had occurred and the expectation is therefore con�rmed. For example, suppose

that Ted is currently approaching the sniper in the Counter Sniper operation. The

current expectation of Ted contains Event Set A and Event Set B as we discussed

before. The Event Set B of Ted can be expressed as:

[:WeaponF ire (All ) ^ :V ehicle(Militant ) ^ :Bots(Militant )]

This event set means that Ted does not expect to be attacked by any type of weapon

�re, enemy vehicles and militants during his movement. The Observe component

monitors the virtual environment for key cues and forms observation sets. Suppose

that the observation set of Ted about the current situation is:
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[Bot(A; Militant; Rif le ) ^WeaponF ire (Rif le ) ^ BotGroup(Civilian; 50); :::]

It means that Ted had been engaged by ‘bot A who is a male militant with a

rie, rie �re, and a group of civilians are around, and ...’. This set of observation

cues is used to compare with Ted ’s Event Set B. The comparison reveals that

the observations Bot(A; Militant; Male; Rif le ) and WeaponF ire (Rif le ) violate

Event Set B cues of :Bots(Militant ) and :WeaponF ire (All ) respectively. This

tells Ted that its expectation is not ful�lled and the current solution is likely to be

invalid. This is consistent with the fact that the movement route of Ted had been

compromised and the enemy may attempt to ambush Ted before he reaches the

sniper’s location.

Dynamic Expansion of Evidence Sets

When a solution is deemed invalid, the observation cues that violate the event set

cues will be combined with the current evidence set to form an expanded evidence

set. This allows the bots to adapt to new situation rapidly. The Situation Aware-

ness component will then retrieve new experience cases with the updated evidence

set. The newly retrieved experience case will be sent to the Action component for

processing. Consider the case when Ted had identi�ed a sniper-assault threat and

is currently performing the Counter Sniper solution. The current evidence set is

[Bot(A; Militant; Male; Snipergun ) ^WeaponF ire (Snipergun)]
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New observation sets will continue to be monitored by the Observe component. As

discussed before, suppose that the new observation set is:

[Bot(B; Militant; Rif le; Near )^WeaponF ire (Rif le )^BotGroup(Civilian; 50); :::]

The two new observations Bot(B; Militant; Male; Rif le ) and WeaponF ire (Rif le )

violate Event Set B of Ted ’s expectation frame. These new observations are added

to Ted ’s existing evidence set. The dynamically expanded evidence set is thus

changed to:

[Bot(A; Militant; Snipergun; Far ) ^WeaponF ire (Snipergun) ^ Bot(B; Militant;

Rif le; Near ) ^ WeaponF ire (Rif le )]

The expectation violation will make Ted terminate the execution of the current

solution and to re-assess the evolving situation. Using the new evidence set, Ted

will identify a Close Combat Fire threat. This new threat is of immediate concern

and takes precedence over the previous solution. Thus, the Close Combat Fire

experience case is retrieved and Ted will perform the corresponding solution to this

situation.
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A Computational Model of
Situation Awareness

Although much work had been done on the CBR process in SNAP, the Situa-

tion Awareness component of SNAP is still rather primitive. A realistic situation

awareness component has yet to be developed to provide useful information for the

decision making process, which motivates us to work on a computational model of

situation awareness. The computational model should work together with the ma-

jor features that we have built into SNAP such as CBR process, qualitative spatial

representation and expectations.

Our computational model is based on Endsley’s inuential framework on situa-

tion awareness [97] which consists of three stages: perception, comprehension and

projection.

Now let us use an example of a soldier bot on a patrol mission to illustrate how

situation awareness is formed up in our model in dynamic MOUT situations. First,

the bot perceives the current situation through the cues that fall within its hearing

and vision range. The bot comprehends the current situation by comparing the

perceived cues with its experience cases. The experience case with the highest
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similarity value to the current situation will be selected. The corresponding action

of this case will be chosen to deal with the current situation.

Being on a patrol mission, the bot has certain expectations (i.e., projection) on

how the situation may evolve. The perceived cues are also used to compare with

the bot’s expectations. For example, the bot may expect that the street should

be populated with at least �fty civilians since the street is normally crowded. If

the street is too quiet, this could mean that local people already anticipated an

impending ambush. Figure 4.1 shows the initial hearing and sight radius of the bot

which are represented as H and R, respectively.

Figure 4.1: Bots increasing their awareness on anticipation of impending threat

When the expectation on the size of the crowd is not met, the bot suspects an

impending ambush. Thus, the hearing and sight radius are expanded (by h and

r, respectively) which will allow the bot to pick up more cues in anticipation of a

possible attack. This is consistent with the fact that a soldier tends to be more

alert when he senses danger.

Our current work seeks to improve the Situation Awareness component in SNAP.

Figure 4.2 shows how our model generates situation awareness in SNAP. Following

Endsley’s abstract framework of situation awareness, we also consider 3 levels of
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Figure 4.2: Maintaining Situation Awareness in SNAP

situation awareness in our model. During the Perception stage, the Sensory System

will pick up the external information from the virtual environment and produce

observation cues. These observation cues will be used during the Comprehension

stage for evaluation with the expectations of the bots. The mission can continue

if cues do not violate the expectations of the bots. Violations will be used to

identify the probable threat. When a new threat is identi�ed, a new mission will

be activated to neutralize the threat.

4.1 Perception Stage During Situation Awareness

Figure 4.3 illustrates the sensory system that we have implemented for our bots to

perceive the environment in MOUT.

The solid sector in Figure 4.3 represents the �eld of view of a bot. This sector is

characterized by the �eld of view angle and the SightRadius to simulate the Sight

function of the bot. The dotted circle surrounding the bot shows the coverage of

the Hearing function of the bot. The Hearing Threshold is used to control the

hearing radius of the bot.

Although there may be many cues occurring within the MOUT environment, only

cues that fall within the coverage of a bot’s Sight or Hearing function are picked
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Figure 4.3: Sensory System of A Bot

up. As shown in Figure 4.3, only Cue A and Cue C are picked up by the Hearing

and Sight functions of the bot respectively. Cue B will be missed out by the bot.

Such cues may have di�erent types such as weapon, weapon �re or enemies. Cues

are gathered and organized into observation sets for further evaluation during the

Comprehension stage. An example observation set is shown as follows:

[Bot(Militant, Rie) ^ Gun Fire(Rie) ^ Grp(Civilian, 50),...]

which essentially means that the bot has observed 1) \a militant bot with a rie";

2) \rie �re"; 3) \50 civilians"; and \...".

The context a bot experiences depends completely on the senses it is provided with

to perceive relevant cues. Therefore, the bot’s reality is the internal representation

of those senses. The SNAP framework currently provides for visual, auditory, and

tactile senses. Some of the cues obtained through these senses and their attributes

are listed in Figure 4.4 below.
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Figure 4.4: Perception cues and their attributes

4.2 Comprehension Stage During Situation Aware-
ness

In this stage, the Situation Awareness component receives the observation sets

from the Observe component. With the cues from these observation sets, a bot

determines if its current mission is under threat. If so, it will generate an evidence

set and match with a list of probable threats. Once the threat is identi�ed, the

corresponding experience case will be retrieved from the Experience Repository and

the corresponding solution will be used.

Each bot also has a set of expectation cues. It will monitor the expectation cues

with the Sensory system as discussed in the Perception Stage. The expectation cues

are further classi�ed as invariant or variant. Violation of the invariant expectations

means that the mission is under threat, therefore it should be terminated and a

new mission may be started. In contrast, violation of variant expectations may

raise certain concern of the bot (for instance, the bot may become more alert) but

are insu�cient to show that the current mission is under threat.
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4.2.1 Cue Types

In SNAP, cues observed from the environment can be qualitative, nominal or quan-

titative. In our implementation, quantitative cues (for instance, number of civilians)

are represented using integer values. A nominal cue is a discrete cue whose values

are not necessarily in any order (e.g, weapon type). The qualitative cues are used

for qualitative spatial reasoning.

4.2.2 Similarity measures

Similarity measures are used to assess the degree of resemblance between the current

situation and past experiences. We assume that the cues in current situation and

the cues in the past experiences have the same set of features.

Suppose that the Evidence Set, Ec, of the current situation and the past Experience

Case, E0
c, are represented as:

Evidence Set, Ec = (C1, C2, ...,Ci ,...,Cn)

Experience Case, E0
c= (C0

1, C0
2, ...,C0

i ,...,C0
n)

where Ci and C0
i can be nominal, quantitative or qualitative values. To assess the

the similarity between Ec and E0
c, a global similarity value is computed by aggregat-

ing the local similarity between cue pairs Ci and C0
i . The following heterogeneous

similarity computation method is proposed to calculate the local similarity between

Ci and C0
i :
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SL (Ci ,C0
i ) =

8
>>><

>>>:

0 if Ci or C0
i is unknown

N Match(Ci , C0
i ) if Ci is nominal

Quant Similar(Ci , C0
i ) if Ci is quantitative

Quali Spatial(Ci , C0
i ) if Ci is qualitative

If either Ci or C0
i is unknown, the cue similarity between them is set to 0. For the

nominal values, the similarity is either 0 or 1 as determined in the following way:

N Match(Ci , C0
i ) =

(
1 if Ci = C0

i

0 otherwise

Assuming the bot picks up the cue, C1 = Weapon Fire(Rie), and compares it with

C0
1 = Weapon Fire(Any). N Match(C1, C0

1) will give a result of 1. This is because

C0
1 includes all types of weapon �re.

