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Summary

In this thesis, new methodologies of designing adaptive controllers for uncertain
systems in the presence of actuator failures and subsystem interactions are investi-
gated. The main contributions are summarized in the following two parts.

Part I. Adaptive actuator failure compensation

e Since the actuators redundant for one another may not necessarily share similar
characteristics for different reasons, the relative degrees with respect to the system
inputs corresponding to these actuators are sometimes different. To stabilize such a
class of systems in the presence of total loss of effectiveness (TLOE) type of actuator
failures, modified output-feedback control schemes are proposed by introducing pre-
filters before the actuators. We start with linear systems and consider the output
regulation problem firstly. It is shown that the effects due to the failures can be com-
pensated for without explicit failure detection and isolation. Global boundedness of
all closed-loop signals is maintained and system output regulation is ensured. The
results are then extended to nonlinear systems with tracking problem being consid-
ered.

e There are few results available in investigating the transient performance of the
adaptive system in failure cases, although it is of great importance for the control
problems. It is analyzed in this thesis that, the transient performance of the sys-

tem in the presence of uncertain actuator failures cannot be adjusted when a basic
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SUMMARY X

adaptive backstepping control scheme is adopted, which can be regarded as a repre-
sentative of currently available adaptive failure compensation results. A new design
scheme incorporating a prescribed performance bound (PPB) is then proposed. By
guaranteeing that the tracking error satisfies the PPB all the time no matter when
the actuator failures occur, a prescribed transient performance of the tracking error
is ensured in both failure and failure-free cases. Moreover, the transient performance
in terms of the convergence rate and maximum overshoot of the tracking error can
be improved by tuning certain parameters in characterizing the PPB.

e In most of the existing results on adaptive control of systems with actuator
failures, only the cases with finite number of failures are considered. However, it
is possible that some actuator failures occur intermittently in practice. Thus the
actuators may unawarely change from a failure mode to a normally working mode
or another failure mode infinitely many times. To address the problem of compen-
sating for infinite number of actuator failures, we propose a new adaptive control
scheme based on modular backstepping design. It is proved that the boundedness of
all closed-loop signals is ensured in the case with infinite number of failures, as long
as the time interval between two successive changes of failure pattern is bounded
below by an arbitrary positive number. The performance of the tracking error in the
mean square sense with respect to the frequency of failure pattern changes is also
established. Furthermore, asymptotic tracking can be achieved with the proposed
scheme when the number of failures is finite.

Part II. Decentralized adaptive stabilization

e In practice, an interconnected system unavoidably has dynamic interactions
depending on both subsystem inputs and outputs. Because of the difficulties in
handling the input variables and their derivatives during recursive design steps, the
results on decentralized adaptive control of uncertain systems with interactions in-

volving subsystem inputs based on backstepping technique are quite limited. In this
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thesis, we propose a decentralized control scheme by using the standard adaptive
backstepping technique without any modification to stabilize a class of linear inter-
connected systems with dynamic input and output interactions. Global asymptotic
stabilization of the system is shown. The transient system performance in terms
of the L5 and L., norms of the outputs are established as the functions of design
parameters. The results are then extended to nonlinear interconnected systems.

e Besides, the reliability of our proposed decentralized adaptive control approach
for linear interconnected systems in the presence of some subsystems breaking down

is also analyzed.
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Chapter 1

Introduction

To stabilize a system and achieve other desired objectives by using adaptive control
methodology, a controller is normally constructed to involve adjustable parameters
generated by a parameter estimator. Both the controller and parameter estimator
are designed on the basis of the mathematical representation of the plant. Adaptive
control is one of the most promising techniques to handle uncertainties on system
parameters, structures, external disturbances and so on. Since the backstepping
technique was proposed and utilized in designing adaptive controllers, numerous
results on adaptive control of linear systems had been extended to certain classes
of nonlinear systems not based solely on feedback linearization. In contrast to tra-
ditional adaptive control design methods, adaptive backstepping control can easily
remove relative degree limitations and provide improved transient performance by
tuning the design parameters. Although there have been a large number of results
developed in the area of adaptive backstepping control, some open issues still exist
such as investigating the transient performance of the plant in the presence of actua-
tor failures and stabilizing large scale systems with dynamic interactions depending

on subsystem inputs when adaptive backstepping control is applied.
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1.1 Adaptive Control 2

In this chapter, we firstly give a brief overview of adaptive control and adaptive
backstepping control. Literature review and the motivation of our work are then
elaborated in two parts. After that, the objectives and major contributions of the

thesis are presented followed by a preview of the remaining chapters.

1.1 Adaptive Control

Adaptive control is a design idea of self-tuning the control parameters based on the
performance error related information to better fit the environment. Thus a variety
of objectives such as system stability, desired signal regulation, steady-state and
transient tracking performance can be achieved. Since it was conceived in the early
1950s, it has been a research area of great theoretical and practical significance.
The design of autopilots for high performance aircraft was one of the primary mo-
tivations for active research in adaptive control [5]. During nearly six decades of
its development, a good number of adaptive control design approaches have been
proposed for different classes of systems to solve various problems. Model refer-
ence adaptive control (MRAC) [6-8], system and parameter identification based
schemes [9,10], adaptive pole placement control [11,12] are some commonly used
conventional adaptive control methods. In 1980s, several modification techniques
such as normalization [13,14], dead-zone [15,16], switching o —modification [17] and
parameter projection [18-20] were developed to improve the robustness of the adap-
tive controllers against unmodeled dynamics, disturbances or other modeling errors.
In the early 1990s, adaptive backstepping control [21] was presented to control cer-
tain classes of nonlinear plants with unknown parameters. The tuning functions
concept provides improved transient performance of the adaptive control system.

The results listed above are only a part of remarkable breakthroughs in the develop-
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1.2 Adaptive Backstepping Control 3

ment of adaptive control, more detailed literature reviews of conventional adaptive
control can be found in [5,22-25] and other related textbooks or survey papers.

The prominent feature of adaptive control in handling systems with unknown
and/or time varying parameters constitutes one of the reasons for the rapid devel-
opment of this technique. An adaptive controller is normally designed by combining
parameter update law and control law. The former one is also known as parameter
estimator providing the adaptation law for the adjustable parameters of the con-
troller at each time instant [25].

Adaptive control techniques used to be classified into direct and indirect ones
according to the procedure of obtaining the controller parameters. The methods of
computing the controller parameters based on the estimated system parameters are
referred as indirect adaptive control, while the the controller parameters are esti-
mated (directly) without intermediate calculation in direct adaptive control. The
common principle of conventional adaptive control techniques, no matter direct or
indirect, is certainty equivalence principle. This means the controller structure is

designed as if all estimated parameters were true, to achieve desired performances.

1.2 Adaptive Backstepping Control

Adaptive control approaches can also be classified into Lyapunov-based and estimation-
based ones according to the type of parameter update law and the corresponding
proof of stability. In the former design procedure, the adaptive law and the synthe-
sis of the control law are carried out simultaneously based on Lyapunov stability
theory. However in estimation-based design, the construction of adaptive law and
control law are treated as separate modules. The adaptive law can be chosen by

following gradient, least-squares or other optimization algorithms.
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1.2 Adaptive Backstepping Control 4

To deal with linear systems, traditional Lyapunov-based adaptive control is only
applicable to the plants with relative degree no more than two. Such relative degree
limitation is translated to another structure obstacle on the “level of uncertainty” in
the nonlinear parametric state-feedback case, where the “level of uncertainty” refers
to the number of integrators between the control input and the unknown parame-
ter [26]. The structure restrictions in linear and nonlinear cases can be removed by
a recursive design procedure known as backstepping. The technique is comprehen-
sively addressed in [21], where a brief review of its development can also be found.
Tuning functions and modular design are the two main design approaches presented
in the book. The former approach is proposed to solve an over-parameterization
problem existed in previous results on Lyapunove-based adaptive backstepping con-
trol. It can keep the number of parameter estimates be equal to the number of
unknown parameters and help simplify the implementation. In the latter design
approach, the estimation-based type adaptive laws can also be selected to update
controller parameters by synthesizing a controller with the aid of nonlinear damp-
ing terms to achieve input-to-state stability properties of the error system. Such an
approach is known as modular design since a significant level of modularity of the
controller-estimator pair is achieved.

Both tuning functions and modular design approaches can provide a systematic
procedure to design the stabilizing controllers and parameter estimators. More-
over, the adaptive backstepping control technique has other advantages such as
avoiding cancelation of useful nonlinearities, and improving transient performance
of the system by tuning the design parameters. Although a number of results us-
ing this technique have been reported [27-38], there are still some open issues such
as improving transient performance in the presence of uncertain actuator failures,

accommodating unknown dynamic interactions depending on subsystem inputs.
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1.3 Literature Review and Motivation 5

1.3 Literature Review and Motivation

1.3.1 Actuator Failure Compensation

In a control system, an actuator is a mechanism representing the link between the
controller and a system or a process to be controlled (which is often referred to as
a plant). It performs the control command generated from the controller on the
plant, for the purposes of stabilizing the closed-loop system and achieving other de-
sired objectives. In practice, an actuator is not guaranteed to work normally all the
time. Instead, it may undergo certain failures which will influence its effectiveness
in executing the control law. These failures may cause deteriorated performance or
even instability of the system. Accommodating such failures is important to ensure
the safety of the systems, especially for life-critical systems such as aircrafts, space-
crafts, nuclear power plants and so on. Recently, increasing demands for safety and
reliability in modern industrial systems with large complexity have motivated more
and more researchers to concentrate on the investigation of proposing control design
methods to tolerant actuator failures and related areas.

Several effective control design approaches have been developed to address the
actuator failure accommodation problem for both linear [39-49] and nonlinear sys-
tems [50-61]. They can be roughly classified into two categories, i.e. passive and
active approaches. Typical passive approaches aim at achieving insensitivity of
the system to certain presumed failures by adopting robust control techniques, see
for instance in [40,42,47,48,61,62]. Since fixed controllers are used throughout
failure /failure-free cases and failure detection/diagnostic (FDD) is not required in
these results, the design methods are computationally attractive. However, they
have the drawback that the designed controllers are often conservative for large fail-

ure pattern changes. This is because the achieved system performance based on
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worst-case failures may not be satisfactory for each failure scenario. In contrast to
the passive methods, the structures and/or the parameters of the controllers are ad-
justable in real time when active design approaches are utilized. Furthermore, FDD
is often required in active approaches and provide the estimated failure informa-
tion to the controller design. Therefore the adverse effects brought by the actuator
failures, even if large failure pattern changes are involved, can be compensated for
and the system stability is maintained. A number of active schemes have been
presented, such as pseudo-inverse method [63], eigenstructure assignment [41, 64],
multiple model [43, 44,59, 65], model predictive control [66], neural networks/fuzzy
logic based scheme [50,51,53,57] and sliding mode control based scheme [49]. Differ-
ent from the ideas of redesigning the nominal controllers for the post-failure plants
in these schemes, virtual actuator method [67,68] hides the effects of the failures
from the nominal controller to preserve the nominal controller in the loop.

Apart from these, adaptive control is also an active method well suited for actu-
ator failure compensation [39,52,69, 70| because of its prominent adapting ability to
the structural, parametric uncertainties and variations in the systems. As opposed
to most of the active approaches, many adaptive control design schemes can be ap-
plied with neither control restructuring nor FDD processing. Moreover, not only the
uncertainties caused by the failures, but also the unknown system parameters are es-
timated online for updating the controller parameters adaptively. In [45,46], Tao et
al. proposed a class of adaptive control methods for linear systems with TLOE type
of actuator failures. It is known that backstepping technique [21] has been widely
used to design adaptive controllers for uncertain nonlinear systems due to its advan-
tages. The results in [45,46] have been successfully extended to nonlinear systems
in [54-56, 71] by adopting the backstepping technique. In [72], a robust adaptive
output feedback controller was designed based on the backstepping technique to

stabilize nonlinear systems with uncertain TLOE failures involving parameterizable
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and unparameterizable time varying terms. In fact, adaptive control also serves as
an assisting tool for other methods as in [39,43,44,50,51,53,57,59,73|. For example,
a reconfigurable controller is designed by combining neural networks and adaptive
backstepping technique to accommodate the incipient actuator failures for a class
of single-input single-output (SISO) nonlinear systems in [53]. In [73], the actuator
failure tolerance for linear systems with known system parameters is achieved by
proposing a control scheme combining linear matrix inequality (LMI) and adaptive
control.

In addition to the actuators, unexpected failures may occur on other components
such as the sensors in control systems. The research area of accommodating these
failures to improve the system reliability is also referred to as fault tolerant control
(FTC). More complete survey of the concepts and methods in fault tolerant control
could be found in [74-79].

Although fruitful results have been reported in control of systems in the presence
of actuator failures, there are a number of challenging problems remained unsolved
in this area. Some of the open issues drawing our attention are presented as follows.

e A common structural condition exists in [45,46, 54-56]. That is, only two
actuators, to which the corresponding relative degrees with respect to the inputs
are the same, can be redundant for each other. The condition is restrictive in many
practical situations such as to control a system with two rolling carts connected by
a spring and a damper for the purpose of stability and regulating one of the carts at
a specified position. Suppose that there are two motors generating external forces
for distinct carts, respectively. One of them can be considered to be redundant for
the other in case that it is blocked with the output stuck at an unknown value.
The relative degrees corresponding to the two actuators are different. Moreover,
an elevator and a stabilizer may compensate for each other in an aircraft control

system, of which the relative degree condition is also hard to be satisfied. Thus the
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relaxation of such structural condition is of significant importance.

e It is well known that the backstepping technique [21] can provide a promising
way to improve the transient performance of adaptive systems in terms of £, and
L, norms of the tracking error in failure-free case if certain trajectory initialization
can be performed. Some adaptive backstepping based failure compensation meth-
ods have been developed [54-56,71,72]. Nevertheless, there are few results available
on characterizing and improving the transient performance of the systems in the
presence of uncertain actuator failures. This is mainly because the trajectory ini-
tialization is difficult to perform when the failures are uncertain in time, pattern
and value. Therefore, it is interesting to develop a new adaptive backstepping based
design scheme with which the transient performance of the tracking error can still
be established in failure cases.

e In most of the existing results on adaptive control of systems with actuator fail-
ures, only the cases with finite number of failures are considered. It is assumed that
one actuator may only fail once and the failure mode does not change afterwards.
This implies that there exists a finite time 7, such that no further failure occurs
on the system after T,.. However, it is possible that some actuator failures occur
intermittently in practice. Thus the actuators may unawarely change from a failure
mode to a normally working mode or another different failure mode infinitely many
times. For example, poor electrical contact can cause repeated unknown breaking
down failures on the actuators in some control systems. Clearly, the actuator fail-
ures cannot be restricted to occur only before a finite time in such a case. Moveover,
the idea of stability analysis based on Lyapunov function for the case with finite
number of failures cannot be directly extended to the case with infinite number
of failures, because the possible increase of the Lyapunov function cannot be en-
sured bounded automatically when the parameters may experience infinite number

of jumps. It is thus of both practical and theoretical significance to address the
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problem of compensating for infinite number of failures.

1.3.2 Decentralized Adaptive Control

Nowadays, interconnected systems quite commonly exist in practice. Power net-
works, urban traffic networks, digital communication networks, ecological processes
and economic systems are some typical examples of such systems. They normally
consist of a number of subsystems which are separated geographically. Due to the
lack of centralized information and computing capability, decentralized control strat-
egy was proposed and has been proved effective in stabilizing these systems. Even
though the local controllers are designed independently for each subsystem by us-
ing only the local available signals in a perfectly decentralized control scheme, to
stabilize such large scale systems or achieve individual tracking objectives for each
subsystem cannot be straightforwardly extended from the results for the single loop
systems. This is because the subsystems are often interconnected and the interac-
tions between any two subsystems may be difficult to be identified or measured.
Sometimes, the uncertain interactions can be roughly modeled as static functions
of signals from other subsystems and the bounding information is known. However,
such bounding information is unknown to local designers more often and the inter-
actions may also appear as dynamic processes. Moreover, external disturbances and
unmodeled dynamics may also exists after modeling subsystems. In such cases, the
problem of compensating for the effects from the uncertain interactions and other
variety of uncertainties is quite complicated.

Adaptive control is one of the most promising tools to accommodate uncertain-
ties, it is also widely adopted in developing decentralized control methods. Based on
conventional adaptive approach, several results on global stability and steady state

tracking were reported, see for examples [80-86]. In [80], a class of linear inter-
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connected system with bounded external disturbances, unmodeled interactions and
singular perturbations are considered. A direct MRAC based decentralized control
scheme is proposed with the fixed c—modification performed on the adaptive laws.
Sufficient conditions are obtained which guarantee the existence of a region of at-
traction for boundedness and exponential convergence of the state errors to a small
residual set. The related extension work could be found in [17] where nonlinearities
are included. The relative degree corresponding to the decoupled subsystems are
constrained no more than two due to the use of Kalman-Yakubovich (KY) lemma.
An indirect pole assignment based decentralized adaptive control approach is devel-
oped to control a class of linear discrete-time interconnected systems in [85]. The
minimum phase and relative degree assumptions in [80,81] are not required. By
using the projection operation technique in constructing the gradient parameter es-
timator, the parameter estimates can be constrained in a known convex compact
region. Global boundedness of all states in the closed adaptive system for any
bounded initial conditions, set points and external disturbances are ensured if un-
modeled dynamics and interactions are sufficiently weak. The results are extended
to continuous-time interconnected systems in [87].

The backstepping technique was firstly adopted in decentralize adaptive control
by Wen in [28], where a class of linear interconnected systems involving nonlinear in-
teractions were considered. In contrast to previous results by utilizing conventional
direct adaptive control based methods, the restrictions on subsystem relative de-
grees were removed by following a step-by-step algorithm. Thus the interconnected
system to be regulated consists of N subsystems, each of which can have arbitrar-
ily relative degrees. By using the backstepping technique, more results have been
reported on decentralized adaptive control [29,32,88-93]. Compared to [28], more
general class of systems with the consideration of unmodeled dynamics is studied

in [29,32]. In [88,89], nonlinear interconnected systems are addressed. In [89,90],
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decentralized adaptive stabilization for nonlinear systems with dynamic interactions
depending on subsystem outputs or unmodeled dynamics is studied. In [91], systems
with non-smooth hysteresis nonlinearities and higher order nonlinear interactions are
considered and in [92] results for stochastic nonlinear systems are established. A
result on backstepping adaptive tracking is established in [93]. However, except
for [29,32,89], all the results are only applicable to systems with interaction effects
bounded by static functions of subsystem outputs. This is restrictive as it is a kind
of matching condition in the sense that the effects of all the unmodeled interactions
to a local subsystem must be in the range space of the output of this subsystem.

e In practice, an interconnected system unavoidably has dynamic interactions
involving both subsystem inputs and outputs. Especially, dynamic interactions di-
rectly depending on subsystem inputs commonly exist. For example, the non-zero
off-diagonal elements of a transfer function matrix represent such interactions. So
far, there is few result reported to control systems with interactions directly depend-
ing on subsystem inputs even for the case of static input interactions by using the
backstepping technique. This is due to the challenge of handling the input variables
and their derivatives of all subsystems during the recursive design steps.

e Besides, even fewer result is available on investigating the reliability of such

controlled systems in the presence of failures.

1.4 Objectives

Motivated by the open problems which were discussed in previous section, the main
objectives of our research are as follows.
> To propose adaptive compensation control methods based on backstepping

technique such that the following three issues can be addressed separately.
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e The effects brought by the failed actuators can be compensated for with the
remaining actuators, although the relative degrees corresponding to them may be
different.

e In addition to system stability and steady state performance, the transient
performance of the adaptive systems can also be guaranteed in failure cases.

e Infinite number of actuator failures can be accommodated and system stability
can be maintained.

> To propose decentralized adaptive control methods based on backstepping
technique such that,

e a class of interconnected systems with dynamic interactions directly depending
on subsystem inputs can be stabilized;

e when some subsystems break down, the stability of the closed-loop system can
still be ensured.

> To recommend some interesting topics which are worthy to be explored.

1.5 Major contributions of the Thesis

In achieving the objectives, some results have been obtained and will be presented
in Chapters 3-7 in the thesis. The major contributions of the thesis are summarized
in the following two parts.

Part I. Adaptive actuator failure compensation

e In Chapter 3, by introducing a pre-filter before each actuator in designing
output-feedback controllers for the systems with TLOE type of failures, the relative
degree restriction corresponding to the redundant actuators will be relaxed. Linear
systems will be considered firstly, where the boundedness of all closed-loop signals

and output regulation will be shown. The results will then be extended to nonlinear
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systems with asymptotic tracking to be achieved. These results have been published,
see [7] and [10] in Author’s Publications.

e In Chapter 4, transient performance of the adaptive systems in failure cases,
when the existing backstepping based compensation control method is utilized, will
be analyzed. A new adaptive backstepping based failure compensation scheme will
be proposed to guarantee a prescribed transient performance of the tracking error,
no matter when actuator failures occur. These results have been published, see [4]
in Author’s Publications.

e In Chapter 5, an adaptive backstepping based modular design strategy will be
presented with the aid of projection operation technique to ensure system stability
in the presence of infinite number of actuator failures. It will be shown that the
tracking error can be small in the mean square sense when the failure pattern changes
are infrequent and asymptotic tracking in the case with finite number of failures can
be ensured. These results have been reported in the paper recently accepted by
Automatica as a reqular paper, see [1] in Author’s Publications.

Part II. Decentralized adaptive stabilization

e In Chapter 6, a decentralized control method, by using the standard adaptive
backstepping technique without any modification, will be proposed for a class of
interconnected systems with dynamic interconnections and unmodeled dynamics
depending on subsystem inputs as well as outputs. It will be shown that the overall
interconnected system can be globally stabilized and the output regulation of each
subsystem can be achieved. The relationship between the transient performance of
the adaptive system and the design parameters will also be established. The results
on linear interconnected systems will be presented firstly and then be extended to
nonlinear interconnected systems. These results have been reported on Automatica
as a reqular paper, see [6] in Author’s Publications.

e In Chapter 7, the reliability of the proposed decentralized controllers against
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some subsystems breaking down will be investigated. The conditions to ensure the
global stability of the closed-loop system will be given. These results have been

published, see [5] in Author’s Publications.

1.6 Organization of the Thesis

The thesis is composed of 8 chapters.

In Chapter 1, an overview of the thesis is provided by illustrating the motivation,
research objectives and main contributions achieved.

In Chapter 2, the concepts of adaptive backstepping technique, which is the basic
tool in the thesis, will be given. By considering a class of parametric strict-feedback
nonlinear systems, backstepping based tuning functions and modular design schemes
will be introduced separately, where the procedures of both designing controllers and
stability analysis will be presented.

In Chapters 3-5, new adaptive compensation methods based on backstepping
technique will be proposed to handle uncertain actuator failures. In Chapters 6 and
7, decentralized adaptive backstepping stabilization for interconnected systems with
dynamic interconnections and unmodeled dynamics depending on subsystem inputs
will be investigated. Detailed contributions achieved in these chapters have been
presented in previous section.

In Chapter 8, the thesis will be concluded. Furthermore, some interesting topics
which are worthy to be further investigated in the areas of both adaptive failure

compensation and decentralized adaptive control will be recommended.
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Chapter 2

Adaptive Backstepping Control

The concepts of adaptive backstepping technique will be reviewed in this chapter
based on [21,37] to provide the underpinning framework for the new development
in the remainder of the thesis.

The backstepping technique is a powerful design tool to stabilize nonlinear sys-
tems, which may not be completely linearizable. It was proposed in the early
1990s and was comprehensively discussed by Krstic, Kanellakopoulos and Koko-
tovic in [21]. “Backstepping” vividly describes a step by step procedure to generate
control input to achieve system stabilization and tracking, which are the original
control objectives. At each step, a scalar system is to be stabilized. One or more of
the state variables are considered as a virtual control, for which a stabilizing func-
tion is chosen as if it was the final stage. At the last step, the control law of the
actual input is obtained.

In the cases with unknown system parameters, adaptive backstepping controllers
are designed by incorporating the estimated parameters. Parameter estimators can
be constructed at the same time with the adaptive controllers based on the Lyapunov

functions augmented by the squared terms of estimation errors. By combining tun-
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ing functions technique, the over-parametrization problem is solved and the cost for
implementing the control scheme is reduced. Moreover, in adaptive backstepping
based modular design approaches, parameter estimators can be generated separately
from the controllers and formed as gradient or least-squares types.

In this chapter, the concepts of integrator backstepping and adaptive backstep-
ping control will be firstly introduced. The procedures to design adaptive controllers
by incorporating the tuning functions and modular design schemes, are then pre-
sented. In the second part, a class of parametric strict-feedback nonlinear systems

is considered and stability analysis for the two schemes are also provided briefly.

2.1 Backstepping Concepts

2.1.1 Integrator Backstepping

Consider the system

&= f(x) + gla)u.  F(0) =0, (2.1)

where € R” and u € R are the state and control input respectively. To illustrate

the concept of integrator backstepping, an assumption on (2.1) is firstly made.

Assumption 2.1.1. There exists a continuously differentiable feedback control law

u=ca(r), a0)=0 (2.2)
and a smooth, positive definite, radially unbounded function V: R™ — R, such that
ov

5 (O (@) +g()al@)] < W () <0, VreR", (2:3)

where W: R" — R is positive semidefinite.
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2.1 Backstepping Concepts 17

We then consider a system that is (2.1) augmented by an integrator,

o= f(x)+g(@)¢ (2.4)

£ = u, (2.5)

where u € R is the control input. Based on Assumption 2.1.1, the control law for u
will be generated in two steps.

In the first step, we stabilize (2.4) by treating & as a virtual control variable.
According to Assumption 2.1.1, a(z) is a “desired value” of the virtual control. We
define an error variable z as the difference between the “desired value” a(x) and the

actual value of &, i.e.
z=¢—ax). (2.6)

Rewrite the system (2.4) by considering the definition of z and differentiate z with

respect to time,

b= f(2)+o@)ale) +2) 2.7)
¢ = E-al) =u— "D i) + g ala) + 2] (2.5)

In the second step, we define a positive definite function V,(z, z) by augmenting

V(z) in Assumption 2.1.1 as
L,
Va(z,2) =V(z)+ 2% (2.9)

Computing the time derivative of V,(x, z) along with (2.3), (2.7) and (2.8), we have

Vilz,2) = V(z)+ 22

0

- a—‘;(f+goz+gz)+z (u— g—j(f+9(a+z))>
o 0

= Drgm e (u- B2 gt + 2+ 5o
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< —W(x)—l—z(u—g—j(f—i—g(a—kz))—i-g—‘;g) . (2.10)

By observing (2.10), we choose u as
u:—cz+g—j(f+g(a+z))—2—‘;g, (2.11)

where c is a positive constant. Thus
V, < —W(x) —c2® &2 —W,(x, 2). (2.12)

Thus global boundedness of all signals can be ensured. If W (x) is positive definite,
W, can also be rendered positive definite. According to LaSalle-Yoshizawa theorem
given in Appendix A, the globally asymptotic stability of x = 0, z = 0 is guaranteed.
From (2.6) and «(0) = 0, the equilibrium = = 0, £ = 0 of (2.4)-(2.5) is also globally
asymptotically stable.

The idea of integrator backstepping is further illustrated by the following example.

Example 2.1.1. Consider the following second order system

T = 2+ (2.13)

£ = u (2.14)

Comparing with (2.4)-(2.5), we see that x € R, f(z) = 2% and g(z) = x. To stabilize
(2.13) with ¢ as the input, we define V(z) = £22. By choosing the desired value of

2
¢ as

alx) = —x—1, (2.15)

we have

V = 2(2? 4 za) = —2, (2.16)
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which is positive definite. Thus the error variable is

z=§—a=§+x+1 (2.17)

Substituting £ = z —x — 1 into (2.13) and computing the derivative of z, we obtain

T = rz—=x (2.18)

2 = u+txz—2. (2.19)

The derivative of V, = %:cQ + %22 is

V= —a® + 222+ 2(u+ 2z — ). (2.20)

Thus the control
u=—z—x2+x—2° (2.21)
can render V, = —2? — 22 < 0. From LaSalle-Yoshizawa theorem, global uniform

boundedness of z, z is achieved and lim;_, z(t) = lim;_, 2(t) = 0. From (2.15),

£ =z—x—1and (2.21), we have «, £ and the control u are also globally bounded.

A

2.1.2 Adaptive Backstepping Control

To illustrate the idea of adaptive backstepping control, we consider the following
second order system as an example, in which the parametric uncertainty enters the

system one integrator before the control u does.
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i = T+l (21)0 (2.22)

iy = u, (2.23)

where the states x, xo are measurable, ¢(x;) € R? is a known vector of nonlinear
functions and 8 € R? is an unknown constant vector. The control objective is to
stabilize the system and regulate z; to zero asymptotically.

We firstly present the design procedure of controller if 6 is known. Introduce the

change of coordinates as
zZ1T = X1 (224)

Z9 = X9 — (O, (225)

where oy is a function designed as a “desired value” of the virtual control zs to
stabilize (2.22) and

o =—cix1 — ¢ 0, ¢ >0. (2.26)

Define the control Lyapunov function of system (2.22)-(2.23) as

1 1

whose derivative is computed as

. 0
V = z(z2—c121) + 20 (u o (xz + @Te))
8[E1

= —c23+ 2 (u +2— % (:c2 + 90T9)> . (2.28)
1

By choosing the control input as

0
U= —2z1 — CoZo + % (132 + ngQ) , c3>0 (2.29)
1
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(2.28) becomes

V=—c22 — 22 <. (2.30)

From LaSalle-Yoshizawa theorem, z; and z, are ensured globally asymptotically
stable. Since z1 = 21, we obtain that lim; ., 21(¢) = 0. From (2.26) and (2.25), we
have ay, x5 are also globally bounded. From (2.29), we conclude that the control u
is also bounded.

However, 0 is actually unknown. Thus the stabilizing function a4 in (2.26) needs
to be modified by using the estimated values of 6 instead. Based on this, the design
procedure is elaborated as the following.

Step 1. «; is now changed to
ap = —C1T1 — (pTél, c >0 (231)

where 91 is a estimated vector of §. Keeping the definitions of z; and 25 as in (2.24)
and (2.25), we compute the time derivative of z; according to the new constructed
Qq,

2= —C12 — WTé1 + a4 0= —ciz1+ 2+ 001, (2.32)

where QNI =0 — él.

We then define a Lyapunov function V; for this step as

1 1op o

where T'; is a positive definite matrix. From (2.32), the time derivative of V; is

computed as

‘./1 = 2121 — é?F;lél = Zl(—61Z1 + 29 + QDTél) — éffflél (234)
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By choosing the adaptive law of 6, as
él = FlgDZl, (235)
we have
Vi=—az + 212 (2.36)
Step 2. Taking the time derivative of z9, we obtain
o= g, O Owg
2 = BT g 6, 1
Oa
= u-— —1(.%'2 + QOTQ) — = Flgozl (237)
8301 1
Define a Lyapunov function V5 for this step as
L,
Vo=Vi+ 3% (2.38)
The time derivative of V5 is computed as
Vo = Vit
80(1 8041 80{1
2 T
== — —Ty — —1TI ——p'0). 2.39
127 + 22 (u + 2 o T 20, 1021 o, © (2.39)
If w can be chosen as
day day Jdag o
=—2 — — —7 — 0, > 0, 2.40
u Z1 — Ca%9 + B To + 26, 1p21 + 8:51%0 C2 ( )
the time derivative of V5 becomes
Vo= —c122 — cp22. (2.41)
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However, 6 is unknown. Therefore, it cannot be used in constructing u. It may be
replaced by the estimated value 0, obtained in the last step. The time derivative of

V5 is then changed to

. D) y
Vo = —c12] — coz3 — ,22& Lo, (2.42)

8951

where the last term cannot be canceled. To eliminate this term, we replace 6 in

(2.40) with a new estimate 0,:

8061 8041 8&1 TA
= —2z1 — — —T —p'f > 0. 2.43
U 21 — Cazg + 0z, To + 2, 1921 + 9z, 2, C3 ( )

With this choice, (2.37) becomes
2:'2 = —21 —CZ9 — — Tég, (244)
T

where 6, = 0 — 6,. To stabilize the z system consisting of (2.32) and (2.44), the
control Lyapunov function defined in (2.38) is augmented by including the quadratic

term of 65, i.e.,

1 1~ ~
Vo=Vi+ §z§ + §0§F5192, (2.45)
where I'; is also a positive definite matrix. Taking the derivative of V5 along with
(2.36) and (2.44), we obtain

. 0 ~ ~ X
Vo= —c12} + 2 <—0222 - %@TGQ) + 92TF51 (—02> ) (2.46)
1

Choose the update law for éz as

A 8(1/1
O = —T9— 2.4
2 23$1 Pz, ( 7)
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we have

Vo = —c12% — 22, (2.48)

Therefore, global boundedness of z;(= z1), 22, él, éQ is ensured. We also have lim;_, -,
21(t) = limy—o0 22(t) = 0. From the boundedness of a; defined in (2.31) and the
fact that x9 = 29 + «ay if follows that x5 is also bounded. We can conclude that the

control u is bounded based on (2.43).

2.2 Two Backstepping Based Design Schemes

In this section, two backstepping based adaptive controller design schemes to achieve
system stabilization and desired tracking performance will be introduced. We con-

sider a class of nonlinear systems as follows,

jil = X9 + wlT(xl)G
it'z = I3 +<pg(x1,x2)9
. o T
Tn1 = Tpt+@, 1(T1,..., 2y 1)0

T = po(z) + ¢y (2)0 + B(2)u

y = I, (249)

where r = [z1,...,2,]7 € R", u € R and y € R are the state, input and output of
the system respectively. § € RP is an unknown constant vector, oy € R, ¢; € RP
for i = 1,...,n, B are known smooth nonlinear functions. Note that the class of
nonlinear systems in the form of (2.49) are known as parametric strict-feedback
systems since the nonlinearities depend only on variables which are “fed back” [21].

The control objective is to force the system output to asymptotically track a
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reference signal y,(t) while ensuring system stability. To achieve the objective, the

following assumptions are required.

Assumption 2.2.1. The reference signal y,(t) and its first n derivatives y,(i), 1=

1,...,n are known, bounded, and piecewise continuous.

Assumption 2.2.2. §(z) # 0,Vx € R™.

2.2.1 Tuning Functions Design

Observing the design procedure presented in Section 2.1.2, global stabilization and
output regulation are ensured. However, there is a drawback that two estimates (él
and 6,) have been generated for only one vector of unknown parameters (6). The
dynamic order of the adaptive controller exceeds the number of unknown parameters.
Such a problem is known as over-parametrization. It can be solved by adopting the
tuning functions design scheme, in which a tuning function is determined recursively
at each step. At the last step, the parameter update law is constructed based on
the final tuning function and the control law is designed. Thus the dynamic order
of the adaptive controller can be reduced to its minimum.

Different from the procedures in handling the second order system (2.22)-(2.23),
n steps are required to determine the control signal for the system in (2.49). The
design procedure is elaborated as follows.

