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‘Abstract

Transcriptional profiling and network-based gene annotations of human
malaria parasite Plasmodium falciparum
By GuangAn Hu

Supervisor: Dr. Zbynek Bozdech

Plasmodium falciparum is the most ce‘tuﬁuﬂve agent of the deadliest form of human
malaria responsible for around 2 million deaths in the world. Even 6 years after the
genome sequencing. more than 50% genes of P. falciparum remain functionally
uncharacterized. In this work we generated large functional datasets and
systematically analyze these data combining other public functional datasets to
characterize gene function. cellular process and gene regulation in 7. falciparum. We
developed the program OligoRankPick which uses a weighted rank-based strategy for
the design of long oligonucleotide DNA microarrays. OligoRankPick does not rely on
direct oligonucleotide exclusion by parameter cutoffs but instead optimizes all
parameters in context of each other. Using this program we have designed several
long oligonucleotide DNA microarrays for the parasitic species including P.
falciparum, P. vivax and pan-rodent malaria. Based on the designed DNA microarray.
we report on extensive transcriptional profiling of P. falciparum parasites using 20
small molecular compounds including several common antimalarial drugs. Diverse
gene responses were observed in different drug or compound treatments and this
perturbation data has a high predictive accuracy of functionally related genes based on
their transcriptional regulation. Specifically. transcriptional analysis showed specific

gene responses induced by inhibiting classic signaling pathways when parasite cells



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

were treated from the early schizont stage and several transcription factors and
signaling genes were up-regulated by the inhibition of calcium dependent signaling
and calcineurin signaling pathways, suggesting the phosphorylation and/or
dephosphorylation play vital roles of the gene expression regulation in P. falciaprum.
Combining the transcriptional profile with in silico generated phylogenetic profiles,
domain-domain interaction evidence and the yeast two-hybrid system-based protein-
protein interaction dataset we construct a high confidence gene interactome network
using a probabilistic Bayesian network approach. Based on this network. we assign
function to 2547 hypothetical proteins using the weighted neighbor counting method
(WNC). To demonstrate the utility of this network we assemble a sub-network of
genes associated with merozoite invasion and predict 263 new proteins that are
associated with this process. The predictions were validated by the lTocalization of a
subset of previously uncharacterized protein candidates of the Plasmodiunm invasive
form (merozoites) which turther confirms their predicted tunctions in the malaria

parasite invasion process.
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Chapter 1 Introduction

1.1 Human malaria disease

The human malaria parasite is still an affliction on human populations and the
incidence of the disease has been increasing in recent years. It is estimated that
malaria affects 300 million to 500 million people and kills 1.5-2.5 million people
each year, mostly among young children and pregnant women in sub-Saharan
Africa (Hay, et al., 2004). Moreover, recent clinical investigations indicated that
the original number of the recorded episodes was largely underestimated,
especially for outside Africa, and that malaria is spreading with much greater
velocity than previously believed (figure 1.1) (Snow, et al., 2005). This situation is
caused mainly by resistance to all available chemotherapy and absence of any

effective vaccine. Thus development of novel drugs as well as an effective vaccine

Figure 1.1 The global clinic risk recorded episodes was largely underestimated.

The figure was copies from Snow et al. (Snow, et al., 2005).
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is crucial for the fight against ..this deadly disease. To achieve this goal a
comprehensive understanding of molecular aspects of human malaria is essential.
One of the major tasks in this effort is functional annotation of malaria parasite
genes in order to identify and characterize new potential molecular targets for drug

and vaccine development.

1.2 Plasmodium falciparum life cycle

Human malaria is caused by several species of protozoa parasites. Plasmodium
falciparum. Plasmodium vivax, Plasmodium ovale. Plasmodium malariae and
Plasmodium knrﬁrfesi. among which P. falciparum is the most lethal form. The
Plasmodium parasites are characterized by a complex life cycle comprised of a
series of dramatic developmental stages taking place in both of its hosts, human
and mosquito (figure 1.2). The parasite-infected mosquito bites and injects
invasive sporozoites into the human host blood stream. The sporozoites are rapidly
sequestered in the liver where after a brief development. and another invasive form
of parasite (merozoites) is produced and released into the bloodstream. In the blood,
the parasites invade and multiply in the red blood cells. This asexual multiplication
is known as intraerythrocytic developmental cycle (IDC) (figure 1.2). which
includes three distinct morphological stages: ring, trophozoite, and schizont stage.
The IDC is completed in approximately 48 hours, during which the early stages
(ring and trophozoite) are highly metabolically active. rapidly ingesting

hemoglobin. and performing the majority of generic cellular processes associated
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with their growth. This process culminates about 30 hours post invasion (hpi),
when the cells start to replicate their DNA (early schizont stage). At approximately
48 hpi, newly formed mature merozoites rupture from the red cell and invade new
cells to reinitiate another cycle. During the asexual multiplication, a fraction of
parasite cell differentiates into a precursor sexual stage known as gametocytes. The
sexual development and fertilization is completed in the mosquitoe gut to reinitiate

a new cycle of parasite transmission.
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Figure 1.2 The life cycle of Plasmodium (The graph was copied from the Parasite
Image Library, http://www.dpd.cdc.gov/dpdx/HTML/Image Library.htm).
Sporozoites infect liver cells from female mosquito and mature into schizonts,

which rupture and release merozoites (exo-erythrocytic schizogony). Then the

merozoites infect red blood cells and begin the asexual blood cycles. Some


http://www.dpd.cdc.gov/dpdx/HTML/Image_Library.htm
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parasites differentiate into sexual erythrocytic stages (gametocytes). which are
ingested by a mosquito. The parasites' multiplication in the mosquito is known as

the sporogonic cycle.

Although all developmental stages are essential for successful parasite
transmission and thus progression of the disease in the human population, the
asexual blood stage is responsible for all malaria symptoms. The blood stage is
also the most important target area for the majority of presently available
antimalarial drugs as well as development of new antimalarial strategies. These
development efforts were recently enhanced by completion of the genome
sequences of several Plasmodium species and comprehensive analyses of global

2

transcription profiles during the Plasmodium life cycle (Bozdech. et al., 2003;

Carlton. et al.. 2002; Gardner. et al.. 2002: Le Roch. et al., 2003).

1.3 The genome, transcriptome, proteome and interactome of P.
falciparum

The 22.8 Mb genome of P. falciparum is comprised of 14 linear chromosomes
ranging in size from 0.64 - 3.3 Mb and two non-nuclear genomes: a circular 35-kb
plastid-like genome and a linear 6-kb mitochondrial genome (Waller, et al., 2004).
The genome of the 3D7 strain of P. falciparum was the first parasite genome to be
sequenced to completion (Gardner, et al., 2002). The genome has more than 5300

coding sequences (CDS). however. more than 60% of the predicted genes could



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

not be assigned functions becaus.e they do not have sequence homology with
known genes in other organisms (Gardner. et al.. 2002). Curiously, only 8% of the
P. faleiparum genes could be assigned functions in metabolism. in contrast to 17%
of the genes of the yeast Saccharomyces cerevisiae (Kooij. et al.. 2006). This
suggests that enzymes are more difficult to be identified by sequence homology in
P. falciparum owing to its great evolutionary distance from other well-studied
organisms. Obviously. a lot of enzymes related to metabolic process possibly are
present in the 60% hypothetical proteins. Hence development of new methods to
characterize these hypothetical proteins is crucial and urgent to understand the
biology ofma]afia.

Comprehensive profiles of transcript levels throughout the complete life cycle
of the P. falciparum parasite have been extensively investigated. It was shown that
each gene is activated specifically at the time when its function is required
(Bozdech. et al., 2003: Le Roch. et al., 2003; Llinas. et al.. 2006). Although these
results brought numerous insights into Plasmodium biology. the transcriptome data
had only a limited impact on gene anotaion. This is mainly due to the
monotonous character of the Plasmodium transcriptome where large and
functionally diverse groups of genes share common transcriptional profiles across
the Plasmodium life cycle. This phenomenon hinders a high resolution clustering
of genes into functionally related gene group based on their expression profiles
(Bozdech, et al., 2003). Continued data mining of the published P. falciparum

transcriptome. in addition to new transcriptome studies of defined developmental
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stages or mutant parasites or drug!treatmems, will provide a better understanding
of the biology of the malaria parasite.

Large scale proteomic studies were recently established as powerful
approaches to analyze global protein expression profiles, differential protein
expression, posttranscriptional posttranslational regulation and modifications,
alternative splicing and processing, subcellular localization and interactions of host
and pathogen (de Hoog and Mann, 2004; Zhang, et al., 2005; Zhu, et al., 2003).
Several detailed high-throughput mass-spectrometry studies of the P. falciparum
proteome have been published (Florens, et al., 2002; Khan, et al., 2005; Lasonder,
et al., 2002; Le ..Roch. et al., 2003). It was shown, in general, the protein profiles
agree well with their transcriptional profiles of the genes encoding these proteins
but in many cases there is a slight delay between transcript production and protein
accumulation (Le Roch, et al., 2003). Nevertheless many gaps remain in our
understanding of protein expression. Detailed analyses of the P falciparum
proteome, and its relationship to the transcriptome would considerably benefit the
annotation of the genome and functional genomics applied to the lifecycles of
Plasmodium.

Understanding the interactions between Plasmodium proteins can provide
insights into the function of many proteins as well as functional relationships with
molecular mechanisms in the Plasmodium cell. Recently. the first large-scale
analysis of interactions between proteins during the asexual blood stages of P.

falciparum have been published (LaCount, et al., 2005). Using a high-throughput
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yeast two-hybrid assay. 2.846 inte;'actions were identified involving 1312 largely
uncharacterized proteins in 29 highly connected protein complexes. Combining
protein interactions with their gene expression profiles, putative annotation and
domain information provided improved functional insights to Plasmodium biology,
such as chromatin modification, transcription, mRNA stability, ubiquitination and
invasion of host cells. Date and Stoeckert (2006) integrated the expression data and
genomic context data (phylogenetic profiles and rosette stone data). available at
that time, using naive Bayesian method to construct an interactome of pair-wise
functional linkages to elucidate local and global functional relationships between
gene products (bate and Stoeckert, 2006). This resulted in predicting functional
relationships between of 3667 proteins including 2216 hypothetical proteins at the
50% confident level. Wuchty and Ipsaro (2007) incorporated the evolutionarily
conserved protein interactions, underlying domain-domain interaction information
and experimental protein-protein interactions to construct a draft of protein
interactions in malaria including only 2321 proteins (Wuchty and Ipsaro, 2007).
Although two groups have developed methods to construct the malaria interactome
separately to investigate the gene function, the resolution (confidence) and
proteome coverage are not satisfying. especially for the network modular analysis
and protein functional prediction. Hence, to construct one interactome with high
confidence and proteome-coverage is urgent for the post-genomic research of

malaria.
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Taken together, the abovementioned large functional datasets are now available
for in silico data mining. Integration of these heterogeneous functional data types
and systematical analysis of these data are reliable and versatile to characterize the

biology of the malaria parasite.

1.4 Systems biology for malaria

To study the transcriptome, proteome, interactome and other functional data
integratively, bioinformatics tools are being developed to annotate the function of
hypothetical proteins and point out specialized gene expression regulation systems
in living organis-ms. The post-genomics research of Plasmodium species focuses
on understanding of the transcriptome, proteome and interactome of the parasite to
elucidate the gene regulation. cellular process. cell development. One of the main
benefits from such research include understanding of the mode-of-action of
inhibitory compounds which could explain resistance mechanisms to known drugs
as well as identify and functionally describe new drug targets (figure 1.3)
(Birkholtz, et al.. 2006; Kooij, et al., 2006; Winzeler, 2006). Studies in model
organisms suggest that most gene products mediate their function within complex
networks of interconnected macromolecules. These networks have topological and
dynamic properties that reflect biological phenomena. A comprehensive
understanding of biological mechanisms associated with disease processes such as
human malaria will require an interactome network whose confidence and gene

coverage reaches the level on networks assembled for well studied model
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organisms such as yeast, C. elegans or Drosophila (Barabasi and Oltvai, 2004).
Only such networks can provide clues for the putative roles of pathogens genes in
basic biological functions as well as adoption of pathogen cell to changing
environments (Guo, et al., 2007). The functional predictions of unknown genes
generated by such approaches are based on the gene connectivity, position in the
network and other genes they have links with (Sharan, et al., 2007). Network-based
predictions of protein function using network modular analysis and computational
methods is presently one of the most powerful methods to predict the functions of
the uncharacterized genes (Chua, et al., 2006; Deng, et al., 2003; Hishigaki, et al.,
2001; Schlitt, et al., 2003; Schwikowski, et al., 2000; Sharan, et al., 2007).
Although several data types of genome, proteome, transcriptome and interactome
are available, malaria research is still in a period of intense data collection. Thus it
is necessary and crucial to produce large functional data ensuring to provide
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Gene regulation

!
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Figure 1.3 Functional genomics and systematic researches of malaria biology.
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enough information for each gene and protein of P. falciparum. Integration and
systematically analysis of these data types could facilitate to understand the
Plasmodium biology with gene function and molecular processes and develop new

drugs and vaccines.

1.5 Malaria merozoite invasion process

Merozoite invasion is a complex, multiple-step process in which four distinct steps
can be recognized: 1) Initial recognition and attachment, 2) Reorientation, 3)
Junction formation, 4) Parasite entry (figure 1.4) (Chitnis and Blackman, 2000:
Dowse and Soldéti, 2004; Pinder. et al., 2000). The major mission of the blood
stage merozoites is to locate, bind to and invade host RBCs. Invasion is initiated by
interaction between any part of the merozoite surface and the host cell. This initial
interaction is likely a random collision and appears to be low affinity and
reversible (Blackman. 2000). The cell recognition and attachment processes are
highly dependent on specific molecular interactions between parasite ligands on
the merozoite and the host receptors on the erythrocyte membrane (Barnwell and
Galinski, 1998). After binding to the erythrocyte, the parasite reorients itself
toward host plasma membrane. The merozoite reorientation also coincides with a
transient erythrocyte deformation (Aikawa, et al., 1978). After that a junction is
formed between the apical end of the merozoite and erythrocyte membrane. During
the invasion, three 'secretory’ morphologically distinct organelles: micronemes.

rhoptries and dense granules which are located at the apical end of the invasive
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stages of the parasite. expel their c;mtents from the parasite immediately after the
junction is formed. Junction formation and microneme release occur at about the
same time after which the rhoptries are discharged immediately (Sam-Yellowe. et
al.. 1988). The release of the apical organelle contents correlates with the
formation of the parasitophorous vacuole (PV). The apical location and the
observation that the contents of the rhoptries and micronemes are released
coinciding with invasion imply that these organelles participate in the invasion
process. Moreover, the precise timing of the reorientation, organellar discharge.
and formation of the PV suggest a tight regulation of these processes which are
essential for a successful completion of the invasion process. Presently, close to
nothing is known about molecular mechanisms associated with this tight regulation.
As the merozoite moves through the ring-shaped tight junction formed by the
receptor/ligand complex to the posterior of merozoite. the junction between the
parasite and host becomes ring-like and the incipient parasitophorous vacuole (PV)
is being formed, Once the parasite has completed its entry. the tight junction will
disappear. and the respective parasitophorous vacuole membrane (PVM) and the
host erythrocyte membrane will separate. The closure of the PVM is followed by
the release of dense granule content into the lumen of PV. It is believed that
merozoite invasion process involves complex machinery comprised of a broad
spectrum of Plasmodium proteins. Several protein categories were linked with
invasion. such as adhesive surface molecules. proteins involved in recognition and

attachment, proteases essential for parasite and host protein modification and
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degeneration, components of the actin-myosin motor complex, two type protein
kinases (Blackman and Bannister, 2001; Cowman and Crabb, 2002; Dowse and
Soldati, 2004; Preiser, et al., 2000). Despite these achievements, specific roles of
the majority of the identified proteins in the invasion process are largely unknown.
Identification of additional proteins associated with invasion as well as
comprehensive understanding of their role in the invasion process is of outmost
interest. First, comprehensive characterizations of the spectrum of merozoite
surface molecules will be invaluable for vaccine development.  Second,
exploration of the ﬁnique molecular processes associated with the formation,
regulation of the merozoite invasion machinery can provide many insights for drug

development.

Figure 1.4 A schematic depiction of stages in red blood cell invasion by the malaria
merozoite. The parasite binds, reorientates until its apical end contacts the host cell
surface, then enters into a parasitophorous vacuole (figure was copied from

(Chitnis and Blackman, 2000).
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1.6 Project summary

Techniques of system biology have shown to significantly contribute to infer
biological functions for the high number of uncharacterized proteins and to the
understanding of biological mechanisms associated with discase processes. The
fact that more than 50% of the genes of P. falciparum are of unknown function
promoted us to characterize the function of these genes using system biology
approaches. The publicly available transcriptional data characterizing of
transcriptional regulation during the P. falciparum IDC that have been used in
previous bioinformatics approaches for functional analyses brought only a limited
contribution. This is mainly due to the monotonous character of the transcriptional
regulation where many functionally unrelated gene share common transcriptional
profiles. Given these limitations, growth perturbation data were suggested to be
helpful for Plasmodium systems biology approaches. However, until today, very
little is known about transcriptional responses of P falciparum to growth
perturbations. Here I propose to carry out growth perturbations of P. falciparum
exposure to anti-malarial drugs and compounds. The generated gene expression
data will be used to construct a gene-associated network by combining this dataset
with other high throughput genomic datasets, such as phylogenetic profiles,
domain-domain interactions and yeast two-hybrid protein-protein interactions. This
network will be used to assign function to unknown proteins. In the final step I will
focus on the Plasmodium invasion machinery and construct a gene sub-network to

identify new proteins associated with cellular process and illustrate the molecular
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mechanisms of this process. New identified proteins will be characterized using
several methods of molecular biology. My work is presented with the following
chapters: Chapter 2. develop a program for oligonucleotide selection for
microarray and design one high quality DNA microarray of P. falciparum. And
also several other DNA micorarrays are designed. Chapter 3, perform perturbations
of P. falciparum exposure to 20 antimalarial drugs and compounds: analysis of the
perturbation data: reconstruct a probabilistic gene functional network with the
perturbation date combining with other high throughput functional datasets:
network-based gene annotations; build a subnetwork associated with invasion
process: experimental validation the newly identified invasion proteins. Chapter 4.
transcriptional profiling P. falciparum exposure to Kinase inhibitors. Chapter 5, the
computing structure and databases developed in this project. Chapter 6. final

summary and perspective.

i
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Chapter 2 OligoRankPick: long oligonucleotides selection for

DNA microarrays using weighted rank-sum strategy

2.1 Summary

The design of long oligonucleotides for spotted DNA microarrays requires
detailed attention to ensure their optimal performance in the hybridization
process. The main challenge is to select an optimal oligonucleotide element
that represents each genetic locus/gene in the genome and is unique, devoid of
internal structures and repetitive sequences and its Tm is uniform with all
other elements on the microarray. Currently. all of the publicly available
programs for DNA long oligonucleotide microarray selection utilize various
combinations of cutoffs in which each parameter (uniqueness. Tm, and
secondary structure) is evaluated and filtered individually. The use of the
cutoffs can, however, lead to information loss and to selection of suboptimal
oligonucleotides. especially for genomes with extreme distribution of the GC
content, a large proportion of repetitive sequences or the presence of large
gene families with highly homologous members. In this work we present the
program OligoRankPick which is using a weighted rank-based strategy to
select microarray oligonucleotide elements via an integer weighted linear
function.  OligoRankPick is an efficient tool for the design of long
oligonucleotide DNA microarrays which does not rely on direct

oligonucleotide exclusion by parameter cutoffs but instead optimizes all
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parameters in context of each other. OligoRankPick provides significant
improvements in oligonucleotide design in comparison to other published
algorithms for all three testing microbial genomes E. coli. S. cerevisiae and P.
falciparum. The weighted rank-sum strategy utilized by this algorithm
provides high flexibility of oligonucleotide selection which accommodates
extreme variability of DNA sequence properties along genomes of many
organisms. Also we showed applications of OligoRankPick to design DNA

microarrays for other species.

2.2 Introduction

DNA microarray is one of the most powerful and versatile tools for post-genomic
research (Brown and Botstein, 1999). After the initial success with cDNA and PCR
product-based microarrays. application of long oligonucleotides became widely
used in “spotted”™ DNA microarray technology in the last eight years (Bozdech, et
al.. 2003: Hughes. et al.. 2001: Kane. et al.. 2000: Li and Stormo, 2001). From the
beginning it became clear that the design of the oligonucleotide probes requires
special attention. Under a single stringency condition, hybridization specificity and
efficiency of all oligonucleotides must be globally maximized across the entire
array. Thus for the selection of the optimal oligonucleotide candidates, four major
parameters are being evaluated: (i) uniqueness which analyzes other possible
cross-hybridization targets in the genome: (ii) sequence complexity which

evaluates the presence of short nucleotide repeats: (iii) melting temperature (Tm)
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or GC content which ensures a uniform hybridization efficiency across the
microarray: and (iv) level of internal secondary structures which helps to avoid all
possible self-binding interference with the specific target hybridization. In
principle each of these properties can be calculated individually for every potential
oligonucleotide candidate, however. the main challenge that remains is to derive a
selection strategy that combines these parameters and selects the most optimal
oligonucleotide representative for a given genetic locus/gene.

All currently available programs for long oligonucleotide microarray design
utilize different parameters: the binding energy or BLAST-based score to
alternative targets to evaluate uniqueness, the GC content or Tm to estimate
hybridization stringency. the reverse Smith-Waterman score or free energy to
evaluate levels of secondary structure and various types of complexity coefficients
to evaluate the presence of short nucleotide repeats in each oligonucleotide
element (Bozdech, et al., 2003: Nielsen. et al.. 2003: Nordberg, 2005; Reymond. et
al.. 2004; Rouillard. et al.. 2003; Wang and Seed. 2003; Wright and Church, 2002).
Typically these programs select one or more oligonucleotide representatives of a
gene using various systems of cutoff-based filters. For example
ArrayOligoSelector creates an intersection of oligonucleotides that pass
parameter-based cutoffs for uniqueness, self-binding and sequence complexity.
The intersection candidate list is then passed on to the GC filter and subsequently
the final representative(s) are selected using a 3™ proximity criteria (Bozdech. et al.,

2003). The cutoff based algorithms provide a powerful approach to select DNA
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microarray oligonucleotide sets aﬁd were successfully used to design DNA
microarrays for a large number of species (Boyer, et al., 2005; Bozdech. et al..
2003: Carter. et al.. 2005; Nordberg, 2005). The use of these algorithms is,
however. not completely optimal for genomes with high abundance of repetitive
sequences and large fluctuations of GC content. To accommodate such genomic
sequences, the methods must relax the parameter filter adjustments. The wide
“opening™ of the cutoff filters can cause selection of suboptimal oligonucleotides
for a significant number of genes. due to the fact that all oligonucleotides that pass
a particular filter are treated as equal by the subsequent steps, disregarding their
subtle diversity within the filtered interval of the parameter (unpublished
observations).

To overcome these shortcomings new algorithms which incorporate
optimization strategies of oligonucleotide parameters were developed including
OligoDesign (Tolstrup, et al.. 2003) and CommOligo (Li, et al., 2005).
OligoDesign was developed specifically for the design of the locked nucleic acid
(LNA) microarray platform which takes advantage of the improved nucleic
on-chip capture sensitivity of the LNA substitute mixmer oligonucleotides.
Design of these specialized probes requires careful optimizations of the
hybridization specificity and efficiency for each probe. For this purpose,
OligoDesign uses an extensive fuzzification process derived from neural network
approaches to ensure the optimal performance of this highly specialized

microarray platform (Tolstrup, et al.. 2003). Similar to the fuzzy logic approach,
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CommOligo uses a piece-wise Iineéltr function to select optimal oligonucleotides
via a user configurable iterative process (Li, et al., 2005). Both of these methods
represented a step in the right direction, recognizing the need for parallel
optimization of all used parameters and elimination of cutoffs that cause
information loss. At its presently available implementation, however. both
OligoDesign and CommOligo utilize complex and computer-time consuming
processes that render them unsuitable for high throughput applications.
Nevertheless both methods have been useful for design of focused “miniarrays”
which typically contain smaller numbers of genes e.g. 120 stress response and
toxicological mar\kers from Caenorhabditis elegans (Tolstrup, et al., 2003) or
microarrays for relatively small genomes such as Methanoccocus maripaludis with
1759 genes (L1, et al., 2005).