The similarity value between a pair of quantitative cues are determined as follows:

Quant Similar(Ci , C0
i ) = 1� jCi � C0

i j
4 i

where4i = Maxi �Mini is used to normalize the cue di�erence, and Maxi and Mini

are the maximum and minimum values for cue i, respectively. When the experience

case contains C0
2 = Group(Civilian, 50) and the bot observes C2 = Group(Civilian,

12), Quant Similar(C2, C0
2) = 1 - j12� 50j

50� 0 = 0.24. In this case, the low similarity

value between C2 and C0
2 implies that the current cue does not match closely to

the experience case.

It has been suggested that humans rely more on the qualitative description than

the quantitative description of their environment [76]. In our previous work, we
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had organized the virtual environment into hierarchical zones and added qualita-

tive descriptions [62] to facilitate e�cient path planning in dynamic environments.

Using the qualitative spatial information, Quali Spatial(Ci , C0
i ) computes the sim-

ilarity values for qualitative spatial cues. A typical qualitative cue is the combat

zone where the conict is taking place.

The model activates the recursive algorithm below to check if the soldier bot and

the enemy have the same parent zone:

Query Zone(zone a, zone b)f

//Let parenta & parentb be parents of a & b

if(parenta = parentb)

return parenta;

return Query Zone(parenta, parentb);

g

The Query Zone algorithm terminates when a common parent zone is found. This

parent zone is the lowest level in the spatial hierarchy that contains both the soldier

and its enemy. Thus, the parent zone is considered as the combat zone.

Quali Spatial(Ci , C0
i ) will compare the qualitative spatial relationship in the fol-

lowing way:

Quali Spatial(Ci , C0
i ) =

(
1 if Ci = C0

i

0 otherwise
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For example, the Close Combat Fire experience case has C0
3 = Combat Zone(Room)

stating that the threat can be considered Close Combat Fire only if the combat take

places within a room. However, the observed cue, C3 = Combat Zone(StreetA),

indicates that the soldier is attacked on Street A. Thus, C0
3 and C3 does not match

and Quali Spatial(C3, C0
3) = 0. This result implies that the soldier is not engaging

his enemy within the close proximity of a room.

After obtaining the similarity values of all cue value pairs, the next step is to

integrate them into a global similarity value, SG(Ec,E0
c), using the following formula:

SG(Ec,E0
c)=

(
0 if wi = 1, SL � �

Sp +
P n

i =1 wi SL (C i ,C0
i )P n

i =1 wi
otherwise

where � 2 [0; 1] is a threshold parameter determined by the user. This threshold

parameter is determined by analyzing data gathered from human experts and the

threshold can be calibrated according to the requirements of the human expert

running the simulation. It is used to determine whether Ci and C0
i is close enough.

wi 2 [0; 1] is the weight of the cue i, which represents the relative signi�cance of

the cue i and is also assigned by the user. Often, there are some important cues

or cues that are required to be satis�ed before the past experience can be reused.

That is, if the value of a required cue in the current situation is not close to the

value of the same cue in a past experience, this experience case cannot be used to

solve the current problem no matter how similar the other cues are. For example,

spotting sniper �re is a required cue to assess for the Sniper Assault threat. For

required cues, we will set their weight to be 1. If a required cue in the evidence

73



Chapter 4. A Computational Model of Situation Awareness

set is not close enough to the corresponding value in the experience case, we shall

assign 0 to SG(Ec,E0
c).

In our implementation, each mission will have a pre-determined list of possible

threats. Thus, the global similarity values are computed for the threats in the

pre-determined list and the threat with the greatest similarity will be identi�ed.

Certain threats are more common in some missions. Sp modi�es the similarity value

according to the current mission. For example, patrolling soldiers are common

targets of enemy snipers. When violation of expectations occur during a patrol, it

is likely that a sniper assault had taken place. When performing matching with

the Sniper Assault experience case, the Sp adds 0.10 to SG(Ec,E0
c). The addition

enhances the likelihood of a sniper assault in the patrol mission. With Sp, the

decision bias of the bots towards certain threats during speci�c missions can be

modeled.

4.3 Projection Stage During Situation Awareness

Expectations help the bots to anticipate certain future events and pick up key cues

rapidly. They are used during the projection stage to monitor the status of the

mission and detect key cues.

We have introduced two types of expectations : invariant expectations and variant

expectations. Invariant expectations must be ful�lled at all times or the current

mission will be considered to be under threat. Unlike the invariant expectations,

the variant expectations need not be ful�lled at all times. The violation of the

variant expectations merely alerts the bots that certain threats may be forming.

Now let us use a simple example to further illustrate how expectations work. Sup-

pose that Ted, a soldier bot, is patrolling a street. His current invariant expectations
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are:

[:Gun Fire(Any) ^ :Vehicle(Militant) ^ :Bot(Militant)]

This expectation means that Ted does not expect to see any type of weapon �re,

enemy vehicles and militants during his movement. Suppose that the observation

set about the current situation is:

[Bot(A, Militant, Rie) ^ Gun Fire(Rie), ...]

It means that Ted has been engaged by \bot A who is a militant with a rie, and

rie gun is observed, and ...". This set of observation cues is used to compare

with Ted ’s invariant expectations. The comparison reveals that the observations

Bot(A, Militant, Rie) and Gun Fire(Rie) violate expectations of :Bot(Militant)

and :Gun Fire(Any) respectively. This tells Ted that its invariant expectations is

not ful�lled and the mission is under threat. The cues violating the bot’s expecta-

tions are used to form the evidence set. This evidence set is then used to generate

similarity values with the experience cases. In this case, the evidence set should

state that Ted had spotted a militant bot and also observed sniper �re. The current

evidence set is:

[Bot(A, Militant, Sniper gun) ^ Gun Fire(Sniper gun)]
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A variant expectation for the patrol mission could be [Grp(Civilian � 10), ...]. This

expectation states that the soldier bot expects to see at least ten civilian on the

streets. It is not normal for the streets to be deserted. In real life situation, this

could mean that the locals sense an impending attack and are staying away from the

danger zone. The violation of this expectation alone is not su�cient to determine

any threat. Yet, this cue is signi�cant enough to be included in our evidence set.

When variant expectations are violated, the perception senses could be sharpened

by increasing the SightRadius and Hearing Threshold of the bots. This reects that

the bots are expecting danger and increasing their alertness.
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Chapter 5

QUARTZ - Autonomous
Navigation System

Autonomous navigation systems are important to MOUT simulations for generating

realistic tactical behaviours for the non-player characters (or bots). In this paper,

we describe our work on Quartz, an autonomous navigation system for MOUT

simulations. Novel features of Quartz include qualitative spatial representation and

hierarchical spatial reasoning which enables fast situation analysis and human-like

path planning in a dynamic environment. In MOUT simulations, the virtual urban

environments are populated with characters and buildings. While human players

control some characters, most of the characters are non-player characters (also

known as bots) which demonstrate some level of human-like tactical behaviours,

e.g., tactical path planning and movement. Therefore, autonomous navigation

systems are crucial to MOUT simulations.

5.1 Requirements

The basic requirements of an autonomous navigation system in MOUT simulations

are e�ectiveness, e�ciency, scalability and adaptability. E�ectiveness requires the
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navigation system to be able to generate realistic tactical movements for the bots in

a complex environment. E�ciency requires the paths to be computed in real-time.

Scalability requires the system to be able to accommodate a large number of bots.

Adaptability requires the navigation system to be able to deal with the dynamic

environments.

5.2 Design of Quartz

Quartz is designed to be an autonomous navigation system that is able to quickly

generate human-like tactical movements for a large number of bots in a complex and

dynamic virtual urban warfare environment. The two major features of Quartz are

the qualitative spatial representation and hierarchical spatial reasoning framework.