Step 1. Introduce the first two error variables

2 = Y-y (2.50)

Z9 = T2 — yr — Qq, (251)

where 2, is the tracking error, of which the convergence of 2y, i.e. limy_, 21(t) =0

is to be achieved. The z; dynamics is derived as
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2= Y=Y
= T2+ 90{0 = Yr
= 2z +o+olb. (2.52)

aq is the first stabilizing function designed as

o) = —C12] — gpfé, (2.53)

where ¢; is a positive constant and 6 is an estimate of 6. In fact, oy is the “desired
value” of xs to stabilize 21 system (2.52) if ¢, = 0. Thus z; is the error between the
actual and “desired” values of x5 augmented by the term —y,.

Similar to (2.33), a Lyapunov function is defined at this step.

1 1oy g
V, = §z§ + §9Tr—19, (2.54)

where T is a positive definite matrix and 6 is the estimation error that § = 6 — 6.

From (2.52) and (2.53), the derivative of V] is derived as
‘./1 = 21 (—6121 + z9 + @?é) — éTF_lé

= z(—azn +2) — 6" (F‘lé — g0121> . (2.55)

Instead of determining the parameter update law as 6 = ['p121 in Section 2.1.2
to eliminate the second term 67(I'"'0 — y21) in (2.55), we define the first tuning
function as

L = P121. (2.56)

Substituting (2.56) into (2.55), we obtain that

V, = —C122 + 27 — o7 (F_lé — 7'1> ) (2.57)
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Step 2. We now treat the second equation of (2.49) by considering x3 as the control

variable. Introduce an error variable

Z3 — I3 — gjr — (9. (258)

Taking the derivative of z9, we have

R
8041 8041 r 8041 . 8041 A

- _ e P e v VR O 1

ztar = 5wt (s02 o 901) 50,0 " 55 (2.59)

where «ay is the second stabilizing function designed at this step to stabilize (z1, 22)

system (2.52) and (2.59). We select ay as

Oay Oy T da . oy
= —2; — —xy — - 0+ —vy, + —I'm, 2.60
(0%) Z1 — CaZo + 9z, T2 (902 Ers 901) + Gyry + Y, T2 ( )

where c5 is a positive constant and 7 is the second tuning function designed based

on 71 that

oo
Ty =T1+ (902 — a—xl@l) 2. (2.61)
1

We now define a Lyapunov function V5, as

1
%:%+§g (2.62)

From (2.57), (2.59)-(2.61), the derivative of V3 is computed as

VQ = —clzf + 2129 — o7 (F_lé — 7’1) + 22(—21 — Co2y + 23)
Oa T Oa A
+22 (@2—8—:&@1) 0+ 2 89} (FTz—Q)

~ X Oa X
— 2 2 T _ -1 1 .
= C127 Co 29 + 2923 + 0 (7’2 r 9) + 29 aé (FTQ (9) . (263)
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Note that if 3 were the actual control, we have z3 = 0. If the parameter update
law were chosen as é =11, Vg = —c122 — 22 is rendered negative definite and the
(21, 22) —system can be stabilized. However, 3 is not the actual control. Similar to
2129 canceled at this step, the term 2523 will be canceled at the next step. Moreover,
the discrepancy between 'ty and é will be compensated partly by defining another

tuning function 73 at the next step.

Step 3. We proceed to treat the third equation of (2.49). Introduce that

24 = X4 — yﬁg) — as. (2.64)

Computing the derivative of z3, we have

b = spag_doay Qa0 Oan Doy T, Dy Doy,
3 = 24 3 oy 2 07y 3 ¥3 ax1901 89(;2% 8%% ay.ryr
_dazg (2.65)

00

where the fact that as are a function of xy, xo, ¥,, ¥, and 0 is utilized. We then

select oz as

_ _ 4 80(2 4 8052 _ _ 8062 _ 3042 Té+ 8042 .
az = %2 — C3%3 _83:1 T2 _8352 T3 ¥3 _8:1:1 Y1 _8562 Y2 _ayr Yr
8042 . 8042 8041 (9042 8042
- Yr —1TI —1rI - = _ = s 2.66
T bt g Tt <903 7.7 o, 902) (2.66)

where c3 is a positive constant and 73 is the third tuning function designed based
on 7o that

Oaz , _ das ) - (2.67)

T3 =Ty + (@3—8—%901 —7902

The (21, 22, 23)—system (2.52), (2.59), (2.65) is stabilized with respect to the Lya-
punov function

1
Vi=Va+ 52 (2.68)
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whose derivative is

Vg = —clzf - 02z2 0323 + 2324 + 6" ( - I~ 9) 8 91 (F72 - é)
8042 ' (9041 8042 80&2
r - — — 3. 2.69
86 < 73 9) 80 (903 8951 P 81'2 sz) =3 ( )
Note that
8051 A o 8041 A 8041
9 (FTQ — 6) = Zo—= (FTg — 0) + 29 8é (FTQ — FTg)

(2.70)
Substituting (2.70) into (2.69), we obtain
. ~ 1A 8@1 8042
Vs = —clzf — 0223 — 03z§ + 2324 + 607 (7'3 -T 19) + (22 pY: + 23 % )
X <r73 . é) . (2.71)

From the discussion above, we can see that the last term of the designed a3 in (2.66)
is important to cancel the term ZQ%(FTQ I't3) in rewriting the term z, =4 9oy (I — 0)
as in (2.70).

Step i (i =4,...,n —1). Introduce the error variable
Zi = X5 — y,,(,i_l) — 041 (272)

Derive the dynamics of z;

1—1 —
80[1/_ 8az al aal A
Z"i = Zi+1 +a; — g Oz ll'k-l-l + (@z - ! > g l k) ng
k

) (2.73)
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The stabilization function «; is chosen as

-1
o 051, 1 aaz 1 az 1
o = —Z—1— szz+§ xk’—i—l_ Wi — E Pk E
c%vk
i—1

o7 0 0 i—
; L7+ sz Skl ( - %%) , (2.74)
j=1 J

where ¢; is a positive constant and 7; is the ith tuning function defined as

i—1
8(1/2'_
T, = Ti—1 + (gpz — Z a$k1<pk> Zi. (275)

k=1

The (21, ..., 2;)—system is stabilized with respect to the Lyapunov function defined

as 1
Vi=Via+ §z3, (2.76)

whose derivatives is

V= =3 e+ + 0 (Ti‘r_lé>+(zzkaggl>

k=1

x (7 - é) . (2.77)

Step n. We introduce

Zn = Tp — y,(,"_l) — Q1. (2.78)
The derivative of z,, is
. < dov,_1 aan 1 ! < 01 (1
 Oag_q;
—ylm — ng_ (2.79)

The control input u is designed as
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1
u= = (an+y"), (2.80)
B
with
n—1 n—1 T
Oay,_ Oay,— A
Qp = —Zp-1— CpZpn — Yo+ Z lkarl — | ¥n — 1<,0k 7
1 8xk —
-1 n—1 n—1
8 Oa O«
Qp— 1 k— 1 n—1
FTn + Z
kz & 26 Z o0 ; Oz )
(2.81)
where ¢, is a positive constant and 7, is
804n
= Tp—1+ <90n Z axkl ) (2.82)
Define the Lyapunov function as
1
Vo= Vo1 + =22, (2.83)
whose derivative is computed as
n ~ X " Jor_ X
— -S4 0" (rn - F*19> n ( 2y 20 1) (FTn - 9) . (2.84)
k=1 k=2 90
By determining the parameter update law as
0 =T, (2.85)
V,, is rendered negative definite that
= — Z Crzi. (2.86)
k=1
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From the definition of V;, and (2.86), it follows that z, 0 are bounded. Since § = 6—6,
0 is also bounded. From (2.50) and Assumption 2.2.1,  is bounded. From (2.53) and
smoothness of ¢1(x1), a; is bounded. Combining with the definition of z in (2.51)
and the boundedness of ,., it follows that x4 is bounded. By following similar proce-
dure, the boundedness of a; for v = 2,... ,n, z; for: = 3,...,n is also ensured. From
(2.80), we can conclude that the control signal u is bounded. Thus the boundedness
of all the signals in the closed-loop adaptive system is guaranteed. Furthermore,
we define z = [21, ..., 2,|T. From the LaSalle-Yoshizawa theorem, lim; .., z(t) = 0.
This implies that asymptotic tracking is also achieved, i.e. lim; . [y(t) — y,(¢)] = 0.

The above facts are formally stated in the following theorem.

Theorem 2.2.1. Consider the plant (2.49) under Assumptions 2.2.1-2.2.2. The
controller (2.80) and the parameter update law (2.85) guarantee the global bounded-
ness of all signals in the closed-loop adaptive system and the asymptotic tracking is

achieved, i.e. lim;_o.[y(t) — y,.(t)] = 0.

2.2.2 Modular Design

From (2.74), we see that the terms ao‘—iflI’TZ +30 7z aa’“ilI‘(gp — Z;fll ag;* ©;) are

crucial to form the (I'r; — 6) related terms in deriving V; at the ith step. The effects
of 0 are canceled by defining the parameter update law as 9 = I'r,, at the final
step. Thus the adaptive controller and the parameter update law are constructed
simultaneously with respect to a Lyapunov function encompassing all the states in
the (z, é)—system, when the tuning function design scheme is applied. In contrast
to these, the parameter estimator can also be determined independently of the con-
troller. By doing this, certain boundedness properties of (é, é) are guaranteed. The

boundedness of z is thus ensured by establishing input-to-state stable properties
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with (é, é) as the inputs in controller design module. Since the modularity of the
controller-estimator pair is achieved, such a design method is known as modular
adaptive design.

The detailed procedure in generating the control law and the parameter update
law for the system in (2.49) by using the backstepping based modular adaptive de-

sign scheme is presented as the following.

A. Design of Control Law

Similar to the tuning functions design, we introduce the change of coordinates firstly.

i=xi—y' YV —ay, i=1,....n (2.87)

r

«; 18 now designed to guarantee the boundedness of z; whenever the signals é,é are
bounded.

Step 1. The derivative of zy is
=204+ ay+ o]0, (2.88)

We choose «; as

o] = —C12] — golTé — k1|12, (2.89)

where ¢y, k1 are positive constants. Substituting (2.89) into (2.88), we have

2 = —cC121 + 29 + cplTé — /{1||g01|]221, (2.90)

where § = 0 — . Define that
1
Vi = 52%. (2.91)

Vi is then computed as
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24 1é2+£4ﬂ2
= —C1Z 2129 — K 21— 5
147 1<2 1(|¥1%1 21%1 4531
1 -
< - +azm+—|0) (292)

4I€1

If z, were zero, z is bounded whenever 6 is bounded. By comparing (2.89) with
(2.53), we see that the term —k1|[p||?2; is crucial to render Vi negative outside a
compact region if zo = 0. Such a term is referred to as “nonlinear damping term”
in [21].

Step 2. We proceed to the second equation of (2.49). Since « (2.89) is a function
of z1,y, and 97 the derivative of 25 is

T
-1 0) — Ly - 1L
O0xy (22 +¢16) ayry 00

5, g .
= zz3tax+ <902 - %@1) 60— (8_:)31x2 —+ @yr) — %8 (293)

22 - x3+§059_yr_

Choose ay as

Oy Té n Oay n day .
Qg = —2] — CoZg — - o — 1,
2 1 222 P2 axlﬁ o1 2 3y7~y
oo 2 Ao T 2
—ra2|lp2 = 1| 2 g wl 2, (2.94)

where ¢, ko and g are positive constants. From (2.92), the derivative of V5 =

1 .
Vi+ 323 is

Vo < —clzf - czzg 4+ 2923 — Ko

[ — Z —_— —
P2 8%1 1 2 2%2 i1 4I€i
2

8a1T 1 1 X
—a| +-—4?
ol

— 29+
00 2 202

2 2

< =) o +mnt Y

i=1 i=1

o

—92

1 - 1
0|17 + —16]|%. 2.95
T 1017+ 7161 (2.95)
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If 23 were zero, (z1,2) is bounded whenever § and g are bounded. The last two
terms in (2.94) are designed nonlinear damping terms at this step.
Step i (i =3,...,n—1). a;_ is a function of x1,...,Z;—1,Yr, . .. ,yr 9 thus the

ith equation in (2.49) yields

. T i
Zi = zimtoa+ e — i 00y 0 — 1 aai_lx + ai1
i = Zitl i Pi — e Pk 02 k+1 ay;ﬂk—l)yT

daiij (2.96)
00

We choose that

where ¢;, k; and g; are positive constants.
Using completion of the squares as in (2.92) and (2.95), we obtain the derivative

of Vi=Vio1 + 32

i i-1 2 i
. O ~ 1 . -~
2 1 2
Vi < —ch2k+2izi+1—f<éi (%‘—Z Dy <Pk> %~ g Zﬂ +ZmH8H
k=1 k=1 k=1
60[1 1T ? ! 1 9
g i+l > 6
o0 2g; Z49k“ |
< - chzk ¥ zze + Z 81+ Z 6 (299)

Step n. We have

2 0oz ' iy o Oa
. n—1 n—1 n—1 (k)
Zn = o+ PBu+ E 0 — —5x + Yy
0 ( Z ) ( T k+1 5y(k—l) )

—y™ O‘gél . (2.99)
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The control input « is designed as

1
u==(an +y™). (2.100)
B
«,, is chosen as
n—2 T n—1
804,1,1 ) A aanfl
an = —Zp-1 CnZn ¥o Pn Pk 0+ Z ( Tpt1
( k=1 Ox -1 Oz
n— 2 2
Oo,_1 L day,,_ Doy 1 L
n (k) . n—1 nA 1 2101
+8y£k—1)yr ) Kn ||¥n £ Dy Pk 9n BY; ( )

where ¢,, k, and g, are positive constants. Define V,, as

1
Vi =Vo1+ 525. (2.102)

By following similar procedure in (2.98), we have

chz +Z ueu%Z—ueuz (2.103)

Based on (2.103), we can establish the input-to-state properties for the z—system

with respect to é,é as the inputs, where z = [z1, ..., 2,|7.

Lemma 2.2.1. For the z—system, the following input-to-state properties hold:

(i) [fé,é € Lo, then z € L, and

1) < (—HW —|\éuio)2+nz<o>ue-cot. (2.104)

e

(1) [f&~ € Lo and é € Lo, then z € Lo, and

01 < (o 101 45 1618) + 0l (@210)
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co, ko and gy are defined as

-1 —1
, "1 "1
Co = 122171 Ci, ko = (Z /i_z) ) Jo = <Z E) (2-106)

i=1 1=2

Proof: From the definition of V; for : = 1,...,n and (2.103), it follows that

d (1, ., , /1 - 1 o
— | = < — - —10 —||0 . 2.1
i (31e1) < —aollli 4 5 (1012 + -1 (2.107)

(i) Multiplying both sides of (2.107) by two, we have

d , L 11+, 1 :.
— t = -2 t | —|0 —||0 . 2.108
& (1) = ~2al21P + 5 (101 + - 16] 2108
Solving (2.108), we have
IV B SN A B 1,
O = B 45 [ e (L + TIdm)?) dr
0 0 9o

1 1~ 1 = t
< e 4 g s LI+ LG [ e ar
0

T€[0,t] 0

1 1 ~ 1 X 1

< 2 _—2cot - _ 9 2 . 0 2 1_ —2cot

< J=(0)Pe +2(K0 161+ 116 1. ) 51— e

< a0+ L (i 1612 +— 116 Hio)- (2.109)
4C0 Ko Jo

Thus if é,é € Lo, 2 € Log. (2.104) is achieved by using the fact that va? + b> < a+b
for a,b > 0.

(7i) From (2.109), it follows that

—2 1 L et
lz01° = 1I=0)lPe 2“5(/0 B

K

t 1 =
+ [ Spire )
0

90

_2¢ ~ 1 e (f—r b
< 20 + —— || 0 [|3 +5— sup {7 )}/0 16(7)|*dr

- deoko 290 reo,q)
Y 1 - 1
< Jl2(0)]]Pe 7" + Teor 16112 +2—go 1615 . (2.110)
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Thus if § € L., and o € Ly, z € L. (2.105) is also proved. O

B. Design of Parameter Update Law

According to Lemme 2.2.1, the boundedness of z is achieved if the boundedness of
6 and é is guaranteed. We present a x-swapping scheme to design the parameter
estimator at this position. The properties of the parameter estimator will also be
given.

Rewrite (2.49) in a parametric z-form firstly that

&= f(z,u) + F'(z,u)b, (2.111)
where
T2 90{
flo,u) = ' . Flzu)=| . (2.112)
Ln @Z—l
| @0+ Bu | | e

Two filters are then introduced that

Qr = Az, )Q" + FT(z,u) (2.113)
Qo = Az, t)(Q + ) — f(z,u), (2.114)

where
Alx,t) = Ag — yF  (z,u)F(z,u)P, P=PT >0 (2.115)

v is a positive constant and Ay is an arbitrary constant matrix such that PAy +

AP = —I. Similar to the proof of Theorem 4.10 in [94], it can be shown that
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A(z,t) is exponentially stable for each z continuous in ¢. Combining (2.111) and

(2.114), we define Y = Qg + z, whose derivative is
Y =Az, )Y + FT(2,u)0. (2.116)

For an ¢ £ ) — Q76, the derivative is computed as
e=Y Q"0 = Az, t)e. (2.117)

Introducing the “prediction” of ) as )> = QTé, the “prediction error” e £y )7 is
then written as

e=c+ 070 - QTY =4+ Q70 (2.118)

Based on (2.118), we choose the parameter update law by employing the unnormal-
ized gradient algorithm [5]
0 = T'Qe, (2.119)

where I is a positive definite matrix.

Lemma 2.2.2. The design of parameter estimator encompassing the filters (2.113)-
(2.114), the regressor form (2.118) and adaptive law (2.119), guarantee the following
properties:

(i) G€Lle, (i) ¢€LoN Lo, (ifi) 0€LsN Lo
Proof: (i) Let us consider the positive definite function
Loreas o r
V=000 4 <" Pe (2.120)

Along with (2.117), (2.119) and PA + AT P < —1I, the derivative of V is computed
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as

V < 0TI (TQe) —ele = —(e—e)e—ee
2

3 1
< —ZGTE—‘§€—€
3
< —Z||e||2. (2.121)

The nonpositivity of V proves that 6 € L.

(i1) Integrating (2.121), we have
[e.9] 9 3 o0 . 3
le(m)2dr < == [ Vdr < S[V(0) — V(o0)). (2.122)
0 4 0 4
Since V(t) is nonnegative and V' is nonpositive, we have
le(r)[Pdr < 7 Vo < oo. (2.123)
0

Thus € € L5. We now prove the boundedness of 2 € RP*". Compute that

2

d 1 1
—tr{QPQ"} = —|Q|F —2y||FPQ" — —] —tr{],
GlaPaTy = -0l - 2y PP - r) 4 (n)
< o+ 2. 2.124
< -l + 2 (2.121)

From Amin (P)||Q]|% < tr{QPQT}, it follows that Q € Lo,. Combining with § € Lo,
e=ec+ 070 and ¢ in (2.117) is exponentially decaying, we conclude € € L,,. Thus
€ € LoN L4 is proved.

(#i) From (2.119), § is bounded. By utilizing Hélder’s inequality given in Appendix

B, we obtain that

/oo 07 0dr < Amax (D)2 [[I1202]|. /Oo Tedr. (2.125)
0 0
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Since € € Ly and 2 € L, we conclude that é € Lo. Thus é € LoN L. O

According to Lemma 2.2.1 and Lemma 2.2.2, the following result can be obtained.

Theorem 2.2.2. Consider the plant (2.49) under Assumptions 2.2.1-2.2.2. The
controller (2.100) and the parameter update law (2.119) ensure that
(i) all signals in the closed-loop adaptive system are bounded;

(i1) asymptotic tracking is achieved, i.e. limy_ .. [y(t) — y.(t)] = 0.

Proof:

(i) According to Lemma 2.2.2, the boundedness of 6 and é is ensured. Thus from
the (i) in Lemma 2.2.1, z is bounded. Since 6 is bounded, 6 is also bounded. From
the change of coordinates in (2.96), the boundedness of «;, x; for i = 1,...,n is
guaranteed recursively as in Section 2.2.1. Similarly from (2.100), u € L. From
(2.113) and the proof of Lemma (2.2.2), Q, Qy and € are all bounded. Therefore,

the boundedness of all signals in the closed-loop adaptive system is ensured.

(i1) From (2.88), (2.93), (2.96) and (2.99), the dynamics of z can be rewritten as

~

= A(2,0, )2+ WT(2,0,0)0 + Q" (z,0,1)0, (2.126)
where
—c1 — kil 1 0
2 o |2
—1 —Cy — Ry |02 — $2 1| — g2 36(;1 1
A, =
0 -1
0 0
0
(2.127)
0
n— Uy — 2 8043;_ 2
-1 —c,— Kn||on — k:ll 83“19019“ —On 96 :
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T
¥1 0
T Oday , T dag
Y2~ oz, P1 Y
WT - oz, Q= o | (2.128)
T _ n—1 0ap—1, T _aan—l
L “n k=1 Oz ko L PY i

From the proof of (i), it follows that Z € L,,. Moreover, for a time varying system

C=A.(2(t),0(t),t)C. (2.129)

By defining a positive definite function V = ¢7¢ and computing that V < —2¢,(7¢,
we have that the state transition matrix ®4_(,t) satisfies ||® 4 (t,to)|| < ke "¢t
k,r > 0. If z € L5 is also achieved, lim; . 2(t) = 0 can be ensured by Barbalat
lemma and its corollary given in Appendix A, which implies the result of asymptotic
tracking.

From Lemma 2.2.2, ¢ € £5. From (2.115) and (2.117), it follows that

d
a(gTPE) < —¢Te. (2.130)

Integrating both sides of (2.130), we get € € L. Thus Q70 = ¢ — e € L,.

Introduce a filter that
L= AT+ Wt (2.131)

We now prove that ¢ = z — 76 € £,. From (2.126) and (2.131), we have

¢ = Az+WTo+ QTé — (AT +Who + XTé

~

= A+ (Q"+x"e. (2.132)
The solution of (2.132) is

s(t) = ®4.(t,0)5(0) + /t Dy (t,7)(Q + X)Té (2.133)
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From the proof of (i), we obtain that () and W are bounded. From (2.131) and A,

is exponentially stable, it follows that y is also bounded. Then

t .
ls@I < ke—”ll<(0)ll+kllQ+Xlloo/0 e " 0)0||dr

¢ i ¢ A 1
< ke [o(O)] + KIQ + il ( / e—“t—”df) ( / e-“t-ﬂnen?dr)
0 0

-r 1 ' —r(t—T A %
< ke O]+ KIQ + Xl 72 ( | >||e||2df) , (2.134)

where the second inequality is obtained by using the Schwartz inequality as given

in Appendix B. By squaring (2.134) and integrating over [0, ], we obtain that

t kQ k,Q t T .
[l < s + S+ iz [ ( / e-T<T—S>||e||2ds) dr. (2.135)
0 2r r 0 0

Changing the sequence of integration, (2.135) becomes

t ) /{72 ) /{52 ) t . ) t B
Jspar < Lo e oo ([ erar) as
0 r r 0 s

k2 , k2 o [ el
v 0 v rsAI2Ze S d
SISO + Qs [ P e as

k,2 ) k,2 ) to. )
= SISO+ 10+ i [ 101Pds, (2.136)
0

IN

where fst e "dr < %e""s is used. Since § € Lo, ¢ € Lo is concluded.

We then show that Q76 € £, implies that y70 € L,. Introduce two filters

G o= AG+F"0 (2.137)

G = AL+ W, (2.138)

From (2.112) and (2.128), we note that
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1 0 e 0
Jda . :
« —==t 1 " : ~
WT(z,0,t) = o FT(z) 2 M(z,0,)FT(z). (2.139)
8an_1 80&n—1
—Tge e e 1 |

Based on this, (2.138) can be rewritten to be

(o= A.Co+ MFT0. (2.140)

By following similar procedures in proving ¢ € L, it can be shown that (; —0%0 € L,
and (5 — XT0~ € Lo. From Q70 € L, it follows that (1 € Ly. The solution of (2.140)

is computed as

t

G = Da.(t,0)0(0)+ CI)Az(t,T)M(T)FT(T)QN(T)dT

= ©4.(10)G(0) + [ Da(t,7)M(7)(C1 — AGr))dr

= Pa(t,0)¢(0) + M(£)Ci(t) — Pa.(t,0)M(0)¢:(0)

—/0 Dy, (t,T)(M(T) + A (T)M (1) + M(7)A(7))C (T)dT.  (2.141)

From (2.89), (2.94), (2.97), (2.101), (2.139) and the smoothness of F7(x), we see

that the terms % are continuous functions of z, 6 and bounded functions of . Thus
J

M is bounded. Similarly, we can show that %—Aj, 88—];4 and 88—1\;[ are bounded. Since 2

and 6 are bounded in view of (2.126) and (2.119), M = oM+ %—]gé—i— 9M is bounded.

t
< ||M + AM + MA|2 K / e~2=7)||¢, (1) ||2dr. (2.142)
0

Thus we have

2

/0 Dy (t, 7')(]\/[(7') + A (T)M (1) + M(7)A(7))( (T)dT

By following similar procedures in (2.134)-(2.135), we can conclude that fot Dy (t,7)
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(M(7) + A ()M (1) + M(7)A(7))Ci(7)dT € Lo. Further more, ®y4 (¢,0)((0) +
M) (t) — Pa,(t,0)0M(0)(1(0) € Lo because ®4_(t,0) is exponentially decaying,
M is bounded and ¢; € Ls. Hence, (» € Ly and 76 € £,. Consequently, z € L.
Combining with 2 € L, it is concluded that lim;_,, z(¢) = 0. O

This section gives standard procedures to design adaptive backstepping con-
trollers, with tuning function and modular design schemes respectively. In the
corresponding analysis parts, system stability and tracking performance are inves-
tigated. It should be noted that the designed controllers in this chapter are known
as full “state-feedback” controllers. That is because the results are obtained under
the assumption that the full state of the system is measurable. However for many
realistic problems, only a part of the state or the plant output is available for mea-
surement. To address these problems, state observers are often needed to provide
the estimates of unmeasurable states.

As basic design ideas and related analysis of adaptive backstepping technique are
only introduced here as preliminary knowledge for the remainder of the thesis, the
procedures of extending the full state-feedback results to partial state-feedback and
output-feedback problems will not be included in this chapter. Interested readers
can refer to [21] and [37] for more details.

Based on backstepping technique, some new developments in adaptive control
of uncertain systems with actuator failures and subsystem interactions will be pre-

sented in the remaining part of the thesis.
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Part 1

Adaptive Actuator Failure

Compensation
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Chapter 3

Adaptive Failure Compensation
with Relative Degree Condition
Relaxed

In this chapter, we aim to develop adaptive output-feedback controllers for a class
of uncertain systems with multiple inputs and single output (MISO). In achieving
satisfactory output regulation and the boundedness of all closed-loop signals, the
actuators corresponding to the inputs are redundant for one another if the output
of it is stuck at some unknown constant. The considered class of systems has a
characteristic that the relative degrees with respect to the inputs are not necessarily
the same. To deal with these inputs using backstepping technique, we introduce
a pre-filter before each actuator such that its output is the input to the actuator.
The orders of the pre-filters are chosen properly to ensure all their inputs can be
designed at the same step in the systematic design. To illustrate our design idea,
we will firstly consider set-point regulation problem for linear systems and then

extend the results to nonlinear systems with asymptotic tracking performance to be
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achieved.

3.1 Background

We consider TLOE type of actuator failures in this chapter, which is characterized
by the output of a failed actuator being stuck at some unknown values. As the
failed actuator cannot respond to the control inputs in this scenario, it loses the
effectiveness completely in manipulating the variables of the system by executing
the control commands. To stabilize the system and maintain desired performances
in the presence of such failures, actuation redundancy has been widely employed.
For example, in an aircraft control system as shown in Figure 3.1, the orientation
of the aircraft can be achieved through deflecting appropriate control surfaces in-

cluding left (right) aileron, left (right) elevator and rudder. The control surfaces are

Vertical Axis

Longitudinal
cﬁr g

itch Ancle ™
Pitch ,*‘-'\Ilblt,g Axis

-

AN

I
I
-7

Roll Angle Yaw Angle @ “

“Lateral Axis

Figure 3.1: An aircraft control system [1]

the actuators of the system and often divided into several individually segments.
Thus if some of the segments are icing up and stuck at some fixed positions, the
remaining functional segments can still be properly controlled to guarantee system

performances satisfied by compensating for the effects of the failed ones.
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There are also some other examples of actuation redundancy in improving the
system reliability with actuator failures. In [2], a dual-actuator ball-beam system

is described as in Figure 3.2. The system involves two driving motors, one at each

Figure 3.2: A dual-motor beam-ball system [2]

end. The two motors take responsibilities of moving the beam at the two ends up
and down for balancing the ball at a desired position, in which any one can be
considered as redundant if the other is blocked and of which the angular position is

fixed. In [3], a hexapod robot system is studied as plotted in Figure 3.3. To pre-

Figure 3.3: A hexapod robot system [3]

cisely regulate the angular positions of the object on the platform at some desired
values, only three degree of freedom (DOF) are required. However, there are six
struts whose length can be controlled. The extra three DOF can thus be adopted as
a built-in redundancy in control designs with actuator failures. A three-tank system

in Figure 3.4 is considered in [4] to develop a failure tolerant control design scheme.
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Pump 1 Pump 2

Inflow g3 Inflow ;2

Outflow 4. [Tl

Figure 3.4: A three-tank system [4]

The system has three cylindrical tanks with identical cross section. The tanks are
coupled by two connecting cylindrical pipes and the nominal outflow is located at
the tank 2. Two pumps driven by DC motors supply required liquids to the tanks
1 and 2. If one of the pumps is blocked and the inflow of which is stuck at a fixed
value, the other can still be adjusted accordingly to maintain the liquid level in tank
2.

As discussed in Chapter 1, actuator failures are often uncertain in time, value and
pattern. Because of its prominent feature in handling uncertainties, adaptive control
has been proved as a desirable tool to accommodate actuator failures for both linear
systems and nonlinear systems [43,45,54,55,69,70,73,95]. In [45], a MRAC based
actuator failure compensation method is proposed to solve tracking problem for lin-
ear system with actuator failures. Unknown system parameters are considered and
handled simultaneously with the large uncertain structural and parametric changes
caused by the failures in control design, where the available actuator redundancy
is utilized and explicit failure detection and diagnostic is not required. The class
of failure compensation control schemes combining these features is referred by Tao
et al. as “direct” adaptive solutions. Backstepping technique has been widely used
to design adaptive controllers for nonlinear systems with uncertainties. Based on
that, adaptive state feedback and output-feedback controllers are designed for non-

linear systems with actuator failures in [54] and [95] respectively. The results are
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extended to nonlinear multi-input and multi-output (MIMO) system in [55]. Un-
known nonlinearities are treated in [96] by adopting adaptive fuzzy approximation

approach.

3.1.1 A Motivating Example

In [45,54,95], a common condition exists that the relative degrees with respect to
each control inputs to the system output are identical. In [55], it is also indicated
that only the actuators, corresponding to which the relative degrees with respect to
the inputs are the same, can be designed to compensate for one another. However, in
some control systems, such a condition on the relative degrees may not be satisfied.

For example, in a system with two rolling carts connected by a spring and a
damper as shown in Figure 3.5, two external forces uy, us located at distinct carts

are generated by two motors respectively. Other variables of interest are noted on

q P
k
Uy VIV I
g |—Lb L)
I

IAICHR ORI O}

Figure 3.5: Two rolling carts attached with spring and damper

the figure and defined as: mi,my = mass of carts, p,q = positions of two carts,
k = spring constant and b = damping coefficient. We assume that the carts have
negligible rolling friction. The control objective is to regulate cart 1 to a desired
position while maintaining the boundedness of all signals in the presence of one
motor failing.

We now determine the dynamic model of such a control system. Define z; = p,

To = (q, T3 = P, T4 = ¢, where p, ¢ denote the velocity of mq, ms. By using Newton’s
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second law, i.e. sum of the forces equaling mass of the object multiplied by its

acceleration, the state space model of the system can be obtained as follows,

T = AT+ Byuy + Bous

y = Cz, (3.1)
where
0 0 1 0 0 0
0 0 0 1 0 0
A = ) Bl_ ) B2:
k. k  _b b 1 0
ko _k b _ b 0 e
L M2 ma2 ma2 m2 | L J L m2 |
C = [1,0,0,0]. (3.2)
If the observability matrix
C
CA
0= (3.3)
CA?
cA3

of the system (3.1) has full rank, O~! exists and system (3.1) is observable. We
define Oy = 07164, P = [O4,AO4,A2O47A304], T = [64,63,62,61]P71, where e;
denotes the ith coordinate vector in ®*. Under transformation z = Tz, (3.1) can

be transformed to the observable canonical form of (3.6) as

T = Ax—ya+ uy + Ug

y = el (3.4)
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where 0y € R?, a = [as, az, ay, apl”, by = [b12, b1, b1o]T, by = [ba1, boo]T. Either u; or
us can be properly designed to accommodate the stuck failure of the other. How-
ever, observing from (3.4), the relative degrees with respect to u; and usy are 2 and
3 respectively.

Note that the relative degree condition is relaxed in [97] where failure accom-
modation is performed on the basis of accurate failure detection and isolation. In
this chapter, we focus on a “direct” adaptive solution to the actuator failure com-
pensation problem with different relative degrees. To achieve this, a pre-filter is
introduced before each actuator such that its output is the input to the actuator.
The order of the filter is properly chosen so that all their inputs can be designed at
the same step. We will start with set-point regulation for linear systems and extend

the results to nonlinear systems by considering tracking problem.

3.1.2 Modeling of Actuator Failures

Suppose there are m inputs in the system. The block diagram of a single loop
consisting of the plant preceded by the jth actuator and a feedback controller is

given in Figure 3.6. u.; denotes the input of the jth actuator, which is the control

I L
Jth actuator

Plant

Controller

Figure 3.6: The block diagram of a single loop.

signal generated by the designed controller. If the internal dynamics of an actuator
is neglected, it is regarded as a failure-free actuator when u; = u.;. The considered

TLOE type of failures in this chapter, which occur on the jth actuator are modeled
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as follows,

U](t) = Ugj, tthF, j € {1,2,...,m} (35)

where wuy; is a constant and ¢, is the time instant at which the jth actuator fails.

Eqn. (3.5) describes that from time ¢;r, the jth actuator is stuck at some fixed

value and can no longer respond to the input u.;. Both uy; and t;7 are unknown.
To solve the actuator failure compensation problem for the systems with m inputs

and single output in this chapter, a common assumption is imposed.

Assumption 3.1.1. Up to m — 1 actuators may suffer from the actuator failures

modeled as in (3.5) simultaneously so that the remaining actuators can still achieve

a desired control objective.

Remark 3.1.1.

e Observing (3.5), the uniqueness of ¢, indicates that a failure occurs only once on
the jth actuator. The failure case is unidirectional, which is commonly encountered
in practice since fault repairing is sometimes hardly implemented such as during
the flight of an apparatus. This implies that there exists a finite 7). denoting the
time instant of the last failure and the total number of failures along the time scale
[0, +00) is finite. Similar assumptions could be found in many pervious results, such
as in [43,45,54,55,95].

e As discussed in [98], Assumption 3.1.1 is a basic condition to ensure the control-
lability of the plant and existence of a nominal solution to actuator failure compen-

sation problem with known failure pattern and system parameters.