We developed a novel program named OligoRankPick (Hu, et al.. 2007) that it
is suitable for the design of gene specific long oligonucleotide probes for genomes
of all sizes and the final decision making process is based on a weighted rank-sum
strategy for parameter optimization which significantly streamlines the entire
computation process. This program completely eliminates all cutoff-based filters.
thereby significantly improves the quality of the resulting microarray
oligonucleotide design. Moreover, the weighted rank-sum approach enables users
to implement an'integer weighted linear function to automatically optimize the

oligonucleotide parameters for each gene individually.
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Figure 2.1. The flowchart of OligoRankPick. All possible oligonucleotides were
extracted form the input sequence and stored. Subsequently four parameters of all
possible oligonucleotides were calculated including the BLAST score to a second
genomic target (uniqueness), the GC content (Tm), the Reverse Smith-Waterman
score (self-binding) and the LZ compression score (sequence complexity). In the
rank transformation step. the oligonucleotides are ranked based on each parameter
and ordinal rank number is given to all oligonucleotides in each parameter rank
independently. Finally weighted rank-sum (RS()) is calculated for all
oligonucleotides with uniqueness weights (Wgrast), GC content weights (Wgc)
self-binding weights (Wsw), and sequence complexity weights (W) and Rgpast.
Rae. Rsr and Ry representing the ranks corresponding to each parameter ranking.
Multiple RS, are determined by the gene specific optimization using multiple

weight sets (not indicated) and the lowest value is finally considered. The
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optimal candidate is selected based on the lowest RS, amongst all

oligonucleotides in the locus.

2.3 OligoRankPick
2.3.1 Program overview
Figure 2.1 summarizes the global overview of the OligoRankPick algorithm.
Essentially. all possible oligonucleotide windows from a gene/locus are extracted
and scored by the four parameter measurements, uniqueness (BLAST score to
second target), GC content (GC content, Tm), self-binding (Reverse
Smith-Waterman:SW} and sequence complexity (Lempel-Ziv compression score)
(figure 2.1). In the next step OligoRankPick ranks all possible oligonucleotides
in one locus according to their parameter scores and assigns an ordinal number for
each parameter. While the BLAST, SW, LZ score are directly transformed into a
rank, the GC content scores are first transformed to their absolute deviation from
the defined GC content. Oligonucleotides with an identical score for any parameter
are offered the same rank number. Subsequently the rank-sum strategy is used to
select the optimal oligonucleotide(s). This strategy is based on the calculation of a
weighted rank-sum of all four ranks for each oligonucleotide within a locus by a
linear function utilizing the following formula (also see figure 2.1):

sy = Min( Y “‘= (W R
Where W, is the weight of the j-th parameter (j = 1. 2, 3, 4), R;; is rank score of j-th

parameter of the k-th oligonucleotide (k = 1. ..., n). In the first step the rank-sum
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function selects the oligonucleotide with the minimal rank-sum (RS) as the
candidate for one given weight set.

To accommodate the variable characteristics of the DNA sequence along the
genome we introduce an additional step in which the optimal weight values are
determined for each gene individually. There is a weight file (wt_pool.opt) to offer
the optimal intervals of weight values for the user from the simulation for
"standard" microbial genomes, which is detailed in the published paper (Hu, et al.,
2007). However, users can define specific weights and modify this file based on
their own theoretical or empirical experience as well as specific requirements
(simulation_ws.pl provided in the package). For all sets of weights:

TO = Min{kyy, / z w,)
1

Where RSk; is the optimal selected oligonucleotide (K oligonucleotide) for weight
set i, Zw; is the sum of weights for weight set i. TO (Target Oligonucleotide) is the
final selected oligonucleotide. The optimization step is performed for all weight
sets reflecting all combination of weight values in the input intervals. The
oligonucleotide with the minimum RS value is the optimal local solution of the
rank-sum function in the given weight set interval. This oligonucleotide is chosen

as the final candidate.

2.3.2 Implementation
The OligoRankPick program is freely available from the website

(zblab.sbs.ntu.edu.sg/OligoRankPick). It is divided into two parts (two scripts).

73


http://simulation_ws.pl
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The first script (oligoblast.pl) is used to generate all possible oligonucleotides and
their parsed BLAST results including its first, second and third best hybridization
target (top three). The oligoblast.pl script can be run on different computers or a
computer cluster using parallel processing methods such as mpiBLAST

(www.mpiblast.org) and the results should be parsed according to the format of

oligoblast.pl output. The second script (oligorankpick.pl) selects the optimal
oligonucleotide for each sequence. There are four additional scripts which can be
used to optimize the OligoRankPick package performance including masker.pl.
used to mask the repeat sequence based on the NCBI dust program; GC_dis.pl,
used to plot the GC content distribution of all oligonucleotides in the dataset in
order to define a suitable GC content: fragmentation.pl, used to partition the long
sequences to increase the oligonucleotide density in the coding sequences (see P,
falciparum microarray design): simulation ws.pl, used to modify the weight set

file (wt_pool.opt) for special genomes.

2.3.3 Comparison with other programs

To compare the performance of OligoRankPick with other publicly available
programs, we designed three theoretical microarray oligonucleotide sets for the P,
falciparum, S. cerevisiae and E. coli. We selected three programs.
ArrayOligoSelector (Bozdech, et al., 2003), OligoPicker (Wang and Seed, 2003)
and OligoArray 2.1 (Rouillard, et al.. 2003). For the intended designs we chose the

oligonucleotide length to be 70 nt and the GC content 31.4% (Tm=74.7) for P.

]
(35
e
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falciparum, 40% (Tm=79.8) for S. cerevisiae and 45% for E. coli (Tm=82.7). The
theoretical oligonucleotide sets were designed using the publicly available
sequence data and the selection algorithms with default settings. Figure 2.2

summarizes the parameter distributions of the uniqueness scores (BLAST scores

of the final oligonucleotides to their second best genomic targets) plotted against
GC content. Overall these contour plots illustrate that comparing to the three
publicly available programs, OligoRankPick provides significant improvements
for the design of yeast, E. coli and P. falciparum microarray (figure 2.2). The most
striking improvements were, however, observed in the design of the P. falciparum
microarray. For this genome the BLAST scores and the GC content of the
oligonucleotides designed by OligoRankPick exhibit a greater convergence to a
small region in the desired area (low BLAST scores, GC around 31.4%) compared

to oligonucleotides designed by the three other programs (figure 2.2).
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Figure 2.2 Overall profiles of the uniqueness and GC content of oligonucleotide
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microarray elements in the 12 designed theoretical microarray sets. Four
algorithms OligoRankPick, ArrayoligoSelector, OligoPicker. and OligoArray2. 1
were used to design long oligonucleotide DNA microarray sets for P falciparum,
E. coli and S. cerevisiae. Contour plots illustrate oligonucleotide density plotted

of along the uniqueness scores (second target BLAST scores) and GC contents.

The oligonucleotide density is calculated as —loglO(N/Nua) (N ~ number of
oligonucletide in a given area and N,,,x ~ number of oligonucleotide in the most

dense area) and displayed using the indicated by the color based scale.

Similar convergence is observed for the SW and LZ scores (Supplementary
figure S2.1 and S2.2). To further demonstrate the convergence of the
oligonucleotide parameters we calculated a mean distance for each parameter
distribution to its desired (preset) value and also to the average value within the
parameter distribution (figure 2.3). In all cases the OligoRankPick produced the
smallest mean distances and thus tighter distribution of the oligonucleotide
parameters. The only exception is the lower mean distance of the CG content
from its mean value in the yeast set designed by OligoPicker. Detailed inspection
of these results indicated that the low mean distance is due to extensive filtering
implemented by this program (data not shown). For each of the theoretical
microarray dataset we also calculate the average weight score (AWS) which is
directly related to the oligonucleotide quality with respect to the oligonucleotide

parameters. The smaller AWS that are consistently observed for the
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OligoRankPick generated oligonucleotide sets compared to the three other
programs further indicate the optimization power of OligoRankPick

(Supplementary figure S2.3).
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Figure 2.3 Analyses of the uniqueness and GC content distributions in the 12
designed theoretical microarray sets. A, single-parameter mean distances of
BLAST score and GC content were calculated from all oligonucleotide scores to
their mean score, respectively; B, the mean distances of BLAST score and GC
content calculated from all oligonucleotide scores to the expected score. The
expected BLAST score is the smallest one in all sets and the expected GC content
is the defined GC content in the program; C and D shows the two-dimensional

mean distances BLAST score and GC content calculated from all oligonucleotide
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points to their central point. The central point in C comprises the mean BLAST
score and mean GC content in the oligonucleotide set. The central point in D has

the smallest BLAST score and defined GC content.

Table 2.1 summarizes the overall statistics of the 12 oligonucleotide sets for
different datasets and methods. We define the 40% continuous sequence identity to
a second target and 5% deviation from the target GC content as the “good quality™
criteria according to previous studies (Bozdech. et al.. 2003; He. et al., 2005: Hu.
et al.. 2007; Kane, et al., 2000). OligoRankPick outperformed the other programs
producing the highest number of oligonucleotides within the target limits (95.6%,
91.3% and 94.9% for E. coli. S. cerevisiae and P. falciparum respectively. table
2.1). The unbiased character of the OligoRankPick algorithm is also demonstrated
by the total number of oligonucleotides designed. Since OligoRankPick does not
use any filters. this method will select an oligonucleotide candidate for essentially
any genetic locus (see “#designed” in table I). There were only 5 coding
sequences not considered by OligoRankPick in E. coli and one in S. cerevisiae due
to their sequence lengths being shorter than 70 nt (table 2.1).

One of the unique features of the P. falciparum genome is the presence of
several large highly homologous gene families whose role has been implicated in
the antigenic variation including var (76 members), rifin (164 members) and
stevor (34 members) (Florens, et al.. 2002: Kyes, et al., 2001). Table 2.2

indicates the number of unique oligonucleotides designed by all the four programs
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for these genes. OligoRankPick was capable of designing unique oligonucleotides
for 234 genes (85.4%) of total 274 genes which by far exceeded the performance
of the three other algorithms. Analysis of oligonucleotide positions of var genes
showed that they located at the most variable regions such as the internal sequence
(ITS) between two conserved domains (figure 2.4).

Table 2.1 The comparison of designed oligonucleotides from different programs

E. coli K12 (4237 cds) S. cerevisiae (6680 cds) P, fulciparum (5363 cds)

Programs® #designed” #accepted”  #designed #accepted  #designed #accepted
OligoRankPick  4232° 4047(95.6)% 6679 6096(91.3) 5363 5092(94.9)
ArrayOligoSelector 4201 3371(80.2) 6221 3471(55.8) 5339 2093(39.2)
OligoPicker 4142 2594(62.6) 6208 3614(58.2) 4235 3543(83.7)
OligoAarray 2.1 3221 2826(87.7) 6587 4440(67.4) 5206 2317(44.5)

*ArrayOligoSelector 3.8.4: OligoPicker: OligoArray 2.1. a: oligonucleotide
number selected by the program: b: good oligonucleotide number based on
BLAST score of non-target (<=40% continuous identity) and GC content (£5%).
& Percentage of good quality oligonucleotide to total selected oligonucleotide (in
the bracket). & Five rejected coding sequences are less than 70bp. { Only one

rejected sequence is YJIR151W-A (51bp).

Table 2.2 The oligonulceotide design of large gene families from different

programs
Var family Rifin family Stevor family
Programs® ( Total No. 76) (Total No. 164) (Total No. 34)
#designed®  #accepted”  #designed  #accepted #designed  #accepted
OligoRankPick 76 63 164 140 34 31
ArrayOligoSelector 76 31 162 58 34 13
OligoPicker 37 37 78 74 12 12
OligoAarray 2.1 22 9 (62 (8 34 22
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*ArrayOligoSelector 3.8.4; OligoPicker; OligoArray 2.1. a: oligonucleotide
number selected by the program; b: accepted oligonucleotide number based on

BLAST score of non-target (<40% continuous identity).
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Figure 2.4 The positions of selected oligonucleotides by OligoRankPick for var
genes (not including pseudogenes). Oligonucleotide position was marked by blue
star (unique) and gray star (nonunique). NTS, N-terminal sequence; DBL,

Duffy-binding domain; CIDR, cysteine-rich interdomain region; ATS, acidic

terminal segment; ITS, internal sequence.

2.4 DNA microarray for Plasmodium falciparum

-0



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2.4.1 Design of a gene specific DNA microarray for P. falciparum

In the final step we applied OligoRankPick to design a gene specific DNA
microarray for the P falciparum genome (5363 coding sequences, CDS) that can
be used for functional genomic studies of this important human pathogen. For this
design we wished to increase the oligonucleotide coverage for longer open reading
frames and thus we fragmented each coding sequence using the fragmentation.pl
script as follows: sequences smaller than 1kb were kept as one fragment;
sequences between 1kb and 2kb were split evenly into two fragments. sequences
larger then 2kb were split into n fragments (n>=2) when: (2n-2)kb < gene size >
(2n)kb. The fragmentation step generated 10166 Microarray Element Fragments
(MEFs) from 5363 CDS. A single oligonucleotide was designed for each MEF
which resulted in one oligonucleotide per 1198bp on average for all P. falciparum
coding sequences. Although the median GC content of all 70 nt oligonucleotide
windows in the P. falciparum coding sequences is 24.3% (displayed by GC_dis.pl
optional module) for higher specificity and efficiency of microarray hybridization.
we selected oligonucleotides with a GC content of 31.4% (22 GCs out of 70 nt).
OligoRankPick successfully designed 10166 oligonucleotides representing all
predicted P. falciparum genes with an average of 1.9 oligonucleotides per protein
coding sequence.  Figure 2.5B summarizes the GC content distribution
suggesting that OligoRankPick can identify optimal oligonucleotide elements with
GC content significantly distant from the average GC content in the genome.

Astonishingly 70.5% of the designed oligonucleotides had the desired GC content


http://fragmentation.pl
http://GC_dis.pl
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of 31.4% (figure 2.5B).

To evaluate the level of uniqueness of the designed oligonucleotides we used the
identical quality control criteria used for the weight optimization strategy which is
consistent with previously established conditions of optimal microarray
hybridization performance (see above). In total 9909 (97.5%) oligonucleotides
passed the uniqueness criteria and 9795(96.4%) oligonucleotides were found to be
in the range of 5% deviation from the GC content target value (31.4%) (figure 2.5).
There are 9584 (94.7%) oligonucleotides meeting both criteria while only 275
oligonucleotides (2..?%) were outside of the +5% GC content interval and 257
oligonucleotides (2.5%) were not unique in the genome. Manual inspections of the
MEFs represented by these oligonucleotides indicated that no suitable 70 nt
window exists within these DNA fragments. The 257 non-unique oligonucleotides
represented 193 genes (3.6% of total CDS) from which 67 genes belong to the
large multigenic gene families. var, rifin and stevor. Pair-wise sequence
homology analysis of these genes revealed that these genes do not contain any 70
nt window that shares less than 40% homology with any other member of the
corresponding gene family and thus no unique oligonucleotide could be selected
by any conceivable strategy. Interestingly for the remaining 185 (73.4%)
members of these families a specific oligonucleotide was selected which further

demonstrates the power of OligoRankPick for microarray design.
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Figure 2.5 Oligonucleotide parameter distributions in the newly designed P.
falciparum DNA microarray. Total 10166 oligonucleotides were designed for the
P. falciprum DNA_ microarray. Relative abundance of the oligonucleotides is
plotted along the uniqueness scores (BLAST score of the second-best target in the
genome) (A) and along the GC content (B). The dotted line indicates the
quality control criteria (see text) with BLAST score = 56 which corresponding to
>40% continuous match cross-hybridization and the 31.4% + 5% interval of GC
content corresponding to the targeted range. Percentages of oligonucleotides which

fall within the targeted values are indicated.

2.4.2 Transcriptome analysis of the trophozoite and schizont stages of P.
Salciparum

Although all parameters of the oligonucleotide microarray sets designed by
OligoRankPick indicate their high quality, the ultimate evidence for their
functionality can be provided only by physical microarray experiments. For this

purpose we have synthesized all the 10166 oligonucleotides for the P. falciparum

= 3% o



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

genome-wide microarray and spotted these onto polylysine-coated microscopic
slides as previously described (DeRisi. et al., 1997). Using these microarrays we
compare the global mRNA patterns between two developmental stages of the P,
falciparum intraerythrocytic development, trophozoite and schizont. All
experimental procedures were carried out as previously described (Bozdech, et al.,
2003) and the complete results for three replicates of the microarray hybridizations
are available in the supplementary data. The P falciparum genome sequence
reference strain 3D7 was used for this analysis. Total 4183 genes were found to be
expressed in at least one of the studied developmental stages in three replicates of
microarray hybridization. From these 1891 and 841 mRNA transcripts exhibited at
least 2-fold higher abundance in the trophozoite and the schizont stage.
respectively.

Table 2.3 P falciparum microarray data and their comparisons to existing

transcriptomes
Transcriptome results Trophozoite Schizont
3-fold in at least two replicates 862 431
Present in the LOM-IDC ftranscriptome 630/73% 320/74.2%
*Same stage classification in LOM-1DC 595/94.5% 307/95.9%
Transcriptome
Present in the HDSO-A ffymetrix transcriptome 741/86% 353/82%
**Same stage classification in HDSO-Affymetrix ~ 676/91.2% 336/95.2%
transcriptome

*genes with peak expression before and after 30 hours post invasion are classified
as trophozoite and schizont specific. respectively.

** genes with higher expression levels in late ring and early and late trophozoites
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compared to early and late schizonts are classified as trophozoite specific and vice

versd.

In order to assess the fidelity of the obtained results we wish to compare this
data to previously published transcriptome analyses of the P falciparum
intraerythrocytic developmental cycle (IDC). These include the IDC transcriptome
analyzed by the previous version of a long oligonulceotide microarray (LOM-1DC
transcriptome) comprised of 2689 genes (Bozdech, et al.. 2003). and a high density
short oligonucleotide Affymetrix microarray dataset (HDSO-Affymetrix
transcriptome) comprised of 1162 genes with stage specific transcription (Le Roch,
et al. 2003). All genes present in both LOM-IDC and HDSO-Affymetrix
transcriptomes were represented on the new P. falciparum microarray and yielded
a hybridization signal in at least two of the three microarray replicates. To compare
the stage specificity of the gene expression we select genes which exhibited
>3-fold change in mRNA abundance between trophozoite and schizonts detected
in at least two (out of three) replicates (table 2.4). Using these criteria we classify
862 genes as trophozoite specific and 431 genes as schizont specific. The
transcriptome data comparisons, summarized in table 2.3. indicate high
correlations between the transcriptome data and the new microarray dataset with
91.2-95.9% of overlapping genes exhibiting identical stage specificity in their
mRNA levels. There were only a small number of genes (4.1-8.8%) for which

the new expression results did not correlate with the previously published data.
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These discrepancies are likely caused by subtle differences in parasite culture
synchronicity and stage representation between our culturing system and the
systems used for the previous transcriptome analyses.

To further validate the performance of the designed P. falciparum microarray
quantitative real-time RT-PCR was used to measure relative mRNA abundance
between trophozoite and schizont stage for 10 selected genes. For this we chose
genes for which only OligoRankPick designed a “good quality”™ microarray
element while the three tested publicly available programs did not yield a suitable
oligonucleotide element. These include two paralogous histone3. five members
of the variable surface antigen gene families (2 var. 1 rifin. 2 stevor). centrin. and
two genes encoding highly homologous hypothetical proteins. Figure 2.6A shows
good correlations between the RT-PCR results and microarray hybridization data
which demonstrate the robust performance of the newly designed microarray for
analyses of mRNA abundance in P. falciparum. Detail sequence analyses revealed
that each of the 10 selected genes contains only a small window of unique
sequence while the majority of the gene is highly homologous to at least one other
locus in the genome. One of the example is a pair of highly homologous genes
encoding histone3 (H3) and its homologue histone3.3 (H3.3) (figure 2.6B). This
high homology is likely the main obstacle for designing a specific oligonucleotide
and it is the reason why no transcription data have been obtained by the previously
reported transcriptome analyses. Despite this OligoRankPick selected specific

oligonucleotides which overlap the most unique region of each gene (figure 2.6B).
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The microarray hybridization signal detected on these oligonucleotide elements
revealed that these two highly homologous genes undergo different transcription
regulation during the IDC with H3 exhibiting 3-fold increase of mRNA abundance
in schizonts compare to trophozoites and H3.3 showing similar amounts (<2-fold
change) between these two developmental stages (figure 2.6A).

Taken together these data demonstrate that the newly designed microarray for P.
falciparum successfully recapitulates data from previous transcriptome analyses
and has a potential to further expand on these results. Overall these data verify the
improved performance of OligoRankPick in designing unique microarray elements

for gene expression microarrays.

-36-
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Figure 2.6 Verifications of microarray results by quantitative real-time PCR (A)
and example of oligonucleotide selection for highly homologous genes (B). The
bar graph indicates mRNA abundance ratios between two developmental stages
(schizont/trophozoite) of the P falciparum IDC for 10 genes measured by
microarray and by real-time RT-PCR. The expression data were obtained using the
total RNA isolations from the trophozoite and schizont stage. Each measurement
was carried three times and the standard error for each measurement is indicated.

(A). The uniqueness score distributions along the two highly homologous histone
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3 genes. The uniqueness is represented by the BLAST score of each 70 nt window
along the histone genes (H3 and H3.3) to its second best target in the genome.
The red arrow indicates the position of oligonucleotide selected by OligoRankPick

in each gene (B).

2.5 Discussion

The main goal of this work was to develop a microarray design algorithm which
combines the thoroughness of the parameter optimization methods (such as
CommOligo (Li, et al., 2005)) and performs with high computational efficiency of
the earlier. cutoff based techniques. such as OligoArraySelector (Bozdech, et al..
2003).  The newly developed algorithm. OligoRankPick, is the first method
using a parameter optimization approach that is computationally fast and robust for
genome-wide microarray design. The core principle of this technique consists of
the rank transformations of the parameter scores and the subsequent weighted
rank-sum strategy. This allowed us to eliminate all cutoff based filters that are
typically applied to the input data (by existing optimization programs) or to partial
oligonucleotide lists that are generated prior or during the decision-making step (in
cutoff-based methods). Instead the derived rank-based system maintains all the
oligonucleotide candidates in their rank order throughout the entire process. This
approach removes any ambiguities in the selection process as all oligonucleotides
are constantly prioritized based on their properties. Since no oligonucleotides are

eliminated by arbitrary cutoffs, this method also significantly expands the genome

« JRa



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

coverage of the designed microarrays. The simplicity of the rank-based approach
also allows the algorithm to perform gene specific optimizations of the weight
coefficients in which the contribution of each parameter is modified based on the
sequence properties of a particular gene. This is especially useful for optimal probe
design in genes with extreme parameters distributions such as high AT content or
high sequence homology to other genomic locus (low uniqueness). For example
AT richness of some genes causes the GC content parameter to be over emphasized
due to a stronger priority that is given to the GC rich oligonucleotide windows.
This could force a selection of less unique oligonucleotides or oligonucleotides
with complex secondary structure from these CG rich oligonucleotide candidates.
The implementation of the gene specific optimizations is likely the most
innovative approach introduced by this method because it generates a tighter
distribution for each oligonucleotide parameter compared to other publicly
available programs (figure 2.2). For general functionality we derived and validate
optimal weight set intervals which could be applied to a wide range of genomes.
The flexibility of the OligoRankPick package. however, allows the users to tune
these setting for other specialized applications.

For the development and validation of OligoRankPick we design a new DNA
microarray for the most lethal species of the human malaria parasites P. falciparum
whose genome was completed in 2002 (Florens. et al.. 2002). We chose this
genome for its extreme AT/GC distribution and high level of gene duplication to

demonstrate the utility of the newly design program for its future applications. The
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average GC content in the P. falciparum genome is estimated to be 19.4% (23.7%
in coding and 13.5% in non-coding sequences). For this design, however, we
wished to select oligonucleotides with higher GC content to ensure higher Tm and
thus specificity and selectivity of each probe. In addition the requirement for high
GC content will help to select oligonucleotides with high sequence complexity as
AT rich sequences in P. falciparum contain numerous short nucleotide repeats. As
demonstrated in figure 3 OligoRankPick was able to design a set of
oligonucleotides whose GC content is tightly distributed around 31.4%. At the
same time high levels of uniqueness and sequence complexity and a low level of
secondary structures were preserved in the vast majority of the probes. This feature
of OligoRankPick will be particularly useful for microarray design of many
organisms with extreme fluctuations in GC content such as Mycoplasma mycoides
(Westberg. et al.. 2004) and other bacterial species (Parkhill. et al., 2003). other
“AT rich™ Plasmodium spp. (Carlton, et al.. 2002) and Dictvostelium discoideum
(Glockner. et al., 2002) or GC rich Leishmania spp. (Ivens, et al.. 2005). The P,
falciparum genome was found to contain a large number of duplicated genes
sharing high levels of homology (Florens, et al.. 2002). The extreme examples
are the three gene families (var, rifin. stevor) which are involved in the parasite
virulence and are presently explored as potential molecular targets for malaria
intervention strategies (Rowe and Kyes. 2004). Despite the high levels of
homology amongst the individual members of these gene families. OligoRankPick

was capable of designing specific oligonucleotide representative for 74.3% of these
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genes which by far exceeded the performance of the three tested publicly available
programs. This improved performance will render OligoRankPick useful for
studies of many organisms with highly homologous, biologically significant gene
families ranging from microbial pathogens (Stringer and Keely. 2001) to high

eukaryotes (Harrison and Gerstein, 2002).

