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Abstract

Harmonic fields are widely used in computational science and engineering for their

computational efficiency and promising properties. Radó theorem strongly supports

the application of harmonic fields in parameterization by proving that harmonic maps

from 2D Riemannian manifold to convex planar domain are diffeomorphism. But the

limitations of harmonic maps are also obvious: first, there are a lot of real applications

requiring the mapping constraints to be set inside the domain. However, in such cases,

harmonic maps could not be guaranteed to be one-to-one. Second, Radó theorem holds

true only in the 2D case. Volumetric harmonic maps could not be guaranteed to be a

diffeomorphism.

In this thesis, we systematically study the harmonic fields and their applications in sur-

face and volume parameterization by overcoming the two aforementioned drawbacks

technically.

In the first part of the thesis, we present an editable polycube map framework in Chap-

ter 4, that, given an arbitrary high-resolution polygonal mesh and a simple polycube

representation plus optional sketched features indicating relevant correspondences be-

tween the two, provides a uniform, regular and artist-controllable quads-only mesh with

a parameterized subdivision displacement scheme. The proposed method is based on

a divide and conquer strategy. The mesh surface is divided into patches according to

the feature constraints. A diffeomorphism is built between each pair of topological

disk patches. After that, a global smoothing step is adopted to improve the continu-

ity along the segmentation boundaries. In Chapter 5, we also develop another method

to overcome the drawback of harmonic maps in parameterizing 3D facial expressions.

With the salient features (such as the eyes, mouth and nose) in the captured expression,

viii



we first compute a geodesic mask with the user-specified radius to segment the facial

expression. Then we cut the 3D faces along a geodesic curve connecting the eyes,

nose and mouth. As a result, each 3D face is topologically equivalent to an annulus.

Next, we solve a harmonic function using the Dirichlet boundary condition. Finally,

we compute the consistent mapping among all the captured frames by tracing the in-

tegral curves that follow the gradient field of the harmonic function. Observing that

both the geodesic and harmonic functions are intrinsic and independent of the embed-

ding, the proposed method is invariant to the expression, and also guarantees the exact

correspondences of the salient features.

In the second part of the thesis, we systematically study volume parameterization. In

Chapter 6, we investigate star-shaped volumes and prove that the Green’s function on

the star shape has a unique critical point and all level sets inside the star shape are topo-

logical spheres. Then we show that the Green’s function can induce a diffeomorphism

between two star-shaped volumes. Next, we develop an algorithm to parameterize gen-

eral volumes by using star-shaped decomposition. The computation of the Green’s

function is based on harmonic fields. In Chapter 7, we present an algorithm to pa-

rameterize handlebody with a boundary surface embedded in 3D space. The intuition

is to decompose the volume as the direct product of a two-dimensional surface and a

one-dimensional curve. We first partition the boundary surface into ceiling, floor and

walls. Then we compute the harmonic field in the volume with the Dirichlet boundary

condition. By tracing the integral curve along the gradient of the harmonic function, we

can parameterize the volume to the parametric domain. This method is guaranteed to

produce bijection for handlebodies with complex topology, including topological balls

as a degenerate case. Furthermore, the parameterization is regular everywhere. We

compare this method with the star-shaped decomposition method and other existing

techniques.

Based on our theoretical findings, we apply our algorithms to several real-world ap-

plications. Through the experiments, we demonstrate that the proposed surface and

volume parameterization methods are effective and powerful for general surface and

solid modeling and processing.
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Chapter 1

Introduction

This thesis is motivated by two different but highly related research fields: harmonic

fields and shape parameterization.

Harmonic field is a function which defines a scalar- or vector- valued field. Harmonic

fields can be constructed as solutions to Laplacian equations with certain boundary

conditions. Due to their computational efficiency and promising properties such as

smoothness and concentration of local extrema only at the boundaries, harmonic fields

are widely used in a variety of applications in computational science and engineering

[4, 13, 14, 15, 39, 76].

On the other hand, surface and volume mappings or parameterizations are fundamental

tools in geometry processing and have been widely used in a wide range of applications

in computer-aided design, scientific computation, graphics, etc. The goal of surface and

volume parameterizations is to find a bijective map between the source object (surface

or volume) and a parametric domain with the same topology. We briefly discuss some

applications of shape parameterization below.

∙ Texture mapping: texture mapping(Fig. 1 (a)) is an efficient representation of

a detailed model [46, 5, 51]. In traditional surface texture mapping, the color

1



CHAPTER 1. INTRODUCTION

(a) Texture mapping [46]

(b) Shape deformation [83]

(c)Surface remeshing [62] (d)Solid texture [47]

(e)Volume remeshing [52] (f)Volume computing

Figure 1.1: Applications of surface and volume mapping.
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CHAPTER 1. INTRODUCTION

details stored in a 2D array are mapped onto a polygonal mesh. The natural way

to map details to surfaces is using planar parameterization. Later, more details

such as normal, displacement and bump are presented as textures and mapped

to the polygonal mesh. With the progress of graphics hardware, volume texture

mapping is also achievable in nowadays applications [73].

∙ Shape morphing and detail transfer: A mapping between the surface or volume

of two objects allows the transfer of details from one object to another [17, 83]

(Fig. 1 (b)). The interpolation between the shape and appearance of several ob-

jects is also supported by the mapping. Morphing animations could be produced

by varying the interpolation ratios over time. The map could be constructed either

directly between the two objects or by parameterizing the two objects (surface or

volume) to a common domain. In specific applications, the mapping is con-

structed with feature or skeleton correspondence constraints to achieve a more

natural morphing or transfer.

∙ Remeshing: There are many possible mesh structures that represent the same

surface or volume with similar levels of accuracy(Fig. 1 (c)(e)). Some mesh rep-

resentations might be more desirable than others in different applications. For

example, for numerical simulations on surfaces, well-shaped triangles that are

not too small or too skinny are important for convergence of the algorithm and

numerical accuracy. Surface parameterization is one common way to remesh

surfaces [61, 62]. New mesh is easily constructed in well-understood and highly

desirable domains such as the planar domain and then mapped back to the origi-

nal surface. It is also highly desirable to represent the volume by hexahedral mesh

in FEA(Finite Element Analysis) [47]. Similarly, the hexahedral mesh could be

constructed in the parametric domain, such as polycube, and then mapped back

to the original volume.

3



CHAPTER 1. INTRODUCTION

∙ GPU-based computing: Due to the rapid advances in graphics hardware, GPU

(Graphics Processing Unit) becomes much more powerful than CPU (Central

Processing Unit). It is highly desirable to use GPU for general computing (Fig. 1

(f)). To be compatible with the current GPU, data should be packed as image

textures or volume textures. Surfaces and volumes are parameterized to a regular

domain and rasterized to image or volume textures respectively.

1.1 Problem Statements

According to Radó theorem, harmonic fields are proven to guarantee a diffeomorphism

from a 2D manifold to a convex planar domain with certain boundary conditions (more

details can be found in Section 2.2). Radó theorem strongly supports the application

of harmonic fields in surface parameterization. Tremendous harmonic fields-based sur-

face and volume parameterization methods have been proposed [15, 87, 80, 47, 52].

However, there are also drawbacks of harmonic fields: first, there are a lot of real appli-

cations requiring the mapping constraints to be set inside the domain. However, in such

cases, harmonic maps could not be guaranteed to be one-to-one. Second, Radó theorem

holds true only in 2D cases. Volumetric harmonic maps could not be guaranteed to be

a diffeomorphism.

In this thesis, we systematically study the harmonic fields-based surface and volume pa-

rameterizations aiming at high quality parameterization methods in different practical

applications. The requirements of shape parameterization are application- dependent

and vary from case to case. This section lists several common issues in shape parame-

terization.

∙ Distortion: The ideal shape parameterization is isometric, i.e., with no metric

distortion. Unfortunately, isometric parameterization does not exist for most of

4



CHAPTER 1. INTRODUCTION

the real-world shapes. Thus, it is desirable to find a good parameterization with

small angle and/or area distortion.

∙ Parametric domain: The bijective property of shape parameterization requires

that the parametric domain must have the same topology as the input shape.

However it is well known that the parameterization quality greatly depends on

the geometry of the parametric domain. Taking genus-0 open surface for exam-

ple, the parametric domain can be a rectangle, a free-boundary topological disc,

or even a 3D polycube. The choice of parametric domain is usually application-

dependent.

∙ Feature correspondence: Parameterizations often require some correspondences

between the input shape and the parametric domain. These correspondences can

be either specified by the users or determined automatically. The desired param-

eterization algorithm should guarantee the exact feature correspondences.

1.1.1 Surface Parameterization

Surface parameterization was initially introduced into computer graphics for mapping

textures onto surfaces [5, 51]. It aims at building a bijective map between two surfaces

with the same topology. Since the geometry of the two surfaces is different, almost ev-

ery surface parameterization introduces distortion in either angles or areas. The existing

surface parameterization approaches have contributed to minimizing these distortions

to some extent.

Despite the great success achieved in surface parameterization, there are still limitations

in the existing work. From the user’s point of view, an ideal surface mapping algorithm

should have at least the following features:

5



CHAPTER 1. INTRODUCTION

∙ Quality: The map is a bijection with low angle and area distortion.

∙ Feature correspondence: the feature correspondence between the source surface

and the parametric domain should be guaranteed. Feature correspondence is im-

portant in some applications including shape morphing/animation, texture edit-

ing, and so on.

∙ User control: the user can easily control the mapping by specifying optional fea-

tures on the source surface and their desired locations on the parametric domain.

Both the parameterization and the optional features are editable.

There are numerous harmonic fields-based surface parameterization methods [15, 87].

However, none of the existing work has all the desired features. Direct harmonic maps

only work well with constraints on the boundary. But a lot of applications require

a more flexible constraints setting method, such as constraints inside the domain. A

controllable, intuitive and effective surface parameterization method with high quality

mapping results remains a challenge.

1.1.2 Volume Parameterization

Despite the great success in surface parametrization, most real-world objects are in

fact volumes rather than surfaces. Rich sources of volumetric data are captured by

current volume scanners. Volume parameterization, which is fundamental for volume

data processing, is strongly called for by scientific and graphical applications. From the

analysis and processing point of view, an ideal volume parameterization should have

the following properties:

∙ The constructed mapping is a diffeomorphism. It means that the mapping should

be bijective and smooth.

6



CHAPTER 1. INTRODUCTION

∙ The distortion of the mapping is low.

∙ The algorithm is able to parameterize volumes with complex topology such as

shapes with high genus.

However, due to the intrinsic differences between surfaces and volumes, many classical

results on surface parameterization cannot be directly generalized to produce volume

parameterization. For example, it is well known that a harmonic map between a topo-

logical disk (a genus zero surface with a single boundary) and a planar convex domain

is diffeomorphic (i.e., bijective and smooth), if the boundary map is homeomorphic

(i.e., bijective and continuous). This result plays an important role in surface param-

eterization. However, the same result does not hold true for volumetric cases, i.e., a

volumetric harmonic map cannot guarantee that the resulting parameterization will be

bijective even though the target domain is convex. It remains both unclear and chal-

lenging as to how existing surface parameterization methods can be generalized from

surfaces to volumes.

1.2 Contributions

In this thesis, we systematically study the surface and volume parameterization. For

surface parameterization, we present an editable polycube map framework through

which the user could control the mapping in an intuitive and effective manner(Chapter

3) . We also propose an expression-invariant method to parameterize 3D facial expres-

sions. Our method is guaranteed to map the salient features, such as the eyes, nose

and mouth, consistently among all frames (Chapter 4). For volume parameterization,

we propose a star-shaped volume parameterization method and then extend it to gen-

eral shapes (Chapter 5). We further develop an algorithm to parameterize handlebodies

embedded in ℝ3 (Chapter 6).

7



CHAPTER 1. INTRODUCTION

Our specific contributions include:

∙ User Controllable Polycube Map We present a method that efficiently and intu-

itively creates a high quality and artist controllable polycube map from a general

mesh. Our method allows the user to modify the map easily and fine-tune the

mapping. The user is also able to control the number of patches in the base mesh

of the subdivision scheme by the construction of the base polycube. The provided

polycube does not need to resemble the shape of the object accurately. In fact,

coarse polycubes will suffice (Chapter 4).

∙ Expressions Parameterization We develop a geometry video framework to model

3D facial expressions. Our framework consists of a set of algorithms, including

hole filling, geodesic-based face segmentation and expression-invariant parame-

terization. Our algorithms are efficient and robust, and can guarantee the exact

correspondences of the salient features (eyes, mouth and nose) among frames

(Chapter 5)

∙ Star-shaped Volume Parameterization We prove that the Green’s function on

the star shape has a unique critical point and all level sets inside the star shape

are topological spheres. Then we prove that the Green’s function can induce

a diffeomorphism between two star shapes. To our knowledge, this is the first

constructive proof of the existence of a diffeomorphism between two non-trivial

shapes. Based on our theoretical results, we develop algorithms to parameterize

star shapes to star-shaped domains, such as solid balls and star-shaped polycubes.

We also extend our algorithm to parameterize general volumes by using star-

shaped decomposition (Chapter 6).

∙ Handlebodies Parameterization We propose a volumetric parameterization al-

gorithm which is able to parameterize volumes with complex topology. It can

8



CHAPTER 1. INTRODUCTION

also be downgraded and applied to volumes with trivial topology (i.e. topological

balls). The parametric domain is simple and easy to construct. Broadly speak-

ing, it is the direct product of a surface patch and a line segment. The resulted

mapping between the original volume and the parametric domain is homeomor-

phism, and there is no singularity. To our knowledge, our method is the first one

that can guarantee the bijectivity of the parameterization for volumes with non-

trivial topology other than topological balls. At any point in the volume, the w

iso-parametric line (which follows the gradient of the harmonic field) is orthogo-

nal to the u and v iso-parametric lines (which span the iso-surface of the harmonic

field), which is a natural consequence of enforcing a conformal parameterization

on the surface and a gradient field in the volume (Chapter 7).

∙ Applications Based on our theoretical findings, we put the proposed algorithms

into use in several real-world applications, including GPU-based subdivision dis-

placement, geometry video compression, volumetric morphing, anisotropic solid

texture transfer, GPU-based volumetric computation and hexahedral shell space

construction (Chapter 7). Through the experiments, we demonstrate that the pro-

posed surface and volume parameterization methods are effective and powerful

for general surface and solid modeling and processing.

1.3 Thesis Organization

The remaining part of the thesis is organized in the following fashion: in Chapter 2, we

introduce the mathematical preliminaries on differential geometry and harmonic maps.

In Chapter 3, we briefly review the surface parameterization techniques followed by

their volume counterpart. In Chapter 4, we present the editable polycube map frame-

work, which allows the user to construct the polycube map in an intuitive and easy

9
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manner. The user is able to sketch features on source shape and polycube domain to

specify feature correspondences. In Chapter 5, we develop the expression-invariant

surface parameterization for 3D faces. Exact feature correspondences among frames

are guaranteed by our method. In Chapter 6, we investigate the Green’s function-based

volume parameterization in star shapes and extend it into general shapes. The mapping

between the star shape and the parametric domain is proved to be a diffeomorphism.

We also generalize this method to parameterize general volumes by star-shaped decom-

position. In Chapter 7, we propose a volume parameterization method for handlebodies

embedded in ℝ3. The mapping between the original volume and the polycube domain

is proved to be a bijection and has no singularity. In Chapter 8, we showcase several

applications that benefit from our proposed surface and volume parameterization meth-

ods. The applications include GPU-based subdivision, geometry video compression,

volume data processing, and shell space construction. Finally, we conclude the thesis

and point out several future research directions in Chapter 9.

10



Chapter 2

Mathematical Background

This chapter introduces the mathematical preliminaries on harmonic maps and differen-

tial geometry to help the readers have a better understanding of the following chapters.

2.1 Differential Geometry

Differential geometry studies geometrical objects using techniques of calculus on dif-

ferentiable manifold.

Manifold A n-manifold is a space that is locally like ℝn, although it lacks a preferred

system of coordinates. More formally, a n-dimensional topological manifold M is a

second countable, Hausdorff topological space that is homeomorphic to open subsets

of ℝn. n is called the dimension of the manifold, e.g. a line and a circle are one-

dimensional manifolds, while a plane and sphere are two-dimensional manifolds.

Differentiable manifold A differentiable manifold is a topological manifold with a

globally defined differential structure. Thus differential and integral calculus is allowed

on differentiable manifolds.

11
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Diffeomorphism Given two manifolds, M and N, a bijective map f from M to N is

called a diffeomorphism if both

f : M → N

and its inverse

f−1 : N → M

are differentiable. If these functions are r times continuously differentiable, f is called

a Cr-diffeomorphism. Two manifolds M and N are diffeomorphic if there is a diffeo-

morphism between them.

From the geometry processing point of view, it is highly desirable to find a diffeo-

morphism between a manifold and the Euclidean space of corresponding dimension.

Specifically, this thesis focuses on finding diffeomorphism between 2-manifolds and

3-manifolds of certain shapes, including human face mesh, polycube surface and star-

shaped volume.

2.2 Harmonic maps

Harmonic function A harmonic function is a twice continuously differentiable func-

tion: f : Ω → R(where Ω is an open subset of Rn) which satisfies the laplacian equation

∆ f = 0 everywhere in Ω. where

∆ =
∂ 2

∂x2
1
+

∂ 2

∂x2
2
+ ⋅ ⋅ ⋅+ ∂ 2

∂x2
n

Harmonic functions can be generalized on arbitrary Riemannian manifolds as Laplace-

Beltrami operator. The Laplaciae-Beltrami operator is also the divergence of the gradi-

ent: ∆ f = Div(∇ f ). More details could be found in Schoen and Yau [65].

Harmonic maps If M and N are two Riemannian manifolds, then a harmonic map

f : M → N is defined to be a stationary point of the Dirichlet energy

12
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E( f ) =
1
2

∫
∥df∥2dVol (Eq. 2.1)

where Vol is the local n-dimensional volume. In the surface case, a harmonic map

minimizes the Dirichlet energy and indicates a minimal surface.

Radó Theorem: Suppose Ω ⊂ R2 is a convex domain with a smooth boundary ∂Ω

and suppose that D is the unit disc. Then given any homeomorphism µ : ∂D → ∂Ω,

there exists a unique harmonic function f : D → Ω such that f = µ on ∂D and µ is a

diffeomorphism [65].

This theorem gives the theoretic foundation for harmonic surface mapping between 2D

convex domains. However, the Radó theorem does not hold for 3-manifolds. Thus, the

volumetric harmonic map is not guaranteed to be bijective even though the target do-

main is convex. One of the concerns of this thesis is how to construct a diffeomorphism

between 3-manifolds.

13



Chapter 3

Related Works

This chapter surveys some related work in surface parameterization and volume param-

eterization.

3.1 Surface Parameterization

Surface parameterization is a fundamental tool of surface geometry processing. It was

introduced into the graphics community for mapping textures onto surfaces [5, 51]. In

recent years, surface parameterization has been demonstrating its power in more and

more applications including surface remeshing, shape matching, spline construction,

mesh completion, and so on. With the increased interest in applying surface parameter-

ization, various methods have been developed for different kinds of parametric domains

and parameterization properties. This section reviews the literatures in planar, spheri-

cal, and global parameterization.

3.1.1 Planar Parameterization

Due to the difference in geometry between the source surface mesh and the parametric

domain, almost every surface parameterization introduces distortion in either angles or
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areas. Surface parameterization methods aim to produce a good parameterization that

minimizes the distortion in some sense. Many existing works have been surveyed in

Floater [21] and Sheffer et al. [68].

