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Abstract 

Transcriptional profiling and network-based gene annotations of human 

malaria parasite Plasmodium falciparum 

By GuangAn Hu 

Supervisor: Dr. Zbynek Bozdech 

Plasmodium falciparum is the most causative agent of the deadliest form of human 

malaria responsible for around 2 million deaths in the world. Even 6 years after the 

genome sequencing, more than 50% genes of P. falciparum remain functionally 

uncharacterized. In this work we generated large functional datasets and 

systematically analyze these data combining other public functional datasets to 

characterize gene function, cellular process and gene regulation in P. falciparum. We 

developed the program OligoRankPick which uses a weighted rank-based strategy for 

the design of long oligonucleotide DNA microarrays. OligoRankPick does not rely on 

direct oligonucleotide exclusion by parameter cutoffs but instead optimizes all 

parameters in context of each other. Using this program we have designed several 

long oligonucleotide DNA microarrays for the parasitic species including P. 

falciparum, P. vivax and pan-rodent malaria. Based on the designed DNA microarray, 

we report on extensive transcriptional profiling of P. falciparum parasites using 20 

small molecular compounds including several common antimalarial drugs. Diverse 

gene responses were observed in different drug or compound treatments and this 

perturbation data has a high predictive accuracy of functionally related genes based on 

their transcriptional regulation. Specifically, transcriptional analysis showed specific 

gene responses induced by inhibiting classic signaling pathways when parasite cells 

in 
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were treated from the early schizont stage and several transcription factors and 

signaling genes were up-regulated by the inhibition of calcium dependent signaling 

and calcineurin signaling pathways, suggesting the phosphorylation and/or 

dephosphorylation play vital roles of the gene expression regulation in P. falciaprum. 

Combining the transcriptional profile with in silico generated phylogenetic profiles, 

domain-domain interaction evidence and the yeast two-hybrid system-based protein-

protein interaction dataset we construct a high confidence gene interactome network 

using a probabilistic Bayesian network approach. Based on this network, we assign 

function to 2547 hypothetical proteins using the weighted neighbor counting method 

(WNC). To demonstrate the utility of this network we assemble a sub-network of 

genes associated with merozoite invasion and predict 263 new proteins that are 

associated with this process. The predictions were validated by the localization of a 

subset of previously uncharacterized protein candidates of the Plasmodium invasive 

form (merozoites) which further confirms their predicted functions in the malaria 

parasite invasion process. 

iv 
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Chapter 1 Introduction 

1.1 Human malaria disease 

The human malaria parasite is still an affliction on human populations and the 

incidence of the disease has been increasing in recent years. It is estimated that 

malaria affects 300 million to 500 million people and kills 1.5-2.5 million people 

each year, mostly among young children and pregnant women in sub-Saharan 

Africa (Hay, et al., 2004). Moreover, recent clinical investigations indicated that 

the original number of the recorded episodes was largely underestimated, 

especially for outside Africa, and that malaria is spreading with much greater 

velocity than previously believed (figure 1.1) (Snow, et al., 2005). This situation is 

caused mainly by resistance to all available chemotherapy and absence of any 

effective vaccine. Thus development of novel drugs as well as an effective vaccine 

Figure 1.1 The global clinic risk recorded episodes was largely underestimated. 

The figure was copies from Snow et al. (Snow, et al., 2005). 
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is crucial for the fight against this deadly disease. To achieve this goal a 

comprehensive understanding of molecular aspects of human malaria is essential. 

One of the major tasks in this effort is functional annotation of malaria parasite 

genes in order to identify and characterize new potential molecular targets for drug 

and vaccine development. 

1.2 Plasmodium falciparum life cycle 

Human malaria is caused by several species of protozoa parasites, Plasmodium 

falciparum. Plasmodium vivax, Plasmodium ovale, Plasmodium malariae and 

Plasmodium knowlesi, among which P. falciparum is the most lethal form. The 

Plasmodium parasites are characterized by a complex life cycle comprised of a 

series of dramatic developmental stages taking place in both of its hosts, human 

and mosquito (figure 1.2). The parasite-infected mosquito bites and injects 

invasive sporozoites into the human host blood stream. The sporozoites are rapidly 

sequestered in the liver where after a brief development, and another invasive form 

of parasite (merozoites) is produced and released into the bloodstream. In the blood, 

the parasites invade and multiply in the red blood cells. This asexual multiplication 

is known as intraerythrocytic developmental cycle (IDC) (figure 1.2), which 

includes three distinct morphological stages: ring, trophozoite, and schizont stage. 

The IDC is completed in approximately 48 hours, during which the early stages 

(ring and trophozoite) are highly metabolically active, rapidly ingesting 

hemoglobin, and performing the majority of generic cellular processes associated 

- 2 -
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with their growth. This process culminates about 30 hours post invasion (hpi), 

when the cells start to replicate their DNA (early schizont stage). At approximately 

48 hpi, newly formed mature merozoites rupture from the red cell and invade new 

cells to reinitiate another cycle. During the asexual multiplication, a fraction of 

parasite cell differentiates into a precursor sexual stage known as gametocytes. The 

sexual development and fertilization is completed in the mosquitoe gut to reinitiate 

a new cycle of parasite transmission. 

Mosquito Stages 

Oocyst s 
Ruptured 
oocyst 

-': 
Release of 

Asporozoites 

Mosquito takes 
a blood meal 

(injects sporozoites) 

Ookinete 
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Figure 1.2 The life cycle of Plasmodium (The graph was copied from the Parasite 

Image Library, http://www.dpd.cdc.gov/dpdx/HTML/Image_Library.htm). 

Sporozoites infect liver cells from female mosquito and mature into schizonts, 

which rupture and release merozoites (exo-erythrocytic schizogony). Then the 

merozoites infect red blood cells and begin the asexual blood cycles. Some 
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ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://www.dpd.cdc.gov/dpdx/HTML/Image_Library.htm


parasites differentiate into sexual erythrocytic stages (gametocytes), which are 

ingested by a mosquito. The parasites' multiplication in the mosquito is known as 

the sporogonic cycle. 

Although all developmental stages are essential for successful parasite 

transmission and thus progression of the disease in the human population, the 

asexual blood stage is responsible for all malaria symptoms. The blood stage is 

also the most important target area for the majority of presently available 

antimalarial drugs as well as development of new antimalarial strategies. These 

development efforts were recently enhanced by completion of the genome 

sequences of several Plasmodium species and comprehensive analyses of global 

transcription profiles during the Plasmodium life cycle (Bozdech, et al., 2003; 

Carlton, et al.. 2002; Gardner, et al., 2002; Le Roch. et al., 2003). 

1.3 The genome, transcriptome, proteome and interactome of P. 

falciparum 

The 22.8 Mb genome of/! falciparum is comprised of 14 linear chromosomes 

ranging in size from 0.64 - 3.3 Mb and two non-nuclear genomes: a circular 35-kb 

plastid-like genome and a linear 6-kb mitochondrial genome (Waller, et al., 2004). 

The genome of the 3D7 strain of P. falciparum was the first parasite genome to be 

sequenced to completion (Gardner, et al., 2002). The genome has more than 5300 

coding sequences (CDS), however, more than 60% of the predicted genes could 

- 4 -
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not be assigned functions because they do not have sequence homology with 

known genes in other organisms (Gardner, et al.. 2002). Curiously, only 8% of the 

P. falciparum genes could be assigned functions in metabolism, in contrast to 17% 

of the genes of the yeast Saccharomyces cerevisiae (Kooij, et al., 2006). This 

suggests that enzymes are more difficult to be identified by sequence homology in 

P. falciparum owing to its great evolutionary distance from other well-studied 

organisms. Obviously, a lot of enzymes related to metabolic process possibly are 

present in the 60% hypothetical proteins. Hence development of new methods to 

characterize these hypothetical proteins is crucial and urgent to understand the 

biology of malaria. 

Comprehensive profiles of transcript levels throughout the complete life cycle 

of the P. falciparum parasite have been extensively investigated. It was shown that 

each gene is activated specifically at the time when its function is required 

(Bozdech, et al., 2003; Le Roch. et al., 2003; Llinas, et al., 2006). Although these 

results brought numerous insights into Plasmodium biology, the transcriptome data 

had only a limited impact on gene anotaion. This is mainly due to the 

monotonous character of the Plasmodium transcriptome where large and 

functionally diverse groups of genes share common transcriptional profiles across 

the Plasmodium life cycle. This phenomenon hinders a high resolution clustering 

of genes into functionally related gene group based on their expression profiles 

(Bozdech, et al., 2003). Continued data mining of the published P. falciparum 

transcriptome, in addition to new transcriptome studies of defined developmental 

- 5 -
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stages or mutant parasites or drug treatments, will provide a better understanding 

of the biology of the malaria parasite. 

Large scale proteomic studies were recently established as powerful 

approaches to analyze global protein expression profiles, differential protein 

expression, posttranscriptional posttranslational regulation and modifications, 

alternative splicing and processing, subcellular localization and interactions of host 

and pathogen (de Hoog and Mann, 2004; Zhang, et al., 2005; Zhu, et al., 2003). 

Several detailed high-throughput mass-spectrometry studies of the P. falciparum 

proteome have been published (Florens, et al., 2002; Khan, et al., 2005; Lasonder, 

et al., 2002; Le Roch, et al., 2003). It was shown, in general, the protein profiles 

agree well with their transcriptional profiles of the genes encoding these proteins 

but in many cases there is a slight delay between transcript production and protein 

accumulation (Le Roch, et al., 2003). Nevertheless many gaps remain in our 

understanding of protein expression. Detailed analyses of the P. falciparum 

proteome, and its relationship to the transcriptome would considerably benefit the 

annotation of the genome and functional genomics applied to the lifecycles of 

Plasmodium. 

Understanding the interactions between Plasmodium proteins can provide 

insights into the function of many proteins as well as functional relationships with 

molecular mechanisms in the Plasmodium cell. Recently, the first large-scale 

analysis of interactions between proteins during the asexual blood stages of P. 

falciparum have been published (LaCount, et al., 2005). Using a high-throughput 

- 6 -
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yeast two-hybrid assay, 2,846 interactions were identified involving 1312 largely 

uncharacterized proteins in 29 highly connected protein complexes. Combining 

protein interactions with their gene expression profiles, putative annotation and 

domain information provided improved functional insights to Plasmodium biology, 

such as chromatin modification, transcription, mRNA stability, ubiquitination and 

invasion of host cells. Date and Stoeckert (2006) integrated the expression data and 

genomic context data (phylogenetic profiles and rosette stone data), available at 

that time, using na'fve Bayesian method to construct an interactome of pair-wise 

functional linkages to elucidate local and global functional relationships between 

gene products (Date and Stoeckert, 2006). This resulted in predicting functional 

relationships between of 3667 proteins including 2216 hypothetical proteins at the 

50% confident level. Wuchty and Ipsaro (2007) incorporated the evolutionarily 

conserved protein interactions, underlying domain-domain interaction information 

and experimental protein-protein interactions to construct a draft of protein 

interactions in malaria including only 2321 proteins (Wuchty and Ipsaro, 2007). 

Although two groups have developed methods to construct the malaria interactome 

separately to investigate the gene function, the resolution (confidence) and 

proteome coverage are not satisfying, especially for the network modular analysis 

and protein functional prediction. Hence, to construct one interactome with high 

confidence and proteome-coverage is urgent for the post-genomic research of 

malaria. 

- 7 -
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Taken together, the abovementioned large functional datasets are now available 

for in silico data mining. Integration of these heterogeneous functional data types 

and systematical analysis of these data are reliable and versatile to characterize the 

biology of the malaria parasite. 

1.4 Systems biology for malaria 

To study the transcriptome, proteome, interactome and other functional data 

integratively, bioinformatics tools are being developed to annotate the function of 

hypothetical proteins and point out specialized gene expression regulation systems 

in living organisms. The post-genomics research of Plasmodium species focuses 

on understanding of the transcriptome, proteome and interactome of the parasite to 

elucidate the gene regulation, cellular process, cell development. One of the main 

benefits from such research include understanding of the mode-of-action of 

inhibitory compounds which could explain resistance mechanisms to known drugs 

as well as identify and functionally describe new drug targets (figure 1.3) 

(Birkholtz, et al., 2006; Kooij, et al., 2006; Winzeler, 2006). Studies in model 

organisms suggest that most gene products mediate their function within complex 

networks of interconnected macromolecules. These networks have topological and 

dynamic properties that reflect biological phenomena. A comprehensive 

understanding of biological mechanisms associated with disease processes such as 

human malaria will require an interactome network whose confidence and gene 

coverage reaches the level on networks assembled for well studied model 

- 8 -
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organisms such as yeast, C. elegans or Drosophila (Barabasi and Oltvai, 2004). 

Only such networks can provide clues for the putative roles of pathogens genes in 

basic biological functions as well as adoption of pathogen cell to changing 

environments (Guo, et al., 2007). The functional predictions of unknown genes 

generated by such approaches are based on the gene connectivity, position in the 

network and other genes they have links with (Sharan, et al., 2007). Network-based 

predictions of protein function using network modular analysis and computational 

methods is presently one of the most powerful methods to predict the functions of 

the uncharacterized genes (Chua, et al., 2006; Deng, et al., 2003; Hishigaki, et al., 

2001; Schlitt, et al, 2003; Schwikowski, et al, 2000; Sharan, et al., 2007). 

Although several data types of genome, proteome, transcriptome and interactome 

are available, malaria research is still in a period of intense data collection. Thus it 

is necessary and crucial to produce large functional data ensuring to provide 

Functional genomics Biological & 

& tools mechanic insights 

Gene function 

Cellular process 

Cell cycle regulation 

Gene regulation 

I 
Vaccine development 

Drug design 

Mode-of-action of 
drugs/compounds 

Figure 1.3 Functional genomics and systematic researches of malaria biology. 
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enough information for each gene and protein of P. falciparum. Integration and 

systematically analysis of these data types could facilitate to understand the 

Plasmodium biology with gene function and molecular processes and develop new 

drugs and vaccines. 

1.5 Malaria merozoite invasion process 

Merozoite invasion is a complex, multiple-step process in which four distinct steps 

can be recognized: 1) Initial recognition and attachment, 2) Reorientation, 3) 

Junction formation, 4) Parasite entry (figure 1.4) (Chitnis and Blackman, 2000; 

Dowse and Soldati, 2004; Pinder, et al., 2000). The major mission of the blood 

stage merozoites is to locate, bind to and invade host RBCs. Invasion is initiated by 

interaction between any part of the merozoite surface and the host cell. This initial 

interaction is likely a random collision and appears to be low affinity and 

reversible (Blackman, 2000). The cell recognition and attachment processes are 

highly dependent on specific molecular interactions between parasite ligands on 

the merozoite and the host receptors on the erythrocyte membrane (Barnwell and 

Galinski, 1998). After binding to the erythrocyte, the parasite reorients itself 

toward host plasma membrane. The merozoite reorientation also coincides with a 

transient erythrocyte deformation (Aikawa, et al., 1978). After that a junction is 

formed between the apical end of the merozoite and erythrocyte membrane. During 

the invasion, three 'secretory' morphologically distinct organelles: micronemes, 

rhoptries and dense granules which are located at the apical end of the invasive 
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stages of the parasite, expel their contents from the parasite immediately after the 

junction is formed. Junction formation and microneme release occur at about the 

same time after which the rhoptries are discharged immediately (Sam-Yellowe, et 

al., 1988). The release of the apical organelle contents correlates with the 

formation of the parasitophorous vacuole (PV). The apical location and the 

observation that the contents of the rhoptries and micronemes are released 

coinciding with invasion imply that these organelles participate in the invasion 

process. Moreover, the precise timing of the reorientation, organellar discharge. 

and formation of the PV suggest a tight regulation of these processes which are 

essential for a successful completion of the invasion process. Presently, close to 

nothing is known about molecular mechanisms associated with this tight regulation. 

As the merozoite moves through the ring-shaped tight junction formed by the 

receptor/1 igand complex to the posterior of merozoite, the junction between the 

parasite and host becomes ring-like and the incipient parasitophorous vacuole (PV) 

is being formed. Once the parasite has completed its entry, the tight junction will 

disappear, and the respective parasitophorous vacuole membrane (PVM) and the 

host erythrocyte membrane will separate. The closure of the PVM is followed by 

the release of dense granule content into the lumen of PV. It is believed that 

merozoite invasion process involves complex machinery comprised of a broad 

spectrum of Plasmodium proteins. Several protein categories were linked with 

invasion, such as adhesive surface molecules, proteins involved in recognition and 

attachment, proteases essential for parasite and host protein modification and 
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degeneration, components of the actin-myosin motor complex, two type protein 

kinases (Blackman and Bannister, 2001; Cowman and Crabb, 2002; Dowse and 

Soldati, 2004; Preiser, et al., 2000). Despite these achievements, specific roles of 

the majority of the identified proteins in the invasion process are largely unknown. 

Identification of additional proteins associated with invasion as well as 

comprehensive understanding of their role in the invasion process is of outmost 

interest. First, comprehensive characterizations of the spectrum of merozoite 

surface molecules will be invaluable for vaccine development. Second, 

exploration of the unique molecular processes associated with the formation, 

regulation of the merozoite invasion machinery can provide many insights for drug 

development. 

Figure 1.4 A schematic depiction of stages in red blood cell invasion by the malaria 

merozoite. The parasite binds, reorientates until its apical end contacts the host cell 

surface, then enters into a parasitophorous vacuole (figure was copied from 

(Chitnis and Blackman, 2000). 
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1.6 Project summary 

Techniques of system biology have shown to significantly contribute to infer 

biological functions for the high number of uncharacterized proteins and to the 

understanding of biological mechanisms associated with disease processes. The 

fact that more than 50% of the genes of P. falciparum are of unknown function 

promoted us to characterize the function of these genes using system biology 

approaches. The publicly available transcriptional data characterizing of 

transcriptional regulation during the P. falciparum IDC that have been used in 

previous bioinformatics approaches for functional analyses brought only a limited 

contribution. This is mainly due to the monotonous character of the transcriptional 

regulation where many functionally unrelated gene share common transcriptional 

profiles. Given these limitations, growth perturbation data were suggested to be 

helpful for Plasmodium systems biology approaches. However, until today, very 

little is known about transcriptional responses of P. falciparum to growth 

perturbations. Here I propose to carry out growth perturbations of P. falciparum 

exposure to anti-malarial drugs and compounds. The generated gene expression 

data will be used to construct a gene-associated network by combining this dataset 

with other high throughput genomic datasets, such as phylogenetic profiles, 

domain-domain interactions and yeast two-hybrid protein-protein interactions. This 

network will be used to assign function to unknown proteins. In the final step I will 

focus on the Plasmodium invasion machinery and construct a gene sub-network to 

identify new proteins associated with cellular process and illustrate the molecular 
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mechanisms of this process. New identified proteins will be characterized using 

several methods of molecular biology. My work is presented with the following 

chapters: Chapter 2, develop a program for oligonucleotide selection for 

microarray and design one high quality DNA microarray of P. falciparum. And 

also several other DNA micorarrays are designed. Chapter 3, perform perturbations 

of P. falciparum exposure to 20 antimalarial drugs and compounds; analysis of the 

perturbation data; reconstruct a probabilistic gene functional network with the 

perturbation date combining with other high throughput functional datasets; 

network-based gene annotations; build a subnetwork associated with invasion 

process; experimental validation the newly identified invasion proteins. Chapter 4, 

transcriptional profiling P. falciparum exposure to kinase inhibitors. Chapter 5, the 

computing structure and databases developed in this project. Chapter 6. final 

summary and perspective. 
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Chapter 2 OligoRankPick: long oligonucleotides selection for 

DNA microarrays using weighted rank-sum strategy 

2.1 Summary 

The design of long oligonucleotides for spotted DNA microarrays requires 

detailed attention to ensure their optimal performance in the hybridization 

process. The main challenge is to select an optimal oligonucleotide element 

that represents each genetic locus/gene in the genome and is unique, devoid of 

internal structures and repetitive sequences and its Tm is uniform with all 

other elements on the microarray. Currently, all of the publicly available 

programs for DNA long oligonucleotide microarray selection utilize various 

combinations of cutoffs in which each parameter (uniqueness, Tm, and 

secondary structure) is evaluated and filtered individually. The use of the 

cutoffs can. however, lead to information loss and to selection of suboptimal 

oligonucleotides, especially for genomes with extreme distribution of the GC 

content, a large proportion of repetitive sequences or the presence of large 

gene families with highly homologous members. In this work we present the 

program OligoRankPick which is using a weighted rank-based strategy to 

select microarray oligonucleotide elements via an integer weighted linear 

function. OligoRankPick is an efficient tool for the design of long 

oligonucleotide DNA microarrays which does not rely on direct 

oligonucleotide exclusion by parameter cutoffs but instead optimizes all 
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parameters in context of each other. OligoRankPick provides significant 

improvements in oligonucleotide design in comparison to other published 

algorithms for all three testing microbial genomes E. coli, S. cerevisiae and P. 

falciparum. The weighted rank-sum strategy utilized by this algorithm 

provides high flexibility of oligonucleotide selection which accommodates 

extreme variability of DNA sequence properties along genomes of many 

organisms. Also we showed applications of OligoRankPick to design DNA 

microarrays for other species. 

2.2 Introduction 

DNA microarray is one of the most powerful and versatile tools for post-genomic 

research (Brown and Botstein, 1999). After the initial success with cDNA and PCR 

product-based microarrays, application of long oligonucleotides became widely 

used in "spotted" DNA microarray technology in the last eight years (Bozdech, et 

al.. 2003; Hughes, et al., 2001; Kane, et al.. 2000: Li and Stormo, 2001). From the 

beginning it became clear that the design of the oligonucleotide probes requires 

special attention. Under a single stringency condition, hybridization specificity and 

efficiency of all oligonucleotides must be globally maximized across the entire 

array. Thus for the selection of the optimal oligonucleotide candidates, four major 

parameters are being evaluated: (i) uniqueness which analyzes other possible 

cross-hybridization targets in the genome; (ii) sequence complexity which 

evaluates the presence of short nucleotide repeats; (iii) melting temperature (Tm) 
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or GC content which ensures a uniform hybridization efficiency across the 

microarray; and (iv) level of internal secondary structures which helps to avoid all 

possible self-binding interference with the specific target hybridization. In 

principle each of these properties can be calculated individually for every potential 

oligonucleotide candidate, however, the main challenge that remains is to derive a 

selection strategy that combines these parameters and selects the most optimal 

oligonucleotide representative for a given genetic locus/gene. 

All currently available programs for long oligonucleotide microarray design 

utilize different parameters: the binding energy or BLAST-based score to 

alternative targets to evaluate uniqueness, the GC content or Tm to estimate 

hybridization stringency, the reverse Smith-Waterman score or free energy to 

evaluate levels of secondary structure and various types of complexity coefficients 

to evaluate the presence of short nucleotide repeats in each oligonucleotide 

element (Bozdech, et al.. 2003; Nielsen, et al., 2003; Nordberg, 2005: Reymond. et 

al., 2004; Rouillard, et al., 2003; Wang and Seed, 2003; Wright and Church, 2002). 

Typically these programs select one or more oligonucleotide representatives of a 

gene using various systems of cutoff-based filters. For example 

ArrayOligoSelector creates an intersection of oligonucleotides that pass 

parameter-based cutoffs for uniqueness, self-binding and sequence complexity. 

The intersection candidate list is then passed on to the GC filter and subsequently 

the final representative(s) are selected using a 3' proximity criteria (Bozdech, et al., 

2003). The cutoff based algorithms provide a powerful approach to select DNA 
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microarray oligonucleotide sets and were successfully used to design DNA 

microarrays for a large number of species (Boyer, et al., 2005; Bozdech, et al., 

2003; Carter, et al., 2005; Nordberg, 2005). The use of these algorithms is, 

however, not completely optimal for genomes with high abundance of repetitive 

sequences and large fluctuations of GC content. To accommodate such genomic 

sequences, the methods must relax the parameter filter adjustments. The wide 

"'opening" of the cutoff filters can cause selection of suboptimal oligonucleotides 

for a significant number of genes, due to the fact that all oligonucleotides that pass 

a particular filter are treated as equal by the subsequent steps, disregarding their 

subtle diversity within the filtered interval of the parameter (unpublished 

observations). 

To overcome these shortcomings new algorithms which incorporate 

optimization strategies of oligonucleotide parameters were developed including 

OligoDesign (Tolstrup, et al., 2003) and CommOligo (Li, et al., 2005). 

OligoDesign was developed specifically for the design of the locked nucleic acid 

(LNA) microarray platform which takes advantage of the improved nucleic 

on-chip capture sensitivity of the LNA substitute mixmer oligonucleotides. 

Design of these specialized probes requires careful optimizations of the 

hybridization specificity and efficiency for each probe. For this purpose, 

OligoDesign uses an extensive fuzzification process derived from neural network 

approaches to ensure the optimal performance of this highly specialized 

microarray platform (Tolstrup, et al., 2003). Similar to the fuzzy logic approach, 
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CommOligo uses a piece-wise linear function to select optimal oligonucleotides 

via a user configurable iterative process (Li, et al., 2005). Both of these methods 

represented a step in the right direction, recognizing the need for parallel 

optimization of all used parameters and elimination of cutoffs that cause 

information loss. At its presently available implementation, however, both 

OligoDesign and CommOligo utilize complex and computer-time consuming 

processes that render them unsuitable for high throughput applications. 

Nevertheless both methods have been useful for design of focused "miniarrays" 

which typically contain smaller numbers of genes e.g. 120 stress response and 

toxicological markers from Caenorhabditis elegans (Tolstrup, et al., 2003) or 

microarrays for relatively small genomes such as Methanoccocus maripaludis with 

1759 genes (Li, et al., 2005). 