2.6 Applications of OligoRankPick for other species
2.6.1 Design an intergenic specific DNA microarray of P. falciparum

DNA microarray of intergenic regions is very useful for analysis of regulation of
gene expression such as Chromatin Immunoprecipitations (ChIP) (lyer, et al.. 2001:
Ren. et al.. 2000). P. falciparum genome has high AT content. especially in the
intergenic gene regions where the AT content readily exceeds 90%. Hence
designing of DNA microarray for the gene intergenic regions could be challenging
for essentially all oligonucletide selection programs. In our previous work
OligoRankPick was shown to successfully select unique representative
oligonucleotides even for genomic regions with extreme parameters such as AT
rich sequences or low complexity regions. This is achieved via the automatic
parameter optimization that does not rely on cutoff-based definitions (Hu, et al.,
2007). Total 5411 UTR sequences were generated by extracting 1500 bp
upstream sequences from the starting codons of the P falciparum genes
representing the intergenic region that contain both the untranslated RNA

sequences and the promoter regions. In the absence of the mapping of
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transcriptional start sites in the P, falciparum genome these regions are the closest
estimation of the position of gene expression regulatory regions. In order to
increase the intergenic microarray resolution, each UTR sequence was further
fragmented into three 500bp long sequences. and one oligonucleotide for each
fragment was designed by OligoRankPick. For the oligonucleotide nomenclature.
each fragment were marked position -1, -2 and -3 according to its distance to the
start codon.  For ChIP-chip applications, 500 bp sequences from start codon ATG
of 5411 genes were also generated to design oligonucleotides by OligoRankPick.
and this oligonucleotide was marked position +1. For the design. we set
oligonucleotide length at 50 nt and GC content at 28%. Prior to the application of
the OligoRankPick we performed RepeatMasker.pl to masker all high repetitive
AT regions in the UTR sequences. Total 14975 oligonucleotides were selected by
OligoRankPick for 16233 fragmented UTR sequences with 5411 genes (table 2.4).
Significantly. 95.1 % (5147) genes have at least one unique oligonucleotide. and
2890 genes have three unique oligonucleotides for all three fragments of UTR
sequences. After the quality control filtering of the designed oligonucleotides
based on both uniqueness and GC content deviation, 4944 genes (91.4) have at
least one oligonucleotide representing their UTR sequences on the newly designed
P falciparum intergenic oligonucleotide microarray (table 2.4). 1In all 14975
oligonucleotides, 10791 (~72%) matched two preset criteria (40% similarity and
6% deviation of GC content), and 88.3 % oligonucleotides have their GC content

matching the previously defined setting. This confirms that OligoRankPick could
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accommodate extreme variability of DNA sequence properties to select a proper
oligonucleotide that matches strict criteria for microarray performance (see above).
These results show high percentage of oligonucleotides selected by OligoRankPick
These results also show high percentage of the oligonucleotides selected by
OligoRankPick for the intergenic regions of P. falciparum genes that have high
uniqueness and low deviation of GC content. ChliP-chip analysis based on this
micorarray is performed and preliminary results showed that this chip had good
signal qualities (Chaal et al. manuscript in preparation).

Table 2.4 Statistics of intergenic specific DNA microarray of P. falciparum

Designed (%)°  Unique (%) “  Unique & GC

_content (%)"

# genes have at least one oligo 5411 (100) 5147 (95.1)  4944(91.4)
# genes have -1. -2 and -3 oligos 3570 (66.0) 2890 (53.4) 1940 (35.9)
# genes have -1 and -2 oligos 4545 (84.0) 3292 (60.8) 2388 (44.1)
# genes have -1 and -3 oligos 4673 (86.4) 3494 (64.6) 2622 (48.5)
# genes have -2 and -3 oligos 4668 (86.3) 3540 (65.4) 2777 (51.3)
# genes have -3 oligos 5097 (94.2) 4397 (81.3) 3924 (72.5)
# genes have -2 oligos 4923 (91.0) 4083 (75.5) 3446 (63.7)
# genes have -1 oligos 4955 (91.6) 4103 (75.8) 3421 (63.4)
# genes have +1 oligos 5403 (99.9) 5109 (94.4) 5039 (93.1)
Total oligos for UTR 14975 (92.2) 12583 (84.0) 10791 (72.1)
Total oligos for 4 positions 20378 (94.2) 17692 (86.8) 15830 (76.7)

% number oligonucleotides outputted by OligoRankPick is lower then expected
(number in the bracket) due to the use of RepeatMasker which filteres highly
repetitive sequences:  oligo similarity of the second target is less than 40%; * GC

content constrains 28 = 6%.

2.6.1 Design of gene and exon specific DNA microarrays for Plasmodium vivax

Plasmodium vivax causes debilitating disease that impairs the quality of life and

ol
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economic productivity of large regions of the South East Asia and South America
(Price, et al., 2007). In many of these regions P, vivax is the most prevalent species
of malaria. P. vivax has a similar life-cycle to the more fatal species of human
malaria P. falciparum. However. several notable differences exist between these
two species. These include a preference of P. vivax for reticulocytes, and the
presence of persistent liver forms. hypnozoites, which can cause relapse weeks
after an initial infection (Mendis. et al.. 2001). The intrachromosomal regions of
the P. vivax genome has a significantly higher GC content than P. falciparum with
approximately 55% of AT, however, the subtelomeric region are comparable to the
P. falciparum genome with approximately 80% AT content (Carlton, 2003). These
extreme GC content fluctuations create major obstacle for the design of a balance
of oligonucleotides with even distribution of Tm that are necessary for microarray
assemblies. Here we use the OligoRankPick program to design gene specific long
oligonucleotide probes (60 nt) with defined 40% GC-content for the entire genome.
Total 9810 oligos were selected for 5341 genes. in which 9746 are unique (99.3%).
Based on both criteria (<= 40% similarity and 5% deviation of GC content). 9309
oligonucleotides (95%) representing 5167 genes (97.6% of the genome) matched
the desired parameters. Using this design, the complete transcriptional profile
throughout the intraerythrocytic developmental cycle (9 time-points, IDC) of P
vivax was analyzed. The transcriptional regulation cascade of the P vivax
synthenic genes resembles the previously reported P falciparum 1DC

transcriptome in which each cellular function is timed to a specific developmental
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stage. In contrast the global distribution of mRNA abundance of the non-syntenic
genes exhibits a strong bias towards the extremes of the IDC: the schizont — ring

stage transition (Bozdech. et al., 2008).

2.6.2 Design of a cross-species gene specific DNA microarrays for rodent
malaria parasites P. yoelii, P. chabaudi and P. berghei

In the past decade basic biological knowledge of the rodent models of malaria lags
behind that of 2. falciparum. The completions of the genomes of the three rodent
malaria species (P. berghei. P. chabaudi and P. yoelii) increased the interest in
these model organisms pointing out many similarities that can be exploited for
biological research on human malaria. The discovered high level of homology as
well as synteny between the Plasmodium species opened the door to many in
functional genomics projects, such as comparative genomics and transcriptomic
analyses. We are devoted to design DNA oligonucleotides to represent three
genomes on one chip. This cross-species gene specific DNA microarray would
facilitate the comparative research of the syntenic genes between the three rodent
malaria genomes as well as the non-syntenic or species-specific genes.

Figure 2.7 summarizes the global overview on the design. Essentially, the
three rodent malaria parasite genomes were assembled using the PHRAP program
(http://www.phrap.com). Subsequently. OligoRankPick (Hu, et al.. 2007) was used
to design oligonucleotide probes for three entire genomes. This was shown to have

significant improvements over other algorithms in oligonucleotide design even
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when dealing with large fluctuations in GC content and abundant gene
duplications. There are about 7861 predicted coding sequences in P, yoelii genome,
12216 in P. berghei and 15095 in P. chabaudi. We first used all possible
oligonucleotides of P. yoelii to search in the homologous region of the other two
species using the NCBI-BLAST program (Altschul, et al., 1997) (figure 2.7A).
The using four parameters: BLAST score (first and second match). GC content and
self-annealing score to search the oligonucleotides (figure 2.7B). Each score is
then transformed into a rank and a weighted rank-sum is calculated for each
oligonucleotide with the final oligonucleotide being selected based on the smallest
rank-sum value. T|.1€SG oligonucleotides were then used to select for those that are
optimal for all three species. followed by oligos for P yeelii and P. berghei and
then for P. voelii and P. chabaudi. Next. only oligos specific for P yvoelii were
selected (figure 2.7A). These oligonucleotides were then used to mask all the P.
berghei and P. chabaudi predicted coding sequences and the remaining sequences
were used to design P. herghei-specific or P. chabaudi-specific oligonucleotides. A
total of 17650 oligonucleotides were obtained and the breakdown is shown in
Figure 2.8. In this oligonucleotide set, 5461 oligonucleotides can detect genes
from three rodent malaria species of P. yoelii, P. berghei and P. chabaudi at the
same time. Expression and CGH analysis of pan-rodent malaria based on this chip
was presented in the Liew et al.’s paper (Liew et al. 2008 manuscript in

preparation).
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Figure 2.7 The overall design schematics of the pan-rodent chip. (A) Methodology

of the chip design. First, all possible oligonucleotides of P. yoelii were used to

search in the homologous region of the other two species using NCBI-BLAST and

were scored and ranked accordingly. The oligonucleotides were then filtered using

three rules: (i) at least 90% homology to target sequences, (ii) less than 37.5% to

non-target sequences and (iii) GC%

tolerance of +5%. Oligonucleotides for all

three species were selected followed by oligonucleotides for P. yoelii and P.

berghei and then for P. yoelii and P. chabaudi.

oligonucleotides were selected to be

Next, the remaining

specific only for P yoelii. The remaining

sequences unaccounted for were then used to design oligonucleotides specific to .

berghei or P. chabaudi. (B) Rank-sum strategy from OligoRankPick (Hu, et al.,

2007).

e
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# of predicted ORFs

(on the chip)

P.yoelii - 8074(8074)
P.berghei -12216(7257)
P.chabaudi -15095 (9212)

# of oligos (on the chip)
Total - 17650

Multiple - 5461

Single - 11189

2451 3533

Figure 2.8. Statistical information of all oligonucleotides on the chip of rodent
malaria. All oligonucleotides are 60 bases long and the GC content is fixed at 30%
and the allowable deviation i1s 5% for overlapping oligonucleotides.
Complementary oligonucleotides to each rodent malaria parasite species was
calculated from the sum of all possible combinations, i.e. oligonucleotides specific
to itself and those that can hybridize to itself and to other rodent malaria parasite

species.

2.7 Conclusions and outlook

OligoRankPick provides a powerful alternative for long oligonucleotide
microarray design for genomes with extreme GC content fluctuations and high
abundance of highly homologous gene families. In its simplest implementation a

user needs only to define the probe length and an expected GC content or Tm.

« X8«
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However. for specialized applications, OligoRankPick provides the user with the
option of setting the range of relative importance (weight) of each parameter as
well as optimization of the quality control target values. Using this method we
have designed several long oligonucleotide DNA microarrays for the parasitic
species including P. falciparum, P. vivax and pan-rodent malaria. Transcriptome
analyses of two P falciparum developmental stages demonstrated that the
designed microarray provides the most comprehensive coverage of the P
falciparum genome presently available.

Although the actual oligonucleotide selection algorithm is highly efficient. the
initial BLAST searches consume significantly high amounts of computer time. In
our implementation. we isolate the time-consuming BLAST step (script
oligoblast.pl). which can be run on different computers or a computer cluster. In
the future. we hope to perform the BLAST searches with parallel processing
methods such as mpiBLAST (http://mpiblast.lanl.gov/). which is much faster and
more efficient to design oligonucleotides for large genomes like human genome.
Another consideration is the incorporation of more novel models to evaluate the
qualities of oligonucleotides. For example. hybridization energy model. Gibbs free
energy model of DNA secondary structure. In the future, OligoRankPick would

provide an interface for users to select and define these models.

2.8 Materials and methods

2.8.1 Genome sequences and annotations
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The E. coli gene sequence file with:4237 CDSs and genomic sequence file were
downloaded from the NCBI genome database. The S. cerevisiae gene sequence file
with 6680 CDSs. and whole genome sequence file were downloaded from the
ENSEMBL database (www.ensembl.org). The protein coding sequence files and
their whole genomic sequence files of P. falciparum, P. yoelii, P. berghei and P.

chabaudi wer e downloaded from PlasmoDB version 4.4 (www.plasmodb.org).

The coding sequences and genomic sequences of P.vivax were downloaded from

Tiger genome database (www.tigr.org) under the permission.

2.8.2 Microarray manufacture and hybridization

Microarray manufacture and hybridizations were conducted as previously
described (Bozdech. et al., 2003). Briefly. all oligonucleotides in 384 well plates
were printed on the polylysine-coded glass slides using BioRad microarray printer
system. Printed slides were post-processed by rehydration, UV cross-linking and
succinic anhydride (ALDRICH. Cat. 239690) block. The labeled cDNA samples
were hybridized to the chip in MAUI system (BioMicro. Utah, United States) for
12-14 hours at 65°C. Data were acquired and analyzed by GenePix (Axon
Instruments, Union City. California, United States). Array data were stored and
normalized in Acurity 4.0 system (Axon Instruments, Union City, California,

United States).

2.8.3 Quantitative real-time PCR
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Real time RT PCR was performed in a total reaction volume of 20ul which
contained 1l cDNA template (10ng/ul). 0.5 pl forward and reverse primer (10uM).
and 10pl of 2 x Power SYBR Green PCR Master Mix (Applied Biosystems).
The temple ¢cDNA was generated using the first strand cDNA synthesis protocol
used for the microarray hybridization. For the amplification the universal thermal
cycling parameters were programmed as follows: 5 min activation at 95°C.
followed by 40 cycles of 20s at 95°C. 30s at 50°C, 40s at 72 °C and 1 min at 60°C.
Each reaction was run in triplicates. The mRNA abundance ratios were
calculated using ABI 7500 Fast Real-Time PCR Systems and the relative
quantitation of geﬁe expression was performed using the comparative CT method.

Primers for PCR were designed using DNAMAN (Lynnon Corporation).

=5y ]
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Chapter 3 Transcriptional profiling of growth perturbations
and a functional interactome network of human malaria

parasites, Plasmodium falciparum

3.1 Summary

More than 350% of the genes of Plasmodium falciparum, the deadliest form of
human malaria. are of unknown function. To create a function interactome network.
we analysed the global transcription response of Plasmodium cells to 20
compounds in 29 independent time series, creating 183 microarray data points. We
demonstrate that at least half of the Plasmodium genome can respond to at least one
of these growth perturbations and that functionally related genes share similar
transcriptional profiles. To reconstruct a high-confidence probabilistic interactome
network we integrated the transcription data with phylogenetic profiles, domain
interaction linkages and the yeast two-hybrid results. Using this network we predict
the function of 2545 Plasmodium hypothetical proteins. To validate our network we
retrieved 263 new proteins linked with merozoite invasion, a process which is
considered as a key target for malaria control. Intracellular localization of a subset

of these proteins confirms their function in this process.

3.2 Introduction
A fundamental problem in systems biology is to infer biological functions for the

high number of uncharacterized proteins that are identified by large scale genome

..
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sequencing but lack significant seqﬁence or structural homologies to other known
proteins. In pathogenic organisms, understanding of molecular and biochemical
processes is of particular importance for the design and development of new drugs
and vaccine based intervention strategies (Murali. et al., 2006). Due to this.
several computational techniques for functional gene predictions that utilize data
from genome-wide experimental approaches were developed in recent years
(Enright, et al., 1999; Ge. et al.. 2001; Kemmeren, et al., 2002: Marcotte. et al.,
1999: Ponting and Dickens. 2001: Sharan. et al.. 2007; Valencia and Pazos, 2002).
These techniques integrate data from functional genomics (e. g. transcriptional
profiling. two hybrid-screens) or proteomics (e .g. shot gun mass spectroscopy
surveys) and multiple types of bioinformatics studies (e. g. domain predictions,
phylogenetic profiles). The main purpose is to generate functional-linkage
networks between proteins/genes in order to predict biological relevance for the
genes whose sequence does not provide any direct functional clues. The most
evolved approaches serve as a powerful reference for functional prediction of
uncharacterized genes based on their position in the network by evaluating their
proximal functionalities (Chua, et al.. 2006; Karaoz. et al.. 2004; Schwikowski. et
al., 2000; Sharan, et al., 2007). These network approaches were also shown to
significantly contribute to the understanding of biological mechanisms associated
with disease processes {Calvano. et al.. 2003: Pujana, et al. 2007), and for
investigating how a cell adapts to changing environments (Guo. et al.. 2007:

Whitehead, et al., 2006).
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In the causative organism of the deadliest form of human malaria, Plasmodium
falciparum. more than 50% of all genes are still functionally uncharacterized due to
their lack of sequence homology with known genes in other organisms (Gardner. et
al.. 2002). Recognizing this deficit, Date and Stoeckert (Date and Stoeckert, 2006)
constructed a first interactome network involving the transcriptome data of the P
Jfalciparum intracrythrocytic developmental cycle (IDC) (Bozdech, et al., 2003) and
genomic context data that included phylogenetic profiles and Rosetta stone data.
Using a naive Bayesian method, it was possible to reconstruct a functional network
including 3667 proteins at the 50% confidence level (Date and Stoeckert, 2006).
In a following stﬁdy._ a probabilistic gene interaction network (interactome) was
assembled incorporating evolutionarily conserved protein linkages, derived from in
silico domain-domain interaction predictions and experimental protein-protein
interactions based on the yeast two hybrid system survey (Wuchty and Ipsaro,
2007). In this case. the assembled interactome included 2321 proteins which
accounts for approximately half of the P, falciparum genome.  Although these two
networks provided a significant contribution to gene annotation, several limitations
severely hampered their impact. The main caveat of the Date and Stockert’s
interactome is the nature of the transcriptional data which postulate high
correlations for many functionally un-related genes due to the monotonous
character of transcriptional regulation during the P. falciparum 1DC. The
calculation of a regulatory network based on the IDC transcriptome with an

average connectivity of 30 resulted in a higher value of a Pearson correlation

.
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coefficient (PCC) threshold of 0.95,.which is unreasonably high compared to other
organisms (Khanin and Wit. 2007). The second interactome contains the small
number of genes for which appropriate information exists and a high number of
false positive results in the yeast two hybrid system data (Wuchty and Ipsaro,
2007).

Microarray analyses of global transcriptional responses to growth perturbations
provide a powerful input that can significantly improve the accuracy and proteome
coverage of probabilistic interactome networks (Hughes. et al., 2000; MacCarthy.
et al., 2005: Zak, et al., 2003). Given the limitations of the life cycle based
transcriptome data. growth perturbation data were suggested to be extremely
helpful for Plasmodium systems biology approaches (Winzeler. 2006). Until
today. very little is known about transcriptional responses of P. falciparum to
growth perturbations. It was shown that exposure of P falciparum cells to
chloroquine induces only low amplitude transcriptional changes of a wide spectrum
of functionally unrelated genes (Gunasekera, et al.. 2007). A similar lack of a
specific signature response was also observed in P. falciparum cells exposed to a
protein kinase inhibitor that is otherwise capable of inhibiting parasite growth
(Kato, et al., 2008). In contrast to these studies, Oakley er al demonstrated that
febrile temperatures induce a more specific transcriptional response that involves
336 P. falciparum genes including genes encoding membrane-associated proteins
that are exported to the host cell cytoplasm and likely affect parasite sequestration

and antigenic presentation (Oakley. et al., 2007). In addition, these transcriptional
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responses included factors of protein stability and trafficking, RNA metabolism.
signal transduction, nuclear functions and general metabolism. Using these data
Oakley er al was able to predict and partially validate putative functions for ~100
previously uncharacterized proteins (Oakley. et al.. 2007). These studies
demonstrated the potential of growth perturbation analyses in Plasmodium cells for
gene annotation purposes.

The main rationale of this study was to assemble an interactome network of 2.
Sfalciparum gene/proteins that incorporate data from extensive transcriptional
profiling of growth perturbations using a wide array of small molecular inhibitors.
Here we used 20 diverse small molecular compounds to inhibit the growth and/or
development of P. falciparum during the asexual erythrocytic developmental stages.
These included inhibitors of enzymatic activities (e.g. proteases and protein
kinases and histone deacetylases), general cellular functions (e.g. microtubule and
membrane formation and intracellular Calcium concentration) and several common
antimalarial drugs (for complete experimental panel see Table SI). Combining
the transcriptional profile dataset with in silico generated phylogenetic profiles,
domain-domain interaction evidence and the yeast two-hybrid system-based
protein-protein interactions, we constructed a high confidence gene interactome
network using a probabilistic Bayesian network approach. Based on this network.
we assigned function to 2545 hypothetical proteins using a weighted neighbor
counting method. Using life cell imaging, we were able to verify functional

assignments of 19 (out of 21) proteins that were predicted to be localized in the
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cellular compartments associated with the Plasmodium invasion machinery.

3.3 Results

3.3.1 Transeriptional profiling of growth perturbations

In the first step we carried out microarray measurements of global transcriptional
responses of P falciparum to twenty growth-inhibitory compounds. These
included the common anti-malarial drugs: chloroquine (CQ). quinine (Q).
artemisinine (ART) and the experimental compound febrifugine (FEB): and small
molecular inhibitors that inhibit parasite growth and/or development: protease
inhibitors (E64, iéupeptine and PMSF), protein kinase inhibitors (ML7, W7),
histone deacetylase (HDAC) inhibitors (Apicidin and TrichostatinA) and inhibitors
of cation-dependent APTases (Na;VOy). microtubule (colchicine), and membrane
formation (Retinol A) (table 3.1). For each compound. we carried out a treatment
time course where synchronized Plasmodium cells were exposed to 1C50 or 1C90
concentrations (with two exceptions, table 3.1). The IC50 and IC90 concentrations
were determined individually for each compound and the culturing conditions used
during the transcriptional profiling (2% hematocrit with 5% parasitemia). The
final dataset included 29 time courses analyzed by 183 individual microarray
measurements (figure 3.1A).

Across the entire experimental panel. 3226 genes gxhibited at least 3-fold change in
the transcript level in at least one time point of one growth perturbation (figure

-

3.1A). The first striking feature of these results is the large diversity of the global

i
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transcriptional changes induced by t!he different compounds.  Several compounds
stimulated high amplitude transcriptional responses which involve narrow but well
defined groups of genes. The most striking examples are FK506 and
Cyclosporine A which induce 256 and 189 and suppress 29 and 42 genes by
>3-fold, respectively (figure 3.1A). The substantial overlap between the gene
groups induced by these two compounds is consistent with the presumed mode of
action of both inhibitors: suppression of the Calcineurin-dependent signaling
pathway (Bell, et al., 2006: Kumar, et al., 2005; Liu, et al.. 1991). Significant
similarities were also observed between P, falciparm transcriptional responses to
three inhibitors of calcium dependent signaling (ML7. W7. and KN93) (figure
3.1A). This indicated that similar to Calcineurin, calcium/calmodulin-dependent
protein kinases (CDPK) are linked with transcriptional regulation of the parasite.
Interestingly, there was only a limited overlap between the transcriptional responses
induced by the CDPK, and Calcineurin inhibitors. This suggested that these two
tvpes of intracellular signaling pathways play specific, largely non-overlapping
roles in Plasmodium parasites. Although both classes of inhibitors caused an arrest
of schizont rupture (figure 4.1). none of the transcriptional changes induced by
these inhibitors were consistent with a general arrest of the IDC transcriptional
cascade (figure S3.1).  This apparent contradiction could be explained by the time
difference between the two observations. While the transcriptional analyses were
carried out during the first 8 hours post treatments, starting 32-33 hours post

invasion (hpi). the arrest of morphological development was observed only 14 hr
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Table 3.1 Summary of microarray data sets used in the analysis

Exp.* Category #Exp. Decription
Control 7 Dd2. start time-point 32hpi. time course 1.2.4.6.8.10.12pt
1 ML-7 7 Dd2, 1IC50 ~ 1.2 uM
2 W-7 7 Dd2, iC50~ 1.2 uM
3 KN93 7 Dd2.1C50 ~ 1.2 uM
4 Staurosporine 7 Dd2. 1C50 ~ 80 nM
Control 8 Dd2. start time-point 33hpi. time course 1.2,4.6.8.10.12.14pt
3 Cyclosporine A 8 Dd2. IC50 ~ 88 nM
6 FK506 8 Dd2. IC50 ~ 118 nM
7 Roscovitine A 8 Dd2, 1C50 ~ 1.6 uM
Control 6 Dd2, start time-point 18hpi, time course 1,2.4.6.8.10pt
8 Chloroquine 6 Dd2, IC50 ~ 43nM
9 Quinine 6 Dd2. 1C30 ~ 44nM
10 Febrifugine 6 Dd2. IC50 ~ 4.5nM

11 Artimesinin 6 Dd2, 1C50 ~ 28M

Chloroquine 6 3D7. start time-point 18hpi, time course 1,2.3.4.6.8pt

2 6 3D7,1C50 ~41nM

13 6 3D7. IC%0 ~ 72nM
14 6 3D7. 2#1C90 ~144nM

EGTA 10 Dd2. start time-point 34hpi, time course 1,2.3.4.5,6,7.8.9, 10pt
15 ' 10 Dd2, IC30 ~ 0.5mM
16 10 Dd2, IC90 ~ 3.5mM

Trichostatin A 6 Dd2. start time-point 34hpi. time course 1.2,3.4,6.8pt
17 6 Dd2. 1C50 ~ 25nM
18 6 Dd2, 1C90 ~ SInM

Apicidin 6 Dd2. start time-point |8hpi. time course 1.2,3.4.5.6pt
19 6 Dd2. 1C50 ~ 20nM
20 6 Dd2, 1C90 ~ 70nM

Apicidin 5 Dd2, start time-point 34hpi, time course 1,2.3.4.5pt
2 5 Dd2, IC50 ~ 23nM
22 5 Dd2. 1C90 ~ 85nM

control 3 Dd2. start time-point 33hpi. time course 0.5.1.2.3.4pt
23 E64 5 Dd2, 1C50 ~ 3.2uM
24 PMSF 5 Dd2, 1IC50 ~ 1.32mM
25 Leupeptine 5 Dd2, IC50 ~ 5.4uM
26 Retinol A 5 Dd2, IC50 ~ 107uM

control 5 Dd2. start time-point 33hpi. time course 0.5.1.2.3.4pt
27 Colchicine 5 Dd2, 1C50 ~ 46.3uM
28 Na3VO4 3 Dd2, IC50 ~ 17uM
29 Staurosporine 3 Dd2. IC50 -~ 87uM

Field strains 24 cell cycle of field strains from Africa

Lab strains 18 Life cycle of lab strains (3D7/Dd2/T996) Time-points of very

8 hour
Life cycle* 148 IDC ftranscriptome of  lab sfrains (3D7/Dd2/ HB3),
time-points of very 1 hour
Total 437

* Sachel Mok performed Exp.8-14: Sabna Cheemadan performed Exp.15-16:

Brigitta performed Exp.17-22; Balbir Chaal performed Exp.23-29.
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after the addition to the drug durin:g the schizont rupture (figure 4.1). Thus the
observed transcriptional changes might represent the initial specific transcriptional
response of P falciparum parasites that is subsequently followed by a
developmental arrest and cell death. This is in a sharp contrast with the EGTA
treatment which also caused a rupture arrest but essentially no transcriptional
changes during the early part of the treatment (figure 3.1A and data not shown).
Although further studies are required to understand the role of CDPK and
Calcineurin signaling pathways in the progression of the P falciparum life cycle.
these data suggest their importance for this process.