In practice, surfaces are usually represented by triangular meshes which are piecewise

linear. A commonly used parameterization technique is barycentric coordinates. Each

vertex could be represented by the weighted linear combination of its neighbors. Eck

et al. [15] introduced the discrete harmonic coordinates into planar surface parameter-

ization. The surface parameterization is computed by solving a sparse linear system.

The sparse linear system could be efficiently solved with state-of-the-art methods such

as TAUCS. But Eck’s method cannot guarantee the bijection of the mapping due to

negative weights. Floater [20] presented another kind of barycentric coordinates called

mean value coordinates by discretizing the mean value theorem. Because the weights

are always non-negative, the mapping is guaranteed to be bijective when the parametric

domain is convex.

Many planar surface parameterization methods map the source surface to a rectangle or

circle domain. Such a convex domain could guarantee the bijection of the map if pos-

itive barycentric coordinates are used. The rectangle and circle domains are sufficient

for most applications. But the maps have large distortions near the boundary. To allevi-

ate this problem, Lee et al. [45] built a virtual boundary around the original boundary.

The original mesh is augmented by adding extra triangles around the boundary. Then

the original boundary is mapped to the parametric domain in a relatively free manner.

Most methods use a similar framework. A special energy function is defined to present

the overall distortion from the isometric parameterization. The parameterization is then

computed by minimizing the energy function. Energy functions based on different

properties minimize the distortion in different ways. Eck et al. [15] considered the
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Dirichlet energy of the inverse function and constructed the harmonic map. Desbrun et

al. [12] presented the conformal energy. In their method, only two of the boundary

vertices need to be fixed in order to give a unique solution. But the result is heavily

sensitive to the two vertices. Mullen et al. [54] studied how to get the best choice of

the two vertices. Floater [19] presented a shape preserving parameterization based on a

specific weight to improve the quality of the mapping in terms of area deformation and

conformality. Hormann et al. [34] introduced the MIPS energy, which also favors con-

formality. This distortion measure is symmetric with respect to inversion. MIPS does

not require the boundary constraint and the boundary points can move freely in a min-

imization process. However, minimizing the energy function is a non-linear problem.

There is also a variety of local distortion measures [51, 64, 72] that yield a non-linear

optimization problem.

Instead of using vertex coordinates to represent the planar parameterization, there is a

series of angle-space methods defining the planar parameterization in terms of the an-

gles of planar triangles. Compared with direct conformal methods, angle-space meth-

ods produce significantly less stretch in models with high Gaussian curvature. Sheffer

et al. [69] introduced the Angle Based Flattening (ABF) method to flatten a mesh to

a planar plane. Their method is based on the observation that a planar triangulation is

uniquely defined by the corner angles of its triangles. To guarantee that the 2D angles

define a valid triangulation, they introduced a set of constraints into the framework:

1) the summation of angles of a triangle should equal to π; 2) for each interior ver-

tex, the summation of surrounding angles should equal to 2π; 3) all angles should be

larger than 0; 4) edges shared by pairs of triangles should have the same length. They

searched for angles that are as close as possible to the original 3D mesh angles and

satisfied those constraints using the Lagrange multipliers method. Their method is rel-

atively slow and suffers from stability problems in the angle-to-uv conversion stage for
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large meshes. ABF++ [67] was proposed to address those problems. Sheffer et al. [67]

introduced a stable angle-to-uv conversion using the LSCM method. The computing is

greatly speeded up by introducing both direct and hierarchical solution approaches. In

recent years, several modifications have been proposed for different cases. To guaran-

tee global bijectivity, Zayer et al. [86] introduced additional constraints on the angles

enforcing the parameter domain to have convex boundaries. Kharevych et al. [40] used

a circle pattern based approach for mesh flattening. They introduced the local Delau-

nay property in addition to the angle constraints. But the optimization problem is still

non-linear.

Gu et al. [26] introduced a method to parameterize an either open or close mesh to a

completely regular domain called geometry image. In their method, the closed mesh

must be cut into topological disks and then mapped to a rectangle domain. Although

their method could deal with arbitrary mesh, artifacts are introduced near the cutting

boundary.

3.1.2 Spherical Parameterization

3D objects are often represented by closed, genus-zero surfaces. For such objects, the

sphere is the most natural parameterization domain, since it does not require cutting

the surface into disk(s) and thus it allows for seamless and continuous parameteriza-

tion. Due to these favorable properties, sphere parameterization has attracted increasing

interest recently. The literatures could be divided into four main types[35]: 1) Gauss-

Seidel iterative extension of planar barycentric methods; 2) stereographic projection; 3)

spherical generalization of barycentric coordinates; and 4) multi-resolution embedding.

Inspired by the successful planar parameterization methods, many approaches attempted

to extend the barycentric, convex boundary planar methods to the sphere. Alexa et
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al. [1] and Kobbelt et al. [41] proposed methods along this line. They grew the original

mesh to its convex hull, and then projected the mesh directly to the bounding sphere.

Gauss-Seidel iterations were used to achieve the final parameterization. Isenburg et

al. [36] introduced a divide-and-conquer method. They split the mesh into two topo-

logical disks, mapped the cutting boundary onto a circle and embedded each half-mesh

into a hemisphere using a modified Tutte procedure. The modified Tutte procedure

computed positions on half a sphere, rather than in the plane. But Saba et al. [63]

proved that the projected Gauss-Seidel iterations decrease the residual for only a limited

number of iterations. As a result, the system is unstable and collapses to a degenerate

solution.

The stereographic projection is a conformal mapping that projects a sphere onto a plane.

The continuous projection is defined on the entire sphere, except at the single projection

point. The mapping is smooth and bijective everywhere except the projection point.

Additionally, the projection is conformal. Inspired by the favorable properties, Haker

et al. [32] introduced a sphere parameterization algorithm based on discrete inverse

stereo mapping. Firstly, they computed a planar parameterization of the mesh, using

one of the triangles as a boundary. Then the stereographic projection was employed to

obtain the spherical mapping. The mapping result depends heavily on the choice of the

boundary triangle. But the stereographic projection is bijective only for the continuous

cases. There is no theoretical guarantee that it works for discrete cases. In practice,

triangle flips might occur. A simple proof is given in Hormann et al. [35]. Furthermore,

the stereograph projection is not distance or area preserving.

Gotsman et al. [25] presented a theoretically sound spherical parameterization method

by employing an intrinsic relationship between spherical parametrization and spectral

graph theory. The basic idea is to generalize the method of barycentric coordinates to
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the sphere while keeping all its advantages. The challenge in generalizing the planar

barycentric coordinates method to the sphere case lies in the difference between the

geometry of the plane and sphere. In the planar case, each vertex position could be

some convex combination of the positions of its neighbors. But this is not the case

for the spherical scenario. By forcing the vertices on the sphere, they construct a large

quadratic system which is non-linear. It is quite time-consuming to solve this system.

Saba et al. [63] introduced an efficient and practical method to overcome this problem.

Firstly, they partitioned the mesh into two topological disks, and then embedded each

half on a hemisphere using a planar parameterization followed by a stereographic pro-

jection. Their numerical solution mechanism for the final parameterization combines

Gauss-Seidel iteration with nonlinear minimization. With their method, surface mesh

containing up to a hundred thousand vertices could be parameterized in only a few

minutes.

Praun and Hoppe [61] observed the two challenges of sphere parameterization: 1) to

obtain a robust algorithm, it must prevent parametric “foldovers” in order to guarantee a

1-to-1 spherical map; 2) while all genus-zero surfaces are in essence spherical-shaped,

some can be highly deformed, hence creating a parametrization that adequately samples

all surface regions is difficult. They achieved robustness by a coarse-to-fine optimiza-

tion strategy. Firstly, the surface mesh is simplified to a tetrahedron and a progressive

mesh is created, favoring triangles with good aspect ratios. After that, the base tetra-

hedron is mapped to the sphere. Then the vertices are added back progressively. To

avoid undersampling and preserving high-frequency surface details, they adopted the

penalized undersampling using a stretch-based parameterization metric during the mesh

refining. Compared to their method, Shapiro et al. [66] computed the embedding using

purely topological operations but did not attempt to minimize any type of distortion.

Thus heavy stretch might occur.
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3.1.3 Global Parameterization

The surface and sphere parameterization methods are restricted to domains with simple

topology, such as disks and spheres. Parameterization of surfaces with arbitrary topol-

ogy remains a challenging problem. The common solution is to introduce cuts into the

original mesh to form one or more disks. But the cuts might introduce artifacts near

the cutting boundary due to the discontinuity. Global parameterization methods, which

target at obtaining globally smooth parameterization on the model of arbitrary genus,

are proposed to deal with this problem.

The problem of computing global conformal parameterizations for closed meshes with

arbitrary genus is first solved by Gu and Yau [29]. Their method approximated the De

Rham cohomology by simplicial cohomology, and computed a basis of holomorphic

one-forms. Global continuity could be achieved except at a number of singular points.

Although their method is theoretically sound, it has some limitations in the geometric

realization of the homology basis. Each homology base curve can only intersect its con-

jugate once. Hence, the method requires users’ guidance. Moreover, their method does

not work for surfaces with boundaries. Gu and Yau [30] later presented a purely alge-

braic method that gives the solution for most of the limitations of their earlier work [29].

In their method, the unique locations of the singular points that satisfy conformality are

given. They also solved for the optimal conformal transformation that minimizes global

stretch. They analyzed the structure of the space of all global conformal parameteri-

zations of a given surface and found all possible solutions by constructing a basis of

the underlying linear solution space. This method has no restrictions on the geomet-

ric realization of the homology basis and is therefore automatic. The method was also

generalized to handle surfaces with boundaries by double covering.
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Boier-Martin et al. [6] proposed a method for parameterizing triangular meshed models

over polyhedral domains with quadrilateral faces. They used a combination of centre-

based clustering techniques to partition the model into regions that are suitable for local

parameterization. A coarse quadrangulated mesh is defined using the region boundaries

to obtain a parameterization domain. Ray et al. [62] presented the periodic global pa-

rameterization method that aligns the parameterization with orthogonal input vector

fields. The parameterization is constructed by the optimization of two periodic scalar

functions so that their gradients are as tangential as possible to the input vector fields.

Inspired by [62], Kälberer et al. [38] proposed the QuadCover method for global pa-

rameterization. The algorithm is automatic and the parametric lines align optimally

with a user-defined frame field, e.g., the principal curvature directions. The algorithm

consists of two stages. In the first stage, the frame field is slightly changed to be a

locally integrable field. Then the surface is cut into a set of open meshes. The frame

field is integrated by inducing a parameterization, which is discontinuous near the cut-

ting boundaries. In the second stage, the frame field is altered once more, so that the

parametric lines close globally, even at the cuttings.

Although numerous surface parameterization methods have been proposed, few of the

above methods allow mapping constraints inside the domain. From the users’ point of

view, it would be highly desirable to set interior mapping constraints in some practical

operations such as texture mapping, surface morphing, motion data alignment, etc. In

this thesis, we propose two different techniques to take interior features as mapping

constraints for two different applications respectively. In the polycube map, we use

a divide-and-conquer strategy that segments the surface into patches according to the

features. Then the features serve as the boundary constraints in the mapping between

each pair of patches. A user controllable mapping framework is proposed and post-

editing of the mapping result is allowed. In facial expression parameterization, interior
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constraints are also important for the alignment of the whole sequence. We cut the face

mesh into a topological annulus according to the salient features so that all the interior

features are on the boundaries. Then a one-to-one map is induced by harmonic fields.

Our methods give general solutions for harmonic maps with interior constraints.

3.2 Volume Parameterization

Volume parameterization is a fundamental part of volume data processing. In recent

years, volume parameterization has received increasing attention. But due to the gap

between surface and volume, most successful surface parameterization methods cannot

be extended to volume cases directly. Compared with the extensive research of surface

parameterization, volume parameterization remains less investigated.

Most existing volume parameterization methods are based on the volumetric harmonic

map, which is usually defined on the tetrahedral mesh. Thus generating a tetrahe-

dral mesh from a given surface mesh attracts much research interest. Labelle and

Shewchuk introduced the iso-surface stuffing algorithm to generate tetrahedron meshes

with bounded dihedral angles in [43]. The volumetric discrete Laplace-Beltrami opera-

tor used in this work generalized the cotan formula in the surface case; the cotan value

of dihedral angles is used to replace those of corner angles. The range of the dihedral

angles affects the parameterization quality. A Delaunay-based variational approach

for isotropic tetrahedral meshing was introduced by Alliez et al. in [2]. This method

can produce well-shaped tetrahedra by energy minimization. The tandem algorithm

was introduced for iso-surfaces extraction and simplification in[3]. The volumetric har-

monic map depends on volumetric Laplacian. Zhou et al. [89] applied volumetric graph

Laplacian to large mesh deformation.
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Wang et al. [80] introduced the volumetric harmonic map to volume parameterization.

They proposed a method for parameterization and tetrahedral meshing of brain image

data. First, a tetrahedral finite element mesh (FEM) was employed to reconstruct the

brain volume from a sequence of magnetic resonance images (MRI). After that, the

boundary mesh is conformally mapped to a sphere. The surface map serves as the

boundary condition in the volumetric mapping. Then the harmonicity in volumes is

similarly defined via the vanishing Laplacian, which governs the smoothness of the

mapping function. A heat flow method was used to solve the volumetric harmonic

mapping problem. Both brain data and synthetic data showcase the power of their

method. However, their method can only handle genus-0 objects.

Li et al. [47] introduced a fundamental solution method into volumetric parameteri-

zation. The mapping was represented as a set of points with different weights in the

vicinity of the solid boundary. Given two solid objects and the surface map between

them, they placed the source points and the collocation points by the surface map. Then

they used a method of fundamental solutions yielding a coefficient matrix. After that,

the coefficient matrix was decomposed by the singular value decomposition method.

Finally, the harmonic volumetric mapping was obtained by solving the linear system

with input boundary mapping constraints. Their method is meshless and automatic.

However, the parameterization computing is time-consuming.

Other than that, harmonic volumetric parameterization for cylindral volumes is applied

for constructing tri-variate spline fitting in [52]. They used a skeleton-based method

for parameterizing cylinder-like objects. First, two critical points were chosen to es-

tablish a surface parameterization induced by orthogonal harmonic functions. Then a

structured quadrilateral mesh was constructed using the surface parameterization. Then

they constructed a volume harmonic field by setting the value of interior skeleton to 1
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and the outer boundary to 0. A hexahedral mesh was generated based on the volume

harmonic fields. Finally, they extracted a tri-variate spline structure from the hexahe-

dral mesh. However, their method also has limitations. First, it can only handle genus-0

volumes. Second, it has singularities in the skeleton and the two critical points.

All the above approaches rely on the use of volumetric harmonic maps. Unfortunately,

as pointed out in Chapter 1, volumetric harmonic maps cannot guarantee bijective map-

pings even though the target domain is convex.

Besides the volumetric harmonic maps, another stream of research studies the mean

value coordinates for closed triangular meshes [37, 22]. Mean value coordinates are a

powerful and flexible tool to define a map between two volumes. However, like other

types of barycentric coordinates, mean value coordinates suffer the same problem as

harmonic fields in that there is no guarantee that the computed map is a diffeomorphism.

3.3 Polycube Map

The polycube map is a novel global cross-surface parameterization technique, where

the polycube shape can roughly approximate the geometry of modeled objects while

retaining the same topology. The first call of the polycube map comes from texture

mapping. Standard texture mapping of real-world meshes suffers from the presence of

seams. In contrast, the cube map provides a mechanism that could be used for seamless

texture mapping with low distortion, but only if the object roughly resembles a cube.

Compared with other global parameterization techniques, the quality of a polycube map

(in terms of angle and area distortion) can be quantitatively controlled by designing the

polycube such that it resembles the geometry of the input shape and shares the same

topology. Because of the highly regular structure (i.e., each face is a square or poly-
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square) and the nature of the “one-piece” global parametric domain (i.e., no cutting and

abutting), it is especially suitable for image space tasks and current graphics hardware.

Tarini et al. [74] pioneered the concept of polycube maps. They roughly approximated

the input 3D model by a polycube, and then constructed its dual space. By carefully

examining the different configurations that may occur in a non-empty cell, they de-

signed six projection functions that map the points inside a cell of the dual space to

the polycube surface. These projection functions are elegantly designed to guarantee

a globally continuous map. However, their method does not produce a bijective map-

ping since two vertices on the same projection line share the same image, which is a

fundamental feature for a large range of applications. Furthermore, their method has

strict requirements on the shape of the polycube, for example the dual space should

completely enclose a slightly modified version of the input model in an intermediate

coordinate space.

Rather than projecting the 3D surface to the polycube, Wang et al. [78] introduced

an intrinsic approach. Firstly, they mapped the 3D model and the polycube to the

canonical domain (e.g., sphere, Euclidean plane or hyperbolic disc), and then sought

for the mapping between the two canonical domains. The resulting polycube map was

guaranteed to be a diffeomorphism. However, in this scheme it is difficult to control

the polycube map, i.e., a feature on the 3D model may not be mapped to a desired

location on the polycube. In their follow-up work, Wang et al. [79] proposed the user-

controllable polycube map where the user can specify the pre-images of the polycube

corners. Their method works well for shapes with simple geometry and topology, but is

not feasible for complicated models since it is very tedious and error-prone to specify

the polycube structure manually. Conversely, the method presented in this thesis pro-

vides much more user control, which allows us to create polycube maps with a much
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smaller number of patches, and gives much more control over the quality of the induced

subdivision surface, which is what makes this method practical for real-time rendering

on modern hardware.

It is known that the quality of the polycube map (in terms of angle and area distortion)

depends greatly on the shape of the polycube. There have been some research efforts

that aim to construct the polycube automatically. Lin et al. [48] proposed an automatic

polycube map method. Firstly, they decomposed the input mesh into a series of feature

regions, which were further split into patches. Then each region was approximated by

a polycube primitive and each patch of it was mapped to a rectangular sub-surface of

the polycube primitive. After that, each polycube primitive was locally parameterized.

Finally, the global parameterization was smoothed iteratively. He et al. [33] employed

a similar strategy that first broke down the input model into smaller and simpler compo-

nents and then used polycube primitives to approximate each one. As heuristics (Reeb

graph in Lin et al.[48] and harmonic function in He et al.[33]) are usually used in the

segmentation and polycube approximation, these approaches may not work for models

of complicated geometry and topology. Furthermore, none of the existing algorithms

allows the user to edit the maps easily.

3.4 Harmonic Maps

Eck et al. [15] introduced discrete harmonic maps into the computer graphics com-

munity. The basic approach first fixes the boundary mapping and then finds the piece-

wise linear mapping which minimizes the Dirichlet energy. The quadratic minimization

problem could be reduced to solving a linear system of equations and thus it could be

computed easily. There are many favorable properties of harmonic maps: 1) They are

easy to compute. Solving the harmonic fields could be deduced to a linear system which
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could be solved quickly using state-of-the-art libraries such as Cholmod. 2) Harmonic

mappings between a 3D bounded surface and a 2D planar surface have been proven to

be diffeomorphisms if the parametric domain is convex. 3) When we focus on map-

pings from general surfaces S ⊂ ℝ3 to a plane, the optimum properties of conformal

and harmonic mappings are essentially the same [21]. 4) The harmonic maps frame-

work is compatible with some new advances in barycentric coordinates, such as mean

value coordinates. Attracted by the promising properties, a lot of harmonic fields-based

algorithms have been proposed [87, 80, 47, 52].
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Editable Polycube Map

4.1 Motivation

It is a well known fact that most artists prefer to modeling with quads, as quad geometry

provides a better flow, tessellates cleaner and deformations under animation that are

noticeably smoother, especially around joints [57].