We developed a novel program named OligoRankPick (Hu, et al., 2007) that it 

is suitable for the design of gene specific long oligonucleotide probes for genomes 

of all sizes and the final decision making process is based on a weighted rank-sum 

strategy for parameter optimization which significantly streamlines the entire 

computation process. This program completely eliminates all cutoff-based filters, 

thereby significantly improves the quality of the resulting microarray 

oligonucleotide design. Moreover, the weighted rank-sum approach enables users 

to implement an integer weighted linear function to automatically optimize the 

oligonucleotide parameters for each gene individually. 
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Initial pool of candidate oligonucleotides 
all possible N-mer oligonucleotides 

Blast search 
score 

1 

User defined 
GC content 

Reverse Smith-
Waterman (SW) 

I 

LZ compression 
score |LZW) 

Rank Transformation 

Rank oligos by the 
lowest second blast 
score in the genome 

Rank oligos by the 
deviation from the 

defined GC content 

Rank oligos by 
lowest SW 

Rank oligos by the 
highest LZW 

Select the most optimal oligo by a weighted rank-sum score function: 

RS (X) = Wblast* Rblast (X) + WGC * RGC (X) + WSW * RSW (x) + WLZ * RLZ (X) 

Figure 2.1. The flowchart of OligoRankPick. All possible oligonucleotides were 

extracted form the input sequence and stored. Subsequently four parameters of all 

possible oligonucleotides were calculated including the BLAST score to a second 

genomic target (uniqueness), the GC content (Tm), the Reverse Smith-Waterman 

score (self-binding) and the LZ compression score (sequence complexity). In the 

rank transformation step, the oligonucleotides are ranked based on each parameter 

and ordinal rank number is given to all oligonucleotides in each parameter rank 

independently. Finally weighted rank-sum (RS(X)) is calculated for ail 

oligonucleotides with uniqueness weights (WBLAST), GC content weights (WGC) 

self-binding weights (Wsw), and sequence complexity weights (W[,z) and R BLAST, 

RGC, RSR and RLZ representing the ranks corresponding to each parameter ranking. 

Multiple RS(X) are determined by the gene specific optimization using multiple 

weight sets (not indicated) and the lowest value is finally considered. The 
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optimal candidate is selected based on the lowest RS(X) amongst all 

oligonucleotides in the locus. 

2.3 OligoRankPick 

2.3.1 Program overview 

Figure 2.1 summarizes the global overview of the OligoRankPick algorithm. 

Essentially, all possible oligonucleotide windows from a gene/locus are extracted 

and scored by the four parameter measurements, uniqueness (BLAST score to 

second target), GC content (GC content, Tm), self-binding (Reverse 

Smith-Waterman, SW) and sequence complexity (Lempel-Ziv compression score) 

(figure 2.1). In the next step OligoRankPick ranks all possible oligonucleotides 

in one locus according to their parameter scores and assigns an ordinal number for 

each parameter. While the BLAST, SW, LZ score are directly transformed into a 

rank, the GC content scores are first transformed to their absolute deviation from 

the defined GC content. Oligonucleotides with an identical score for any parameter 

are offered the same rank number. Subsequently the rank-sum strategy is used to 

select the optimal oligonucleotide(s). This strategy is based on the calculation of a 

weighted rank-sum of all four ranks for each oligonucleotide within a locus by a 

linear function utilizing the following formula (also see figure 2.1): 

RSk=M,jn(lJ.1w)*Rjk) 

Where Wj is the weight of the j-th parameter (j = 1, 2, 3, 4), Rjk is rank score of j-th 

parameter of the k-th oligonucleotide (k = 1, ..., n). In the first step the rank-sum 
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function selects the oligonucleotide with the minimal rank-sum (RS) as the 

candidate for one given weight set. 

To accommodate the variable characteristics of the DNA sequence along the 

genome we introduce an additional step in which the optimal weight values are 

determined for each gene individually. There is a weight file (wt_pool.opt) to offer 

the optimal intervals of weight values for the user from the simulation for 

"standard" microbial genomes, which is detailed in the published paper (Hu, et al., 

2007). However, users can define specific weights and modify this file based on 

their own theoretical or empirical experience as well as specific requirements 

(simulation_ws.pl provided in the package). For all sets of weights: 

TO= Miii(kSKj/Y w j 
i 

Where RSKJ is the optimal selected oligonucleotide (K oligonucleotide) for weight 

set i, EWJ is the sum of weights for weight set i. TO (Target Oligonucleotide) is the 

final selected oligonucleotide. The optimization step is performed for all weight 

sets reflecting all combination of weight values in the input intervals. The 

oligonucleotide with the minimum RS value is the optimal local solution of the 

rank-sum function in the given weight set interval. This oligonucleotide is chosen 

as the final candidate. 

2.3.2 Implementation 

The OligoRankPick program is freely available from the website 

(zblab.sbs.ntu.edu.sg/OligoRankPick). It is divided into two parts (two scripts). 
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The first script (oligoblast.pl) is used to generate all possible oligonucleotides and 

their parsed BLAST results including its first, second and third best hybridization 

target (top three). The oligoblast.pl script can be run on different computers or a 

computer cluster using parallel processing methods such as mpiBLAST 

(www.mpiblast.org) and the results should be parsed according to the format of 

oligoblast.pl output. The second script (oligorankpick.pl) selects the optimal 

oligonucleotide for each sequence. There are four additional scripts which can be 

used to optimize the OligoRankPick package performance including masker.pl, 

used to mask the repeat sequence based on the NCBI dust program; GC_dis.pl, 

used to plot the GC content distribution of all oligonucleotides in the dataset in 

order to define a suitable GC content; fragmentation.pl, used to partition the long 

sequences to increase the oligonucleotide density in the coding sequences (see P. 

falciparum microarray design); simulation_ws.pl, used to modify the weight set 

file (wt_pool.opt) for special genomes. 

2.3.3 Comparison with other programs 

To compare the performance of OligoRankPick with other publicly available 

programs, we designed three theoretical microarray oligonucleotide sets for the P. 

falciparum, S. cerevisiae and E. coli. We selected three programs, 

ArrayOligoSelector (Bozdech, et al., 2003), OligoPicker (Wang and Seed, 2003) 

and OligoArray 2.1 (Rouillard, et al., 2003). For the intended designs we chose the 

oligonucleotide length to be 70 nt and the GC content 31.4% (Tm=74.7) for P. 
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falciparum, 40% (Tm=79.8) for S. cerevisiae and 45% for E. coli (Tm=82.7). The 

theoretical oligonucleotide sets were designed using the publicly available 

sequence data and the selection algorithms with default settings. Figure 2.2 

summarizes the parameter distributions of the uniqueness scores (BLAST scores 

of the final oligonucleotides to their second best genomic targets) plotted against 

GC content. Overall these contour plots illustrate that comparing to the three 

publicly available programs, OligoRankPick provides significant improvements 

for the design of yeast, E. coli and P. falciparum microarray (figure 2.2). The most 

striking improvements were, however, observed in the design of the P. falciparum 

microarray For this genome the BLAST scores and the GC content of the 

oligonucleotides designed by OligoRankPick exhibit a greater convergence to a 

small region in the desired area (low BLAST scores, GC around 31.4%) compared 

to oligonucleotides designed by the three other programs (figure 2.2). 

OligoRankPick ArrayOligoSelector OligoPicker OiigoAiray2 1 

BLAST score l0° 1 M ° BLAST score m I M ° BLAST score l0° m ° BLAST score 

No- 0 3000 

Figure 2.2 Overall profiles of the uniqueness and GC content of oligonucleotide 
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microarray elements in the 12 designed theoretical microarray sets. Four 

algorithms OligoRankPick, ArrayoligoSelector, OligoPicker, and OUgoArray2.1 

were used to design long oligonucleotide DNA microarray sets for P. falciparum, 

E. coli and S. cerevisiae. Contour plots illustrate oligonucleotide density plotted 

of along the uniqueness scores (second target BLAST scores) and GC contents. 

The oligonucleotide density is calculated as -loglO(N/Nmax) (N ~ number of 

oligonucletide in a given area and Nmax ~ number of oligonucleotide in the most 

dense area) and displayed using the indicated by the color based scale. 

Similar convergence is observed for the SW and LZ scores (Supplementary 

figure S2.1 and S2.2). To further demonstrate the convergence of the 

oligonucleotide parameters we calculated a mean distance for each parameter 

distribution to its desired (preset) value and also to the average value within the 

parameter distribution (figure 2.3). In all cases the OligoRankPick produced the 

smallest mean distances and thus tighter distribution of the oligonucleotide 

parameters. The only exception is the lower mean distance of the CG content 

from its mean value in the yeast set designed by OligoPicker. Detailed inspection 

of these results indicated that the low mean distance is due to extensive filtering 

implemented by this program (data not shown). For each of the theoretical 

microarray dataset we also calculate the average weight score (AWS) which is 

directly related to the oligonucleotide quality with respect to the oligonucleotide 

parameters. The smaller AWS that are consistently observed for the 
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OligoRankPick generated oligonucleotide sets compared to the three other 

programs further indicate the optimization power of OligoRankPick 

(Supplementary figure S2.3). 
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Figure 2.3 Analyses of the uniqueness and GC content distributions in the 12 

designed theoretical microarray sets. A, single-parameter mean distances of 

BLAST score and GC content were calculated from all oligonucleotide scores to 

their mean score, respectively; B, the mean distances of BLAST score and GC 

content calculated from all oligonucleotide scores to the expected score. The 

expected BLAST score is the smallest one in all sets and the expected GC content 

is the defined GC content in the program; C and D shows the two-dimensional 

mean distances BLAST score and GC content calculated from all oligonucleotide 
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points to their central point. The central point in C comprises the mean BLAST 

score and mean GC content in the oligonucleotide set. The central point in D has 

the smallest BLAST score and defined GC content. 

Table 2.1 summarizes the overall statistics of the 12 oligonucleotide sets for 

different datasets and methods. We define the 40% continuous sequence identity to 

a second target and 5% deviation from the target GC content as the "good quality" 

criteria according to previous studies (Bozdech, et aL 2003; He, et al.. 2005; Hu, 

et al., 2007; Kane, et al., 2000). OligoRankPick outperformed the other programs 

producing the highest number of oligonucleotides within the target limits (95.6%, 

91.3% and 94.9% for E. coli, S. cerevisiae and P. falciparum respectively, table 

2.1). The unbiased character of the OligoRankPick algorithm is also demonstrated 

by the total number of oligonucleotides designed. Since OligoRankPick does not 

use any filters, this method will select an oligonucleotide candidate for essentially 

any genetic locus (see "#designed" in table 1). There were only 5 coding 

sequences not considered by OligoRankPick in E. coli and one in S. cerevisiae due 

to their sequence lengths being shorter than 70 nt (table 2.1). 

One of the unique features of the P. falciparum genome is the presence of 

several large highly homologous gene families whose role has been implicated in 

the antigenic variation including var (76 members), rifin (164 members) and 

stevor (34 members) (Florens, et al., 2002; Kyes, et al., 2001). Table 2.2 

indicates the number of unique oligonucleotides designed by all the four programs 
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for these genes. OligoRankPick was capable of designing unique oligonucleotides 

for 234 genes (85.4%) of total 274 genes which by far exceeded the performance 

of the three other algorithms. Analysis of oligonucleotide positions of var genes 

showed that they located at the most variable regions such as the internal sequence 

(ITS) between two conserved domains (figure 2.4). 

Table 2.1 The comparison of designed oligonucleotides from different programs 

Programs* 

OligoRankPick 

ArrayOligoSelector 

OligoPicker 

OligoAarray 2.1 

E. co/i Kl 2 (4237 cds) 

#designeda #acceptedb 

4232^ 4047(95.6)* 

4201 3371(80.2) 

4142 2594(62.6) 

3221 2826(87.7) 

S. cerevisiae (6680 cds) 

#designed 

6679 ; 

6221 

6208 

6587 

#accepted 

6096(91.3) 

3471(55.8) 

3614(58.2) 

4440(67.4) 

P. falcipan 

#designed 

5363 

5339 

4235 

5206 

tm (5363 cds) 

#accepted 

5092(94.9) 

2093(39.2) 

3543(83.7) 

2317(44.5) 

*Array01igoSelector 3.8.4; OligoPicker; OligoArray 2.1. a: oligonucleotide 

number selected by the program; b: good oligonucleotide number based on 

BLAST score of non-target (<=40% continuous identity) and GC content (±5%). 

& Percentage of good quality oligonucleotide to total selected oligonucleotide (in 

the bracket), t, Five rejected coding sequences are less than 70bp. C, Only one 

rejected sequence is YJR151W-A (51 bp). 

Table 2.2 The oligonulceotide design of large gene families from different 

programs 

Programs* 

OligoRankPick 

ArrayOligoSelector 

OligoPicker 

OligoAarray 2.1 

#des 

76 

76 

37 

22 

Var family 

(Total No. 76) 

igneda #acceptedb 

63 

31 

37 

9 

Rifin •family 

(Total No. 164) 

#designed 

164 

162 

78 

162 

#accepted 

140 

58 

74 

118 

Stevor •family 

(Total No. 34) 

#designed 

34 

34 

12 

34 

#accepted 

31 

13 

12 

22 
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*Array01igoSelector 3.8.4; OligoPicker; OligoArray 2.1. a: oligonucleotide 

number selected by the program; b: accepted oligonucleotide number based on 

BLAST score of non-target (<40% continuous identity). 

Figure 2.4 The positions of selected oligonucleotides by OligoRankPick for var 

genes (not including pseudogenes). Oligonucleotide position was marked by blue 

star (unique) and gray star (nonunique). NTS, N-terminal sequence; DBL, 

Duffy-binding domain; CIDR, cysteine-rich interdomain region; ATS, acidic 

terminal segment; ITS, internal sequence. 

2.4 DNA microarray for Plasmodium falciparum 
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2.4.1 Design of a gene specific DNA microarray for P. falciparum 

In the final step we applied OligoRankPick to design a gene specific DNA 

microarray for the P. falciparum genome (5363 coding sequences, CDS) that can 

be used for functional genomic studies of this important human pathogen. For this 

design we wished to increase the oligonucleotide coverage for longer open reading 

frames and thus we fragmented each coding sequence using the fragmentation.pl 

script as follows: sequences smaller than Ikb were kept as one fragment; 

sequences between lkb and 2kb were split evenly into two fragments, sequences 

larger then 2kb were split into n fragments (n>=2) when: (2n-2)kb < gene size > 

(2n)kb. The fragmentation step generated 10166 Microarray Element Fragments 

(MEFs) from 5363 CDS. A single oligonucleotide was designed for each MEF 

which resulted in one oligonucleotide per 1198bp on average for all P. falciparum 

coding sequences. Although the median GC content of all 70 nt oligonucleotide 

windows in the P. falciparum coding sequences is 24.3% (displayed by GC_dis.pl 

optional module) for higher specificity and efficiency of microarray hybridization, 

we selected oligonucleotides with a GC content of 31.4% (22 GCs out of 70 nt). 

OligoRankPick successfully designed 10166 oligonucleotides representing all 

predicted P. falciparum genes with an average of 1.9 oligonucleotides per protein 

coding sequence. Figure 2.5B summarizes the GC content distribution 

suggesting that OligoRankPick can identify optimal oligonucleotide elements with 

GC content significantly distant from the average GC content in the genome. 

Astonishingly 70.5% of the designed oligonucleotides had the desired GC content 
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of 31.4% (figure 2.5B). 

To evaluate the level of uniqueness of the designed oligonucleotides we used the 

identical quality control criteria used for the weight optimization strategy which is 

consistent with previously established conditions of optimal microarray 

hybridization performance (see above). In total 9909 (97.5%) oligonucleotides 

passed the uniqueness criteria and 9795(96.4%) oligonucleotides were found to be 

in the range of 5% deviation from the GC content target value (31.4%) (figure 2.5). 

There are 9584 (94.7%) oligonucleotides meeting both criteria while only 275 

oligonucleotides (2.7%) were outside of the ±5% GC content interval and 257 

oligonucleotides (2.5%) were not unique in the genome. Manual inspections of the 

MEFs represented by these oligonucleotides indicated that no suitable 70 nt 

window exists within these DNA fragments. The 257 non-unique oligonucleotides 

represented 193 genes (3.6% of total CDS) from which 67 genes belong to the 

large multigenic gene families, var, rifin and stevor. Pair-wise sequence 

homology analysis of these genes revealed that these genes do not contain any 70 

nt window that shares less than 40% homology with any other member of the 

corresponding gene family and thus no unique oligonucleotide could be selected 

by any conceivable strategy. Interestingly for the remaining 185 (73.4%) 

members of these families a specific oligonucleotide was selected which further 

demonstrates the power of OligoRankPick for microarray design. 
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Figure 2.5 Oligonucleotide parameter distributions in the newly designed P. 

falciparum DNA microarray. Total 10166 oligonucleotides were designed for the 

P. falciprum DNA microarray. Relative abundance of the oligonucleotides is 

plotted along the uniqueness scores (BLAST score of the second-best target in the 

genome) (A) and along the GC content (B). The dotted line indicates the 

quality control criteria (see text) with BLAST score = 56 which corresponding to 

>40% continuous match cross-hybridization and the 31.4% ± 5% interval of GC 

content corresponding to the targeted range. Percentages of oligonucleotides which 

fall within the targeted values are indicated. 

2.4.2 Transcriptome analysis of the trophozoite and schizont stages of P. 

falciparum 

Although all parameters of the oligonucleotide microarray sets designed by 

OligoRankPick indicate their high quality, the ultimate evidence for their 

functionality can be provided only by physical microarray experiments. For this 

purpose we have synthesized all the 10166 oligonucleotides for the P. falciparum 
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genome-wide microarray and spotted these onto polylysine-coated microscopic 

slides as previously described (DeRisi. et aL, 1997). Using these microarrays we 

compare the global mRNA patterns between two developmental stages of the P. 

falciparum intraerythrocytic development, trophozoite and schizont. All 

experimental procedures were carried out as previously described (Bozdech, et aL, 

2003) and the complete results for three replicates of the microarray hybridizations 

are available in the supplementary data. The P. falciparum genome sequence 

reference strain 3D7 was used for this analysis. Total 4183 genes were found to be 

expressed in at least one of the studied developmental stages in three replicates of 

microarray hybridization. From these 1891 and 841 mRNA transcripts exhibited at 

least 2-fold higher abundance in the trophozoite and the schizont stage, 

respectively. 

Table 2.3 P. falciparum microarray data and their comparisons to existing 

transcriptomes 

Transcriptome results Trophozoite Schizont 

3-fold in at least two replicates 862 431 

Present in the LOM-IDC transcriptome 630/73% 320/74.2% 
*Same stage classification in LOM-IDC 595/94.5% 307/95.9% 
Transcriptome 
Present in the HDSO-Affymetrix transcriptome 741/86% 353/82% 
**Same stage classification in HDSO-Affymetrix 676/91.2% 336/95.2% 
transcriptome 

*genes with peak expression before and after 30 hours post invasion are classified 

as trophozoite and schizont specific, respectively. 

** genes with higher expression levels in late ring and early and late trophozoites 
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compared to early and late schizonts are classified as trophozoite specific and vice 

versa. 

In order to assess the fidelity of the obtained results we wish to compare this 

data to previously published transcriptome analyses of the P. falciparum 

intraerythrocytic developmental cycle (IDC). These include the IDC transcriptome 

analyzed by the previous version of a Jong oligonulceotide microarray (LOM-IDC 

transcriptome) comprised of 2689 genes (Bozdech, et al., 2003), and a high density 

short oligonucleotide Affymetrix microarray dataset (HDSO-Affymetrix 

transcriptome) comprised of 1162 genes with stage specific transcription (Le Roch, 

et al., 2003). All genes present in both LOM-IDC and HDSO-Affymetrix 

transcriptomes were represented on the new P. falciparum microarray and yielded 

a hybridization signal in at least two of the three microarray replicates. To compare 

the stage specificity of the gene expression we select genes which exhibited 

>3-fold change in mRNA abundance between trophozoite and schizonts detected 

in at least two (out of three) replicates (table 2.4). Using these criteria we classify 

862 genes as trophozoite specific and 431 genes as schizont specific. The 

transcriptome data comparisons, summarized in table 2.3, indicate high 

correlations between the transcriptome data and the new microarray dataset with 

91.2-95.9% of overlapping genes exhibiting identical stage specificity in their 

mRNA levels. There were only a small number of genes (4.1-8.8%) for which 

the new expression results did not correlate with the previously published data. 
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These discrepancies are likely caused by subtle differences in parasite culture 

synchronicity and stage representation between our culturing system and the 

systems used for the previous transcriptome analyses. 

To further validate the performance of the designed P. falciparum microarray 

quantitative real-time RT-PCR was used to measure relative mRNA abundance 

between trophozoite and schizont stage for 10 selected genes. For this we chose 

genes for which only OligoRankPick designed a "good quality" microarray 

element while the three tested publicly available programs did not yield a suitable 

oligonucleotide element. These include two paralogous histone3, five members 

of the variable surface antigen gene families (2 var, 1 rifin, 2 stevor), centrin, and 

two genes encoding highly homologous hypothetical proteins. Figure 2.6A shows 

good correlations between the RT-PCR results and microarray hybridization data 

which demonstrate the robust performance of the newly designed microarray for 

analyses of mRNA abundance in P. falciparum. Detail sequence analyses revealed 

that each of the 10 selected genes contains only a small window of unique 

sequence while the majority of the gene is highly homologous to at least one other 

locus in the genome. One of the example is a pair of highly homologous genes 

encoding histone3 (H3) and its homologue histone3.3 (H3.3) (figure 2.6B). This 

high homology is likely the main obstacle for designing a specific oligonucleotide 

and it is the reason why no transcription data have been obtained by the previously 

reported transcriptome analyses. Despite this OligoRankPick selected specific 

oligonucleotides which overlap the most unique region of each gene (figure 2.6B). 
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The microarray hybridization signal detected on these oligonucleotide elements 

revealed that these two highly homologous genes undergo different transcription 

regulation during the IDC with H3 exhibiting 3-fold increase of mRNA abundance 

in schizonts compare to trophozoites and H3.3 showing similar amounts (<2-fold 

change) between these two developmental stages (figure 2.6A). 

Taken together these data demonstrate that the newly designed microarray for P. 

falciparum successfully recapitulates data from previous transcriptome analyses 

and has a potential to further expand on these results. Overall these data verify the 

improved performance of OligoRankPick in designing unique microarray elements 

for gene expression microarrays. 
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Figure 2.6 Verifications of microarray results by quantitative real-time PCR (A) 

and example of oligonucleotide selection for highly homologous genes (B). The 

bar graph indicates mRNA abundance ratios between two developmental stages 

(schizont/trophozoite) of the P. falciparum IDC for 10 genes measured by 

microarray and by real-time RT-PCR. The expression data were obtained using the 

total RNA isolations from the trophozoite and schizont stage. Each measurement 

was carried three times and the standard error for each measurement is indicated. 

(A). The uniqueness score distributions along the two highly homologous histone 
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3 genes. The uniqueness is represented by the BLAST score of each 70 nt window 

along the histone genes (H3 and H3.3) to its second best target in the genome. 

The red arrow indicates the position of oligonucleotide selected by OligoRankPick 

in each gene (B). 

2.5 Discussion 

The main goal of this work was to develop a microarray design algorithm which 

combines the thoroughness of the parameter optimization methods (such as 

CommOligo (Li, et al., 2005)) and performs with high computational efficiency of 

the earlier, cutoff based techniques, such as OligoArraySelector (Bozdech, et al., 

2003). The newly developed algorithm. OligoRankPick. is the first method 

using a parameter optimization approach that is computationally fast and robust for 

genome-wide microarray design. The core principle of this technique consists of 

the rank transformations of the parameter scores and the subsequent weighted 

rank-sum strategy. This allowed us to eliminate all cutoff based filters that are 

typically applied to the input data (by existing optimization programs) or to partial 

oligonucleotide lists that are generated prior or during the decision-making step (in 

cutoff-based methods). Instead the derived rank-based system maintains all the 

oligonucleotide candidates in their rank order throughout the entire process. This 

approach removes any ambiguities in the selection process as all oligonucleotides 

are constantly prioritized based on their properties. Since no oligonucleotides are 

eliminated by arbitrary cutoffs, this method also significantly expands the genome 
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coverage of the designed microarrays. The simplicity of the rank-based approach 

also allows the algorithm to perform gene specific optimizations of the weight 

coefficients in which the contribution of each parameter is modified based on the 

sequence properties of a particular gene. This is especially useful for optimal probe 

design in genes with extreme parameters distributions such as high AT content or 

high sequence homology to other genomic locus (low uniqueness). For example 

AT richness of some genes causes the GC content parameter to be over emphasized 

due to a stronger priority that is given to the GC rich oligonucleotide windows. 

This could force a selection of less unique oligonucleotides or oligonucleotides 

with complex secondary structure from these CG rich oligonucleotide candidates. 

The implementation of the gene specific optimizations is likely the most 

innovative approach introduced by this method because it generates a tighter 

distribution for each oligonucleotide parameter compared to other publicly 

available programs (figure 2.2). For general functionality we derived and validate 

optimal weight set intervals which could be applied to a wide range of genomes. 

The flexibility of the OligoRankPick package, however, allows the users to tune 

these setting for other specialized applications. 