In contrast to fhe protein kinase inhibitors, a number of compounds had only a
subtle effect on gene expression despite their strong growth inhibitory properties in
P. falciparum parasites. These included colchicine, Na;VO., E64 and Leupeptine
(figure 3.1A). Similarly to these compounds. all three malaria drugs. chloroquine.
quinine and artemisinine induced only low amplitude transcriptional responses that
involved relatively small numbers of genes (figure 3.1A). In agreement with
previous analyses by Gunasekera and colleagues. the transcriptional responses to
chloroquine were highly reproducible and dose dependent (Gunasekera, et al.,
2007). A total of 26. 49, and 87 genes were induced by >3-fold (194, 257 and 330
genes by >2-fold) with 1C50, 1C90, and 2*1C90 concentrations of chloroquine,
respectively. These observations suggest that at least a portion of these low
amplitude transcriptional changes might reflect relevant physiological response to

the drug. The minor effect of E64 and Leupeptine on Plasmodium transcription is
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surprising since PMSF, a generic prétease inhibitor, induced a broad transcriptional
response that is consistent with an arrest of the IDC transcriptional cascade (figure
3.1Aand S3.1). These data indicate that in contrast to E64 and Leupeptine, PMSF
has an additional target that is potentially linked to the regulatory pathways of
malaria parasites.

Out of the 20 inhibitors. 4 treatments (EGTA and PMSF, staurosporine and
TrichostatinA) caused IDC developmental arrest (figure S3.1). EGTA that is
thought to deplete intra and extracellular Ca®" (100mM ~ 1C50) was found to block
parasite egress from mature schizonts and at the same time to retain the entire
transcriptional proﬁle of the late schizont stage even 6 hours after the estimated
time of rupture and reinvasion (figure 3.1A). In addition to the IDC arrest.
treatments of P. falciparum cells with apicidine (HDAC inhibitor) caused a general
deregulation of the IDC transcriptional cascade by de-repression of genes that are
normally suppressed at both studied developmental stages (trophozoite and
schizont) (figure 3.1A). Interestingly. TrichostatinA. another HDAC inhibitor.
induced broad transcriptional changes that consist of both IDC arrest (figure S3.1)
and deregulation (figure 3.1A). The effect of the HDAC inhibitors on chromatin
remodeling and transcriptional regulation in P falciparum is presently under
investigation in our laboratory (Chaal et al manuscript in preparation).

Taken together, the growth perturbation analyses illustrate a complex
character of Plasmodium responses to environmental perturbations. On the one

hand. there are a number of cellular functionalities (such as protein phosphorylation

i
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pathway) firmly linked to the Plasmodium transcriptional regulation and their
inhibitions induce vigorous responses involving a substantial amount of genes. On
the other hand, disruptions of other Plasmodium biological functions (such as
microtubule formation, ATP hydrolysis or a subgroup of proteases) produce only a
limited low amplitude reaction by the P falciparum transcriptional machinery.
There are also several functionalities whose disruption is associated with the global
transcriptional regulation of the P. falciparum life cycle either via a developmental

arrest (EGTA) or via perturbation of histone modifications (HDAC inhibitors).
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Figure 3.1. Overview of the gene expression responses of P. falciparum to growth
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perturbation induced by drug or inhibitor treatments. A. The heatmap summarizes
results from 184 microarrays from 29 time courses monitoring transcriptional
changes in P. falciparum induced by 20 small molecular inhibitors (experimental
summary see table 3.1). The treatment experiments were conducted in the time
courses (ordered along the horizontal axis) and genes were arranged using
hierarchical clustering. A total of 3226 genes which show at least a 3-fold change
of mRNA abundance in at least one experiment are included in the overview
dataset. The bar diagram (top) indicates the total number of genes that show
>3-fold up-regulation (red bar) or down-regulation (green bar) for each treatment
experiment. The treatment experiments were ordered and grouped (yellow
dashed lines) according the similarity of the transcriptional response. B. The
Pearson Correlation Coefficient (PCC) distributions of gene expression profiles
from the Drug/inhibitor treatments, the publicly available IDC transcriptome
(Derisi’s IDC) of 3D7. Dd2 and HB3 (Llinas. et al., 2006), and additional IDC
transcriptomes for three field and three laboratory strains generated in our
laboratory. The number of gene pairs in the PCC bins >0.7 is indicated in the
inset table. C. Heat map of hierarchical clustering of the PCC profiles. A PCC
profile was assembled for each gene as a function of correlations of its expression
profile with every other expression profile in the dataset (perturbation or IDC
datasets). The PCC profiles were subjected to hierarchical clustering that reveal
natural grouping of highly correlated genes (small distance ~ dark green) and
distinguish from uncorrelated gene groups (large distance ~ white). D.
Co-expressed genes in drug or inhibitor microarrays had higher likelihood scores
than in IDC transcriptomes. Likelihood score was used as a function of ratio of
observed positive probability to negative probability based on the functional
KEGG data to measure the functional association for the co-expressed genes at a
different level (different PPC). The number of false positive (FP) and true positive

(TP) predictions of gene linkages are indicated in the inset table.
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3.3.2 Co-expression of functionally' related genes across the perturbation panel
To evaluate the complexity of the growth perturbation transcriptional data we
calculated Pearson Correlation CoefTicients (PCC) between the expression profiles
across the entire experiment for each gene pair in the perturbation dataset as well as
in the high resolution (Thour) DeRisi IDC transcriptome and low resolution (8hour)
IDC transcriptomes of three laboratory strains (3D7, T996, Dd2) and three short
term culture adapted field isolates. Compared to the IDC transcriptome, we
observed a tighter peak of the distribution of the PCC values from the perturbation
data compared to the IDC transcriptomes.  In particular, there is approximately a 3
and 4.5 -fold deérease in the number of gene pairs with the PCC intervals
<0.7-0.8> and <0.8-0.9=. respectively. and more than 10-fold decrease in the
number of gene pairs with PCC = 0.9 in the perturbation dataset compared to the
IDC transcriptomes (figure 3.1B). A similar drop in the gene pair number was
observed in the negative correlation PCC bins (PCC <-0.7. data not shown).
Moreover, hierarchical clustering of the PCC profiles for each gene pair in the
dataset show a considerably tighter pattern in the IDC dataset compared to the
perturbation data for which the pattern of the pair-wise distances is more dispersed
(figure 3.2C). Taken together, this indicates that compared to the IDC
transcriptome, the perturbation dataset defines narrower gene groups that share
transcriptional  regulation  across  the  wide  spectrum  of  growth
conditions/perturbations. To systematically evaluate functional relationships of the

transcriptionally co-regulated genes we utilized the subset of genes with a

-64 -



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

functional prediction defined for 492 genes in 71 pathways defined by the KEGG
(Kvoto Encyclopedia of Genes and Genomes) database (Kanehisa, et al.. 2004) (sce
materials and methods). For these we calculated a likelihood score as a function
of a ratio between the number of positive (gene pairs in common pathways) and the
number of negative observations (gene pairs not in common pathways) for different
PCC thresholds (figure 3.1D). The results show that transcriptionally co-regulated
genes exhibit a significantly lower rate of false positives and thus higher likelihood
scores compared to the IDC transcriptomes. Overall there are 1.2. 1.5, and
3.6-times less gene pairs in the 0.7, 0.8, 0.9 PCC bins of the perturbation dataset
compared to the IDC datasets. Amongst these, the false positive rate was improved
by 1.6. 3.5 and 11 -fold (figure 3.1D). These data suggest that the transcriptional
profiling of the chemical perturbations of P. falciparum growth have a high
predictive accuracy of functionally related genes based on their transcriptional

regulation.

3.3.3 Reconstruction of a probabilistic gene functional network

To fully utilize the potential of the perturbation transcriptional profiling for
functional gene predictions we assembled a probabilistic network which integrates
these results with three additional datasets. The first dataset represented
phylogenetic profiles which consist of sequence homology values (E-values) of all
5363 P falciparum protein sequences to their orthologues in 210 completely

sequenced, publicly available genomes. Using the mutual information method
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(Date and Marcotte. 2003: Sun. et al., 20035) we identified 12,406,623 phylogenetic
profiles for 4983 proteins (figure S3.2). The second dataset included evidence of
domain-domain interactions predicted in the deduced amino acid sequence of all 2
Jalciparum proteins by HMM based searches within the PFAM database
(Sonnhammer, et al., 1998) and the Lee’s domain-domain interaction dataset (Lee.
et al., 2006). A total of 179,481 linkages between P. fulciparum proteins were
defined by this approach (data not shown). The third dataset includes the
experimental observations of the 2811 protein interactions for 1308 proteins in P,
Jalciparum that were detected by yeast two-hybrid system screens (LaCount, et al..
2005). In addition to these datasets. the perturbation microarray data was
combined with the publically available IDC transcriptomes from three P
SJaleiparum strains. 3D7. HB3 and Dd2 (Llinas, et al., 2006). For this, PCCs
between the IDC expression profiles were merged with the PCCs from the
perturbation dataset using an optional average approach (materials and methods).
The potential of forming a protein-protein functional interaction was scored for
each individual dataset as the probability of each linkage to fall into the positive or
the negative benchmark (figure S3.3 and table S3.1). The final likelihood score for
each protein linkage was generated by integrating the four likelihood scores using a
Bayesian method (Jansen, et al., 2003 Lee. et al.. 2004), Overall likelihood scores
for 14.168.597 functional linkages between 5374 P. falciparum proteins (99.2 % of
the proteome) were calculated based on evidence captured by at least one of the

derived datasets. Information for 4774 proteins (88.1%) was represented in the
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perturbation transcriptional profiling and at least one other dataset while 4785
proteins (88.3%) were represented in any two individual data sets. In general, the
integrated likelihood scores provide higher proteome coverage than each of the

individual input datasets at all probability thresholds (figure 3.2A).

A 1000 g . 1000
100% 100
= :m‘ h-m - ™
E 1 _‘_ﬁgg‘;ﬁ?‘- i E son - L % '
R.M .1'1— = i B 3 £y : o 1| g .\-“ i ® |
i | S S 4 1 s 00 b i |
2 P > s i (] ? o -
-;-L 1 "--A\T:_.L_ E oy 7 % |E £ i&_ |
s A -\___"‘- o “w i ALY
E e % iy & 5 g 10 ."?_ :. : |
i = EE 1 el 3
R ' g : = |
o1l - - ™ o 1 e
0 W 2 W0 40 N 0 W N M I a1 1 L 100 1000 10000 1 o 100 1000
Coverage of protenme (%) Licelibood score coioff .4
2 e e ipen
%’:&::m wu&um'h L ] PFT_iias P Bnl\w.lm 212
o i " % i . 3 S .
x—-@h-'"ﬁ".q.""a'i e """'mw*;'@"‘ o R s =
i *g*'ﬂ'm T wimm mmﬁlm”@" PO
T e by, ey i el e Sl S
T s won TR e -
P i " erfii A fzea ® A
- "‘;:!,:au 0"',,#- srrai : L £ b
Clusfer 15 RNA metabolism (0.94) Cluster 29 fransiation (0.98) Cluster 24 transpoters (1.0) Cluster 54 PICAS complex (0.58)
WA a7 PRLOSISW WALTE} 208 proiosz
el & PrLERGw PFCORBOw ) relgroe Prizsw  PRILDIBT
PE e or {02
PFI025w PrEDESSw . PrGle :
b8 et MALERY 132 ¥ il Profgeo: priiBbee
’ ) PFU4DOST gy poar
pevipies Pr13_Bose PrL21poc s
PFAOZ2ON i PriBasc
Cluster 62 ubigutin hydrolase (1.0) Cluster 66 kinesin compiex (1.0) Cluster 94, DNA repair (0.94) Cluster %5 calthnn comptex (0.8%)

Figure 3.2 Reconstruction of the PlasmoINT interactome network. A. For each
data type, we calculate proteome covered as a function of the ratio between the
observed true and false positive observations when compared against benchmarks
dataset (492 gene assigned to 71 KEGG pathways, see materials and methods).
Integration of different functional datasets leads to higher genome coverage and
accuracy than any of the individual methods. B. The predictive precision rates
(Predictive Positive Value, PPV) at different likelihood score cutoffs were
evaluated by 10-fold cross validation and the proteome coverage of the integrated
functional dataset. PPVs were plotted as a function of the likelihood score cutoffs.
PPV is calculated as the ratio of observed true positive number (TP) to the total
number of TP and false positives (FP). Each dot of the ratios represents an average
of ten cross-validations at a particular likelihood score cutoff. The vertical

dashed-line showed the likelihood score cutoffs and proteome coverages
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corresponding to positive predictive value (PPV=TP/(TP+FP)) 50% and 90%
(likelihood score thresholds of 3 and 14.5). At these ratios. true positive to false
positive (TP to FP) was equal to 1 (=50% confidence) and 9 (~90% confidence),
respectively. C. Characterizations of the network topological structures in the
90% confidence network (for the 50% confidence network see Figure S35)
expressed as the distribution of node connectivity. The scatter plot illustrates the
gene numbers (P(K)) with the corresponding number of linkages (K). D.
Examples of MCL modules identified in the 90% confidence network. In each
modules. functionally characterized genes (purple circles) were examined in order
to derive a coherence score representing the fraction of gene linkages that belong to
a common functional groups e.g. RNA metabolism (coherence score 0.94) for
cluster 15. The functionally uncharacterized (hypothetical) genes (vellow circles)
provide suitable candidates for additional factors of a particular cellular or

metabolic functionality.

For approximately 10% of proteins, the domain-domain interaction dataset
generates high accuracy predictions. However, the proteome coverage of this
dataset is limited due to the fact that only a small fraction of P. falciparum proteins
contained well conserved functional domains (data not shown). In contrast, the
transcriptome data and phylogenetic profiles can provide high proteome coverage
but their predictive values are consistently lower than the integrated likelihood
scores (figure 3.2A). In our calculations. we observed low accuracy and low
proteome coverage of the protein-protein interaction dataset based on the
two-hybrid system that thereby provides a low contribution to the final likelihood
scores (figure 3.2A and S3.3). In the 50% confidence network, only 299 linkages

have a two-hybrid system component and omitting this dataset leads to a loss of
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177 linkages (data not shown). Deépite its low impact, we found it important to
include this dataset as it might reveal novel functional linkages that could not be
discovered otherwise.

Using the calculated functional linkages we assembled interactome networks
based on two likelihood score thresholds for the 50% and 90% confidence
precision rate (figure 3.2B). While the 50% precision rate predictions include
339.721 functional linkages between 4817 proteins (89% of the P falciparum
proteome). the 90% precision rate predictions define 72.748 linkages between 3475
genes (64%). The connectivity of both. the 50% and 90% confidence networks fits
a power-law distribution with the power % equal to 0.93 and 1.14. respectively
(Figure 3.2C and S3.4). Its structure reflects a typical scale-free network without
obvious hierarchical topological structure (figure S3.4), which suggests the
existence of a relatively small number of highly connected nodes (hubs) in the
Plasmodium gene functional network.

Table 3.2 summarizes comparisons between the newly assembled
interactome network, termed PlasmoINT, and the previously assembled network by
Date and Stoeckert termed PlasmoMAP (Date and Stoeckert, 2006). Overall.
PlasmoINT provides a substantially improved proteome coverage as well as
precision of linkage prediction. First, the 50% precision networks from both
studies contain a comparable number of genes and linkages. However, PlasmoINT
contains considerably more linkages that originate from two or more types of

evidence (e.g. transcriptional profiling. phylogenetic profiling, domain prediction
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and two hybrid system). Second. the 90% accuracy PlasmoINT network contains

approximately 3 times more genes and 6 times more linkages compared to
PlasmoMAP (table 3.2).

Table 3.2. Network comparison of PlasmoINT and PlasoMAP.

PlasoMAP PlasmoINT

Combined evidence 1DC transcriptome; ; 247 drug/inhibitor microarrays;
Phylogenetic profiles: Transcriptome of field strains;
Gene fusion data IDC transcriptome;

Experimental PPI;

Phylogenetic profiles:

Domain-domain interactions
50% precision rate network

Total linkages 388,969 339,721
At least two evidences 117,764 (30%) 309,670 (~91%)
Total proteins 3667 (~62%) 4817 (~89%)
90% precision rate network
Total linkages 12.290 72.748
At least two evidences 12,034 (97%) 62.176 (-85%)
Total proteins 1415 (~26%) 3475 (-64%)
Comparison of 50% precision networks
Genes present in both 3284 (90%) 3284 (68%)
Linkage present 341,224 188,798
Shared linkages 78.571 (23%) 78.571 (42%)
Lost linkages 262.253 (77%) e
Gain linkages - 110.227 (58%0)
Comparison of 90% precision networks
Genes present in both 1149 (81%) 1149(33%)
Linkage present 10,042 188,798
Shared linkages 2,303 (23%) 2,303 (12%)
Lost linkages 7,739 (77%) -
Gain linkages - 16,703 (88%0)

Abbrev.: IDC, intraerythrocytic developmental life cycle: PPI. protein-protein interaction.

In both PlasmoMAP and PlasmoINT, the majority of the 90% accuracy linkages
originate from at least two types of evidence. which illustrates the importance of

the integration of the likelihood scores from multiple datasets in order to achieve
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high confidence predictions. Third, direct comparisons between the two networks
revealed that the majority of proteins found in PlasmoMAP were also represented
in PlasmoINT. However. there were considerable differences in the structure of the
linkages between the genes present in both networks with only a small fraction of
PlasmoINT linkages replicated in PlasmoMAP (table 3.2). These data are
consistent with our predictions that the fundamental improvements provided in
PlasmoINT help to suppress the number of false positive results in the low (50%
precision network but boosts the overall number of linkages with high accuracy
(90% precision rate). This observation is supported by the overall increase in the
number of iinkageé in gene groups predicted in the functional annotations based on
the Gene Onthology (GO), Malaria Parasite Metabolic Pathways (MPMP)
(Ginsburg, 2008). KEGG. databases (figure S3.5).  Moreover. PlasmoINT
provides much improved reconstruction of metabolic and cellular pathways by
covering a large number of genes assigned to the functional groups (figure S3.5 and

examples in §3.6).

3.3.4 Modular analysis and network-based gene function predictions

Accumulating evidence suggests that biological systems are composed of
interacting modules that can group various cellular components into biologically
relevant functional categories (Barabasi and Oltvai. 2004 Hartwell. et al.. 1999).
In the next step. we used an unsupervised graph clustering algorithm. Markov

Cluster (MCL) algorithm (Brohee and van Helden, 2006; Enright, et al., 2002;
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Krogan, et al., 2006) to identify 208 such modules in the 90% confidence network.
In order to evaluate the biological relevance of the identified modules, we
calculated a functional coherence (enrichment) score for 105 of the modules in
which the functionally annotated genes are linked (figure 3.2D). This score
represents the fraction of gene pairs that share functional annotations in a given
module (tor full list see figure 83.7). The top 35 modules with coherence score >
0.4 (figure 3.3A) include many gene groups involved in basic metabolic processes
such as redox and pyrimidine metabolism, ribosomal structure, DNA repair and
classical clathrin-mediated vesicular transport.  In addition, several Plasmodium
specific functions such as rosette formation and mitochondrial and apicoplast
membrane transport (figure 3.3A) can be deciphered by the MCL method in the
90% confidence network. These observations suggest that the assembled network
detects functionally related genes with sufficient precision that it can be further
explored for the functional annotation of functionally unidentitied genes (figure
3.2D).

In the next step. we applied the Weighted Neighbor Counting (WNC)
technique to the 50% predictive precision rate network in order to derive functional
predictions of the 2662 hypothetical proteins present in this network. The choice
of the 50% precision network instead of 90% was mainly driven by the higher
proteome coverage of the low precision network. This approach takes advantage
of the 2187 proteins with functional assignments based on 336 functional terms

with more than 1 gene from the KEGG (70 terms), GO (145 terms for up to 7th
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categorizations. A. The bar graph summarizes the number of functionally
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annotated (blue bars) and hypothetical (orange) genes in the 35 modules detected
by the MCL method in the 90 % confidence network with coherence score > 0.4.
The modules are ordered according the coherence score and the most represented
KEGG GO or MPMP functional term is indicated. For all 105 modules with
functional annotations see Figure S8. B. Bar graph summarizes the WNC based
functional annotations and the leave one out analysis. For 10 functional categories
with more than 10 genes with recalled original annotation (“recalled original
annotation™ - blue bars). the bar graph also indicate the number of genes for which
the recalled annotations do not match the original (“recalled different annotation™ —
grey bars) and the number of hypothetical genes. The prediction precision rate
calculated as the ration between the number of genes with “recalled different
annotation™ and genes with “recalled original annotation™ is indicated in the left
panel. For full list see figure S3.10. C. The conservation of different functional
pathways across 210 genomes including 155 prokaryotes. 6 apicomplexa and 49
other eukaryotes is summarized and indicated for selected functional gene groups
(for full list see figure S3.11). The conservation of each pathway is calculated
independently as the fraction of the number of species containing potential
homologs (reciprocal BLASTP hit. E-value < 10 ') according to four categories
with: total 210 genomes (the second panel. blue bar), apicomplexa (third panel, red
bar), prokaryotes plus apicomplexa (forth panel, green bar) and eukaryote plus
apicomplexa (right panel, orange bar). Pathways were classified into five
categories with: genes specific to P falciparum (cluster 1). genes conserved in
apicomplexa (II), genes conserved in apicomplexa and prokaryotes (III), genes
conserved in apicomplexa and other eukaryotes (IV) and genes conserved in all
210 genomes (V). The total number of functionally characterized and hypothetical

genes in each category are displayed similarly in panel A.

level) and MPMP (121 terms) databases. First. the 2187 genes with functional

assignments were used to evaluate the predictive accuracy of the WNC approach
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using a “leave-one-out™ analysis combined with top k prediction (Deng. et al.,
2003). Based on this test. we could recall 2121 (97%) genes from which 996 (47%)
matched the original annotations (“recalled original annotation™) while for 1125.
WNC derived annotations that differ from the original (“recalled different
annotation™) (figure 3.3B, S3.8 and S3.9). The 47% precision rate achieved by
this analysis was comparable to interactome analyses of well studied model
organisms including yeast. (Groth. et al.. 2008; Kim. et al.. 2008: Pena-Castillo. et
al., 2008; Tian, et al., 2008). In comparison, an identical WNC analysis of
PlasmoMAP could recall only 31% of the original annotations for the 91% of input
genes (data not shown). Given the high accuracy of the WNC approach, we
generated functional predictions for 2545 hypothetical proteins (95% of the total
hypothetical proteins in the PlasmoINT network). The newly annotated genes could
be assigned to 216 functional terms (out of the 330) with at least 5 genes with
recalled original annotations (figure S3.10). For each of the 227 functional groups
we also estimated the predictive precision rate as a function of the ratio between the
number of genes with “recalled original annotation™ and the genes with “recalled
different annotation™ (figure S3.10). The top 35 functional groups with the highest
number of genes with “recalled original annotation™ included several well defined
cellular functionalities such as aminoacyl-tRNA biosynthesis (precision rate (p.r.) =
1.0). protein biosynthesis (0.49). cytoskeleton-dependent intracellular transport
(0.71), clathrin-mediated vesicular transport (0.47) and fatty acid metabolism (0.47)

(figure 3.3B). In addition, high precision rate for functional predictions were also
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achieved for several Plasmodium specific functional groups linked with immune
evasion and cytoadherance such as “rosette formation between normal and infected
RBC™ (p.r. = 0.55) and “interactions between modified host cell membrane and
endothelial cell™ (0.41), and invasion such as “subcellular localization of proteins
involved in invasion™ (0.35) and “components of the linear motor responsible for
merozoite motility in invasion™ (0.45) (figure 3.3B and S3.10). The high precision
rates for these functional terms provide high confidence functional prediction for
the hypothetical genes assigned to these functionalities and thus firm candidates for
new molecular factors that are essential for growth, development as well as
virulence of P. falciparum parasites.

