
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Unifide framework for speaker‑aware isolated
word recognition

George Rosario Dhinesh

2011

George, R. D. (2011). Unifide framework for speaker‑aware isolated word recognition.
Master’s thesis, Nanyang Technological University, Singapore.

https://hdl.handle.net/10356/46279

https://doi.org/10.32657/10356/46279

Downloaded on 09 Apr 2024 15:11:01 SGT

UNIFIED FRAMEWORK FOR SPEAKER-AWARE
ISOALTED WORD RECOGNITION

GEORGE ROSARIO DHINESH

School of Computer Engineering

A thesis submitted to the Nanyang Technological University
in partial fulfilment of the requirement for the degree of

Master of Engineering

2011

Acknowledgement

I would like to take this opportunity to thank all those who have helped me in this

research work. First, I would like to express my heartfelt gratitude to my supervisor Dr.

Thambipillai Srikanthan for his guidance, patience and understanding. His expert advice

during the course of this research work has been invaluable. Despite being entrusted with

many responsibilities, he has always found time to discuss the directions for this project

with me and I thank him for all the support he gave me.

I would like to thank Mr. Ashish Panda who helped me by explaining the basics of my

research work, without which I would have taken much longer time to understand them.

His explanation about his previous works was of great help throughout this research

work. I thank him for his readiness to help me whenever I had a doubt. I would also like

to thank Mr. Jagadeesh for helping me throughout this work. His advice and insights truly

helped me at all stages of the research process.

The administrative support rendered by Ms. Nah, Merilyn and Jeremiah was the best I

could have asked for. They always helped me out whenever I needed any administrative

work to be sorted out. They are truly an integral part of the research lab and their presence

is absolutely necessary for the day-to-day functioning. I am also grateful to all of those

who made CHiPES a stimulating and interesting atmosphere to work in. Last but not the

least, I would like to thank my friends and family for their much appreciated support at all

stages of the work.

i

Contents

List of Figures .. v

List of Tables ... vi

Abstract .. vii

1 Introduction ... 1

1.1 Background and Motivation ... 1

1.2 Project Objectives ... 2

1.3 Report Organization .. 3

2 Literature Survey .. 4

2.1 Introduction ... 4

2.2 Feature Extraction ... 5

2.2.1 Mel Frequency Cepstral Coefficients .. 5

2.2.2 Linear Prediction Coefficients ... 6

2.2.3 Evaluation of MFCC and LPCC .. 7

2.3 Speaker Recognition Systems ... 9

2.3.1 Speaker Modeling Techniques ... 11

2.3.2 VQ Based Systems ... 11

2.3.3 DTW Based Systems ... 12

2.3.4 GMM Based Systems .. 13

2.3.5 HMM Based Systems .. 15

2.3.6 Text-Constrained Speaker Recognition Systems ... 17

2.3.7 Evaluation of Speaker Modeling Techniques .. 18

2.4 Word Recognition Systems... 19

2.4.1 Overview of Isolated Word Recognition System .. 20

2.4.2 Word Recognition Based on Whole Word Modeling .. 21

ii

2.4.3 Word Recognition Based on Sub-Word Modeling .. 23

2.4.4 Evaluation of Word Recognition Systems ... 23

2.5 Alternative Modeling and Testing Schemes for GMM .. 24

2.5.1 Alternative Modeling Schemes .. 24

2.5.2 Alternative Testing Schemes ... 27

2.6 Integrated Speaker and Word Recognition Systems ... 28

2.7 Summary ... 30

3 Platform for Evaluating GMM Based Experiments ... 32

3.1 Introduction ... 32

3.2 Mel Frequency Cepstral Coefficients (MFCC)... 33

3.3 Gaussian Mixture Modeling (GMM) .. 35

3.3.1 Estimation of Model Parameters .. 37

3.3.2 Estimation of Data-Model Fit .. 41

3.4 Evaluation Platform Architecture ... 42

3.4.1 System Overview ... 43

3.4.2 Speech Extraction Unit .. 43

3.4.3 Feature Extraction Unit .. 45

3.4.4 GMM Unit ... 46

3.4.5 Configuration of the Experiment Methodology ... 47

3.5 Summary ... 51

4 GMM Based Speaker Identification ... 52

4.1 Introduction ... 52

4.2 Text-Constrained Speaker Identification .. 53

4.2.1 Experimental Results ... 54

4.3 Sub-Word Constrained Speaker Identification ... 56

4.3.1 Segmentation Methods... 57

4.3.2 Sub-Word Grouping Approaches .. 57

iii

4.3.3 Experimental Results ... 58

4.4 Text-Dependent Speaker Identification .. 60

4.4.1 Experimental Results ... 61

4.5 Summary ... 64

5 Adapting GMM for Isolated Word Recognition .. 65

5.1 Introduction ... 65

5.2 Baseline GMM Approach for Isolated Word Recognition ... 66

5.2.1 Experimental Set-up and Results ... 67

5.3 Proposed Technique to Incorporate Time Sequence Information for GMM based

Word Recognition ... 68

5.3.1 Segments .. 69

5.3.2 A Discussion on Segmentation Methods ... 70

5.3.3 Simple Equal Segmentation ... 72

5.3.4 Constrained Clustering Segmentation.. 73

5.3.5 Training Procedure... 74

5.3.6 Testing Procedure .. 75

5.4 Experimental Results .. 76

5.5 Multiple Models with Different Number of Sub Words ... 80

5.5.1 Steps Involved in the Process .. 81

5.5.2 Experimental Results ... 82

5.6 Summary ... 84

6 Integrated Speaker and Word Recognition System .. 86

6.1 Overview ... 86

6.2 Integrated Speaker and Word Recognition System .. 86

6.2.1 Integrated System Based on Text-Constrained Speaker Recognition 87

6.2.2 Integrated System Based on Text-Dependent Speaker Recognition 88

6.3 Experimental Results .. 89

iv

6.3.1 Results and Discussion .. 90

6.4 Integrated Systems Operating on Small Set of Commands .. 92

6.4.1 Experimental Results ... 93

6.5 Summary ... 94

7 Mobile Application for Speaker-Aware Isolated Word Recognition 95

7.1 Overview ... 95

7.2 Platform Chosen.. 95

7.2.1 Android Architecture Overview .. 96

7.2.2 Android Development Environment .. 99

7.3 Integrated Speaker-and-Word Recognition System as an Android Application 99

7.3.1 Speech Capture Unit: Android APIs for Speech Recording 101

7.3.2 Model Storage .. 101

7.3.3 Computation Speed-up through Inter-Module Parallelism 102

7.3.4 User Interface Management of the Application ... 103

7.3.5 Device Support... 103

7.4 Implementation Results .. 104

7.4.1 Performance Anlaysis .. 104

7.4.2 Execution Time Analysis ... 106

7.5 Summary ... 108

8 Conclusions and Future Work ... 109

8.1 Conclusions ... 109

8.2 Future Work .. 111

References .. 113

Appendix A: Conference Paper ... 121

v

List of Figures

2.1 Overview of a speaker recognition system .. 9

2.2 Speaker identification process ... 10

2.3 Speaker authentication process .. 10

2.4 Integrated speaker and isolated word recognition system ... 29

3.1 Mel Frequency Cepstral Coefficients calculation .. 35

3.2 The k-means algorithm .. 39

3.3 Speech extraction unit .. 44

3.4 Feature extraction unit ... 46

3.5 GMM unit .. 47

3.6 Overall architecture of the evaluation platform ... 48

5.1 Time-ordered sequence of segments .. 70

5.2 Training process in the sub-word constrained GMM technique .. 74

5.3 Testing process in the sub-word constrained GMM technique ... 75

5.4 Word recognition rate for different number of mixtures when segments/word=2 78

5.5 Word recognition rate for different number of mixtures when segments/word =3 78

5.6 Word recognition rate for different number of mixtures when segments/word =4 78

5.7 Word recognition rate for different number of mixtures when segments/word =5 78

5.8 Testing process when word is represented with main and secondary models 82

6.1 Integrated system based on text-constrained speaker recognition 88

6.2: Integrated system based on text-dependent speaker recognition 89

7.1 Android architecture .. 97

7.2 Overview of the Android application for speaker-and-word recognition 100

7.3 Speaker and word recognition performance for each word utterance................. 106

vi

List of Tables

4.1 Text-constrained speaker recognition 55

4.2 Text-constrained speaker recognition with different words-group size 55

4.3 Sub-word constrained speaker recognition with equal segmentation 60

4.4 Sub-word constrained speaker recognition with overlapping segmentation 60

4.5 Text-dependent speaker recognition 62

4.6 Text dependent speaker recognition obtained for each word utterances 63

5.1 Isolated word recognition results using baseline GMM method 68

5.2 Isolated word recognition results using sub word constrained GMM 76

5.3 Word recognition with different sets of speakers for training and testing 79

5.4 Word recognition with multiple models per word 83

6.1 Overall recognition rate for the two versions of the integrated system 90

6.2 Effect of word recognition accuracy on speaker identification in the text- dependent

version of the integrated system 91

6.3 Integrated system operating on small set of commands 93

7.1 Worldwide smartphone sales to end users in the first quarter of 2011 96

7.2 Recognition accuracy of the Android application for speaker-and-word recognition 105

7.3 Average execution time for the modules in MFCC calculation 106

7.4 Average execution time for the modules in training/testing a model 107

vii

Abstract

The explosive growth of various kinds of personal electronic devices in recent years has

spawned substantial interest in personalized voice-based human device interaction. There

exists a need for robust and computationally-efficient techniques to help realize mobile

and embedded computing applications that are capable of recognizing spoken words and

the speaker who uttered them. Although spoken word recognition and speaker recognition

are closely related problems with a number of commonalities, separate and different

techniques are employed for solving them in the current state of the art.

This thesis presents the research, development and prototyping of a speaker-aware

isolated word recognition system based on a single, low-complexity technique suitable for

resource-constrained mobile and embedded devices. A comprehensive literature survey

has been carried out to study and evaluate the suitability of several existing techniques for

embedded speaker-and-word recognition. Based on qualitative and performance analyses

available in the literature, a framework based on Mel Frequency Cepstral Coefficients

(MFCC) and Gaussian Mixture Model (GMM) has been chosen as the base for our work.

An evaluation platform that is rapidly configurable according to the desired values of the

parameters involved in the GMM process has been developed in order to expedite the

experimentation process. The challenging problem of recognizing a speaker based on a

single utterance of very short duration has been examined in detail. The effectiveness of

GMM-based text-dependent and text-constrained speaker recognition approaches has

been evaluated on the TI46 speech corpus resulting in a recognition accuracy of 99.28%

and 96.6% respectively. We have proposed and evaluated a method of grouping similar

sub-word units in text-constrained speaker recognition and obtained a recognition rate of

96.62%.

A novel technique has been proposed in order to overcome the inability of GMM to retain

the temporal information of the speech in word recognition. This technique relies on

modeling a word as a time-ordered sequence of GMMs, where each GMM corresponds to

a sub-word unit, so that the sequence of the sub-words is maintained. A simple, yet

effective, method with negligible computation overhead has been used to segment words

viii

into sub-word units without using any linguistic knowledge. The proposed technique

improves the word recognition accuracy by 5.6% when compared to the conventional

GMM approach. A further increase of 0.7% in recognition accuracy is observed when

multiple models, each with a different number of sub-words, are used to represent a word.

Overall, a word recognition accuracy of 96.93% has been obtained on the TI46 database.

Having overcome the limitations that inhibit the use of the conventional GMM approach

for speaker and word recognition, the suitability of the proposed technique for embedded

applications has been demonstrated by implementing a speaker-aware word recognition

system as an Android application on a mobile device. The system has been tested in real-

life environments for a closed set of speakers and a limited number of words. The mobile

application has been found to correctly recognize both the spoken word and the speaker

91.6% of the time.

1

Chapter 1

Introduction

1.1 Background and Motivation

With digital devices permeating almost every aspect of modern everyday life, there is an

increasing demand for more natural human-machine interaction, improved convenience

and better personalization. In line with this trend, the near future is likely to witness a

growth of mobile and embedded computing applications that are capable of recognizing

spoken words and the speaker who uttered them. For instance, with the advent of

ubiquitous computing, it is not far-fetched to envisage a scenario where shared appliances

and controls in a home environment respond differently to the same spoken command to

suit the predefined preferences of the speaker. Speaker-aware isolated word recognition

technology can also find several applications such as personalized educational toys and

voice-based multiplayer gaming.

 The present approaches towards word and speaker recognition are typically

compute-and-memory intensive and do not lend well for implementation in devices

having low-speed processors with limited memory. Although there is a substantial body

of existing research in the areas of speech recognition and speaker recognition, it is

mostly directed towards the problem of improving recognition accuracy without regards

to the computational requirement. Such an approach is not sustainable in the age of

ubiquitous lightweight computing devices. Hence, there is a need to devise robust and

low-complexity solutions for performing speaker-aware isolated word recognition for

deployment in resource-constrained mass volume products.

2

 Although speech recognition and speaker recognition typically involve several

common computational steps, research on these two closely-related problems have

evolved on separate tracks and relatively little work has been done in creating a unified

approach. The existing approach to solve the problem of recognizing both the spoken

word and the speaker identity is a two-system combo solution, where word recognition

and speaker recognition are performed using separate and different methods. If the

effectiveness of a single technique is proven to be an efficient alternative to the existing

approach, it can facilitate the development of computationally-efficient lean applications

well-suited for resource-limited devices.

1.2 Project Objectives

The broad objectives of this research and development work are as follows:

 To perform a comprehensive study of the existing techniques and establish a base

framework well-suited for a speaker-aware isolated word recognition system

operating on a closed set of speakers and a limited vocabulary. This will involve

the optimal selection of features to parameterize speech and an efficient modeling

method capable of representing both speakers and words.

 To identify and overcome the limitations of the base framework by proposing

innovative improvement techniques and validating them through extensive

empirical evaluations on a standard speech database.

 To determine the optimal choice of the various parameters involved in the

recognition process through experimentation on the speech corpus.

 To develop an integrated system capable of performing speaker-aware isolated

word recognition and to evaluate its effectiveness in real-life applications by

implementing it on a resource-limited mobile/embedded device.

3

1.3 Report Organization

In this chapter, we have established the need for an efficient technique for performing

both word and speaker recognition in embedded platforms. The objectives of the project

were also defined. In Chapter 2, we present a comprehensive study of the research work

in the field of word and speaker recognition. We discuss the complexity and effectiveness

of the prevailing techniques for formulating the framework suitable for our purpose.

 Chapter 3 describes the base framework consisting of Mel Frequency Cepstral

Coefficient (MFCC) feature vectors and Gaussian Mixture Model (GMM). The procedure

of GMM-based training and testing, followed in our work is explained in detail. To

expedite our research, we have developed a rapidly configurable evaluation platform to

carry out all the experiments based on MFCC and GMM. The description and scope of

the platform are presented in this chapter.

 In Chapter 4, we evaluate the GMM-based text-dependent and text-constrained

speaker identification against a standard speech database. We also propose a new method

of GMM-based speaker identification based on sub-word grouping. Chapter 5 is devoted

to the problem of isolated word recognition. We address a key shortcoming in GMM-

based isolated word recognition and propose a sub-word constrained GMM technique to

overcome it.

 Chapter 6 presents the integrated speaker-and-word identification system. The

overall accuracy of the system and the results obtained for different vocabulary sets are

presented. This system is ported as an application into a mobile device as described in

Chapter 7. Results of the tests, conducted using this mobile application in real-life

environments are also presented in the same chapter. Chapter 8 summarizes the major

contributions of the project and provides suggestions for future work.

4

Chapter 2

Literature Review

2.1 Introduction

For an integrated speaker and word recognition system to operate on resource-constrained

embedded devices, it has to be low in computational complexity. In this context, a single

computationally efficient technique for recognizing both the speaker and the word will be

advantageous. A broad review of the literature carried out to identify a potential

methodology for the above said purpose is presented in this chapter. The robustness,

storage requirement and speed of computations are the main factors that have to be

analyzed before selecting a methodology. We start the literature review by discussing the

dominant speech feature extraction methods, followed by analyzing the problems of

speaker recognition and word recognition separately. Various techniques used for solving

both the problems are discussed in addition to the review of the approaches proposed in

the literature for realizing an integrated system. At the end of this review, we formulate a

base framework and identify the problems that have to be overcome in order to apply it

for both speaker and word recognition.

 The rest of the chapter is organized as follows. In Section 2.2, we present the

speech feature extraction process and discuss two widely used techniques and analyze

their advantages and disadvantages. In Section 2.3, we describe the various types of

speaker recognition problems and discuss the techniques applied for solving it. Section

2.4 is devoted to word recognition. We study and discuss the various methods used in

word recognition and subsequently identify a methodology as the base for our research

work. In Section 2.5, we discuss the techniques proposed for reducing the computations

in the Gaussian Mixture Model (GMM) method. Techniques proposed in the literature to

5

integrate speaker and word recognition systems are presented in Section 2.6. The contents

of this chapter are summarized in Section 2.7.

2.2 Feature Extraction

The first step in both word recognition and speaker recognition systems is the feature

extraction process. It obtains the acoustic characteristics of the speech signal. A speech

utterance mainly conveys two types of information [1].

 Linguistic information: This gives the meaning of the utterance. The main

contents of this information are the phonemes, which are a set of sounds in any

language.

 Personal information: This conveys the identity of the speaker.

 The physiological features responsible for speech production suggest that speech

individuality is a function of pitch, vocal tract and phonemes [2]. The first two functions

refer to the personal information and the last function refers to the linguistic information.

A feature extraction process should extract all these information from the utterance. The

speech signal is non stationary and it continuously changes due to articulatory

movements. Hence, in speech processing the speech signal is broken down into smaller

frames of few milliseconds in duration. It is assumed that within this interval, the signal

will be stationary and the features are extracted from each frame. In the following

subsections, we present two widely used feature extraction techniques and discuss their

performance reported in literature.

2.2.1 Mel Frequency Cepstral Coefficients

Mel frequency Cepstral coefficient (MFCC) is one of the most common and widely used

methods to represent speech features. The mel-frequency cepstrum is a representation of

the short-term power spectrum of a sound, based on a linear cosine transform of a log

power spectrum on a nonlinear scale of frequency known as the mel scale. Mel scale is

6

based on human auditory perception. Psychophysical studies have shown that human ear

acts as filter i.e. it concentrates on only certain frequency components and hence human

perception of the frequency contents of sounds for speech signals does not follow a linear

scale [3]. So the mel scale calculates a subjective pitch for the actual frequency of each

tone and it is a linear frequency spacing below 1000 Hz and a logarithmic spacing above

1000 Hz. In MFCC the frequency bands are equally spaced on the mel scale and hence

the human auditory system's response is closely approximated.

 The calculation of MFCCs from a speech signal is done using a log-energy

method and the steps involved in it are given below.

1) The speech signal is converted into frequency domain by Fourier transform.

2) The powers of the spectrum obtained are wrapped into mel scale.

3) Total energy in each mel filter is calculated by adding the square-amplitudes of the

points.

4) Logarithm of the energies in each filter is calculated and discrete cosine

transformation is applied.

2.2.2 Linear Prediction Cepstral Coefficients

Linear predictive analysis was introduced in the early 1970s and it still remains as one of

the most prevailing speech analysis techniques. It is based on the assumption that the

variations of vocal tract with time can be approximated, with sufficient accuracy, by a

succession of stationary shapes and hence a signal is modeled by a linear combination of

its past values and a scaled present input [4] and represented as

1

() * () * () (2.1)
p

k
k

s n a s n k G u n


   

Here, ()s n is the present output, p is the prediction order, the values of ka are the model

parameters called the linear prediction coefficients (LPC), ()s n k are the past outputs,

7

G is the gain scaling factor and ()u n is the present input. The linear predictive

approximation, depending only on the past output is

1

ˆ() * () (2.2)
p

k
k

s n a s n k


  

The difference between ()s n and ˆ()s n is known as prediction error and is given by

1

ˆ() () () () * () (2.3)
p

k
k

e n s n s n s n a s n k


    

The mean square of the above error E will be a minimum when

0 1,2... (2.4)
i

E i p
a


  


The resulting p equations are solved in order to get the LPC. In [5], it is shown that these

equations can be solved by Yule-Walker autocorrelation, covariance or Burg’s method.

The Linear Prediction Cepstral Coefficients (LPCC) are approximated from LPC by using

a conversion formula. The LPCCs smoothen the spectral envelope and give a better

representation of vocal tract. The relationship between LPCC nc and LPC ka are given

by

1 1 (2.5)c a

1

1

(1) 1 (2.6)
n

n k n k n
k

kc a c a n p
n






    

1

1

(1) (2.7)
n

n k n k
k

kc a c n p
n






  

2.2.3 Evaluation of MFCC and LPCC

In the previous two sub-sections, two different methods used to extract features from

speech were discussed. In this section, we discuss the advantages and disadvantages of

those techniques and their performance. The MFCC features are extracted from fixed

8

interval frame using straightforward signal processing techniques. The log-energy method

used here is a direct measure of the energy in different frequency bands. Also, the central

frequencies and bandwidths of the mel-filters can be adjusted to match the critical band of

the ear. Because of these features the filter energies better capture the perceptually

important characteristics of the speech signal [6] [7]. Also it is stated in [7] that while

MFCC are not intrinsically robust against health and transmission variances, they lend

themselves to some simple compensation techniques to minimize these effects. LPCC is

computationally efficient compared to MFCC but LPCs are too dynamic and a small

quantization error could cause the entire filters to be unstable and inaccurate. Also, the

other drawback of linear predictive analysis is that, it is based on an all pole filter model,

which might leave out significant speech spectral characteristics for speech mixed with

noise [8].

 Davis and Mermelstein [6] tested the effect of five different feature extraction

techniques, including MFCC and LPCC, in word recognition. The main conclusion of the

experiments was that MFCC gives better performance compared to the other techniques

tried. The use of MFCC in many automatic speech recognition systems is established in a

survey conducted by Picone [9]. Out of the of 31 reported systems, 21 used some form of

cepstral coefficients as the basic signal features, with MFCC the most common type. In

speaker recognition problem, Reynolds [10] evaluated and compared several speech

representations including MFCC and LPCC and they both showed similar performance.

Another comparison of these two techniques in speaker recognition was reported in [11].

The experiments were carried out using clean speech database and telephone speech

database. The results show that MFCC performs better than LPCC in the case of clean

speech and their performances are comparable for the case of telephone speech.

 The above discussion shows that MFCC better captures the characteristics of

speech signal and is not in any risk of leaving significant portions of the speech as in

LPCC. Also, out of the many comparisons made, it shows similar performance as LPCC

and in some cases, gives better performance in both word and speaker recognition. These

points indicate that MFCC will be a good choice as speech features for our work. . The

detailed description of MFCC calculation is provided in the next chapter.

9

2.3 Speaker Recognition Systems

Speaker recognition refers to a class of problems where the identity of a speaker has to be

decided from his/her voice. This covers both speaker authentication problem and speaker

identification problem. In speaker authentication, the speaker claims to be of a certain

identity and the voice is used to verify the claim. In speaker identification problem, the

speaker does not claim any identity and just offers his/her voice and the unknown speaker

has to be identified. It can be said that speaker authentication, also called as speaker

verification, is a 1:1 match where one speaker's voice is matched to the claimed speaker's

voice model whereas speaker identification is a 1:N match where the voice is compared

against N models.

Feature Extraction
Module

Testing Module

Training Module
Front End

Speech

Identification/
Authentication

Decision

Speaker
Model

 Figure 2.1: Overview of a speaker recognition system

A speaker recognition system has three basic modules, namely - feature extraction

module, training module and testing module. The feature extraction module, as we saw in

the last section, extract features from the speech. The training module acts on the speech

features and is responsible for preparing a speaker's model that describes the

characteristics of that speaker. The testing module can be seen as the decision maker

where speaker identification or authentication is carried out using the speech features and

the models.