3.2 Set-Point Regulation for Linear Systems

In this section, the control problem is firstly formulated. The designs of pre-filters

and control laws are elaborated with the relative degree condition corresponding
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to redundant actuators relaxed. It will be shown that the effects due to actuator
failures can be compensated for with the designed controllers. The boundedness
of the closed-loop signals can be ensured. Further, the system output can also be
regulated to a specific value. The effectiveness of the proposed approach is evaluated

through the application to the mass-spring-damper system in Figure 3.5.

3.2.1 Problem Formulation

Similar to [97], we consider a class of linear systems described as

m

y=>Y_ Gi(pu, (3.6)

=1

where u; € R, j = 1,...,m and y € R are the inputs and output respectively, p

d

denotes the differential operator 7,

G,(p), j =1,...,m are rational functions of p.

With p replaced by s, the corresponding G;(s) is the transfer function

bj(S) o bjﬁjsﬁj + -+ bj18 + bjO

a(s) s+ ap_15" -+ ars + ag

An assumption on Gj(s) is made as follows,

Assumption 3.2.1. For each Gj(s), ag, k=0,...,n—1 and by, k =0,...,7; are
unknown constants, bj,, # 0. The order n, the sign of bjn,, i.e. sgn(bja;) and the

relative degrees pj(=n — n;) are known.

The design objective is to regulate the output y of the system as described in
(3.6) to a specific value y, while maintaining boundedness of all closed-loop signals
by designing output-feedback controllers, despite the presence of actuator failures

as modeled in (3.5).
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3.2.2 Preliminary Designs

A. Design of Pre-filters

Observed from (3.7), the relative degree p; of the transfer function with respect to
each system input u;, j = 1,..., m may not be identical. To overcome the difficulties
when the backstepping technique is applied, we firstly introduce a pre-filter before

each actuator as suggested in Figure 3.7.

!r}-l Le t

——— Pre-filter 1 » Actuator 1 = Gi(s)
E"J} . Uem Wm

— pf Pre-filter m »| Actuator m = Gul(s)

Figure 3.7: Design of pre-filters before each actuator

For the jth pre-filter, it is designed that

= ! 1 3.8
" Gy by &8)
where p = max{p;} for j =1,...,m, § > 0 is to be chosen. ; is the input of the

Jth pre-filter. Note that for those u; with p; = p, u.; = ;. As indicated in Section
3.1.2, uj; = u,; for a failure-free actuator. Based on this, (3.6) can be rewritten with
4; as the jth input in failure-free case.

1) Failure-free Case: In this case, all of the actuators are 100% effective in exe-
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cuting their inputs. Thus by substituting (3.8) into (3.6), we obtain

I
NE

1
Gi(p) 75 Uy
- (p+0)rate

.
Il

bip) (o8
ap) (p+ oy

I
NE

1

<.

3

bjap" + -+ bjp + b, X
= Yy P T TIWPTON g, (3.9)
= PP+ Gy PP G+ G
where i = max{n;} for j = 1,...,m, bjn = bjn,. From (3.9), we see that the relative

degrees with respect to each @; are all equal to p. We can represent (3.9) in the

observer canonical form

m O _
o= Av—ya+) ‘il u;
i=1 | b
y = 6%;,,,1% (3.10)
where
. ; Qrtp—1 Bﬂﬁ
) A - : b= |- (3.11)
0 Oz’;+p71 h
do bjo

0; € R and e, ; denotes the jth coordinate vector in R’

2) Failure Case: Suppose that there are a finite number of time instants 77, T, . . .
T.(Ty <Ty < --- < T, <€ 400) and only at which some of the m actuators fail.
During the time interval [Ty_1,T}), where k = 1,...,r and T,,; = oo, there are gy

failed actuators, i.e. u;(t) = w; for j = j;, i =1,2,---, gr. Then (3.9) is changed
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to

B 1 (p+5)ﬁ+p—n
y o= > Gj(p)muj+ > G )Wuw

j#jl:"'mjgk .7 .717"7.]gk

- Z l_)jﬁpﬁ‘i‘""i‘z_)jlp‘i‘bjo .
p

e g ntp=1 1. g ag )
L —1 1 0
]#Jl:"':]yk nte p

+ Z bitnsppp)P" T A bjp 4 by
PP+ Qg PP Ay F G

J=ji,

Uk, (312)

where ;4 ,—,.) = bjn, for j =ji,...,jg.. We define h = min{p;} for j=1,...,m

Similar to (3.10), (3.12) can be represented in the following state space form

1 = X2 — Apgp-1Y

Th = Thyl — Gatp—nY + Uatp—h

J#IL, gy,
jl'ﬁer = —doy + Z Bjoﬁj + 'L_Lo, (313)
j?éjlf"mjgk
where 4, = Zj:jl,...,jgk b uk; for ¢ =0,...,n+ p — h are unknown constants to be

identified together with unknown system parameters. (3.13) can be rewritten as

0p—1 0n—1
T = Ar—ya+ Z /j Uuj +

G e b; u

y = eri, (3.14)

where @ = [Untpp, - - -, Uo)” -
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B. Design of 1;
For the inputs of each pre-filters, 4, is designed as

?lj = Sgn(bjﬁj)uo (315)

where g is the actual control signal to be generated by performing the backstepping
technique. By substituting (3.15) into (3.10) in failure-free case and (3.14) in failure-

free case respectively, the controlled plant can be expressed in the following unified

form
0,-1 Or—1
Tz = Ar—wya+ Z i ug +
j#jl:‘--ngk J u
y = e£+p71x, (3.16)
where l:)j = [|bjn, |, sgn(bjn, )bjr-1, - - -, 5gn(bjn,)bjo]”. @ can be considered as a piece-

wise constant disturbance. In failure-free case, Zj actually includes Zj for

JFI15day,

all j=1,...,m and u = 0.

Remark 3.2.1. Tt is important to note that the unknown vectors ) l:7j and

j?éjl""ngk
u depend on the system parameters bjo, . . ., bjn, as well as the the knowledge of the

actuator failures. Jumpings on ) b; and u will occur whenever the actuator

j#jl:-“ngk
failure pattern changes. They are actually piecewise constant vectors, which will be
identified together with a. By doing this, the effects due to failed actuators can be

compensated for.

C. State Estimation Filters

It should be noted that the full states of system are not measurable. Thus we

introduce the following filters to estimate the unmeasurable states = in (3.16), as

ScHooL oF EEE NANYANG TECHNOLOGICAL UNIVERSITY



3.2 Set-Point Regulation for Linear Systems 60

similarly discussed in [21,37],

n = Aon+ eatrpntpl (3.17)
}\ = AO)\ + €n4-p,a+pU0 (318)
O = Ag®+enipnr, (3.19)

All states of the filters in (3.17) and (3.19) are available for feedback. We define

pe = AN, k=0,...,n (3.20)
U, = AF®, k=0,....n+p—nh (3.21)
where Ag = A—lel, ,,, the vector [ = [y, ..., ln1,]" is chosen that the matrix Ay is

Hurwitz. Hence there exists a matrix P such that PAy+ AT P = -1, P = PT > 0.

With these designed filters x can be estimated by

i =£6+0Q70, (3.22)
where
& = —A7"n (3.23)
Q" = pas s 1y 110, 2, Yo popy - oo, Yol (3.24)
E = —[Ag7 ..., A, (3.25)
0 = [ > bfa ) eninteohi (3.26)
]#Jl ~~~~~ jgk

The state estimation error € = x — 7 satisfies

¢ = Age. (3.27)

Thus, system (3.16) can be expressed in the following form
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y = Z |bjn, |2 + &2 + w"0 + € (3.28)
FH e
p’ﬁ,q - Nﬁ,q-ﬁ-l - lqﬂﬁ,l; q = 27 Y 1 (329>
fap = Pap+rl — lppn1 + U, (3.30)
where
-T — T
W' = (0, a2 -5 o2, Z2 = Vet o1y Yatph2s - Yoo (3.31)

and pyo for k =0,...,0n, ¥yo for k =0,...,7 4+ p — h, &, =2 denote the second

entries of uy, Uy, &, = respectively.

3.2.3 Design of vy and Parameter Update Laws

Performing standard backstepping procedures in [21,37], ug can be generated at the
pth step as summarized below.

The change of coordinates are:

2 = Y—ys (3.32)
Zy = g — Og—1, ¢=2,3,...,p (3.33)

Design ug as:
Up = Qp — fa,p+1, (3.34)

where
a1 = @6&1 (335)
o = —C1z1 — d121 — 62 — (Z)Té (336)
. dar \ > Qo . Oa

ay = —€3Tﬁ+2p_h+2,1921 — ey +do (a—yl) 29 + By + 8@1 0+ 8@1 I'r{3.37)

ScHooL oF EEE NANYANG TECHNOLOGICAL UNIVERSITY



3.2 Set-Point Regulation for Linear Systems 62

1 d, (2o 2 1B, + Qg Oy
ap = —Zg1— |C z —1I'T,
q q—1 q q By q q 90 0 ) q
q—1
0g_1 Oy,
Sy S p Tty =3, (3.38)
00 Oy
k=2
_ Oorg_ A Oayg
B, = 8—21(52 + WTH) + 837 ! (Aon + entpitpy) + lgpta
" da O
q—1 q—1
_l )\ A A @ n n B — 2, ey
+k§ T (M ) + == (Aot enpa) g p
(3.39)
71 = (w— 00iemi2p—hi2,1)?1 (3.40)
o -1
T, = Tgo1— 8—szq’ q=2,...,p (3.41)
w = [Mn,z, Hi—12,- -5 H0,2, 22 — ye%er,lv Vit ph2y s ‘Po,z]T- (3.42)
0 is an estimate of 1/ Z#jleg_ |bjn, |, 0 is an estimate of 6 and cgdgforg=1,...,p
are positive constants.
Parameter Update Laws are given by
é = —7@121 (343)
0 = I'r,, (3.44)

where 7 is positive constant and I is a positive definite matrix.
To better illustrate the structure of designed adaptive controllers, a block diagram

is given in Figure 3.8.

3.2.4 Stability Analysis

To prove the boundedness of all the closed-loop signals, the following assumption is

required. Suppose that there are r time instants, from which some of the actuators
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7 u
sgn(biin) > pre-filter 1 = Actuator 1 —= Gi(s)
Uo ’_. T‘lg 2 4&
sgn(bziz) —w pre-filter 2 -» Actuator 2 —» G2(s) ¥
\‘ . 'l,}m : um . . ]
sgn(bmim) = pre-filter m [ Actuator m —= Gw(s)
.
A filter D 7 filter
;L ll‘:k (I) (;[Ik ?7‘ f ‘,V
Backstepping Controller
fmmmmmmm o ‘ Parameter
:____S.t_ef)_] ] update laws
051; ;’ 1
e I
L Sterq |
7777777777 I
| Stepp |
% %

Figure 3.8: Control block diagram

fail. During the time intervals [T}_1,T}), where k = 1,...,r + 1, To, = 0 and
T,,1 = oo, the failure pattern is fixed and there are g failed actuators indexed by

Jis fore=1,..., g.

Assumption 3.2.2.

The polynomials > sgn(bjn,) (bjnp™ + -+ + bj1p + bjo) are Hurwitz.

i o

Remark 3.2.2. Similar to [54,95], Assumption 3.2.2 refers to the minimum phase
condition for the controlled systems (3.10), (3.14) in the failure-free case and all
possible failure cases. It should be noted that if the order of the original plant
(3.6) is n = 2, all the polynomials b;(p) for j = 1,..., m being Hurwitz is sufficient
to satisfy Assumption 3.2.2. For a third order plant, the coefficients bjz,, ..., bjo
in b;(p) having the same signs for j = 1,...,m respectively can also meet the
assumption. Nevertheless, further investigations are still needed to determine how

this assumption be justified for higher order system.
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We now define a positive definite function Vj_(t) for t € [Tj—1,Ty) fork =1,...,r+

1 with T} denoting the time instant of the last failure.

Vio(t) = - — TP eTr 19 L 4
w1 (1) z Ted = Z e’ Pe + + 27 , (3.45)
where z = [z1,...,2,]7, 6 =60—0and § = o— p. With the designed adaptive

controllers, the time derivative of Vj_1(t) can be rendered negative definite.
P
Vi ( Z czl, t€[Tio1,Ty) (3.46)

We define Vi1 (T}, ) = limaso- Vi1 (Te+A¢) and Vi1 (T, ) = limag o+ Vi1 (Th-1+
At) = kal(kal)- If we let V(t) = kal(t) for t € [kalaTk) where 1 = 1, Lo T -+
1, V(t) is a piece-wise continuous function. From (3.46), we have Vj_1(T} ) <

Vi—1(TyF ). At each T, parameter jumpings occur on . bj and @, due to

j;’é]l 7777 j

new actuators’ failing, will result in changes on the last two terms in (3.45) by com-
paring Vi (T,) with Vi_1 (T}, ). It can be shown that Vi(T,") < 2Vi_1(T, )+AV,. We
illustrate an example to explain such boundedness. For simplicity of presentation,

choose I' = I3n42p-ni1)x(3n42p-ht1), ¥ = 1. We have

OTHTOT) = (0T —0(T) (B(T;) — 6(Th))

< 20Ty ) — (T )L (0(T ) — 0(T,))

+2(0(T) — 0(T;) (0(T) — 0(T},)), (3.47)

where the fact (a + b)? < 2a® + 2b* is used. Suppose that there are p; failed

actuators (hy, ..., hy,, ) before time T}, while p, —p; actuators fail at time T;. Hence

----------
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S(T) = ;> similar to (3.47), we obtain that

(THAT) = «(TH(T) - o(Tr))?
< (T (o(Ty) — o(T))?

< (T [2(e(Ty ) = oTi))* +2(e(Ty) — o(T; )] (3.48)

Note that 0 < ¢(7;7) < (T, ). From (3.47) and (3.48), we have Vi(T;")

IN

2Vi—1(Ty) + AVy, where AVy is bounded. Hence V,.(T.) < 2V, _4(T,7) + AV, <
2V, ((TH )+ AV, <4V, o(T— ) +2AV,_; + AV,. By proceeding to such iterative
procedures, V,.(t) < AVy(0) + T for t € [T,,00) will be achieved, where A > 0 and
T > 0 denote generic positive constants. Therefore z, €, é, 0 are bounded since
V0(0) is bounded. From (3.32), y is also bounded. From (3.17), we conclude that 7
is bounded. From (3.16) and (3.18), we have

P TP i

i = (P + <_l7—z+p—1pq_l+p_1 +ao)y,

.....

(3.49)
where L(p) = p" P +1p"**~ +. . +1i4,. From the boundedness of y and Assumption
3.2.2, it follows that Aj,..., Az;1 are bounded. The coordinate change (3.33) gives
that (172 = 22 + aq. Since oy is the function of y,n, A1, ..., Asy1, ® and the bound-
edness of all the arguments and z,, we conclude that y; 2 is bounded. From (3.20),
fag = [* ...,k 1][A1, ..o, Aaye]T. Thus Aqye is bounded. By repeating the similar
procedures, A being bounded can be established. From (3.22), = = ¢ + 2, (3.24),
(3.25), (3.20) and the boundedness of 7, A\, ¥, ¢, we conclude that = is bounded. ug
is bounded based on (3.34). From (3.15), the boundedness of ; is then ensured.
Since > 0 in (3.8), u; is bounded. Thus all the signals in the closed-loop adap-
tive system are bounded. From (3.46), z(t) € L2. Noting Z € L, it follows that

lim; .., 2(¢) = 0, which implies that lim; ., y(¢) = ys. The above results is formally
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stated in the following theorem.

Theorem 3.2.1. Consider the closed-loop adaptive system consisting of the plant
(8.6), pre-filters (3.8), the controllers (3.15), (3.34), the parameter estimators (3.107),
(3.108) and the state estimation filters (3.17)-(3.19) in the presence of actuator fail-
ures as modeled in (3.5) under Assumptions 3.1.1-3.2.2. All the closed-loop signals

are bounded and the system output can be regulated to ys, i.e. imy_o, y(t) = ys.

3.2.5 Application to The Mass-spring-damper System

We consider the mass-spring-damper system as shown in Figure 3.5. The control
objective is to regulate the position of m; to p = 2m while maintaining the bound-
edness of all signals in the presence of actuator failures. In simulation, the variables
are chosen as m; = 1 kg, my = 2 kg, k = 10 N/sec, b = 20 N-sec/m, which are
unknown in control design. As discussed in Section 3.1.1, the controlled plant can
be expressed as in (3.4). Suppose that the only information known in simulation is
that byo, b11, b1p and bay, byy are all positive constants. Then according to Remark
3.2.2, Assumption 3.2.2 is satisfied. Since the relative degrees with respect to

and uy are 2 and 3 respectively. Thus the pre-filters for w; and uy are designed

1

5 +6711 and uy, = Uy. We choose 0 = 1. In simulation, all the initial val-

as u; =

ues are set as 0 except for ¢(0) = —1m. Other design parameters are chosen as

[ =[10,40,80,80,32]", ¢c; =co =c3 =3,dy =dy =d3 = 0.01,y=0.1, [ = 0.1 x [.
Two failure cases are considered respectively,

e Case 1: The output of actuator u; is stuck at ui; = 2 from ¢ = 5 seconds.

e Case 2: The output of actuator usy is stuck at ug = 2 from ¢ = 5 seconds.

The error e = y — y, as well as control inputs for both cases are given in Fig. 3.9-

3.12. Tt is observed that the system output can still be regulated to y; = 2 in both
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failure cases despite of a degradation of performance.

60

051
- — =u
ot 40} 1
l’|2
-0.5 g
Q.
o £
1 1L o
r £
o
-15
-2
-40 L L L ,
-25 L . . ) 10 20 30 40
0 10 20 30 40 (sec)

t(sec)

Figure 3.10: Controller inputs in failure

Figure 3.9: Error y — y; in failure case 1
case 1

60

40}

Control inputs

: : : : 10 20 30 40
10 20 30 40 t(sec)
t(sec)

Figure 3.12: Controller inputs in failure

Figure 3.11: Error y — y, in failure case 2
case 2

3.3 Tracking for Nonlinear Systems

In this section, we will design adaptive output-feedback controllers for a class of
nonlinear MISO systems with unknown parameters and uncertain actuator failures
to force the system output asymptotically tracking a given reference signal. In the

previous section, the state space model of the controlled linear system is established
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on the basis of arithmetic operations of polynomials with respect to p as performed
in (3.9), (3.12). In contrast to this, we will establish the state space model of the
nonlinear system consisting of the original plant and the designed pre-filters through

defining new states equation by equation in this section.

3.3.1 Problem Formulation

Extending from the observable canonical form of state space model for the linear
systems (3.6) by including output dependent nonlinearities, we consider a class of

nonlinear MISO systems described as follows,

_ n 0
P o= Aol et Y | | oy (3.50)
j=1 | b;
y = i, (3.51)
where © = [z1,...,2,]7 € R" is the state, u; € R for j = 1,2,...,m are the m

inputs of the system, i.e. the outputs of the m actuators, y € R is the system

output.
¢1(y)
On—l ]n—l
o = , oy) = : (3.52)
0 05,
Pn(y)
(i)1<y) e11(y) o pea(y)
O(y) = : = Lo : (3.53)
D, (y) e1n(Y) - Panly)

¢i(y) fori=1,....,n, g fori=1,...,¢, k=1,....,nand oj(y) for j =1,...,m
are known smooth nonlinear functions, a = [a1, . ..,a,]" € R, b; = [bjﬁj, coobio)t €

Rt for j=1,...,m are vectors of unknown constant parameters.
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The control objective is to design adaptive output-feedback controllers such that
the effects of the actuator failures can be compensated for. Thus the boundedness of
all closed-loop signals is achieved and the system output y(¢) asymptotically tracks
a given reference signal y,(t).

Similar to Assumption 3.2.1 for the considered linear systems, the following as-
sumption is imposed.

Assumption 3.3.1. The sign of bjn,, i.e. sgn(bjs;), for j = 1,...,m is known.
bjn, # 0 and o;(y) # 0, Yy € RN. The plant order n and relative degree with respect

to each input p; = n —n; are known.

In addition, the following assumption is also required to achieve the control ob-
jectives.

Assumption 3.3.2. The reference signal y, and its first pth order derivatives, where

p = maxXi<j<m Pj, are known and bounded, and piecewise continuous.

3.3.2 Preliminary Designs

Without loss of generality, we assume that in (3.50), iy > 19 > - -+ > f1,. Thus we

have p; < po < -++ < p, p = pm based on the definition of p in Assumption 3.3.2.

A. Design of Pre-filters

Design a pre-filter for the jth actuator as

ueg = sgnlbya,)ug/og(y), j=1,...,m (3.54)
R Ug

o= 2 3.55

uj (p+0)r—ri’ (3.55)

d

2, 0 > 0 1is to be chosen. wg is the input

where p denotes the differential operator

of the pre-filter, which is the actual control variable to be generated by performing
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backstepping technique. Note that for those u; with p; = p, 4; is designed as

Uj = up. The state space model of (3.55) is

Gk = —5§j,k + Gjk+1, k=1,....,p— pj—1 (3-56)
So—p; = —0Sp—p; + Uo. (3.57)

Let 1; = g1 and
ik =to/(p+ 8PP k=2 p—p, (3.58)

B. Construction of A New Plant

At this point, we construct a new plant based on the designed pre-filters (3.54)-
(3.55). The state space models of the newly constructed plant will be derived under
failure-free and failure cases respectively. To the end, a unified state space model
will be established for both cases.

1) Failure-free Case: Note that the newly constructed plant is a (n + p — py)th-
order system.

¢ For the case that n = 1, we have that i; = 0 and p; = 1 for all inputs. This
implies that all u; appear firstly at the equation of . The model in this case is
quite straightforward.

¢ For the case that n = 2, suppose we have some inputs with p; = 1 and the
rest of the inputs with p; = 2. Obviously, p = 2. We now suppose that p; = 1 for
j=1,2,...,51and p; =2 for j = j; +1,...,m. Define that s, = z1. From (3.50)

and the fact that 4; = g, it is obtained that

}'fl = 1y + Cbl + él(l, (359)
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where sz, is defined as '
J1
My = X9 + Z |bj1|§j,1~ (360)
j=1
As it is designed that 4; = ug/(p+0) for j =1,...,j1, 4; =y for j = j1+1,...,m,

from (3.50) and (3.56), the time derivative of sz is computed as

J1
i = dat Y |bjn, IS
j=1

= 3+ ¢2 -+ <i>2a + bﬂLo, (361)

where 3¢5 is defined as

w23 =Y [sen(bji)bjo + [bjn(—8)] i (3.62)

Jj=1

and by =37 [bjn,|. The derivative of s; is
'%3 = —(5%3 + boUO, (363)

where by = ;1:1 [sgn(bj1)bjo + |bj1|(—0)].

¢ We consider the case that n > 2.

If p=1, pj =1 for all the inputs. This is similar to the case that n = 1.

If p =2, suppose that p; =1for j=1,...,jy and p; =2 for j = j1 +1,...,m.
Similar to the case that n = 2, by introducing new states s;,; that include the
original states z;41 for ¢ = 1,...,n with x,,; = 0 and all the terms with respect
to the states ¢;; in (3.56)-(3.57), the first n equations of the state space model are

derived as follows,

o = s+ ¢+ Poa (3.64)

'%7; = X1 + gbz + (fya + bn—i—l—lan 1= 2, .o, n (365)
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where b,,_; = 2;21 |bjn,|. If we define f(6,q) as a gth order polynomial of §,
f(8,q) = v, 07 + vy_167 1 + -+ 4+ 1y with v; for i = 0,. .., q representing constants,

one can show that s, is expressed as
Ji
o =+ Y (fOn =261+ F(6,n = 3)g2+ -+ f(5,0)55m1)

=1

+ Y (f6n=3)ga+ -+ f(6,n— 42+ + f(5,0)5n-2)
Jj=j1+1

(3.66)

and s, consists only the terms with respect to the states ¢;;. The derivative of

#,+1 is thus computed as

J.fn_;,_l == _5%114-1 + bgUo. (367)

If p > 2, the first n equations are changed to
‘%i = %i+1+(bi+(i)ia,i:1,...,,0—1 (368)

g = g1+ bngp pqUo, ¢q=p,.50 (3.69)

The derivatives of s; for ¢ > n are computed as
s, = —O0sp+ 21+ bpspp ko, k=n+1,....n4+p—1 (3.70)

'%ﬁ+p = _5%n+P—P1 + bouo, (371)

where n =n — p; = ny.
In summary, the state space model of the newly constructed plant under failure-

free case can be written as follows,

) _
2= Ay | W W | o (3.72)

Yy = o, (373)
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where the new states s € R,

~ _\
010 0
00 1 0 ;
000 1

A= { (3.74)

00 0 51 0
000 0 51 P

(000 0 0 5 |

J

and b = [bs, b51,...,bo]" € R with by = 377 [bja;| > 0.

2) Faulty Case: Suppose that there are a finite number of time instants T, 75, . . .,
T.(Ty < Ty < -+ < T, <€ o) and only at the time instants T}, k = 1,2,...,r,
some of the r actuators fail. During the time interval (Ty_q,T}), for k =1,2,...,r
with 7,41 = oo, there are g, failed actuators’ outputs are stuck at ug; for j =
Jg1:Jgar - -+ Jgn- Then due to the effects from failed actuators, the state space model

in (3.72)-(3.73) is changed to

& o 0p;—1
2 = Ax+ + a—+ Z bjuk, | 7
Op—m 0(p*ﬂ1)><q J=Jg1+5Jap,
Op—p1
0,
w7 e (3.75)
b
y = -, (376)

where A is defined in (3.74), b; = Y Jon |bjn,| > 0. Note that (3.75)-(3.76)

IF g1

are also applicable to the case when all the actuators with which p; = p; for j =
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1,2,...,7; fail with s = 0 fori =n+p—ps+1,...,2+ p and b; = 0 for
’iZO,...,pQ—pl—l.
From the models derived under both failure-free and faulty cases, i.e. (3.72)

and (3.73), (3.75) and (3.76), the controlled plant can be expressed in the following

unified form

o 3 o |0,
s = Ax+ + a—i—Z g a;(y)
0p—p, O(o—p1)xq J=1 K;
0,
T (3.77)
b
y = o, (378)

where K; € R+HHr—r1,

C. State Estimation Filters

The unmeasured state s can be estimated by introducing filters as follows:

: ¢(y)
0

: Dy
s oazy | W (3.80)

0
>.\ = A())\ + €ﬁ+p7ﬁ+pUO (381)
M = Ao+ earpnrpoi(y), J=1,...,m (3.82)
where Ag = A—lel, | withl=1l,...,ls;,]" and is chosen to be Hurwitz, and e;

denotes the jth coordinate vector in %?. Hence there exist a P such that PAg +

ATp=_] P=PpPT>0.
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Remark 3.3.1. It can be shown that det(sl — Ay) = £(s,1,9) where

£(5,1,0) = (s+13)s" PP (s 4 §)PTP 4 [os" 2P (5 4 §)PTP 4 -
(3.83)
From (3.83), we know that [ can be computed based on [ and &, where l = [Iy, ...,z ,]
is the normal vector chosen as in previous section such that @4 = & — lel o1 18
Hurwitz, where @ € RTP*+0) ig of the same form as in (3.52).
We now define
v = ASN, k=0,...,7 (3.84)
piw = Akn;, j=1,...0m, k=0,...,0;+p—m (3.85)
One can show that
Oﬁerfkfl
Ageﬁ_l'_p’ﬁ_i'_p = 1 > k= O, e 7T_l + P — 1 (386)
*
where * € R* is a constant vector. Hence we have
0 . _ _
= ApCatpatoba + o+ Cnppntobo (3.87)
b
Kj = Agj—i—p—m eﬁ+p,ﬁ+pkjﬁj+pfp1 + -+ €ﬁ+p,ﬁ+pkj07j = 17 s 7m(388)

With the designed filters (3.79)-(3.82), the unmeasured states in (3.77) can be esti-

mated by
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~

n = €+:a+ [Uﬁa"'av0]b + [,U/lﬁ1+pfp17"'7”107u2ﬁ2+p7p17'"7“207"'7

Hms+p—p1s - - - ,MmO]K; (3'89)

A T i _ _ _ _
Whel”e b — [bﬁ, ce ey bo] 5 K — [Kl'ﬁl'f‘l)_Pl? ceey K]_O, K2ﬁ2+P_P17 ce ey }—(207 ce ey Kmﬁm+p—p17

.., Kpo]" are constant vectors. b,,, > 0,Vt > 0.

The state estimation error € = 3 — 3 is readily shown to satisfy

€ = Age. (3.90)
Defining
or = [b7,a", K] (3.91)
w' = [Uﬁ,Qu Un—1,25 - -+, 00,2, E(2) + @y, Hing+p—p1,25 - -5 H10,25 H270+p—p1,2) - -+ »
112025 - - s B +p—p1,25 - - + > Hm0,2] (3.92)
ol = [0, Vi1,25 - 00,2, =(2) T @1, Miag4pp1,2) - - - 5 110,25 H2mgtp—p1,25 - - - »
120,25 -+ + 5 Himiig +p—p1,2 - - - 5 Hmo0,2], (3.93)
where v; 5 for i =0,...,7, Zg), pjge for j=1,...,mk=0,...,7n; + p — p1 denote

the second entries of v;, = and p;;, respectively.
Then system (3.77)-(3.78) can expressed as follows, to which we will apply back-

stepping technique.

Y = Unobpt+ &+ 0704 ¢+ e (3.94)
@ﬁ,i = —lwn,1 + Vnjit1, i=2,...,p—1 (3~95)
i}ﬁ,p = _lpvﬁ,l + VUn,p+1 + Uo (396)
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3.3.3 Design of uy and Parameter Update Laws
Define a change of coordinates
2 = Y-y (3.97)
2 = Ung— yr(‘qil) - Qg-1, = 2,... P (398)
Design ug as
Uy = Qp — Uppt1 (3.99)
with
oy = @541 (3100)
oy = —C1z1 — dlzl — SQ — @Té — ¢1 (3101)
Doy \ 2 2 _ Oag :  Oa
Qg = —CoZ9 — dg <a—y1) 9 — bﬁzl + l2vﬁ71B2 + a} % + aelf 2 (3102)
O _1)2 ~ 0oy Oagy
Qg = —Cq2q—d 9 Zg — Zg1+ By + —2—06+ —_T'1,, =3,...,
q a~q q ( By q q-1 q BE a0 q P
(3.103)
— a q 1 T a@q 1 k‘ a&q 1
B, = lwni+ (52+¢1+w0+2 =Y yM + == s | oS+
¢ Oay;_ _ @ i Oayy—
+ + o | A+ + D 5 (Ao + aspieg0;)
0 = 0 j=1 1
n—+q— 1
+ Z mk (=LAt + Mes1), q=2,....p (3.104)
T = w2z — 0Q1€ns 121 (3.105)
0oy
T, = Teq— O‘a" Lwzg, q=2,....p (3.106)
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where n* = ny + 1+ E;”Zl nj +m+m(p — p1) + ¢. The design parameters c,, dy,
~ are positive constants and I' is a positive definite matrix of dimension n* x n*. 9,
é, [_AJ,—1 are the estimates of p = E;nll, 6 and b, respectively.

Parameter update laws are chosen as

0 = —yaim (3.107)
§ = Tr, (3.108)

3.3.4 Stability Analysis

Similarly to the previous section, one more assumption related to minimum phase
condition is required to prove the boundedness of closed-loop signals. Suppose there
are gy, failed actuators (j = jg,,...,Jg) and the failure pattern is fixed during the
time interval (Ty_1,Tk), for k = 1,...,r 4+ 1. T, denotes the time instant at which

the last failure occur. T,,; = oc.

Assumption 3.3.3. The polynomials
Zj¢j91v---ajgk Sgn<bjﬁj)%j(p)(p + 5)ﬁ7ﬁj: V{jgl’ s 7jgk} - {17 s am} are Hurwitz,
where

B;(p) = bj’ﬁjpﬁj + ..., +bj1p + bjo. (3.109)

For the adaptive scheme developed in the previous section, we establish the following

result.

Theorem 3.3.1. Consider the closed-loop adaptive system consisting of the plant
(3.50)-(3.51), the pre-filters (3.54)-(3.55), the controller law (3.99), the parameter
update laws (3.107), (3.108) and the state estimation filters (3.79)-(3.82) under

Assumption 3.1.1 and Assumptions 3.3.1-3.3.2, all the signals in the closed-loop
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system are bounded and asymptotic tracking is achieved, i.e. lim,_,.[y(t)—y,(t)] = 0.

Proof: A mathematical model for the error system z = [Zy,..., 2,]7 is derived from

(3.97)-(3.106).
i o= Az + Weey + WEG — b,,,a1€,10, (3.110)

where 6 = 6 — é, 0 = 0 — 0, A, is the matrix having the same structure as given

in [21] and W, and Wy are defined as

8041 8ap_1 r

W, = |[1,——, -, — c R (3.111)
Ay Ay

Wy = W' — daneyiel.; € RO (3.112)

From (3.105), (3.106) and (3.108) and ¢ = —p, we obtain that
= —TW,z. (3.113)
We define a candidate Lyapunov function V,_; as

1 1 1=~ 1
Vi1 = =27 — ' Pe+ =0TT7'0 + —b,,, &°. 3.114
k—1 22 Z+;4dq€ €+2 +2’)/b 10 ( )

From (3.90), (3.110), (3.107), and the fact that g = —é, PAy+ ATP = —1I, the

derivative of Vj,_; can be computed as

: 1 3 - P
Vier = =27 (A, + AD) 2+ 2" Weey + 2TW]IO — szmlalepJ@ — Z — Te
- £ Ad,
—0"Wyz + éEmldlezlz
p
< =) e (3.115)
q=1
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Starting from the first time interval [Ty, 7)) with 7o = 0, we can conclude that
2,0, and € are bounded for t € [Ty, T}) based on (3.114) and (3.115) and V;(0)
being bounded. Since z; and y, are bounded, y is also bounded. From (3.79), (3.80)
and (3.82), we conclude that &, = and n;, o, for j =1,...,m are bounded.