Taking advantage of the phylogenetic profiles. we evaluated evolutional
conservation of the functional gene groups by scoring the number of orthologues
(reciprocal BLAST-based E-value > 10 %) in 210 genomes of the P. falciparum
genes in each functional category (figure S3.11). This information helped to
evaluate the biological significance of different biological processes that are
facilitated by these gene groups and thus their relevance for parasite growth and
development. Only a small number of functional gene groups are exclusive to P,
falciparum and show low-to-no sequence homology with known genes in other
organisms including the related apicomplexan species. These include
functionalities associated with P falciparum virulence including host cell
interaction and rosette formation (figure 3.3C cluster 1). The main components of

these functional groups are the subtelomeric gene families encoding several classes
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of surface antigens such as var genes (host cell interactions), rifin and stevor
(rosette formation). In addition, genes encoding proteins that are associated
with Maurer’s clefts and are essential for transport of parasite derived host cell
surface antigens are classified by the MPMP into two functional terms:
“Established and putative Maurer’s clefts proteins™ (figure 3.3C cluster I1) and
“Exported parasite proteins associated with Maurer’s clefts’ (figure 3.3C cluster I).
While both groups exhibit minimal levels of conservation amongst prokaryotic and
eukaryotic species the latter groups are highly specific to P. falciparum compared
to the first which is moderately conserved amongst apicomplexans. Several
members of both groups were recently reported to be essential for export of P
falciparum antigens to the surface of the infected red blood cell (Maier, et al..
2008). The newly annotated genes provide new candidates for further studies of
this unique mechanism that is essential for the interaction of Plasmodium parasites
with its host. Moreover. assessing the evolutionary conservation of the individual
members might help to understand specificities of antigenic variation between
different Plasmodium species.

Functional assignments associated with parasite invasion dominate the
functional cluster that is highly conserved amongst apicomplexan but diverse from
all other eukaryotic and prokaryotic species (figure 3.3C cluster I1). Functionalities
associated with merozoite invasion are believed to be amongst the most promising
target areas for new malaria intervention strategies using both vaccine and

chemotherapy approaches (Cowman and Crabb, 2006). A large number of
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functionally uncharacterized genes’that were assigned to this functional cluster
might provide excellent targets for these efforts. To evaluate the utility of the new
gene annotation we explore this gene groups further (see below). Cluster I11 (figure
3.3C) depicts several plasmodial functions that have a prokaryotic origin but are
underrepresented in eukaryotes. These include steroid (isoprenoid) biosynthesis.
apicoplast and mitochondrial translation and three homologues of subtilisine
proteases (Dahl, et al.. 2006: Ralph. et al.. 2004 Yeoh. et al.. 2007). All three
functionalities are presently under consideration as potential drug targets and thus a
better understanding of their biological function might contribute to this effort. In
addition to these. two essential enzymes of the shikimate pathway (PFIT100w .
Para-aminobenzoic acid synthetase and PFF1105c. chorismate synthase). and two
enzymes associated with phosphofructo kinase activity (PFI0755¢c. PFI1 _0294) are

of prokaryotic origin and are represented in the PlasmoINT network (figure

Nonetheless. the vast majority of the P. falciparum functional pathways is
highly conserved in eukaryotic species or across all living organisms (figure S3.11).
Figure 3.3C depicts several example pathways involved in cellular architecture,
trafficking as well as maintenance of chromosomal DNA and replication that
Plasmodium shares with the majority of eukaryotic species (Cluster IV).
Pathways of basic metabolic processes that are conserved across all living
organisms include the Citrate (TCA) cycle. fatty acid and amino acid synthesis. and

redox metabolism (Cluster V). These data suggest that despite the extensive
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diversity of the genome sequence. the majority of biological functions associated
with basic metabolism as well as eukaryotic cell organization are well preserved in
P. falciparum (figure S3.11). This also suggests that some of the molecular factors
of these basic pathways represent evolutionarily diverse proteins and thus suitable
targets for malaria intervention strategies (Kato, et al., 2008; O'Donnell and
Blackman, 2005; Ward, et al., 2004; Yeoh, et al., 2007) . The newly annotated

genes using the WNC method could present such proteins.

3.3.5 Invasome of P. fulciparum merozoite

For further validation we chose to explore the assembled network to
identify genes associated with merozoite invasion, one of the most promising
targets for new malaria intervention strategies. Merozoite invasion is a complex.
multiple-step process during which the parasite attaches to an erythrocyte. reorients
itself and subsequently, via active penetration, enters the cell. Although more than
50 proteins were previously linked with it, the gaps remaining in our understanding
of the molecular mechanisms that facilitate the invasion process indicate that many
more are involved (Cowman and Crabb, 2006; Haase, et al., 2008; Soldati. et al.,
2004). Using the 90% confidence interactome network, we constructed a merozoite
invasion sub-network of proteins by retrieving all genes directly linked to 25
previously established invasion associated proteins (figure 3.4A and table S3.2).
This sub-network contains a total of 2417 linkages connecting 418 proteins

including 155 with a predicted function and 263 hypotheticals. Interestingly, the

-79 -



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

vast majority of genes previously associated with invasion were present in this
sub-network. including 43 out of 56 proteins previously predicted to be localized in
intracellular compartments associated with merozoite invasion using their
transcriptional and structural features (Haase, et al., 2008). The overall topological
structure of the invasion sub-network overlaps well with the general view of
molecular functionalities involved in invasion. It distinguishes four molecular
mechanisms  previously linked with it apical organelle proteins,
GPIl-anchored/peripheral surface proteins, actin-myosin motors and signal
transduction proteins (figure 3.4). Of the 263 hypothetical proteins that were
represented in the invasion subnetwork 230 (87.5%) were also predicted by the
WNC functional predictions to be involved in merozoite invasion by at least one of
the top terms.

In order to evaluate the in silico predictions. 35 proteins with a high
probabilistic score to be invasion related by the WNC and/or represented in the
subnetwork were fused with GFP (at the C-terminus) and expressed ectopically in P
Jalciparum under the control of an appropriate promoter (Treeck, et al., 2006). The
selection of this screen was biased towards proteins with predicted signal peptides
(22 out of 35 proteins). given the importance of secreted proteins in the host cell
invasion, immunity and their defined subcellular localisation within the apical area
or the surface of the merozoite. Western Blot analyses using GFP antibodies
confirmed expression of each fusion product in the transfected parasites and

subsequent live cell imaging allowed their subcellular localisations. Eight

- 80 -



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

GFP-fusion proteins localized to the ER and were excluded from further validation,
because accidental ER retention of certain proteins due to fusion with GFP is a
known problem and therefore might not represent the true localization of the
endogenous protein (Treeck, et al., 2006). Four proteins had to be omitted from the
evaluation due to a very low expression of fusion protein and/or lack of a

conclusive subcellular distribution. Additional 2 hypothetical proteins could not be
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Figure 3.4 Subnetwork associated with merozoite invasion process. This
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The localisation of the remaining 21 proteins led to a grouping according to
the predominant localisation (figure 3.5-1). The largest group consisted of 13
proteins that showed an apical distribution of the fluorescence signal in maturing
schizonts and in free merozoites after rupture (figure 3.5 II). As an example
PF10_0166-GFP was co-localized with the microneme marker protein EBA-175
and showed a similar distribution (figure 3.5 1l. A-B). Interestingly. the apical
group also included one protein that lacked a classical N-terminal signal sequence
(PFD0720w). In addition to acetylation motifs, this protein possesses an
Armadillo/beta-catein like repeat that is known to be involved in protein-protein
interactions. Coincidentally. in addition to its predominant apical foci, PFD0720w
(and PFDI1130w) also showed a faint but distinct peripheral distribution (figure
S3.12 and data not shown).

The second group was represented by 2 proteins (PF10 0352 and
PF10_0348) with high homology to proteins of the merozoite surface protein
super-family. These proteins showed a merozoite surface distribution that was
confirmed for PF10_0352 by co-localization with MSP-1 (figure 3.51 and 11 C.D).
The third group containing four proteins (MALI13P1.130, PFE1285w. PF10 0039,
and PFE1130w) exhibited a staining pattern that was reminiscent of the inner
membrane complex (IMC) (Baum, et al.. 2006). The IMC is tightly associated with
the plasma membrane and represent a prerequisite for the structural integrity and
motility of invasive parasites (Baum. et al.. 2006; Baum. et al.. 2008; Morrissette

and Sibley, 2002). All four proteins showed a similar dynamic during merozoite
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maturation as depicted for MAL13P1.130-GFP (figure 3.5 11 E and S3.12): in early
schizonts these proteins are present in a cramp like structure (figure 3.4 Il E7) at
the apical tip of forming merozoites. This structure develops into a ring like
configuration (E8) before the fluorescence started to be equally distributed in the
periphery of the nascent merozoite (E9-10). In this group only PFEI130w
displayed a classical signal peptide.

The last group comprising PFE0910w and PFE0145w might represent the
only false positive within the validated group of proteins with a localisation to
either the mitochondrium or the apicoplast (figure S3.12). Interstingly, although
PFE0145w has a TOP 3 prediction to be involved in invasion, it is not retrieved by
this functional subnetwork.

In summary. 19 out of 21 selected proteins are associated with the structures
known to be directly involved in invasion. It demonstrates that the functional
predictions based on such approaches can lead to the identification of new putative

targets for malaria intervention strategies.
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Figure 3.5 Functional analyses of merozoite invasion proteins. I. Subcellular

oGAP45

merge

distribution of 21 predicted proteins determined to be involved in invasion using
GFP tagging; All proteins were localized in schizonts (s) and free merozoites (m).
13 proteins (PFO8 0108, PFD0230c, PFB0570w, PFDI1105w, PFDI1130w,
PF10 0119, PF10 0166, PF10 0295, PF14 0119, PFl14 0572, PFL0300c,
MALI3P1.94 and PFD0720w) showed a predominantly apical GFP distribution
(green) and are boxed in blue. Two proteins (PF10_0348 and PF10_0352) revealed

merozoite surface localisation (boxed in green) and four proteins (Mall3P1.130,
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PFE1285w. PF10 0039 and PFE1130w) represented the IMC compartment (boxed
in yellow). 2 proteins (boxed in orange) localized either to the apicoplast
(PFE0910w) or the mitochondrion (PFE0145w). Nuclei were stained with DAPI
(blue). Expression of the GFP fusion was also verified by Western-Blot analysis
depicted besides each panel. II. Localisation of the apical protein PF10_0166-GFP,
the surface proteins PF10_0352 and subcellular distribution and dynamics of the
IMC protein MAL13P1.130; (A-B) PF10_0166-GFP (green) localized to the apical
region of schizonts (s) and free merozoites (m) in unfixed (A) and fixed (B)
parasites and partially co-localized (B) with the microneme protein EBA175 (red).
The boxed regions are depicted in higher magnification and labelled with numbers.
The nucleus is stained with DAPI (blue). (C-D) PF10_0352-GFP (green) localized
to the surface of schizonts and free merozoites in unfixed (C) and fixed (D)
parasites and co-localized (D) with the surface protein MSP-1 (red). (E-F)
Dynamics of MALI13P1.130-GFP (green) during schizogony in unfixed parasites
(E): in early schizont the MALI13P1.130-GFP emerged as a cramp like structure
(enlargement E 7) at the apical tip of forming merozoites. This structure develops
into a ring like configuration (E 8) before it starts to be equally distributed within
the periphery of the nascent merozoite (E 9-10). (F) The MALI13P1.130-GFP
co-localised with the IMC protein GAP45 (F, red) in fixed parasites.

3.4 Discussion
3.4.1 Global transactional responses of Plasmodium parasites to growth
perturbations

Up until now, the significance of transcriptional regulation of P. falciparum
in responses to growth perturbations remains a controversial issue. Extensive
analyses of the primary sequence of proteins deduced from the P. falciparum

genome detected only one third of transcription related factors compared to a
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typical eukaryotic organism (Coul$on, et al., 2004). These findings led to a
suggestion that expression of the majority of Plasmodium proteins is regulated
post-transcriptionally. Two following studies further supported these original
predictions. First, exposure of P falciparum cells to inhibitors of the folate
synthesis pathway lead to only translational up-regulations of protein targets known
to interact with these inhibitors (Nirmalan, et al., 2004). Second, treatment of P,
falciparum cells with chloroquine, as well as one specific PKC inhibitor, resulted
only in a non-specific and low amplitude transcriptional response. These finding
suggested that during evolution, Plasmodium parasites lost some of their potential
to alter their mRNA expression levels in response to variable growth conditions.
Interestingly, similar results were observed for another important human pathogen.
Mycobacterium tuberculosis, in which a number of genes essential for survival in
the host lost their responsiveness to changing growth conditions and are transcribed
constitutively (Rengarajan, et al., 2005). This phenomenon was attributed to the
fact that this pathogen is fully adapted to its host environment and is never exposed
to other types of growth conditions. Although this might be also partially true for
P. falciparum, the strong transcriptional changes to several perturbations used in
this study indicate that some pathways retained their links to transcriptional
regulations and that a certain degree of flexibility exists for the parasite to respond
to changing growth conditions.

Even some of the low amplitude transcriptional changes are likely to reflect

physiologically relevant responses. Oakley ef al demonstrated that a 2-3-fold
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decrease in mRNA abundance of several genes of the ubiquitin-proteosome
pathway resulted in approximately 15-fold decrease of overall protein
ubiquitination activity in P, falciparum cells exposed to febrile temperatures. In
our analyses, we find that even the subtle transcriptional changes are highly
reproducible and dose dependent (see chloroquine treatment figure 3.1A).
Moreover. the contribution of these subtle changes to the interactome networks
improves the functional prediction scores based on the transcriptional co-regulation
pretense (data not shown). Taken together, these data strongly indicate that
despite the initial skepticism, transcriptional profiling is a suitable type of analysis

for high throughput gene annotation in P, falciparum.

3.4.2 Gene functional network reconstruction of P. falciparum

In silico modeling of generic genomic systems demonstrated that even a small
number of perturbations can significantly improve the confidence and gene
coverage of an interactome network as long as these perturbations affect mRNA
levels of 50-60% of genes in the genome (Khanin and Wit, 2007). In our analyses,
we incorporated 2567 genes (48% of the genome) that exhibit at least two
sequential 2-fold changes in at least one time-series. As indicated in Figure 1D,
the perturbation analyses increased the likelihood score prediction values by
approximately ~10-fold compared to the P. falciparum IDC transcriptome alone.
This also led to improvements of the overall confidence and the proteome coverage

of the whole interactome network compare to the identical network assembled with
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the IDC transcriptome alone (Figure S3.13). In the 50% precision rate network,
the average connectivity between genes was 95 using the IDC transcriptome only.
but dropped to 70 when the perturbation data was incorporated (data not shown).
Hence, the perturbation data are likely to be the main source of the improvements
of this interactome network compared to the previously reported interactome
PlamoMAP, mainly by eliminating false positive results (table 3.2 and figure S3.5

and S3.6).

3.4.3 Exploring gene function from the predictions and interactome

For 2545 hypothetical proteins of P. falciparum, functions were assigned based
on the local network “environment™ of the probabilistic interactome using the
WNC method. To further validate these predictions. we manually inspected
several molecular mechanisms that overlap the functional groups. Structural feature
of some of the newly annotated genes provided further evidence for the precision of
the WNC annotations. The first example represents 11 genes associated with the
process of histone acetylation. Excluding 5 known genes: PF10 0078 (histone
deacetylase), PFF0865w (H3), PF11_0062 (H2b). PFF0860c (H2a), PFI1_0061
(H4), the other six hypothetical proteins (PFL1645w. PFL0635¢c. PFA0510w,
PFF1440w, PF14 0724 and PFI1530c) contained a bromodomain motif. which is
found in many chromatin associated proteins and can interact specifically with
acetylated lysines (Dhalluin, et al., 1999; Hayes and Hansen, 2002; Jeanmougin, et

al., 1997). 10 of the 11 proteins are present in the 90% precision rate network,
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and direct linkages to these proteins identified more proteins associated with this
process. These include two other histone deacetylase genes PFI11260c and
PF14_0690 linking to PF10_0078, PfGCNS (histone acetylase, PFO8 0034), three
additional histone genes (PFC0920w, H2a; PF07 0054, H2b; PFF0510w, H3) and a
homologue of ASF1 (chromatin assembly protein, PFL1180w).

The second example is the DNA mismatch repair system where we
identified 11 hypothetical proteins associated with this process together with 12
proteins previously implicated in the this process (7 DNA repair proteins:
MAL7P1.206, PFO0_0002, PF11 0184, PF14 0254, PFB0265¢c, PFE0270c and
MAL7P1.145; two DNA polymerase proteins: PF10 0165 and PF10 0362;
PF11_0282. deoxyuridine 5'-triphosphate nucleotidohydrolase; and PF10_0080,
endonuclease). Interestingly, for 5 of the 11 hypothetical proteins, the PFAM
searches performed in this study identified domains that are consistent with their
involvement in the DNA repair mechanism. PFI14 0051 belongs to the MutS
family which is a DNA mismatch repair protein (Obmolova, et al., 2000).
PFL0230w has CMP/dCMP deaminase and zinc-binding domains needed to
catalyze the hydrolysis of cytidine into uridine. It has been speculated that this
enzyme may be associated with the replication fork during DNA synthesis
(Mathews. et al.. 1988; Moore, et al., 1993). PFL1360c has one leucine-rich repeat
(LRR) domain and it is involved in a variety of biological processes including
DNA repair (Kobe and Deisenhofer, 1994). PF14 0538 is a protein containing a

STAG domain which is typically found in subunits of the cohesin complex
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(Ellermeier and Smith, 2005). Finally, PF13 0080 has a domain of RNA-directed

DNA polymerase.

3.4.4 Functional analysis of new invasion proteins

The functional network predicted to power red blood cell invasion
encompasses 418 proteins. Based on the invasion sub-network constructed with the
90% confidence gene linkages, we initially selected 35 predicted proteins for
intracellular localization in order to validate their putative involvement in
merozoite invasion. This resulted in 21 transgenic parasites line with an evaluable
GFP distribution within the infected erythrocyte comprising 14 proteins with a
classical signal peptide, 2 proteins with a putative signal anchor and 5 proteins
without any apparent localisation motif. 13 proteins revealed an apical GFP
localisation reflecting the initial biased selection for the functional screen towards
protein with predicted signal peptides. The apical area is defined by its associated
secretory organelles (rhoptries, micronemes and dense granula) as depicted in
figure 3.5 (I, B3) using EBA-175 as a microneme marker protein. These organelles
compile an unknown number of secreted proteins that play not only an important
role for host cell interaction, but are highly interesting for vaccine and drug
development (Cowman and Crabb, 2006). For instance, PFD0230c¢ (also known as
DPAP3) contains a serine protease domain and was recently identified in a forward
chemical genetic screen as one of the key regulators for merozoite egress

(Arastu-Kapur, et al., 2008). This function is in a good agreement with the
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network based assignment as well ‘as the localization studies that demonstrated
PFDO0230c¢ to be transported to the apical organelle(s) (figure 3.5 1I). PF08 0108,
an aspartate protease (also known as plasmepsin X), belongs to the P. falciparum
specific plasmepsin family with 10 members highly homologous to pepsinogen A
(Coombs, et al., 2001). While some of the plasmepsins are involved in
hemoglobin degradation in the digestive vacuole, PFO8 0108 is expressed in late
schizonts and localizes as an ectopically expressed GFP fusion protein to the apical
organelles of merozoites (figure 3.5 1). This suggests that plasmepsin X has evolved
a distinct role in the Plasmodium life cycle, being involved either in merozoite
egress, or invasion. Two additional proteins from the apical group. PFB0570w and
PFD1105w were previously described as rhoptry proteins with adhesive properties.
PFB0570w (PfSPATR, secreted protein with altered thrombospondin repeat)
displays a degenerated TSP-domain with a multi-stage expression profile
(Chattopadhyay, et al., 2003) and PFD1105w (PfAARP, asparagin rich parasite
protein) was shown to bind to surface structure on the erythrocyte
(Wickramarachchi. et al., 2008). Again, these functions are in a good agreement
with the network based assignment.

The two proteins that were indentified to been surface located are both
encoded by genes within the msp cluster on chromosome 10, that encodes multiple
proteins belonging to the merozoite surface super family. Noteworthy, PF10_0348,
which is located in an msp cluster on chromosome 10, encodes an additional DBL

domain, which might mediate initial receptor binding with the host erythrocyte
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(Wickramarachchi et al manuscript submitted). MALI13.P1.130. PFE1285w,
PF10 0039 and PFE1130w showed a subcellular localization at the IMC similar to
GAP45, a member of the actin-myosin motor, a complex that plays a crucial role in
invasion (Baum, et al.. 2006). MAL13P1.130 was initially characterized as a 6
transmembrane protein by a proteomic approach characterizing detergent resistant
membrane fractions of parasites in schizont stages (Sanders, et al., 2005), while
PFE1130w represents a 7 transmembrane domain IMC protein. Structurally distinct
without any transmembrane domain (or signal peptide) are PFEI1285w and
PF10_0039 that belong to the family of alveolins and are known to play a structural
role in IMC architecture (Baum, et al., 2008).

It will be crucial to further validate new proteins from the predicted
invadome to deepen our understanding of the invasion process on the molecular
level, although only functional studies will provide a basis for rational drug and

vaccine development.

3.5 Concluding remarks and outlook

Human malaria remains one of the most dangerous infectious diseases in the world
affecting 300-300 million and killing 1-2 million people each year. The fast
spreading resistance to the majority of the available chemotherapeutic agents and
the lack of an operational vaccine create a serious health concern for the future.
Better understanding of the Plasmodium parasite biology and especially functional

relevance of the numerous Plasmodium hypothetical genes is paramount for the
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development of new malaria intérvention strategies. Here we carried out
extensive transcriptional profiling of P. falciparum responses to chemically induced
growth perturbations and used these data to reconstruct a gene interactome network
that allow us to predict function of 2550 Plasmodium hypothetical genes. The
high accuracy of these predictions was demonstrated by the functional validation of
21 selected protein candidates from which 19 localized to intracellular
compartments associated with the invasion machinery. Given the low efficiency
of all available reverse as well as forward genetics in P. falciparum (Balu, et al.,
2005; O'Donnell, et al., 2002), these data demonstrate that transcriptional profiling
of growth perturbations provides a powerful technique for functional genomics of
Plasmodium parasites. The functional predictions based on this network provide
highest precision rates compared to the presently available interactome network.

All these gene predictions are available in an online database on the following

Although this network covers 88% genome of P. falciparum and about 2550
hypothetical proteins were assigned function clues. to improve the accuracy of the
network and predictions of gene function, more data will be incorporated in the
future. For example. more growth perturbation data, expression profiles from
mutant strains and proteomic expression profiles are being investigated.
Currently. 20 proteins were chosen for intracellular localization analysis to
evaluate the network-based predictions of gene function. These invasion proteins

would be further analyzed to illustrate the molecular function in the invasion
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process in the future, which would promote deep understanding of the mechanism
of merozoite invasion in P falciparum. Furthermore, more proteins would be
selected for function analysis, such as proteins associated histone modification and

DNA binding proteins.

3.6 Materials and methods

3.6.1 Plasmodium falciparum genome

The 4.4 version genome. 5363 protein encoding open reading frames and 53
pseudo genes of P falciparum are downloaded from PlasmoDB

(http://www.plasmodb.org/download/) excluding mitochondrion and plastid genes.

