
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

High performance computing for computational
biology

Du, Zhihua

2005

Du, Z. (2005). High performance computing for computational biology. Doctoral thesis,
Nanyang Technological University, Singapore.

https://hdl.handle.net/10356/47481

https://doi.org/10.32657/10356/47481

Nanyang Technological University

Downloaded on 13 Mar 2024 16:06:55 SGT

6145572S

High Performance Computing for Computational
Biology

Du Zhihua

School of C o m p u t e r Engineer ing

A thesis submitted to the Nanyang Technological University
in FULFILMENT of the requirement for the degree of Doctor of Philosophy

2005

QH

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

HIGH PERFORMANCE COMPUTING FOR

COMPUTATIONAL BIOLOGY

By

Du Zhihua

This report is presented for Degree of

DOCTOR OF PHILOSOPHY

AT

NANYANG TECHNOLOGICAL UNIVERSITY

NANYANG AVENUE,SINGAPORE,639798

OCTORBOR 2005

© Copyright by Du Zhihua, 2005

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

NANYANG TECHNOLOGICAL UNIVERSITY

DEPARTMENT OF

SCHOOL OF COMPUTER ENGINEERING

The undersigned hereby certify that they have read and recommend

to the Faculty of Division of Information Systems for acceptance a thesis

entitled "High performance computing for computational

biology" by Du Zhihua in partial fulfillment of the requirements for

the degree of Doctor of Philosophy.

Dated: Octorbor 2005

ii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

External Examiner:

External Examiner:

Internal Examiner:

Research Supervisor:
Lin Feng

Examing Committee:

m

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

NANYANG TECHNOLOGICAL UNIVERSITY

Date: Octorbor 2005

Author: D u Zhihua

Title: H igh performance comput ing for computat ional

biology

Department: School of Computer Engineering

Degree: P h . D . Convocation: Year: 2006

Permission is herewith granted to Nanyang Technological University to
circulate and to have copied for non-commercial purposes, at its discretion, the
above title upon the request of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND
NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY
BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR'S
WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED
FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS
THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER
ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE
IS CLEARLY ACKNOWLEDGED.

m

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Table of Contents

Table of Contents iv

Abstract xii

Acknowledgements xv

Author's Publications xvi

1 Introduction 1

1.1 Cellular biology and molecular genetics 1
1.2 Sequence analysis 3
1.3 Rationale behind the research 6
1.4 Major contributions 9
1.5 Structure of the thesis 11

2 Research Background and Literature Survey 13
2.1 Methods for biological sequence similarity comparison 13

2.1.1 Sequence comparison 13
2.1.2 Scoring of alignments 14
2.1.3 Algorithms for pairwise alignment 17
2.1.4 Algorithms for multiple alignment 20

2.2 Phylogenetic tree reconstruction 25
2.2.1 Phylogenetic methods 25
2.2.2 Complexity of phylogenetic analysis 28
2.2.3 Current softwares for phylogenetic tree reconstruction 29

2.3 Architectural development of HPC systems 31
2.3.1 Shared memory architecture 33
2.3.2 Distributed memory architecture 35

2.4 Summary 36

iv

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3 HPC System Design for Sequence Analysis 37
3.1 Hardware architecture 37
3.2 Software system 40

3.2.1 Communication between processes 40
3.2.2 Task schedule 43

3.3 Performance analysis 44
3.4 Overview of the system 45
3.5 Summary 47

4 Parallel Computing for Sequence Comparison 48
4.1 Block-based wavefront algorithm for efficient pairwise alignment . . . 49

4.1.1 Pairwise alignment via dynamic programming 49
4.1.2 Possible solutions 51
4.1.3 Block-based wavefront 53
4.1.4 Experimental results 56

4.2 Parallelized multiple sequence alignment 59
4.2.1 Introduction 59
4.2.2 The proposed algorithm 61
4.2.3 Evaluation of the results 64
4.2.4 Comparison with previous parallel schemes 67

4.3 Summary and discussions 68

5 Reconstruction of MP and ML Phylogenetic Trees 69
5.1 Computational tasks 70

5.1.1 Minimum Parsimony criterion 70
5.1.2 Maximum Likelihood criterion 71
5.1.3 Models of base substitution 71
5.1.4 Tree rearrangement 74
5.1.5 TNT 76
5.1.6 Disk-Covering methods 77

5.2 Problems in previous parallel computing 78
5.3 A parallel divide-and-conquer model 80

5.3.1 Overall structure 80
5.3.2 Dynamic distribution of tasks 86

5.4 MP phylogenetic tree reconstruction 89
5.4.1 Working with MP-pPhylo(MP) 89
5.4.2 Experiment design 90
5.4.3 Experimental results 92
5.4.4 Evaluation of performance limits 102

v

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5.5 ML phylogenetic tree reconstruction 103
5.5.1 Parallelizing RAxML 104
5.5.2 Working with ML-pPhylo(ML) 108
5.5.3 Experiment design 113
5.5.4 Experimental results 115
5.5.5 Evaluation of performance limits 119

5.6 Summary 120

6 Pattern-Constrained Sequence Matching 122
6.1 Problems with existing methods 123
6.2 Patterns as constraints 124
6.3 Bound evaluation 128
6.4 Experimental results 130
6.5 Summary and discussions 135

7 Conclusions and Future Work 136
7.1 Conclusions 136
7.2 Future Work 138

7.2.1 Computation of the "tree of life" 138
7.2.2 Sequence analysis using grid computing 139
7.2.3 Development of more applications 140

Bibliography 143

Appendices 160

A Sample Code for Jacobi Iteration 160

vi

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

List of Figures

1.1 Transcription and Translation 2

1.2 Phylogenetic tree representing the evolutionary relationship between

monkeys and Homo Sapiens 5

1.3 GenBank growth 6

2.1 PAM 250 substitution matrix 16

2.2 Three dimensional alignment 21

2.3 MP tree 26

2.4 ML tree 27

2.5 Parallel architecture 32

2.6 Shared Memory Architecture 34

2.7 Distributed Memory Architecture 35

3.1 Architecture of a multi-processor compute node 39

3.2 Inter-connect between compute nodes 40

3.3 Fat tree topology, which is made up of three-stage network combining

64 nodes and the top stage with 64 links out 41

3.4 Process P\ broadcast a message to all other processes of the group . . 43

3.5 Perform and associate reduction operation, MPI_MINLOC, across all

processes in the group and place the result in all tasks 43

3.6 Master and worker model 44

3.7 Parallel sequence analysis system 46

vii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

viii

4.1 Example of the local alignment based on dynamic programming be­

tween two sequences: CATGT and ACGCTG 50

4.2 Wavefront moves across a matrix 54

4.3 Block-based wavefront with 4x4 block size 55

4.4 Speedup of the "block-based wavefront" algorithm for optimal pairwise

alignment 59

4.5 Fraction of execution time of ClustalW 62

4.6 Static Row-Based Matrix Partitioning 63

4.7 Overall scaling of parallelized multiple sequence alignment 66

5.1 Substitution models 73

5.2 Neighbor interchange options referred to as (left to right) AC—BD,

AB—CD, AD—BC, of an unrooted tree with 4 subtrees A;B;C; and D. 74

5.3 Break a branch, remove the subtree D, and attach it to one of the other

branches 75

5.4 Remove an edge e from tree, and then reconnected by creating a new

edge between the midpoints on edge in subtree C and D 75

5.5 The average MP score of each method above the best known score as

a percentage of the best known score on Datasetl 94

5.6 The average MP score of each method above the best known score as

a percentage of the best known score on Dataset2 95

5.7 The average MP score of each method above the best known score as

a percentage of the best known score on Dataset3 96

5.8 The average MP score of each method above the best known score as

a percentage of the best known score on Dataset4 97

5.9 The average MP score of each method above the best known score as

a percentage of the best known score on Dataset5 98

5.10 The average MP score of each method above the best known score as

a percentage of the best known score on Dataset6 99

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

ix

5.11 Time to complete one iteration of Rec-I-DCM3, P2-pPhylo(MP), P4-

pPhylo(MP), and PlO-pPhylo(MP) on datasets 1 to 6 101

5.12 Ratio of time taken by the average P4-pPhylo(MP) and PlO-pPhylo(MP)

trials to reach the best Rec-I-DCM3 average score and the time taken

by the average Rec-I-DCM3 trial to reach its best average score. . . . 102

5.13 Initial and final optimization phase of RAxML for an alignment with

150 sequences 106

5.14 pPhylo(ML) program flow 109

5.15 Time to complete one iteration of Rec-I-DCM3(RAxML) for datasets

1-6 and 1 up to 16 processors 117

6.1 Block dependency 127

6.2 (a)ClustalW aligns 6 sequences in Datasetl with one pattern; (b)PCMSA

aligns 6 sequences in Datasetl with one pattern 132

6.3 (a)ClustalW aligns 8 sequences in Dataset2 with one pattern; (b)PCMSA

aligns 8 sequences in Dataset2 with one pattern 134

A.l Jacobi iteration, four-point stencil 161

A.2 Jacobi partition 162

A.3 Jacobi Results 163

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

List of Tables

2.1 Some MSA programs 24

2.2 Possible phylogenetic trees 28

2.3 This table is only a small selection of free software available for recon­

struction phylogenetic tree, describing programs are recently developed

or widely used 30

4.1 Parallel algorithm to compute the score matrix F 57

4.2 Execution time (sec) 58

4.3 Parallel algorithm to compute multiple alignment 65

4.4 Comparison of runtime (in seconds) of ClustalW-MPLN J to our PMSA_N J

on 4,8,16 and 32 processors 68

5.1 Maximum pPhylo(MP) subproblem sizes 92

5.2 The best scores found over all five trials of Rec-I-DCM3, P4-pPhylo(MP),

and the single trial of PlO-pPhylo(MP) at the end of 24 hours. . . . 100

5.3 Improvement in iterations within 24 hours 103

5.4 Maximum Rec-I-DCM3 subproblem sizes 115

5.5 Rec-I-DCM3(RAxML) versus RAxML log likelihood values after the

same amount of inference time 116

5.6 Average base method, global method, and overall speedup values for

one iteration of serial program per dataset and number of processors

over three runs 118

x

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

xi

5.7 Average Log likelihood scores of Rec-I-DCM3(RAxML) and pPhylo(ML)

(on 16 processors) per dataset after the same amount of global execu­

tion time over three individual runs 119

A.l Parallelized Jacobi algorithm 162

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Abstract

Both sequence comparison and phylogenetic inference are of great importance to bi­

ologists; and these problems are fundamentally interdependent. Most methods for

phylogenetic inference use a given sequence alignment as an input, and efficient mul­

tiple alignment procedures often take advantage of a phylogenetic relationship of the

sequences. However, the algorithms used in these problems are very computationally

demanding. Also, the huge increase in size of publicly available genomic data has

meant that many common tasks in bioinformatics are not possible to complete in a

reasonable amount of time on a single processor. For example, inferring phylogenetic

trees is an enormously difficult problem because of the huge number of potential al­

ternative tree topologies, for that number grows exponentially. For a large number

of taxa, it is not possible to perform an exhaustive search of the tree space. It is

therefore clear that high performance computing, which can speed up the process of

sequence analysis without sacrifice the quality of the results, is necessary. The role

of high performance computing has also been credited in being the only solution for

two of the grand challenges in biology: the understanding of evolution and the basic

structure and function of proteins (D.A.Bader 2004).

This PhD project aims to highlight the potential and effectiveness of high perfor­

mance computing as a viable option for mining large datasets of genome sequences.

My main contributions include proposals of parallel architecture and mechanisms

which empower the algorithms of sequence comparison and phylogenetic analysis.

More importantly, these solutions make it possible for biologists to analyze the

xii

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Xlll

datasets that were previously considered too large, often leading to memory over­

flow or prohibitively long time for computation.

For sequence comparison, two new algorithms are presented for pairwise alignment

and multiple alignment respectively to gain parallel computing power at low cost. The

first one is a "block-based wavefront" algorithm developed to take advantage of dy­

namic programming and parallel computing to produce optimal pairwise alignments

in a reasonable time frame. The parallel alignment is executed in a block-based wave-

front where computing nodes will calculate the blocks along anti-diagonals in parallel.

The novelty of this algorithm is a compromise of the workload of each process and the

number of communications required, which makes the communication-to-computation

ratio drop dramatically. Secondly, a fast and practicable algorithm for multiple se­

quence alignment, known as PMSA, is designed. The proposed algorithm effectively

parallelized all the three stages of the ClustalW algorithm, which outperforms pre­

vious parallel schemes. With these improvements, the execution time of sequence

comparison can be greatly reduced, and it is also possible to apply the proposed

algorithms in large-scale sequence projects that were previously impossible.

In order to improve the topological accuracy of phylogenetic tree, a parallel divide-

and-conquer model (pPhylo) is designed, which performs a more complete search of

the tree space within limited time. This model is flexible; it can reconstruct the

large Maximum Parsimony(MP) and Maximum Likelihood(ML) trees comprising up

to 10,000 organisms and leads to significant improvements in run-time. Furthermore,

the trees computed by the proposed model are consistently better than the previously

known fastest and most accurate programs for MP and ML respectively. The model

includes four key steps: dividing a large tree into subtrees, optimizing the subtrees

in parallel, merging the computed subtrees in the correct order imposed by the de­

composition and finally rearranging the global tree. Because ML is a harder problem

than MP, a parallel global search method applied on an ML tree is also designed. The

global search method further improves the accuracy of the supertree and can also find

global configurations that were not found by operations on smaller local subsets.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

xiv

In related work, a pattern-constrained multiple sequence alignment algorithm

(PCMSA) is presented to improve the accuracy of multiple sequence alignment. It

begins by finding an optimal constrained pairwise alignment for each pair of sequences

using a new equation. Based on these results, a center sequence is defined so that the

sum of the pattern-constrained scores to other k-1 sequences is minimized (k is the

number of sequences to be aligned). Finally, a multiple alignment is constructed by

the alignment of the center sequence with the rest k-1 sequences progressively. In or­

der to form a multiple sequence alignment, spaces are inserted into each pre-aligned

pairwise sequence. The significance lies on its capability of aligning the sequences

sharing the same patterns. It effectively brings the information available in the ex­

isting pattern databases into multiple sequence alignment. It is also proven that the

similarity score derived from the PCMSA has the worst-case guarantee on the quality

of the alignment, a bound of approximation ratio of 2<k-i) to ^e similarity score of

optimal alignment.

My future work focuses on the improvement of the algorithms which appear in the

popular research fields of computational biology; such as computation of the "Tree of

life", protein structure alignment, multiple genome alignment, and analysis of virus

evolution. I also want to integrate the grid computing technology with our current

architecture, to implement all kinds of sequence analysis applications with improved

efficiency.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Acknowledgements

Many people have helped this thesis work in one way or another.

First of all, I would like to express my sincere gratitude to my supervisor, Dr. Lin

Feng, for his many suggestions and invaluable guidance during my research. I have

benefited from his academic advices and research experience, as well as the trust and

freedom he granted me for my research. Without his help, my research would not

reach this stage. I am also grateful to Dr. Usman Roshan of New Jersey Institute

of Technology for numerous helpful discussions as well as his invaluable guidance,

expertise in research and enormous support. My appreciation for his mentorship goes

beyond my words. Special thanks goes to Dr. Alexandros Stamatakis of the Institute

of Computer Science in Heraklion, Greece, for inspiring collaboration, and interesting

discussions.

I gratefully acknowledge all my friends for being such excellent company through­

out my life.

Many thanks should go to all the members of Bioinformatics Research Center for
their friendship and creating a very pleasant research environment.

Finally, great thanks to School of Computer Engineering, Nanyang Technologi­

cal University for offering me the award of Research Scholarship and the first-class

research facilities.

This work is dedicated to my family for their constant support over all these years.

xv

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Author 's Publications

1. Du, Z. H. and Lin, F., A hierarchical clustering algorithm for MIMD architec­

ture, Computational Biology and Chemistry, 28, 2004, 417-419.

2. Du, Z. H., Lin, F., and Usman, W.R., Reconstruction of Large Phylogenetic
Tree: A Parallel Approach, Computational Biology and Chemistry, 29(4), 2005,
273-280.

3. Du, Z. H. and Lin, F., Pattern-constrained Multiple Polypeptide Sequence

Alignment, Computational Biology and Chemistry, 29(4), 2005, 303-307.

4. Du, Z. H. and Lin, F., A novel parallelization approach for hierarchical cluster­

ing, Parallel Computing, 31, 2005, 523-527.

5. Du, Z. H., Lin, F. and Bertil, S., Accomplishments and Challenges in High Per­
formance Computing for Computational Biology, Current Bioinformatics (Ac­
cepted for publication).

6. Du, Z. H. and Lin, F., pNJTree: A Parallel Program for Reconstruction of

Neighbor-Joining Tree and Its Application in ClustalW, Parallel Computing,

(Accepted for publication).

7. Du, Z. H., Alexandres, S., Lin, F., Usman, W. R. and Luay, N., Parallel Divide-
and-Conquer Phylogeny Reconstruction by Maximum Likelihood, The 2005 In­
ternational Conference on High Performance Computing and Communications,
Sorrento (Naples) , ITALY - September 21-24, 2005.

8. Du, Z. H. and Lin, F., Using Blocks-!- Database in Needleman-Wunsch Algo­

rithm, The 23rd International Conference of the North American Fuzzy Infor­

mation Processing Society (NAFIPS 2004), Canada, 28-31 June 2004.

xvi

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

XV11

9. Du, Z. H. and Lin, F., Improvement of the Needleman-Wunsch Algorithm,

Fourth International Conference on Rough Sets and Current Trends in Com­

puting 2004 (RSCTC 2004), Sweden, 1-5 July 2004.

10. Du, Z. H. and Lin, F., pClustalW: A Deployment of Parallel ClustalW, The In­
ternational Conference on Bioinformatics (Incob2003), Penang, Malaysia, Sep­
tember, 2003.