 Depending upon the conditions applied to the training and testing module, the

speaker recognition problem is further classified into two, text-independent speaker

recognition and text-dependent speaker recognition. In text-independent problem, there

10

are no constraints on the words which the speakers are allowed to use during testing. The

test utterance can have entirely different content from what was spoken during training. In

text-dependent problem, the test phrase is fixed and should be the same used during

training.

Feature Extraction
Module

Front End

Speech

Model 1

Model 2

Model n

Choose Model
With Maximum

Score

Speaker
Identity

Figure 2.2: Speaker identification process

DecisionFeature Extraction
Module

Front End

Speech Accept/
Reject

Model of the
Claimed
Identity Score

Threshold

Figure 2.3: Speaker authentication process

The performance measurement of a speaker recognition system depends on the

type of problem it deals with. In speaker identification problem, if only a speaker from a

set of speakers trained is subjected for testing, the best matching speaker’s model is

identified as the speaker and the system performance is reported as the number of correct

identifications divided by the total number of tests. If speakers outside the training

population are also subjected for speaker identification, the identification also depends on

a matching threshold. Similar threshold is also used in speaker verification problem to

accept or reject the speakers claim and the performance of the system is presented as

Equal Error Rate (EER) calculated using the number of false rejections and false

acceptance [5, 13].

11

2.3.1 Speaker Modeling Techniques

In this section, we discuss the widely used techniques in speaker modeling and evaluate

their performances. It has to be noted that the modeling scheme determines the testing

process as well. The dominant modeling techniques fall into the following two broad

categories.

1. Template Based Models: The techniques under these categories are based on the

assumption that a test template is an imperfect replica of the reference template of the

speaker and the task of recognition is based on the amount of distortion between these

two templates. This category includes Vector Quantization (VQ) and Dynamic Time

Warping (DTW) techniques.

2. Stochastic Models: Stochastic models express the speaker model in the form of

parameters, where the models are described as probability density functions (PDF). If ix

is a test vector, the score of ix is given by the likelihood (|)ip x model . This category

includes Gaussian Mixture Models (GMM) and Hidden Markov Models (HMM).

2.3.2 VQ Based Systems

VQ was originally used for data compression [14] and was introduced to speaker

recognition in the 1980s [15]. A reference template for the speaker, called as codebook, is

created using the training feature vectors. For recognizing the speaker, a quantization

distortion measure between the test utterance feature vectors and the reference template is

calculated using a distance measure such as Euclidean distance. A smaller value of the

quantization measure indicates higher likelihood for the test utterance originating from

the same speaker. The generation of codebook is the most important part of this

technique. Theoretically, it is possible to use all the training vectors directly as the

reference template. This increases the size of the codebook and also the calculations in

the testing process. Hence, a clustering technique like k-means or Linde, Buzo, Gray

(LBG) algorithm is normally used to reduce the number of vectors to the desired

codebook size.

12

 In [16], 5 different clustering techniques were experimented in VQ based text-

independent speaker identification. It has been shown that choice of the clustering

technique is not important. The results obtained for all the clustering techniques were

only marginally different. It shows that the easiest way for improving the identification

accuracy was to increase the codebook size high enough. The accuracy increased as the

codebook size increased from 2 to 64. VQ, though used mostly in text independent

speaker recognition, has also been applied for text-dependent speaker recognition as well

[17, 18]. The number of training vectors available will be less in this case and hence using

a smaller codebook size has been suggested in [17] and using all the vectors as template

without clustering is shown in [18].

2.3.3 DTW Based Systems

DTW [19, 20] is an algorithm that uses the principles of dynamic programming to

calculate an optimal warping path and overall distortion between two time series. It is the

most popular method to compensate for speaking-rate variability in template-based

systems [5] and is used in text-dependent speaker recognition. A time-ordered sequence

of feature vectors is kept as the reference template i.e. the speaker model. During testing,

the test utterance represented as a sequence of feature vectors is scored against the

reference templates. In general, even if the same speaker utters the same text, the duration

of the test utterance may not be same as the reference template. DTW algorithm

normalizes this timing difference by warping the time axis of the test feature vectors to

maximize the coincidence with the reference template and then calculates the time-

normalized distance, which is the minimized residual distance between the test and

reference templates. For a speaker model i, this distance is Score(i) and a smaller value

indicates test utterance originating from the same speaker.

 The simplest way to create a reference template is to consider one training

utterance as the reference template. Using multiple utterances and applying DTW for

training has been suggested in [21]. In that work, one utterance is designated as the initial

template, to which a second is time aligned by DTW. The average of the two patterns is

then taken to produce a new template, to which a third is time aligned. This process is

13

repeated until all the training utterances have been combined to a single template. For

enhancing robustness, multiple templates for speaker models have been suggested in [22].

For testing process, the usual DTW algorithm explained above is not used in this case as

it cannot handle multiple templates. A different approach of dynamic programming is

applied in that work for speaker recognition and it shows that the multiple templates

improve the speaker identification rate by nearly 6% over a single template system.

2.3.4 GMM Based Systems

GMM is a stochastic model and it can be considered as an extension of the VQ model, in

which the clusters are overlapping. That is, a feature vector does not belong to one

particular cluster depending on the nearest cluster rule as in VQ, but it has a nonzero

probability that it belongs to all the clusters. VQ represents a speaker model by a discrete

set of means whereas GMM, which is composed of finite mixture of multivariate

Gaussian components - also termed as mixtures, represents a speaker by a single mean,

weight and a covariance matrix for each component. Determination of these parameters is

accomplished by a maximum likelihood formulation which is normally carried out by the

iterative expectation-maximization (EM) algorithm [23, 24].

 GMM was introduced for speaker recognition by Reynolds [8] in the early 1990s.

The use of GMM is motivated by the interpretation that the Gaussian parameters

represent some general speaker dependent spectral shapes and the capability of Gaussian

mixtures to model arbitrary densities [25]. It is further stated that GMM provides a

probabilistic model of the underlying sounds of a person's voice and hence the parameters

in GMM reflects some general speaker-dependent vocal tract configurations.

 When a GMM is trained, the number of components is predetermined. Mono

Gaussian model uses a single Gaussian component and hence have a small number of

parameters and therefore computationally efficient, but its accuracy is less than that of

multiple-component GMM [26, 27]. The computations in multiple-component GMM can

be reduced by keeping the covariance matrix as diagonal. In [28], it has been mentioned

that the diagonal matrix outperforms the full covariance matrix. Reynolds and Rose [25]

14

state that the GMM components act together to model the overall probability density

function and hence full covariance matrices are not necessary even if the features are not

statistically independent.

 As a continuation of the GMM approach of speaker recognition, a new system

based on GMM and a Universal Background Model (UBM) has been introduced by

Reynolds [28]. In this system, a single UBM, which can be considered as a large GMM,

is trained to represent the speaker independent distribution of features. This is trained

using a collection of speech samples from a large number of speakers representative of

the population of speakers expected during recognition. The UBM is trained using the

normal EM method, but a speaker model is trained using a form of Bayesian Adaptation

(BA) which adapts the parameters of the background model to the feature distribution of

the new speaker. During testing, the match score depends on both the speaker model and

the UBM. The difference between the score obtained against both the models is

considered as the final likelihood score. It has been observed from [29] that this GMM-

UBM system provides superior performance over the GMM approach without a

background model.

 The robustness of the GMM based speaker recognition depends on the amount of

speech used for training and the length of the test speech. In [25], various combinations of

these two factors have been examined for a text-independent speaker identification

system. Training speech amount is varied as 30, 60 and 90 seconds and the test speech

length is varied as 1, 5 and 10 seconds. It shows that performance improves when the

amount of training and testing speech increases. 10 second test speech duration is shown

to give robust results whereas the shorter speech of 1 second length performed poorly

even against models trained using 90 seconds of speech. A similar work reported in [30]

also shows that a 60 seconds training speech and 10 seconds test speech gives good

performance. It is observed that when the amount of testing speech is less the system

performance is very low. That is, text-independent speaker recognition is not productive

for a shorter test utterance. The GMM approach to overcome this is explained in Section

2.3.6 where we discuss text-constrained speaker recognition.

15

 GMM does not explicitly use any information about sub-words - like phonemes or

syllables - from the speech. It pools together the feature vectors of different sub-words

while training and hence there is no sub-word alignment between the features of the test

utterance and the Gaussian components. Because of the above said non alignment of sub-

words in conventional GMM approach, the match score may be biased due to different

sub-words in training and test utterances. Few works have been carried out by using

GMM for sub-words to overcome this drawback. Text-independent speaker recognition

using separate GMM for different syllables has been examined in [31]. In that work, the

feature vectors corresponding to a particular syllable in different regions of the speech are

used to model that syllable. These set of models are combined at the scoring level using

linear logistic regression [32]. In [33], GMM based phoneme modeling and phoneme

segmentation of a speaker utterance before recognition is shown to strongly enhance the

speaker recognition results. In that work, the phonemes are segmented using a phoneme

recognizer and although many phonemes are modeled during training, only few

frequently occurring phonemes are considered for testing and still it manages to produce

good results. The work reported by Stapert and Mason [34, 35] uses acoustic segments as

sub-words and GMMs are trained using a collection of similar segments instead of using

the collection of all feature vectors as in normal GMM technique and hence the sequence

of feature vectors within the segments are unaltered. The similarity between different

segments is measured using the DTW technique. The GMM scoring during testing

process is modified to apply to segments rather than feature vectors. This work, carried

out to perform text-independent speaker verification with limited training data, preserves

the time sequence information of speech and thereby improves the recognition accuracy.

The effectiveness of sub-word modeling in GMM-based speaker recognition is worth

further investigation.

2.3.5 HMM Based Systems

The Markov process is one where a present event depends on the past events. In a first

order Markov process, the state at a particular time t depends only on the state at time t -

1. The output of the process (observations) is the set of states at each instant of time. In a

HMM, transition to a particular state only depends on the state at the previous time instant

16

but the states are not directly observable and the observations are probabilistic functions

of the state [36, 37]. An HMM is a doubly embedded stochastic process with an

underlying stochastic process that is hidden and can only be observed through another set

of processes that produce the sequence of observations [38]. The elements of an HMM

are the number of states, the number of distinct observation symbols, the state transition

probability distribution which denotes the probabilities of going from one state to another,

the probabilities of an observation given a particular state and the initial state distribution

which denotes the probability to start in some state.

 HMMs are either discrete or continuous. In discrete HMM, the training feature

vectors are converted into VQ codebook labels which are in turn used for training the

model. During configuration of a continuous HMM, the GMM probability measures

obtained from the feature vectors are used. An iterative algorithm known as the Baum-

Welch method is used for HMM model estimation [36, 38]. The match score against a

HMM model and a feature vector sequence is again calculated as a probability of the

vector sequence against the model. There are several variants of HMM depending upon

the structure of the state transition probability distribution. Ergodic or fully connected

HMM is one where every state can be reached from every other state of the model. To

maintain the time sequence of the speech, it is desirable to model the observations in a

successive manner. The HMM that fulfills this design is the left-to-right model in which

there is no transition from one state to any previous state, thus the model has a time order

structure [36, 38].

 Ergodic HMM has been applied for text independent speaker recognition [17, 39,

40] and in [40], it has been shown that continuous HMM performs better than discrete

one for speaker recognition. It also states that the information on transitions between

different states is ineffective for text-independent speaker recognition. Therefore, the

speaker identification rates using a continuous ergodic HMM are strongly correlated with

the total number of Gaussian mixtures in each state. This indicates that single state

continuous HMM, which is nothing but a GMM, can also be used for speaker

identification [39, 40, 41]. However, in text-dependent speaker recognition, the

information about the time order of the speech is vital and hence left-to-right HMM is

17

preferred [17, 42]. In that case, the length of transition from one state to another is

restricted typically to zero (remaining in the same state) and one.

 Sub-words based speaker recognition has been carried out using HMM and has

yielded good results [43]. The work reported in [44] deals with a similar approach for

speaker recognition for digit utterances. It examines two types of sub-words, phoneme

units and acoustic units without any linguistic knowledge. It shows that both give

comparable performance. Again, a left-to-right HMM is used to capture the time

sequence information. The HMM sub-word modeling is also examined in [45] along with

whole word modeling for speaker recognition and a hybrid method combining the two is

presented to improve the performance.

2.3.6 Text-Constrained Speaker Recognition Systems

There are studies that have looked at improving the performance of text-independent

speaker recognition by moving the task closer to the text-dependent case. This was

achieved by constraining the speech in the verification process to a limited set of words

and is referred as text-constrained speaker recognition in the literature. In the case of text-

dependent speaker recognition, the text of the speech can be a single word or a sentence

that remains the same during training and testing. In contrast, text-constrained speaker

recognition uses a predefined vocabulary of words in training and the test speech can be

any word or combination of words from that vocabulary.

 Reynolds et.al [46] proposed a text-constrained speaker verification system based

on GMM-UBM approach. From the training speech, the frequently occurring words are

separated using a word-recognizer and grouped into two sets. A separate GMM-UBM

model is trained for each of these groups. During verification, only speech from the same

group of words as was used to train the GMM-UBM models is used in the likelihood

score calculation. It is observed that this text-constrained system gives comparable

performance to the baseline GMM approach of text independent speaker verification. A

similar work is also reported in [47] where a HMM based approach is followed and

instead of word groups, each frequently occurring word is modeled and scoring is done

18

using a forced alignment of the selected words appearing in the test utterance. A HMM

based connected word speaker recognition reported in [42] is experimented on a 10 digit

vocabulary, where the test utterance is allowed to contain any combination of the 10

digits. Here too, each of the 10 words is modeled separately using HMM and the

verification is carried out comparing the test utterance with concatenated HMMs from a

designated speaker.

 In the above mentioned works on text-constrained speaker recognition, the HMM

based approaches use a model for each of the words in the vocabulary. This means the

performance of the system also depends upon the accuracy of the extraction of the words

from the training speech carried out using the speech recognizer. In the GMM based

approach, the words are pooled together and trained. It can be inferred that if only the

chosen words are used in training, the extraction process can be eliminated.

2.3.7 Evaluation of Speaker Modeling Techniques

In the previous sub-sections, we discussed about various types of the speaker recognition

problem, the widely used modeling techniques and how they are applied to solve it. For a

reliable speaker recognition system, the training scheme should result in robust

representation of the speaker’s voice. From an embedded system perspective, along with

this point, the computational complexity and the space required to store the models

should also be considered. Also, since the modeling technique determines the testing

process, a technique with low-complexity testing procedure will be desirable.

 The template based models, especially the VQ method, are computationally

simplest and hence suit better than then stochastic models for implementation in

embedded devices. However, comparison of performance of VQ based speaker

recognition system with stochastic model based systems shows that the later outperforms

the VQ method. In [25], GMM based speaker recognition is found to be superior to the

VQ based approach. In [40, 17], it is shown that a HMM based system outperforms a

system based on VQ. Another template based modeling technique, DTW shows better

performance than VQ technique in [17, 18]. DTW has the advantage of non-linearly

19

expanding or contracting the time axis to match between the test speech and reference

template [48, 19]. But the implementation increases the cost of storage as the reference

template is large compared to other models and it is observed that the idea of keeping

multiple templates is suggested for robustness. Also it has to be noted that DTW is widely

used only in text-dependent speaker recognition.

 Of the two stochastic modeling techniques discussed, GMM has fewer

computations as it can be seen as single-state HMM which does not require complex

computations to find the state transition probabilities. This means the storage space

required by GMM is also less. Reynolds, while introducing GMM for text independent

speaker identification states that the models are computationally inexpensive and are

easily implementable in real-time platform [8, 49]. Also, successful implementation of

GMM based speaker verification system as an application specific integrated circuit is

shown in [30, 50]. Unlike GMM, HMM captures the temporal information of speech.

However, in the text-independent speaker recognition evaluations carried out by the

National Institute of Standards and Technology (NIST), the best GMM based systems

have outperformed the HMM based systems [51]. This suggests that in the text-

independent case, no gain in performance is being achieved by the use of temporal

information captured in the HMM. GMM also shows the potential to carry out speaker

recognition using limited test speech by transforming the text-independent problem to a

text-constrained one. Sub-word based modeling and testing for speaker recognition has

worked successfully in general and using GMM has also shown good results in this area.

It is worth investigating if successful GMM based systems that operate on sub-words can

be used to further improve the performance of text-constrained speaker recognition

systems.

2.4 Word Recognition Systems

Speech recognition is the process of converting a speech signal to a set of words, by

means of an algorithm. Speech recognition systems are broadly classified into two

different types depending upon the type of speech utterance they can recognize [52]. They

are listed in the following.

20

Isolated Word Recognition: Isolated word recognition systems require the speaker to

utter only a single word in the recognition phase. That is, for one test, there is only one

word to be identified. Some isolated word recognition systems take a testing sentence

with sufficiently long pauses between words and carry out the recognition for all the

words in the sentence in isolation.

Continuous Speech Recognition: Continuous speech recognition systems allow users to

speak sentences in the natural fashion without any constraints and determine the content

of the speech.

 The continuous speech recognition is a complex problem where it has to deal with

determining the word boundaries and identifying the words from the large vocabulary in

the language spoken. It is clear that the isolated word recognition, which is the focus of

our project, is the simplest speech recognition problem where the only task is to identify a

word uttered.

2.4.1 Overview of Isolated Word Recognition System

The overall structure of an isolated word recognition system matches that of a speaker

recognition system shown in Figure 2.1. The feature extraction process is the front end for

both training and testing. A model for a word is obtained as the output of the training

process and the testing process takes one word as input and finds its match using the

registered word models. The main factors that affect the performance of an isolated word

recognition system are the vocabulary size and the speaker dependency.

Vocabulary Size: Isolated word recognition systems are generally classified as small or

large vocabulary depending on the number of words it can identify. Though there is no

standard size for these classifications, it has to be noted that when the vocabulary size is

large, the memory required for storing all the word models will become high and input

utterance should be matched with all the word models to choose the best, which will

increase the computations. These drawbacks have been overcome by using models for

sub-word units, like phonemes or syllables, instead of whole word modeling. The test

21

speech sub-words are compared with those models and the results combined with a word

dictionary gives out the output word. In this case, when the vocabulary needs to be

expanded, words can be added to the word dictionary and the phoneme template need not

be changed. Hence the memory required and the computations do not increase as much as

the whole word modeling case.

Speaker Dependency: A word recognition problem can also be classified as speaker

dependent or speaker independent. This classification depends upon the mode of training.

A speaker-dependent word recognition system uses only the utterances of a single speaker

to model the words. The system is then specifically used for recognizing the word uttered

by the same speaker. This speaker-dependent system can be extended from a single

speaker to a group of speakers as well. A speaker-independent recognizer is used to

recognize the words from speakers who may even be outside the set of speakers used for

training. In this type, the word models are generally prepared using utterances from large

number of speakers. The speakers should span a wide range including ranges in age

group, accent, gender and speaking rate [53].

 Like the speaker recognition modeling techniques described in section 2.3.1, the

techniques used in word recognition can also be classified as template based models and

stochastic models. The VQ and DTW that fall under template based models category are

the earliest techniques used in solving the word recognition problem. The HMM based

stochastic models are also widely used in solving the problem. In the following, we

discuss how these techniques are applied for word recognition based on full word

modeling and sub-word modeling.

2.4.2 Word Recognition Based on Whole Word Modeling

Initial approaches in word recognition followed the method of modeling the entire word

and thereby having a model or reference template for each word in the vocabulary. VQ is

one of the earliest techniques applied to isolated word recognition. In [54], it has been

applied in word recognition with a vocabulary of 20 words and a recognition accuracy of

99% is obtained for speaker-dependent case and 87% for speaker-independent case. The

22

reason for the poor performance in the second case is attributed to the omission of time

alignment in VQ modeling. DTW overcomes this problem and as mentioned earlier, it

compensates the speaking rate variability, which is an important factor in speaker

independent word recognition, by nonlinearly expanding or contracting the time axis to

match the test utterance and reference templates.

 The DTW based word recognition systems rely heavily on the robustness of the

reference templates. For preparation of better reference template for a word, a technique

called crosswords reference templates has been proposed in [55]. In that work, one

utterance is selected as initial template. Then multiple utterances of the word are

considered and these utterances are time aligned using DTW with the initial template. The

final template is taken as the average of all the time aligned utterances. This approach is

shown to give almost 14% increase in word recognition accuracy compared to the DTW

technique where just one utterance of a word is directly used as the reference template.

Another method to improve the robustness is to use multiple templates for each word. In

this case, the matching of a test utterance against a word is carried out by applying DTW

to all the reference templates of the word and selecting the best one or averaging the

match scores.

 Currently, the most successful and widely used approach for speech recognition is

HMM. In speech recognition, it is desirable to use a model which models the speech in a

successive manner because it resembles the property of speech. Of the various types of

HMM, the left to right HMM is the one that fulfills this technique and hence it is used in

the speech recognition field [52]. The whole word modeling based on HMM represents

each word with a certain number of states. Like using multiple reference templates for

DTW based word recognition discussed above, multiple HMM for each word has been

proposed in [56]. This approach has been applied to speaker-independent word

recognition and a reduction of about 50% in error rate is obtained in comparison with a

single model system.

23

2.4.3 Word Recognition Based on Sub-Word Modeling

A word recognition system that is based on sub-word modeling has two major

components, the reference templates or models for the sub-word units and the word

dictionary. Phonemes are mostly used as the sub-word units and the words in the

dictionary are represented as a sequence of phonemes. The number of phonemes used in

the systems of various languages is around 40 to 50. The incoming test utterance is

matched against all these phoneme models to find the sequence of phonemes. This

process forms the first step in word recognition and the output is matched against all the

words in the dictionary to identify the word. The usage of HMM for this type of word

recognition is widely found in the literature [57, 58, 59, 60].

 In a phoneme-based word recognition system using DTW, a different approach to

the above mentioned one is used [61]. In this system, phonemes are not determined at the

first step, but a similarity or distance values between each frame of phone reference

template are used to identify the word from the dictionary. The similarity values are

stored in a matrix and the accumulated similarity between each word in the vocabulary

and the test utterance is calculated using the values in the matrix.

2.4.3 Evaluation of Word Recognition Systems

In word recognition systems, the choice of whole word modeling or phoneme based

modeling depends on the size of the vocabulary. In phoneme based word recognition

systems, it has to be noted that since each language has around 50 phonemes, there will

be as many models in the system and also, there is a second step where the matching of

the phoneme sequence with the words in the dictionary has to be carried out. So it is clear

that for a word recognition system that has to deal with a vocabulary of size around 50,

whole word based modeling can achieve the output with similar computations and

memory space as that of phoneme based modeling. In whole word modeling, it has been

observed that using multiple templates or models for each word has improved the

performance of the system using one template or model per word. Though it increases the

24

computations and the storage space marginally, it should not be a major setback as all the

systems using whole word modeling deal only with a small set of words.

 In the previous section, we discussed about speaker recognition systems and found

that GMM is more robust and it has low computational complexity among the stochastic

models. However, in word recognition, it is observed that GMM based modeling is not

widely used. This is mainly because of the lack of temporal information in GMM models.

Incorporating time sequence information in GMM models can potentially make it suitable

for word recognition. This concept of adding time information has been applied to VQ

technique in the form of spectral-temporal codebooks for improving the word recognition

[62]. Also, as discussed in the previous section, for speaker identification, sub-word based

recognition has been carried out successfully using GMM. Therefore, if GMM is made

suitable for word recognition through the incorporation of temporal information, it can

lead to a successful low-complexity integrated speaker and word recognition system

based on a single methodology.