The current annotation of CDSs is based on the 5.4 version genome. All linkages

and calculations of genome coverages are based on this gene set.

3.6.2 Parasite culture, treatment and microarray and plasmid transfection

Cells of P. falciparum strain 3D7 and Dd2 were grown and maintained as
previously described (Trager and Jensen, 1997). Growth assay of each drug or
compound were performed in 2% hemotocryt with 5% parasitemia at one
particular stage. Parasitemia of new rings of next cell cycle were counted to
calculate the inhibitory concentration at 50% (ICsp). Parasites were treated with
appropriate drug or compound concentrations (ICsou0/180) and collected in a course
with 5-8 time points taken in regular time intervals (30-120minutes).

Genome-wide gene expression profiling was conducted using a long

-05-


http://wvvw.plasiriodb.org/dovvnload/

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

oligonucleotide representing all 5363 P. falciparum genes. and the microarray
hybridizations were carried out as previously described (Hu, et al.. 2007). P
falciparum asexual stages (3D7) were transfected as described previously (Fidock
and Wellems. 1997). Positive selection for transfectants was achieved using 10 nM

WR99210.

3.6.3 Gene expression profiles
Currently, mRNA expression profiling represents one of the most extensive
functional genomics data sets. and it has been proved that genes with similar
expression profiles are more likely to be co-regulated, functionally related and
encode interacting proteins (Bhardwaj and Lu, 2005; Eisen, et al., 1998; Ge. et al.,
2001; Tornow and Mewes, 2003). Till now, only several data sets about P
Jalciparum are available, and most of them are data type of life cycle. Here we
collected data of 247 micrarrays from different drug or inhibitor treatment (table
3.1), together with 42 microarray experiments of cell cycle from lab or field strains
and from the published data. Data of each drug/inhibitor experiment were extracted
from NOMAD database., and each gene profile was represented the average
intensities of all oligos that map to that gene. The missing data were fixed by
K-nearest neighbor method in R package (Troyanskaya, et al., 2001). Gene profiles
were assembled when existing in all experiments.

Pearson Correlation Coefficient (PCC) between the expression profiles

across the entire perturbation experiments panel for each gene pair were calculated
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to evaluate the complexity of the growth perturbations. Based on the benchmark
data (described in the following section), we calculate a likelihood score as a
function of a ratio of the probabilities of positive and negative observations for
different PCC thresholds to systematically evaluate functional relationships of
transcriptional co-regulated genes in the growth perturbation data.

To construct the gene functional network we also incorporated others
datasets. the IDC transcriptome datasets of 3D7. Dd2 and HB3 (148 microarray
experiments) (Llinas, et al., 2006). To indicate the strength of functional
association of each gene pair by gene expression profiles, PPCs were calculated
independently across each dataset first and a called “optional average™ method was
used to average the three PPCs as the final correlations (fPPC). Briefly, Fisher’s
z-transform (David. 1949: Huttenhower. et al.. 2006) was used to average two
PPCs from two independent IDC transcriptomes and compared to the PPC from
perturbation data. If the later is smaller, the final PPC is the PPC from perturbation
data. Otherwise, the final PPC is equal to the average PPC from three datasets
using the Fisher’s Z transform. To illustrate the advantage of this method, we
reconstructed the network using the average PPCs by Fisher’s z-transform of all
gene pairs. We divided the final correlations into 19 bins. For each bin we assessed

its overlap with the benchmarks (table S3.1).

3.6.4 Protein-protein interaction data based on yeast two-hybrid experiments

Physical protein-protein interactions (PPI) reflect functional associatioin of the
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corresponding genes in most. if not all. cases. As for direct experimental
observations of protein interacrions in P falciparum, a set of 2811 interactions
among 1308 proteins that generated by the application of yeast two-hybrid method
was used (LaCount, et al.. 2005). We defined all interactions as only one bin and

assessed its overlap with the benchmarks (table S3.1).

3.6.5 Protein-protein interaction data based on domain-domain interaction
evidences

The basic units of proteins are domains and proteins interaction with each other
through their domains. Bioinformatics methods are developed to predict the
domain interactions by integrating the experimental data sources of protein-protein
interactions from different species as well as other data sources (Deng. et al., 2002;
Lee, et al.. 2006; Riley, et al., 2005; Sprinzak and Margalit. 2001). Lee et al. (Lee.
et al., 2006) predicted a set of high-confidence domain-domain interactions by
integrating multiple biological data sets from four species (yeast, worm, fruit fly
and human). We mapped this data set to P falciparum to predict the
protein-protein interactions based on these domain interaction evidences. Briefly,
first we predicted the domain information of all malaria proteins using HMM
method based on the PFAM database (Sonnhammer, et al., 1998), and generated all
possible protein domain-domain pairs and offered the confidence score (likelihood
score) of each domain pair. The score of a domain pair was assigned to a pair of

proteins containing the domains. If different scores existed between a pair proteins
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arising from different interacting domain pairs, the maximum of the scores was
assigned to the pair. We divided the confidence scores into 6 bins. For each bin we

assessed its overlap with the benchmarks (table S3.1).

3.6.6 Prediction of functional linkages using phylogenetic profiles

Phylogenetic profiles of all proteins were calculated using the mutual information
method (Date and Marcotte, 2003). Briefly, the protein sequences of Plasmodium
Jalciparunm were compared with reference organisms (210 reference organisms,
including 155 prokaryotes and 55 eukaryotes, were downloaded from the NCBI
and the ENSEMBL) using BLASTP (Altschul, et al., 1997). For each protein i, a
vector was generated with elements p;. where p; = —l/logE;. Here we
predetermined the E-value threshold is equal to le-4 according to the prediction
power of different E-value thresholds (Sun, et al.. 2005). That is, p; = 1 when the
E-value is greater than or equal to the predetermined E-value threshold. As a
metric of phylogenetic profile similarity, the mutual information was calculated
between pairs of phylogenetic profiles (Date and Marcotte, 2003; Sun, et al., 2005).
In practice. mutual information is calculated on histograms of p;; values. binned in
0.01 intervals, with resulting MI values ranging from 0-2.4. To avoid the effects of
paralogs in Plasmodium, we deleted all protein pairs originated from paralogous
proteim pairs, in which paralogs were defined by their BLASTP E-values (<=
le-15). Figure S3.2 showed the hierarchical clustering of phylogenetic profiles of

all P. falciparum proteins and an example of correlated proteins. We divided
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mutual information scores into 15 bins. For each bin we assessed its overlap with

the benchmarks (table §3.1).

3.6.7 Reference and benchmark sets

For the validation and prediction of protein-protein functional relationship. we
need to have reference datasets to serve as gold-standards of positives and
negatives. The Kyoto-based KEGG database (Kanehisa, et al., 2002) provides
metabolic and regulatory pathway annotation for genes. Previous studies have
proved the KEGG database to be an excellent reference set for evaluating
functional linkages (Date and Marcotte. 2003: Date and Stoeckert, 2006: Lee, et al.,
2004; Marcotte, et al., 1999). KEGG maps about 10% genes of P. falciparum into
at least one pathway or cellular systems (examples including “glycolysis™,
“ribosome™. “proteosome™). We extracted 71 pathways in which it has at least
two genes. including total 492 genes. The KEGG database produces original
12,493 positive gene pairs, finally 11.046 positive pairs was determined after
kicking out any pairs in which gene participate more than 3 pathways, thus
avoiding promiscuous members. A total of 61.721 negative gene pairs were
created according to all possible genes pairs based on all genes in the 79 KEGG
pathways (8 pathways only have one gene) excluding all original positive pairs and
any pairs in which they share any GO terms up to 4" level in all three GO
categories (Ashburner, et al., 2000). Table S3.1 showed the parameters of nave

Bayesian network of all datasets based on this reference dataset.
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In order to test the predictive values of the input data. we assemble a positive
benchmark dataset that comprises ot 11,046 linkages between 492 P. falciparum
genes that fall into 71 distinct KEGG pathways.  We also assemble a negative
benchmark dataset that contains 61.721 gene pairs that do not fall into a common
KEGG pathway and do not share a Gene Ontology (GO) term up to 4" level. For
the phylogenetic profiling. domain-domain interaction and transcriptome datasets.
there are positive trends between the linkage evidence values (such as PCC) and
the benchmark based likelihood scores (figure $3.3). This data suggest that the
calculated likelihood scores reflect the functional relationships between P
falciparum genes and are applicable as input values for assembly a probabilistic

interactome network.

3.6.8 Integration of the data sets by Bayesian probabilistic model

Bayesian model are efficient to integrate heterogeneous data for the task if
combining evidences (Date and Stoeckert, 2006: Jansen. et al., 2003: Lee. et al.,
2004: Troyanskaya. et al.. 2001). Four dataset types are evaluated by the standard
positive and the negative benchmarks. and each gene pair was assigned one
likelihood score. Then all likelihood scores given by different data types are
integrated by the Bayesian model. which generates the final prediction score for a
potential protein linkage based on a product of the likelihood scores from each of
the four data sets with no penalties for missing evidence from any set.

Likelihood Score (LS) - LSPP(‘ X LS;JH}' x LSPIJJ,I X Lsf)mmun
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PPC is gene expression profile linkages. PHY is phylogenetic profile linkages. PP/
is experimental protein-protein interaction linkages. Domain is domain-domain
interaction linkages. The posterior probability was computed based on Bayesian

formula. Quoserior = Oprior X LS.

3.6.9 Cross validation of the integration results

We performed a 10-fold cross-validation to evaluate the overall performance of the
prediction. Briefly, first the positive and negative benchmarks were randomly
divided into ten separate equal sets, and nine of them were used as the training set
to calculate the likelihood scores and the remaining one set as the test to identify
the positive s and negatives. We ran this process ten times so that each of the ten
sets was a test set and the remaining nine constituted the training set. Finally, all
true positives (TP) and false positives (FP) were summed up under different
likelihood score cutoffs to evaluate the ratio of true positives to false positives. The
positive predictive value (PPV, TP/(TP+FP)) was also calculated as the fraction of

true positives to the total number of true positive and false positive.

3.6.10 Characterization of the network structure and identification of local
modules among the network

We used several essential variables (node degree, degree distribution, clustering
coefficient) to characterize the overall topological structure of the network

(Barabasi and Oltvai, 2004). Node degree (connectivity), k. is the number of links
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that the node has to other nodes. The degree distribution. P(k)., gives the
probability that a selected node has exactly k links. which allows us to distinguish
between different classes of network. When the degree distribution approximates a
power-law, P(k)«k'?'. it means the network is scale-free. Clustering coefticient
characterizes the tendency of nodes to form clusters or groups. It the distribution of
clustering coefficient. C(K). follows C(k)~k™". the network structure is hierarchical
(Ravasz. et al.. 2002).

We searched the local modules in the network using Markov Cluster
(MCL) algorithm which is a fast and scalable unsupervised graph clustering
algorithm (Enright, et al.. 2002: Krogan, et al., 2006). Comparing analysis of
Markov Clustering (MCL) and other methods concludes that MCL performs
robustly and superiorly to extract protein complexes from interaction networks
(Brohee and van Helden, 2006). To define the parameter of granularity. we
followed the method of Wuchty and Ipsaro (Wuchty and Ipsaro. 2007) by
optimizing the functional coherence and size of the clusters (Lee, et al.. 2004). The
networks and sun-networks were laid out and visualized using Cytoscape 2.3

(Shannon. et al., 2003).

3.6.11 Network-based gene function prediction
3.6.11.1 Weighted neighbor counting method
We used one neighbor counting method weighted by the likelihood score because

the likelihood score of each linkage could represent the functional similarity
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between two proteins. ‘
(i, j) = 2LS(m) &(j)/ 2LS(m)

where the f(i,j) is the propability of gene i having function j. The LS(m) is the
likelihood score of the m™ neighbor of gene i. 8(j)=1 if the gene has function ;. else
3(j)=0. Without threshold, we assigned an unannotated protein with k functions
having the top k statistic scores (see the following). The performance of the
predictions is evaluated by plotting precision against recall over vary thresholds as
adopted in Deng et al (2003). For a given threshold f3, precision and recall are
defined as:

Precision = " ki p/Sm; Recall= X", kip/Sn;
where n; is the number of known functions of protein i; mig is the number of
functions predicted for protein i at threshold  and ki is the number of functions
predicted correctly for protein i at threshold B. V is the set of all functionally
known genes.
3.6.11.2 TOP k statistics
In this analysis we utilize the top k predictions statistics in which top k number are
evaluated simultaneously for the final functional prediction. To determine the
optimal k, we compare the prediction precision and the sensitivity of all annotation
terms for every gene when k is equal 1, 3 and 5 regardless the thresholds of the
prediction scores. Top 3 assignments regardless the prediction scores had overall
50% predictive precision at 85% recall of the total annotated genes in the network

and had significant improvement than the overall 42% predictive precision of top |
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assignment. Although top 5 assignments had overall 52.6% predictive precision.
the sensitivity was only 23% at the same recall comparing to 29% of top 3
assignments (figure S3.8A). When the threshold of prediction score was set at
0.14, top 1 assignment had 50% predictive precision recalling for 64% of the total
annotated genes in the network (figure S3.8B). Based on this threshold. top 3
assignments had overall 54.6% predictive precision and top 5 assignments had
overall 55.4% predictive precision recalling 64% of annotated genes in the network
(figure S3.8). Comparatively, at the same recall, the predictive precision rate of
top 3 assignments was 58% regardless the threshold of prediction score (figure
S3.8). Taken together. we define the k-value equal to 3 to ensure the largest
genome coverage and highest predictive precision rate in the overall gene function
prediction.

3.6.11.3 Comparison with other methods

I. chi-square approach (Hishigaki. et al., 2001).

(i, e )Y
=G, )

The n(i. j) is the number of proteins interacting with protein i and has function j.
The e(i, j) = #Nei(i) * m; is the expected number of proteins in its all neighbors
having function j. where #Nei(i) is the number of neighbor proteins of protein i.

[I. FS weighted average method (Chua, et al., 2006)

FS weighted average method is one neighbor counting method considering both
direct and indirect neighbors based on the functional similarity distance. which was

calculated according to the method adopted by Chua et al. 2006.
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SHSEcwy o+ S S v Vo))

ES(1.]) = =
S vy

S USLu) T
FS (i. j) is the predicting score having j function for gene | by FS weight average
method. The S(i, u) is the FS-weight score of u” neighbor of gene i. The FS-weight
score (S) was calculated based on the formula 5 of Chu et al. (2006). in which the
evidence score of each linkage was defined by LS/LS + 1). 8(j)=1 it the gene has
function j. else d(j)=0.

Several computational methods mentioned above were used to predict gene
function and test the predictive accuracy. Compare to neighbor counting method.
Chi square approach and FS-weight average method, the weighted neighbor
counting method had a significantly higher overall prediction precision rate

regardless of the thresholds (figure S3.9).

3.6.12 Genes associated with the invasion subnetwork and experimental
validation

The 25 apical proteins (table S3.2) locate at the apical organelles (microneme,
rhoptry and rhoptry neck) were taken as the core hubs (Cowman and Crabb. 2006)
to build the merozoite invasion sub-network by retrieving all direct linkages to the
hubs. 20 uncharacterized proteins in the sub-network were selected to confirm the

results.

3.6.13 Nucleic Acids, Antisera and Immunoblots

Genes of interest were either amplified using gDNA or cDNA derived from 3D7
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parasites. PCR was carried out using ¢cDNA gene specific primers summarized in
Tab. SX. PCR products were digest with Kpnl and Avrll and ligated into the
transfection vectors pARLyma-GFP (Struck. et al.. 2005) or pARL, . -TY1 that
encode a C-terminal GFP or TY1 tag. To ensure late expression the AMA-I
promotor is used to drive transcription (Treeck. et al.. 2006). Proteins from late
stage parasites were separated on 10% SDS-PAGE minigels and immunoblots were
performed and developed as previously described (Struck. et al.. 2005). Anti-GFP
(Roche) or anti-TY 1 (Diagenode) was used as a primary antibody and sheep anti

mouse 1gG horseradish peroxidase (Roche) was used as a secondary antibody.

3.6.14 Immunofluorescence and analysis of GFP expressing parasites

Images of unfixed GFP-expressing parasites were observed and captured using a
Zeiss Axioskop 2plus microscope. a Hamamatsu Digital camera (Model C4742-95)
and OpenLab software version 4.0.4 (Improvision Inc.). DNA was stained with

DAPI (1:1000. Roche).
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Chapter 4 Global gene expression of Plasmodium falciparum

in response to protein kinase or phosphatase inhibitors

4.1 Summary

Protein kinases and phosphatases play important roles in the development of
malaria parasites. Inhibitors of both functionalities have been shown to block
invasion by P falciparum but their mechanisms of actin remain largely
unknown. Here we study the effect of several classes of inhibitors of protein
phosporylation pathways including CaM (W7), calcium/CaM-dependent
protein Kinase (KN93). myosin light chain kinase (ML7). conventional
multiple protein kinases (staurosporine) and two calcineurin inhibitors
(FK506 and CsA) on erythrocyte invasion by P. falciparum. The main goal is
to further define the prospective modes of action of these inhibitors by
analyzing the gene expression response. First. the growth assays show that
these inhibitors effectively inhibit erythrocyte invasion by P. falciparum in
vitro with the parasite cells arrested in the late schizont stage. Second. the
global gene expression profiling using a genome-wide P. falciparum DNA
microarray shows that these inhibitors induce diverse but specific
transcriptional responses when parasite cells were treated at the early
schizont stage. Interestingly. several transcription factors and signaling genes
were up-regulated by the inhibition of calcium dependent signaling and

calcineurin signaling pathways. which suggests that the phosphorylation
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and/or dephosphorylation play vital roles in the gene expression regulation in

P. falciparum.

4.2 Introduction

Malaria parasites have a complex life cycle that includes a sexual development in
the mosquito vector, exo-erythrocytic cycle and intra-erythrocytic developmental
cycle (IDC), in the liver and the blood of the human host respectively. From these
however. the IDC is responsible for all clinical symptoms and it is also a target for
the vast majority of the malaria intervention strategies. Several large scale
transcriptome analyses of the P falciparum life cycle uncovered a broad
transcriptional regulation that controls expression of the vast majority of the
genome. It was shown that each cellular pathway is timed to a specific stage of
the Plasmodium life cycle in a “just in time manufacturing”™ fashion (Bozdech. et
al.. 2003: Le Roch. et al.. 2003). But little is known about the exact timing of
regulation of gene expression in P falciparum. Modulation of protein
phosphorylation through the antagonistic effects of protein kinases and protein
phosphatases is a major regulatory mechanism of most cellular processes in
cukaryotic cells. Sequence analysis of the genome identified tens of protein kinases
in P falciparum including many homologues conserved in other eukaryotic
signaling proteins (Gardner, et al.. 2002: Ward. et al.. 2004). Over the past few
years several genes encoding Plasmodium protein Kinases have been characterized

and show that some protein kinases are expressed in specific stages (Bozdech, et
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al.. 2003: Le Roch. et al.. 2003) and play important roles in the development of the
parasite (Billker. et al.. 2004; Canduri. et al.. 2007: Doerig. et al., 2002; Kappes, et
al.. 1999). Previous studies has also shown that Plasmodium protein Kinases
diverge significantly on both structure and function from their homologs in other
eukaryotes (Doerig and Meijer, 2007: Ward. et al.. 2004). Recently, it was shown
that a set of genes involved in protein modification particularly protein
phosphorylation are regulated by a transcription factor with an AP2 domain (De
Silva. et al.. 2008). Taken together, these studies lend a hope that specific
inhibition of parasitic kinases is achievable and may lead to the development of
novel control agent against malaria. However, validation of a given kinase as a
drug target requires strong evidence that its activity is essential for parasite growth
and/or differentiation. It also requires understanding how these Kinases integrate in
the cellular machinery of the Plasmodium cells and what roles they play in gene
expression during the parasite development.

Several protein Kinase or phosphatase inhibitors have been shown to have a
similar blocking effect of erythrocyte invasion by P. falciparum compared to
several protease and cytokinesis inhibitors (Dluzewski and Garcia, 1996). In
particular, W7. calmodulin (CaM) antagonist. was shown to block the erythrocyte
invasion presumably via Ca®" depletion and a subsequent affect on a putative
calcium/calmodulin-dependent signal pathways (Vaid, et al.. 2008: Ward. et al.,
2004). KN93, a specific inhibitor of CaM kinases. interacts with the

calcium/CaM-binding domain of CaM kinases (CaMK) to inactivate these kinases
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(Means. 2000). In Plasmodium, KN93 was shown to block the formation of
ookinetes from zygotes (Silva-Neto. et al.. 2002) and as well as the gamete
formation by blocking calcium-dependent protein kinase 4 (PfCDPK4) (Billker, et
al.. 2004). Another calcium/calmodulin dependent kinase. myosin light chain
protein kinase (MLCK). can be specifically inhibited by ML7, Currently no studies
have been completed to characterize its inhibitory effect on P falciprum.
Saturosporine, an inhibitor of serine/theronine kinases effectively inhibits the
erythrocyte invasion of Plasmodium (Dluzewski and Garcia. 1996; Ward. et al.,
2004). Xestoquinone is a Pfnek-1 inhibitor with in vitro antimalaria activity but
little is known about its mechanism (Laurent. et al.. 2006). A competitive inhibitor
of ¢cAMP (cAMP Rp-isomer). which inhibits cAMP-dependent protein kinase
(PKA). also results in inhibition of apical regulated exocytosis in sporozoites and
hepatocyte infection (Ono. et al.. 2008). HDTAB (hexadecyltrimethylammonium
bromide) inhibits Choline kinase (PfCK) in a dose-dependent manner and offers
very potent antimalarial activity against P. falciparum (Choubey. et al.. 2007). The
phosphatase inhibitor of okadaic acid has a strong inhibitory effect both on
invasion and development of P. falciparum (Dluzewski and Garcia, 1996). Two
calcineurin inhibitors, cyclosporine A (CsA) and FK506. have been proven to
inhibitor the erythrocyte invasion by 2 falciparum (Bell. et al.. 1994: Kotaka, et al..
2008: Kumar, et al.. 2005) and calcineurin had the contrary effect of kinase and
was able to dephosphorylate proteins in P. falciparum (Dobson, et al.. 1999; Kumar.

et al.. 2005).  Although all the above-mentioned kinase or phosphatase inhibitors
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have effective anti-malarial effects, the mechanisms of blocking the erythrocyte
invasion are largely unknown.

The aim of this study is analyze the genome-wide transcriptional response of
P. falciparum to several classes of protein kinase inhibitors in order to further
understand a role of their corresponding the signaling pathways in the progression
of the IDC. For these studies. we chose a selection of inhibitors targeting CaM
(W7). calcium/CaM-dependent protein kinase (KN93). myosin light chain kinase
(ML7), and the calcineurin pathway (FK506 and CsA) (summarized in table 4.1).
In addition we include a conventional inhibitor of multiple protein kinases
(staurosporine).  Growth assays show these inhibitors effectively inhibit the
erythrocyte invasion in vitro by P. falciparum. Global gene expression profiling on
a genomic scale using microarray technology shows these inhibitors have diverse
transcriptional responses when parasite cells were treated from the early schizont
stage and specific gene responses induced by inhibiting classic signaling pathways
are observed. Interestingly. several transcription factors and signaling genes were
up-regulated induced by the inhibition of calcium dependent signaling and
calcineurin  signaling pathways. suggesting the phosphorylation and/or
dephosphorylation play vital roles of the gene expression regulation in

Plasmodium falciaprum.
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Table 4.1 Inhibitors associated with protein kinases

Inhibitors IC50  Possible primary Possibly involved in functional
(nM) gene target pathway

ML-7 1224 MLCK Myosin-actin
W-7 1272 CaM Calcium/CaM-dependent pathway
KN-93 1232 CaMKII Calcium-dependent signaling pathway
Staurosporine 80 various PKs Multiple signaling pathways
Cyclosporine A 88 Cyclophilin A Calcineurin pathway
FK506 118 FKBP56 Calcineurin pathway

4.2 Results and discussion

4.2.1 Effects of kinase and calcineurin inhibitors on the development of P.
Salciparum

We studied the effects of protein kinase inhibitors on the progression of the
malaria parasite intraerythrocytic developmental cycle (IDC). Using growth
inhibitions assay we show that all utilized inhibitors (ML7. W7, KN93,
staurosporine, cyclosporine A and FK3506) inhibit the growth of P. falciparum
when the parasites were treated at the early schizont stage. The 50% inhibitory
concentration (IC50) was determined individually for each compound for the
identical culturing conditions (2% hemotocryt with 5% parasitemia, see materials
and methods). Three calcium dependent signaling inhibitors (ML7. W7 and KN93)
have similar 1C50s (aproximately 1.2uM) while the IC50 concentrations of
calcineurin inhibitors FK506 and CsA are 118nM and 88nM. respectively (table

4.1). The conventional multiple target kinase inhibitor, staurosporine, has the
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lowest 1C50 concentration (80nM), which suggests the its high potency to inhibit
Plasmodium growth.