We now prove the boundedness of A. The input filter (3.81) gives

STLH s
£(s,1,0)

\ = wp, i=1,...,n+p, (3.116)

where £(s,1,0) is defined in (3.83), I; is a bounded function of I; and 6. Since no
failures have occurred on any of the m actuators before time T}, we can show that

for the plant (3.50)-(3.51) with pre-filters (3.54)-(3.55),

dny n qrt B B m 7y B d (% + 5)ﬁ I
T~ 2 g )+ )al = 33 senbym)by g (3117

= j=1 i=0 T

Substituting (3.117) into (3.116), we get
\ = (si_l + l_18i_2 +..., +l_i_1)(% + 5)0—01
LT 6,10 S sen(b, ) By () (2 + o)
d™y N n—i B | )
X {% — z; - [9i(y) + cbi(y)a]} Ci=1,...,n+p. (3.118)

If the polynomial 3 7", sgn(bjn,)B;(s) (L + §)"" is stable, the boundedness of y,
the smoothness of ¢(y), ®(y), and (3.118) imply that Ay,..., \ay1 are bounded.
From (3.98), the boundedness of A;,...,A\s11 and the fact that «;_; is the func-

tion of y, 7 7, €, &, n; and o; for j = 1,....m, Aayi1, 0, O where gi =

(yr,yf«l), . ,yffﬁz), Mgicl = (A1, -y Aatio1), Va2 is bounded. Then from v;; =
[k, %, 1)[A - Aaga] T, it follows that Ano is bounded. By repeating the simi-
lar procedures, A being bounded can be established. From (3.89), (3.85) and the

boundedness of &, =, n; for j = 1,...,m, A, 5 is then bounded. Since s = € + i
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and € is bounded, the boundedness of s is proven. wug is bounded from (3.99). From
(3.55) and § > 0, u; for j =1,...,m is bounded. Since ¢;(y) is bounded away from
zero and u,; is designed as (3.54), u.; for j =1,...,m are bounded. From @; = ¢;;
and (3.58), the states ¢;; for j =1,...,m,i=1,...,p— p; are all bounded. From
s = o1 and fact that s¢; for ¢ = 2,...,n are linear expansions of x; and states ¢;,
like in (3.60), (3.62) and (3.66), we can conclude that x is bounded. Thus, we obtain
the boundedness of all closed-loop signals for ¢t € [Ty, T1). At T}, parameter jump-
ings occurring on b, K as well as the states Gjk in constructing sz due to actuator
failures are also bounded. Thus we have Vi (T1) < Vo(T1) + AV € Lo, where AV is
bounded. From (3.115) for & = 2, we get that V;(7%) is bounded. The boundedness
of all the signals can be proved by following the similar procedures above. However,

(3.117) is changed to

nj+1 dn7+1 )

dt” Zdtnl(bl >+(I)<)]_ Z Zblukadtn-ylzj()

] ]gl ~~~~~ gk

6 n— TLJ
= Y ngnbnj ﬂd g+ 0)" g (3.119)

i p—p
J#Jg1r-dgy, a (dt+5> 1

By noting the finite times of actuator failures, the boundedness of all the signals in
the system is achieved. Further, from (3.115) for ¢ € [T}, 00) and LaSalle-Yoshizawa
theorem, it follows that lim;_, z(t) = 0, which implies that lim; . [y(t) —y,(¢)] = 0.

O

3.3.5 An Illustrated Example

A second-order system with dual actuators is considered,
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. O 1 y2 y3
T = xr + + a
00 sin(y) cos(y)
bll 9 0
+ (y°+ Dug + (Y + 1)usy (3.120)
b10 bQO
y = i, (3.121)

where the system parameters a = 2, by; = byg = byg = 1 are unknown. However we
know that by; and by are positive. Obviously, the polynomials B1(p) = bi1p + bio
and Bo(p) = by are both stable. It can be easily shown that Assumption 3.3.3 is
satisfied in failure-free case and all possible failure cases with arbitrary positive ¢ is
chosen. Observing from (3.121), we get p = 2, p; = 1. The pre-filters for u; and wus

U
e¥+1

where 1; = % with 41(0) = 0 and 4y = uo.

are designed as u; = e

T 2 =
The reference signal is y, = sin(0.01¢) and all the initials are set as 0. u; is stuck at
u; = 0.2 from ¢ = 20s. The design parameters are chosen as § = 2, [ = [12, 48, 64]7,
cg=c=>5,dy=dy=1,v7=1and [' =2 x Ig. The tracking error y(t) — y,.(¢) and

control inputs uy, uy are given in Fig. 3.13-3.14. It is observed that the asymptotic

tracking can still be achieved in failure case despite a degradation of performance.

3.4 Conclusion

In this chapter, a “direct” adaptive output-feedback control scheme by introducing
pre-filters is proposed to stabilize the uncertain systems in the presence of stuck
type actuator failures. With the proposed failure compensation scheme, the condi-
tion existing in the previous results that the relative degrees corresponding to the
redundant actuators with respect to the system inputs being identical is relaxed.

The design for linear systems is firstly considered and the results are extended to
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Figure 3.13: The tracking error y(t) — Figure 3.14: Control inputs.
yr(t)-

nonlinear systems. It is shown that the boundedness of all the signals in the closed-
loop system is ensured. Moreover, the set-point regulation and asymptotic tracking

of the system output is achieved for linear systems and nonlinear systems, respec-

tively.
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Chapter 4

Adaptive Failure Compensation
with Guaranteed Transient

Performance

In this chapter, we propose two adaptive backstepping control schemes for paramet-
ric strict feedback systems with uncertain actuator failures. Firstly a basic design
scheme on the basis of existing approaches is considered. It is analyzed that, when
actuator failures occur, transient performance of the adaptive system cannot be
adjusted through changing controller design parameters. Then we propose a new
controller design scheme based on a prescribed performance bound (PPB) which
characterizes the convergence rate and maximum overshoot of the tracking error. It
is shown that the tracking error satisfies the prescribed performance bound all the
time. Simulation studies also verify the established theoretical results that the PPB
based scheme can improve transient performance compared with the basic scheme,
while both ensure stability and asymptotic tracking with zero steady state error in

the presence of uncertain actuator failures.
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4.1 Introduction

As discussed in Chapter 1, many effective approaches have been developed to ad-
dress the problem of accommodating actuator failures. They can be roughly clas-
sified into two categories: passive [40,42,47,48 61] and active ones [39,41, 4346,
49-51,53-55,57,59,70,95,99,100]. Passive approaches use unchangeable controllers
throughout failure-free and all possible failure cases. Since neither the structure
reconfigurable nor the parameter adjustment is involved, the designed controllers
are easy to be implemented. However, they are often conservative for changes of
failure pattern or values. Among the numerous active approaches, adaptive con-
trol designs [39, 43,44, 50,51, 53,57,59,70,100] form a class of methods that han-
del the large uncertain structural and parametric variation caused by failures with
the aid of adaptation mechanisms. Moreover, the adaptive design schemes pro-
posed in [45,46, 54, 55, 95] have been proved effective in accommodating the un-
certainties in both system dynamics and actuator failures without explicit failure
detection/diagnostic. However to the best knowledge of authors, very few results
in adaptive control are available on investigating how to guarantee the transient
performance of the system, besides showing system stability and steady state track-
ing performance. Note that multiple model adaptive control, switching and tuning
(MMST) approaches, such as in [43] may offer improved transient behaviors, but the
bounds of failure magnitudes and the unknown parameters associated with failures
are often needed in advance to construct a finite set of models which can cover the
state space. Besides, a safe switching rule is required as mentioned in [101] since an
MMST closed loop is not intrinsically stable.

In this chapter, we shall deal with the problem of guaranteeing transient perfor-
mance in adaptive control of uncertain parametric strict feedback systems in the

presence of actuator failures. To accommodate the effects due to actuator failures,
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we propose two adaptive backstepping control schemes for parametric strict feedback
systems. Firstly a design scheme based on an existing approach in [54] is considered.
It is shown that the scheme can ensure both stability and asymptotic tracking as
in [54] and we name it as a basic scheme. Note that the backstepping technique [21]
provides a promising way to improve the transient performance of adaptive systems
in terms of £, and L., norms of the tracking error. However, the transient perfor-
mance is tunable only if certain trajectory initialization can be performed, see for
example [21,36]. Apparently, such trajectory initializations involving state-resetting
actions are difficult at the time instants when actuator failures occur, because they
are uncertain in occurrence time, pattern and value. Therefore, transient perfor-
mance of the adaptive system cannot be adjusted through changing controller design
parameters with the basic scheme. By employing prescribed performance bounds
(PPB) originally presented in [102], we propose a new controller design scheme.
A prescribed performance bound can characterize the convergence rate and max-
imum overshoot of the tracking error. With certain transformation techniques, a
new transformed system is obtained by incorporating the prescribed performance
bound into the original nonlinear system. An adaptive controller, named as PPB
based controller, is designed for the transformed system. It is established that the
tracking error can be guaranteed within the prescribed error bound all the time as
long as the stability of the transformed error system is ensured, without resetting
system states no matter whether actuator failures occur or not. Thus the transient
performance is ensured and can be improved by varying certain design parameters.
It is also shown that, with suitable modifications on the prescribed performance

bound in [102], the tracking error can converge to zero asymptotically.
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4.2 Plant Models and Problem Formulation

Similar to [54], we consider a class of nonlinear MISO systems as follows,

X o= fo00)+D_0A0)+ D bigi (), (4.1)
=1 Jj=1

y = hx), (4.2)

where x € R", y € R are the state and the output, u; € R for j = 1,2,...,m is
the jth input of the system, i.e. the output of the jth actuator, fj(x) € R" for
l=0,1,...,p,g;(x) € R" for j =1,2,...,m and h(x) are known smooth nonlinear
functions, 0; for [ =1,2,...,p and b; for j = 1,...,m are unknown parameters and

control coeflicients.

4.2.1 Model of Actuator Failures

We denote u,.; as the input of the jth (j = 1,2,...,m) actuator. Similar to Chapter
3, an actuator with its input equal to its output, i.e. u; = u;, is regarded as a
failure-free actuator. The type of actuator failures considered in this chapter, which

may take place on the jth actuator, can be modeled as follows,
U; = PjlUej + Uy, Vit Z th (43)

Pk = O, j:1,2,...,m (44)

where p; € [0,1), u; and ¢;p are all unknown constants. (4.3) shows that the jth
actuator fails suddenly from time ¢;p. (4.4) implies the following three cases, in
which two typical types of failures (TLOE and PLOE) are included.

1) p; # 0 and uy; = 0.

In this case, u; = p;u.;, where 0 < p; < 1. This indicates partial loss of effective-
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ness (PLOE). For example, p; = 70% means that the jth actuator loses 30% of its
effectiveness.
2) pj =0.

p; = 0 indicates that u; can no longer be influenced by the control inputs u.;. The

fact that u; is stuck at an unknown value u;; is known as total loss of effectiveness

(TLOE). Such a failure type is also considered in Chapter 3.

Remark 4.2.1.

e Note that actuators working in failure-free case can also be represented as (4.3)
with p; =1, up; = 0 for t > 0.

e Similar to Chapter 3, possible changes from normal case to any one of the failure
cases are assumed unidirectional here. That is, the values of p; can change only
from p; = 1 to p; = 0 or some values with 0 < p; < 1). The uniqueness of t;p
indicates that a failure occurs only once on the jth actuator. Hence there exists
a finite T, denoting the time instant of the last failure. Such an assumption on
the finite number of actuator failures can be found in many previous results, such

as [43,45,46,54,55,95].

4.2.2 Control Objectives and Assumptions

The control objects in this chapter are as follows,

e The effects of considered types of actuator failures can be compensated so that
the global stability of the closed-loop system is ensured and asymptotic tracking can
be achieved.

e Tracking error e(t) = y(t) — y,.(t) can be preserved within certain given pre-
scribed performance bounds (PPB). In addition, transient performance in terms of

the convergence rate and maximum overshoot of e(t) can be improved by tuning
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design parameters.

To achieve the control objectives, the following assumptions are applied.

Assumption 4.2.1. The plant (4.1)-(4.2) is so constructed that for any TLOE type
of actuator failures up to m — 1, the remaining actuators can still achieve a desired

control objective.

Assumption 4.2.2. g;(x) € span{go(x)}, go(x) € R", fori = j,2,...,m and the

nominal system
X = Jo(x) + F(x)8 + go(x)uo, y = h(x) (4.5)

with ug € R, is transformable into the parametric-strict-feedback form with relative

degree o, where F(x) = [f1(X), f2(X), - -+, fo(X)] € R™P, = [01,04,...,0,]" € RP.

Remark 4.2.2.

e As discussed in [45,46,54,95,98,103] and Chapter 3, Assumption 4.2.1 is a basic
assumption to ensure the controllability of the plant and the existence of a nominal
solution for the actuator failure compensation problem. Nevertheless, all actuators
are allowed to suffer from PLOE type of actuator failures simultaneously.

e Assumption 4.2.2 corresponds to the first actuator structure condition in [54] that

the nonlinear actuator functions g;(x) for j = 1,2,...,m have similar structures.

As presented in [54], based on Assumption 4.2.2, there exists a diffeomorphism
[z,&]T = T(x) where x = [x1,...,z,] € R, £ € R"¢ such that the nominal system

(4.5) can be transformed to the following canonical parametric-strict-feedback form

it‘i = $i+1+¢?($1,...,xi)0, i:1,2,...,g—1,
j’"@ = (100('1:’5) +§OZ($,€)9+BO(I,£)U0,
£ = W(.8)+P(z,6)0,

y = I, (46)
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where the definitions of ¢;, for i = 0,1,..., 0, Gy and ¥, ® can be found in [54, Sec.
3.1]. With the same diffeomorphism, the plant (4.1)-(4.2) can be transformed to the

following form by incorporating the actuator failure model (4.3).

j;i = Ii+1+g0?(l‘1,...,l’i)9, i:1,2,...,g—1,
to = wo(,8) + o ()0 + Y b;Bi(w, ) (pjue + wy),
j=1

£ = U(x,8) + (x,)0,

Yy = 7T, (47)
Note that the transformed system (4.7) is the plant to be stabilized. Three additional
assumptions are required.

Assumption 4.2.3. The reference signal y,(t) and its first oth order derivatives

yﬁq)(q =1,...,0) are known, bounded, and piecewise continuous.

Assumption 4.2.4. §;(x,£) # 0, the signs of b, i.e. sgn(b;), for j=1,....,m are

known.

Assumption 4.2.5. The nominal system (4.6) is minimum phase, that is, the
subsystem € = W(x, &) + ®(x,£)0 is inpul-to-state stable with respect to x as the

mnput.

Detailed discussions about Assumption 4.2.5 could be found in [54].

4.3 Basic Control Design

The main purpose of designing basic controllers is to carry out comparisons with our

prescribed performance bounds (PPB) based controllers to be proposed later. It will
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be noted that a basic controller, from its design approaches and performances, can be
considered as a representative of currently available adaptive failure compensation
controllers.

The design of u.; is generated by following the procedures in [54, Sec. 3.1] with
slight modifications. Thus only some important steps are presented. Meanwhile,

stability analysis will be sketched briefly.

4.3.1 Design of Controllers

We firstly design ug to stabilize the nominal system (4.6) by utilizing the tuning

functions design scheme summarized in Chapter 2. Introducing g error variables

21 = Y—Yr (4.8)

Zg = Tg—0gq —y9Y forqg=2,...,0 (4.9)

where «, is the stabilizing function determined at the gth step that

2 da O O
- _ _ _.,Th q—1 q—1 (k) a—1
ay Zg—1 — Cq%q wqe—l—;( D Ty + 8y$k71)yr ) + 90 I'r,
2 da
+Z#quzk, forg=1,...,0—1 (4.10)
i 00
o—1
N Jda -1 O -1 k o -1
Qg = —Zp-1— CoZp— P — W, 0 + Zl ( 8xgk Tr1 + ,(ff‘l) ®) ) + ==y,
o—1
0
P, 2, (4.11)
iy 00
where ¢, for ¢ = 1,2,..., 0 are positive constants, I' is a positive definite matrix,
and
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Design ug as

T = w1z (4.12)
Ty = Tg—1 T wezg, forgq=2,...,0 (4.13)
2 da
Wg = %‘Z a;:@k, forq=1,...,p0 (4.14)
k=1
wo ==, vy = a,+yl? (4.15)
Do

Parameter update law is chosen as

=Tr, (4.16)

Based on these, we now determine the design of u.; for j = 1,...,m. Comparing

(4.7) with (4.6), the difference consists in the pth equation. Suppose there are g

actuators ji, Jo, . . .

, Jaeoe Suffer from TLOE. The rest of actuators are either normal

with p; = 1 or undergoing PLOE with 0 < p; < 1. The dynamics of z, in (4.7) is

changed to

Jig:

If bj for j =1,...,

as

where

potesf+ > bipiBug+ D bjub; (4.17)

]#]1 ----- thot ]:jl ~~~~ thot

m and all the failure information are known, we can design u;

1
Uej = sgn(bj)ﬁ—mTw, forj=1,2,...,m (4.18)
j
Kk = [k, KQT]T7 Ko = [R2,1, K22, ..., Kg,m]T (4.19)
w = [v,B"]" (4.20)
B = (61,0 Bl (4.21)
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such that the effects due to actuator failures can be compensated and the sum of the
last two terms in (4.17) will be equal to vy as designed in (4.15). The details of x will
be given in later discussions. However, b; and the failure information are actually
unknown. Therefore, the estimate of x (%) is adopted instead in determining u.;,

1.e.

1
Uej = Sgn(bj)E/%Tw, for j=1,2,....m. (4.22)

J

The adaptive law of & is designed as

= —Tewz,. (4.23)

The controllers designed are named as basic controllers since they can only ensure

system stability and a tracking property similar to those in [54], as analyzed below.

4.3.2 Stability Analysis

For the basic controllers developed, we establish the following result.

Theorem 4.3.1. Consider the closed-loop adaptive system consisting of the plant
(4.1)-(4.2), the controller (4.22), the parameter update laws (4.16), (4.23) in the
presence of possible actuator failures (4.3)-(4.4) under Assumptions 4.2.1-4.2.5.

The boundedness of all the signals are ensured and the asymptotic tracking is achieved,

i.e. limy_o[y(t) — y(£)] = 0.

Proof: As presented in Remark 4.2.1, there are a finite number of time instants
Ty for k = 1,2,...,7 (r < m) at which one or more of the actuators fail. T, is
referred as the last time of failure in Remark 4.2.1. Suppose during time interval
[Ty—1,T), where k = 1,...;r+ 1, Ty, = 0, T,41 = oo, there are p; (pr > 1)
failed actuators ji,j2,...,Jp, and the failure pattern will not change until time

Ti. Among these p;, failed actuators, g, actuators jii,ji2,..., Tt suffer from
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TLOE and gpqr, actuators ja1,j22; -, j2,g,.,, undergo PLOE. We define a set P, =

{J1,J2s - -+, Jp, } and two subsets of Py that Qror, = {711,125+ - -+ J1,440r,, | A0 Qpary, =

{Ja,jo2s .- ,jg,qwk} = P\Q1ot,. We define a positive definite function Vj_; during

[Ty—1,Ty) as
1 g Ty - pilbs]
Vk,1 = 52 Z+ 509 r H—i— | Z Tli Fn K, (424)
]:17]¢Qt0tk
where z = [21,29,...,2,]7,0 = 0 —fGand & =k — k. If bj, p;j and ug, for j =
1,2,...,m, h € Qu, are known, k is a desired constant vector which can be chosen
to satisfy that
Z |bj’Pj’<0Tw = Vo — Z brBnurn
7=Lj¢Qtot,, h€Qtot,,
1 —bpugn
= K1 = m y K2,n = m )
for h € Qor, and ko =0, h e {1,2,...,m}\Qrot,. - (4.25)

From the design through (4.8)-(4.23), the time derivative of Vj_; is computed as
) 4
Vico=— ¢z, k=12 r+1 (4.26)
q=1

We define Vi1 (T}, ) = limay o~ Vie1(Th+A¢) and Vi1 (T, ) = limay o+ Vo1 (Tho1+
At) = Vi_1(Tk—1). If we let a function V(t) = Vi_1(t), for t € [Ty_1,T}), k =
1,...,7+1, V() is thus a piecewise continuous function. From (4.26), we have V}_
is non-increasing during the time interval [Tj_1,T) and Vi_1(T}, ) < Vi1 (T ).
When k = 1, Vy(t) < Vo(0) for t € [0,T1), the boundedness of z(t), 6(t) and &(t) for
t € [0,7}) is ensured since the initial value V4(0) is finite. Vo(77) < V4(0). When
k> 1, Vi_1(t) is bounded if V41 (T} ;) is bounded. Observing (4.24), at the time

instant ¢ = T}, Vi_1(T}, ) is changed to Vi (T}") = Vi_1(T}, ) + AVk, where AV} is due

ScHooL oF EEE NANYANG TECHNOLOGICAL UNIVERSITY



4.3 Basic Control Design 95

to the changes on the coefficients in front of K T',.x and possible jumpings on x and
AV}, is finite. This implies that the initial value Vi(T,") for [Tk, Ti+1) is bounded
if the final value Vj_1(1}) for [T}_1,T}) is bounded. The above facts conclude the
boundedness of z(t), 8(t), &(t) for t € [0,00) and z(t) € Ly. From (4.22), control
signals u.; for j = 1,2,...,m are also bounded. From (4.8)-(4.9) and Assumption
4.2.3, z(t) is bounded. From Assumption 4.2.5, £(¢) is bounded with respect to
x(t) as the input. The closed-loop stability is then established. Noting z € L, it

follows that lim; . 2(t) = 0. From (4.8), the asymptotic tracking is achieved, i.e.

limy oo [y(t) — y,(t)] = 0. O

4.3.3 Transient Performance Analysis

We firstly define two norms Lo,y and Loy as follows.

@) ll2mp = (/abHﬂf(lﬁ)|I2dt>l/2 (4.27)

[2() looar) = suPreay ()] (4.28)

We then derive the bounds for the tracking error z;(t) in terms of both Lo, | 4
and L7, _, 1, norms, where k = 1,...,r+1,#; € (Tk—1,Ty) with Ty = 0, T,11 = 0.

From (4.26), we have

Vier < —c121 < 0. (4.29)
It follows that
2 t 2 1 b
1) B g = [ atfae - [7 Via@a
Tr_1 C1JT1,
1 1
= e [Vk—l(Tk—1> - Vk—l(tk)] < C—Vk_1(Tk_1) (4.30)
1 1

ScHooL oF EEE NANYANG TECHNOLOGICAL UNIVERSITY



4.3 Basic Control Design 96

and

21(1)? <2V (1) < 2Vi 1 (Tym), t € [Tho1, Ti). (4.31)

Define that || 0(Ty_1) |2 1= 07 (Tp_1)T'0(T},_1) and || &(Th_1) ||> 1= &7 (Th1)T"
R(Tk—1). From (4.30) and (4.31), we have

1 R m
It bre ) < —= |2 2(Te0)+ 1 0T) 70+ D pylbyl
261 . :
J=1,¢Qtot,
1
2
% || &(Tir) 12 (4.32)
120t ooy < |27 2T+ 1 0(Ti) I3+ ) pilb
7=15¢Qtoty,
1
2
x || &(Tp_1) H@] : (4.33)

Based on these results, we have the following discussions.

1) When k£ = 1, (4.32)-(4.33) gives the bounds of the Ly, and Lo, norms
(ty < T1) for the tracking error z;(t) before the first failure occurs. From the def-
inition in (4.9), the initial value z(0) may increase by increasing ¢;, I', T'x. By
performing trajectory initialization, i.e. setting z(0) = 0 (see for instance |21, 36]),
the transient performance of z(t) in the sense of these two norms during [0,7}) can
be improved by increasing ¢; and/or I') I'y.

2) However, it is impossible to perform trajectory initialization at each Tj_; for
k > 1 because the failure time, type and value are all unknown. Thus the initial
value Vi_1(Ty—1) during [Ty—1,T}) for k£ > 1 may be increased by increasing ¢, I,
I'.. Moreover, it cannot be guaranteed from 1) that the final value V(77 ) during
[0,77) is smaller with larger ¢, I', I';. Hence a larger V(77 ) may result in a larger
initial value V;(77) for the next interval. Therefore, the conclusion on improving

transient performance in terms of either the Lopy , , j or Loy, , ] norm by adjust-
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ing ¢1, I', T',, cannot be drawn for z;(t) with ¢t > T7.
To guarantee transient performance of the tracking error, especially when fail-
ures take place, an alternative approach based on prescribed performance bounds

proposed in [102] is employed to design adaptive compensation controllers.

4.4 Prescribed Performance Bounds (PPB) based

Control Design

The objective in this section is to ensure the transient performance in the sense
that the tracking error e(t) = y(t) — y,.(t) is preserved within a specified PPB
all the time no matter when actuator failures occur, in addition to stability and
steady state tracking properties. Similar to [102], the characterization of a prescribed
performance bound is required. To do this, a decreasing smooth function n(¢): R, —
R \{0} with lim; o (t) = 1o > 0 is firstly chosen as a performance function. For
example, 7(t) = (g — Moo )€™ ™ + 7o Where 19 > 15, and @ > 0. Then by satisfying

the condition that

—on(t) <e(t) <on(t), vt>0 (4.34)

where 0 < 6,0 < 1 are prescribed scalars, the objective of guaranteeing transient

performance can be achieved.

Remark 4.4.1.

e As shown in Figure 4.1, 6n(0) and —dn(0) serve as the upper bound of the
maximum overshoot and lower bound of the undershoot (i.e. negative overshoot)
of e(t), respectively. The decreasing rate of n(t) introduces a lower bound on the

convergence speed of e(t).

ScHooL oF EEE NANYANG TECHNOLOGICAL UNIVERSITY



4.4 Prescribed Performance Bounds (PPB) based Control Design 98

o) e()= v(H) v (1)

Figure 4.1: Tracking error e(t) constrained within a prescribed performance bound.

e If an actuator failure occurs when 7(t) approaches to 7, closely enough, —d (7. +
€) < e(t) < 8(ns +¢) will be satisfied, where ¢ > 0 is sufficiently small. This implies
that there will be no occurrence of unacceptable large overshooting due to such an
actuator failure.

e No trajectory initialization action is required, hence the transient performance
of the system can be guaranteed without a priori knowledge of the failure time,
type and value. In fact, by changing the design parameters of function n(¢) and the
positive scalars §, , the transient performance in terms of the convergence rate and

maximum overshoot of tracking error e(t) can be improved.

4.4.1 Transformed System

Solving the control problem satisfying the “constrained” error condition (4.34) can
be transformed to solving a problem with boundedness of signals as the only re-
quirements. Moreover, to achieve asymptotic tracking, asymptotic stabilization of
the transformed system to be constructed is essential. To do these, we design a

smooth and strictly increasing function S(v) with the following properties:

g < Sv)<é (4.35)
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(ii) ,,EIEOO S(v) =34, VEIPOO S(v) = -6 (4.36)
(iii) S(0) =0 (4.37)

From properties (i) and (ii) of S(v), performance condition (4.34) can be expressed

as

e(t) = n(t)S(v) (4.38)

Because of the strict monotonicity of S(v) and the fact that n(t) # 0, the inverse

y =51 (@> (4.39)

n(t)

exists. We call v as a transformed error. If —én(0) < e(0) < dn(0), and v(t) is

function

ensured bounded for t > 0 by our designed controller, we will have that —) < % <
5. Furthermore, from property (iii) of S(v), asymptotic tracking (i.e. lim; .., e(t) =
0) can be achieved if lim;_,, v(t) = 0 is followed.

In this chapter, we design S(v) as

Se+n) _ se—(v+)

S(V) B elv+r) 4 g—(v+r) ’ (440)
where r = @. It can be easily shown that S(v) has the properties (i)-(iii). The
transformed error v(t) is solved as

» 1. - T
v=S""(\t) = 5 In(oA(t) + 00) — 5 In(00 — 0A(t)) (4.41)

where A(t) = e(t)/n(t). We compute the time derivative of v as
, os~t. 1 1 1 e en

vV = )\ = — —_— e

O 2|1 A+0 X—=0]l\n n?

_ c(é—e—:>=<(y—y‘r—%ﬁ), (1.42)
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where ( is defined as

1 1 1
C:%[—AJFQ_—/\—S]' (4.43)

Owing to the property (i) of S(v) and (4.38), ¢ is well defined and ¢ # 0. We now
incorporate the prescribed performance bound into the original nonlinear system

(4.7). By replacing the equation of ; with ©, (4.7) can be transformed to

R (B (4.44)
i = T+l i=2...,0—1 (4.45)
T = o+ 0+ zm: b;B;(pjuc; + tkj) (4.46)

j=1

£ = Uz, &)+ d(x,6)0 (4.47)

4.4.2 Design of Controllers

Compared with the basic design, the major difference lies in the first two steps in
performing the backstepping procedure. Thus the details of Step 1 and Step 2 are

elaborated. Define

2 = v (4.48)

Zg = Tg— Qg—1— y£q71)7 q = 27 <o 0 (449)

Step 1. From (4.44), (4.48) and the definition of 25 in (4.49), we have
Hr=C(za+ar+p0— %) (4.50)
To stabilize (4.50), «; is designed as

Tt % (4.51)
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where ¢, is a positive constant and 6 is an estimate of . We define a positive definite

function V; as
1 1~ _
Vi = 5,2% - §9TF‘19, (4.52)

where 6 = 6§ — é, I' is a positive definite design matrix. Then

Vi = —c122 + Corza + 07T (Dpr2aC — 0) (4.53)

We choose the first tuning function 7 as
T = ¢121€ (4.54)

It follows that
Vi=—c122 + (o + 07T (D — 0) (4.55)

Step 2. We firstly clarify the arguments of the function ;. By examining (4.51)
along with (4.41), (4.43), we see that a4 is a function of z1, y,, n, n and 0. Differenti-

ating (4.49) for ¢ = 2, with the help of (4.45) and the definition that z3 = 23 —as—7;,

we obtain
S o= iy — i —
Oa Oa oo Oa Oayq »
_ TQ——l T _ 1.T_ 1._ 1.._ Alg
23+O{2+902 axl (x2+901 ) ayry 87777 61777 ae
(4.56)
With the second tuning function 7, chosen as
Ty = Ty + Wa2y, (4.57)
where 5
aq
=9 — —1. 4.58
w2 = P2 o2y ¥1 ( )
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The second stabilization function «p, if z3 = 0, is designed as

8061 aOél 8061 . 2 8061 (k)
Qg = —<21_C222_ (pg—a—xl§01 9—|—a—x1x2+@yr+zmn
T k=1
80[1
+—I'm. 4.59
PR (4.59)

Denote &, = (71, ...,74), 19 = (n,7,...,7?) and T Yy Uy - - - ,yﬁq_l)). Note

that in the backstepping procedure, «, for ¢ > 2, is a function of z,, 77, g,(,qfl), 0.

Define a positive definite function at this step as
_ _ 1 9
Vo=V + 5% (4.60)

From (4.55), (4.56) and (4.59), the time derivative of V5 can be computed as

8@1 A

‘72 = —012% — CQZ; + 2923 + éTr_l(FTQ — é) — 8é (9 — FTQ)ZQ. (461)
Step ¢ where ¢=3,..., 0.
T dag—1 (k) Doy = k—1
Qg = —Zg1—Czg— w0+ Z 877(’“*1)77 +—1I'7 Z —Tw, 2
k=1 k=2
q—1
Oo,— day,_
+ ( 8q 1xk+1+ (z—i) 7("k)> ) q:37 70_1 (462)
k=1 k Yr
o—1
A~ aa —1 aOZ —1
Qy, = —Zp-1— CoZp — o wZ@ + - ( a;k Tr+1 + 7(]5 5 7{k)>
4 i 8059*1 (k) + aa@*ll—\ + QZI 80(]{:711—‘ (4 63)
n = T, — LW,z .
£ o= 0 ¢ = ap ¢
vy = a@ + yw(})) (464)
T, = Tg-1+ Wiz (4.65)
L da
Wg = $Yq— 8(1_130167 q:?’a?Q (466)
1 YTk
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Control laws and parameter update laws are determined at the oth step as

1
Uy = sgn(bj)ﬁ—f%Tw, forj=1,...,m (4.67)
2 _ T .
9 r'r, 4.68
ot (469

Note that ., § and & are designed in the same form as in (4.22)-(4.23) with the

signals vy, 7, and constructed w = [vg, 87]7 changed appropriately.

4.4.3 Stability Analysis

For an arbitrary initial tracking error e(0), we can select 1(0), § and J to satisfy that
—n(0) < e(0) < 0n(0). As discussed in Remark 4.4.1, the transient performance of
e(t) can be improved by tuning the design parameters 6, § and parameters of 7(t)
including its speed of convergence, 1., at a steady state as long as e(t) is preserved
within a specified PPB as described in (4.34). Observing the generated transformed
error v = S7! (%) and the injective property of S(v), we conclude that (4.34)
is satisfied if v(t) € Lo with the designed controllers in the previous subsection.
Moreover, lim; ., v(t) = 0 is essential to achieve asymptotic tracking. Therefore,
the asymptotic stabilization of the transformed system (4.44)-(4.47) is sufficient to

attain the control objectives. The main results of PPB based control design are

established in the following theorem.

Theorem 4.4.1. Consider the closed-loop adaptive system consisting of the plant
(4.1)-(4.2), the PPB based controller (4.67) with the parameter update laws (4.68)-
(4.69) in the presence of possible actuator failures (4.3) and (4.4) under Assump-

tions 4.2.1-4.2.5. The boundedness of all the signals and tracking error e(t) =
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y(t) —y, () asymptotically approaching zero are ensured. Furthermore, the transient
performance of the system in the sense that e(t) is preserved within a specified PPB

all the time, i.e. —dn(t) < e(t) < dn(t) with t > 0 is guaranteed.

Proof: From (4.50) and (4.51), it is obtained that

4= —c121 4z + (o] 0. (4.70)

From (4.56), (4.59), (4.65) and (4.66), we have

. ~ 0
29 = —0222—C21+23+w59+%r(7§—Tg)
(o1 + 25+ wid f O, (4.71)
= —C229 — (% Z w — ~ 1 WEZL. .
242 1 3 2 e 80 k~k

From the design along (4.62)-(4.66) for ¢ = 3,...,0 — 1, it can be shown that

q—1 0

) ~ ooy, Oa

Zg = —CqZq — Zg—1 + Zg+1 + wZ@ + E #quzk — g 1 Twyzp. (4.72)
=2

Similar to the proof of Theorem 4.3.1, suppose that there are (r + 1) time intervals
[Ty—1,Tx) (k= 1,...,7+ 1) along [0,00). To = 0, T} and 7, refer to the first and
last time that failures occur respectively, T,;1 = oco. During [0,7}), from (4.46),

(4.49), (4.63) and (4.67), the derivative of z, is computed as
L = ot eif+ Y |bilaTw =y —y?
j=1

= po+esf+ > |bil(k — R)w — gy — Y2, (4.73)

J=1

where £ = K — A£. If b; is known, & is a desired constant vector which can be chosen

to satisfy
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- 1
Z|bj|/<:Tw:vo = Kl = =m0 ke =0fork=1,....m (4.74)
j=1 Zj:l |bj‘
Substituting (4.74) into (4.73), we have
& da “
Zp = —CoZg — Zg-1 T wi 0 + Z aké_leQZk + Z |b;| AT w. (4.75)
k=2 j=1

We define the error vector z(t) = [21,29,...,2,)7, w1 = Cp1. From (4.70)-(4.72),

(4.75), the derivative of z(t) during [0,7}) is summarized as

) 0.
f— A4 QT0— e (4.76)

Z;'n:l 10|~ w

where

—C ¢ 0 0
—g —C2 1 -+ 023 cee 02,0
A, = 0 —1—093 —c3 e 030 (4.77)
L 0 —02,p tee —1- Op—1,0 —Cp ]
ﬁaq_l
o = ——Jw 4.78
q.k a0 k ( )
Q = |wi,wa,...,wy) (4.79)

It can be shown that A, + AT = —2diag{ci, ¢y, ...,c,}. Define a positive definite
Vo(t) for t € [0,T}) as
'R (4.80)

K

_ 1 T 1~T -1 — |bJ’~T
‘/0—52 Z+§9 r 9—|—;7/€ T

Differentiating 1}, we obtain
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e
Vo=— Z cng (4.81)
q=1

Thus we have V5(T7) < V(0), where Vo(T7) is defined as the same as in Section
4.3.2. Assume also that during the time interval [T},_1,T}) with &k = 2,...,r, sub-
sets Qrot, and (pqr, are correspond to the actuators undergoing TLOE and PLOE
respectively. The derivative of z(t) during [T;_1, 7)) can then be written as

) 0
f= Az QTH— emtrt . (4.82)

Z?ll,iéQtotk /)j‘bj|wT’?¢

Define Vj_; during [T;_1,7}) in the same form of (4.24). Vj_; = — " Cqzi can
also be achieved. Then by following the similar procedure in Section 4.3.2, it can be
shown that z, 0, &, x(t) and u.; are bounded and z(t) € L,. From the fact that v =
z1, v(t) is bounded. ( is bounded from (4.43) and (4.34) is thus satisfied. The closed-
loop stability is then established. Noting Z € L, it follows that lim;_, 2(f) = 0.
From (4.37), lim; . e(t) = 0 which implies that asymptotic tracking can still be

retained. |

4.5 Simulation Studies

To compare the PPB based control scheme with the basic control method, we use

the same twin otter aircraft longitudinal nonlinear dynamics model as in [54].

