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Abstract

The investigation of computably enumerable degrees has led to the deep understand-

ing of degree structures and the development of various construction techniques. This

thesis is mainly concerned with the cupping and capping properties of computably

enumerable degrees.

In Chapter 1, we give an introduction to the fundamentals of computability theory,

and notations used through the thesis. In Chapter 2, we study the only-high cuppable

degrees, which was recently found by Greenberg, Ng and Wu, we prove that such

degrees can be plus-cupping. This result refutes a claim of Li and Y. Wang, which

says that every plus-cupping degree is 3-plus-cupping.

In Chapter 3, we study the locally noncappable degrees, and we prove that for

any nonzero incomplete c.e. degree a, there exist two incomparable c.e. degrees c, d

> a witnessing that a is locally noncappable, and c ∨ d is high. This result implies

that both classes of the plus-cuppping degrees and the nonbounding c.e. degrees do

not form an ideal, which was proved by Li and Zhao by two separate constructions.

Chapter 4 is devoted to the study of the infima of n-c.e. degrees. Kaddah proved

that there are n-c.e. degrees a,b, c and an (n+1)-c.e. degree x such that a is the

infimum of b and c in the n-c.e. degrees, but not in the (n+1)-c.e. degrees, as

a < x < b, c. We will prove that such 4-tuples occur densely in the c.e. degrees.

This result immediately implies that the isolated (n+1)-c.e. degrees are dense in the

c.e. degrees, which was first proved by LaForte.
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Chapter 1

INTRODUCTION

People have been investigated calculations and algorithms for several centuries. A

typical algorithm in mathematics is the Euclidean algorithm, an efficient method

computing the greatest common divisors of natural numbers. Another famous algo-

rithm is the sieve of Eratosthenes, an algorithm calculating all prime numbers up to a

given integer. These algorithms share some common properties, such as a calculation

proceeds deterministically, and stops after finitely many steps.

It was until 1930s when several formal definitions of computations were proposed.

The formalization of the class of algorithmically computable functions (i.e. effectively

calculable functions) began with attempts to solve some specific problems posed by

David Hilbert, such as Hilbert’s tenth problem and the Entscheidungsproblem. In

Hilbert’s tenth problem, Hilbert asked for a general algorithm to determine whether

a given Diophantine equation has integer solutions. The Entscheidungsproblem asks

for an algorithm to decide which formulas of first order logic are valid. Nowadays, it is

known that both of them have negative answers — no such general algorithms exist.

To answer these questions, one had to first formally characterize the informal class

of effectively calculable functions. The research of such characterization work began

at the beginning of 1930s, when the class of λ-definable functions was first studied

by Church and then developed by Kleene. In his proof of Incompleteness Theorem,

Gödel proposed in [25] the notion of primitive recursive functions, and then extended

this notion to the (general) recursive functions, to capture more effectively calculable
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functions. Kleene obtained the µ-recursive functions from the primitive recursive

functions and the µ-operator. Church and Kleene proved that the classes of (general)

recursive functions, of λ-definable functions, and of µ-recursive functions, coincide.

Based on this, Church published his famous proposition, now known as Church’s

Thesis, saying that the effectively calculable functions are µ-recursive.

Say a function on the natural numbers partial if the domain of this function is a

subset of natural numbers, and a function is total if the domain is exactly the set of

natural numbers. Turing proposed a simple computing device — Turing machines. A

partial function on the natural numbers is Turing computable if it can be computed

by a Turing machine. Turing proved that the classes of Turing computable functions

and the (general) recursive functions coincide.

A set of natural numbers is computable if its characteristic function is computable.

In addition to the study of computable sets and functions, we are interested in relative

computability, a notion capturing sets being computable relative to another one.

Given two sets of natural numbers A and B, say that A is Turing reducible to B (or

A is computable relative to B), denoted by A ≤T B, if the membership of A can

be effectively computed from the information of B and B is known as oracle. Note

that Turing reduction ≤T is reflexive and transitive and so it induces an equivalence

relation ≡T on the power set of the set of natural numbers. The corresponding

equivalence classes are called Turing degrees.

A set A of natural numbers is computably enumerable (c.e. for short) if the ele-

ments of A can be listed in an effective way. It is easy to see that a set A is computable

if and only if both A itself and its complement Ā are computably enumerable. The

Halting problem, K = {e ∈ ω : ϕe(e) converges}, is a c.e. set, but incomputable.

Here ϕe(x) is a computation when the eth Turing program runs on the input x, and

we say that a computation ϕe(x) converges if this computation halts, and diverges

otherwise. We use ϕe(x) ↓ to denote that ϕe(x) converges and ϕe(x) ↑ for diverges.

For any sets A,B ⊆ ω, A⊕B is defined as {2x : x ∈ A} ∪ {2x+ 1 : x ∈ B}. The

supremum of the Turing degrees a and b, a∨b, is the Turing degree of A⊕B, where

A ∈ a, B ∈ b. The definition of a ∨ b does not depend on the choices of the selected

sets A and B. A Turing degree is c.e. if it contains a c.e. set. Let R be the class of all
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the c.e. degrees, and ≤ be the partial order relation on the c.e. degrees induced by the

Turing reduction ≤T . R is closed under join “ ∨ ” with respect to ≤, with the least

element 0, the Turing degree of computable sets, and the greatest element 0′, the

Turing degree of K. Post asked whether there exists any c.e. degree strictly between

0 and 0′. Friedberg [21], and Muchnik [49] independently, solved Post’s problem by

showing that there are intermediate c.e. degrees. In their proofs, they introduced the

finite injury argument, which has turned out to be a powerful technique in modern

computability theory. Shoenfield [52], and Sacks [56] independently, invented the

infinite injury arguments. In [54], Sacks developed infinite injury argument to show

that the c.e. degrees are dense. Another version of the infinite injury argument was

later introduced by Yates [66] in his study of index sets. In [35], Lachlan introduced an

even more powerful technique, called 0′′′-priority argument to prove his nonsplitting

theorem. This argument can be viewed as a finite injury argument on the top of

an infinite injury argument, and was referred as the “monster method” in the 1980s

because of the great complexity of constructions. This argument has been widely

used in modern computability theory, in the constructions of Harrington plus-cupping

degrees [28], Lachlan’s nonbounding degrees [34] and Slaman triples [61], etc.

A c.e. degree a is called cuppable if there is an incomplete c.e. degree b such

that a ∨ b = 0′, and noncuppable otherwise. Sacks’ splitting theorem [55] implies

the existence of incomplete cuppable degrees, and Yates (unpublished) and Cooper

[6] proved the existence of noncuppable degrees (this is the well-known Cooper-Yates

noncupping theorem). The cupping/noncupping properties were used by Harring-

ton and Shelah [30] to show that the first-order theory of the structure (R, ≤) is

undecidable.

Let KA be the halting problem relative to a set A, i.e. KA = {e ∈ ω : ΦA
e (e) ↓}.

KA is called the Turing jump of A and is denoted by A′. Let a′ = deg(A′) for A ∈ a,

which is the Turing jump of a. Using Turing jump, a hierarchy of the c.e. degrees was

defined as follows: A c.e. degree a is called lown(highn) if a(n) = 0(n) (a(n) = 0(n+1)

respectively), where a(0) = a and a(n+1) is the Turing jump of a(n). Let Hn and Ln

be the sets of highn and lown c.e. degrees respectively. When n = 1, degrees in H1

and L1 are also called high degrees and low degrees respectively. Basic results on such
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hierarchy include that all the inclusions Ln ⊂ Ln+1 and Hn ⊂ Hn+1 are strict, and

that there are c.e. degrees a such that a is not in
⋃

n(Hn ∪ Ln).

Extending the Cooper-Yates noncupping theorem, Harrington [27] considered the

relation between the high/low hierarchy and the cupping property: for each high c.e.

degree h, there exists a high c.e. degree a < h such that for all c.e. degrees x, if

h ≤ a∨x, then h ≤ x. This is called the Harrington noncupping theorem. From this

theorem, we know that every high c.e. degree bounds a high noncuppable degree.

Let NCUP be the set of all noncuppable c.e. degrees. Obviously, NCUP is an ideal

of R.

In contrast to the noncuppable degrees, Harrington [28] proposed a much stronger

notion of cupping — plus-cupping degrees, where a nonzero c.e. degree a is plus-

cupping if for any c.e. degrees b,d with 0 < b ≤ a ≤ d, there is a c.e. degree e < d

such that b ∨ e = d, and proved the existence of such plus-cupping degrees. Li [45]

showed that the Harrington’s plus-cupping degrees can be high2. This result shows

that the high c.e. degrees are not elementarily equivalent to the highn c.e. degrees

for each n > 1. In [58], Shore proved that the lown and lowm c.e. degrees are not

elementarily equivalent for all n > m > 1.

Fejer and Soare [22] considered a special case of Harrington’s plus-cupping degrees

by restricting d to 0′.

Definition 1.1. A nonzero c.e. degree a is called plus-cupping if every nonzero c.e.

degree below a is cuppable, i.e. if 0 < b ≤ a, then there is an incomplete c.e. degree

c such that c ∨ b = 0′

The construction of Fejer and Soare’s plus-cupping degrees involves a standard

gap-cogap argument. In the rest of this thesis, the plus-cupping degrees are those in

the sense of Fejer and Soare.

In 1965, Shoenfield [53] conjectured that for any finite upper semi-lattices P ⊆ Q,

with the least element 0 and the greatest element 1, any embedding of P into the

upper semi-lattice R can be extended to an embedding of Q into R. Shoenfield’s

conjecture would imply that the structure R is homogeneous. Shoenfield also listed

two immediate consequences of this conjecture:
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C1. For any incomparable c.e. degrees a, b, the infimum a ∧ b does not exist.

C2. For any c.e. degrees 0 < b < c, there is a c.e. degree a < c such that

a ∨ b = c.

Historically, this conjecture was first refuted by Lachlan [33] and Yates [65] by

showing the existence of minimal pairs, where a pair (a,b) is called a minimal pair

if a and b are nonzero c.e. degrees with infimum 0. Note that the existence of

noncuppable degrees shows that C2 is not true.

A c.e. degree a is cappable if a is 0 or a half of a minimal pair. a is noncappable,

if it is not cappable. Yates proved in [66] the existence of noncappable degrees. Let

M and NC be the sets of all cappable and noncappable c.e. degrees, respectively.

M is an ideal of R and NC is a filter of R. M and NC form a nontrivial partition

of the c.e. degrees. In [48], Maass introduces the notion of promptly simple sets: A

coinfinite c.e. set A is promptly simple if there is a partial computable function p

and a computable enumeration {As}s∈ω of A such that for every e, if We is infinite,

then there are s and x such that x ∈ We, at s ∩ Ap(s), where We, at s is the set of

numbers enumerated into We at stage s. A c.e. degree a is called promptly simple, if

it contains a promptly simple set. Let PS be the set of all promptly simple degrees

and LC be the set of all low cuppable c.e. degrees. The following theorem gives an

important characterization of noncappable degrees.

Theorem 1.2. (Ambos-Spies, Jockusch, Shore and Soare [1]) A c.e. degree is non-

cappable if and only if it contains a promptly simple set if and only if it is low cuppable.

That is, NC = PS = LC.

Based on the high/low hierarchy, Li, Wu and Zhang [43] proposed a hierarchy of

cuppable c.e. degrees LC1 ⊆ LC2 ⊆ LC3 ⊆ · · · , where for each n ≥ 1, LCn denotes

the class of lown-cuppable degrees. Here, a c.e. degree a is called lown-cuppable if

there is a lown c.e. degree b such that a∨b = 0′. Li, Wu and Zhang [43] showed that

LC1 is a proper subset of LC2 by constructing a cappable and low2-cuppable c.e.

degree. Recently, Greenberg, Ng and Wu proved in [23] that there is an incomplete

cuppable degree which can only be cupped to 0′ by high degrees.
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Theorem 1.3. (Greenberg, Ng and Wu [23]) There is a cuppable degree a such that

for any c.e. degree w, if a ∨w = 0′, then w is high.

Theorem 1.3 shows that ∪nLCn does not contain all of the cuppable degrees.

This refutes a claim of Li [44] that all cuppable degrees are low3-cuppable. We call

the cuppable degrees constructed by Greenberg, Ng and Wu [23] only-high cuppable

degrees.

Extending the notion of lown-cuppability, Li and Wang [64] defined a notion of

n-plus-cupping degrees. A nonzero c.e. degree a is called n-plus-cupping if every c.e.

degree x with 0 < x ≤ a is lown-cuppable. The class of n-plus-cupping degrees is

denoted by PCn. This gives rise to a hierarchy for plus-cupping degrees

PC1 ⊆ PC2 ⊆ PC3 ⊆ · · · .

Note that PC1 = ∅, as low-cuppable degrees are noncappable, while plus-cupping

degrees are cappable. Li and Wang proved the existence of a 2-plus-cupping degree,

and hence PC1 is a proper subset of PC2. Li and Wang [64] also claimed that all

plus-cupping degrees are 3-plus-cupping, and therefore PC3 = PC, where PC is the

class of plus-cupping degrees. Unfortunately, this claim is false, as we will show in

Chapter 2.

It is easy to see that the join of an only-high cuppable degree and a noncuppable

degree is again only-high cuppable. Thus, only-high cuppable degrees can be high. A

natural question is whether there is an only-high cuppable degree which bounds no

noncuppable degrees. In Chapter 2, we answer this question affirmatively. Actually,

we extend the result of Greenberg, Ng and Wu by showing that there is a plus-cupping

degree which is cupped to 0′ by high degrees only.

Theorem 1. (Wang and Wu) There is a plus-cupping degree a such that for any c.e.

degree w, if a ∨w = 0′, then w is high.

Theorem 1 implies the existence of a plus-cupping degree a such that any nonzero

c.e. degree b ≤ a cannot be cupped to 0′ by a lown c.e. degree for any n. Hence,

this refutes Li-Wang’s claim mentioned above.
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Chapter 3 is devoted to the study of locally noncappable degrees, which was first

proposed by Seetapun in his thesis. Harrington and Soare [29] proved that there

are no maximal cappable degrees. Seetapun’s result of locally noncappable degrees

implies that there are no maximal nonbounding degrees.

Theorem 1.4. (Harrington and Soare [29]) If a and b form a minimal pair, then

there is a c.e. degree c above a such that b and c also form a minimal pair.

Seetapun [57] improved Theorem 1.4 to a much stronger version:

Theorem 1.5. (Seetapun [57]) For any nonzero incomplete c.e. degree b, there is

a c.e. degree d above b such that for any c.e. degree c, if c and b form a minimal

pair, then c and d also form a minimal pair.

Even though any nonzero c.e. degree bounds a cappable degree, Lachlan’s Non-

bounding Theorem says that not every c.e. degree bounds a minimal pair.

Theorem 1.6. (Lachlan [34]) There is a nonzero c.e. degree a such that no nonzero

c.e. degrees b, c below a form a minimal pair. a is called a nonbounding degree.

Note that every noncappable c.e. degree bounds a minimal pair, so all nonbound-

ing c.e. degrees are cappable. Cooper [9] showed that every high c.e. degree bounds a

minimal pair, and hence nonbounding c.e. degrees can not be high. Downey, Lempp

and Shore [15] proved that nonbounding c.e. degrees can be high2.

Definition 1.7. A nonzero c.e. degree a is called locally noncappable if there is a

c.e. degree c above a such that no nonzero c.e. degree w below c forms a minimal

pair with a. We say that c witnesses that a is locally noncappable.

Seetapun proved in his thesis [57] that every nonzero incomplete c.e. degree

is locally noncappable. Giorgi published Seetapun’s result in [24], but with a Σ3

outcome missing in his writing, so Giorgi’s construction is actually not a complete

one. Recently, Stephan and Wu [59] improved Seetapun’s result by showing that such

witnesses can be high2 degrees.

Theorem 1.8. (Stephan and Wu [59]) Given a nonzero incomplete c.e. degree a,

there exists a high2 c.e. degree c > a witnessing that a is locally noncappable.
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The proof of Theorem 1.8 combines Seetapun’s construction and the high2 strategy

developed in Lerman [37] and Downey, Lempp and Shore [15]. The construction in

the proof of Theorem 1.8 contains some new features. That is, after a gap is closed

unsuccessfully, it can be reopened again. Theorem 1.8 is so strong that it has several

well-known results as its corollaries, such as Downey, Lempp and Shore’s result [15]

that there is a high2 nonbounding c.e. degree, Li’s result [45] that there is a high2

(Harrington) plus-cupping degree, and it can further imply that there are no maximal

nonbounding c.e. degrees (first proved by Seetapun) and no maximal (Harrington)

plus-cupping degrees (a new result). In Chapter 4, we show that such witnesses can

have join high.

Theorem 2. (Fang, Wang and Wu) For any nonzero incomplete c.e. degree a, there

exist two incomparable c.e. degrees c, d > a witnessing that a is locally noncappable,

and c ∨ d is high.

Theorem 2 implies that both classes of the plus-cuppping degrees and the non-

bounding c.e. degrees do not form ideals, which was proved by Li and Zhao in [46],

by using two separate constructions.

In 1965, Putnam [51] and Gold [26] introduced the notion of n-c.e. sets as a

generalization of the c.e. sets:

Definition 1.9. Let n be a positive natural number. A set A is n-c.e. if there is a

computable function f such that for every x ∈ ω,

f(x, 0) = 0,

A(x) = lim
s
f(x, s),

|{s : f(x, s) 6= f(x, s+ 1)}| ≤ n.

The intuition is that we can change our guesses about the membership of x in A

at most n many times.

Obviously, the 1-c.e. sets are just the c.e. sets. The 2-c.e. sets are also known as

the d.c.e. sets since they can be expressed as differences of two c.e. sets. Similarly,
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the n-c.e. sets are those given by starting with c.e. sets and alternating the Boolean

operations of difference and union. These sets were first extensively studied (and

extended to the α-c.e. sets for computable ordinals α) by Ershov [18] and are now

known as the Ershov hierarchy.

A Turing degree is d.c.e. if it contains a d.c.e. set. The structure of d.c.e.

degrees were first studied by Cooper [7] and Lachlan who showed that there is a

properly d.c.e. degree (a d.c.e. degree that does not contain a c.e. set), and that

every incomputable d.c.e. degree bounds an incomputable c.e. degree, respectively.

The latter result established the downward density of the d.c.e. degrees. Let Dn be

the class of all the n-c.e. degrees (Turing degrees of n-c.e. sets), so R = D1. The

main interest in the n-c.e. degrees lies in the comparison of structures Dm, Dn, when

m 6= n. The first two structural differences between D2 and R were obtained by

Arslanov and Downey in the 1980s. Arslanov [2] showed that every nonzero d.c.e

degree is cuppable in D2, and this statement fails in R by the well-known Cooper-

Yates noncupping theorem. Downey [14] showed that the diamond lattice can be

embedded into the d.c.e. degrees preserving 0 and 1, and this embedding can not be

done in R by Lachlan’s Nondiamond Theorem [33].

The question that whether the d.c.e. degrees are dense or not motivated a lot

of interest among computability theorists. Lachlan observed that the d.c.e. degrees

are downward dense, and Cooper, Lempp and Watson [10] proved that the properly

d.c.e. degrees are dense in the c.e. degrees. Arslanov, Cooper and Li [5] showed

that there is no maximal low d.c.e. degrees, and Cooper [8] proved the density of

the low2 d.c.e. degrees. The general density problem was finally solved by Cooper,

Harrington, Lachlan, Lempp and Soare [11].

Theorem 1.10. (Cooper, Harrington, Lachlan, Lempp and Soare [11]) There is a

maximal incomplete d.c.e. degree.

This nondensity theorem gives another elementary difference between D2 and R.

However, the elementary differences between the n-c.e. degrees for various n > 1

seemed hard to find. Downey [14] even conjectured that

Conjecture 1.11. (Downey [14]) For any m,n > 1 with m 6= n, the degree structures
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of the m-c.e. and the n-c.e. degrees are elementarily equivalent.

This conjecture was refuted recently by Arslanov, Kalimullin and Lempp in [3]:

Theorem 1.12. (Arslanov, Kalimullin and Lempp [3]) The degree structures of the

d.c.e. and the 3-c.e. degrees are not elementarily equivalent.

Recently, Cai, Shore and Slaman [13] proved that the theories of Dn are all un-

decidable for every n. Note that the theories of R, D(≤ 0′), D are undecidable by

Harrington and Shelah [30]; Epstein [19] and Lerman [38]; and Lachlan [36], respec-

tively.

The notion of isolation was proposed by Cooper and Yi in 1995. A d.c.e. degree

d is isolated by a c.e. degree a, if a < d and a is the greatest c.e. degree below d.

(a,d) is called an isolation pair. d is isolated if there is a c.e. degree a such that d is

isolated by a, and nonisolated otherwise. It is well-known that both the isolated and

the nonisolated d.c.e. degrees are dense in the c.e. degrees.

Theorem 1.13. (Ding and Qian [17]; LaForte [40]) The isolated d.c.e. degrees are

dense in the c.e. degrees.

Theorem 1.14. (Arslanov, Lempp and Shore [4]) The nonisolated d.c.e. degrees are

dense in the c.e. degrees.

The following theorem shows that two degrees in an isolation pair can be far from

each other in terms of the high/low hierarchy.

Theorem 1.15. (Ishmukhametov and Wu [63]) There is an isolation pair (a,d) such

that a is low and d is high.

In 2002, Wu [62] gave another proof of Downey’s diamond embedding into the

d.c.e. degrees, where an isolation pair was used to separate the cupping and the

capping into two separate phases, avoiding interactions between the cupping and

capping parts. By developing this idea, Downey, Li and Wu proved in [16] that any

cappable c.e. degree has a complement in the d.c.e. degrees. In 2010, Liu and Wu

[41] proved that there exists an isolation pair (a,d) such that all c.e. degrees that
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can not cup d to 0′ are bounded by a. As d cups all the c.e. degrees not below it to

0′, d is said to have almost universal cupping property. Recently, Fang, Liu and Wu

use this structural phenomenon to prove a fairly strong cupping theorem.

Theorem 1.16. (Fang, Liu and Wu [20]) For any nonzero cappable c.e. degree c,

there exists an isolation pair (a,d) such that c∨d = 0′, c∧ a = 0, and d has almost

universal cupping property. Note that 0, c,d,0′ form a diamond.

This theorem has many known results as direct corollaries, including Arslanov’s

cupping theorem, Downey’s diamond theorem, Downey, Li, and Wu’s complementa-

tion theoremm, and also Li and Yi’s cupping theorem [47].