For the development and validation of OligoRankPick we design a new DNA 

microarray for the most lethal species of the human malaria parasites P. falciparum 

whose genome was completed in 2002 (Florens, et al.. 2002). We chose this 

genome for its extreme AT/GC distribution and high level of gene duplication to 

demonstrate the utility of the newly design program for its future applications. The 
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average GC content in the P. falciparum genome is estimated to be 19.4% (23.7% 

in coding and 13.5% in non-coding sequences). For this design, however, we 

wished to select oligonucleotides with higher GC content to ensure higher Tin and 

thus specificity and selectivity of each probe. In addition the requirement for high 

GC content will help to select oligonucleotides with high sequence complexity as 

AT rich sequences in P. falciparum contain numerous short nucleotide repeats. As 

demonstrated in figure 3 OligoRankPick was able to design a set of 

oligonucleotides whose GC content is tightly distributed around 31.4%. At the 

same time high levels of uniqueness and sequence complexity and a low level of 

secondary structures were preserved in the vast majority of the probes. This feature 

of OligoRankPick will be particularly useful for microarray design of many 

organisms with extreme fluctuations in GC content such as Mycoplasma mycoides 

(Westberg. et al., 2004) and other bacterial species (Parkhill, et al., 2003), other 

"AT rich" Plasmodium spp. (Carlton, et al., 2002) and Dictyosteliam discoideum 

(Glockner. et al., 2002) or GC rich Leishmania spp. (Ivens, et al.. 2005). The P. 

falciparum genome was found to contain a large number of duplicated genes 

sharing high levels of homology (Florens. et al.. 2002). The extreme examples 

are the three gene families (var, rifin, stevor) which are involved in the parasite 

virulence and are presently explored as potential molecular targets for malaria 

intervention strategies (Rowe and Kyes, 2004). Despite the high levels of 

homology amongst the individual members of these gene families. OligoRankPick 

was capable of designing specific oligonucleotide representative for 74.3% of these 
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genes which by far exceeded the performance of the three tested publicly available 

programs. This improved performance will render OligoRankPick useful for 

studies of many organisms with highly homologous, biologically significant gene 

families ranging from microbial pathogens (Stringer and Keely, 2001) to high 

eukaryotes (Harrison and Gerstein, 2002). 

2.6 Applications of OligoRankPick for other species 

2.6.1 Design an intergenic specific DNA microarray of P. falciparum 

DNA microarray of intergenic regions is very useful for analysis of regulation of 

gene expression such as Chromatin immunoprecipitations (ChlP) (Iyer, et al.. 2001: 

Ren. et al.. 2000). P. falciparum genome has high AT content, especially in the 

intergenic gene regions where the AT content readily exceeds 90%. Hence 

designing of DNA microarray for the gene intergenic regions could be challenging 

for essentially all oligonucletide selection programs. In our previous work 

OligoRankPick was shown to successfully select unique representative 

oligonucleotides even for genomic regions with extreme parameters such as AT 

rich sequences or low complexity regions. This is achieved via the automatic 

parameter optimization that does not rely on cutoff-based definitions (Hu, et al., 

2007). Total 5411 UTR sequences were generated by extracting 1500 bp 

upstream sequences from the starting codons of the P. falciparum genes 

representing the intergenic region that contain both the untranslated RNA 

sequences and the promoter regions. In the absence of the mapping of 
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transcriptional start sites in the P. falciparum genome these regions are the closest 

estimation of the position of gene expression regulatory regions. In order to 

increase the intergenic microarray resolution, each UTR sequence was further 

fragmented into three 500bp long sequences, and one oligonucleotide for each 

fragment was designed by OligoRankPick. For the oligonucleotide nomenclature, 

each fragment were marked position -1,-2 and -3 according to its distance to the 

start codon. For ChlP-chip applications, 500 bp sequences from start codon ATG 

of 5411 genes were also generated to design oligonucleotides by OligoRankPick, 

and this oligonucleotide was marked position +1. For the design, we set 

oligonucleotide length at 50 nt and GC content at 28%. Prior to the application of 

the OligoRankPick we performed RepeatMasker.pl to masker all high repetitive 

AT regions in the UTR sequences. Total 14975 oligonucleotides were selected by 

OligoRankPick for 16233 fragmented UTR sequences with 5411 genes (table 2.4). 

Significantly, 95.1 % (5147) genes have at least one unique oligonucleotide, and 

2890 genes have three unique oligonucleotides for all three fragments of UTR 

sequences. After the quality control filtering of the designed oligonucleotides 

based on both uniqueness and GC content deviation. 4944 genes (91.4) have at 

least one oligonucleotide representing their UTR sequences on the newly designed 

P. falciparum intergenic oligonucleotide microarray (table 2.4). In all 14975 

oligonucleotides, 10791 (-72%) matched two preset criteria (40% similarity and 

6% deviation of GC content), and 88.3 % oligonucleotides have their GC content 

matching the previously defined setting. This confirms that OligoRankPick could 
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accommodate extreme variability of DNA sequence properties to select a proper 

oligonucleotide that matches strict criteria for microarray performance (see above). 

These results show high percentage of oligonucleotides selected by OligoRankPick 

These results also show high percentage of the oligonucleotides selected by 

OligoRankPick for the intergenic regions of P. falciparum genes that have high 

uniqueness and low deviation of GC content. ChlP-chip analysis based on this 

micorarray is performed and preliminary results showed that this chip had good 

signal qualities (Chaal et al. manuscript in preparation). 

Table 2.4 Statistics of intergenic specific DNA microarray of P. falciparum 

# genes have at least one oligo 
# genes have -1,-2 and -3 oligos 
# genes have -1 and -2 oligos 
# genes have -1 and -3 oligos 
# genes have - 2 and -3 oligos 
# genes have -3 oligos 
# genes have -2 oligos 
# genes have -1 oligos 
# genes have +1 oligos 
Total oligos for UTR 
Total oligos for 4 positions 

Designed (%)s 

5411 (100) 
3570 (66.0) 
4545 (84.0) 
4673 (86.4) 
4668 (86.3) 
5097 (94.2) 
4923(91.0) 
4955(91.6) 
5403 (99.9) 
14975 (92.2) 
20378 (94.2) 

Unique (%)@ 

5147(95.1) 
2890(53.4) 
3292 (60.8) 
3494 (64.6) 
3540 (65.4) 
4397(81.3) 
4083 (75.5) 
4103(75.8) 
5109(94.4) 
12583 (84.0) 
17692(86.8) 

Unique & GC 
content (%)* 
4944(91.4) 

1940(35.9) 
2388(44.1) 
2622 (48.5) 
2777(51.3) 
3924 (72.5) 
3446 (63.7) 
3421 (63.4) 
5039(93.1) 
10791 (72.1) 
15830(76.7) 

number oligonucleotides outputted by OligoRankPick is lower then expected 

(number in the bracket) due to the use of RepeatMasker which filteres highly 

repetitive sequences; ® oligo similarity of the second target is less than 40%; * GC 

content constrains 28 ± 6%. 

2.6.1 Design of gene and exon specific DNA microarrays for Plasmodium vivax 

Plasmodium vivax causes debilitating disease that impairs the quality of life and 

- 4 3 -

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



economic productivity of large regions of the South East Asia and South America 

(Price, et al., 2007). In many of these regions P. vivax is the most prevalent species 

of malaria. P. vivax has a similar life-cycle to the more fatal species of human 

malaria P. falciparum. However, several notable differences exist between these 

two species. These include a preference of P. vivax for reticulocytes, and the 

presence of persistent liver forms, hypnozoites, which can cause relapse weeks 

after an initial infection (Mendis, et al.. 2001). The intrachromosomal regions of 

the P. vivax genome has a significantly higher GC content than P. falciparum with 

approximately 55% of AT, however, the subtelomeric region are comparable to the 

P. falciparum genome with approximately 80% AT content (Carlton, 2003). These 

extreme GC content fluctuations create major obstacle for the design of a balance 

of oligonucleotides with even distribution of Tm that are necessary for microarray 

assemblies. Here we use the OligoRankPick program to design gene specific long 

oligonucleotide probes (60 nt) with defined 40% GC-content for the entire genome. 

Total 9810 oligos were selected for 5341 genes, in which 9746 are unique (99.3%). 

Based on both criteria (<= 40% similarity and 5% deviation of GC content), 9309 

oligonucleotides (95%) representing 5167 genes (97.6% of the genome) matched 

the desired parameters. Using this design, the complete transcriptional profile 

throughout the intraerythrocytic developmental cycle (9 time-points, IDC) of P. 

vivax was analyzed. The transcriptional regulation cascade of the P. vivax 

synthenic genes resembles the previously reported P. falciparum IDC 

transcriptome in which each cellular function is timed to a specific developmental 
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stage. In contrast the global distribution of mRNA abundance of the non-syntenic 

genes exhibits a strong bias towards the extremes of the IDC; the schizont - ring 

stage transition (Bozdech, et al., 2008). 

2.6.2 Design of a cross-species gene specific DNA microarrays for rodent 

malaria parasites P.yoelii, P. chabaudi and P. berghei 

In the past decade basic biological knowledge of the rodent models of malaria lags 

behind that of P. falciparum. The completions of the genomes of the three rodent 

malaria species (P. berghei, P. chabaudi and P. yoelii) increased the interest in 

these model organisms pointing out many similarities that can be exploited for 

biological research on human malaria. The discovered high level of homology as 

well as synteny between the Plasmodium species opened the door to many in 

functional genomics projects, such as comparative genomics and transcriptomic 

analyses. We are devoted to design DNA oligonucleotides to represent three 

genomes on one chip. This cross-species gene specific DNA microarray would 

facilitate the comparative research of the syntenic genes between the three rodent 

malaria genomes as well as the non-syntenic or species-specific genes. 

Figure 2.7 summarizes the global overview on the design. Essentially, the 

three rodent malaria parasite genomes were assembled using the PHRAP program 

(http://www.phrap.com). Subsequently. OligoRankPick (Hu, et al.. 2007) was used 

to design oligonucleotide probes for three entire genomes. This was shown to have 

significant improvements over other algorithms in oligonucleotide design even 
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when dealing with large fluctuations in GC content and abundant gene 

duplications. There are about 7861 predicted coding sequences in P. yoelii genome, 

12216 in P. berghei and 15095 in P. chabandi. We first used all possible 

oligonucleotides of P. yoelii to search in the homologous region of the other two 

species using the NCB1-BLAST program (Altschul, et al., 1997) (figure 2.1k). 

The using four parameters: BLAST score (first and second match), GC content and 

self-annealing score to search the oligonucleotides (figure 2.7B). Each score is 

then transformed into a rank and a weighted rank-sum is calculated for each 

oligonucleotide with the final oligonucleotide being selected based on the smallest 

rank-sum value. These oligonucleotides were then used to select for those that are 

optimal for all three species, followed by oligos for P. yoelii and P. berghei and 

then for P. yoelii and P. chabaudi. Next, only oligos specific for P. yoelii were 

selected (figure 2.1 A). These oligonucleotides were then used to mask all the P. 

berghei and P. chabaudi predicted coding sequences and the remaining sequences 

were used to design P. berghei-specific or P. chabaudi-spQc\f\c oligonucleotides. A 

total of 17650 oligonucleotides were obtained and the breakdown is shown in 

Figure 2.8. In this oligonucleotide set, 5461 oligonucleotides can detect genes 

from three rodent malaria species of P. yoelii, P. berghei and P. chabaudi at the 

same time. Expression and CGH analysis of pan-rodent malaria based on this chip 

was presented in the Liew et al.'s paper (Liew et al. 2008 manuscript in 

preparation). 
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Figure 2.7 The overall design schematics of the pan-rodent chip. (A) Methodology 

of the chip design. First, all possible oligonucleotides of P. yoelii were used to 

search in the homologous region of the other two species using NCBI-BLAST and 

were scored and ranked accordingly. The oligonucleotides were then filtered using 

three rules: (i) at least 90% homology to target sequences, (ii) less than 37.5% to 

non-target sequences and (iii) GC% tolerance of ±5%. Oligonucleotides for all 

three species were selected followed by oligonucleotides for P. yoelii and P. 

berghei and then for P. yoelii and P. chabaudi. Next, the remaining 

oligonucleotides were selected to be specific only for P. yoelii. The remaining 

sequences unaccounted for were then used to design oligonucleotides specific to P. 

berghei or P. chabaudi. (B) Rank-sum strategy from OligoRankPick (Hu, et al, 

2007). 
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Figure 2.8. Statistical information of all oligonucleotides on the chip of rodent 

malaria. All oligonucleotides are 60 bases long and the GC content is fixed at 30% 

and the allowable deviation is 5% for overlapping oligonucleotides. 

Complementary oligonucleotides to each rodent malaria parasite species was 

calculated from the sum of all possible combinations, i.e. oligonucleotides specific 

to itself and those that can hybridize to itself and to other rodent malaria parasite 

species. 

2.7 Conclusions and outlook 

OligoRankPick provides a powerful alternative for long oligonucleotide 

microarray design for genomes with extreme GC content fluctuations and high 

abundance of highly homologous gene families. In its simplest implementation a 

user needs only to define the probe length and an expected GC content or Tm. 
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However, for specialized applications. OligoRankPick provides the user with the 

option of setting the range of relative importance (weight) of each parameter as 

well as optimization of the quality control target values. Using this method we 

have designed several long oligonucleotide DNA microarrays for the parasitic 

species including P. falciparum, P. vivax and pan-rodent malaria. Transcriptome 

analyses of two P. falciparum developmental stages demonstrated that the 

designed microarray provides the most comprehensive coverage of the P. 

falciparum genome presently available. 

Although the actual oligonucleotide selection algorithm is highly efficient, the 

initial BLAST searches consume significantly high amounts of computer time. In 

our implementation, we isolate the time-consuming BLAST step (script 

oligoblast.pl). which can be run on different computers or a computer cluster. In 

the future, we hope to perform the BLAST searches with parallel processing 

methods such as mpiBLAST (http://mpiblast.lanl.gov/), which is much faster and 

more efficient to design oligonucleotides for large genomes like human genome. 

Another consideration is the incorporation of more novel models to evaluate the 

qualities of oligonucleotides. For example, hybridization energy model, Gibbs free 

energy model of DNA secondary structure. In the future, OligoRankPick would 

provide an interface for users to select and define these models. 

2.8 Materials and methods 

2.8.1 Genome sequences and annotations 
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The E. coli gene sequence file with 4237 CDSs and genomic sequence file were 

downloaded from the NCBI genome database. The S. cerevisiae gene sequence file 

with 6680 CDSs, and whole genome sequence file were downloaded from the 

ENSEMBL database (www.ensembl.org). The protein coding sequence files and 

their whole genomic sequence files of P. falciparum, P. yoelii, P. berghei and P. 

chabaudi wer e downloaded from PlasmoDB version 4.4 (www.plasmodb.org). 

The coding sequences and genomic sequences of P.vivax were downloaded from 

Tiger genome database (www.tigr.org) under the permission. 

2.8.2 Microarray manufacture and hybridization 

Microarray manufacture and hybridizations were conducted as previously 

described (Bozdech, et al., 2003). Briefly, all oligonucleotides in 384 well plates 

were printed on the polylysine-coded glass slides using BioRad microarray printer 

system. Printed slides were post-processed by rehydration, UV cross-linking and 

succinic anhydride (ALDRICH, Cat. 239690) block. The labeled cDNA samples 

were hybridized to the chip in MAUI system (BioMicro. Utah, United States) for 

12-14 hours at 65°C. Data were acquired and analyzed by GenePix (Axon 

Instruments, Union City, California, United States). Array data were stored and 

normalized in Acurity 4.0 system (Axon Instruments, Union City, California, 

United States). 

2.8.3 Quantitative real-time PCR 
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Real time RT PCR was performed in a total reaction volume of 20ul which 

contained lul cDNA template (10ng/u.l), 0.5 ul forward and reverse primer (lOuM). 

and 10f.il of 2 x Power SYBR Green PCR Master Mix (Applied Biosystems). 

The temple cDNA was generated using the first strand cDNA synthesis protocol 

used for the microarray hybridization. For the amplification the universal thermal 

cycling parameters were programmed as follows: 5 min activation at 95°C, 

followed by 40 cycles of 20s at 95°C. 30s at 50°C, 40s at 72 °C and 1 min at 60°C. 

Each reaction was run in triplicates. The mRNA abundance ratios were 

calculated using AB1 7500 Fast Real-Time PCR Systems and the relative 

quantitation of gene expression was performed using the comparative CT method. 

Primers for PCR were designed using DNAMAN (Lynnon Corporation). 
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Chapter 3 Transcriptional profiling of growth perturbations 

and a functional interactome network of human malaria 

parasites, Plasmodium falciparum 

3.1 Summary 

More than 50% of the genes of Plasmodium falciparum, the deadliest form of 

human malaria, are of unknown function. To create a function interactome network, 

we analysed the global transcription response of Plasmodium cells to 20 

compounds in 29 independent time series, creating 183 microarray data points. We 

demonstrate that at least half of the Plasmodium genome can respond to at least one 

of these growth perturbations and that functionally related genes share similar 

transcriptional profiles. To reconstruct a high-confidence probabilistic interactome 

network we integrated the transcription data with phylogenetic profiles, domain 

interaction linkages and the yeast two-hybrid results. Using this network we predict 

the function of 2545 Plasmodium hypothetical proteins. To validate our network we 

retrieved 263 new proteins linked with merozoite invasion, a process which is 

considered as a key target for malaria control. Intracellular localization of a subset 

of these proteins confirms their function in this process. 

3.2 Introduction 

A fundamental problem in systems biology is to infer biological functions for the 

high number of uncharacterized proteins that are identified by large scale genome 
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sequencing but lack significant sequence or structural homologies to other known 

proteins. In pathogenic organisms, understanding of molecular and biochemical 

processes is of particular importance for the design and development of new drugs 

and vaccine based intervention strategies (Murali, et al., 2006). Due to this, 

several computational techniques for functional gene predictions that utilize data 

from genome-wide experimental approaches were developed in recent years 

(Enright, et al., 1999; Ge. et al . 2001; Kemmeren, et a!., 2002; Marcotte, et al., 

1999; Pouting and Dickens. 2001: Sharan, et al., 2007: Valencia and Pazos, 2002). 

These techniques integrate data from functional genomics (e. g. transcriptional 

profiling, two hybrid-screens) or proteomics (e .g. shot gun mass spectroscopy 

surveys) and multiple types of bioinformatics studies (e. g. domain predictions, 

phylogenetic profiles). The main purpose is to generate functional-linkage 

networks between proteins/genes in order to predict biological relevance for the 

genes whose sequence does not provide any direct functional clues. The most 

evolved approaches serve as a powerful reference for functional prediction of 

uncharacterized genes based on their position in the network by evaluating their 

proximal functionalities (Chua, et al.. 2006; Karaoz, et al., 2004; Schwikowski. et 

al., 2000; Sharan, et al., 2007). These network approaches were also shown to 

significantly contribute to the understanding of biological mechanisms associated 

with disease processes (Calvano, et al., 2005: Pujana, et al.. 2007), and for 

investigating how a cell adapts to changing environments (Guo, et al., 2007; 

Whitehead, et al., 2006). 
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In the causative organism of the deadliest form of human malaria, Plasmodium 

falciparum, more than 50% of all genes are still functionally uncharacterized due to 

their lack of sequence homology with known genes in other organisms (Gardner, et 

aL 2002). Recognizing this deficit, Date and Stoeckert (Date and Stoeckert, 2006) 

constructed a first interactome network involving the transcriptome data of the P. 

falciparum intraerythrocytic developmental cycle (IDC) (Bozdech, et aL 2003) and 

genomic context data that included phylogenetic profiles and Rosetta stone data. 

Using a naive Bayesian method, it was possible to reconstruct a functional network 

including 3667 proteins at the 50% confidence level (Date and Stoeckert. 2006). 

In a following study, a probabilistic gene interaction network (interactome) was 

assembled incorporating evolutionarily conserved protein linkages, derived from in 

silica domain-domain interaction predictions and experimental protein-protein 

interactions based on the yeast two hybrid system survey (Wuchty and Ipsaro, 

2007). In this case, the assembled interactome included 2321 proteins which 

accounts for approximately half of the P. falciparum genome. Although these two 

networks provided a significant contribution to gene annotation, several limitations 

severely hampered their impact. The main caveat of the Date and Stockert's 

interactome is the nature of the transcriptional data which postulate high 

correlations for many functionally un-related genes due to the monotonous 

character of transcriptional regulation during the P. falciparum IDC. The 

calculation of a regulatory network based on the IDC transcriptome with an 

average connectivity of 30 resulted in a higher value of a Pearson correlation 
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coefficient (PCC) threshold of 0.95, which is unreasonably high compared to other 

organisms (Khanin and Wit, 2007). The second interactome contains the small 

number of genes for which appropriate information exists and a high number of 

false positive results in the yeast two hybrid system data (Wuchty and Ipsaro, 

2007). 

Microarray analyses of global transcriptional responses to growth perturbations 

provide a powerful input that can significantly improve the accuracy and proteome 

coverage of probabilistic interactome networks (Hughes, et al., 2000; MacCarthy, 

et al., 2005; Zak, et al., 2003). Given the limitations of the life cycle based 

transcriptome data, growth perturbation data were suggested to be extremely 

helpful for Plasmodium systems biology approaches (Winzeler, 2006). Until 

today, very little is known about transcriptional responses of P. falciparum to 

growth perturbations. It was shown that exposure of P. falciparum cells to 

chloroquine induces only low amplitude transcriptional changes of a wide spectrum 

of functionally unrelated genes (Gunasekera, et al., 2007). A similar lack of a 

specific signature response was also observed in P. falciparum cells exposed to a 

protein kinase inhibitor that is otherwise capable of inhibiting parasite growth 

(Kato, et al., 2008). In contrast to these studies, Oakley et al demonstrated that 

febrile temperatures induce a more specific transcriptional response that involves 

336 P. falciparum genes including genes encoding membrane-associated proteins 

that are exported to the host cell cytoplasm and likely affect parasite sequestration 

and antigenic presentation (Oakley, et al., 2007). In addition, these transcriptional 
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responses included factors of protein stability and trafficking, RNA metabolism, 

signal transduction, nuclear functions and general metabolism. Using these data 

Oakley et al was able to predict and partially validate putative functions for -100 

previously uncharacterized proteins (Oakley, et al.. 2007). These studies 

demonstrated the potential of growth perturbation analyses in Plasmodium cells for 

gene annotation purposes. 

The main rationale of this study was to assemble an interactome network of P. 

falciparum gene/proteins that incorporate data from extensive transcriptional 

profiling of growth perturbations using a wide array of small molecular inhibitors. 

Here we used 20 diverse small molecular compounds to inhibit the growth and/or 

development of P. falciparum during the asexual erythrocytic developmental stages. 

These included inhibitors of enzymatic activities (e.g. proteases and protein 

kinases and histone deacetylases), general cellular functions (e.g. microtubule and 

membrane formation and intracellular Calcium concentration) and several common 

antimalarial drugs (for complete experimental panel see Table SI). Combining 

the transcriptional profile dataset with in silico generated phylogenetic profiles, 

domain-domain interaction evidence and the yeast two-hybrid system-based 

protein-protein interactions, we constructed a high confidence gene interactome 

network using a probabilistic Bayesian network approach. Based on this network, 

we assigned function to 2545 hypothetical proteins using a weighted neighbor 

counting method. Using life cell imaging, we were able to verify functional 

assignments of 19 (out of 21) proteins that were predicted to be localized in the 
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cellular compartments associated with the Plasmodium invasion machinery. 

3.3 Results 

3.3.1 Transcriptional profiling of growth perturbations 

In the first step we carried out microarray measurements of global transcriptional 

responses of P. falciparum to twenty growth-inhibitory compounds. These 

included the common anti-malarial drugs: chloroquine (CQ), quinine (Q), 

artemisinine (ART) and the experimental compound febrifugine (FEB); and small 

molecular inhibitors that inhibit parasite growth and/or development: protease 

inhibitors (E64. leupeptine and PMSF), protein kinase inhibitors (ML7, W7). 

histone deacetylase (HDAC) inhibitors (Apicidin and TrichostatinA) and inhibitors 

of cation-dependent APTases (Na^VCU), microtubule (colchicine), and membrane 

formation (Retinol A) (table 3.1). For each compound, we carried out a treatment 

time course where synchronized Plasmodium cells were exposed to IC50 or IC90 

concentrations (with two exceptions, table 3.1). The IC50 and IC90 concentrations 

were determined individually for each compound and the culturing conditions used 

during the transcriptional profiling (2% hematocrit with 5% parasitemia). The 

final dataset included 29 time courses analyzed by 183 individual microarray 

measurements (figure 3.1 A). 

Across the entire experimental panel. 3226 genes exhibited at least 3-fold change in 

the transcript level in at least one time point of one growth perturbation (figure 

3.1 A). The first striking feature of these results is the large diversity of the global 
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transcriptional changes induced by the different compounds. Several compounds 

stimulated high amplitude transcriptional responses which involve narrow but well 

defined groups of genes. The most striking examples are FK506 and 

Cyclosporine A which induce 256 and 189 and suppress 29 and 42 genes by 

>3-fold, respectively (figure 3.1 A). The substantial overlap between the gene 

groups induced by these two compounds is consistent with the presumed mode of 

action of both inhibitors; suppression of the Calcineurin-dependent signaling 

pathway (Bell, et al., 2006: Kumar, et al., 2005; Liu. et al., 1991). Significant 

similarities were also observed between P. falciparum transcriptional responses to 

three inhibitors of calcium dependent signaling (ML7. W7, and KN93) (figure 

3.1 A). This indicated that similar to Calcineurin, calcium/calmodulin-dependent 

protein kinases (CDPK) are linked with transcriptional regulation of the parasite. 