To better understand the events of development of P falciparum.
synchronous cultures (Dd2 strains) were treated with double 90% inhibitory
concentrations concentration (1C90) at early-stage schizonts over 32 hours. The
effect of the inhibitors on the parasite morphology was monitored by
Giemsa-stained smears prepared with the treated P. falciparum cells collected at
selected time-point intervals (4hr, 8hr. 14hr and 32hr) (figure 4.1). In the ML7.
W7 and KN93 treated cultures, nearly all parasites developed into morphologically
normal merozoite clusters associated with hemozoin particles at time 8hr post
treatments (similar to the untreated control culture). Arrested mid-schizonts were
observed in cultures treated with staurosporine and two calcineurin inhibitors (CsA
and FK506) as early as 8 hours after the inhibitor treatment. Interestingly. at time
14hr post treatment. clusters of merozoites loosely distributed in the infected
erythrocytes were observed in both calcium-dependent inhibitors (ML7. W7 and
KN93) and calcineurin inhibitors (cyvclosporine A and FK306) treated cells. This is
a sharp contrast to the untreated control culture in which all parasites re-invaded
new erythrocytes and entered the ring stage (figure 4.1). 32hr treatments of P.
falciparum cultures with these inhibitors resulted in the cell death which is
characterized by dense small cell bodies with contracted nuclei (figure 4.1).
These data show three calcium-dependent inhibitors (ML7. W7 and KNO93)

blocked the rupture process of mature schizonts and two calcineurin inhibitors
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(cyclosporine A and FK506) had similar effects on cell development but appeared
to interfere with the cell development already in the mid-schizont stage.
Comparatively, conventional kinase inhibitor of staurosporine had much more
serious effects on the parasite development (figure 4.1). It is consistent with the
broad specificity of staurosporine inhibiting multiple kinases through the
prevention of ATP binding to the kinase. As shown in figure 4.1, this causes

severe toxicity to immature schizonts.
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Figure 4.1 Effects of protein kinase and calcineurin inhibitors on P. falciparum

development. Parasite morphology was monitored by Giemsa stain microscopy 4,
8, 14, and 32 h after addition of inhibitor. During the first 8 h (schizont stage
development), no significant morphological differences were observed between the
treated and untreated parasites. During their subsequent development, the untreated
controls progress to the next generation (formation of ring stages) while the treated
cell remains arrested at the late schizont stage. The appearance of dense black

shrunken cells 32 h post-treatment is consistent with parasite death.
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In Toxoplasma gondii. Ca2+ release from intracellular stores governs
tachyzoite egress, micorneme secretion. motility and host invasion (Carruthers and
Sibley, 1999; Kieschnick. et al.. 2001: Lovett and Sibley, 2003; Moudy. et al.. 2001)
and increasing edvidence suggests that similar mechanisms operate in invasion
stages of Plasmodium (Gantt, et al.. 2000: Kawamoto, et al.. 1993). Taken
together. these data suggest that calcium dependent signaling (calcium. calmodulin
and calcium/calmodulin-dependent protein kinase) is essential to activate the
rupture of the schizonts and suppress of calcium signal interferes with the

rupturing process.

4.2.2 Gene expression response to Kkinase and calcineurin inhibitors in P,
Salciparum

To analyze the gene expression response to the protein kinase and calcineurin
inhibitors in P falciparum. we carried out a course with 7 time points taken in
regular time intervals (1 — 2 hours) over 12 hours (1. 2, 4, 6, 8, 10 and |2hr.
starting from schizont stage. around 32hpi) for each compound treatment with
[CS0 concentration and measured the global gene expression level with a long
nucleotide DNA microarray representing all 5363 P. falciparum genes (Hu. et al..
2007). We extracted genes whose mRNA abundance was altered by 3-fold changes
to determine the significantly expressed genes. To guarantee the continuous
observation of gene expression changes through the time course, we retained the

genes that at east one neighbor of the peak changed data points (>=3 fold) should
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have 2 fold changes (double three-two filtering). This filtering would avoid the
noise from a single experiment. Diverse transcriptional responses were observed
from the three classes of inhibitors: calcium-related inhibitors (W-7, ML-7 and
KN93), calcineurin inhibitors (cyclosporine A and FK506) and conventional kinase
inhibitor (staurosporine) (figure 4.2A). The myosin light chain kinase inhibitor
(ML7) induced transcriptional changes of 561 genes. The CaM antagonist induced
noticeable expression alteration of 636 genes, and Ca/CaM-dependent protein
kinase inhibitor of KN93 induced transcriptional changes of 340 genes. Two
calcineurin inhibitors CsA and FK506 induced closer transcriptional changes of
291 and 285 genes, respectively. Conventional kinase inhibitor staurosporine
caused a more complex response which included 570 genes (figure 4.2A).
Profoundly, a huge increase of 637 genes was changed if we used double two-two
filtering comparing to other inhibitors (figure 4.2B). This dramatic response is
consistent with the non-selective targets of the staurosporine and the severe toxic

effects on the development of parasites.
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Figure 4.2 The transcriptional changes induced by compounds of ML7, W7, KNO93,

stausporine, cyclosporine A and FK506. In each diagram of transcriptional changes,

- 117 -



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

each line is an expression profiles for one genes. The expression profiles were
transformed by the expression profiles in the untreated control cells and thus red
color reflects up-regulation and green color down-regulation of gene transcription
induced by the inhibitor. Gene profiles were clustered using Cluster (Eisen, et al.,
1998) A. The transcriptional changes calculated from double three-two filtering
method. B. The transcriptional changes calculated from double two-two filtering

method.
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Figure 4.3 Comparative analysis of the transcriptional changes induced by
compounds of ML7, W7, KN93, stausporine, cyclosporine A and FK506 based on
double three-two filtering. Total 1330 gene were retained after the filtering through
the six treatments (left). In the three classes of inhibitors (W7-ML7-KN93,
CsA-FK506 and staurosporine), gene expression changes induced by the same

class inhibitors had large overlapping and less by between different class (right).
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Interestingly. there are significant overlaps between transcriptional responses
induced by inhibitors that belong to the same class. CaM antagonist W7 and
myosin light chain kinase (MLCK) inhibitor ML7 had similar transcriptional
responses with 336 shared genes (33% of W7 and 60% of ML7) (tigure 4.3).
KN93 targeting calcium/CaM-dependent protein kinases also showed similar
transcriptional changes to W7 and ML7. 69% of genes whose expression was
affected by KN93 were olso found to be effected by ML7 and W7 (figure 4.3). All
these genes that show 2-fold changes (double two-two filtering) induced by KN93
share also comprise approximately 70% of ML7 and W7 transcriptional responses.
The significantly overlaps of the transcriptional responses induced by the three
inhibitors is likely due to their proteins target that is shared between these
compounds are likely related to calcium dependent signaling pathway. These
gene responses are considerably different from those induced by two inhibitors of
CsA and FK506 (figure 4.3). CsA and FK506., which inhibit the calcineurin
(calcium/CaM-dependent protein phosphatase) dependent signaling pathway in
eukaryotic cells (Liu, et al. 1991) by binding to cyclophilin and PfFKBP35
respectively, had significantly similar transcriptional changes (approximately 70%
of responsive genes). The transcriptional changes induced by the conventional
kinase inhibitor staurosporine also shared with approximately one third of the
changes induced by ML7, W7 and KN93, individually. Although staurosporine had
103 and 70 responsive genes shared with ML7-W7-KN93 group and CsA-FK506

group (figure 4.3). the overlapping genes between CsA-FK506 group and
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ML7-W7-KN93 group was only 20. These data show the conventional and
non-selective protein kinase inhibiting activity of staurosporine and the diverse
roles of protein Kinase and phosphatase in gene regulation of P falciparum.
[nterestingly. common transcriptional changes were observed through all inhibitors
as well, such as translation machinery. variant surface antigens and the genes
expressed in late schizont stage who were arrested by the inhibitors (figure 4.3).
We also found a lot of transcription related genes (transcription and cell cyvcle
factors) and signal transduction related genes (kinases. regulators. phophatases)
were significantly changed induced by the kinase and calcineurin inhibitors.

Taken together, this data indicates the specific roles of the protein
phosporylation and dephosporylation pathways on transcriptional regulation in P
Sfalciparum. To understand the representations of the cellular systems and the
functional roles of genes in response to the inhibitors. in the following section, we
systematically analyze and discuss the gene expression changes in the context of
different functional classes and different types of protein phosphorylation

pathways.

4.2.3 Cell responses of variable surface antigens and ribosome structure genes

The effects of anti-malaria drugs or compounds on malaria pathogenesis are
profound and not well understood. P. falciparum variable surface antigens (VSA)
that include tree major antigen coding gene families (var, rifin, stevor) are

considered to be major contributors to the variable nature of malaria pathogenesis.
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On the microarray, 85% of VSA genes have unique probes ensuring the specific
detection of their expression (Hu. et al. 2007). Previously a generalized
up-regulation of VSA expression has been observed in transcriptional responses to
the heat shock environment (Oakley. et al.. 2007). We observe that 95 VSA genes
(total 142 detected) including 58 var (14 pseudo or truncated). 31 rifin (4 pseudo
or truncated) and 6 srevor (3 pseudo or truncated) were up-regulated in the
parasites treated by kinase inhibitors and only 2 pseudo var genes down regulated
(figure 4.4A). Especially. in ML7 treatment. most rifin and var genes were
upregulated in last two time points. VSA genes may be related to cellular stress
response or inhibition of kinase activities would affect the transcriptional
regulation of these variable genes. Nuclear myosin plays important roles in
transcriptional regulation (de Lanerolle. et al.. 2005). ML7 would affect the
nucleus myosin through inhibiting the myosin light chain kinase and lead to
upregulation of VSA genes. This will be tested in the future.

The proteins of ribosome structure apeared to have the similar responses to
anti-malaria drugs or compounds. 51 out of total 112 detected genes in genome
were observed to be induced by all six protein kinase inhibitors (figure 4.4A).
[nterestingly. like VSA genes, most genes of ribosome structure were up-regulated
(44 out of 51). These genes were not possibly arrested because the parasite
development at the early treatment was not affected (figure 4.1). It suggests the
control of gene expression at the translational level is an important mechanism

involved in cellular stress response.
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Figure 4.4 Functional analyses of the transcriptional changes induced by
compounds of ML7, W7, KN93, stausporine, cyclosporine A and FK506 based on
double three-two filtering method. A. Clustering diagrams of variable surface
antigen genes group (up) and ribosome structure gene group (down); B. Clustering

diagram of genes group of late schizont stage.

4.2.4 Gene expression in late schizont stage arrested.

Among the genes induced by four protein kinase inhibitors ML7, W7, KN93 and
staurosporine, there was a large cluster of genes which are under normal growth
condition specific to the late schizont stage (figure 4.3 and 4.4B). grouping
particular, 278 of 380 genes induce by the compounds (74%) are also highly
expressed during the late schizont stage according to the IDC transcriptome
(Bozdech, et al., 2003). Most of them are suggested to be involved in the merozoite
invasion process including most of the known invasion-related proteins (Cowman

and Crabb, 2006; Haase, et al., 2008; Soldati, et al., 2004). The additional 89 genes
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have no information in the IDC transcriptome and only 13 genes were out of this
stage (6 late trophozoite stage and 7 early ring stage) (figure 4.4B). It indicated that
these genes were still expressing at 10hr of post treatment, and comparatively in
the untreated control parasites they gradually slow down (figure 4.4B).
Interestingly. CsA and FK506 were able to induce the mRNA abundance of only
52 genes expressed during the late schizont stage as early as | hour after the
compound was added to the culture (figure 4.4B). This includes several
cytoskeleton related genes (etrampll.l and 12. RESA. RAP3. Rh3. Clag3.1,
PfCRT2. PINBP-1) and protease (hydrolase and SUB2). These data suggest gene
expression switches (regulation) in the late schizonts were interfered by ML7. W7.
KN93 and staurosporine but not by CsA and FK506. although inhibition of both
protein phosporylation and dephosporylation (calcineurin) pathways arrested the

development of parasite cells morphologically.

3.2.5 Transcriptional changes induced by inhibitors related to calcium
dependent signaling

Three inhibitors in this study are related to calcium dependent signaling (figure
4.5A). W7 is the calmodulin antagonist to adjust the intracellular calcium
concentration. Calmodulin can bind to a wide array of protein Kinases with
calcium/calmodulin binding domain. such as CaMK and MLCK. KN93 and ML7
are specific inhibitors to CaMK and MLCK, respectively (Billker, et al.. 2004:

Dluzewski and Garcia. 1996; Means. 2000: Silva-Neto. et al.. 2002: Vaid, et al..
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2008:; Ward, et al., 2004). The early transcriptional responses of P. falciparum to
three inhibitors (W7, ML7 and KN93) included 477 up or down regulated genes
excluding all variable surface antigen, ribosome genes and genes expressed induce
as a result of the developmental arrest in late schizont stage (figure 4.5B). It
suggests that calcium or calmodulin dependent signaling play vital roles in the
development of the P falciparum life cycle and are directly linked with
transcriptional regulation. This group includes 224 (47%) up and 181 (38%) down
regulated genes with 160 functionally known and 317 hypothetical genes.
Functional analysis shows that these genes include stress response genes (such as
glutathione S-transferase), trafficking system proteins (such as Rab family genes),
cell surface and adhesion proteins (such as glycophorin binding protein related
antigen), signaling proteins (such as PFCDPK3). DNA replication and repair (such
as replication factors), and transcription regulation (such as CCAAT-binding
transcription factor). Specifically, we observed up-regulation of 5 cell cycle and
transcription regulators induced by this group of inhibitors (table 4.2). Interestingly.
the only one down-regulated gene (prohibitin) is a transcription suppressor that
was previously found to bind proteins that belong to the family of E2F
transcription factors (O'Connor, et al., 2001; Wang, et al., 1999). These proteins
may be possibly involved in the process of P. falciparum cell cycle development
and gene expression regulation. We also observed up-regulation of 5 protein
kinases while only one gene (PF08 0019) encoding PfRACK (Receptors for

activated C kinases) was down regulated (table 4.2). PIRACK is conserved in other
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eukaryote and conspicuously spread throughout the schizont, suggesting it might
play a key role in the regulatory processes of malaria parasite life cycle (Madeira,
et al., 2003). Interestingly, one putative protein kinase (MAL13P1.84) was down
regulated in ML7 treatment but up regulated in both W7 and KN93 treatments.
This finding might indicate a difference in the effect of calcium/camodulin-CaMK
and calcium/calmodulin-MLCK on gene regulation. Two phosphatase genes
(PF14 0523 and PFL1260w) were down-regulated, and one phosphatase
(MALS8P1.109) and one phosphatase activator (PF14_0280) were up regulated.
Taken together, these data suggest that calcium and calmodulin signals can regulate
gene expression through calcium/calmodulin dependent protein kinases (CaMKs

and MLCK) and also that CaMKs and MLCK share downstream regulators of gene

expression.
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Figure 4.5 Functional analyses of the transcriptional changes induced by calcium
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dependent signaling inhibitors ML, W7 and KN93 based on double three-two
filtering method. A. The signaling pathways of protein targets of ML7. W7 and
KN93. B. Comparative and functional analyses of the transcriptional changes

induced by compounds of ML7, W7 and KN93.

Table 4.2 Transcriptional changes of gene transcription regulators and signaling

factors induced by inhibitors of calcium dependent signaling.

Function Gene ID Gene Name Fold changes *
........ e
Transcription PF13_0043 CCAAT-binding transcription factor 247 303 21
PFE1470w cell cycle regulator protein, putative 225 3.16 1.39
PFL1180w Chromatin assembly protein (ASF1) 286 374 1.6
PFE0920c cyclin2 related protein 374 403 2.44
PF08_0074 DNA/RNA-binding protein Alba 281 325 1458
PF10_0144 prohibitin -1.9 -5 -3.17
Signaling PFC0420w  calcium-dependent protein kinase 3 223 244 35
MAL13P1.84 protein kinase -3.2 304 1.49
PF08_0019 PfRACK -3.57 -2.38 -2.44
PF10505¢ selenide water dikinase 269 3.54 145
MAL7P1.100 serine/threonine protein kinase, Pfnek-4  3.28 3,51 2.89
PFC0060c Serine/threonine protein kinase 213 3.46 3.47
PFA0380w serine/threonine protein kinase 363 415 3.03
PFD1180w trophozoite antigen r45-like protein 433 183 2
PF11_0224 circumsporozoite-related antigen -46 -57 -2.75
PFL1260w hydrolase / phosphatase -2.1 212 -3.62
PF14_0523 protein phosphatase 2C -3.8 33 -7.37
MAL8BP1.109 Protein phosphatase 2C 3.05 47 413

PF14_0280 phosphotyrosyl phosphatase activator 299 374 1.95

* maximum fold change in the time course

4.2.6 FK506 has a similar action mode to cyclosporine A

Compounds CsA and FK506, inhibit the calcineurin-dependent signaling pathway
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in eukaryotic cells (Liu. et al.. 1991). In P. falciparum. CsA binds to cyclophilin
and FK506 binds to PIFKBP35 both to interfere with the calcineurin signal
pathway by inhibiting the activity of calcineurin, a calcium/CaM-dependent
protein phosphatase (Bell, et al.. 1994: Kumar. et al.. 2003). Global transcriptional
responses of P. falciparum to CsA and FK506 showed CsA and FK306 induced
transcriptional changes of 269 and 255 and suppressed 21 and 30 genes (>3-fold
changes. double three-two filtering). respectively (figure 4.2). Interestingly, both
inhibitors affected the transcription of 202 genes (69% of CsA and 71% of FK506)
with 192 transcripts exhibiting a >3-fold increase in abundance (figure 4.6A).
Good correlation in the global transcriptional responses induced by both inhibitors
points to a similar mode of action, which is consistent with the presumed mode of
action in other eukarvotic cells: suppression of calcineurin-dependent signaling
pathways (Bell, et al., 1994: Kumar. et al., 2005; Liu, et al., 1991). Biological
functional analysis showed 12 genes associated with cells surface and adhesion. 11
stress response or metabolic genes. 7 transcription related genes. 5 trafficking
system genes and several kinase and cytoskeleton genes had 3 fold changes.
although the majority of these genes are functionally uncharacterized (103
hypothetical proteins). 24 VSA genes (11 Var.. 9 rifin and 4 stevor) and 29 genes of
ribosomal subunits (figure 4.6B). Interesting most transcriptional responses
induced by both FK506 and CsA affect the transcriptional profile of the early
schizont development which underlines the eventual developmental arrest and

subsequent parasite death (figure 4.2 and 4.6A). The specificity of the
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FK306/CsA-induced transcriptional response is further supported by the fact that
other unrelated inhibitors of cell signaling pathways. W7. ML7. KN93 and
staurosporine, affected expression of distinct groups of genes with minimal
overlaps (figure 4.3). The transcriptional changes of a large group of transcription
related genes suggested the importance of gene expression regulation by the
calcineurin pathway in P. falciparum (table 4.3). These include early up-regulation
of several transcription factors, such as TATA-binding protein (TBP. PFE0305w),
ruvB-like DNA helicase (possible TBP interacting protein. PFO8 0100), Mybl
(PF13_0088) and transcription repressor high mobility group box protein (HBP.
MALSP1.72. high mobility group box domain). In the transcriptional changes
induced by CsA and FK506. mitogen-activated protein Kinase 2 (Pfmap-2.
PF11_0147) was also up-regulated early. Interestingly. the transcription repressor
HBP (MALS8PI1.72). which is a possible target of MAPK (mitogen-activated
protein kinase) in human (Xiu. et al., 2003). was up-regulated of more than 20 fold
even in the early time points (1-2 hr) in both treatments. It suggests that calcineurin
pathway can regulate gene expression through mitogen-activated kinase (MAPK)
pathway. Interestingly, two up-regulated cell cycle related genes (PFEI1215c,
developmentally regulated GTP-binding protein 1 and PF10 0370. enhancer of
rudimentary homolog) suggest the inhibition of calcineurin pathway would atfect
the development of P. falciparum. consistent with the arrested shcizont (figure 4.1).
Taken together our data suggest that FK306 binding protein PfFKBP335 appears to

be essential for the progression of the P. falciparum life cycle through the gene
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expression regulations. We speculate that the mode of FK506 and its antimalarial
effect may be mediated through targeting PfFKBP35 and subsequent inhibition of

the parasite calcineurin.
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Figure 4.6. Comparative (A) and functional (B) analyses of the transcriptional

changes induced by compounds of cyclosporine A and FK506.

Table 4.3 Transcriptional changes of gene transcription regulators and signaling

factors induced by inhibitors of calcineurin dependent signaling.

Function Gene ID Gene Name Fold changes *
CsA FK506

Transcription PFE1215¢c Drg1 3.88 2.64
PF10_0370  Enhancer of rudimentary homolog 4.28 4.38
MAL8BP1.72  high mobility group protein 291 225
MAL7P1.151 modification methylase-like protein 3.74 3.48
PF13_0088 Myb1 protein 4.64 4.38
PF08_0100 ruvB-like DNA helicase 3.67 5.05
PFE0305w TAT-binding protein, TBP 3.67 3.89

signaling PF11_0147 mitogen-activated protein kinase 2 3.78 3.12
PF11_0220 protein kinase 3.37 3.85
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4.3 Conclusion and outlook

Protein kinases and phosphatases play important roles in the development of the
malaria parasites. We studied the effects of several classes of inhibitors of protein
phosphorylation and dephosphorylation pathways on the growth of Plasmodium
cell and the regulation of gene expression. Growth assays show that these
inhibitors effectively inhibit the erythrocyte invasion by P. falciparum in vitro with
the parasite cells arrested in the late schizont stage. The global gene expression
profiling using a genome-wide P falciparum DNA microarray (mentioned in
chapter 2) shows that diverse but specific transcriptional responses induced by
these inhibitors were observed when parasite cells were treated at the early
schizont stage. Interestingly. several transcription factors and signaling genes
were significantly regulated resulting from the inhibition of calcium dependent
signaling and calcineurin signaling pathways. which suggests that the
phosphorylation and/or dephosphorylation play vital roles in the gene expression
regulation in P. falciparum.

Currently, we are performing real-time PCR to confirm the regulated
transcription factors and signaling genes. Also we are trying to identify protein
intermediates between the protein kinases and the transcription factors using a
novel proteomic technique of 2D-DIGE/MS. We hope to establish the putative
regulation network between protein kinases and transcription factors and their

target genes to illustrate the principle of gene regulation in P, falciparum.
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4.4 Materials and methods

4.4.1 Parasite culture

Cells of P. falciparum strain Dd2 were grown and maintained in a 2% suspension
of purified human RBCs and RPMI 1640 media supplemented with 0.25%
Albumax Il (GIBCO. Life Technologies. San Diego, California. United States). 2
g/L sodium bicarbonate, 0.1 mM hypoxanthine. 25 mM HEPES (pH 7.4). and 50
ug/L gentamycin, at 37°C. 5% O,. and 6% CO-. Cells were synchronized by two

consecutive sorbitol treatments for three generations (Trager and Jensen. 1997).

4.4.2 Growth assays and inhibitor treatments

To perform the P falciparum growth assay. 1 ml of synchronized early
schizont-stage parasites in hypoxanthine-free complete medium (5% parasitemia
and 2% hematocrit) were added to each well in 96-well plate, and compounds were
added at the first well to a final drug concentration of 8 uM and a final volume of 2
ml (add new cultures). The cultures were mixed well and took 1 ml mix from the
first well to the second well and mix to dilute the compounds. and then followed to
the third well and repeated 9 times. Finally compounds in 10 wells of the plate
ranged from 8 uM to 15.625 nM. The plates were then incubated in a chamber with
a standard gas environment at 37°C for 20 hours. After the 20-h incubation, cells in

each well were made smear and stained by Giemsa. Rings were counted under
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microscope. The growth assay of each compound was done in three replicates. The
counts of rings were plotted against the logarithm of the drug concentration. and
the curve was fitted by nonlinear regression using the formula sigmoid
dose-response to calculate the inhibitory concentration at 50% (1Cs) (table 4.1).
For the inhibitor treatments. cell cultures were carried out in the same way as the
growth assays and cells were treated by the compound at the concentration of its
1C50. After 1. 2. 4. 6. 8. 10 and 12 hour treatment, cells were collected and washed
with pre-warmed PBS. and flash-frozen in liquid nitrogen and stored in -80°C for

RNA isolation.

4.4.3 RNA preparation and cDNA labeling

P. falciparum RNA sample isolation. ¢cDNA synthesis. labeling. and DNA
microarray hybridizations were performed as described by Bozdech et al. (Bozdech.
et al.. 2003). Samples for individual timepoints (coupled to Cy35) were hybridized
against a reference pool (coupled to Cy3). The reference pool was comprised of
RNA samples from 3D7 strain representing all developmental stages of the parasite.
For this pool. sufficient ¢cDNA synthesis reactions were performed for all
hybridizations, and then all reference pool cDNAs were combined into one large
pool and then split into individual aliquots for subsequent labeling and

hybridization.