Kleene and Post proved in [32] that the infimum of Turing degrees a and b may

not exist. Lachlan proved in [33] that a and b can be c.e.. Lachlan also pointed out

in this paper that for any c.e. degrees a and b, the infimum of a and b, considered in

the c.e. degrees, if exists, is the same as the one when considered in the ∆0
2 degrees.

One natural question is whether such a coincidence is true when a and b are not c.e..

Kaddah proved in [31] that there are d.c.e. degrees b, c such that their infimum in

the d.c.e. degrees is different from their infimum in the 3-c.e. degrees. In particular,

she proved in [31] that there are d.c.e. degrees a,b, c and a 3-c.e. degree x such

that a is the infimum of b, c in the d.c.e. degrees, but not in the 3-c.e. degrees, as

a < x < b, c. In [42], we extended Kaddah’s result by showing that such a structural

difference occurs densely in the c.e. degrees.

Theorem 1.17. (Liu, Wang and Wu [42]) Given c.e. degrees u < v, there are d.c.e.

degrees a,b1,b2 and a 3-c.e. degree x between u and v such that a < x < b1,b2 and

b1 and b2 have infimum a in the d.c.e. degrees.

Actually, Kaddah also pointed out in [31] that for all n > 1, there are n-c.e.

degrees b, c such that their infimum in the n-c.e. degrees is different from their

infimum in the (n+1)-c.e. degrees. In Chapter 4, we prove that this generalization

occurs densely in the c.e. degrees.

Theorem 3. (Liu, Wang and Wu) For n > 1 and c.e. degrees u < v, there are

n-c.e. degrees a,b, c and an (n+1)-c.e. degree x such that u < a < x < b, c < v and

b and c have infimum a in the n-c.e. degrees.
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Theorem 3 implies that the isolated (n+1)-c.e. degrees are dense in the c.e. degrees

since there is no n-c.e. degree between a and x, which was first proved by LaForte

[39].

Our notation and terminology are quite standard and generally follow Soare [60]

or Odifreddi [50]. Basic knowledge of tree constructions in computability theory

is assumed. We use capital Greek letters to denote partial computable (p.c. for

short) functionals, with associated uses denoted by the corresponding lowercase Greek

letters. In addition, during the course of a construction, a parameter p is defined to

be fresh at a stage s means that p > s and p is the least number not mentioned so

far in the construction.
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Chapter 2

ON A HIERARCHY OF

PLUS-CUPPING DEGREES

2.1 Introduction

A c.e. degree a is cuppable if there is an incomplete c.e. degree b such that a∨b = 0′,

and noncuppable otherwise. Extending the cupping property, Harrington [28], and

Fejer and Soare [22] proposed a much stronger notion — plus-cupping degrees. A

nonzero c.e. degree a is plus-cupping if every nonzero c.e. degree below a is cuppable,

i.e. if 0 < b ≤ a, then there is an incomplete c.e. degree c cupping b to 0′.

Recently, Greenberg, Ng and Wu [23] proved the existence of cuppable degrees

which can be cupped to 0′ by high degrees only. We call such cuppable degrees

only-high cuppable degrees. Note that the join of any only-high cuppable degree and

any noncuppable degree is again only-high cuppable (suppose that a is an only-high

cuppable degree, and b is a noncuppable degree. Obviously, the join a∨b is cuppable

and incomplete. For any c.e. degree w, if (a ∨ b) ∨w = 0′, then b ∨ (a ∨w) = 0′.

Since b is noncuppable, a ∨w = 0′. Hence, w is high as a is an only-high cuppable

degree. This shows that a ∨ b is only-high cuppable). Moreover, only-high cuppable

degrees can be high (take b to be a high, noncuppable degree in the proof stated

above, then a ∨ b is only-high cuppable and high), and hence bounds noncuppable

degrees.
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A natural question is whether there is an only-high cuppable degree which bounds

no noncuppable degrees. In this chapter, we answer this question affirmatively. Ac-

tually, we extend the result of Greenberg, Ng and Wu by showing that such only-high

cuppable degrees can be plus-cupping. This refutes Li-Wang’s claim that every plus-

cupping degree is 3-plus-cupping, where a nonzero c.e. degree a is n-plus-cupping

if for every c.e. degree x with 0 < x ≤ a, there is a lown c.e. degree y such that

x ∨ y = 0′.

Theorem 1. (Wang and Wu) There is a plus-cupping degree a such that for any c.e.

degree w, if a ∨w = 0′, then w is high.

2.2 Requirements and strategies

To prove Theorem 1, we will construct a c.e. set A and an auxiliary c.e. set P

satisfying the following requirements:

Pe : A 6= ϕe,

Qe : P = ΦA,Ve
e ⇒ there exists a partial computable functional ∆e such that for

every i,

Tot(i) = lim
x

∆Ve
e (i, x),

Re : We = ΦA
e ⇒ We is computable or there are Ce,Γe such that Ce is an

incomplete c.e. set, Γe is a partial computable functional, and K = ΓCe,We
e .

Here {(We, Ve) : e ∈ ω} is a fixed effective list of pairs of c.e. sets. For each e,

Γe,∆e are partial computable functionals built by us and Tot = {i : ϕi is total} is a

Π0
2-complete set.

Let a be the degree of A. By the P-requirements, a is nonzero. By the R-

requirements, a is a plus-cupping degree. The Q-requirements ensure that for any

c.e. set Ve, if K ≤T A⊕Ve then Ve has high degree, as in this case, the Q-requirements

ensure that Tot ≤T V ′
e . Therefore, satisfying all the requirements will be enough to

prove Theorem 1.
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2.2.1 A Pe strategy

A Pe-strategy α is a standard diagonalization strategy. That is, we choose a witness

x and then wait for a stage at which ϕe(x) ↓= 0. If there is no such stage, then Pe is

satisfied obviously. Otherwise, we put x into A and so A(x) = 1 6= 0 = ϕe(x), Pe is

also satisfied.

2.2.2 A Qe strategy

Let ξ be a Qe-strategy. We define the length of agreement function l(ξ, s) at stage s

as

l(ξ, s) = max{x < s : (∀y < x)[P (y)[s] = ΦA,Ve
e (y)[s]]},

and the maximum length of agreement function at stage s as

m(ξ, s) = max{l(ξ, t) : t < s and t is a ξ-stage}.

Say that a stage s is a ξ-expansionary stage if s = 0 or s is a ξ-stage with l(ξ, s) >

m(ξ, s).

If P = ΦA,Ve
e , then there are infinitely many ξ-expansionary stages, and at these

expansionary stages, we will construct a p.c. functional ∆e to ensure that for any i,

Tot(i) = lim
x

∆Ve
e (i, x).

The strategy of ξ has two outcomes ∞ <L f , where ∞ denotes that ξ has infinitely

many expansionary stages and f denotes that ξ has only finitely many expansionary

stages. Below the ∞ outcome of ξ, we will ensure that ∆e satisfies the following

subrequirements

Te,i : Tot(i) = lim
x

∆Ve
e (i, x)

for all i.
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2.2.3 A Te,i strategy

Let ζ be a Te,i-strategy below the∞ outcome of ξ. We define the length of convergence

function l(ζ, s) at stage s as

l(ζ, s) = max{x < s : (∀y < x)[ϕi(y)[s] ↓]},

and the maximum length of convergence function at stage s as

m(ζ, s) = max{l(ζ, t) : t < s and t is a ζ-stage}.

Say that a stage s is a ζ-expansionary stage if s = 0 or s is a ζ-stage with l(ζ, s) >

m(ζ, s). ζ has two outcomes ∞ <L f , where ∞ denotes the outcome that ϕi is total,

in which we will define ∆Ve
e (i, x) = 1 for almost all x, and f denotes the outcome that

ϕi is not total, in which case we will define ∆Ve
e (i, x) = 0 for almost all x.

Suppose that we define ∆Ve
e (i, x) = 0 under the outcome f at a previous stage,

and now ζ changes its outcome to ∞, so we want to redefine ∆Ve
e (i, x) = 1, which

requires Ve to have a corresponding change to first make ∆Ve
e (i, x) undefined. For

this purpose, before we define ∆Ve
e (i, x) as 0, we first pick a big number pζ which

is not in P , and wait for a ξ-expansionary stage, s0 say, such that l(ξ, s0) > pζ ,

i.e. we see ΦA,Ve
e (pζ) ↓= 0 at stage s0, then we define ∆Ve

e (i, x)[s0] = 0 with use

δe(i, x)[s0] > ϕe(pζ)[s0]. At the next ζ-expansionary stage s1 > s0, i.e. ζ has outcome

∞, we first put pζ into P to force Ve to have a change below ϕe(pζ)[s0] while restrain

A on ϕe(pζ)[s0] (if there is no such a change, then P and ΦA,Ve
e (pζ) will differ at pζ , a

global win for ξ), and hence below δe(i, x)[s0]. This change undefines ∆Ve
e (i, x), and

as a consequence, we can redefine it.

We now consider the interactions between two T -strategies. We describe a poten-

tial problem: if there are two or more T -strategies working below the ∞ outcome of

ξ, ζ1, ζ2, with ξa〈∞〉 ⊆ ζa
1 〈∞〉 ⊆ ζ2. Then the action of enumerating pζ1 into P for

ζ1 as above can always force Ve to have a change to undefine ∆Ve
e (i(ζ1), x), but this

change can also undefine ∆Ve
e (i(ζ2), x). Since ζ2 assumes that ζ1 has outcome ∞, it

knows that pζ1 will be enumerated into P , and will be updated infinitely often. As
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a consequence, if ζ2 has outcome f , then the action of ζ1 may lead ∆Ve
e (i(ζ2), x) to

diverge eventually.

To avoid this, if ∆Ve
e (i(ζ2), x) is undefined by a Ve-change, at the next ζ2-stage,

if ζ2 has outcome f , we redefine ∆Ve
e (i(ζ2), x) = 0, but with use the same as before

if the computation ΦA,Ve
e (pζ2) is the same as before. Of course, if the computation

ΦA,Ve
e (pζ2) changes, then we define ∆Ve

e (i(ζ2), x) = 0 with use bigger than the current

use ϕe(pζ2). Therefore, if P = ΦA,Ve
e , and ζ2 has outcome f , then the parameter pζ2

will be updated finitely often and hence it has a final value. As a consequence, the

use ϕe(pζ2) will have a fixed value, which ensures that δe(i(ζ2), x)-use can be lifted

only finitely often. This ensures that ζ1’s definition has little effect on ζ2’s definition.

A P-strategy and a Q-strategy

We now consider the interactions between one Pe′-strategy α and one Qe-strategy ξ

with ξa〈∞〉 ⊂ α. Fix a witness y for α, when we see ϕe′(y) ↓= 0, we want to put y

into A directly to satisfy Pe′ , but this action may injure ξ, which has higher priority.

Consider the following scenario: Let ζ be a Te,i-strategy between ξ and α with

ξa〈∞〉 ⊆ ζa〈f〉 ⊆ α and ζ defines ∆Ve
e (i, x) = 0 with use δe(i, x) > ϕe(pζ) under

the outcome f , but now α puts y into A, and this enumeration can change the

computation ΦA,Ve
e (pζ) and lead to a new use ϕe(pζ) bigger than δe(i, x). Now if later,

at a ζ-expansionary stage, we put pζ into P , Ve may change below the new use ϕe(pζ),

but not below δe(i, x), and this Ve-change cannot make ∆Ve
e (i, x) undefined as wanted.

To avoid this problem, when α selects y as a number for diagonalization, α also

selects a number aα,ξ. When we want to put a number y into A, we put aα,ξ into P

first to force a Ve-change to undefine ∆Ve
e (i, x) defined by ζ. We put y into A only

after we see such a Ve-change. Such a process delays the diagonalization, but it does

not affect the satisfaction of α, since once ϕe′(y) ↓= 0, it converges to 0 forever.

The interactions between one P-strategy and several Q-strategies is a direct gen-

eralization of the simple case discussed above.

Without loss of generality, suppose that, above a Pe-strategy α, there are n many

Q-strategies, ξ1, ξ2, · · · , ξn say, with ξa
1 〈∞〉 ⊂ ξa

2 〈∞〉 ⊂ · · · ⊂ ξa
n 〈∞〉 ⊂ α. We will
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associate α with parameters aα,ξ1 < · · · < aα,ξn for those Q-strategies. After α sees

that ϕe(y) ↓= 0 at some stage s0, where y is a candidate for the Pe-strategy α, it first

creates a link between α and ξn and puts the number aα,ξn into P simultaneously.

Thus, at the next ξn-expansionary stage s1, a Ve(ξn)-change appears, and this Ve(ξn)-

change will undefine those ∆
Ve(ξn)

e(ξn) (i, x) defined by ζ-strategies between α and ξn. So

if we now put y into A, this enumeration will not cause incorrectness of ∆
Ve(ξn)

e(ξn) .

At stage s1, the previous link between α and ξn is cancelled, we create a new link

between α and ξn−1 and put the number aα,ξn−1 into P simultaneously (note that

once ϕe(y) ↓= 0, it converges to 0 forever). At the next ξn−1-expansionary stage s2,

a Ve(ξn−1)-change appears, and this Ve(ξn−1)-change will undefine those ∆
Ve(ξn−1)

e(ξn−1) (i, x)

defined by ζ-strategies between α and ξn−1. We repeat this process for all the other

such Q-strategies. After we cancel the link between α and ξ1, then α can perform the

diagonalization by putting y into A, this enumeration will not cause incorrectness of

those ∆
Ve(ξi)

e(ξi)
for all 1 ≤ i ≤ n, and hence will not injure the Q-strategies with higher

priority.

2.2.4 An Re strategy

Assume that a strategy β works on an Re-requirement. We define the length of

agreement function l(β, s) at stage s as

l(β, s) = max{x < s : (∀y < x)[We(y)[s] = ΦA
e (y)[s]]},

and the maximum length of agreement function at stage s as

m(β, s) = max{l(β, t) : t < s and t is a β-stage}.

Say that a stage s is a β-expansionary stage if s = 0 or s is a β-stage with l(β, s) >

m(β, s). Here, a stage s is a β-stage means that β is visited at stage s.

IfWe = ΦA
e , then there are infinitely many β-expansionary stages. At β-expansionary

stages, we will construct an incomplete c.e. set Ce and a p.c. functional Γe such that

either K = ΓCe,We
e , or We is computable.
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The p.c. functional Γe will be built as follows.

1. (Rectification) If ΓCe,We
e (x) ↓= 0 6= 1 = K(x), then we put γe(x) into Ce to

undefine ΓCe,We
e (x).

2. (Extension) Let k be the least x such that ΓCe,We
e (x) ↑, then we define ΓCe,We

e (k) ↓=
K(k) with use γe(k) a fresh number.

We will ensure that if x < y, then γe(x) ≤ γe(y) and thus, we have: if ΓCe,We
e (x)

is undefined, then for all y ≥ x, ΓCe,We
e (y) will be undefined automatically.

β has two outcomes ∞ <L f , where ∞ denotes that β has infinitely many ex-

pansionary stages, and f denotes that β has only finitely many expansionary stages.

Below outcome ∞, we will construct a c.e. set Ce and ensure that it is incomplete by

constructing an auxiliary c.e. set E to satisfy the following subrequirements

Se,i : E 6= ΦCe
i .

2.2.5 An Se,i strategy

Let η be an Se,i-strategy below β’s outcome ∞. A single η-strategy is a standard

Friedberg-Muchnik strategy, which works as follows:

(1) Pick x as a fresh number.

(2) Wait for a stage s such that ΦCe
i (x)[s] ↓= 0.

(3) Put x into E and preserve Ce � ϕi,s(x).

But note that, after η performs the diagonalization, to rectify the definition of

ΓCe,We
e , β needs to enumerate γe-uses into Ce, and this enumeration may injure the

computation ΦCe
i (x). To ensure that a computation ΦCe

i (x) is clear of the γe-uses,

we apply the gap-cogap argument to ensure that if η fails to protect a computation

ΦCe
i (x), then the corresponding We is computable.

We first fix a number k(η), as the threshold of η. In the construction, if y < k(η)

enters K, we put γe(y) into Ce immediately to rectify ΓCe,We
e (y), and we will reset η
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by undefining the associated parameters, but with k(η) unchanged. As k(η) is kept

unchanged, after a stage large enough , K has no change below k(η), so η can be

reset at most finitely often.

In the construction, when we see ΦCe
i (x) ↓= 0 at an η-stage s, we do not perform

the diagonalization immediately. Instead, we open a gap for A to change (and hence

expecting aWe-change, which can be small enough for us to lift the γe-uses) and create

a link between β and η. At the next β-expansionary stage s′, we check whether We

changes below γe(k(η))[s] between stage s and s′. If We changes, then we close the gap

successfully, that is, we do the diagonalization by putting x into E, this We-change

can lift γe-use and hence the computation ΦCe
i (x) is clear of the γe-uses, and can be

preserved forever. Cancel the link. Otherwise, we close the gap unsuccessfully, and

put γe(k(η))[s] into Ce to lift γe(k(η)) to a big number. Cancel the link. We will

define a partial computable function hη such that if η opens infinitely many gaps,

then hη is defined as a total function, and computes We correctly. This shows that

We is computable. We write this idea formally as follows:

Case a. (Close the gap successfully)

If We,s′ � (γe(k(η))[s] + 1) 6= We,s � (γe(k(η))[s] + 1), then we travel the link and

put x into E to satisfy η. Cancel the link.

In this case, this We-change lifts γe(y) use, for all y ≥ k(η), to big numbers,

and hence the computation ΦCe
i (x) is clear of the γe-uses, and can be preserved

forever.

Case b. (Close the gap unsuccessfully)

If We,s′ � (γe(k(η))[s] + 1) = We,s � (γe(k(η))[s] + 1), then we put γe(k(η))[s]

into Ce to lift γe(k(η)) to a big number. Cancel the link.

In this case, for all x ≤ γe(k(η))[s], if hη(x) ↑, then we define hη(x) = We,s(x).

After stage s′, we prevent A from changing to preserve We,s � (γe(k(η))[s] + 1)

till the next β-expansionary stage at which η opens a gap again.
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The η-strategy has three outcomes g <L w <L d, the outcome g denotes η opens

gaps infinitely often, the outcome w denotes that η waits for ΦCe
i (x) ↓= 0 forever,

and the outcome d denotes that η successfully performs diagonalization. Note that if

η has outcome g, then η shows that We is computable as We = hη, β is satisfied at η,

and there is no need to satisfy β’s substrategies at the nodes extending ηag. In this

case, the use γe(k(η)) approaches to infinity, and η shows that We is computable.

We now consider the interaction between more R-strategies. Suppose that we also

have an Re′-strategy β′ and its substrategy η′ with βa〈∞〉 ⊆ β′a〈∞〉 ⊆ ηa〈g〉 ⊆ η′,

where η is a substrategy of β. Then a link is created between β′ and η′ (η′ opens a

gap) only when η opens a gap (a link is created between β and η). These two links are

crossing which needs to be avoided in a gap-cogap argument (we can see the necessity

of this concern in the construction of a high2 nonbounding degree in Downey, Lempp

and Shore’s paper [15]). With this in mind, on the construction tree, when η has

outcome g, we will say that β′ becomes inactive, or β′ is injured by η, and we need

to arrange a back-up strategy β′ below this outcome.

We assume that readers have some basic ideas of the framework of 0′′′-priority ar-

gument. The construction tree will be labelled in a way where a single R-requirement

might be allocated along a single path several times, corresponding to the “injuries”

mentioned above.

For a given R-requirement, as only finitely many R-requirements can have higher

priority, and only substrategies of these R-strategies with higher priority can injure

a strategy of the given R-requirement. By induction, we can see that on any path

of the construction tree, for each R-requirement, there is an R-strategy on the path

such that no S-strategy of other R-strategies can injure it.

2.2.6 Interaction between more strategies

We now consider the interaction between P , Q, R. Suppose that a Qe-strategy ξ

works between an Re′-strategy β and an Se′,i-strategy η with βa〈∞〉 ⊆ ξ ⊂ ξa〈∞〉 ⊆
η ⊂ ηa〈g〉 ⊂ α, where α is a P-strategy and 0 ≤ e′ ≤ e. Then we may have that η

opens a gap and creates a link between β and η and α creates a link between α and
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ξ at the same stage, s0 say. That is, we have two crossed links (β, η) and (ξ, α) at

stage s0. At the next β-expansionary stage s1, suppose η closes the gap unsuccessfully

and cancels the link (β, η), so η will impose an A-restraint after stage s1 till the next

η-stage, s2 say, at which η opens another gap. But, before stage s2, i.e. during

the cogap of η-strategy, we may travel the link (ξ, α) which was created at stage s0

and may create another link (ξ′, α) if there is a Q-strategy ξ′ with ξ′a〈∞〉 ⊂ ξ. In

this case, α will perform diagonalization before stage s2. However we cannot put a

small number (≤ s1) into A before stage s2. To avoid this problem, we use a backup

strategy to deal with this. That is, we will put a backup strategy ξ̂ below ηa〈g〉 to

satisfy the Qe-requirement. In this case, ξ has no substrategy working below ηa〈g〉.
This will avoid the crossing of links as above. That is, we will have two links (β, η)

and (ξ̂, α) at the same stage such that βa〈∞〉 ⊆ η ⊂ ηa〈g〉 ⊆ ξ̂ ⊂ ξ̂a〈∞〉 ⊂ α.

We may have two nested links (β, η) and (ξ′′, α) at the same stage for some Q-

strategy ξ′′ with higher priority such that ξ′′a〈∞〉 ⊆ β ⊂ βa〈∞〉 ⊆ η ⊂ ηa〈g〉 ⊂ α.

Since η-gaps are never closed until the outer link (ξ′′, α) is travelled, α will perform

the diagonalization when an η-gap is open.

In the construction, we put a backup Qe-strategy below the Se′,i-strategy η with

g outcome, if e′ ≤ e. Therefore, for a fixed e, there are at most finitely many backup

Qe-strategies on any path of the priority tree, and the longest node assigned a Qe-

requirement is responsible for satisfying the requirement.

2.3 Construction

Before we give the full construction, we first define the priority tree T effectively.

Definition 1 (1) Define the priority ranking of the requirements as follows:

P0 < R0 < S0,0 < Q0 < T0,0 < P1 < R1 < S0,1 < S1,0 < S1,1 < Q1 < T0,1 < T1,0 <

T1,1 < · · · < Pn < Rn < S0,n < · · · < Sn,n < Qn < T0,n < · · · < Tn,n < Pn+1 < · · · ,

where X < Y means that X has higher priority than Y .