2.5 Alternative Modeling and Testing Schemes for GMM

In the previous two sections, we discussed various methodologies for speaker recognition

and word recognition and identified GMM as the potential methodology for our research

work. Though we observed earlier that the computational complexity involved in GMM

is not high, alternative approaches for further reducing the computations and thereby

speeding up the GMM based systems will be of beneficial. In this section, we present

such works reported in the literature.

2.5.1 Alternative Modeling Schemes

In GMM, the conventional method for training a model uses the Expectation

Maximization (EM) algorithm [63]. The EM algorithm involves many computationally

intensive operations like square root, exponentiation and division. Also, to guarantee

convergence to a local maximum, it usually takes 10 iterations. This means that the

number of intensive computations involved grows exponentially with the number of

25

training vectors and linearly with the number of iterations. Also, the EM algorithm acts

on an initial model, which has to be calculated using a different algorithm. This adds to

the cost of computations and hence, it consumes more time in the training [49, 64]. It is

clear that because of these drawbacks, the implementation of EM algorithm would be

expensive and difficult in resource-constrained devices. Hence, there is a strong need to

look into alternative schemes that can reduce the computational complexity present in

GMM training. In this section, we discuss such schemes reported in the literature.

 The vector quantization clustering techniques like k-means algorithm and Linde,

Buzo, Gray (LBG) algorithm have been tried to replace the EM method in [65]. The k-

means algorithm [66] is a clustering algorithm which represents each cluster by the mean

of the cluster. Assuming a set of vectors 1 2{ , ,..., }TX x x x is to be divided into M

clusters represented by their mean vectors 1 2{ , ,..., }M   , the objective of the k-means

algorithm is to minimize the total distortion given by

1 1

(2.8)
M T

t i
i t

total distortion x 
 

 

The k-means algorithm follows an iterative approach to meet the objective. In every

iteration, it redistributes the vectors in order to minimize the distortion. LBG algorithm

[67] shares many of the characteristics of the k-means algorithm. Like k-means, it too was

developed originally for vector quantization purpose and aims to minimize the total

distortion. However, unlike k-Means, LBG does not estimate the means of all M clusters

in each iteration. Rather, it starts with a single cluster and arrives at M clusters by

splitting it. With each successive iteration, the number of clusters is doubled. Thus the

final number of clusters M could only be a power of 2.

 The performance of k-means and LBG algorithm for training GMM is examined

and reported in [65]. The two algorithms were used in a text-independent speaker

recognition experiment by training a GMM with 32 components from 6000 vectors of 20

dimensions each. The experiments were carried out using two speech databases, KING

[68] and TIMIT [69] and it has been reported that the complexity of EM algorithm is

26

nearly twice the complexity of k-means and LBG algorithms. Hence the computational

complexity involved in training GMM is reduced by half using k-means and LBG

algorithm. But performance wise it has been shown that accuracy of EM algorithm is

slightly more than both k-means and LBG algorithms. For the KING database, EER of

1.4% is obtained for EM method where as for k-means and LBG method it is 2.0%. For

TIMIT database, the EER obtained is 0.39%, 0.47% and 0.5% for EM, k-means and LBG

algorithms respectively.

 An alternative training scheme based on Bayes Adaptation (BA) technique is

proposed for GMM based speaker verification system in [30]. BA is a non-iterative

method and has two major steps in it namely, the expectation step and the adaptations

step. The expectation step is similar to the EM algorithm steps and the adaptation step

determines the extent to which a particular component or mixture can be altered. BA has

been used in [28] to adapt speaker models from a universal speaker independent model.

But in [30], it has been proposed to employ BA in a different manner. BA is used on the

initial model estimated by K-means algorithm to get the final model. The initial model

estimated by K-means could be thought of as speaker-dependent prior parameters. So, in

other words, the BA has been used to estimate the final model from the speaker-

dependent prior parameters rather than the speaker-independent parameters. The

comparison of this technique with EM, for text-independent speaker verification on

KING and TIMIT database, carried out in [30] shows that the time taken for training a

speaker model, on 1 minute speech, using KING Database for EM algorithm is 111

seconds, while the time taken for BA training is 12.3 seconds. On TIMIT database, for 24

seconds speech, the training time for EM algorithm and BA was 44.1 and 4.5 seconds

respectively. These results indicate that BA scheme is nearly 10 times faster than the EM

algorithm scheme. The computational complexity of BA is shown to be nearly equal to

the computational complexity of one iteration of the EM algorithm. Also, it has been

reported that For KING database, EER of 1.4% is obtained for EM method where as for

BA method it is 1.35%. For TIMIT database, the EER obtained is 0.39% and 0.41% for

EM and BA methods respectively.

27

 From the above discussions, we can observe that the performance of BA

technique better the two vector quantization techniques and is comparable to that of EM

algorithm. The main advantage identified is that BA technique reduces the computational

complexity by a factor of 10 and if a system prefers low computations at the cost of

negligible reduction in accuracy, then it would be an ideal choice. In our work, this

method will be of great benefit in keeping the computational complexity low as both

word and speaker models should be trained.

2.5.2 Alternative Testing Schemes

In GMM based systems, the computations in the testing process depends on the number

of mixtures present in the model and the length of the test speech i.e. the number of

feature vectors used for testing. Works have been reported about reducing the

computations to speed up the output of the testing process. The work carried out in [70]

proposed a method based on Gaussian component selection to reduce the computational

effort involved in the speaker verification process. The method speeds up the scoring

process by considering only those GMM components that are likely to obtain good

scores. A smaller hash model is created to index the likely components in the base model.

It shows that scoring only 128 out of 1024 mixture components of a GMM model leads to

no noticeable performance degradation. This reduces the processing required by a factor

of 8. A further reduction down to 32 components only leads to minor degradation of

performance. McLaughlin et al. [71] have studied two computational speed-up methods

for the GMM/UBM based speaker verification system, decreasing the UBM size and

decimating the sequence of test vectors. It has been noticed that the large UBM could be

reduced by a factor of 4 without degrading the performance. Another study in that work

shows that the reduction of the feature vectors by a factor of 20 during testing does lead

to any loss in the speaker verification accuracy.

 Apart from the length of feature vectors and the number of mixtures in the model,

the number of models against which the scoring has to be done for identification also

increases the computational time required for the result. A few works have dealt with

speeding up GMM based speaker identification carried out against a large set of speakers.

28

In [72, 73], a hierarchal structure of all the speaker's models is proposed by repeating the

merger of the closest GMMs until the number of GMM becomes 1. This method has been

shown to speed up the speaker identification for a set of 40 speakers by a factor of 3 with

almost similar identification accuracy. Pellom and Hansen [74] presented a

computationally-efficient GMM based speaker identification system by applying beam-

search pruning and reordering the feature vector sequence. The sequence vectors are

reordered so that the non adjacent feature vectors are scored first. This is based on the

concept that for speaker recognition, time order of the feature vectors is not important and

the adjacent vectors are correlated. After the first scoring, a beam search technique is used

to prune out the worst scoring speaker models. This is followed by further reordering of

the feature vectors. These two processes are repeated as long as there are speaker models

or feature vectors left, and then the best scoring model is selected as the identified

speaker. This work reports a speed-up factor of 6:1 relative to speaker identification from

a set of 138 speakers using the baseline beam search.

 The above discussion covered a few points on speeding up the testing process. It

is observed that if the number of mixtures in a model is large, it is not necessary to score

against all the mixtures but only against a selected set of mixtures likely to yield good

scores. However, when a small number of mixtures are used, leaving out any mixture

could result in loss of vital data and reduce the performance. Similarly reducing the size

of the feature vectors has been carried out only against a large UBM and not against any

model with few components. For identification of speaker, it has been observed that when

the number of registered speakers is high, the normal approach of scoring against all the

models is time consuming and following alternative methods is productive.

2.6 Integrated Speaker and Word Recognition Systems

In this section, we discuss the integrated speaker and word recognition systems reported

in the literature. Though many works involving both speaker recognition and word

recognition has been reported, only a few works have been aimed particularly at

identifying both the speaker and the word. One such work has been carried out by

Reynolds and Heck [75]. They proposed a system by combining a text-independent

29

speaker recognition based on GMM and a speech recognizer based on DTW. The

description of the system is presented below in Figure 2.4.

 Figure 2.4: Integrated speaker and isolated word recognition system proposed in [75]

 The speaker recognition system is the first process where the speaker is identified

using the utterance of an input word. The speaker identity is then used to choose the

reference word models for the speech recognizer. The experiment is carried out for a

vocabulary of 10 words which means for each speaker, there will be 10 speaker

dependent word models. The word recognition setup is based on the established rule that

speaker-dependent recognition yields superior performance. It has been suggested that for

speakers outside the registered set of speakers, the speaker identification part can be

considered as a 'speaker quantizer' which associates the unknown speaker with an

acoustically similar speaker for better word recognition.

 Like the concept of speaker quantizer mention above, few integrated systems use

speech quantizer to improve the performance of speaker recognition. In [76], robust text-

independent speaker recognition is achieved by using a DTW based word recognizer as

front end. DTW word spotting finds the words in the test speech that resemble the words

in the training set and only those words are used for testing. In [77], automatic speech

recognition provides a phonetic segmentation of the test utterance and thereby facilitating

Speech
Data

Feature
Extraction

Word
Recognizer

Speaker
ID

Speaker
Models

Speaker 1
Word Models

Speaker N
Word Models

Word

30

strong phoneme based speaker recognition. The text-constrained systems we discussed in

Section 2.3.6 [46, 47] also combines a speech recognizer to find the frequently occurring

words to use it for text constrained speaker recognition.

 Study of various integrated systems shows that none uses an efficient single

methodology that independently recognizes the speaker and the word. However, this is by

no means infeasible because techniques such as DTW and HMM have been reported to be

successful in solving both word and speaker recognition. However, we have identified

that from an embedded system perspective, GMM would be an ideal choice. New

techniques have to be devised to make GMM suitable for isolated word recognition. It is

observed that in integrated systems, using one recognizer as front end can improve the

performance of the other. A word detector front end can make the second step as text-

dependent speaker recognition and a speaker recognizer front end can facilitate speaker-

dependent word recognition. This point could also be utilized to improve the performance

of the integrated system based on GMM.

2.7 Summary

In this section, we summarize the major findings from the literature survey and on their

basis, outline some thoughts related to our work. In the first part of this chapter, we

examined the feature extraction techniques. We analyzed two widely used techniques for

extracting speech features, MFCC and LPCC. MFCC, based on human auditory

perception, has been shown to capture the speech characteristics better and it has been

found that in both word and speaker recognition, it outperforms LPCC in many

experiments. Hence, we have decided to use MFCC as speech features for our work.

 We presented a comprehensive report of various methodologies used in speaker

recognition. It is observed that GMM is the state-of-the-art method for speaker

recognition in the text-independent scenario. Various researches in that scenario show

that 5 to 10 seconds of speech is needed for successful testing of the speaker, whereas in

our work, only one utterance of a word, typically of one second duration or less, will be

available. This difficulty can potentially be overcome by moving the problem from text-

31

independent domain to text-constrained domain. We discussed how a GMM based

speaker recognition system that confines the training and testing processes to some

frequently occurring words from a continuous speech input, has resulted in good

recognition performance. For our work, it will be worth investigating the performance of

the text-constrained approach, for even shorter test utterances.

 Compared to other modeling techniques, GMM is less complex in terms of both

computation and storage size. Techniques that further reduce the computational

complexity in GMM have also been reported. We discussed how BA based GMM

modeling can simplify the computations in the conventional approach. In spite of these

advantages, the review of isolated word recognition systems shows that GMM has not

been widely used in word modeling. It is found that word recognition systems depend on

modeling techniques that capture the temporal information of speech and GMM falls

short in that aspect.

 Sub-word based word modeling methods have been reported in literature and they

are preferred over whole word modeling techniques, for large vocabulary word

recognition. It is observed that sub-word modeling and testing based on GMM has been

successfully used in the field of speaker recognition. Hence, for word recognition, the

effect of using GMM in the context of sub-words is worth investigating and a successful

outcome can lead to a single modeling scheme for an integrated system of speaker and

word recognition. We also discussed various systems proposed to integrate speaker and

speech recognition tasks. Most of the systems use two different methodologies for the two

tasks which increases the computational complexity. From these systems, it is observed

that one task can be considered as a front end and its output can be used to improve the

performance of the other task.

 In the following chapters, we propose new techniques for GMM based speaker

and word recognition and present the results. We foresee that exhaustive evaluations will

be required in our work and hence a rapidly configurable evaluation platform is

developed to speed up the research. In the next chapter, we provide the description of this

evaluation platform and explain its capacity to assist any research work related to this

field.

32

Chapter 3

Platform for Evaluating GMM Based
Experiments

3.1 Introduction

In the last chapter, after a comprehensive study of various techniques involved in speaker

and word recognition, we concluded that GMM with MFCC as features of the speech will

be the ideal scheme that best suits our objective of developing a low computational

complexity algorithm for speaker and word recognition. A GMM-based recognition

system, as described in detail later in this chapter, has several process parameters such as

the number of mixtures and the dimension of the feature vectors whose values determine

the robustness of the model. The best system performance can be established only after

analyzing various combinations of values of these parameters. Our research requires these

exhaustive evaluations in addition to trying modifications of conventional GMM

approach for modeling a word or speaker model.

 Although software toolkits exist for the standard tasks involved in speech signal

processing and statistical modeling, they typically require user intervention between the

steps and do not lend well for fully automated execution of the experiments, which is

necessary while working with a large set of data. Besides, our research requires the ability

to completely customize and modify the processes involved. While off-the-shelf toolkits

are adequate for implementing standard computational blocks, it is often hard to carry out

extensive modifications to them. As such, it is advantageous to custom-build an

evaluation platform tailored towards meeting the needs of this project. Hence in order to

expedite our research work, we intend to build such an evaluation platform that allows the

user to effortlessly and rapidly select a methodology, specify the values of various

33

parameters and perform an evaluation quickly on one among many speech databases. It is

envisaged that this evaluation platform will serve as a useful tool not only for our project

but also for future research on speaker and word recognition. In this chapter, we present

the detailed description of the architecture of the evaluation platform and discuss how it

can be easily configured to run an experiment.

 The rest of the chapter is organized as follows. In Section 3.2, we describe the

steps involved in extracting the MFCC as feature vectors. In Section 3.3, we discuss the

GMM concept. As mentioned in the last chapter, we have chosen the k-means algorithm

for model initialization and a variant of the Bayes Adaptation [30] method for modeling.

These methods are explained in this section. In Section 3.4, we explain the evaluation

platform in detail and discuss the procedure for using it to run an experiment. Section 3.5

concludes this chapter.

3.2 Mel Frequency Cepstral Coefficients (MFCC)

Human auditory system does not perceive frequency of a tone in a linear manner [52].

The peripheral auditory system behaves as if it contains a bank of band pass filters with

overlapping pass-bands. The widths of these conceptual filters are known as critical

bands. It is due to these filters, human response to frequency is non-linear. Mel is a unit of

measure of this perceived frequency or pitch of a tone. Mel scale is approximately linear

below 1000Hz. However, it becomes logarithmic above 1000Hz. The mel value could be

approximated from the frequency in Hz by the following equation

ln 1 *1000
700 (3.1)

1000ln 1
700

Hz

mel

F

F

  
 
  
 

In Equation 3.1, melF is the frequency in mel scale and HzF is the frequency in Hz scale.

The mel effect is simulated by overlapping triangular band pass filters. These filters are

placed linearly in the range of 0 to 1000Hz and logarithmically afterwards. To calculate

34

MFCC using these mel filters, a log total-energy method is used where all the points in

the speech spectrum are considered and the total energy obtained in each of the filter is

used. The steps involved in MFCC calculation are summarized below and illustrated in

Figure 3.1.

Hamming Window: In signal processing, a window function is one that is zero-valued

outside of some chosen interval. When another function or a signal (data) is multiplied by

a window function, the product is also zero-valued outside the interval. Hamming

window is one such window function and is suggested as the best one for speaker

recognition in [5]. Each window corresponds to one speech frame. The speech values are

multiplied with the Hamming window to smoothen the speech signal by minimizing the

signal discontinuity. The Hamming window in discrete time sequence is used as follows

[78]

2() 0.54 0.46cos() (3.2)
1
nw n

N


 


Fourier Transformation: For faster computation, Fast Fourier Transformation (FFT) is

used. If the number of points in the speech frame is not a power of 2, then zero padding is

used.

Mel-filter Bank Application: The triangular mel filters are applied to the speech frame

and the total energy in each filter is calculated by adding the square-amplitudes of the

points.

Log-Discrete Cosine Transform (DCT): After calculating the total energy in each of the

mel filters, log and inverse Fourier transformation are applied to the total energy in each

filter to obtain the mel frequency cepstral coefficients. Since energy is an even function,

the inverse Fourier transformation has only the cosine terms. Thus Discrete Cosine

Transformation (DCT) can be used in the place of inverse Fourier transformation.

35

S
pe

ec
h

S
ig

na
l

Fast Fourier
Transformation

Mel Filter Bank
Energy Calculation

Discrete Cosine
Transformation

Mel Frequency Cepstral
Coefficients

Logarithm

Hamming
 Window

Figure 3.1: Mel Frequency Cepstral Coefficients Calculation

 In this section, we have described the concept of MFCC and the steps involved in

extracting it from speech data. The distribution of these MFCC vectors in the form of a

GMM is used to model a word or speaker. The principle of GMM and the salient issues

involved in it are discussed in the next section. Also, the technique followed in our work

to train the GMM is explained in detail.

3.3 Gaussian Mixture Modeling (GMM)

Mixture distribution is a term in statistics, used to express a distribution that can be

represented as a superposition of component distributions [63] and the component can be

any probability density function (PDF). The Gaussian distributions are widely used as

components due to the fact that, virtually any real world distribution can be represented as

a mixture of Gaussian distributions [79]. The PDF of one-dimensional Gaussian

distribution, also known as one-dimensional Normal distribution, is given by

2

2
()

21() (3.3)
2

x

b x e










36

where,  is the mean and 2 is the variance of the distribution. If we extend the above

equation to D-dimension, then the PDF of D-dimensional Gaussian distribution [80] will

be given by

1
/2 1/2

1 1() exp{ () ()} (3.4)
(2) | | 2

T
Db x x x 


    



where,  is the mean vector (D-dimensional quantity) and  is the covariance (D x D)

matrix. Mixture of Gaussians is a linear combination of Gaussians (Normal

Distributions), either one-dimensional or multi-dimensional. So a mixture of Gaussians

[63] with M mixture components (i.e. M Normal Distributions), with D dimensions each,

can be represented as

1
/2 1/2

1

1 1() , () exp{ () ()} (3.5)
(2) | | 2

M
T

i i i i i iD
i i

wb x where b x x x 






    


The term iw in the above equation is known as the weight and
1

1
M

i
i
w



 . As with the

normal distribution, mixture of Gaussians can also be completely represented by the

weights, mean vectors and covariance matrices of the mixture components. A model,

which models a process as a mixture of Gaussians, is called a Gaussian Mixture Model

(GMM). We denote a GMM as  and it can be represented as

{ , , } 1,2,.., (3.6)i i iw i M   

In the following subsections, we describe the methods followed in our work to solve two

important problems associated with GMM before it can be used to represent a speaker or

word. The two problems are listed below.

1) Given the observation vectors 1 2{ , ,..., }Tx x x , estimation of the model

{ , , }, 1i i iw i M     , which best explains the observation vectors. This

37

can be seen as the training problem. That is, given the training sequences, create a

model for the word or speaker.

2) Given the test vectors 1 2{ , ,..., }nx x x and the model { , , }, 1i i iw i M     ,

calculation of the score of the test vectors with the model. This problem can be

seen as the recognition problem i.e. with some trained models, each model

representing a word or speaker, which model is the most likely one if an

observation is given?

3.3.1 Estimation of Model Parameters

For estimating the model parameters of a GMM, out of the many methods available,

maximum likelihood estimation is the most practical and widely used method [6].

Suppose, 1 2{ , ,..., }Tx x x is the set of observation vectors and  is the model. Then the

likelihood L of the observation set given the models is

1

(|) (3.7)
T

i
i

L p x 




The goal of maximum likelihood estimation is to maximize L by adjusting the

parameters of . This is accomplished by Expectation Maximization (EM) Algorithm.

EM algorithm is an iterative procedure, which, given an initial model, provides better

approximations with each iteration. However, in our project we have decided to use a

method proposed in [30] which is based on the Bayes Adaptation (BA) technique [28]. As

mentioned in the literature survey, the high speed and low computational complexity of

this technique are the reasons for us to use this method. The first step in BA is identical to

the EM algorithm. In addition, in the second step, BA combines the statistics from a

universal background model with the new statistics obtained from the first step to

estimate the final parameters. In our training method, BA is used on the initial model

instead of a universal background model to obtain the final model. Before we explain the

BA based training scheme in detail, we describe the k-means algorithm used to estimate

the initial model.

38

Initial Model Estimation: In [25], three different model initialization techniques,

including the k-means algorithm, have been evaluated to find its effect on the

performance of GMM and it has been stated that the initialization techniques have no

effect on the performance of GMM. Hence, without further examination of the

techniques, we have decided to use the k-means algorithm to initialize the model in our

work. K-means algorithm [66], which follows an iterative approach, was originally

designed for vector quantization codebook generation. It is a clustering algorithm which

represents each cluster by the mean of the cluster. If a set of vectors 1 2{ , ,..., }TX x x x is

to be divided into M clusters represented by their mean vectors 1 2{ , ,..., }M   , the

objective of the k-means algorithm is to minimize the total distortion given by

1 1

(3.8)
M T

t i
i t

total distortion x 
 

 

This algorithm is adapted to initialize the GMM with M mixture components and the

steps involved in it are described below and illustrated in Figure 3.2.

1) To initialize, M random vector from the training set are selected as the means of

M mixtures.

2) Each vector tx , 1 t T  , is assigned to mixture j , iff, t j t kx x    ,

k j  , 1 ,j k M  .

3) The new mean of a mixture is obtained by calculating the mean of all the vectors

assigned to that particular mixture.

4) The weights are determined by calculating the proportion of the vectors assigned

to the mixture and the covariance matrix is the covariance matrix of the assigned

vectors.

Steps 2 and 3 are repeated till the mixtures are stable, i.e., the distortion is minimized and

is less than a threshold. When the mixtures are stable, the weight and covariance matrix

can be found out as described in Step 4. It is to be noted that in each of the iterations, k-

means estimates the means of all the M mixtures. In [50] 10 iterations of k-means

39

algorithm were recommended for the distortion to get minimized. In our work also we

follow 10 iterations of k-means algorithm to initialize the model.

Start

Select M feature vectors from
the training set

Initialize the mean of M
mixtures by assigning each

selected vector to one mixture

Assign each training vector to a
mixture by nearest neighbor

rule

Update mean of each mixture

Calculate overall distortion
D(m)

D(m) <
Threshold

Stop

Yes

No

 Figure 3.2: The k-means algorithm

Final Model Estimation: After initial model estimation is done as explained above, let

us suppose, we have an M mixture component initial model 0 0 0 0{ , , }i i iw   and a set of

training vectors 1 2{ , ,..., }Tx x x . The probabilistic count for each mixture component is

defined as

40

1

()(| ,) , 1 1 (3.9)
()

i i t
t M

k k t
k

wb xp i x i M and t T
w b x





    



where, ()i tb x is the PDF of thi component and is given by Equation 3.4. (| ,)tp i x  can

be thought of as the ratio of the probability of an observation vector belonging to thi

component and sum of probability of that observation vector belonging to each

component. The sufficient statistics for the weights, mean and covariance matrices are

calculated as given in the Equations below.