5.2.1 Why Qualitative Spatial Representation and Hierar-
chical Spatial Reasoning?

It has been suggested by some researchers that humans rely more on the qualita-

tive description than the quantitative description of their environment when doing

path planning in daily life [64, 66]. Typical qualitative information includes lo-

cation names, relative sizes, regions, relative relations among objects and relative

distances, etc. [67]. Although there are a number of path-�nding algorithms for

robots and agents, they are generally based on the accurate quantitative description

of the environment. We believe it is necessary to model the human cognitive process

in spatial reasoning in order to generate human-like behaviours for the bots in a

complex virtual environment. In addition to using qualitative spatial descriptions,

it seems to us that humans plan their paths in an incremental and hierarchical

manner.
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As an example, consider how a person describes the way to o�ce from home. It is

unlikely that the person knows exactly how many meters to move along which exact

directions. In fact, the person is more likely to describe the way in terms of a number

of key points and their relations, e.g., \�rst, I will go to the tall building at street

S1, then from there, I will go to the subway station at street S2,..., �nally I reaches

my o�ce at location X!". The key spatial points and their spatial relationships can

be easily remembered and analysed by humans. They essentially inform a person

the rough path between two locations. However, when actually moves from home

to the o�ce, the person still needs to plan his/her detailed path along the way, e.g.,

how to move from home to the tall building at street S1, etc. Note that a detailed

path is often planned only when the person is on that speci�c section of the rough

path. This incremental and hierarchical path-planning approach helps to reduce

the amount of information that a person needs to remember and help him/her deal

with the dynamic environment.

5.2.2 Qualitative Spatial Representation in Quartz

Qualitative spatial representation describes the virtual environment by a number

of regions, connections between di�erent regions, and key points, etc. As humans

rely more on the qualitative relations among various objects rather than the exact

quantitative descriptions of the world in their daily-life spatial reasoning, qualitative

spatial representation is believe to be more suitable to e�ciently generate human-

like movements for the bots [64]. For MOUT simulations, it is crucial to enable

tactical awareness and fast terrain reasoning when planning paths for the bots. This

is a challenging task which often involves many factors, e.g., the 3D environment,

limited �elds of views, team formations, cover and concealment [65, 68, 69]. As
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Figure 5.1: Squad Formation

an example, Figure 5.1 shows the formation of a squad that is �ring at the enemy

from di�erent directions.

Quartz adopts a hierarchical spatial reasoning framework. At the higher level, only

some key points connecting di�erent regions are determined using the qualitative

description of the map. At the lower level, the detailed path within a region is

determined as the bot moves into the region with the heuristic A* search algorithm

[51]. With this hierarchical spatial reasoning framework, Quartz is able to cope with

dynamic environments e�ciently. For example, if a path node is blocked along the

detailed path in a region, only this detailed path needs to be re-computed, the

general direction regarding how to move region by region from the starting point to

the destination remains unchanged. Thus the computational cost of path planning

can be greatly reduced, which help to improve the scalability of the navigation

system. With its current implementation, Quartz can support up to a few hundred

bots on a high performance personal computer.
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In Quartz, we model the human cognitive process in spatial reasoning with a hi-

erarchical multi-resolution spatial representation. As shown in �gure 5.2, di�erent

resolution levels are used to store the key points between A and B. A point at a

higher level represents a group of points at the level below it, i.e., the resolution of

the spatial description decreases as the level increases.

Figure 5.2: Hierarchical spatial representation

As path-�nding within a dynamic environment is a computation-intensive task es-

pecially when the two locations are far apart, a hierarchical approach helps to divide

the complicated problem into some manageable sub-problems, thus allows Quartz

to handle long paths e�ciently and elegantly. In Quartz, a virtual environment

is described with a detailed map and a hierarchy of qualitative maps. Di�erent

representation and spatial reasoning techniques are used for these two kinds of

maps. The detailed map uses visibility graph to link di�erent points with edges,

and it is used for low-level path planning. The qualitative maps use Voronoi graphs

to segment the environment into regions, and they are used for high-level spatial

reasoning.

5.2.2.1 Qualitative Spatial Representation in Quartz

As shown in �gure 5.3, the detailed map consists of a large number of points that

represent various positions in the virtual environment. An edge will be formed

81



Chapter 5. QUARTZ - Autonomous Navigation System

linking two points if there exists a line-of-sight between the two points and they

are within a reasonable distance. This map is used by some low level path-�nding

algorithms such as A* to equip the bots with the low level navigation capability,

such as moving from point to point.

5.3.a: Points 5.3.b: Points with edges

Figure 5.3: Visibility Graphs
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5.2.2.2 Map Representation for High Level Path Planning

At the high level, the map is organized as a hierarchy of spatial regions using Voronoi

graphs, as shown in �gure 5.4 and �gure 5.5. A region in the map is represented

by a point known as the region node. In Quartz, the hierarchy of regions is built

with a bottom-up manner. The Voronoi graph-based regions form the base layer

(level 1) of the hierarchy. The next layer (level 2) in the hierarchy is built on the

base layer by grouping the base regions into region clusters. Each region cluster

is then treated as a new region and is represented by its region node. Figure 5.5

demonstrates the aggregation of the lower level regions to form higher level regions.

In �gure 5.5, region 3A and 3B are aggregated to form their parent region 4A. To

represent this parent-child relation between regions, a hierarchical data structure

is adopted in Quartz. As shown in �gure 5.6, the dashed line connecting two region

nodes (at di�erent levels) means the parent-child relation between the two regions.

A solid line connecting two region nodes means that the two regions are adjacent

to each other and they belong to the same parent region. A region node contains

the information about how to move across its child regions. This hierarchical data

structure provides important information for qualitative spatial reasoning.
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5.4.a: Region Nodes 5.4.b: Regions

Figure 5.4: Voronoi Graphs and Regions

Figure 5.5: Hierarchy of qualitative spatial layers
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Figure 5.6: Hierarchical data structure in Quartz

Note that while the higher level regions are suitable for analysing long paths rapidly,

the lower level regions can �nd short paths more accurately.

5.3 Qualitative Spatial Reasoning in Quartz

Quartz has a hierarchical qualitative spatial reasoning framework based on the

hierarchical spatial representation as described in Section 5.3.2.2. During path

planning, Quartz �rst considers those paths between key spatial points if these

points are connected by either the dashed lines or solid lines as shown in �gure 5.3.

As a parent region node stores the information about how to move across its child

regions, path planning is straightforward if the current region and the destination

region belong to the same parent region. As an example, consider the path planning

between a current location in region 3C and a destination in region 3D (see �gure

5.6). The path information on the possible routes between region 3C and 3D can be

found from their parent region node 4D. To move across the child regions (at level

2 in this case) of region 3D, the path information on the possible routes leading

towards the level 2 region containing the destination can be found from region node

3D. This process is repeated along the hierarchical levels (in descending order) until
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the destination point is found. However, if the current and destination regions are

not in the same parent regions, the path planning needs to move to the next higher

level.

Figure 5.7: QuartzPath Algorithm

Figure 5.7 illustrates the QuartzPath path-planning algorithm in Quartz. The

recursive algorithm �rst check if the two child regions have the same parent region

and add the two child regions into the path plan if no common parent region is

found. The QuartzPath algorithm terminates when a common parent region is

found and returns the path plan.

With the hierarchical qualitative spatial reasoning framework, bots can incremen-

tally plan their paths. This helps to reduce the computational cost of path planning.

In addition, as bots do not commit to long paths, the impact of dynamic obstacles

is greatly reduced.

5.4 Limitations of Quartz

Some of the limitations in Quartz include the variability of the bot navigations.

To allow hierarchical path planning, the bots need to have spatial information on

the target location. The variability of the bots path planning is only a�ected by

the mission type and the force composition. If all the bots received the same data
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of spatial information, they will put the spatial data through the same algorithms.

These algorithms will generally return the same paths. If all the bots generate the

same paths, the realism of the simulation will be a�ected. However, this issue can

be mitigated by varying the spatial information given to various bots.

Another challenging issue for Quartz is the dynamic changes in the MOUT envi-

ronments. With a potentially rapidly changing environment, it is likely that alot

of re-planning is necessary for the bots. The re-planning involves more than just

analyzing the new terrain. It also involves understanding the mission type, enemy

strength or weapon threat. Therefore, for Quartz to work, an appropriate decision

making model is required to handle the situation awareness and threat identi�cation

of the bots.
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Chapter 6

The simulation testbed - Twilight
City

This chapter describes the implementation of the Twilight City [70] as the simu-

lation testbed. Minor details like setting the virtual environment up will not be

covered in detail as it will be a tedious procedure. The main emphasis of this

chapter will be implementing the part of this system as a simulation platform for

MOUT.

6.1 Motivation

The goal of our Twilight City project is to create high-�delity simulation testbed

for MOUT. A typical application scenario is the special squad operation for saving

hostages held in a building by a group of terrorists. Various operation tactics

need to be investigated before the real squad operation. The constructed virtual

environment needs to resemble the real operation environment not only in terms of

human’s visual and audio perceptions but also in terms of the behavior of the non-

player characters (i.e., AI bots). Creating such a high-�delity virtual environment is

a challenging task. Although there is some work on the application of FPS engines

88



Chapter 6. The simulation testbed - Twilight City

to military training, the design requirements may be di�erent for di�erent training

tasks and scenarios. As pointed out by Lewis and Barlow in [71], \The games must

have su�cient �delity to provide valid results. This �delity does not have to be

complete in all aspects, just enough in the variables of interest." In the following

sections, we identify the major considerations of Twilight City before explaining

the implementation of SNAP and Quartz into Twilight City

6.2 MOUT Scenarios

Military operations in Panama, Somalia, Kuwait and Iraq highlighted the critical

requirements for modern military forces to be able to operate e�ectively in an urban

environment. Combat operations within an complex urban environment will pose

great di�culties for the soldiers. Our MOUT training systems should be able to

support MOUT operations. These operations are generally stability operations and

support operations. Some of the MOUT operations include Combating Terrorism,

Peacekeeping Operations, Noncombatant Evacuations, Civil Disturbance Opera-

tions, Nation Assistance and Humanitarian Assistance [72]. To battle in urban

areas, ground commanders and key leaders at every level must be able to com-

prehend the nature of various environments. This understanding of enemy forces,

urban terrain and friendly forces can be achieved with MOUT simulations [73].