(2) A P-strategy has two possible outcomes d <L w.
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An R-, Q-, or T -strategy has two possible outcomes ∞ <L f .

An S-strategy has three possible outcomes g <L w <L d.

Definition 2 Given τ ∈ T .

(1) A requirement Re is satisfied at τ if there is an Re-strategy β with βa〈f〉 ⊂ τ ,

or there is an Re-strategy β and an Se,i-strategy η for some i with the following

properties:

• βa〈∞〉 ⊆ η ⊂ ηa〈g〉 ⊂ τ .

• there is no Se′,i′-strategy η′ such that βa〈∞〉 ⊆ η′ ⊂ η′a〈g〉 ⊂ η for any e′ < e

and any i′.

In the latter case, β has a Σ3-outcome g at η, and under this outcome, all the

strategies between β and η are said to be injured at η. When a strategy is injured,

then all its substrategies are injured.

(2) A requirement Re is active at τ via β if Re is not satisfied at τ and there is an

Re-strategy β such that

• βa〈∞〉 ⊂ τ ,

• there is no Se′,i′-strategy η′ such that βa〈∞〉 ⊆ η′ ⊂ η′a〈g〉 ⊂ τ for any e′ < e

and any i′.

(3) A requirement Se,i is satisfied at τ if either Re is satisfied at τ , or Re is active at

τ via β and there is an Se,i-strategy η with βa〈∞〉 ⊂ η ⊂ τ .

(4) A requirement Qe is satisfied at τ if there is a Qe-strategy ξ with ξa〈f〉 ⊂ τ , and

ξ is not injured at τ .

(5) A requirementQe is active at τ via ξ if there is aQe-strategy ξ such that ξa〈∞〉 ⊂
τ , and ξ is not injured at τ .

(6) A requirement Te,i is satisfied at τ if either Qe is satisfied at τ , or Qe is active at

τ via ξ and there is a Te,i-strategy ζ with ξa〈∞〉 ⊂ ζ ⊂ τ .
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(7) A requirement Pe is satisfied at τ if there is a Pe-strategy α with α ⊂ τ , and α is

not injured up to τ .

Now we define the priority tree T as follows.

Definition 3 (1) Define the root node λ as a P0-strategy.

(2) The immediate successors of a node are the possible outcomes of the corresponding

strategy.

(3) For τ ∈ T , τ works for the highest priority requirement which has neither been

satisfied, nor been active at τ .

(4) Continuing the inductive steps above, the priority tree T is built.

Definition 4 Given an Se,i-strategy η, we define the mother node of η as the longest

Re-strategy β such that βa〈∞〉 ⊂ η, we use top(η) to denote the mother node of η.

Similarly, for a given Te,i-strategy ζ, we define the mother node top(ζ) of ζ as the

longest Qe-strategy ξ such that ξa〈∞〉 ⊂ ζ.

In the construction, a P-strategy α has several parameters: one is x(α), a candi-

date for the diagonalization, and the others are numbers aα,ξ, which are associated

to those Q-strategies ξ with higher priority which are active at α.

An Se,i-strategy η has two parameters: one is the threshold k(η), and the other

one is x(η), a candidate for the diagonalization.

For a Te,i-strategy ζ, except for the parameter pζ , it has another parameter uζ

with uζ < pζ . The parameter uζ is designed to ensure that ζ’s work in defining ∆Ve
e

can be undone whenever ζ is initialized. When ζ is initialized, uζ is enumerated into

P automatically and if no number is enumerated into A (which is guaranteed in the

construction), then this will force a Ve-change to undefine all ∆Ve
e (i, x) = 0 defined

by ζ. Note that pζ can be updated many times, but uζ will be kept the same unless

ζ is initialized.

In the construction, when a strategy τ is initialized, then all the strategies with

lower priority will be also initialized automatically, and all the parameters of τ will
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be cancelled. For an S-strategy η, let β = top(η), and if there is a k < k(η) such that

γβ(k) is enumerated into Cβ, then η is reset automatically. When an S-strategy η is

reset, then all the strategies with lower priority will be also initialized automatically.

The full construction is as follows.

Stage 0: Initialize all nodes on T , and let A0 = P0 = ∅.

Stage s > 0 : This stage has two phases.

Phase I. (finding σs)

Substage 0: Let σs(0) be the root node.

Substage t: Given τ = σs � t.

If t = s then define σs = τ and initialize all the nodes with lower priority than

σs. Go to Phase II.

If t < s, then take action for τ and define σs(t) as follows:

Case 1 τ = α is a Pe-strategy. There are four subcases.

(α1) If x(α) ↑, then define x(α) to be a fresh number and choose fresh numbers

for parameters aα,ξ with x(α) < aα,ξ, for all Q-strategies ξ with higher

priority which are active at α, and aα,ξ1 < aα,ξ2 if ξ1 has higher priority

than ξ2. Request that a later stage s′ is a ξ-expansionary stage if s′ is

ξ-expansionary in the standard sense, and also l(ξ, s′) is greater than aα,ξ.

Let σs = αa〈w〉 and initialize all the nodes with priority lower than σs.

Go to Phase II.

(α2) If x(α) ↓, and ϕe(x(α))[s] ↓= 0, then among those Q-strategies active at

α if any, choose ξ with the lowest priority, create a link between α and

ξ, and put aα,ξ into P . Let σs = αa〈w〉 and initialize all the nodes with

priority lower than σs. Go to Phase II.

If there is no such Q-strategies active at α, then put x(α) into A. Let

σs = αa〈d〉 and initialize all the nodes with priority lower than σs. Go to

Phase II. We say that α receives attention at stage s.
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(α3) If α is satisfied (i.e. α has already received attention), then let σs(t) =

αa〈d〉, and go to the next substage.

(α4) Otherwise, let σs(t) = αa〈w〉, and go to the next substage.

Case 2 τ = ξ is a Qe strategy. There are three subcases.

(ξ1) If s is not a ξ-expansionary stage (it may happen that s is ξ-expansionary

in the standard sense but l(ξ, s) is still less than a number requested by

a P-strategy or Te,i-strategy below ξa〈∞〉, in this case, we still treat this

stage not ξ-expansionary stage), then let σs(t) = ξa〈f〉, and go to the next

substage.

(ξ2) If s is a ξ-expansionary stage, and no link between ξ and a P-strategy α

below ξa〈∞〉 exists, then let σs(t) = ξa〈∞〉, and go to the next substage.

(ξ3) If s is a ξ-expansionary stage, and a link between ξ and a P-strategy α

below ξa〈∞〉 exists, then cancel this link, and check whether there is an

active Q-strategy ξ′ with ξ′a〈∞〉 ⊂ ξ.

If there is such a ξ′, then choose ξ′ with the lowest priority, and create a

link between α and ξ′, put aα,ξ′ into P . Let σs = αa〈w〉 and initialize all

the nodes with priority lower than σs. Go to Phase II.

If there is no such a ξ′, then put x(α) into A. Let σs = αa〈d〉 and initialize

all the nodes with priority lower than σs. Go to Phase II. We say that α

receives attention at stage s.

Case 3 τ = ζ is a Te,i strategy.

If uζ and pζ are not defined, then define them as two fresh numbers with uζ < pζ ,

request that a later stage s′ is ξ-expansionary stage, where ξ = top(ζ), then

l(ξ, s′) must be greater than uζ and pζ . Let σs = ζ and initialize all the nodes

with priority lower than σs. Go to Phase II.

If uζ and pζ are defined, then check whether s is a ζ-expansionary stage.

(ζ1) If s is a ζ-expansionary stage, then let σs(t) = ζa〈∞〉, and put pζ into P ,

go to the next substage.
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(ζ2) If s is not a ζ-expansionary stage, then let σs(t) = ζa〈f〉, and go to the

next substage.

Case 4 τ = β is an Re strategy.

(β1) If s is not a β-expansionary stage, then let σs(t) = βa〈f〉, and go to the

next substage.

(β2) If s is a β-expansionary stage, then

(2.1) If there is a link between β and some η which was created and has

not been cancelled (such an Se,i strategy η is unique), then let v < s

be the stage at which this link was created.

(2.1.1) (Close the gap successfully)

If We,s � (γβ(k(η))[v]+1) 6= We,v � (γβ(k(η))[v]+1), then put x(η)

into Ee, for each y ≥ k(η), set ΓCe,We

β (y)[s] to be undefined if it is

defined. Let σs = ηa〈d〉 and initialize all the nodes with priority

lower than σs. Cancel this link, we say that η is satisfied at stage

s. Go to Phase II.

(2.1.2) (Close the gap unsuccessfully)

If We,s � (γβ(k(η))[v] + 1) = We,v � (γβ(k(η))[v] + 1), then put

γβ(k(η))[v] into Ce. For all x ≤ γβ(k(η))[v], if hη(x) ↑, then define

hη(x) = We,s(x). Cancel this link. Let σs = ηa〈g〉 and initialize

all the nodes >L η
a〈g〉. Go to Phase II.

(2.2) If (2.1) fails, then there are two subcases.

• If there is some x with ΓCe,We

β (x)[s] ↓= 0 6= 1 = K(x)[s], let k be

the least such one, then put γβ(k)[s] into Ce. For any substrategy

(Se,i-strategy) η of β, if k(η) is defined and k < k(η), then we reset η.

Let σs = βa〈∞〉, and initialize all strategies >L β
a〈∞〉. Go to Phase

II.

•Otherwise, find the least x such that ΓCe,We

β (x)[s] ↑, define ΓCe,We

β (x)[s] =

K(x)[s] with a fresh use γβ(x)[s].

Let σs(t) = βa〈∞〉, and go to the next substage.
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Case 5 τ = η is an Se,i strategy. Let β= top(η).

(η1) If k(η) ↑, then define k(η) to be a fresh number. Let σs = η and initialize

all the nodes with priority lower than σs. Go to Phase II.

(η2) If k(η) ↓, but x(η) ↑, then choose a fresh number as x(η). Let σs = ηa〈w〉
and initialize all the nodes with priority lower than σs. Go to Phase II.

(η3) If k(η) ↓, x(η) ↓, and ΦCe
i (x(η))[s] does not converge to 0, then let σs(t) =

ηa〈w〉, and go to the next substage.

(η4) If k(η) ↓, x(η) ↓, and ΦCe
i (x(η))[s] ↓= 0 and x(η) 6∈ Ee[s] and no link

between β and η exists, then, if ΓCe,We

β (k(η))[s] ↓ and l(β, s) > γβ(k(η))[s],

we create a link between β and η, define σs(t) = ηa〈g〉 and go to the next

substage; otherwise, let σs(t) = ηa〈w〉, and go to the next substage.

(η5) If k(η) ↓, x(η) ↓, and ΦCe
i (x(η))[s] ↓= 0 and x(η) ∈ Ee[s], then let σs(t) =

ηa〈d〉, and go to the next substage.

Phase II. Having σs, for τ ⊂ σs, do as follows, and then go to the next stage.

Recall that for the T strategies, ζ say, being initialized at this stage, uζ is put

into P automatically.

If τ = ζ is a Te,i strategy, and pζ is enumerated into P during Phase I (i.e. s is

ζ-expansionary), then assign a fresh number to pζ .

(1) If s is a ζ-expansionary stage, then extend the definition of ∆Ve
e to all

arguments (i, x) with x < l(ζ, s) and ∆Ve
e (i, x) is not defined yet, defining

∆Ve
e (i, x) = 1 with use −1.

(2) If s is not a ζ-expansionary stage, then extend the definition of ∆Ve
e to all

arguments (i, x) with x < s such that if ∆Ve
e (i, x) is not defined yet. See

whether ∆Ve
e (i, x) has been defined so far, after the current pζ is defined.

If no, then define ∆Ve
e (i, x) = 0 with use δe(i, x) = s.

If yes, then check whether the computation ΦA,Ve
e (pζ) has changed from the

stage when ∆Ve
e (i, x) was defined last time. If the computation keeps the
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same, then define ∆Ve
e (i, x) = 0 with use the same as before. Otherwise,

define ∆Ve
e (i, x) = 0 with use δe(i, x) = s.

This completes the construction.

2.4 Verification

Define the true path of the construction to be σ = lim infs σs, i.e. the leftmost path

of the construction. The following lemma implies that the true path σ is infinite.

Lemma 4. Let τ be any node on the true path σ. Then

(1) τ can be initialized or reset at most finitely often.

(2) τ has an outcome O such that τ_O is on σ.

(3) τ can initialize the node τ_O at most finitely often.

Proof. We prove the lemma by induction on the length of τ .

When τ = λ, the root node of the priority tree T , i.e. P0-strategy. Note that λ

can never be initialized or reset, so (1) is clearly true. By our construction, after λ

defines the witness x(λ), x(λ) will never be cancelled. If there is a stage s such that

ϕ0(x(λ))[s] ↓= 0, then we will put x(λ) into A and hence we have A(x(λ)) = 1 6= 0 =

ϕ0(x(λ)), so P0 is satisfied at any stage after s and λa〈d〉 ⊂ σ, thus (2) is true for λ.

After stage s, λ will not initialize other strategies, and so (3) is also true for λ. If there

is no such a stage s with ϕ0(x(λ))[s] ↓= 0, then we will have A(x(λ)) = 0 6= ϕ0(x(λ))

(i.e. P0 is satisfied) and λa〈w〉 ⊂ σ, and λ will not initialize other strategies. Thus,

(2), (3) are true for λ obviously.

Now suppose the lemma is true for all τ ′ ⊂ τ , we now show that the lemma is also

true for τ . Let τ− be the immediate predecessor of τ . By the induction hypothesis,

τ− can be initialized or reset at most finitely often and τ− has a true outcome O
on σ, so we can fix a stage s0 after which τ− can not be initialized or reset and the

nodes on the left of τ = τ−_O can never be visited. Also by the induction hypothesis
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again, τ− can initialize the node τ = τ−_O at most finitely often. Thus, we can fix

some (least) stage s1 ≥ s0 after which τ can never be initialized by higher priority

strategies. If τ is an Se,i-strategy, then after stage s1, once the threshold k(τ) is

defined, it can never be cancelled. Thus, τ can be reset at most k(τ) times more, and

so (1) is true for τ .

Now we show that (2) and (3) are true for τ .

τ = α is a Pe-strategy. Apply the same argument as for P0-strategy λ to α. Note

that if there are Qe-strategies ξ active at α, then once α sees ϕe(x(α)) ↓= 0, it does

not do the diagonalization immediately. It first enumerates numbers aα,ξ into P one

by one for all Qe-strategies ξ active at α (there are finitely many such ξ), as these

Qe-strategies ξ have infinitary outcome, all the links being created will eventually be

cancelled, and x(α) is put into A, making A(x(α)) = 1 6= 0 = ϕe(x(α)). Pe is satisfied

via this x(α), and hence α will take no further actions. So (2) and (3) are true for τ

obviously.

τ = β is an Re-strategy. By our construction, if there are infinitely many β-

expansionary stages then we have that βa〈∞〉 ⊂ σ, and otherwise βa〈f〉 ⊂ σ. Note

that β never initializes the strategies with lower priority. So (2), (3) are true for τ .

τ = η is an Se,i-strategy. Let s2 > s1 be the least stage after which η can not be

reset. Then x(η) will be defined at a stage s3 > s2, and it will never be cancelled

once defined. If there is an η-stage s4 > s3 such that ΦCe
i (x(η))[s4] ↓= 0, then we

will create a link between η and its mother node, β say, at this stage. At the next

β-expansionary stage s5 > s4, if We,s5 � (γe(k(η))[s4] + 1) 6= We,s4 � (γe(k(η))[s4] + 1),

then we put x(η) into Ee, and so we have Ee(x(η)) = 1 6= 0 = ΦCe
i (x(η)) ↓= 0 since

the computation ΦCe
i (x(η))[s4] ↓= 0 is clear of the γe-uses (by the choice of s2 and

the above We-change will lift the γe(y)-use for all y ≥ k(η), so there is no γe-use less

than ϕi(x(η))[s4] will be enumerated into Ce after stage s5). In this case, ηa〈d〉 will

be on the true path, and η will take no further actions after stage s5, hence (2), (3)

are true for η. So we assume that x(η) is not enumerated into Ee in the construction.

Without loss of generality, we assume that there are infinitely many η-stages at which

ΦCe
i (x(η)) ↓= 0 (since otherwise, we have that ηa〈w〉 is on the true path, and (2),
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(3) are true for η obviously). In this case, by our construction, η will open infinitely

many gaps and we do not get We-changes during gaps. So we have ηa〈g〉 is on the

true path, and note that η will never initialize the strategies below ηa〈g〉. Thus, (2),

(3) are true for η.

τ = ξ is a Qe-strategy. We have ξa〈∞〉 ⊂ σ if there are infinitely many ξ-

expansionary stages, and ξa〈f〉 ⊂ σ otherwise. Note that, a strategy below ξa〈∞〉
can request that a stage s is ξ-expansionary only when s is ξ-expansionary in the

standard sense and also l(ξ, s) is greater than the associated parameters, this kind

of requests do not affect the outcome of ξ on the true path. So (2) is true for τ .

Furthermore, ξ never initializes the strategies with lower priority in the construction.

(3) is also true for τ .

τ = ζ is a Te,i-strategy. We have that ζa〈∞〉 ⊂ σ if there are infinitely many

ζ-expansionary stages; and ζa〈f〉 ⊂ σ otherwise. Note that ζ never initializes the

strategies with lower priority in the construction. So (2), (3) are true for τ .

This completes the proof of Lemma 4.

Lemma 5. For any e ∈ ω, let α be the longest Pe-strategy on the true path σ. Then

Pe is satisfied via α.

Proof. Follows the proof of Lemma 4 immediately.

Lemma 6. For any e ∈ ω, let β be the longest Re-strategy on the true path σ. Then

β, together with its substrategies, satisfies the Re requirement.

Proof. Fix e. Let β be the longest Re-strategy on the true path σ. By Lemma 4,

β can be initialized at most finitely often. Let s0 be the least stage after which β

can never be initialized. We assume that We = ΦA
e . Then βa〈∞〉 ⊂ σ and below

outcome ∞, we need to construct an incomplete c.e. set Ce and a p.c. functional Γe

at β-expansionary stages such that either K = ΓCe,We
e or We is computable.

By our construction, β can either have only finitely many substrategies or have

infinitely many substrategies on the true path σ.

Case 1 β has only finitely many substrategies on the true path σ.
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In this case, there must be some (the last one) substrategy η which works on

Se,i with βa〈∞〉 ⊂ ηa〈g〉 ⊂ σ for some i. That is, η opens infinitely many gaps,

all these gaps are closed unsuccessfully. γe(k(η)) is put into Ce infinitely often

and hence lims γe(k(η))[s] = ∞. Thus, hη is defined to be a total computable

function over the course of the construction. We will show that hη = We and

hence We is computable.

Now let s1 > s0 be the least stage after which η can never be initialized or reset.

Given an x ∈ ω, if hη(x) is defined for the first time at a stage v1 > s1, then

we will prove that for all stages s ≥ v1, hη(x) ↓= We(x) holds at stage s by

induction. Suppose that t1 < t2 < · · · are the stages > s1 at which a link (β, η)

is created, and that v1 < v2 < · · · are the stages at which the link (β, η) created

at stages t1 < t2 < · · · are cancelled, respectively. By the choice of v1, we know

that We,v1(x) = We,t1(x) as otherwise, the gap is closed successfully. After stage

v1, we will impose A-restraint to preserve We till t2 > v1 at which a new link

(β, η) is created. That is, hη(x) ↓= We(x) holds at the beginning of stage t2.

Suppose by induction that hη(x) ↓= We(x) holds at the beginning of stage tn for

some n ≥ 2. Then a gap is open at stage tn and this gap is closed unsuccessfully

at stage vn (this link is cancelled), and hence hη(x) = We,vn(x). Again, at stage

vn, all strategies on the right of ηa〈g〉 are initialized and hence an A-restraint is

imposed, and We(x) is preserved till tn+1, at which a new gap is open. That is,

hη(x) ↓= We(x) holds at the beginning of stage tn+1. This induction argument

implies that, for each n, hη(x) ↓= We,tn(x) holds. Therefore, hη = We and We

is computable.

Case 2 β has infinitely many substrategies on the true path σ.

In this case, there are infinitely many substrategies η with βa〈∞〉 ⊆ η ⊂ σ

with top(η)=β, and each such η will not have outcome g on the true path, and

so γ(k(η)) is enumerated into Ce only finitely often as η opens and closes gaps

only finitely often. By the definition of thresholds, for each k, there is at most

one substrategy η with top(η)=β which chooses k to be the threshold k(η) in

the construction, in which case, if η is on the left of the true path, then η puts
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γ(k) into Ce only finitely many times; if η is on the right of the true path, then

k will be cancelled eventually and so η puts γ(k) into Ce only finitely many

times. Note that, for those k which are not chosen to be the threshold, β puts

γ(k) into Ce only when k enters K. Thus, for each k, ΓCe,We
e (k) ↓ eventually,

i.e. ΓCe,We
e is total. Moreover, by the properties of γ-use in the Re-strategy,

whenever ΓCe,We
e (x) ↓= 0 6= 1 = K(x), we will put γ(x) into Ce to rectify the

definition of ΓCe,We
e . Thus, ΓCe,We

e is defined correctly and hence K = ΓCe,We
e .

Now, we show that all the subrequirements Se,i are satisfied. For each i, let η

be an Se,i-strategy with βa〈∞〉 ⊆ η ⊂ σ. We will show that Se,i is satisfied by

η. Let s1 > s0 be the least stage after which η can never be initialized or reset.

Then x(η) will be defined at a stage s2 > s1, and this x(η) can never be cancelled.

Assume that there are infinitely many η-stages s at which ΦCe
i (x(η)) ↓= 0

(otherwise, we have ηa〈w〉 ⊂ σ and Se,i is satisfied since Ee(x(η)) = 0 6=
ΦCe

i (x(η))).

Because η cannot open infinitely many gaps in Case 2, eventually, η will close the

last gap successfully, which implies that Ee(x(η)) = 1 6= 0 = ΦCe
i (x(η)). Here,

the computation ΦCe
i (x(η)) is preserved, as We has changes below γe(k(η)),

which undefined ΓCe,We
e (y) for each y ≥ k(η). The new value of γe(y) will be

defined as big numbers, in particular, γe(k(η)) will be bigger than ϕi(x(η)).

The enumeration of these numbers into Ce will not change the computation

ΦCe
i (x(η)). Thus, Se,i is satisfied by η.

Lemma 7. For any e ∈ ω, let ξ be the longest Qe-strategy on the true path σ. Then

ξ, together with its substrategies, satisfies the Qe requirement.