1

(|) (3.10)
T

i t
t

n p i x




1

1() (|) (3.11)
T

i t t
ti

E x p i x x
n 

 

2 2

1

1() (|) (3.12)
T

i t t
ti

E x p i x x
n 

 

In the above equations, ()iE x denotes, summation of the conditional expectations of

training vectors tx for given component i . Similarly, 2()iE x denotes summation of the

conditional expectations of square of the training vectors for given component i .

Equations 3.9 to 3.12 form the first step of our training scheme which is identical to the

EM Algorithm. Based on the values obtained using the above Equations and the initial

model, the final model parameters are estimated in the second step as given below.

0[/ (1)] (3.13)i i i i iw n T w    

0() (1) (3.14)i i i i iE x     

2 0 02 2() (1)() (3.15)i i i i i i iE x         

41

Here,  is a constant such that the summation of all weights is equal to 1. i is a constant

known as the adaptation coefficient and is given by

1 (3.16)i
i

i

n i M
n r

   


In the above equation, r is a constant known as the relevance factor. It plays an important

role in the adaptation process, by determining the adaptation coefficient. The adaptation

coefficient, in turn, determines the extent to which a particular component is altered. A

dynamic calculation of the relevance factor r is given below.

min max
1 (3.17)

2
i ii i
n n

r i M


  

 The training scheme can be summarized as follows. An initial model is calculated

using the iterative k-means algorithm. The BA technique, which has two steps namely

expectation step and adaptations step, is used to estimate the final model parameters by

adapting the initial model. In the following, we describe the second problem in GMM i.e.

how to calculate the match score of a set of test vectors against a model (Data-Model Fit).

3.3.2 Estimation of Data-Model Fit

The match score of a test utterance against a word or speaker model is given by a

likelihood score. This can be seen as the likelihood that the test utterance is the same as

the modeled word or produced by the modeled speaker. If 1 2{ , ,..., }nx x x is the test

utterance and  is the M mixture component model, then the likelihood score is given by

11

() (3.18)
n M

i i t
it

Likelihood wb x


 
   



In order to avoid any singularity in computation due to low values, usually log-likelihood

score is used [25]. To account for unequal length test utterances, average log-likelihood

score is preferable. The average log-likelihood score is given by

42

1 1

1 log () (3.19)
n M

i i t
t i

score wb x
n  

 
   
 

 In this section we have explained the concept of GMM and the technique we

follow to estimate the model parameters. The method used to find the data-model fit is

also discussed. As mentioned earlier, to carry out GMM based experiments for our work,

an evaluation platform has been developed. In the next section, we elaborate the

architecture of the evaluation platform and discuss how it can be used to carry out

experiments based on MFCC and GMM.

3.4 Evaluation Platform Architecture

In this section, we describe the architecture of the evaluation platform developed to

facilitate and expedite the GMM and MFCC based speaker and word recognition

experiments in our research work. We intend to design the architecture in a manner that

apart from supporting our work, it also provides room for new techniques so that any

different method of speaker or word recognition experiments can be carried out and thus

making it an efficient tool for further research in this field. In order to achieve this, the

evaluation platform should meet the following basic requirements.

 It should be modular and extensible and should allow the addition of new

processing blocks in future.

 All the process parameters should be effortlessly modifiable by the user.

 It should facilitate the rapid creation of custom speaker recognition or word

recognition configurations by selectively including and excluding blocks in the

process flow.

 It should facilitate working with multiple speech databases including non-standard

user databases.

The choice of the programming language for developing this platform should be

compatible with the above requirements. We have used the C++ language that supports

43

an object-oriented and modular approach. The software development has been carried out

using the Borland C++ 5.0 Integrated Development Environment (IDE). The collection of

objects and functions in our application bear resemblance to a list which allows addition

of new functions and objects of new structures at any point of time without affecting the

existing modules of the application. This collection serves as the processing blocks for the

experiments and allows the user to rapidly configure the candidate methodology by

selecting only the needed functions. The functions and objects involved in various units

of the evaluation platform are described below.

3.4.1 System Overview

The current implementation of the evaluation platform consists of the following three

high-level units.

 Speech Extraction Unit

 MFCC Feature Extraction Unit

 GMM Unit

These units are in turn broken into sub units, each corresponding to a specific function.

This provides more flexibility in custom configuration of the experiments. There are

various parameters whose values determine the function of these units. A speaker or word

recognition experiment can be carried out by specifying the values of these parameters

and using only the needed functions to configure the experiment process.

3.4.2 Speech Extraction Unit

The speech extraction unit deals with reading the speech, segmenting the speech into

frames and determining whether the frames correspond to speech or silence. The path of

execution in this unit is shown in Figure 3.3. The function that calculates the amplitude

values of a frame operates on the output of the previous function that segments the speech

into frames. However, the function which characterizes a frame as speech or silence is

coded to operate on an object that contains the frame's amplitude values. This is because

44

that there are several methods to classify a frame as speech or silence and hence a new

speech frame classification method can be added into the unit as a function without

affecting the existing flow of the unit.

Function
Read speech file from

database

Function
Segment the speech file into

frames

Function
Collect the amplitude values of

a frame

Function
Determine whether speech or

silence

Object
Single Frame

Function
Capture speech from

mic

 Figure 3.3: Speech extraction unit

Working with Various Speech Databases: Existing standard speech databases differ in

the organization of the speech and speaker data in it. Also, the databases use different

audio formats to store the speech data and have their own naming convention to represent

the speakers, recording sessions and the speech files. Hence, in order to make the

evaluation platform compatible for all speech databases, a uniform structure, where each

word or speaker is denoted by a unique number, has been defined. Speech databases need

to be reorganized to conform to this structure. Since speech processing is better done with

uncompressed speech data, all the speech files are converted into PCM wav files.

 A function in the speech extraction unit, reads the data from a speech file,

irrespective of its recording parameters like sampling frequency, number of bits per

45

sample etc. The other functions in this unit segment the speech data into frames and store

the amplitude values of each frame into an object.

Live Sound Capture: We have also implemented a function as part of this speech

extraction unit to record speech, through a microphone connected to the computer

running the evaluation platform, which can be used for both training and testing process

in the experiments. This function can also be deployed to create a speech database by

recording speech from various speakers as an offline step. It can record sound in mono

channel PCM wav format based on the sampling rate and bits per sample values specified

by the user. This function enables the application to analyze the performance of any

speaker or word recognition methodology in real-life conditions. The testing process in

the experiments can be carried out by considering the captured speech as input data and

producing the result instantly after the speech recording is completed.

3.4.3 Feature Extraction Unit

The overview of the feature extraction unit is shown in Figure 3.4. Like the speech

extraction unit, this unit is also common for both training and testing. The feature

extraction unit calculates the MFCC feature vectors for a single frame. Among the sub-

units in it, the Hamming window multiplication, Fourier transform and mel filter bank

energy calculation sub-units take a single frame as input. It is known that after mel filter

bank multiplication the output will be a vector depending on the size of the filter. Hence

the remaining sub units - log energy calculation and discrete cosine transformation - deal

only with single vector objects. Currently, we use a mel filter bank size of 27 and so the

vector objects will be of size 27.

 The function that multiplies the amplitudes of the speech frame with the Hamming

window, also dynamically calculates the Hamming window values depending on the size

of the frame. For mel filter bank and discrete cosine transform, we use matrices having

those values stored as constants. Radix-2 decimation algorithm is used in the function that

calculates the Fourier transform. Depending on the size of the input speech frame, it pads

zeros at the end of the frame so that the input size becomes a power of 2.

46

Function
Hamming Window

Function
Fast Fourier Transform

Function
Mel Filter Bank Energy

Calculation

Function
Log Energy Calculation

Object
Single Frame

Function
Discrete CosineTransformation

Object
Single Vector

MFCC Vector

Mel Energy

Log Energy

 Figure 3.4: Feature extraction unit

3.4.4 GMM Unit

The three functions in the GMM unit are the initial model estimation, final model

estimation and data-model fit (score calculation). The first two are used in training a

model for a given collection of feature vectors and the last function is used in the testing

process to find its match score against a model. The initial and final model estimation

functions implemented are based on the techniques described in Section 3.3.1. The object

Vector Collection shown in Figure 3.5 contains all the feature vectors to be modeled or

scored. This object is in turn a collection of objects of type Single Vector shown in the

feature extraction unit.

47

Function
Initial Model Estimation

Function
Final Model Estimation

Function
Data Model Fit

Object
Vector Collection

Object
Model

Initial Model

Final
Model

Figure 3.5: GMM unit

3.4.5 Configuration of the Experiment Methodology

In the previous three sub-sections, we described the various functions present in the three

main units of the evaluation platform. As mentioned earlier, the functions not only

depend on the input and output objects but also on the values of their process parameters.

To run an experiment, the user should select the needed functions that form the

methodology of the experiment and assign the values of different process parameters.

This process is described as the Configuration Area in the Figure 3.6 that shows the

overall architecture of the platform. We have developed the evaluation platform in a

manner that the user can select the necessary functions and assign values to the

parameters easily through a Graphical User Interface (GUI).

 The selection of functions forms the basis of the experiment to be run. The

functions to be included can be easily specified through the GUI. In the present form of

the evaluation platform, this process can be classified into two broad categories of

selections, namely, training and testing. All the three main units are involved in both

training and testing and certain functions within these units are indispensable and hence

the choice of selecting these functions is not provided in the platform. However, the user

can consider the other functions as optional and can carry out an experiment without

48

including them. Also, there can be different functions corresponding to the same task and

hence the user should make the choice of the function to be used.

Configuration Area:
Experiments Configured

and Run
GMM Unit

Model
Database

Feature
Extraction Unit

Mel Filter
Bank
Matrix

DCT
Matrix

Speech
Extraction Unit

Speech
Database

Speech
Recording

Figure 3.6: Overall architecture of the evaluation platform

 In the Configuration Area of the architecture, the main program that runs the

experiment is coded in a manner that it reorganizes itself according to the selections

made. This program is an internal part of the platform and it is hidden from the user

running it as an application. However, adding a new function to a unit requires the main

program to be altered. In programming point of view, this is about adding or altering a

conditional statement in the appropriate place in the main program after compiling and

adding the function to the list of existing functions. This shows extensibility feature of the

platform and its scope can be extended from functions to the whole unit. For instance, a

LPC extraction unit can be added to provide the user with the choice to select between

MFCC and LPC based feature extraction units.

 To configure an experiment, the selection of the process should be accompanied

by the assignment of values to various process parameters. As mentioned earlier, various

combinations of these parameters should be analyzed to establish the best performance of

49

a methodology. The various process parameters whose values are assigned by the user are

listed below.

Modifiable Parameters in Speech Extraction Unit:

Database Path: This parameter denotes the path of the speech database that is used in the

experiment. As described earlier, this speech database needs to be reorganized to a

specific structure in order to use it.

Start and Final Speaker: The speakers in the above database are numbered from 1. These

two parameters help to specify a list of speakers from the database to be considered for

experiment.

Start and Final Word: The words in the above database are numbered from 1. These two

parameters help to specify a list of words from the database to be considered for

experiment.

Frame Width: This parameter specifies the size of the speech frame. The speech is

segmented into windows of the mentioned size.

Frame Update: This parameter denotes the progressing rate of the speech window.

Modifiable Parameters in GMM Unit:

Start Co-efficient: The index of the first coefficient in a feature vector to be considered

for either training or testing is specified by this parameter.

Final Co-efficient: This parameter specifies the index of the last coefficient in a feature

vector to be considered for either training or testing. Together with the Start Co-efficient

parameter, it determines the dimension of the vector.

No. Of Segments: The number of segments per word is mentioned by this parameter. The

experiments involving word segmentation are explained in the following chapters. If this

value is 1, it specifies a baseline GMM based experiment.

50

K-means Iterations: The number of iterations involved in the k-means algorithm used for

initial model estimation is denoted by this parameter.

Number of Mixtures: This parameter comes into effect in the training process and it

specifies the number of mixtures in the model.

Model Storing Path: This parameter specifies the location in the computer where the

models are stored after training.

Model Database Path: This parameter specifies the path of the model database. This is

used in the testing process for scoring.

 In the feature extraction unit, the size of the vector depends on the mel filter bank

size. However, it has not been kept as a modifiable parameter since the function does not

dynamically calculate the mel filter bank. Instead, it uses a constant filter bank size of 27

and the mel banks are kept as constant matrices with predetermined values.

 Once the experiment methodology is formed using the functions and the various

parameter values, the main program run the experiment. In the case of the training

process, the result will be the trained models that will be stored in the location specified

by the user. The file name of a model is given a number equivalent to that of the speaker

or word modeled. Along with all the models stored after the experiment, a file mentioning

all the details of the training process including the value of all the parameters is generated

and stored along with the model. This file denotes the conditions under which the

experiments are carried out. For the testing process, the experiment will produce a text

file that contains the results of the experiments. This result file, apart from stating the

overall word or speaker recognition accuracy, also contains the details about various

parameters and mentions the match score obtained for all the test data against all the

models.

51

3.5 Summary

In the beginning of this chapter, we explained the MFCC feature extraction, GMM

training and GMM testing processes that will be used in our research work. The GMM

training procedure consists of the preparation of an initial model using 10 iterations of the

k-means algorithm followed by the estimation of the final model using a variant of the

Bayes Adaptation method. An evaluation platform to carry out both speaker and word

recognition experiments based on GMM and MFCC was developed and its description

was given in the later part of the chapter. We provided a GUI based interaction between

the user and the platform so that any desired experiment methodology can be rapidly

configured without the need to manually alter the contents of the program. This platform

was also developed in a modular manner so that new techniques can be added at any stage

without affecting the existing architecture. We envisage that this feature will make the

evaluation platform a useful tool not only for our work but also for future research on

speaker and word recognition using different techniques. We carried out all our

experiments, explained in the following chapters, using this platform.

52

Chapter 4

GMM Based Speaker Identification

4.1 Introduction

It has been established from the literature survey, that GMM is the most successful and

widely used technique for speaker recognition. GMM has been mostly used in the text-

independent scenario, where a test utterance of 6 to 10 seconds duration is normally

needed for correct speaker recognition. Hence, applying text-independent speaker

recognition for our work will not be productive since we have to deal with single-word

test utterances typically of about half a second duration. Since our work deals with a

limited and closed vocabulary, the set of words that are allowable as test utterances are

known beforehand. This knowledge can be utilized to move the speaker recognition

problem from a text-independent scenario to text-dependent or text-constrained scenario.

Generally, in the speaker recognition problem, by constraining the speech, better

performance than text-independent speech can be obtained because the comparison is

made between how speakers produce certain specific sounds rather than needing to

represent and compare speakers over large textual variations [46].

 A text-dependent speaker identification system uses the same word or phrase in

both training and testing. A text-constrained speaker identification system uses a set of

words in training and it is assumed that the test utterance will only contain one or many

words from the same set. Therefore, for our work, which operates on a set of words, a

text-dependent system should exactly know which word from the vocabulary is being

considered for testing whereas in a text-constrained system, such information is not

necessary. In the following, we evaluate text-dependent and text-constrained speaker

identification approaches using GMM. The rest of the chapter is organized as follows. In

53

Section 4.2, we evaluate and present the results of GMM based text-constrained speaker

identification. In Section 4.3, we propose a new technique for text-constrained speaker

identification using sub-words and present the results. Section 4.4 provides the results

obtained for GMM based text-dependent speaker identification and Section 4.5

summarizes this chapter.

4.2 Text-Constrained Speaker Identification

The text-constrained speaker identification system uses speech only from a specific

acoustic group, such as words or phonemes to train the speaker model. During testing,

only speech from the same group is used. The concept of text-constrained speaker

identification is proposed by researchers mainly to improve the accuracy in text-

independent speaker recognition system [81, 82]. It is based on the idea that by

constraining the system to a particular acoustic group, the speaker identification task is

made to focus only on speaker differences for that particular group to improve the

accuracy. It was suggested to use a speech recognition front end to segment the

unconstrained speech into acoustic units and then limit the speaker modeling and

verification processes to certain preselected acoustic units. Reynolds [46] implemented

GMM based text-constrained speaker verification based on the above mentioned

procedure and reported that the main drawback is the poor consistency of the speech

recognition front end on unconstrained speech thereby eliminating the specificity of the

text-constrained models.

 In our work, we form the GMM based text-constrained speaker recognition

system by considering all the words in the vocabulary as one acoustic group. We

eliminate the speech recognition front end in the above said approach by assuming that

only those words are uttered by a speaker during training and one of those words is

uttered during testing.

54

4.2.1 Experimental Results

Speech Database:

TI46 [83] is an isolated word database which contains two directories, TI20 and TI46. In

all the experiments in our work, we consider the words from the TI20 directory. The TI20

directory contains 20 words. They are the 10 digits, ZERO, ONE, TWO, THREE, FOUR,

FIVE, SIX, SEVEN, EIGHT and NINE and 10 commands, ENTER, ERASE, GO, HELP,

NO, RUBOUT, REPEAT, STOP, START, and YES. These words are uttered multiple times

by 8 male and 8 female speakers. There are two sessions namely TRAIN and TEST in

this directory. TRAIN session contains 10 utterances of each word by each speaker and

TEST session contains 16 utterances of each word by each speaker.

Experimental Set-up:

Each of the 16 speaker models is trained by taking utterances of all the 20 words by the

speaker from the TEST session. The number of utterances of each word used for training

is varied to find its effect on the performance. 10 iterations of the k-means algorithm are

used to initialize the model and the training scheme explained in the last chapter is used to

estimate the final model. During testing, since it is closed set speaker identification, the

test utterance is scored against the model of all the speakers and the model against which

the highest score is obtained is considered to be the speaker. All the utterances of the

words available in the TRAIN session are considered as test utterances. In total there are

3186 test utterances excluding few corrupted files in that session. For both training and

testing process, 20 MFCC feature vectors are calculated from a 20 msec speech window

progressing at a rate of 10 msec. This set-up of feature vector extraction is considered

throughout our work.

Results and Discussion:

The results from the experiment are presented in Table 4.1. It shows that the effect of

training speech is similar to that of the GMM based text-independent scenario observed in

the literature survey [25]. As the number of utterances of each word used for training

increases, the recognition rate also increases. Though a high recognition accuracy of

55

96.6% is obtained in our experiment, the factor that mainly determines the robustness of

the text-constrained speaker recognition concept in general is the size of the acoustic

group. If the size of the acoustic group used in the text-constrained system is large, then

more speech from the group is required during testing to determine the speaker

differences. Therefore in our work, if the number of words that constitute the acoustic

group is more, speaker identification using a single word utterance will be difficult. This

can be observed from Table 4.2 which gives the result obtained from the experiment

explained in the following.

No. of

Utterances of
Each Word
in Training

Speaker Recognition Rate (%)

No. of
Mixtures: 8

No. of
Mixtures: 16

No. of
Mixtures: 24

No. of
Mixtures: 32

1 83.64 86.62 89.29 89.14

2 84.93 88.23 91.08 92.34

4 88.54 91.39 94.03 95.51

6 89.54 92.37 94.76 96.45

8 88.39 92.75 95.29 96.54

10 88.54 93.03 94.98 96.60

 Table 4.1: Text-constrained speaker recognition

No. of Words

in the
Acoustic
Group

Speaker Recognition Rate (%)

No. of
Mixtures: 8

No. of
Mixtures: 16

No. of
Mixtures: 24

No. of
Mixtures: 32

10 90.71 93.66 97.05 97.55

5 95.98 97.86 98.49 98.74

 Table 4.2: Text constrained speaker recognition with different words-group size

56

Effect of the number of words in the acoustic group: We examined two different text-

constrained systems with the same training and testing set-up used in the previous

experiment. The first system is limited to the 10 digits. The second system is constrained

to the 5 words, ENTER, ERASE, GO, HELP and NO. As a result of the finding in the

previous experiment, we used 10 utterances of each word in the training. The speaker

recognition rate obtained for the two systems are listed in Table 4.2.

Observation of the results in Table 4.1 and Table 4.2 clearly indicates that

increasing the number of words in the text-constrained system results in reduction of

accuracy. The drop in the recognition rate is 2.14% when the number of words is

increased from 5 to 20. It is known that different types of sounds are present in each of

the words in the group and hence there will be common or similar sounds across the word

group. In the following, we examine whether this information can be utilized to improve

the performance of text-constrained speaker identification when more number of words is

used. We propose and evaluate a concept of making the text-constrained speaker

identification work on similar sub-word units present in the group.

4.3 Sub-Word Constrained Speaker Identification

To improve the robustness of text-independent speaker recognition, researchers have tried

comparing only the similar sounds produced by different speakers. In [84], a phonemic

decoder is used to associate each speech feature vector with a corresponding phoneme

and based on this information, the feature vectors are grouped into broad phone-classes

such as vowels, fricatives, and plosives. Subsequently, a separate GMM is estimated for

each phone-class and testing is done by scoring the sounds in the test utterances only with

the group that it belongs to. We apply such a grouping of similar sounds in the text-

constrained system but without the above mentioned phoneme decoder module which

typically rely on transcriptions of the speech utterances. In [44], that presented a speaker

recognition system based on HMMs of sub-word units, it was shown that there is only a

small difference in performance between sub-word units formed with and without

phonetic transcriptions of the utterances. Hence we are inclined towards a setup in which

the utterances are segmented into sub-word units without using any linguistic knowledge.

57

Since such sub-word units do not explicitly carry any phonetic information, a new scheme

has to be formulated to group similar sub-words. In the following, we explain the

segmentation approach taken to form the sub-words and propose a new scheme to group

similar sub-words.

4.3.1 Segmentation Methods

As mentioned earlier, we adopt a segmentation technique that is not based on any

linguistic information. The simple and straightforward approach is to segment a word into

equal segments. This makes the boundaries of each of the segment within a word fixed

and hence the length of the segments for different words or for different utterances of the

same word will be different. Another approach is to use overlapping segments and make

the length of the sub-word segments across the system same. The two approaches are

briefly explained in the following.

Equal Segments: The number of sub-word segments per word is predefined and is the

same for all the words in the system. Each word is divided equally into that number of

segments and if the speech feature vectors representing a word cannot be divided evenly

among the segments, the last segment will contain more vectors than the rest of the

segments.

Overlapping Segments: The length the of sub-word segments for all the words in the

system is predefined in this method. Each word is divided into variable number of

overlapping segments of predefined fixed length. The length is expressed in terms of the

number of speech feature vectors.

4.3.2 Sub-Word Grouping Approaches

The technique proposed by us to group similar sub-words is based on the GMM matching

process. To classify the sub-words into C classes, we first define a classifier GMM with C

mixture components. This GMM is trained by taking utterances of all the words in the

system uttered by all the speakers. This GMM is intended to group all the speech feature

58

vectors in all the words into C classes. The k-means clustering technique, which is

applied for initial model training, assigns each speech feature vector to the cluster with

the nearest mean. Hence, it is assumed that each mixture in the model contains similar

speech vectors and represents one sound class. As explained in the previous chapter, the

final model estimation in GMM is derived from these initial model parameters.

 For modeling a speaker, each of the sub-word segments of the words uttered by

the speaker during training, have to be first associated with one of the C classes. This is

done by scoring all the vectors in the segment with each of the C mixtures in the

Classifier GMM and finding which mixture has the highest cumulative score. That is, for

a segment, the match score of each of its speech feature vector against a class is

calculated to find the overall match score of the segment against the class. After this

process, all the sub-words in the training speech are grouped into C classes and a GMM is

trained for each of the C classes using all the vectors belonging to the segments

associated with that class. Hence, each speaker will have C sub-models, each representing

a sound class.

 During testing, each segment in the test utterance is associated with a sound class.