F, cos(a) + F, sin(a)

vV =
m

. —F,sin(a) + F), cos(a
D () + Proon()
0 = ¢

M
= 4.83
q I (4.83)
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where

F, = ¢SC,+ T, — mgsin(0)
F, = ¢gSC,+1T,+ mgcos(f)

M = ¢cSC,, (4.84)

and § = %sz, C., C, and C,, are polynomial functions

CJ: - C:cla/ + Ox2a2 + Cz?) + Cx4(d1561 + d2662)
C., = Caa+Caa®+Cs+ Coa(dr6e1 + dadea) + Cusq

Cp = Cpia+ Cpaa® + Cruz + Crna(di0e1 + dade2) + Crusg. (4.85)

In (4.83), V' is the velocity, « is the attack angle, 6 is the pitch angle and ¢ is the
pitch rate. They are chosen as states xi, X2, X3, X4 respectively. In (4.85), de1, deo
are the elevator angles of an augmented two-piece elevator chosen as two actuators

uy and us. The rest of the notations are illustrated in the following table.

the mass

the moment of inertia

the air density

the wing area

the mean chord

The components of the thrust along the body x
The components of the thrust along the body 2

ﬁzﬁm N> M~ 3

The control objective is to ensure that the closed-loop system is stable and the pitch
angle y = x3 can asymptotically track a given signal y, in the presence of actuator
failures with guaranteed transient performance of e(t) = y(t) — y,(t). As explained

in [54], there exists a diffeomorphism [, z]T = T(x) = [T1(x), To(X), X3, x4] that
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(4.83) can be transformed into the parametric-strict-feedback form as in (4.7).

X3 = X4

2
X4 = SD(X)T"& + Z biX%(piuci + ukzz)

=1

£ = V(& r)+D(E ), (4.86)
where ¥ € R? is an unknown constant vector and ¢(x) = [x?X2, X3X3, X3, X2x4]”,
r = [x3,x4]T. Input-to-state stability of zero dynamics subsystem is shown in
[54]. Relative degree ¢ = 2. The aircraft parameters in the simulation study

are set based on the data sheet in [104]: m = 4600kg, I, = 31027kg - m?, S =
39.02m?, ¢ = 1.98m, T, = 4864N, T, = 212N, p = 0.7377kg/m? at the alti-
tude of 5000 m, and for the 0° flap setting. In addition, d; = 0.6,dy = 0.4,
Cy1 = 0.39,Cp = 2.9099,C,5 = —0.0758,C,4y = 0.0961, C,; = —7.0186,C,s =
4.1109,C.3 = —0.3112,C,4 = —0.2340, C,5 = —0.1023, C},,; = —0.8789,C,0 =
—3.852,C,,3 = —0.0108,C,y = —1.8987, C,,5 = —0.6266 are unknown constants.
The reference signal g, is set as y, = e %%sin(0.2¢). The initial states and esti-
mates are set as x(0) = [75,0,0.15,0]T, 9(0) = [0, 0, —0.04, 0.

Design the control inputs with PPB through the procedures as given in Section
4.4.2. By noting that in (4.67) 8; and (3, are the same as x?, the control laws are
designed as u.; = Sgn(bi)xl%/%[&g, X3], for i = 1,2. A prescribed performance bound
(PPB) is given by choosing 7(t) = 0.4¢7% +0.01, § = 0.1 and § = 1. Other design
parameters are chosen as ¢; = ¢co = 1, I' = 0.0057 and T';, = [1,0;0,0.01]. The initial
value of & are set as £(0) = [—1.2,0]. Three failure cases are considered respectively,
e Case 1: actuator u; loses 90% of its effectiveness from ¢ = 10 second, thus un-
dergoes a PLOE type of failure.

The tracking error e(t) = y(t) — y,(t) is plotted in Fig. 4.2. To show the im-
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Figure 4.2: Tracking errors e(t) in Figure 4.3: Velocity V in failure case

failure case 1. 1.
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Figure 4.6: Control inputs with basic Figure 4.7: Control 1nputs Wlth PPB
design method in failure case 1 based control method in failure case

1.
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proved transient performance with PPB based proposed scheme, the tracking error
performance using the basic design method with the same design parameters is also
plotted for comparison. The comparisons on the performances of velocity, attack
angle, pitch rate as well as control inputs using the PPB based control scheme and
the basic design method are given in Fig. 4.3-Fig. 4.7.
e (Case 2: actuator us is stuck at u; = 4 from ¢ = 10 second, thus undergoes a
TLOE type of failure.

The comparisons on the performances of tracking error, velocity, attack angle,

pitch rate and control inputs are given in Fig. 4.8-Fig. 4.13, respectively.

02r 80[
Basic control Basic control
0.15r — — — PPB based control 70f — — — PPB based control
o) .
8 : SN _
= o e 01N g 60|
> s
2 o0.05f > 50
% o 2 a0}
g A
g i
-0.05 307
-01 20
o 5 10 15 20 25 30 35 0o 5 10 15 20 25 30 35
t(sec) t(sec)
Figure 4.8: Tracking errors e(t) in Figure 4.9: Velocity V in failure case
failure case 2. 2.
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0
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Figure 4.10: Attach angle « in failure Figure 4.11: Pitch rate ¢ in failure
case 2. case 2.
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Figure 4.13: Control inputs with PPB
based control method in failure case
2.

Figure 4.12: Control inputs with ba-
sic design method in failure case 2.

e Case 3: actuator u; loses its 50% of its effectiveness from ¢t = 10 second. and
actuator wuy is stuck at uy = 2 from ¢ = 25 second.
The comparisons on the performances of tracking error, velocity, attack angle,

pitch rate and control inputs are given in Fig. 4.14-Fig. 4.19, respectively.
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Figure 4.14: Tracking errors e(t) in Figure 4.15: Velocity V in failure case
failure case 3. 3.

It can be seen that all signals are bounded and asymptotic tracking can be ensured

under all three cases. From Fig. 4.2, Fig. 4.8 and Fig. 4.14, the tracking error is
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shown to convergent at a faster rate in the initial phase before failures occur using
PPB based control method. At the time instant when failures occur, the large
overshoot on tracking error with basic design method can be reduced by preserving

the tracking error within a prescribed bound with PPB based control method.

Remark 4.5.1.
e From (4.43) and (4.44), it can be seen that the term 1/n is involved in the
derivative of v. Thus a small 1 could make the signal v as well as the tracking

error e(t) less smooth. Although decreasing 7y and 7., can improve the transient

ScHooL oF EEE NANYANG TECHNOLOGICAL UNIVERSITY



4.5 Simulation Studies 113

performance of e(t) in terms of the maximum overshoot as discussed in Remark
4.4.1, there is a compromise in choosing these two parameters.
e About the issue on how to choose the free design parameters c;, I' and Ty,
there is still no quantitative measure in terms of certain cost functions when the
PPB based control method is utilized. Also no explicit relationship between the
performance of tracking error and these parameters has been obtained in the failure
case. However, we may choose these parameters by following the well established
rule of the basic design scheme in the failure free case, as in [21,37], etc. According
to the discussions in Section 4.3.3, with the basic design method, the transient
performance of the tracking error in the sense of both Ly, and L., norms
(t; < Ty, where T} denotes the time instant when the first failure takes place) can
be improved by increasing c;, I', T',. However, their increases may increase the
magnitudes of the control signals. Thus a compromise might be reached.

For the choice of these free parameters with PPB based control, we now use
an example to illustrate how the choice of c¢; affects the Ly performance of the

tracking error. Consider the same plant as in (4.83)-(4.85) in the failure case that

0.16¢
1‘ .

0.14 T IR c1:]_ ““““ c.=1
= | = -
E 0.12 I R c=s U |- c,=3
= 0.1 g \\ c,=5 c,=5
o oo | - = -n® =
= : - = = -0.In(t 2
5 o06f n® g
= - \ Q
£ g \ ©
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(a) Tracking errors with different ¢;. (b) Control up with different ¢; for the

first 1.5 seconds.

Figure 4.20: Comparisons of tracking errors and control us with different c¢;.
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actuator u; loses 90% of its effectiveness from ¢ = 3 second. All parameters and
the initial states are the same as those given above, except for ¢;, I' and I',. We
change ¢; by setting ¢; = 1,3 and 5 respectively with I' and I'; being fixed at
I' =0.01 x I(4) and ', = 0.01 x I(2), the tracking error y — y, with different ¢
are compared in Fig. 4.20(a). Obviously, the L4, norms of the tracking error
decrease as ¢y increases especially before the failure occur. We also present control
us with different ¢; for the first 1.5 seconds in Fig. 4.20(b). It can be seen that the
magnitude of usy increases with increased c¢;. Similar results would be followed if we
change I' and I',, with a fixed ¢;. The results once again show that a compromise

may be reached in choosing novel free design parameters.

4.6 Conclusion

Two adaptive backstepping control schemes for parametric strict feedback systems
in the presence of unknown actuator failures are presented in this chapter. The
actuator failures under consideration include TLOE and PLOE types. System sta-
bility and asymptotic tracking are shown to be maintained with both schemes. It
is analyzed that transient performance of the adaptive system is not adjustable
with the first control scheme proposed on the basis of an existing adaptive failure
compensation approach. However, the transient performance can be improved and
adjusted by preserving the tracking error within a prescribed performance bound
(PPB) by the second control scheme. Simulation studies also verify the theoretical
results.

As discussed in Remark 4.2.1, the assumption that there are only finite number
of actuator failures was commonly imposed in many existing results on adaptive
actuator failure compensation. Our main task of the next chapter is to propose a

new adaptive solution with this assumption removed.
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Chapter 5

Adaptive Compensation for

Infinite Number of Failures

It is both theoretically and practically important to investigate the problem of ac-
commodating infinite number of actuator failures in controlling uncertain systems.
However, there is still no result available in developing adaptive controllers to ad-
dress this problem. In this chapter, a new adaptive failure compensation control
scheme is proposed for parametric strict feedback nonlinear systems. The tech-
niques of nonlinear damping and parameter projection are employed in the design
of controllers and parameter estimators respectively. It is proved that the bounded-
ness of all closed-loop signals can still be ensured in the case with infinite number
of failures, provided that the time interval between two successive changes of failure
pattern is bounded below by an arbitrary positive number. The performance of
the tracking error in the mean square sense with respect to the frequency of failure
pattern changes is also established. Moreover, asymptotic tracking can be achieved

when the number of failures is finite.
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5.1 Introduction

In most of the existing results on adaptive control of systems with actuator failures,
such as [43,45,46,54,56,59,71,72], only the cases with finite number of failures are
considered. It is assumed that one actuator may only fail once and the failure mode
does not change afterwards. As discussed in Remark 4.2.1, this implies that there
exists a finite time 7. such that no further failure occurs on the system after 7,.. In
these cases, although some unknown parameters will experience jumps at the time
instants when failures occur, the jumping sizes are bounded and the total number
of jumps are finite. Thus the possible increase of the considered Lyapunov function,
which includes the estimation errors of the unknown parameters, is bounded, which
enables the stability of the closed loop to be established. However, we cannot show
the system stability in the same way when the total number of failures is infinite,
because the possible increase of the Lyapunov function mentioned earlier cannot be
ensured bounded automatically when the parameters experience infinite number of
jumps. This is indeed the main challenge to find an adaptive solution to the problem
of compensating for infinite number of failures theoretically. On the other hand, it
is possible that some actuator failures occur intermittently in practice. Thus the
actuators may unawarely change from a failure mode to a normally working mode
or another different failure mode infinitely many times. For example, poor electri-
cal contact can cause repeated unknown breaking down failures on the actuators in
some control systems. Although it is of both theoretical and practical importance to
consider the case with infinite number of failures, there is still no solid result avail-
able in this area so far. In [55], the authors only conjectured that their proposed
scheme could possibly be applied to this case. It was remarked that all the signals
might still be ensured bounded as long as the time interval between two sequential

changes of failure status is not too small. Nevertheless, to the best of our knowledge,
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no rigorous analysis has been reported by them.

In this chapter, we shall deal with the problem of compensating for possibly in-
finite number of actuator failures in controlling uncertain nonlinear systems based
on adaptive backstepping technique. Through tremendous studies, we find that it
is difficult to show the boundedness of all the signals using the tuning function
design approaches as in [54-56, 71] and Chapter 4, mainly because the unbounded
derivatives of the parameters caused by jumps need to be considered in comput-
ing the derivative of the Lyapunov function. In fact from our simulation studies,
instability is observed when the tuning function scheme as summarized in Section
4.3 is utilized to compensate for infinite number of relatively frequent actuator fail-
ures. To overcome the difficulty, we propose a modular design scheme. Actually,
so far there is also no result available by using backstepping based modular design
scheme to compensate for actuator failures even for the case of finite number of
failures. With compared to the existing tuning function methods, our designs have
the following features. The control module and parameter estimator module are de-
signed separately; nonlinear damping terms functions are introduced in the control
design to establish an input-to-state property of an error system; impulses caused
by failures are considered in computing the derivatives of the unknown parameters
and these parameters are shown to satisfy a finite mean variation condition; the
parameter update law involves projection operation to ensure the boundedness of
estimation errors; the properties of the parameter estimator, which are useful for
stability analysis, are also obtained. It is proved that the boundedness of all the
closed-loop signals can be ensured with our scheme, provided that the time interval
between two successive changes of failure pattern is bounded below by an arbitrary
positive number. It is also established that the tracking error can be small in the
mean square sense if the changes of failure pattern are infrequent. This shows that

the less frequent the failure pattern changes, the better the tracking performance
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is. Moreover, asymptotic tracking can still be achieved with the proposed scheme

in the case with finite number failures as the tuning function methods.

5.1.1 Notations

For a vector function z(t) = [z1,...,2,]T € R",

o x(t) € Si(p), if ftHT |x(7)||dr < e uT + ¢ for p > 0, where ¢, ¢y are some

positive constants, and ¢, is independent of .

o x(t) € Sa(u), if ftHT (1) x(r)dr < (e1p® + c3pu)T + & for p > 0, where ¢

for i = 1,2, 3 are some positive constants, and ¢, ¢3 are independent of u. We

say that x is of the order p in the mean square sense if x € Sy(p).

5.2 Problem Formulation

We consider a class of multiple-input single-output nonlinear systems that are trans-

formable into the following parametric strict feedback form.

B =z + (7)1, 1=1,2,...,0—-1

T, = Spo(xvg)+¢Q(I7€)T9+ijﬁj(m7€>uj
j=1

£ = V(&) +P(x,6)f

y = T, (51)

where © = [11,29,...,7,|7, £ € R"¢ are the states, y € R is the output and
uj € N for 5 = 1,2,...,m is the jth input of the system, i.e. the output of the

Jth actuator. B;(x,&), go(z,€) € R, p,(z,£), pi(Z;) € RP for i =1,2,...,0— 1 are
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known smooth nonlinear functions with z; = (21,29, ..., ;). 6 € RP is a vector of

unknown parameters and b; for j = 1,...,m are unknown control coefficients.

Remark 5.2.1. As presented in [54, Sec. 3.1] and Chapter 4, suppose there is a class

of nonlinear systems modeled as,

X = fo)+ D 0h0) + D bigi(x)u
=1 Jj=1

y = h(x), (5.2)

where x € %", y, u; for j = 1,...,m are the states, output and jth input of the
system respectively, fi(x) € ®" for [ = 0,1,...,p, gj(x) € R" for j = 1,...,m
and h(x) are known smooth nonlinear functions, 6, for [ = 1,...,p and b; are
unknown parameters and control coefficients. If ¢;(x) € span{go(x)}, go(x) € R"
and the nominal system x = fo(x) + F(x)0 + go(x)wo, v = h(x), where ug € R,
F(x) = [f1(x), fa(X)s - - -, fo(X)] € R™P, 0 = [01,09,...,0,]" € RP, is transformable
into the parametric-strict-feedback form with relative degree g, the nonlinear plant

(5.2) can be transformed to the form of (5.1).

5.2.1 Model of Actuator Failures

Suppose that the internal dynamics in actuators is negligible. We denote u,; for
j=1,...,m as the input of the jth actuator, which is to be designed. An actuator
with its input equal to its output, i.e. u; = u;, is regarded as failure-free. The

actuator failures of interest are modeled as follows,

Uj(t) = Pjrlcj + Ukj h, te [tjh,s>tjh,e)7 heZ* (53)

Pinlkjn = 0, ] = 1, s, (54)
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where p;n, € [0,1),ugjn,tjns, tjne are all unknown constants and 0 < ¢j; , < tj1, <
tios < -+ < tine < tithi1),s < Liht1),e and so forth. Equation (5.3) indicates that
the jth actuator fails from time t;;, s till ¢, .. %1, denotes the time instant when
the first failure takes place on the jth actuator.

Similar to Section 4.2.1, (5.4) also includes two typical types of failures, i.e. PLOE
and TLOE and the failure status for different p;;, and ug;, can also be elaborated
as follows.

1) pjn # 0 and uy;, = 0.

In this case, u; = pjauej, where 0 < pj, < 1. This indicates PLOE type of
failures. For example, p;, = 70% means that the jth actuator loses 30% of its
effectiveness.

2) pjrn = 0.

This indicates that u; can no longer be influenced by the control inputs u.;. The
fact that u; is stuck at an unknown value uy; j, is usually referred to as a TLOE type
of actuator failures.

It is important to be noted that actuators working in failure-free case can also
be represented as (5.3) with p;, = 1 and wy;;, = 0. Therefore, the model in (5.3) is

applicable to describe the output of an actuator no matter it fails or not.

Remark 5.2.2. By comparing (5.3)-(5.4) to the failure models considered in [43,45,
46,54,56,59,71,72], h is not restricted to be finite. This implies ) a failed actuator
may operate normally again from time ¢, . till ¢;(441),s when the next failure occurs
on the same actuator; i) the failure values pj;;, or ug;, changes to a new one, i.e

pj(h—i—l) O Ukj h+1, from the time tjh,e(: tj(h-i—l),s)-
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5.2.2 Control Objectives and Assumptions

The control objectives in this chapter are as follows,

e The effects of considered types of actuator failures can be compensated for so

that all the closed-loop signals are ensured bounded all the time.

e The tracking error z1(t) = y(t) — y,(t) satisfies that z;(t) € Sa(u), where Sy (1)

is defined in Section 5.1.1.

e Asymptotic tracking can still be achieved if the total number of failures is

finite.

To achieve the control objectives, the following assumptions are imposed.

Assumption 5.2.1. The plant (5.1) is so constructed that for any up to m — 1 ac-
tuators suffering from TLOFE type of actuator failures simultaneously, the remaining

actuators can still achieve the desired control objectives.

Assumption 5.2.2. The reference signal y,.(t) and its first oth order derivatives
y,(ni) (t=1,...,0) are known, bounded, and piecewise continuous.
Assumption 5.2.3. §;(z,£) # 0, the signs of b, i.e. sgn(b;), for j=1,....,m are

known.

Assumption 5.2.4. 0 < b, < [bj] < l_)j, |ukin] < ay;. For the PLOE type of
actuator failures, P, < pjn < 1. There exists a convex compact set C C P such that
30, 0o, 1|0 — 6o]| < 0 for all § € C. Note that b, b

; bj,gj,ﬂkj,ﬁo,ﬁ_ are all known finite

positive constants.

Assumption 5.2.5. The subsystem & = W(x,€) + O(x,£)0 is input-to-state stable

with respect to x as the input.
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Remark 5.2.3. In Assumption 5.2.4, L, denotes the lower bound of p;, on the jth
actuator in the case of PLOE failures. The knowledge of L, will be used in designing
the controllers and the estimators. The control objectives can be achieved with such

designs no matter TLOE or PLOE failures occur.

5.3 Adaptive Control Design for Failure Compen-

sation

Design u,; in parallel as follows

sgn(b;)
B

U, (5.5)

'LLCJ' =

where ug will be generated by performing backstepping technique. Based on (5.5)
and the considered failures modeled as in (5.3)-(5.4), the oth equation of the plant
(5.1) has different forms in failure-free and failure cases.

1) Failure-free Case

j=1

2) Failure Case

We denote Tj, for h € Z* as the time instants at which the failure pattern
of the plant changes. Suppose that during time interval (7},,7T}+1), there are g
(1 <@, <m—1) actuators ji, jo, . .., jgn undergoing TLOE type of failures and the

failure pattern will be fixed until time 7},.,. We have

B, = @otenf+ > palblut D bjukiab (5.7)

JFJ1,525-50qh J=J1,J25--Jqn
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From (5.1), (5.6) and (5.7), a unified model of & for both cases is constructed as

ii = :Ciﬂ—i—(piTH, 221,2,”9—1
. T T
T, = o+ @,0+bug+ 3k, (5.8)
where
(
; Z;”:l b5, Failure free 59)
\ Zj;éjl ..... Jap, pinlbjl, Failure
6 = [617 ce 7ﬂm]T € Rmu (510)
)
1 0, aO]T € R™, Failure free
| [0,"' s g Uiy ny 05+ 5 05 Uk 0,00 ,O}T € R™. Failure

(5.11)

Define that ¢ = minlgjgm{gjlgj}, k; = el, ;k, where ¢; j denotes the jth coordinate
vector in R, with 1 for the jth entry and zero elsewhere. From Assumption 5.2.1,
there is at least one actuator free from TLOE failures, we have b > (. Note that b,
k; for j = 1,...,m are time varying parameters that may jump. We further define

Y = [b, 07 kT]T € RPT™FL the property of ¥ is established in the following lemma.

Lemma 5.3.1. The derivative of 0(t) satisfies that 9(t) € Sy(u), where Sy(u) is
defined in Section 5.1.1, i.e.

T
/ [()lldr < CiuT + C, V&, T (5.12)
t

with C1,Cy > 0, w 1s defined as

= — 5.1

where T™ denotes the minimum value of time intervals between any successive changes
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of failure pattern. Cy is independent of .

Proof: From Assumption 5.2.4, the upper bounds of the jumping sizes on b and k;

can be calculated. If b or k; jumps at time instant ¢, we obtain that

bE) = b)) < Y b, (5.14)

k() = k()] < 2y (5.15)

Define K = maxi<j<m{> 1, by — C, QEjﬂkj}. Clearly, K is finite. Denote 7},, where
h € Z*, as the time instant when the failure pattern changes. The failure pat-
tern will be fixed during time interval (7}, T),+1). Because of the definition of T*,
Th1 — Ty, > T* is satisfied for all T, Tj,1. We know that [|[9(¢)|| < K don0(t—="1Tp),
where 6(t — T},) is the shifted unit impulse function and K = /p +m + 1K. Con-
sider the integral interval ¢ ~ ¢ + T in the following cases:

o T'<T*and T, 1 <t < Ty <t+T < Tyy1, which corresponds to the case that
there is one and only one time of failure pattern change during [t,t + T|. Thus we

have

[ l(r)ldr < K. (5.16)

o T <T* t>1Tyand t+T < T}.1, which corresponds to the case that the failure

pattern is fixed during [¢,t + T]. We have

/t 19(7)||dr = 0. (5.17)

o T >T*t<T,and t+T > Ty, N, where N is the largest integer that is less
than or equal to T//T*. This refers to the case that there are at most N + 1 times

of failure pattern changes occurring during [¢,¢ 4+ T']. We then obtain
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_ 1

t+T . _ _
/ [9()lldr = (N +1) < KT+ K. (5.18)
t

o T'>T* t<T,and t+ T < T},n, where N is the same as the above case. This
refers to the case that there are at most NV times of failure pattern changes occurring

during [t, ¢t + T)]. We then have

1

t+T . _ _
/ 9(r)ldr = KN < K T (5.19)
t

Clearly, the above four cases include all the possibilities of ¢t and ¢t + 7. From

(5.16)-(5.19), if it is defined that C;,Cy = K, (5.12) follows and C} is independent

of . Therefore 9 € S1(p). Note that p decreases as T™ increases. a

5.3.1 Design of u

This subsection is devoted to constructing ug by performing backstepping technique

on the model (5.8). We introduce the error variables

z=xi—y" Y —,q, i=1,...,0 (5.20)

where oy = 0 and «; is the stabilizing function generated at the ¢th step given by,

i—1
A oo oo _
o T i—1 i—1 (k)
i = —zio1— (Gt si)z—w; 0 ;
o) zic1 — (¢ + 8i)zi — w; —l—E( Dy $k+1+ay£k,1)yr )
1=1,...,0—1 (5.21)
1 1
a, = =0, — =(co+5,)% (5.22)
b ¢
& [ da O
R L 0 3] Lo SV Y
k=1 r
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where l;, 6 and k are the estimates of b, 6 and k respectively. w; and the nonlinear

damping functions s; are designed as

1—1 a&
i—1 .
w; = P — G A=l (5.24)
k=1 k
e
si = killwil® + g 291 L i=1,...,0-1 (5.25)
(@ 4 = T2
Yr +Q Ox -1
so = Ko |llwell® + |[=——%| +BI°| + g a% (5.26)

Remark 5.3.1. Similar to the designs in Section 2.2.2, the use of nonlinear damping
functions here is to construct a controller such that an input-to-state property of
an error system given later in (5.68) with respect to U and 0 as the inputs will be

established in Section 5.4.

Finally, ug is designed as

up =, + T? (5.27)

5.3.2 Design of Parameter Update Law

In this subsection, preliminary design of certain filters is first presented and some
boundedness properties of related signals are also established. Then the design
of adaptive law involving the details of parameter projection design is provided.
Further, the properties of the estimator which are useful in the analysis of system
stability and the performance of tracking error in the mean square sense will also

be shown.
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A. Preliminary Design

Eqn. (5.8) can be written in parametric z-model as

i = flz) + F(z, )Y, (5.28)
where f(x) = [x2,23,...,%,, 00| and
0, CP?, 01><m
0, ¢35, Oixm
F7 (2, u) = 72 The | ¢ pextamy) (5.29)

Uo, 902;7 BT

We introduce two filters

OF = Az, t)QT + FT(z,u), Qe RPrmixe (5.30)

Qy = Az, t)(Q+2z)— f(z), QeRe (5.31)
where A(z,t) is chosen as
A(x,t) = Ag — YF (2, u)F(z,u) P, (5.32)

with v > 0 and Ay is an arbitrary constant matrix such that PA, + AT P = —1I,
P = PT > 0. We now have the following lemmas.
Lemma 5.3.2. For a time varying system 1) = A(xz(t),t), the state transition

matriz ® 4(t,ty) satisfies that

H(I)A(t,to)H < ZOG_TO(t_tO)a (533)
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where kg and ry are some positive constants.

Proof: Defining a positive definite quadratic function V = 7 P1). It satisfies that
V < =T and Apax(P)Y79 <V < Amax(P)YT9. Thus the equilibrium point
1 = 0 is exponentially stable from Theorem 4.10 in [94]. Moreover, ||®a(t, to)| <
lzﬂoe*m(t*to) for Izo,ro > 0 can be shown by following similar procedures in proving

Theorem 4.11 in [94]. O

Lemma 5.3.3. The state Q2 of the filter (5.30) satisfies that ||| < Cs irrespec-

tively of the boundedness of its input T, where Cs3 is a positive constant given by

6 = vamax {20, [ (5.34)

Proof: Similar to (2.124) in the proof of Lemma 2.2.2, we obtain that

2

d 1 1
GHOPAT) = =2y |[FPOT =~ |+ )
p+m-+1
< —fof+ 2L (5.35)

From (5.35) and the fact that A, (P)[|Q]% < tr{QPQT}, it follows that Q € L,

and
p+m+1
90 < Va0l < vamax IO S 630
O
Combining (5.28), (5.31), and defining Y = g + z, we have
V=AY + F". (5.37)

Introduce that e = Y — Q7. From (5.30) and (5.37), the derivative of ¢ is computed

as
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¢ = AY+FT9— (AQT + FTyy — Q19

= Ae—QT9, (5.38)

Then, the following results are obtained.
Lemma 5.3.4.

(i) If u is finite, € is bounded;

(ii) € € S1(p) and € € Sa(p).

Proof-
e Proof of (i).
The solution of (5.38) is

£(t) = D 4e(0) — /O O 4(t, )T (1) (r)dr. (5.39)

From Lemmas 5.3.2 and 5.3.3, we have

— t .
le@I < koe"“tllﬁ(@)ll+/<fo||QHoo/0 e (T | dr

= &1 +82, (540)

where g = koe™"!||2(0)|| and e5 = kol|€[|oo fg e~ |[J(7)||dT respectively.

From Lemma 5.3.1 and the definition of €9, we obtain that

= t .
. — kOHQHOOemt/ e ()| dr
0

= N pitl ‘
< hollQlee™™ D / 7|9 (r)|dr
i=0 71t
7. N ) i+l
< Rolllle St [ i) ar
i=0 i
= T0 ”'ON_ —ro
S k0||Q||oo(01M+C2)6_TOt6 (e e ")

1—e"0
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= e (Chp+ C
< Rl AL oy g, (5.41)
where ) )
koCh || o™ ko Cal| Q| €™
S — = 42
C’4 1 — e—7o ) C5 1 — e—"o 3 (5 )

Note that N <t < N + 1 has been used with N as the largest integer that is less
than or equal to t. From (5.41), which is similar to the procedures in proving that
A(t,to) < ¢ on Pages 84-85 in [5], we conclude that 9 is bounded provided that p
is finite. Consequently, ¢ is bounded.

e Proof of (i1).

By integrating (5.40) over [t,t 4+ T, we have

T t+T _ _ t+T  p1 X
[l < [ kel Rl [ [ e i) asar
t t t
Z, (0 _ t+T t )
_ olle(0) ] +k0||Q||oo/ (/ e_TO(T_S)Hﬁ(S)“dS
To t 0
—i—/ e_TO(T_s)Hlé(s)Hds) dr
t
7. _ t+T t )
_ k0|’€(0)|’+E0||Q||oo/ 6_TOT/€TOS||19(S>||deT
To t 0

_ t+T T .
ol / omroT / e [d(s)|dsdr
t t

k kol|Q e [ .
< 0H8<0)|| + 0|| || /em(ts)Hﬁ(s)HdS
To T'o 0
_ t+T T .
+/€0||Q||OO/ e_TOT/ e"%||d(s)]|dsdr, (5.43)
t t

where the last inequality is obtained by using e~"0! — e=To(+T) < g=7ot,

From the Proof of (i), we have

[ e < PIEOUECRA G gyon [ o [T s asr
t t t

(5.44)
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By changing the sequence of integration, (5.44) becomes

t+T ]:f 0 C C _ t+T . t+T
[t < SREOLEGUEG  fan [T i) [ e aras
t t s
T

To

t

To To

From Lemma 5.3.1, we obtain that

t+T
| kel < cor + (546
t

where Cg = koC1 |90 /70 and

_ Kolle(O)[| + Capt + Cs + koCa| 2o

To

Cr (5.47)

Therefore, € € Sy (p).
From (5.40), it follows that ||¢]js < ko||€(0)|| + Cupe + Cs. By utilizing Hélder’s

inequality, we obtain that

IN

t+T
wm/ le(r)lldr
t
llelloo(CopT + Cr)

/tt+T e(t)le(r)dr

= (Cg,u2 + CQM)T + ClO; (548)

where Cg = 04067 Cg = 06<Z'0||€(0)|| + 05) + 0407, CIO = O7<Z'0||€(0)|| + C4/L+ 05)

Hence € € Sy() is concluded. O

B. Design of Adaptive Law

Now we introduce the “prediction” of Y as Y = Q70, where 9 = [b, 67, kT]”. The

“prediction error” € = ) — ) can be written as
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e=0"0 +e, (5.49)

where J = ¢ — 9.
Design the update law for J by following standard parameter estimation algorithm
[21] as
J=Proj {T2e}, T =IT>0 (5.50)

where Proj{-} is a smooth projection operator to ensure that

~

D(t) = (1, ..., Dppmsr)’ €Iy, VL. (5.51)
In (5.51), the set Il is defined similarly as in Example 1 of [105], i.e.

A Wi—wl <o, i=1p+2,....p+m+1
Ty =49 . (5.52)

||é_90|| <§7 é: [1§2a"'7§p+1]T

Note that 6, and 6 are given in Assumption 5.2.4 and v;, o; are given as

= (C+ZB])/27

v, = 0, p+2,...,p+m+1; (5.53)
o = Vl—C,
oi = bjlgip-1), 1=p+2,...,p+m+1 (5.54)

By doing these, ¢ < b < Z;”Zl bj, ]/%]\ < bjiix; and 6 € C all the time. Based on [105]
and [21], the detailed design of projection operator is given below.

Choosing a C? function P(d): RPH+1 — R as

. q A q
v — v n (H@—g%“) 14, (5.55)

g;
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where 0 < ¢ < 1 and g > 2 are two real numbers. We then define the set II as

H:{ﬁ

) < o}. (5.56)

Clearly, II approaches Il as ¢ decreases and ¢ increases. Similar to (£.3) in [21],

we consider the following convex set

3 (5.57)

which contains II for the purpose of constructing a smooth projection operator as

~

T, PH) <0 or W) <0
Proj(r) = S 2RO T (5.58)
kv i) 3
T — () WT, if not
where 9(0) € I and .
. 2P (0
¢(¥) = min {1, 71( ) } . (5.59)
It is helpful to be noted that
. 0, PW) =0
() = ) (5.60)
1, PW) =5

The properties of projection operator (5.58) are rendered in the following lemma.
Lemma 5.3.5.
(i) Proj(t)TT='Proj(r) < 7'T"'r, V0 eIl.

(i) Let I'(t), T(t) be continuously differentiable and 9 = Proj(t), 9(0) € T.. Then

on its domain of definition, the solution zg(t) remains in Il..

(iii) —9TT 1 Proj(r) < =007, Vi € I1, 0 € I1.
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Proof: The proof is similar to the proof of Lemma E.1 in [21]. O

Based on these, we have the following results, which will be useful in the analy-
sis of system stability and the performance of tracking error in the mean square

sense.

Lemma 5.3.6. The estimator (5.50) has the following properties.