11. Du, Z. H. and Lin, F., Parallel Computation for Multiple Sequence Alignments,
The Fourth International Conference on Information, Communication & Sig­
nal Processing and Fourth PacificRim Conference on Multimedia(ICICSPCM
2003), Singapore, December, 2003

12. Lin, F., Du, Z. H. and Qi, Y. T., HPTC for Sequence Analyses in Bioinformatics,
HP-CAST 2004, Australia, 28-31 March 2004.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 1

Introduction

The first chapter starts with an introduction to the relevant biological background.

Following that, it presents the motivation behind conducting research in high perfor­

mance computing for computational biology ranging from pairwise sequence align­

ment, multiple sequence alignment, to phylogenetic reconstruction. Finally, it sum­

marizes the major contributions of the work, and describes the structure of the thesis.

1.1 Cellular biology and molecular genetics

Two important molecules in all living cells are Nucleic Acids (DNA and RNA) and

proteins. The DNA, RNA and proteins of an organism are all linear chains composed

of smaller molecules. Each of these macromolecules stores information that provide

an insight into an organism's heredity and function. They are assembled from a

fixed alphabet of well-understood chemicals. DNA is made up of four chemical bases:

adenine (A) and guanine (G), which are called purines, and cytosine (C) and thymine

(T), referred to as pyrimidines. Each base has a slightly different composition, or

combination of oxygen, carbon, nitrogen and hydrogen. RNA is a temporary medium

of genetic information because it uses specific regions of DNA as template produced

1

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

2

in a process called transcription. RNA is very similar to DNA, but has the Thymine

bases replaced by Uracil. Proteins are composed of the 20 amino acids, denoted by

A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, and V in sequence analysis

software.

The Central Dogma, a fundamental principle of molecular biology, states that

genetic information flows from DNA to RNA to proteins. Using the genes of an

organism as templates, RNA is produced. The RNA can then be used as instructions

for producing proteins. The genetic code that resides in DNA is passed on from

generation to generation. Figure 1.1 shows the procedure.

genomic DNA

Pre-mKNA

Prote in structure

Figure 1.1: Transcription and Translation

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3

Although DNA is a relatively stable molecule, it may be damaged by certain

chemicals or UV light. Additionally, errors are introduced to DNA through the

process of copying in spite of proof reading machinery. Only point mutations affecting

a single spot of DNA are commonly considered, although more complex mutations

like rearrangements, duplications, and inversions are possible at the chromosome level.

Point mutations take the forms of substitution, deletion, or insertion. Substitution is

a change of one nucleotide in DNA sequences and insertion or deletion is an addition

or a removal of one or more bases from DNA sequences. Mutations are responsible for

inherited disorders and diseases. However, mutations would also create new species

and adapt existing ones to changing environmental conditions because they are the

source of the phenotype variation on which natural selection acts.

Due to the huge volume of data flooding from biology including genome projects,

proteomics, protein structure determination and the rapid expansion in digitalization

of patient biomedical data, the path has been cleared for study of biological sequence

data.

1.2 Sequence analysis

Analysis of biological sequence data in worldwide databases is the most commonly

performed task in bioinformatics, in which the commonly used analysis techniques

are sequence comparison and phylogenetic analysis.

The initial step in any phylogenetic analysis is to establish homology statements

across taxa. Sequence comparison establishes the degree of similarity between two or

more sequences. The more similar two gene sequences are to each other, the more

closely the organisms are related. Through protein sequence alignment, it can be

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

4

learned about the functionality of a protein without performing experiments: two

proteins having 25% or above sequence identity will have similar structure fold, thus,

a similar function (Rost 1999).

An example is the sequence alignment between cancer and uncontrolled cell growth

(Doolittle, Hunkapiller, Hood, Devare, Robbins, Aaronson k. Antoniads 1983). In this

discovery, the sequence of cancer associated alignment with the sequence of the protein

which had already been known as influencing the cell growth. The result proves the

connection between cancer and cellular growth because the correlation between the

two sequences is high.

Multiple sequence alignment determines the position and nature of conserved re­

gions in each member of the group. It carries more information than a pairwise one,

as a protein can be matched against a family of proteins instead of only against

another one. It is also a common input used by most methods for phylogenetic in­

ference. Conserved segments of multiple sequence alignment usually correspond to

structurally and functionally important parts of proteins.

Evolution is a central concept in biology. A phylogenetic tree of a family of re­

lated nucleic acid or protein sequences is a phylogenetic hypothesis of how the family

might have been derived during evolution. The relationship of different sequences is

reflected by the branching; Two sequences that are very much alike will be located

in neighboring outside branches and will join a common branch beneath them. Phy­

logenetic trees play an important role in answering many biological questions. For

instance, when a gene is found in an organism or group of organisms, it is helpful to

predict which ones might have an equivalent function on the basis of the phylgonetic

analysis. It is also used to follow rapid changing species, such as a virus. An example

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

5

for an evolutionary tree of the monkeys and the Homo Sapiens is provided in Figure

1.2.

Years Ago ^ " " * » • y < f O cf CT *
1 I * /

5

JO

IS

20

25

30

35

40

. » v / ' 1 '

1 l s ' *'

\ V
'** '

"1

""•*4
45 1

50 ,

55 |

Common Ancestor

Figure 1.2: Phylogenetic tree representing the evolutionary relationship between mon­
keys and Homo Sapiens

Sequence comparison and phylogenetic inference are fundamentally interdepen­

dent because most methods for phylogenetic inference use a given multiple sequence

alignment as an input. Another reason is that efficient multiple alignment procedures

often take advantage of a phylogenetic relationship of the members to be aligned.

Moreover, correction for biased representations (or weighting) of sampled sequences

is possible only with a knowledge about interrelationship among the sequences. There­

fore, ignoring this fact leads to biased and overconfident estimations. Whether the

main interest is in sequence alignment or phylogeny, a major goal of computational

biology is the co-estimation of both. Development of effective and efficient algorithms

for these tasks has attracted researchers all over the world.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

6

1.3 Rationale behind the research

During the last decades, research in the fields of molecular biology and biochem­

istry has provided the scientific community with huge amounts of sequence data.

The National Center for Biotechnology Information's GenBank has more than 37

million sequence records, and this collection has nearly doubled in size every year

for decades. This exponential growth rate can be observed in Figure 1.3 (Gen-

Bank growth data is available at ht tp:/ / WWW.NCBI.NLM.NIH.GOV/GENBANK/

GENBANKSTATS.HTML).

10
x10

—i 1

| Q GenBankGrowth | .

.0

3 4s '
1980 ' 1985 1990 1995 2000 2005

Year

Figure 1.3: GenBank growth

As the number of DNA and protein sequences in databases grows it is increasingly

important to be able to create sequence alignments and phylogenetic trees for very

long or very large numbers of sequences.

5

4.5

4

I 3.5

r:
1.5

•

0.5

•

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://
http://WWW.NCBI.NLM.NIH.GOV/GENBANK/

7

The algorithms of pairwise alignment based on dynamic programming provide op­

timal solutions; however, they are computationally expensive, especially when com­

paring whole genome. The computational load often exceeds the capacity of most

computing systems.

Multiple sequence alignment problems are NP-complete (An exact solution is con­

jectured by computer scientists to not be solvable in polynomial time, that is, an

NP-complete problem requires more steps than can be grounded by a polynomial).

To solve this problem, some approximating and heuristic methods have been intro­

duced. Some of these, called progressive methods, are developed to find near optimal

solutions within reasonable lengths of time. However, they also suffer from high

computational complexity when large datasets are aligned. Given that progressive

methods require 0(n2) steps, where n is the number of sequences to be aligned, it is

not surprising that these methods take many hours to run. For instance, the align­

ment of a few hundred of protein sequences using the ClustalW, one of the commonly

used MSA tools, requires several hours on a state-of-the-art workstation.

The amount of sequence data available to reconstruct the evolutionary history

of genes and species has also increased dramatically. As a consequence, the size of

phylogenetic analysis has grown as well. Additionally, inferring phylogenetic trees

is an enormously difficult problem for the large number of the potential alternative

tree topologies, and this number grows exponentially with the number of taxa. Con­

structing the "Tree of Life" is a collaborative effort by various research groups such as

CIPRES (http://www.phylo.org) and ATOL (http://tolweb.org). The current tech­

niques for reconstructing phylognies are heuristic for distance-based methods, Maxi­

mum Parsimony (MP) and Maximum Likelihood (ML) methods. The distance-based

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://www.phylo.org
http://tolweb.org

8

methods are fast but have high error on large datasets. MP and ML are NP-complete

or even more complex. Moreover, the computation of the likelihood value for one

single potential tree topology is computationally intensive. Methods that can quickly

reconstruct MP and ML trees are of great benefit to the biological community.

Increasing the speed and accuracy for sequence comparison and phylogenetic in­

ference is an imperative. While serial versions of some algorithms can use shallow

computation for a reasonable result in tolerant time, serious research demands deep

computing in an acceptable time frame. High performance computing (HPC) is one of

the most promising methods to absorb and process the amount of data available due

to its potential for delivering high computational power. Two or more processors can

be used simultaneously, in parallel processing, to divide and conquer tasks that would

overwhelm a single processor. It is clear that development of high performance com­

puting technologies is necessary for tackling various bioinformatics problems. Key

research issues include dividing mechanisms to break a big problem into subprob-

lems, and to figure out how the subproblems relate to each other. The complexity of

a problem is measured by the minimum number of messages that need to be sent to

solve the problem and getting the maximum performance out of all the processors all

the time. For example, the computations of dynamic programming based pairwise

alignment are triggered by the flow of the data from neighboring elements. Elements

which can be computed independently of each other are located in the anti-diagonal

which "moves" across a matrix as the computation proceeds. However, such parti­

tioning requires too much communication; it introduces inefficiencies by congesting

the communication network. Therefore, a new method with good computational load

balance and minimal communication is required.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

9

1.4 Major contributions

The algorithms of sequence comparison and phylogeny reconstruction are compu­

tationally expensive. In addition, the very large databases used in computational

biology give rise to serious algorithmic problems when exploring and analyzing the

data contained in these databases.

The main contributions of this research are a series of algorithmic and technical

solutions which empower the algorithms of pairwise and multiple sequence alignment

and phylogenetic tree construction. More importantly, these solutions make it possi­

ble for biologists to analyze datasets that were previously considered too large, often

leading to memory overflow or prohibitively long time for computation.

First, a new parallel algorithm, called "block-based wavefront", is presented to

produce optimal pairwise alignment with reliable output and reasonable cost. The

proposed algorithm takes advantage of dynamic programming and parallel computing

to produce optimal results in reasonable time. It distributes the computation of a

similarity matrix along block-based anti-diagonals to multiple processors, because

the computation of these blocks is independent. The novelty is a compromise of the

workload of each processor and the number of communications required. Even though

this algorithm will increase some serial computations when computing the elements

within a block, it decreases the communication load dramatically, and globally the

proposed algorithm achieves a near linear speedup with high scalability on long-scale

datasets.

Secondly, a fast and practicable algorithm for multiple sequence alignment is pro­

posed. It effectively parallelized all the three stages of the ClustalW algorithm. For

the first stage, the calculation of different sequence pairs is completely independent;

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Ill

there is a very high degree of parallelism. For the second stage, the computation

of guiding trees is parallelized. And for the last stage, we calculate profile scores in

parallel in the iterative loops. Experimental results show that by distributing sub­

routines to multiple processors, the execution time of the ClustalW program can be

significantly reduced, which outperforms previous parallel schemes. With these im­

provements, it is possible to apply the proposed algorithm in large-scale sequence

projects that were previously impossible.

Thirdly, a novel model is developed which has been proven to be the most ade­

quate and accurate for the inference of huge, complex trees. The proposed model is

flexible enough to reconstruct both Maximum Parsimony(MP) and Maximum Like-

lihood(ML) trees and leads to significant improvements in run-time. It also performs

a more complete search of the tree space within limited time. Therefore, the parsi­

mony and likelihood scores of trees computed by the proposed model are consistently

better than the previously known fastest and most accurate programs for MP and

ML respectively.

Finally, a pattern-constrained multiple sequence alignment algorithm, PCMSA, is

designed to be applied to multiple polypeptide sequence alignments. It uses pattern-

constrained pairwise alignments with further assembling of these "partial" alignments

into an approximate alignment of multiple sequences. It effectively brings the infor­

mation available in existing pattern databases into multiple sequence alignments. It

is also able to guarantee that the generated alignment satisfies the pre-defined con­

straints that particular patterns should be aligned together. In addition, it has the

worst-case guarantee on the quality of the alignment. For example, running on the six

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

11

aminoacyl-tRNA synthetase sequences, the proposed algorithm aligns the aminoacyl-

transfer RNA synthetases class-I signature shared by these sequences together while

the ClustalW fails to do.

I integrated these solutions into a parallel sequence analysis system on a cus­

tomized multi-node cluster, which significantly improves computational performance

on sequence analysis problems in computational biology. In this system, a calculation

which used to take hours is now carried out in minutes, and calculations that took a

week can be completed less than several hours. Parts of this PhD study have been

published in six journal papers and six peer-reviewed conference papers.

1.5 Structure of the thesis

The rest of this thesis is organized as follows:

Chapter 2 presents a comprehensive survey spanning pairwise sequence alignment,

multiple sequence alignment and phylogenetic tree inference; addresses problem com­

plexity, and outlines HPC architectures.

Chapter 3 describes a dedicated system to deliver high performance computing for

the problems of sequence analysis. The hardware architecture and software compo­

nents are studied. In the following chapters 4-6, the details of the proposed algorithms

are addressed.

Chapters 4 presents two new algorithms, for the problems of sequence comparison.

The first one is focuses on dynamic programming based pairwise alignment, which

produces an optimal result at the cost of huge requirements in both memory and

time. The other is a fast and practicable algorithm for multiple sequence alignment.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

12

In Chapter 5, a parallel divide-and-conquer model, pPhylo, is designed to recon­

struct phylogenetic trees, which is flexible enough to work with either MP or ML

methods.

Previous solutions to MSA use a substitution matrix, but they do not incorporate

the knowledge of the sequences being aligned. In Chapter 6, a novel algorithm,

pattern-constrained multiple sequence alignment, is presented to guarantee that the

generated alignment satisfies the pre-defined constraints that some particular patterns

should be aligned together. ,

Finally, Chapter 7 concludes this research project and addresses important aspects

of future work.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 2

Research Background and
Literature Survey

This chapter presents a detailed survey on the problems and methods in sequence

comparison and phylogenetic analysis, addresses the complexity of the problems and

outlines the architectural development of HPC systems.

2.1 Methods for biological sequence similarity com­

parison

2.1.1 Sequence comparison

Sequence comparison is used to tell whether two or more sequences are related and

give an impression how close their relationship is in terms of sequence similarity.

There are three possibilities of pairs of opposite symbols to evaluate the difference

between two sequences: (i) identity, (ii) substitution or mismatch, (iii) insertion or

deletion. When doing sequence alignment, identical or similar characters are put

in the same column, and nonidentical characters can either be placed in the same

13

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

14

column as a mismatch or opposite a gap in the other sequence. The goal of sequence

alignment is to find an optimal alignment of sequences by bringing as many identical

or similar characters as possible.

Considering the following pair of DNA sequences: GAAGCAAT and GAC-

CAAT. When they are aligned one above the other:

G A A G C A A T

G A C - C A A T

The only differences are a change from A to C in the third position and an extra

G in the first sequence. It is noted that a gap, marked with "-", is introduced in

order to align the bases before and after the gap perfectly.

2.1.2 Scoring of alignments

In sequence alignment, it is necessary to use a scoring scheme to reflect the bio­

chemical properties that influence the relative replaceability of amino acid or nu­

cleic acid sequences in an evolutionary scenario. Some amino acids have higher

matching scores than others, and some have mismatch scores as well due to their

evolution and chemical properties. The degree between two letters can be repre­

sented in a substitution matrix. Examples of substitution matrices, known as BLO-

SUM50, BLOUSM62 (S.Henikoff & J.G.Henikoff 1992) and PAM250 (M.Dayhoff,

R.M.Schwartz & B.C.Orcutt 1978), are useful for sequence alignment because of each

matrix giving the changes expected for a given period of evolutionary time.

A widely used scoring matrix is given below. It is extracted from probabilities.

Let a and b be two sequences, a{ and bj be the ith symbol in a and jth symbol in

b, R be a random model, w be the probability that a letter occurs in a sequence

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

15

independently. The probability of the two sequences is:

P(a,b\R) = Hwail[wb] (2.1.1)
« j

Let M be a match model, 2 be the probability of aligned pairs of symbols, then

the whole alignment probability is:

P(a,b\M) = l[zatA (2.1.2)
i

The ratio of these two likelihood is:

P{a,b\M) = Uj ^q,A = TT ^a„b, f 2 , -

p(o, b|A)'" n« ̂ Uj «*, ~ v «<*«*,

In order to arrive at an additive scoring system, we take the logarithm of this

ratio,

s(x,y) = M ^ H (2.1.4)
WXWy

s(x, y) is the log-likelihood ratio of the residue pair (x,y) occurring as a really

valid aligned pair against a random pair. The alignment score T between sequences

a and b is the sum of individual scores s(x, y) for each aligned pair of residues.

T = £«(<!«, 6t) (2-1.5)
t

The Dayhoff PAM matrix, shown in Figure 2.1, estimated 1572 changes in 71

groups of protein sequences that were at least 85% similar. These changes were

tabulated in a 20 x 20 matrix, which gave an individual score s(x,y) for residue x in

sequence a and y in sequence b.

The next point is gap penalty. For the alignment in the example above, there are

six columns with identical characters, one column with distinct characters, and one

column with a gap. Given that if a column has two identical characters, it is valued

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

16

Figure 2.1: PAM 250 substitution matrix

+5 as a match, different characters valued -1 as a mismatch and a gap valued as -5.