Proof. Fix e. Let ξ be the longest Qe-strategy on the true path σ. We assume that

P = ΦA,Ve
e . Then there are infinitely many ξ-expansionary stages, so ξa〈∞〉 ⊂ σ.

Below outcome ∞, ξ has infinitely many substrategies Te,i, we need to show that all

its substrategies Te,i on the true path work together to define a p.c. functional ∆Ve
e

such that Tot(i) = limx ∆Ve
e (i, x), to show that Ve has high degree.
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Let ζ be a Te,i-strategy with ξa〈∞〉 ⊆ ζ ⊂ σ. We will show that ζ defines

∆Ve
e (i, x) for almost all x to ensure that Tot(i) = limx ∆Ve

e (i, x). Note that when a

Te,i-strategy ζ ′ is initialized, then the associated initialization parameter uζ′ will be

enumerated into P , if no small number is enumerated into A, then this will force

a Ve-change at the next ξ-expansionary stage, and this Ve-change can undefine all

∆Ve
e (i, x) defined by ζ ′. This means that ζ, the Te,i-strategy on the true path σ, will

define ∆Ve
e (i, x) for almost all x. So we need to show that there is no small number

being enumerated into A between the stage when uζ′ is enumerated into P and the

next ξ-expansionary stage. Without loss of generality, we assume that there is a

small number being enumerated into A at the next ξ-expansionary stage. In this

case, when ζ ′ is initialized, a link between ξ and some P-strategy α is created, aα,ξ is

enumerated into P , and no number is enumerated into A at this stage. Note that the

next ξ-expansionary stage is required that its length of agreement is greater than uζ′ ,

and before the next ξ-expansionary stage appears, every ξ-stage is not expansionary

and hence no small number, in particular, no number less than ϕe(uζ′), is enumerated

into A. This means that when the next ξ-expansionary stage appears, Ve must change

below ϕe(uζ′). This Ve-change can undefine all ∆Ve
e (i, x) defined by ζ ′.

We have shown that ζ defines ∆Ve
e (i, x) for almost all x in the above paragraph,

so we can assume that all ∆Ve
e (i, x) defined by those Te,i-strategies with lower priority

are undefined automatically whenever ζ is visited. Since ζ is on the true path, by

Lemma 4, let s0 be the least stage after which ζ can never be initialized. So uζ and

pζ will be defined at a stage s1 ≥ s0 and uζ will be defined to be less than pζ . Note

that uζ will be kept the same after stage s1, but pζ can be updated many times after

s1. We require that if a stage s2 > s1 is a ξ-expansionary stage, then its length of

agreement must be greater than uζ and pζ . Thus, from now on, in the construction,

at a further ζ-stage (clearly, it is also a ξ-expansionary stage), if it is a ζ-expansionary

stage, then we will put pζ into P to undefine all ∆Ve
e (i, x) defined under the f outcome

of ζ between the last ζ-expansionary stage and the current stage, so ζ can extend

the definition of ∆Ve
e (i, x) correctly at a later ζ-stage. We will update the value of pζ

after pζ is enumerated into P .

Thus, if ζa〈∞〉 ⊂ σ, then the value of pζ will be updated infinitely many times
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and all ∆Ve
e (i, x) defined after stage s1 have value 1, and so limx ∆Ve

e (i, x) = 1.

If ζa〈f〉 ⊂ σ, then after some large enough stage s3 > s1, there is no more ζ-

expansionary stage, and hence from then on pζ will remain the same, ζ will define

∆Ve
e (i, x) = 0 with use δζ(i, x) > ϕe(pζ), and such a δ-use can be lifted only when

Ve changes below ϕe(pζ). Thus, if ΦA,Ve
e (pζ) ↓ eventually, then the Ve-part of the

computation ΦA,Ve
e (pζ) will be fixed, and so the use δζ(i, x) can be lifted at most

finitely often and ∆Ve
e (i, x) will be defined eventually. In this case, we have that

limx ∆Ve
e (i, x) = 0. Note that, by our assumption of P = ΦA,Ve

e , ΦA,Ve
e (pζ) ↓ eventually.

Therefore, Tot(i) = limx ∆Ve
e (i, x), and Te,i is satisfied by ζ. Moreover, Qe is satisfied

by ξ since all its substrategies Te,i are satisfied, and all these substrategies ensure that

∆Ve
e is well-defined and for each i, Tot(i) = limx ∆Ve

e (i, x). So Tot ≤T V
′
e , Ve has high

degree.

This completes the proof of Theorem 1.
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Chapter 3

HIGHNESS AND LOCALLY

NONCAPPABLE DEGREES

3.1 Introduction

Lachlan [33] and Yates [65] proved the existence of minimal pairs, where a pair (a,b)

is called a minimal pair if a and b are nonzero c.e. degrees such that a ∧ b = 0. A

c.e. degree a is called cappable if a is 0 or a half of a minimal pair, and noncappable

otherwise. Yates proved in [66] the existence of noncappable degrees. Let M and NC

be the sets of all cappable and noncappable c.e. degrees, respectively. Ambos-Spies,

Jockusch, Shore and Soare [1] showed that M is an ideal of R, that NC is a filter of

R, and that NC = LC = PS, where LC is the set of all low cuppable degrees and

PS is the set of all promptly simple degrees.

A c.e. degree a is called locally noncappable if there is a c.e. degree c above a such

that no nonzero c.e. degree w below c forms a minimal pair with a. We say that c

witnesses that a is locally noncappable.

Seetapun proved in his thesis [57] that every nonzero incomplete c.e. degree is

locally noncappable. Giorgi published Seetapun’s result in [24], but with one Σ3

outcome missing, so Giorgi’s construction is not complete. Recently, Stephan and

Wu [59] improved Seetapun’s result by showing that such witnesses can always be

chosen as high2 degrees, which implies the existence of Downey, Lempp and Shore’s
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high2 nonbounding degrees, Li’s high2 plus-cupping degrees. In this chapter, we prove

another theorem on locally noncappable degrees, which also implies several known

results as direct corollaries.

Theorem 2. For any nonzero incomplete c.e. degree a, there exist two incomparable

c.e. degrees c, d > a witnessing that a is locally noncappable, and c ∨ d is high.

Theorem 2 implies both classes of the plus-cupping degrees and the nonbounding

c.e. degrees do not form ideals, which was proved by Li and Zhao in [46], by using

two separate constructions.

3.2 Requirements and strategies

To prove Theorem 2, let A be an incomputable and incomplete c.e. set in a. We

will construct two c.e. sets C, D and a p.c. functional Λ satisfying the following

requirements:

He : Tot(e) = lim
x

ΛA⊕C⊕D(e, x),

QC
e : C 6= ΦA⊕D

e ,

QD
e : D 6= ΦA⊕C

e ,

RC
e : We = ΦA⊕C

e ⇒ We ≤T A or ∃Xe ≤T A,We(Xe is incomputable),

RD
e : Ve = ΨA⊕D

e ⇒ Ve ≤T A or ∃Ye ≤T A, Ve(Ye is incomputable).

Here {(We,Φe, Ve,Ψe) : e ∈ ω} is an effective enumeration of all quadruples (W,Φ, V,Ψ)

of c.e. sets W,V and p.c. functionals Φ,Ψ. Xe, Ye are c.e. sets built by us.

Tot = {i : ϕi is total} is a Π0
2-complete set. Let c be the degree of A ⊕ C, and

d be the degree of A ⊕ D. By the Q-requirements, c and d are two incomparable

degrees above a, by theR-requirements, both c and d witness that a is locally noncap-

pable. H-requirements ensure that c ∨ d is high. Therefore, the above requirements

are sufficient to prove Theorem 2.
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3.2.1 A QC
e strategy

A QC
e -strategy α is a Sacks coding strategy (here, a QD

e -strategy is similar). That

is, even though A is not in our control, we can still satisfy the QC
e -requirement by

the assumption that A is incomplete. α will run cycles j for j ∈ ω, and all cycles

of α define a functional Ξα jointly. Each cycle j tries to find a number xj such

that C(xj) 6= ΦA⊕D
e (xj), and if cycle j fails to make it, then this cycle will define

ΞA
α (j) = K(j) successfully. If we fail to satisfy a QC

e -strategy, then we will threaten

K = ΞA
α to get a contradiction.

Cycle j proceeds as follows:

(1) Choose xj as a fresh number.

(2) Wait for ΦA⊕D
e (xj) ↓= 0.

(3) Preserve D � ϕ(xj) from other strategies, and define ΞA
α (j) = K(j) with use

ξα(j) = ϕe(xj). Start cycle j + 1 simultaneously.

(4) Wait for A � ϕe(xj) or K(j) to change.

(a) If A � ϕe(xj) changes first, then cancel all cycles j′ > j and drop the

D-restraint of cycle j to 0. Go back to step 2.

(b) If K(j) changes first, then stop cycles j′ > j, and go to step 5.

(5) Put xj into C. Wait for A � ϕe(xj) to change.

(6) Define ΞA
α (j) = K(j) = 1 with use 0, and start cycle j + 1.

α has two sorts of outcomes:

(j, f) : Some cycle j waits forever at step 2 or 5.

(The QC
e -strategy is satisfied via witness xj in an obvious way.)

(j,∞) : Some (least) cycle j runs infinitely often.

(It must be that cycle j returns from step 4 to 2 infinitely often. Thus ΦA⊕D
e (xj)

diverges. So the QC
e -strategy is satisfied.)

47



Note that it is impossible that α runs infinitely many cycles and each cycle runs

only finitely often, since otherwise ΞA
α is defined as a total function and ΞA

α = K, a

contradiction.

We introduce some notions for convenience when we deal with such cycles. Say

that cycle j acts if it chooses a fresh number xj as its attacker at step 1 or, it changes

the value of C(xj) by enumerating xj into C at step 5. Say that cycle j is active at

stage s if at this stage, when α is visited, α is running cycle j, except the situation

that cycle j is just started at stage s.

3.2.2 An RC
e strategy

Assume that a strategy β works on RC
e , we define the length of agreement function

l(β, s) at stage s to be

l(β, s) = max{x < s : (∀y < x)[We(y)[s] = ΦA⊕C
e (y)[s]]},

and the maximum length of agreement function at stage s is defined to be

m(β, s) = max{l(β, t) : t < s and t is a β-stage}.

Say that a stage s is a β-expansionary stage if s = 0 or s is a β-stage with l(β, s) >

m(β, s).

At β-expansionary stages, we will construct a c.e. set Xe and two p.c. functionals

Γβ and ∆β such that if We = ΦA⊕C
e , then either We ≤T A or Xe is incomputable with

Xe = ΓA
β ,∆

We
β .

β has two outcomes ∞ <L f . ∞ denotes that β has infinitely many expansionary

stages, and f denotes that β has only finitely many expansionary stages. Below the

∞ outcome of β, to ensure that Xe is incomputable, we need to satisfy the following

subrequirements

SC
e,i : Xe 6= ϕi

for all i.

In the construction, we always define the use δβ(x) = x, which will ensure that
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∆We
β is totally defined. When ΓA

β (x) is defined at a β-expansionary stage s, we will

define γβ(x)[s] > ϕe(x)[s], so ΓA
β could be partial when ΦA⊕C

e is partial.

3.2.3 An SC
e,i strategy

Assume that η is an SC
e,i-strategy below the ∞ outcome of an RC

e -strategy β, and η

has two parameters xη and zη. The basic η-strategy is almost the same as the one

given in [59]:

(1) Pick xη as a fresh number.

(2) Wait for ϕi(xη) ↓= 0.

(3) Assign zη = xη and let xη ↑. Go back to step 1, and wait for A to change below

zη. (If such a change occurs, then ΓA
β (zη) is undefined.)

(4) (Open a gap)

Create a link between β and η, wait for We to change below zη.

(5a) (Close the gap successfully)

If We has a change below zη, then η performs the diagonalization by putting zη

into Xe. Cancel the link to close the gap. In this case, η is satisfied forever.

(5b) (Close the gap unsuccessfully)

If We does not have a change below zη, then cancel the link to close the gap.

Impose a restraint on C. Request that γβ(zη) be defined greater than ϕe(zη).

We will define a p.c. functional Θη such that if η opens infinitely many different

gaps (each gap associated with different value of zη), then ΘA
η is totally defined and

computes We correctly, and hence η provides a global win for β.

In the construction, we define Θη in step (5b), i.e. when a gap for zη is closed

unsuccessfully, for all x ≤ zη, if ΘA
η (x) ↑, then we define ΘA

η (x) = We(x) with θη(x) =

ϕe(x).
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The period between a stage at which a gap is closed unsuccessfully and the stage

at which the next gap is open is called a cogap. Note that, when a gap is closed

unsuccessfully, a restraint is imposed on C to prevent We from changing below zη.

But, as A is given, A can change below ϕe(zη) during the cogaps, which may change

We below zη. In other words, during a cogap for zη, if We changes on some number

x ≤ zη, then A must change below ϕe(x) since C is protected, and hence ΘA
η (x) is

undefined by this A-change, so ΘA
η (x) can be defined correctly when it is defined later.

An η-strategy has four outcomes s <L g <L d <L w, the outcome s denotes the

case that a gap is closed successfully; the outcome g denotes the case that η opens

infinitely many different gaps (each gap associated with different value of zη), we can

show that if We = ΦA⊕C
e then We = ΘA

η , and hence we have a global win for β;

the outcome d denotes the case that η opens only finitely many different gaps and

for the last gap, A changes below the corresponding use ϕe(zη) infinitely often, and

hence ΦA⊕C
e (zη) ↑, we have a global win for β; the outcome w denotes the case that η

waits for ϕi(xη) ↓= 0 forever for some xη. We will reconsider SC
e,i-strategies after the

H-strategies are introduced.

An RD
e -strategy is similar to an RC

e -strategy and hence we have the following

subrequirements

SD
e,i : Ye 6= ϕi

for all i.

An SD
e,i-strategy is similar to an SC

e,i-strategy.

3.2.4 An He strategy

Assume τ works on He. We define the length of convergence function l(τ, s) at stage

s to be

l(τ, s) = max{x < s : (∀y < x)[ϕe(y)[s] ↓]},

and the maximum length of convergence function at stage s is defined to be

m(τ, s) = max{l(τ, t) : t < s and t is a τ -stage}.

50



Say that a stage s is a τ -expansionary stage if s = 0 or s is a τ -stage with l(τ, s) >

m(τ, s). τ has two outcomes ∞ <L f . If τ has ∞ outcome, i.e. ϕe is total, then we

will define ΛA⊕C⊕D(e, x) = 1 for almost all x; if τ has f outcome, i.e. ϕe is not total,

then we will define ΛA⊕C⊕D(e, x) = 0 for almost all x.

Note that Λ is a global p.c. functional built by us through the whole construction.

ΛA⊕C⊕D(e, x) is undefined automatically if some number ≤ λ(e, x) is enumerated into

C or D. As a consequence, λ(e, x) may be lifted when ΛA⊕C⊕D(e, x) is redefined later.

If we defined ΛA⊕C⊕D(e, x) = 0 under the f outcome at a previous stage, and now

we see ϕe converges on more arguments, i.e. τ changes its outcome from f to ∞, then

we want to (re)define ΛA⊕C⊕D(e, x) = 1, but first we need to undefine all the previous

ΛA⊕C⊕D(e, x) = 0. So generally, at a τ -expansionary stage, we will put the λ(e, x)

use into C to undefine ΛA⊕C⊕D(e, x) = 0, and we (re)define ΛA⊕C⊕D(e, x) = 1 with

use λ(e, x) as −1 at τ -expansionary stages since we never want to undefine it later.

This means that we only care about the λ(e, x) use defined under the f outcome.

Actually, in the construction, we need to consider the restraint imposed on τ , so

we will define boundary bd(τ) of τ (playing a role of the restraint) as follows: when

τ is visited for the first time, we define bd(τ) to be a fresh number, whenever τ is

initialized, we will redefine bd(τ) as a fresh number. At a τ -expansionary stage s, we

will put the λ(e, x) use with bd(τ) < λ(e, x) ≤ s into C to undefine ΛA⊕C⊕D(e, x) = 0.

One may wonder why the He-strategy τ enumerates the λ(e, x) use only into C

when it wants to undefine ΛA⊕C⊕D(e, x) = 0. Actually, we first fix C just for simplic-

ity, and in the construction, we may need to put the λ(e, x) use into D sometimes.

3.2.5 Interaction between strategies

First, we consider the interaction between the high strategies and the gap-cogap

argument used in S-strategies.

Suppose that an RC
e -strategy β works below the ∞ outcome of an H-strategy

τ , i.e. τa〈∞〉 ⊂ β. Then, τ may put the λ-uses into C infinitely often and hence

injure a computation ΦA⊕C
e (zη) infinitely often, where η is a substrategy of β. Note

that, when β closes a gap for η, a restraint is imposed on C to prevent We from
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changing below zη, which will ensure that, during a cogap for η, if We changes below

zη then it must be due to the A-change below the corresponding use ϕe(zη). But, the

enumerations of numbers into C by such H-strategy τ of higher priority affect our

idea in this gap-cogap argument. Thus, we need to consider believable computations

for β in the construction.

Suppose that an He0-strategy τ works between β and η with βa〈∞〉 ⊂ τ ⊂
τa〈∞〉 ⊂ η, where β is an RC

e -strategy and η is an SC
e,i-strategy. Then we may have

that β opens a gap for η and creates a link between β and η at some β-expansionary

stage, s0 say. At the next β-expansionary stage s1 (β-believable computations are

considered, we will give the definition for it in our construction), suppose this gap is

closed unsuccessfully by β, then we cancel the link (β, η) and let βa〈∞〉 be accessible

at stage s1. After stage s1, and before the next gap for η is open, i.e. during the

cogap for η, we want to impose a C-restraint below s1 to prevent We from changing.

But, during the cogap for η, τ may be visited and enumerate some small λ(e0, x) ≤ s1

into C. That is, during the cogap for η, the idea of imposing a C-restraint to prevent

We from changing fails, which should be avoided. To solve this problem, we apply

the method introduced in [46]: when β closes the gap for η unsuccessfully at stage

s1, it requires that all the H-strategies with ∞ outcome between β and η enumerate

the λ-uses into set D to lift λ-uses if needed. Thus, after stage s1, all the numbers

enumerated into C in the future by such H-strategies are greater than s1.

Similarly, if β is an RD
e -strategy and η is an SD

e,i-strategy as above, then when β

closes a gap for η unsuccessfully, it requires that all the H-strategies with ∞ outcome

between β and η enumerate the λ-uses into set C to lift λ-uses if needed. Note that,

for the interactions between RC and RD strategies, we will explain how to deal with

these interactions later.

We now describe in detail about the S-strategies together with the high strategies.

Suppose that an He0-strategy τ works between β and η with βa〈∞〉 ⊂ τ ⊂ τa〈∞〉 ⊂
η, where β is an RC

e -strategy and η is an SC
e,i-strategy. Assume that β opens a gap

(for η) for a value of zη and creates a link between β and η at some β-expansionary

stage, s0 say. That is, ΓA
β (zη) is undefined at stage s0.
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At the next β-expansionary stage s1, if We changes below zη (i.e. ∆We
β (zη) is

undefined), then η can close this gap successfully by putting zη into Xe. Cancel the

link (β, η), we say that η is satisfied at stage s1. If We does not change below zη, then

β closes this gap for η unsuccessfully at stage s1, cancel the link (β, η). Note that

when β closes a gap, what we do is to extend the definitions of ΓA
β and ∆We

β .

Suppose that β closes this gap for η unsuccessfully at stage s1, then at the next

β-expansionary stage s2, if We changes below zη, it must be due to the A-change

below the corresponding use ϕe(zη) (as C is protected), so both ∆We
β (zη) and ΓA

β (zη)

are undefined, then η can perform the diagonalization by putting zη into Xe in this

cogap. If We does not change below zη, but A changes below ϕe(zη). In this case, if

we let β reopen this gap for We to change and create a link between β and η at stage

s2, and let η is visited immediately (i.e. the strategies between β and η are not visited

at stage s2), having outcome d as in [59]. Then this gap can be closed unsuccessfully

and reopened by β infinitely often in this way, and hence it requires that all the H-

strategies with ∞ outcome between β and η enumerate the λ-uses into set D to lift

λ-uses to protect C infinitely often. However, such H-strategies may have outcome

different from the one seen at η. That is, η guesses that τ has outcome ∞, but τ may

actually have outcome f . As a consequence, it may require τ to enumerate the λ-uses

into set D infinitely often (when this gap is closed unsuccessfully by β), but τ actually

has outcome f . Thus, τ can not be satisfied since Λ can not be well-defined in this

case. To avoid this problem, we will modify the method in [59] as follows: After a gap

for zη is closed unsuccessfully by β, at the next β-expansionary stage, if A changes

below ϕe(zη), but We does not change below zη, we will not let β reopen this gap

immediately. Instead, if η is visited at this stage, then we let η reopen this gap. That

is, in the construction, at an η-stage, if there is a gap which was closed unsuccessfully

by β at a previous stage, and if A changes below the correspongding use ϕe(zη) at

this η-stage, then we will let η reopen this gap. Note that, in the construction, when

a gap for η is reopened, it must be reopened by η, not by β. This will avoid the

problem above, since if a gap can be closed unsuccessfully and reopened infinitely

often then the H-strategies between β and η must have outcome the same with the

one seen at η.
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Note that, in a cogap for η, it may happen that we see We change below zη at

a β-expansionary stage, but ΓA
β (zη) ↓ at this stage. We now describe why this can

happen in detail as follows. Suppose that a gap for zη is closed unsuccessfully by β

at a β-expansionary stage s1, and we define ∆We
β (zη) and ΓA

β (zη) at the end of stage

s1, with γβ(zη)[s1] > ϕe(zη)[s1]. At the next β-expansionary stage s2, assume that A

changes below ϕe(zη), but We does not change below zη, i.e. ΓA
β (zη) ↑, but ∆We

β (zη) ↓.
And assume that η is not visited at stage s2 (and hence η can not reopen this gap

at stage s2), so we define ΓA
β (zη) at the end of stage s2, with γβ(zη)[s2] > ϕe(zη)[s2].

Assume that ϕe(zη)[s2] > ϕe(zη)[s1], and hence the H-strategies between β and η may

enumerate some small λ-uses into C, changing the computation ΦA⊕C
e (zη)[s2]. Thus,

at the next β-expansionary stage s3, it may happen that ∆We
β (zη) ↑, but ΓA

β (zη) ↓,
i.e. We changes below zη, but A does not change below ϕe(zη). In this case, we can

not let η perform the diagonalization at stage s3 even though We changes below zη.