Interestingly, there was only a limited overlap between the transcriptional responses 

induced by the CDPK, and Calcineurin inhibitors. This suggested that these two 

types of intracellular signaling pathways play specific, largely non-overlapping 

roles in Plasmodium parasites. Although both classes of inhibitors caused an arrest 

of schizont rupture (figure 4.1), none of the transcriptional changes induced by 

these inhibitors were consistent with a general arrest of the IDC transcriptional 

cascade (figure S3.1). This apparent contradiction could be explained by the time 

difference between the two observations. While the transcriptional analyses were 

carried out during the first 8 hours post treatments, starting 32-33 hours post 

invasion (hpi), the arrest of morphological development was observed only 14 hr 
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Table 3.1 Summary of microarray data sets used in the analysis 

xp.* 

1 
2 
3 
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6 
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8 
9 
10 
11 

12 
13 
14 

15 
16 

17 
18 

19 
20 

21 
22 

23 
24 
25 
26 

27 
28 
29 

Category 
Control 
ML-7 
W-7 
KN93 
Staurosporine 

Control 
Cvclosporine A 
FK506 
RoscovitineA 

Control 
Chloroquine 
Quinine 
Febrifugine 
Artimesinin 
Chloroquine 

EGTA 

'Frichostatin A 

Apicidin 

Apicidin 

control 
E64 
PMSF 
Leupeptine 
Retinol A 
control 
Colchicine 
Na3V04 
Staurosporine 

Field strains 
Lab strains 

Life cycle* 

Total 

#Exp. 
7 
7 
7 
7 
7 

8 
8 
8 
8 

6 
6 
6 
6 
6 
6 
6 
6 
6 
10 
10 
H) 
6 
6 
6 
6 
6 
6 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
^ 

24 
18 

148 

437 

Decription 
Dd2, start time-point 32hpi. time course 1,2,4.6,8,10.12pt 
Dd2,1C50 ~ 1.2 uM 
Dd2. IC50 - 1.2 uM 
Dd2, IC50 - 1.2uM 
Dd2, IC50 ~ 80 nM 

Dd2, start time-point 33hpi, time course 1,2,4,6.8.10.12,14pt 
Dd2. IC50 - 88 nM 
Dd2. IC50- 118nM 
Dd2, IC50- 1.6 uM 

Dd2, start time-point 18hpi, time course 1,2,4,6.8,1 Opt 
Dd2, 1C50 - 43nM 
Dd2, 1C50 ~ 44nM 
Dd2, IC50 - 4.5nM 
Dd2, IC50 ~ 28M 
3D7, start time-point 18hpi, time course l,2,3.4,6,8pt 
3D7, IC50~41nM 
3D7, 1C90 ~ 72nM 
3D7. 2*IC90~144nM 
Dd2, start time-point 34hpi, time course 1,2,3.4.5,6,7,8,9,1 Opt 
Dd2, 1C50 - 0.5mM 
Dd2, 1C90 - 3.5mM 
Dd2. start time-point 34hpi. time course 1.2.3,4,6,8pt 
Dd2, IC50 ~ 25nM 
Dd2, IC90~51nM 
Dd2, start time-point 18hpi. time course l,2,3,4,5,6pt 
Dd2. IC50 ~ 20nM 
Dd2. IC90 ~ 70nM 

Dd2, start time-point 34hpi, time course 1,2,3,4.5pt 
Dd2, IC50 ~ 23nM 
Dd2, 1C90 - 85nM 
Dd2. start time-point 33hpi, time course 0.5,1,2,3,4pt 
Dd2,1C50 ~ 3.2uM 
Dd2, IC50- 1.32mM 
Dd2. 1C50 ~ 5.4uM 
Dd2, IC50- 107uM 
Dd2. start time-point 33hpi, time course 0.5.1,2.3,4pt 
Dd2, IC50 ~ 46.3uM 
Dd2, IC50- 17uM 
Dd2. IC50 - 87uM 

cell cycle of field strains from Africa 
Life cycle of lab strains (3D7/Dd2/T996) Time-points of very 
8 hour 
IDC transcriptome of lab strains (3D7/Dd2/ HB3), 
time-points of very 1 hour 

* Sachel Mok performed Exp.8-14; Sabna Cheemadan performed Exp. 15-16; 

Brigitta performed Exp. 17-22; Balbir Chaal performed Exp.23-29. 
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after the addition to the drug during the schizont rupture (figure 4.1). Thus the 

observed transcriptional changes might represent the initial specific transcriptional 

response of P. falciparum parasites that is subsequently followed by a 

developmental arrest and cell death. This is in a sharp contrast with the EGTA 

treatment which also caused a rupture arrest but essentially no transcriptional 

changes during the early part of the treatment (figure 3.1 A and data not shown). 

Although further studies are required to understand the role of CDPK and 

Calcineurin signaling pathways in the progression of the P. falciparum life cycle, 

these data suggest their importance for this process. 

In contrast to the protein kinase inhibitors, a number of compounds had only a 

subtle effect on gene expression despite their strong growth inhibitory properties in 

P. falciparum parasites. These included colchicine, NasVCU, E64 and Leupeptine 

(figure 3.1 A). Similarly to these compounds, all three malaria drugs, chloroquine. 

quinine and artemisinine induced only low amplitude transcriptional responses that 

involved relatively small numbers of genes (figure 3.1 A). In agreement with 

previous analyses by Gunasekera and colleagues, the transcriptional responses to 

chloroquine were highly reproducible and dose dependent (Gunasekera, et al., 

2007). A total of 26. 49, and 87 genes were induced by >3-fold (194. 257 and 330 

genes by >2-fold) with (C50, IC90, and 2*1C90 concentrations of chloroquine. 

respectively. These observations suggest that at least a portion of these low 

amplitude transcriptional changes might reflect relevant physiological response to 

the drug. The minor effect of E64 and Leupeptine on Plasmodium transcription is 
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surprising since PMSF, a generic protease inhibitor, induced a broad transcriptional 

response that is consistent with an arrest of the IDC transcriptional cascade (figure 

3.1 A and S3.1). These data indicate that in contrast to E64 and Leupeptine, PMSF 

has an additional target that is potentially linked to the regulatory pathways of 

malaria parasites. 

Out of the 20 inhibitors, 4 treatments (EGTA and PMSF, staurosporine and 

TrichostatinA) caused IDC developmental arrest (figure S3.1). EGTA that is 

thought to deplete intra and extracellular Ca2+(100mM~IC50) was found to block 

parasite egress from mature schizonts and at the same time to retain the entire 

transcriptional profile of the late schizont stage even 6 hours after the estimated 

time of rupture and reinvasion (figure 3.1 A). In addition to the IDC arrest, 

treatments of P. falciparum cells with apicidine (HDAC inhibitor) caused a general 

deregulation of the IDC transcriptional cascade by de-repression of genes that are 

normally suppressed at both studied developmental stages (trophozoite and 

schizont) (figure 3.1 A). Interestingly, TrichostatinA, another HDAC inhibitor, 

induced broad transcriptional changes that consist of both IDC arrest (figure S3.1) 

and deregulation (figure 3.1 A). The effect of the HDAC inhibitors on chromatin 

remodeling and transcriptional regulation in P. falciparum is presently under 

investigation in our laboratory (Chaal et al manuscript in preparation). 

Taken together, the growth perturbation analyses illustrate a complex 

character of Plasmodium responses to environmental perturbations. On the one 

hand, there are a number of cellular functionalities (such as protein phosphorylation 
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pathway) firmly linked to the Plasmodium transcriptional regulation and their 

inhibitions induce vigorous responses involving a substantial amount of genes. On 

the other hand, disruptions of other Plasmodium biological functions (such as 

microtubule formation, ATP hydrolysis or a subgroup of proteases) produce only a 

limited low amplitude reaction by the P. falciparum transcriptional machinery. 

There are also several functionalities whose disruption is associated with the global 

transcriptional regulation of the P. falciparum life cycle either via a developmental 

arrest (EGTA) or via perturbation of histone modifications (HDAC inhibitors). 
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Figure 3.1. Overview of the gene expression responses of P. falciparum to growth 
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perturbation induced by drug or inhibitor treatments. A. The heatmap summarizes 

results from 184 microarrays from 29 time courses monitoring transcriptional 

changes in P. falciparum induced by 20 small molecular inhibitors (experimental 

summary see table 3.1). The treatment experiments were conducted in the time 

courses (ordered along the horizontal axis) and genes were arranged using 

hierarchical clustering. A total of 3226 genes which show at least a 3-fold change 

of mRNA abundance in at least one experiment are included in the overview 

dataset. The bar diagram (top) indicates the total number of genes that show 

>3-fold up-regulation (red bar) or down-regulation (green bar) for each treatment 

experiment. The treatment experiments were ordered and grouped (yellow 

dashed lines) according the similarity of the transcriptional response. B. The 

Pearson Correlation Coefficient (PCC) distributions of gene expression profiles 

from the Drug/inhibitor treatments, the publicly available IDC transcriptome 

(Derisi's IDC) of 3D7. Dd2 and HB3 (Llinas, et al., 2006). and additional IDC 

transcriptomes for three field and three laboratory strains generated in our 

laboratory. The number of gene pairs in the PCC bins >0.7 is indicated in the 

inset table. C. Heat map of hierarchical clustering of the PCC profiles. A PCC 

profile was assembled for each gene as a function of correlations of its expression 

profile with every other expression profile in the dataset (perturbation or IDC 

datasets). The PCC profiles were subjected to hierarchical clustering that reveal 

natural grouping of highly correlated genes (small distance ~ dark green) and 

distinguish from uncorrelated gene groups (large distance ~ white). D. 

Co-expressed genes in drug or inhibitor microarrays had higher likelihood scores 

than in IDC transcriptomes. Likelihood score was used as a function of ratio of 

observed positive probability to negative probability based on the functional 

KEGG data to measure the functional association for the co-expressed genes at a 

different level (different PPQ.The number of false positive (FP) and true positive 

(TP) predictions of gene linkages are indicated in the inset table. 
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3.3.2 Co-expression of functionally related genes across the perturbation panel 

To evaluate the complexity of the growth perturbation transcriptional data we 

calculated Pearson Correlation Coefficients (PCC) between the expression profiles 

across the entire experiment for each gene pair in the perturbation dataset as well as 

in the high resolution (Ihour) DeRisi IDC transcriptome and low resolution (8hour) 

IDC transcriptomes of three laboratory strains (3D7, T996, Dd2) and three short 

term culture adapted field isolates. Compared to the IDC transcriptome, we 

observed a tighter peak of the distribution of the PCC values from the perturbation 

data compared to the IDC transcriptomes. In particular, there is approximately a 3 

and 4.5 -fold decrease in the number of gene pairs with the PCC intervals 

<0.7-0.8> and <0.8-0.9>. respectively, and more than 10-fold decrease in the 

number of gene pairs with PCC > 0.9 in the perturbation dataset compared to the 

IDC transcriptomes (figure 3.IB). A similar drop in the gene pair number was 

observed in the negative correlation PCC bins (PCC <-0.7, data not shown). 

Moreover, hierarchical clustering of the PCC profiles for each gene pair in the 

dataset show a considerably tighter pattern in the IDC dataset compared to the 

perturbation data for which the pattern of the pair-wise distances is more dispersed 

(figure 3.2C). Taken together, this indicates that compared to the IDC 

transcriptome, the perturbation dataset defines narrower gene groups that share 

transcriptional regulation across the wide spectrum of growth 

conditions/perturbations. To systematically evaluate functional relationships of the 

transcriptionally co-regulated genes we utilized the subset of genes with a 
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functional prediction defined for 492 genes in 71 pathways defined by the KEGG 

(Kyoto Encyclopedia of Genes and Genomes) database (Kanehisa, et al., 2004) (see 

materials and methods). For these we calculated a likelihood score as a function 

of a ratio between the number of positive (gene pairs in common pathways) and the 

number of negative observations (gene pairs not in common pathways) for different 

PCC thresholds (figure 3.ID). The results show that transcriptionally co-regulated 

genes exhibit a significantly lower rate of false positives and thus higher likelihood 

scores compared to the IDC transcriptomes. Overall there are 1.2, 1.5, and 

3.6-times less gene pairs in the 0.7, 0.8, 0.9 PCC bins of the perturbation dataset 

compared to the IDC datasets. Amongst these, the false positive rate was improved 

by 1.6, 3.5 and 11 -fold (figure 3. ID). These data suggest that the transcriptional 

profiling of the chemical perturbations of P. falciparum growth have a high 

predictive accuracy of functionally related genes based on their transcriptional 

regulation. 

3.3.3 Reconstruction of a probabilistic gene functional network 

To fully utilize the potential of the perturbation transcriptional profiling for 

functional gene predictions we assembled a probabilistic network which integrates 

these results with three additional datasets. The first dataset represented 

phylogenetic profiles which consist of sequence homology values (E-values) of all 

5363 P. falciparum protein sequences to their orthologues in 210 completely 

sequenced, publicly available genomes. Using the mutual information method 
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(Date and Marcotte, 2003; Sun, et al., 2005) we identified 12,406,623 phylogenetic 

profiles for 4983 proteins (figure S3,2). The second dataset included evidence of 

domain-domain interactions predicted in the deduced amino acid sequence of all P. 

falciparum proteins by HMM based searches within the PFAM database 

(Sonnhammer, et al., 1998) and the Lee's domain-domain interaction dataset (Lee. 

et al., 2006). A total of 179,481 linkages between P. falciparum proteins were 

defined by this approach (data not shown). The third dataset includes the 

experimental observations of the 2811 protein interactions for 1308 proteins in P. 

falciparum that were detected by yeast two-hybrid system screens (LaCount, et al.. 

2005). In addition to these datasets, the perturbation microarray data was 

combined with the publically available IDC transcriptomes from three P. 

falciparum strains. 3D7, HB3 and Dd2 (Llinas, et al., 2006). For this, PCCs 

between the IDC expression profiles were merged with the PCCs from the 

perturbation dataset using an optional average approach (materials and methods). 

The potential of forming a protein-protein functional interaction was scored for 

each individual dataset as the probability of each linkage to fall into the positive or 

the negative benchmark (figure S3.3 and table S3.1). The final likelihood score for 

each protein linkage was generated by integrating the four likelihood scores using a 

Bayesian method (Jansen, et al., 2003; Lee. et al . 2004). Overall likelihood scores 

for 14,168.597 functional linkages between 5374 P. falciparum proteins (99.2 % of 

the proteome) were calculated based on evidence captured by at least one of the 

derived datasets. Information for 4774 proteins (88.1%) was represented in the 
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perturbation transcriptional profiling and at least one other dataset while 4785 

proteins (88.3%) were represented in any two individual data sets. In general, the 

integrated likelihood scores provide higher proteome coverage than each of the 

individual input datasets at all probability thresholds (figure 3.2A). 
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Figure 3.2 Reconstruction of the PlasmoINT interactome network. A. For each 

data type, we calculate proteome covered as a function of the ratio between the 

observed true and false positive observations when compared against benchmarks 

dataset (492 gene assigned to 71 KEGG pathways, see materials and methods). 

Integration of different functional datasets leads to higher genome coverage and 

accuracy than any of the individual methods. B. The predictive precision rates 

(Predictive Positive Value, PPV) at different likelihood score cutoffs were 

evaluated by 10-fold cross validation and the proteome coverage of the integrated 

functional dataset. PPVs were plotted as a function of the likelihood score cutoffs. 

PPV is calculated as the ratio of observed true positive number (TP) to the total 

number of TP and false positives (FP). Each dot of the ratios represents an average 

of ten cross-validations at a particular likelihood score cutoff. The vertical 

dashed-line showed the likelihood score cutoffs and proteome coverages 
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corresponding to positive predictive value (PPV=TP/(TP+FP)) 50% and 90% 

(likelihood score thresholds of 3 and 14.5). At these ratios, true positive to false 

positive (TP to FP) was equal to 1 (-50% confidence) and 9 (-90% confidence), 

respectively. C. Characterizations of the network topological structures in the 

90% confidence network (for the 50% confidence network see Figure S5) 

expressed as the distribution of node connectivity. The scatter plot illustrates the 

gene numbers (P(K)) with the corresponding number of linkages (K). D. 

Examples of MCL modules identified in the 90% confidence network. In each 

modules, functionally characterized genes (purple circles) were examined in order 

to derive a coherence score representing the fraction of gene linkages that belong to 

a common functional groups e.g. RNA metabolism (coherence score 0.94) for 

cluster 15. The functionally uncharacterized (hypothetical) genes (yellow circles) 

provide suitable candidates for additional factors of a particular cellular or 

metabolic functionality. 

For approximately 10% of proteins, the domain-domain interaction dataset 

generates high accuracy predictions. However, the proteome coverage of this 

dataset is limited due to the fact that only a small fraction of P. falciparum proteins 

contained well conserved functional domains (data not shown). In contrast, the 

transcriptome data and phylogenetic profiles can provide high proteome coverage 

but their predictive values are consistently lower than the integrated likelihood 

scores (figure 3.2A). In our calculations, we observed low accuracy and low 

proteome coverage of the protein-protein interaction dataset based on the 

two-hybrid system that thereby provides a low contribution to the final likelihood 

scores (figure 3.2A and S3.3). In the 50% confidence network, only 299 linkages 

have a two-hybrid system component and omitting this dataset leads to a loss of 
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177 linkages (data not shown). Despite its low impact, we found it important to 

include this dataset as it might reveal novel functional linkages that could not be 

discovered otherwise. 

Using the calculated functional linkages we assembled interactome networks 

based on two likelihood score thresholds for the 50% and 90% confidence 

precision rate (figure 3.2B). While the 50% precision rate predictions include 

339.721 functional linkages between 4817 proteins (89% of the P. falciparum 

proteome), the 90% precision rate predictions define 72.748 linkages between 3475 

genes (64%). The connectivity of both, the 50% and 90% confidence networks fits 

a power-law distribution with the power X equal to 0.93 and 1.14. respectively 

(Figure 3.2C and S3.4). Its structure reflects a typical scale-free network without 

obvious hierarchical topological structure (figure S3.4), which suggests the 

existence of a relatively small number of highly connected nodes (hubs) in the 

Plasmodium gene functional network. 

Table 3.2 summarizes comparisons between the newly assembled 

interactome network, termed PlasmolNT, and the previously assembled network by 

Date and Stoeckert termed PiasmoMAP (Date and Stoeckert, 2006). Overall, 

PlasmolNT provides a substantially improved proteome coverage as well as 

precision of linkage prediction. First, the 50% precision networks from both 

studies contain a comparable number of genes and linkages. However, PlasmolNT 

contains considerably more linkages that originate from two or more types of 

evidence (e.g. transcriptional profiling, phylogenetic profiling, domain prediction 
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and two hybrid system). Second, the 90% accuracy PlasmoINT network contains 

approximately 3 times more genes and 6 times more linkages compared to 

PlasmoMAP (table 3.2). 

Table 3.2. Network comparison of PlasmoINT and PlasoMAP. 

PlasoMAP PlasmoINT 

Combined evidence IDC transcriptome; 

Phylogenetic profiles; 

Gene fusion data 

50% precision rate network 

Total linkages 388,969 

At least two evidences 117,764 (30%) 

Total proteins 3667 (-62%) 

90% precision rate network 

Total linkages 12,290 

At least two evidences 12,034 (97%) 

Total proteins 1415 (-26%) 

Genes present in both 3284 (90%) 

Linkage present 341,224 

Shared linkages 78,571(23%) 

Lost linkages 262,253 (77%) 

Gain linkages -

Genes present in both 1149(81%) 

Linkage present 10,042 

Shared linkages 2,303 (23%) 

Lost linkages 7,739 (77%) 

Gain linkages -

247 drug/inhibitor microarrays; 

Transcriptome of field strains; 

IDC transcriptome; 

Experimental PPI; 

Phylogenetic profiles; 

Domain-domain interactions 

339,721 

309,670 (-91%) 

4817 (-89%) 

72,748 

62,176 (-85%) 

3475 (-64%) 

Comparison of 50% precision networks 

3284 (68%) 

188,798 

78,571 (42%) 

110,227(58%) 

Comparison of 90% precision networks 

1149(33%) 

188,798 

2,303(12%) 

16,703 (88%) 

Abbrev.: IDC, intraerythrocytic developmental life cycle; PPI, protein-protein interaction. 

In both PlasmoMAP and PlasmoINT, the majority of the 90% accuracy linkages 

originate from at least two types of evidence, which illustrates the importance of 

the integration of the likelihood scores from multiple datasets in order to achieve 
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high confidence predictions. Third, direct comparisons between the two networks 

revealed that the majority of proteins found in PlasmoMAP were also represented 

in PlasmoINT. However, there were considerable differences in the structure of the 

linkages between the genes present in both networks with only a small fraction of 

PlasmoINT linkages replicated in PlasmoMAP (table 3.2). These data are 

consistent with our predictions that the fundamental improvements provided in 

PlasmoINT help to suppress the number of false positive results in the low (50%) 

precision network but boosts the overall number of linkages with high accuracy 

(90% precision rate). This observation is supported by the overall increase in the 

number of linkages in gene groups predicted in the functional annotations based on 

the Gene Onthology (GO), Malaria Parasite Metabolic Pathways (MPMP) 

(Ginsburg, 2008), KEGG databases (figure S3.5). Moreover. PlasmoINT 

provides much improved reconstruction of metabolic and cellular pathways by 

covering a large number of genes assigned to the functional groups (figure S3.5 and 

examples in $3.6). 

3.3.4 Modular analysis and network-based gene function predictions 

Accumulating evidence suggests that biological systems are composed of 

interacting modules that can group various cellular components into biologically 

relevant functional categories (Barabasi and Oltvai, 2004; Hartwell. et al., 1999). 

In the next step, we used an unsupervised graph clustering algorithm. Markov 

Cluster (MCL) algorithm (Brohee and van Helden, 2006; Enright, et al., 2002; 
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Krogan, et al., 2006) to identify 208 such modules in the 90% confidence network. 

In order to evaluate the biological relevance of the identified modules, we 

calculated a functional coherence (enrichment) score for 105 of the modules in 

which the functionally annotated genes are linked (figure 3.2D). This score 

represents the fraction of gene pairs that share functional annotations in a given 

module (for full list see figure S3.7). The top 35 modules with coherence score > 

0.4 (figure 3.3A) include many gene groups involved in basic metabolic processes 

such as redox and pyrimidine metabolism, ribosomal structure, DNA repair and 

classical clathrin-mediated vesicular transport. In addition, several Plasmodium 

specific functions such as rosette formation and mitochondrial and apicoplast 

membrane transport (figure 3.3A) can be deciphered by the MCL method in the 

90?/o confidence network. These observations suggest that the assembled network 

detects functionally related genes with sufficient precision that it can be further 

explored for the functional annotation of functionally unidentified genes (figure 

3.2D). 

in the next step, we applied the Weighted Neighbor Counting (WNC) 

technique to the 50% predictive precision rate network in order to derive functional 

predictions of the 2662 hypothetical proteins present in this network. The choice 

of the 50% precision network instead of 90% was mainly driven by the higher 

proteome coverage of the low precision network. This approach takes advantage 

of the 2187 proteins with functional assignments based on 336 functional terms 

with more than 1 gene from the KEGG (70 terms), GO (145 terms for up to 7th 
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Figure 3.3. The MCL and WNC-based functional predictions and their functional 

categorizations. A. The bar graph summarizes the number of functionally 
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annotated (blue bars) and hypothetical (orange) genes in the 35 modules detected 

by the MCL method in the 90 % confidence network with coherence score > 0.4. 

The modules are ordered according the coherence score and the most represented 

KEGG GO or MPMP functional term is indicated. For all 105 modules with 

functional annotations see Figure S8. B. Bar graph summarizes the WNC based 

functional annotations and the leave one out analysis. For 10 functional categories 

with more than 10 genes with recalled original annotation (''recalled original 

annotation" - blue bars), the bar graph also indicate the number of genes for which 

the recalled annotations do not match the original ("recalled different annotation" -

grey bars) and the number of hypothetical genes. The prediction precision rate 

calculated as the ration between the number of genes with "recalled different 

annotation" and genes with "recalled original annotation" is indicated in the left 

panel. For full list see figure S3.10. C. The conservation of different functional 

pathways across 210 genomes including 155 prokaryotes. 6 apicomplexa and 49 

other eukaryotes is summarized and indicated for selected functional gene groups 

(for full list see figure S3.11). The conservation of each pathway is calculated 

independently as the fraction of the number of species containing potential 

homologs (reciprocal BLASTP hit, E-value < 10 ~'°) according to four categories 

with: total 210 genomes (the second panel, blue bar), apicomplexa (third panel, red 

bar), prokaryotes plus apicomplexa (forth panel, green bar) and eukaryote plus 

apicomplexa (right panel, orange bar). Pathways were classified into five 

categories with: genes specific to P. falciparum (cluster I), genes conserved in 

apicomplexa (II), genes conserved in apicomplexa and prokaryotes (111), genes 

conserved in apicomplexa and other eukaryotes (IV) and genes conserved in all 

210 genomes (V). The total number of functionally characterized and hypothetical 

genes in each category are displayed similarly in panel A. 

level) and MPMP (121 terms) databases. First, the 2187 genes with functional 

assignments were used to evaluate the predictive accuracy of the WNC approach 
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using a 'ieave-one-out" analysis combined with top k prediction (Deng, et al., 

2003). Based on this test, we could recall 2121 (97%) genes from which 996 (47%) 

matched the original annotations ("recalled original annotation") while for 1125, 

WNC derived annotations that differ from the original ("recalled different 

annotation") (figure 3.3B, S3.8 and S3.9). The 47% precision rate achieved by 

this analysis was comparable to interactome analyses of well studied model 

organisms including yeast, (Groth, et al., 2008; Kim, et al., 2008; Pena-Castillo, et 

al., 2008; Tian, et al., 2008). In comparison, an identical WNC analysis of 

PlasmoMAP could recall only 31% of the original annotations for the 91% of input 

genes (data not shown). Given the high accuracy of the WNC approach, we 

generated functional predictions for 2545 hypothetical proteins (95% of the total 

hypothetical proteins in the PlasmoINT network). The newly annotated genes could 

be assigned to 216 functional terms (out of the 330) with at least 5 genes with 

recalled original annotations (figure S3.10). For each of the 227 functional groups 

we also estimated the predictive precision rate as a function of the ratio between the 

number of genes with "recalled original annotation" and the genes with "recalled 

different annotation" (figure S3.10). The top 35 functional groups with the highest 

number of genes with "recalled original annotation" included several well defined 

cellular functionalities such as aminoacyl-tRNA biosynthesis (precision rate (p.r.) = 

1.0), protein biosynthesis (0.49), cytoskeleton-dependent intracellular transport 

(0.71), clathrin-mediated vesicular transport (0.47) and fatty acid metabolism (0.47) 

(figure 3.3B). In addition, high precision rate for functional predictions were also 
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achieved for several Plasmodium specific functional groups linked with immune 

evasion and cytoadherance such as "rosette formation between normal and infected 

RBC* (p.r. = 0.55) and "interactions between modified host cell membrane and 

endothelial cell'" (0.41), and invasion such as "subcellular localization of proteins 

involved in invasion" (0.35) and "components of the linear motor responsible for 

merozoite motility in invasion'" (0.45) (figure 3.3B and S3.10). The high precision 

rates for these functional terms provide high confidence functional prediction for 

the hypothetical genes assigned to these functionalities and thus firm candidates for 

new molecular factors that are essential for growth, development as well as 

virulence of P. falciparum parasites. 