The cost can be computed in a straight way: 5 + 5 + (-1) + (-5) + 5 + 5 + 5 + 5

= 24.

However, the simple gap penalty model in which every gap which occurred has

the same cost is not accurate enough. In order to obtain the best possible alignment

between two sequences, an affine gap penalty model (O.Gotoh 1990) is introduced to

define a cost function. In practice, the affine gap penalty model, Qx, is defined as the

following equation:

Qx = d + exx (2.1.6)

In this equation, d is an opening gap penalty for any gap, e is an extension gap

penalty for each element in a gap and x is the length of gaps. The rules of thumb

for gap penalties are that an opening gap penalty should be 2-3 times larger than the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

17

most negative value in the substitution matrix that is being used and an extension

gap penalty should be 0.1 to 0.3 times the value of the opening gap penalty.

2.1.3 Algorithms for pairwise alignment

Pairwise alignment aims to find the best match between two DNA or protein se­

quences. In generally, two categories of methods have been recognized. The first cat­

egory is the dynamic programming based technique, such as the Needleman-Wunsch

algorithm (S.B.Needleman Sz C.D.Wunsch 1970) and the Smith-Waterman algorithm

(Smith & Waterman 1981&) (Smith & Waterman 1981a). Dynamic programming

methods assure the optimal alignment by exploring all possible alignments and choos­

ing the best. It does this by reading in a scoring matrix that contains values for every

possible residue or nucleotide match. It finds an alignment with the maximum pos­

sible score where the score of an alignment is equal to the sum of the matches taken

from the scoring matrix.

The key idea is that the best alignment that ends at the positions of a given pair

in two sequences is the best alignment previous to the two positions plus the score

for aligning the two positions. For two sequences a=ai<22...am and b=bib2...bn, the

scoring relation is defined as the following:

f F [i - 1] [; - l] + s(aA)

F[i]\j] = max I F[i-l]\j]-g (2.1.7)

[F\i)\j-l)-g

Where F[i, j] is the score at position i in the sequence a and position j in the

sequence 6; s(aibj) is the score for aligning the characters at positions i and j ; g is

a gap penalty. This relation defines a table F in terms of sequences a and 6; which

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

18

are of length m and n. Once this table is filled appropriately; F[m, n] contains the

optimal alignment score overall. By tracing from this element to F[0,0] and recording

the steps, an optimal alignment of the two sequences is constructed.

FASTA (Pearson & Lipman 1988) and BLAST (Altschul, Gish, Miller, Myers &

Lipman 1990) (Gish & States 1993) are based on the secondary category: heuristic

sequence comparison. Heuristic methods can only provide sub-optimal solutions in

which some good answers may be left out by trading speed for precision. They are

widely used for searching large biological databases.

The FASTA algorithm sets a size k for k-tuple subwords. It proceeds through the

following four steps to determine an alignment score:

1. Identify regions shared by the two sequences with k consecutive matching.

2. Re-scan the ten regions with the highest density of identities using a scoring

matrix. Trim the ends of the regions to include only those residues contributing

to the highest score. Each region is a partial alignment without gaps.

3. The best scoring initial regions are joined if their combined score is greater than

a threshold. This initial score is used to rank the database sequences.

4. The optimized alignment is calculated around the highest scoring initial regions

using a modified version of the Smith-Waterman algorithm.

BLAST (Basic Local Alignment Search Tool) is a heuristic method used to find

the highest scoring locally optimal alignments, known as high-scoring segment pairs

(HSP), between a query sequence and a database. The three steps involved in the

BLAST algorithm are shown as following:

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

19

1. Given a length parameter w, for iu-length substrings(words) in the query se­

quence, identify all of the substitutions of each word that have a similarity score

greater than a threshold score T. These words are stored as an expanded word

list.

2. Use the expanded list to identify all of the matching words in sequences of the

database.

3. If two matches are found, extend each match both forwards and backwards

using a scoring matrix, allowing gaps, to produce a score that is higher than

a threshold score(the alignment is a HSP). Save all of the high scoring regions

shared by the query sequence and each library sequence. The final gapped

alignments are reported by the program.

In summary, algorithms for pairwise alignment can be solved with time complexity

of 0 (m x n) by following dynamic programming, where m and n are the length of

the sequences. The challenge lies in the practical use of this technique, especially,

when long sequences are compared, the computational load exceeds the capacity of

the computing system. The complexity of heuristic algorithms remains on the order

of 0 (m x n) but the number of computations based on residue-residue comparisons

is greatly reduced. They tend to be more computational efficient than dynamic

programming based algorithms. However, these algorithms sacrifice sensitivity for

speed and therefore more distant sequence relationships may escape from detection.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

20

2.1.4 Algorithms for multiple alignment

Multiple sequence alignment (MSA) aims to extract the relationship among many

sequences. It aligns more than two sequences to look for maximum matching of

characters. As an exact alignment, in order to align several sequences, it needs to

generalize dynamic programming (DP) from pairwise alignment to a multidimensional

space.

Let £ be a set of characters (residues), S be a set of sequences iS"i, S2,... S^, we

define MSA of k sequences as k equal-length sequences S' = S[,S'2,...,S'k so that

l^il = I£21 = ••• = \S'k\ ~ n'i a n d removing space characters from the x-th sequence

of S' gives Sx for 1 < x < k. The sum-of-pairs (SP) score of an MSA is defined as

the sum of the pair-wise scores of all pairwise between the sequences:

]T Yl s(s**>svJ (2-1-8)
l<x<y<fcl<t<n'

where Sx,i is the i-th. residue in x-ih sequence and SVti is the i-th. residue in y-th

sequence. Figure 2.2 illustrates the working space in a three dimensional alignment,

in which sequences A, B and C are aligned.

Direct extension of dynamic programming to MSA needs huge computational

time and space. Given k sequences of length / each, the time complexity of dynamic

programming solution is 0(2klk) for computations of the number of 0{lk) cells with

recurrence relation 0(2k). For example: 6 sequences of length 100 requires 6.4 x 1013

calculations.

It has been proven that finding an optimal alignment is an NP-complete problem,

which makes the running of MSA extremely slow, if not impossible, for genome-wide

sequence analysis. To solve this problem, some approximating and heuristic methods

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

21

sequence A

Figure 2.2: Three dimensional alignment

have been introduced. It is convenient to classify these existing methods into three

main categories according to their properties.

Progressive alignment

In a progressive alignment (Feng & Doolittle 1987), it repeatedly applies the pairwise

alignment algorithm instead of aligning all sequences simultaneously. The major steps

are described below.

1. Determine distances between sequences.

2. Use a distance-based method to construct a phylogeneitc tree for the sequences.

3. Add sequences to the growing alignment using the order given by the tree.

This approach is by far the most widely used method for its advantage of speed

and simplicity combined with reasonable sensitivity. The main shortcoming of this

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

22

strategy is that once a sequence has been aligned, that alignment will never be mod­

ified even though it conflicts with sequences added later. Another problem is the

difficult choice of the suitable scoring matrices and gap penalties that apply to the

set of sequences (Higgins, Thompson & Gibson 1996). Long insertions or deletions

can cause problem due to the intrinsic limitations of the gap penalty.

A popular tool based on progressive methods is ClustalW (Thompson, Higgins

& Gibson 19946). In general, the ClustalW algorithm performs better when the

sequences are relative close-related. T-coffee (Notredame, Holm h Higgins 1998) is

an improvement to the ClustalW algorithm. This algorithm uses a consistency-based

objective function to make it possible to minimize potential errors when sequences

are aligned in a progressive manner, especially in the early stages of the alignment

assembly. The main difference between T-Coffee and ClustaW is that in T-Coffee, an

extended library replaces a substitution matrix. Another difference is that T-Coffee's

primary library is made of a mixture of global alignments(produced by ClustalW)

and local alignments (produced by Lalign (Huang k. Miller 1991)). This combination

of local and global information enables T-Coffee to get better results than others.

Iterative alignment

Iterative alignment (Brocchieri &; Karlin 1998) is to repeatedly realign subgroups of

sequences and then these subgroups into a global alignment of all of the sequences.

This method can reduce the initial alignment errors of most closely related sequences

instead of propagating them to align more distantly related sequences. It allows for

a good conceptual separation between optimization and objective functions.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

23

Consistency-based alignment

In a consistency-based alignment (Bucka-Lassen, Caprani & Hein 1999), sequences are

preprocessed so that the regions consistently conserved across the family can drive

the alignment. The main advantage is to use information from structure analysis,

sequence comparison, database search etc instead of a specific substitution matrix.

In Table 2.1, a large number of MSA programs developed in recent years are

summarized.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

24

Table 2.1: Some MSA programs
Program
Align-m

ClustalW,
ClustalX

ComAlign

DIALIGN

IterAlign

Praline

MAFFT

MUSCLE

PCMA

POA

Prrn

T-coffee

Algorithm
Iterative/
Consistency-
based

Progressive

Consistency-
based
Consistency-
based
/Iterative

Iterative

Iterative

Progressive/
Iterative
Progressive/
Iterative

Progressive/
Consistency
based
Progressive/
Iterative
Progressive/
Iterative

Progressive/
Consistency
based

Description
Use a non-progressive local approach to
guide a global alignment, which is a new
algorithm for multiple alignment of highly
divergent sequences.
Each sequence is aligned with its closest
neighbor in a guiding tree and the result­
ing groups are then aligned to each other
in the same way until all sequences are
aligned.
Combine several multiple alignments into
a single, often improved alignment.
Align gap-free segments as a whole with­
out introducing gaps, which is an algo­
rithm for sequences where local homology
is driving signals.
In each iteration, sequences are locally
compared to others and that every seg­
ment that shows high similarity with other
proteins is replaced by a consensus.

Sequences are iteratively replaced with a
complete profile made from a multiple
alignment that only includes their clos­
est relatives until the collection of profiles
converges.
Rapid group-to-group alignment by fast
Fourier transformation.
Use a draft progressive step followed by an
improved progressive and iterative refine­
ment steps.
Progressive method which aligns divergent
groups by the T-Coffee strategy and aligns
highly similar sequences as ClustalW.

Directly align without the need for profiles
by representing alignments as graphs.
Doubly nested randomized iterative align­
ment where group-to-group alignments
are repeated to improve the overall score.
Use an alignment library to seek for maxi­
mum consistency of each residue pair with
all other pairs of this library and guides
the progressive step by means of this li­
brary.

Reference
(VanWalle, Lasters &:
Wyns 2004)

(Thompson
et al. 19946)

(Bucka-Lassen
et al. 1999)
(Morgenstern, Freeh,
Dress k Werner 1998),
(Morgenstern 1999),
(Morgenstern 2004)

(Brocchieri & Karlin
1998)

(Heringa 1999)

(Katoh, Misawa, Kuma,
k Miyata 2002)
(Edgar 2004a) (Edgar
20046)

(Pei, Sadreyev k
Grishin 2003)

(Lee, Grasso k Sharlow
2002)
(Gotoh 1996)

(Notredame, Higgins k
J. 2000)

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

25

2.2 Phylogenetic tree reconstruction

2.2.1 Phylogenetic methods

Phylogenetic trees have important applications in multiple alignment of biomolecular

sequences (Thompson, Higgins k Gibson 1994 a) (Notredame, Higgins k Heringa

2000) (Robert 2004), protein function prediction (Eisen 2003) (La, Sutch k Livesay

2005) (Lichtarge, Bourne & Cohen 1996), and drug design (Searls 2003). There are

two general categories of methods for calculating phylogenetic trees: distance-based

and character-based methods. The methods of both categories use sequence data, in

form of an alignment, to reconstruct phylogenetic trees.

Distance-based methods calculate pairwise distances between taxa and connect

those nodes that have the shortest distance into a new node replacing the old nodes,

hence repeatedly reconstructing a phylogenetic tree. The analysis is based on the

differences between sequences, rather than the original data. This technique is fast

and quite simple for it merely groups the sequences according to their pairwise dis­

tances instead of searching the huge solution space of trees made up of all possible

solutions to the sequence data. Current popular distance-based methods, such as

the Neighbor joining (NJ) method (Saitou k Nei 1987) (Studier k Keppler 1988)

and other distance-based methods are reported by several papers (Moret, Roshan k

Warnow 2002, Nakhleh, Moret, Roshan, John k Warnow 2002, Nakhleh, Roshan,

St. John, Sun k Warnow 20016, Nakhleh, Roshan, St. John, Sun k Warnow 2001a).

Whereas distance-based methods compress all sequence information into a single

number (distance data), character-based methods attempt to infer the phylogeny

based on all individual characters (nucleotides or amino acids). They search through

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

26

the space of all possible phylogenetic topologies i.e. trees. All trees that could possibly

explain the evolutionary history of sequences are created and scored. The tree with the

best score is the optimal solution for a sequence dataset. Two most popular methods

are Maximum Parsimony (MP) (Camin & Sokal 1965) and Maximum Likelihood

(ML) (Felsenstein 1981a).

MP tries to find a tree which explains data with the least mutations. For example,

an input of sequences has 4 species, each of which is represented by a sequence of

3 characters: AAG, AAA, GGA and AGA. Try out different trees for these four

sequences and count number of substitutions needed in each tree shown in Figure 2.3.

The left tree in the figure shows the most parsimonious tree of this input, which has

the parsimony length 3, is the minimum number of mutations of the input. Other

right trees have the parsimony length 4 (require more substitution events).

AAA

AAA
1

AAG
AAA

1

AGA

AGA

GGA

1

AJ

A A A

1
A A A

1
AGA

KO

AAA ~>

<3&\

AAA

AAA

AAA

1

AAG
GGJV

AAA 1
AC* A.

AAA

Figure 2.3: MP tree

ML searches a tree that maximizes the likelihood of data for a given evolutionary

model. ML resembles MP in that the tree with the least number of changes will be

most likely. However, ML evaluates trees using explicit evolutionary models. For

example, in Figure 2.4, N1,...,N5 are the bases or residues observed in the extant

ancestral taxa and edge length tt,...,£4 correspond to time. Let P(Ni\Nj,tk) be the

probability that the residue at node Nj becomes the residue at node Ni in time tk.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

27

root

t4

N4

t1

N5

t2

N2

Figure 2.4: ML tree

The probability of the tree is:

P(N1,..., N5\T, t) = P(N1\N4, tl)P(N2\N4, t2)P(N3\N5, t3)P(N4\N5, t4)P(N5)

(2.2.1)

If we don't know the identity of the internal bases or residues at 7V4 and N5, the

likelihood of the tree is obtained by:

P(Nl,N2,NS\T,t)= Y^ P(Nl,...,N5\T,t) (2.2.2)
N4,N5

The problem of ML is to find the T" which maximizes P(N1, ...,N5\T,t) across

all trees T. If we assume independence of evolution at different sites, we can compute

the probability of a given tree site by site. For ancestors at interior nodes are gener­

ally unknown in a tree, it need to generalize the likelihood by sum over all possible

assignments of amino acids to the splits of the tree. ML methods can be used to

explore relationships among more diverse taxa.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

28

2.2.2 Complexity of phylogenetic analysis

The most fundamental algorithmic problem of character-based methods consists in

the immense amount of potential alternative tree topologies. This number grows

exponentially with the number of sequences n, e.g. for n — 50 organisms there already

exist 2.84 x 1076 alternative topologies according to the Equation 2.2.3, a number

almost as large as the number of atoms in the universe (« 1080).

Nu = (2n - 5) x (2n - 7) x ... x 3 x 1 = ^ - J f e - Z J ^ (2.2.3)

where Nu is the number of unrooted trees for n taxa.

MP problems are NP-complete which has already been demonstrated for the gen­

eral version of the perfect phytogeny problem (Bodlaender, Fellows, Hallett, Wareham

& Warnow 2000) and MP (Day, Johnson & Sankoff 1986) also known as the Steiner

Tree problem in phylogenetics (Foulds & Graham 1982). Computing Maximum Like­

lihood trees is also commonly believed to be NP-complete (Steel 1994), though this

could not be demonstrated so far because of the significantly superior mathematical

complexity. Some exemplary figures are outlined in Table 2.2.

Table 2.2: Possible phylogenetic trees
Taxa(n)

2
3
4
5
6
7
8

9
10

riooica tree 2"-2x(n-2)!
1
3
15
105
954
10,395
135,135
2,027,025
34,459,425

Unrooted tree 2 „i 3 " (J . 3) ,

1
1
3
15
105
954

10,395
135,135
2,027,025

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

29

For constructing the Tree of Life, i.e., the evolutionary tree on all species on Earth,

efficient MP and ML heuristics are required which allow for the analysis of large and

complex datasets in a realistic amount of time, i.e. in the order of weeks.

2.2.3 Current softwares for phylogenetic tree reconstruction

Some of phylogenetic tree construction softwares are summarized in Table 2.3. The

recently updated site by J.Felsenstein (Felsenstein 2004) provides a comprehensive list

of nearly all available programs. One of the recent methods, RAxML (Stamatakis,

Ludwig & Meier 2004) (Stamatakis, Ott, Ludwig & Meier 2005), is among the fastest,

most accurate, and most memory-efficient ML heuristics on real biological datasets to

the best of our knowledge. Furthermore, the global optimization method (fast Near­

est Neighbor Interchange adapted from PHYML (Guindon & Gascuel 2003)) is not

as efficient on real alignment data as RAxML. Thus, it is not suited to handle large

real-data alignments of more than 1,000 sequences. Another approach which partially

relies on divide and conquer has been implemented in TREE PUZZLE (Strimmer &

Haeseler 1996). Although the program is very popular among biologists—mainly be­

cause it assigns confidence values to the different clades of the tree—it is too slow

to handle large alignments containing more than 500 taxa. Rec-I-DCM3 (Roshan,

Moret, Warnow &; Williams 2004) is a new MP method that iteratively decomposes

the dataset into subproblems, and solves them serially. The phylogenetic navigator

(PHYNAV (S.V.Le, Schmidt & Haeseler 2004)) which is based on a zoom-in/zoom-out

approach represents an interesting algorithmic alternative to Rec-I-DCM3 (Roshan

et al. 2004). However, the program has a relatively high memory consumption

(crashed on a 1.000-taxon tree with 1GB RAM when we ran it) compared to RAxML.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

30

Table 2.3: This table is only a small selection of free software available for reconstruc-
tion phylogenetic tree, describing programs are recently developed or widely used.