To build a good MOUT simulation system, it is not enough to describe the general

characteristics of an urban area. The number of oors and rooms in a building are

important factors to consider when trying to determine the force allocation during

a MOUT mission. A commander can only be able to provide su�cient resources to

capture a key objective when he can analyze the MOUT environment at a very high

level of detail. Troops need to react well towards surprise attacks, poor visibility,

89



Chapter 6. The simulation testbed - Twilight City

movable objects, smoke and noise. Apart from dealing with environmental e�ects,

they must manage their voice communications, night vision, weapons and other

equipments.

6.3 City Planning

The construction of the city environment took a lot of planning before the net-

work of interconnected buildings and streets were �nally built. Various technical

and design considerations were necessary to produce the simulation system for the

MOUT environment.

More than any other battle environment, the urban battle�eld is highly dynamic.

There are the many types of factors that make military operations in urban en-

vironments very dynamic. The soldier must understand the �ve military aspects

of terrain (OAKOC) to be able to comprehend fully the unique aspects of urban

terrain [74]. Terrain analysis in an urban environment di�ers from that of an open

terrain in many ways. There are �ve key aspects of terrain analysis for military

forces. They are as listed below:

(a) Obstacles

(b) Avenues of approach

(c) Key terrain

(d) Observation and �elds of �re

(e) Concealment and cover

Depending on the layout pattern of the streets, the combatants can improvise or

create man made obstacles quickly to obstruct narrow streets. These obstacles may
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not cause a signi�cant concern in situations with wider streets. Natural obstacles

arguably pose less of a problem in urban terrain than in open terrain. Rubble

resulting from direct or indirect �re may hinder all types of troop movement during

urban combat. In extremely rare situations, certain rubble could actually help to

facilitate troops movement. For example, if a building collapses across a waterway,

the rubble could provide the structure to enable access across the waterway.

Analysis of cover and concealment is also vital to success on the urban battle�eld.

Infrastructure characteristics, brick, wood and glass can all provide di�erent levels

of cover from enemy observation and weapon �re.

Some of the important structures often involved in MOUT operations are listed

below with some supporting reasons.

� Sewer and subway systems can provide in�ltration routes.

� Elevated railways or mass transit routes that can provide mobility; if the

combat operations disable these facilities, huge congestion will happen.

� Utilities such as gas, electrical or water facilities are all considered strategic

targets.

� Forces cannot attack hospitals and clinics when not under use for military

purposes. The medical personnel in the hospital or clinic could become a

source of medical support for all groups and elements.

� Stadiums, parks, and sports �elds may serve as enemy prisoner of war facilities,

holding areas or landing and pickup zones.

The city layout was planned with numerous interconnected buildings. A network

of roads shall be placed in the city map to allow vehicular movement during the

MOUT operations. Lifts will be placed in various buildings to allow the soldiers

91



Chapter 6. The simulation testbed - Twilight City

an alternative movement route. Besides underground levels, a sewage system is

placed into the environment as well. Following the principles of MOUT, some of

the buildings are designed to act as a �re base or reconnaissance point.

Figure 6.1: Twilight City Top View

The environment seeks to provide as much exibility as possible to the potential

users in terms of the types of MOUT operations that can be simulated within the

environment. Some of the MOUT operations are hostage rescue, terrorists search,

ambush and patrol. Taking the nature of the identi�ed MOUT operations into

account, high-rise buildings are designed to allow sniper attacks and reconnais-

sance posts. Buildings often complicate military operations in urban areas. Their

composition, frontages, size, and window locations a�ecting troops positioning and

weapons deployment considerations. Sewers should be built to facilitate the sewer-

age sabotage by the terrorists.

6.4 Issues encountered during implementation

The work of building the virtual environment leads to many issues. In this section,

we will briey describe a few issues faced during implementation. Greater details

can be found in [117].
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To enhance the realism of Twilight City, special e�ects are needed. These special

e�ects can help to provide an immersive environment for the MOUT simulation.

More importantly, the special e�ects such as smoke, shattering glass, water bodies

and rain can help to the testing of di�erent MOUT situations. The various possible

scenarios of MOUT operations are analyzed and the custom special e�ects, which

will improve the realism and accuracy of the simulation, are identi�ed.

It is observed that voice control capabilities are lacking in the presently available

MOUT environments. This function will be signi�cant in the testing of the bots

as user can verbally control the bots and get them to move just by moving their

mouths. When users are doing testing of bots across di�erent maps or maps on

di�erent computers being integrated together through TCP/IP interface, the users

can use this speech function to activate events without having to control two or

more keyboards. Modi�cations to the Unreal Engine are necessary to accommodate

to the voice control capability

For Twilight City to act as an e�cient simulation tool, some features must be added

to the systems. For example, the game engine can be modi�ed to test the e�ciency

of an evacuation plan during a gas attack during a concert in Singapore Indoor

Stadium. These features can be added in the form of modi�cations to the game

engine. Some of the useful modi�cations to game rules and bots AI are identi�ed

below.

Poison Gas Volume is made for the purpose of simulating the e�ects of a gas attack.

The Bots Visualiser displays the locations of all the soldiers activated within Twi-

light City. Night Vision is a modi�cation to the HUD to allow the testing of night

mission with Night Vision Goggles. Parachute is a mutator that allows the simula-

tion of airborne operations with parachutes in MOUT. Improved Bots Movements
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is a modi�cation to the game engine to change the FSM structure of the bots logic

in the game engine. This modi�cation will result in a marked improvement in bots

movement. The bots will become smarter and will demonstrate better movement

such as increased dodges and jumps.

One of the major considerations in building a virtual MOUT training environment

is the �delity of the virtual environment. As movable objects such as bottles, boxes

and chairs, etc. are quite common in real-life, it is important to incorporate these

objects in the virtual environments. However, in the existing MOUT simulations,

besides the avatars of the soldiers and some vehicles, most objects are static. The

reason for this is that modeling and implementing movable objects is a challenging

task in terms of computational costs and mathematical complexities. Traditional

methods to implement movable objects are based on exact physics models and

numeric analysis, thus are very time-consuming. The responsiveness of the system

may be greatly a�ected by the behavior of the movable objects. To reduce the

computational cost of simulating moveable objects in Twilight City, a framework

for qualitative behaviour simulation has been proposed and integrated into our

simulation engine.

Building high resolution virtual environments at a low cost is insu�cient to ful-

�ll the requirements of a modern simulation system. New generation simulation

systems should be agile and rapidly recon�gurable due to a growing emphasis to

reduce the development time. Such a system is possible if development e�orts

can be minimized by composing existing models from a model repository into new

virtual environments. To achieve reusability and composability, the simulation sys-

tems must have interoperable models. Presently, model interoperability is a huge

challenge due to the application speci�c nature of existing models. These models
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are built with a stovepipe development approach. As a result, replicates of exist-

ing models are continually being rebuilt for di�erent applications. This needless

reinvention causes costly and time consuming development iterations. To address

these issues, an elegant architecture is needed to quickly develop virtual environ-

ments and support reuse from a common repository of interoperable and extensible

models.

6.5 Novel techniques

In order to adapt the Unreal game engine into a simulation test bed, a number of

innovative techniques are explored. The following sub-sections discuss our contri-

butions to adapt Twilight City for MOUT simulations.

6.5.1 Qualitative Physics Simulation

Movable objects can increase realism during simulation. However, most simulated

objects are non-movable due to the need to limit the computational overheads.

To overcome this limitation, we applied qualitative physics to provide acceptable

physics behaviors at a low computation cost [75].

Traditional physics-based simulation is based on the kinematics equations of an

object. The behaviour of the object is then generated by numerically solving these

equations, which may need huge computational resources for real-time simulations.

Thus, it may not be feasible to perform such precise simulations at a large scale

in real-time applications like MOUT simulations. In most cases, achieving a rapid

estimate of the behaviour can provide a lightweight yet good-enough alternative as

compared to the precise solutions of the kinematics equations.
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Qualitative physics aims to perform behaviour simulation at certain acceptable

levels of realism and accuracy so as to ful�ll some operational requirements while

keeping the computational load low. In essence, qualitative physics applies our

knowledge of the qualitative (causal) relations of various factors in the physical

world to the behaviour modelling of the objects in the virtual environment [76].