Taking advantage of the phylogenetic profiles, we evaluated evolutional 

conservation of the functional gene groups by scoring the number of orthologues 

(reciprocal BLAST-based E-value > 10 " ) in 210 genomes of the P. falciparum 

genes in each functional category (figure S3.11). This information helped to 

evaluate the biological significance of different biological processes that are 

facilitated by these gene groups and thus their relevance for parasite growth and 

development. Only a small number of functional gene groups are exclusive to P. 

falciparum and show low-to-no sequence homology with known genes in other 

organisms including the related apicomplexan species. These include 

functionalities associated with P. falciparum virulence including host cell 

interaction and rosette formation (figure 3.3C cluster I). The main components of 

these functional groups are the subtelomeric gene families encoding several classes 
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of surface antigens such as var genes (host cell interactions), rifin and stevor 

(rosette formation). In addition, genes encoding proteins that are associated 

with Maurer's clefts and are essential for transport of parasite derived host cell 

surface antigens are classified by the MPMP into two functional terms: 

"Established and putative Maurer's clefts proteins*' (figure 3.3C cluster II) and 

"Exported parasite proteins associated with Maurer's clefts' (figure 3.3C cluster I). 

While both groups exhibit minimal levels of conservation amongst prokaryotic and 

eukaryotic species the latter groups are highly specific to P. falciparum compared 

to the first which is moderately conserved amongst apicomplexans. Several 

members of both groups were recently reported to be essential for export of P. 

falciparum antigens to the surface of the infected red blood cell (Maier, et al.. 

2008). The newly annotated genes provide new candidates for further studies of 

this unique mechanism that is essential for the interaction of Plasmodium parasites 

with its host. Moreover, assessing the evolutionary conservation of the individual 

members might help to understand specificities of antigenic variation between 

different Plasmodium species. 

Functional assignments associated with parasite invasion dominate the 

functional cluster that is highly conserved amongst apicomplexan but diverse from 

all other eukaryotic and prokaryotic species (figure 3.3C cluster II). Functionalities 

associated with merozoite invasion are believed to be amongst the most promising 

target areas for new malaria intervention strategies using both vaccine and 

chemotherapy approaches (Cowman and Crabb, 2006). A large number of 
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functionally uncharacterized genes'that were assigned to this functional cluster 

might provide excellent targets for these efforts. To evaluate the utility of the new 

gene annotation we explore this gene groups further (see below). Cluster III (figure 

3.3C) depicts several plasmodial functions that have a prokaryotic origin but are 

underrepresented in eukaryotes. These include steroid (isoprenoid) biosynthesis, 

apicoplast and mitochondrial translation and three homologues of subtilisine 

proteases (Dahl, et al., 2006; Ralph, et al., 2004; Yeoh, et al., 2007). All three 

functionalities are presently under consideration as potential drug targets and thus a 

better understanding of their biological function might contribute to this effort. In 

addition to these, two essential enzymes of the shikimate pathway (PFIllOOw, 

Para-aminobenzoic acid synthetase and PFF1105c, chorismate synthase), and two 

enzymes associated with phosphofructo kinase activity (PFI0755c. PF110294) are 

of prokaryotic origin and are represented in the PlasmoINT network (figure 

3.3C). 

Nonetheless, the vast majority of the P. falciparum functional pathways is 

highly conserved in eukaryotic species or across all living organisms (figure S3.11). 

Figure 3.3C depicts several example pathways involved in cellular architecture, 

trafficking as well as maintenance of chromosomal DNA and replication that 

Plasmodium shares with the majority of eukaryotic species (Cluster IV). 

Pathways of basic metabolic processes that are conserved across all living 

organisms include the Citrate (TCA) cycle, fatty acid and amino acid synthesis, and 

redox metabolism (Cluster V). These data suggest that despite the extensive 
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diversity of the genome sequence, the majority of biological functions associated 

with basic metabolism as well as eukaryotic cell organization are well preserved in 

P. falciparum (figure S3.11). This also suggests that some of the molecular factors 

of these basic pathways represent evolutionary diverse proteins and thus suitable 

targets for malaria intervention strategies (Kato, et al., 2008; O'Donnell and 

Blackman, 2005; Ward, et al., 2004; Yeoh, et al., 2007) . The newly annotated 

genes using the WNC method could present such proteins. 

3.3.5 Invasome of P. falciparum merozoite 

For further validation we chose to explore the assembled network to 

identify genes associated with merozoite invasion, one of the most promising 

targets for new malaria intervention strategies. Merozoite invasion is a complex, 

multiple-step process during which the parasite attaches to an erythrocyte, reorients 

itself and subsequently, via active penetration, enters the cell. Although more than 

50 proteins were previously linked with it, the gaps remaining in our understanding 

of the molecular mechanisms that facilitate the invasion process indicate that many 

more are involved (Cowman and Crabb, 2006; Haase, et al., 2008; Soldati, et al., 

2004). Using the 90% confidence interactome network, we constructed a merozoite 

invasion sub-network of proteins by retrieving all genes directly linked to 25 

previously established invasion associated proteins (figure 3.4A and table S3.2). 

This sub-network contains a total of 2417 linkages connecting 418 proteins 

including 155 with a predicted function and 263 hypotheticals. Interestingly, the 
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vast majority of genes previously associated with invasion were present in this 

sub-network, including 43 out of 56 proteins previously predicted to be localized in 

intracellular compartments associated with merozoite invasion using their 

transcriptional and structural features (Haase, et al., 2008). The overall topological 

structure of the invasion sub-network overlaps well with the general view of 

molecular functionalities involved in invasion. It distinguishes four molecular 

mechanisms previously linked with it: apical organelle proteins, 

GPI-anchored/peripheral surface proteins, actin-myosin motors and signal 

transduction proteins (figure 3.4). Of the 263 hypothetical proteins that were 

represented in the invasion subnetwork 230 (87.5%) were also predicted by the 

WNC functional predictions to be involved in merozoite invasion by at least one of 

the top terms. 

In order to evaluate the in silico predictions, 35 proteins with a high 

probabilistic score to be invasion related by the WNC and/or represented in the 

subnetwork were fused with GFP (at the C-terminus) and expressed ectopically in P. 

falciparum under the control of an appropriate promoter (Treeck, et al., 2006). The 

selection of this screen was biased towards proteins with predicted signal peptides 

(22 out of 35 proteins), given the importance of secreted proteins in the host cell 

invasion, immunity and their defined subcellular localisation within the apical area 

or the surface of the merozoite. Western Blot analyses using GFP antibodies 

confirmed expression of each fusion product in the transfected parasites and 

subsequent live cell imaging allowed their subcellular localisations. Eight 
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GFP-fusion proteins localized to the ER and were excluded from further validation, 

because accidental ER retention of certain proteins due to fusion with GFP is a 

known problem and therefore might not represent the true localization of the 

endogenous protein (Treeck, et al., 2006). Four proteins had to be omitted from the 

evaluation due to a very low expression of fusion protein and/or lack of a 

conclusive subcellular distribution. Additional 2 hypothetical proteins could not be 

PCR amplified. 

Figure 3.4 Subnetwork associated with merozoite invasion process. This 

sub-network has a total of 2417 links (lines) with 418 proteins (circles), and 25 core 

apical proteins (marked with red circles). 21 proteins (yellow circles) predicted as 

invasion proteins by WNC and/or present in the subnetwork were localized within 

the infected erythrocyte. 
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The localisation of the remaining 21 proteins led to a grouping according to 

the predominant localisation (figure 3.5-1). The largest group consisted of 13 

proteins that showed an apical distribution of the fluorescence signal in maturing 

schizonts and in free merozoites after rupture (figure 3.5 II). As an example 

PF1CM3166-GFP was co-localized with the microneme marker protein EBA-175 

and showed a similar distribution (figure 3.5 II, A-B). Interestingly, the apical 

group also included one protein that lacked a classical N-terminal signal sequence 

(PFD0720w). In addition to acetylation motifs, this protein possesses an 

Armadillo/beta-catein like repeat that is known to be involved in protein-protein 

interactions. Coincidentally, in addition to its predominant apical foci, PFD0720w 

(and PFD1130w) also showed a faint but distinct peripheral distribution (figure 

S3.12 and data not shown). 

The second group was represented by 2 proteins (PFIO 0352 and 

PF10_0348) with high homology to proteins of the merozoite surface protein 

super-family. These proteins showed a merozoite surface distribution that was 

confirmed for PF100352 by co-localization with MSP-1 (figure 3.51 and II CD). 

The third group containing four proteins (MAF13P1.130, PFE1285w. PF10 0039, 

and PFE1130w) exhibited a staining pattern that was reminiscent of the inner 

membrane complex (IMC) (Baum, et al., 2006). The IMC is tightly associated with 

the plasma membrane and represent a prerequisite for the structural integrity and 

motility of invasive parasites (Baum, et al., 2006; Baum, et al., 2008; Morrissette 

and Sibley, 2002). All four proteins showed a similar dynamic during merozoite 
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maturation as depicted for MAL13P1.130-GFP (figure 3.5 II E and S3.12): in early 

schizonts these proteins are present in a cramp like structure (figure 3.4 II E7) at 

the apical tip of forming merozoites. This structure develops into a ring like 

configuration (E8) before the fluorescence started to be equally distributed in the 

periphery of the nascent merozoite (E9-10). In this group only PFE1130w 

displayed a classical signal peptide. 

The last group comprising PFE0910w and PFE0145w might represent the 

only false positive within the validated group of proteins with a localisation to 

either the mitochondrium or the apicoplast (figure S3.12). Interstingly, although 

PFE0145w has a TOP 3 prediction to be involved in invasion, it is not retrieved by 

this functional subnetwork. 

In summary, 19 out of 21 selected proteins are associated with the structures 

known to be directly involved in invasion. It demonstrates that the functional 

predictions based on such approaches can lead to the identification of new putative 

targets for malaria intervention strategies. 
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Figure 3.5 Functional analyses of merozoite invasion proteins. I. Subcellular 

distribution of 21 predicted proteins determined to be involved in invasion using 

GFP tagging; All proteins were localized in schizonts (s) and free merozoites (m). 

13 proteins (PF08_0108, PFD0230c, PFB0570w, PFD1105w, PFD1130w, 

PF100119, PF100166, PF100295, PF140119, PF140572, PFL0300c, 

MALI3P 1.94 and PFD0720w) showed a predominantly apical GFP distribution 

(green) and are boxed in blue. Two proteins (PF10_0348 and PF100352) revealed 

merozoite surface localisation (boxed in green) and four proteins (Mall3P1.130, 
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PFE1285w, PF100039 and PFE1130w) represented the IMC compartment (boxed 

in yellow). 2 proteins (boxed in orange) localized either to the apicoplast 

(PFE0910w) or the mitochondrion (PFE0145w). Nuclei were stained with DAPI 

(blue). Expression of the GFP fusion was also verified by Western-Blot analysis 

depicted besides each panel. II. Localisation of the apical protein PF100166-GFP, 

the surface proteins PF100352 and subcellular distribution and dynamics of the 

IMC protein MAL13P1.130; (A-B) PF10 0166-GFP (green) localized to the apical 

region of schizonts (s) and free merozoites (m) in unfixed (A) and fixed (B) 

parasites and partially co-localized (B) with the microneme protein EBA175 (red). 

The boxed regions are depicted in higher magnification and labelled with numbers. 

The nucleus is stained with DAPI (blue). (C-D) PF10_0352-GFP (green) localized 

to the surface of schizonts and free merozoites in unfixed (C) and fixed (D) 

parasites and co-localized (D) with the surface protein MSP-1 (red). (E-F) 

Dynamics of MAL13P1.130-GFP (green) during schizogony in unfixed parasites 

(E): in early schizont the MAL13P1.130-GFP emerged as a cramp like structure 

(enlargement E 7) at the apical tip of forming merozoites. This structure develops 

into a ring like configuration (E 8) before it starts to be equally distributed within 

the periphery of the nascent merozoite (E 9-10). (F) The MAL13P1.130-GFP 

co-localised with the IMC protein GAP45 (F, red) in fixed parasites. 

3.4 Discussion 

3.4.1 Global transactional responses of Plasmodium parasites to growth 

perturbations 

Up until now, the significance of transcriptional regulation of P. falciparum 

in responses to growth perturbations remains a controversial issue. Extensive 

analyses of the primary sequence of proteins deduced from the P. falciparum 

genome detected only one third of transcription related factors compared to a 
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typical eukaryotic organism (Coulson, et al., 2004). These findings led to a 

suggestion that expression of the majority of Plasmodium proteins is regulated 

post-transcriptionally. Two following studies further supported these original 

predictions. First, exposure of P. falciparum cells to inhibitors of the folate 

synthesis pathway lead to only translational up-regulations of protein targets known 

to interact with these inhibitors (Nirmalan, et al., 2004). Second, treatment of P. 

falciparum cells with chloroquine, as well as one specific PKC inhibitor, resulted 

only in a non-specific and low amplitude transcriptional response. These finding 

suggested that during evolution, Plasmodium parasites lost some of their potential 

to alter their mRNA expression levels in response to variable growth conditions. 

Interestingly, similar results were observed for another important human pathogen, 

Mycobacterium tuberculosis, in which a number of genes essential for survival in 

the host lost their responsiveness to changing growth conditions and are transcribed 

constitutively (Rengarajan, et al., 2005). This phenomenon was attributed to the 

fact that this pathogen is fully adapted to its host environment and is never exposed 

to other types of growth conditions. Although this might be also partially true for 

P. falciparum, the strong transcriptional changes to several perturbations used in 

this study indicate that some pathways retained their links to transcriptional 

regulations and that a certain degree of flexibility exists for the parasite to respond 

to changing growth conditions. 

Even some of the low amplitude transcriptional changes are likely to reflect 

physiologically relevant responses. Oakley et al demonstrated that a 2-3-fold 
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decrease in mRNA abundance of several genes of the ubiquitin-proteosome 

pathway resulted in approximately 15-fold decrease of overall protein 

ubiquitination activity in P. falciparum cells exposed to febrile temperatures. In 

our analyses, we find that even the subtle transcriptional changes are highly 

reproducible and dose dependent (see chloroquine treatment figure 3.1 A). 

Moreover, the contribution of these subtle changes to the interactome networks 

improves the functional prediction scores based on the transcriptional co-regulation 

pretense (data not shown). Taken together, these data strongly indicate that 

despite the initial skepticism, transcriptional profiling is a suitable type of analysis 

for high throughput gene annotation in P. falciparum. 

3.4.2 Gene functional network reconstruction of P. falciparum 

In silico modeling of generic genomic systems demonstrated that even a small 

number of perturbations can significantly improve the confidence and gene 

coverage of an interactome network as long as these perturbations affect mRNA 

levels of 50-60% of genes in the genome (Khanin and Wit, 2007). In our analyses, 

we incorporated 2567 genes (48% of the genome) that exhibit at least two 

sequential 2-fold changes in at least one time-series. As indicated in Figure ID, 

the perturbation analyses increased the likelihood score prediction values by 

approximately ~ 10-fold compared to the P. falciparum IDC transcriptome alone. 

This also led to improvements of the overall confidence and the proteome coverage 

of the whole interactome network compare to the identical network assembled with 
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the IDC transcriptome alone (Figure S3.13). In the 50% precision rate network, 

the average connectivity between genes was 95 using the IDC transcriptome only, 

but dropped to 70 when the perturbation data was incorporated (data not shown). 

Hence, the perturbation data are likely to be the main source of the improvements 

of this interactome network compared to the previously reported interactome 

PlamoMAP, mainly by eliminating false positive results (table 3.2 and figure S3.5 

and S3.6). 

3.4.3 Exploring gene function from the predictions and interactome 

For 2545 hypothetical proteins of P. falciparum, functions were assigned based 

on the local network "environment"' of the probabilistic interactome using the 

WNC method. To further validate these predictions, we manually inspected 

several molecular mechanisms that overlap the functional groups. Structural feature 

of some of the newly annotated genes provided further evidence for the precision of 

the WNC annotations. The first example represents 11 genes associated with the 

process of histone acetylation. Excluding 5 known genes: PF10_0078 (histone 

deacetylase), PFF0865w (H3), PF11_0062 (H2b), PFF0860c (H2a), PF11 0061 

(H4), the other six hypothetical proteins (PFL1645w, PFL0635c, PFA0510w, 

PFF1440w, PF140724 and PFI 1530c) contained a bromodomain motif, which is 

found in many chromatin associated proteins and can interact specifically with 

acetylated lysines (Dhalluin, et al., 1999; Hayes and Hansen, 2002; Jeanmougin, et 

al., 1997). 10 of the 11 proteins are present in the 90% precision rate network, 

-89-

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



and direct linkages to these protein's identified more proteins associated with this 

process. These include two other histone deacetylase genes PF11260c and 

PF140690 linking to PF10_0078, PfGCN5 (histone acetylase, PF08_0034), three 

additional histone genes (PFC0920w, H2a; PF070054, H2b; PFF0510w, H3) and a 

homologue of ASF1 (chromatin assembly protein, PFL1180w). 

The second example is the DNA mismatch repair system where we 

identified 11 hypothetical proteins associated with this process together with 12 

proteins previously implicated in the this process (7 DNA repair proteins: 

MAL7P1.206, PF00 0002, PF11_0184, PF140254, PFB0265c, PFE0270c and 

MAL7P1.145; two DNA polymerase proteins: PF100165 and PF10 0362; 

PF110282, deoxyuridine 5'-triphosphate nucleotidohydrolase; and PF100080, 

endonuclease). Interestingly, for 5 of the 11 hypothetical proteins, the PFAM 

searches performed in this study identified domains that are consistent with their 

involvement in the DNA repair mechanism. PF140051 belongs to the MutS 

family which is a DNA mismatch repair protein (Obmolova, et al., 2000). 

PFL0230w has CMP/dCMP deaminase and zinc-binding domains needed to 

catalyze the hydrolysis of cytidine into uridine. It has been speculated that this 

enzyme may be associated with the replication fork during DNA synthesis 

(Mathews, et al., 1988; Moore, et al., 1993). PFL1360c has one leucine-rich repeat 

(LRR) domain and it is involved in a variety of biological processes including 

DNA repair (Kobe and Deisenhofer, 1994). PF140538 is a protein containing a 

STAG domain which is typically found in subunits of the cohesin complex 
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(Ellermeier and Smith, 2005). Finalfy, PF13_0080 has a domain of RNA-directed 

DNA polymerase. 

3.4.4 Functional analysis of new invasion proteins 

The functional network predicted to power red blood cell invasion 

encompasses 418 proteins. Based on the invasion sub-network constructed with the 

90% confidence gene linkages, we initially selected 35 predicted proteins for 

intracellular localization in order to validate their putative involvement in 

merozoite invasion. This resulted in 21 transgenic parasites line with an evaluable 

GFP distribution within the infected erythrocyte comprising 14 proteins with a 

classical signal peptide, 2 proteins with a putative signal anchor and 5 proteins 

without any apparent localisation motif. 13 proteins revealed an apical GFP 

localisation reflecting the initial biased selection for the functional screen towards 

protein with predicted signal peptides. The apical area is defined by its associated 

secretory organelles (rhoptries, micronemes and dense granula) as depicted in 

figure 3.5 (II, B3) using EBA-175 as a microneme marker protein. These organelles 

compile an unknown number of secreted proteins that play not only an important 

role for host cell interaction, but are highly interesting for vaccine and drug 

development (Cowman and Crabb, 2006). For instance, PFD0230c (also known as 

DPAP3) contains a serine protease domain and was recently identified in a forward 

chemical genetic screen as one of the key regulators for merozoite egress 

(Arastu-Kapur, et al., 2008). This function is in a good agreement with the 
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network based assignment as well as the localization studies that demonstrated 

PFD0230c to be transported to the apical organelle(s) (figure 3.5 II). PF08 0108, 

an aspartate protease (also known as plasmepsin X), belongs to the P. falciparum 

specific plasmepsin family with 10 members highly homologous to pepsinogen A 

(Coombs, et al., 2001). While some of the plasmepsins are involved in 

hemoglobin degradation in the digestive vacuole, PF080108 is expressed in late 

schizonts and localizes as an ectopically expressed GFP fusion protein to the apical 

organelles of merozoites (figure 3.5 I). This suggests that plasmepsin X has evolved 

a distinct role in the Plasmodium life cycle, being involved either in merozoite 

egress, or invasion. Two additional proteins from the apical group, PFB0570w and 

PFD1105w were previously described as rhoptry proteins with adhesive properties. 

PFB0570w (PfSPATR, secreted protein with altered thrombospondin repeat) 

displays a degenerated TSP-domain with a multi-stage expression profile 

(Chattopadhyay, et al., 2003) and PFD1105w (PfAARP, asparagin rich parasite 

protein) was shown to bind to surface structure on the erythrocyte 

(Wickramarachchi, et al., 2008). Again, these functions are in a good agreement 

with the network based assignment. 

The two proteins that were indentified to been surface located are both 

encoded by genes within the msp cluster on chromosome 10, that encodes multiple 

proteins belonging to the merozoite surface super family. Noteworthy, PF100348, 

which is located in an msp cluster on chromosome 10, encodes an additional DBL 

domain, which might mediate initial receptor binding with the host erythrocyte 
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(Wickramarachchi et al manuscript submitted). MALI3.PI. 130, PFE1285w, 

PF10_0039 and PFE1130w showed a subcellular localization at the IMC similar to 

GAP45, a member of the actin-myosin motor, a complex that plays a crucial role in 

invasion (Baum, et al., 2006). MAL13P1.130 was initially characterized as a 6 

transmembrane protein by a proteomic approach characterizing detergent resistant 

membrane fractions of parasites in schizont stages (Sanders, et al., 2005), while 

PFE1130w represents a 7 transmembrane domain IMC protein. Structurally distinct 

without any transmembrane domain (or signal peptide) are PFE1285w and 

PF100039 that belong to the family of alveolins and are known to play a structural 

role in IMC architecture (Baum, et al., 2008). 

It will be crucial to further validate new proteins from the predicted 

invadome to deepen our understanding of the invasion process on the molecular 

level, although only functional studies will provide a basis for rational drug and 

vaccine development. 

3.5 Concluding remarks and outlook 

Human malaria remains one of the most dangerous infectious diseases in the world 

affecting 300-500 million and killing 1-2 million people each year. The fast 

spreading resistance to the majority of the available chemotherapeutic agents and 

the lack of an operational vaccine create a serious health concern for the future. 

Better understanding of the Plasmodium parasite biology and especially functional 

relevance of the numerous Plasmodium hypothetical genes is paramount for the 
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development of new malaria intervention strategies. Here we carried out 

extensive transcriptional profiling of P. falciparum responses to chemically induced 

growth perturbations and used these data to reconstruct a gene interactome network 

that allow us to predict function of 2550 Plasmodium hypothetical genes. The 

high accuracy of these predictions was demonstrated by the functional validation of 

21 selected protein candidates from which 19 localized to intracellular 

compartments associated with the invasion machinery. Given the low efficiency 

of all available reverse as well as forward genetics in P. falciparum (Balu, et al., 

2005; O'Donnell, et al., 2002), these data demonstrate that transcriptional profiling 

of growth perturbations provides a powerful technique for functional genomics of 

Plasmodium parasites. The functional predictions based on this network provide 

highest precision rates compared to the presently available interactome network. 

All these gene predictions are available in an online database on the following 

website: http://zblab.sbs.ntu.edu.sg/network/index.htmL 

Although this network covers 88% genome of P. falciparum and about 2550 

hypothetical proteins were assigned function clues, to improve the accuracy of the 

network and predictions of gene function, more data will be incorporated in the 

future. For example, more growth perturbation data, expression profiles from 

mutant strains and proteomic expression profiles are being investigated. 

Currently, 20 proteins were chosen for intracellular localization analysis to 

evaluate the network-based predictions of gene function. These invasion proteins 

would be further analyzed to illustrate the molecular function in the invasion 
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process in the future, which would promote deep understanding of the mechanism 

of merozoite invasion in P. falciparum. Furthermore, more proteins would be 

selected for function analysis, such as proteins associated histone modification and 

DNA binding proteins. 

3.6 Materials and methods 

3.6.1 Plasmodium falciparum genome 

The 4.4 version genome, 5363 protein encoding open reading frames and 53 

pseudo genes of P. falciparum are downloaded from PlasmoDB 

(http://wvvw.plasiriodb.org/dovvnload/) excluding mitochondrion and plastid genes. 

The current annotation of CDSs is based on the 5.4 version genome. All linkages 

and calculations of genome coverages are based on this gene set. 

3.6.2 Parasite culture, treatment and microarray and plasmid transfection 

Cells of P. falciparum strain 3D7 and Dd2 were grown and maintained as 

previously described (Trager and Jensen, 1997). Growth assay of each drug or 

compound were performed in 2% hemotocryt with 5% parasitemia at one 

particular stage. Parasitemia of new rings of next cell cycle were counted to 

calculate the inhibitory concentration at 50% (IC5o). Parasites were treated with 

appropriate drug or compound concentrations (IC50/90/180) and collected in a course 

with 5-8 time points taken in regular time intervals (30-120minutes). 