Program
Neighbor
Joining

WEIGHBOP

BIONJ

TYipleML

PHYLIP

PAML

MOLPHY

Algorithm
Distance-
based

Distance-
based

Distance-
based
Distance-
based/
ML

Distance-
based/
ML/MP

ML

ML

Description
Two nearest nodes are chosen and merged
recursively until all of the nodes are paired
together
Weighbor is a weighted version of Neigh­
bor Joining that gives significantly less
weight to the longer distances in the dis­
tance matrix. The resulting trees are less
perturbed by adding distant taxa com­
pared to Neighbor Joining, and negative
branch lengths are avoided

Use a simple model of the sampling noise
of evolutionary distances.
Estimate distances by local ML using a
third taxon(or cluster) to improve long­
distance estimation.
A large package of free programs for par­
simony, distance-based methods,ML and
other methods. The ML programs have
good tree searching capabilities, which
also is able to apply several simple models.
A package of free programs for phyloge­
netic analysis using ML. It allows a wide
variety of advanced models and some of
programs are able to use gamma distri­
butions to model heterogeneity of evolu­
tionary rates among sequences,infer rate
parameters for different genes and syn­
onymous and nonsynonymous substitu­
tion rates etc.
A free package intended mainly for infer­
ring phylogenetc tree by using ML and
searching tree.

Reference
(Saitou & Nei 1987)
(Studier &:
Keppler 1988)
(Bruno, Socci k.
Halpern 2000)

(Gascuel 1997)

(Ranwez &:
Gascuel 2002)

(Felsenstein 1989)
http: //evolution. gs
.washing-
ton.edu/phylip.html

(Yang 1997)
http://abacus.gene.ucl
.ac.uk/software
/paml.html

(Adachi &;
Hasegawa 1996)
http://www.plantbio.uga
edu/ russell/ soft­
ware, html

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://ton.edu/phylip.html
http://abacus.gene.ucl
http://ac.uk/software
http://www.plantbio.uga

31

2.3 Architectural development of H P C systems

In general, high performance computing (HPC) refers to hardware and software tech­

niques for building computer systems to quickly perform large amount of computation.

HPC includes computers, networks, algorithms and environments necessary to make

such systems usable. These systems range from a departmental cluster of worksta­

tions, up to the largest super-computers. The economic benefit of these systems is

increasing as computer models grow more viable and increasingly augment or replace

physical experimentation. The design of HPC systems is driven by the requirements

of tera-scale grand challenges for various organizations, such as bioinformatics.

A taxonomy of HPC (Parallel) architectures is shown in Figure 2.5 (Flynn.M.

1972). Single instruction, multiple data streams (SIMD) consists of multiple proces­

sors, a controller, and an interconnection network. The controller stores a program

and broadcasts instructions to all processors simultaneously. Available processors

perform the instructions on the contents of their own local memory. In SIMD archi­

tecture, no processor can execute a second instruction unless all processors finish the

previous instruction because the system is synchronous.

A multiple instruction, multiple data streams (MIMD) machine typically con­

sists of multiple processors and an interconnection network. This model allows each

processor to store and execute its own program by providing multiple instruction

streams in contrast to the SIMD. Often, all processors are executing the same pro­

gram, but may be in different portions of the program at any given instant. MIMD

machines are the most commonly used general-purpose parallel computers. There

are mixed architectures where small number of processors are grouped together as a

shared memory symmetric multiprocessor (SMP) and they are linked together in a

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

32

> Vector

Figure 2.5: Parallel architecture

distributed memory architecture.

Synchronization is the act of bringing two or more processors to known points in

their execution at the same clock time. In SIMD programming, synchronization is not

an issue since every collective step is synchronized by the function of a control unit.

The complexity and often the inflexibility of SIMD machines, strongly dependent on

the synchronization requirements, have restricted their use mostly to special-purpose

applications. In contrast, the asynchronous operation of MIMD computers makes

them extremely flexible. For example, they are very well suited to the task-farming

kind of parallelism, which is barely feasible at all on SIMD computers. But this asyn-

chrony makes general programming of MIMD computers hard. It requires concurrent

programming expertise and hard work, such as using message-passing to synchro­

nize the parallel parts of an application program. Another issue on MIMD computer

programming is the explicit use of synchronization primitives to control nondeter-

ministic behavior. Nondeterminism appears almost inevitably in a system that has

multiple independent threads of the control-for example, through race conditions. In

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

33

the struggle for dominance between SIMD and MIMD, SIMD appears to have fallen

by the wayside. Even though the SIMD can be cost effective for certain task, the

more flexible and more general purpose nature of MIMD approach has prevailed.

Granularity is often used to refer to the relative size of the units of computation

that executed in parallel. In particular, there is three task divisions: fine, coarse and

medium. Fine-grained machines typically fall into the SIMD category. They consist

of a relatively large number of small, simple processors, where all processors operate

synchronously on the contents of their own memory. Coarse-grained machines con­

sist of relatively few processors, each of which is large and powerful. They typically

fall into the MIMD category, where processors operate asynchronously on the large,

shared memory. There are also medium-grained machines which built from commod­

ity microprocessors and designed in MIMD with both distributed and shared memory

models.

2.3.1 Shared memory architecture

Shared memory machines have a single global image of memory that is available to all

processors, typically through a common bus or switching network as shown in Figure

2.6. In this model, any processor can read or write to any part of the memory.

The single address map of a shared memory model simplifies the design of parallel

programs. The interprocess communication is usually performed through shared vari­

ables. When several processors are accessing the same logical address space, blocks of

code that only one processor can execute at a time are required for safety. For exam­

ples, POSIX threads (S.Kleiman, D.shah & B.Smaalders 1996) (Sum Mircosystems

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

34

Memory

1

Bus (eg) or. Switclrmg Network

1 • • 1 !
Figure 2.6: Shared Memory Architecture

1995) (of the IEEE 1996) are native threads of processing that run within a sin­

gle process/application and share access to resources and memory at a fine-scale.

OpenMP (R.Chandra & R.menon. 2001) (Board. 1977) (Quinn 2004) makes use of

compiler directives, running systems and environment variables. The programmer

provides hints to the compiler on how to parallelize sections of a correct serial imple­

mentation. More recently, UPC (Unified parallel c) (Carlson, Draper, Culler, Yelick,

Brooks & Warren 1999), an extension of C that provides a shared address space and

a common syntax and semantics for explicitly parallel programming in c.

These systems typically possess a relatively small number of processors (usually

less than 16) which can share a common block of memory. It's easy to develop

fast, efficient programs for this design because every processor has direct access to

all data. However, the disadvantages of this type of arrangement are that it is not

scalable beyond dozens of processors. After all, only a limited number of processors

can be expected to share a block of memory. Also the technologies needed to connect

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

35

the processors are rather expensive. To overcome the hardware scalability limitations

of shared memory systems, massive parallel computing with scalable systems using

distributed memory architectures became the center of interest.

2.3.2 Distributed memory architecture

In distributed memory machines, each processor has access only to its local memory

as show in Figure 2.7. Processors communicate by sending messages to each other

through interconnection network.

interconnection Net work

Ml

MB

M2

p?

M3

j ,

m

Figure 2.7: Distributed Memory Architecture

Distributed memory architectures scale very well on the other hand. But there

is "time penalty" for communication between processors. In a distributed-memory

architecture, communication between processors is performed by using a message-

passing paradigm. There are two message passing models: Parallel Virtual Machine

(PVM)(Geist, Begulin, J.Dongarra, W.Jiang, R.Manchek & V.Sunderam. 1994) and

Message Passing Interface (MP1) (MPI standard 2.0. 1997). PVM model enable it

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

36

to use a heterogeneous system containing different types of compute nodes. It could

dynamically add or delete compute nodes and processors from an application program

or from a system console. It supports for inter-operability both at the programming

language level and the communication system. Therefore, PVM has extra capabilities

to handle heterogeneous and faulty processors. MPI binds between a communication

context and a group of processors. There is a unique communicator in each group

and point-to-point process communication is allowed only within a group.

2.4 Summary

In this chapter, a review of problems and methods used in computational biology is

presented. They are widely regarded as key technologies analyzing genomic sequence

structures and functions, as well as understanding the whole genomes. The demand

for computational power in this field will continue to grow as the complexity and

the volume of data increase. It is clear that the development of high performance

computing technologies has become crucial for deployment of the software systems to

tackle the various problems.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3

H P C System Design for Sequence
Analysis

This chapter presents the hardware and software design for a generic parallel sequence

analysis system, PSAS, which aims to perform sequence analysis with high accuracy

within reasonable time.

3.1 Hardware architecture

A customized multi-node cluster as a hardware environment for the parallel sequence

analysis system is here studied and proposed. For several reasons such a system is

designed, such as its attractive performance/price ratio and adaptivity in handling

scalable problem sizes. The cost can be an order of magnitude cheaper than a tra­

ditional supercomputer while providing the same computational power. In addition,

the configuration of the cluster is scalable, and it can be built ranging from a few

compute nodes up to hundreds of nodes; a machine comparable with supercomputers.

To users, the cluster behaves like a single system, but has higher performance through

redundant processors, storage, and data paths.

37

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

3S

The building blocks are a group of customized ES45 compute nodes (Srivastava

2001), as shown in Figure 3.1 . Each node has 4 Alpha-EV68 1GHz processors and

an interconnect PCI adapter capable of over 280 MB/s sustained bandwidth. It also

has a crossbar as its internal network with an aggregate bandwidth of 5.2 GB/s (1.33

GB/s/processor). This is sufficient to deliver 1.0.64 byte/clock cycle to each processor

in the node simultaneously.

The compute nodes are interconnected by the Quadrics 128-port interconnect

switch chassis as illustrated in Figure 3.2. Multiple connections are used in each node

to increase aggregate throughput and to reduce queuing delays on the 4-processor

compute nodes. The fast interconnect delivers up to 500 MB/s per node, with 32

GB/s of cross-section bandwidth.

A fat tree is designed for inter-node connection, which combines the characteristics

of fully connected crossbar and tree structures. First, bandwidth scales with the

increasing number of processors. Secondly, the internal connection count of a fat tree

grows much more slowly, at the rate of 0(nlogn) (where n is the number of ports), as

opposed to the crossbar switch growth rate of 0(n2) (Hewlett-Packard 2001). Figure

3.3 shows a quaternary fat tree of dimensions 3, which connects 64 processing nodes

using 16 switches. The bidirectional nature of the links localizes traffic to a sub-tree

large enough to span both nodes. The uplinks in the top stage of a switch network

can either be used for expansion or can be used as additional downlinks doubling the

number of nodes that can be connected without reducing the bisectional bandwidth.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

39

Each @ 64b SOQMHz (4.0GBJS)

EV68
lOOGhz

256b 125Mhz
(4.0GB/S) A

tU

Quad
C-Oiip Co«oSff i n (

—

t i t

i f f * M1-11

I A

•;iiif-j f Y

*L
^ 2 256b125Mhz

(4.0GB/S)

DID IDID
IWDTDI [DTD

Pi
¥ :-ffe

3fc
Cache
8 MB per CPU

Figure 3.1: Architecture of a multi-processor compute node

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

40

• ' ' ' w=j~_-.y

J

•—•—•—•—•

Figure 3.2: Inter-connect between compute nodes

3.2 Software system

3.2.1 Communication between processes

The proposed system exchanges information between processes through Message Pass­

ing Interface (MPI) that uses Elan hardware, software and switches to provide ex­

tremely low latency and high bandwidth communication.

MPI uses objects, called communicators and groups, to define which collection of

processes may communicate with each other. Within a communicator, each process

has its own unique integer identifier, called rank, assigned by the system when the

process initializes. Ranks are contiguous and begin at zero. They are used to specify

the source and destination of messages. For reasons of efficiency, however, message

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

41

64 links

Figure 3.3: Fat tree topology, which is made up of three-stage network combining 64
nodes and the top stage with 64 links out

passing systems generally associate only one process per processor.

MPI provides a rich set of library functions for point-to-point and collective com­

munication operations. MPI point-to-point operations typically involve message pass­

ing between two different MPI tasks: one task is performing a send operation, and

the other task is performing a matching receive operation. Most of the MPI point-to-

point routines can be used in either blocking or non-blocking mode. Blocking mode

means that routines only return once communication completes, or when the user

buffer can be used or re-used. Blocking communication is used to wait for everything

to be ready, so that variables can safely be altered in order to avoid a deadlock.

Process will be stopped until the send application buffer is free or the receive ap­

plication buffer is written. That is, each block begins the computing only when its

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

42

previous division has completed the computing. In non-blocking communication the

routine returns before communication is complete. Communication continues in the

background while other work is performed. The application programmer takes care

of the data integrity.

Applications may require coordinated operations among multiple processes. For

example, all processes need to cooperate to sum a set of numbers distributed among

them. Collective communication must involve all processes in the scope of a communi­

cator. All processes are, by default, members in the communicator MPLCOMM.WORLD.

Types of Collective Operations are as following:

• Synchronization - processes wait until all members of the group have reached

the synchronization point.

• Data movement - broadcast, scatter/gather, all to all.

• Collective computation (reductions) - one member of the group collects data

from the other members and performs an operation (min, max, add, multiply,

etc.) on that data.

These operations are implemented such that all processes call the same operation

with the same arguments. Thus, when sending and receiving messages, one collective

operation can replace multiple sending and receiving operations, resulting in lower

overhead and higher performance. Two collective operations are commonly used:

MPLBcast (&buffer,count,data type,root,comm) -Broadcasts (sends) a message

from the process with rank "root" to all other processes in the group. As illustrated

in Figure 3.4, all the processes receive the minimum integer, 7, from the "root", iV

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

43

p«

16

7

Pi

7

7

P j

11

7

P j

12

7

Min (before)

Mm (j f icr)

Figure 3.4: Process Pi broadcast a message to all other processes of the group

MPI_Allreduce (&sendbuf,&:recvbuf,count,data type,op,comm) - Applies a reduc­

tion operation and places the result in all processes in the group. As shown in Figure

3.5, MPLMINLOC is used to find a global minimum value, 1, and its location, Pi.

Po

1

1

p.

2

i

Pj

3

1

P3

4

1

v •

^ •

Madbuf (before)

reevbuf (after)

Figure 3.5: Perform and associate reduction operation, MPLMINLOC, across all
processes in the group and place the result in all tasks.

To establish a basic understanding and test on the multi-node cluster, we devel­

oped a protocol program (shown in Appendix), dealing with a typical matrix problem

of Jacobi iteration (solving Laplace's equation).

3.2.2 Task schedule

In most of the parallelism, a master-worker mechanism for task scheduling is used, as

shown in Figure 3.6. A processor, PO, works as a master process communicating with

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

44

the outside and organizing jobs. The other processors, Pl,...,Pn, work as working

processes. Any jobs requested from outside will be received as a socket communication

(specifying analysis methods, input data and parameters). The master process decides

an arrangement for data partitioning and dispatching dynamically according to the

status of working processors. Working processes repeatedly perform jobs on a small

fraction of data until all jobs are finished.

Figure 3.6: Master and worker model

3.3 Performance analysis

There are a number of criteria for measuring the performance of parallel programs.

Running time measures the amount of time from the starting of a parallel program

to the end when the program obtains the final result of the computation. Speedup

measures the performance improvement gained through parallelization, which is the

ratio between the running time using single processor and multiple processors.

When bench marking the performance improvement, it should also be noted that

the maximum speedup achievable depends greatly on the degree of parallelism in a

particular algorithm (Amdahl 1967). Amdahl's law states that potential program

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

45

speedup is denned as follows: if n is the number of processors, S is the amount of

time spent on serial parts of a program, P is the amount of time spent on parts of

the program that can be done in parallel, and we assume the total time as S + P — 1

for algebraic simplicity, then the speedup is given by:

speedup = _*+£_ = _ _ L _ (3.3.1)

The speedup is limited by the fact that not all parts of code can be run in parallel.

Substituting in the equation, when the number of processes goes to infinity, the

speedup is still limited by ^. This indicates that the serial fraction of code has a strong

effect on speedup and helps to explain the need for large problem sizes when using

parallel computers. To get good performance it is necessary to run large applications

with large data array sizes and lots of computation. The reason for this is that as the

problem size increases the opportunity for parallelism grows and the serial fraction

shrinks; and it shrinks in its importance for speedup. The linear speedup curve is

rarely achieved because parallelism entails a certain amount of communication and

management overhead.

3.4 Overview of the system

Upon setting up and configuring the hardware and supporting software, I developed

a set of HPC algorithms for sequence analysis and organized them into a parallel

sequence analysis system. These parallel algorithms have characteristics far different

from traditional serial algorithms. They break up a large task into a set of smaller

tasks, assign each of the smaller tasks to a processor to work and coordinate the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

46

work between the processors periodically (problem dependent). In order to identify

the parts of an algorithm that can be executed concurrently, it requires a thorough

understanding of the algorithm, exploiting any inherent parallelism which may exist.

Sometimes, it also needs a restructuring of the algorithm or an entirely new algo­

rithm. Load imbalance is one of the main performance degradation factors of parallel

algorithms running in the heterogeneous environments which are often used in clus­

ter computing. The complexity of a problem is measured by the minimum number

of messages that need to be sent to solve the problem while obtaining maximum

performance out of all processors at all times.