(Z') €€ SQ(IU');
(ii) U € Sa(p).

Proof: We define a positive definite function

1~ -
Vy = 519Tr—119. (5.61)

From Lemma 5.3.5 (i) above, we have
Vy = 07T - 0)
< —TTH(IQe) + 97T
= —(e—e)Te+9"T71

< —let || + 97T, (5.62)

e Proof of (7).

By integrating both sides of (5.62) and using Hélder’s inequality, we obtain

t+T t+T t+T 3 +T
[veir < = [ dear el [ eldr - el e [ 19l
t t t t

t+T ~
_/ 7 edr + ||elloo(CopT + C) + |9
t

IN

1

(5.63)
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Thus

/t e(r)le(r)dr < m (@(t)Tﬁ(t) — It +T)T0(t + T))

-

< (Opp® + Cop)T + Chs, (5.64)
where C; = Cy and
B C1 |9 _ 191, + 2Ca|9]
Cio = Cy + Noin (D) Cig = Cio+ 2o (D) (5.65)

From (iii) of Lemma 5.3.5, J(t) remains in I if J(0) € II.. From Assumption 5.2.4
and the definition of Il., we know that 9} € Il.. Therefore ¥ is bounded by utilizing

the projection operator, € € Sy(p).
e Proof of (ii).

From (i) of Lemma 5.3.5 and Hélder’s inequality, we have

T .. t+T
/ Wrodr < / QT2
t t

t+T
Amae (D) }|\|QH%||OO/ ’edr. (5.66)
t

IN

Thus from (5.64),

t+T X X
/ D(r)TI(r)dr < (Crap® + Crsp) T + Che, (5.67)
t

where Ci = Cri—3Amaz(D)2|| |12 ]| for @ = 4,5,6. Therefore, 9 € Sy(u) is con-

cluded. O
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5.4 Stability Analysis

We will first prove the input-to-state stability of an error system with U and 6 as the
inputs. An error system obtained by applying the design procedure (5.20)-(5.27) to

system (5.8) is given by

2= Au(z,0,0)2 + W(z,0,)70 + Qo= 0,6)70, (5.68)
where
A,
[ —(Cl + 81) 1 0 0 ]
-1 —(CQ + 82) 1
= 0 -1 0 )
1
i 0 0 -1 —g(cg—i—sg)_
(5.69)
0 UJ? O1><m
0 wE O1xm
WT = 2o (5.70)
a (o)
I Q";}yr wg /GT |
8051 —8(1 -1
=10, ——=, ..., o7 5.71
R (5.71)

For the error system (5.68)-(5.71), the following input-to-state property holds.

Lemma 5.4.1. If 9~, b, /;:,GA € Lo, then z € L, and

1 [1 .k -
l=® < — 16112+ l=(0)le™",  (5.72)

~ 2y/co [ ko

(10112 + 16115 + 11%11%) +

1
90
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whereéze—é, b=b—>bandk="k—k and ¢y, ko and gy are defined as
4 1 -1 4 1 -1
_ ke = e -] . 5.73
Cop = 1r£121ngc Ko (; F&i) go (; gi> ( )
Proof: Along the solutions of (5.68), we compute
d (1 8041 )2
— | 51212 —Zcz Z rillwil|* + g L2
dt \ 2
yr(’n) + O_én 2 2 ¢ T~ aOéZ,1 A
—kp | [T + 18I 22+ (wiH— _ 9) Zi
i=1 90
(@, =~ _ B
+ (‘yTT—I—%b> 2o+ BT k2,
4 2 4
1 -~ O
2 1—1
< —allzl —;Féi W; 2 2/{@0 —;gz‘ 2% Zi
2
1 v +a, 1 -
= LA (32 ) e
fe||Pe 2k, — 4k
1
+[(>— 191 + (52+ I1%]*)
i=1 4g;
R NI I CRTAE LA
< —col2l”+ £ | =07+ 6"+ [K]7) + —16]]] - (5.74)
4 | Ko 9o
- - - 19172
Let v = [|z]]? and ¥ = [i(||6’||2 + 0% + ||k||?) + L||9||2} , it follows that
Ko 9o
) I
v < —2cov + 53 ) (5.75)
If9~, b, k and é €Ly, L €L, thenv € L and
—2cot 1 2
o(t) < v(0)e ™" + — |25
400
< (0 4 | (81 + (B2 + IFIZ%) + —161%] . (5.76)
deg | Ko 9o
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O
We are now at the position to present the main results of this chapter in the following

theorem.

Theorem 5.4.1. Consider the closed-loop adaptive system consisting of the non-
linear plant (5.1), the controller (5.5), (5.27), the parameter update law (5.50).
Irrespective of actuator failures modeled in (5.3)-(5.4) under Assumptions 5.2.1-
5.2.5, we have the following results.

(i) All the signals of the closed-loop system are ensured bounded provided that p is
finite.

(i1) The tracking error z; = y — y, is small in the mean square sense that z(t) €
Sa(p).

(11i) The asymptotic tracking can be achieved for a finite number of failures, i.e.

lim; o 21(t) = 0.

Proof-

e Proof of (i).

¥ is bounded by utilizing the projection operator in (5.50). From Lemma 5.3.3, €2 is
bounded. From Lemma 5.3.4, ¢ is bounded as long as 4 is finite. Thus from (5.49),
€ is bounded and so is fua Thus all the conditions in Lemma 5.4.1 are satisfied, then
2(t) € L. From Assumption 5.2.2, the definition of z; in (5.20) and the design of
a; in (5.21)-(5.23), x(t) € Lo. From Assumption 5.2.5, £ is bounded with respect
to z(t) as the input. «, is then bounded. From (5.27) and (5.5), control signals u,;
for  =1,2,...,m are also bounded. The closed-loop stability is then established.
e Proof of ().

Rewrite (5.68) as

5= A (2,0, 8)2 + We(z, 9, )79 + Qo(z, 9, 6)70, (5.77)
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where ()y is the same as in (5.71) and

—1 —(CQ + 82) 1
A, = 0 ~1 - - 0 :
1
i 0 0 -1 —%(CQ + 5,)

(5.78)

0 U),{ O1><m

_ 0 wl Oium
WT = 2 T (5.79)

ug wl /T
Introduce the state x? as

X! =AxT+ Wy (5.80)

Similarly to Lemma 5.3.2, we obtain that ||® z_(¢,%0)|| < ke (1) where ky, ry are
positive contants. Thus y € L, is shown from (5.80) and the boundedness of Wj.
By defining 7 as

n=z—x", (5.81)

we will show (%) in two steps. In Step 1, n € Sy(u) will be proved. Then we will
establish that x79 € Sy(y) in Step 2. Thus from (5.81), z(t) € Sy(x) will be ob-

tained.

Step 1.

Computing the derivative of n gives that
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io= 2= X" = X" - 9)
— A+ W4+ QIO — (AT + W) — T — )

= A+ Q(,Té D — T, (5.82)

The solution of (5.82) is

A~

n(t) = B (t0)n(0) + / B4 (. 7)Qo(=(r), I(r), 1) 6(r)dr

n /0 B 1 (6, 7 ()T (7)dr — (o @@ (5.9

Since Yy and x are bounded, we have

_ _ t x =
In@] < kle”tHW(U)HJrleleoo/o e E6(T)|dr + Fa X oo

t

t . _ .
x / e D) ldr + Fa e / ) 9] dr
0 0

= M+, (5.84)

where 77 and 7 are defined respectively as

t

_ . t R
S— (||@e||oo [ e Nimlar+ il | e-“<t-T>||ﬂ<r>Hdr) (5.85)
0 0
— t .
w o= (e“t|rn<o>u+uxuoo / e““f)wrdf). (5.86)
0

By following similar procedures to the proof of Lemma 5.3.4 (4i), it can be shown
that 7o € Sa(p). Now we show that 1, € Sa(p). Using Schwartz inequality, we

obtain

1

_ ¢ 3/t : >
mo< by [nQGHOO ( / e—”“—ﬂdr) ( / e-“<t-f>||e<f>||2df)
0 0

t 3 t . 3
il ( / e—““—%) ( / e-”<t-f>||z9<7>||2dr)
0 0
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]zfl t _ _ A %
< Tl(t T) 2
> /_701 [”QG”OO (/0 € HQ(T)H dT)

¢ . 1
2 ( / e‘”“‘”\lﬁ(ﬂHQdT) ] (5.87)

By squaring both sides of (5.87) and integrating it over [t,t + T, we have

t+T 2]?2 t+T  p1 R
J —1[||@euio [ [ e ool pasas
t 1 t 0

t+T  p1 .
[ e iepae] G
t

Similar to the proof of Lemma 5.3.4, we obtain that

t+T 7.2 2 t . t+T
2k7||1Q 1 R
/ ndr < k1ol <—/ e”(”)HH(s)HstJr/ s
t 0 t

1 1

. t+T 2:2 2
X||0(8)||2/ 6—7“17'de8>+ leXHoo

T

1 t . t+T . t+T
« (_ / e~ () |[2ds + / e d(s)|12 / e—dedS)
1 Jo t s

2k? e (Cup® + Chisp + Cig)
r_21(||Q9||io+||X||c2>o) =
1

2k3|QulZ [T 20l [T
| 2ki Qo / ”e(s)uzdﬁ%/ 19(s)|?ds.  (5.89)
t t

2
1 1

IN

From Lemma 5.3.6 (i), J e So(), thus 0 c So(p) and 1 € Sy(p). From (5.84),

n € Sa(1) where we have used the fact that ||n||* < 2(n? + n3).

Step 2.

From (5.49), Lemma 5.3.4 (i) and Lemma 5.3.6 (i), we have Q79 € Sy(x). Thus
our main task in this step is to show that Q70 € Sy(u) implies x79 € Sy(u). The
procedures are quite similar to those in the proof of Theorem 2.2.2.

For simplicity of presentation, we represent the following system by an operator
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TAiHa
G = Ai(t)¢i +u, (5.90)

where A; : Ry — R2%¢ is continuous, bounded, and exponentially stable. For
example, (; = Ty[FTV] if {; = A¢, + FT0, where A is defined in (5.32).

Since the stability of the closed-loop system has been shown, F' is bounded.
Similarly to the proof of n € Sy(), ¢, — QT = Tu[FTI) — T4[FT]9 € Sy(y) can
also be shown. From Q70 € Sy(p), it follows that ¢, € Sy(p).

We now show that (; =77, [Wg@] € Sy(u), where A, is the same as in (5.78).
From (5.24), (5.29) and (5.79), we have

Wy =MFT, (5.91)
where ) )
1 0 e 0
_ Oog 1 .. :
o . :
M = : (5.92)
. ‘. ‘. 0
8049,1 801971
- 6371 U _81‘971 1 a

Note that M has a similar form to that in (2.139). By following similar analysis
to show that (; € Ly in the proof of Theorem 2.2.2, we can obtain that (s =
Ti [MFT] € Sy(p). Moreover, Tz [MFT9] — T [MFT]9 € Sy(p) can also be
shown by following the similar procedures in the proof of n € Ss(u). We then obtain
that T [MFT]9 € So(p). Thus T [WT]0 = xT0 € Sy(u). From z = T 4 7,

z € Sy(p). Hence 2z € Sy(p) follows.

From Lemma 5.3.1, we know that y = TL where T™ is the minimum time interval
between two successive changes of failure pattern. Clearly, i can be very small for

a large T™.
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e Proof of (iii).

For the case with a finite number of failures, the result that J(t) € S;(u) will be
changed to that J(t) € £;. Through the similar procedures in the analysis above,
z(t) € Ly will be followed instead of z(¢) € Sa(p). From (5.68), 2(t) € L. Together
with the facts that z(t) € Lo, from the corollary of Barbalat lemma as provided in
Appendix A, asymptotic tracking will be achieved, i.e. lim;_, z1(t) = 0. O
Remark 5.4.1. With our proposed scheme, all the closed-loop signals are ensured
bounded even if there are infinite number of TLOE and PLOE actuator failures as
long as the time interval between two successive changes of failure pattern is bounded
below by an arbitrary positive number. Such a condition is less restrictive than that
conjectured in [55]. Moreover, from the established tracking error performance in
(ii) of Theorem 5.4.1, we see that the frequency of changing failure patterns will
affect the tracking performance. In fact for a designed adaptive controller with a
given set of design parameters and initial conditions, the less frequent the failure

pattern changes, the better the tracking performance is.

Our results can also be extended to the following situations, even though they are

not the focus of the chapter.

Remark 5.4.2.

e As far as the ‘offline’ repair situation (namely actuators may repeatedly fail, be
removed from the loop and then put back into the loop after recovery) is concerned,
stability result cannot be established by using the existing tuning function schemes.
This is because when the actuators change only from a working mode to an ‘offline’
repairing mode infinitely many times, the parameter b in (5.8) will experience infi-
nite number of jumps which will lead to instability if they are not carefully handled.
However, system stability can be ensured with our proposed scheme if Assumption

5.2.1-5.2.5 are satisfied and the time intervals between two successive changes of
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failure pattern are bounded below by an arbitrary positive number.

e The results achieved in this chapter can also be applied to time varying systems.
The derivatives of the unknown parameters are not required to be bounded like
many other results on adaptive backstepping control of time varying systems such
as [106-108]. On the other hand, the parameter p being finite is the only condition
to achieve the boundedness of all closed-loop signals in this chapter. In contrast to
previous results on adaptive control of systems with possible jumping parameters
such as in [34,109], i is not required to satisfy that u € (0, u*] where p* is a function
of the bounds of unknown system parameters as well as design parameters. Thus

the results here are more general than those in [34,109].

e Similar to the comments in [56], more general failures modeled like u;(t) =
Ugjn + D only dini - fini(t) for j=1,2,... m, with smooth functions fj,;(t) and un-
known constants uy; , d;n; can also be handled with our proposed scheme. However
different from [56], f;5i(t) can be allowed unknown with our proposed scheme, as

long as it varies in such a way that 9 € Sy (u) is still satisfied.

5.5 Simulation Studies

5.5.1 A Numerical Example

In this subsection, a numerical example is considered to illustrate the ability of the
proposed scheme in compensating for infinite number of relatively frequent actuator
failures. To carry out a comparison, the results by using a tuning function scheme
in Section 4.3, which can be regarded as a representative of currently available
results in the area of adaptive failure compensation for nonlinear systems, are also

presented.
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We consider a system with dual actuators

X = fox)+f()0+ Z b;g; ()u;

where the state y € R?,

—X1 0
Jo=1| x3s |, [= X3 ) (5.94)
1—e—X3
X2X3 Tte— X3
and
2+ x32 r
—gy = |28 g 5.95
R e (5.99

which is modeled similarly to Example 13.6 in [94]. As discussed in [94], to transform
(5.93) into the form of (5.1), we choose [£, 1, 22T = T(x) = [¢(x), X2, x3]T where
d(x) = —x1 + x3 + tan~! y3. We have ¢(0) = 0 and

20 450 = 22 i 0
ax”’ Ix1 1+x3 Oxs

= 0. (5.96)

Since the equation T'(x) = s for any s € R* has a unique solution, the mapping

T(x) is a global diffeomorphism. Thus, the transformed system below

: _ 2 + 22 1—e™
= —{4+ay+tan —0
§ £+ x2 2+1+x§ (I1$2+1+6_z2 )
T = X9+ :U%H
1—e™™ 2
T9 = IT1T9+ me + ; bjUj (597)
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2+z%

is defined globally. Because of the boundedness of functions tan™!(x5), .2 and
2

L_FZ:Z, it is concluded that & = —& + n(xq, x2,0) is ISS where n = x5 + tan~' x5 +

2 —x . . .
ﬁ—§§<$1$2 + 175=50). Thus Assumption 5.2.5 is satisfied.

The considered failure case is modeled as

Ul(t) = Uk1,h, t e [hT*, (h + l)T*), h = 1, 3, ceey (598)

which implies that the output of first actuator (u;) is stuck at u; = uyy ), at every

*

hT* seconds and is back to normal operation at every (h 4+ 1)T* seconds until the
next failure occurs.

The following information is unknown in the designs.

0= 2, b1 = ]_, b2 = 11, Uk1,h = 5, T = 5. (599)

However, we know that by,b, > 0 and

1<60<3, 08<|by <14, 0.6< |by| <2 (5.100)

0.5 <pjn <1, |upn| <6,5=1,2. (5.101)

The reference signal y, = sin(t).

We firstly design the adaptive controllers following the procedures in Section 4.3.
In simulation, the initial states and estimates are all set as 0 except that x»(0) = 0.4
and é(O) = 1. The design parameters are chosen as ¢; = ¢y =5, ' =3, ', =3 x I3.
The performances of the tracking error and control inputs (u, uy) versus time are
given in Fig.5.1 and Fig. 5.2, respectively. It can be seen that after 150 seconds,
the magnitudes of the error signal grows larger and larger. Growing phenomenon

can also be observed from the control signal even more rapidly. It seems that the
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boundedness of the signals cannot be guaranteed in this case.

We then adopt the proposed modular scheme to redesign the adaptive con-
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Figure 5.1: Tracking error y(t) —y,(t) Figure 5.2: Control u; and us with
with the scheme in Section 4.3 when scheme in Section 4.3 when 7% = 5
T* = 5 seconds. seconds.

trollers. B(O) = 1.5, the rest of the initial states and estimates are kept the same as
in the tuning function design. The design parameters ¢, ¢y are fixed at ¢; = co = 5,

while other design parameters are chosen as

(=03, Ki=hko=3, go=3, I'=40x Iy, (5.102)
v = 03 ; 3'4, v3 =1y =0, (5.103)
01 =34—-2=14, 03=o04=12, (5.104)
Oy = # =2, 0=2 ¢q=40, ¢=0.0l. (5.105)

The performances of tracking error and control signals in this case are given in Fig.
5.3-5.4. Apart from these, the states y; and y3, parameter estimates are also plotted
in Fig. 5.5-5.6. Obviously, the boundedness of all the signals is now ensured.

To show how T* affects the tracking performance when the proposed design

scheme is utilized, we set T* = 25 seconds. The performance of tracking error
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Figure 5.6: Parameter estimates with
proposed scheme when 7% = 5 sec-
onds.

is now shown in Fig. 5.7. Comparing Fig. 5.7 and Fig. 5.3, better tracking error

performance in the mean square sense is observed.

Now we consider the case that there are finite number of failures by setting 7% = 5

seconds and there will be no failure for ¢ > 100 seconds. The performance of tracking

error with our proposed scheme is given in Fig. 5.8, which shows that the tracking

error will converge to zero asymptotically in this case.
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Figure 5.7: Tracking error y(t) — y,(t) Figure 5.8: Tracking error y(t) — y,(t)

with finite number of failures when

with proposed scheme when T* = 25
the proposed scheme is applied.

seconds.

5.5.2 Application to An Aircraft System

In this subsection, we apply the proposed scheme to accommodate infinite number of
PLOE and TLOE actuator failures for the twin otter aircraft longitudinal nonlinear
dynamics model as described in (4.83). In simulation, the aircraft parameters in use

are set the same as in Section 4.5 except for dy = 6, dy = 4.

As discussed in [54], (4.83) can be transformed into the form of (5.1), i.e

X3 = X4
_ 2
o = o000+ bixiu
=1
£ = U x)+ P& x)0 (5.106)

where 6 € R* is an unknown constant vector, ¢(x) = [X§X2,X§X§,X§,X§X4]T, T =

[x3, Xa]T. The failure case considered in this example is modeled as

uy(t) = gL

e [hT*, (h+ 1)T"), h=1,3,..., (5.107)

U2 = P2rUc2

ScHooL oF EEE NANYANG TECHNOLOGICAL UNIVERSITY



5.5 Simulation Studies 150

which implies that at every hT™* seconds, the output of the 1st actuator (u) is stuck
at uy = w1, and the 2nd actuator loses (1 — pap,) percent of its effectiveness. While
at every (h + 1)T™ seconds, both actuators are back to normal operation until the
next failure occurs.

In simulation, we choose that ug; , = 0.4, pap, = 30% and T = 10 seconds, which
and the parameters in (5.106) are all unknown in the designs. However, we know

that by, by in (5.106) are both negative and

16]] < 0.02, 0.01 < |by| < 0.02, 0.005 < |bs| < 0.01, (5.108)

0.2 S Pih S 1, |ukj7h| S 1. (5109)

The reference signal y, = 0.1sin(0.05¢). The initial states and estimates are all set
as 0 except that x(0) = [85,0,0.03,0]7, b(0) = 0.01. The design parameters are

chosen as

£=0001, c; =co=1, ky =107 T'=0.1 x I, (5.110)
v, = w o1 = 0.03 — 0.001, (5.111)
0y = [0,0,0,0]", 6=0.02, (5.112)
vs=v; =0, 06=0.02, o7=0.01, (5.113)
q=120, ¢=0.01 (5.114)

The performances of tracking error, velocity, attack angle, pitch rate and control
U1, ug are given in Fig. 5.9-5.13, respectively. It can be seen that all the signals are

bounded and the tracking error is small in the mean square sense.

ScHooL oF EEE NANYANG TECHNOLOGICAL UNIVERSITY



5.5 Simulation Studies

151

0.03

0.025

r

0.02

0.015

0.01

Tracking error y-y

0.005

-0.005 - - - '
0 50 100 150 200
t(sec)

Figure 5.9: Tracking error y(t)—y,(t).

0.08¢
0.06
0.04

0.02

Attach angle a (rad)

-0.02
0

200

50 100 150
t(sec)

Figure 5.11: Attach angle a.

Control inputs (rad)

Velocity V (m/s)
~ [0 [o5] [{e]
[6;] o [3)] o

~
o
T

651
60 * : . ’
50 100 150 200
t(sec)
Figure 5.10: Velocity V.
0.1r

__ 005}
wn
3
g
=
Q 0
©
<
2
o

-0.051

-0.1 : : : ;

0 50 100 150 200
t(sec)

Figure 5.12: Pitch rate gq.

j.".__[—\

_2.5 n
0 50

Figure 5.13:

100 150 200
t(sec)

Control inputs (elevator angle (rad)) u; and us.

ScHooL oF EEE

NANYANG TECHNOLOGICAL UNIVERSITY



5.6 Conclusion 152

5.6 Conclusion

In this chapter, the problem of adaptive control of uncertain nonlinear systems in
the presence of infinite number actuator failures are addressed. It has been proved
that the boundedness of all closed-loop signals can be ensured by adopting the
proposed scheme, provided that the time interval between two successive changes
of failure pattern is bounded below by an arbitrary positive number. From the
established performance of tracking error in the mean square sense, it is shown that
the less frequent the failure pattern changes, the better the tracking performance is.
Moreover, the tracking error can converge to zero asymptotically in the case with
finite number of failures. In simulation studies, the ability of the proposed scheme
to compensate for infinite number of relatively frequent failures is compared with a
tuning function design scheme through a numerical example. The effectiveness of

the proposed scheme is also shown on an aircraft system through simulation.
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Decentralized

Adaptive Stabilization
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Chapter 6

Decentralized Adaptive
Stabilization of Interconnected

Systems

So far there is still no result available for backstepping based decentralized adaptive
stabilization of unknown systems with interactions directly depending on subsystem
inputs, even though such interactions commonly exist in practice. In this chapter,
we provide solutions to this problem by considering both input and output dy-
namic interactions. Each local controller, designed simply based on the model of
each subsystem by using the standard adaptive backstepping technique without any
modification, only employs local information to generate control signals. It is shown
that the designed decentralized adaptive backstepping controllers can globally stabi-
lize the overall interconnected system asymptotically. The £5 and L., norms of the
system outputs are also established as functions of design parameters. This implies
that the transient system performance can be adjusted by choosing suitable design

parameters.
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6.1 Introduction

In the control of uncertain complex interconnected systems, decentralized adaptive
control technique is an efficient and practical strategy to be employed for many rea-
sons such as ease of design, familiarity and so on. However, simplicity of the design
makes the analysis of the overall designed system quite difficult. Thus the obtained
results with rigorous analysis are still limited. Based on conventional adaptive ap-
proach, several results on global stability and steady state tracking were reported,
see for examples [81,85-87,110,111]. However, transient performance is not ensured
and non-adjustable by changing design parameters due to the methods used.

Since backstepping technique was proposed, it has been widely used to design
adaptive controllers for uncertain systems [21]. This technique has a number of
advantages over the conventional approaches such as providing a promising way to
improve the transient performance of adaptive systems by tuning design parame-
ters. Because of such advantages, research on decentralized adaptive control using
backstepping technique has also received great attention. In [28], the first result
on decentralized adaptive control using such a technique was reported without re-
striction on subsystem relative degrees. More general class of systems with the
consideration of unmodeled dynamics was studied in [29,32]. In [88,89], nonlinear
interconnected systems were addressed. In [90,112], decentralized adaptive stabi-
lization for nonlinear systems with dynamic interactions depending on subsystem
outputs or unmodeled dynamics is studied. In [91], systems with non-smooth hys-
teresis nonlinearities and higher order nonlinear interactions were considered and
in [92] results for stochastic nonlinear systems were established. More recently, a
result on backstepping adaptive tracking was established in [93]. However, except
for [29,32,112], all the results are only applicable to systems with interaction effects

bounded by static functions of subsystem outputs. This is restrictive as it is a kind
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of matching condition in the sense that the effects of all the unmodeled interactions
to a local subsystem must be in the range space of the output of this subsystem.
Note that in [29], the transient performance of the adaptive systems is not estab-
lished. In [32,112], the interactions are not directly depending on subsystem inputs.

In practice, an interconnected system unavoidably has dynamic interactions in-
volving both subsystem inputs and outputs. Especially, dynamic interactions di-
rectly depending on subsystem inputs commonly exist. For example, the non-zero
off-diagonal elements of a transfer function matrix represent such interactions. So
far there is still no result reported to control systems with interactions directly de-
pending on subsystem inputs even for the case of static input interactions by using
the backstepping technique. This is due to the challenge of handling the input vari-
ables and their derivatives of all subsystems during the recursive design steps. In
this chapter, we will use the backstepping design approach in [21] to design decen-
tralized adaptive controllers for both linear and nonlinear systems having such in-
teractions. It is shown that the designed controllers can globally stabilize the overall
interconnected system asymptotically. This reveals that the standard backstepping
controller offers an additional advantage to conventional adaptive controllers in term
of its robustness against unmodeled dynamics and interactions. For conventional
adaptive controllers without any modification, they are non-robust as shown by
counter examples in [113]. Besides global stability, the £, and L, norms of the sys-
tem outputs are also shown to be bounded by functions of design parameters. Thus
the transient system performance is tunable by adjusting design parameters. To
achieve these results, two key techniques are used in our analysis. Firstly, we trans-
form the dynamic interactions from subsystem inputs to dynamic interactions from
subsystem states. Secondly, we introduce two dynamic systems associated with in-
teraction dynamics. In this way, the effects of unmodeled interactions are bounded

by static functions of the state variables of subsystems. To clearly illustrate our
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approach, we will start with linear systems involving block diagram manipulation.

Then the obtained results are generalized to nonlinear systems.

6.2 Decentralized Adaptive Control of Linear Sys-

tems

6.2.1 Modeling of Linear Interconnected Systems

To show our ideas, we first consider linear systems consisting of N interconnected

subsystems described in (6.1),

i G1(p) + vi1Hyi(p) v12H12(p) e inHin(p) -
vo1Hs:1 (p) Ga(p) + vaoHaa(p) ... vonHan(p)
yit) =

I vn1Hn1(p) vnoHno(p) ... Gn(p) +vNNHnn(p) |

| ,LL11A11(P) N12A12(p) M1NA1N<p) _
21091 22095 R AT

w() s | " | (p) | (p) ) Iz : (p) o), 6.1)

| pUN1ANT (p) pUN2A N2 (P) e MNNANN(p) |

where u € RY and y € RV are inputs and outputs respectively, p denotes the
differential operator &, G;(p), H;;(p) and Ay;(p), i,j =1,..., N, are rational func-
tions of p, v;; and p,;; are positive scalars. With p replaced by s, the corresponding
Gi(s), Hij(s) and A;j(s) are the transfer functions of each local subsystem and in-

teractions, respectively.

A block diagram including the ith and jth subsystems is shown in Figure 6.1.
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vii -Hii(s) pii Aii()
ui _‘ yi
Gi(s) J >
vji -Hji(s) Mii -Aji(s)
vij-Hii(s) i -Aii(s) —‘
uj Gi(s) J > Ji
vii -Hij(s) Hii -Aji(s)

Figure 6.1: Block diagram including the ith and jth subsystems

Remark 6.2.1. v;; H;j(p)u;(t) and p;;A;;(p)y;(t) denote the dynamic interactions
from the input and output of the jth subsystem to the ith subsystem for j # i, or
un-modelled dynamics of the ith subsystem for j = ¢ with v;; and p;; indicating the
strength of the interactions or unmodeled dynamics. Such interactions are rather
general. However there is no result on decentralized backstepping adaptive control
applicable to interactions directly from the inputs when using the backstepping

technique.

For the system, we have the following assumptions.

Assumption 6.2.1. For each subsystem,

G(S) _ Bl(S) _ bi7mismi + o+ bi,ls + b’i,O (6 2)
' Ai(s) 8™+ aip—18m T 4+ @18+ aip '

where a; j,7 = 0,...,n; — 1 and b,k = 0,...,m; are unknown constants, B;(s)
is a Hurwitz polynomial. The order n;, the sign of b;,,, and the relative degree

pi(=n; —m;) are known;
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Assumption 6.2.2. Foralli,j =1,...,N, A;;(s) is stable, strictly proper and has

a unity high frequency gain, and H;;(s) is stable with a unity high frequency gain

and its relative degree is larger than p;.

vii -Hii(s)

-

+

—  Gi(s) L
i -Hji
vii -Hiji(s) pji - Aji(s)

Gi(s)
” Gis) Hil AU(S)—‘
ﬂr- Gj(s) L > » Vi
vjj -Hji(s) +/ +'\ N J
Go) Hij - Aji(8)

Figure 6.2: Transformed block diagram of Figure 6.1

Go) Hii -Aii(8)
ui ..+ J - Yi

The block diagram in Figure 6.1 can be transformed to Figure 6.2. Clearly, the ith

subsystem has the following state space realization:

0
j}i = Azl’l — ;%1 -+ U;

bi

= Hy(p) Z
Yi = Ti1+ E Vij GZ?( )!Ej,l + E 1585 ()
j=1 i\p J=1

where

Onifl Inifl
Ai - )
T
O Oni—l
T T
a; = [ai,nifla cee 7ai,0] , by = [bi,mﬂ . ;bz',o]

(6.3)

(6.4)

(6.5)
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and 0,,_1 € R~V In the design of a local controller for the ith subsystem, we

only consider transfer function G;(s), i.e,

)

i = xip, for i=1,...,N. (6.7)

But in analysis, we will also take into account the effects of the unmodeled interac-

tions and subsystem unmodeled dynamics, i.e.

N

Hi;(p)
Z Vij G] Ti1+ Z,uw i (6.8)

J(p

Remark 6.2.2. 1t is clear that the effect of the dynamic interactions or unmodeled
dynamics given in (6.8) cannot be bounded by functions of the outputs y;,;j =
1,2,..., N, as assumed in the previous work. Instead, based on the given assump-

tions, it satisfies,

N

Hi;(p)
ZVU $J1+ZNU i (
j=1 ](p
N
< 602+chlj 0smp |21 (T )HZCQ’”&“E ly;(7)] for i =1,....,N (6.9)
- T<t
j=1 =1 - -

for some constants cg;, ¢15, and ¢ ;;. The above bound involves infinite memory of
state x;; depending on inputs u; and outputs y;, which makes the analysis of de-
centralized backstepping adaptive control systems difficult. This is the main reason
why there is still no result available for such a class of systems, due to the require-
ment of changing coordinates and handling the input variables and their derivatives

during the recursive design steps.
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Note that in our analysis given in Section 6.2.4, bound (6.9) will not be used.
Instead, we will consider signals generated from two dynamic systems related to
interactions or unmodeled dynamics to bound the effect.

Our problem is formulated to design decentralized controllers only using local
signals to ensure the stability of the overall interconnected system and regulate all
the subsystem outputs to zeros. The system transient performance should also be

adjustable by changing design parameters in certain sense.

6.2.2 Design of local filters

Since the full states of system are not measurable in our problem, the decentralized
adaptive controllers are required to be designed based on output feedback. Note that
we only present the decentralized adaptive controllers designed using the standard
backstepping technique in [21], without giving the details. Firstly, a local filter using
only local input and output is designed to estimate the states of each unknown local

system as follows:

}\i = Ai,O)\i -+ €n;n; Ui (610)

ni = Aol t en;nYi (6.11)

Uik = (A@o)k)\i, k= 0,...,m; (612)

Simi = —(Aio)"'mi (6.13)

where A;o = A; — ki(en, 1)", the vector k; = [k;1, ..., kin,]7 is chosen so that the

matrix A; o is Hurwitz, and e; ; denotes the kth coordinate vector in . Hence there
exists a P; such that PA; o + Ai’gPiT =—1,, P = PiT > (0. With these designed

filters our state estimate is given by
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Ty = &in, + Q0 (6.14)
where

0f = [bf,a;] (6.15)
Qz—' = [ULmi, Ce 71)1',17 Ui,O? Ez] (616)
H = _KAi,O)m_lnia cee ,Ai,onn 77i] (6-17)

Note that
fzn = —(Ai,o)m (Ai,om + em,m@/l’) = Ai,oﬁz',ni + kiyi (6-18)
Ei = —[(Ai,o)ni_lﬁi, cee >Ai,077i> 772] = —[(Ai,o)ni_l, <. 7Ai,07 [ni}(Ai,om + eni,niyi)
Uik = AioVig+enm—kti, k=0,...,my (6.20)

Then from (6.14), the derivative of Z; is given as

T = fzn + QzT@z
= A& +Eiyi + Aio[Vigmgs - Vi1, Vi, Zil0i — In,yia; + [0, biT]TU

= AioZ; — (a; — ki)y; + [0, biT]TUi (6.21)

From (6.3) and (6.21), the state estimation error ¢; = x; — Z; satisfies

. S
& = Aioer + (Z vij =L G B x31+z 110 ( > (6.22)
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Now we replace (6.3) with a new system, whose states depend on those of filters

(6.10)-(6.13) and thus are available for control design, as follows:

Ui = bimVi(ms2) T &ini2) + ST@' + €2

N
+(8 + im;—1) (Z Vij G %71 + Z/‘m i ( ]) (6.23)

j=1
Vimig) = Vi(mig+1) — KigUi(mi)s 4=2,...,p; — 1 (6.24)
Vi\(mips) = Vi(maipit1) — ki,pivi,(mi,l) + u; (6.25)

where

(S»LT = [Ui,(mzy?): Vi, (m;—1,2)5 - - - Vi,(0,2)5 Ei,? - yi(eni,l)T] (626)
giT = [0,V (m;-12) - Vi (02) Zi2 — yi(em,l)T} (6.27)

and v; (m, 2, €i,2, &i,(ns,2)5 Zi,2 denote the second entries of vj p,, €, & 5, » =i Tespectively.