On the other hand, at an η-stage, if a gap (which was closed unsuccessfully by β

at a previous stage) can not be reopened, i.e. A does not change below ϕe(zη), then

we will consider a new value of zη (if any) for η and check whether we can open a new

gap. If we can open a new gap, then we say that the existing gap is closed completely.

Next, we consider the interaction between the high strategies and a QD-strategy

(the case of QC-strategy is similar).

Suppose that a QD-strategy α works below the ∞ outcome of an H-strategy τ ,

i.e. τa〈∞〉 ⊂ α. Then, τ may put the λ-use into C infinitely often and hence injure

the computation ΦA⊕C
e (xα) after α performs diagonalization infinitely often. Thus,

we need to consider believable computations for α-strategy in the construction.

Finally, we consider the interaction between an RC-strategy and an RD-strategy.

Suppose that anRD
e -strategy β′ works between anRC

e′-strategy β and an SC
e′,i′-strategy

η with βa〈∞〉 ⊂ β′ ⊂ β′a〈∞〉 ⊂ η ⊂ ηa〈O〉 ⊂ τ ⊂ τa〈∞〉 ⊂ η′, where O ∈ {g, d}, τ
is an H-strategy and η′ is an SD

e,i-strategy and 0 ≤ e′ ≤ e. Then we may have that a

gap is open (or reopened) for η and creates a link between β and η and η′ reopens a

gap and creates a link between β′ and η′ at the same stage, s0 say. That is, we have
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two crossed links (β, η) and (β′, η′) at stage s0. At the next β-expansionary stage

s1, suppose that β closes the gap for η unsuccessfully and cancels the link (β, η), it

requires that all the H-strategies with ∞ outcome between β and η enumerate the

λ-uses into set D to lift λ-uses if needed to protect C. And, η imposes a C-restraint

after stage s1 till the stage, s2 say, at which the next gap for η is open. But, during

this cogap for η, we will travel the link (β′, η′) created at stage s0. Suppose that

we travel the link (β′, η′) at stage t (s1 < t < s2) say, and β′ closes the gap for η′

unsuccessfully, thus it requires that all the H-strategies with ∞ outcome between

β′ and η′ enumerate the λ-uses into set C to lift λ-uses if needed to protect D. In

particular, suppose that the H-strategy τ is required to enumerate the λ-uses into set

C to lift λ-uses at stage t, these λ-uses may be less than s1. But, η does not allow

small numbers (≤ s1) to be enumerated into C before stage s2. So η (i.e. β) injures

the satisfaction of β′. Thus, such crossed links (β, η) and (β′, η′) should be avoided.

In the construction, we will use a backup strategy to deal with this. That is,

we will put a backup strategy β̂ below ηa〈O〉 to try to satisfy the RD
e -requirement.

Therefore, in the construction, there will never be two crossed links (β, η) and (β′, η′)

as above at the same stage.

Actually, in a gap-cogap argument, the crossed links need to be avoided generally.

So, in our construction, suppose that we have βa〈∞〉 ⊂ β′ ⊂ β′a〈∞〉 ⊂ η, where

β can be an RC
e -strategy or RD

e -strategy, β′ can be an RC
e′-strategy or RD

e′ -strategy

(e ≤ e′), and η is a substrategy of β. Then, when η has outcome g or d, we will say

that β′ becomes inactive or injured, and we need to arrange a back-up strategy for

β′ under this outcome. Moreover, it’s not hard to see that, for a fixed e, there are

at most finitely many backup RC
e -strategies (RD

e -strategy is similar) on any path of

the construction tree and the longest RC
e -strategy is responsible to satisfy the RC

e

requirement.

Note that, we may have two nested links (β, η) and (β′, η′) at the same stage in

the construction, where β is an RC
e -strategy and β′ is an RD

e′ -strategy, and η is an SC
e,i-

strategy and η′ is an SD
e′,i′-strategy with βa〈∞〉 ⊂ β′ ⊂ β′a〈∞〉 ⊂ η′ ⊂ η′a〈O〉 ⊂ η,

where O ∈ {g, d}. That is, we may have that a gap is open (or reopened) for η′and

creates a link between β′ and η′ and η reopens a gap and creates a link between β
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and η at the same stage, s0 say. At the next β-expansionary stage s1, suppose β

closes the gap for η unsuccessfully and cancels the link (β, η), so it requires that the

H-strategies with ∞ outcome between β and η enumerate the λ-uses into set D to

lift λ-uses if needed. (The enumeration of numbers into D at stage s1 may have effect

on the computation involved in the gap for η′, but this is allowed since the gap for

η′ is open at stage s1.) η will impose a C-restraint below s1 after stage s1 till the

stage, s2 say, at which the next gap for η is open. But, before stage s2, i.e. during

this cogap for η, we will travel the link (β′, η′) created at stage s0 and β′ may close

the gap for η′ unsuccessfully and so it requires that the H-strategies with ∞ outcome

between β′ and η′ enumerate the λ-uses into set C to lift λ-uses if needed. Note that

such λ-uses are already lifted at stage s1 and hence must be greater than s1, so we

can enumerate them into C and there is no conflict.

3.3 Construction

Before we give the full construction, we first define the priority tree T effectively.

Definition 1 (1) Define the priority ranking of the requirements as follows:

QC
0 < QD

0 < H0 < RC
0 < SC

0,0 < RD
0 < SD

0,0 < QC
1 < QD

1 < H1 < RC
1 < SC

0,1 < SC
1,0 <

SC
1,1 < RD

1 < SD
0,1 < SD

1,0 < SD
1,1 < · · · < QC

n < QD
n < Hn < RC

n < SC
0,n < SC

1,n < · · · <
SC

n−1,n < SC
n,0 < SC

n,1 < · · · < SC
n,n < RD

n < SD
0,n < SD

1,n < · · · < SD
n−1,n < SD

n,0 < SD
n,1 <

· · · < SD
n,n < · · ·

where X < Y means that X has higher priority than Y .

(2) An H-, or R-strategy has two possible outcomes ∞ <L f .

An S-strategy has four possible outcomes s <L g <L d <L w.

The possible outcomes of a Q-strategy are

(0,∞) <L (0, f) <L · · · <L (j,∞) <L (j, f) <L · · · .

Definition 2 Given ζ ∈ T .

56



(1) A requirement RC
e is satisfied at ζ if there is an RC

e -strategy β with βa〈f〉 ⊂ ζ,

or there is an RC
e -strategy β and an SC

e,i-strategy η for some i with the following

properties:

• βa〈∞〉 ⊆ η ⊂ ηaO ⊂ ζ, where O is g or d.

• there is no SC
e′,i′-strategy or SD

e′,i′-strategy η′ such that βa〈∞〉 ⊆ η′ ⊂ η′aO ⊂ η

for any e′ < e and any i′, where O is g or d.

In the latter case, β has a Σ3-outcome at η, and under this outcome, all the non-

H-strategies between β and η are said to be injured at η. When a strategy is injured,

then all its substrategies are injured.

(2) Similarly, a requirement RD
e is satisfied at ζ if there is an RD

e -strategy β with

βa〈f〉 ⊂ ζ, or there is an RD
e -strategy β and an SD

e,i-strategy η for some i with the

following properties:

• βa〈∞〉 ⊆ η ⊂ ηaO ⊂ ζ, where O is g or d.

• there is no SC
e′,i′-strategy or SD

e′,i′-strategy η′ such that βa〈∞〉 ⊆ η′ ⊂ η′aO ⊂ η

for any e′ ≤ e and any i′, where O is g or d.

(3) A requirement RC
e is active at ζ via β if RC

e is not satisfied at ζ and there is an

RC
e -strategy β such that

• βa〈∞〉 ⊂ ζ,

• there is no SC
e′,i′-strategy or SD

e′,i′-strategy η′ such that βa〈∞〉 ⊆ η′ ⊂ η′aO ⊂ ζ

for any e′ < e and any i′, where O is g or d.

(4) Similarly, a requirement RD
e is active at ζ via β if RD

e is not satisfied at ζ and

there is an RD
e -strategy β such that

• βa〈∞〉 ⊂ ζ,

• there is no SC
e′,i′-strategy or SD

e′,i′-strategy η′ such that βa〈∞〉 ⊆ η′ ⊂ η′aO ⊂ ζ

for any e′ ≤ e and any i′, where O is g or d.
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(5) A requirement SC
e,i is satisfied at ζ if either RC

e is satisfied at ζ, or RC
e is active at

ζ via β and there is an SC
e,i-strategy η with βa〈∞〉 ⊂ η ⊂ ζ.

We can define a requirement SD
e,i to be satisfied at ζ in the same manner.

(6) A requirement QC
e (or QD

e ) is satisfied at ζ if there is a QC
e -strategy (or QD

e -

strategy) α with αa〈k,−〉 ⊂ ζ, and α is not injured at ζ, where − ∈ {∞, f}.

(7) A requirement He is satisfied at ζ if there is an He-strategy τ with τ ⊂ ζ.

Now we define the priority tree T as follows.

Definition 3 (1) Define the root node as a QC
0 -strategy.

(2) The immediate successors of a node are the possible outcomes of the corresponding

strategy.

(3) For ζ ∈ T , ζ works for the highest priority requirement which has neither been

satisfied, nor been active at ζ.

(4) Continuing the inductive steps above, the priority tree T is built.

Definition 4 Given an SC
e,i-strategy η, we define the mother node of η as the longest

RC
e -strategy β such that βa〈∞〉 ⊂ η, we use top(η) to denote the mother node of η.

We can define the mother node of an SD
e,i-strategy in the same manner.

Definition 5 (Believable computations)

Recall that an H-strategy τ has a parameter bd(τ), playing a role of the restraint

imposed on τ : when τ is visited for the first time, we define bd(τ) as a fresh number,

whenever τ is initialized, we will define bd(τ) as a fresh number again.

Given a node ζ in T , we say that a computation ΦA⊕C
ζ (x) at stage s is ζ-believable,

if for each He-strategy τ with τa〈∞〉 ⊆ ζ, for any existing λ(e, x) > bd(τ)[s], if

λ(e, x) ≤ ϕζ(x)[s], then λ(e, x) ∈ Cs∪Ds. Here ϕζ(x)[s] is the use of the computation
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ΦA⊕C
ζ (x)[s]. (Fix ζ in T , we can define a computation ΦA⊕D

ζ (x) at stage s to be ζ-

believable in the same way).

Note that if a computation ΦA⊕C
ζ (x)[s] is ζ-believable, then τ ’s further enumera-

tions into C with τa〈∞〉 ⊆ ζ will not change this computation. Accordingly, in our

construction, when we say that a computation associated with ζ converges (e.g. in a

QD
e -strategy), then this computation is considered as a ζ-believable computation.

For anRC
e -strategy β, we modify the definition of the length of agreement function

l(β, s) at stage s to be l(β, s) = max{x < s : (∀y < x)[We(y)[s] = ΦA⊕C
e (y)[s] ↓

via β-believable computations]}. For an RD
e -strategy, we also modify the definition

of the length of agreement function in the same way.

In the construction, an S-strategy η has two parameters xη, zη, and a p.c. func-

tional Θη. When an S-strategy η is initialized, then the parameters xη, zη will be

cancelled, and the p.c. functional Θη will become the empty set.

The full construction is as follows.

Stage 0: Initialize all nodes on T , and let C0 = D0 = ∅.

Stage s > 0 : This stage has two phases.

Phase I. (finding σs)

Substage 0: Let σs(0) be the root node.

Substage t: Given ζ = σs � t.

If t = s then define σs = ζ and initialize all the nodes with lower priority than

σs. Go to Phase II.

If t < s, then take action for ζ and define σs(t) as follows:

Case 1 ζ = τ is an He-strategy. There are three subcases.

(τ1) If bd(τ) ↑, then define bd(τ) to be a fresh number.

Let σs = τ and initialize all the nodes with priority lower than σs. Go to

Phase II.
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(τ2) If bd(τ) ↓, and if s is a τ -expansionary stage, then put all existing λ(e, x)

with bd(τ) < λ(e, x) ≤ s into C. Let σs(t) = τa〈∞〉, and go to the next

substage.

(τ3) If bd(τ) ↓, and if s is not a τ -expansionary stage, let σs(t) = τa〈f〉, and

go to the next substage.

Case 2 ζ = α is a QC
e -strategy. There are three subcases.

(α1) If α has no cycle started, then start cycle 0 and choose a fresh number

xα,0 as its attacker. Define σs = αa(0, f), initialize all nodes with priority

lower than σs. Go to Phase II.

(α2) If α1 fails, let j be the largest active cycle at the last α-stage.

(α2.1) If A has a change below the corresponding use of some (least) cycle

j′ ≤ j, then define σs(t) as αa(j′,∞) if cycle j′ has not performed

diagonalization so far; and define σs(t) as αa(j′ + 1, f) if cycle j′

performed diagonalization before. In the former case, go to the next

substage. In the latter case, redefine ξα(j′) as ξα(j′−1)[s] since j′ is in

Ks and define xα,j′+1 as a fresh number, now define σs = αa(j′+1, f),

initialize all the nodes with priority lower than σs and go to Phase II.

(α2.2) If α2.1 fails and K has a change on some (least) number j′ ≤ j be-

tween the last α-stage and stage s + 1, then let cycle j′ act at this

stage. So j′-cycle will enumerate xα,j′ into C. Say that j′-cycle of α

performs diagonalization at stage s + 1. Initialize all the nodes with

priority lower than or equal to αa(j′, f) and go to Phase II. Define

σs = αa(j′, f). We say that α is satisfied via j′-cycle till A changes

below the corresponding use.

(α3) If neither subcases α1 nor α2 is true, then take actions as follows:

If α is at j-cycle, not satisfied yet, and ΦA⊕D
e(α) (xα,j) ↓= 0, then define

ΞA
α (j) = K(j). The use ξα(j) is defined as ϕe(α)(xα,j)[s] if j 6∈ Ks, and

defined as ξα(j − 1)[s] if j ∈ Ks. And then initialize all the nodes with
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priority lower than αa(j, f). Start (j+1)-cycle by choosing a fresh number

xα,j+1 as its attacker and define σs = αa(j + 1, f). Go to Phase II.

Otherwise, define σs(t) as αa(j, f) and go to the next substage.

Case 3 ζ is a QD
e -strategy. The strategy is similar to Case 2.

Case 4 ζ = β is an RC
e -strategy.

(β1) If s is not a β-expansionary stage, then let σs(t) = βa〈f〉, and go to the

next substage.

(β2) If s is a β-expansionary stage, then we check whether β has a substrategy

η such that one of the following is true:

(2.1) η is in a gap or in a cogap, and We has a change below zη associated

to this gap, and ΓA
β (zη) is undefined.

(2.2) After the last β-expansionary stage, A has changes below zη.

If there is such a substrategy, then let η be the one with the highest priority.

We provide priority to these two cases, if more than one applies to the same

η, then (2.1) has higher priority than (2.2).

If (2.1) is true, then we enumerate zη into Xβ, and declare that η is satisfied

at stage s. Let σs = ηa〈s〉, and initialize all the nodes with priority lower

than σs. Go to Phase II.

If (2.2) is true, then β opens a new gap for η, and let σs(t) = ηa〈g〉, and

go to the next substage. We say that the existing gap is closed completely

at stage s.

If such a substrategy does not exist, then we check whether some substrat-

egy η has a gap open.

If no, then let σs(t) = βa〈∞〉, and go to the next substage.

If η has a gap (for zη) open, and A changes below ϕe(zη) since the last β-

expansionary stage, then we calculate σs and check whether η is accessible
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at stage s. If η is accessible at stage s, then we just let σs(t) = βa〈∞〉,
and go to the next substage. (In this case, this gap is reopened for η when

η is accessible at this stage, i.e. let η have outcome d at this stage.)

If η has a gap (for zη) open, and either A does not change below ϕe(zη)

since the last β-expansionary stage or η is not accessible at stage s, then let

β close this gap for η unsuccessfully. For each He′-strategy τ with β ⊂ τ ⊂
τa〈∞〉 ⊆ η, for any existing λ(e′, x) use with bd(τ) < λ(e′, x) ≤ s (if any),

then enumerate such λ(e′, x) into D. Cancel the link (β,η). For all x ≤ zη,

if ΘA
η (x)[s] ↑, then define ΘA

η (x)[s] = We(x)[s] with θη(x)[s] = ϕe(x)[s].

Let σs(t) = βa〈∞〉, and go to the next substage.

Case 5 ζ = η is an SC
e,i-strategy. Let β= top(η).

We check whether A has changes below the use of a computation involved in a

cogap since the last β-expansionary stage (so this gap is not closed completely

yet, and the A-change will reopen it).

If yes, then η reopens this gap, creates a link between β and η. Define σs(t) =

ηa〈d〉 and go to the next substage.

Otherwise, there are four cases.

(η1) If xη ↑, then define xη as a fresh number. Let σs = ηa〈w〉 and initialize

all the nodes with priority lower than σs. Go to Phase II.

(η2) If xη ↓, and ϕi(xη) does not converge to 0, then let σs(t) = ηa〈w〉, and go

to the next substage.

(η3) If xη ↓, and ϕi(xη)[s] ↓= 0, then, update zη as this xη, and let xη ↑. Say

that η requests β to open a gap for zη. Let σs = ηa〈w〉 and initialize all

the nodes with priority lower than σs. Go to Phase II.

(η4) If η is satisfied, then let σs(t) = ηa〈s〉, and go to the next substage.

Case 6 ζ is an RD
e -strategy. The strategy is similar to Case 4.

Case 7 ζ is an SD
e,i-strategy. The strategy is similar to Case 5.
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Phase II. Having σs, for ζ ⊂ σs, do as follows, and then go to the next stage.

Case 1 If ζ = τ is an He-strategy, then

(1) If s is a τ -expansionary stage, then extend the definition of ΛA⊕C⊕D to all

arguments (e, x) with x < l(τ, s) and ΛA⊕C⊕D(e, x) ↑, define ΛA⊕C⊕D(e, x) =

1 with use −1.

(2) If s is not an τ -expansionary stage, then extend the definition of ΛA⊕C⊕D to

all arguments (e, x) with x < s and ΛA⊕C⊕D(e, x) ↑, define ΛA⊕C⊕D(e, x) =

0 with use λ(e, x) = s.

Case 2 If ζ = β is an RC
e -strategy (RD

e -strategy is similar).

If s is a β-expansionary stage, and no link with β as top exists, then

• For each x < l(β, s) with ∆We
e (x)[s] ↑, define ∆We

e (x)[s] = Xe(x)[s] with

δe(x)[s] = x.

• For each x < l(β, s) with ΓA
e (x)[s] ↑, check that whether ΓA

e (x) has been

defined so far (after the last stage at which β is initialized):

If no, then define ΓA
e (x)[s] = Xe(x)[s] with γe(x)[s] = s.

If yes, then check whether the computation ΦA⊕C
e (x) has changed from the stage

when ΓA
e (x) was defined last time. If the computation keeps the same, then

define ΓA
e (x)[s] = Xe(x)[s] with γe(x)[s] the same as before. If the computation

changed, then define ΓA
e (x)[s] = Xe(x)[s] with γe(x)[s] = s.

This completes the construction.

3.4 Verification

Define the true path of the construction to be σ = lim infs σs, i.e. the leftmost path

of the construction. The following lemma implies that the true path σ is infinite.
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Lemma 8. Let ζ be any node on the true path σ. Then

(1) ζ can be initialized at most finitely often.

(2) ζ has an outcome O such that ζ_O is on σ.

(3) ζ can initialize the node ζ_O at most finitely often.

Proof. We prove the lemma by induction on the length of ζ.

When ζ is the root node of the priority tree T , i.e. QC
0 -strategy, then ζ can never

be initialized. So (1) is clearly true.

To show (2), for a contradiction, suppose that ζaO 6⊂ σ for any outcome O of ζ.

This happens only when ζ runs infinitely many cycles and each of them runs finitely

often. That is, for every j ∈ ω, cycle j stops at step 3 or step 6. So ΞA
ζ (j) = K(j) for

all j ∈ ω, i.e. ΞA
ζ computes K correctly, which can not be true since A is incomplete.

We have shown that ζ (the root node) has an outcome O such that ζ_O is on

σ. So there is a stage s0 such that the nodes on the left of ζ_O can never be visited

after stage s0. That is, after stage s0, ζ never initializes the node ζ_O. So (3) is true.

Suppose that the lemma is true for all ζ ′ ⊂ ζ, we now want to show that the

lemma is also true for ζ. Let ζ− be the immediate predecessor of ζ. By the induction

hypothesis, ζ− can be initialized at most finitely often and ζ− has a true outcome

O on σ, and ζ− can initialize the node ζ = ζ−_O at most finitely often. Thus, we

can fix some (least) stage s1 such that ζ can never be initialized by higher priority

strategies after stage s1. So (1) is true for ζ.

Now we show that (2) and (3) are true for ζ.

ζ = α is a QC
e -strategy or QD

e -strategy. Apply the same argument as for QC
0 -

strategy to α. So (2) and (3) are true for ζ.

ζ = β is anRC
e -strategy orRD

e -strategy. By our construction, if there are infinitely

many β-expansionary stages then we have βa〈∞〉 ⊂ σ; if there are only finitely many

β-expansionary stages then we have βa〈f〉 ⊂ σ. Note that β never initializes the

strategies with lower priority in the construction. So (2), (3) are true for ζ.
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ζ = η is an SC
e,i-strategy (SD

e,i-strategy is similar). Let the mother node of η be

β, i.e. β is the longest RC
e -strategy on the true path with βa〈∞〉 ⊂ η ⊂ σ. By the

choice of s1, η can never be initialized after stage s1 and hence neither can β. Then,

after stage s1, xη will be defined by η, say at a stage s2 > s1.

If there is no stage at which ϕi(xη) converges to 0, then we have that ηa〈w〉 on

the true path. And η will never initialize the strategies with lower priority in the

construction after stage s2. So (2), (3) are true for ζ.

If there is an η-stage s3 > s2 such that ϕi(xη)[s3] ↓= 0, then we define zη = xη and

undefine xη at stage s3. η requests β to open a gap for zη when A changes below zη

(i.e. ΓA
β (zη) is undefined). Note that stage s3 is also a β-expansionary stage, and at a

β-expansionary stage, if no link with top β exists, then we will extend the definitions

of ΓA
β and ∆We

β .