Genome-wide gene expression profiling was conducted using a long 
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oligonucleotide representing all 53'63 P. falciparum genes, and the microarray 

hybridizations were carried out as previously described (Hu, et al., 2007). P. 

falciparum asexual stages (3D7) were transfected as described previously (Fidock 

and Wellems, 1997). Positive selection for transfectants was achieved using 10 nM 

WR99210. 

3.6.3 Gene expression profiles 

Currently, mRNA expression profiling represents one of the most extensive 

functional genomics data sets, and it has been proved that genes with similar 

expression profiles are more likely to be co-regulated, functionally related and 

encode interacting proteins (Bhardwaj and Lu, 2005; Eisen, et al., 1998; Ge, et al., 

2001; Tornow and Mewes, 2003). Till now, only several data sets about P. 

falciparum are available, and most of them are data type of life cycle. Here we 

collected data of 247 micrarrays from different drug or inhibitor treatment (table 

3.1), together with 42 microarray experiments of cell cycle from lab or field strains 

and from the published data. Data of each drug/inhibitor experiment were extracted 

from NOMAD database, and each gene profile was represented the average 

intensities of all oligos that map to that gene. The missing data were fixed by 

K-nearest neighbor method in R package (Troyanskaya, et al., 2001). Gene profiles 

were assembled when existing in all experiments. 

Pearson Correlation Coefficient (PCC) between the expression profiles 

across the entire perturbation experiments panel for each gene pair were calculated 
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to evaluate the complexity of the growth perturbations. Based on the benchmark 

data (described in the following section), we calculate a likelihood score as a 

function of a ratio of the probabilities of positive and negative observations for 

different PCC thresholds to systematically evaluate functional relationships of 

transcriptional co-regulated genes in the growth perturbation data. 

To construct the gene functional network we also incorporated others 

datasets, the IDC transcriptome datasets of 3D7, Dd2 and HB3 (148 microarray 

experiments) (Llinas, et al., 2006). To indicate the strength of functional 

association of each gene pair by gene expression profiles, PPCs were calculated 

independently across each dataset first and a called "optional average" method was 

used to average the three PPCs as the final correlations (fPPC). Briefly, Fisher's 

z-transform (David, 1949: Huttenhower. et al., 2006) was used to average two 

PPCs from two independent IDC transcriptomes and compared to the PPC from 

perturbation data. If the later is smaller, the final PPC is the PPC from perturbation 

data. Otherwise, the final PPC is equal to the average PPC from three datasets 

using the Fisher's Z transform. To illustrate the advantage of this method, we 

reconstructed the network using the average PPCs by Fisher's z-transform of all 

gene pairs. We divided the final correlations into 19 bins. For each bin we assessed 

its overlap with the benchmarks (table S3.]). 

3.6.4 Protein-protein interaction data based on yeast two-hybrid experiments 

Physical protein-protein interactions (PPI) reflect functional associatioin of the 
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corresponding genes in most, if' not all. cases. As for direct experimental 

observations of protein interacrions in P. falciparum, a set of 2811 interactions 

among 1308 proteins that generated by the application of yeast two-hybrid method 

was used (LaCoiint, et al., 2005). We defined all interactions as only one bin and 

assessed its overlap with the benchmarks (table S3.1). 

3.6.5 Protein-protein interaction data based on domain-domain interaction 

evidences 

The basic units of proteins are domains and proteins interaction with each other 

through their domains. Bioinformatics methods are developed to predict the 

domain interactions by integrating the experimental data sources of protein-protein 

interactions from different species as well as other data sources (Deng, et al., 2002; 

Lee, et al., 2006; Riley, et al., 2005; Sprinzak and Margalit, 2001). Lee et al. (Lee, 

et al., 2006) predicted a set of high-confidence domain-domain interactions by 

integrating multiple biological data sets from four species (yeast, worm, fruit fly 

and human). We mapped this data set to P. falciparum to predict the 

protein-protein interactions based on these domain interaction evidences. Briefly, 

first we predicted the domain information of all malaria proteins using HMM 

method based on the PFAM database (Sonnhammer, et al., 1998), and generated all 

possible protein domain-domain pairs and offered the confidence score (likelihood 

score) of each domain pair. The score of a domain pair was assigned to a pair of 

proteins containing the domains. If different scores existed between a pair proteins 
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arising from different interacting domain pairs, the maximum of the scores was 

assigned to the pair. We divided the confidence scores into 6 bins. For each bin we 

assessed its overlap with the benchmarks (table S3.1). 

3.6.6 Prediction of functional linkages using phylogenetic profiles 

Phylogenetic profiles of all proteins were calculated using the mutual information 

method (Date and Marcotte. 2003). Briefly, the protein sequences of Plasmodium 

falciparimm were compared with reference organisms (210 reference organisms, 

including 155 prokaryotes and 55 eukaryotes, were downloaded from the NCBI 

and the ENSEMBL) using BLASTP (Altschul, et al., 1997). For each protein i, a 

vector was generated with elements py, where p,j = -1/logEy. Flere we 

predetermined the E-value threshold is equal to le-4 according to the prediction 

power of different E-value thresholds (Sun, et al, 2005). That is, pij = 1 when the 

E-value is greater than or equal to the predetermined E-value threshold. As a 

metric of phylogenetic profile similarity, the mutual information was calculated 

between pairs of phylogenetic profiles (Date and Marcotte. 2003: Sun, et al., 2005). 

In practice, mutual information is calculated on histograms of pi, values, binned in 

0.01 intervals, with resulting MI values ranging from 0-2.4. To avoid the effects of 

paralogs in Plasmodium, we deleted all protein pairs originated from paralogous 

proteim pairs, in which paralogs were defined by their BLASTP E-values (<= 

le-15). Figure S3.2 showed the hierarchical clustering of phylogenetic profiles of 

all P. falciparum proteins and an example of correlated proteins. We divided 
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mutual information scores into 15 bins. For each bin we assessed its overlap with 

the benchmarks (table S3.1). 

3.6.7 Reference and benchmark sets 

For the validation and prediction of protein-protein functional relationship, we 

need to have reference datasets to serve as gold-standards of positives and 

negatives. The Kyoto-based KEGG database (Kanehisa, et al., 2002) provides 

metabolic and regulatory pathway annotation for genes. Previous studies have 

proved the KEGG database to be an excellent reference set for evaluating 

functional linkages (Date and Marcotte. 2003; Date and Stoeckert, 2006; Lee, et al., 

2004; Marcotte, et al., 1999). KEGG maps about 10% genes of P. falciparum into 

at least one pathway or cellular systems (examples including "glycolysis", 

"ribosome", "proteosome"). We extracted 71 pathways in which it has at least 

two genes, including total 492 genes. The KEGG database produces original 

12,493 positive gene pairs, finally 11,046 positive pairs was determined after 

kicking out any pairs in which gene participate more than 3 pathways, thus 

avoiding promiscuous members. A total of 61,721 negative gene pairs were 

created according to all possible genes pairs based on all genes in the 79 KEGG 

pathways (8 pathways only have one gene) excluding all original positive pairs and 

any pairs in which they share any GO terms up to 4th level in all three GO 

categories (Ashburner, et al., 2000). Table S3.1 showed the parameters of nave 

Bayesian network of all datasets based on this reference dataset. 

-100-

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



In order to test the predictive values of the input data, we assemble a positive 

benchmark dataset that comprises of 11.046 linkages between 492 P. falciparum 

genes that fall into 71 distinct KEGG pathways. We also assemble a negative 

benchmark dataset that contains 61,721 gene pairs that do not fall into a common 

KEGG pathway and do not share a Gene Ontology (GO) term up to 4th level. For 

the phylogenetic profiling, domain-domain interaction and transcriptome datasets, 

there are positive trends between the linkage evidence values (such as PCC) and 

the benchmark based likelihood scores (figure S3.3). This data suggest that the 

calculated likelihood scores reflect the functional relationships between P. 

falciparum genes and are applicable as input values for assembly a probabilistic 

interactome network. 

3.6.8 Integration of the data sets by Bayesian probabilistic model 

Bayesian model are efficient to integrate heterogeneous data for the task if 

combining evidences (Date and Stoeckert, 2006: Jansen, et al., 2003; Lee, et al., 

2004: Troyanskaya. et al., 2001). Four dataset types are evaluated by the standard 

positive and the negative benchmarks, and each gene pair was assigned one 

likelihood score. Then all likelihood scores given by different data types are 

integrated by the Bayesian model, which generates the final prediction score for a 

potential protein linkage based on a product of the likelihood scores from each of 

the four data sets with no penalties for missing evidence from any set. 

Likelihood Score (LS) = LSppc x LS/w x LSm x LSoomain 
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PPC is gene expression profile linkages. PHY is phylogenetic profile linkages. PPI 

is experimental protein-protein interaction linkages. Domain is domain-domain 

interaction linkages. The posterior probability was computed based on Bayesian 

formula. Oposlenor = Oprwr x LS. 

3.6.9 Cross validation of the integration results 

We performed a 10-fold cross-validation to evaluate the overall performance of the 

prediction. Briefly, first the positive and negative benchmarks were randomly 

divided into ten separate equal sets, and nine of them were used as the training set 

to calculate the likelihood scores and the remaining one set as the test to identify 

the positive s and negatives. We ran this process ten times so that each of the ten 

sets was a test set and the remaining nine constituted the training set. Finally, all 

true positives (TP) and false positives (FP) were summed up under different 

likelihood score cutoffs to evaluate the ratio of true positives to false positives. The 

positive predictive value (PPV, TP/(TP+FP)) was also calculated as the fraction of 

true positives to the total number of true positive and false positive. 

3.6.10 Characterization of the network structure and identification of local 

modules among the network 

We used several essential variables (node degree, degree distribution, clustering 

coefficient) to characterize the overall topological structure of the network 

(Barabasi and Oltvai, 2004). Node degree (connectivity), k, is the number of links 
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that the node has to other nodes. The degree distribution. P(k), gives the 

probability that a selected node has exactly k links, which allows us to distinguish 

between different classes of network. When the degree distribution approximates a 

power-law, P(k)~k", it means the network is scale-free. Clustering coefficient 

characterizes the tendency of nodes to form clusters or groups. If the distribution of 

clustering coefficient, C(k), follows C(k)~k"'. the network structure is hierarchical 

(Ravasz. et al.. 2002). 

We searched the local modules in the network using Markov Cluster 

(MCL) algorithm which is a fast and scalable unsupervised graph clustering 

algorithm (Enright, et al., 2002; Krogan, et al., 2006). Comparing analysis of 

Markov Clustering (MCL) and other methods concludes that MCL performs 

robustly and superiorly to extract protein complexes from interaction networks 

(Brohee and van Helden, 2006). To define the parameter of granularity, we 

followed the method of Wuchty and Ipsaro (Wuchty and Ipsaro, 2007) by 

optimizing the functional coherence and size of the clusters (Lee, et al.. 2004). The 

networks and sun-networks were laid out and visualized using Cytoscape 2.5 

(Shannon, etal., 2003). 

3.6.11 Network-based gene function prediction 

3.6.11.1 Weighted neighbor counting method 

We used one neighbor counting method weighted by the likelihood score because 

the likelihood score of each linkage could represent the functional similarity 
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between two proteins. 

f(i,j) = TLS(m)5(j)/XLS(m) 

where the f(i,j) is the propability of gene i having function j . The LS(m) is the 

likelihood score of the mth neighbor of gene i. 8(/)=l if the gene has function j , else 

8(/')=0. Without threshold, we assigned an unannotated protein with k functions 

having the top k statistic scores (see the foiSowing). The performance of the 

predictions is evaluated by plotting precision against recall over vary thresholds as 

adopted in Deng et al (2003). For a given threshold p\ precision and recall are 

defined as: 

Precision = £Vj k^^jn^ Recall= VVj k^p/^n, 

where nj is the number of known functions of protein i; mLp is the number of 

functions predicted for protein i at threshold P and k,p is the number of functions 

predicted correctly for protein i at threshold (3. V is the set of all functionally 

known genes. 

3.6.11.2 TOP k statistics 

In this analysis we utilize the top k predictions statistics in which top k number are 

evaluated simultaneously for the final functional prediction. To determine the 

optimal k, we compare the prediction precision and the sensitivity of all annotation 

terms for every gene when k is equal 1, 3 and 5 regardless the thresholds of the 

prediction scores. Top 3 assignments regardless the prediction scores had overall 

50% predictive precision at 85% recall of the total annotated genes in the network 

and had significant improvement than the overall 42% predictive precision of top 1 
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assignment. Although top 5 assignments had overall 52.6% predictive precision, 

the sensitivity was only 23% at the same recall comparing to 29% of top 3 

assignments (figure S3.8A). When the threshold of prediction score was set at 

0.14, top 1 assignment had 50% predictive precision recalling for 64% of the total 

annotated genes in the network (figure S3.8B). Based on this threshold, top 3 

assignments had overall 54.6% predictive precision and top 5 assignments had 

overall 55.4% predictive precision recalling 64% of annotated genes in the network 

(figure S3.8). Comparatively, at the same recall, the predictive precision rate of 

top 3 assignments was 58% regardless the threshold of prediction score (figure 

S3.8). Taken together, we define the k-value equal to 3 to ensure the largest 

genome coverage and highest predictive precision rate in the overall gene function 

prediction. 

3.6,11.3 Comparison with other methods 

I. chi-square approach (Hishigaki, et al., 2001). 

(n ( i , j ) - e ( i , j ) ) 2 

S(l, )) = 7—:. 

e( i , j ) 

The n(i, j) is the number of proteins interacting with protein i and has function j . 

The e(i, j) = #Nei(i) * Jtj is the expected number of proteins in its all neighbors 

having function j , where #Nei(i) is the number of neighbor proteins of protein i. 

II. FS weighted average method (Chua, et al., 2006) 

FS weighted average method is one neighbor counting method considering both 

direct and indirect neighbors based on the functional similarity distance, which was 

calculated according to the method adopted by Chua et al. 2006. 
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1 iJ( S{ i. H ) 5( ii. j) + I ' S( u. v) (M v. 11) 
FS( i . | ) = — — = r :— 

1 (S(i, u) + 1 S(.u. v)) 

FS (i. j) is the predicting score having j function for gene I by FS weight average 

method. The S(i, u) is the FS-weight score of uth neighbor of gene i. The FS-weight 

score (S) was calculated based on the formula 5 of Chu et al. (2006). in which the 

evidence score of each linkage was defined by LS/(LS + 1). 8(j)=l if the gene has 

function j , else 5(j)=0. 

Several computational methods mentioned above were used to predict gene 

function and test the predictive accuracy. Compare to neighbor counting method. 

Chi square approach and FS-weight average method, the weighted neighbor 

counting method had a significantly higher overall prediction precision rate 

regardless of the thresholds (figure S3.9). 

3.6.12 Genes associated with the invasion subnetwork and experimental 

validation 

The 25 apical proteins (table S3.2) locate at the apical organelles (microneme, 

rhoptry and rhoptry neck) were taken as the core hubs (Cowman and Crabb. 2006) 

to build the merozoite invasion sub-network by retrieving all direct linkages to the 

hubs. 20 uncharacterized proteins in the sub-network were selected to confirm the 

results. 

3.6.13 Nucleic Acids, Antisera and Immunoblots 

Genes of interest were either amplified using gDNA or cDNA derived from 3D7 
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parasites. PCR was carried out using cDNA gene specific primers summarized in 

Tab. SX. PCR products were digest with Kpnl and ^vril and ligated into the 

transfection vectors pARLama-i-GFP (Struck, et al.. 2005) or pARLama-,-TYl that 

encode a C-terminal GFP or TY1 tag. To ensure late expression the AMA-1 

promotor is used to drive transcription (Treeck, et al.. 2006). Proteins from late 

stage parasites were separated on 10% SDS-PAGE minigels and immunoblots were 

performed and developed as previously described (Struck, et al.. 2005). Anti-GFP 

(Roche) or anti-TYl (Diagenode) was used as a primary antibody and sheep anti 

mouse IgG horseradish peroxidase (Roche) was used as a secondary antibody. 

3.6.14 Immunofluorescence and analysis of GFP expressing parasites 

Images of unfixed GFP-expressing parasites were observed and captured using a 

Zeiss Axioskop 2plus microscope, a Hamamatsu Digital camera (Model C4742-95) 

and OpenLab software version 4.0.4 (Improvision Inc.). DNA was stained with 

DAPI (1:1000. Roche). 
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Chapter 4 Global gene expression of Plasmodium falciparum 

in response to protein kinase or phosphatase inhibitors 

4.1 Summary 

Protein kinases and phosphatases play important roles in the development of 

malaria parasites. Inhibitors of both functionalities have been shown to block 

invasion by P. falciparum but their mechanisms of actin remain largely 

unknown. Here we study the effect of several classes of inhibitors of protein 

phosporylation pathways including CaM (W7), calcium/CaM-dependent 

protein kinase (K1M93), myosin light chain kinase (ML7), conventional 

multiple protein kinases (staurosporine) and two calcineurin inhibitors 

(FK506 and CsA) on erythrocyte invasion by P. falciparum. The main goal is 

to further define the prospective modes of action of these inhibitors by 

analyzing the gene expression response. First, the growth assays show that 

these inhibitors effectively inhibit erythrocyte invasion by P. falciparum in 

vitro with the parasite cells arrested in the late schizont stage. Second, the 

global gene expression profiling using a genome-wide P. falciparum DNA 

microarray shows that these inhibitors induce diverse but specific 

transcriptional responses when parasite cells were treated at the early 

schizont stage. Interestingly, several transcription factors and signaling genes 

were up-regulated by the inhibition of calcium dependent signaling and 

calcineurin signaling pathways, which suggests that the phosphorylation 
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and/or dephosphorylation play vital roles in the gene expression regulation in 

P. falciparum. 

4.2 Introduction 

Malaria parasites have a complex life cycle that includes a sexual development in 

the mosquito vector, exo-erythrocytic cycle and intra-erythrocytic developmental 

cycle (IDC), in the liver and the blood of the human host respectively. From these 

however, the IDC is responsible for all clinical symptoms and it is also a target for 

the vast majority of the malaria intervention strategies. Several large scale 

transcriptome analyses of the P. falciparum life cycle uncovered a broad 

transcriptional regulation that controls expression of the vast majority of the 

genome. It was shown that each cellular pathway is timed to a specific stage of 

the Plasmodium life cycle in a "just in time manufacturing" fashion (Bozdech. et 

al., 2003; Le Roch, et aL 2003). But little is known about the exact timing of 

regulation of gene expression in P. falciparum. Modulation of protein 

phosphorylation through the antagonistic effects of protein kinases and protein 

phosphatases is a major regulatory mechanism of most cellular processes in 

eukaryotic cells. Sequence analysis of the genome identified tens of protein kinases 

in P. falciparum including many homologues conserved in other eukaryotic 

signaling proteins (Gardner, et al., 2002; Ward, et al.. 2004). Over the past few 

years several genes encoding Plasmodium protein kinases have been characterized 

and show that some protein kinases are expressed in specific stages (Bozdech. et 
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al., 2003; Le Roch. et al.. 2003) and play important roles in the development of the 

parasite (Billker. et al., 2004; Canduri, et al.. 2007; Doerig. et al.. 2002; Kappes, et 

al., 1999). Previous studies has also shown that Plasmodium protein kinases 

diverge significantly on both structure and function from their homologs in other 

eukaryotes (Doerig and Meijer. 2007; Ward, et al., 2004). Recently, it was shown 

that a set of genes involved in protein modification particularly protein 

phosphorylation are regulated by a transcription factor with an AP2 domain (De 

Silva. et al., 2008). Taken together, these studies lend a hope that specific 

inhibition of parasitic kinases is achievable and may lead to the development of 

novel control agent against malaria. However, validation of a given kinase as a 

drug target requires strong evidence that its activity is essential for parasite growth 

and/or differentiation. It also requires understanding how these kinases integrate in 

the cellular machinery of the Plasmodium cells and what roles they play in gene 

expression during the parasite development. 

Several protein kinase or phosphatase inhibitors have been shown to have a 

similar blocking effect of erythrocyte invasion by P. falciparum compared to 

several protease and cytokinesis inhibitors (Dluzewski and Garcia, 1996). In 

particular. W7. calmodulin (CaM) antagonist, was shown to block the erythrocyte 

invasion presumably via Ca"+ depletion and a subsequent affect on a putative 

calcium/calmodulin-dependent signal pathways (Vaid, et al.. 2008; Ward, et al., 

2004). K.N93, a specific inhibitor of CaM kinases, interacts with the 

calcium/CaM-binding domain of CaM kinases (CaMK.) to inactivate these kinases 
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(Means. 2000). In Plasmodium, KN93 was shown to block the formation of 

ookinetes from zygotes (Silva-Neto. et al.. 2002) and as well as the gamete 

formation by blocking calcium-dependent protein kinase 4 (PfCDPK.4) (Billker, et 

al.. 2004). Another calcium/calmodulin dependent kinase, myosin light chain 

protein kinase (MkCK). can be specifically inhibited by ML7. Currently no studies 

have been completed to characterize its inhibitory effect on P. falciprum. 

Saturosporine, an inhibitor of serine/theronine kinases effectively inhibits the 

erythrocyte invasion of Plasmodium (Dluzewski and Garcia, 1996; Ward, et al., 

2004). Xestoquinone is a Pfnek-1 inhibitor with in vitro antimalaria activity but 

little is known about its mechanism (Laurent, et al., 2006). A competitive inhibitor 

of cAMP (cAMP Rp-isomer). which inhibits cAMP-dependent protein kinase 

(PKA), also results in inhibition of apical regulated exocytosis in sporozoites and 

hepatocyte infection (Ono. et al., 2008). HDTAB (hexadecyltrimethylammonium 

bromide) inhibits Choline kinase (PfCK) in a dose-dependent manner and offers 

very potent antimalarial activity against P. falciparum (Choubey. et al.. 2007). The 

phosphatase inhibitor of okadaic acid has a strong inhibitory effect both on 

invasion and development of P. falciparum (Dluzewski and Garcia. 1996). Two 

calcineurin inhibitors, cyclosporine A (CsA) and FK506, have been proven to 

inhibitor the erythrocyte invasion by P. falciparum (Bell, et al., 1994; Kotaka. et al.. 

2008; Kumar, et al.. 2005) and calcineurin had the contrary effect of kinase and 

was able to dephosphorylate proteins in P. falciparum (Dobson, et al., 1999; Kumar, 

et al.. 2005). Although all the above-mentioned kinase or phosphatase inhibitors 
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have effective anti-malarial effects, the mechanisms of blocking the erythrocyte 

invasion are largely unknown. 

The aim of this study is analyze the genome-wide transcriptional response of 

P. falciparum to several classes of protein kinase inhibitors in order to further 

understand a role of their corresponding the signaling pathways in the progression 

of the IDC. For these studies, we chose a selection of inhibitors targeting CaM 

(W7). calcium/CaM-dependent protein kinase (KN93). myosin light chain kinase 

(ML7), and the calcineurin pathway (FK506 and CsA) (summarized in table 4.1). 

In addition we include a conventional inhibitor of multiple protein kinases 

(staurosporine). Growth assays show these inhibitors effectively inhibit the 

erythrocyte invasion in vitro by P. falciparum. Global gene expression profiling on 

a genomic scale using microarray technology shows these inhibitors have diverse 

transcriptional responses when parasite cells were treated from the early schizont 

stage and specific gene responses induced by inhibiting classic signaling pathways 

are observed. Interestingly, several transcription factors and signaling genes were 

up-regulated induced by the inhibition of calcium dependent signaling and 

calcineurin signaling pathways, suggesting the phosphorylation and/or 

dephosphorylation play vital roles of the gene expression regulation in 

Plasmodium falciaprum. 
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Table 4.1 Inhibitors associated with.protein kinases 

Inhibitors IC50 Possible primary 

(nM) gene target 

Possibly involved in functional 

pathway 

ML-7 

W-7 

KN-93 

Staurosporine 

Cyclosporine A 

FK506 

1224 MLCK 

1272 CaM 

1232 CaMKII 

80 various PKs 

88 CyclophilinA 

118 FKBP56 

Myosin-actin 

Calcium/CaM-dependent pathway 

Calcium-dependent signaling pathway 

Multiple signaling pathways 

Calcineurin pathway 

Calcineurin pathway 

4.2 Results and discussion 

4.2.1 Effects of kinase and calcineurin inhibitors on the development of P. 

falciparum 

We studied the effects of protein kinase inhibitors on the progression of the 

malaria parasite intraerythrocytic developmental cycle (IDC). Using growth 

inhibitions assay we show that all utilized inhibitors (ML7, W7, KN93, 

staurosporine, cyclosporine A and FK506) inhibit the growth of P. falciparum 

when the parasites were treated at the early schizont stage. The 50% inhibitory 

concentration (IC50) was determined individually for each compound for the 

identical culturing conditions (2% hemotocryt with 5% parasitemia, see materials 

and methods). Three calcium dependent signaling inhibitors (ML7, W7 and KN93) 

have similar IC50s (aproximately 1.2uM) while the IC50 concentrations of 

calcineurin inhibitors FK506 and CsA are 118nM and 88nM, respectively (table 

4.1). The conventional multiple target kinase inhibitor, staurosporine, has the 
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lowest IC50 concentration (80nM), which suggests the its high potency to inhibit 

Plasmodium growth. 