Remark 6.2.3. The output signals \;, n;, v; k, &, of filters (6.10)-(6.13) are available
for feedback. They are also used to generate an estimate Z; of system states x; in
(6.14), with an estimation error given by (6.22). The error will converge to zero in
the absence of interactions and unmodeled dynamics. However, the estimate Z; is
not used in the controller design because it involves unknown parameter vector 6;
which is unavailable. But the state estimation error in (6.22) will be considered in
system analysis, as it may not converge to zero unconditionally due to its dependence
on interactions and unmodeled dynamics in our case. A block diagram is given in

Figure 6.3 to show the signal flow of the filters to the controller of the ith subsystem.
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ui _
' » Subsystem / .- Vi
ui yi
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Backstepping controller Parameter
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| _Stepri ]
Hi rf,ﬂi

Figure 6.3: Control block diagram.

6.2.3 Design of Decentralized Adaptive Controllers

As usual in backstepping approach [21], the following change of coordinates is made.

Zii = Yi (6.28)

Zi,q = /Ui,(mi,q) — Odl'7q_1, q = 2, 3, ey P4 (629)

To illustrate the controller design procedures, we now give a brief description on the

first step.

Step 1: From (6.23), (6.28) and (6.29), we have

Zi1 = bim,(Zi2+ai1)+ §ivns2) T 5?91‘ + €2
N

+(8 + i, —1) (Z Vij gié((j)) Tj1 + Z Miinj(S)yj) (6.30)

j=1 J

ScHooL oF EEE NANYANG TECHNOLOGICAL UNIVERSITY



6.2 Decentralized Adaptive Control of Linear Systems 165

The virtual control law o ; is designed as

a1 = Pl (6.31)

@i = —cazip — linzig — &ini2) — Sréi (6.32)

) K3

where ¢;1,1;; are positive constants, p; is an estimate of p; = 1/b;,,,, and 6; is an

estimate of 6;. Note that

bim, i1 = bim,Diti1
= Qi1 — bim,Ditvin (6.33)
. . R
0; 0i + bim,zia = 0;0; 4+ bim,zi2~+ bim zi2

= SZT@NZ + ('Ui,(mi,2) - ai,l)(e(ni+mi+l),1)T§i

~

+bim, %2

~

= (@T - ﬁio_éi,lenieriJrl,l)Téi + i, Zi2 (6.34)

~

where bi,mi is an estimate of bi,m“ bi,mi = bi,mi — bz’,m“ ]51 =Pi — ]32 and 01 = 01 — 01

Then we have

Zin = —cuzig — lnzi1 — bim,pici1 + Bzmzzz2 + €0+ (6 — ﬁiai,leni+mi+1,l)T9~i
N H;:(s) N
+(S + @in;—1) Vij— =i + i Aii (8)y; (6.35)
(z G+ Sl
We now define a function Vj; as
1 1 1~ = |bim] -
Vi = zzi+—€ Pe+-0/T7'0; + b P (6.36)
2" lin 2 27;
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where T; is a positive definite design matrix and ; is a positive design parameter.

Then
. A 1, i .
Vii = —cinziy — 5(2’11) + bim, 21252 — |bism, pi?[’%‘sgn(bi,mi)ai,lzi,l + Di
~ o A lz 1
"‘H?F;l[ri(&i — Dili1Cnytmi+1,1) %0 — 0i] — ?1(2’1,1)2 + €221 — l—HﬁzH2
il

H;ji(s 2
—l—Z, 1(3 + A mn;—1 (Z Vij G ((S)) Tj1 + Z ,uz] i )Z] 1) - _(ai - kz)T
7j=1

j=1 l’Ll
x Pie; (Z vij :c] L+ Z 110 (5) 2, 1) (6.37)
7j=1

To handle the unknown indefinite 3;, f;-terms in (6.37), we choose the update law

of p and a tuning function 7;; as

Zéi = _%/‘Sgn(bi,mi)di,lzi,l (6.38)
Tin = (0 = Pi®i1Cn,tmit1,1)%i1 (6.39)
It follows that
: li X
Vi < _Ci,l(Zi,1)2 - —1(21 1)? |12+ bZ mi %1%+ 9 r; [FiTM — 0]

27 2[

H;(s
+2z; 1(S+aznz—1 ZVU ( )IJI+ZMz] z] )Z_jl
G(s)
2 (s)
7 —(a; — k)" Pe; <Z Vij ™~ 7oy G (s) x]1+2uw ij(5)z;, 1) (6.40)
7j=1

i1

After going through design steps ¢ for ¢ = 2,..., p; as in [21], we have the ith local

controller

u; = ai,pi_vi,(mi,pi-l-l) (641)
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where «;; is designed in (6.31) and

~ 0 i 2 = 0 ) 0 7
Qio = —bimzi1— |Ci2+ i it Zio + Bia + Oilﬁrl- aﬁlrmz
| e Oy, 275, e
(6.42)
o _ I I g-1) B. Qi (g—1) 2
Qig =  TZi(g-1) Cig + lig By iq T Dig+ op;
davig-1) ( —~ o, <k—1)) Ocvi,(g-1)
~ iTi,q — Zik — i 7 517 q =9, y Pi
0 T PIE Ay
1 k-:2 1
(6.43)
_ 0o (g—1) o (g1
By = #(51 (ni,2) T 67 0;) + %(Awm + €niniYi) + KigUi i)

804Z 4
+ Z ql k )\zl—l—)\i,(jJrl))) q:27"'7piaZ:17"'aN

(6.44)

where ¢;,, l;, are positive constants. With 7,7 in (6.39) , other tuning functions 7; ,

for g =2,..., p; are given as
Tiq = Ti(¢—1) — —5% 0i%iq (6.45)
Then parameter update law 6, is designed to be
02' = FiTi,pi (646)

Clearly, the designed controller for the ith subsystem only uses the local signals, as

shown in its block diagram Figure 6.3.
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6.2.4 Stability Analysis

In this section, the stability of the overall closed-loop system consisting of the in-
terconnected system and decentralized adaptive controllers will be established.
We define 2;(t) = [2i1, 22, - - -, 2ip;] - The ith subsystem (6.3) and (6.4) subject

to local controller (6.41) is characterized by

Zi = Auzi+Weeia+ ng;éz — b mlo_éi 125@'6;),,
N
j=
where
—cip — la l;zm 0
7 Oay 1 2
—b; m; —Cig — lio By I+ 0023
2
_ OJa;
Azi — 0 -1 - 0i,(2,3) —Cij3 — lig (le)
L 0 _O-z>(27pz) _Ji:(&f)z‘)
0
0-7;7(27pi)
0'1'7(37/)1.) (648)
, 2
—Cip; — liPi (%)
Ou; o (p—1) |
w, = |1, —Z% koD (6.49)
QY Yy
W = Wb = pidvinep,1ntmei11” (6.50)
where the terms oy, are due to the terms %F (Tig — Ti(q-1)) In the z,
equation.
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With respect to (6.47), we consider a function V), defined as:
S 1 - i,
V,, = Y. (—z? + —¢ Pm) ~OTTG, 4 2 (6.51)

q=1 2 v liq 2’71

From (6.22), (6.23) and the designed controller (6.41)-(6.46), it can be shown that

the derivative of V,, satisfies

Pi |bl mz

V;)i = Zzi,qziq QTF 19 —

i ‘—Z—Hez||2—2z
g=1 liq lig
N H
X (Z Vij GJJ ;))le +Z/~Lz] z] )

i

ll 8041( 1 2 Pi 1 Pi " _
< Dt (—aq PRI R DR
i p = i
l Y Hy(s)
il
—32121 + 23,18 + Qipi—1) (]21 Yii G (9) () Tja+ Zﬁ‘zy ij(8)7;, 1)
80& 1 8
iq 1, q ) z(q 1)
_Zl (Ft) gy
(s)
ZVUG (s) $31+Z#zy ij(8)zj1
7=1
2l H;;(s)
_Z [% H2—|—CI>T5z <ZV”G 5) $J1+Zﬂu ij )zﬂ)]
q=1 7j=1 j=1
Pi Pi 1 Pi 1
< _Zciqziq‘i‘zr(s‘i‘ai,nifl)ZLi_Z4l lei]?
q=1 q=1 q q=1 q
Pi
+3 20|02l Ly
q=1
where
T 2 T
(I)z = _(az_ki) .PZ
lig
N 2 N 2
Hi' S
Li = (ZVZ']' Gj(( >>£Cj71> —+ (Zuiinj(s)sz)
j=1 i\’ 3=1

a; — k; TPeZ

dai (4-1)

i,2

(6.52)

(6.53)

(6.54)
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To deal with the dynamic interaction or unmodeled dynamics, we show that their
effects can be bounded by static functions of system states, as given in Lemma
6.2.1 later. Let h;; and g;; be the state vectors of systems with transfer functions

Hij(s)Gj_l(s) and A;;(s), respectively. They are given by

hi,j = Bhi,jhi,j + bhi,jxj,la Hij (S)G;l(S)iL’jJ = (1, O, Ce 70)hi,j (655)

Gij = Agij¥i;+bgivi, ANij(s)y; = (1,0,...,0)g:; (6.56)

where A, ; and By, ; are Hurwitz because A;j(s), H;;(s) and Bj_l(s) are stable from

Assumptions 6.2.1 and 6.2.2. It is obvious that

1A (s)yill* < IIxI? (6.57)
N 2
D Hy()G )z < kiollx]? (6.58)
j=1
where X = [X,{’ s 7X7]\17]T and Xi = [ 'LTa zTa ﬁ;Tv zTa hz lT i) hi,NT7gi,1T7 s 7g7j,NT}T-
We also have
N 2
(5 + @im—1) Y Hij(s)G5 " (s)2.
j=1
N
= 1D sHij(s)G; ()21 + tin, 2 Z Hij(5)G5 (s)aja)?
j=1 7j=1
N 2
_ 2(1, 0., 0)hj + Qi Z Hii(s)Gy ! (s)z54
7j=1
N N 2
= Z Bhl]hlj +bhz]$]1 +a2n1—1 ZH xj,l
j= J=l1
N
< ki Y [l + kaollx|? (6.59)
7j=1
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2

N
(54 ain1) > Aii()y;
=1
N N 2
= D (1,0, 0)[Agi s gi + byi ) + im1 Y Aii(s)y
j=1 j=1
< s |lxI (6.60)

where kjo, ki1, kio and k;3 are some positive constants. It is clear from (6.4) and

(6.28) that
(s)
Ti1 = %1 — Zylj G S ZM@] 1] (661)
Thus
N 2
5+azn171 ZH ‘/EJl
7=1
< , 2 2 ‘ 2
< {k‘m +2 (1 Dnax {vig}+ ggf}gN{uw}) k‘m} I (6.62)

where k;y = max{kis + 2k;1, 2k;1, 2k kio} are constants and independent of y;; and
Vij.

Then we can get the following lemma.

Lemma 6.2.1. The effects of the interactions and unmodeled dynamics are bounded

as follows
N 2
> AG(s)za| < X (6.63)
j=1
N 2
> Hi()G ()zga| < kaollx|? (6.64)
j=1
N 2
(54 @im-1) Y Nij()zia|| < sl (6.65)
j=1
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N 2

(5 + ain—1) Y Hij(s)G5 " (s)x;

J=1

< » 2
= |:kz4 + 2 (1<Ina‘XN{sz}

<6,5<

2 , 2
s 0)) b NP (6:60)
With these preliminaries established, we can obtain our first main result stated in

the following theorem.

Theorem 6.2.1. Consider the closed-loop adaptive system consisting of the plant
(6.1) under Assumptions 6.2.1 and 6.2.2, the controller (6.41), the estimator (6.38),
(6.46), and the filters (6.10)-(6.13). There ezists a constant p* such that for all
vij < p*oand pi; < ptii g = 1,2,..., N, all the signals in the system are globally

uniformly bounded and lim,_,, y;(t) = 0.

Proof: To show the stability of the overall system, the state variables of the filters
in (6.11) and state vector (; associated with the zero dynamics of ith subsystems
should be considered. Under a similar transformation as in [28], these variables can

be shown to satisfy

G = A G+bimia (6.67)
= Ai 0T + €nyniZin (6.68)
noo= Aioni, i =mni—n; (6.69)

where the eigenvalues of the m; x m; matrix A;; are the zeros of the Hurwitz
polynomial N;(s),b; € R™.
A Lyapunov function for the ith local system is defined as
1 1 al al
Vi = Vit mﬁ? Py + ECZ-T PG+ Y lnighi Puishig + Y lgijgii" Pyijbi

J=1 J=1

(6.70)
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where [, l¢i, lpij, lgij are positive constants, and P;p,, P ; and Py ; satisfy

Py Aip, + Ay Py, = —Im, (6.71)

T
PrijBhij + BhijPrig = —In,

9

(6.72)

sz JAgw + A;g gi,J _]91'1' (6~73)

From equations (6.4), (6.52)-(6.56), (6.67)-(6.69) and (6.71)-(6.73), we get

Vi = V- ||m||2+

2
] Pnz €n;mi®il — _||Cz||2+ CTszbszl_ZlhuHhuH
771

7=1

N N N
42 nijhig Puigbrigrin — > leiillgigl® 42 leizgi;" Poijbeiizia

Jj=1

IN

j=1 j=1
pi

1 & 1 1
—scnz = Z Cig(2iq)? = Z H ill? = 5= 17:l* = 5= llG1?
> 4 o, 2o

_Z lhw”hw”z Z glj||9u||2+z (5 + @in,1)"Ls

+22H<I> L= gl -

+ Z tii A (s

(z

qllq

N
2 i (S v gt

'L

iy
)ZjJ) - Z { 2] 11 + 2nsshi ;" Pai jba g

7=1

Hy 5))5531‘1'ZN@J ij )Zﬂ)]

=z

1

N
1
—gcﬂ(zm)Q -3 §lgij|!9i,j\|2 +2 lgigi;" Poijbgiizin

Jj=1 Jj=1

N
1 Lnij
_gcil(zi,1)2 - Z %||hz]||2 +2 Z lhz’jhi,jTPhi,jbhi,ij,l

_2l

j:1
2

Pnz e’nZ nZZz 1
m

1712 +

P +5 CTBb bizia (6.74)
T 4l
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Taking
]‘6||‘P746n17nz 2 32||Pl,bzl_)l||2
Ci1 Ci1
l 19 < J ) l 1] S J 676
= 32N Puigbnig [P T 16N Py by 12 (6:76)
we then obtain
Vi < =BilxllP+ ZQH‘P [ lig + 71— HszbH2+SzlhmHththH]
7j=1
1
F3 gt S e P et
N (5) 2 N 2
< —Bilxl® - 611211—1—# kie Z (s) ZAij(S)Zjl
=1 j=1
N H. (s) 2 N 2
(s
+kis | ||(s + ain,—1) Z G](s) zi1l| + (s+am—1)ZAij(S)Z31
j=1 ~J j=1
N
— 1%221_ZLC.1(2A1)2 (6.77)
4 1, ]:1 4N J 7
where
5 = ci pz Y =AY (6.78)
LT g e G — 4l 20, 2 1<5en | 27 279 ‘
1
kis = l_ (6.79)
N
kig = Z2||(D || lzq+ ”szb ||2+8Zlhw||Phwbhw” (6.80)
j=1
po= 1gl;cw§N{uman} (6.81)

Now we define a Lyapunov function for the overall decentralized adaptive control

system as
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V=>V (6.82)

N
Vo< - Z 18— (1 + kio)kis + (Kis + kia)kis) p* — kiakisp®] || x|)?

1 N
- ZCqu,l (6.83)

where

. minlgigN Bi

~ (6.84)

By taking p* as

(1 + ko) kig + (kis + ki4)ki5)2 + dkiskis B 4 (1 + kio)kis + (kis + Kia)kis)
2kiakis

(6.85)

we have V < —;11 ?;1 cilzzl. This concludes the proof of Theorem 6.2.1 that all
the signals in the system are globally uniformly bounded. By applying the LaSalle-
Yoshizawa theorem, it further follows that lim; . y;(t) = 0 for arbitrary initial

We now derive bounds for system output y;(¢) on both £, and L., norms. Firstly,
the following definitions are made.

Pi

(6.86)

ScHooL oF EEE NANYANG TECHNOLOGICAL UNIVERSITY



6.2 Decentralized Adaptive Control of Linear Systems 176

As shown in (6.83), the derivative of V' is given by

cﬂzil (6.87)

e

N
i=1

Since V' is non-increasing, we have

~—

B2 = / T )Pdt < £ (V(0) - V(o)) < = (V(0))  (6.88)

Ci1 Ci1

%l < /2V(0) (6.89)

From (6.69), we can set 7;(0) = 0 by selecting 1/ (0) = 7;(0). Consider the zero

initial values

7(0) = 0, ¢(0)=0, h;;(0) =0, g;;(0)=0 (6.90)

Note that the initial values z;,(0) depends on cﬂ,'y;, [;. We can set z,4(0),q =

2,..., p; to zero by suitably initializing our designed filters (6.10)-(6.13) as follows:

Vi, (mi,q) (O> = Qy(g-1) (yl(o) él(0)7ﬁ1<0)7 nl(())? )‘1<0)7 Vi, (my;,q—1) (O>> y 4 = 17 <o Pi

By Setting ’fh(O) = 07 CZ(()) = 07 hl,](o) = 07 gl,j<0) =0 and Zi,q<0) = 07 q=2,...,Pi,

we have

Bi(0)*  (6.92)

l\DIr—t

N ‘b
= D 5 @i0)* + & le(0)7, + 16:0) |7 + =5

=1 7
where ;]2 = &7(0)Pe;(0), [|6;(0 )H2_1 — 07 (0)T';719;(0). Thus the bounds for y;(t)
is established and formally stated in the following theorem.

Theorem 6.2.2. Consider the initial values z; 4,(0) = 0,q = 2,...,p;, 7:(0) = 0,
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Gi(0) =0, h;;(0) =0 and g; j(0) = 0, the Ly and L norms of output y;(t) are given

by

N

N | —

1/2
pi(0) |2]

(6.93)

N
2 - 1b; m.
(W) < (0))% + d}||e; (0)]|5, + 110:(0) |2 + 2
i (t) |2 N [;:1 (%:(0)) l€:(O)p, + [16:(O) 17 %

N | —

N 1/2
it < ﬂ[z <yi<o>>2+d?||ei<o>||%i+||éi<o>|r2;1+’b"ji'won?]

(6.94)

Remark 6.2.4. Regarding the above bound, the following conclusions can be drawn
by noting that 8;(0) ,5;(0), €(0) and 1;(0) are independent of ¢;1, I';, ;.

e The £, norm of output y;(t) given in (6.93) depends on the initial estimation errors
0:(0), :(0) and €;(0). The closer the initial estimates to the true values, the better
the transient tracking error performance. This bound can also be systematically
reduced down to a lower bound by increasing T';,v; and c;;.

e The L., norm of output y;(t) given in (6.94) depends on the initial estimation

errors 6;(0), p;(0) and €;(0) and design parameters I';, ;.

6.3 Decentralized Control of Nonlinear Systems

In this section, we extend our results to a class of nonlinear interconnected systems.

6.3.1 Modeling of Nonlinear Interconnected Systems

On the basis of state space realization (6.3)-(6.4) for the ith linear subsystem and
the modeling of interaction and unmodeled dynamics in (6.55) and (6.56), the class

of nonlinear systems is described as
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0
bi
N N
Yi = T + Z V@'G{h@j(l’j@) + Z ,uijengm(yj), for i = ]_, ce ,N (696)
j=1 Jj=1

where A;, a; and b; are defined in (6.5),

901,1(%‘) e Ona (W)
Di(y:) = f : : (6.97)

Qplmi(yi) Qpnunz‘(yi)

x; € ™, u; € N and y; € N are states, inputs and outputs respectively. ¢;; € R
for j =1,...,n; and o0;(y;) € R are known smooth nonlinear functions. v;; and p;;
are positive scalars specifying the magnitudes of dynamic interactions (i # j) and
unmodeled dynamics (i = j). h;; and g; ; denote the state vectors of the dynamic

systems associated with the dynamic interactions or unmodeled dynamics, i.e.

hij = fuij(hig, i) (6.98)

Gij = J4ii(9i5,Y5) (6.99)

Remark 6.3.1. From Remark 6.2.2, we can see that the effects of the dynamic inter-
actions and unmodeled dynamics considered here are also depending on subsystem

inputs and outputs.

For such a class of systems, we need the following assumptions.

Assumption 6.3.1. For each subsystem, a; ;,7 =0,...,n;—1 and b;,,k =0, ..., m;
are unknown constants. The polynomial B;($) = b;, 8™ +- - -+b; 15+0b; o is Hurwitz.

The order n;, the sign of b;,, and the relative degree p;(= n; — m;) are known.
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Assumption 6.3.2. Functions fn; ;(hij,x;1) and fgi;(9ij,y;) are continuously dif-
ferentiable nonlinear functions and globally Lipschitz in x;1 and y; respectively. Also

the following inequalities hold:

[ fhig (hagr 250112 < onisllhi g + Gnijas, (6.100)
1 f5i.5(Gii u)IP < 0giillgi|” + 0gisy7 (6.101)
where Opij, Onij, 0gij and 045 are unknown positive constants.

Assumption 6.3.3. There exist two smooth positive definite radially unbounded

functions Vi, ; and Vg, ; such that the following inequations are satisfied:

Wi,
"L i i(hig 0) < —dajallhi gl (6.102)
Oy,
Vi,
|| S dnijellhi 6.103
” Oh; < dhija|lhi ( )
Vi,
Ho - f0i3(95:0) < —dyigallgisl’ (6.104)
9i.j
Wiy
=< dgijell9ig 6.105
H 9g; ; < dgijallgill ( )

where dpij, dpijo, dgijn and dgjo are positive constants.

6.3.2 Design of local filters

Similar to the design for linear systems in Section 6.2, a local filter using only local

input and output is firstly designed as follows:
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N = Ao + ey, 0 (i) ug (6.106)
2 o= A=+ Oi(y) (6.107)
vig = (Aig)"Ni,  k=0,....m; (6.108)
Eo = Aiobio+ ki (6.109)

where A, g, e;, and k; are defined in the same way as filters (6.10)-(6.13). With these

designed filters our state estimate is given by

T = Lo+ Q0 (6.110)

where
oF = (bl (6.111)
Q;‘F = [Vimir- -5 Vi1, Vio, =i (6.112)

The state estimation ¢; = x; — ; satisfies
N N
& = Ajoei— Kk (Z vigei hij(x50) + Z Mijengi,j(yj)) (6.113)
j=1 j=1
Thus, system (6.95) can be expressed in the following form

yi - bi,mivi,(miﬂ) + &,(072) + ngel T €2
N N
—+ Z Vijeffhm (h@j, $j71) + Z Mijeffg@j (giJ’ y]) (6114)
j=1 J=1
Vimisg) = Vi(mig+1) — KigVi,(ma1) (6.115)

@i’(mi’Pi) = Ui, (ms,pi+1) — kivpivi:(mi,l) + Ui(yi)ui (6'116)

where

ScHooL oF EEE NANYANG TECHNOLOGICAL UNIVERSITY



6.3 Decentralized Control of Nonlinear Systems 181

5Z-T = [Vimi2)- -5 Vi02), Zi2 + 621@] (6.117)

5, = 10, Vi (mi—1,2)5 - - - Vi,(0,2)s Zi2 + 651,1@@-] (6.118)

and vj (m, 2), €2, & (0,2); Zi,2 denote the second entries of v; ,,, €, &0, Z; respectively.

All states of the local filters in (6.106)-(6.109) are available for feedback.

Remark 6.3.2. Note that ¢; includes the vector of nonlinear functions e}, ®;, which

is from the dynamics ;1 = x5 + €} P;a; in (6.95).

6.3.3 Design of Decentralized Adaptive Controllers

Performing similar backstepping procedures to linear systems, we can obtain local
adaptive controllers summarized in (6.119)-(6.130) below.

Coordinate transformation:

Zig = Vi(miq) — WYig-1, 4 = 2,3,... ) Pi (6120)
Control Laws:
1
Ui = — \Xip; — Vi (my,pi+l 6.121
i (y;) ( P (mi,pi+ )) ( )
with
a1 = Pl (6.122)
a1 = —caZin — linzin — & 0,2) — SZT‘QAZ (6.123)
. i1\ _ Oa;p . Ooyy
Qg = —bimzi1— |c2tl; ( ) Zip+ Bip+ ——pi + ——I'i7;
? e 2 2 Dy ? ? Op; 00; ?

(6.124)
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@ozl- _ 2
Ciq -+ lz‘q (%)

s (o L Doy s (o
+MFZ‘T@(1 B (Z Zin ég 1)> Fl Oéz’(q 1)5i7 q= 3a"'7pi

a@i,(qfl) Y

Zig T Bi,q + a—ppz

Qiq = “Zi(¢-1) —

00; P ; y;

(6.125)

5 Oavi,(g-1) iy L 9% 1) 9 (g-1)

4 ayz (6 ,(0,2) + i )+ 0EZ ( ,0 + )+ 8&70 ( 705 0
m;+q—1 aa( 1)
+kzyz) + ki,qvi,(mi,l) + Z #(_ki,j)\i,l + )\i,(j+1)) (6126)
j=1 g
Ti1 = (6 — Pili1€(nitmit1),1)%i1 (6.127)
aOél' —
Tog = Ti(q-1) — %&zm, g=2... .pyi=1,..N (6.128)
Parameter Update Laws:

pi = —7;580(bim, )12 (6.129)
0, = Titip, (6.130)

where éi, Pi, I'i and c¢4q, liq,%'-, g=1,...,p;,i=1,..., N are defined in Section 6.2.3.

6.3.4 Stability Analysis

Similarly to Section 6.2.4, the purpose of this section is to prove that there exists
a positive number p* such that the closed-loop system with the controller given
by (6.121) is asymptotically stable for all v;;, w;; € [0,p%), i, = 1,...,N. To
this end, the ith subsystem (6.95) and (6.96) subject to local controller (6.121) is

characterized by
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N
2 = Az +We€io+ WQTZ@ — b m, Qi 1Di€p 1 + W Z Vije{fhi,j<hi,j7 Tj1)
j=1
N
+Zuijeffgi,j<gi,j,yj>] (6.131)
=1
where z;(t) = [zi1, 22, -, 2ip) s Asis Wei, Wp; are defined as the same form in
(6.48)-(6.50).
To study (6.131), we consider a function V,, defined as:
V o " 1 2 1 TP QTF 10 |bimz| ~2 132
pi Z §Zi,q + EQ i€ |+ + 2, D; (6.132)

q=1

Following similar procedures to (6.52), using (6.113), (6.114) and the designed con-

troller (6.121)-(6.130), it can be shown that the derivative of V,, satisfies

Pi Pi

’ bzm ~ A
V, = Zzzqzzq—QTF 10 —|7{szpl Z_||€Z||2_2Zl k! Pie;

q=1 i ql’q

N N
X (Z Vije?h@j (ZL’jJ) + Z Nijefgi,j (yj>>

Cig?2, Z ||ez||2+z—||/<;Tp|| LU+ZZ Ly; (6.133)

q=1

IN

where we used the Young’s Inequality as given in Appendix B and

N 2 N 2

L17i = (Zyijefhi,j) + (ZMUG{‘Q@]’) (6134)
j=1 Jj=1
N 2 N 2

Lai = (Z Vz'jeffhi,j(hz’mwj,l)) + (Z Mz‘jelegz',j(gimyj)) (6.135)
=1 j=1

Similar to Lemma 6.2.1, we have the following useful lemma.

Lemma 6.3.1. The effects of the interactions and unmodeled dynamics are bounded
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as follows

boo< (o 02} + s G2)) P (6130

1<,4,7<N

N 2
(Z 1 faii (905, v ) < kallx|? (6.137)
7=1

A

N 2
T 2 2 2
<Z1 € fhi,j(hi,j,xj,1)> < (k?m + ki3(1§r’ri13}§<N{Vij} + 1<¥}’?§N{Mij}>> x|l
‘7:

(6.138)

where x = [xT, ... xNT and xi = [2F, 5 hints oo hinT gint s ginT)Y, ki,

709 -1

kio, ki3 are positive constants.

Proof: By following similar analysis to Lemma 6.2.1, using Assumption 6.3.2 and

(6.96), the result can be proved. O

Based on Lemma 6.3.1, it follows from (6.133) that

Pi Pi pi
' 1 16
Voo < =2 cula) = 3 qllell + 3 IR B I
q=1 g=1 Y g=1 “
Pi 1
+ > 7 (Uhin + Kio)ps® o+ 2k [ x| (6.139)
q=1 "
where
po= max {fu;,vij} (6.140)

As frij is globally Lipschitz in z;; according to Assumption 6.3.2, the derivative of
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Vii,j with respect to fn;;(hij, x;1) in Assumption 6.3.3 satisfies

ahmj fhl](hlwx] 1) = ahi’j fhlj(hljv 0) 8hi,; [fhi’j(hiwxj,l) fhl]( i, )]
< —dnigallhil* + dnij2l| i Do |1 (6.141)

where Ljp;; is a positive constant. Similarly, there exists a positive constant Lg;;

such that

oV,
agg jfmJ(gm’yJ) < —dgijallgii|I* + dgij2llgii || Lgiilys] (6.142)

2%

We are now at the position to establish the following theorem on the stability of

nonlinear systems.

Theorem 6.3.1. Consider the closed-loop adaptive system consisting of the plant
(6.95) under Assumptions 6.3.1 to 6.5.3, the controller (6.121), the estimator (6.129),
(6.130) and the filters (6.106)- (6.109). There exists a constant u* such that for all
vij < p*oand pi; < ptii g = 1,2,..., N, all the signals in the system are globally

uniformly bounded and lim;_, y;(t) = 0.

Proof: We define a Lyapunov function for the ith local system

N N
Vi= VoD lnigViig + Y loig Vi (6.143)
=1 =1

where [;; and ly;; are positive constants. Computing the time derivative of V; and

using (6.96), (6.139)-(6.142), we have

N N N
Vio= Vo— Z lhijdhij71||hi7j||2 - Z lgijdgij,1||gi,j||2 + Z Uhijdhij2l| i gl Lhijlejq |
J=1 Jj=1 j=1
N
+ 3 lyijdyijallgi sl Lyislys) (6.144)

J=1
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1 Pi
< —seuzhi = Y g, Z Hezuuz !kTP|!2u2!\x||2
q=2

Pi N
1 1
+ Z T ((kir + Kio)p® + 2kiap®) || x[1> — Z(§lhijdhij,1||hi,j||2
g=1 "1 j=1
N
1 1 1
+§lgijdgij,1”9i,j\|2) -3 Zlhijdhia‘,lﬂhi,jHQ - Zcilzz?,l
j=1
N N 1
> lnigdniga|lhig | Lniglzial =Y L—Lzhijdm1||hi,j||2 + Dnggdnag ol T |
J=1 j=1
N N N 1
X Lnij | > viget hij+ > pzel 9i ] Cllzz =5 5 laiigis1 lgi.s11*
j=1 j=1 j=1
N
+ 3 oigdaisallgi | Lyigl 21 (6.145)
j=1
Taking
dhijici dgijicit
lhij < %7 lgzj > % (6146)
4Ndhi] 2Lh2] 2ngz] 2Lgu
and using Young’s inequality, we have
Vi < —Bilxl?- Czl(Zz )2+ ((kia(ki + ki) + kis) i + 2kiskiap®) | x|1?
—( cin(zin)? ;Mcﬂ Zj1) ) (6.147)

where

q=1

Pi
62- = min {Zl, Ci2y e v 7Cip¢7 Z 4l 1£I}I<HN {§lhijdhij,17 §lgijdgij,1} }(6148)
1q
1
l

(6.149)

16 4Z’L 7 7
kis = ||kl Pi|? Z ZM (6.150)

1 7,q dhzy 1
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Now we consider the Lyapunov function for the overall decentralized adaptive control

system defined as

V=>"V (6.151)

From (6.147) and Lemma 6.3.1, the derivative of V' is given by

N N
) 1
V< - Z [ﬁ - (k?i4(k?i1 + kiz) + k?z‘5),u2 - 2ki3ki4/~54] ||X||2 T Z Ci1221
i=1 i=1
(6.152)
where
min;<;<n 5;
_——_— ‘1
§ = T (6.153)
By taking p* as
\/(ki4(k5i1 + ki) + kis)? + SkiskiaB + Kia(ki 4 kig) + ki
p* = min (6.154)
1<i<N Akizkiy

we have V < —: Zf\il ci1(zi1)? for all v;; < p* and p;; < p*. This implies that
zi,ﬁi,éi,@- are bounded. Because of the boundedness of y;, variables v;, & and
=; are bounded as A;( is Hurewitz. Following similar analysis to the last section,
states (; associated with the zero dynamics of the ith subsystem are bounded. This
concludes the proof of Theorem 6.3.1 that all the signals in the system are globally
uniformly bounded. By applying the LaSalle-Yoshizawa theorem, it further follows

that lim; . y;(t) = 0 for arbitrary initial x;(0). O

Remark 6.3.3. The transient performance for system output y;(¢) in terms of both

L5 and L., norms can also be obtained as in Theorem 6.2.2.
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6.4 Illustrative Examples

6.4.1 Linear Systems

To verify our results by simulation, we consider interconnected system with two
subsystems as described in (6.1) (i.e. N=2). The transfer function of each local

subsystem is G;(s) 1 =1,2. In the simulation, a; = —1 and ay = 2 which

_ 1
T s(stag)?
are considered to be unknown in controller design and hence require identification.

The dynamic interactions are H;; = ﬁ, JAVFIES @ fori = 1,2 and j = 1,2,
respectively. As the high-frequency gain b; ,,, is known, the additional parameter D
in equation (6.38) is no longer to be estimated. The initials of subsystem outputs

are set as y1(0) = 1,y2(0) = 0.4.

6.4.2 Verification of Theorem 6.2.1

The design parameters are chosen as k; = [4, 4]T,z' = 1,2, c11 = 1o = Co1 = C99 =
1,111 = l1s = 191 = lyo = 0.001. To see the effects of the proposed decentralized
adaptive controllers, we also consider the case that the parameters of all local con-
trollers are fixed without adaptation, i.e. I'y = I'y = 0. If constants v;; = p;; = 0
for i = 1,2 and j = 1,2, the two subsystems are totally decoupled. In this case,
the two fixed-parameter local controllers can stabilize the two subsystems as shown
from the responses given in Figures 6.4-6.7. However, when v;; = p;; = 0.7 for
1 =1,2 and 57 = 1,2, the system outputs y;, y, illustrated in Figures 6.8-6.9 show
that these two local controllers can no longer stabilize the interconnected system,

due to the presence of interactions and unmodeled dynamics.
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0 10 20 30 40
t(sec)

Figure 6.4: System output y; with
fixed controllers (decoupled case with

Vij = g = 0)

15

0 10 20 30 40
t(sec)

Figure 6.6: Control u; with fixed con-
trollers (decoupled case with v;; =

piij = 0)

0.5

0 10 20 30 40
t(sec)

Figure 6.5: System output y, with
fixed controllers (decoupled case with

vij = pij = 0)

3

-4

0 10 20 30 40
t(sec)

Figure 6.7: Control us with fixed con-
trollers (decoupled case with v;; =

pij =0)
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10 20 30 40
t(sec)

Figure 6.8: System output y; with
fixed controllers (coupled case with
vij = pij = 0.7)
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2001

100}

-100

-2001

-300 : : :
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Figure 6.10: Control u; with fixed
controllers (coupled case with v;; =

pij = 0.7)

15 ‘ ‘ ‘
0 10 20 30 40
t(sec)

Figure 6.9: System output y, with
fixed controllers (coupled case with

vij = ptij = 0.7)

150

100}

50

-100F

-150
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Figure 6.11: Control uy with fixed
controllers (coupled case with v;; =

pij = 0.7)

ScHooL oF EEE

NANYANG TECHNOLOGICAL UNIVERSITY



6.4 Illustrative Examples

191

With the presented adaptation mechanism on by choosing I'y = I'y = 0.1, the

results are given in Figures 6.12-6.15. Clearly, the system is now stabilized and the

outputs of both subsystems converge to zero. This verifies that the proposed scheme

is effective in handling interactions and unmodeled dynamics as stated in Theorem

6.2.1.