This is carried out using the classifier GMM as done in the modeling stage. After this

process, the segment is subjected to scoring only against the sub-model corresponding to

that class. The overall matching score of a word against a speaker’s model is obtained by

the sum of the scores obtained by all the segments in that word. The parameters that have

a significant impact in this sub-word constrained speaker identification system are the

number of sound classes used and the number of segments per word. In the following, we

describe the experimental results of this system obtained with different combination of

these two parameters.

4.3.3 Experimental Results

Experimental Set-up:

Experiments are carried out in the TI46 database. For the MFCC set-up and the GMM

training, the procedure used in the previous experiment is followed. All the 20 words used

59

in the previous experiment are used here. For speaker model training, TEST session of the

speech database is used and for speaker identification process, 3186 utterances from the

TRAIN session of the speech database are used. The classifier GMM is prepared by

taking one utterance of each word uttered by all the 16 speakers. 10 utterances of each

word are used for speaker model training. Different values (8, 16, 24 and 32) are

examined for the number of mixtures in each sub-model of the speakers. The two types of

segmentation methods explained earlier are carried out. When the words are segmented as

overlapping segments, the overlapping length is kept at half of the length of the segment.

Experimental Results:

The results obtained when words are segmented using the equal segmentation method and

the overlapping segmentation method are presented in Table 4.3 and Table 4.4

respectively. The recognition rate shown in the tables are the best result obtained from the

examination of the different values of mixtures in the sub-model. It can be observed from

these tables, that the highest recognition accuracy obtained is almost identical to that of

the text-constrained system presented in Table 4.1. The effect of sound classes is

examined by keeping the number of classes at 2, 4 and 6. From results, it can be observed

that better performance is obtained when the number of classes is 2. When the number of

classes is increased, the performance decreases significantly. However, it has to be noted

that keeping the number of sound classes at 2 is too coarse-grained and may result in

grouping of sub-word segments with significantly different acoustic characteristics

together. The results indicate the need for more robust grouping approaches to classify the

sub-words into several sound classes.

Analysis of the effect of the segmentation method in sub-word constrained

speaker recognition system shows that as the number of segments per word increases the

accuracy also increases. In Table 4.3, when the number of segments is increased from 2 to

6, the recognition rate increases irrespective of the number of sound classes used.

Similarly in Table 4.4, the increase in accuracy is observed when the length of the

segments is less corresponding to more segments per word. It can perhaps be inferred

from the above that small segments are associated with distinct elementary sounds and

60

hence lend well for being grouped into sound classes that are distinguishable from each

other.

No. of Segments

per Word

Speaker Recognition Rate (%)

No. of
Classes: 2

No. of
Classes: 4

No. of
Classes: 6

2 93.11 84.61 78.02

3 94.87 89.06 83.41

4 95.82 92.74 87.48

5 95.63 94.29 91.58

6 96.61 95.61 92.45

 Table 4.3: Sub-word constrained speaker recognition with equal segmentation

Length of the

Sub-Word
Segment

Speaker Recognition Rate (%)

No. of
Classes: 2

No. of
Classes: 4

No. of
Classes: 6

10 96.62 96.03 93.34

12 96.34 95.95 92.01

14 96.32 95.89 90.85

16 95.65 92.84 87.45

18 95.02 90.44 85.27

 Table 4.4: Sub-word constrained speaker recognition with overlapping segmentation

4.4 Text-Dependent Speaker Identification

Text-dependent speaker identification systems seek to associate an unknown speaker with

a member from a registered population, provided the phrase uttered by the speaker is

known beforehand to the systems [5]. In general, among all types of speaker recognition

61

systems, text-dependent systems are more accurate, since both the content and voice can

be compared. Text-dependent scenario is generally applied for speaker authentication

systems for applications such as access control, where a fixed phrase is used as password

and the registered speaker models are trained using only the utterances of that phrase. But

when such systems have to deal with a situation where the input phrase can be one of

many permitted phrases, the number of speaker models per speaker will be more

depending upon the set of phrases permitted in the system. In that case, for each phrase in

the set, all the speakers should be trained using utterances of that phrase. So, if there are S

speakers and N phrases in the system, then in total, there will be S × N speaker models.

However, it has to be noted that even in this case, the phrase uttered has to be made

known to the system so that it considers only the speaker models trained with that phrase

for speaker recognition.

 In the following, we evaluate GMM based text-dependent speaker recognition

using the set of 20 words and 16 speakers from the TI20 directory of the TI46 database.

Determining the optimal number of mixture components and analyzing the robustness of

the model for different number of training utterances are the main focus of the

experiments. Also, the words in the vocabulary are distinguishable from each other in

terms of size and type of sounds in it. Hence the performance of text-dependent speaker

recognition for each of the words is examined separately.

4.4.1 Experimental Results

Experimental Set-up:

Like the previous experiments mentioned in this chapter, the TEST session of the

database is used for training the speaker models and 20 MFCC feature vectors are

calculated from a 20 msec speech window progressing at a rate of 10 msec. For each of

the 16 speakers, 20 speaker models are prepared corresponding to the 20 words in the

database. We refer to these models as speaker-word models. Each speaker-word model is

prepared by taking multiple utterances of that particular word uttered by the speaker. The

initial and final model training are done similar to that of the previous experiments. The

number of mixture components in the GMM is varied to find the optimal value. The

62

TRAIN session is used for testing and there are a total of 3186 test utterances. For each

test word, the speaker models trained using only that word is considered for speaker

identification.

Experimental Results:

The overall speaker recognition rate obtained for all the 3186 test utterances is listed

below in Table 4.5. The results show that speaker recognition rate increases when the

number of training utterances is increased. The best result obtained from the experiment

is 99.28% when speaker-word models are trained using 10 utterances of the word. It can

also be observed that the best recognition rates obtained are high and almost similar when

the number of training utterances per model is varied from 7 to 10. In all the cases, the

optimal number of mixtures is found to be 8 even though the number of training vectors is

diverse due to the different number of training utterances used.

No. Of

Training
Utterances

Speaker Recognition Rate (%)

No. of
Mixtures: 4

No. of
Mixtures: 8

No. of
Mixtures: 12

No. of
Mixtures: 16

5 98.02 97.93 97.08 96.73

6 98.43 98.68 97.96 97.80

7 98.52 99.00 98.61 98.61

8 98.68 99.02 98.96 98.80

9 98.74 99.09 99.05 98.90

10 98.93 99.28 99.24 99.02

Table 4.5: Text-dependent speaker recognition

Table 4.6 presents the speaker recognition rate obtained separately for each of the

20 words, when the number of training utterances is 10 per model and the number of

mixtures is 8. There are 160 utterances for each word uttered by 16 speakers (a few words

contains 1 or 2 utterances less than 160). The results show that 8 words produced 100%

63

recognition rate and none of the words give a recognition rate far below the overall rate of

99.28%. This indicates that GMM based text-dependent speaker recognition is capable of

achieving consistently high recognition accuracy for a wide range of words.

Test Word Speaker Recognition Rate
(%)

ZERO 98.74

ONE 100.00

TWO 99.38

THREE 98.12

FOUR 100.00

FIVE 97.48

SIX 99.37

SEVEN 100.00

EIGHT 99.38

NINE 100.00

ENTER 100.00

ERASE 100.00

GO 100.00

HELP 100.00

NO 99.37

RUBOUT 99.38

REPEAT 99.37

STOP 98.75

START 96.86

YES 99.37

 Table 4.6: Text-dependent speaker recognition rate obtained for each word utterance

64

4.5 Summary

In this chapter, we examined three different approaches for GMM based speaker

identification. In the text-constrained speaker identification system, we considered the

closed set of words used in the system as one acoustic group. Experiments are carried out

using 20 words from TI46 database and each speaker model is trained using the isolated

utterances of each of the words. The experiments revealed that training the speaker

models with one utterance of each word, corresponding to approximately 10 seconds of

training speech, yields recognition accuracy close to 90%. It was observed that increasing

the amount of training speech increases the recognition accuracy. When 10 utterances of

each word are used in training the accuracy reaches 96.6%.

 We examined the sub-word based text-constrained speaker identification system

based on the concept of comparing only similar sounds to determine the speaker

differences. Each word is segmented into acoustic segments and we proposed a GMM

based frame wise scoring against a classifier GMM to group similar segments.

Experiments are carried out with two different segmentation methods, the equal

segmentation of the word into a definite number of segments and the segmentation of the

word into segments of fixed length. The best recognition rate achieved by both the

methods is almost identical to the 96.6% obtained using text-constrained speaker

identification.

 The text-dependent speaker recognition approach produced an overall recognition

accuracy of 99.28% for the 20 words set with 8 of the 20 words giving 100% accuracy.

Out of the three techniques examined, the text-constrained and text-dependent techniques

are computationally simple. However, unlike the text-constrained approach, text-

dependent speaker recognition requires knowledge about the word uttered in order to

identify the speaker. In line with our goal of building an integrated speaker and word

recognition system, we present our work on developing a GMM-based solution for word

recognition in the next chapter.

65

Chapter 5

Adapting GMM for Isolated Word Recognition

5.1 Introduction

Word recognition systems have normally relied on techniques that utilize the time

sequence information of the speech and characterize it in the model that represents a

word. The time sequence information of the speech plays a crucial role in recognizing a

word utterance. Existing techniques such as the template model based Dynamic Time

Warping (DTW) and the stochastic model based Hidden Markov Model (HMM) use

temporal information for word recognition. However, the high computing power required

by these techniques will be a major drawback when it comes to implementing a word

recognition process in a device with limited resources. Hence, it is worth investigating

other techniques as well, which are not often used for solving the word recognition

problem.

GMM is a widely used technique in speech-related research. It has been

successfully used in the field of speaker recognition. Also, in HMM, the states within are

normally represented as GMM. The advantage GMM possesses is that it has relatively

less computational complexity compared to the above mentioned popular techniques used

for word recognition. However, while using GMM for word recognition, this advantage is

suppressed by the drawback that it fails to capture the time sequence information of

speech. It is known that GMM follows a bag-of-frames approach to model the statistical

distribution of all the feature vectors representing the speech frames. This causes the loss

of the temporal information of speech that can be obtained from the time ordered

sequence of the feature vectors. Because of this drawback, there has been no major work

done to use GMM for word recognition problem. Hence, in order to use GMM for word

66

recognition, a methodology that is different from conventional GMM based modeling

should be devised. This methodology should enable the modeled word to retain the time

sequence information of the speech in some form.

In this chapter, we propose a technique that uses a GMM based sub-word level

modeling rather than modeling the whole word using GMM. The time sequence

information is preserved in the order of the GMM sequence which represents the order of

the sub words that form the word. This enables us to have a sub-word level testing which

can be seen as a method of matching the temporal sequence of sub-words of a test

utterance with that of a modeled word. We explain this technique in detail in Section 5.3

and also discuss about the segmentation algorithms used to form the sub-words. The

results obtained using the proposed technique are presented in Section 5.4. Before we

explain the proposed technique, we present the results obtained using the baseline GMM

approach in Section 5.2. In Section 5.5, we present an extension of the proposed

technique, where multiple models are used to represent a word. Section 5.6 summarizes

this chapter.

5.2 Baseline GMM Approach for Isolated Word Recognition

This section explains the drawback in using the baseline GMM approach for isolated

word recognition. The word recognition result obtained using this baseline approach is

also presented here. This result is used as a benchmark to examine the performance of our

proposed technique which is explained in the next section. In order to model a word using

GMM, the first step is to extract the feature vectors from each of the speech frames

available in the word. Then, for training, the GMM technique, as explained elaborately in

Chapter 3, takes these feature vectors as input and produces a model that maximizes the

likelihood of the feature vectors for that model. It can be observed that the sequence of

the feature vectors is of no importance in this modeling process and the model does not

retain any information about the order in which they appear. This means there is a vital

loss of information related to the sequence of the speech units that constitute the word.

67

 The above mentioned drawback in GMM makes it necessary to look into new

methods other than the conventional approach to incorporate time sequence information

of the speech for word recognition. However, to study the performance of the new

methods, we need the performance of a word recognition system based on baseline

GMM. This can be set as a benchmark to examine the improvement in any different

approach of GMM based word recognition. In the following we present the experiment

results obtained using the baseline GMM method.

5.2.1 Experimental Set-up and Results

Experimental Set-up:

The TI20 directory of the TI46 database described in the previous chapter is used for all

the experiments reported in this chapter as well. Each word model is trained by taking one

utterance of that particular word by each speaker from the TRAIN session. Hence the

training set contains 16 utterances of the word and is gender balanced. 10 iterations of k-

means algorithm are used to initialize the model and the training scheme explained in

Chapter 3 is used to estimate the final model. During testing, it is assumed that the test

utterance will be one of the words in the training set and hence the test utterance is scored

against the model of all the words and the model against which the highest score is

obtained is considered to be the uttered word. All the utterances of the words available in

the TEST session are considered as test utterances. In total there are 5082 test utterances

excluding few corrupted files in that session. For both training and testing process, 20

MFCC feature vectors are calculated from a 20 msec speech window progressing at a rate

of 10 msec.

Experimental Results:

The results from the experiments are presented in Table 5.1. The highest word

recognition rate obtained is 90.6% when the number of mixtures in the model is kept at

16. The optimal number of mixture components for a model depends on the amount of

training speech. Here each utterance of a word is estimated to have an approximate length

of 0.5 seconds and hence the total amount of training speech duration in our experiment is

68

about 8 seconds. As shown in the table, various sizes of mixture components for the

model are tried and it is observed that initially the word recognition rate increases when

the number of mixtures is increased and after reaching the peak for 16 mixtures, it again

drops when higher number of mixtures is used.

 Table 5.1: Isolated word recognition results using baseline GMM method

 In the next section, we describe our proposed technique that will incorporate time

sequence information of speech to improve the GMM based word recognition further.

The result obtained in the above experiment will be used as a point of reference to study

the increase in performance of the technique.

5.3 Proposed Technique to Incorporate Time Sequence
Information for GMM based Word Recognition

Each word uttered has some sub-word units like phonemes. When a model for a word is

trained using the GMM process, multiple utterances of that word are considered. The time

order or the sequence of the sub-words that constitute a word will be the same for all the

utterances of that word. Our proposed technique tries to utilize this knowledge to bring in

the time sequence information in word modeling. We represent a word as a time ordered

sequence of GMMs where the GMM sequence corresponds to the sequence of sub-word

No. of
Utterances used

for Training
each Word

Model

Approximate
Duration of

Training Speech
for each Word

Model

No. of
Components in

GMM

Word Recognition Rate
(%)

16

8 seconds

32 86.46

24 88.15

16 90.60

8 90.55

4 86.88

69

units in the word. This enables us to have a sub-word level testing which will match the

temporal order of the sub-word units in the test utterance with that of the modeled word.

In the following subsections, we explain about the segments (sub-words) and discuss the

segmentation methods to segment a word. We also explain the training and the testing

procedure followed by the proposed technique.

5.3.1 Segments

The term segment in our work refers to a sub-word unit of a word. A segment is

represented by feature vectors of the frames within it. The work reported in [35] employs

a similar segment based approach and prepares a GMM based segmental mixture model

for text-independent speaker verification. In that work, the time sequence information is

preserved by retaining the order of the speech feature vectors within each segment.

Subsequently, a segmental mixture model is trained using a collection of segments

instead of using the collection of all feature vectors as in normal GMM technique.

However, this is unlikely to be effective in our work on word recognition, where it is

beneficial to maintain the order of sub-word units rather than the order of the feature

vectors within each of them.

 It has to be noted that the time ordered segment sequence of a word used in our

work is a non-overlapping one. The segments of a word are obtained from the sequence

of feature vectors extracted for the entire word. Therefore, each segment of a word will be

formed by portions in the feature vectors sequence of the word. The flow in forming the

segments from the word utterance is illustrated in Figure 5.1. In the next section, we

briefly discuss about the segmentation methods and explain the methods we chose for our

work.

70

 Figure 5.1: Time-ordered sequence of segments

5.3.2 A Discussion on Segmentation Methods

A vast majority of the currently available speech recognition systems for medium to large

vocabulary are constructed based on sub-word units [3, 58]. These systems use the

process of segmenting the speech data by optimally locating the segment boundaries and

labeling those segments. The labeling procedures use linguistic knowledge such as

phonetic strings. Since in our work, we are not concerned about the labeling of the

segments, we focus only on the speech segmentation techniques. The algorithms found in

the literature to solve the speech segmentation problem are mainly divided into two

categories, hierarchical and non-hierarchical. The hierarchical speech segmentation

procedures involve a multi-level, fine-to-coarse, segmentation description and use a path

finding algorithm to get the segments [85]. The non-hierarchical speech segmentation

procedure uses various techniques to locate the sub-word boundaries. Works reported in

literature show that non-hierarchical segmentation can be done by minimizing a

distortion metric using dynamic programming based methods [86] or by maximizing the

 Time Axis

Segment

Sequence of feature vectors
corresponding to overlapping
frames

Segment
Time-ordered sequence of
segments

Speech Signal

71

score metric of acoustic models [87, 88]. However, the methods used in all the above said

techniques, like the path finding algorithms and the dynamic programming, make the

segmentation process compute-intensive.

 The problem of automatic speech segmentation can also be classified into two

different scenarios depending on the information available prior to segmentation. In the

first kind, the linguistic knowledge of the speech such as phonetic transcription or the

number of phonemes present in it is known and in the second kind, no linguistic

knowledge about the given speech is available. If the linguistic knowledge of the speech

is known, then the segmentation algorithm is required only to optimally locate the sub

word segment boundaries. The above mentioned approaches for segmentation are used in

this case and these approaches are typically computationally complex. Some

segmentation algorithms consider the syllable-like units as the fundamental parts of

speech. An algorithm for automatic segmentation of speech into syllabic units has been

proposed by Mermelstein [89]. This algorithm is based on using a loudness minimum as

an indicator of syllabic boundaries. In a similar work, the segmentation of speech into

syllabic units is achieved based on locating local minima in the waveform amplitude [90].

The drawbacks in these algorithms are many. First of all, there is no universal agreement

on a rigorous definition of a syllable [91]. Also these methods will frequently detect more

candidates for a syllable boundary than are required and hence it has to be checked with

the information about the number of syllables in each word. Furthermore, these

algorithms are not shown to be fully accurate in spotting the syllables. These

shortcomings will bring a negative effect in our proposed technique if we use the

linguistic based segmentation algorithms described above. In our technique, as described

earlier, the sequence of sub-words plays a major role. Hence if there is any miss in

detecting a sub-word unit by these algorithms as mentioned above, the main concept of

preserving the time sequence information using the order of sub-words will be affected.

Because of these drawbacks in linguistic based segmentation, detecting sub words

without any information about the linguistic knowledge of the word is looked at. Also, the

proposed technique does not necessarily need to have any linguistic elements as segments

and it can operate purely at the acoustic level.

72

 If there is no linguistic knowledge about the given speech data, the segmentation

algorithm determines the optimal number of sub-word units present in the word, as well

as their boundary locations, based only on the acoustic data. As mentioned above, for our

work, the number of the segments that has to be detected from various utterances of a

same word should be the same. Hence, we decide the number of segments first and then

use the segmentation algorithm to find the optimal segment boundaries. In the following,

we explain two techniques to segment a word into a predetermined number of segments.

These two techniques are used in the experimentation of our proposed technique.

5.3.3 Simple Equal Segmentation

The simplest and most straightforward way of segmenting a given word into n segments

is to divide it into n equal parts. This method will make the corresponding segments in

various utterances of a word to contain almost the same portion of the word if there is no

significant variation in all the utterances of the word. This segmentation process is

explained as follows.

 Let us assume that a word is represented by a sequence of feature vectors of

length v. If the number of segments desired is n, then the segmentation is carried out

depending on one of the following two criteria.

 One criteria is v = nm, for some natural number m. That is the number of feature

vectors is a multiple of n, the number of segments. In this case, every consecutive

m feature vectors are assigned into different segments. So, each and every

segment contains equal number of feature vectors.

 Another criteria is v ≠ nm, for any natural number m. That is the number of feature

vectors is not a multiple of n. So here it is considered that v = nm+k where k =

0,1,2.. n-1. In this case, every consecutive m feature vectors are assigned into the

segments numbered from 1 to n-1, while the last segment contains m+k feature

vectors.

73

5.3.4 Constrained Clustering Segmentation

The second segmentation technique used in our experiments is an adaptation of the

segmentation method proposed in [86]. This technique clusters the input utterance into

consecutive non-overlapping clusters and this equals a vector quantization codebook

design, subject to the constraint that all the vectors contained in a cluster are contiguous

in time. The technique finds the segment boundaries by minimizing the total distortion for

a specific distortion measure between segments. A distortion measure based on likelihood

ratio has been proposed in [86]. However, we make use of a simpler distortion measure,

namely the Euclidean distance.

 Let us assume that a word of T frames has to be segmented into n segments. The

set of segment boundaries, tb, b=1,2...n, is obtained such that the global distortion

measure given in Equation 5.1 is minimized.

1 1
() (5.1)

1
,t b

b

bn
D d y c

b

t
t t
 

 

 

In the above equation, yt is the feature vector for the tth frame, cb is the centroid of the bth

segment and d is the local distortion. The centroid of a segment is computed as the mean

of the vectors in that segment.

 Among the two techniques to segment a word described above, the simple equal

segmentation technique involves negligible computation. Whereas, the second technique

of constrained clustering segmentation is a clustering process that involves many

iterations of computation and has a relatively high computational complexity. In our

experiments, both the techniques are used to segment the word utterance and the results

are compared. The training and testing procedure using the segments are described in the

following.

74

5.3.5 Training Procedure

Figure 5.2: Training process in the sub-word constrained GMM technique

The aim of the training process is to model a word as a time ordered sequence of

GMMs where each GMM represents a segment (sub-word) of that word and the sequence

of GMMs corresponds to the sequence of the sub-words present in that word. Each of the

many utterances of a word that are used to train that particular word is segmented into a

definite number of segments. This amounts to transforming each utterance into a

sequence of sub-words. The modeling of a sub-word can be achieved by considering only

the corresponding segments from all the utterances of the word which are represented by

a set of feature vectors. The training process is illustrated in Figure 5.2. The

representation of a word with multiple GMMs in our technique may resemble a left-to-

right continuous HMM. However, it has to be noted that there is a substantial difference

between our technique and HMM. In HMM, the states that are modeled as GMM do not

 Segment 1 Segment 2 Segment n

 Training
Utterance 1

Training
Utterance 2

 Training
Utterance

m

Feature Vectors

Time Axis

GMM
1

GMM
2

GMM
n

75

directly represent any specific sub-word portion. Also, the starting state and the

movement from one state to another are defined by the initial state probabilities and state

transition probabilities respectively. Our technique is simple where the GMMs in the

word model are obtained by training specific sub-word segments. Since the sequence of

sub-word segments of a word is obtained by the segmentation method, there is no need to

define the transitions between the models in the GMM sequence.

5.3.6 Testing Procedure

 Figure 5.3: Testing process in the sub-word constrained GMM technique

In the testing process, when a test utterance is scored against a word model represented as

a GMM sequence, we intend to perform the GMM based matching between the temporal

order of the sub-words present in the test utterance and that of the modeled word. We

segment the test utterance and form a sequence of segments, each represented by certain

number of feature vectors. The segments are matched with the corresponding GMM of

the word model. The feature vectors of the first segment are scored only against the first

GMM in the model; those of the second segment are scored only against the second

GMM and so on. The overall matching score is obtained by aggregating the matching

score obtained for all the segments. It has to be noted that in order to achieve this scoring

GMM
1

GMM
2

GMM
n

Feature Vectors Time Axis

 Test
 Utterance

 Segment 1 Segment 2 Segment n

Model

Scoring

76

process, the segmentation technique and the number of segments used should be the same

in both training and testing process. Figure 5.3 illustrates this testing process.