The details of the proposed algorithms are addressed in the following chapters 4-6.

An overview of the system is shown in the Figure 3.7.

USER

Input

Local data
Analysis methods

parameters

Output

Analysis result
Biological intepretation

V

Parallel Sequence
Analysis System (PSAS)

Parallel pawtsc
sequence aJkafiKSt

Parallel multiple
sequence alignment

Parallel Model for
Reconstruction MP ant!
Ml. PhvloeenerkTree

Patterned
multiple a
alignment

unco

Cluster

Figure 3.7: Parallel sequence analysis system

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

47

Key modules are as following:

• Parallel Pairwise Sequence Alignment - take advantage of dynamic program­

ming and parallel computing to produce optimal results.

• Parallel Multiple Sequence Alignment -be able to align hundreds or thousands

of sequences on multiple processors within reasonable time.

• Parallel Model for Reconstructing Phylogenetic Trees - be flexible enough to

reconstruct both Maximum Parsimony (MP) and Maximum Likelihood (ML)

phylogenetic trees and perform a more complete search of the tree space within

limited time, yielding better trees in terms of final parsimony and likelihood

values than comparable programs.

• Pattern-Constrained Multiple Sequence Alignment - guarantee that the gener­

ated alignment satisfies the pre-defined constraints that some particular pat­

terns should be aligned together.

3.5 Summary

This chapter introduced our initial work on the development of a parallel sequence

analysis system; both on the hardware architecture and on the software system. With

such a system, a number of algorithmic and technical solutions are designed for an

assorted collection of applications. In the following chapters, details of these solutions

will be discussed.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 4

Parallel Computing for Sequence
Comparison

The initial step in any phylogenetic analysis is to establish homology statements across

taxa. Sequence comparison is, in essence, a procedure by which we can recognize

and describe potential homology among nucleotide or amino acid positions. The

complexity of sequence comparison problems and the necessity to deal with huge

amounts of sequence data makes the development of algorithms which are fast and

require little memory become a great concern. To meet these demands, two new

algorithms are presented in this chapter for analyzing these biological sequences to

gain parallel computing power at low cost. The first one is a "block-based wavefront"

algorithm developed to speedup optimal pairwise alignment. The second one is a fast

and practical algorithm for multiple sequence alignment. With these improvement,

it is possible to apply the proposed algorithms in large-scale sequence projects that

were previously beyond their scope.

48

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

49

4.1 Block-based wavefront a lgori thm for efficient

pairwise al ignment

4.1.1 Pairwise alignment via dynamic programming

Dynamic programming based technique uses previous steps for optimal alignments

of smaller subsequences. For two sequences a—aia2--.am and h—b\b2---bn, an m x n

matrix F is constructed, indexed by i and j , one index for each sequence, where the

element, F[i] [j], is the score of the best alignment between a,\, 02, •-., a% and bi,b2,-..,bj.

In order to keep track of the different values for the different gap lengths, an affine

gap model is applied. For local alignment, the score value F[i][;'] is built recursively

by the following Equation 4.1.1.

F[i][j] = max <

F[i-l][j- 1] +*(o*6,-)

I*[i - 1][7 - !] + *Mi)
Iy[i - \)\j - 1] + s(aibj)

0

Ix[i]\j] =max

Iy[i][j] — max

F[x[\j-\]-d

/x[i]b '- l]-e

F[i-l)\j]-d

Iy[i-W}-e

(4.1.1)

Where s(aibj) is the score for aligning the characters at positions i and j ; d is an

open gap penalty; e is an extended gap penalty; F[i][7'] is the best score given a* with

bj\ Ix is the best score given a{ aligns with a gap; Iy is the best score given bj aligns

with a gap.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

50

For example, given two sequences a =CATGT and b =ACGCTG, the score

value can be evaluated systematically by using a tabular computation. In order to

obtain the alignment, it starts at the highest-scoring positions in the score matrix

and follows a trace path from those positions up to an element whose score is zero,

as shown in Figure 4.1. In the first column and the first row, one can see the results

of the calculations of F(OJ,—) and F(—,bj). In the second row, one can see the

propagation of the algorithm, given that a gap and a mismatch cost -1 and a match

costs +2.

0

1
2
•5

J
4

5

6

A

C

G

C

T

G

0

0

0

0

to
0

0

0

1

c
0

0

2

1

£>
1

0

2

A

0
2

1

1

sx\
1

0

3

T

0

1

1

0

0

£>
2

4

G

0

0

0

2

1

2

T)

5

T

0

0

0

1

0

3

4

Figure 4.1: Example of the local alignment based on dynamic programming between
two sequences: CATGT and ACGCTG

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

51

4.1.2 Possible solutions

Pairwise alignment algorithms based on dynamic programming guarantee optimal

results, but they impose extremely high requirements on both computer memory and

execution time.

A number of fine-grained parallel architectures have been developed for dynamic

programming based algorithms. P-NAC was the first such machine and computed

edit distance over a four-character alphabet (D.P.Lopresti 1987). More recent exam­

ples, better tuned to the needs of computational biology, include BioScan(R.K.Singh

& et al. 1996) , BISP (Chow, Hunkapiller, Peterson & Waterman 1991), and SAMBA

(Guerdoux-Jamet & Lavenier 1997). An approach presented in (Schmidt, Schroder

&; Schimmler 2002) is based on instruction systolic arrays (ISAs). IS As combine the

speed and simplicity of systolic arrays with flexible programmability. Special-purpose

hardware implementations can provide the fastest means of running a particular algo­

rithm with very high PE (processing element) density. However, they are limited to

one single algorithm, and thus cannot supply the flexibility necessary to run a variety

of algorithms required for analyzing DNAs, RNAs, and proteins.

In addition to architectures specifically designed for sequence comparison, existing

programmable serial and parallel architectures have been used for solving sequence

alignment problems. Alpern et.al. (Alpern, Carter & Gatlin 1995), Rognes (T.Rognes

&; E.Seeberg 2000) and Wozniak (A.Wozniak 1997) explore instruction level paral­

lelism in single-processor machines. Lander et. al. (E. Lander &; Taylor 1988) and

Brutlag et.al. (Brutlag, Dautricourt, Diaz, Fier, Moxon &; Stamm 1997) discuss the

implementation on a data parallel computer. Several other approaches are based on

the SIMD concept, e.g. MGAP (Borah, Bajwa, Hannenhalli &; Irwin 1994), Kestrel

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

52

(Bias & et. al 2005), and Fuzion (Schmidt, Schroder k Schimmler 2002). SIMD and

ISA architectures are programmable and can be used for a wider range of applica­

tions, such as image processing and scientific computing. Since these architectures

contain more general-purpose parallel processors, their PE density is less than the

density of special-purpose ASICs. Nevertheless, SIMD solutions can still achieve sig­

nificant runtime savings. However, the costs involved in designing and producing

SIMD architectures are high. Therefore, none of the above solutions has a successor

generation, making upgrading impossible.

Reconfigurable systems are based on programmable logic such as field-programmable

gate arrays (FPGAs) or custom-designed arrays. Several solutions including Splash-2

(Hoang 1993) and Decipher (http://www.timelogic.com n.d.) are based on FPGAs

while PIM has its own reconfigurable design (M.Gokhale k. et al. 1995). In (Oliver,

Schmidt & Maskell 2005), it presented a new FPGA solution that achieves a speedup

of more than 100 compared to a Pentium4 using a standard off-the-shelf FPGA.

Compared to the previously published FPGA solutions, it uses a new partitioning

technique for varying query sequence lengths. The design presented in (Yamaguchi,

Maruyama & Konagaya 2002) is closest to this approach since it also uses a linear ar­

ray of PEs on a reconfigurable platform. Unfortunately, FPGAs are generally slower

and have lower PE densities than special-purpose architectures. They are flexible,

but the configuration must be changed for each algorithm, which is generally more

complicated than writing new code for a programmable architecture.

Based on MIMD (Multiple Instruction, Multiple Data) architecture, Edmiston

et.al (E.W. Edmiston & Smith 1988) presents parallel algorithms for sequence and

subsequence alignment that achieve linear speedup and can use up to 0(min(m,n))

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://www.timelogic.com

53

processes, where m and n are the length of two sequences. But it stores the entire

dynamic programming table, for example, if we want to align 2 sequences of 1 million

base pairs long and that we only use one byte to store the score of each element in

the score matrix, it will need \M x \M main memory. In this way, the memory

will be easily used up and it will have to wait too long for memory swapping. More

recently, Rajko and Aluru (S.Rajko & S.Aluru 2004) present a space and time optimal

parallel algorithm for the pairwise sequence alignment. They claim that their method

requires only 0((m+n)/p) space and runs in 0(mn/p) time. However, there are no

any practical experiments to support this theory in the paper.

4.1.3 Block-based wavefront

Mathematically, the dynamic programming based method is: to construct an m x n

matrix F , where m and n are the length of the two sequences. The Equation 4.1.1

imposes data dependencies between the matrix elements in directions of left-to-right,

top-to-down and main-diagonal. These dependencies imply a particular order of

computation of the matrix. Following the recurrence equation, the matrix F is filled

from top left to bottom right with i going from 1 to m and j from 1 to n. The

order of computation of the elements in the similarity matrix is triggered by the

flow of the data from neighboring elements: F[i — l][j• — 1] (or Ix[i — l]\j' — 1] or

Iy[i - l}[j - 1]), F[i - l]\j] (or Ix[i - l]{j}) and F\i][j - 1] (or Iy[i\\j - 1]) at each step.

The similarity matrix can be computed in parallel by distributing the computation

along anti-diagonals because elements which can be computed independently of each

other are located on a so-called wavefront. As illustrated in Figure 4.2 wavefront

"moves" across the matrix as computation proceeds.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

54

/N.

I I ! I

Figure 4.2: Wavefront moves across a matrix

However, such a wavefront computation mode has a few problems. One problem

is each parallel "wavefront" leads to lots of communications among processes. For

example, after process 1 computes the top-left element, it has to send the result to

processes 2 and 3. Therefore, this method demands an extremely fast inter-process

communication such as on systolic arrays. The other problem is that it requires a

very large number of processors if real biological data is to be considered.

To solve these problems, we proposed a "block-based wavefront" algorithm to

compute blocks instead of individual elements. The algorithm divides the similarity

matrix by column into p groups (p is the number of processors) evenly with a number

of complete columns, and assigns each processor one such group. The columns in each

processor are grouped into blocks with the height of B (B is the height of block that

would be adjusted according to the number of rows). Therefore, the computation of

a given block requires only the column segment of the block to its immediate left,

and the main-diagonal element, a total B + 1 elements. The parallel alignment is

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

55

executed in a block-based wavefront such that computing nodes will first calculate

the blocks along the first anti-diagonal in parallel, then along the second anti-diagonal

in parallel, the third, the fourth,..., until the last anti-diagonal.

Figure 4.3 shows an example of computing a 16 x 16 matrix on 4 processors. The

horizontal sequence x with 16 columns is distributed evenly to 4 processors. In each

round, processes compute a 4 x 4 block of matrix. Initially process pi starts computing

block 1 in round 1. Then processes pi and p2 can work in round 2, processes pi, p2

and p3 at round 3 and so on.

y \

Figure 4.3: Block-based wavefront with 4x4 block size

In a wavefront computation mode, each element on different processes can be com­

puted only after receiving two input values (elements of the left-to-right and the main

diagonal). However, in the proposed algorithm, if a block has 4 rows and 4 columns,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

56

16 elements will be computed after receiving 5 input values. Thus, communication-

to-computation ratio drops from 2:1 to 5:16, an 84% reduction. Even though this

algorithm will increase some serial computations when computing elements within a

block, it decreases the communication load dramatically. The computing time com­

plexity of each process is ^^p when distributing the whole work load to p processes.

A procedural description of the proposed algorithm is shown in Table 4.1. Each

process P{ receives the required elements of the neighbor block from the previous

process Pj_i, then it computes a m/p x B block. After the computation of a block,

it sends the requested elements to the next process Pi+\.

This algorithm does not need a global control: that is, once it is started it continues

to complete the whole matrix over the cluster of compute nodes without the external

intervention. We would step back from global update and ask only what each process

need to do its job and what it must pass on to other processes. In order to ensure

that no data value is updated at step t +1 until the data values in neighboring blocks

have been updated at step t. We use a blocking communication mode. Process will

be stopped until the Send application buffer is free or Recv application buffer is

written. That is, each block will not begin computing until its previous division has

completed computing.

4.1.4 Experimental results

In order to evaluate the performance of the proposed algorithm, a dataset consisting

of sequences that range from 100k to 900k nucleotides was used. The algorithm was

run on 4 to 48 processors to study the execution time and speedup. For uniproces­

sor performance, the serial version is used as a baseline. During the experiments,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

57

Table 4.1: Parallel algorithm to compute the score matrix F

-Input :
Sequence x and y of length m and n
Substitution matrix: s(a, b)
Gap penalty: g
Block's height: B
Number of processes: p + 1 (p is number of working processes)

-Output: Score of the optimal local alignment of x and y

-Algorithm :
1. Connect to p + 1 processes and establish each process's rank: myrank

2. On master process (if myrank = 0)
xjwidth = —, x is divided into p pieces: x = x\, x2,..., xp

y.width — B, y is divided into n/B pieces: y — 3/1,3/21 •••iVn/B
For i = 1 to p do

Send j/j to next process: myrank + 1
For j = 1 to n/B do

Send j/j to next process: myrank + 1

3. On working processes (if myrank > 0)
Recv xmyra„fc, part of sequence x from master process
For j = 1 to n /B do

If Recv 3/j and neighbor block's most right column from previous process: myrank—1
Compute for a dynamic programming based alignment(xmyrank and yj)

Send yj and own block's most right column to next process: myrank + 1
Report the highest score in matrix F

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

58

the height of block (parameter "B") is assigned 100. In order to remove the unpre-

dicted noise generated by the operating system, five consecutive runs for each pair of

sequences were performed. The average results as from the five runs were used.

Table 4.2 lists the execution time for different problem sizes. If we use the largest

data as an example, we can notice that the execution time is dramatically reduced

from more than four days when running a serial program to about 2 hours when

running the parallelized program on 48 processors.

Table 4.2: Execution time (sec)
Proc

No.

lOOfcx

lOOfc

300A;x

300A;

900/cx

900fc

1

3824

38000

39000C

4

1159

10200

10366C

8

605

5400

5300C

12

487

3999

3500C

16

318

2805

2775c

20

254

2200

2140C

24

210

1700

1730C

28

188

1500

1530C

32

168

1383

1326(

36

162

1222

1260C

40

156

1188

1170C

44

144

1061

1020C

48

132

952

8700

Figure 4.4 displays the speedup. It can be found that, for 100A; x 100K sequences,

there is a little drop in speedup when more processors are added to the task. However,

as the sequence sizes increase the speedup approaches the optimal linear speedup.

The lack of speedup for the smaller dataset is a result of there not being enough jobs

to fully exploit all the 48 processors' computing power. According to Amdahl's Law

presented in Section 3.3, as the problem size increases, the opportunity for parallelism

grows, and the serial fraction shrinks in its importance for speedup. Thus, the best

speedup curve is obtained for the largest sequences that are aligned. The granularity

of work is more reasonable and the speedup becomes linear for multiple processors

because of the large sequence size.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

59

45

40

35

30
a.
i 25
o
a 03 20

15

10

5

0<
" *
f ,

.W'
•

1 1 I™ 1 1

t'V*

r
i 1 1 i i

— i r~ , 1

A- 100k ^7
• • 300k '

• V 900k n
V-

.'.•" .

•X <>

•

•

•

•

' • • •

1 4 8 12 16 20 24 28 32 36 40 44 48

number of processors

Figure 4.4: Speedup of the "block-based wavefront" algorithm for optimal pairwise
alignment

4.2 Parallelized multiple sequence alignment

4.2.1 Introduction

Progressive alignments are widely used heuristic algorithms to compute multiple se­

quence alignment, of which the ClustalW algorithm has become the most popular

one. It provides weights to sequences and adjustable parameters with reasonable de­

faults (Gibson, D. & Thompson 2002). It is a straightforward progressive alignment

strategy where sequences are added one by one to the multiple alignment according

to the order indicated by a pre-computed guiding tree. Because of the nature of the

algorithm, the processing time can be considerably reduced if the computational loads

are distributed over multiple processors.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

GO

Several parallel algorithms for multiple sequence alignment have been developed in

recent years. The parallel version of the ClustalW program reported by Mikhailov et

al. (Mikhailov, Cofer &: Gomperts n.d.) is designed for shared memory multiprocessor

machines. It achieves a speedup of 10 on a 16-processor shared memory machine.

It parallelized the initial phase of the pairwise sequence alignments because all the

pairwise alignments are independent. The guiding tree construction phase of the

algorithm was also parallelized in it. However, the final phase was only partially

parallelized. Usually, these machines are commodity parallel architectures and quite

expensive.

Kleinjung et al. (kleinjung, Douglas & Heringa 2002) have reported a parallel

progressive alignment strategy without a guiding tree. Their implementation is not

a strict parallelization of the ClustalW algorithm. Recently, Li (Li 2003) and Justin

Ebedes et al. (Ebedes & Datta 2004) parallelized of the ClustalW algorithm for dis­

tributed memory architectures by using MPI. Li concluded that the serial ClustalW

implementation spends almost 96% running time in the first stage for pairwise align­

ment of the n input sequences. At the phase of building a guiding tree, Li has

parallelized the procedure of constructing a guiding tree, but did not achieve any

significant improvement in speedup. Justin Ebedes et al. did not parallelize this

phase at all. However, when handling larger taxa sets, such as n > 5000, the second

phase of construction a guiding tree spends more than 30% running time instead of

4%. This is one of the reasons that the speedup of the two programs decreases when

employing more processors for large taxa sets.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

61

4.2.2 The proposed algorithm

It is known that the ClustalW algorithm involves three stages: first, pairwise align­

ments are made in order to calculate the divergence of each pair of sequences. For a

number of n input sequences, using the symmetry of the pairwise matrix, one needs to

estimate n^w~ ' pairs of sequences. Next, a Neighbour-Joining (NJ) tree, or Guiding

Tree, is constructed. It is used to guide the final progressive multiple alignment. Fi­

nally, the sequences are progressively aligned according to the hierarchy in the guiding

tree. In the progressive alignment, the most similar sequences are aligned first, then

followed by the alignment of more distant sequences or groups of sequences (profile

alignment). In short, for n sequences, each of the sequences with an average length

of /, the execution time complexity of the three steps are 0(n2l2) , 0(n3) and 0(nl2)

respectively(Catalyurek, Stahlberg, Ferreira, Kurc & Saltz 2002).