Tarini et al. [74] pioneered the concept of polycube maps as a technique to parameter-

ize 3D shapes to the polycube domain, which is a natural generalization of the cube

space and can be useful for the parametric domain of shapes with complicated topol-

ogy and geometry. Compared to other global surface parameterization techniques, a

polycube map has two unique features that make them promising for graphics applica-

tions. First, the parametric domain has a regular structure that naturally induces to a

quadrangulation. The parametric domain can be easily constructed and visualized. Sec-

ond, the singularities (polycube corners) have fixed structures, i.e., of valence 3, 5 or 6.

The reduced number of possible singularities results in a small number of topological

combinations.

Constructing a polycube map is a challenging work. From the users’ point of view, an

ideal polycube mapping algorithm should have at least the following features:
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∙ Quality: the map is a bijection with low angle and area distortion.

∙ User control: the user can easily control the mapping by specifying optional

features on the 3D model and their desired locations on the polycube domain.

∙ Performance: the algorithm is efficient, robust, and automatic except the editable

user-specified constraints to control the map.

There are several approaches to construct a polycube mapping [74, 78, 79, 48, 33].

Unfortunately, none of them has all the desired features. For instance, Tarini et al. [74]

does not guarantee a bijection, Wang et al. [78], Lin et al. [48], and Heet al. [33] do

not allow user control. Wang et al. [79] requires a large amount of user interaction

to specify the polycube structure on the 3D model and is not suitable for large-scale

models with complicated geometry and topology. More importantly, none of them

allows the users to edit the polycube map in an easy and intuitive fashion: In general,

current tools for editing in planar parametric domains can be awkward to use. On the

other hand, editing on a polycube, which more closely resembles the gross structure of

the model, could indeed be simpler, especially where the user is allowed to control the

rough shape of the mapping.

In this work, we present the editable polycube map to overcome the limitations of the

existing approaches. Our method allows the users to construct the polycube map in an

intuitive and easy manner: given a 3D model M and its polycube domain P, the user

is able to sketch features on M and P to specify feature correspondences. Then, our

system will automatically compute the map in such a way that the features on M are

mapped to the user-specified locations on P. Later on, the user is allowed to edit the

features on M, P or both, providing fine-grained control over the mapping. This way,

the editable features can help to mark and preserve sharp features on the polycube-

mapped subdivision scheme.

29



CHAPTER 4. EDITABLE POLYCUBE MAP

4.2 Algorithm

4.2.1 Overview

As mentioned above, the objective of the proposed technique is, starting from a high-

resolution model coming either from an artist or a 3D scanner (plus its cleaning stage),

to build a new subdivision scheme that allows user control over a reduced number

of singularities and, at the same time, have that model ready for seamless texturing,

watertight displacement, etc. This should be done in an artist-controllable way, using

only quads, and without wasted space in texture space.

(a) (b) (c) (d)
(e)

Figure 4.1: Algorithmic pipeline. (a) The user sketches the constraints on the given 3D
model M and polycube P. (b) The black dots are the sample points on the user-specified
constraints. (c) We compute the distance fields using the sample points as sources.
(d) The distance fields induce a triangulation on M. Then using the correspondence
of the user sketched features, we compute the geodesic triangulation on P. Then the
model can be cut into genus-0 patches. We compute the constrained map between each
pair of patches such that the user-defined features are mapped consistently. With a
carefully designed boundary condition, the two maps can be glued seamlessly. (e) The
iso-parametric line on M. The top shows the base level of the subdivision surface.

The input to our technique is a high resolution model plus a simple polycube representa-
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tion. By controlling the position and location of the cubes, and by providing additional

controlling sketches, the user has control at all times over the number and location of

the singular vertices in the resulting quads-only mesh. Then the user-specified fea-

tures are sampled with points, from which we compute the shortest distance for each

other sampled point using multi-source Dijkstra’s shortest path algorithm. Although the

computed distance field induces a triangulation on the 3D model, the path between two

points is not straight and the resulting patch can have a complex non-triangular shape.

To ensure the quality of the triangulation, we compute the geodesic triangulation on the

polycube by using the correspondence of the user-specified features on the 3D model

and the polycube. This way, the resulting triangulation is smoother and more visually

pleasing than the one that could be obtained directly from the multi-source Dijkstra

computation. After that, both shapes are segmented into genus-0 patches, keeping an

identification between the segments in the polycube and in the high resolution model.

We compute the map between each pair of patches using a series of harmonic maps.

By setting the boundary conditions carefully, the computed map is guaranteed to be

continuous along the cutting boundaries. Finally, a simple and effective global diffu-

sion algorithm is applied to improve the map quality. The resultant map is bijective and

satisfies the user-specified constraints.

The polycube map induces a quad-remeshed version of the high-res model. An imme-

diate benefit of this process is that the patches of the resulting remeshed model come

from tessellated squared faces, so a very low resolution version of the model can be

built from the original polycube faces. This low resolution model not only has quads as

its only primitive, but also has only vertices with a small and restricted valence number,

only 3, 4, 5 and 6.

Then, polycube texture mapping is performed, working only with the polycube version

of the model, and consists of creating a 2D texture atlas which contains all externally
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visible polycube faces, which is an easy task as the previous step already kept only the

visible faces that are not shared by more than one cube. To build the atlas, we just

placed each face in consecutive squares in the final texture atlas.

Finally, in runtime, only the very low resolution model needs to be sent to the GPU,

along with the texture maps built in the pre-processing, to generate a continuous sub-

division scheme with all the benefits already mentioned in Section 4.1. As the very

low resolution model can be animated, its run-time tessellated version also can. It is

important to mention that the user/artist has full control over the process through the

segmented input polycubes, the sketched features and the segmentation step, and he can

introduce further tweaking in the processed mesh without the need to re-parameterize

the model. The entire algorithmic pipeline is illustrated in Figure 4.1.

4.2.2 Constructing Polycube Map

The input model M for the method presented in this chapter comes from two kinds of

possible input models: a model from a 3D scanner, after a cleaning pass, or a high

resolution model created directly by an artist.

Along with the high resolution model, the artist/modeler should also provide a polycube

surface P that follows the shape of the original model. This polycube model can be

coarse or fine, both being able to be used to create a good dual parameterization of the

original mesh, but depending on how much fine the polycube model is, it would be

much easier to capture high frequency details in the final tessellated model.

4.2.2.1 Segmentation

The divide-and-conquer approach He et al. [33] constructs the polycube map by break-

ing down the models into genus-0 patches and then computing the piecewise map inde-
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pendently. Although their method is able to divide the model in an automatic fashion,

all cutting planes are horizontal. Thus, the segmentation highly depends on the orien-

tation of the model and may result in too many small patches. Furthermore, the cutting

boundary may not represent any features.

In our framework, the users are allowed to sketch the features freely on the models.

Here we assume that the user-specified features are consistent. For example, as shown

in Figure 4.1(b), the user sketches a few features on the 3D model M, and the same

number of features must be specified on the polycube P. Furthermore, the spatial rela-

tion of the features should be consistent in the sense that they are aligned in a similar

order, otherwise, the induced harmonic maps may not be matched.

(a) (b) (c) (d)

Figure 4.2: Multi-source Dijkstra’s based distance field and its induced triangulation.
The black dots in (a) are the sample points on the user sketches (the color curves). Us-
ing these sample points as sources, we compute the Dijkstra’s based distance field on
the 3D model, as shown in the color map in (b), where warm colors mean small dis-
tance to the sources, and cold colors represent large distance. The curves in (c) are the
shortest paths between sample points, which induces a triangulation on M. By using the
correspondence of the user sketched features, we construct the geodesic triangulation
on the polycube P, as shown in (d).

Our segmentation algorithm is as follows:

Step 1. Given the user-specified sketches, γi ∈ M, γ ′
i ∈ P, i = 1, ⋅ ⋅ ⋅ ,n, we sample the

sketches with set of points. Let S = {p j}m
j=1 and S′ = {p

′
j}m

j=1 denote the sample points

on M and P respectively.
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Step 2. Use p j ∈M, j = 1, ⋅ ⋅ ⋅ ,m, as source points and compute the shortest distance for

every point on M using multi-source Dijkstra’s algorithm. So each vertex v is associated

with a distance d(v, p j) where p j is the closest sample point to v. Let c(v) ∈ S be the

closest sample point of vertex v.

Step 3. Consider each mesh edge ei j = (vi,v j), where vi and v j are neighboring mesh

vertices. If c(vi) ∕= c(v j), let s1 = c(vi) and s2 = c(v j) be the two sample points. Mark

the two sample points s1 and s2 as neighbors.

Step 4. For every pair of sample points si and s j which are marked as neighbors, find

the shortest path between s1 and s2. It can be shown that two shortest paths can not

meet except at the regions of the two ending sample points. Then on the polycube P,

compute the geodesic between s
′
i and s

′
j.

Step 5. Segment M and P along the computed shortest path and geodesic path. The

segmentations on M and P are consistent in most case when user draws reasonable

feature lines. But there are some tricky cases. e.g. there are two feature points q and

p on a cylinder, the orientation of the line lqp could have two possibilities. In practice,

we just compute the segmentation on M, then transfer the segmentation to P.

In the above algorithm, we compute a distance field on the 3D model M using the user

sketched constraints. This distance field naturally induces a triangulation on M.

4.2.2.2 Constrained Map

Let Pi ∈ P and Mi ∈ M be the pair of segmented patches, each of which is a genus-0

surface with only one boundary. We want to find a bijective and smooth map ϕ : Mi →
Pi. Rather than computing the map directly, we first parameterize Mi to the unit disc

using harmonic map, i.e., f : Mi →𝔻 such that △ f = 0 and f maps the boundary of Mi
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to the boundary of 𝔻 using arc length parameterization, f (∂Mi) = ∂𝔻. Similarly we

also parameterize Pi to the unit disc using harmonic map g : Pi → 𝔻.

Then we seek a smooth map between two unit discs h : 𝔻 → 𝔻. This map h is also

computed using harmonic map △h = 0 and the boundary condition is set as follows:

Let s1, s2 and s3 be the sample points on ∂Mi, and f (s j) ∈ ∂𝔻, j = 0,1,2 be the images

on the boundary of unit disc. Similarly, let g(s
′
j) ∈ ∂𝔻 be the images of the sample

points s
′
j ∈Pi. Then we require the function h maps f (s j) to g(s

′
j), i.e., h∘ f (s j) = g(s

′
j),

j = 0,1,2. The images for the points between f (s j) and f (s( j+1)%3), j = 0,1,2, are

computed using arc length parameterization.

Finally, the polycube parameterization is given by the composite map ϕ = f ∘ h ∘ g−1

as shown in the following commutative diagram:

Mi Pi

𝔻 𝔻

-ϕ

?
f

?

g

-
h

Figure 4.3: The users can take full control of the polycube map by simple sketches.
The thumbnail of each figure shows the sketched constraints on the polycube.

4.2.2.3 Globally Smoothing Map

We glue the piecewise maps ϕi : Pi → Mi together. With the above boundary con-

ditions, the piecewise maps are consistent along the boundaries which can be glued
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Figure 4.4: Interactive editing the polycube map. Initially, the user only draws three
features on the mouth, ears and tail. As a result, the horse head, body and tail are
parameterized well, but the four legs are poorly sampled. Then the user can improve
the map quality by specifying additional features on the feet. Finally, the whole model
is parameterized well.

seamlessly. The resulting map ∪iϕi can guarantee to be C0 continuous along the seg-

mentation boundaries.

We use Laplacian smoothing Field [18] to improve the continuity along the segmenta-

tion boundaries. Given the initial polycube map ϕ : P → M, let p′ = ϕ(p) ∈ M denote

the image of p ∈ P. Then we solve the following diffusion function:

∂ p′(t)
∂ t

=−(△p′(t))∥, (Eq. 4.1)

where v∥ = v− (v,n)n is the tangent component of v, n is the normal vector and (,) is

the dot product.

Since the given polycube map ϕ is represented in a quadrilateral mesh induced by the

36



CHAPTER 4. EDITABLE POLYCUBE MAP

tessellation of the polycube in which each quad in P is a square, we use the following

Laplace operator:

△p′ = p′− 1
m ∑

pq is edge
q′, (Eq. 4.2)

where m is the valence of p.

(a) initial (b) 100 (c) 500 (d) 2000
map iterations iterations iterations

1.151 1.125 1.105 1.087

Figure 4.5: Smoothing the polycube map. The initial map has only C0 continuity along
the segmentation curves and user-specified features. Thus, one can clearly see the
large distortion and unsmoothness in (a). Using the Laplacian smoothing algorithm,
the distortion smoothly spreads out over the entire model, see (b)-(d). The value below
each figure is the angle distortion. The step length δ = 0.05.

The above diffusion equation can be solved easily using the Euler method. We set the

step length δ = 0.05 in our experiments.

Following Degener et al. [11] and Tarini et al. [74], we measure the map quality in terms
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of angle and area distortions which integrate and normalize the values σ1σ2 +1/σ1σ2

and σ1/σ2 +σ2/σ1, where σ1 and σ2 are the singular values of the Jacobian matrix of

ϕ . εangle = εarea = 1 when the map ϕ is isometric. As shown in Figure 4.5, our method

leads to visually pleasing results in only a few hundred iterations.

4.2.3 Texture Mapping and Run-Time Data Generation

For any further processing, we should provide a map from the polycube space to reg-

ular texture space, a process that only needs the polycube texture coordinates of the

model. With them, a 2D texture atlas is created containing the textures corresponding

all visible polycube faces, in a similar way to the proposal by Cohen at al. [9]. As

already mentioned, this is an easy task as the previous steps already discarded internal

faces shared by more than one cube. Once the visible faces are found, they are placed

in consecutive squares in the final texture atlas. Each vertex in the model is assigned

its respective texture coordinates in the atlas, thus smoothly integrating texturing to the

polycube mapping process.

Once the mapping stage has finished, we are in possession of a bijective mapping be-

tween the tiles in texture space (one for every patch) and the high resolution 3D geome-

try the artist provided as starting point. Probably, the artist also provided normal maps,

color maps, specular maps, etc. We have developed a completely automatic scheme

that transfers (bakes) that information to texture tiles, and encodes them along with the

subdivision information. Traditionally, this is done with applications like ZBrush [59]

that perform an explicit projection over different resolution versions of the same model,

but this can have serious problems with an arbitrary simplification scheme. In our case,

as we have defined a dual parameterization between the original 3D model and texture

space through the polycube-based coarse model, this is done in an automatic way with-

out loosing any detail in the process. To do it, we rasterize each high resolution patch
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Table 4.1: Comparison of polycube map construction methods. Symbols:  good, G#
fair, # poor.

Tarini Wang Wang Lin He Our
Features [74] [78] [79] [48] [33] method

Map quality  G# G#    
Bijection #      

User control # # G# # #  
Editing # # # # #  

Polycube construction # # #   #
Automatic  # #    

Large models  # # # G#  
Arbitrary topology # # # # G# G#

Table 4.2: Statistics of experimental results. #△: # of triangles in the input mesh;
#□: # of squares in the polycube of base level; l: # of subdivision levels for the high
resolution polycube; nc: # of corners in P; n f : # of user-specified features; T : time
measured in seconds; ε1: angle distortion; ε2: area distortion.

#△ #□ l nc n f T ε1 ε2

Armadillo 346K 1012 6 82 28 148 1.16 1.18
Arthur 252K 57 7 12 5 76 1.02 1.13
Bunny 144K 452 4 22 6 35 1.01 1.13
Horse 67K 436 5 28 8 11 1.04 1.07
Lucy 526K 980 5 38 15 210 1.12 1.23
Skull 52K 24 7 8 3 7 1.02 1.06

Tylo head 500K 920 5 32 12 194 1.10 1.25
Isidore Horse 151K 74 10 14 6 48 1.01 1.07

into its associated texture space, saving the required information (normals, occlusion

maps, etc). Special care should be taken when doing this process with the displacement

maps, either if they are scalar displacement along the surface normal or full 3D dis-

placements, as we also need to have access to neighboring patches to correctly generate

this information. The whole process can easily be done with tools like XNormal [58].

4.3 Results and Discussion

We tested our method with a wide-range of models with various geometry and topology

configurations as shown in Fig. 4.6. Table 4.2 shows the statistics of our experiments.
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Figure 4.4 shows an example of interactive editing of the polycube map of the horse

model.

A good global bijective parameterization is very important for modeling and texturing,

as typical projections as used in Tarini et al. [74] unavoidably have problems since two

vertices on the same projection line share the same image, something that produces

artifacts that are clearly visible in Figure 4.7.

Figure 4.6: More polycube mapping results.

We also quantitatively compared our methods with existing methods like Tarini et

al. [74], Wang et al. [78], Wang et al. [79] and He et al. [33] as shown in in Ta-

ble 7.2 and Figures 4.7 and 4.8. Tarini et al. [74] is efficient for large scale models,

however it can not guarantee the bijectivity due to the projection of the 3D model to the

polycube, therefore, it may result in some undesired artifacts in texture mapping and

painting, see Figure 4.7. Wang et al. [78] computed the polycube map in an intrinsic

way by conformally parameterizing M and P to canonical domains and then seeking

the map between the domains. For genus-0 shape with complex geometry (like the
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Figure 4.7: Comparison of the bijectivity between the editable polycube map and the
original polycube implementation, at the left the original [Tarini et al. 2004]. Top row:
insets of the Armadillo head. Bottom row: insets of its feet. As we can see, non-
bijectivity in [Tarini et al. 2004] results in a dependence of multiple points on the mesh
with a single point in texture space: painting this single point stains other places than
the one originally intended.

Armadillo), the conformal spherical parameterization has very large area distortion on

the elongated parts (e.g., the arms, legs and tail). Thus, the induced polycube map also

has a large area distortion with uneven sampling. Wang et al. [79] required the users to

manually specify the images of the polycube corners and edges on the 3D model and

then computed the map for each polycube face individually. The user-defined polycube

structures on M can be considered as the constraints in our method. However, it is very

tedious and error-prone to specify the features manually if the polycube is complicated,

which precludes its usage for large-scale models. Furthermore, the user can not specify

other features or constraints in Wang et al. [79]. Automatic approaches as Lin et al. [48]

and He et al. [33] use heuristics and may not work well for complex models. In He et

al. [33], both M and P are segmented by horizontal cutting planes, and the cutting locus

serve the constraints. Thus, the generated polycube map is orientation dependent. Due

to the complex geometry of the Armadillo, e.g., the arms are not axis aligned, there

41



CHAPTER 4. EDITABLE POLYCUBE MAP

are large distortions on the upper arms and shoulder, see Figure 4.8. Compared to the

existing approaches, our method is more intuitive and flexible in terms of user control

and editing, and can generate polycube of better quality.

1.32 1.35 1.29 1.25 1.16
1.22 88.62 1.24 1.23 1.18

Figure 4.8: Comparisons of our method with [Tarini et al. 2004], [Wang et al. 2007],
[Wang et al. 2008] and [He et al. 2009]. We use the same polycube to make the
comparison fair. Our method is more intuitive and flexible in terms of user control and
editing, and can generate polycube map of better quality. The values below each figure
are the angle and area distortions. For this example, 3 feature lines are drawing on the
ears and mouth to give an accurate mapping constraints by our method

Discussions We want to emphasize the differences between our method and He

et al. [33]. He et al. [33] first segmented the 3D model and polycube by horizontal

planes, then computed a map between each pair of segmented components, and finally

smoothed the whole map by solving a harmonic map for the entire shape. Although

using the same divide-and-conquer strategy, our method is completely different from

He et al. [33] in all the below three steps: First, since the cutting loci are also the con-

straints of the map, He et al. [33] can only map the horizontal, planar features from

the 3D model. Our segmentation allows the users to cut the model by arbitrary closed

curves, resulting in more flexible and meaningful constraints. Furthermore, our method

supports the user control and editing that are not provided in He et al. [33]. Second,

He et al. [33] mapped the segmented components to the multiply connected rings by

an uniformization metric, and then computed a harmonic map between the rings. It is

known that computing this metric is a nonlinear time-consuming process. Our method
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computed a harmonic map between two topological disks, thus is more efficient than

He et al. [33]. Third, rather than solving a harmonic map for the entire shape, we

smoothed the whole map by an iterative method to diffuse the angle distortion. As

shown in Figure 4.5, our method is very effective and leads to a high quality map with

only a few hundred iterations. Since very simple vertex operations are involved in each

iteration, the diffusion method is very efficient.