Human beings are more sensitive to the qualitative (causal) relations among vari-

ous objects and factors rather than on the exact physics of the objects. They rely on

these relations in their reasoning about the environment and make decisions. There-

fore, qualitative physics focuses on the changes in the environment, e.g., changes

in water level, position changes, orientation changes, etc. In qualitative physics,

changes in the environment are described in terms of process. Examples of pro-

cesses are movement of water from a high ground to a low ground, heat transfer

from an object with higher temperature to another object with lower temperature,

etc. Such processes are activated due to the relationships that exist among the

objects in the environment. A process is determined to be active or inactive by as-

sertions of some preconditions and quantity conditions. The process speci�cations

allow the system to automatically infer a set of active processes. An active process

will then perform the necessary changes through its inuences.

6.5.2 Architecture for Rapidly Re-con�gurable Simulations

Unreal engine is mainly a visualization engine, which can be supported by exter-

nal applications. These applications can be qualitative physics engines to provide

augmented reality. The external engines can be used to monitor bots actions or

perform voice controls as well. Work should be done on the software architecture

of the system so that Twilight City can demonstrate good extendibility and coop-

eration with external modules. Therefore, we came up with e�ective architecture
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designs on which the virtual environments are developed [61, 78]. The main objec-

tive that our architecture seeks to ful�ll is to support rapid development of future

environments according to the changing requirements of modern MOUT warfare.

These architecture setups will serve as templates and guides for future researchers.

6.6 Implementation Details

After developing Twilight City, the SNAP framework and the Quartz navigation

system was implemented into the simulation testbed. We will cover the implemen-

tations below.

6.6.1 SNAP in Twilight City

Figure 6.2: Integrating SNAP into Twilight City

The existing bots in UT have very limited decision-making skills, which is inad-

equate to generate realistic tactical behaviors for MOUT simulations. Thus, we

use SNAP enhance the decision-making capability of the bots. As shown in Fig-

ure 6.2, SNAP interacts with the bots in Twilight City via Gamebots [79]. Game

bots is a modi�cation to UT that opens a socket to the Unreal Engine during run

time. SNAP is Java-based. For the ease of communication and implementation,
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SNAP interacts with the Gamebots via Java bots which is a middleware for external

applications to communicate with UT bots via Gamebots [80].

As illustrated in Figure 6.2, the Observe component will collect information about

the environment for SNAP to recognize the current situation and make decisions.

The decisions made by SNAP will send to the Twilight City through the Action

component.

In Twilight City, there are mainly three types of bots: soldier bots, militant bots,

and civilian bots. Typical scenarios in Twilight City include street combat between

soldiers and militant groups, and the �ghting between soldiers and militant sniper,

etc. Currently, our focus is the modeling of the tactical behaviors of the soldier

bots.

Figure 6.3: Experience Cases

As shown in Figure 6.3, seven experience cases for soldier bots have been imple-

mented. These cases reect the typical situations a soldier may face in urban

warfare. The cues and solutions of these experience cases are extracted from vari-

ous sources including military doctrines and interviews with experts. For instance,

the Close Combat Fire situation refers to soldier bots being attacked at close range

by enemy bots. This situation requires two experience cases. When the enemy

bot is in open area, the Hasty Attack experience case will be retrieved so that the
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soldier bot will return �re at the enemy. However, when the enemy is �ring under

concealment, the soldier bot should retrieve the Retrograde experience so that it

will quickly move out of the killing zone.

6.6.2 Integrating Quartz into Twilight City

6.4.a: Regions 6.4.b: Centre of Twilight City

6.4.c: Visibility Graphs

Figure 6.4: Maps in Twilight City
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Quartz is used as the navigation system for the bots in Twilight City. As discussed

in Section 5.3.2, a hierarchy of qualitative maps is used to describe the virtual

environment. Voronoi graphs are used to form the base layer of the qualitative

spatial regions. There are more than 200 spatial regions at the base layer of the

Twilight City map. Each parent region holds between two to four children regions,

thus �ve layers are used in the hierarchical map structure. It is noticed from �gure

6.4.a that the center of the map has the highest concentration of regions. This

corresponds to the large number of the buildings at the center of Twilight City as

shown in Figure 6.4.b. Figure 6.4.c shows the visibility graph network that consists

of nodes and edges. Twilight City contains more than 650 qualitative spatial points

that act as nodes in the visibility graph network. These maps are used by Quartz

for spatial reasoning and path planning.

6.6.3 Spatial Reasoning in Twilight City

Quartz ’s hierarchical spatial reasoning framework utilizes the hierarchical map

structure and the information contained in the maps to build paths for the bots.

For tactical path planning, apart from containing spatial information, qualitative

spatial points also contain some tactical information such as whether the point

is a sniping point, ambush zone, friendly zone or enemy zone. Path information

stored in the region nodes allows the bots to navigate rapidly towards child regions.

These pre-computed data greatly speed up the path planning in Twilight City. In

the current implementation, the number of levels in the map hierarchy is �ve. Thus,

with the QuartzPath algorithm, the maximum number of qualitative spatial points

in any path is only 9. Without using the hierarchical map structure, with most

existing path �nding algorithms, the number of spatial points in a path can easily

exceed 30. As we mentioned before, long paths containing a large number of spatial
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points are computationally expensive and more susceptible to the changes in the

environment.
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Experimental Results

This chapter discusses the experimental results of implementing Quartz and SNAP

in Twilight City. Apart from performing experiments on SNAP and Quartz, we

also use subjective perception tests and performance testing in our e�orts to test

and benchmark the e�ectiveness of Twilight City.

7.1 Experiments results on SNAP

The testing scenarios are performed within Twilight City. They include engaging

a set of 20 soldier bots with various threats such as Sniper Assaults, Close Combat

Fires, Bomb Assaults, and Air Strikes. The objectives of the experiments are to

test the behaviors of the soldier bots under di�erent situations and the impact of

di�erent experience cases on the soldier’s behaviours. In particular, the behaviors

of soldier bots during the Sniper Assault threat and the Close Combat Fire threat

are compared. Three sets of 20 bots were used for this experiment. They are S(A)

bots which only have Counter Sniper experience, S(B) bots which only have Hasty

Attack and Retrograde experience, and UT bots which have no experiences but

are equipped with the default tactics in UT. The average results from 10 runs are

shown in Figure 7.1. The results in Figure 7.1 show how a type of soldier bots
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reacted to in di�erent tactical situations. For example, the data in the �rst column

show that for the 20 soldier bots of type S(A), under Close Combat Fire situation,

2.1 of them just stood around, none of them made smoke screen, 15.7 of them

returned �re immediately, and 2.2 of them took cover �rst. In the Close Combat

Fire situation, we let the militant bot to shoot at the soldier bot from behind

the walls. For experienced human soldiers, the natural reaction is to take cover

�rst. In this situation, returning �re at the militant will only expose the soldiers

to unnecessary danger as there is no clear line of �re at the militant. It can be

observed from the experimental results that the 15.7 of the S(A) bots and 16.9 of

the UT bots started returning �re to the militant immediately. 14.0 of the S(B)

bots took cover. UT bots returned �re as they are designed to retaliate upon being

attacked. The S(A) bots did not have the relevant experience case to handle the

Close Combat Fire situation, so they had to rely on the basic reaction of retaliation

with �re. However, these behaviors are unrealistic in this situation. The S(B) bots,

on the other hand, behaved more like real soldiers. They were able to retrieve the

Retrograde experience when there is no clear line of �re to the militant bot.

Figure 7.1: Behavior of Soldier Bots with Di�erent Experiences

During the Sniper Assault threat, 12.1 of the S(A) bots created a smoke screen to

before moving to a cover, whereas 15.1 of the S(B) bots simply moving to a cover

103



Chapter 7. Experimental Results

without creating a smoke screen. This is because the S(A) bots are equipped with

the Counter Sniper experience, as a result, they were able to act with the correct

counter sniper tactics. For the 20 UT bots, 17.9 of them just stayed in the open

area and searched for enemy, since they could not di�erentiate between a close

combat �re and a sniper assault. This behavior is extremely unrealistic as the bots

remain exposed to sniper �re[60]. Figure 7.2.a shows a soldier bot being attacked

by a sniper. Figure 7.2.b shows the behavior of a soldier bot of type S(A) upon

being attacked by the sniper - the soldier bot created a smoke screen to prevent

him from being hit easily by the sniper.

7.2.a: Sniper Assault 7.2.b: Smoke Screen

Figure 7.2: Sniper Assault Situation in Twilight City

Another set of experiments was conducted to compare the mortality rate between

SNAP bots and normal UT bots during a 20 minutes simulation. The average

results of 10 simulation runs are shown in �gure 7.3. Again, three types of soldier

bots were used for these experiments: SNAP(7) bots are soldier bots with all 7

experiences in Table 1, and SNAP(4) bots are soldier bots with the experiences
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(i.e., Counter Sniper, Counter Air Strike, Hasty Attack, and Retrograde). UT bots

are the default bots in UT.