5.4 Experimental Results

Experimental Set-up:

The experiments are carried out using the TI20 directory of the TI46 database described

earlier in this chapter. The feature vector extraction process, number of utterances used to

train a word, the model initialization and the final model estimation process are kept

similar to the experimental set-up for the isolated word recognition using baseline GMM

approach explained in Section 5.2. Both the segmentation techniques explained earlier are

employed to segment the word. The number of segments per word is kept same for all the

20 words used in the experiment. The number of mixtures used in the model for each of

the segments is also uniformly maintained. The number of mixtures is kept as 4 for this

experiment. As explained earlier, a total of 5082 utterances are used for testing.

Experimental Results and Discussion:

Segmentation

Method

Word Recognition Rate (%)

Segments/
Word=2

Segments/
Word=3

Segments/
Word=4

Segments/
Word=5

Simple Equal
Segmentation 95.28 95.69 96.26 95.49

Constrained
Clustering

Segmentation
89.61 94.10 95.06 93.94

 Table 5.2: Isolated word recognition results using sub-word constrained GMM

Table 5.2 shows the results obtained from the word recognition experiments

carried out using the technique proposed. It can clearly be seen that all the results, except

one where the number of segments per word is kept at 2 and clustering segmentation is

done, significantly outperform the best result of 90.6% obtained for the baseline GMM

77

approach. The highest word recognition rate obtained is 96.26% which is an increase of

5.66%.

It can be observed from the results that the performance of our proposed system is

consistently better with the simple equal segmentation technique than with the

constrained clustering segmentation, although the latter involves more logical reasoning

than the first one as it determines the segments based on the variation in spectral

distortions. One likely reason for the relatively low accuracy of the constrained clustering

segmentation method is that it can sometimes result in segments with a very small

number of feature vectors that are insufficient for estimating a reliable GMM. From the

above, it is evident that the technique of sub-word constrained GMM for word

recognition is feasible with no major additional computations that are normally needed

for word segmentation.

Segment-Mixture Relationship: The results presented in Table 5.2 also show that in the

case of the simple equal segmentation, the recognition rate appears to be largely

independent of the number of segments per word. However it has to be noted that the

results shown are obtained by keeping the number of mixtures at 4 for all the cases. The

word recognition accuracies obtained when the number of mixtures is varied is presented

in Figures 5.4 to 5.7. It can be observed from these figures that though the accuracy varies

only slightly for number of mixtures ranging from 2 to 8 in all the cases, it is on an

attenuating path for higher mixture sizes. It is because when the number of mixtures is

increased, the amount of training data i.e. speech feature vectors per mixture will become

less and this may not be sufficient enough to characterize the speech's distribution. It is

known that the words are short in duration and so each segment will be having a limited

number of speech features in it. Hence using a small number of mixtures is most

constructive and the accuracy is largely consistent for smaller number of mixtures as seen

from the figures. Also, increasing the number of segments per word will result in less

training data per segment which in turn invokes the above said disadvantage of

insufficient speech data per mixture even for a smaller number of mixtures. In our

experiments, increasing the number of segments per word to 5 does not better the results

obtained when 4 segments per word is used. It can be concluded that keeping the number

78

of segments and mixture size within 4 will be optimal for this technique of word

recognition. The results show that the best accuracy is obtained when both the number of

segments per word and the number of mixtures in each segment's GMM are kept as 4.

Figure 5.4: Word recognition rate for
different number of mixtures when

segments/word=2

Figure 5.5: Word recognition rate for
different number of mixtures when

segments/word =3

Figure 5.6: Word recognition rate for
different number of mixtures when

segments/word =4

Figure 5.7: Word recognition rate for
different number of mixtures when

segments/word =5

79

Speaker Dependency: The results presented in Table 5.2 show a word recognition

accuracy of 96.26%. It has to be noted that the same set of speakers were involved in the

training and testing processes. It is known that GMM in general is interpreted as

representing some speaker-dependent spectral shapes [25]. Hence it is assumed that all

the speakers engaged in testing process will be having their speaker characteristics in the

word model. It is worth investigating the behavior of our proposed technique for the

scenario where speakers who are not part of the training set are subjected to the testing

process.

No. of
Speakers
used in

Training

No. of
Utterances

of each
Word per
Speaker

Taken for
Training

Approximate
Duration of

Training
Speech for
each Word

Model

Word
Recognition
Rate (%) for

Speakers from
the Training

Set

Word
Recognition
Rate (%) for

Speakers
outside the

Training Set

12 1 6 seconds 95.32 93.03

8 1 4 seconds 91.44 83.51

 Table 5.3: Word recognition with different sets of speakers for training and testing

 The Table 5.3 presents the results obtained when the above said experiments are

carried out. We followed the simple equal segmentation method and the number of

segments per word and the number of mixtures are kept at 4 based on previous

experiment results. Two different training sets are created - one involving 12 speakers and

another with 8 speakers. Both the training sets are gender balanced. When the first set is

used, word utterances from the remaining 4 speakers from the database are used for

testing and when the second set is used, word utterances from the other 8 speakers are

available for testing.

 Upon first look, the results appear to show that our proposed technique does retain

some form of speaker dependency in it. This can be seen from the decrease in accuracy

when speakers outside training set are used in testing compared to the case where the

same speakers from the training set are used. However, it can be observed in Table 5.3

80

that the loss of recognition accuracy is less when the amount of training speech is

increased. When speakers outside the training set are used in testing, there is a drop of

only 2.3% in accuracy in the first case where approximately 6 seconds of speech is used

in training but the drop in accuracy is almost 8% in the second case with about 4 seconds

of training speech. From the above observations, we can infer that for our proposed

technique, a word model prepared using utterances of that word from a higher number of

speakers will be more robust against test utterances from speakers outside the training

population.

5.5 Multiple Models with Different Number of Sub Words

In the previous sections, we explained the sub-word constrained GMM technique for

word recognition and presented the results. In the experiments carried out earlier, the

number of segments per word in the model was kept the same for all the words in the set

and the optimal number of segments was found to be 4. When words with very short

duration are modeled with large number of segments per word, the speech feature vector

distribution in each GMM in that word model will not be sufficient to provide

information about the acoustic content. Also, in such cases, it is highly probable that few

continuous GMMs in that word model represent features with similar acoustic

characteristics. This adds more weight to the match score of words which are similar to

that of the modeled word and could lead to incorrect identification. Examples for this case

in the TI46 database vocabulary are the words GO and NO, which have only 2 phonemes

in it. If these words are modeled with 4 segments per word, then the last 3 GMMs in the

word model may correspond to the last phoneme, which is the same for both words.

Hence for shorter words, modeling with fewer segments per word would be more

appropriate to make a clear distinction between similar words. This scenario points to the

difficult problem of finding the optimal number of segments for each word in the

vocabulary. However, in this section, we propose a concept of having multiple models for

each word, where each of the models is trained with different number of segments. Based

on the scores obtained during the testing process, we subject the similar words into

second round of testing with models trained using fewer segments per word, to make the

81

decision of word identification. The categorization of similar words is done by setting a

threshold in the score values. This process evaluates the above mentioned point that the

incorrect identification that happens between similar short words, when they are modeled

with a higher number of segments, can be overcome by modeling with fewer number of

segments. In the following, we explain the steps involved in identifying a word using this

technique and present the results.

5.5.1 Steps Involved in the Process

In the proposed technique, each word is represented with two time-ordered models. These

two models are classified as main model and secondary model. The main model for each

word is trained by segmenting the word into 4 sub word units. The number of segments is

kept at 4 here because our earlier experiments reveal that it is the optimal one. The

secondary model is trained by segmenting each word into 2 sub-word units.

The steps involved in the testing process are illustrated in Figure 5.8. The test

utterance is first scored against the main model of all the words. It is assumed that in the

case of unambiguous identification, the difference between the score obtained against the

correct word model and the score obtained against rest of the models will be relatively

high. In the figure, M1 denotes the margin between the best score obtained Sbest and the

second best score Snext. If the margin M1, is higher than a predetermined threshold T1, then

the word against which the best score is obtained is identified as the uttered word. If not,

then word that yielded Sbest and the words whose scores differ from Sbest by less than T1,

are selected for scoring against the secondary models. M2 denotes the margin between the

best score S'best and the second-best score S'next obtained against the secondary models. If

the second round of scoring improves the differentiation between the similar words, then

the margin M2 should be higher by a certain threshold T2 than the margin M1 obtained in

the first round of scoring. If this condition is met, then the word that yielded S'best is

identified as the uttered word. If not, the word that yielded the best score in the first round

of scoring against the main models is identified as the uttered word.

82

Find score, S of test utterance
against all main models

M1 = Sbest - Snext

M1>T1

Select all words whose S >
(Sbest - T1)

Find score S’ of test utterance
against secondary models of

selected words

M2= S’best - S’next

M2>(M1+T2)

Stop

Identify the word corresponding
to S’best

Identify the word corresponding
to Sbest

Stop

NO

YES

YES

NO

 Figure 5.8: Testing process when word is represented with main and secondary models

5.5.2 Experimental Results

For training the two set of models, the same procedure used in the earlier experiments in

this chapter is followed. 4 Mixtures are used to model each segment in both the main and

the secondary models. The testing process is done according to the steps described in the

previous sub-section. The values of T1 and T2 are varied and the results obtained for

different combination of the values are presented below in Table 5.4.

83

Score-Margin
Threshold for
First Round of

Scoring
T1

Score-Margin
Threshold for
Second Round

of Scoring
T2

Word Recognition Rate

(%)

2

0.2 96.85

0.6 96.69

1 96.62

3

0.2 96.87

0.6 96.71

1 96.63

4

0.2 96.93

0.6 96.73

1 96.64

5

0.2 96.93

0.6 96.73

1 96.64

 Table 5.4: Word recognition using multiple models per word

 Results show that for all combinations of the values of T1 and T2, there is a

marginal increase in the word recognition accuracy compared to the result obtained

earlier. The highest recognition rate, 96.93% is obtained when T1 is equal to both 4 and 5

and T2 is 0.2. As mentioned earlier, the secondary model used in this experiment has 2

segments per word and uses a 4-mixture GMM to model each segment. It has to be noted,

that when the same training set-up is used in Section 5.4, the results obtained, as indicated

in Figure 5.4, was 94.66% and is less than the result obtained here. This shows that using

a small number of segments is effective only for some words in the vocabulary. This

points to a future research challenge of developing a method to determine the optimal

number of segments for each word as a superior alternative to the multiple-models

concept explained here.

84

5.6 Summary

In this chapter, we proposed a technique to incorporate the time sequence information to

improve GMM based isolated word recognition. We took an approach different from the

conventional GMM method of globally modeling the probability density function (PDF)

of all the speech feature vectors in the training data. We constrained the GMM to operate

on segments or sub-word units of the word and represented the word as a sequence of

GMMs corresponding to its sub-word sequence. In order to find a technique to segment

the words, we discussed about the existing segmentation techniques and concluded that

segmenting a word into a fixed number of segments without the knowledge of any

linguistic information is beneficial and well-suited for our approach taken for word

recognition. We examined two different methods for word segmentation.

 Experiments were carried out using the TI20 directory of the TI46 database. The

results showed that our approach substantially outperforms the conventional GMM

approach and achieves a word recognition accuracy of 96.26%. Two important points

observed from the results helped to keep our intention of minimizing the overall

computational complexity intact. Firstly, the simple equal segmentation technique

consistently outperformed a compute-intensive criteria-based segmentation technique.

This nullifies the complex computations that are normally needed for segmenting a word.

The second point was that the word recognition accuracy decreased when the number of

segments per word and the number of mixtures were increased and the optimal values for

the above were found to be 4. This again eliminates the need for more computations

involving more number of models and mixtures in both the training and testing process.

We also evaluated the concept of having multiple models per word and observed an

increase of 0.7% in word recognition accuracy. Though this concept increases the storage

and computation requirements, the increase in recognition rate shows that smaller words

in the vocabulary can be better trained with even less number of segments.

 From a system architecture perspective, it can be visualized that to implement our

proposed technique, a single GMM engine that performs both modeling and testing can

be invoked multiple times depending upon the number of segments per word used. The

85

sub-word constrained GMM technique also lends well for a parallel implementation with

multiple GMM engines processing several segments in parallel. In our planned set-up

where speaker and word recognition is performed in the same system, the GMM engine

employed for word recognition can be utilized for speaker recognition as well. In the next

chapter, we discuss the GMM-based integrated system for speaker and word recognition.

86

Chapter 6

Integrated Speaker and Word Recognition System

6.1 Overview

In the last two chapters, we discussed the GMM based approaches for speaker recognition

and word recognition. For word recognition, a novel technique, sub-word constrained

GMM, was proposed. For speaker recognition, text-dependent and text-constrained set-

ups were observed to yield strong results. From these results, it is evident that an

integrated speaker and word recognition system based on GMM technique is feasible. In

this chapter, we discuss two variants of such an integrated system. The first one is based

on text-constrained speaker recognition and the second one is based on text-dependent

speaker recognition. The rest of the chapter is organized as follows. We present the

structure of the two versions of the integrated system in Section 6.2. In Section 6.3, we

present the overall recognition accuracy obtained for these two versions and discuss the

advantages and disadvantages. In Section 6.4, we evaluate the integrated system operating

on a smaller set of commands. Section 6.5 summarizes this chapter.

6.2 Integrated Speaker and Word Recognition System

In this section, we describe the integrated speaker and word recognition system. The

objective of the system is to take a word utterance as input and identify the uttered word

and the speaker who uttered it. Both the recognition processes involved in this system,

namely, word recognition and speaker recognition are based on the GMM technique as

explained in the last two chapters. This process of using only the GMM technique

87

simplifies the architecture of the system. From the architecture perspective, this integrated

system will contain the following basic blocks.

 Speech capture unit

 Feature extraction unit

 Training unit

 Recognition unit

 Model database

Both the training unit and the recognition unit mentioned above use the same GMM

engine and it is worth noting that these two units can be used for both word and speaker

modeling/recognition.

 For performing word recognition in the system, we adopt the technique proposed

earlier which incorporates the time sequence information in GMM modeling. For speaker

recognition based on GMM, our earlier evaluations showed that text-dependent speaker

recognition provided better results compared to text-constrained one. However, it is worth

investigating the impact of both the speaker recognition methods in the integrated system.

Hence we present two variants of system, one with text-constrained speaker recognition

and the other with text-dependent speaker recognition.

6.2.1 Integrated System Based on Text-Constrained Speaker
Recognition

The first version of the integrated system we describe here is based on text-constrained

speaker recognition. The outline of the structure of this system is presented in Figure 6.1.

Both the speaker recognition and word recognition processes involved in this system are

independent of each other. The steps involved in identifying the uttered word and the

speaker who uttered it are described as follows. The word uttered is captured through the

speech capture unit and in the next step the feature vectors of the word are extracted. The

feature vectors are used as input for the word recognition process, which segments the

feature vector sequence and scores the vectors against the word models in the database to

identify the word. Next, the feature vectors are used for speaker recognition process,

88

where the same GMM scoring process as in word recognition is used, which identifies the

speaker using the speaker models in the database.

Speech
Capture Unit

Feature
Extraction Unit

Word
Recognition

Process

Speaker
Recognition

Process

GMM
Engine

Output
Word and Speaker

ID

 Figure 6.1: Integrated system based on text-constrained speaker recognition

 The steps in the recognition process of the system described above, reveals the

following advantage the system possesses. Since, both the word recognition and speaker

recognition processes function separately using the same set of feature vectors, it is not

necessary for one process to wait till the other is completed. Instead, both the processes

can possibly be fine tuned to function in parallel. This increases the processing rate of the

system.

6.2.2 Integrated System Based on Text-Dependent Speaker Recognition

The outline of the integrated system based on text-dependent speaker recognition is

presented in Figure 6.2. Unlike the text-constrained version described earlier, this system

follows a two-step approach. After extracting the feature vectors of the input word, the

word recognition is carried out first. In the next stage, based on the word identified, the

speaker models, trained using that particular word, are selected for the speaker

recognition process. The speaker identification obtained in this stage and the word

identified in the previous stage provides the final result of the system.

89

 In this system, the total number of speaker models in the database will be more

than the system based on text-constrained speaker recognition. For each speaker, separate

speaker models should be trained using each word in the vocabulary separately.

However, it has to be noted that the number of speaker models that will be used for

determining a speaker's identity will be the same as the text-constraint version and it

depends on the number of speakers enrolled in the system.

Speech
Capture Unit

Feature
Extraction Unit

Word
Recognition

Process

Speaker
Recognition

Process

GMM
Engine

Output
Word and Speaker

ID

Word ID-
Speaker
Models

Word ID

Figure 6.2: Integrated system based on text-dependent speaker recognition

6.3 Experimental Results

Experimental Set-up:

The TI20 directory of the TI46 database and the training procedure used in the last two

chapters are used in this experiment as well. We evaluated GMM based speaker

recognition and word recognition in the last two chapters using the same database and

found out the optimal values for various modeling parameters. Hence, for the integrated

systems to be evaluated here, we consider the same values for the modeling parameters.

For the 20 word models, the number of segments per word and the number of mixtures in

each sub-model are kept at 4. For text-constrained speaker recognition, the 16 speaker

models are trained using 10 utterances of all the words with 32 mixtures per model. For

text-dependent speaker recognition, each speaker model is trained as an 8-mixture model

90

using 10 utterances of a word. Utterances from the TEST session are used to train the

models and the 3186 utterances available in the TRAIN session are used for identification

process.

6.3.1 Results and Discussion

Integrated System
Type

Word Recognition
Rate
(%)

Speaker
Recognition Rate

(%)

Overall Recognition
Rate
(%)

System 1: With
Text-Constrained

Speaker Recognition
97.18 96.61 94.03

System 2: With
Text-Dependent

Speaker Recognition
97.18 98.74 96.55

 Table 6.1: Overall recognition rate for the two versions of the integrated system

The results obtained from the experiments are listed in Table 6.1. The overall recognition

rate shown in it denotes correct speaker and word identification for a test utterance. It has

to be noted that the change in word recognition accuracy from the results obtained in the

previous chapter is due to the fact that we interchanged the training and testing sessions

of the speech database for this experiment. The results presented in Table 6.1 shows that

the integrated system based on text-dependent speaker recognition results in better overall

recognition accuracy. Clearly, the increase in speaker recognition accuracy because of the

two-step approach and the use of word-specific speaker models in that system has

contributed to the better results.

The two-step approach causes the system to depend more on the word recognition

accuracy for the overall performance. As seen in Chapter 4, the text-dependent speaker

recognition has a recognition rate of 99.28% and therefore it provides very reliable

speaker recognition in the integrated system if the word is recognized correctly. This can

be observed from Table 6.2, where a high speaker recognition rate of 99.35% has been

achieved for cases where the word is identified correctly. On the other hand, when the

91

word is wrongly identified, it causes the speaker models corresponding to the wrong word

to be used in the speaker recognition process resulting in a markedly inferior speaker

recognition accuracy of 77.78%.

Word Recognition

Outcome

No. of
Instances

(Word
Recognition)

No. of Instances
where Speaker

Correctly
Identified

Correct Speaker

Identification
(%)

Word recognized
correctly 3096 3076 99.35

Word recognized
wrongly 90 70 77.78

All 3186 3146 98.74

Table 6.2: Effect of word recognition accuracy on speaker identification in the text-
dependent version of the integrated system

 Though the text-dependent version of the integrated system proved to be better in

terms of recognition accuracy, it has the drawback of higher memory requirement

compared to the version that incorporates text-constrained speaker recognition. This is

because of the need to store a higher number of speaker models depending on the size of

the vocabulary. However, this is not a major setback since the potential practical

applications of the integrated system typically deal with a small set of commands. As

stated earlier, a fine tuning of the scoring process in the text-constrained version can

enable both the word recognition and speaker recognition processes to operate in parallel

resulting in higher processing speed. While this is not possible in the system with text-

dependent speaker recognition, it is worth noting that the number of mixtures used in the

text-dependent speaker models will be typically small compared to the text-constrained

speaker models. In the experiments described above the number of mixtures in the

speaker models for the text-constrained and text-dependent versions are 32 and 8

respectively. Therefore, the scoring in the speaker identification process in the latter is

almost 4 times faster than the former. Because of the above mentioned points, we chose

92

the integrated system with text-dependent speaker recognition for the subsequent work in

this project.

6.4 Integrated System Operating on a Small Set of Commands

The development of the integrated speaker and word recognition system explained above

is done in line with our main objective of making it suitable for resource-constrained

embedded platforms like mobile devices. We evaluated the system with a vocabulary that

contains 20 words. However, in typical mobile and embedded applications, only a smaller

set of words, usually consisting of a few commands, is used. Therefore, before

incorporating the system into a mobile application, it is beneficial to evaluate its

performance for a smaller set of commands. In this section, we evaluate the integrated

system’s performance using the following three different set of words, chosen from the

TI20 vocabulary.

Set 1
{ZERO, ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE}

Set 2
{ENTER, ERASE, HELP, NO, RUBOUT, YES}

Set 3
{START, GO, STOP, REPEAT}

The sets are formed with different sizes so that the change in performance of the

system for different size of vocabulary can be analyzed. Set 1 contains the 10 digits which

are normally used in voice dialing applications. The six words in Set 2 are selected so that

there are no similar words in it. Whereas Set 3 is formed by including two commonly

used commands, START and STOP, which contain acoustically similar parts.

93

6.4.1 Experimental Results

Experimental Set-up:

The same training set-up used in the experiment mentioned in the last section is used

here. The integrated system with text-dependent speaker recognition is used in this

experiment. All the 16 speakers in the database are included in the experiment for speaker

recognition. While evaluating each of the three sets mentioned earlier, the test utterance

will be one of the words from the set evaluated. Altogether for Set 1, there are 1594 test

utterances. For Set 2, there are 955 test utterances and for Set 3, the number of test

utterances is 637.

Experimental Results:

Command Set
Word Recognition

Rate
(%)

Speaker
Recognition Rate

(%)

Overall Accuracy
(%)

Set 1 98.93 98.99 98.30

Set 2 99.69 99.58 99.37

Set 3 98.43 98.59 97.17

 Table 6.3: Integrated system operating on a small set of commands

The results from the experiments are presented in Table 6.3. From the table it can be

observed that for all the three sets, the overall recognition accuracy has bettered the

96.55% accuracy obtained in the last experiment when 20 words set is used. Similarly,

the word recognition rate for all the three sets has also increased. When the number of

words in the set is reduced from 10 in Set 1 to 6 in Set 2, the recognition rate increases

from 98.3% to 99.37%. Interestingly, Set 3, which is the smallest of the sets and contains

only 4 words, has resulted in lower performance compared to the other two sets.

However, as mentioned earlier, two of the words in the set have similar acoustic classes

94

and hence the possibility of incorrect recognition is more. Apart from this, the results

clearly favor the implementation of the integrated speaker and word recognition system

for applications in mobile devices.

6.5 Summary

This chapter introduced the GMM based integrated speaker and word recognition system.

In the system, for word recognition, we used the technique of time-ordered GMM word

models explained in Chapter 5. For speaker recognition, as seen in Chapter 4, two

different schemes were found to provide good results. Hence two versions of the

integrated system were proposed based on text-constrained speaker recognition and text-

dependent speaker recognition respectively. We analyzed the two systems and established

that the text-dependent version provides better performance. The knowledge of the word

identified was utilized to improve the speaker recognition accuracy by the two-step

approach followed in the system based on text-dependent speaker recognition. We also

identified that while the storage requirement of the text-dependent version will be

relatively higher, the scoring in the speaker recognition process will be faster because of

the smaller number of mixtures it uses in the speaker model. Because of these reasons, the

integrated system with text-dependent speaker recognition is chosen for the subsequent

work. Experiments carried out to evaluate the performance of this integrated system for a

smaller set of words provided results better than those obtained for a larger set of words

thereby proving its suitability for typical mobile applications. In the next chapter, we

implement this integrated system as a mobile application and test it in real-life

environments.