It is known that the distortions of polycube parameterization highly depend on the shape

of the polycube. In general, the more accurate representation of the polycube, the

lower distortion of the polycube map. However, the price to pay is the larger number

of extraordinary points (polycube corners). Thus, there is a tradeoff between quality

and complexity. Through our experiments, we observed that for shapes with extruding

regions, e.g., the Armadillo’s fingers and toes, it is usually a good idea to design an

accurate polycube to model these features. In our framework, we leave the choice to

the users.

It would be interesting to discuss the relationship between user drawing and mapping

results. First, our method do need user inputs as the boundary conditions of harmonic

fields. Second, user drawings on the object surface and polycube domain should keep

salient consistence, e.g. if user draws a feature line on the leg of the horse model, a

feature line should be drawn on the corresponding leg of the polycube. Figure 4.4 gives

a example of the feature line correspondences between object shape and polycube.
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Chapter 5

Expression-invariant 3D Face
Parameterization

5.1 Motivation

In Chapter 4, we have proposed a user-controllable polycube map method based on

harmonic fields and divide-and-conquer method. Technically, it suggest a general man-

ner to handle 2-manifold mapping with constraints inside the domain. However, while

being user controllable and editable, the method cannot afford an automatic framework.

It also needs a considerable number of features to induce a reasonable segmentation.

In this chapter, we present an automatic surface parameterization method which needs

only a few salient feature constrains. Specifically, we propose an expression-invariant

human facial expressions parameterization method. The salient features are labeled

only in eyes, nose and mouth. Expression-invariant refers to the property that the same

salient features of different expressions are mapped to the same position respectively

in the parametric domain. Thus, the parameterized facial expressions are aligned in

the parametric domain. We also showcase the power of our method in the specifical

application, human facial expressions modeling.
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Human facial expressions is widely used in movie and game industries. It is usually

scanned by a 3D camera. However, the latest 3D camera (structured light base camera)

has several serious drawbacks that inhibits its use in broader applications:

∙ First, each frame of the captured motion data is in the reference system of the

scanner, and it is not registered in object space. Thus, the correspondences be-

tween points in different frames are not available. However, from the modeling

point of view, it is highly desirable to have such correspondence among frames.

∙ Second, the captured raw data may contain noise and/or holes due to various rea-

sons, such as camera occlusion, specular reflection, shadows, light interference,

depth discontinuity, etc. Thus, much efforts are needed to clean and repair the

datasets.

(a) (b) (c)

Figure 5.1: The 3D camera is capable of capturing high-resolution motion data at 30
fps. Both geometry (vertex coordinate) and texture (greyscale color) are encoded in
a quadrilateral mesh with approximately 250K vertices. (a) The image captured by
conventional 2D camera. (b) The 3D mesh captured by 3D camera. (c) Another view
of the 3D mesh.

Geometry images [26] are a novel concept that intelligently encodes the 3D geometry

into an image format, in which each pixel {r,g,b} represents a 3D vertex {x,y,z}. To

process 3D motion data, it is natural to extend geometry images to geometry videos

(GV) which bridges the gap of 3D motion data and 2D video, and provides a way to
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apply the well-studied video processing techniques to motion data compression and

processing. Modeling human facial expressions with geometry video would be highly

desirable from the transferring and processing point of view. However, the existing

GV techniques (e.g. Briceño et al. [55]) applied only to datasets that are created by

the animators, of which the correspondences among frames are available and the data

are usually simple and noise-free. As a result, the user only needs to parameterize one

frame, and the remaining frames can be easily induced by the given correspondence.

Unfortunately, as mentioned above, such correspondence is not available for the 3D

motion data acquired by 3D camera. Thus, it is usually very challenging to construct

GVs for real-world datasets.

To solve the aforementioned challenges and promote GV to real-world applications,

this chapter presents a novel framework that can capture high-resolution 3D facial ex-

pressions in a less restrictive manner, store the recorded data in a well organized way,

and allow users to manage, manipulate, and render the data easily. Given the captured

expression data, GV first analyzes the geometry and detects salient features, and then

parameterizes the motion data to a rectangular domain such that the detected features

in all frames can be mapped consistently. Finally, the parameterized motion data are

converted into a video format such that the well-developed video processing techniques

can be used to the motion data.

The specific contributions of this work include:

∙ We propose an expression-invariant parameterization algorithm to map expres-

sion data into a canonic domain. Our algorithm provides the exact correspon-

dence of the salient features (eyes, mouth, and nose) among frames which is

highly desirable in geometry video processing.

46



CHAPTER 5. EXPRESSION-INVARIANT 3D FACE PARAMETERIZATION

∙ we present a set of pre-processing algorithms, including hole filling, background

segmentation and geodesic-based face salient feature segmentation. Our efficient

and robust algorithms is able to provide expression data in a fast and well de-

signed manner.

∙ Through a quantitative comparison to some existing methods, such as discrete

Ricci flow and harmonic map, we demonstrate that the proposed approach can

guarantee the exact feature correspondence among frames, which is highly desir-

able from the analysis point of view.

5.2 3D Motion Data Acquisition and Pre-processing

(a) (b) (c) (d) (e) (f)

Figure 5.2: Face segmentation using geodesic mask. Human expressions are approxi-
mate isometry, thus, the geodesic distance is independent of the expressions. We first
compute a geodesic mask from the detected features on mouth and eyes (see (a) and
(d)), then segment the front face by the user-specified radius (see (b) and (e)). Finally,
we remove the mouth and eyes (see (c) and (f)).

We employ the structure light-based 3D camera system [88] to capture the moving ob-

jects in real time. The system contains a video camera and a structured light projector.

The projector projects digital fringe patterns composing of vertical straight stripes to

the object. The stripes are deformed due to the surface profile. Then a high-speed CCD

camera synchronized with the projector captures the distorted fringe image. Finally, by

analyzing the fringe images, the 3D information is obtained based on the deformation
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using triangulation. The system is able to capture the geometry and texture of the mov-

ing objects in real time. Despite of high speed, the 3D camera system is not robust due

to various reasons, such as ambient light interference, occlusions, shadows, and depth

discontinuity. Therefore, much efforts are needed to pre-process the captured raw data.

Figure 5.3: The captured raw data usually contains holes due to the occlusions. We fill
both the geometry and texture of the holes by constructing a minimal surface which has
C1 continuity along the hole boundaries.

Feature tracking We first project the captured 3D expressions to 2D images, and

then denote the salient features, including nose tip, eyes, mouth, eyebrows, etc, on

the first frame. Next we use Active Appearance Model (AAM) [10] to track the fea-

ture points for the remaining frames automatically. Finally, the 2D feature points are

mapped back to the 3D meshes.

Hole filling The captured raw data is a genus-0 open surface M. Let ∂M = γ0 ∪
γ1 ∪ ⋅⋅ ⋅γk denote boundaries where γ0 is the outer boundary and γi, i ≥ 1 the interior
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holes. To fill the hole γi, we construct a minimal surface Hi that satisfies the following

Laplacian equation:

△v = 0, ∀v /∈ ∂Hi

with boundary conditions

v∣∂Hi = v∣γi

▽v∣∂Hi =▽v∣γi.

The boundary conditions guarantee that the filled surface is of C1 continuity along γi,

thus, leads to visually pleasing results. Note that we can also fill the colors using the

same equation except that the vertex position (x,y,z) is replaced by the color (r,g,b).

Figure 5.3 shows the hole filling results.

Face segmentation The captured raw data contains not only the 3D faces, but also

some unnecessary information, such as cloth, hair, and background. Observe that hu-

man expressions are approximate isometry, thus, the intrinsic properties, such as Gaus-

sian curvature, first fundamental form, geodesic, conformal factor, etc, which are in-

variant under isometry, can be used to segment the face. In our framework, we adopt

the geodesic since it is fairly easy to compute and highly robust to the mesh resolution

and triangulation. With the eyes and mouth as source points, we compute the “multiple-

sources all-destinations” geodesic using the modified Xin and Wang’s algorithm [85]

which takes only a few seconds for each frame. Then we segment the facial expressions

using the user-specified radius. Finally, we remove the eyes and mouth. As shown in

Fig. 5.2, our method leads to highly consistent segmentation results.
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Input:
M ∈ ℝ3, the input 3D facial expression of genus-0 mesh with four boundaries,
∂M = γ0 ∪⋅⋅ ⋅∪ γ3;
D ∈ ℝ2, the parametric domain with the same topology of M;
Output:
The one-to-one map ϕ : M → D such that the salient features (eyes, mouth and
nose) are mapped to the corresponding features on D.

1. Compute the geodesic c between γ1 and γ2.
2. Compute the geodesic d from the middle point of c to γ3.
3. Cut M along c and d, the resulted mesh M is of genus-0 with 2 boundaries.
4. Process the parametric domain D in the similar way (as steps 1 to 3). Let D
denotes the processed mesh of genus-0 with 2 boundaries.
5. Compute the harmonic function f : M → ℝ with Dirichlet boundary
condition, △ f = 0, f ∣∂M0

= 0, f ∣∂M1
= 1

6. Compute the harmonic function g : D → ℝ with Dirichlet boundary
condition, △g = 0, g∣∂D0

= 0, g∣∂ D1
= 1

7. Parameterize ∂M1 and ∂D1 by the arc length parametrization,
h : ∂M1 → ∂D1.
8. For each point v ∈ ∂M1
8.1 Trace the integral curve α ∈ M of the gradient vector field ∇ f .
8.2 Trace another integral curve β ∈ D starting from h(v) ∈ ∂D1 and
following the vector field ∇g.
8.3 Construct the one-to-one map ϕ : M → D as ϕ(α) = β
9. The parametrization ϕ : M → D is induced from ϕ : M → D.

Algorithm 1: Expression-invariant 3D face parametrization
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5.3 Expression-invariant Parameterization

Expression-Invariant Parameterization Algorithm

In each frame of the captured motion data, the geometry is given in the reference system

of the scanner, and it is not registered in object space, and correspondences between

points in different frames are not available. From the analysis and editing point of

view, it is highly desirable to find the correspondence among the captured data. Motion

data parametrization serves this purpose by mapping all frames to a parametric domain

and then re-sample the data on the domain.

Although there are large amount of literatures in surface parametrization [21] [68],

there is little work on the motion data parametrization. The key challenging in motion

data parametrization is that it must take the temporal coherence into consideration, i.e.,

the features in all frames should be mapped consistently to the parametric domain.

This section presents a novel algorithm to parameterize the 3D facial expression data.

The proposed algorithm is guaranteed to be bijective and the salient facial features (such

as mouth, nose and eyes) are mapped consistently onto the parametric domain.

The input of our algorithm is a sequence of genus-0 meshes with four boundaries.

Let us denote by M the mesh and ∂M = γ0 ∪ ⋅⋅ ⋅ ∪ γ3 the boundaries, where γ0 is the

boundary of the human face, γ1 and γ2 are the two eyes and γ3 is the mouth. We define

the parametric domain D ∈ ℝ2 as a rectangle with three holes, as a result, D has the

same topology of M.

We first compute the geodesic c between two eyes, i.e., γ1 and γ2. Then we compute the

geodesic d from the middle point of c to the mouth γ3. Note that geodesic is an intrinsic

property, thus, independent of the expressions which are approximate isometry. By

slicing the mesh along the geodesics c and d, the number of boundaries is reduced to 2.
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The resulted mesh M is a genus-0 mesh with two boundaries, i.e., γ0 and γ1 ∪ γ2 ∪ γ3 ∪
c∪d. In the following, we use ∂M0 and ∂M1 to denote the two boundaries of M.

Then we compute the harmonic function f : M → ℝ, △ f (v) = 0, ∀v /∈ ∂M, with

Dirichlet boundary condition:

f (v) = 0, ∀v ∈ ∂M0,

f (v) = 1, ∀v ∈ ∂M1.

Since the function f is harmonic, all its local extrema are on the boundaries. Further-

more, the mesh M is of genus-0 with two boundaries. According to Morse theory, f has

no critical point (the point with vanishing gradient) inside M. Therefore, the gradient

vector field ∇ f has no singularity. The integration curve of ∇ f is a curve such that the

tangent vector to the curve at any point v along the curve is precisely the vector ∇ f (v).

In the Appendix, we show that each integral curve has unique ending points, one on

∂M0, and the other on ∂M1. Furthermore, any two integral curves do not intersect.

We process the parametric domain D in the same way and let D denote the sliced mesh

with two boundaries. We compute the harmonic function g : D → ℝ with the same

boundary condition as f . We also construct a bijective map between two boundary

curves h : ∂M1 → ∂D1 by arc-length parametrization.

Then the parametrization ϕ : M →D is constructed as follows: For each vertex v∈ ∂M1,

trace the integral curve α ∈ M following the gradient ∇ f . Then, starting from h(v) ∈
∂D1, trace another integral curve β ∈ D. Thus, we build a one-to-one map between

two integral curves α and β . By going through every point v ∈ ∂M1, we build the

one-to-one map between M and D which in turn induces a one-to-one map ϕ : M → D.
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Remark In the parametrization algorithm, we cut the 3D face along the geodesics con-

necting the three holes (i.e., eyes and mouth). So the resulted mesh is of genus-0 with 2

boundaries. The inner boundary γ1∪ γ2∪ γ3∪c∪d is invariant to the expressions, thus,

highly consistent among all frames. Furthermore, the outer boundary is determined by

a geodesic mask with the user-specified radius applied to all expressions. Thus, the

outer boundary is also invariant to the expression. Observe that the harmonic func-

tion is intrinsic to the geometry and independent of the expressions. As a result, the

proposed parametrization is invariant to the expression. Furthermore, as proven in the

Appendix, the inner boundary of M is mapped to the inner boundary of D precisely,

thus, guarantees the exact correspondence of salient features, such as eyes, mouth and

nose. As shown in Fig. 5.4, two expressions are parameterized consistently using our

approach.

The fundamental proof of expression-invariant parameterization

We also give the concrete proof that the proposed parametrization algorithm leads to a

one-to-one map and guarantees the exact boundary correspondence.

Theorem Given two surfaces A and B, both are of genus-0 with 2 boundaries (Figure

5.5). Let Ai, Bi, i = 1,2 denote the boundaries, i.e., ∂A = A0 ∪A1 and ∂B = B0 ∪B1.

Define harmonic function f : A →ℝ on A, △ f = 0, with Dirichlet boundary condition,

f ∣A0 = 0 and f ∣A1 = 1.

Let C f : A0× [0,1]→ A be the integral curve of the gradient field ∇ f such that given an

arbitrary point v0 ∈ A0, C f (v0,0) = v0, C f (v0,1) = v1 and C f (v0, t) = vt , where v1 ∈ A1

is the other ending point and vt ∈ M is the point satisfying f (vt) = t. Similarly, we

define the harmonic function on B, g : B →ℝ and the integral curve Cg : B0× [0,1]→ B.
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(a) (b) (c) (d) (e)

(f) (g)

Figure 5.4: Expression-invariant parametrization. (a) Input mesh M. (b) Geodesics
connecting the eyes, nose and mouth. (c) Harmonic function with Dirichlet boundary
condition. As human facial expressions are approximate isometric transformation, the
computed harmonic functions are insensitive to expressions. (d) Integral curves follow
the gradient of the harmonic function. (e) Integral curves on the parametric domain. (f)
The integral curves induce the parametrization between M and D, which guarantees the
exact correspondence of the eyes, mouth and nose. As a result, different expressions
have very similar parameterization. (g) Converting the parameterized mesh to geometry
image, in which the pixel color (r,g,b) encodes the vertex position (x,y,z).
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Figure 5.5: proof of expression-invariant parameterization

Define a homeomorphic map h : A0 → B0 and construct the parametrization ϕ : A → B

by mapping the integral curve C f (v0, ⋅) to Cg(h(v0), ⋅) for ∀v0 ∈ A0.

Then the map ϕ is one-to-one and ϕ maps the inner boundary A0 to B0, i.e., ϕ(A0) =B0.

Proof First, we show no integral curve of ∇ f or ∇g form a loop, since f or g is smooth

function and its gradient vector field is curl-free.

Second, we show that no integral curve that starts and ends on the same boundary curve.

The function f or g is harmonic function that does not have critical points (where the

gradient vanishes) inside the surface. Thus, the function value is strictly monotonic

along the integral curve. Note that all points on the same boundary curve have the

same function value, so the ending points of each integral curve must be on different

boundary curve.

Third, we show that two integral curves do not intersect. Without loss of generality,

assume two integral curves γ1 ∈ A and γ2 ∈ A intersect at a point p. Then p is a critical

point and the gradient ∇ f vanishes at p. We consider two cases:
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Case 1: p /∈ ∂A is an interior point. Since f is harmonic, the maximum and minimum

must be on the boundaries. Therefore the Hessian matrix at p has negative eigenvalue

values. Suppose f (p) = s, then according to Morse theory, the homotopy types of the

level sets f−1(s− ε) and f−1(s+ ε) will be different. At all the interior critical points,

the Hessian matrices have negative eigenvalues, the homotopy type of the level sets

will be changed. Therefore, the homotopy type of A0 is different from that of A1. This

contradicts the given condition, as A0 is homotopic to A1.

Case 2: p ∈ ∂A is on the boundary. Without loss of generality, say p ∈ A0. Then we

can glue two copies of the same surface, along A0. And reverse the gradient field of one

surface. The union of the two gradient fields gives us a harmonic function field. Then

there is no interior critical point on the doubled surface. p becomes one interior critical

point, that leads to a contradiction.

Therefore γ1 and γ2 have no intersection points anywhere.

Last, we show ϕ is one-to-one. From the above, we know that for an arbitrary interior

point, there is a unique integral curve passing through and intersecting on the inner

and outer boundaries. The two ending points are also unique. Furthermore, the given

boundary map h : A0 → B0 is homeomorphic, thus, it induces a homeomorphism be-

tween integral curves in A and B, C f (v0, ⋅)→Cg(h(v0), ⋅). The boundary A0 is mapped

to B0 because the map ϕ restricted on A0 is the boundary map h : A0 →B0, i.e., ϕ ∣A0 = h.

5.4 Experimental Results

In this section, we present the experimental results of our expression-invariant parame-

terization method.
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Test sequence capturing There are 4 test video sequences containing human expres-

sions captured by our camera from 4 subjects, who were asked to make varied face ex-

pressions, e.g. laughing, shouting, etc., during the video capturing. These 4 sequences

are named as “HumanFace1” to “HumanFace4”.

Experimental setups We test our parameterization method with a workstation equipped

with quad-core Xeon 2.50GHz CPU, 8GB memory and Windows XP 64-bit system.

Tested methods The evaluations were based on our proposed expression-invariant pa-

rameterization (EIP for short) method, and employed the test conditions described in

previous section. For compression purpose, we have tested 2 other parameterization

methods including the harmonic map (HM for short) method (without salient feature

alignment) and the ricci flow (RF for short) method.