Using different numbers of the GPCRs as input data, we have implemented the

ClustalW algorithm and a typical fraction of execution time is illustrated in Figure 4.5

(where PW denotes Pairwise Alignment, GT for Guiding Tree and PA for Progressive

Alignment in the figure label). The fraction of execution time has shown that, when

a small number of sequences is treated, the execution time in building a guiding

tree counts less than 5%. However, when the number of sequences increases, say,

800 sequences are treated, the execution time for this stage grows sharply, in this

case 35%. Our experimental results are quite encouraging for parallelization of the

building of a guiding tree.

We have developed a parallelized algorithm, PMSA, which has a number of dif­

ferences with the existing programs. It effectively parallelizes all the three stages of

the ClustalW algorithm. The details of the algorithm are given in Table 4.3.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

G2

Dprogressive

alignment

DKJ tree

Qpairwise
alignment

100 300 500 800 .a°'°£

Sequences

Figure 4.5: Fraction of execution time of ClustalW

Given a set of n sequences, S = S\,..., Sn, the algorithm firstly builds an n x n

matrix M and each element M[i, j] corresponds to the distance between object i and

object j in the original dataset. Since the calculations of the distances between each

pair of clusters are computationally independent tasks, a static matrix row-based

partition is designed to decompose the tasks into p groups evenly (p is the number of

available processors in the cluster) and assign to each processor one such group, as

illustrated in Figure 4.6.

Upon the completion of the distance matrix, M, all the pairwise alignment scores

are stored. Note that the matrix M is separated in p processors. In the stage of

building a guiding tree, working processes find the minimum of the nearest neighbor

distances locally in parallel for the number of n — 1 iterations. The nearest nodes can

be defined by minimizing the expression DisUj — (n - l)Mjj - (Ri + Rj), where My

is the distance between node i and j shown in the distance matrix; Rx is the row sum

80X

60%

20%

rM

-

1 i

I

1

1

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

63

PO

Pi

- 8 -

-to­
il

-12-

- » -
JL+-

p2

Figure 4.6: Static Row-Based Matrix Partitioning

over row x of the distance matrix; Rx = ^2l<k<N Mxk; N is the remaining number

of nodes adjacent to the root. The local winner communicates to other processes,

and finally performs a redundant search for the global winner, Distgmin^grninj, by

using the MPI_AUreduce and MPLBroadcast. At the end of each iteration, a global

synchronization is needed in order to update the matrix for next iteration. The master

process P0 defines a new node, y, whose three branches join gmini, gminj and the rest

of the tree. The lengths of the tree branch from y to gmini and gminj are defined:

L • • = Mgmi"'.?"""; _i_ Rsrmni Rgminj T = M — L which arp
J-Jgmim,y — 2 2(N—1) ' ffmtnJ>1/ gmmx,gmvnj 1-/gminj,y > WUIVJI cue

the lengths of the new branches. When the nodes gmini and gminj are joined, they

are replaced with a new node, y, with the distance to the remaining nodes given by

Myk = M9min3,k+M3miniik-M?mini,0min^ p o r e l e m e n t g m a y n Q t bg i n t h e s a m f i p r o c e s s

which does the update, at each step of update, it must determine if the elements

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

64

needed are in the same process and which process should do the update. This non­

local data, which is needed for updating, should be fetched by communicating with

messages. Note that in this case, the master process PO joins the computations in

addition to organizing jobs, in order to reduce communication between processes.

Once a guiding tree is constructed, the master process P0 analyzes it and iden­

tifies sequence pairings. Those which are independent of other groups, according to

the guiding tree, are computed in parallel. The master process PQ then waits for

the results and serially completes the multiple alignments. In general, we only can

parallelize the alignments of the same level in the tree. When we progress through

higher levels of the tree, it is difficult to keep load balancing. So the PMSA paral­

lelizes about 5-10% of the codes for this stage by calculating profile scores in parallel,

gaining considerable execution time reduction depending on the size of a problem.

In our algorithm, collective communications instead of point-to-point communica­

tions are deployed, which involve all processes in a communicator. The MPI_Allreduce

is used to combine values from all processes and distribute the result back to all

processes. The MPI_Bcast is used to broadcast a message from the process with

the global minimum to all other processes of the group.

4.2.3 Evaluation of the results

To test the overall scaling of the proposed algorithm for multiple sequence align-

ment(PMSA) , three datasets with 500, 800 and 1000 sequences of the GPCRs family

are used. We ran five trials of the PMSA on 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44

and 48 processors and reported the average execution time. For uniprocessor per­

formance, we used the Clustalwl.81 as a baseline. The results are shown in Figure

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

65

Table 4.3: Parallel algorithm to compute multiple alignment

-Input:
A set of n sequences:S
Substitution matrix: s(a,b)
Gap penalty: g
Number of processes: p+1 (p is number of working processes)

-Output : Multiple alignment

-Algorithm :
1. Connect to p + 1 processes and establish each process's rank: myrank
2. Master process P0 reads in the set of sequences S
3. Master Process P0 sends a block of sequences, gap penalty to the working processes

/*Pairwise alignment*/
4. Each process Pit 0 < i < p, calculates —r rows of M, which are a block of sequences

aIignment : |gzg
5. Set N = n

/*Building NJ-tree*/
6. For TV > 2 do

a. Each process computes a block of Rx's for its own sub-matrix, Rx = X f̂cLi dXk (x
represents the node for which we are computing now) (Ma = 0).

b. Working processes send back the block of Rx to master process.
c. Master process collects all the rows' Rx (1 < x < N) and broadcast the N number

of R^ to all working processes.

d. Each working process computes DisUj on its own matrix (for each ijj, since the

matrix is symmetric) DisUj — Mij — Y^iA ', find the minimum Distminiiminj
e. Through MPI_Allreduce with operation MPLMINLOC to find the global mini­

mum LJI SZgmini ̂ gminj
f. The process, the owner of the global minimum, broadcasts the gmini and gminj

to other processes
g. Master process defines a new node, y, whose three branches join gmini, gminj

and the rest of the tree. Define the lengths of the tree branch from y to mini and minj:
T • • — M9mini,gminj . Rgminj-Rgminj T 1 / . . _ _ / " \A/hirh arfl t h p

J-'gmini,y — 2 2(N—\) ' 9minJ>y — *ylgmini,grain] J-'gminj,y t wim_ii a i c LMC

lengths of the new branches.
h. Processes update the distance of its own matrix from y to each other node

(k ^ gmini or gminj) as: Myk - tfr"?^Mr-a-%-.r->,
i. Remove the distances to nodes mini and minj from the matrix, and decrease N

by 1.

/*Progressive alignment*/
7. Master process P0 analyzes the guide tree, identifies sequence pairings that can be evaluated
independently and sends them to idle processes Pi, 1 < i < p to perform alignment.
8. Master process P0 gathers resulting pairs evaluated by processes Pi, 1 < i < p and serially
completes the multiple alignments

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

66

4.7

14000

12000

IKOCM

8000

6000

40001

2000

"i 1 1 1 1 1 r

" B - 300-tnne
^ - 1 gOO-time
• « - 1000-lime
. 0 ' 500-sptedup
<• ' ' 80t)-sp«dup

,» 1000-speedup

1 1 r

.-+-'

52

12 16 20 24 28 32 36 40 44
number of processors

Figure 4.7: Overall scaling of parallelized multiple sequence alignment

In this experiment, speedup of more than 20 times is gained for the three datasets

of GPCRs protein sequences when running on 48 processors in this application. More­

over, aligning 1000 GPCRs proteins sequences, total time is reduced from about 4

hours on one processor to about 9 minutes on 48 processors, which no doubt signifi­

cantly increases research productivity.

It also can be observed from the figure that the parallel version scales up to 15.79

using 16 processors. The fairly flat curve of the speedup at the high end of processor

numbers suggests that computational gain from further division of the matrix will

be discounted by the overhead communication between the processes. Especially at

the stage of building a guiding tree, for the number of n — 1 iterations, an array

of Rx, 1 < x < N, needs to be collected by the master process and broadcast to

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

67

each process before utilizing it for computing the value, Dist. Additionally, a global

synchronization is needed in order to update the matrix for next iteration. So there

are the number of n— 1 (n is the number of input sequences) rounds of communications

among all the processes. Another strong effect on the speedup is the serial fraction

in the stage of progressive alignment. In this stage, only the alignments of the same

level in the guiding tree can be parallelized, which is about 5-10% of the codes.

4.2.4 Comparison with previous parallel schemes

As the speedup achieved in the phase of pairwise alignment and that achieved in

progressive alignment are quite similar, in the following experiment we only compared

the PMSA with the ClustalW-MPI program from Li (Li 2003) on the second stage,

building guiding trees, to show its performance. We ran five trials of the PMSA and

ClustalW-MPI on 4, 8, 16 and 32 processors on two large datasets with 3990 and

6500 sequences. We also executed the serial ClustalW 1.81 and ClustalW 1.83. As

a result, the ClustalW 1.81 produced no results on the datasets with 3990 and 6550

sequences, and the ClustalW 1.83 failed to build a guiding tree on the dataset with

6550 sequences even though it improved the method of building a NJ tree based on

the ClustalW 1.81.

From the average execution time presented in Table 4.4, we can see that the

PMSA reduces the execution time dramatically while the ClustalW-MPI program

does not make any speedup at the phase of building a tree on multiple processors.

The results show that the PMSA is superior to the ClustalW-MPI in terms of parallel

performance. For example, on 32 processors, the ClustalW-MPI takes more than 7

hours to build a NJ tree, while the PMSA only needed less than 1 hour on the larger

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

G8

dataset.

Table 4.4: Comparison of runtime (in seconds) of ClustalW-MPI_NJ to our PMSA_NJ
1,8,16 and 32

Processors
No.

4
8
16
32

3rocessors.
3990-sequences

ClustalW-MPLNJ
4419
4370
4409
4504

PMSA.NJ
1257
884
742
697

6500-sequences

ClustalW-MPLNJ
26339
24591
25278
25418

PMSA.NJ
5474
4313
3141
2888

4.3 Summary and discussions

In this chapter, we presented and evaluated two parallel computational algorithms

for sequence comparison. These algorithms allow researchers to compare biological

sequences at a much higher speed than the serial methods. Moreover, they also

make it possible to analyze problems that were previously considered too large. The

generated alignments of these algorithms are the first step in building a phylogenetic

tree on the homologous group of proteins. Once an alignment has been completed

phylogenetic tree reconstruction itself presents significant computational challenges.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 5

Reconstruction of M P and ML
Phylogenetic Trees

Maximum parsimony (MP) and maximum likelihood (ML) methods are most favored

approaches attempted to infer phylogenetic trees for their accuracy. However, their

search space is huge - there are 2n-3"7n-3)! u n r o o t e d trees, where n is the number

of taxa. When n increases, there is an incredible increase in the number of possible

bifurcating topologies to be evaluated. It is easy to get struck in local optimum,

and there can be many optimal trees. Additionally, as sequence length increases,

it requires an increased time allocation to compute cost for each topology. It can

become very pronounced with likelihood methods that require more complex models

of evolution while this may be a relatively minor problem for distance and parsimony

methods. In addition, in some cases, there are multiple solutions, each of which is

typically saved and further evaluated in order to find a more optimal solution. For

instance, an enormous number of optimal trees (more than 100,000) need to be saved

and evaluated. Many heuristic algorithms have been proposed to speedup the process

of constructing phylogenetic trees. However some of these algorithms do not perform

a sufficiently rigorous search of the tree space and often result in sub- optimal trees.

69

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

70

In order to perform a more complete search of the tree space within limited time

limit, a parallel divide-and-conquer model (pPhylo) is designed in this chapter.

5.1 Computational tasks

5.1.1 Minimum Parsimony criterion

Given two sequences X = x\,X2,-.-,xn and Y = y\, 7/2,..., yn of the same length, the

hamming distance H(X,Y) between them is defined as the number of different pairs

(x{, yi). Let T be a tree whose nodes are labeled by sequences of length k over E; H(e)

be the hamming distance of each edge e in the tree T, then the parsimony length of

the tree T is defined by]Cee£(r) H(e)- We outline the MP algorithm as following:

Outline of Maximum Parsimony algorithm

• Input: Set of S of n aligned sequences, each of length k.

• Output: A phylogenetic tree T.

• Algorithm:

— Bijectively leaf-labeled by elements from S, and additional sequences of

length k labeling the internal nodes of T such that the parsimony length

of T is minimized over all such possible leaf-labeled phylogenetic trees.

That is Y2e£E(T) -^(e) ^S minimized.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

71

5.1.2 Maximum Likelihood criterion

ML is a powerful technique to investigate phylogeny, however the exhaustive search

for all tree topologies extremely is compute-intensive. Previous studies have shown

that large datasets are challenging for MP heuristics implemented in these packages

(Roshan et al. 2004) (U.Roshan, Moret, Williams & Warnow 20046). We can expect

the same or even worse because ML is a harder problem. The outline of maximum

likelihood is shown as following:

Outline of Maximum Likelihood algorithm

• Input: Set of k aligned sequences at the leafs S\, ...,Sk

• Output: A phylogenetic tree T.

• Algorithm:

1. Pick a model of evolution: P(Si\Sj,t),l < i,j < k

2. Enumerate all possible tree topologies T with k leafs.

3. For each T, maximize over all possible edge length t:

P(SU ...,Sk\T,t) = E S t + I s,,., P(Si,..., S2k-i\T,t), (for there are 2k - 1

internal nodes).

4. Return the tree T with the highest probability, P.

5.1.3 Models of base substitution

It is essential to have a mathematical model to understand the mechanisms of change

and is required to estimate both the rate of evolution and the evolutionary history of

sequences. One of the main advantages of maximum likelihood over other methods

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

72

is that it permits using complex evolutionary models to estimate model parameters

and thus makes inferences of evolution simultaneously.

Currently, there are a number of amino acid substitution models. These mod­

els can be classified according to the number of different substitution types they

allowed for and whether they incorporate different or equal base frequencies. The

most general model of a time reversible nucleotide substitution process is the General

Time Reversible (GTR) model (Rodriguez, Oliver, Marin & Medina 1990) (Lanave,

Preparata, Saccone &; Serio 1984), in which, probabilities for each substitution are

different and base frequencies are unequal. From this model, all simplified models

can be obtained by further restricting the parameters.

The HKY85 model (Felsenstein 1980) allows unequal base frequencies but only

transitions and transversions have different probabilities.

The K2P model is derived from the HKY85 model by setting equal base frequen­

cies, while the Felsenstein model (Felsenstein 19816) is derived from the HKY85 by

setting same substitutions probabilities.

The JC model (Jukes &: Cantor 1969) is the simplest model that has equal base

frequencies, 0.25, and only one type substitution. There is a tradeoff in complexity

between simple and elaborate models of nucleotide substitution among general tree

scoring methods such as distance-based methods, MP and ML. When a model is more

elaborate, more parameters have to be estimated, It will get more accurate result at

cost of more modeling time. An overview of the most common models is provided in

Figure 5.1.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

73

Model
, Stationary

Transition probability • nucleotide
matrix frequencies

Number of
parameters

Jukes-Cantor model

Felsenstein

Kimura 2 parameter
model (K2P)

Hasegawa, Kishino
& Yano (HO7)

All substitution?
have an equal

probability and
base frequencies are

equal

All substitutions
have an equal

probability, but
there are unequal
base frequencies

Transitions and
transversions have

different
probabilities, but

there are equal
base frequencies

Transitions and
transversions have j 5

different
probabilities.

base freqiKiicies are
unequal

General time
reversible model
(GTR)

Different
probabilities for
each substitution,
base frequencies are
unequal

Figure 5.1: Substitution models

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

74

5.1.4 Tree rearrangement

Hill-climbing search is the most popular technique used by biologists for finding better

trees, which is shown in the following four steps:

1. Construct an initial tree.

2. Construct a set of "neighboring trees" by making small rearrangements of the

initial tree.

3. If any of the neighboring trees are better than the initial tree, then select it/them

and use as a starting point for new round of rearrangements. It is possible that

several neighbors are equally good.

4. Repeat steps 2 and 3 until a tree that is better than all of its neighbors is found.

There are three main methods used to move from one tree topology to another:

Nearest Neighbor Interchange (NNI) - NNI rearranges two adjacent branches

per internal branch. A tree with n taxa has 2(n-3) neighbors. An example is shown

in Figure 5.2.

Figure 5.2: Neighbor interchange options referred to as (left to right) AC—BD,
AB—CD, AD—BC, of an unrooted tree with 4 subtrees A;B;C; and D.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

75

Subtree Pruning and Regrafting (SPR)-SPR (Maddison 1991) removes a

branch with a subtree from a tree, and adds it between two nodes somewhere else in

the tree, which is shown in Figure 5.3

D C

Figure 5.3: Break a branch, remove the subtree D, and attach it to one of the other
branches

Tree Bisection and Reconnection(TBR)-TBR (Maddison 1991) is the most

popular method. It splits a tree into two subtrees and connects both parts between

all possible nodes of the other as shown in Figure 5.4. TBR could explore more trees

than NNI and SPR for the neighborhood of a tree induced by them is as subset of

TBR's (Maddison 1991) (Allen & Steel 2001).