4.4.4 Microarray manufacture, hybridization and scanning
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Microarray manufacturing and hybridizations were conducted as previously
described (Bozdech. et al.. 2003; Bozdech, et al. 2003). Briefly. all
oligonucleotides in 384 well plates were printed on the polylysine-coded glass
slides using BioRad microarray printer system. Printed slides were post-processed
by rehydration. UV cross-linking and succinic anhvdride (ALDRICH. Cat. 239690)
block. The labeled cDNA samples were hybridized to the chip in MAUI system
(BioMicro, Utah, United States) for 12-14 hours at 65°C. Data were acquired and
analyzed by GenePix (Axon Instruments, Union City. California. United States).
Array data were stored and normalized in Acurity 4.0 system (Axon Instruments.

Union City. California. United States).

4.4.5 Data analysis

Micorarray data of each slide were loaded into the NOMAD database and
normalized using the default settings. In brief. a scalar normalization factor was
calculated for each array using unfiltered high quality features with background
subtracted median intensities greater than zero for each channel and a pixel
regression correlation coefficient greater than or equal to 0.75. The data of all
slides were extracted from the database and log-transformed for further analysis by
filtering the spots of poor quality, flagged, or spots for which intensities in two
channels were close to background (median of intensity less than 2 median of
background plus 2 standard deviations for both Cy3 and CyS5 signals). To analyze

the perturbations of gene expression under drug treatment. each gene profile of
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drug treatment was subtracted by its negative control. Differential expression genes
were extracted by a double three-two method. One gene is retained when the peak
of change through the time course is larger than 3-fold and at least one neighbor
point of the peak has 2-fold change. Clustering analysis was performed by
Cluster program and hierarchical tree was viewed by TreeView (Eisen, et al..

1998).
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Chatper 5 Computers and databases

Bioinformatics involves the use of mathematical tools to extract, organize and
analyze the huge amounts of data produced by high-throughput biological
techniques and to solve biological problems usually on the molecular level. Major
research efforts in this field include sequence analysis, gene prediction and
annotation, genome assembly, protein structure analysis and prediction. prediction
of gene expression, protein-protein interactions, and the modeling of evolution.
The Use of the program OligoRankPick for oligonucleotide selection (Hu, et al.,
2007). analysis of genomic context including phylogenetic profiles and domain
predictions for predicting functional linkages (Date and Marcotte, 2003: Lee. et al..
2006). storage and analysis of gene expression profiles, network reconstruction and
analysis. and network-based predictions of gene function, require computer
infrastructure with adequate processing power and data storage facilities. Such
requirements assume even more importance. if real-time. large-scale analysis is
planned.

Our goal is to establish a computer network that would allow us to collect and
store functional genomic data, such as complete genome sequence data and gene
expression data, and use these data to create databases for functional genomic
research on P. falciparum and also provide the web service for the users, such as

OligoRankPick, gene functional network, network-based gene annotations.
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5.1 A computer network

To establish a computer network for collecting, storing data. web service and
computing task, we establish a “triangular™ computer network (figure 5.1). This
network is comprised of two independent computers and one cluster of
supercomputer. The first computer (ZBLab) is web server for open users which
provides web tools to show our results such as oligo information, microarray data,
and network. The second computer (S3E3) is used for data storage and small
computing task. We linked two computers to the cluster of supercomputer
(NTU-SBS-Cluster) which could provide large computing power for large-scale
analysis, for example, performing the BLAST searches in the oligonucleotide
selection of OligoRankPick. Establishing this infrastructure provides a viable
model for a relatively small research group to carry out complex biological

analyses that involve large datasets with the genome wide approaches.

NTU-SBS
Cluster

Wn node

Web Server
(ZBLah)

Microarray Database
" ‘ (S3E3 server)

Genome search (gene, protein and annotation)
BLAST service

OligoRankPick {oligo design, olige infermation)
Gene expression data

Gene network annotations

FPromoter Motif

Figure 5.1 The architecture of a computer network for data storage. computing and

web service.
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5.2 Web service

The network provides several web tools to show the biological information of P
falciparum (tigure 5.1). Web service is provided to search the probe information
including the developing address of OligoRankPick program. We also provided the
gene. protein and genome information of P. falciparum synchronized with

PlasmoDB (htip://www.plasmodb.org) and the NCBI BLAST online service.

Another web searching is the reconstructed gene functional network providing the
functional linkages between genes and the new functional predictions based on this

network (http://zblab.sbs.ntu.edu.sg/network/). For each gene. different types of

functional information are provided and evaluated. Of course. this gene is linked to
other databases. such as gene/protein information, KEGG Gene Ontology and our
microarray database of gene expression profiles. Here we try to offer an interface
for the users to find the biological knowledge of genes or proteins in P. falciparum
easily about their sequence. trancriptome, regulation. interactome. molecular
function. and cellular process.

5.3 Update databases

The relational databases were built based on MySQL or file system. Perl scripts
were developed to update the system. Data source will be automatically

downloaded. parsed and used to update the local databases and files.
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Chapter 6 Final Summary and Perspective

In this thesis, | developed OligoRankPick which provides a powerful alternative for
long oligonucleotide microarray design for genomes with extreme GC content
fluctuations and high abundance of highly homologous gene families. In its
simplest implementation a user needs only to define the probe length and an
expected GC content or Tm. Using this method we have designed high quality and
long oligonucleotide DNA microarrays for the parasitic species including 7
falciparum. P. vivax and three rodent malaria parasite P. chabaudi. P. voelii. and P,
berghei. Based on the designed P falciparum DNA microarray. we carried out
extensive transcriptional profiling of P. falciparum responses to chemically induced
growth perturbations and used these data to reconstruct a gene interactome network
that allow us to predict function of 2547 Plasmodium hypothetical genes. The
accuracy of these predictions was demonstrated by the functional validation of 21
selected protein candidates from which 19 localized to intracellular compartments
associated with the invasion machinery. These data also demonstrate that
transcriptional profiling of growth perturbations provides a powertul technique for
functional genomics of Plasmodium parasites. Finally, 1 studied the effects of
several classes of inhibitors of protein phosphorylation and dephosphorylation
pathways on the growth of Plasmodium cell and the regulation of gene expression.
The growth assays showed that these inhibitors effectively inhibit the erythrocyte

invasion by P. falciparum in vitro. The global gene expression profiling shows that
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diverse but specific transcriptional responses induced by these inhibitors were
observed when parasite cells were treated at the early schizont stage. Interestingly.
several transcription factors and signaling genes were significantly regulated
resulting from the inhibition of calcium dependent signaling and calcineurin
signaling  pathways, which suggests that the phosphorylation and/or
dephosphorylation play vital roles in the gene expression regulation in P
Sfalciparum. All these microarray information. gene expression data. network. gene

predictions and other databases and developed bioinformatics tools are available

Although this network covers 88% genome of P. falciparum and about 2547
hypothetical proteins were assigned functional clues, to improve the accuracy of
the network and predictions of gene function. more data will be incorporated in the
future. For example. more growth perturbation data and proteomic expression
profiles are being investigated. Currently. 22 proteins were chosen for intracellular
localization analysis to evaluate the network-based predictions of gene function.
These invasion proteins would be further analyzed to illustrate the molecular
function in the invasion process in the future. which would promote deep
understanding of the mechanism of merozoite invasion in P falciparum.
Furthermore. more proteins would be selected for function analysis. such as
proteins associated histone modification and DNA binding proteins. [ also am
trving to identify protein changes in the perturbations of kinase inhibitors using the

2D-DIGE/MS proteomic technique. We hope to establish the putative regulation
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network between protein kinases, ‘transcription factors and responded genes, as
well as with the knowledge of gene function network, to illustrate the
mode-of-actions of these inhibitors and their roles in the cell cycle progression in P.

falciparum.
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Appendix: supplementary figures and tables
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Figure S2.1 The SW (self-binding) score and GC content distributions for the
designed oligonucleotide sets. In the each scatter plots SW scores (X-axis) is
plotted against the GC content (Y-axis) for all oligonucleotides in the set. Total 12
oligonucleotide sets were designed for three genomes E. coli (A-D). S. cerevisiae
(E-H), and P. falciparum (I-L) using all programs OligoRankPick (A. E. I),
ArrayOligoSelector (B. F. J). OligoPicker(C. G. K), and OligoArray 2.1 (D, H. L).
Tighter distribution the SW scores indicates the improved performance of

OligoRankPick for microarray design.
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Figure S2.2 The LZ (sequence complexity) score and GC content distributions for
the designed oligonucleotide sets. In the each scatter plots the LZ scores (X-axis)
are plotted against the GC content (Y-axis) for all oligonucleotides in the set. Total
12 oligonucleotide sets were designed for three genomes E. coli (A-D), S.
cerevisiae (E-H). and P. falciparum (1-L) using all programs OligoRankPick (A, E.
I). ArrayOligoSelector (B, F, J), OligoPicker(C, G, K), and OligoArray 2.1 (D. H.
L). Tighter distribution the LZ scores indicates the improved performance of

OligoRankPick for microarray design.

- 163 -



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

OligeRankPick ArrayOligaSelectar HigoPicker Cligo&rray 24
2 y ]

Ecoli =

SO0 100 180 200 50 30 0@ e e EN 20 3N
Fonk il

o3 HHEEBDIBRE

e

T
yEALB SRR E

Ftaic

b 20 E & s
Bk Eul: Euid; Eoub:

a1 & ¥ o486 6 T8 30 1 o B ) g m E ] o m

Figure S2.3 The distribution of Rank status and Average weight score of the
selected oligonucleotides from three datasets by different programs. A-D. the
oligonucleotide sets of E. coli by four programs: E-H. the oligonucleotide sets of §.
cerevisiae: 1-L. the oligonucleotide sets of P. falciparum. In each diagram, the
top-right small diagram is the distribution of AWS (average weight score) of the
whole oligonucleotide set. and the diagram below is the rank distribution of the
whole oligonucleotide set. For AWS and rank status, the weight set I was first
determined by ORP. then all oligonucleotide AWSs were calculated by formula 2
and ranked. The AWS and rank status of all selected oligonucleotides were

mapped.

- 164 -



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

A E!jr B — _t —— **
i |
‘
bt L Lyl

. Gy

Pearson correlation coefficent (PCC)

vt

#3349 3339339934

ti+

‘4

t4
i3

46 array time-points of Derisi's HB3 transcriptome

Figure S3.1 Evaluation of growth arrest the during perturbation analyses. To
evaluate whether the perturbation induced mRNA profiles correspond to specific
responses or to a generic arrest of the IDC transcriptional cascade, we calculate

Pearson Correlation Coefficients (PCC) between the microarray results for each
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time point in the perturbation time course and the IDC transcriptome (46
microarray data of the HB3 strain IDC transcriptome, http://malaria.ucsf.edu). B.
For each time point in the perturbation time course (TP1. 2. ...). a function of 46
PCC was assembled for all inhibitor treatments as well as their corresponding
untreated controls Table S1. (in the B panel each row of graphs represents one set
of experiments and the corresponding control time course is extreme left in each
row). The maximum PCC value in each TP profile that corresponds to the best fit a
IDC transcriptome the developmental stage of the cells in the perturbation
studies (peak PCC time, PPCCT). In each control (untreated cells) time course, the
peak PPCCT corresponded well to the expected progression of the parasites cells
through the IDC.  Thus comparing the PPCCTs between the treatments and
controls allows detecting a potential growth/developmental arrest. For this we
calculate an average distance between the PPCCT in the perturbation time courses
and the corresponding controls (A.). For staurosporine, PMSF. TrichostatinA
(1C90) and EGTA. we observe considerably high values of the average time point
distances. These high values signal dramatic shifts in the developmental stage.
Visual inspection of the PCC profiles confirms a growth arrests that is
characterized by retention of the initial (start of the treatment) PPCCT in the
treatments while in controls the progression of the PCCT values follow the
expected trend (panel B). For all other treatments the PPCCT shifts were
considerably smaller (<1.0) which indicate that the mRNA profiles in these
treatments do not represent growth arrests but rather correspond to specific

transcriptional responses of P, falciparum to the perturbations.
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Figure S3.2. Hierarchical clustering of phylogenetic profiles of P falciparum.

Organisms varied along the vertical axis, proteins along the horizontal axis.

Organisms from the three domains of Apicomplex, eukaryote and prokaryote were

separated by black lines on the left. The score of each protein was the top e-value

score of the target organism using BLASTP program. Continuous phylogenetic

profiles color-coded from red (maximal homology, e-value equal to 0) to black (no

homology, e-value equal to 1) A quick look at this figure provides evidence that a

lot of evolutionarily meaningful clusters emerged. For example, one cluster of

protein kinases (zoomed in figure) suggested that the clusters of proteins with high

correlations represent some sort of discrete functional units.
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Figure S3.3 Performance of the four input datasets in predicting the gene
functional relationships. For each dataset data the likelihood score and the ratio of
true positives to false positives based on the benchmark dataset (KEGG pathways)
were plotted as function of the binned confidence score. A. — the gene expression
dataset combining perturbation data and the IDC transcriptomes (Llinas. et al..
2006). B. — the genomic functional data based on phylogenetic profiles. C. — the
domain-domain interaction prediction data. D. - the protein-protein interaction
data determined by yeast two-hybrid system studies. All protein pairs from
protein-protein interaction data had the same likelihood score (2.367) and ratio

(0.375).
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Figure S3.4. Analyses of the network topological structure in the PlasmoINT
network. Analysis of the distribution of node connectivity showed that both 50%
(A) and 90% (B) confidence level networks had typical scale-free distributions.
The distributions of clustering coefficients showed both networks (C and D) were
lack of hierarchical structure. The average clustering coefficient was 0.46 and 0.52,

respectively.
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Figure S3.5 Comparisons of the assembled interactome network (PlasmoINT) with
a previously reported interactome by Date and Stockert (PlasmoMAP).
Comparisons of the average number of linkages in the gene groups corresponding
to  functional pathways from KEGG GO and Malaria Parasite Metabolic
Pathways (MPMP) were compared for between PlasmoINT and PlasmoMAP for
both 50% (A) and 90% (B) with at least 5 genes present in that pathway. For
most functional pathways PlasmoINT showed a higher number of linkages in both
precision networks compared to PlasmoMAP. This increased tendency is more
pronounced in the 90% confidence network which furter suggest the improved
performance of PlasmoINT in comparison to PlasmoMAP. If only considering the
shared genes in each pathway of both networks. most pathways have less number
of linkages (data not shown). This suggests that PlasmoINT has eliminated a
considerable number of false positive linkages that persist in PlasmoMAP. Panel C.
depicts the coverage of proteins in the KEGG GO and MPMP functional pathways
by both the PlasmoMAP and PLasmoINT high confidence (90%) network.

PlasmoINT contained a higher number ot genes for essentially all pathways.
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Figure S3.6 Examples of the functional pathway subnetworks from 90%

confidence networks of PlasmoINT and PlasmoMAP, 10 metabolic or cellular

pathways were reconstructed as subnetworks from the 90% confidence network of

both PlasmoINT and PlasmoMAP. The yellow circles and the red edges represent

proteins and linkages present in both networks and the purple circles and edges
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represent genes and linkages found in each particular network only. For every
pathway, PlasmoINT provides substantially higher coverage for both genes and
gene linkages. In particular, for the functional group associated with actin and
filament formation. (GO:0031509, top panel). PlasmoINT covers 13 genes (in
contrast to 4 genes in PlasmoMAP) of that include well established
proteins(Baum. et al., 2006): actin complex proteins (actin, actin-Il. ARP and
ARPI). actin related protein(ALP and ALP1). F-capping complex (F-capping a
and f3). ADF(PFEO165w and PF13 0326). formin proteins(formin2 and diaphanous)
and coronin protein(PFL2460w).  In the functional group of “telomeric
heterochromatin formation™, (GO:0031509, second top panel) PlamsoINT covers
10 genes that include all 8 components of histone complex and two chromation
assemble factors that are predicted to represent the core chromatin assembly

factors. The 90% confidence PlasmoMAP uncovered only five histone genes.
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Figure S3.7 Histogram of 105 modules with functional predictions generated from
the 90% confidence network. Total 208 modules were identified by MCL
(Markov Chain cLuster) method, among which 105 modules (Cluster ID) were
contained functionally annotated genes. The modules were ordered according the
number of characterized genes (blue bar) and plotted with a number of functionally
uncharacterized genes (left panel, orange bar) and the coherence score (right panel).
The coherence score were calculated as the fraction of gene pairs that share
functional annotations in a given module. Overall, 35 modules contain more than
5 annotated genes and exhibit coherence score > 0.4 (figure 3A). In addition, 58

modules have more than 2 genes and higher coherence > 0.4 (data not shown).

-175 -



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4
0.9 -
0.8 -
0.7
0.6 -
05 -
0.4 -
0.3 -
0.2 -

0.1 1
o 0% 20% 40% 60% 80% 100%
T T T T

0% 20% 40% 60% 80% 100°
Recall

sensitivity

Predictive precision rate

0.9

0.8
0.7 A
0.6
0.5 1
04 4,
0.3 -

sensitivity

0.2

Predictive precision rate

0.1 1

O T T T
0% 20% 40% 60%
Recall

Figure S3.8. The precision rates of network-based predictions of gene function in .
Jfalciparum using “leave-one-out™ test using the threshold of prediction score. The
precision rates of gene functional predictions were plotted against the recall
percentage for different k values. K is the number of top assignments of
network-based predictions for each gene. When the threshold of prediction score

was set at 0.14, TOP 1 assignment has 50% predictive precision rate.
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Figure S3.9. Comparisons of the prediction precision rates of different
computational methods using “leave-one-out™ test. Based on top 3 assignments, the
weighted neighbor counting method has significantly higher overall prediction
precision rates than those generated by the (simple) Neighbor Counting,
Chi-square (Hishigaki, et al.. 2001) and FS-weight average (Chua. et al., 2006)

methods.
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Figure S3.10. Summary of the gene functional prediction precision by WNC in
different functional pathways from GO, KEGG, MPM (continuation of figure
3.3B). According to the Top 3 predictions by WNC, the number of genes recalling
their original annotations (blue bar). recalling different annotations (gray bar) and
hypothetical genes (orange bar) were grouped into functional gene groups
(according the newly recalled annotations). The gene counts (left panel) were
plotted together with the corresponding prediction precision rates (right panel) for
each functional group/pathway. The top 3 prediction methods causes slight
underestimation of the precision rates because the “wrong™ recall in the pathway
classifier can often have other two prediction terms which are correct (see figure

S3.8 and S3.9).
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Figure S3.11. Conservation of P falciparum functional pathways among
prokaryotes and eukaryotes (continuation of figure 3.3C). The total number of
genes annotated by KEEG, GO and MPM (blue bar) and hypothetical genes
predicted by WNC (orange bar) were plotted for all 330 functional pathways
predicted by the three databases. The functional gene groups were ordered
according the overall level of conservation that is calculated as the fraction of the
number homologues (reciprocal BLASTP hit. e-value greater than le-10) among
the total 210 prokaryotic and eukaryotic species (the second panel, blue bar). We
also calculated the conservation of different functional pathways in apicomplexa
only (third panel, red bar), prokaryotes and apicomplexa (forth panel, green bar)
and eukaryote and apicomplexa (right panel. orange bar). The vast majority of P.
falciparum pathways are well conserved in other apicomplexans and other
cukaryotic species. and a substantial fraction of these are also conserved amongst
prokaryotes. The latter class of pathways typically represents basic metabolic

functions such as glycolysis. Redox metabolism, fatty acid synthesis or TCA cycle.
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Figure S3.12 Subcellular distribution of the apical protein PFD0720w and the
apicoplast and mitochondrion associated proteins PFE0910w. (A-B) In addition to
its apical pool, PFD0720w (green) showed in free unfixed (A) and fixed (B)
merozoites  a faint peripheral distribution that appears to be distinct from the
surface marker MSP-1 (red). The boxed regions are depicted in higher
magnification and labelled with numbers, nuclei are stained with DAPI (blue).
(C-D) While PFE0910w revealed a localisation and dynamic (C1-3) previously
described for mitochondrial proteins (van Dooren, et al., 2005) in live parasites and
colocalized with the mitochondrium dye MitoTracker, PFE0145w revealed a
subcellular distribution and dynamic (D1-3) that is known for apicoplast protein

(Waller, et al., 1998).
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Figure S13. Comparison of four 50% precision rate networks reconstructed
different microarray input data. The interactome networks were constructed
using different set of the microarray input data (other input dataset remained
unchanged): (i) the IDC data only, (ii) the perturbation data only, (iii) the IDC and
perturbation data integrated by a z-transform method and (iv) the IDC and
perturbation data integrated by the optional average method derived in during work.
A. The total number linkages as well as their cumulative percentage (inset) was
consistently higher for the optional average method at any given threshold of
true-to-false-positive ratios. B. Similarly the optional average method yielded

higher gene coverage in different cutoffs of true-to-false-positive ratios.
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Table S3.1 Assessment of the accuracies of ditferent data sets in the Bayesian

scoring framework based the KEGG benchmark.

Pearson Benchmark overlap TP/FP LS '
correlation positive negative
0.9 173 1 26,667 154.18
0.8 933 416 3.495 17.194
0.7 989 1507 1.196 4234
0.6 816 2537 0.705 2.340
0.5 751 3171 0.489 1.331
0.4 657 3854 0.390 1.079
0.3 530 4343 0.326 0.846
0.2 582 4721 0.282 0.673
0.1 468 | 4929 0.252 0.568
0 567 5943 0.194 0.729
-0.1 402 4561 0.187 0.541
-0.2 415 3895 0.182 0.600
-0.3 395 3453 0.178 0512
-0.4 334 2916 0.175 0.645
-0.5 21 2058 0.174 0.646 _
-0.6 161 1363 0.173 0.623 [
-0.7 63 602 0.173 1.163 :
-0.8 11 58 0.173 1.927 i
-0.9 0 0 0.173 0 |
Sum 8444 50234 |
Mutual Benchmark overlap TPFP | LS
imformation positive negative '
14 2 0 . .
1.3 6 3 2667 12.130
1.2 31 17 2.045 11.811
1.1 110 66 1.891 11.209
|1 270 376 0.993 4867
| 0.9 540 1319 0.557 2.453
| 0.8 873 3091 0.383 1.721
0.7 1226 4861 0.320 1.5633
0.6 990 5508 0.272 1.111
0.5 799 6339 0.232 0.799
0.4 918 7345 0.203 0.726
0.3 1058 921 0.182 0.674
0.2 950 8862 0.169 0.656
0.1 495 4246 0.165 | 0.743
0 78 634 0.165 | 0.759
sum 8346 60224 |
Benchmark overlap TP/FP LS
ositive negative
Protein-protein 3 8 0.333 1.863
interaction

| Domain interaction (evidence score of | Benchmark overlap TP/FP LS
| Leeetal)
[ loglo | positive negative

>=100 | >=2 400 3 150.33 113.04
316 | 48 922 12 92.25 43.162
10 | 1 136 13 33.8 4733
3.16 | 0.5 546 33 13.088 0.787
1 [0 425 387 4.386 0.839
<=0.316 <=-0.5 1108 996 1.330 0.522
sum 3535 1444
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Table S3.2 The 25 core proteins involved in invasion process.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Plasmodium falciparum, reticulocyte binding-like protein, homolog 3

Plasmodium thrombospondin-related apical membrane protein, PTRAMP

______ Gene ID Gene name
PFD0295¢c apical sushi protein, ASP
PF11_0344 apical membrane antigen 1, AMA1
MAL7P1.229 Cytoadherence linked asexual protein
PFB0935w cytoadherence linked asexual protein 2
PFCO0110w Cytoadherence linked asexual protein 3.1
PFI1730w cytoadherence linked asexual protein 9(CLAGY)
PFC0120w Cytoadherence linked asexual protein, 3.2
MAL7P1.176 erythrocyte binding antigen
MAL13P1.60 erythrocyte binding antigen 140
PFD1155w erythrocyte binding antigen-165
PFA0125¢c erythrocyte binding antigen-181
PF11445w High molecular weight rhoptry protein-2
PF10_0281 hypothetical protein
PFDO110w normocyte-binding protein 1, pseudogene
MAL13P1.176  Plasmodium falciparum reticulocyte binding protein 2, homolog b
PFL2520w
PFLO870w
PF13_0198 reticulocyte binding protein 2 homolog a
PFD1150c reticulocyte binding protein homolog 4, Rh4
PFD1145¢c reticulocyte binding protein homolog 5, Rh5
PF10265¢c RhopH3
MAL7P1.208 rhoptry-associated membrane antigen, RAMA
PF14_0102 rhoptry-associated protein 1, RAP1
PFEQ080c rhoptry-associated protein 2, RAP2
PFEQQ75¢ rhoptry-associated protein 3, RAP3
PF11_0381 subtilisin-like protease 2
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