Performance With the mentioned setup, the proposed expression-invariant parameter-

ization method achieved the speed of 60 frames per hour. Each frame takes 60 seconds,

in which 55 seconds for the pre-processing stage and 5 seconds for the mapping stage.

Note that our current implementation is single threaded and that the main part of pa-

rameterization is highly parallelizable, our algorithm has strong potentials in speeding

up with multi-core CPU or GPU.

Comparisons to other parameterization methods At last, we present the evalua-

tion results on comparing our method to some other parameterization algorithms, e.g.

the harmonic map (HM) method Wang et al. [81] and the discrete Ricci flow (RF)

method [27]. Harmonic map method parameterizes the given surface to a convex do-

main, such as a unit disc. Discrete Ricci flow method computes a flat metric and then

embeds the given surface to a multiply connected domain, such as a multi-hole annulus.

Note that both HM and RF do not consider the salient feature correspondence of the
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input model, thus, the eyes, nose and mouth are mapped to different locations for dif-

ferent frames, as shown in Fig. 5.6(b)-(c). In other words, HM and RF are not invariant

to the expressions. Our method, in sharp contrast to HM and RF, is invariant to the ex-

pressions and can guarantee the exact feature correspondence among different frames.

As shown in Fig. 5.6(d), our method can lead to results that are highly consistent and

insensitive to the expressions.

(a) Input (b) Harmonic Map (c) Ricci Flow (d) Our method

Figure 5.6: Compared to other parameterization techniques, such as Ricci flow [27]
and harmonic map [81], our algorithm leads to the results that are highly consistent and
insensitive to the expressions.
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Chapter 6

Volume Parameterization Using
Green’s Function

6.1 Motivation

The past decade has witnessed the great advances of surface parameterizations, evident

in a wide range of applications pertaining to science and engineering. Despite these

successes, most real-world objects are, in fact, volumes rather than surfaces. It remains

both unclear and challenging as to how existing surface parameterization methods can

be generalized from surfaces to volumes. With volume parameterization, we envision

a large pool of applications that can benefit from the results, including solid texture

mapping, volumetric tetrahedralization for simulation, and volumetric registration.

Due to the intrinsic differences between surfaces and volumes, many classical results

on surface parameterization cannot be directly transposed to volume parameterization.

For example, it is well known that a harmonic map between a topological disk (a genus

zero surface with a single boundary) and a planar convex domain is diffeomorphic (i.e.,

bijective and smooth), if the boundary map is homeomorphic (i.e., bijective and contin-

uous). This result plays an important role in surface parameterization. Unfortunately,

such an approach is not applicable to volumes, i.e., a volumetric harmonic map is not
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guaranteed to be bijective even though the target domain is convex. In this work, we

aim at overcoming the challenges by proposing a theoretically sound algorithm that can

produce a diffeomorphism between two star-shaped volumes.

Our volume parameterization method is strongly motivated by the property of electric

field. Given a closed genus-0 metal surface S, let M denote its interior volume, i.e.,

∂M = S. We construct an electric field by putting a positive electric charge at a point c

inside M, and connecting the boundary surface S to the ground. The electric potential

inside M is a Green’s function, G : M → ℝ, such that{
∆G(x) = δ (x− c)
G∣∂M ≡ 0, (Eq. 6.1)

where δ (x−c) is the Dirac function. In general, the level set of G, G−1(r),r ∈ℝ+ or an

isopotential surface is a smooth surface in M. The gradient of the electric potential ∇G

is the electric field. Electric field lines are the integration curves of the electric field, i.e.,

the tangent vectors of the electric field lines are parallel to the electric field. Different

electric field lines only intersect at the points where we put the electric charge, or at

the critical point of the potential. Electric field lines start from the electric charge and

are orthogonal to the iso-potential surfaces everywhere, in particular to the boundary

surface ∂M.

If M is a star-shaped volume, every ray cast from c intersect S only once, and there are

no other critical points of the potential. Therefore, all the iso-potential surfaces can be

topological spheres and all electric field lines intersect only at point c (see Figure 6.1).

Since each point inside M is now uniquely determined by a corresponding electric field

line and an iso-potential surface, determining the map between two star-shaped volumes

is equivalent to constructing the map between the corresponding iso-potential surfaces

and the electric field lines. Therefore, we map the boundary surface to the unit sphere,

thereby putting each iso-potential surface to a concentric sphere, the electric field lines
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to the radii, and the center c to the origin. In this way, the star-shaped volume can be

parameterized to the unit solid ball. With the help of ball parameterization, the map

between two star shapes can then be constructed by mapping each shape to the unit

ball and constructing a bijective map between the two unit balls. Such a constructed

volumetric map is guaranteed to be a diffeomorphism.

(a) (b) (c) (d)

Figure 6.1: Electric field on the star shape. Given a metal surface S, we put a positive
charge at the center (the red point) and then connect S to the ground (shown in (a)).
The electric field is a Green’s function shown in (b). If the surface S is star-shaped,
then the Green’s function has a unique critical point. As a result, all iso-potential sur-
faces are topological spheres (shown in (c)). The electric field line (red curve in (d)) is
perpendicular to all iso-potential surfaces.

6.2 Theoretical Foundation

6.2.1 Harmonic Maps

Let M be a manifold with a Riemannian metric. Suppose a function f : M → ℝ is

defined on the manifold. The harmonic energy of f is defined as

E( f ) =
∫

M
∣∇ f ∣2dv.

The critical point of the harmonic energy is called a harmonic function, which satisfies

the following Laplace equation,

∆ f = 0,
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where ∆ is the Laplace-Beltrami operator on M. Suppose f is a map from M to a domain

D ⊂ ℝn in the Euclidean space, f : M → D, and each component of f is a harmonic

function, then f is called a harmonic map. The following heat flow method can deform

a map f to a harmonic map with fixed boundary conditions:

df
dt

=−∆f.

The following theorem lays down the theoretic foundation for harmonic surface param-

eterizations,

Theorem 6.1 (Radó) Suppose M is a simply connected surface with a Riemannian

metric, a harmonic map f : M → D ⊂ ℝ2 maps M to a convex planar domain D, the

restriction of f on the boundary f∣∂M : ∂M → ∂D is a homeomorphism. Then f is a

diffeomorphism in the interior of M.

Unfortunately, this theorem does not hold for volumetric harmonic maps.

6.2.2 Green’s Functions on Star Shapes

This section introduces the theoretic foundation of star shape parameterization. The

proofs are also given here.

A volume M is called a star shape if there exists a point c ∈ M such that any ray cast

from c intersects the boundary of M only once. The point c is called the center of M.

In particular, any convex volume is a star shape, where any interior point can serve as

the center c. From the implementation point of view, computing the intersection of a

ray with a surface is typically computationally expensive. Thus, we use an alternative

approach to define a star shape:
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Lemma 6.1 A volume M is a star shape if and only if there exists a point c ∈ M such

that for any boundary point p ∈ ∂M,

(c−p,n(p))≤ 0, (Eq. 6.2)

where n(p) is the normal vector at p and (,) is the dot product. The boundary ∂M

should be smooth such that the normal vector exists on any boundary point p.

Proof Assume the boundary surface ∂M is represented by the zero level set of an im-

plicit function f : ℝ3 → ℝ, i.e., ∂M = f−1(0) and the interior points r ∈ M satisfy

f (r)< 0.

Figure 6.2: proof for lemma 6.1

(=⇒ necessary condition) If M is a star shape, for any boundary point p ∈ M, the ray

p− c intersects ∂M only once and the intersection point is p. Thus, for any ε ∈ [0,1],

the point q = p+ ε(c−p) ∈ M is inside M. Then, for a small ε > 0,

f (q) = f (p)+ ε ▽ f (p) ⋅ (c−p)+O(ε2∥c−p∥2).

Note that f (p) = 0 and f (q)≤ 0, thus, ▽ f (p) ⋅ (q−p)≤ 0. Since ▽ f (p) points to the

normal direction n(p), and c−p has the same direction as q−p, then (c−p,n(p))≤ 0.

(⇐= sufficient condition) Given a point c ∈ M, for every boundary point p, (c −
p,n(p))≤ 0 holds. Assume M is not a star shape, then there exists a ray from c which
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intersects ∂M at least twice. Without loss of generality, say p1 and p2 are the first two

intersection points and p1 is closer to c. Consider a point q = ε(p1 − p2)+ p2 with

ε > 0. Clearly, q is on the segment p1p2 and out of M. Thus, f (q) > 0. Using Taylor

expansion,

f (q) = f (p2)+ ε ▽ f (p2) ⋅ (p1 −p2)+O(ε2∥p1 −p2∥2).

Note that f (p2) = 0 and ▽ f (p2) points to the same direction as normal n(p2), p1 −p2

points to the same direction as c−p2, thus, ▽ f (p2) ⋅ (p1 −p2)≤ 0 and f (q)≤ 0, con-

tradiction! Q.E.D.

Lemma 6.2 (Green’s function on a star shape) Suppose M is a star shape with a cen-

ter c ∈ M, G is the Green’s function (see Eqn. (Eq. 6.1)) with a pole at c, then c is the

only critical point of G.

Proof Without loss of generality, we assume c is at the origin in ℝ3. Let B(c,ε) be

a small ball centered at c with radius ε . Consider the following function, the inner

product of the point p = (x1,x2,x3) and the gradient of G at p,

f (p) = (p,∇G) = x1
∂G
∂x1

+ x2
∂G
∂x2

+ x3
∂G
∂x3

.

By direct computation, it is easy to verify that

∆ f = (∑
k

∂ 2

∂x2
k
)(∑

i
xi

∂G
∂xi

) = 0.

In details,
∂ 2

∂x2
k
(∑

i
xi

∂G
∂xi

) = 2
∂ 2G
∂x2

k
+∑

i
xi

∂ 3G
∂x2

k∂xi
,

therefore

(∑
k

∂ 2

∂x2
k
)(∑

i
xi

∂G
∂xi

) = 2∆G+∑
i

xi∆
∂G
∂xi

.
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Because G is harmonic, therefore, ∂G
∂xi

is also harmonic, and the above equation equals

zero.

Therefore f (p) is a harmonic function on M/B(c,ε). According to the maximum prin-

ciple of harmonic maps, f reaches its max and min values on the boundary surfaces

∂M and ∂B(c,ε). Here by definition, and c is the pole of f , f is negative on ∂B(c,ε).

Because M is a star shape, on ∂M, (n, p)> 0, where n is the normal on p to ∂M. ∇G is

orthogonal to ∂M and is on the opposite direction of n. Therefore, f is always negative

in the whole volume M/B(c,ε), ∇G is non-zero in M/B(c,ε). Since ε is arbitrary, ∇G

is non-zero for all points in M/{c}. We conclude that G has no critical points in M

except c. Q.E.D.

Lemma 6.3 Suppose M is a star shape with a center c ∈ M, G is the Green’s function

with a pole at c. Then for any r ∈ ℝ+, the level set G−1(r) is topologically equivalent

to a sphere.

Proof Let r ∈ ℝ+, G−1(r) is the level set of G. G−1(0) is the boundary of M, ∂M,

which is a topological sphere. By lemma 2, there is no critical points in G−1([0,r]).

According to Morse theory, G−1(r) and G−1(0) share the same topology. In fact, we

can start from a point p ∈ G−1(r) and trace along the integration curve of the gradient

of G and reach a unique point q on G−1(0), this gives us a diffeomorphism from G−1(r)

to G−1(0). Q.E.D.

Theorem 6.2 Suppose M and M̃ are star-shaped volumes with centers c and c̃, G

and G̃ are Green’s functions with poles at c and c̃, respectively. If the boundary map

∂M → ∂M̃ is a diffeomorphism, then the map f : M → M̃ induced by G and G̃ is also a

diffeomorphism.
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Proof We first introduce the concepts of foliation and leaf.

A dimension m foliation of an n-dimensional manifold M is a covering by charts Ui to-

gether with maps ϕi : Ui →ℝn, such that on the overlaps Ui∩U j, the transition functions

ϕi j = ϕ j ∘ϕ−1
i take the form

ϕi j(x,y) = (ϕ 1
i j(x),ϕ 2

i j(x,y))

where x denotes the first n−m coordinates, y denotes the last m coordinates. In each

chart Ui the x = const stripes match up with the stripes on U j. The stripes piece to-

gether from chart to chart to form maximal connected injectively immersed submani-

folds called the leaves.

The we show the proof. Let F1 be the foliation of M by topological spheres induced

by the level sets of G, F2 be the foliation of M induced by the gradient lines of G.

We choose an open cover of M/{c}, {(Uα ,ϕα)}, Uα is the union for leaves in F2,

Uα = ∪ f , f ∈ F2, such that ϕα : Uα → ℝ3, leaves in F1 are mapped to the planes z =

const, leaves in F2 are mapped to lines (x,y) = const. {(Uα ,ϕα)} is a differential atlas.

Similarly, we can construct a differential atlas of M̃/{c̃}, {Ũ , ϕ̃β}, the level sets and

the integration lines are mapped to canonical planes orthogonal to the z-axis and lines

parallel to the z-axis.

The restriction of the map f : M → M̃ on the local coordinate system

fαβ = ϕ̃β ∘ f ∘ϕ−1
α : ϕα(Uα)→ ϕ̃β (Ũβ )

has the following form

fαβ (x,y,z) = (g(x,y),z),

where g(x,y) is determined by the restriction of f on the boundary, f ∣∂ M : ∂M → ∂M̃.

The restriction is a diffeomorphism, therefore g(x,y) is a diffeomorphism, and fαβ is a
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diffeomorphism. Because Uα and Ũβ is arbitrarily chosen, f itself is a diffeomorphism.

Q.E.D.

Theorem 6.2 lays down the foundation of the proposed volume parameterization frame-

work. We should point out that even though c and c̃ are poles of the Green’s functions G

and G̃, the induced map f : M → M̃ is smooth everywhere including the pole c since we

define f (c) := c̃. This can be elucidated by the physical meaning of Green’s function.

Consider the phenomenon of a grounded conducting surface surrounding a charged

body at the center c. The electric potential inside the volume bounded by the surface

is the Green’s function. If the volume is a solid ball and the center is the origin, then

parameterization induced by the Green function is equivalent to the polar coordinate.

The center is the pole of the polar parameterization, but the mapping between two balls

induced by the polar coordinates has no singularity [82].

Remark. Gergen showed that the gradient of a Green’s function in a star-shaped three

dimensional region never vanishes[24]. This implies that there is no interior singularity

of the Green function, hence the level sets are topological spheres, and the integration

curves of the gradient field do not intersect either. This gives alternative proof for our

main theoretic result.

6.3 Parameterizing Star-Shaped Volumes

This section presents the algorithmic detail of parameterizing star-shaped volumes to

simple domains, such as the unit ball and star-shaped polycubes.

6.3.1 Parameterizing a Star Shape to a Ball
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1: Input: S, the boundary mesh of a star-shaped volume M
2: Output: f : M → 𝔹3 is diffeomorphism
3: Find the center of M;
4: Compute the Green’s function on M,GM : M → ℝ;
5: Map the center c to the center of 𝔹3, f (c) = 0;
6: Parameterize the boundary points by constructing a conformal spherical mapping

ϕ : ∂M → ∂𝔹3;
7: for every interior vertex p ∈ M do
8: Trace the integration curve γ from p to the boundary point q ∈ ∂M;
9: Set f (p) = ϕ(q)

GM(p)+1
10: end for

Algorithm 2: Ball parameterization of star shapes.

Step 1. Star shape verification and center detection. The input of our algorithm is a

closed genus-0 surface S which encloses a volume M, i.e., S= ∂M. S is represented by a

triangular mesh with vertices {vi}n
i=1. First, we need to verify whether M is star-shaped.

If it is true, we determine the center of M. Note that for a given star shape, there could

be infinite possible choices for the centers and the distribution of Green’s function. A

badly chosen center may introduce severe bias in the volume parameterization. Thus,

we prefer a geometry-aware center, where a natural choice is a center that is close

to the center of mass of M. This leads to the following linear constrained quadratic

programming problem:

min
c

1
n

n

∑
i=1

∥c−vi∥2

sub ject to (c−vi,ni)≤ 0 i = 1, ⋅ ⋅ ⋅ ,n .

The objective function aims to minimize the distance between the center c and the cen-

ter of mass, where the linear constraints precisely ensure the detected center c satisfies

the star shape requirement (see Eqn. Eq. 6.2). If M is not star-shaped, then no valid

solution will be found. In our implementation, we use the MOSEK optimization soft-

ware [53] to solve this quadratic programming problem.
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The critical component of our ball parameterization is to trace the intergral curves from

the interior vertices to the boundary. We use half-face structure to model the tetrahedral

mesh. Each interior face is shared by two tetrahedral and each boundary face is only

adjacent to one tetrahedron. The detailed tracing algorithm is shown below.

Input: p, a point inside the volume
ε , step length of tracing
Output: γ , the integral curve from p and following the positive

direction of the gradient vector field

Find the tetrahedron currTet such that p ∈ currTet;
while currTet ! = NULL do

Compute the gradient vector pv by linear interpolation of the vertex
gradients of currTet
pnext = p+ ε ∗ pv
if pnext ∈ currTet then

update pv
else

Find the tetrahedron nextTet which contains the pnext
currTet = nextTet

end
p = pnext

end
Tracing from p to the boundary

Algorithm 3: Integral Curve Tracing

Step 2. Computing Green’s functions on M and 𝔹3. Next, we compute the Green’s

function on the star-shaped volume M using the method detailed in the fundamental

solution [16, 47]. Suppose we have an electric charge qi at point pi, the electric potential

caused by qi at point r is

K(qi,pi;r) =
1

4π
qi

∣pi − r∣ .

We need to put m electric charges {qi} at m points {pi} on an offset surface above the

boundary surface of ∂M, such that on the boundary ∂M, the total potential equals zero,

GM(r) =
m

∑
i=1

K(qi,pi;r)+G(1,c;r) = 0,∀r ∈ ∂M,
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(a) ∂M (b) center c

(c) source
points

on offset
surface

(d) Green’s
function on M

(e) Green’s
function on 𝔹3 (f) ϕ : ∂M → ∂𝔹3 (g) integration

curve in M
(h) integration

curve in 𝔹3

(i) Solid texture in 𝔹3 (j) Solid texture in M

Figure 6.3: Green’s function induces a diffeomorphism between the star shape M and
the unit ball 𝔹3. The input model is a triangular mesh (shown in (a)) which encloses a
star-shaped volume. The red point in (b) shows the star shape center. Then we compute
the Green’s function on M using the fundamental solution method. (c) The source
points placed on the offset surface of ∂M. (d) The Green’s function on M. (e) The
Green’s function on 𝔹3 which is given by a closed form formula 1

r −1. (f) The boundary
parameterization by constructing a conformal spherical map ϕ : ∂M → ∂𝔹3. (g) We
parameterize the interior point p by tracing the integration curve γ to the boundary
point q. Note that the integration curve is perpendicular to the iso-surfaces of G. (h)
The image of p is given by ϕ(p)

GM(p)+1 . (i) and (j) show the volume rendering of a soccer

ball texture on M and 𝔹3, respectively.
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(a) polycube map ϕ
induces a map from

∂𝔹3
M to ∂𝔹3

P

(b) Green’s
function

on M

(c) Green’s
function

on P

Figure 6.4: Parameterizing a star shape M to a polycube P using the Green’s function.
We first construct the conformal polycube map ϕ : ∂M → ∂P. Then, we parameterize
M and P to the ball using Algorithm 1. The conformal polycube map ϕ induces an
identity map between ∂𝔹3

M and ∂𝔹3
P. The volume parameterization is then given by

f = fM ∘ f−1
P .
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where qi’s are unknowns. The equation is converted to a dense linear system, which

can be solved using the singular value decomposition method provided in Matlab. As

suggested in Li et al. [47], we place m = 0.6n source points on the offset surface with

offset distance equals 0.05 times the main diagonal of M.