At the next β-expansionary stage s4 > s3, if ΓA
β (zη)[s4] ↑, then β will open a gap

for this zη and create a link between β and η at stage s4, and let η have outcome g

at this stage. If ΓA
β (zη)[s4] ↓, and η is visited at stage s4, then η will define xη as a

fresh number again, and let η have outcome w at this stage. At the next η-stage, if

ϕi(xη) converges to 0, then we will update zη as this xη and undefine xη again.

Suppose that β opens a gap for zη at some β-expansionary stage v, then we will

create a link between β and η at stage v. This gap is open for We to change below

zη after stage v.

At the next β-expansionary stage s > v, if We changes below zη, i.e. ∆We
β (zη)[s] ↑,

then we close this gap successfully, let η perform the diagonalization by putting this

zη into Xβ, cancel the link. So we have Xβ(zη) = 1 6= 0 = ϕi(zη) and hence η is

satisfied via this zη. In this case, ηa〈s〉 will be on the true path, and η will take no

further actions after stage s, so (2), (3) are true for ζ.

At the next β-expansionary stage s, ifWe does not change below zη, i.e. ∆We
β (zη)[s] ↓,

then, if A changes below ϕe(zη) since the last β-expansionary stage, and we calculate

σs and find that η is accessible at stage s, then we let βa〈∞〉 be accessible at stage

s. In this case, this gap is reopened for η when η is accessible at this stage, i.e. let

η have outcome d at this stage; if A does not change below ϕe(zη) since the last

β-expansionary stage or η is not accessible at stage s, then let β close this gap for η

65



unsuccessfully. Cancel the link (β,η), and let βa〈∞〉 be accessible at stage s. Note

that this gap can be closed unsuccessfully and reopened infinitely often. And also, it

can be closed completely due to a new gap opened by β afterwards.

So now we assume that η can never perform the diagonalization in the construc-

tion. If β opens infinitely many different gaps for η (i.e. each gap associated with

different value of zη), then ηa〈g〉 will be on the true path, and η will never initialize

the strategies with lower priority in the construction, hence (2), (3) are true for ζ.

If β opens only finitely many different gaps for η and the last gap is closed un-

successfully and reopened infinitely often, it must be the case that for the last gap,

A changes below the corresponding use ϕe(zη) infinitely often. Then, ηa〈d〉 will be

on the true path, and η will never initialize the strategies with lower priority in the

construction, hence (2), (3) are true for ζ.

Otherwise, β opens only finitely many different gaps for η, and for the last gap,

after a stage large enough at which this gap is closed unsuccessfully, it can never

be reopened again. We claim that it is impossible that η defines xη infinitely often.

Suppose not, then it must be the case that for each number xη defined by η, ϕi(xη) ↓=
0 and we update zη infinitely often, and hence η requests β to open gaps infinitely

often. As no more gaps can be open after a stage large enough, we will have that A

will not change below zη in the remainder of the construction. This shows that A is

computable, which can not be true since we assume that A is incomputable in our

theorem. Thus, η defines xη only finitely often, and for the last number xη defined

by η, we never see ϕi(xη) ↓= 0. So we have that ηa〈w〉 ⊂ σ. And η initializes the

strategies with lower priority only finitely often in the construction. So (2), (3) are

true for ζ.

ζ = τ is an He-strategy. We have τa〈∞〉 ⊂ σ if there are infinitely many τ -

expansionary stages; τa〈f〉 ⊂ σ otherwise. So (2) is true for ζ. Furthermore, ζ never

initializes the strategies with lower priority in the construction. So (3) is also true for

ζ.

This completes the proof of Lemma 8.
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Lemma 9. For any e ∈ ω, let α be the longest QC
e -strategy (QD

e -strategy) on the true

path σ. Then QC
e (QD

e ) is satisfied via α.

Proof. Fix e, let α be the longest QC
e -strategy on the true path σ. By lemma 8, α

can be initialized at most finitely often and α has a true outcome O on σ. Let s0 be

the least stage after which α can never be initialized and no strategy to the left of

αaO is visited again.

By our construction, O = (j,−) for some j, where − ∈ {∞, f}. Let s1 ≥ s0 be

the stage at which x = xα,j is defined. Then this x cannot be cancelled later.

Note that, in our construction, when we say that a computation ΦA⊕D
e (x) associ-

ated with α converges at some stage, this computation is an α-believable computation

actually.

If, after stage s1, there is no stage at which ΦA⊕D
e (x) converges to 0, then cycle

j can never take action after stage s1. In this case, α has outcome (j, f) on the true

path σ and C(x) = 0 6= ΦA⊕D
e (x). Thus QC

e -requirement is satisfied obviously.

As at any α-stage, if ΦA⊕D
e (x) converges to 0, then cycle j imposes a restraint to

protect the associated computation and waits for j to enter K, and starts (j+1)-cycle

simultaneously. As we assume that α has outcome (j,−) on σ, we know that either

A changes below the corresponding use or j enters K.

If j entering K happens first, then cycle j can act to enumerate x into C and

A will not change below the corresponding use afterwards, since otherwise, (j,−),

now is (j, f), could not be the final outcome of α on σ. In this case, C(x) = 1 and

ΦA⊕D
e (x) = 0. So C(x) 6= ΦA⊕D

e (x), and hence QC
e -requirement is satisfied via witness

x.

Otherwise, cycle j can not act to enumerate x into C forever, then cycle j will

return from step 4 to step 2 infinitely often. So ΦA⊕D
e (x) ↑, and henceQC

e -requirement

is satisfied via witness x.

Note that, we can apply the same argument to show that QD
e -requirement is

satisfied for any e.

Lemma 10. For any e ∈ ω, let β be the longest RC
e -strategy (RD

e -strategy) on the true
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path σ. Then β, together with its substrategies, satisfies the RC
e (RD

e ) requirement.

Proof. Fix e, let β be the longest RC
e -strategy on the true path σ. By lemma 8, β

can be initialized at most finitely often. Let s0 be the least stage after which β can

never be initialized. If βa〈f〉 ⊂ σ, i.e. there are only finitely many β-expansionary

stages, then We 6= ΦA⊕C
e and hence RC

e is satisfied obviously. So we assume that

βa〈∞〉 ⊂ σ. In this case, we construct a c.e. set Xβ and two p.c. functionals Γβ,

∆β at β-expansionary stages. By our construction, β can have, finitely or infinitely,

many substrategies on the true path. There are three cases.

Case 1 If a substrategy η of β has outcome g on the true path.

By lemma 8, η can be initialized at most finitely often, let s1 > s0 be the least

stage after which η can never be initialized. If we assume that We = ΦA⊕C
e , then we

can show that ΘA
η is totally defined and computes We correctly.

In this case, zη is updated infinitely many times and β opens and closes infinitely

many different gaps (each gap associates with different value of zη) for η after stage

s1. Note that no gap can be closed successfully, so We never changes below the

corresponding zη before a gap is closed unsuccessfully (otherwise, η will perform the

diagonalization by putting zη into Xβ, η is satisfied and has outcome s on the true

path).

After a gap is closed unsuccessfully, ifWe changes below the corresponding zη later,

then as when this gap is closed unsuccessfully, we lift the λ-uses of the H-strategies

with ∞ outcome between β and η (if needed) to protect C, We changes on some

x ≤ zη must due to the A-change below the corresponding use ϕe(x). (Note that it

may happen that, during the cogap for zη, A-change below the corresponding use ϕe(x)

happens first which lifts the use ϕe(x), and hence some small number is enumerated

into C may lead to We-change on x. But the A-change here is the essential reason

for this We-change, and ΘA
η (x) is undefined by this A-change in the cogap.) So this

A-change can undefine ΘA
η (x). Thus, when ΘA

η (x) is defined later, ΘA
η (x) is defined

as 1, equals We(x). This implies that ΘA
η can compute We correctly. If we assume

that We = ΦA⊕C
e , then ΦA⊕C

e (x) ↓ eventually and has a fixed use ϕe(x) for all x and
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hence ΘA
η is totally defined (as we always define θη(x) = ϕe(x)). In this case, we have

that RC
e -strategy is satisfied.

Case 2 If a substrategy η of β has outcome d on the true path.

In this case, as g is not the true outcome, we know that β opens only finitely many

different gaps for η, and for the last gap, it is reopened by η infinitely often. Suppose

that the last gap is associated with a value z of zη, then A must change below the

corresponding use ϕe(z) infinitely often and hence ΦA⊕C
e (z) ↑. Thus, η provides a

witness showing the RC
e requirement is satisfied.

Case 3 Otherwise, no substrategy of β on the true path has outcome g or d.

In this case, there are infinitely many substrategies of β on the true path, and

each substrategy has true outcome s or w. We first show that each subrequirement

SC
e,i is satisfied.

Fix η as a substrategy of β on the true path. If η has outcome s on the true path,

then in our construction, η must perform the diagonalization by putting zη into Xβ

and hence η is satisfied obviously. If η has outcome w on the true path, then as β

opens only finitely many gaps for η, we can assume that after a stage large enough,

no gap will be open for η. Without loss of generality, suppose that for every number

xη selected by η, ϕi(xη) ↓= 0, and then zη is updated infinitely often, and hence η

requests β to open gaps infinitely often. Since we assume that no more gaps can be

open after a stage large enough, we will have that A will not change below zη in the

remainder of the construction. This shows that A is computable, which can not be

true. Therefore, there is a number xη selected by η such that ϕi(xη) never converges

to 0, and η is satisfied in an obvious way.

Thus, each substrategy of β on the true path is satisfied and hence Xβ is in-

computable. Assume that We = ΦA⊕C
e , we now show that both ΓA

β and ∆We
β are

well-defined and compute Xβ correctly.

To see this, note that when a number z is selected as zη by some substrategy η,

η requests β to open a gap for z when A changes below it (i.e. ΓA
β (z) is undefined),
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and this gap is open for We to change below z. If this gap is closed successfully, then

it must be that both ΓA
β (z) and ∆We

β (z) are undefined, and z is enumerated into Xβ.

Thus, when β defines ΓA
β (z) and ∆We

β (z) later, both of them are defined as 1, equals

Xβ(z). If this gap is closed unsuccessfully, we lift the λ-uses of the H-strategies with

∞ outcome between β and η by putting the λ-uses into D (if needed) to preserve

C, and restrain those strategies with priority lower than ηa〈w〉 to enumerate small

numbers into C (these strategies are initialized). If this gap is not reopened by η

at the same stage (note that, as we assume that no substrategy of β has outcome

d on the true path, there is no gap can be closed and reopened infinitely often, and

hence it can not happen that there always exists a link at β-expansionary stages, so

we will extend the definitions of ΓA
β and ∆We

β at a later β-expansionary stage), then

β will define ΓA
β (z) = 0 with use γβ(z) bigger than ϕe(z), and ∆We

β (z) = 0 with use

δβ(z) = z at that stage. Thus, if We changes below z (i.e. ∆We
β (z) is undefined) in

the cogap for z, A must have changes below ϕe(z), and hence below γβ(z), and so

ΓA
β (z) is undefined, which allows us to enumerate z into Xβ. Since we assume that

We = ΦA⊕C
e , a computation ΦA⊕C

e (z) will be fixed after a stage large enough, and

hence A does not change anymore below the corresponding use ϕe(z). This implies

that γβ(z) is kept the same after this stage, and hence ΓA
β (z) is defined.

By our construction, at β-expansionary stages, we will extend the definitions of

ΓA
β and ∆We

β if no link with β as top exists. Thus, the definitions of ΓA
β and ∆We

β

will be extended infinitely often (as it’s impossible that there always exists a link

at β-expansionary stages by our assumption). Note that, for any x ∈ ω, when we

define ΓA
β (x) at some β-expansionary stage, we define the use γβ(x) bigger than ϕe(x)

at this stage, and hence ΓA
β (x) is defined (otherwise, ΦA⊕C

e (x) ↑). Thus, ΓA
β is well-

defined. Moreover, we always define δβ(x) = x in our construction, thus, ∆We
β is also

well-defined.

We have seen that, in our construction, when a number z is enumerated into Xβ

by some substrategy η of β, it must be that the gap for z is closed successfully, i.e.

both ΓA
β (z) and ∆We

β (z) are undefined when z is enumerated into Xβ. Thus, when β

defines ΓA
β (z) and ∆We

β (z) later, they are defined as 1, equals Xβ(z). Therefore, both

ΓA
β and ∆We

β compute Xe correctly.
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Therefore, in this case, β, together with its substrategies on the true path, satisfies

the RC
e requirement.

Note that, we can apply the same argument to show that the RD
e requirement is

satisfied for any e.

Lemma 11. For any e ∈ ω, let τ be the He-strategy on the true path σ. Then He is

satisfied via τ .

Proof. Let τ be the He-strategy on the true path σ. Note that Λ is a global p.c.

functional built by us through the whole construction. By our construction, if τa〈f〉 ⊂
σ, i.e. there are only finitely many τ -expansionary stages, then ΛA⊕C⊕D(e, x) is

defined as 0 for almost all x and hence limx ΛA⊕C⊕D(e, x) = 0; if τa〈∞〉 ⊂ σ, i.e.

there are infinitely many τ -expansionary stages, then ΛA⊕C⊕D(e, x) is defined as 1

for almost all x and hence limx ΛA⊕C⊕D(e, x) = 1. Therefore, we have that Tot(e) =

limx ΛA⊕C⊕D(e, x). He is satisfied via τ .

This completes the proof of Theorem 2. ��
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Chapter 4

INFIMA OF N-C.E. DEGREES

4.1 Introduction

Lachlan observed that the infimum of two c.e. degrees considered in the c.e. degrees

coincides with the one considered in the ∆0
2 degrees. It is not true anymore for the

n-c.e. degrees (n > 1). Kaddah [31] proved that, for all n > 1, there are n-c.e.

degrees a,b, c and an (n+1)-c.e. degree x such that a is the infimum of b, c in the

n-c.e. degrees, but not in the (n+1)-c.e. degrees, as a < x < b, c. In this chapter, we

extend Kaddah’s result by showing that such a structural difference occurs densely

in the c.e. degrees.

Theorem 3. For n > 1 and c.e. degrees u < v, there are n-c.e. degrees a,b, c and

an (n + 1)-c.e. degree x between u and v such that a < x < b, c and b and c have

infimum a in the n-c.e. degrees.

Theorem 3 implies that the isolated (n+1)-c.e. degrees are dense in the c.e. degrees

since there is no n-c.e. degree between a and x, which was first proved by LaForte

[39].
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4.2 Requirements and strategies

To prove Theorem 3, let U be a c.e. set in u, V be a c.e. set in v, So U <T V .

We will construct three n-c.e. sets A,B,C, an (n+ 1)-c.e. set X and p.c. functionals

Γ1,Γ2 and ∆e for e ∈ ω satisfying the following requirements:

G: A,B,C,X ≤T V ;

R: X = ΓB,A,U
1 = ΓC,A,U

2 ;

Pe: X 6= ΦA,U
e ;

Ne: ΦB,A,U
i = ΦC,A,U

i = Ej ⇒ Ej = ∆A,U
e ,

where e = 〈i, j〉 and {Ej : j ∈ ω} is some standard listing of all n-c.e. sets.

Let a,x,b, c be the degrees of A⊕U,X⊕A⊕U,B⊕A⊕U,C⊕A⊕U respectively.

By the requirements G and R, u ≤ a,x,b, c ≤ v. By the P-requirements, a < x. By

the N -requirements, a = b ∧ c in the n-c.e. degrees. Thus, the above requirements

are sufficient to prove Theorem 3. Note that we only require that these degrees are

between u and v here. Actually, Sacks’ density theorem can ensure that these degrees

are strictly between u and v.

4.2.1 The G and R-strategies

We satisfy G by applying the delayed permission argument as that in the Sacks’

density theorem.

For the R-requirement, we will build the p.c. functionals Γ1,Γ2 by the following

rules:

(1) When ΓB,A,U
1 (x) and ΓC,A,U

2 (x) are first defined at a stage s, we define γ1(x) and

γ2(x) as fresh numbers.

(2) If x enters or exits X at a stage t after ΓB,A,U
1 (x) and ΓC,A,U

2 (x) are defined,

then ΓB,A,U
1 (x) and ΓC,A,U

2 (x) must be undefined to ensure that they are defined

agreeing with X(x) eventually. In the construction, we put or, extract a number

less than or equal to γi(x)[t] from B ∪ A or C ∪ A, i = 1, 2.
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(3) If some y ≤ γ1(x) enters B ∪ A after γ1(x) is defined, then we will lift γ1(x) to

a bigger number; but if later y leaves B ∪ A, then we will redefine γ1(x) to be

the previous value. The definition of γ2(x) is similar.

4.2.2 A P strategy

A Pe-strategy α is a Sacks coding strategy. That is, even though U is not in our

control, we can still satisfy the Pe-requirement by the assumption that U <T V . α

will run cycles j for j ∈ ω, all cycles of α define a functional Ψα jointly. α starts cycle

0 first. Each cycle j can start only cycle j + 1, but can stop or cancel any cycle j′

with j′ > j. Each cycle j tries to find a number xj such that X(xj) 6= ΦA⊕U
e (xj), and

if cycle j fails to make it, then this cycle will define ΨU
α (j) = V (j) successfully. If we

fail to satisfy a Pe-strategy, then we will threaten V = ΨU
α to get a contradiction.

Cycle j proceeds as follows:

(1) Choose xj as a fresh number.

(2) Wait for a stage s0 such that ΦA,U
e (xj)[s0] ↓= 0.

(3) Preserve A � ϕe(xj)[s0], and define ΨU
α (j)[s0] = V (j)[s0] with use ψα(j) =

ϕe(xj)[s0]. Start cycle j + 1 simultaneously.

(4) Wait for U � ϕe(xj)[s0] or V (j) to change.

(a) If U � ϕe(xj)[s0] changes first, then cancel all cycles j′ > j and drop the

A-restraint of cycle j to 0. Go back to step 2.

(b) If V (j) changes first, then stop cycles j′ > j, and go to step 5.

(5) Put xj into X and wait for U � ϕe(xj)[s0] to change.

(6) Define ΨU
α (j) = V (j) = 1 with use 0, and start cycle j + 1.

α has two sorts of outcomes:
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(j, f) : Some cycle j waits forever at step 2 or 5.

( If α waits forever at step 2 then ΦA,U
e (xj) ↓= 0 is not true. If α waits forever

at step 5 then ΦA,U
e (xj) ↓= 0 and xj ∈ X. In any case, the requirement Pe is

satisfied via witness xj.)

(j,∞) : Some (least) cycle j runs infinitely often.

(It must be true that cycle j returns from step 4 to 2 infinitely often. Thus

ΦA,U
e (xj) diverges. So the requirement Pe is satisfied via xj.)

By the P-strategy, whenever a cycle j is started, any previous version of it has

already been cancelled by a U -change. So ΨU
α is well-defined. Note that if there are

stages sj for all j ∈ ω such that no cycle j runs after stage sj but there are infinitely

many stages at which some cycle runs, then for each j, cycle j will stop at step 4 or

step 6 eventually, and hence all these cycles will define ΨU
α totally and ΨU

α = V , i.e.

V ≤T U , a contradiction.

Now, we consider the interaction between strategies P and G and R. When α

wants to put a number xj into X at step 5, if ΓB,A,U
1 (xj) and ΓC,A,U

2 (xj) are defined

then we must make them undefined. For this purpose, we will put γ1(xj) into B

and γ2(xj) into C. But for G requirement, it requires B,C,X ≤T V , so we have to

get a V -permission to do this. In the construction the V -permission is realized via a

V (j)-change (at step 4(b)). So it’s enough to modify step 5 to be step 5′:

(5′) Put xj into X, γ1(xj) into B and γ2(xj) into C, and wait for U � ϕe(xj)[s0] to

change.

For the convenience of description, we introduce some notions here. Say that

cycle j acts if it chooses a fresh number xj as its attacker at step 1 or, it changes

the value of X(xj) by enumerating xj into X at step 5′. Say that cycle j is active at

stage s if at this stage, when α is visited, α is running cycle j, except the situation

that cycle j is just started at stage s.
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4.2.3 An N strategy

Assume that a strategy β works on Ne with e = 〈i, j〉, we define the length of

agreement function l(β, s) at stage s to be

l(β, s) = max{x < s : ∀y < x(ΦB,A,U
i (y)[s] ↓= ΦC,A,U

i (y)[s] ↓= Ej(y)[s])},

and the maximum length of agreement function at stage s is defined to be

m(β, s) = max{l(β, t) : t < s & t is a β-stage}.

Say a stage s is β-expansionary if s = 0 or s is a β-stage with l(β, s) > m(β, s).

β is to build a p.c. functional ∆β such that if ΦB,A,U
i = ΦC,A,U

i = Ej then ∆A,U
β is

totally defined and computes Ej correctly. For simplicity, we will omit the subscripts

below. If we do not consider the U -change nor the V -permission here, then the basic

strategy for this requirement is exactly the same as the one introduced by Kaddah

[31]. That is, for some z, after ∆A,U(z) was defined, the computations ΦB,A,U(z)

and ΦC,A,U(z) are allowed to be destroyed simultaneously (by P-strategies) instead

of preserving one of them as in Lachlan’s minimal pair construction. Since B,C are

constructed to be n-c.e. by us, we can remove numbers from one of them to recover

a computation to a previous one, and force a disagreement between E and ΦB,A,U or

E and ΦC,A,U at argument z. The basic strategy is as follows:

(1) At some β-expansionary stage s(0), ΦB,A,U(z)[s(0)] = ΦC,A,U(z)[s(0)] = Es(0)(z)

= 0. Define ∆A,U(z)[s(0)] = Es(0)(z) with δ(z) = s(0). (We assume that

Es(0)(z) = 0 here, mainly because it is the most complicated situation.)

(2) Some Pe-strategy with lower priority enumerates a small number x into Xs0

at a stage s0 ≥ s(0), for the global requirement R, we put γ1(x)[s0] into Bs0

and γ2(x)[s0] into Cs0 simultaneously. The computations ΦB,A,U(z)[s(0)] and

ΦC,A,U(z)[s(0)] could be destroyed by these enumerations.

(3) At stage s1 > s0, z enters Es1 .
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(4) At some β-expansionary stage s(1) > s1, ΦB,A,U(z)[s(1)] = ΦC,A,U(z)[s(1)] =

Es(1)(z) = 1. We force that E(z) 6= ΦB,A,U(z) by extracting γ1(x)[s0] from Bs(1)

to recover the computation ΦB,A,U(z)[s(0)] = 0. To ensure that ΓB,A,U
1 and

ΓC,A,U
2 are well-defined and compute X correctly, we extract x from X, and put

s0 into A. We put s0, instead of the current γ2(x)[s(1)], into A to undefine the

new ΓC,A,U
2 (x), mainly because we need to consider the consistency between β’s

action and those higher N -strategies. (Step 1 of the disagreement strategy)

(5) At stage s2 > s(1), z goes out of Es2 .