T$
B

cA

D A,
B D

^A. / e

Figure 5.4: Remove an edge e from tree, and then reconnected by creating a new
edge between the midpoints on edge in subtree C and D

NNI, SPR and TBR tree rearrangements have been compared by Roderic Page

(Page 1993). From his examples, it can be concluded that TBR and SPR are superior

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

7G

than NNI to escape local optimum for the neighborhoods induced by TBR and SPR

are larger than NNI.

5.1.5 T N T

Among the current heuristic techniques for solving MP on large datasets, TNT (Tree

analysis using New Technology) performs very well ((Goloboff 1999), (U.Roshan,

Moret, Williams & Warnow 2004a), (P.Hovenkamp 2004), (R.Meier & Ali 2005),

(G.Giribet 2005)). In addition to a very fast implementation of hill-climbing heuris­

tics, TNT implements other search strategies, such as divide-and-conquer and genetic

algorithms, which allow the analysis of large datasets in a reasonable time limit (much

faster than other software packages). It is better than PAUP* (a very popular soft­

ware package used in the phylogenetic research community) in searching for MP trees

(refer to (Roshan 2004)). In TNT package, various search heuristics of smarter local

search are implemented, such as:

Pars imony ra tchet (Nixon 1999)- It uses TBR (refer to 5.1.4 for more details)

hill-climbing method, to search MP tree. When it reaches local optimum, it modifies

the input data to move out of local optimum, then runs TBR hill-climbing on the

new data. After the new data reaches local optimum, the dataset is changed back

and continues to do hill-climbing.

Drift -It uses a traditional simulated annealing technique to escape local op­

timum. When it reaches local optimum, it will move to trees with a worse score

according to a probability. Then it continues to do hill-climbing on these trees.

Sectorial search -It computes smaller subsets of a dataset, then solves them

using TBR hill-climbing.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

77

5.1.6 Disk-Covering methods

Disk Covering Methods (DCM) (Huson, Nettles & Warnow 1999) (Huson, Vawter

& Warnow 1999) (Warnow, Moret & St. John 2001) (U.Roshan et al. 2004a) are a

different class of methods for solving MP on large datasets. They divide a problem

into smaller subproblems and solve them serially. DCMs are booster methods in the

sense that they improve upon the base method by applying it smaller instances of

the subproblems.

For different decomposition methods, there are variants of DCMs. DCM1 (Huson,

Nettles & Warnow 1999) was designed for use with distance-based method and yields

better results than several distance-based methods. The second DCM (Huson, Vawter

& Warnow 1999), DCM2, was designed to speed-up heuristic searches for MP trees.

The results have proven that DCM2 would improve MP on small datasets.

DCM1 can produce small enough subproblems in size, but the structure induced

by the decomposition is often poor. DCM2 overcomes the drawback of DCM1 but

the resulting subproblems are too large. Therefore, it is too slow to produce results

when boosting MP on large dataset. Both the decomposition of DCM1 and DCM2

are based on a distance matrix computed on the dataset so that they can produce

only one time of decomposition.

DCM3 is designed to produce smaller size of subproblems than DCM2, which

decomposition is obtained on the dynamically updated guide tree and will produce

different decomposition for different trees. Since DCM3 uses a guide tree, it can

iteratively improve the guide tree.

The Rec-I-DCM3 (U.Roshan et al. 2004a) (U.Roshan et al. 20046) method is

designed to use iteration for escaping local optimum, and recursive-DCM3 to enable

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

78

further localization and reduction in problem size. Their study shows that Rec-I-

DCM3 convincingly outperformed the unboosted default heuristics of TNT (Goloboff

1999) on all datasets and at all the limited time allotted for computation. The Rec-I-

DCM3 method is the first technique that allows a successful application of parsimony

heuristics with high accuracy within reasonable time limits. The current study of it

focuses mainly on techniques for MP. However, ML is a harder problem than MP

because it is not known how to compute the ML score of a given tree in polynomial

time.

5.2 Problems in previous parallel computing

Despite the fact that parallel implementations of MP or ML programs are techni­

cally solid in terms of performance and parallelization techniques, they significantly

drag behind algorithmic development. That is, programs are parallelized that mostly

do not represent the state-of-the-art algorithms any more and are out-competed by

the most recent serial algorithms in terms of final tree quality and CPU time. For

example, the largest tree computed with parallel fastDNAml (Stewart, Hart, Berry,

Olsen, Wernert k. Fischer 2001), which is based on the fastDNAml algorithm (ROlsen,

H. Matsuda k. Overbeek 1994) contains 150 taxa. There also exists a distributed im­

plementation of this code (Hart, Grover, M.Liggett, Repasky, Shields, Simms, Sweeny

& Wang 2003). The same holds for a technically very interesting JAVA-based distrib­

uted implementation of fastDNAml: DPRml (Keane, Naughton, Travers, Mclnerney

h McCormack 2005). In addition to using an old search algorithm, significant per­

formance penalties are caused by using JAVA in terms of both memory efficiency and

speed of numerical calculations. Those language-dependent limitations will become

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

79

more significant when trees comprising more than 417 taxa (currently largest tree

with DPRml, personal communication) are computed with DPRml. The authors of

DPRml are however well-aware of those limitations (personal communication) and

plan to integrate algorithmic concepts from RAxML and PHYML into DPRml.

The technically challenging parallel implementation of TrExML (Wolf, S.Easteal,

Kahn, McKay & L.Jermiin 2000) (Zhou, Till, Zomaya & Jermiin 2004) has been

used to compute a tree containing 56 taxa. However, TrExML is probably not suited

for computation of very large trees since the main feature of the program consists

in a more exhaustive exploitation of search space for medium-sized alignments. Due

to this exhaustive search strategy the execution time increases more rapidly than for

other programs with the number of taxa. The largest tree computed with the parallel

version of TREE-PUZZLE (Schmidt, Strimmer, Vingron & Haeseler 2002) contained

257 taxa due to the limitations caused by the data structures used (personal communi­

cation). As already stated, TREE-PUZZLE provides mainly advantages concerning

quality-assessment for medium-sized trees. M.J. Brauer et al. (Brauer, Holder,

Dries, Zwickl, Lewis & Hillis 2002) have implemented a parallel genetic tree-search

algorithm that has been used to compute trees of up to 228 taxa. In addition, there

exist the previous parallel and distributed implementations of RAxML (Stamatakis

et al. 2004) (Stamatakis, Ott, Ludwig &; Meier 2005). To the best of our knowl­

edge, Parallel RAxML has been used to compute the largest ML-based phylogeny

to date containing 10.000 organisms on a medium-sized PC cluster using approxi­

mately 3.200 accumulated CPU hours. Finally, RAxML has also been parallelized for

SMPs with OpenMP exploiting fine-grained loop-level parallelism (Stamatakis, Ott

& Ludwig 2005). This approach has limited scalability however, beyond 4-way CPUs

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

so

and is mainly intended to solve memory problems and increase cache efficiency for

the computation of very large alignments.

Therefore, in order to reconstruct, with high accuracy, phylogenetic trees at a

much larger scale, further speedup and improvements are imperative.

5.3 A parallel divide-and-conquer model

In this section, a parallel divide-and-conquer model is designed for distributed memory

clusters.

5.3.1 Overall structure

The task-scheduling mechanism of the model is based on a master-worker architecture,

which consists of four main steps.

1. At the beginning, a master process reads in an alignment file with a starting

tree (an initial guide tree) which is computed with the randomized parsimony

component. Then, it performs recursively division of the main problem into

smaller subproblems, and stores the merging order (subset-guidetree, rurTree)

which is required to correctly execute the merging step. The decomposition is

illustrated in function pPhylo_divide in full details. Some definitions used are

shown as following:

Short subtree Suppose there is a tree T with an edge e in it. Let Qi,

Q2, Q$ and Q4 be the four subtrees around e; q\, q2, q$ and q4 be the set of

leaves closet to e in each of the four subtrees respectively. The distance between

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

81

them is measured by the hamming distances (see section 5.1.1) on the edges.

The set of nodes in q\ \J q2 [j qz [J q^ is the short subtree around e.

Short subtree graph Short subtree graph is the union of cliques formed

on "short subtrees" around each edge in T.

Separator Separator is the short subtree of a special edge, which would

produce the most balanced bipartition of the leaves in tree T when removed.

Outline of pPhylo_divide

• Input:

— Set of k sequences S = S\,S2, •••, Sk

— Maximum subset size MS

— Starting tree T

• Output: Set of subproblems, allsubsets — A\, A2,..., Am (m is the total

number of subsets)

• Algorithm: Recursively divide a set of k sequences S into subproblems

(a) Compute edge weighting for each edge by using the hamming dis­

tances.

(b) Compose short subtree graph around edges by selecting set of all

leaves that are elements in a short quartet around an edge, that is

subi,sub2,..., subx (where x is the number of subsets).

(c) Find a separator, spt, by selecting an edge that when removed, pro­

duces the most balanced bipartition of the leaves as centroid edge, Ec.

The spt is the leaves of the short subtree around Ec. The subsets

are then defined to be A{ = spt U subi, 1 < i < x.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

82

(d) For Ai (1 < % < x)

If (A'iS size >MS){

Let T\Ai be the result of restricting tree T to Ai for each i.

/*Recursively compute the subsets for Ai */

pPhylo_divide {Au MS, T\A{)

}

Else{

Add Ai to allsubsets.

Re-build subset-guidetree, rurTree.

/*Produce a subset-guidetree, rurTree, to keep the merge order. The

rurTree is expressed in a string format that uses parenthesis to start

and end subtree groups, commas to separate group members, and

subproblems names to name tree leaves.*/

}

The division into subproblems is executed recursively until all subproblems

contain less taxa than the user-specified size of the maximum subproblem, MS.

The subproblems, being smaller in size and evolutionary diameter, are easier and

faster to analyze than the full dataset. These subproblems are also independent

to be analyzed in multiple processes.

2. All individual subproblems are then dynamically dispatched to the working

processes, which locally solve them by using the function: pPhylo_subtree,

then return the respective subtrees to the master process. For there are different

base methods to build MP or ML subset trees, more details in this function will

be given in section 5.4.1 and 5.5.2. Here is a general description, where T\Ai

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

83

is the result of restricting tree T to Ai for each i.

Outline of pPhylo_subtree

• Input:

— Set of y sequences in Ai

— Starting subset tree T\A+

• Output: MP or ML subset tree

• Algorithm:

— Build a subset tree for subproblem by using a base method (MP or

ML).

3. Once all subproblems have been solved, the subset trees are merged serially

(pairwise at a time) in the order determined by subset-guidetree, rurTree, into

the new guide tree. We design a stack structure in order to read out subset trees

according to subset guide-tree. The detail of merging method, pPhylo_merge,

is explained below:

Outline of pPhylo_merge

• Input:

— set of m subset trees, ST = st\, st2..., stm

— subset guide-tree, rurTree

• Output: supertree, 7"

• Algorithm: Use a postorder tree walk algorithm to search subset-guidetree,

rurTree, in order to merge subset trees into a suptertree, T".

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

84

(a) set char* ptr=rurTree;

/*Design a stack structure to read out subset trees sti,st2,..., stm ac­

cording to subset guide-tree, rurTree.*/

(b) While(*ptr!=NULL){

i. Switch(*p£r){

A. Case '(':

/*push '(' into the stack*/

Push(sti) ;

Break;

B. Case 'st^:

/*Push subset tree stj into the stack*/

Push(sfj) ;

C. Case ') ' :

Do{

/*pop out subset trees between '(' and ') ' from stack*/

Set y=Popout();

}while(y!='(')

/* Merge these subset trees pairwise at a time serially.*/ X" =

SCM(sii, sty)

Push(T');

D. default:

break; } / / end of switch

ii. ptr++; } / / end of while

The Strict Consensus Merger(SCM) (Huson, Nettles & Warnow 1999, Huson,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

So

Vawter &; Warnow 1999) described below, is used to do combine two subset

trees into a single tree.

Strict Consensus Merger SCM method takes two trees ti and i2 on

possibly different leaf sets, identifies the a share leaf set X, and computes the

strict consensus, tx, of ti and t2, each restricted to the leaf set X, finally adds

the remaining taxa from t\ and t2 into tx, so that the two trees can be merged

together with strict consensus.

4. At the last phase, a hill-climbing MP or ML search on the supertree, T", is ap­

plied to do a global rearrangement as described in function pPhlo_grearrange.

Full details of this function designed for MP and ML methods will be presented

in the sections 5.4.1 and 5.5.2.

Outline of pPhlo_grearrange

• Input:

— Set of k sequences, S = Si,S2, •••, <Sfc

— Supertree tree, T"

• Output: MP or ML phylogenetic Tree, T^st

• Algorithm:

— Apply a global search method (MP or ML) starting from T" until we

reach a local optimum.

At the end, the master process verifies if the specified amount of iterations have

already been executed and if so terminates the program. Otherwise, it will initiate a

new round of subproblem decomposition, subproblem inference, subset trees merging,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

8G

and global optimization. Note that the time required for subproblem decomposition

and subproblem merging is negligible compared to MP or ML inference time of the

subset trees and guide tree.

5.3.2 Dynamic distribution of tasks

In the proposed model, the master process distributes tasks dynamically. Each work­

ing process enters an infinite loop. It firstly sends a READY message to the master

process to inform that it has ready to receive any message. When it receives an END

message, the process cleans up and exits. Otherwise, it receives a SUBSET as a task

to construct a subset tree by using a base method. If a working process finishes its

task, it will send back SUBSET TREE result.

The master process keeps a count of how many working processes are available

and sends out a subset to a working process when the process identifies itself as

READY. If there are no more new tasks, this routine sends END message to all

working processes. Finally, the master waits until all working processes are idle (that

is, it receives a READY message from all working processes) and then sends a final

message with the special value END to all working processes.

It is very clear that the load balancing cannot be a problem in this paradigm since

each process takes a new task as soon as it is free. Note that in this model, the master

process does not compute subtrees. The main framework is outlined as following:

Outline of pPhylo

• Input:

- S = Si,S2..-,Sk of aligned biomolecular sequences, k is the number of

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

87

sequences

— n, the number of iterations

— T, starting tree

— MS, maximum subproblem size

— p+1, the number of available processes, p is the number of working processes

• Output: A MP or ML phylogenetic Tree, T^t.

• Algorithm:

— Connect to p+ 1 processes and establish each process's rank No.: myrank

— On master process (if myrank = 0)

1. Initialize a subset-guidetree, rurTree and allsubsets, to record recursive

calls as the topology for merging subtrees and to save a total set of

subproblems.

2. For n iterations do

(a) pPhylo_divide(S, MS, T)

/*Construct a recursive DCM3 decomposition using T\S (a guide-

tree tree on dataset S) as the guide tree to produce a total set of

subproblems, allsubsets = A\, A<i,..., Am (m is the total number of

subsets). Produce a subset-guidetree, rurTree, to keep the merge

order.*/

(b) For m subsets do

Keep a count of how many working processes are available

and Send out a SUBSET to a working process when the process

identifies itself as READY.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

88

Master process Collects SUBSET TREEs from working processes.

(c) If there are no more new tasks, master process waits until all

working processes are idle and then Sends a final message with

the special value END to the all salve processes.

(d) pPhylo_merge(5T, rurTree)

/*Use a postorder tree walk algorithm to search subset-guidetree,

rurTree, in order to merge subset trees into a suptertree, T'.*/

(e) pPhylo_grearrange(T", S)

I* Apply a global search method starting from T" until we reach

a local optimum.*/

(f) Set V = TJbest.

(g) Broadcast the new 7" to every available process for next itera­

tion.

- On working processes (if myrank > 0)

1. Enter an infinite loop. Firstly Send READY to the master process to

inform that it has ready to receive any message. Then, Recv SUBSET

from the master process as tasks to construct subset trees by using:

pPhylo_subtree(A, T\Ai).

2. If finish a task, Send back a SUBSET TREE to the master process.

3. When Recv an END message from master process, this process cleans

up and exits.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

89

5.4 M P phylogenetic tree reconstruction

Although Rec-I-DCM3 would reconstruct MP trees on large datasets of up to 14,000

taxa, a drastic improvement is still necessary in order to achieve better accuracy

in less time. In this section, we show how the proposed model working with MP

methods improves the performance of reconstructing trees. For convenience, we call

it as pPhylo(MP). For this study we use the serial TNT program (Goloboff 1999), the

best implemented MP heuristic, as the base method and TBR as the global search

method (see section 5.1.5 and 5.1.4 for details regarding the use of TNT and TBR).

Note that, the MP criterion returns those binary trees with the lowest parsimony

score.

5.4.1 Working with MP-pPhylo(MP)

We now describe the two re-implemented functions dedicated for MP method, pPhylo_subtre

and pPhylo_grearrange, in the pseudo code below for more details. Each working

process computes subtrees on subproblems within a batch using the TNT method

shown in pPhylo .subtree for MP. As the final step, pPhylo_gr ear range for

MP applies a hill-climbing MP search on the supertree until it reaches local opti­

mum. Note that this part of the code takes a non-significant amount of time because

it is doing a search on the full dataset, which is very large. It is a bottle-neck in the

execution time of pPhylo(MP). However, in the next section of pPhylo boosting ML

method, we improve this step and obtain better performance.

Re-implementation of pPhylo_subtree for MP

• Input:

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

90

— Set of y sequences in Ai

— Starting subset tree T\Ai

• Output: MP phylogenetic subset tree

• Algorithm:

— Apply the base heuristic basic method, TNT, to T\Ai to compute the

subset tree.