To better understand the events of development of P. falciparum. 

synchronous cultures (Dd2 strains) were treated with double 90% inhibitory 

concentrations concentration (IC90) at early-stage schizonts over 32 hours. The 

effect of the inhibitors on the parasite morphology was monitored by 

Giemsa-stained smears prepared with the treated P. falciparum cells collected at 

selected time-point intervals (4hr, 8hr. 14hr and 32hr) (figure 4.1). In the ML7, 

W7 and KN93 treated cultures, nearly all parasites developed into morphologically 

normal merozoite clusters associated with hemozoin particles at time 8hr post 

treatments (similar to the untreated control culture). Arrested mid-schizonts were 

observed in cultures treated with staurosporine and two calcineurin inhibitors (CsA 

and FK506) as early as 8 hours after the inhibitor treatment. Interestingly, at time 

14hr post treatment, clusters of merozoites loosely distributed in the infected 

erythrocytes were observed in both calcium-dependent inhibitors (ML7. W7 and 

K.N93) and calcineurin inhibitors (cyclosporine A and FK506) treated cells. This is 

a sharp contrast to the untreated control culture in which all parasites re-invaded 

new erythrocytes and entered the ring stage (figure 4.1). 32hr treatments of/! 

falciparum cultures with these inhibitors resulted in the cell death which is 

characterized by dense small cell bodies with contracted nuclei (figure 4.1). 

These data show three calcium-dependent inhibitors (ML7. W7 and K.N93) 

blocked the rupture process of mature schizonts and two calcineurin inhibitors 
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(cyclosporine A and FK506) had similar effects on cell development but appeared 

to interfere with the cell development already in the mid-schizont stage. 

Comparatively, conventional kinase inhibitor of staurosporine had much more 

serious effects on the parasite development (figure 4.1). It is consistent with the 

broad specificity of staurosporine inhibiting multiple kinases through the 

prevention of ATP binding to the kinase. As shown in figure 4.1, this causes 

severe toxicity to immature schizonts. 
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Figure 4.1 Effects of protein kinase and calcineurin inhibitors on P. falciparum 

development. Parasite morphology was monitored by Giemsa stain microscopy 4, 

8, 14, and 32 h after addition of inhibitor. During the first 8 h (schizont stage 

development), no significant morphological differences were observed between the 

treated and untreated parasites. During their subsequent development, the untreated 

controls progress to the next generation (formation of ring stages) while the treated 

cell remains arrested at the late schizont stage. The appearance of dense black 

shrunken cells 32 h post-treatment is consistent with parasite death. 
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In Toxoplasma gondii. Ca2+ release from intracellular stores governs 

tachyzoite egress, micorneme secretion, motility and host invasion (Carruthers and 

Sibley, 1999; Kieschnick, et al., 2001; Lovett and Sibley, 2003; Moudy, et al., 2001) 

and increasing edvidence suggests that similar mechanisms operate in invasion 

stages of Plasmodium (Gantt. et al., 2000; Kawamoto, et al.. 1993). Taken 

together, these data suggest that calcium dependent signaling (calcium, calmodulin 

and calcium/calmodulin-dependent protein kinase) is essential to activate the 

rupture of the schizonts and suppress of calcium signal interferes with the 

rupturing process. 

4.2.2 Gene expression response to kinase and calcineurin inhibitors in P. 

falciparum 

To analyze the gene expression response to the protein kinase and calcineurin 

inhibitors in P. falciparum, we carried out a course with 7 time points taken in 

regular time intervals ( 1 - 2 hours) over 12 hours (1, 2, 4, 6, 8. 10 and 12hr, 

starting from schizont stage, around 32hpi) for each compound treatment with 

IC50 concentration and measured the global gene expression level with a long 

nucleotide DNA microarray representing all 5363 P. falciparum genes (Hu, et al., 

2007). We extracted genes whose mRNA abundance was altered by 3-fold changes 

to determine the significantly expressed genes. To guarantee the continuous 

observation of gene expression changes through the time course, we retained the 

genes that at east one neighbor of the peak changed data points (>=3 fold) should 
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have 2 fold changes (double three-two filtering). This filtering would avoid the 

noise from a single experiment. Diverse transcriptional responses were observed 

from the three classes of inhibitors: calcium-related inhibitors (W-7, ML-7 and 

KN93), calcineurin inhibitors (cyclosporine A and FK506) and conventional kinase 

inhibitor (staurosporine) (figure 4.2A). The myosin light chain kinase inhibitor 

(ML7) induced transcriptional changes of 561 genes. The CaM antagonist induced 

noticeable expression alteration of 636 genes, and Ca/CaM-dependent protein 

kinase inhibitor of KN93 induced transcriptional changes of 340 genes. Two 

calcineurin inhibitors CsA and FK506 induced closer transcriptional changes of 

291 and 285 genes, respectively. Conventional kinase inhibitor staurosporine 

caused a more complex response which included 570 genes (figure 4.2A). 

Profoundly, a huge increase of 637 genes was changed if we used double two-two 

filtering comparing to other inhibitors (figure 4.2B). This dramatic response is 

consistent with the non-selective targets of the staurosporine and the severe toxic 

effects on the development of parasites. 

ML7 W7 KN93 Stauro CsA FK506 B ML7 W7 KN93 Stauro CsA FK50S 
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Figure 4.2 The transcriptional changes induced by compounds of ML7, W7, KN93, 

stausporine, cyclosporine A and FK506. In each diagram of transcriptional changes, 
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each line is an expression profiles for one genes. The expression profiles were 

transformed by the expression profiles in the untreated control cells and thus red 

color reflects up-regulation and green color down-regulation of gene transcription 

induced by the inhibitor. Gene profiles were clustered using Cluster (Eisen, et al., 

1998) A. The transcriptional changes calculated from double three-two filtering 

method. B. The transcriptional changes calculated from double two-two filtering 

method. 

ML7 W7 KN93 Stauro CsA FK506 

Figure 4.3 Comparative analysis of the transcriptional changes induced by 

compounds of ML7, W7, KN93, stausporine, cyclosporine A and FK506 based on 

double three-two filtering. Total 1330 gene were retained after the filtering through 

the six treatments (left). In the three classes of inhibitors (W7-ML7-KN93, 

CsA-FK506 and staurosporine), gene expression changes induced by the same 

class inhibitors had large overlapping and less by between different class (right). 
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Interestingly, there are significant overlaps between transcriptional responses 

induced by inhibitors that belong to the same class. CaM antagonist W7 and 

myosin light chain kinase (MLCK) inhibitor ML7 had similar transcriptional 

responses with 336 shared genes (53% of W7 and 60% of ML7) (figure 4.3). 

K.N93 targeting calcium/CaM-dependent protein kinases also showed similar 

transcriptional changes to W7 and ML7. 69% of genes whose expression was 

affected by K.N93 were olso found to be effected by ML7 and W7 (figure 4.3). All 

these genes that show 2-fold changes (double two-two filtering) induced by KN93 

share also comprise approximately 70% of ML7 and W7 transcriptional responses. 

The significantly overlaps of the transcriptional responses induced by the three 

inhibitors is likely due to their proteins target that is shared between these 

compounds are likely related to calcium dependent signaling pathway. These 

gene responses are considerably different from those induced by two inhibitors of 

CsA and FK506 (figure 4.3). CsA and FK.506, which inhibit the calcineurin 

(calcium/CaM-dependent protein phosphatase) dependent signaling pathway in 

eukaryotic cells (Liu, et al., 1991) by binding to cyclophilin and PfFKBP35 

respectively, had significantly similar transcriptional changes (approximately 70% 

of responsive genes). The transcriptional changes induced by the conventional 

kinase inhibitor staurosporine also shared with approximately one third of the 

changes induced by ML7, W7 and KN93. individually. Although staurosporine had 

103 and 70 responsive genes shared with ML7-W7-K.N93 group and CsA-FK506 

group (figure 4.3). the overlapping genes between CsA-FK506 group and 
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ML7-W7-KN93 group was only, 20. These data show the conventional and 

non-selective protein kinase inhibiting activity of staurosporine and the diverse 

roles of protein kinase and phosphatase in gene regulation of P. falciparum. 

Interestingly, common transcriptional changes were observed through all inhibitors 

as well, such as translation machinery, variant surface antigens and the genes 

expressed in late schizont stage who were arrested by the inhibitors (figure 4.3). 

We also found a lot of transcription related genes (transcription and cell cycle 

factors) and signal transduction related genes (kinases, regulators, phophatases) 

were significantly changed induced by the kinase and calcineurin inhibitors. 

Taken together, this data indicates the specific roles of the protein 

phosporviation and dephosporylation pathways on transcriptional regulation in P. 

falciparum. To understand the representations of the cellular systems and the 

functional roles of genes in response to the inhibitors, in the following section, we 

systematically analyze and discuss the gene expression changes in the context of 

different functional classes and different types of protein phosphorylation 

pathways. 

4.2.3 Cell responses of variable surface antigens and ribosome structure genes 

The effects of anti-malaria drugs or compounds on malaria pathogenesis are 

profound and not well understood. P. falciparum variable surface antigens (VSA) 

that include tree major antigen coding gene families (var, rifin, stevor) are 

considered to be major contributors to the variable nature of malaria pathogenesis. 
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On the microarray, 85% of VSA genes have unique probes ensuring the specific 

detection of their expression (Hu, et aL 2007). Previously a generalized 

up-regulation of VSA expression has been observed in transcriptional responses to 

the heat shock environment (Oakley, et aL 2007). We observe that 95 VSA genes 

(total 142 detected) including 58 var (14 pseudo or truncated). 31 rifin (4 pseudo 

or truncated) and 6 stevor (3 pseudo or truncated) were up-regulated in the 

parasites treated by kinase inhibitors and only 2 pseudo var genes down regulated 

(figure 4.4A). Especially, in ML7 treatment, most rifin and var genes were 

upregulated in last two time points. VSA genes may be related to cellular stress 

response or inhibition of kinase activities would affect the transcriptional 

regulation of these variable genes. Nuclear myosin plays important roles in 

transcriptional regulation (de Lanerolle. et al.. 2005). ML7 would affect the 

nucleus myosin through inhibiting the myosin light chain kinase and lead to 

upregulation of VSA genes. This will be tested in the future. 

The proteins of ribosome structure apeared to have the similar responses to 

anti-malaria drugs or compounds. 51 out of total 112 detected genes in genome 

were observed to be induced by all six protein kinase inhibitors (figure 4.4A). 

Interestingly, like VSA genes, most genes of ribosome structure were up-regulated 

(44 out of 51). These genes were not possibly arrested because the parasite 

development at the early treatment was not affected (figure 4.1). It suggests the 

control of gene expression at the translational level is an important mechanism 

involved in cellular stress response. 

- 121 -

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Figure 4.4 Functional analyses of the transcriptional changes induced by 

compounds of ML7, W7, KN93, stausporine, cyclosporine A and FK506 based on 

double three-two filtering method. A. Clustering diagrams of variable surface 

antigen genes group (up) and ribosome structure gene group (down); B. Clustering 

diagram of genes group of late schizont stage. 

4.2.4 Gene expression in late schizont stage arrested. 

Among the genes induced by four protein kinase inhibitors ML7, W7, KN93 and 

staurosporine, there was a large cluster of genes which are under normal growth 

condition specific to the late schizont stage (figure 4.3 and 4.4B). grouping 

particular, 278 of 380 genes induce by the compounds (74%) are also highly 

expressed during the late schizont stage according to the IDC transcriptome 

(Bozdech, et al., 2003). Most of them are suggested to be involved in the merozoite 

invasion process including most of the known invasion-related proteins (Cowman 

and Crabb, 2006; Haase, et al , 2008; Soldati, et al, 2004). The additional 89 genes 
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have no information in the IDC transcriptome and only 13 genes were out of this 

stage (6 late trophozoite stage and 7 early ring stage) (figure 4.4B). It indicated that 

these genes were still expressing at lOhr of post treatment, and comparatively in 

the untreated control parasites they gradually slow down (figure 4.4B). 

Interestingly, CsA and FK506 were able to induce the mRNA abundance of only 

52 genes expressed during the late schizont stage as early as 1 hour after the 

compound was added to the culture (figure 4.4B). This includes several 

cytoskeleton related genes (etrampll.l and 12. RESA. RAP3. Rh3, Clag3.1, 

PfCRT2. PfNBP-1) and protease (hydrolase and SUB2). These data suggest gene 

expression switches (regulation) in the late schizonts were interfered by ML7, W7, 

KN93 and staurosporine but not by CsA and FK506, although inhibition of both 

protein phosporylation and dephosporylation (calcineurin) pathways arrested the 

development of parasite cells morphologically. 

3.2.5 Transcriptional changes induced by inhibitors related to calcium 

dependent signaling 

Three inhibitors in this study are related to calcium dependent signaling (figure 

4.5A). W7 is the calmodulin antagonist to adjust the intracellular calcium 

concentration. Calmodulin can bind to a wide array of protein kinases with 

calcium/calmodulin binding domain, such as CaMK and MLCK. KN93 and ML7 

are specific inhibitors to CaMK and MLCK, respectively (Billker. et al., 2004; 

Dluzewski and Garcia, 1996; Means, 2000; Silva-Neto, et al., 2002; Vaid, et al., 
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2008; Ward, et al., 2004). The early transcriptional responses of P. falciparum to 

three inhibitors (W7, ML7 and K1M93) included 477 up or down regulated genes 

excluding all variable surface antigen, ribosome genes and genes expressed induce 

as a result of the developmental arrest in late schizont stage (figure 4.5B). It 

suggests that calcium or calmodulin dependent signaling play vital roles in the 

development of the P. falciparum life cycle and are directly linked with 

transcriptional regulation. This group includes 224 (47%) up and 181 (38%) down 

regulated genes with 160 functionally known and 317 hypothetical genes. 

Functional analysis shows that these genes include stress response genes (such as 

glutathione S-transferase), trafficking system proteins (such as Rab family genes), 

cell surface and adhesion proteins (such as glycophorin binding protein related 

antigen), signaling proteins (such as PfCDPK3), DNA replication and repair (such 

as replication factors), and transcription regulation (such as CCAAT-binding 

transcription factor). Specifically, we observed up-regulation of 5 cell cycle and 

transcription regulators induced by this group of inhibitors (table 4.2). Interestingly, 

the only one down-regulated gene (prohibitin) is a transcription suppressor that 

was previously found to bind proteins that belong to the family of E2F 

transcription factors (O'Connor, et al., 2001; Wang, et al., 1999). These proteins 

may be possibly involved in the process of P. falciparum cell cycle development 

and gene expression regulation. We also observed up-regulation of 5 protein 

kinases while only one gene (PF080019) encoding PfRACK (Receptors for 

activated C kinases) was down regulated (table 4.2). PfRACK is conserved in other 
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eukaryote and conspicuously spread throughout the schizont, suggesting it might 

play a key role in the regulatory processes of malaria parasite life cycle (Madeira, 

et al., 2003). Interestingly, one putative protein kinase (MAL13P1.84) was down 

regulated in ML7 treatment but up regulated in both W7 and KN93 treatments. 

This finding might indicate a difference in the effect of calcium/camodulin-CaMK 

and calcium/calmodulin-MLCK on gene regulation. Two phosphatase genes 

(PF14_0523 and PFL1260w) were down-regulated, and one phosphatase 

(MAL8P1.109) and one phosphatase activator (PF140280) were up regulated. 

Taken together, these data suggest that calcium and calmodulin signals can regulate 

gene expression through calcium/calmodulin dependent protein kinases (CaMKs 

and MLCK) and also that CaMKs and MLCK share downstream regulators of gene 

expression. 

ML7 W7 KN93 

Figure 4.5 Functional analyses of the transcriptional changes induced by calcium 
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dependent signaling inhibitors ML, W7 and KN93 based on double three-two 

filtering method. A. The signaling pathways of protein targets of ML7, W7 and 

KN93. B. Comparative and functional analyses of the transcriptional changes 

induced by compounds of ML7, W7 and KN93. 

Table 4.2 Transcriptional changes of gene transcription regulators and signaling 

factors induced by inhibitors of calcium dependent signaling. 

Function Gene ID Gene Name Fold changes * 

ML7 W7 

* maximum fold change in the time course 

4.2.6 FK506 has a similar action mode to cyclosporine A 

KN93 

Transcription PF13_0043 CCAAT-binding transcription factor 2.47 3.03 2.1 

PFE1470w cell cycle regulator protein, putative 2.25 3.16 1.39 

PFL1180w Chromatin assembly protein (ASF 1) 2.86 3.74 1.6 

PFE0920c cyclin2 related protein 3.74 4.03 2.44 

PF08_0074 DNA/RNA-binding protein Alba 2.81 3.25 1.53 

PF10_0144 prohibitin -1.9 -5 -3.17 

Signaling PFC0420w calcium-dependent protein kinase 3 2.23 2.44 3.5 

MAL13P1.84 protein kinase -3.2 3.04 1.49 

PF08_0019 PfRACK -3.57 -2.38 -2.44 

PFI0505c selenide water dikinase 2.69 3.54 1.15 

MAL7P1.100 serine/threonine protein kinase, Pfnek-4 3.29 3.51 2.89 

PFC0060c Serine/threonine protein kinase 2.13 3.46 3.47 

PFA0380w serine/threonine protein kinase 3.63 4.15 3.03 

PFD1180w trophozoite antigen r45-like protein 4.33 1.83 2 

PF11_0224 circumsporozoite-related antigen -4.6 -5.7 -2.75 

PFL1260w hydrolase / phosphatase -2.1 -2.12 -3.62 

PF14_0523 protein phosphatase 2C -3.8 -3.3 -7.37 

MAL8P1.109 Protein phosphatase 2C 3.05 4.7 4.13 

PF14_0280 phosphotyrosyl phosphatase activator 2.99 3.74 1.95 

Compounds CsA and FK506, inhibit the calcineurin-dependent signaling pathway 
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in eukaryotic cells (Liu, et al., 1991). In P. falciparum. CsA binds to cyclophilin 

and FK506 binds to PfFKBP35 both to interfere with the calcineurin signal 

pathway by inhibiting the activity of calcineurin. a calcium/CaM-dependent 

protein phosphatase (Bell, et al., 1994; Kumar, et al., 2005). Global transcriptional 

responses of P. falciparum to CsA and FK506 showed CsA and FK506 induced 

transcriptional changes of 269 and 255 and suppressed 21 and 30 genes (>3-fold 

changes, double three-two filtering), respectively (figure 4.2). Interestingly, both 

inhibitors affected the transcription of 202 genes (69% of CsA and 71% of FK506) 

with 192 transcripts exhibiting a >3-fold increase in abundance (figure 4.6A). 

Good correlation in the global transcriptional responses induced by both inhibitors 

points to a similar mode of action, which is consistent with the presumed mode of 

action in other eukaryotic cells: suppression of calcineurin-dependent signaling 

pathways (Bell, et al.. 1994; Kumar, et al., 2005: Liu. et al., 1991). Biological 

functional analysis showed 12 genes associated with cells surface and adhesion. 11 

stress response or metabolic genes. 7 transcription related genes. 5 trafficking 

system genes and several kinase and cytoskeleton genes had 3 fold changes, 

although the majority of these genes are functionally uncharacterized (103 

hypothetical proteins), 24 VSA genes (11 Var., 9 rifin and 4 stevor) and 29 genes of 

ribosomal subunits (figure 4.6B). Interesting most transcriptional responses 

induced by both FK506 and CsA affect the transcriptional profile of the early 

schizont development which underlines the eventual developmental arrest and 

subsequent parasite death (figure 4.2 and 4.6A). The specificity of the 
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FK506/CsA-induced transcriptional response is further supported by the fact that 

other unrelated inhibitors of cell signaling pathways. W7, ML7. KN93 and 

staurosporine, affected expression of distinct groups of genes with minimal 

overlaps (figure 4.3). The transcriptional changes of a large group of transcription 

related genes suggested the importance of gene expression regulation by the 

calcineurin pathway in P. falciparum (table 4.3). These include early up-regulation 

of several transcription factors, such as TATA-binding protein (TBP. PFE0305w). 

ruvB-like DNA helicase (possible TBP interacting protein. PF08_0100), Mybl 

(PF13 0088) and transcription repressor high mobility group box protein (HBP. 

MAL8P1.72. high mobility group box domain). In the transcriptional changes 

induced by CsA and FK.506, mitogen-activated protein kinase 2 (Pfmap-2. 

PF110147) was also up-regulated early. Interestingly, the transcription repressor 

HBP (MAL8P1.72), which is a possible target of MAPK (mitogen-activated 

protein kinase) in human (Xiu. et al., 2003). was up-regulated of more than 20 fold 

even in the early time points (1-2 hr) in both treatments. It suggests that calcineurin 

pathway can regulate gene expression through mitogen-activated kinase (MAPK) 

pathway. Interestingly, two up-regulated cell cycle related genes (PFE1215c, 

developmentally regulated GTP-binding protein 1 and PF100370. enhancer of 

rudimentary homolog) suggest the inhibition of calcineurin pathway would affect 

the development of P. falciparum, consistent with the arrested shcizont (figure 4.1). 

Taken together our data suggest that FK.506 binding protein PfFKBP35 appears to 

be essential for the progression of the P. falciparum life cycle through the gene 

- 128-

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



expression regulations. We speculate that the mode of FK506 and its antimalarial 

effect may be mediated through targeting PfFKBP35 and subsequent inhibition of 

the parasite calcineurin. 

A 
CsA FK506 © 

! up-regulation 

down-regulation 

B 
5 322 o 103 

• hypothetical 

• VSA 
Oriobosome 
oApicoplast 
• cell surface and adhesion 

a stress response and metabolism 
• transcription 
O trafficking 
• cytoskeleton 
• kinase 
D others 

Figure 4.6. Comparative (A) and functional (B) analyses of the transcriptional 

changes induced by compounds of cyclosporine A and FK506. 

Table 4.3 Transcriptional changes of gene transcription regulators and signaling 

factors induced by inhibitors of calcineurin dependent signaling. 

Function Gene ID Gene Name 

Transcription PFE1215c Drg1 

PF10_0370 Enhancer of rudimentary homolog 

MAL8P1.72 high mobility group protein 

MAL7P1.151 modification methylase-like protein 

PF13_0088 Myb1 protein 

PF08_0100 ruvB-likeDNAhelicase 

PFE0305w TAT-binding protein, TBP 

signaling PF11_0147 mitogen-activated protein kinase 2 

PF11_0220 protein kinase 

Fold changes * 

CsA 

3.88 

4.28 

29.1 

3.74 

4.64 

3.67 

3.67 

3.78 

3.37 

FK506 

2.64 

4.38 

22.5 

3.48 

4.38 

5.05 

3.89 

3.12 

3.85 
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4.3 Conclusion and outlook 

Protein kinases and phosphatases play important roles in the development of the 

malaria parasites. We studied the effects of several classes of inhibitors of protein 

phosphorylation and dephosphorylation pathways on the growth of Plasmodium 

cell and the regulation of gene expression. Growth assays show that these 

inhibitors effectively inhibit the erythrocyte invasion by P. falciparum in vitro with 

the parasite cells arrested in the late schizont stage. The global gene expression 

profiling using a genome-wide P. falciparum DNA microarray (mentioned in 

chapter 2) shows that diverse but specific transcriptional responses induced by 

these inhibitors were observed when parasite cells were treated at the early 

schizont stage. Interestingly, several transcription factors and signaling genes 

were significantly regulated resulting from the inhibition of calcium dependent 

signaling and calcineurin signaling pathways, which suggests that the 

phosphorylation and/or dephosphorylation play vital roles in the gene expression 

regulation in P. falciparum. 

Currently, we are performing real-time PCR to confirm the regulated 

transcription factors and signaling genes. Also we are trying to identify protein 

intermediates between the protein kinases and the transcription factors using a 

novel proteomic technique of 2D-DIGE/MS. We hope to establish the putative 

regulation network between protein kinases and transcription factors and their 

target genes to illustrate the principle of gene regulation in P. falciparum. 
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4.4 Materials and methods 

4.4.1 Parasite culture 

Cells of P. falciparum strain Dd2 were grown and maintained in a 2% suspension 

of purified human RBCs and RPM1 1640 media supplemented with 0.25% 

Albumax II (GIBCO, Life Technologies, San Diego, California, United States). 2 

g/L sodium bicarbonate, 0.1 mM hypoxanthine, 25 mM HEPES (pH 7.4), and 50 

ug/L gentamycin, at 37°C, 5% CH, and 6% CCK. Cells were synchronized by two 

consecutive sorbitol treatments for three generations (Trager and Jensen. 1997). 

4.4.2 Growth assays and inhibitor treatments 

To perform the P. falciparum growth assay. 1 ml of synchronized early 

schizont-stage parasites in hypoxanthine-free complete medium (5% parasitemia 

and 2% hematocrit) were added to each well in 96-well plate, and compounds were 

added at the first well to a final drug concentration of 8 uM and a final volume of 2 

ml (add new cultures). The cultures were mixed well and took 1 ml mix from the 

first well to the second well and mix to dilute the compounds, and then followed to 

the third well and repeated 9 times. Finally compounds in 10 wells of the plate 

ranged from 8 uM to 15.625 nM. The plates were then incubated in a chamber with 

a standard gas environment at 37°C for 20 hours. After the 20-h incubation, cells in 

each well were made smear and stained by Giemsa. Rings were counted under 
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microscope. The growth assay of each compound was done in three replicates. The 

counts of rings were plotted against the logarithm of the drug concentration, and 

the curve was fitted by nonlinear regression using the formula sigmoid 

dose-response to calculate the inhibitory concentration at 50% (1C50) (table 4.1). 

For the inhibitor treatments, cell cultures were carried out in the same way as the 

growth assays and cells were treated by the compound at the concentration of its 

IC50. After 1. 2. 4, 6. 8. 10 and 12 hour treatment, cells were collected and washed 

with pre-warmed PBS, and flash-frozen in liquid nitrogen and stored in -80°C for 

RNA isolation. 

4.4.3 RNA preparation and cDNA labeling 

P. falciparum RNA sample isolation. cDNA synthesis, labeling, and DNA 

microarray hybridizations were performed as described by Bozdech et al. (Bozdech. 

et al.. 2003). Samples for individual timepoints (coupled to Cy5) were hybridized 

against a reference pool (coupled to Cy3). The reference pool was comprised of 

RNA samples from 3D7 strain representing all developmental stages of the parasite. 

For this pool, sufficient cDNA synthesis reactions were performed for all 

hybridizations, and then all reference pool cDNAs were combined into one large 

pool and then split into individual aliquots for subsequent labeling and 

hybridization. 