Figure 7.3: Mortality Rate of Soldier Bots

As it can be observed, the mortality rate of the SNAP bots is lower than the UT

bots. The number of UT bots that remain alive started decreasing in a faster rate

than the SNAP bots after 2 minutes. In 14 minutes, UT bots are totally destroyed

by the threats whereas an average number of 12.4 SNAP(7) bots were left. After

the simulation terminated at 20 minutes, an average number of 8.2 SNAP(7) bots

survived. The results show that SNAP bots are able to handle time critical threats

better than the UT bots. Between the SNAP bots, the SNAP(7) bots performed

signi�cantly better than the SNAP(4) bots, which is consistent with our expectation

that the mortality rate of the bots decreases as the number of experience cases in

the bots increases.

To evaluate the performance of SNAP, particularly its e�ectiveness in dealing with

dynamic changes in time-critical tactical situations, we have conducted some ex-

periments. In this section, we summarize the major results of these experiments.
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These experiments were conducted on a computer with Intel T2500@2GHz pro-

cessor and 2GHz RAM. The testing scenarios are performed within Twilight City.

They include engaging a set of 20 soldier bots with various threats such as Sniper

Assaults, Close Combat Fires, Bomb Assaults, and Air Strikes. The objectives of

the experiments are to test the behaviors of the soldier bots under di�erent situ-

ations and the impact of expectations on the soldier’s behaviours. In particular,

the behaviors of soldier bots during the Sniper Assault threat are compared. Three

types of soldier bots were used to this end. They are S(A) bots which have expecta-

tions, S(B) bots which have no expectations, and UT bots which are equipped with

the default tactics in UT. The S(A) bots and S(B) bots are also equipped with sim-

ilar experiences to deal with various threats, such as Sniper Assaults, Close Combat

Fires, etc. In the testing scenario, the bots were �rst engaged by enemy sniper in

Sniper Assault and subsequently hunted by enemy bots in Close Combat Fire. The

average results from 10 runs are shown in �gure 7.4.

Figure 7.4: E�ect of Expectations on Bots

The results in �gure 7.4 shows how each type of soldier bots reacted in di�erent
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tactical situations. For example, the data in the �rst column show that for the

20 soldier bots of S(A) type, under Sniper Assault threat, 2.1 of them just stood

around, 10.6 of them initiated a Counter Sniper operation, none of them initiated

a Close Combat Fire operation, 4.0 of them returned �re immediately, and 3.3 of

them took cover �rst. In the Close Combat Fire threat, the militant bots chase

and attack the soldier bots. For experienced human soldiers, when the threat has

changed from Sniper Assault to Close Combat Fire, the natural reaction is to adapt

their operation immediately. In this situation, continuing with the Counter Sniper

operation may be useless since the movement of the soldiers are exposed. It is

also more important to deal with the immediate threat of Close Combat Fire. It

can be observed from the experimental results that the 9.1 of S(A) bots changed

their operation into Close Combat Fire upon being contacted while only 1.0 of the

S(B) bots changed their operation. This is because the S(A) bots are equipped

with expectations that allow them to adapt their operations to deal with the dy-

namic changes. S(B) bots had already committed themselves to the Sniper Assault

operation and will continue the operation even when attacked by enemies. They

have no experience on how to deal with the threat of Close Combat Fire. 17.6 of

the UT bots simply returned �re as they are designed to retaliate upon being at-

tacked. Compared with the S(A) bots, the behaviours of S(B) bots are unrealistic

in this situation. The S(A) bots, on the other hand, behaved more like real soldiers.

They were able to retrieve the Close Combat �re experience when the expectation

violation invalidates the original solution.

Another experiment was conducted to compare the mortality rate between S(A),

S(B) and default UT bots during a 20 minutes simulation. The simulation exposes

the bots to Sniper Assault, Close Combat Fire, Ambush and Bomb threats in rapid

succession. The average results of 10 simulation runs are shown in Figure 7.5.
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Figure 7.5: Mortality Rate of Soldier Bots

As it can be observed, the mortality rate of the S(A) and S(B) bots are much lower

than the UT bots. The number of UT bots that remain alive started decreasing in

a faster rate than the SNAP bots (i.e., S(A) bots and S(B) bots) after 2 minutes.

In 14 minutes, UT bots are totally destroyed by the threats whereas an average

number of 13.1 S(A) bots were alive. After the simulation terminated at 20 minutes,

an average number of 8.7 S(A) bots survived. The results show that SNAP bots

are able to handle time critical threats better than the UT bots. Between the

SNAP bots, the S(A) bots performed signi�cantly better than the S(B) bots. We

also observed two major steep declines for S(B) bots at around 8 minutes and 14

minutes. These timings coincide with the activation of new threats and information.

The majority of the S(B) bots were destroyed during the activation of new threats as

they could not adapt fast to the new threat. The superior performance of the S(A)

bots and the steep decline in number of S(B) bots upon activation of new threats are
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consistent with our expectation that the mortality rate of the bots decreases when

SNAP is equipped with expectations to deal with dynamic situational changes.

It should also be noted that we do not claim our SNAP approach is better than

other approaches since in general it is meaningless to compare di�erent decision

making approaches regarding which one can generate more realistic decisions. It is

hard to compare due to many reasons: di�erent implementations, objectives, etc.

Here, the experiments are used to illustrate how experiences could help in making

better decisions. Our philosophy is that a intelligent bot should not only be able

to generate seemingly realistic behaviors in some given situations, it should also

behave like a human in the sense that the decision-making and cognitive processes

of a bot should be similar to that of a human being. Therefore, our approach for

human-like behaviours focuses on achieving both procedural and end-result realism

for intelligent bot behaviours. We believe that by imitating human decision making

and cognitive processes under various tactical situations, human-like bot behaviours

can be �nally be generated. Our model o�ers advantages such as being able to

take the experiences of expert soldiers and include them in the bot’s reasoning.

Moreover, current models did not take into account of the time criticality of MOUT.

Unlike current models, our model is focused on generating time-critical decisions

and not optimal solutions.

7.2 Evaluation of Computational Situation Aware-
ness Model

To evaluate the performance of our situation awareness model, we have conducted

some experiments. In particular, we wish to verify its realism and e�ciency during

time-critical situations.
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In our work, we focus on achieving both procedural and end-result realism. In fact,

the procedural accuracy to real-life human situation awareness is more important

than the end result. To verify our procedural realism, the SAGAT approach is

adopted. A group of 7 infantry section commanders are put through the experi-

ments individually. The test subjects are instructed to recognize threats in the vir-

tual environment. Sudden freezes will be activated during runtime and the subjects

will answer a set of questions. Although the subjects were informed that freezes

would occur, they were not informed of the timing. The questions are structured

such that a proper understanding of the perception, comprehension and projection

stages during situation awareness can be judged. Subsequently, the results of the

human subjects are compared with the results of the bots simulation.

A total of three test scenarios are conducted. All three scenarios start with a patrol

mission. In Scenario A, a single enemy bot will be used to engage the subject at

a close range. A group of enemy bots will ambush the subject with heavy �re in

Scenario B. Finally, in Scenario C, an enemy sniper will attack the subject from a

distance. The questions for the human subjects are listed below:

(a) What is the current mission?

(b) What are the possible threats?

(c) What is the current threat identi�ed?

(d) List the cues that identify the current threat

(e) What is the solution?

For each question, a similarity measure, St , is computed to judge the closeness of

the answers with the actual situation.

St = Number of matches
Total number of cases
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For example, if there are a total of 5 threats in Question 2 and the subject identify

3 of them accurately, a score of 3
5 = 0.60 is given for answers to this question. The

average scores of all the subjects are then taken for comparison with the scores of

the bots as shown in Figure 7.6.

Figure 7.6: Results of Situation Awareness

As all 3 scenarios starts o� with a Patrol mission, the results for Current Mission

and Possible Threats are similar in all 3 scenarios.

We can observe that, in Scenario A, the scores for spotted cues di�er by only 0.12

between the human subjects and the bots. All the subjects identi�ed the Close

Combat Fire threat accurately.

In Scenario B, the di�erence on spotted cues is increased to 0.24. However, both

the humans and the bots are able to identify the threat accurately. Upon further

investigation, we found that the drop in the human subjects’ score on cue spotting

is due to the fact that most human subjects pick up the key cues of \heavy �re"

and \a group of enemies". They make their judgment of an ambush threat and
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stop picking up the rest of the cues. This explains why threat identi�cation remains

relatively accurate even though the number of observed cues dropped.

In Scenario C, the human subjects’ score for the observed cues and threat identi�-

cation dropped to 0.4 and 0.55 respectively. The main reason for the drop is that

the human subjects are not familiar with the visual and audio e�ects of the sniper

�re in the virtual environment. Upon clari�cation that they had witnessed sniper

�re, all the human subjects could identify the threat accurately.

As the score of the solutions are only considered if the subjects could identify the

correct threat, all solution generation scores achieved a maximum of 1.0. We found

that the solution generation are very accurate once the threat is identi�ed correctly.