The Green’s function on 𝔹3 (with the origin as the center) has a closed form, GB(p) =

1
r −1, where r is the distance from p to the origin.

Step 3. Parameterizing the boundary points. Furthermore, we compute the boundary

map ϕ : ∂M → 𝔹3. Since the boundary of the unit ball is the sphere 𝕊2, the conformal

spherical mapping [28] is a diffeomorphism, and thus, can serve as the boundary map.

Step 4. Parameterizing the interior points. The interior of the volume is represented

by a tetrahedral mesh. We use Tetgen [70] to generate a tetrahedral mesh for a given

surface mesh S to meet the boundary constraints. To improve the meshing quality, we

employ the variational tetrahedral meshing technique Alliez et al. [2] which can signif-

icantly reduce the slivers and produce well-shaped tetrahedral meshes. The tetrahedral

mesh M is represented by M = (V,E,F,T ) where V,E,F, and T are the vertex, edge,

face, and tetrahedra sets, respectively. The Green’s function GM is represented as a

piecewise linear function, GM : V →ℝ. The gradient of G can be computed as follows:

suppose ti jkl is a tetrahedron with vertices {vi,v j,vk,vl}, the face on the tetrahedron

against vertex vi is fi; similarly v j, vk, and vl are against f j, fk, and fl , respectively. We

define si to be the vector along the normal of fi with length equal to 2 times the area of

fi, and so can s j,sk,sl be defined. Then, the gradient of GM in ti jkl is a constant vector

field

∇GM = GM(vi)si +GM(v j)s j +GM(vk)sk +GM(vl)sl.

We then define the vertex gradient as the average of the gradient vectors in the neigh-

boring tetrahedra.
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Finally, the parameterization from M to 𝔹3, f : M → 𝔹3 is constructed as follows. We

map the center c to the origin, i.e., the center of 𝔹3. Given an interior point p ∈ M

(other than the center c), we trace the integration curve γ of the gradient field from p, γ

intersects the boundary surface ∂M at q, then γ corresponds to the radius of 𝔹3 through

the point ϕ(q). Suppose the Green’s function value at p is GM(p), then the image of p

is defined by

f (p) =
ϕ(q)

GM(p)+1
.

Figure 6.3 illustrates the pipeline of parameterizing the dog head to a solid ball. To

visualize the parameterization, we design a soccer ball texture on 𝔹3 and then map it to

the dog head. Note that the iso-parameter surfaces in M are curved, but the cut view is

obtained by a cutting plane. Thus, the texture on the intersection plane in Figure 6.3(j)

may look irregular.

1: Input: boundary meshes of a star shape M and a star-shaped polycube P
2: Output: f : M → P is diffeomorphism
3: Parameterize P to the unit ball fP : P → 𝔹3

P;
4: Parameterize M to the unit ball fM : M → 𝔹3

M;
5: Construct the polycube map ϕ : ∂M → ∂P;
6: Construct the map between two balls ψ : 𝔹3

P → 𝔹3
M induced by the polycube map

ϕ ;
7: Compute the composite map f : M → P, f = fM ∘ψ ∘ f−1

P .

Algorithm 4: Polycube parameterization of star shapes

6.3.2 Parameterizing a Star Shape to a Polycube

Ball parameterization is useful for the star shapes which resemble the geometry of the

sphere. However, a general star shape may be significantly different from a ball. Thus,

ball parameterization may result in large distortions. For such cases, we propose to use

the star-shaped polycube as the parametric domain since it resembles the input object

better than the ball.
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Given a star shape M and a polycube P, we want to find a bijective and smooth map

f : M → P. Rather than computing the map directly, we first individually parameterize

M and P to the unit balls using Algorithm 1 (see Sec 6.3.1). Then we seek a smooth

map between two balls ψ : 𝔹3
M → 𝔹3

P. Finally, the polycube parameterization is given

by the composite map f = fM ∘ψ ∘ f−1
P .

The polycube parameterization can be illustrated clearly by the following commutative

diagram:
M P

𝔹3
M 𝔹3

P

-f

?

fM

?

fP

-
ψ

Note that there exists infinitely many smooth maps between two unit balls, but differ-

ent ψ could result in different volumetric parameterization. To find a low-distortion

volumetric parameterization, e.g., mapping the head of Moai (see Figure 6.4(a)) to the

top of the polycube, and so on, the polycube map can serve as a feasible boundary

constraint. In our implementation, we choose the approach of conformal polycube map

(for genus-0 surfaces) [33]. Figure 6.4 illustrates the pipeline of parameterizing the star

shapes to the polycube.

6.4 Parameterizing General Volumes

This section extends the above parameterization algorithm to general volumes. The

key idea is to partition a non-star-shaped volume into several sub-volumes, each being

a star shape. Then we can parameterize each individual star shape using the algorithm

developed in Section 6.3. Finally, we can glue the sub-volumes together and smooth

the cutting regions by harmonic fields, which lead to a global parameterization.

The following shows the details of our algorithm:
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Step 1. Map the boundary surface of M, ∂M to a polycube surface, ∂P, using the

algorithm introduced in He et al.[33] based on the divide-and-conquer method. The

polycube map is denoted as ϕ : ∂M → ∂P.

Step 2. Decompose P into multiple disjoint components by several cutting planes

{p1, p2, ⋅ ⋅ ⋅ , pn}. Let the intersection curve of pk ∩ ∂P be τk. Let the pre-image of

τk, ϕ−1(τk) be γk ⊂ ∂M. Compute a minimal surface πk ⊂ M inside M with the bound-

ary condition ∂πk = γk. The cutting planes are specified by the user to cut the mesh

into semantic and star-shaped parts. e.g. 5 cutting planes are needed to cut the model

into star-shaped parts(Figure 6.5).

Step 3. {π1,π2, ⋅ ⋅ ⋅ ,πn} segment M to sub-volumes, denoted as {M1,M2, ⋅ ⋅ ⋅ ,Mn}.

Verify whether each Mk is star-shaped. If there exists a non-star shape, we repeat steps

2 and 3, until all Mk’s become star-shaped.

Step 4. Construct the mapping from Mk to Pk, fk : Mk → Pk, based on the Green’s

function using ϕ0 : ∂M → ∂P and ϕk : πk → pk as the boundary conditions. The union

of { fk} gives us a global map f : M → P.

Step 5. Improve the map quality of the cutting boundaries. Find a neighborhood Nk of

each cut surface πk ⊂ Nk ⊂ M. Note that Nk is a cylinder-link shape since each πk is

a topological disk. Let Tk and Bk be the top and bottom surfaces of ∂Nk. Compute a

harmonic function g : Nk → ℝ, such that,⎧⎨⎩
∆g(p) = 0, ∀p /∈ Bk

∪
Tk

g(p) = 0, ∀p ∈ Bk
g(p) = 1, ∀p ∈ Tk.

Similarly, the corresponding neighborhood N̄k := f (Nk) ⊂ P is also a cylinder-like

shape. Let T̄k and B̄k be the top and bottom surfaces of ∂ N̄k, respectively. Compute

a harmonic function h : N̄k → ℝ, such that⎧⎨⎩
∆h(q) = 0, ∀q /∈ B̄k

∪
T̄k

h(q) = 0, ∀q ∈ B̄k
h(q) = 1, ∀q ∈ T̄k.
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From every point p ∈ Bk, trace an integration curve γp ∈ Nk following the gradient

vector field ∇g. Let q = f (p) ∈ B̄k be the image of p. Trace another integration curve

γq ∈ N̄k following the gradient vector field ∇h. It can be proven that each integral curve

γp (resp. γq) terminates on the top surface Ck (resp. C̄k). Furthermore, no two integral

curves inside Nk (or N̄k) intersect as the gradient vector field never vanishes inside the

volume. As a result, γp ∈ Nk can be uniquely mapped to γq ∈ N̄l . This further induces a

bijection between Nk and N̄k. Due to the smoothness property of the harmonic functions

g and h, the integration curves of ∇g and ∇h are also smooth curves. Thus, the induced

bijection Nk and N̄k is smooth.

(a) (b) (c) (d) (e) (f)

Figure 6.5: Parameterizing general volumes using star shape decomposition. Given
the Teddy Bear M and its polycube domain P, we compute a polycube map between
the boundary surfaces, see (a). Then we partition the boundary surface ∂P by cutting
planes. This partition of ∂P also induces a partition on ∂M, see (b). We verify each
partitioned sub-volumes to be star-shaped. If not, repeat the partition step, see (c). Then
we can parameterize each individual star shape using the algorithm developed in Sec-
tion 6.3, see (d). Finally, we can glue the sub-volumes together and smooth the cutting
regions by harmonic fields, see (e) and (f), which lead to a global parameterization.
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6.5 Experimental Results

Figure 6.6 shows the parameterization of the pig-shaped coin box to a polycube. The

volume rendering and the cut views reveal the quality of the parameterization. Fig-

ure 6.8 shows the parameterization of non-star-shaped volumes.

We compared our method with the volumetric harmonic map method Wang et al. [80].

As mentioned above, the volumetric harmonic map is not guaranteed to be homeomor-

phic even though the domain is convex. In Figure 6.7, we parameterized the star model

to the unit ball. As shown in the cut view and iso-parametric curves, our method is

robust and leads to hexahedral meshes with better quality.

Figure 6.6: Parameterizing the pig model to a polycube. Row 1 and 2 show the volume
rendering of the volumetric data and polycube parameterization respectively.
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(a) Harmonic map Wang et al. [80] (b) Our method

Figure 6.7: Comparison with harmonic map Wang et al. [80]. We map the dog head
to unit ball using volumetric harmonic map Wang et al. [80] and our approach. As
shown in the cut view of iso-parametric curves, our method is more robust and leads
to hexahedral meshes with better quality. Our approach also guarantees that the iso-
parametric curve which follow the direction of the gradient is orthogonal to the other
two iso-parametric curves which span the iso-surface of the Green’s function.
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(a) the parameterization of cactus model

(b) the parameterization of hand model

Figure 6.8: More parameterization results.
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Chapter 7

Direct-Product Volumetric
Parameterization of Handlebodies

7.1 Motivation

In this work we focus on the parameterization of 3-dimensional handlebodies that can

be decomposed into the direct product of 2-dimensional surface and a 1-dimensional

curve. These models are very common in engineering fields, thus, the parameterization

of such models is highly desirable. Note that many canonical domains have extremely

simple structures. Some of them are just direct product of shapes from lower dimen-

sions. Figure 7.1 shows examples including a solid cube, which is the direct product

of three 1-dimensional line segments, and a solid torus, which is the direct product of a

2-dimensional disk and a 1-dimensional circle.

In general, an n-hole (n ≥ 1) handlebody is a 3-manifold whose boundary is a surface

that can be continuously deformed to some unknotted n-hole torus without tearing or

self intersection. For such a volume H, its boundary surface ∂H can be covered by a

set of charts,
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Figure 7.1: Handlebodies can be viewed as direct product of shapes in lower dimension.
(a) Solid cube is the direct product of three line segments. (b) Solid torus is the direct
product of a disk and a circle.

∂H = B0 ∪B1 ∪
n∪

i=0

Di

where B0 and B1 are called bases, or to be specific, B0 is the floor and B1 the ceiling

respectively. They are two disjoint n-hole annuli, B0 ∩B1 = ∅. Each Di(i ∈ [0..n]) is

called a wall, which is a topological cylinder with both ends open. All the walls are

pairwisely disjoint, Di∩D j =∅(i ∕= j). A base Bk(k ∈ {0,1}) and a wall Dl(l ∈ [0..n])

intersect at a 1-dimensional simple loop, ζkl = Bk ∩Dl . Figure 7.2 shows the Figure

Eight model which is a 2-hole handlebody.

As a special case, volumes without any handle (i.e. topological solid balls) can be

considered as degenerate handle bodies with n = 0. The boundary surface for such

bodies can also be partitioned into bases and walls, where each base is a topological

disk and there is only one single wall.
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(a)

(b) Ceiling & floor (c) Walls

Figure 7.2: Direct product of Figure Eight model. The parametric domain (a genus-
2 polycube) is the direct product of 2-hole disk and line segment, see (a). Both the
volume and the polycube domain can be decomposed into ceiling, floor and walls, see
(b)-(c).
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The reason we prefer direct product domains is multi-folded. Firstly, in a direct product

domain there is no singularity, thus the parameterization would not degenerate at any

point of the volume. Secondly, such a domain naturally allows a structure of orthog-

onality. In fact, at any point of the volume the three parameter lines are orthogonal to

one another. Thirdly and consequently, such structures will make many tasks easier,

such as volumetric remeshing, volumetric registration, physical simulation and so on.

(a) Input (b) Domain (c) Boundary decomposition

(d) Harmonic field (f) Volumetric parameterization

Figure 7.3: Direct product volumetric parameterization. The input is a tetrahedral mesh
representing a 3D handlebody. We parameterize the boundary mesh to a polycube
which also serves the parametric domain of the volume parameterization. Then we
decompose the boundary mesh into ceiling (red), floor (blue) and walls (yellow). The
ceiling and floors are topological annulus, the walls contain two topological cylinders.
Next, we compute volumetric harmonic functions with the Dirichlet boundary condi-
tions. Finally, the harmonic fields induce a homeomorphism between the handlebody
and the polycube domain. The cut view illustrate the volumetric parameterization.

Given a 3D handlebody M, we first construct a parametric domain P. To facilitate the

hexahedral remeshing, we choose polycube due to its regular structure. Then, we com-

pute a bijective map between the boundary surfaces ∂M and ∂P. Next, we partition ∂P
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into ceiling, floor and walls. The bijective map induces the partition of ∂M. We com-

pute the volumetric harmonic map with a Dirichlet boundary condition, i.e., the ceiling

points are with boundary value 1, and floor points with boundary value 0. Finally, by

tracing the gradient field of harmonic functions, we construct a map between M and P.

Figure 7.3 shows the parameterization of the genus-1 Rockerarm model to a polycube

domain.

7.2 Algorithm

7.2.1 Overview

We choose the polycube as the parametric domain due to the following reasons: first,

polycube has a regular structure and can be used to construct all-hexahedral meshes;

second, there are well-developed techniques to construct the polycube map that serves

the map between the boundary surfaces; third, due to the geometric simplicity, it is

usually easier to partition the boundary surface of polycube than that of the input model.

Since the goal is to parameterize the given volume M to the polycube P, we need to

compute the parameter functions (u,v,w)M and (u,v,w)P for M and P respectively.

Then we construct a function that maps (u,v)M to (u,v)P. Finally, the parameterization

ϕ : M → P is induced by the map (u,v,w)M → (u,v,w)P. This idea can be illustrated

using the following commutative diagram:

M P

(u,v,w)M (u,v,w)P

-ϕ :M→P

? ?
-

h:(u,v)M→(u,v)P

The proposed direct product volume parameterization contains the following steps:
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∙ Input: A tetrahedral mesh M for a handle body and a polycube P.

∙ Output: A bijection ϕ : M → P.

(i) Partition the boundary surfaces ∂M and ∂P into bases Bi and walls D j ;

(ii) Compute harmonic functions fM and fP using the partition as Dirichlet

boundary conditions;

(iii) Trace the integral curves for every interior vertex.

(iv) Trace the integral curves on the walls.

7.2.2 Computing the Harmonic Fields

Given a tetrahedral mesh M and the user-constructed polycube domain P, we first con-

struct the polycube map between the boundary surfaces ∂M and ∂P using the divide-

and-conquer approach by He et al. [33]. We design the polycube manually to reduce

its complexity which facilitates the boundary decomposition. Then, we partition the

boundary surfaces into bases (ceiling and floor) and walls. Note that the polycube do-

main has simpler structure than the original surface. Thus, it is much easier to partition

the polycube boundary surface than the original model. To do this, the user just simply

choose the desired polycube faces by several mouse clicks. By taking advantage of

the bijectivity of the polycube map, the partition of ∂P naturally induces a partition of

∂M. Let BM
i and BP

i denote the bases for ∂M and ∂P respectively. Similar, DM
j and

DP
j denote the walls. Figure 7.4 and 7.8 show the partition of the genus-0 Bimba and

genus-2 Cup via the polycube maps.

With the ceiling/floor/wall partition, we are ready to compute the harmonic fields for

both M and P. Specifically, we solve two harmonic functions fM : M →ℝ and fP : P →
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(a) (b)

(c) (d)

Figure 7.4: Partition the boundary surface into ceiling, floor and walls. We first con-
struct the polycube map for the boundary surface The top and bottom faces of the
polycube serve the ceiling and floor and the remaining part is the wall. The polycube
map induces the surface partition on the 3D model.
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(a) (b) (c) (d) (e)

Figure 7.5: Computing the harmonic fields of the genus-0 Bimba model. We solve a
volumetric harmonic map △ f = 0 with boundary conditions f (B0) = 0 and f (B1) = 1.
The volume renderings (a)-(d) show the computed harmonic fields on the polycube and
3D model. (e) shows several iso-surfaces of harmonic fields.

ℝ, such that

△ f (p) = 0, ∀p /∈ B0 ∪B1

f (p) = 0, ∀p ∈ B0

f (p) = 1, ∀p ∈ B1.

Figure 7.5 show the computed harmonic fields in M and P of the genus-0 Bimba model.

7.2.3 Tracing Inside the Volume

To trace the integral curve, we need to compute the gradient of fM and fP. Given an

arbitrary scalar function g, the gradient ∇g can be computed as follows [31]: suppose

ti jkl is a tetrahedron with vertices {pi, p j, pk, pl}, the face on the tetrahedron against

vertex pi is fi; similarly p j, pk, and pl are against f j, fk, and fl , respectively. We define

si to be the vector along the normal of fi with length equal to 2 times the area of fi, and
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so can s j,sk,sl be defined. Then, the gradient of g in ti jkl is a constant vector field

∇g = g(pi)si +g(p j)s j +g(pk)sk +g(pl)sl.

We then define the vertex gradient as the average of the gradient vectors in the neigh-

boring tetrahedra.

The parameterization from the M to P is constructed as follows: given an interior point

s ∈ M, we trace the integration curve γ of the gradient field ∇ fM. The integration curve

γ intersects the ceiling and floor at p ∈ BM
1 and q ∈ BM

0 .

Using the polycube map, we can define a floor map h : BM
0 → BP

0 that maps each floor

point q ∈ BM
0 to q′ ∈ BP

0 .

Then we compute an integral curve γ ′ starting from q′ and following ∇ fP. γ ′ intersects

the ceiling at p′ ∈ BP
1 . Then we can find a unique point s′ ∈ γ ′ such that fP(s′) = fM(s).

The point s′ ∈ P is the image of s, i.e., ϕ(s) = s′. By computing the images for every

interior vertex in M, we build the parameterization between the interior of M and P.

Note that each integral curve starts from a point on the floor and then terminates at a

point on the ceiling. Since the floor is a g-hole disc if ∂M is of genus-g, we can map the

g-hole disc to planar domain and then assign a parameter (u,v) for each integral curve,

i.e., all points on the same integral curve share the same u, and v parameters, they

only differ by w-parameter, which is determined by the arc-length parameterization.

Figure 7.6 and 7.9 show tracing the integral curves inside the volumes.

7.2.4 Tracing On the Walls

In the previous step, we construct the map for the interior vertices. Now, we want to

build the map between walls. Tracing the integral curve on the walls can be viewed as
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the degenerate case of tracing inside the volumes. Restricting the volumetric harmonic

function on the walls, we have the surface harmonic function denoted by gD.