95

Chapter 7

Mobile Application for Speaker-Aware Isolated
Word Recognition

7.1 Overview

In the last chapter, we discussed the GMM based integrated speaker-and-word

recognition system and established that the two-step system with word recognition based

on the technique proposed in Chapter 5 and speaker recognition based on the text-

dependent approach yields better performance. The optimal values for various processing

parameters are also established by the experiments carried out in the previous chapters. In

this chapter, we develop the above system as an application suitable for mobile devices.

The rest of the chapter is organized as follows. Section 7.2 gives the description of the

platform chosen. Section 7.3 explains the development of various modules in the mobile

application. In Section 7.4, the implementation results are presented. We summarize this

chapter in Section 7.5.

7.2 Platform Chosen

The integrated speaker-and-word recognition system is developed as an Android

application. The choice of the Android platform is motivated by the huge growth in the

usage of smartphones with Android support in recent times. The market share of Android

in smartphone sales in the year 2010 is 22.7% which is an enormous 888% increase

compared to the previous year [92]. In the first quarter of the year 2011, Android has

become the market-leading smartphone platform with 36% market share [93].

96

Android is an open source software stack built on top of a Linux kernel for mobile

devices that includes an operating system, middle-ware and key applications.

The Android Software Development Kit (SDK) provides the tools and the Applications

Programming Interfaces (APIs) necessary to develop applications on the Android

platform using the Java programming language. Any mobile device that supports Android

can implement and run an Android application. In the following, we provide an overview

of the Android architecture and the development environment.

Platform / Company Market Share (%)

Android 36.0

Symbian 27.4

Apple iOS 16.8

Research in Motion (RIM) 12.9

Microsoft 3.6

Other OS 3.3

 Table 7.1: Worldwide smartphone sales to end users in the first quarter of 2011

7.2.1 Android Architecture

The Android software stack is a multilayered environment, where each layer groups

together several programs that support specific operating system functions [94]. Figure

7.1 shows the layers in the Android environment and the major components in each of

them.

97

 Figure 7.1: Android architecture

Applications Layer

The top layer of the Android environment consists of the core Java applications such as

dialer, address book, browser etc., which can be accessed through the user interface

provided. Mobile device users will normally deal only with this layer but application

developers or hardware manufacturers should have the knowledge about the remaining

three lower-level layers.

Application Framework

This layer provides the functions that manage the basic APIs of a mobile application like

resource management, content management, user interface management etc. The

developers have full access to all the APIs even if it is used by the core applications in the

top layer. This application framework layer is designed to simplify the reuse of the

components and therefore any application can publish its own framework APIs and any

other application may then make use of it. This layer contains important functions

including

LIBRARIES

Examples: Surface Manager, Media-

Framework, SQLite, SGL, FreeType, Webkit

APPLICATIONS

Built-in applications like Home, Browser, Phone, Contacts etc.

APPLICATION FRAMEWORK

Activity-Manager Content-Manager Window-Manager Package-Manager

View-System Location-Manager Resource-Manger Notification-Manager

ANDROID RUNTIME

Core Libraries

Dalvik Virtual Machine

LINUX KERNEL

Hardware-Drivers Power-Management Memory-Management

98

Views: A rich and extensible set that can be used to build the user interface

of an application.

Content Providers: This enables applications to access data from other applications

such as Contacts in mobile phones.

Resource Manager: This provides access to non-code resources such as graphics and

layout files.

Notification Manger: This enables all applications to deal with custom alerts.

Activity Manager: This manages the lifecycle of the applications.

Libraries

The next layer of the Android architecture includes a set of C/C++ libraries used by

various components of a device that supports Android. For example, the media

framework library supports playback and recording of various audio, video and picture

formats. Other important libraries in this layer includes the System C library, which is an

implementation of the standard C system library tuned for embedded Linux-based

devices, Surface-Manager, which manages access to the display subsystem and

composites 2D and 3D graphic layers from multiple applications, and SQLite, which is a

powerful and lightweight relational database engine available to all applications. All the

libraries in this layer are exposed to developers through the application framework.

Android Runtime

The Android Runtime layer is located on the same level as the Libraries and it contains a

set of core libraries that provides most of the functionality available in the core libraries

of the Java programming language. It also includes the Dalvik Virtual Machine (DVM).

Every Android application runs in its own process, with its own instance of the DVM. It

has to be noted that Android applications are programmed using the Java programming

language. A tool called ‘dx’ is used to convert the Java class files into ‘.dex’ format,

which is optimized for memory footprint. The DVM executes the files that are in the

‘.dex’ format. The DVM relies on the Linux kernel for underlying functionality such as

threading and low-level memory management.

99

Linux Kernel

The base of the Android software stack is the kernel. The Linux version 2.6 is used to

build this kernel. The kernel acts an abstraction layer between the hardware and the rest

of the software stack. Also, Android relies on the kernel for core system services such as

security, memory management, process management and network stack. The drivers for

the various hardware components in the device are also managed by this kernel.

7.2.2 Android Development Environment

Android applications, like most mobile phone applications, are developed in a host-target

development environment. It is developed on a computer with abundant resources and

then transferred to the mobile device. To develop android applications, the main

components needed are the Java Development Kit (JDK), Android SDK, Eclipse

Integrated Development Environment (IDE) and the Eclipse Android Developer Tools

(ADT) plug-in. The JDK provides a collection of Java programming tools and the

Android SDK enables developers to create applications for the Android platform by

providing the development tools, emulator, and required libraries. Eclipse is a software

development environment for building, deploying and managing software across the

entire software lifecycle. It provides a core of services for controlling a set of tools

working together to support programming tasks. Though there are a few other IDEs that

can support Android application development, Eclipse is recommended since Android has

the official plug-in support for it.

7.3 Integrated Speaker-and-Word Recognition System as an
Android Application

In this section, we present the integrated speaker-and-word recognition system developed

as an Android application. The salient features of Java programming involved in the

development and the Android libraries and frameworks used in various modules of the

application are described. The entire application of the integrated speaker-and-word

100

recognition system is divided into 4 modules. Figure 7.2 shown below illustrates the

modules and the execution flow.

Feature
Extraction

Unit

Training
Unit

Testing
Unit

 Model
Storage

Speech

Word and Speaker Identity

Speech
Capture

Unit

MFCC

 Figure 7.2: Overview of the Android application for speaker-and-word recognition

The Android application is developed using the Java programming language. Java

is a general-purpose, concurrent, class-based, object-oriented language that is specifically

designed to have as few implementation dependencies as possible. In line with the

concept of Java, our application is also programmed in an object-oriented manner. A

collection of objects and classes for various functions in the application is developed and

all the 4 basic modules of the application use the necessary objects from this collection. In

Android application development, some of the Java libraries, especially the ones

associated with the internal hardware of mobile devices like the microphone, are

overwritten by the Android specific APIs. In our work, such a scenario occurs in the

101

speech capture unit, where word utterances by a speaker have to be recorded for either

training or testing. The Java Sound package normally used to record speech in Java

programming is replaced with the Android APIs as explained in the following.

7.3.1 Speech Capture Unit: Android APIs for Speech Recording

At present, there are two different APIs that can support audio recording in Android.

They are MediaRecorder [95] and AudioRecord [96].

MediaRecorder: The MediaRecorder API can be used to record audio from the

microphone of the mobile device to a file on the memory card. The recorded audio would

be in MPEG4, RAW, AMR or 3GP format. Though it is easy and straight forward to use,

it also has disadvantages with respect to our requirement. The various recording

parameters cannot be modified and the audio buffers cannot be accessed during

recording. Also, the audio is recorded in a compressed format and hence for speech

processing an additional step of uncompressing the data has to be carried out. This

increases the time taken between the speech capture and the speaker-and-word identity

output in our application.

AudioRecord: The AudioRecord API for audio recording is used in our application

development as it overcomes the shortcomings of the MediaRecorder API mentioned

above. The recording is done in uncompressed WAV format and the audio buffers can be

accessed during the recording. Also, all the recording parameters like the sampling rate,

sample size, channel type and size of the buffer can be set to the desired values.

7.3.2 Model Storage

The unit Model Storage shown in Figure 7.2 indicates the area where the speaker and

word models are stored after training. These models have to be accessed by the testing

unit to perform the identification of the word and the speaker. Therefore, the storage

location and the organization of the models should be made available to the application.

Android provides a relational database called SQLite and this can be utilized to store data

102

related with the applications. The database created and used by the application is coupled

along with it and hence when an application is ported to a device, the data in the database

are also transferred to the device.

 In our work, instead of using the SQLite database, we followed a simple way of

storing the models in the memory card of the device and reading them from it for scoring

in the testing unit. Java data output and input streams are used for this purpose. A data

output stream lets an application write primitive Java data types to an output stream in a

portable way. A data input stream lets an application read those data types from an

underlying input stream in a machine-independent way. The procedure followed for

model storage makes the stored model free from any control by the application and hence

when the application is ported to a mobile device, the models should also be ported to the

device separately. Though this is not a standard and data-security-compliant procedure for

maintaining data storage, we followed this convenient approach since our main focus was

only on validating the performance of the integrated speaker-and-word recognition

system as a mobile application.

7.3.3 Computation Speed-up through Inter-Module Parallelism

Figure 7.2 shows the input for the three units, feature extraction, training and testing.

While the training and testing units can start their function only after receiving all the

MFCC vectors, the feature extraction unit need not wait till the entire word utterance is

captured. Since we use the AudioRecord API for recording speech in the speech capture

unit, it is possible to access the samples while capturing the speech. It is known that the

feature extraction is done for each frame of very short duration. In our work, we used 20

msec speech frames progressing at a rate of 10 msec. During speech capture, when the

first frame, that is 20 msec of speech, is captured, the feature extraction unit should be

notified to process that frame and extract MFCC for it. This notification is repeated for

every speech frame that is being captured. During the feature extraction process, the

speech capture unit should not be suspended and should be allowed to capture speech to

prevent loss of speech samples. This parallel functioning is achieved in our work using

the multithreading concept of Java, which enables several parts of a program to run in

103

parallel. Java uses threads, which are lightweight processes part of one program that can

access shared data, to facilitate parallel operation. In our application, the speech capture

unit and the feature extraction unit are designed as two separate threads and the buffer

where the samples are stored during speech capturing is shared between the two threads.

7.3.4 User Interface Management of the Application

Android provides an application framework API known as Views, which contains classes

that handle screen layout and interaction with the user. In our work, the various

processing parameters in all the units are fixed according to the findings from the

experiments carried out in the previous chapters. Therefore the main interactions between

the user interface screen and the application are the activation of the application by the

user, the notification to the user for speaking and the display of speaker and word

identification results in the screen. We followed the linear layout class provided by the

View API, which aligns all the components like text fields, buttons etc. in a single

direction - vertically or horizontally, depending on how the orientation attribute is

defined.

7.3.5 Device Support

The Android application is deployed to a device along with an xml file named

AndroidManifest. This file contains the necessary configuration information to properly

install the application on the device. It includes the required class names and types of

events the application is able to process, and the required permissions the application

needs to run. In our application, the permissions to use the microphone for recording

speech and to write and read files from the memory card have to be specified.

 Android applications run only on devices that have support for Android operating

system. The speaker-and-word identification application involves many floating point

operations and hence the device should have a processor with floating point unit to

support the successful running of the application. The device selected for testing the

implementation of the algorithm is presented in the following section.

104

7.4 Implementation Results

We selected the Motorola CHARM mobile phone that runs the Android operating system

to test the implementation of our algorithm. The important specifications of the mobile

phone are given below.

Operating System: Android OS, version 2.1

CPU: ARM Cortex-A8 600 MHz processor

Memory: 512MB RAM

The implementation is analyzed for the accuracy of speaker-and-word identification and

the computation time taken by the various modules. The findings are presented in the

following.

7.4.1 Performance Analysis

In order to evaluate the performance of the Android application for speaker-and-word

recognition in real-life environments, an evaluation is carried out using five speakers and

a set of five words. All the five speakers are male, non-native speakers of English, in the

age group of 28 to 35. The set of command words used are ENTER, START, GO,

REPEAT and ERASE. The recording of speech for training is done in a closed room with

a quiet background environment. Testing is carried out a week after the training session

and is done partly in the same room and partly in a typical office environment with

minimal background noise.

 For both training and testing, the speech is captured using the internal microphone

of the mobile device with mono channel recording and the speech is sampled at the rate of

8 KHz with 16 bits per sample. The best training set-up found from the results in Chapter

4 and Chapter 5 is followed here. For speaker model training, each speaker-word model is

trained as an 8-mixture GMM by using 10 utterances of that word. For word model

training, each word is segmented into 4 segments and each sub-model is modeled as a 4-

105

mixture GMM. 3 utterances of each word uttered by each speaker are used for training the

word models. The training in general is done by using 10 iterations of the k-means

algorithm to initialize the model and using the BA scheme explained in Chapter 3 to

estimate the final model. For testing, each speaker uttered each of the words 10 times

resulting in 250 test cases for speaker-and-word identification. The feature extraction set-

up for training and testing is the same. 20 MFCC feature vectors are calculated from a 20

msec speech window progressing at a rate of 10 msec. The results are presented in Table

7.2.

Total
Test

Cases

Word
Correctly
Identified

Word
Recognition

Rate (%)

Speaker
Correctly
Identified

Speaker
Recognition

Rate (%)

Speaker
and Word
Correctly
Identified

Speaker-
and-Word

Recognition
Rate (%)

250 245 98.0 231 92.4 229 91.6

Table 7.2: Recognition accuracy of the Android application for speaker-and-word
recognition

An overall recognition accuracy of 91.6% is obtained from the experiments. The speaker

recognition rate is 5.6% less compared to the word recognition rate. Analyzing the

performance of the individual words (Figure 7.3) show that only for two words in the list,

ERASE and START, the speaker recognition rate is considerably lesser. For ERASE, the

word recognition rate is 45/50 and since the speaker recognition depends on the

indentified word, the fall in accuracy (41/50) is not surprising. For the word START, the

speaker recognition rate is 44/50 even though 100% word recognition accuracy is

obtained. It has to be noted that this word also produced the lowest text-dependent

speaker identification performance (96.86%) among the 20 TI46 database words used in

the experiments in Chapter 4 (Table 4.4). It is worth noting that both the words yielding

lower speaker recognition accuracy, ERASE and START, contain the 's' sound, which is

an unvoiced fricative produced without the vibration of vocal chords. Unvoiced sounds

are known to exhibit noise-like randomness and are inadequate for distinguishing

speakers. It can be observed from Figure 7.3 that 4 words produced 100% word

106

recognition accuracy and the word GO, yielded correct speaker-and-word recognition all

the times.

 Figure 7.3: Speaker and word recognition performance for each word utterance

7.4.2 Execution Time Analysis

Process Average Execution Time (msec)

FFT and Mel-Filter bank (per frame) 10.68

Log and DCT (per frame) 0.47

 Table 7.3 Average execution time for the modules in MFCC calculation

 The execution time of the steps in the major modules is summarized in the

following tables. Table 7.3 shows the time taken for MFCC calculation for a single frame.

The total calculation time is 11.15 msec. The overall time required to calculate the MFCC

for an entire word depends on the number of frames in that word.

20

25

30

35

40

45

50

ENTER ERASE START GO REPEAT

N
o

of
 C

or
re

ct
 R

ec
og

ni
tio

n
In

st
an

ce
s

Words

Word Recognition

Speaker Recognition

107

Table 7.4 presents the execution time for the initial model estimation, final model

estimation and the scoring processes for an input utterance with 48 speech feature vectors.

The number of mixtures per GMM is kept as 4 and 8. For the given input utterance, the

total training time is 179 msec for estimating the 4-mixture GMM and 306 msec for the 8-

mixture GMM. However, it has to be noted that multiple utterances of a word are

considered for training speaker and word models and hence the overall training time

depends on the total number of speech feature vectors processed.

No of Speech
Vectors

Processed
Process

Average Execution Time (msec)

Mixtures/ Model
=4

Mixtures/Model
=8

48

Initial Model Estimation
(10 iterations of k-means) 142.90 236.10

Final Model Estimation 35.84 69.91

Scoring 16.80 32.64

 Table 7.4: Average execution time for the modules in training/testing a model

 A typical word utterance will be around 0.5 seconds in duration and according to

our set-up of extracting MFCC from 20 msec speech window progressing at a rate of 10

msec, each utterance is also expected to have around 50 speech vectors. Hence the

scoring time shown in Table 7.4 is typical for obtaining the match score against a model

for an utterance. The total time taken to identify a word or speaker depends on the total

number of models considered for scoring.

 In the following, we provide an indication of the time required by the mobile

implementation to perform speaker-and-word identification for a typical word utterance.

The 48 speech vectors shown in the above table is obtained from an utterance of the word

START in our evaluation with a set of 5 speakers and words. We used 4 segments per

word in word modeling and hence there are 20 sub-word models with 4 mixtures each.

Since the test utterance is segmented into 4, the number of speech vectors to be processed

for scoring is reduced by a fraction of 4. Hence, it will approximately take one fourth of

108

the above reported 16.8 msec time for scoring against a sub-word model and the time for

obtaining the total match score against a whole word will be equal to 16.8 msec.

Therefore, the time taken for word identification after scoring against all the models will

be 84 msec (16.8 × 5). For speaker models, we used 8 mixtures and hence the time taken

for speaker identification will be 163.2 msec (32.64 × 5). In total, after the speech is

captured, the time taken for speaker-and-word identification will be 247.2 msec in

addition to the time required to fetch the models from the database.

7.5 Summary

In this chapter, we discussed the development of the integrated speaker-and-word

recognition system as an Android application. The multilayered architecture of the

Android operating system was explained in detail. The Android application was

developed using the Java programming language in an object oriented manner. The

application was divided into four major modules, namely, speech capture unit, feature

extraction unit, training unit and testing unit. To speed-up the output of the recognition

process, the speech capture unit and the feature extraction unit were made to function in

parallel using the multithreading concept of Java. The Android-specific AudioRecord

API, that allows the captured speech samples to be accessed for parallel processing, was

used for capturing the speech.

 The application was deployed in a mobile device with ARM Cortex-A8 600 MHz

processor and 512 MB RAM for testing the implementation. 5 speakers and a set of 5

command words were used for the evaluation and an overall speaker-and-word

recognition rate of 91.6% was obtained. The typical execution times of the various

modules in the application were also presented in this chapter.

109

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this research work, an integrated speaker and word recognition system to recognize a

spoken word and the speaker who uttered it has been developed. A study of the existing

systems of similar type revealed that the word recognition and speaker recognition

processes are carried out through different techniques that best match the processes. This

inhibits the implementation of the system in devices with limited resources because of the

high computational complexity involved. A reduction in the complexity of the above said

systems can be realized if they are made to utilize a single technique for both speaker and

word recognition. The literature survey carried out revealed that among the robust

stochastic modeling techniques, GMM has fewer computations and has the potential to

suit both speaker and isolated word recognition. Hence GMM was selected as the base of

our algorithm and a rapidly configurable evaluation platform to expedite the GMM based

experiments was developed. We envisage that this platform will also serve as a useful

tool for future researches undertaken in this field.

The challenge in using GMM for speaker recognition is that the recognition has to

be carried out using a word utterance of very short duration. One approach to overcome

this problem is to constrain the training process to only the words in the vocabulary. Our

experimentation of this text-constrained approach reveals that increasing the number of

utterances of each of the words in the training set provides high robustness. The

performance of this approach depends on the number of words in the vocabulary. If more

number of words is used, the recognition process has to cover a large acoustic group and

hence the accuracy of recognition will get reduced. We proposed and evaluated an

110

improvement to text-constrained speaker recognition by grouping the similar sub-word

units that constitute the words in the vocabulary. Although in the current form, the

technique yielded only a performance similar to that of text-constrained speaker

recognition, we believe that the recognition rate can be potentially improved by exploring

alternative schemes for segmenting words into sub-words and for grouping them. We

have identified this as a key area for future work spurred by this research. Another

approach to solve the speaker recognition problem using a single word utterance is to

carry out the recognition in text-dependent mode. Though this approach requires the

speaker to be trained individually for each of the words in the vocabulary, our results

show that it provides robust speaker recognition with 99.28% accuracy.

Extending GMM to word recognition posed a significant challenge because the

time sequence information, which is vital for recognizing a word, is lacked by GMM.

Therefore, a new technique to incorporate temporal information of speech in GMM is

proposed. Each word is represented as a time-ordered sequence of GMMs, where the

GMM sequence corresponds to the sequence of sub-word units in the word. GMM-based

recognition is confined to these sub-word units by segmenting the test utterance into a

definite number of segments. This method of incorporating temporal information is

simple and does not require any linguistic/phonetic information to delineate the sub-word

units or information on inter-sub-word transition probabilities. This technique improved

the word recognition accuracy from 90.6%, obtained by the conventional GMM

approach, to 96.26% for a 20-word vocabulary and further increased it to 96.93% when

multiple time-ordered models per word are used. It is worth noting that the above increase

in the recognition accuracy has been achieved without any significant increase in

computational complexity. While typical segmentation algorithms used to segment the

words are computationally complex, we have utilized a simple, yet effective,

segmentation method that operates at the acoustic level and segments the words into a

predetermined number of equal parts.

 With GMM being successfully applied to word recognition, it is evident that an

integrated system of speaker and word recognition can be designed using the GMM

technique. After evaluating the integrated speaker-and-word recognition system with text-

111

constrained and text-dependent speaker recognition approaches, the text-dependent

speaker recognition approach is chosen in order to realize a robust system. Such a system

recognizes the uttered word first and then identifies the speaker based on the speaker

models prepared using the recognized word. This approach makes the speaker recognition

process rely on the correctness of word recognition. Though the memory required for the

speaker models in this system is relatively high because of the text-dependent speaker

recognition approach, practical speaker-and-word recognition applications typically use

only a small set of words and hence this drawback is unlikely to be a major concern.

Having developed the integrated speaker-aware word recognition system, we ported the

algorithm as an application into an Android-based mobile device operating with an ARM

Cortex-A8 600 MHz processor. Experiments in real-life situations have been successfully

carried out with a set of 5 words and 5 speakers and an overall recognition accuracy of

91.6% has been obtained. While the suitability of the proposed technique for resource-

constrained mobile/embedded devices has been demonstrated, we believe that the

recognition rate could be potentially improved through further research on this topic as

outlined in the following section.

8.2 Future Work

In the following, we present a few suggestions for further developing the ideas

propounded in this thesis. It is envisaged that these suggestions will propel further

research and development activities in this domain.

Improving the robustness of text-constrained speaker recognition: In our evaluations

with the TI46 corpus, text-dependent speaker recognition yielded a recognition accuracy

of 99.28% compared to 96.6% for text-constrained speaker recognition. On the basis of

this result, the text-dependent approach was adopted for the integrated system. However,

text-constrained speaker recognition offers a few advantages such as making the word

recognition and speaker recognition processes independent of each other. Also, it

eliminates the need for storing multiple word-specific speaker models for each speaker.

Hence, the sub-word grouping technique proposed in Chapter 4 for improving the

accuracy of text-constrained speaker recognition merits further research. As the proposed

112

sub-word grouping technique is based on the idea of comparing 'similar' sounds produced

by different speakers, it is desirable that a sub-word unit present in two words of different

lengths are delineated in an identical manner. However, this cannot be guaranteed by the

method of segmenting each word into a pre-selected number of sub-words or by fixing

the number of feature vectors in each sub-word. A more flexible segmentation scheme

that produces a variable number of variable-sized homogeneous clusters of contiguous

feature vectors is likely to yield better results. Realizing such a flexible segmentation

scheme without utilizing phonetic transcripts is a challenging task that demands

significant innovations to the existing vector quantization and clustering algorithms.