This is in fact consistent with Klein’s observation that experts can generate rapid

solutions through proper situation awareness and relevant experience cases.

In all three experiments, the cues picked up by the bots are more than the humans.

This is because the bots are able to pick up all cues in their �eld of view. The

humans can miss out certain cues in their �eld of view if they are overly excited

with certain prominent cues. Moreover, the human subjects are not familiar to the

virtual environment yet. This is evident in their failure to recognize the gun shot

from a sniper rie in Scenario C. More exposure to the virtual environment can

help the human subjects to improve their recognition of cues..

To further evaluate the e�ectiveness of our model in supporting real-time simu-

lations, we have also conducted the frame rate analysis using the same scenarios.

Although the frame rate can be a�ected by a number of factors, the decision mak-

ing process (which includes the situation awareness model) may incur signi�cant

computation overhead thus may impair the frame rate greatly.

We have conducted a series of experiments. Two di�erent types of bots are used

in these experiments for comparison. As shown in Figure 7.7, the Normal bots are
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the default bots provided by the Unreal engine which have very primitive cognitive

capability and are supposed to consume little computation resource. The SNAP

bots are equipped with our decision making and situation awareness model. The

results shown in Figure 7.7 are the average of 10 runs.

Figure 7.7: Frame rate analysis with Situation Awareness Model

It can be seen that the frame rates for both implementations decrease as the number

of bots increases. The results show that the performance of our SNAP bots are

comparable to the Unreal bots in terms of simulation frame rate. This suggests that

the decision making process (including the situation awareness model) in SNAP

does not incur signi�cant computation overhead to the simulation.

7.3 Evaluation of Quartz

To evaluate the performance of Quartz, we have conducted a series of experiments.

In this section, we summarize the major results of these experiments. These ex-
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periments were conducted on a computer with Intel T2500@2GHz processor and

2GHz RAM. The data shown in the results are the average of 10 runs. The time

for the ten soldier bots to reach their destination with and without (i.e., simply

using the A* algorithm and the detailed map) the Quartz system are recorded. In

Figure 7.8, the normal case means the implementation without using Quartz.

Figure 7.8: Impact of Quartz on path planning e�ciency

As expected, the time taken for the squad to reach the destination increases as

the number of civilian bots (thus the total number of bots) increases. However,

it can be clearly seen that the recorded time for the implementation with Quartz

increases much slower than the implementation without Quartz. This indicates

that Quartz helps to improve the e�ciency of the autonomous navigation system,

thus also improves the scalability of Twilight City.

To further evaluate Quartz ’s capability in supporting real-time simulations, we have

also conducted the frame rate analysis using the same scenario. Although the frame

rate can be a�ected by a number of factors, the autonomous navigation system can
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signi�cant a�ect the frame rate. The results of the frame rate analysis are shown

in Figure 7.9.

Figure 7.9: Frame rate analysis of Quartz
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It can be seen that the frame rates for both implementations decrease as the number

of bots increases. When the number of civilian bots increases beyond 64, the frame

rate of the implementation without Quartz drops much faster than the implemen-

tation with Quartz. When the number of civilian bots hits 228, the frame rate of

the implementation with Quartz is maintained at round 80, while the frame of rate

of the implementation without Quartz drops to around 30. The results show that

Quartz helps to reduce the computational overheads of the autonomous navigation

system, and the bene�t of Quartz becomes more evident as the number of bots

increases. This makes Quartz particularly useful for large-scale MOUT simulations

such as crisis management involving a large crowd in urban areas.

Figure 7.10: Tactical path planning

Figure 7.10 shows a soldier bot searching for some qualitative spatial points as

de�ned by the maps of Twilight City. With the information stored in various

spatial points, the bot is able to move to suitable positions to execute various

tactical commands such as attack, defend, snipe, etc. It is also interesting to

observe that some bots might get stuck at some locations without using Quartz,
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whereas there is no such case when Quartz is used. This indicates that the spatial

information contained in the hierarchy of maps helps Quartz to plan path more

e�ectively.

7.3.1 Mean Opinion Score Tests in Quartz

In order to validate the realism of the bot navigation in Quartz, further experiments

are required. The work on validation of human crowd simulation by Pelechano

[116] supports the use of feedback from human subjects to validate the realism of

human behaviours in simulations. Lessons are taken from their work and use Mean

Opinion Score (MOS) tests to judge the realism of the bot navigation with Quartz.

14 subjects (aged between 20 to 40 years old) were asked to watch two videos of

bot navigation in Twilight City. The subjects’ opinions on the realism of the bot

navigation were collected. All the subjects have at least 2 years of military training.

One of the video shows the bot navigation with Quartz and the other video shows

the bot navigation with A* algorithm. To prevent biased opinions, subjects are

not informed that the bots in the two videos are running on di�erent navigation

models. The subjects were asked to give their opinions on the realism of the bot

navigation by giving a score (5-Excellent, 4-Good, 3-Fair, 2-Poor, 1-Bad) Figure

7.11 summarizes the results of these tests. Video1(Quartz ) achieved a MOS score of

3.67 while Video2(A*) achieved a score of only 1.18. Generally, the subjects agreed

that the realism of the bot navigation is Video1(Quartz ) is better than the realism

in Video2(A*). They noticed that, in Video2(A*), bots sometimes run across open

areas which is very dangerous in a real MOUT scenario. They also noted that

Video2(A*) bots do not use buildings or walls for cover and concealment. Instead

these bots naively tries to traverse the best path from their start to end point. In

comparsion, Video1(Quartz bots avoids killing areas during navigation and shown

a preference to move close to walls and buildings for cover and concealment.
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Figure 7.11: Mean Opinion Score for bot navigation
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7.4 Mean Opinion Score Tests for Twilight City

To further evaluate the performance of Twilight City, we have installed it on some

PCs (DELL with Pentium IV 2.4GHz CPU) in the Parallel and Distributed Com-

puting Center (PDCC) at Nanyang Technological University and the Modeling

and Simulation Department of the Defense Science and Technology Agency of Sin-

gapore. 26 subjects (aged between 20 to 40 years old) were asked to play with

Twilight City for about half an hour (see Figure 7.12). Then the subjects’ opinions

on various aspects of Twilight City were collected. As the system is meant mainly

for military purpose, all the subjects have more than 2 years of military training

experiences. The military experience of the human subjects will help to validate

the accuracy of the behaviours simulation in Twilight City. Besides that, 16 of the

subjects also had experience with military simulation systems before.

Figure 7.12: Conducting Mean Opinion Score Tests of Twilight City

It should be noted that the emphasis of these tests is not on the behavior of the AI

bots that we have developed. Though the bots in Twilight City have demonstrated

a certain level of tactical intelligence, the emphasis of these tests is on a subject’s

perception of the visual e�ects of the virtual environment and various artifacts that

we have introduced. The subjects were asked to give their opinions on the following

questions:
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(a) How do you feel the responsiveness of Twilight City?

(b) Is Twilight City a good urban warfare simulation tool?

(c) How do you feel the voice module (accuracy and responsiveness)?

(d) How do you feel the behavior (realism and responsiveness) of the movable

objects?

The subjects answer these questions by giving a score (5-Excellent, 4-Good, 3-Fair,

2-Poor, 1-Bad) to the performance of Twilight City on each of these aspects. Figure

7.13 summarizes the results of these tests.
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Figure 7.13: Mean Opinion Score Tests Results
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The subjects are satis�ed with the responsiveness of Twilight City and the behavior

of the movable objects that we have introduced. They also feel that these movable

objects greatly enhance the realism of Twilight City as compared to other FPS

games they have played. However, subjects suggested that movable objects should

be modeled to show damages after collisions. For example, a part of the box

should be chipped o� upon colliding with the wall. Though some subjects suggest

that the voice module has noticeable delays and failed to produce correct results

in some cases, the results show that the voice module is generally acceptable by

most subjects. In general, the subjects feel that Twilight City is a good prototype

system for MOUT simulations. The movable objects, various artifacts and the voice

module are important to MOUT simulations. However, more voice commands need

to be added, and more training of the voice module are also needed.

During the data collection, it is stated that 16 out of 26 subjects had experience

with simulation systems. Further analysis is done to �nd out how di�erent are the

results from this 16 subject with respect to the rest. In the evaluation of Twilight

City as a a realistic urban simulation tool, the subjects with simulation experience

gave a MOS score of 4.375 against the MOS score of 4.4 from the subjects without

simulation experience. In the evaluation of the responsiveness of Twilight City, the

subjects with simulation experience gave a MOS score of 4.625 against the MOS

score of 4.7 from the subjects without simulation experience. In the evaluation

of the responsiveness of the voice module, the subjects with simulation experience

gave a MOS score of 4.4 against the MOS score of 4.55 from the subjects without

simulation experience. From the MOS score comparison It is noted that experience

of simulation systems does not a�ect the MOS score by a signi�cant amount. We

believe that this is a positive sign which shows that the subjects understand the

objectives of the experiment and are unbiased. The results are shown in Figure

7.14
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Figure 7.14: MOS Results for Experienced Vs Non-experienced users
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Chapter 8

Conclusions and Future Work

8.1 Summary

Time critical decision-making models are important to generate realistic behaviours

for the intelligent agents in virtual training systems and computer games. Formal

rational rules do not produce realistic behaviours as humans may not have su�cient

time to rationalize their decisions during time critical situations. Instead, past

experiences may have a dominant role in determining how a human will behave in

such situations.