Given a triangle ti jk = {pi, p j, pk}, let ei, e j and ek denote the oppositive edges. We

define a rotation operator rot that rotates the edge 90 degree outwards the triangle.

Then the gradient on the triangle ti jk is given by

∇gD = gD(pi)rot(ei)+gD(p j)rot(e j)+gD(pk)rot(ek).

Starting from the vertices on the boundary of floor ∂B0, we trace the integral curve

following the gradient of gD. The integral curves are perpendicular to the iso-curves of

gD and terminates on the boundary of ceiling ∂B1. Figure 7.7 shows tracing the integral

curves on the walls.

Note that the floor map h : BM
0 → BP

0 is a bijection, as h is constructed by restricting the

polycube map to the floor. An integral curve is given by a unique (u,v) parameter and

the points on the same integral curve are differed by the w parameter. Thus, the floor

map h maps an integral curve in M to a unique integral curve in P, which in turn maps

a point in M to a unique point in P. So, by tracing the integral curves for every floor

point, we build the piecewise parameterization between M and P.

7.3 Experimental Results

The proposed direct product volumetric parameterization is guaranteed to be bijective.

Our method can also guarantee that at any point in the volume, the w parametric line

is orthogonal to u and v parametric lines, which is a natural consequence of enforcing

a conformal parameterization on the surface and a gradient field in the volume. The

reason is as follows: we map each integral curve in M to a unique integral curve in

89



CHAPTER 7. DIRECT-PRODUCT VOLUMETRIC PARAMETERIZATION OF HANDLEBODIES

P. Both integral curves follow the gradient vector field of the harmonic function, thus,

are orthogonal to the iso-surfaces of the harmonic function. Note that he iso-surface

induces the u and v parameters and the integral curve induces the w parameter, thus, the

w iso-parametric line is perpendicular to u− and v− lines.

(a) (b)

Figure 7.6: Tracing the integral curves in the volumes. The integral curves follow the
gradient field of the harmonic function and is perpendicular to the floor and ceiling.
Three pairs of integral curves are shown in M and P. The corresponding curves are
drawn in the same color. Intuitively speaking, the position of the starting point on the
floor induces the u and v parameters, and the integral curve induces the w parameter.

We tested our algorithm on models with various topology, including, Bimba (genus-0),

Rockerarm (genus-1), Cup (genus-2) and Eight (genus-2).

We computed the polycube map using the variant of divide-and-conquer method He

et al. [33]. In [33], He et al’s method can construct the polycube automatically by

segmenting the shapes using horizontal planes and then approximate each part using

voxelization-like approach. The resulted polycube is often complicated and has large

number of corners that are extraordinary points of the polycube map. To reduce the
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(a) (b)

(c) (d)

Figure 7.7: Tracing the integral curves on the walls. The texture mapping shows the
iso-curves of the harmonic function restricted to the wall. The integral curve follows
the harmonic function and is perpendicular to the boundary of the walls. Three pairs of
integral curves are shown in M and P. The corresponding curves are drawn in the same
color.
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(a) Ceiling & floor (b) Walls

(c) Harmonic fields

(d) Iso-surface of harmonic fields

Figure 7.8: Direct product parameterization of the genus-2 Cup model. (a) and (b)
show the ceiling, floor and wall decomposition. Each ceiling/floor is 2-hole disk and
the wall contains three topological cylinders. (c) shows the volume rendering of the
harmonic fields. (d) show the iso-surface of the harmonic fields.
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(a) (b)

Figure 7.9: Tracing the integral curves in M and P. (a) and (b) show two different views
of three integral curves. The ceiling and floor are drawn in red and blue respectively.
The walls are rendered transparently. The corresponding curves are drawn in the same
color.
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Table 7.1: Distortion.
Model Aspect Ratio Aspect Ratio Aspect Ratio

best average worst
bima 1.00622 1.44828) 6.01021
cup 1.00953 1.32306 2.77817

eight 1.00571 1.61857 4.17987

number of singularities, we prefer to construct the polycube manually. The divide-and-

conquer framework [33] can still apply to the manually constructed polycube.

Taking advantage of the polycube map, we developed a user-friendly interface that

allows the users to easily select the polycube faces by simple mouse click. With the

user-specified Dirichlet boundary condition, we solved the discrete harmonic function

using finite element method. We used volume rendering to visualize the harmonic field

inside the volumes, as shown in Fig. 7.3(d), 7.5 and 7.8.

We demonstrated the proposed volumetric parameterization algorithm on hexahedral

mesh generation. Note that the polycube domain has very natural hexahedral tessel-

lation. The volumetric parameterization induces a map between the polycube and the

given volume. Thus, it also induces a hexahedral tessellation in the volume dataset as

shown in Fig. 8.7. To measure the quality of the hexahedral mesh, we choose the aspect

ratio which measures the maximum edge length ratios at hex center [75].

7.4 Discussions

We compared our method with the existing approaches Wang et al. [80], Li et al.[47],

Martin et al. [52] and the proposed method in Chapter 5. In Wang et al. [80], the

volume boundary is mapped to the unit sphere first, the boundary mapping is a diffeo-

morphism. Then the boundary diffeomorphism is extended to the interior by solving
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Figure 7.10: Construction of the hexahedral mesh using direct-product volumetric pa-
rameterization.

95



CHAPTER 7. DIRECT-PRODUCT VOLUMETRIC PARAMETERIZATION OF HANDLEBODIES

a volumetric Dirichlet problem, using the boundary mapping as the boundary condi-

tions. Wang et al used finite element method to solve the volumetric Dirichlet problem.

In [47], Li et al used fundamental solution method, which doesn’t require the tessel-

lation of the volume to solve the exact same Dirichlet problem. In two dimensional

case, Rado’s theorem claims that if the target domain is convex, then harmonic maps

are diffeomorphisms. Unfortunately, in volumetric case, even the target is convex and

boundary mapping is diffeomorphic, the volumetric harmonic map may not be diffeo-

morphic. Therefore, neither Wang et al. method [80] nor Li et al. method [47] can

not guarantee the final mapping to be diffeomorphic. In [52], Martin et al. first spec-

ified a 1-dimensional skeleton inside the volume and solve the volumetric harmonic

map with Dirichlet boundary conditions of the skeleton and the boundary surface. The

parameterization is constructed by tracing the gradient field of the harmonic function.

Martin et al.’s method works only for topological balls where the homotopy type of

the offset surface of the skeleton is the same as the boundary surface. Furthermore,

the skeleton are the critical points of the harmonic map, thus, the resulted parameter-

ization is singular on the skeleton. In Chapter 5, the proposed method compute the

Green’s function in a star-shaped volume and then map it to a ball or a polycube. By a

divide-and-conquer approach, the method is extended to general volumes. The advan-

tage of the method in Chapter 5 is that the mapping between two non-trivial shapes is

theoretically guaranteed to be a diffeomorphism. However, the promising properties of

the method degenerate when it is extended to general shape. The partition of volume

needs a lot of efforts. Additionally, although the cutting regions are locally smoothed,

the smoothness of mapping on the boundary surfaces on the cutting region can not be

guaranteed.

Our method is different from the above approaches in three aspects: first, our method

is guaranteed to be a bijection if the floor map is bijective; second, our method works
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Table 7.2: Comparison to the existing approaches.
Wang Li Martin Green’s Function Ours
[80] [47] [52] Chapter 5

Topology Topologi- Arbitrary Topologi- General Handle-
cal ball bounded cal ball volume body

volume
Singularity No No Yes Yes No
Bijectivity No No Yes Yes Yes

for volumes with complex topology and geometry; third, our parameterization does not

have any singularity, thus, is regular everywhere. Table 7.2 summarizes the properties

of the existing volumetric parameterization algorithms and our method.
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Chapter 8

Applications

8.1 GPU Subdivision Displacement

In recent years, hardware-supported tessellation is already feasible and provides much

faster model visualization than traditional methods [50], and graphics card hardware

designers have added specialized programable units for the task (Shader Model 5 hard-

ware).

Our proposed editable polycube map system (chapter 4) has several positive properties

for GPU-friendly interpolative subdivison surfaces.

∙ The map is a bijection with low angle and area distortion. The result mapping

has high quality.

∙ The user can easily control the mapping by specifying optional features on the

3D model and their desired locations on the polycube domain.

∙ The reduced number of combinations, together with a watertight sampling scheme,

allow for a continuous subdivision method that smoothly integrates with current

production pipelines.
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∙ We are able to provide coarse regular base meshes with a reduced memory foot-

print.

The whole process should be compared with the traditional work artists do to create a

model ready to be used in a real-time environment like a computer game, which usually

requires a subdivision scheme in order to be used with modern tessellation hardware.

In general, if the model to create is based on an existing model, for instance obtained

from a laser scanning process, the final model generation process implies manually per-

forming re-topology operations on a subdivision-based representation to then transfer

corresponding details by normal projection, which usually do not ensure bijectivity.

Usually, artists start from a coarse base model, quite often sculpted using a polycube

as base mesh. Then, the model is imported into an application like ZBrush [59] and

further subdivided with a couple of steps in a Catmull-Clark subdivision. From this mo-

ment on, the artist has to model/transfer the fine-grained details onto the model to be

used. Obviously, this is a time-consuming and quite redundant procedure to get the final

model. Our proposal is to avoid this by quickly establishing a bijective correspondence

between the coarse polycube and the input model, and then creating the subdivision

scheme on the polycube-based model by transferring the details of the high resolution

input model. The resulting model will have all the enumerated properties and would be

ready for usage in a production environment with a minimal user interaction.

Here we explain the details of our GPU-based subdivision displacement algorithm.

After the bijective mapping between the model and the polycube-map constructed

(chapter 4), we can build the induced subdivision surface. In general, we can generate

a parameterized subdivision scheme which can be effectively used in any graphics ap-

plication like computer-generated movies, as well as real-time applications. In our im-

plementation, as the bijection has already been established, we only need to recover the
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Figure 8.1: GPU-based subdivision displacement. Top left: our base mesh (level 0 of
the subdivision scheme). Top middle: a mesh showing the patch structure we associate
with a Catmull-Clark subdivision surface (green patches contain only valence 4 ver-
tices, and the darkness orange levels show the number of extraordinary vertices, being
darker the patches with greater number). Bottom left: the base mesh superimposed to
the approximate Catmull-Clark subdivision surface in grey. Bottom middle: In lilac,
the subdivision surface. Right Column: the subdivision surface with GPU-based sub-
division displacement. The iso-parametric curves of the final can be seen in the top
right.

coarse quads from the polycube-mapped model. In order to do that we (re-)constructed

the Catmull-Clark Subdivision scheme with the algorithm described in Lanquetin et

al. [44], and then prepare the approximate Catmull-Clark [50] data structures (textures

& base mesh) for the real-time subdivision.

Later on, in real time applications, we use the subdivision algorithm presented by Loop

and Schaefer [49]. The method presented here is particularly well suited for this imple-
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mentation as we only generate vertices with valences 3,4,5 or 6. In this implementation,

domain shaders (or vertex shaders when using instanced tessellation) are responsible of

providing the final position of each new vertex from the tessellated mesh.

In order to have watertight sampling of the displacement map, we define, for each patch,

the one who “owns” every single edge and corner [8, 7]. This way, all patches are coor-

dinated with respect to what texture coordinate to use when sampling the displacement

map at those locations. In practice, this amounts storing, for every edge and for every

corner, the texture coordinates of the owner of those features (4 texture coordinates

per vertex). At runtime, only a single texture sample is needed; and the corresponding

texture coordinate can be selected with a simple calculation. Figure 8.1 shows the

subdivision displacement result of our method.

8.2 Modeling 3D Facial Expressions Using Geometry
Videos

We proposed an expression modeling system in chapter 5 to capture the expression

animations and convert it to geometry video. But the constructed geometry video is

usually quite large. For example, the latest high-resolution 3D camera [88] is able to

capture 30 fps with a resolution of 512×512 of each frame, resulting in approximately

4.88MB raw data per frame, 878MB per second and 51.44GB per minute as shown

in Fig. 5.1. This imposes a significant challenge for compressing the captured video

efficiently while maintaining the video reconstruction quality.

To solve the aforementioned challenges and promote geometry video to real-world ap-

plications, this work presents a novel algorithm to store the recorded data in a compact

way, and allow users to manage, manipulate, and render the data easily. Specifically,

we propose a geometry video compression algorithm based on the state-of-the-art video
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coding standard - H.264/AVC, together with our proposed progressive directional pre-

diction scheme.

Using the proposed expression-invariant parameterization algorithm described in Chap-

ter 4, each frame of the motion data is mapped to a rectangular domain that can be easily

converted into a 2D geometry image representation, i.e. the vertex coordinates of the

3D face data x, y, and z, are represented by R, G and B colors respectively in a 2D

image. We define such an image as a GV picture (GVP). Then a GV is constructed by

combining a sequence of successive GVPs. Before presenting our compression scheme,

we first analyze the property of geometry videos.

The temporal feature of geometry video is similar to that of natural video, i.e. a block

in a geometry video picture usually closely matches another block locating at the same

or close position in the neighbor picture. However, the degree of temporal correlation

of geometry video is even stronger than that of natural video. We tested this property

with motion estimation of H.264/AVC, the performance of which is highly relied on

the temporal coherence. Fig. 8.2 shows that, for a natural video (greyscale) and its

corresponding geometry video (RGB), the mean square errors (MSEs) produced after

a 32x32 Full Search motion estimation of H.264/AVC (QP=8). It has been observed

that, after the motion estimation, the MSE of geometry video in each color channel is

significantly smaller than that of the corresponding natural video.

The spatial feature of geometry videos, on the other hand, is somewhat different from

that of natural videos. As we have explained earlier, the pixel values of a geometry

video picture are actually the vertex coordinates of the 3D model in the 3D space. As-

suming that the 3D model surface is relatively smooth in a small local region, e.g. a 4x4

block region, the corresponding pixels within the geometry video picture will normally
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Figure 8.2: Mean square error (MSE) comparison for natural video and geometry video
after a 32x32 Full Search motion estimation of H.264/AVC.

follow a special local variant pattern in that region. This special feature of geome-

try videos, however, has not been realized and utilized by any intra-frame prediction

schemes.

To achieve even lower bitrates for compression, we have tailored the intra-frame pre-

diction scheme in H.264/AVC to adhere the local variant pattern.

As we mentioned before, the original H.264/AVC has provided a series of prediction

modes showing an insufficient respect to the local pixel variance. In this work, we have

added 4 extra intra-frame prediction modes to the original H.264/AVC in our tailored

scheme. These extra modes will form predicted pixels by considering the variant pattern

of neighbor pixels. For a 4x4 block in a video picture, our simple yet very effective

prediction modes can be written as:
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P(x,y)=

⎧⎨⎩

P(x,y−1)+[N(x−1,y−1)−N(x−1,y)], mode 1
P(x,y−1)+ 1

4

4
∑

i=1
[N(x−1,y+i)−N(x−1,y+i−1)], mode 2

P(x−1,y)+[N(x,y−1)−N(x−1,y−1)], mode 3
P(x−1,y)+ 1

4

4
∑

i=1
[N(x−1,y+i)−N(x+i−1,y−1)], mode 4

where N(x,y) denotes the neighbor pixel locating at position (x,y) and P(x,y) being the

predicted pixels for the block.

The tailored H.264/AVC encoder will then select the best prediction mode from the

original H.264/AVC modes and our extra modes based on minimum prediction errors.

These extra prediction modes were only used for 4x4 blocks in a video picture (as

our investigation shows that they will not provide significant gains for 16x16 and 8x8

blocks). The extra prediction modes may slightly impose the computational overhead

on the encoder. However, the overhead is neglectable compared with those higher-

complexity components in H.264/AVC, e.g. motion estimation.

In the next section, we will show that the tailored prediction scheme yields better pre-

diction results for intra-frames and therefore provides better references to the remaining

predictive frames in the GOP, consequently resulting in bitrate reductions for the entire

video sequence.

Results There are 4 test video sequences containing human expressions captured by

our camera from 4 subjects, who were asked to make varied face expressions, e.g.

laughing, shouting, etc., during the video capturing. These 4 sequences are named as

“HumanFace1” to “HumanFace4”. Each of the 4 sequence consists of 200 frames with

the resolution of 320x320. For each video sequence, we compress it with H.264/AVC

at different bitrates and then decompress and reconstruct the video. The peak signal to

noise ratio (PSNR) is used to measure the reconstructing quality of the video.
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In addition to the real human expressions, we also tested 2 sequences containing syn-

thetic 3D data including a synthetic face model and a synthetic horse model, which

were named as “SynthFace” and “SynthHorse”. The motion in these 2 sequences is

composed of a few rigidly moving parts, such as the horse gallop shown in Fig. 8.4.

For these 2 sequences, we parameterized the motion to a polycube domain which mim-

ics the geometry of the model, e.g. Fig. 8.4(b) for the horse model. Then we constructed

the GV by flattening the polycube to a rectangular domain.

The video compression tool used in this work is the JM14.2 H.264/AVC reference

software. The GVs were compressed by the original H.264/AVC as well as our tailored

H.264/AVC as described in Section 6. The High 4:4:4 profile of H.264/AVC FRExt [23]

was adopted in this work to keep high-fidelity of the motion data, i.e. each color channel

of a GV picture is equally compressed and there is no subsampling used. The test

videos were encoded at 30 frames per second, with Group of Picture (GOP) structure of

“IPBPB”, Fast Full Search motion estimation (32x32 search range, 5 reference frames

and variable block sizes) and CABAC entropy coding. Rate Distortion Optimization

(RDO) was turned on. The intra-frame period (interval) was set to 30 (i.e. 1 intra-

frame per second). The GVs were compressed at different bitrates by adjusting the

quantization parameters.

Fig. 8.3 compares the rate-distortion performance of the original H.264/AVC and our

tailored H.264/AVC. The QPs range from -12 to +12 (we have adopted some negative

QPs in order to encode high-quality GVs. It has been observed that both the origi-

nal H.264/AVC and our tailored H.264/AVC can compress GVs into a compact size.

Compared to the original H.264/AVC, our tailored H.264/AVC is able to further reduce

the bitrate by 1.02% to 5.56% while increasing the PSNR by 0.04dB to 0.22dB for

HumanFace GV due to the better utilization of the spatial feature of GVs. For the syn-

thetic GVs (SynthFace and SynthHorse), the bitrate reduction obtained by our tailored
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Figure 8.3: Rate-distortion performance of original and tailored H.264/AVC

H.264/AVC over original H.264/AVC can be up to 20%, which is much more signif-

icant than those for HumanFace GVs. This is because that these synthetic GVs are

articulated animation containing less noise. Also, the surfaces of the synthetic models

are smoother compared to HumanFace GVs thus enabling better prediction results of

our tailored H.264/AVC.

Fig. 8.5 (a)-(d) display sample frames of original HumanFace1 and the reconstructed

video by the tailored H.264/AVC with different compression ratios. We observed that

the tailored H.264/AVC will result in no visual distortion at low compression ratio

(21:1). At medium compression ratio (212:1), the decoded frames showed a acceptable

quality but there small deformation can be found in the boundary of the human face.