Research effort could also be directed towards developing better techniques for grouping

the sub-word units.

Word modeling optimization: There is potential for further improving the word

recognition accuracy through refinement and optimization of the proposed technique in

which each word is modeled as a temporal sequence of GMMs with each GMM

representing a sub-word unit. In particular, the effect of time-aligning the utterances used

for modeling a word in order to normalize the variations in the utterance lengths is worth

evaluating. As the dynamic programming methods typically used for time-alignment are

compute-intensive, efficient alternatives may need to be explored. A related task is to

evaluate if the use of overlapping sub-word units can render the technique robust to

variations in articulation of the same word. It is also beneficial to investigate if using a

variable number of sub-word units depending on the word length results in better

recognition accuracy.

Compensating background noise and handset variations: Mobile implementations of

the proposed speaker-aware word recognition system need to operate in uncontrolled

conditions, where background environmental noise and variations in handset

characteristics are known to adversely affect the recognition performance. Hence, the

study and incorporation of computationally-efficient techniques for countering the effect

of environmental noise and handset variations is an important area for future work.

113

References

[1] Ladefoged, P., “Phonetic Basis or Computer Speech Processing”, Computer
Speech Processing, Edited by F. Falliside and W.A. Woods, Prentice Hall
International, London, 1983.

[2] Flangan, J.L., “Voices of Man and Machine”, Journal of Acoustic Society of

America, March 1972.

[3] Deller, J.R., Hansel, H.L. John and Proakis, J.G., Discrete Time Processing of

Speech Signals, IEEE, New York, 2000.

[4] Atal, B.S., “Linear Predictive Coding of Speech”, Computer Speech Processing,

Edited by Falliside, F. and Woods, W.A., Prentice Hall International, London,
1983.

[5] Campbell, J.P. Jr., “Speaker Recognition: A Tutorial”, Proceedings of IEEE, Vol.

85, Issue 9, pp. 1437-1462

[6] Davis, S.B. and Mermelstein, P., “Comparison of Parametric Representations for

Monosyllabic Word Recognition in Continuously Spoken Text”, IEEE Trans. On
Acoustics, Speech and Signal Processing, vol. ASSP 28, pp. 357 – 366

[7] Reynolds, D.A., “Experimental Evaluation of Feature for Robust Speaker

Identification”, IEEE Trans on Speech and Audio Processing, vol. 2, no. 4, pp.
639 – 643.

[8] Reynolds, D.A., "A Gaussian Mixture Modeling Approach to Text-Independent

Speaker Identification", Ph.D. Thesis, Georgia Institute of Technology, August
1992

[9] Picone J., “Signal Modeling Techniques in Speech Recognition,” IEEE

Proceedings, vol.81, pp. 1215-1247, Sept. 1993.

[10] Reynolds, D.A., “Experimental Evaluation of Feature for Robust Speaker

Identification”, IEEE Trans on Speech and Audio Processing, vol. 2, no. 4, pp.
639 – 643.

[11] Markov, K.P. and Nakagawa S., "Comparison between LPC cepstrum and MFCC

for speaker recongition using clean and telephone speech", Acoustic Society of
Japan, Conference Record, 1-1-17, (1999.3)

114

[12] Delaney, B., Jayant, N., Hans, M., Simunic, T. and Acquaviva, A., “A Low-Power
Fixed Point Front End Feature Extraction for a Distributed Speech Recognition
System” In Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP) (2002).

[13] International Biometric Group, “Template Sizes”,

{http://ibgweb.com/reports/public/reports/template_size.html}

[14] Gersho, A., Gray, R., 1991. Vector Quantization and Signal Compression. Kluwer
 Academic Publishers, Boston.

[15] Burton, D., 1987. "Text-dependent speaker verification using vector quantization

source coding". IEEE Trans. Acoustics, Speech, Signal Process. 35 (2), 133–143.

[16] Kinnunen, T., KilpelSinen, T., Fra¨nti, P., 2000. "Comparison of clustering

algorithms in speaker identification". In: Proc. IASTED Internat. Conf. on Signal
Processing and Communications (SPC 2000), Marbella, Spain, September 2000,
pp. 222–227.

[17] Mason, K.Yu.J., Oglesby, J., “Speaker recognition using hidden Markov models,

dynamic time warping, and vector quantization,” Proc. Inst. Elect. Eng., Vis.,
Image, Signal Process., vol. 142, no. 5, pp. 313–318, 1995.

[18] Gupta, H., Hautamki, V., Kinnunen, T. and Frnti, P., Field Evaluation of Text-

Dependent Speaker Recognition in an Access Control Application. Paper,
downloadable at http://cs.joensuu.fi/pages/tkinnu/webpage/pdf/DTWpaper.pdf.

[19] Sakoe, H., Chiba, S., “Dynamic programming algorithm optimization for spoken

word recognition”, IEEE, Trans. Acoustics, Speech, and Signal Proc., Vol. ASSP-
26, 1978.

[20] Itakura, F., "Minimum prediction residual principle applied to speech

recognition", IEEE Trans. Acoust. Speech and Signal Process. ASSP-23 (1975)
67–72.

[21] Furui, S., "Cepstral analysis technique for auromatic speaker verification". IEEE

Trans. ASSP-29, pages 254-272, 1981

[22] Ramasubramanian V., Das A. and Kumar V.P (2006). “Text-dependent speaker

recognition using one-pass dynamic programming algorithm”, In Proc. ICASSP
2006, vol. 1, pp. 901-904.

[23] Dempster, A., Laird, N., Rubin, D., "Maximum likelihood from incomplete data

via the EM algorithm", J. Royal Statist. Soc. 39 (1977) 1–38.

[24] Moon, T.K., "The expectation-maximization algorithm", IEEE Signal Proc. Mag.

13 (1996) 47–60.

115

[25] Reynolds, D. A. and Rose, R. C., "Robust text-independent speaker identification
using Gaussian mixture speaker models", IEEE Trans. Speech Audio Process. 3
(1995), 72–83.

[26] Besacier, L., Bonastre, J.-F., 2000. "Subband architecture for automatic speaker
 recognition". Signal Process. 80, 1245–1259.

[27] Besacier, L., Bonastre, J., Fredouille, C., 2000. "Localization and selection of
speaker-specific information with statistical modeling". Speech Comm. 31, 89–
106.

[28] Reynolds, D.A., Quatieri, T.F. and Dunn, R.B., “Speaker Verification Using

Adapted Gaussian Mixture Models”, Digital Signal Processing, (10), 2000, pp.
19-41.

[29] Reynolds, D. A., "Comparison of background normalization methods for text-

independent speaker verification". In Proceedings of the European Conference on
Speech Communication and Technology, September 1997, pp. 963–966.

[30] Panda, A., “High Performance Voice Authentication System", M.Engg Thesis,

Nanyang Technological University, 2003.

[31] Bocklet, T., and Shriberg, E. "Speaker recognition using syllable-based

constraints for cepstral frame selection". In Proc. Int. conference on acoustics,
speech, and signal processing (ICASSP 2009) (Taipei, Taiwan, April 2009), pp.
4525 – 4528.

[32] Brummer, N., Burget, L., Cernocky, J., Glembek, O., Grezl, F., Karafiat, M., Van

Leeuwen, D., Matejka, P., Schwarz, P., and Strasheim, A., “Fusion of
heterogeneous speaker recognition systems in the STBU submission for the NIST
speaker recognition evaluation 2006,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 15, no. 7, pp. 2072–2084, 2007.

[33] Fattah, M.A., Ren, F., Kuroiwa, S., "Phoneme based speaker modeling to improve

speaker identification", AIML International Conference, June 2006

[34] Stapert, R.P., Mason, J.S., “A Segmental Mixture Model for Speaker
 Recognition”, Proceedings of Eurospeech 2001, Vol. 4, pp. 2509-2512, 2001

[35] Stapert, R.P., “A segmental mixture model: maximising data usage with time

sequence information”, PhD Thesis, University of Wales Swansea, March 2001.

[36] Rabiner, L.R., Juang, B.H., Fundamentals of Speech Recognition, Prentice-Hall,
 Englewood CliDs, NJ, 1993.

[37] Picone, J., "Continuous speech recognition using hidden Markov models", IEEE

Acoust Speech Signal Process. Mag. 7 (1990) 26–41.

116

[38] Rabiner, L.R., "A tutorial on hidden Markov models and selected applications in
speech recognition", Proc. IEEE 77 (1989) 257–286.

[39] Zhu, Y., Gao, S., Ran, F., Chen, I., Macleod, B., Millar & Wagner, M., (1994).

"Text-independent speaker recognition using VQ, mixture Gaussian VQ and
Ergodic HMMs". Proceedings of the ESCA Workshop on Automatic Speaker
Recognition, Identification and Verification, Martigny.

[40] Matsui, T., and Furui, S., "Comparison of Text-Independent Speaker Recognition
 Methods Using VQ-Distortion and Discrete/Continuous HMMs," Proc. Int.Conf.
 Acoustics, Speech and Signal Processing, San Fransisco, CA, vol. 2, pp. 157-160,
 March 1992.

[41] Veth, J., and Bourlard, H., “Comparison of hidden Markov model techniques for

automatic speaker verification in real world conditions,” Speech Communication,
vol. 17, Mar 1995, pp. 81–90.

[42] Rosenberg, A. E., Lee, C. H., Gokoen, S., “Connected word talker verification

using whole word hidden Markov model,” in ICASSP-91, 1991, pp. 381–384.

[43] Matsui, T., and Furui, S., "Concatenated phoneme models for text-variable

speaker recognition", In ICASSP-93, Minneapolis, 1993.

[44] Rosenberg, A. E., Lee, C. H., Soong, F.K., “Sub-Word Unit Talker Verification

Using Hidden Markov Models,” In ICASSP-90.

[45] Euler, S., Langlitz, R., Zinke, J.,”Comparison of whole word and subword

modeling techniques for speaker verification with limited training data”, In
ICASSP–97, Munich (Germany), 1997.

[46] Sturim, D.E., Reynolds, D.A., Dunn, R.B. and Quatieri, T.F. "Speaker

Verification using Text-Constrained Gaussian Mixture Models", Proceedings of
the International Conference on Acoustics, Speech, and Signal Processing, pp.
677-680, May 2002.

[47] Boakye, K., “Text-Constrained Speaker Recognition using Hidden Markov

Models”, Final Project Paper, University of California, Berkeley, 2003.

[48] Fortuna, T. F., “Dynamic Programming Algorithms in Speech Recognition”,

Informatica Economică nr. 2(46), pp. 94-99, 2008.

[49] Reynolds, D.A., Rose, R.C., and Smith, J.T., “PC Based TMS320C30

Implementation of the Gaussian Mixture Model Text-Independent Speaker
Recognition System”, Proc. Of Int. Conf. Sig. Proc. Applications and Technology,
Nov. 1992 pp. 967-973.

[50] Murthy, P., VLSI Based Embedded System for Voice Authentication, M.Eng

Thesis, Nanyang Technological University, Nov. 2000.

117

[51] Przybocki, M. A. and Martin, A. F., ‘NIST Speaker Recognition Evaluation -

1997’, Proc. RLA2C 1998, Avignon, pp120-123.

[52] Deller, J.R., Hansel, H.L. John and Proakis, J.G., Discrete Time Processing of

Speech Signals, IEEE, New York, 2000.

[53] Huang, C., Tao, C., AND Chang,E., (2004). "Accent Issues in Large Vocabulary

Continuous Speech Recognition", International Journal of Speech Technology(7):
141-153.

[54] Shore, I. E. and Burton, D., "Discrete utterance speech recognition without time
 normalization-recent results," Proceedings of Int, Conf. Pattern Recognition,
 pp.582-584, IEEE 82CH1801-0 (Oct. 1982).

[55] Abdulla, W., Chow, D., Sin, G., "Cross-words reference template for DTW-based
 speech recognition systems", in Proc. IEEE TENCON, Bangalore, India, 2003.

[56] Zhang, Y., Desilva, C.J.S., Togneri, A., Alder, M., Attikiouzel, Y., "Speaker-

independent isolated word recognition using multiple Hidden Markov Models". In
Proc. IEE Vision, Image and Signal Processing, volume 141, 3, pages 197–202,
June 1994.

[57] Lee, K.F., “Context-dependent phonetic hidden Markov models for speaker-

independent continuous speech recognition”, IEEE Trans. Acoust., Speech,
Signal Processing, vol. 38, no. 4, pp. 599~609, Apr. 1990

[58] Rabiner, L., Juang, B. H., "Fundamentals of Speech Recognition", Prentice-Hall,
 New Jersey, 1993

[59] Schwartz, R. M., Chow, Y. L., Roucos, S., Krasner, M., Makhoul, J., “Improved

hidden Markov modeling of phoneme for continuous speech recognition”, in
IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 1984

[60] Smith, F.J., Ming, J., O'Boyle, P., Irvine, A.D., “A Hidden Markov Model with
 Optimized Inter-Frame Dependence”, Proc. of ICASSP, pp. 209-212, 1995.

[61] FSugamura, N., Shikano, K., Furui, S., “Isolated word recognition using

phoneme-like templates”, Proc. of ICASSP, pp. 723-726, 1983.

[62] Rogers, F., "On the application of vector quantization to speaker independent
 isolated word recognition", Masters Thesis, Simon Fraser University, 1996.

[63] Everitt, B.S., Hand, D.J., Finite Mixture Distributions, Chapman and Hall, New

York, 1981.

[64] Prabhakar, N., Implementation of Voice Authentication on a 32-bit Micro

controller, FYP Report, Nanyang Technological University, Singapore, 2002.

118

[65] Singh, G., Panda, A., Bhattacharyya, S., Srikanthan, T., "Vector quantization

techniques for GMM based speaker verification". In Proc. Int. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP 2003), Hong Kong, 2003.

[66] Furui, S., Digital Speech Procssing, Synthesis and Recognition, Marcel Dekker

Inc., New York, 1989.

[67] Linde, Y., Buzo, A. and Gray, R.M., “An Algorithm for Vector Quantizer

Design”, IEEE Trans Comm., vol. COM 28, Jan. 1980, pp. 84-95.

[68] Specification of KING Speech Database

(http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC95S22)

[69] Specification of TIMIT Speech Database

(http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1)

[70] Auckenthaler, R. and Mason, J., “Gaussian Selection Applied to Text-Independent

Speaker Verification”, In Proceedings of A Speaker Odyssey - Speaker
Recognition Workshop, 1997.

[71] McLaughlin, J., Reynolds, D. A. and Gleason, T., “A study of computation

speed-ups of the GMM-UBM speaker recognition system,” In Proc. 6th
European Conf. Speech Communication and Technology (Eurospeech 1999),
Budapest, Hungary, 1999, pp. 1215–1218.

[72] Beigi, H.S.M., Maes, S.H., Sorensen, J.S., Chaudhari, U.V., "A hierarchical

approach to large-scale speaker recognition". In Proc. 6th European Conference
on Speech Communication and Technology (Eurospeech 1999), pages 2203–2206,
Budapest, Hungary, 1999.

[73] Sun, B., Liu, W., Zhong, Q., "Hierarchical speaker identification using speaker

clustering". In Proc. International Conference on Natural Language Processing
and Knowledge Engineering 2003, pages 299–304, Beijing, China, 2003.

[74] Pellom, B. L. and Hansen, J. H. L., “An efficient scoring algorithm for gaussian

mixture model based speaker identification,” IEEE Signal Process. Lett., vol. 5,
no. 11, pp. 281–284, Nov. 1998.

[75] Reynolds D. A. and Heck, L. P., "Integration of Speaker and Speech Recognition

Systems", Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, pp. 869-872, 1991.

[76] Aronowitz, H., Burshtein, D., Amir, A., "Text Independent Speaker Recognition

Using Speaker Dependent Word Spotting". In Proceedings of the International
Conference of Spoken Language Processing (ICSLP ’04), Jeju Island, South
Korea, pp. 1789–1792 (2004)

119

[77] Park, A. and Hazen, T.J., “ASR Dependent Techniques for Speaker
Identification”, In Proceedings of the International Conference on Spoken
Language Processing, 2002.

[78] Chen, W., Zhenjiang, M., Xiao, M., “Differential MFCC and Vector Quantization

used for Real-Time Speaker”, IEEE, Congress on Image and Signal Processing,
978-0-7695-3119-9/08, pp. 320-323, 2008.

[79] Gopinath, R.A., “Maximum Likelihood Modeling with Gaussian Distribution for

Classification”, Proc of ICASSP, 1998, vol. II, pp. 661 – 664.

[80] Tong, Y.L., The Multivariate Normal Distribution, Springer Verlag, New York,

1990.

[81] Weber, F., Peskin, B., Newman, M., Corrada-Emmanuel, A., Gillick, L., “Speaker

Recognition on Single- and Multispeaker Data,” Digital Signal Processing 10(1-
3): 75-92

[82] SRI's LVCSR Based Speaker Recognition System, NIST Speaker Recognition
 Evaluation Workshop, 1997.

[83] Specification of TI46 Speech Database
 (http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S9)

[84] Navr´atil, J., Chaudhari, U.V., Maes, S.H., “A speech biometrics system with
 multigrained speaker modeling”, Proc. Conference for Natural Speech Processing
 (KONVENS2000), Ilmenau, Germany, October 2000.

[85] James R. Glass and Victor W. Zue, "Multi-level acoustic segmentation of

continuous speech". In Proceedings of ICASSP,pages 429-432, 1988.

[86] Svendsen, T. and Soong, F., "On the automatic segmentation of speech signals".

In Proceedings of ICASSP, pages 3.4.1-3.4.4, 1987.

[87] Juang, B.H. and Rabiner, L.R., "The Segmental K-means algorithm for estimating

parameters of Hidden Markov models". IEEE Trans. on Acoustics, Speech and
Signal proc., 38(9):1639{1641, September 1990.

[88] Ljolje, A., Riley, M.D., "Automatic segmentation and labeling of speech". In

Proceedings of ICASSP, pages 473{476, 1991.

[89] Mermelstein, P., "Automatic segmentation of speech into syllabic units". Journal

of Acoustical Society of America, 58(4):880-883, October 1975.

[90] Lewis, E., "Automatic segmentation of recorded speech into syllables for speech
 synthesis", In Proceedings of EuroSpeech '01, Aalborg, pp. 1703-1707.

120

[91] Van der Hulst, H. and Ritter, N., "The Syllable: Views and Facts", Walter de
Gruyter, Berlin, 1999.

[92] Gartner Report on Worldwide Mobile Device Sales in 2010

(http://www.gartner.com/it/page.jsp?id=1543014)

[93] Gartner Report on Mobile Communication Devices Sold Worldwide in First

Quarter 2011.
(http://www.gartner.com/it/page.jsp?id=1689814)

[94] Android Architecture Documentation

(http://developer.android.com/guide/basics/what-is-android.html)

[95] Android MediaRecorder API Documentation
(http://developer.android.com/reference/android/media/MediaRecorder.html)

[96] Android AudioRecord API Documentation

(http://developer.android.com/reference/android/media/AudioRecord.html)

121

Appendix A: Conference Paper

The following is the extended abstract of the paper presented in the Second Annual

Summit and Conference of the Asia-Pacific Signal and Information Processing

Association (APSIPA'10) - Student Symposium, Singapore, December 2010.

SUB-WORD CONSTRAINED GAUSSIAN MIXTURE MODEL FOR
ISOLATED WORD RECOGNITION

George Rosario Dhinesh, G.R. Jagadeesh, Ashish Panda and Thambipillai Srikanthan
Centre for High Performance Embedded Systems, Nanyang Technological University

E-mail: {geor0006, asgeorge, pand0005, astsrikan}@ntu.edu.sg

Abstract- We aim to improve the effectiveness of using Gaussian Mixture Model (GMM)
for word recognition by incorporating temporal information of speech. A time-ordered
sequence of GMMs is used to model each word that is segmented into a sequence of
sub-word units. Results show a 5.6% increase in the recognition rate over the baseline
GMM approach.

I.INTRODUCTION

State-of-the-art word recognition systems, typically based on Hidden Markov Models
(HMM), require high computing power, which is lacked by the embedded devices [1].
GMM-based word recognition can potentially be a computationally-efficient alternative.
However, modeling a word with GMM fails in capturing the temporal information of
speech because of the bag-of-frames approach it follows to model the statistical
distribution of all the speech frames. Hence, in order to make GMM usable for word
recognition, there is a need to incorporate time sequence information into it. We
present an approach in which each word is modeled as a time ordered GMM sequence,
where the sequence corresponds to the order of sub-word units that form the word.
This enables us to have a temporally-constrained sub-word level matching for the word
recognition problem.

II.SUB-WORD CONSTRAINED GMM

In the proposed approach, each word, represented as a sequence of speech feature
vectors, needs to be segmented into multiple sub-word units or segments. Our word

122

recognition technique, which operates purely at the acoustic level, does not require the
segments to correspond to any linguistic elements such as phonemes. We evaluate two
segmentation methods. The first, simple equal segmentation, segments a given word
into n equal parts. The second, constrained clustering segmentation, is an adaptation of
the technique proposed in [2]. It segments a word of T feature vectors into n segments,
by obtaining a set of segment boundaries tb, b=1,2...n such that the global distortion
measure

1 1

(,) (1)
1

b

t b

b

n t
D d y c

b t t

 
  

 

is minimized, where yt is the feature vector for the tth frame, cb is the centroid of vectors
in the bth segment and d is the local distortion. We use the Euclidean distance as the
distortion measure.

To model a word, multiple utterances of the word are considered. We utilize the fact
that the time order of the sub-word portions will be the same for all these utterances. A
GMM is trained for each sub-word by grouping parallel sub-words from all the
utterances. During testing, the test utterance is segmented into the same number of
sub-words and each sub-word is scored only against the corresponding GMM. The
overall likelihood score is obtained by averaging the scores of all the sub-words.

III.RESULTS AND CONCLUSIONS

The proposed technique was evaluated on the TI46 database, which contains multiple
utterances of 20 words from 16 speakers. The feature vectors, each with 20 Mel
Frequency Cepstral Coefficients, were calculated from a 20 msec speech window
progressing at a rate of 10 msec. In the baseline GMM approach, the best recognition
rate of 90.6% was achieved when 16 mixtures were used to model each word. In
comparison, as shown in Table I, the sub-word constrained GMM approach achieved an
accuracy of 96.2% when each word was segmented into 4 segments using the simple
equal segmentation method, which is computationally trivial. The results indicate the
potential of our approach for isolated word recognition. Also, unlike HMM, our
technique does not require initial state and state transition probabilities for preserving
the time sequence information and thus nullifies the complex computations involved.
This makes our approach suitable for devices with limited computing resources. The
robustness could be possibly improved by exploring certain variations of the proposed
technique like having different number of segments and mixtures for different words.

123

TABLE I: SUB-WORD CONSTRAINED GMM FOR WORD RECOGNITION

REFERENCES

[1] Christophe L´evy, Georges Linar`es, Jean-Franc¸ois Bonastre, "GMM Based
AcousticModeling for Embedded Speech Recognition" In Proceedings of
ICSLP’2006, Pittsburgh, USA, 2006.

[2] T. Svendsen and F. Soong, "On the automatic segmentation of speech signals". In
Proceedings of ICASSP, pp. 3.4.1-3.4.4, 1987.

Segmentation method

Word recognition rate (%)

Segments /
word = 2

Segments
/ word = 3

Segments /
word = 4

Segments /
word = 5

Constrained
clustering

segmentation
89.61 94.10 95.06 93.94

Simple equal
segmentation 95.28 95.69 96.26 95.49