(6) At some β-expansionary stage s(2) > s2, ΦB,A,U(z)[s(2)] = ΦC,A,U(z)[s(2)] =

Es(2)(z) = 0 again. Now, we force that ΦC,A,U(z) 6= E(z) by extracting s0

from A to recover the computation ΦC,A,U(z)[s(1)] = 1. At the same time, we

enumerate x into X, and put γ1(x)[s0] into Bs(2) again to correct ΓB,A,U
1 (x).

(Step 2 of the disagreement strategy)

(7) At stage s3 > s(2), z enters Es3 again.

(8) At some β-expansionary stage s(3) > s3, ΦB,A,U(z)[s(3)] = ΦC,A,U(z)[s(3)]

= Es(3)(z) = 1. We force that E(z) 6= ΦC,A,U(z) by putting s0 into A (to recover

the computation ΦC,A,U(z)[s(2)] = 0) and extracting x from X. Note that the

action of putting s0 into A can undefine both ΓB,A,U
1 (x) and ΓC,A,U

2 (x), so this

action can make sure that ΓB,A,U
1 and ΓC,A,U

2 are well-defined and compute X

correctly. (Step 3 of the disagreement strategy)

(9) At stage s4 > s(3), z goes out of Es4 .

(10) At some β-expansionary stage s(4) > s4, ΦB,A,U(z)[s(4)] = ΦC,A,U(z)[s(4)]

= Es(4)(z) = 0. We force that E(z) 6= ΦC,A,U(z) by extracting s0 from A (to

recover the computation ΦC,A,U(z)[s(1)] = 1) and putting x into X. Note that

the action of extracting s0 from A can make sure that ΓB,A,U
1 and ΓC,A,U

2 are

well-defined and compute X correctly. (Step 4 of the disagreement strategy)

Since E is n-c.e., the membership of z in E can change at most n many times.

Thus we assume that Es(0)(z) 6= Es(1)(z), · · · , Es(k)(z) 6= Es(k+1)(z) for 0 ≤ k ≤
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n− 1 (the most complicated situation) and s(0) < s(1) < · · · < s(k) < · · · are

the consecutive β-expansionary stages. β will continue to proceed as follows:

k > 4 odd: At some β-expansionary stage s(k) > sk, ΦB,A,U(z)[s(k)] = ΦC,A,U(z)[s(k)] =

Es(k)(z) = 1. We force that E(z) 6= ΦC,A,U(z) by putting s0 into A (to recover

the computation ΦC,A,U(z)[s(2)] = 0) and extracting x from X. Note that the

action of putting s0 into A can undefine both ΓB,A,U
1 (x) and ΓC,A,U

2 (x), so this

action can make sure that ΓB,A,U
1 and ΓC,A,U

2 are well-defined and compute X

correctly. (Step k > 4 odd of the disagreement strategy)

k > 4 even: At some β-expansionary stage s(k) > sk, ΦB,A,U(z)[s(k)] = ΦC,A,U(z)[s(k)] =

Es(k)(z) = 0. We force that E(z) 6= ΦC,A,U(z) by extracting s0 from A (to

recover the computation ΦC,A,U(z)[s(1)] = 1) and putting x into X. Note that

the action of extracting s0 from A can make sure that ΓB,A,U
1 and ΓC,A,U

2 are

well-defined and compute X correctly. (Step k > 4 even of the disagreement

strategy)

If the membership of z in E changes n many times and so β executes all the n

steps of the disagreement strategy described above, then β has forced a disagreement

since E is n-c.e. and thus there will be no more β-expansionary stages (U-change

is not considered now, here we assume that there is no U-change during the above

process). Note that the set B as built here is 3-c.e. and C is c.e., but A in general is

n-c.e..

Now we consider the U -change and V -permission involved in such a process. Note

that, when β executes the disagreement strategy as above, we always assume that

U does not change below the corresponding use otherwise we may not be able to

recover the desired computations. For example, the step 1 of the disagreement

strategy in (4) stated above assumes that U � ϕ(B,A, U ; z)[s(0)] does not change

after stage s0, otherwise the computation ΦB,A,U(z)[s(0)] can not be recovered. If

U � ϕ(B,A, U ; z)[s(0)] changes, then it can undefine ∆A,U(z)[s(0)], and hence this

U -change allows us to correct ∆A,U(z)[s(0)]. In particular, if this U -change happens

after we performing the step 1 of the disagreement strategy in (4), then we will deal

with this by threatening V ≤T U via a functional. That is, we will make infinitely
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many attempts to satisfy this N -strategy as above by an infinite sequence of cycles.

Note that, for G-requirement, when we perform the disagreement strategy, we must

obtain the V -permission. The formal description of our idea is given as follows.

To combine all the n steps of the disagreement strategy, we need n many V -

permissions, and as in [42], we arrange the basic N -strategy in

n︷ ︸︸ ︷
ω × · · · × ω many

cycles (k1, · · · , kn) where ki ∈ ω, 1 ≤ i ≤ n. Their priority is arranged by the

lexicographical ordering. (0, · · · , 0)-cycle starts first, and each (k1, · · · , kn)-cycle can

start cycles (k1, · · · , ki+1, 0, · · · , 0) (1 ≤ i ≤ n) and stop, or cancel cycles (k̂1, · · · , k̂n)

for (k1, · · · , kn) < (k̂1, · · · , k̂n). Each (k1, · · · , kn)-cycle defines it’s version of ∆A,U .

For any z ∈ ω, once ∆A,U(z) is defined with use δ(z), if U � δ(z) changes later, and

if we do not undefine ∆A,U(z) explicitly in the construction, then it is redefined with

the same use as it was last defined. That is, if U � δ(z) changes, ∆A,U(z) becomes

undefined due to this U -change if and only if we undefine ∆A,U(z) explicitly in the

construction.

(k1, · · · , kn)-cycle runs as follows:

(1) Wait for a β-expansionary stage, s say.

(2) If ∆A,U(z)[s] = Es(z) for each z with ∆A,U(z)[s] ↓, then go to (3). Otherwise,

let z be the least one such that ∆A,U(z)[s] ↓6= Es(z), and then go to (4).

(3) For all z < l(β, s), if ∆A,U(z)[s] ↑, then define ∆A,U(z)[s] = Es(z) with δ(z) = s,

then go back to (1).

(4) Assume that 0 = ∆A,U(z)[s] ↓6= Es(z) = 1 (without loss of generality, we assume

that z enters Es here), then set ΘU
(k1,k2,··· ,kn−1)(kn) = Vs(kn) with θ(k1,k2,··· ,kn−1)(kn)[s] =

δ(z)[s] (δ(z)[s] < s). Start cycle (k1, k2, · · · , kn−1, kn + 1) simultaneously. Go

to (5).

(5) Wait for U � θ(k1,k2,··· ,kn−1)(kn)[s] or V (kn) to change.

(a) If U � θ(k1,k2,··· ,kn−1)(kn)[s] changes first then cancel cycles (k̂1, · · · , k̂n) >

(k1, · · · , kn), drop the A,B,C-restraints of (k1, · · · , kn)-cycle to 0, undefine

∆A,U(z)[s] and go back to (1).
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(b) If V (kn) changes first at stage t > s then we perform the step 1 of the

disagreement strategy, i.e. remove γ1(x)[s0] from B and x from Xt, put s0

into A, where s0 < s is the stage at which x is enumerated into X. Now

stop cycles (k̂1, · · · , k̂n) > (k1, · · · , kn) and go back to (1). If there is a

new β-expansionary stage and U � δ(z)[s] does not change by this new

stage, then it must be that z goes out of E again. Go to (6). If there is a

new β-expansionary stage but U � δ(z)[s] changes by this new stage, then

this U -change can cancel cycles (k̂1, · · · , k̂n) > (k1, · · · , kn) and undefine

∆A,U(z)[s], so drop the A,B,C-restraints of (k1, · · · , kn)-cycle to 0 and

go to (2). Note that here we select to run cycle (k1, · · · , kn) again, since

ΘU
(k1,k2,··· ,kn−1)(kn) is also undefined by such a U-change, we can define it

later when needed. Furthermore, such a U-change gives a chance to correct

∆A,U(z)[s].

(6) Set ΘU
(k1,k2,··· ,kn−2)(kn−1) = Vs(kn−1) with θ(k1,k2,··· ,kn−2)(kn−1)[s] = δ(z)[s]

(δ(z)[s] < s). Start cycle (k1, k2, · · · , kn−1 + 1, 0) simultaneously. Go to (7).

(7) Wait for U � θ(k1,k2,··· ,kn−2)(kn−1)[s] or V (kn−1) to change.

(a) If U � θ(k1,k2,··· ,kn−2)(kn−1)[s] changes first then cancel cycles (k̂1, · · · , k̂n) >

(k1, · · · , kn), drop the A,B,C-restraints of (k1, · · · , kn)-cycle to 0, undefine

∆A,U(z)[s] and go back to (1).

(b) If V (kn−1) changes first at stage t > s, then we perform the step 2 of

the disagreement strategy, i.e. remove s0 from A and, put x into X and

γ1(x)[s0] into B, where s0 < s is the stage at which x is enumerated into

X. Now stop cycles (k̂1, · · · , k̂n) > (k1, · · · , kn) and go back to (1). If there

is a new β-expansionary stage and U � δ(z)[s] does not change by this new

stage, then it must be that z enters E again. Go to (8), taking l = 3 in (8).

If there is a new β-expansionary stage but U � δ(z)[s] changes by this new

stage, then this U -change can cancel cycles (k̂1, · · · , k̂n) > (k1, · · · , kn) and

undefine ∆A,U(z)[s], so drop the A,B,C-restraints of (k1, · · · , kn)-cycle to

0 and go to (2). Note that here we select to run cycle (k1, · · · , kn), since
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ΘU
(k1,k2,··· ,kn−2)(kn−1) is now undefined, we can define it later when needed.

Furthermore, such a U-change gives a chance to correct ∆A,U(z)[s].

(8) Set ΘU
(k1,k2,··· ,kn−l)

(kn−l+1) = Vs(kn−l+1) with θ(k1,k2,··· ,kn−l)(kn−l+1)[s] = δ(z)[s]

(δ(z)[s] < s). Start cycle (k1, k2, · · · , kn−l, kn−l+1 + 1, 0, · · · , 0) simultaneously.

Go to (9). (Here, l is an odd number with 1 < l ≤ n.)

Note that when l = n, ΘU
(k1,k2,··· ,kn−l)

(kn−l+1) is denoted as ΘU(k1).

(9) Wait for U � θ(k1,k2,··· ,kn−l)(kn−l+1)[s] or V (kn−l+1) to change.

(a) If U � θ(k1,k2,··· ,kn−l)(kn−l+1)[s] changes first then cancel cycles (k̂1, · · · , k̂n) >

(k1, · · · , kn), drop the A,B,C-restraints of (k1, · · · , kn)-cycle to 0, undefine

∆A,U(z)[s] and go back to (1).

(b) If V (kn−l+1) changes first at stage t > s then we perform the step l > 1

odd of the disagreement strategy, i.e. put s0 into A and remove x from Xt,

where s0 < s is the stage at which x is enumerated into X. Now stop cycles

(k̂1, · · · , k̂n) > (k1, · · · , kn) and go back to (1) (note that if l = n, and if

U � δ(z)[s] does not change, then there will never be any new expansionary

stages appear, i.e. if a new expansionary stage appears then it must be that

U � δ(z)[s] changes). If there is a new β-expansionary stage and U � δ(z)[s]

does not change by this new stage, then it must be that z goes out of E

again. Go to (10), taking l = 4 in (10). If there is a new β-expansionary

stage but U � δ(z)[s] changes by this new stage, then this U -change can

cancel cycles (k̂1, · · · , k̂n) > (k1, · · · , kn) and undefine ∆A,U(z)[s], so drop

the A,B,C-restraints of (k1, · · · , kn)-cycle to 0 and go to (2). Note that

we select to run cycle (k1, · · · , kn) here, as ΘU
(k1,k2,··· ,kn−l)

(kn−l+1) is now

undefined, so we can define it later when needed. Furthermore, such a

U-change gives a chance to correct ∆A,U(z)[s].

(10) Set ΘU
(k1,k2,··· ,kn−l)

(kn−l+1) = Vs(kn−l+1) with θ(k1,k2,··· ,kn−l)(kn−l+1)[s] = δ(z)[s]

(δ(z)[s] < s). Start cycle (k1, k2, · · · , kn−l, kn−l+1 + 1, 0, · · · , 0) simultaneously.

Go to (11). (Here, l is an even number with 1 < l ≤ n.)
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Note that when l = n, ΘU
(k1,k2,··· ,kn−l)

(kn−l+1) is denoted as ΘU(k1).

(11) Wait for U � θ(k1,k2,··· ,kn−l)(kn−l+1)[s] or V (kn−l+1) to change.

(a) If U � θ(k1,k2,··· ,kn−l)(kn−l+1)[s] changes first then cancel cycles (k̂1, · · · , k̂n) >

(k1, · · · , kn), drop the A,B,C-restraints of (k1, · · · , kn)-cycle to 0, undefine

∆A,U(z)[s] and go back to (1).

(b) If V (kn−l+1) changes first at stage t > s then we perform the step l > 1

even of the disagreement strategy, i.e. remove s0 from A and put x into

Xt, where s0 < s is the stage at which x is enumerated into X. Now

stop cycles (k̂1, · · · , k̂n) > (k1, · · · , kn) and go back to (1) (note that if

l = n, and if U � δ(z)[s] does not change, then there will never be any new

expansionary stages, i.e. if a new expansionary stage appears then it must

be that U � δ(z)[s] changes). If there is a new β-expansionary stage and

U � δ(z)[s] does not change by this new stage, then it must be that z enters

E again. Go to (8), taking l = 5 in (8). (Note that, we may perform the

step l > 1 of the disagreement strategy for l is odd and even, alternatively as

the case that l = 3 and l = 4, until l = n.) If there is a new β-expansionary

stage but U � δ(z)[s] changes by this new stage, then this U -change can

cancel cycles (k̂1, · · · , k̂n) > (k1, · · · , kn) and undefine ∆A,U(z)[s], so drop

the A,B,C-restraints of (k1, · · · , kn)-cycle to 0 and go to (2). Note that

we select to run cycle (k1, · · · , kn) here, as ΘU
(k1,k2,··· ,kn−l)

(kn−l+1) is now

undefined, so we can define it later when needed. Furthermore, such a

U-change gives a chance to correct ∆A,U(z)[s].

β has two outcomes:

(k1, · · · , kn): Some (least) cycle (k1, · · · , kn) runs infinitely often, then the corresponding

∆A,U is totally defined and computes E correctly.

(f): Some cycle waits at step (1) forever, i.e. there are only finitely many β-

expansionary stages, then a disagreement appears between ΦB,A,U and E, or

between ΦC,A,U and E.
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β also has two pseudo-outcomes:

• There is an 1 ≤ i ≤ n − 1 such that, for fixed k1, · · · , ki, and for every x ∈ ω

there is a stage sx such that no cycle of the form (k1, · · · , ki, x, ki+2, · · · , kn)

acts after stage sx for some ki+2, · · · , kn. Then for every x ∈ ω, such cycle

(k1, · · · , ki, x, ki+2, · · · , kn) gets stuck for waiting for U or V to change (i.e. each

such cycle runs only finitely often). So ΘU
(k1,k2,··· ,ki)

(x) = V (x) for all x ∈ ω, i.e.

ΘU
(k1,k2,··· ,ki)

computes V correctly, a contradiction.

• For every x, there is a stage sx such that no cycle of the form (x, k2, · · · , kn)

acts after stage sx for some k2, · · · , kn. Then for every x ∈ ω, such cycle

(x, k2, · · · , kn) gets stuck for waiting for U or V to change (i.e. each such cycle

runs only finitely often). So ΘU(x) = V (x) for all x ∈ ω, i.e. ΘU computes V

correctly, a contradiction.

For the convenience of description, we introduce some notion here. Say that cycle

(k1, · · · , kn) is active at stage s if at this stage, cycle (k1, · · · , kn) is started or running

and it is not cancelled by smaller cycles (by U -change).

4.3 Construction

We first arrange the priority ranking of the requirements as follows:

G < R < N0 < P0 < N1 < P1 < · · · < Nn < Pn < · · · ,

where X < Y means that X has higher priority than Y .

Each N -strategy has outcomes (k1, · · · , kn), k1, · · · , kn ∈ ω, and f in order type

ωn + 1. Their priority is arranged as follows: the priority of cycles (k1, · · · , kn),

k1, · · · , kn ∈ ω, is ordered by the lexicographical ordering, and f has the lowest

priority.

Each P-strategy has outcomes (j, f), (j,∞) for j ∈ ω in order type ω. Their
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priority is arranged as follows:

(0,∞) <L (0, f) <L · · · <L (n,∞) <L (n, f) < · · · .

The requirements G and R are both global, and hence we will not put them on

the priority tree. The priority tree, T , is constructed recursively by the outcomes of

the strategies corresponding to the requirements.

The full construction is given as follows. The construction will proceed by stages.

At odd stages, we define Γi’s; at even stages, we approximate the true path.

Full Construction

Stage 0: Initialize all nodes on T , and let A0 = B0 = C0 = X0 = ∅.

Stage s = 2n + 1 > 0: Define ΓB,A,U
1 (x) = ΓC,A,U

2 (x) = Xs(x) for the least x < s for

which Γ’s are not defined, with uses γ1(x)[s] = s and γ2(x)[s] = s.

Stage s = 2n > 0: (finding σs)

Substage 0: Let σs(0) = λ the root node.

Substage t: Given ξ = σs � t. First initialize all the nodes >L ξ. If t = s then define

σs = ξ and initialize all the nodes with lower priority than σs.

If t < s, take action for ξ and define σs(t) depending on which requirement ξ

works for.

Case 1 ξ = α is a P-strategy. There are three subcases.

Subcase (α1) If α has no cycle started, then start cycle 0 and choose a fresh

number xξ,0 as its attacker. Define σs = ξa(0, f), initialize all nodes with

priority lower than σs.

Subcase (α2) If α1 fails, let j be the largest active cycle at the last ξ-stage.

(α2.1) If U has a change below the restraint of some (least) cycle j′ ≤ j, then

define σs(t) as αa(j′,∞) if cycle j′ has not received the j′-permission
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so far; and define σs(t) as αa(j′ + 1, f) if cycle j′ received the j′-

permission before. In the former case, go to the next substage. In the

latter case, redefine ψα(j′) as ψα(j′ − 1)[s] since j′ is in Vs and define

xα,j′+1 as a fresh number, now define σs = αa(j′ + 1, f), initialize all

the nodes with priority lower than σs and go to the next stage.

(α2.2) If α2.1 fails and V has a change on some (least) number j′ ≤ j between

the last α-stage and stage s+ 1, then let cycle j′ act at this stage. So

j′-cycle will enumerate xα,j′ into X and γ1(xα,j′) into B and γ2(xα,j′)

into C. Say that j′-cycle of α receives j′-permission at stage s + 1.

Initialize all the nodes with priority lower than or equal to αa(j′, f)

and go to the next stage. Define σs = αa(j′, f). We say that α is

satisfied via j′-cycle till U changes below the corresponding use.

Subcase (α3) If neither subcases α1 nor α2 is true, then take actions as follows:

If α is at j-cycle, not satisfied yet, and ΦA,U
e(α)(xα,j) ↓= 0, then define

ΨU
α (j) = V (j). The use ψα(j) is defined as ϕe(α)(xα,j)[s] if j 6∈ Vs, and

defined as ψα(j − 1)[s] if j ∈ Vs. And then initialize all the nodes with

priority lower than αa(j, f). Start (j+1)-cycle by choosing a fresh number

xα,j+1 as its attacker and define σs = αa(j + 1, f).

Otherwise, define σs(t) as αa(j, f) and go to the next substage.

Case 2 ξ = β is an N -strategy. Suppose cycle (k1, · · · , kn) is the largest cycle (in

lexicographical ordering) active at stage s.

Subcase (β1) If there is a cycle (k′1, · · · , k′n) ≤ (k1, · · · , kn) such that either U

changes below the corresponding use, or V changes on the corresponding

number since the last β-stage, then find the least such (k′1, · · · , k′n).

(β1.1) If U changes below the corresponding use of cycle (k′1, · · · , k′n), then

define σs(t) as βa(k′1, · · · , k′n), and go to the next substage. Note that

all cycles bigger than (k′1, · · · , k′n) become inactive because of this U -

change.
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(β1.2) If V changes on the corresponding number of cycle (k′1, · · · , k′n), then,

say V changes on k′i (1 ≤ i ≤ n).

If i = n for (k′1, · · · , k′i, · · · , k′n), then we remove the corresponding

γ1(x)[s0] from B and x from X, put s0 into A, where s0 < s is

the stage at which x is first enumerated into X. Now stop cycles

> (k′1, · · · , k′i, · · · , k′n), initialize all the nodes with priority lower than

βa(k′1, · · · , k′i, · · · , k′n). Define σs as βa(k′1, · · · , k′i, · · · , k′n) and go to

the next stage.

If i = n − 1 for (k′1, · · · , k′i, · · · , k′n), then we remove s0 from A and,

put x into X and γ1(x)[s0] into B, where s0 < s is the stage at which

x is first enumerated into X. Now stop cycles > (k′1, · · · , k′i, · · · , k′n),

initialize all the nodes with priority lower than βa(k′1, · · · , k′i, · · · , k′n).

Define σs as βa(k′1, · · · , k′i, · · · , k′n) and go to the next stage.

If i = n − l + 1 for (k′1, · · · , k′i, · · · , k′n) and l > 1 is odd (l ≤ n),

then we just put s0 into A and remove x from X, where s0 < s is

the stage at which x is first enumerated into X. Now stop cycles

> (k′1, · · · , k′i, · · · , k′n), initialize all the nodes with priority lower than

βa(k′1, · · · , k′i, · · · , k′n). Define σs as βa(k′1, · · · , k′i, · · · , k′n) and go to

the next stage.

If i = n − l + 1 for (k′1, · · · , k′i, · · · , k′n) and l > 2 is even (l ≤ n),

then we just remove s0 from A and put x into X, where s0 < s is

the stage at which x is first enumerated into X. Now stop cycles

> (k′1, · · · , k′i, · · · , k′n), initialize all the nodes with priority lower than

βa(k′1, · · · , k′i, · · · , k′n). Define σs as βa(k′1, · · · , k′i, · · · , k′n) and go to

the next stage.