4.4.4 Microarray manufacture, hybridization and scanning 
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Microarray manufacturing and hybridizations were conducted as previously 

described (Bozdech. et al., 2003; Bozdech, et al., 2003). Briefly, all 

oligonucleotides in 384 well plates were printed on the polylysine-coded glass 

slides using BioRad microarray printer system. Printed slides were post-processed 

by rehydration. UV cross-linking and succinic anhydride (ALDRICH, Cat. 239690) 

block. The labeled cDNA samples were hybridized to the chip in MAUI system 

(BioMicro. Utah, United States) for 12-14 hours at 65°C. Data were acquired and 

analyzed by GenePix (Axon Instruments. Union City, California. United States). 

Array data were stored and normalized in Acurity 4.0 system (Axon Instruments. 

Union City. California. United States). 

4.4.5 Data analysis 

Micorarray data of each slide were loaded into the NOMAD database and 

normalized using the default settings. In brief, a scalar normalization factor was 

calculated for each array using unfiltered high quality features with background 

subtracted median intensities greater than zero for each channel and a pixel 

regression correlation coefficient greater than or equal to 0.75. The data of all 

slides were extracted from the database and log-transformed for further analysis by 

filtering the spots of poor quality, flagged, or spots for which intensities in two 

channels were close to background (median of intensity less than 2 median of 

background plus 2 standard deviations for both Cy3 and Cy5 signals). To analyze 

the perturbations of gene expression under drug treatment, each gene profile of 
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drug treatment was subtracted by its negative control. Differential expression genes 

were extracted by a double three-two method. One gene is retained when the peak 

of change through the time course is larger than 3-fold and at least one neighbor 

point of the peak has 2-fold change. Clustering analysis was performed by 

Cluster program and hierarchical tree was viewed by TreeView (Eisen, et al., 

1998). 
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Chatper 5 Computers and databases 

Bioinformatics involves the use of mathematical tools to extract, organize and 

analyze the huge amounts of data produced by high-throughput biological 

techniques and to solve biological problems usually on the molecular level. Major 

research efforts in this field include sequence analysis, gene prediction and 

annotation, genome assembly, protein structure analysis and prediction, prediction 

of gene expression, protein-protein interactions, and the modeling of evolution. 

The Use of the program OligoRankPick for oligonucleotide selection (Hu, et al., 

2007), analysis of genomic context including phylogenetic profiles and domain 

predictions for predicting functional linkages (Date and Marcotte, 2003; Lee, et al., 

2006). storage and analysis of gene expression profiles, network reconstruction and 

analysis, and network-based predictions of gene function, require computer 

infrastructure with adequate processing power and data storage facilities. Such 

requirements assume even more importance, if real-time, large-scale analysis is 

planned. 

Our goal is to establish a computer network that would allow us to collect and 

store functional genomic data, such as complete genome sequence data and gene 

expression data, and use these data to create databases for functional genomic 

research on P. falciparum and also provide the web service for the users, such as 

OligoRankPick, gene functional network, network-based gene annotations. 
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5.1 A computer network 

To establish a computer network for collecting, storing data, web service and 

computing task, we establish a "triangular' computer network (figure 5.1). This 

network is comprised of two independent computers and one cluster of 

supercomputer. The first computer (ZBLab) is web server for open users which 

provides web tools to show our results such as oligo information, microarray data, 

and network. The second computer (S3E3) is used for data storage and small 

computing task. We linked two computers to the cluster of supercomputer 

(NTU-SBS-Cluster) which could provide large computing power for large-scale 

analysis, for example, performing the BLAST searches in the oligonucleotide 

selection of OligoRankPick. Establishing this infrastructure provides a viable 

model for a relatively small research group to carry out complex biological 

analyses that involve large datasets with the genome wide approaches. 

IP * > - • * NTU-SBS 
Cluster 

v 
Web Server 
(ZBLab) 

Microarray Database 
(S3E3 server) 

L5" cf 

Client 

Genome search (gene, protein and annotation) 

BLAST service 

OligoRankPick (oligo design, oligo information) 

Gene expression data 

Gene network annotations 

Promoter Motif 

Figure 5.1 The architecture of a computer network for data storage, computing and 

web service. 
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5.2 Web service 

The network provides several web tools to show the biological information of P. 

falciparum (figure 5.1). Web service is provided to search the probe information 

for DNA microarrays of malaria species (http:/zblab sbs.ntu.edu/sottware.html) 

including the developing address of OligoRankPick program. We also provided the 

gene, protein and genome information of P. falciparum synchronized with 

PlasmoDB (http://wvvw.plasmodb.org) and the NCB1 BLAST online service. 

Another web searching is the reconstructed gene functional network providing the 

functional linkages between genes and the new functional predictions based on this 

network (http://zblab.sbs.ntu.edu.sjj/network/). For each gene, different types of 

functional information are provided and evaluated. Of course, this gene is linked to 

other databases, such as gene/protein information. KEGG. Gene Ontology and our 

microarray database of gene expression profiles. Here we try to offer an interface 

for the users to find the biological knowledge of genes or proteins in P. falciparum 

easily about their sequence, trancriptome. regulation, interactome. molecular 

function, and cellular process. 

5.3 Update databases 

The relational databases were built based on MySQL or file system. Perl scripts 

were developed to update the system. Data source will be automatically 

downloaded, parsed and used to update the local databases and files. 
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Chapter 6 Final Summary and Perspective 

In this thesis, I developed OligoRankPick which provides a powerful alternative for 

long oligonucleotide microarray design for genomes with extreme GC content 

fluctuations and high abundance of highly homologous gene families. In its 

simplest implementation a user needs only to define the probe length and an 

expected GC content or Tm. Using this method we have designed high quality and 

long oligonucleotide DNA microarrays for the parasitic species including P. 

falciparum, P. vivax and three rodent malaria parasite P. chabaudi. P. yoelii, and P. 

berghei. Based On the designed P. falciparum DNA microarray, we carried out 

extensive transcriptional profiling of P. falciparum responses to chemically induced 

growth perturbations and used these data to reconstruct a gene interactome network 

that allow us to predict function of 2547 Plasmodium hypothetical genes. The 

accuracy of these predictions was demonstrated by the functional validation of 21 

selected protein candidates from which 19 localized to intracellular compartments 

associated with the invasion machinery. These data also demonstrate that 

transcriptional profiling of growth perturbations provides a powerful technique for 

functional genomics of Plasmodium parasites. Finally, I studied the effects of 

several classes of inhibitors of protein phosphorylation and dephosphorylation 

pathways on the growth of Plasmodium cell and the regulation of gene expression. 

The growth assays showed that these inhibitors effectively inhibit the erythrocyte 

invasion by P. falciparum in vitro. The global gene expression profiling shows that 
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diverse but specific transcriptional responses induced by these inhibitors were 

observed when parasite cells were treated at the early schizont stage. Interestingly, 

several transcription factors and signaling genes were significantly regulated 

resulting from the inhibition of calcium dependent signaling and calcineurin 

signaling pathways, which suggests that the phosphorylation and/or 

dephosphorylation play vital roles in the gene expression regulation in P. 

falciparum. All these microarray information, gene expression data, network, gene 

predictions and other databases and developed bioinformatics tools are available 

online on the following website: http://zblab.sbs.ntu.edu.sa/program.html. 

Although this network covers 88% genome of P. falciparum and about 2547 

hypothetical proteins were assigned functional clues, to improve the accuracy of 

the network and predictions of gene function, more data will be incorporated in the 

future. For example, more growth perturbation data and proteomic expression 

profiles are being investigated. Currently. 22 proteins were chosen for intracellular 

localization analysis to evaluate the network-based predictions of gene function. 

These invasion proteins would be further analyzed to illustrate the molecular 

function in the invasion process in the future, which would promote deep 

understanding of the mechanism of merozoite invasion in P. falciparum. 

Furthermore, more proteins would be selected for function analysis, such as 

proteins associated histone modification and DNA binding proteins. I also am 

trying to identify protein changes in the perturbations of kinase inhibitors using the 

2D-DIGE/MS proteomic technique. We hope to establish the putative regulation 

- 139-

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://zblab.sbs.ntu.edu.sa/program.html


network between protein kinases, transcription factors and responded genes, as 

well as with the knowledge of gene function network, to illustrate the 

mode-of-actions of these inhibitors and their roles in the cell cycle progression in P. 

falciparum. 
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Appendix: supplementary figures and tables 

OligoRankPick ArrayOligoSelector OligoPicker OligoArray 2.1 

0 20 40 60 60 100 120 140 If.LMSO 0 20 40 60 80 100 120 140 160 180 0 20 40 60 00 100 120 1^0 160100 0 20 40 60 60 100 120 140 160 160 

sw sw sw sw 

0 20 40 60 60 100120140160160 0 20 40 60 SO 100 120 140 160180 0 20 40 60 80 100 120 110 160 180 0 20 40 60 80 100120140160180 
SW SW SW SW 

0 20 40 60 80 160 120 140 160 180 0 20 40 60 80 100 120 140 160180 0 20 40 60 80 100 120 140 160130 0 20 40 60 SO 100 120 140 1 S01 SO 
SW SW SW SW 

Figure S2.1 The SW (self-binding) score and GC content distributions for the 

designed oligonucleotide sets. In the each scatter plots SW scores (X-axis) is 

plotted against the GC content (Y-axis) for all oligonucleotides in the set. Total 12 

oligonucleotide sets were designed for three genomes E. coli (A-D). S. cerevisiae 

(E-H), and P. falciparum (I-L) using all programs OligoRankPick (A, E, I), 

ArrayOligoSelector (B, F, J), 01igoPicker(C, G K), and OligoArray 2.1 (D, H, L). 

Tighter distribution the SW scores indicates the improved performance of 

OligoRankPick for microarray design. 
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Figure S2.2 The LZ (sequence complexity) score and GC content distributions for 

the designed oligonucleotide sets. In the each scatter plots the LZ scores (X-axis) 

are plotted against the GC content (Y-axis) for all oligonucleotides in the set. Total 

12 oligonucleotide sets were designed for three genomes E. coli (A-D), 5*. 

cerevisiae (E-H), and P. falciparum (I-L) using all programs OligoRankPick (A, E, 

I), ArrayOligoSelector (B, F, J), 01igoPicker(C, G K), and OligoArray 2.1 (D, H, 

L). Tighter distribution the LZ scores indicates the improved performance of 

OligoRankPick for microarray design. 
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Figure S2.3 The distribution of Rank status and Average weight score of the 

selected oligonucleotides from three datasets by different programs. A-D, the 

oligonucleotide sets of E. coli by four programs; E-H, the oligonucleotide sets of S. 

cerevisiae; I-L, the oligonucleotide sets of P. falciparum. In each diagram, the 

top-right small diagram is the distribution of AWS (average weight score) of the 

whole oligonucleotide set, and the diagram below is the rank distribution of the 

whole oligonucleotide set. For AWS and rank status, the weight set I was first 

determined by ORP, then all oligonucleotide AWSs were calculated by formula 2 

and ranked. The AWS and rank status of all selected oligonucleotides were 

mapped. 
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46 array time-points of Derisi's HB3 transcriptome 

Figure S3.1 Evaluation of growth arrest the during perturbation analyses. To 

evaluate whether the perturbation induced mRNA profiles correspond to specific 

responses or to a generic arrest of the IDC transcriptional cascade, we calculate 

Pearson Correlation Coefficients (PCC) between the microarray results for each 
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time point in the perturbation time course and the IDC transcriptome (46 

microarray data of the HB3 strain IDC transcriptome, http://malaria.ucsf.edu). B. 

For each time point in the perturbation time course (TP1, 2, ...), a function of 46 

PCC was assembled for all inhibitor treatments as well as their corresponding 

untreated controls Table SI. (in the B panel each row of graphs represents one set 

of experiments and the corresponding control time course is extreme left in each 

row). The maximum PCC value in each TP profile that corresponds to the best fit a 

IDC transcriptome the developmental stage of the cells in the perturbation 

studies (peak PCC time, PPCCT). In each control (untreated cells) time course, the 

peak PPCCT corresponded well to the expected progression of the parasites cells 

through the IDC. Thus comparing the PPCCTs between the treatments and 

controls allows detecting a potential growth/developmental arrest. For this we 

calculate an average distance between the PPCCT in the perturbation time courses 

and the corresponding controls (A.). For staurosporine, PMSF, TrichostatinA 

(IC90) and EGTA, we observe considerably high values of the average time point 

distances. These high values signal dramatic shifts in the developmental stage. 

Visual inspection of the PCC profiles confirms a growth arrests that is 

characterized by retention of the initial (start of the treatment) PPCCT in the 

treatments while in controls the progression of the PCCT values follow the 

expected trend (panel B). For all other treatments the PPCCT shifts were 

considerably smaller (<1.0) which indicate that the mRNA profiles in these 

treatments do not represent growth arrests but rather correspond to specific 

transcriptional responses of P. falciparum to the perturbations. 
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Figure S3.2. Hierarchical clustering of phylogenetic profiles of P. falciparum. 

Organisms varied along the vertical axis, proteins along the horizontal axis. 

Organisms from the three domains of Apicomplex, eukaryote and prokaryote were 

separated by black lines on the left. The score of each protein was the top e-value 

score of the target organism using BLASTP program. Continuous phylogenetic 

profiles color-coded from red (maximal homology, e-value equal to 0) to black (no 

homology, e-value equal to 1) A quick look at this figure provides evidence that a 

lot of evolutionarily meaningful clusters emerged. For example, one cluster of 

protein kinases (zoomed in figure) suggested that the clusters of proteins with high 

correlations represent some sort of discrete functional units. 
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Figure S3.3 Performance of the four input datasets in predicting the gene 

functional relationships. For each dataset data the likelihood score and the ratio of 

true positives to false positives based on the benchmark dataset (KEGG pathways) 

were plotted as function of the binned confidence score. A. - the gene expression 

dataset combining perturbation data and the IDC transcriptomes (Llinas, et al., 

2006). B. - the genomic functional data based on ph\ logenetic profiles. C. - the 

domain-domain interaction prediction data. D. - the protein-protein interaction 

data determined by yeast two-hybrid system studies. All protein pairs from 

protein-protein interaction data had the same likelihood score (2.367) and ratio 

(0.375). 
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A B 

Figure S3.4. Analyses of the network topological structure in the PlasmoINT 

network. Analysis of the distribution of node connectivity showed that both 50% 

(A) and 90% (B) confidence level networks had typical scale-free distributions. 

The distributions of clustering coefficients showed both networks (C and D) were 

lack of hierarchical structure. The average clustering coefficient was 0.46 and 0.52. 

respectively. 
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Figure S3.5 Comparisons of the assembled interactome network (PlasmoINT) with 

a previously reported interactome by Date and Stockert (PlasmoMAP). 

Comparisons of the average number of linkages in the gene groups corresponding 

to functional pathways from KEGG GO and Malaria Parasite Metabolic 

Pathways (MPMP) were compared for between PlasmoINT and PlasmoMAP for 

both 50% (A) and 90% (B) with at least 5 genes present in that pathway. For 

most functional pathways PlasmoINT showed a higher number of linkages in both 

precision networks compared to PlasmoMAP. This increased tendency is more 

pronounced in the 90% confidence network which furter suggest the improved 

performance of PlasmoINT in comparison to PlasmoMAP. If only considering the 

shared genes in each pathway of both networks, most pathways have less number 

of linkages (data not shown). This suggests that PlasmoINT has eliminated a 

considerable number of false positive linkages that persist in PlasmoMAP. Panel C. 

depicts the coverage of proteins in the KEGG GO and MPMP functional pathways 

by both the PlasmoMAP and PLasmoINT high confidence (90%) network. 

PlasmoINT contained a higher number of genes for essentially all pathways. 
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Figure S3.6 Examples of the functional pathway subnetworks from 90% 

confidence networks of PlasmoINT and PlasmoMAP. 10 metabolic or cellular 

pathways were reconstructed as subnetworks from the 90% confidence network of 

both PlasmoINT and PlasmoMAP. The yellow circles and the red edges represent 

proteins and linkages present in both networks and the purple circles and edges 
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represent genes and linkages found in each particular network only. For every 

pathway, PlasmoINT provides substantially higher coverage for both genes and 

gene linkages. In particular, for the functional group associated with actin and 

filament formation. (GO:0031509, top panel). PlasmoINT covers 13 genes (in 

contrast to 4 genes in PlasmoMAP) of that include well established 

proteins(Baum. et al., 2006): actin complex proteins (actin, actin-II. ARP and 

ARP1). actin related protein(ALP and ALP1), F-capping complex (F-capping a 

and P), ADF(PFE0165w and PF130326). formin proteins(formin2 and diaphanous) 

and coronin protein(PFL2460w). In the functional group of '"telomeric 

heterochromatin formation", (GO:0031509. second top panel) PlamsolNT covers 

10 genes that include all 8 components of histone complex and two chromation 

assemble factors that are predicted to represent the core chromatin assembly 

factors. The 90% confidence PlasmoMAP uncovered only five histone genes. 
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Figure S3.7 Histogram of 105 modules with functional predictions generated from 

the 90% confidence network. Total 208 modules were identified by MCL 

(Markov Chain cLuster) method, among which 105 modules (Cluster ID) were 

contained functionally annotated genes. The modules were ordered according the 

number of characterized genes (blue bar) and plotted with a number of functionally 

uncharacterized genes (left panel, orange bar) and the coherence score (right panel). 

The coherence score were calculated as the fraction of gene pairs that share 

functional annotations in a given module. Overall, 35 modules contain more than 

5 annotated genes and exhibit coherence score > 0.4 (figure 3A). In addition, 58 

modules have more than 2 genes and higher coherence > 0.4 (data not shown). 
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Figure S3.8. The precision rates of network-based predictions of gene function in P. 

falciparum using "leave-one-out" test using the threshold of prediction score. The 

precision rates of gene functional predictions were plotted against the recall 

percentage for different k values. K is the number of top assignments of 

network-based predictions for each gene. When the threshold of prediction score 

was set at 0.14, TOP 1 assignment has 50% predictive precision rate. 
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Figure S3.9. Comparisons of the prediction precision rates of different 

computational methods using "'leave-one-out" test. Based on top 3 assignments, the 

weighted neighbor counting method has significantly higher overall prediction 

precision rates than those generated by the (simple) Neighbor Counting. 

Chi-square (Hishigaki, et al., 2001) and FS-vveight average (Chua, et al., 2006) 

methods. 
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Figure S3.10. Summary of the gene functional prediction precision by WNC in 

different functional pathways from GO, K.EGG, MPM (continuation of figure 

3.3B). According to the Top 3 predictions by WNC, the number of genes recalling 

their original annotations (blue bar), recalling different annotations (gray bar) and 

hypothetical genes (orange bar) were grouped into functional gene groups 

(according the newly recalled annotations). The gene counts (left panel) were 

plotted together with the corresponding prediction precision rates (right panel) for 

each functional group/pathway. The top 3 prediction methods causes slight 

underestimation of the precision rates because the "wrong" recall in the pathway 

classifier can often have other two prediction terms which are correct (see figure 

S3.8andS3.9). 
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Figure S3.ll. Conservation of P. falciparum functional pathways among 

prokaryotes and eukaryotes (continuation of figure 3.3C). The total number of 

genes annotated by KEEG GO and MPM (blue bar) and hypothetical genes 

predicted by WNC (orange bar) were plotted for all 330 functional pathways 

predicted by the three databases. The functional gene groups were ordered 

according the overall level of conservation that is calculated as the fraction of the 

number homologues (reciprocal BLASTP hit e-value greater than le-10) among 

the total 210 prokaryotic and eukaryotic species (the second panel, blue bar). We 

also calculated the conservation of different functional pathways in apicomplexa 

only (third panel, red bar), prokaryotes and apicomplexa (forth panel, green bar) 

and eukaryote and apicomplexa (right panel, orange bar). The vast majority of P. 

falciparum pathways are well conserved in other apicomplexans and other 

eukaryotic species, and a substantial fraction of these are also conserved amongst 

prokaryotes. The latter class of pathways typically represents basic metabolic 

functions such as glycolysis, Redox metabolism, fatty acid synthesis or TCA cycle. 
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Figure S3.12 Subcellular distribution of the apical protein PFD0720w and the 

apicoplast and mitochondrion associated proteins PFE0910w. (A-B) In addition to 

its apical pool, PFD0720w (green) showed in free unfixed (A) and fixed (B) 

merozoites a faint peripheral distribution that appears to be distinct from the 

surface marker MSP-1 (red). The boxed regions are depicted in higher 

magnification and labelled with numbers, nuclei are stained with DAPI (blue). 

(C-D) While PFE0910w revealed a localisation and dynamic (CI-3) previously 

described for mitochondrial proteins (van Dooren, et al., 2005) in live parasites and 

colocalized with the mitochondrium dye Mito Tracker, PFE0145w revealed a 

subcellular distribution and dynamic (Dl-3) that is known for apicoplast protein 

(Waller, et al, 1998). 
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Figure SI3. Comparison of four 50% precision rate networks reconstructed 

different microarray input data. The interactome networks were constructed 

using different set of the microarray input data (other input dataset remained 

unchanged): (i) the IDC data only, (ii) the perturbation data only, (iii) the IDC and 

perturbation data integrated by a z-transform method and (iv) the IDC and 

perturbation data integrated by the optional average method derived in during work. 

A. The total number linkages as well as their cumulative percentage (inset) was 

consistently higher for the optional average method at any given threshold of 

true-to-false-positive ratios. B. Similarly the optional average method yielded 

higher gene coverage in different cutoffs of true-to-false-positive ratios. 
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Table S3.1 Assessment of the accuracies of different data sets in the Bayesian 

scoring framework based the KEGG benchmark. 
Pearson 
correlation 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 
-0.1 
-0.2 
-0.3 
-0.4 
-0.5 
-0.6 
-0.7 
-0.8 
-0.9 
Sum 

Benchmark overlap 
positive 
173 
933 
989 
816 
751 
657 
530 
582 
468 
567 
402 
415 
395 
334 
211 
161 
63 
11 
0 
8444 

negative 
11 
416 
1507 
2537 
3171 
3854 
4343 
4721 
4929 
5943 
4561 
3895 
3453 
2916 
2058 
1363 
602 
58 
0 
50234 

TP/FP 

26.667 
3.495 
1.196 
0.705 
0.489 
0.390 
0.326 
0.282 
0.252 
0.194 
0.187 
0.182 
0.178 
0.175 
0.174 
0.173 
0.173 
0.173 
0.173 

LS 

154.18 
17.194 
4.234 
2.340 
1.331 
1.079 
0.846 
0.673 
0.568 
0.729 
0.541 
0.600 
0.512 
0.645 
0.646 
0.623 
1.163 
1.927 
0 

Mutual 
information 
1.4 
1.3 
1.2 
1.1 
1 
0.9 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 
0 
sum 

Benchmark overlap 
positive 
2 
6 
31 
110 
270 
540 
873 
1226 
990 
799 
918 
1058 
950 
495 
78 
8346 

negative 
0 
3 
17 
66 
376 
1319 
3091 
4861 
5508 
6339 
7345 
9211 
8862 
4246 
634 
60224 

TP/FP 

-
2.667 
2.045 
1.891 
0.993 
0.557 
0.383 
0.320 
0.272 
0.232 
0.203 
0.182 
0.169 
0.165 
0.165 

LS 

-
12.130 
11.811 
11.209 
4.867 
2.453 
1.721 
1.533 
1.111 
0.799 
0.726 
0.674 
0.656 
0.743 
0.759 

Protein-protein 
interaction 

Benchmark overlap 
positive 
3 

negative 
8 

TP/FP 

0.333 

LS 

1.863 

Domain interaction (evidence score of 
Lee et al.) 

>=100 
31.6 
10 
3.16 
1 
<= 0.316 

log 10 
>=2 
1.5 
1 
0.5 
0 
<= -0.5 

sum 

Benchmark overlap 

positive 
400 
922 
136 
546 
425 
1106 
3535 

negative 
3 
12 
13 
33 
387 
996 
1444 

TP/FP 

150.33 
92.25 
33.8 
13.088 
4.386 
1.330 

LS 

113.04 
43.162 
4.733 
0.787 
0.839 
0.522 
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Table S3.2 The 25 core proteins involved in invasion process. 
Gene ID Gene name 
PFD0295C apical sushi protein, ASP 

PF11_0344 apical membrane antigen 1, AMA1 

MAL7P1.229 Cytoadherence linked asexual protein 

PFB0935w cytoadherence linked asexual protein 2 

PFC0110w Cytoadherence linked asexual protein 3.1 

PFI1730w cytoadherence linked asexual protein 9(CLAG9) 

PFC0120w Cytoadherence linked asexual protein, 3.2 

MAL7P1.176 erythrocyte binding antigen 

MAL13P1.60 erythrocyte binding antigen 140 

PFD1155w erythrocyte binding antigen-165 

PFA0125c erythrocyte binding antigen-181 

PFI1445w High molecular weight rhoptry protein-2 

PF10_0281 hypothetical protein 

PFDOHOw normocyte-binding protein 1, pseudogene 

MALI 3P1.176 Plasmodium falciparum reticulocyte binding protein 2, homolog b 

PFL2520w Plasmodium falciparum, reticulocyte binding-like protein, homolog 3 

PFL0870w Plasmodium thrombospondin-related apical membrane protein, PTRAMP 

PF13_0198 reticulocyte binding protein 2 homolog a 

PFD1150c reticulocyte binding protein homolog 4, Rh4 

PFD1145c reticulocyte binding protein homolog 5, Rh5 

PFI0265C RhopH3 

MAL7P1.208 rhoptry-associated membrane antigen, RAMA 

PF14_0102 rhoptry-associated protein 1, RAP1 

PFE0080c rhoptry-associated protein 2, RAP2 

PFE0075c rhoptry-associated protein 3, RAP3 

PF11_0381 subtilisin-like protease 2 
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