The SNAP decision-making framework discussed in Chapter 3 aims to imitate how

human make decision in time-critical tactical situations for MOUT simulations. It

uses the CBR cycle to enable the bots to make decisions in such situations with

past experience cases. It also uses the thin-slicing technique for rapid situation

recognition with partial information about the current situation. This is important

since it is usually unlike for a human to have a complete knowledge about a situa-

tion. That is, people usually make sense of a complex situation in a timely manner

based only on some key cues about the situation.

To deal with the dynamic changes in MOUT simulations, we incorporated expec-

tations into SNAP.
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The expectations serve to

(a) Validate the initial solution

(b) Provide dynamic situation assessment.

(c) Enable bots to adapt their behaviour to changing situations.

(d) Allow bots to re-use past cues during experience

Our experiment results demonstrate that SNAP framework can provide realistic

agent behaviours during MOUT simulations.

In Chapter 4, we highlighted that recent �ndings in decision making processes show

that human experts often make decisions by comparing the current situation with

their past experiences. This is very di�erent from the goal-oriented or rational rea-

soning of conventional models. To enhance the e�ectiveness of SNAP, we produced

a computational model of situation awareness. Our experimental results demon-

strate that the computational model can help to generate realistic behaviours for

bots under time pressure. The computational model follows the three stages of

the Endsley’s model. In the perception stage, the bot senses are limited and can

pick up heterogeneous cues. During the comprehension stage, similarity measures

were computed and experience cases are retrieved. Finally, the novel feature of

expectations is applied during the projection stage. Our experimental results also

shows that the computational model closely models the situation awareness of hu-

man soldiers. Further frame rate analysis also shows that the computational cost

is not high.

Chapter 5 describes our work on Quartz. The Quartz navigation system explores

the human cognitive process in spatial reasoning. Quartz adopts qualitative spa-

tial representations and hierarchical spatial reasoning. These two features make
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Quartz more close to the way that humans handle daily-life spatial problems. As

humans rely more on the qualitative relations among various objects rather than

the exact quantitative descriptions of the world in their daily-life spatial reasoning,

we believe that qualitative spatial representation and reasoning are more suitable

for generating human-like movements for the bots.

Chapter 6 touched on the virtual environment built for MOUT simulations, Twilight

City. The main emphasis of the chapter is to discuss the implementation of time

critical decision making framework and autonomous navigation in a MOUT virtual

environment.

Chapter 7 presented our experiment results in Twilight City. Twilight City per-

formed well with the MOUT operations objectives implemented. Such tests in-

creased the con�dence level on the e�ectiveness of Twilight City and gave us a

better understanding of its limitations as well. Tests done on autonomous naviga-

tion and time critical decision making provided �rm evidence regarding the impact

of this research on building intelligent bots behaviours for MOUT simulations.

8.2 Conclusions

In this project, we seek to provide intelligent bots behaviours for MOUT simula-

tions. For an MOUT simulation to be e�ective, it is important for these bots to

demonstrate some human-like tactical behaviors. In terms of realism of behavior

model, our philosophy is that a human behavior model should not only be able to

generate seemly realistic behaviors in some given situations, it should also work like

a human brain in the sense that the decision-making process of an agent should be

similar to that of a human-being. That is, we emphasize on not only the end-result

realism of the behavior model, but also the structural and procedural realism.
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Time critical decision-making models are important to generate realistic behaviours

for the intelligent agents in virtual training systems and computer games. Formal

rational rules do not produce realistic behaviours as humans may not have su�cient

time to rationalize their decisions during time critical situations. Instead, past

experiences may have a dominant role in determining how a human will behave in

such situations. In our current work, a time critical decision making framework,

SNAP, had been produced. From this framework, we intend to develop future bots.

By varying the experience cases, we will be able to produce di�erent behaviours for

adversary, soldier and civilian bots.

Situation awareness provides the information for the bots to perform their cognitive

tasks and decision making. The quality and relevance of the information directly

a�ects the realism of the bot behaviours. Therefore, we proposed a computational

model for situation awareness in MOUT simulations. This model is built to handle

heterogeneous cue types within a dynamic environment. The computational situ-

ation awareness model works in tandem with the decision making and navigation

components.

Our Quartz navigation system explores the human cognitive process in spatial rea-

soning. Quartz adopts qualitative spatial representations and hierarchical spatial

reasoning. These two features make Quartz more close to the way that humans

handle daily-life spatial problems. As humans rely more on the qualitative rela-

tions among various objects rather than the exact quantitative descriptions of the

world in their daily-life spatial reasoning, we believe that the qualitative spatial rep-

resentation and reasoning in Quartz are more suitable for generating human-like

movements for the bots.

The Twilight City was produced for this project. It provided a virtual environ-

ment for MOUT simulations. Feedback from researchers showed that the proposed
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virtual environment is e�ective for MOUT simulations. With Twilight City, we

are able to test the realism of our bot behaviours after implementing SNAP and

Quartz. The results obtained provided us with a good understanding on the merits

and limitations of our work.

All in all, the research on bot behaviours had produced some signi�cant results

in the areas of decision making and autonomous navigation. We had produced a

number of publications to share our current work.[13, 62, 70, 63] We hope to further

extend our work to produce more signi�cant contributions in building intelligent

bots behaviours.

8.3 Future Work

Although the research made some contributions for producing intelligent bots be-

haviours in MOUT simulations, there is still room for more contributions. The

following sections propose a number of recommendations that can be implemented

to further extend our current work.

8.3.1 Terrain Reasoning

Solders’ behaviours in MOUT situations are greatly a�ected by the terrain [84].

The selection of the low-level actions and high-level plans requires terrain reasoning.

Terrain reasoning can be important in the following areas [85]

� Recognition of key terrain features and communicating about them

� Selection of plans and actions based on terrain

� Generating expectations based on locations

� Tactical considerations according to the terrain features
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We seek to enhance the realism of bots behaviours by including terrain reasoning

in our decisioning making framework. It will require us to work on terrain rep-

resentation and corresponding functions to manipulate the terrain representation.

To achieve our aim, more work on Quartz and SNAP may be required. Quartz can

be used to provide terrain representations to provide terrain information. SNAP

will use the terrain information to generate plans, actions and expectations.

8.3.2 Tactical Awareness

Building bot behaviours without tactical awareness serves little operational bene�ts

for the training of soldiers. It is our goal to build bots that are able to serve either

as challenging opponents or useful team members for our trainees. The bots should

be able to understand the tactical considerations of various MOUT situations.

It is observed that tactical considerations are generated based on training, experi-

ence and terrain features. These considerations will inuence the selection of plans

and actions in bots. With a more realistic selection of plans and action, the training

value of our MOUT simulations will be increased.

A number of important MOUT scenarios are selected and the tactical awareness of

our bots will be tested on them. These scenarios include, ambush, room clearing

and grenade throwing [86]. Once our bots are able to perform tactical reasoning in

such scenarios, we can further extend our work to include a greater scope of MOUT

situations.

8.3.3 Applying the current work to non-military areas

The time critical decision making model developed in SNAP can be applied to

non-military areas. An area where this model may be applied to is in the realm of
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high frequency trading(HFT). HFT is the execution of computerized trading strate-

gies characterized by extremely short position-holding periods. In HFT, programs

running on high-speed computers analyze market data, using algorithms to utilize

trading opportunities that may open up for only a fraction of a second to several

hours [118]. Much information happens to be unwittingly embedded in market

data, such as quotes and volumes. By observing a ow of quotes, high-frequency

trading machines are capable of extracting information that has not yet crossed the

news screens. We believe that SNAP can be adapted to receive cues in the form of

�nancial data, recognize current scenarios and generate pro�table trades. We are

trying to talk to potential investors who may be interested to provide funding for

further exploration in this area.

Another area that the current work can be used to contribute in non-military ap-

plications is in area of computer game technologies. We can see that the techniques

developed in this thesis may be used to improve some of the existing technologies

in terms of decision making models, virtual environments and path planning. In

the area of decision making, we believe that our model is able to generate more

realistic behaviours for game characters. Such realism will provide a better in-

game experience for gamers and enhance the value of the game. Furthermore,

with our case-based reasoning framework, it will be easier for game developers to

transfer human experiences into game content and generate believable behaviours.

As movement of the bots is vital to the perception of realism, our autonomous

navigation systems will improve the human-like realism of bots in games. This is

true especially in games which are set in 3D urban terrains. Other techniques such

as qualitative physics will also help to reduce computational costs of games while

generating acceptable physics behaviours of common urban objects.
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