Subcase (β2) If β1 does not hold, then we work on cycle (k1, · · · , kn). Check

whether s is β-expansionary.

If s is not β-expansionary, then we define σs(t) = βaf and go to the next

substage.

If s is β-expansionary, then we check whether there is some argument z with
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∆A,U(z)[s] ↓ (defined in cycle (k1, · · · , kn)) such that cycle (k1, · · · , kn)

performed the disagreement strategy for argument z upon the V (ki)-change

for some 1 < i ≤ n at the last β-stage. (Note that ∆A,U(z)[s] ↓ implies that

U does not change below the corresponding use since the last β-stage.)

If yes, then define functional ΘU
(k1,··· ,ki−2)(ki−1) = Vs(ki−1) with

θ(k1,··· ,ki−2)(ki−1)[s] = δ(z)[s] (δ(z)[s] < s). Let cycle (k1, · · · , ki−2, ki−1 +

1, 0, · · · , 0) be active. Define σs as βa(k1, · · · , ki−2, ki−1 + 1, 0, · · · , 0), and

initialize all the nodes with priority lower than σs. Go to the next stage.

If no, then we check whether ∆A,U is defined correctly.

If ∆A,U is defined correctly, then for all z < l(β, s) with ∆A,U(z)[s] ↑, we de-

fine ∆A,U(z)[s] = Ej(β)(z)[s] with δ(z) = s. Define σs(t) = βa(k1, · · · , kn)

and go to the next substage.

If for some z, ∆A,U(z)[s] ↓6= Ej(β)(z)[s], let z be the least such num-

ber. Then, z is caught as an attacker by cycle (k1, · · · , kn), so define

ΘU
(k1,··· ,kn−1)(kn) = Vs(kn) with θ(k1,··· ,kn−1)(kn)[s] = δ(z)[s] (δ(z)[s] < s).

Let cycle (k1, · · · , kn−1, kn+1) be active. Define σs = βa(k1, · · · , kn−1, kn+

1), initialize all the nodes with priority lower than σs. Go to the next stage.

4.4 Verification

Define the true path of the construction to be σ = lim infs σ2s, i.e. the leftmost path

of the construction. The following lemma implies that the true path σ is infinite.

Lemma 12. Let ξ be any node on the true path σ. Then

(1) ξ can be initialized at most finitely often.

(2) ξ has an outcome O such that ξ_O is on σ.

(3) ξ can initialize ξ_O at most finitely often.
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Proof. We prove this lemma by induction.

When ξ = λ, the root of the priority tree, it is an N0-strategy. It is obvious that

(1) is true.

To show (2), for a contradiction, suppose that λaO 6⊂ σ for any outcome O of

λ. This happens only when there are infinitely many λ-expansionary stages, λ runs

infinitely many cycles and each of them runs finitely often. So either there is an

1 ≤ i ≤ n − 1 such that, for fixed k1, · · · , ki, and for every x ∈ ω there is a stage sx

such that no cycle (k1, · · · , ki, x, ki+2, · · · , kn) acts after stage sx for some ki+2, · · · , kn.

Then for every x ∈ ω, cycle (k1, · · · , ki, x, ki+2, · · · , kn) gets stuck for waiting for U or

V to change (i.e. each such cycle runs only finitely often). So ΘU
(k1,k2,··· ,ki)

(x) = V (x)

for all x ∈ ω, i.e. ΘU
(k1,k2,··· ,ki)

computes V correctly, a contradiction; or for every k1,

there is a stage sk1 such that no cycle (k1, k2, · · · , kn) acts after stage sk1 for some

k2, · · · , kn. Then for every k1 ∈ ω, cycle (k1, k2, · · · , kn) gets stuck for waiting for U

or V to change (i.e. each such cycle runs only finitely often). So ΘU(x) = V (x) for

all x ∈ ω, i.e. ΘU computes V correctly, a contradiction.

If there are finitely many λ-expansionary stages, then λa(f) ⊂ σ. So (3) is clearly

true for λ. If there are infinitely many λ-expansionary stages, then by (2), we have

that λa(k1, k2, · · · , kn) ⊂ σ for some k1, k2, · · · , kn ∈ ω. So there is a stage large

enough after which no nodes to the left of λ_(k1, k2, · · · , kn) is visited again. Thus,

λ_(k1, k2, · · · , kn) can never be initialized after this stage. So (3) is true for λ.

Now, for any ξ on σ (ξ is not λ), let ξ− be the immediate predecessor of ξ. We

assume that the lemma holds for ξ−. Then there is a stage s0 after which ξ− cannot

be initialized. There are two cases.

Case 1. ξ− = β is an N -strategy.

By our assumption, ξ− has a true outcome on the true path. Let ξ = ξ−a(k1, · · · , kn)

for some k1, · · · , kn ∈ ω (the case of ξ = ξ−a(f) is similar), then only ξ−’s cycles on

the left of (k1, · · · , kn) can initialize ξ after stage s0. Since ξ is on σ, ξ− can have

outcome on the left of (k1, · · · , kn) at most finitely often, and thus the actions done

by ξ− via these outcomes are at most finitely often, thus ξ can be initialized by ξ− at

most finitely often after stage s0. So there is a stage s1 > s0 after which ξ cannot be
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initialized by higher priority strategies. Thus, (1) is true for ξ.

To prove (2), for a contradiction, we assume that ξaO 6⊂ σ for any outcome O
of ξ (ξ is a P-strategy in this case). Then, ξ runs infinitely many cycles and each

cycle runs only finitely often. Thus, for each cycle j, there is a stage sj such that

after which cycle j never runs again, by our construction, ΨU(j)[sj] computes V (j)

correctly, and hence ΨU = V , i.e., V ≤T U , a contradiction. So (2) is true for ξ.

We have shown that ξ has an outcome O such that ξ_O is on σ. So there is a

stage s2 > s1 after which the nodes on the left of ξ_O can never be visited. Note

that the P-strategy ξ acts to put a number into X at most once after stage s2, and

ξ will take no further action afterwards. So (3) is true for ξ.

Case 2. ξ− = α is a P-strategy.

In this case, ξ is an N -strategy. By our assumption, ξ− has a true outcome on

the true path. Let ξ = ξ−a(j,−) for some j ∈ ω, where − ∈ {∞, f}, then only ξ−’s

cycles on the left of cycle j can initialize ξ after stage s0. Since ξ is on σ, ξ− can have

outcome on the left of ξ−a(j,−) at most finitely often, and thus the actions done by

ξ− via these outcomes are at most finitely often, thus ξ can be initialized by ξ− at

most finitely often after stage s0. So there is a stage t > s0 after which ξ cannot be

initialized by higher priority strategies. Thus, (1) is true for ξ.

Now, we apply the same argument with that for λ, i.e. the N0-strategy. It is easy

to see that (2) and (3) are true for ξ in this case.

Lemma 13. For any e ∈ ω, let ξ be the Pe-strategy on the true path σ. Then Pe

requirement is satisfied via ξ.

Proof. Fix e, let ξ be the Pe-strategy on the true path σ. By lemma 12, ξ can be

initialized at most finitely often and ξ has a true outcome O on σ. Let s0 be the

least stage after which ξ can never be initialized and no nodes to the left of ξaO are

visited again.

By our construction, O = (j,−) for some j ∈ ω, where − ∈ {∞, f}. Let s1 ≥ s0

be the stage at which x = xξ,j is defined. Then this x cannot be cancelled later.
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If, after stage s1, there is no stage at which ΦA,U
e(ξ)(x) converges to 0, then cycle j

can never take action after stage s1. In this case, ξ has outcome (j, f) on the true

path σ, and X(x) = 0 and ΦA,U
e(ξ)(x) does not converge to 0. Thus, X 6= ΦA,U

e(ξ) . So

Pe(ξ)-requirement is satisfied obviously.

As at any ξ-stage, if ΦA,U
e(ξ)(x) converges to 0, then cycle j imposes a restraint to

protect the associated computation and waits for j to enter V , and starts (j+1)-cycle

simultaneously. As we assume that ξ has outcome (j,−) on σ, we know that either

U changes below the corresponding use or j enters V .

If j entering V happens first, then cycle j can act to enumerate x into X and

U will not change below the corresponding use afterwards, since otherwise, (j,−),

now is (j, f), could not be the final outcome of ξ on σ. In this case, X(x) = 1 and

ΦA,U
e(ξ)(x) = 0. So X 6= ΦA,U

e(ξ) , and hence Pe(ξ)-requirement is satisfied.

Otherwise, cycle j can not act to enumerate x into X forever, then cycle j will

return from step 5 to step 2 infinitely often. So ΦA,U
e(ξ)(x) ↑, and hence P is satisfied

via witness x.

Lemma 14. For any e ∈ ω, let ξ be the Ne-strategy on the true path σ. Then Ne

requirement is satisfied via ξ.

Proof. Fix e, let ξ be the Ne-strategy on the true path σ. By lemma 12, ξ can be

initialized at most finitely often and ξ has a true outcome O on σ. Let s0 be the

least stage after which ξ can never be initialized and no nodes to the left of ξaO are

visited again.

If ξaf ⊂ σ, i.e. there are only finitely many ξ-expansionary stages, then Ne-

requirement is satisfied obviously. So we assume that there are infinitely many ξ-

expansionary stages, then ξ must have a true outcome O of the form (k1, · · · , kn) on

σ, for some k1, · · · , kn ∈ ω. Assume that ΦB,A,U
i = ΦC,A,U

i = Ej, where e = 〈i, j〉. We

now show that ∆A,U defined by the cycle (k1, · · · , kn) is totally defined and computes

Ej correctly.

By the choice of s0, no strategy to the left of ξa(k1, · · · , kn) is visited after stage

s0. Thus, the functional ∆ defined by cycle (k1, · · · , kn) can not be cancelled by
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higher priority strategies after stage s0. To show that ∆A,U is totally defined, it is

enough to show that for every x, ∆A,U(x) can be undefined at most finitely often. For

a contradiction, let z be the least one such that ∆A,U(z) is undefined infinitely often.

By our construction, this z must be caught as an attacker by cycle (k1, · · · , kn) at

some (least) stage s1 > s0, say. Note that, when z is caught as an attacker by cycle

(k1, · · · , kn), we wait for either U changes below the corresponding use or kn to enter

V . At the same time, cycle (k1, · · · , kn + 1) is started.

Firstly, assume that kn 6∈ V . At stage s1, it must be that l(ξ, s1) > z and

∆A,U(z)[s1] ↓6= Ej,s1(z). As we assume that ξa(k1, · · · , kn) ⊂ σ, and kn never enters

V , U must change below the corresponding use θ(k1,··· ,kn−1)(kn)[s1] = δ(z)[s1] after

stage s1 (otherwise, as ξ starts a new cycle (k1, · · · , kn + 1) when it waits for kn to

enter V , then cycle (k1, · · · , kn) can not be run again, so the true outcome of ξ lies

to the right of (k1, · · · , kn), a contradiction). So ∆A,U(z)[s1] is undefined by this U -

change, at the next ξ-expansionary stage, ∆A,U(z) will be redefined correctly. Now,

if Ej(z) does not change later, then the definition of ∆A,U(z) is correct forever and

we will never undefine it by our construction (since this z can never be caught as an

attacker again). In this case, ∆A,U(z) is undefined finitely often. But Ej is n-c.e.,

Ej(z) may change afterwards. If so, this z could be caught as an attacker by cycle

(k1, · · · , kn) for the second time. Then, by applying the same argument as above,

∆A,U(z) must be undefined by a U -change and ξ can correct ∆A,U(z) at the next ξ-

expansionary stage again. Since Ej is n-c.e. set, Ej(z) changes at most n many times.

For each such change, if z is caught as an attacker by cycle (k1, · · · , kn) then ∆A,U(z)

must be undefined via a U -change and then we have a chance to correct ∆A,U(z).

Therefore, ∆A,U(z) is undefined finitely often and redefined correctly eventually.

Secondly, suppose kn ∈ V . By the above paragraph, it is sufficient to consider

the case that there is a stage t > s1 at which cycle (k1, · · · , kn) gets the V (kn)-

permission to perform the first step of the disagreement strategy and stop all cycles

> (k1, · · · , kn). Assume Ej(z) never changes again. If U does not change below the

corresponding use of cycle (k1, · · · , kn) later, then the final outcome of ξ will be f , a

contradiction. So U must change below the corresponding use of cycle (k1, · · · , kn)

after stage t, and hence ∆A,U(z) will be redefined correctly and it is correct forever.
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Thus, ∆A,U(z) is undefined finitely often in this case. Suppose Ej(z) changes after

stage t at which cycle (k1, · · · , kn) performs the first step of the disagreement strategy.

Then this z could be caught as an attacker by cycle (k1, · · · , kn) to do the second step

of the disagreement strategy. Since Ej is n-c.e., it may happen that cycle (k1, · · · , kn)

performs all the n steps of the disagreement strategy for this z, but eventually U

must change below the corresponding use since otherwise the disagreement strategy

succeeds and hence a disagreement point appears, then the final outcome of ξ will be

f . Thus, ∆A,U(z) must be undefined via this U -change and then we have a chance to

correct ∆A,U(z). After Ej(z) changes for the last time, this z can never be caught as an

attacker by cycle (k1, · · · , kn) and hence ∆A,U(z) can never be undefined. Therefore,

∆A,U(z) is undefined finitely often and redefined correctly eventually.

Lemma 15. A,B,C ≤T V ⊕ U .

Proof. We will apply the delayed permission argument here. To show that A ≤T

V ⊕ U , fix a number m ∈ ω, it’s sufficient to show that we can find a stage s using

V ⊕U as the oracle such that m ∈ A if and only if m ∈ As. By our construction, only

N -strategies can put or extract numbers into or from A and if m can be enumerated

into A, then it must be the case that some P-strategy, α say, enumerates a number

x into X, and γ1(x)[m] into B and γ2(x)[m] into C at stage m, and later some N -

strategy β with β ⊂ α performs the disagreement strategy by removing γ1(x)[m] from

B and extracting x from X and enumerating m into A simultaneously. So if at stage

m, no number is enumerated into X, then m 6∈ A; otherwise, assume some number x

is enumerated into X at stage m by some P-strategy α, and γ1(x)[m] is enumerated

into B and γ2(x)[m] is enumerated into C at stage m simultaneously. Check whether

there is some N -strategy β ⊂ α with βaO ⊆ α such that for some z with ∆A,U
βaO(z)

defined, the computations ΦB,A,U
e(β) (z) and ΦC,A,U

e(β) (z) are injured by the enumerations

of γi(x)-uses (i = 1, 2) and hence z is caught as an attacker. If there is no such β,

then m will not be enumerated into A. Now we assume that such N -strategy (with

the highest priority) β ⊂ α exists.

For the convenience of description, we first introduce the following definition.
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Given ξ ∈ T , the permission-bound at stage s, b(ξs), is defined as

max({k1 + 1, · · · , kn + 1, j + 1 : ∃ξ′(ξ′a(k1, · · · , kn) ≤ ξ

or ξ′a(j,−) ≤ ξ,− ∈ {∞, f})}).

Obviously, b(ξs) is computable. Let S(ξs) be the least stage such that

VS(ξs) � b(ξs) = V � b(ξs).

Then S(ξs) is V -computable.

Before we continue the proof of A ≤T V ⊕ U , we introduce the following claim:

Claim: Assume that a P-strategy ξ runs cycle j at stage s0 and s1 ≥ max{s0,

S(ξa(j, f))} is a U-true stage. If ξ does not run cycle j at stage s1, then after stage s1,

if ξ runs cycle j again, at stage s2 say, cycle j must have been cancelled or initialized

between stage s0 and s2.

A similar result is true for an N -strategy ξ instead of j cycle with (k1, · · · , kn)

cycle.

This claim can be proved by the same argument with that in [42]. One can also

refer to Lemma 5.2 in [12].

We continue the proof of A ≤T V ⊕ U now. It is obvious that for such N -

strategy β, the outcome O must be (k1, · · · , kn) for some k1, · · · , kn ∈ ω such that

βa(k1, · · · , kn) ⊆ α. Let ξ = βa(k1, · · · , kn).

Now if kn ∈ Vm or kn 6∈ V , then m 6∈ A. Assume kn enters V at a stage t > m, let

t′ > t be the least U -true stage greater than both t and S(ξt). t
′ is U⊕V -computable.

At stage t′, if β is not visited or β is visited but does not run cycle (k1, · · · , kn), then

by the claim, we have m ∈ A iff m ∈ At′ . If β runs cycle (k1, · · · , kn) at stage t′,

then it is easy to see that if m 6∈ At′ then m 6∈ A since by the choice of t′ > S(ξt), m

cannot get V -permission to enter A after stage t′; if m ∈ At′ then, by the choice of

t′, m can not get the V -permission to exit A after stage t′. Thus, m ∈ A iff m ∈ At′ ,

so A ≤T U ⊕ V .
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Because the arguments for B ≤T V ⊕U and C ≤T V ⊕U are similar, without loss

of generality, we only show the more complicated one B ≤T V ⊕ U since C is in fact

a c.e. set. Fix a number m ∈ ω, we will show how to V ⊕ U -computably determine

whether m ∈ B or not. First note that if m is not a γ1(x)[s] use for any x, s, then

m 6∈ B. Find the first y, s such that γ1(y)[s] > m. If so far m is not assigned as a

γ1-use for any number z < y at any stage t < s, then m 6∈ B.

Assume m = γ1(x)[s] for some x, s. By our construction, γ1(x)[s] is enumerated

into B only when x is enumerated into X at a stage t > s. We can effectively check

whether x is chosen as an attacker by some P-strategy or not. If x is not chosen

as an attacker by any P-strategy, then m 6∈ B. Otherwise, assume that x is chosen

as an attacker by some P-strategy, α say, for some cycle j at some stage s0. Let

ξ = αa(j, f). If j ∈ Vs0 or j 6∈ V , then it is obvious that m 6∈ B since m cannot

get V -permission forever. If j enters V at a stage s1 > s0, let s2 > s1 be the least

U -true stage greater than both s1 and S(ξs1). s2 is U ⊕ V -computable. At stage s2,

if α is not visited, or if α is visited but does not run cycle j, then m ∈ B iff m ∈ Bs2

(by the claim). If α runs cycle j at stage s2, it is easy to see that if m 6∈ Bs2 then

m 6∈ B, since after stage s2, m cannot get V -permission to enter B. We now assume

that m ∈ Bs2 in the following.

If the enumerations of m = γ1(x)[s] into B and γ2(x)[s] into C do not injure any

computations ΦB,A,U
e(β) (z) and ΦC,A,U

e(β) (z) simultaneously for any z with ∆A,U
βaO(z) defined,

where β is an N -strategy with βaO ⊆ α, then m will not be removed from B after

stage s2 and hence m ∈ B. Otherwise, suppose that β is an N -strategy of the highest

priority such that βa(k1, · · · , kn) ⊆ α for some k1, · · · , kn ∈ ω, and the enumerations

of m = γ1(x)[s] into B and γ2(x)[s] into C injured the computations ΦB,A,U
e(β) (z) and

ΦC,A,U
e(β) (z) simultaneously for some z with ∆A,U

βaO(z) defined and hence z is caught as

an attacker by β’s cycle (k1, · · · , kn). Let ξ = βa(k1, · · · , kn). Now let s3 > s2 be

the least U -true stage greater than both s2 and S(ξs2). s3 is U ⊕ V -computable. At

stage s3, if β is not visited, or if β is visited but does not run cycle (k1, · · · , kn), then

m ∈ B iff m ∈ Bs3 (by the claim). If β runs cycle (k1, · · · , kn) at stage s3, it is easy

to see that m ∈ B iff m ∈ Bs3 since after stage s3, m cannot get V -permission to

enter or exist B. Thus, m ∈ B iff m ∈ Bs3 . Therefore B ≤T U ⊕ V .
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Lemma 16. ΓB,A,U
1 and ΓC,A,U

2 are totally defined and compute X correctly. Further-

more, X ≤T V .

Proof. We will show that ΓB,A,U
1 (x) and ΓC,A,U

2 (x) are undefined at most finitely often

and ΓB,A,U
1 (x)=ΓC,A,U

2 (x)=X(x) eventually for all x ∈ ω. We prove this by induction

on x ∈ ω.

Fix an x ∈ ω, suppose that this is true for all y < x, i.e. there is some (least) stage

s0 after which ΓB,A,U
1 (y) and ΓC,A,U

2 (y) for all y < x cannot be undefined again. After

stage s0, suppose that ΓB,A,U
1 (x) and ΓC,A,U

2 (x) are defined for the first time at stage

s1. If x is not enumerated into X at any stage s > s1, then ΓB,A,U
1 (x) and ΓC,A,U

2 (x)

will never be undefined. Otherwise, suppose that x is enumerated into X at some

stage s > s1 by some P-strategy, α say, then, by our construction, we will undefine

ΓB,A,U
1 (x)[s] by enumerating γ1(x)[s] into B and undefine ΓC,A,U

2 (x)[s] by enumerating

γ2(x)[s] into C. So ΓB,A,U
1 (x) and ΓC,A,U

2 (x) will be redefined correctly later. If there is

some N -strategy, β say, performing the disagreement strategy by extracting γ1(x)[s]

from B at some stage s(1) > s, it will remove x from X and put s into A, then

we will redefine γ1(x) as the same as γ1(x)[s] and lift γ2(x) use, redefine ΓB,A,U
1 (x)

and ΓC,A,U
2 (x) agreeing with Xs(1)(x). If β performs the disagreement strategy for

the second time by extracting s from A at a stage s(2) > s(1), β will enumerate

x into X and put γ1(x)[s] into B again, then we will lift γ1(x) use and restore the

γ2(x) to be that defined before enumerating s into A, and redefine ΓB,A,U
1 (x) and

ΓC,A,U
2 (x) agreeing with Xs(2)(x). After this, by our construction, β may perform the

disagreement strategy at most (n − 2) many times more later, at each time of such

β-actions, ΓB,A,U
1 (x) and ΓC,A,U

2 (x) can be undefined or restored by enumerating s

into A or removing s from A, and redefined correctly. Thus, ΓB,A,U
1 (x) and ΓC,A,U

2 (x)

are undefined at most finitely often and ΓB,A,U
1 (x)=ΓC,A,U

2 (x)=X(x) eventually. So,

ΓB,A,U
1 and ΓC,A,U

2 are totally defined and compute X correctly.

Note that, for any x ∈ ω, we change the value of X(x) only when it gets the

corresponding V -permission. So X ≤T V .
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This completes the proof of Theorem 3. ��
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