15

0 16 Zb éO 40
t(sec)
Figure 6.12: System output y; with

adaptive controllers (coupled case

15

10}

-10 ‘ ‘ ‘
0 10 20 30 40
t(sec)

Figure 6.14: Control u; with adaptive
controllers (coupled case with v;; =

pij = 0.7)

lb éO 3:0 40
t(sec)
Figure 6.13: System output ys with

adaptive controllers (coupled case

0 10 20 30 40
t(sec)

Figure 6.15: Control us with adaptive
controllers (coupled case with v;; =

pij = 0.7)
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6.4.3 Verification of Theorem 6.2.2

We still consider the interconnected system with parameters given above. The
initial values z;,(0) for i = 1,2 and ¢ = 2 are set to 0 by properly initializing filters
according to equation (6.91). In our case, v;(02)(0) = ay 0,2)(0) for i = 1,2. The
design parameters [;; are fixed as 0.001 and cj3 = 92 = 1, which are the same as

the above. We now consider the following two cases:

(1) Effects of Parameters c;;
The effects of changing design parameters ¢;; stated in Theorem 6.2.2 are now
verified by choosing c¢;; = co; = 1 and 3 respectively. The corresponding ini-
tials v; (0,2)(0) are selected as vy (02)(0) = —1.001, v3(92)(0) = —0.4004, and
V1,00,2)(0) = —3.001, vy,(0,2)(0) = —1.2004 for the two sets of choices of ¢;;. In
the verification, we fix I'y = I'y = 0.1. The outputs of the two subsystems v, 4o
are compared in Figures 6.16 and 6.17. Obviously, the £5 norms of the outputs

decrease as ¢;; for i = 1, 2 increase.

15

-Gy =l ——¢ =1
0‘1:3 Cil_3
i=1,2 i=1,2
2‘0 3‘0 40 3b 40
t(sec)
Figure 6.16: Comparison of system Figure 6.17: Comparison of system
output y; with different c¢;; output ys with different c¢;;
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(2) Effects of Parameters [
We now fix ¢;; at 1 for all i = 1,2 and choose initials vy,(92)(0) = —1.001 and
2,(0,2)(0) = —0.4004. For comparison, I'; are set as 0.1 and 1, respectively for
t = 1,2. The subsystem outputs y;, y» are compared in Figures 6.18 and 6.19.
Clearly, the transient tracking performances are found significantly improved by

increasing ;.

15 T T T 0.6
‘} — e I'|=0.1
—-—I’i=1
i=1,2
-2 : . . -0.4 : : :
0 10 20 30 40 0 10 20 30 40
t(sec) t(sec)
Figure 6.18: Comparison of system Figure 6.19: Comparison of system
output y; with different T'; output y, with different I';

6.4.4 Nonlinear Systems

To further verify the effectiveness of our proposed scheme applied to nonlinear in-
terconnected systems, we consider two nonlinear interconnected subsystems with
n; = 2, for i = 1,2 as described in (6.95)-(6.96), where ®; = [0, (y1)?]", Py =

[07 (y2)2 + yQ]T, (77,(3/@) =1.

his = g | e [T [ @159
~225 0 e sin(hi2)
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41 1—e 9,51 Yj
. 1+6_9i,j(1) [Iny;|+2
9ij = iy + + (6.156)
4 0 1—e9i,5(2) ‘
14e 9,53 Yj

In simulation, a; = —1,as = 2,by = 1,b, = 2, h;; and ¢, ; given in (6.155)-(6.156)
below are all considered to be unknown in controller design. All the initials are set
as 0 except that subsystem outputs y;(0) = 1, y2(0) = 0.4.

When v;; = p;5 = 0.01 for ¢ = 1,2 and j = 1,2, the design parameters are chosen
as k; = [4,4]7,1 = 1,2, ¢11 = c19 = o1 = Co9 = 05,111 = 19 = 1oy = lop = 0.001.
With the adaptation mechanism on by choosing vy = v =1; 'y =Ty =1 x L, the
system outputs y;,y2 and the control inputs wuy,us are illustrated in Figures 6.20-
6.23. These results verify that the system can be stabilized and the outputs of both
nonlinear subsystems converge to zero in the presence of interactions and unmodeled

dynamics.

15

051

Y1
Y.

—-05}

0 5 10 15 20 25 30 0 5 10 15 20 25 30

t(sec) t(sec)
Figure 6.20: System output 1; with Figure 6.21: System output y, with
adaptive controllers (Nonlinear case) adaptive controllers (Nonlinear case)
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0 5 10 15 20 25 30 0 5 10 15 20 25 30

t(sec) t(sec)
Figure 6.22: Control u; with adaptive Figure 6.23: Control us with adaptive
controllers (Nonlinear case) controllers (Nonlinear case)

6.5 Conclusion

In this chapter, decentralized adaptive output feedback stabilization of intercon-
nected systems with dynamic interactions depending on both subsystem inputs and
outputs is considered. Especially, this chapter presents a solution to decentrally
stabilize systems with interactions directly depending on subsystem inputs for the
first time, when the backstepping technique is used. By using the standard back-
stepping technique, totally decentralized adaptive controllers are designed. In our
design, there is no a priori information on parameters of subsystems and thus they
can be allowed totally uncertain. It is established that the proposed decentralized
controllers can ensure the overall system globally asymptotically stable. Further-
more, the £, and L., norms of the system outputs are also shown to be bounded
by functions of design parameters. This implies that the transient system perfor-
mance can be adjusted by choosing suitable design parameters. Simulation results

illustrate the effectiveness of our proposed scheme.
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Chapter 7

Stability Analysis of Decentralized
Adaptive Backstepping Control

Systems with Actuator Failures

In this chapter, we analyze the stability of the class of linear interconnected systems
in (6.1) in the presence of outage type of actuator failures when our proposed decen-
tralized controllers in Section 6.2.3 are applied. It will be shown that global stability
of the closed-loop system can still be ensured and the outputs are also regulated to

zero when some subsystems break down due to the failures.

7.1 Introduction

Although a number of decentralized adaptive control schemes have been reported
in which some are based on backstepping approach, there are few discussions on

the stability of decentralized control systems with actuator failures. Actuator fail-
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ures may lead to undesirable performances or even instability of the systems, which
seem inevitable in practice especially in the control of a complex system. We expect
that a control scheme can still ensure the system to continue its operation in spite
of actuator failures. In [114], a result on fault tolerance of decentralized adaptive
backstepping control was reported based on [28]. However, dynamics depending on
subsystem inputs were not considered in [114].

In this chapter, we analyze the stability of interconnected systems with suffi-
ciently weak unmodeled dynamics and dynamic interactions directly depending on
subsystem inputs using the control scheme in the last chapter when some subsys-
tems break down. It will be shown that adaptive stabilization of closed-loop system
can still be achieved. A numerical simulation example is given to illustrate fault

tolerance of the proposed decentralized control system.

7.2 Problem Formulation

As G;(s) is assumed minimum phase for the ith subsystem in Assumption 6.2.1, we

can rewrite the model of the liner interconnected systems in (6.1) as follows.

y(t) = G)Hp)u(t) + Ap)y(t), (7.1)
where
) 0 .. 0
ow = | 0V 72
|0 0 Gn(p) |
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LwHnp)  veHuG) . awHw®) |
) - vo1Hoi(p) 14 vaHao(p) ... von Hon (p) (7:3)
vn1Hyi(p) vnetna(p) ... 1+ uvnnHyn(p) |
pidu(p)  pedaa(p) ... panAin(p) -
Alp) = p21l01(p)  p22loa(p) ... pianDon(p) (7.4)
i pniAni(p)  pn2Ana(p) .. pvvAny(p) |

It should be noted that u € RV are not only the control inputs of the system, but
also the outputs of the actuators. Comparing (7.1)-(7.4) with (6.1), y, p, vij, i

and with p replaced by s, the corresponding A;;(s), G;(s) have the same definitions

Hi;(s)

as in Section 6.2.1. Nevertheless, H;;(s) in (7.3) actually denotes en D)

in (6.1).
Assumption 6.2.1 and Assumption 6.2.2 are still required, while the latter one needs

to be modified accordingly since the definition of H;;(s) is changed.

Assumption 7.2.1. For each subsystem,

G(S) _ Bz(S) _ bi7mi8mi + -+ bi,ls + b@o (7 5)
’ AZ(S) s™i + (IimiflSni_l + -+ ;1S + a0 ’

where a;;,7 = 0,...,n; — 1 and by, k = 0,...,m; are unknown constants, B;(s)
is a Hurwitz polynomial. The order n;, the sign of b;,,, and the relative degree

pi(=n; —my;) are known;

Assumption 7.2.2. For all i,j = 1,...,N, H;;(s) and A;;(s) are stable, strictly

proper and have a unity high frequency gain.
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7.2.1 Model of Actuator Failures

The failure model considered in this chapter is a special outage case similarly as
in [114], wherein the outputs of some failed actuators become zero and the corre-

sponding subsystems break down.

Uk(t):(), tZtl, k’:l{?hk?g,...,k’m (76)

Eqn. (7.6) indicates that for ¢t > t;, the kth subsystem, for k = ki, ko, ... kp,
breaks down and the local feedback loop is cut off. Without loss of generality, we
assume that k1 < ke < -+ < kj,. Define a set K as K = {ky,...,ky}. Clearly,
K c{l,...,N}.

We then divide the whole system into two sub-interconnected systems. One is
composed of the m failed subsystems, while the other consists of the remaining
subsystems which are still in operation. For the former one, it is an MIMO system
with the outputs as yy,,...,yr, and the inputs as the interactions from the latter
sub-interconnected system. We can easily derive that the transfer function matrix

of this sub-interconnected system is

Sk =(I—A(s)!, SkxeR™™ (7.7)
where
Aklkl T Aklkm
A = , (7.8)
Akmkl T Akmkm

and Akik]. denotes the (k;, k;)th entry of A. A further assumption on Sk is made

as follows.
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Assumption 7.2.3. Sk is proper and the strengths of both interactions and un-

modeled dynamics are sufficiently weak to ensure that Sk is stable.

Remark 7.2.1. Assumption 7.2.3 implies the requirement that the failed subsystems
are stable themselves. For instance, when only the kth subsystem breaks down since
time T, it’s difficult to be stabilized via the interactions from other subsystems.

As sketched in Figure 7.1, Sk is composed of only one element with K = k and

i -Aw(S)
+ i
'-'-"W & -

Figure 7.1: Block diagram of kth subsystem when it breaks down

Si(s) = (1—prAgi(s)) ! is only related to the unmodeled dynamics from its output.
If pugy is small enough to satisfy Small Gain Theorem [94], i.e. ppp < m
where |G(s)]|o is defined as ||G($)||oo = sup,, ||G(jw)]||, the kth subsystem’s internal
stability is ensured. Since [|A(s)| is assumed to be stable and strictly proper,
|Akk(8)]|oo < My where My, is a positive constant. Thus, g, < M,;l is required.
Similarly, for the case that two or more subsystems break down due to the outage
failures, Sk in (7.7) is assured to be stable with v, and gy, bounded by a
positive constant. This chapter only discusses the effectiveness controllers proposed
in Chapter 6 in the presence of actuator failures. It’s worthy to investigate the

actuator compensation control method with Assumption 7.2.3 in future work.

7.2.2 Objective

Similar to (6.3)-(6.4), the ith subsystem in failure-free case has the following state

space realization.
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0
jfi = AZJ?z + a;T; 1 —+ U; (79)
bi
N N
vi = wia+ Y viH ()i + > i (p)ys, for i=1,...,N (7.10)
j=1 j=1

where A;, a; and b; are defined the same as in (6.5). With the last two terms in
(7.10) eliminated, the remaining state space form corresponds to the local transfer

function G;(s), i.e.,

0
bi

Yi = T, for 1=1,...,N (7.12)

As mentioned in Section 6.2.1, only the transfer function G;(s) is considered in
the design of a local controller for the ith subsystem. Since the detailed procedures
of controller design have been elaborated in Section 6.2.3, they are omitted here.

However, in stability analysis of the overall closed-loop system in failure-free
case, the effects of the dynamic interactions and unmodeled dynamics should be

considered, i.e.

N N
Z VinZ-j(p)l’j,l + ZM”AU(p>y], for i = 1, ey N (713)
i=1 j=1

The global asymptotical stability of the whole system and regulation of subsystem
outputs is failure-free case have already been established, as stated in the Theorem
6.2.1.

Our objective in this chapter is to analyze the effectiveness of the decentralized
adaptive control scheme proposed in Section 6.2.3 in the presence of the failures as

modeled in (7.6). It should be noted that in failure case, the effects of unmodeled
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dynamics and dynamic interactions on the remaining system in (7.13) is derived as

follows
N N
Z vijHijxj1 + Z i Ay,
j=1 j=1
JEK
N N N
= Z vijHijwjq + Z pigAijy; + Z Z frik DirSka (Vi Hijj o + i Aiy;)
Jj=1 j=1 j=1 kJleK
JEK JEK JEK
N
= Z (Vinij + Z ,uz‘lchinkSlelj> Zj1
j=1 kK
JEK
N
+ Z <,U/z'inj + Z Mikﬂlez‘kSkZAlj> y;, for i=1,...,N\K (7.14)
j=1 kleK
JEK

where Sy; is a (k,[)th entry denoting the transfer function from the input to the
Ith subsystem to the output of the kth subsystem in the sub-interconnected system

composed of m failed subsystems.

7.3 Stability Analysis

By noting the main difference between faulty and normal cases as given in (7.13)

and (7.14), (6.22) and (6.23) are changed to the following forms in failure case.

N
€ = Az‘,oéi + (ai - /fz) Z (Vinij + Z MileinkSlelj) Tj1

=1 kK
JE¢K
N
+ (,uiinj + Z ,Uik,uleikSklAlj> Yj (7.15)
= klcK
JEK
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v = bi,mivz’,(miﬂ) + &',(ni,?) + SlTeZ T €2t <S T ai’nifl)
N
X Z (Vinz'j - Z ,Uzz‘lejAz’kSlelj> Tj1
j=1 kleK
JEK

N
+ Z (Pn‘jAz‘j + Z ,Uik,uleik:SklAlj> Yj (7.16)

j=1 kleK
JEK
2;(t) is still defined as[z;1, 22, . - ., 2ip;]" - The transformed ith subsystem subject to

local controller (6.41) is characterized by
Zi o= Auzi+We€io+ Wg;éz — b 1Piep 1

N
+Wei | (s + aipn;—1) Z (Vinij + Z MikVZinkSleZj) Zj1

j=1 klcK
J¢EK

N
+ Z (Mz‘jAzj + Z NikﬂleikSklAlj> Y; (7.17)

7=1 kleK

JEK
where A.;, W; and Wy, are matrices with appropriate dimensions having the similar
structures as in the scalar systems given in (6.48)-(6.50).
Define a Lyapunov function V), as in (6.51), it can be shown that the derivative

of V,, satisfies

pi Pi pi pi
) 1 1
Vo, < =) cigZig— Y. el + > (s 4 ain 1)’ Li+ > 201l L
qg=1 q=1 “q q=1 " q=1
(7.18)
where
Pi )
o =N Z(q;, — k)T P, 7.19
: 2; p (= k) (7.19)
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N
L, = Z Vza Hij + ZﬂilejAz‘kSlelj> Tj.1

klEK
2
N
Z fij Ay + Z ik szklAlj> Y; (7.20)
= kleK
K

To show the stability of the overall system, the variables of the filters in (6.11)
and the zero dynamics of subsystems should be included in the Lyapunov function.
Similarly as discussed in Section 6.2.4, the variables (; associated with the zero
dynamics of the ith subsystem can also be shown to satisfy (6.67)-(6.69).

To deal with the dynamic interaction or unmodeled dynamics, we let h;; and g;; be
the state vectors of systems with transfer functions H;;(s) and A;;(s), respectively.

They are given by

hij = Ahijhij + bhijxj,17 Hﬁ(S)Q?j’l = (1, O, c. ,O)hij (721)

Gij = Agijgij +bgijyi, Aij(s)y; = (1,0,...,0)g;; (7.22)

where Ag;; and Ap;; are Hurwitz because A;;(s), H;;(s) are assumed stable. Simi-

larly, we let ]_lij and g;; be the state vectors associated with ZMGK NSk H;(s) and

> kiex DirSuly(s), ie

Bij = Ahijﬁij + Bhijxjyl, Z AikSlelj(S)xj,l = (1, 0, e ,O)Bij (723)

kleK

gij = Agijgij + Bgijij Z AikSkZAlj (S)yj = (17 07 s 7O)§ij (724)

kleK

where flmj and flgij are Hurwitz from Assumptions 7.2.2 and 7.2.3. It is obvious

that
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2
N
oAyl < I (7.25)
j=1
J¢K
2
N
D Hy(s)eia| < Il (7.26)
7K
2
N
Z (Z AikzsklAlj> Yj < IxIP (7.27)
7=1 kleK
JEK
2
N
> (Z A“fS“H’f> zal| < P (7.28)
j=1 \kleK
j¢K
where x = [x7,..., X% and x; = [/, e, 07, ¢, haty .o hin' g s Gin
L, .. hLy, k. o] withi=1,... N\K.
We also have
2
N N
(5 + ainn) Y Hig($)zja|| < ki Y [lwsall® + kaollx|? (7.29)
=1 =1
K JEK
2
N
(s =+ i (ni—1)) Z Aij()y;|| < kasllx|l? (7.30)
=1
K
2
N
(s + Qigu-1) D (Z Azk:Slela) zja|| < ka Z 5.1 1* + Rzl x|
7=1 kileK 7j=1
JE¢K J¢K
(7.31)
2
N —
(5 + @igni—1) Y (Z Aszk:lAlg> yil| < kislxl? (7.32)
j=1 kleK
JE¢K
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where k;1, kio, ki3 and k;q, ki, ki3 are positive constants. From

N
Ti1 = Zi1— Z <Vz'jHij + Z NileinkSlelj> Tj1

j=1 kK
JEK
N
- Z <,uz'inj + Z MikﬂleikSklAlj> y;, fori=1,... N\K
=1 klcK
JE¢K

(7.33)

we obtain that

N
(5 + aim;—1) § ij(8)Tj1

7j=1
JEK
2 2 2
< ki +2 Jaex {v }+ nax {,uij} kis + 2  Jmax {ravii}
| LjEK ueéK i,j K kleK
2 2 2
+ 1<max Lz b | Faa | Il (7.34)
ik EK
2
N
3+a'zn1—1 Z Z A’lksk‘lHlj)le
—1 kleK
¢
< L. L.
< ki +2 Jex {v, }+ Inax {,uzj} kis + 2  mex {pavi}
| ,jEg K ,ij 1,j¢ K,k leK
2 2y | & 2
+ 1<max {pirrish ) K| x|l (7.35)
i JEK kK

where ki, = max{ki + 2k;1, 2k} and kyy = max{ks + 2k;1, 2k;1 } are constants and
independent of p;; and v;;.

We can now present the main result of this chapter as follows,

Theorem 7.3.1. Consider the closed-loop adaptive system consisting of the plant
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(7.1) and the controller (6.41), the estimator (6.38), (6.46), and the filters (6.10)-
(6.13). Suppose ki, ..., ky subsystems break down whose control inputs become zero
as modeled in (7.6). Based on Assumption 7.2.1-7.2.3, there still exists a constant
w* such that for all vi; < p* and pi; < p*,1,5 = 1,2,..., N, all the signals in the

system are globally asymptotically stabilized for arbitrary initial z;(0).

Proof. We define a Lyapunov function for the ith system as

1
Vi = V;M + l 77 Pnl + C Plb Cz Z lhl]hlj th]hzg + Z lgzjgz] sz]gzj
n 1 1
Jex Jex
J¢K JéK

where lei, lhij, lgij, hij» lgij are positive constants, and Py, Phij, Pyij, Pri; and Py

satisfy
Py, (Aip,) + (Aip) Py, = —Im, (7.37)
PrijAnij + (Anij) Prij = —Ing (7.38)
PyijAgij + (Agis) Prij = —Igi (7.39)
Pﬁz‘jAhij + (z‘_lhij)TPBij = —Ip; (7.40)
PiiAgii + (Agij) " Pyij = —Igy (7.41)

By following similar procedures in Section 6.2.4, we compute the time derivative of

V; as follows,

N
. 1 9 9 _
Vi = V- erHz » i1 Pien, n %1 — ,HQHQ + @CiTPi,bibixivl — > il ?
mn Ci [ -

J:
JEK
N N N N
+2>  Dnighds Prignizrin — Y lgiillgigl® + 2> lijghs Paigbaisvs — D T
-1 = =1 i=
JEK JEK jEK jEK
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N N
x| ||* + 2 Z Uiijha; Pribnijja — Z lgig G 1 + 2 Z lyii 90 Pyisbgii v
=1 =1 =1
JEK JEK JEK
1, &, &1, 1, s e (1
< —501‘1%,1 - Zci,qzi,q - Z Al lei|” — %HWH - %HQH - Z élhij
q=2 q=1 j=1
JEK

1 1 - 1 & 1
x| A |1 + §lgij|\gij”2 + §lﬁinthH2 gzy\|9w“2> +> = 77 (5 + @ini—1)* L

q=1
Pi 1 9 N

D2y Li = G = 6 P | 3 (M
q=1 j=1
JEK

+ Z Vik b5 szlelj> Tj1 + Z </’L’LJAZ] + Z ik Lbij szklAlj)
kleK

kleK
JéK
iy
Z hl] ||h'1] ”2 + 2lhl]h‘TPthbh’L] (

viiH;; + Z Vik,uleik:Slelj) Ti1
= j kleK
JEK Jé¢
N
+ Z (MUAU + Z NikﬂleikSklAl]> Yj
7=1 kleK
J¢K
N
hij
Z : ||h”||2 + 2lh1]hTthgbh1] (sz j + Z Vik,uleikSk;lHlj) Tj1
Jj=1 j=1 kleK
JEK j¢K
N
Z (:uszij + Z MikﬂleikSsz1j> Yj
j=1 kleK
géK
1 2 1 2 T 2
1602‘121,1 Z 5 Lyijll gislI” + 2 Z lis9i;” Poijbgijzia — 1662‘121,1
=1
quéK JéK
Y1 1 N
hij
- Z 5@%3“91]”2 +2 Z lgzygzgpgzybngm 16Ci12i2,1 - Z T]||hij||2
JéK jq_fK

Jj=1
JEK
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N N
1 L
T hi
+2 ; Unijhij™ Prijbnijzja — Ecil’zzl - ; 4J 172351
jséK K
1
+2 Z ijhiy Prigbnijzjn — 802'121-2,1 T 7ill* + lum €n, i %l
J%K
9 _
—=cnzi + NP~ Pipbizia (7.42)
8 ’ lCi
where (7.33) is used. By taking
byi 2> : > —— (7.43)
Ci1 Ci1
Ci1 Ci1
lnij < 2 iy < ’ = (7.44)
77 64(N —m) || Puijbni; |2 7T 64(N —m) || Priibni; ||?
Lo < Gt L L (7.45)

732N —m) | Pgbg P77 32(N m) || Pyisbgi; |I”

and using the Young’s inequality, we have

Pi
Vi < —ﬁillxiHMZl S+ ini1) L+Z2H¢ PligLi + IIbeIIL

q=1
1

+ Z 8lhl]||Ph2thzJ” L + Z 8lhz; ||Phwbhw|| L; — 2Ci1zz‘2,1

Jex Jex

al 1

2

+ Z mcﬂzﬂ (746)

J=1

JgEK

where

Pi
. Jea 1 1 1 _ 11
G min TG 2 g g g 1%?{51%5% ’
%,

) 1 1
1,j¢K

From (7.25)-(7.35), it can be shown that
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Li < 4(® +ph)Ix|? (7.48)
(s+a )L < (2(kia + kis)p® + (Akia + 2k + kis)p* + (dkia + 4k 1

k) [P (7.49)

Then the time derivative of Vz satisfies

. 1 _ _
Vi < =Bilbxll® - Zcilzzl + kis (2(kig + kis)p® + (4kig + 2kig + ki)t

+(4kig + ki) 1 + Akiap®) | X11%) + 4k (17 + ) |||

1 2 Y 1 2
N S &
j=1
where
Pi 1
kis = — 7.51
5 > » (7.51)
q=1
Pi ] B N N B
ki = Y 2l®i "l + E||B,bibz'||2 + > 8[| Pribnis* + Y 8Tl Prisbnis 1*
e i
(7.52)

Now we define a Lyapunov function of the overall decentralized adaptive control

system as
N
V=>"V (7.53)
From (7.50), the derivative of V' gives that

N

N
1
V< — Z [ﬂ — Kap? — Kpp®* — Kip® — Kiwg] llx|I? — 7 Z cilz,ﬁl(7.54)
leé:}( zlq_f:Il(
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where K1, K9, K;3 and K4 are positive constants and

mini<i<y 3

8= ﬁ >0 (7.55)

The existence of positive root to equation — 3+ K;; pu?+ Kigpu* + Kizpb+ Ky pu® = 0 can
be easily shown. By taking u* as the smallest positive square root to the equation,
we have V < —% Z?;Z}( cilzil. This implies that the signals of the rest subsystems
are globally uniformly bounded, and lim; .., y;(t) = 0 for arbitrary initial z;(0).
Since the failed subsystems are assumed stable themselves, the overall stability of

closed loop system being ensured is then concluded. O

7.4 An Illustrative Example

We consider an interconnected system composed of two subsystems as described

in (7.1) with G,(s) = m for i = 1,2. Parameters a; and a, are unknown in

controller design and require identification. In the simulation, we make the following

choices for the interconnected system: a; = —1,ay = =2, Hy; = %, Hy; =

s(s—2)
(s+1)°

for j =1,2, A;; = 34%1 fori=1,2 and j = 1,2 and v;; = ;5 = 0.6 for i = 1,2 and
j = 1,2. The initials of subsystem outputs are set as y;(0) = 1,75(0) = 0.4. The

local controller of the first subsystem u; breaks down at ¢ = 10 sec. In this case,

S =1 —0.58%1)_1 = sf{f{) for k£ = 1 is stable and proper as assumed in Assumption
7.2.3.

The design parameters are chosen as k; = [4,4]7,i = 1,2, ¢1 = o1 = 2,¢19 =
oo = 1,111 = l1o = 191 = lyp = 0.001, I'y = I'ys, = 0.1. The outputs and control

inputs of both subsystems for both cases with and without actuator failure are

given in Figures 7.2-7.5. Clearly, global stability of the system is still be ensured
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and the outputs of both subsystems are also regulated to zero in faulty case despite

a degradation of performance.

7.5 Conclusion

In this chapter, we studied the effectiveness of the decentralized adaptive backstep-

ping controllers developed in Section 6.2.3 for the class of interconnected systems

in in (6.1) with outage type of actuator failures. It is shown that the stability of
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the interconnected system can still be achieved and the outputs can be regulated as

zero in the failure case.
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Chapter 8

Conclusion and Recommendations

8.1 Conclusion

The research in this thesis is aimed at developing novel backstepping based ap-
proaches to design adaptive controllers for systems with not only unknown param-
eters, but also uncertain actuator failures and subsystem interactions. The main
control objectives are to ensure the boundedness of all the closed-loop signals and
achieve desired regulation of the system outputs. Compared to the existing design

methods in the related areas, we have solved the following problems:

relaxing the relative degree condition imposed on the redundant actuators;

e characterizing and improving the transient performance of the adaptive control

systems in failure cases;

e compensating for infinite number of actuator failures;

e stabilizing the interconnected systems with unmodeled dynamics and dynamic

interactions depending on subsystem inputs;
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e analyzing the stability of the decentralized adaptive control systems in the
presence of actuator failures.
According to the contributions we have made, the results are reported in Chapters
3-7 respectively. Chapters 3-5 focus on the problems of accommodating uncertain
actuator failures, whereas Chapters 6 and 7 mainly discuss the decentralized stabi-
lization in the presence of unmodeled dynamics and dynamic interactions. Apart

from these, we further conclude the thesis in the followings aspects.

e Tuning Functions vs. Modular Design

Note that Chapter 5 can be separated from Chapters 3 and 4 as it employs
adaptive backstepping based modular design method rather than tuning functions
approach. As illustrated in Chapter 2, the design and analysis of these two design
schemes are quite different. In contrast to the popularity of tuning functions meth-
ods, there is still no result available by using backstepping based modular design
scheme to compensate for actuator failures even for the case of finite number of
failures. Therefore, Chapter 5 can also be regarded as filling the gap that exists in
adaptive backstepping based failure compensation approaches. In Chapters 3 and
4, the systems are shown stable in the sense that all the closed-loop signals are
bounded and asymptotic tracking can be achieved if the number of failures is finite.
Such results can also be obtained with the proposed modular design method, as
shown in Chapter 5. In addition to that, Chapter 5 proves the effectiveness of the
modular design method in maintaining the closed-loop boundedness with infinite
number of failures and establishes the relationship between the frequency of failure

pattern changes and the tracking error in the mean square sense.

e State-feedback vs. Output-feedback

Chapters 3-7 can also be classified as state-feedback control (Chapters 4 and 5)
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and output-feedback control (Chapters 3, 6 and 7). As full state measurement is ab-
sent in the latter class of control problems, nominal observers are needed to provide
desired state estimates. In [21, Sec. 8], some filters are developed to construct the
state estimate, with which the estimation error can converge to zero exponentially
if the observer is implementable with known system parameters. Based on this, the
state estimation filters designed in Chapter 3 are modified by considering also the
effects caused by the uncertain actuator failures. It is shown that the estimation
error can still vanish exponentially when the system parameters and actuator fail-
ures are known. On the other hand, the standard filters in [21] are adopted without
any modification in Chapter 6 to estimate the local state variables. However, since
the effects of the unmodeled dynamics and dynamic interactions are encompassed,
the dynamics of the achieved state estimation error changes. This results in a more

complicated process in stability analysis.

e Transient Performances

In Chapter 6, the £, and L, norms of the system outputs are shown to be
bounded by functions of design parameters including ¢;; and adaptation gains. This
implies that the transient performance can be adjusted by suitably choosing these
parameters on the basis of trajectory initialization. In fact, providing a promising
way to improve the transient performance of adaptive systems by tuning design
parameters is one of the advantages of adaptive backstepping control over the con-
ventional approaches, as stated in Chapters 1, 6 and references therein. However, it
is analyzed in Chapter 4 that the transient performance cannot be guaranteed in the
same way in the case with uncertain actuator failures. This is because the trajec-
tory initializations involving state-resetting actions are difficult to perform without
a priori knowledge of the failure time, type and value. Nevertheless, by employing a

PPB technique to design adaptive backstepping controllers, the tracking error can
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be preserved within a prescribed performance bound. Therefore, the transient per-
formance of the tracking error in terms of convergence rate and maximum overshoot

can be improved by tuning the design parameters of the PPB.

e Stabilization with both Actuator Failures and Interactions
Furthermore, Chapter 7 can be regarded as an initial result on decentralized sta-
bilization by comprehensively considering the effects of both actuator failures and
subsystem interactions. It is proved that the proposed decentralized adaptive con-
trollers without any modifications are reliable in the face of outage type actuator
failures. Nevertheless, the research on developing an effective decentralized adaptive
control method by incorporating proper compensation techniques, such that more

general failure cases can be handled, will be of greater importance.

8.2 Recommendations for Further Research

Some open problems which are worthy to be explored in the areas of adaptive failure

compensation and decentralized adaptive control are suggested as follows.

e Design and analysis of adaptive controllers by using tuning functions method

to accommodate infinite number of actuator failures

e Guaranteeing the transient performance of adaptive control systems in the

presence of uncertain actuator failures when modular design method is utilized

e Adaptive control of systems with more general type of actuator failures and

other component failures including sensor failures

e Extension of our adaptive control design and analysis to a larger class of
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systems in the presence of actuator failures, including output-feedback control

of nonlinear systems with state dependent nonlinearities

e Adaptive failure compensation control of non-minimum phase systems

e Decentralized adaptive control of interconnected systems with other class of

input unmodeled dynamics and dynamic interactions

e Decentralized adaptive control of interconnected systems in the presence of

more general type of actuator failures and other component failures
e Decentralized adaptive control of interconnected systems with input time delay

e Possible application of the results in the thesis to flight control systems, marine

control systems, chemical processes, etc.
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Appendix A

A.1 LaSalle-Yoshizawa Theorem [21]

Consider the time-varying system

T = f(x,t), (A.1)

where x € R” and f : R" x Ry — R" is piecewise continuous in ¢ and locally
Lipschitz in .

Theorem A.1 Let x = 0 be an equilibrium point of (A.1) and suppose f is locally
Lipschitz in x uniformly in t. Let V : R" — Ry be a continuouly differentiable,
positive definite and radially unbounded function V(x) such that

oV

V= a—x(x)f(x,t) < —-Wi(x) <0, Vt >0, Ve € R", (A.2)

where W is a continuous function. Then, all solutions of (A.1) are globally uniformly
bounded and satisfy
lim W (z(t)) = 0. (A.3)

t—o0

In addition, if W (x) is positive definite, then the equilibrium x = 0 is globally

uniformly asymptotically stable.
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A.2 Barbalat Lemma [21]

Lemma A.1 Consider the function ¢ : &, — R. If ¢ is uniformly continuous and
limy oo [y~ @(7)dT exists and is finite, then

lim ¢(t) = 0. (A.4)

t—o00

Corollary A.1 Consider the function ¢ : Ry — R. If ¢, ¢ € Loo, and ¢ € L, for
some p € [1,00), then

lim ¢(t) = 0. (A.5)

t—o00
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Appendix B

B.1 Some inequalities [5]

Holder’s Inequality If p,q € [1,00] and % + % =1, then f € L,, g € L, imply
that fg € L1 and

IFglle < 1 £1lnllgllq (B.1)

Schwartz Inequality When p = q = 2, the Hoélder’s inequality becomes the

Schwartz inequality, i.e.,

gl < 1F112llgll2 (B.2)

If we define the truncated function f; as
(B.3)

for all t € [0,00), then for any p € [1,00|, f € L, implies that f; € £, for any
finite t. The £, space is called the extended £, space and is defined as the set of
all functions f such that f; € £,,.

The above lemmas also hold for the truncated functions f;, g;, respectively, pro-

vided that f,g € L.
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Young’s Inequality If p,q € [1,00) and % + é =1, then for any a,b > 0, we have

P q
<Y (B.4)
p q

Typically, if p = ¢ = 2, then we have ab < angz.
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