At very high compression ratio (575:1), the decoded frames are visually distorted.
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(a)Polycube mapped horse (b)Parametric domain
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(g)Compression ratio 466:1
PSNR 47.98dB

Figure 8.4: Geometry video of articulated motion (HorseGv). (a) maps the surface
of horse onto polycube; (b) parameterizes the mapped polycube into rectangular do-
main; (c) shows the rate-distortion (PSNR vs. Bitrates) performance of the original
H.264/AVC and the tailored H.264; (d) shows the original video sequence; (e), (f) and
(g) show the reconstructed videos at low, medium and high compression ratios by using
the tailored H.264/AVC.
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(a)Original data

(b)Compression ratio 21:1, PSNR 71.73dB

(c)Compression ratio 212:1, PSNR 58.31dB

(d)Compression ratio 575:1, PSNR 46.00dB

Figure 8.5: Geometry video of HumanGV1. Row 1 shows the original video sequence;
Row 2, 3 and 4 show the reconstructed videos at low, medium and high compression
ratios by using the tailored H.264/AVC.

Fig. 8.4 shows sample frames of original SynthHorse and the reconstructed video se-

quences. We observed from the figure the similar results to HumanFace GVs, i.e. the

reconstructed video frames are of good quality at low and medium compression ratios.
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Figure 8.6: Compared to other parameterization techniques, such as Ricci flow(RF) and
harmonic map(HM). The constructed geometry videos have better spatial and temporal
coherence than that of other methods. As shown in (e), EIP leads to stronger tempo-
ral coherence evidenced by smaller MSE produced after a 32x32 Full Search motion
estimation (QP=12).

From the temporal coherence perspective, Fig. 8.6 compares the average MSE of HM

and RF after a 32x32 Full Search motion estimation of H.264/AVC (for GV2, 3 color

channels and QP=12 as an example). The results show that our proposed expression-

invariant parameterization algorithm can achieve smaller MSE than other methods.

To sum up, our experimental results show that the GVs can be significantly compressed

by using the original H.264/AVC while maintaining the video reconstruction quality.

By using our tailored H.264/AVC, a further improvement in bitrate reduction can be

achieved with even increased the PSNR .

8.3 Volume Data Processing

In this section, we demonstrate the efficiency and quality of our volume parameteriza-

tion algorithm to several applications, including hexahedral mesh generation, volumet-

ric morphing, anisotropic solid texture transfer, and GPU-based volumetric computing.
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Hexahedral Mesh Generation Note that the polycube domain has very natural hexa-

hedral tessellation. The volumetric parameterization induces a bijective map between

the polycube and the given volume. Thus, it also induces a hexahedral tessellation in

the volume dataset as shown in Fig 8.7.

Figure 8.7: Hexahedral mesh generation using volumetric polycube parameterization.

Volumetric Morphing. To morph from one star-shape to another, we parameterize

them to a common parametric domain, such as a ball and then determine a smooth map

(e.g., identity map in our current implementation) between the balls. Figure 8.8 shows

a running example from a star to Venus head. Figure 8.10, Figure 8.11, and Figure 8.12

shows more result of shape morphing and induced interior structure transfer.

Figure 8.8: Volumetric morphing between the star and the Venus head.
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Figure 8.9: Transferring the anisotropic solid texture from kiwi (column 1) to star
shapes (column 2: dog head; column 3: star).
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Figure 8.10: shape and interior structure morphing of Skull

Figure 8.11: Shape and interior structure morphing of Knot

Figure 8.12: Shape and interior structure morphing of Torso

Anisotropic Solid Texture. Solid textures [42], or anisotropic solid textures [73], al-

low us to fill the interior of 3D models with spatially-varying and anisotropic texture

patterns. Takayama et al. [73] proposed a lapped texture approach [60] to synthesize

anisotropic solid textures by pasting solid texture exemplars [42] repeatedly over the
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tetrahedron structure of 3D geometries. This approach can result in high-quality and

large-scale solid textures with low computation cost; to create such a texture, the user,

however, has to mark up volumetric tensor field and edit the texture in a geometry-

dependent fashion.

Our star-shape volume parameterization method can further broaden the applicability

of the lapped solid texture results to a larger pool of geometric models. As illustrated

in Figure 8.9, we can first parameterize a given star shape that has been pre-synthesized

with lapped solid texture to a solid ball using the Green’s function; hence, we can

transfer the synthesized texture information from the input geometric model to our star-

shape model through the common parametric ground. Our approach allows the reuse

of synthesized anisotropic solid textures without incurring additional texture synthe-

sis. Furthermore, since our volume parameterization method is a diffeomorphism, we

can guarantee the bijectivity and smoothness in the texture transfer process, as demon-

strated in Figure 8.9.

GPU-based Volumetric Computation. Another advantage of having a smooth volume

parameterization is the luxury of being able to perform computations throughout the

volume by taking the computation process to the highly-structured parametric domain.

Here we can parameterize the given star-shape model by a cube model (or polycube)

so that the data inside the parametric domain can naturally be modeled by a 3D texture;

as a result, we can carry out the computation on the GPU and further accelerate the

computation performance.

In detail, we first parameterize a given star-shape model by a cube shape so that the

reaction-diffusion data (concentration values, etc.) can be naturally modeled as 3D

textures stored in our GPU implementation. Here, we employ and extend Turing’s
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reaction-diffusion model [77] to three-dimensional, and expectedly, 3D sphere-like spot

patterns will be developed when the chemical concentrations reach a dynamic equilib-

rium state. Furthermore, we employ Witkin and Kass’s method [84] to account for

the distortion caused by the parameterization (since we compute the reaction-diffusion

on the parameterization grid): Given the parameterization from star-shape to cube, we

compute the local Jacobian per voxel element over the 3D parameterization grid; then,

we can compute the metric tensor as a three-by-three matrix M = JT J. Hence, we

can adaptively and locally modify the rate of diffusion by the diagonal values in the

metric matrix; this allows us to temper the reaction-diffusion pattern, thereby compen-

sating the volumetric distortion in the parameterization. Figure 8.13 shows the reaction-

diffusion results inside the Venus head model.

8.4 Shell Space Construction

Shell objects are three-dimensional structures wherein one dimension, the thickness, is

much smaller than the other two dimensions. Shell structures are widely used in man-

ufacturing, such as for automobile bodies, sheet metal parts, etc. On the other hand,

hexahedral meshes have promising properties for finite element analysis. But construc-

tion of hexahedral mesh is more challenge than construction of tetrahedral mesh. This

section focus on hexahedral meshing of shell volume.

Our hexahedral meshing algorithm consists of three steps, constructing the shell space,

parameterizing the shell space and hexahedral meshing.

∙ In Step 1, we construct the offset surface using the user-specified thickness. Then

we tessellate the shell space using a tetrahedral mesh. We also parameterize the

given boundary surface to a polycube and construct the shelled polycube in a
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Figure 8.13: Volumetric reaction-diffusion computation on the GPU. The first column
shows the reaction-diffusion results in equilibrium state over the cube-based parametric
domain, whereas the second column shows the reaction-diffusion results after mapped
to the star-shaped model. Without distortion compensation by the metric matrix, we
can see distortion in the lower right pattern, but such a distortion can be corrected (see
upper row) if we take the metric matrix into account.
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similar fashion. The method of polycube mapping has been proposed in Chapter

4

∙ In Step 2, we compute the harmonic field in the shell spaces by solving the

Laplace equation with a Dirichlet boundary condition. By tracing the integral

curves, we build a bijection between the shell spaces. The integral curve tracing

algorithm has been presented in Chapter 6.

∙ In Step 3, we tessellate the polycube space with a regular hexahedral mesh, then

construct the layered hexahedral mesh in the object space via volumetric param-

eterization.

In the following, we look into the details of shell space construction.

The shell space is enclosed by the give 3d model and an offset surface which are two

disconnected closed surfaces. For the offset surface, The offset distance is specified

by the user. We use the MPU method [56] to construct the distance field of the input

model, then extract the iso-surface whose iso-value is the user-specified thickness. We

then construct a tetrahedral mesh to fill the shell space using Tetgen [70]. We also apply

the variational meshing algorithm [2] to improve the quality of the tetrahedral mesh.

Using the polycube map method proposed in chapter 4, we map the boundary surface

M0 to the user-constructed polycube domain. Our resulting polycube map has low angle

distortion and is guaranteed to be a bijection. When constructing the tetrahedral mesh

for the polycube space, we must pay special attention to the sharp features (such as

edges and corners) of the polycube. To preserve the features in the isotropic tetrahedral

mesh, we follow the variant variational meshing technique that is tailored for mechani-

cal models [71]. Figure 8.14 shows the construction of shell space for the Skull model

and its polycube domain.
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(a) Boundary surface (b) Shell space (c) Close-up view

Figure 8.14: Shell space construction. Row 1: we construct a distance field for the
given model and extract an iso-surface with the user-specified offset distance. Then,
we construct an isotropic tetrahedral mesh using variational meshing technique [2].
Row 2: we map the outer boundary surface to a polycube and construct the tetrahedral
mesh of the shell space in a similar way. Note the sharp features (polycube edges and
corners) are well preserved in the tetrahedral mesh.

Results We tested our algorithm using models of various topology. In our experiments,

the user-specified offset distance (i.e., thickness) can be either positive or negative.

The user also specifies the number of layers in the constructed hexahedral meshes. As

mentioned before, each layer has exactly the same tessellation. Figure 8.16 and 8.17

show the layered hexahedral meshes. Cutaway views are used to show the high quality

of the hexahedral inside the models.
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(a) Boundary surface (b) Polycube domain
(c) Hex mesh in
polycube space

(d) Hex mesh in object
space (e) Cut view

Figure 8.15: Constructing layered hexahedral mesh for shelled Bunny model. Given a
closed 2-manifold and a user-specified offset distance, we first construct the shell space
using the distance field and then parameterize the shell space to a shelled polycube do-
main. As there is a natural hexahedral tessellation in the polycube domain, the volume
parameterization induces the hexahedral mesh in the object space. The constructed
mesh is an all-hexahedral mesh that most of the vertices are regular, i.e., the valence is
6 for interior vertices and 5 for boundary vertices. The mesh also has a layered structure
that all layers have exactly the same tessellation.
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Figure 8.16: Experimental results on genus-0 models
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Figure 8.17: Experimental results on high genus models
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Figure 8.18: Experimental results
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

In this thesis, we have systematically studied the harmonic field-based surface and vol-

ume mapping, and then developed a set of algorithms to compute such mappings for

real-world models.

We have managed to overcome the drawbacks of harmonic maps mentioned in Sec-

tion 2.2. We proposed two elegant techniques of harmonic-based surface parameteri-

zation which allow for the mapping of constraints inside the domain rather than only

on boundaries. There are many promising properties in allowing for interior mapping

constraints. First, salient features could be aligned accurately. Second, interior con-

straints could lead to smaller angle or area distortions. Third, it allows more flexible

user control operations and an interactive mapping framework. In volume parameter-

ization, we proved the existence of a diffeomorphism between two star shapes. Our

findings in volumetric parameterization have significantly contributed to the extension

of harmonic maps into 3D cases.

More specifically, we presented an editable polycube map framework that, given an

arbitrary high-resolution polygonal mesh and a simple polycube representation plus
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optional sketched features indicating relevant correspondences between the two, pro-

vides a uniform, regular and artist-controllable quads-only mesh with a parameterized

subdivision displacement scheme. Flexible mapping constraints are allowed in our

framework, which is important for an interactive parameterization method. The pro-

posed method guarantees that the computed map is bijective and conformal except at a

finite number of extraordinary points (the polycube corners). Subjective and statistical

comparisons between our method and previous methods demonstrated that our method

outperforms its predecessors significantly. Furthermore, our method is based on a di-

vide and conquer strategy, which enables the processing of large-scale models with

complex geometry and topology. In our experiment, a large-scale model which con-

tains 500k vertices is processed well. Based on our polycube mapping, we provided a

subdivision displacement scheme that is specially built for quad patch-based tessella-

tion at the GPU for object and character rendering. The promising experimental results

demonstrated the efficacy of our method.

We also proposed an algorithm that parameterizes 3D facial expressions with guar-

anteed feature correspondence and stores them into a video format, hence allowing

the 3D data to be significantly compressed by well-studied video compression tech-

niques. Our experimental results demonstrate the expression-invariant property of our

method. Compared to other parameterization methods, such as harmonic maps and dis-

crete Ricci flow, our method can lead to results that are highly consistent and insensi-

tive to the expressions, and have a greater degree of coherence of constructed geometry

videos, which is highly desirable for video compression.

In volume parameterization, we proved that the Green’s function on a star shape has

a unique critical point and all level sets inside the star shape are topological spheres.

We also showed that the Green’s function can induce a diffeomorphism between two
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star shapes. To our knowledge, this is the first constructive proof of the existence of a

diffeomorphism between two non-trivial shapes. Based on our theoretical results, we

developed algorithms to parameterize star shapes to star-shaped domains, such as solid

balls and star-shaped polycubes. We further extended our algorithm to parameterize

general volumes by using star-shaped decomposition. An interesting comparison is

given between our harmonic field-based algorithm and the volumetric harmonic map

method. The results show that our method is more robust and leads to hexahedral

meshes with better quality. The advance of diffeomorphism is demonstrated by the

smooth parametric curves.

We also proposed an algorithm for parameterizing volumes of handlebodies. The pro-

posed algorithm is able to parameterize volumes with complex topology. It can also be

downgraded and applied to volumes with trivial topology (i.e. topological balls). The

parametric domain is the direct product of a surface patch and a line segment. The re-

sulting map between the original volume and the parameter domain is a bijection with-

out any singularity. Also, at any point in the volume, the w iso-parametric line (which

follows the gradient of the harmonic field) is orthogonal to the u and v iso-parametric

lines (which span the iso-surface of the harmonic field), which is a natural consequence

of enforcing a conformal parameterization on the surface and a gradient field in the

volume. Our experimental results demonstrate our highly regular parametric curves.

We have also showcased a variety of applications that benefit from our volume param-

eterization method, including volumetric morphing, anisotropic solid texture transfer,

GPU-based volumetric computation and shell space construction.
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9.2 Future Work

This work paves the way for several future research directions. First, our current sur-

face and volume parameterization methods highly rely on tracing the integral curves

of the gradient vector field of the harmonic fields. Thus, the parameterization quality

depends on the quality of the input triangle and tetrahedral meshes. We will develop

robust algorithms to trace integral curves in meshes with poor triangulation. Second,

our current volume parameterization methods work for volumes without any voids. To

our knowledge, it is an open problem in the parameterization of volumes with arbitrary

voids. In the future, we will investigate along this direction. Third, besides the appli-

cations presented in this thesis, parameterization can also serve as a fundamental and

powerful tool of geometric modeling. It has strong potential in the scientific computa-

tion and engineering fields. In the future, we would like to promote the wide spectrum

of applications of our parameterization methods.
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[5] C. Bennis, J. Vézien, and G. Iglésias. Piecewise surface flattening for non-

distorted texture mapping. In ACM SIGGRAPH, pages 237–246, New York, NY,

USA, 1991.

[6] I. Boier-Martin, H. Rushmeier, and J. Jin. Parameterization of triangle meshes

over quadrilateral domains. In Symposium on Geometry Processing, pages 193–

203, New York, NY, USA, 2004.

[7] I. Castano. Next-generation rendering of subdivision surfaces. Los Angeles, Cal-

ifornia, USA, 2008.

[8] I. Castano. Tessellation of subdivision surfaces in direct3d 11. Gamefest speech,

2008.

[9] J. Cohen, M. Olano, and D. Manocha. Appearance-preserving simplification. In

ACM SIGGRAPH, pages 115–122, New York, NY, USA, 1998.

126



REFERENCES

[10] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 6(23):681–685, 2001.

[11] P. Degener, J. Meseth, and R. Klein. An adaptable surface parameterization

method. In 9th International Meshing Roundtable, pages 201–213, New Orleans,

Louisiana, USA, 2003.

[12] M. Desbrun, M. M., and P. Alliez. Intrinsic parameterizations of surface meshes.

Computer Graphics Forum, 21(3):209–218, 2002.

[13] S. Dong, S. Kircher, and M. Garland. Harmonic functions for quadrilateral

remeshing of arbitrary manifolds. Comput. Aided Geom. Des., 22(5):392–423,

2005.

[14] E. Drumwright. A fast and stable penalty method for rigid body simulation. IEEE

Transactions on Visualization and Computer Graphics, 14(1):231–240, 2008.

[15] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle.

Multiresolution analysis of arbitrary meshes. In SIGGRAPH ’95, pages 173–182,

New York, NY, USA, 1995.

[16] G. Fairweather and A. Karageorghis. The method of fundamental solution for

elliptic boundary value problems. Advances in Computational Mathematics, 9(1-

2):69–95, 1998.

[17] Z. Fan, X. Jin, J. Feng, and H. Sun. Mesh morphing using polycube-based

cross-parameterization. Journal of Visualization and Computer Animation, 16(3-

4):499–508, 2005.

[18] D. A. Field. Laplacian smoothing and delaunay triangulations. Communications

in Applied Numerical Methods, 4(6):709–712, 1988.

[19] M. S. Floater. Parametrization and smooth approximation of surface triangula-

tions. Computer Aided Geometric Design, 14(3):231–250, 1997.

[20] M. S. Floater. Mean value coordinates. Computer Aided Geometric Design,

20(1):19–27, 2003.

127



REFERENCES

[21] M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey. In

Neil Anthony Dodgson, Michael S. Floater, and Malcolm Arthur Sabin, editors,

Advances in Multiresolution for Geometric Modelling, pages 157–186. Berlin,

Heidelberg, 2005.

[22] M. S. Floater, G. Kós, and M. Reimers. Mean value coordinates in 3d. Computer

Aided Geometric Design, 22(7):623–631, 2005.

[23] J. S. Gary, P. Topiwala, and A. Luthra. The h.264/avc advanced video coding

standard: Overview and introduction to the fidelity range extensions. In SPIE

conference on Applications of Digital Image Processing XXVII, pages 454–474,

Denver, CO, USA, 2004.

[24] J. J. Gergen. Note on the green function of a star-shaped three dimensional region.

American Journal of Mathematics, 53(4):746–752, 1931.

[25] C. Gotsman, X. Gu, and A. Sheffer. Fundamentals of spherical parameterization

for 3d meshes. ACM Transactions on Graphics, 22(3):358–363, 2003.

[26] X. Gu, S. J. Gortler, and H. Hoppe. Geometry images. ACM Transactions on

Graphics, 21(3):355–361, 2002.

[27] X. Gu, S. Wang, J. Kim, Y. Zeng, Y. Wang, H. Qin, and D. Samaras. Ricci flow

for 3d shape analysis. In International Conference on Computer Vision, pages

1–8, Rio de Janeiro, Brazil, 2007.

[28] X. Gu, Y. Wang, T. F. Chan, P. M. Thompson, and S.-T. Yau. Genus zero surface

conformal mapping and its application to brain surface mapping. IEEE Transac-

tions on Medical Imaging, 23(8):949–958, 2004.

[29] X. Gu and S.-T. Yau. Computing conformal structures of surfaces. Communica-

tions in Information and Systems, 2:121–146, 2002.

[30] X. Gu and S.-T. Yau. Global conformal surface parameterization. In Symposium

on Geometry Processing, pages 127–137, Aire-la-Ville, Switzerland, Switzerland,

2003.

128



REFERENCES

[31] X. Gu and S.-T. Yau. Computational conformal geometry. International Press,

2006.

[32] S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro, and M. Halle.

Conformal surface parameterization for texture mapping. IEEE Transactions on

Visualization and Computer Graphics, 6(2):181–189, 2000.

[33] Y. He, H. Wang, C.-W. Fu, and H. Qin. A divide-and-conquer approach for auto-

matic polycube map construction. Computer & Graphics, 33(3):369–380, 2009.

[34] K. Hormann and G. Greiner. Mips: An efficient global parametrization method.

In Curve and Surface Design: Saint-Malo, pages 153–162, Nashville, TN, 2000.
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