Re-implementation of pPhylo_grearrange for MP

• Input:

— Set of k sequences, S — S\, S2, •••, Sk

— Supertree tree, T"

• Output: MP phylogenetic Tree, Tbest

• Algorithm:

— Apply TBR search starting from T' until it reaches a local optimum, let

T" be the resulting local optimum

— be t ±best= *

— Broadcast Tbest to working processes for iterative improvement.

5.4.2 Experiment design

Methodology

To the best our knowledge, Rec-I-DCM3, is the best known technique heuristic for

solving MP. Therefore, we ran the Rec-I-DCM3 to compare pPhylo(MP) against. We

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

91

studied two versions of pPhylo(MP): one on 4 processes that we call P4-pPhylo(MP)

and one on 10 processes which we call PlO-pPhylo(MP). On each dataset we ran five

trials of Rec-I-DCM3, P4-pPhylo(MP) and PlO-pPhylo(MP).

Test datasets

In our experiments, we used a large variety of biological datasets ranging in size and

type (DNA or RNA). All of the very large datasets are above 6K.

• Datasetl: 6,281 aligned small subunit ribosomal Eukaryotes RNA sequences

(1,661 sites) (Wuyts, de Peer, Winkelmans & Wachter 2002).

• Dataset2: 6,458 aligned 16s ribosomal Firmicutes (bacteria) RNA sequences

(1,352 sites) (Maidak 2000).

• Dataset3: 6,722 three-domain rRNA sequences from Robin Gutell (1122 sites) (Maidak

2000).

• Dataset4: 7,769 aligned ribosomal RNA sequences (851 sites) from three phylo-

genetic domains, plus organelles (mitochondria and chloroplast), obtained from

the Gutell Lab at the Institute for Cellular and Molecular Biology, The Univer­

sity of Texas at Austin.

• Dataset5: 11361 set of all bacteria ssu rRNA sequences from the European

rRNA database (1, 360 sites) (Maidak 2000).

• Dataset6: 13921 proteobacteria 16s rRNA sequences from the RDP (1359 sites)

(Maidak 2000).

The respective maximum subset sizes of pPhylo(MP) adapted to the size of each

dataset are indicated in Table 5.1. In Roshan's PhD thesis (Roshan 2004), these

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

92

Table 5.1: Maximum pPhylo(MP) subproblem sizes
Dataset

Datasetl-4
Dataset5-6

Maximum subproblem size/dataset size
1/4
1/8

subset sizes were shown to perform well in comparison to other ones on these datasets.

We constructed five starting trees for each trial using a randomized greedy heuristic

for MP and each trial was given the same starting tree.

Implementation and platform

Our experiments were performed on a cluster of 4 customized compute nodes, each

with 4 Intel Itanium 733MHz processors, PCI 66 MHz I/O bandwidth and 266MHz

data bus frequency. (Note that the full-instrumented pPhylo(MP) requires a mini­

mum of two processes).

5.4.3 Experimental results

Comparing MP scores as a function of time

In our experiments we wanted to see which method approaches the best known score

on each dataset the fastest. In general the closer the scores are to the "optimal" or best

known scores on a given dataset, the more closely related we can expect trees of that

score to be topologically. And the further they are from the best known score their

topological divergence can increase. Refer to (T.L.Williams, B.M.E.Moret, T.Berger-

Wolf, U.Roshan & T.Warnow 2004) for an experimental study of the relationship

of tree topologies and MP scores. Thus, we want to get as close as possible to the

optimal MP score on a given dataset.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

93

In Figures 5.5 through 5.10 we plot the average MP score above the best known

score as a percentage of the best known score on each dataset. The best known scores

have been found by previously doing much longer analysis of serial Rec-I-DCM3 on

these datasets. Our results in Figure 5.5 through 5.10 show the average MP scores

above the best score, as a percentage of the best score on the given datasets. We

first note that the average scores of P4-pPhylo(MP) are better than average scores

of Rec-I-DCM3 on every point in time. However, the average score found by P10-

pPhylo(MP) is better than the best score of the best trial of Rec-I-DCM3 and the

average trial of P4-pPhylo(MP) at the end of 24 hours. On datasets 1 to 4, P10-

pPhylo(MP) has a much lower score than Rec-I-DCM3 and P4-pPhylo(MP) at hour

1. We see an immense improvement there. However, on datasets 5 and 6, the hill-

climbing search takes too long due to the much larger sizes of the datasets. Therefore

we do not see this drastic drop in scores initially as we do for datasets 1 through 4.

Interestingly, on dataset 1 the best P4-pPhylo(MP) trial and the PlO-pPhylo(MP)

trial find a better score than the best known one so far. Achieving the best known

score took about 123 hours by the serial Rec-I-DCM3, whereas the pPhylo(MP) found

it within 24 hours. Since this is the smallest dataset we used, the hill-climbing search

was not much of a bottleneck. As a result we see that the parallel runs were able to

achieve many more iterations and thus find a very good score very quickly.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

94

1.6

1.4

1.2::

o
-Q

0.8?

3

0.6

0.4

0.2

,0

X

0.05

0.045

o 0.04

8
• 0.035

m 0.03

5 0.025
o
XI
CD

se 0.02
o
2 0.015tV
ID

< o.oid

0.005 •

0
8

0

0
0

X Rec-I-DCM3
P4-pPhylo(MP)
PIO-pPhylo(MP) I

12 16

Time (hours)

20 24

(a)

• X • Rec-I-DCM3

S- P4-pPhylo(MP)
• PIO-pPhylo(MP)

12

' * .
K #
x X
X

0 0

' -$ e
' w

0

16 20

Time (hours)

(b)

<>

®
24

Figure 5.5: The average MP score of each method above the best known score as a
percentage of the best known score on Datasetl

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

95

2

i .8] :

£ 1.6

8 .
• 1.4
"S
o

J 1 2 -
S 1
o &
(0 ,
5? 0 .8^
•
£ 0.6
is

* 0.4?

X Rec-I-DCM3
P4-pPhylo(mp)
PIQ-pPhylo(mp)

0.2

(
0
0-

0.1

0.09

„, 0.08

8
8 0.07 •

& ; ; ; ; ; &
12 16

Time (hours)

(a)

20 24

• X - Rec-I-DCM3

S- P4-pPhylo(mp)
• PIQ-pPhylo(mp)

0.06

0.05 •
o

gS 0.04^.

2 0.03J

s
< c.rc;

x
X

•
X .

I
o

^

0.01

0
12 16

Time (hours)

(b)

20 24

Figure 5.6: The average MP score of each method above the best known score as a
percentage of the best known score on Dataset2

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

0.08,;

t
Rec-I-DCM3
P4-pPhylo(MP)
PIO-pPhylo(MP)

4}
24 12 16

Time (hours)

20

(a)

t
Rec-I-DCM3
P4-pPhylo(MP)
PIO-pPhylo(MP)

2 <>
(O 0.06S

0
v

IB

S 0.040
0)

<>
<>

12 16

Time (hours)

(b)

20 24

96

Figure 5.7: The average MP score of each method above the best known score as a
percentage of the best known score on Dataset3

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

.O

I

I

s

)

2.5

2<

1.5

1

0.5

(i
n

:

•

X

"x
X

• • x
X

• X

• • • • & • • • . . . A
• • w - • •

X Rec-I-DCM3
• 6 - P4-pPhylo(MP)
•O- PIO-pPhylo(MP) .

•

•

"

• • • • • • ^ • • • • • • • • • • ' • ^ ' • ' • ' • ' • • • i « !

0.2

0.18

0.16

0.14*

0.12

0 . V
<?>

o
S
> o
IS

^ 0.08

ra 0.06$-
ID

"*• 0.04

0.02

0

12 16
Time (hours)

20 24

(a)

X Rec-I-DCM3
P4-pPhylo(MP)
PIO-pPhylo(MP) t

*

12 16

Time (hours)

20 24

(b)

Figure 5.8: The average MP score of each method above the best known score as a
percentage of the best known score on Dataset4

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

8 1.4 *'

6 #

| 004®.

0.02 < i

X- Rec-I-DCM3
P4-pPhylo(MP)
PIO-pPhyto(MP) t

12 16
Time (hours)

20 24

(a)

X- Rec-I-DCM3
P4-pPhylo(MP)
PIO-pPhylo(MP)

'x.

o

12 16

Time (hours)

20 24

(b)

Figure 5.9: The average MP score of each method above the best known score
percentage of the best known score on Dataset5

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

X- Rec-I-DCM3
P4-pPhylo(MP)
PIO-pPhylo(MP)

12 16
Time (hours)

20 24

(a)

X- Rec-I-DCM3
P4-pPhylo(MP)
PIO-pPhylo(MP)

w
a
•Q 0.08 ••

*

D
S? 0.04<>

$

12 16

Time (hours)

(b)

20 24

Figure 5.10: The average MP score of each method above the best known score as a
percentage of the best known score on Dataset6

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

100

Table 5.2: The best scores found over all five trials of Rec-I-DCM3, P4-pPhylo(MP),
and the single trial of PlO-pPhylo(MP) at the end of 24 hours.
Dataset No.

1
2
3
4
5
6

Best known score

232616

156192

91874

99815

272047

240921

Rec-I-DCM3

232618

156235

91918

99870

272157

241064

P4-pPhylo(MP)

232580

156213

91899

99866

272142

241010

PlO-pPhylo(MP)

232580

156203

91890

99845

272085

241001

Comparing the score of the best run of serial and parallel

In Table 5.2, we compare the best scores found in 24 hours by Rec-I-DCM3, P4-

pPhylo(MP), and PlO-pPhylo(MP). We also include the best know scores ever found

on these data-sets by analyses that were ran for a week on much faster machines.

The table shows that PlO-pPhylo(MP) finds the best scores on larger Dataset (except

datasetl) at the end of 24 hours.

Speedup of parallel over serial

• Scaling of pPhlo_MP

We compare the time taken by one iteration of Rec-I-DCM3, P2-pPhylo(MP)

(pPhylo(MP) over two processes), P4-pPhylo(MP), and PlO-pPhylo(MP) on

each dataset. Our results show that the parallel approach performs well and

reduces the execution time shown in Figure 5.11. For example, the elapsed

time of dataset 3 is reduced from 2.6 hours on a single processor to 1.37 hours

on 2 processors, and less than 1 hour on 4 or more than 4 processors.

• P4-pPhylo(MP) and PlO-pPhylo(MP) speedup over Rec-I-DCM3 at 24 hours

In the Figure 5.12, we compute the time taken by the average P4-pPhylo(MP)

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

101

7

6

5

I J
l l
| 3>

2

1

0
1 2 4 10

number of processors

Figure 5.11: Time to complete one iteration of Rec-I-DCM3, P2-pPhylo(MP), P4-
pPhylo(MP), and PlO-pPhylo(MP) on datasets 1 to 6.

and PlO-pPhylo(MP) trials to reach the best score of the average Rec-I-DCM3

trial and divide it by the time taken by average Rec-I-DCM3 trial to reach

its best score. Thus we look at the speedup obtained by P4-pPhylo(MP) and

PlO-pPhylo(MP). On all the datasets P4-pPhylo(MP) and PlO-pPhylo(MP)

reach the best score of Rec-I-DCM3 at least in half the time. On dataset4 P10-

pPhylo(MP) reaches the best Rec-I-DCM3 score three times faster, despite the

bottleneck of the serial hill-climbing phase. We do not see much of an improve­

ment of PlO-pPhylo(MP) over P4-pPhylo(MP) on dataset 6 mainly because the

hill-climbing phase is taking too long.

• Comparison of iterations in 24 hours

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

102

OS

I0 5

0.4

o.s

10-pPjrlo(HP) I

n

1 .« , • J 4

Figure 5.12: Ratio of time taken by the average P4-pPhylo(MP) and PlO-pPhylo(MP)
trials to reach the best Rec-I-DCM3 average score and the time taken by the average
Rec-I-DCM3 trial to reach its best average score.

Table 5.3 compares the number of iterations of the serial and parallel Rec-

I-DCM3 versions. PlO-pPhylo(MP) is again able to do man more iterations

(compared to serial) on the smaller datasets because the hill-climbing search is

faster there.

5.4.4 Evaluation of performance limits

The fairly flat curve of the elapsed time at the high end of processor number shown in

Figure 5.11 suggests that computational gain from further distribution of the subsets

will be discounted by the overhead communication between the processes. Another

factor limiting the scalability of this algorithm is the relatively few serial portions of

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

103

Table 5.3: Improvement in iterations within 24 hours
Dataset No.

1
2

3
4
5
6

Rec-I-DCM3 iterations

4
5
6
4
4

5

P4-pPhylo(MP) itera­
tions
10
15
14
10
8
9

PlO-pPhylo(MP) itera­
tions
21

33
31
17
13
11

the program. One major portion is global rearrangement by hill-climbing heuristic

search on the complete phylogenetic tree, which takes about half of time in one

iteration. Clearly by reducing the time spent on the full dataset we can expect much

better improvements. The Strict Consensus Merger and the actual decomposition,

although both serial, take much less time, almost negligible, in comparison to the

time of subtree computing and global rearrangement.

5.5 ML phylogenetic tree reconstruction

In previous section, our model has been shown to work with MP methods. We now

describe how it working with ML methods, called pPhylo(ML), improves the perfor­

mance of reconstructing ML trees. Note that, the ML criterion tries to maximize

the probability of "evolving" the observed sequences. Whichever tree provides the

maximum value for this likelihood function wins. ML is a harder problem than MP

because it is not known how to compute the ML score of a given tree in polynomial

time. RAxML is—to the best of our knowledge—among the currently fastest, most

accurate, as well as most memory-efficient ML heuristics on real biological datasets.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

104

However, the computation of comparatively large trees is limited by memory con­

sumption. Thus, our parallel divide-and-conquer model is required to intelligently

select overlapping sub-alignments for computing smaller subtrees in parallel.

Provided the high memory efficiency of RAxML (which the program inherited

from fastDNAml) compared to other programs and the good performance on large

real-world data it appears to be best-suited for use with our model. Therefore, we

use a heuristic ML method which followed the idea of RAxML (Stamatakis, Ludwig

& Meier 2005) as the base method and a new parallel version of RAxML developed

in this study as global search method.

Due to the complexity of the problem and the ML criterion it is not possible to

avoid global optimizations of the tree all-together. All divide and conquer approaches

for ML to date execute global optimizations at some point (see Section 5.2).

We now look at RAxML and issues relating to parallelizing it.

5.5.1 Parallelizing RAxML

In this section we briefly outline the algorithm of RAxML, which is required to un­

derstand the structure and intrinsic difficulties which arise with the parallelization of

the global search method.

RAxML initially computes a starting tree, which contains all sequences of the

alignment using a fast greedy MP search. The MP search is performed by an appro­

priately modified version of Joe Felsenstein's dnapars program (Felsenstein 2004).

One important property of the dnapars program is that it yields distinct starting

trees depending on the input order permutation of the sequences. By randomizing the

sequence input order, the program can start the optimization from different points of

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

105

search space each time it is executed. Therefore, by executing several RAxML runs

it is more likely to find good trees and avoid local maxima since each run will yield

a distinct final tree. Thus, the confidence into the final result obtained by RAxML is

higher than for strictly deterministic programs. However, in pPhyml(ML), the global

RAxML search is initiated with a fixed starting tree (guide tree).

After the computation of the starting tree or reading in the guide tree, the likeli­

hood of the candidate topology is improved by subsequent application of topological

alterations. To evaluate and select candidate alternative topologies RAxML uses a

mechanism called lazy subtree rearrangements (Stamatakis, Ludwig & Meier 2005).

This mechanism initially performs a rapid pre-scoring of a comparatively large number

of alternative topologies. After the pre-scoring step a few (20) of the best pre-scored

topologies are analyzed more thoroughly. To the best of our knowledge, RAxML is

currently one of the fastest and most accurate programs on real alignment data due

to this ability to quickly pre-score a large number of alternative tree topologies and

the low memory consumption.

As outlined in the example in Figure 5.13 the optimization process can be clas­

sified into two main computational phases:

1. Difficult parallelization: The Initial Optimization Phase (IOP) where the

likelihood increases steeply and many improved pre-scored topologies are en­

countered during a single iteration of RAxML.

2. Straight-forward Parallelization: The Final Optimization Phase (FOP)

where the likelihood improves asymptotically and practically all improved topolo­

gies are obtained by thoroughly optimizing the 20 best pre-scored trees.

The difficulties, which arise with the parallelization of RAxML, are mainly due

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

106

-44150

-44200

-a a o

i -44250

-J
00

-J-44300

-44350

-44400

0 100 200 300 400 500 600 700
Time(secs)

Figure 5.13: Initial and final optimization phase of RAxML for an alignment with
150 sequences

to hard-to-resolve dependencies caused by the detection of many improved trees

(Stamatakis, Ludwig & Meier 2005) during the IOP. Moreover, the fast version of the

hill-climbing algorithm of RAxML that is used for global optimization with pPhyloML

further intensifies this problem, since it terminates after the IOP. During one iteration

of RAxML all n subtrees of the candidate topology are subsequently removed and

re-inserted into neighboring branches (subtree rearrangements). The hard-to-resolve

dependency occurs when the lazy rearrangement of a subtree i yields a topology with

a better likelihood than the candidate topology even though it is only pre-scored. In

this case the improved topology is kept and rearrangement of subtree i + 1 is per­

formed on the new topology. Especially, during the IOP when the likelihood increases

steeply, improved pre-scored topologies are frequently encountered in the course of

one iteration, i.e. n lazy subtree rearrangements. Since the lazy rearrangement of one

single subtree is fast, a coarse-grained MPI-parallelization of one RAxML-iteration

T r "150-taxa"

— final
optimization

Initial
/Optimization

J I I I I L

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

107

can only be based on assigning the rearrangement of distinct subtrees within the

current candidate tree simultaneously to the workers processes. This represents a

non-deterministic solution to the potential dependencies between rearrangements of

subtrees i and % + 1. This means that when two workers w0 and W\ simultaneously

rearrange subtrees i and i + 1 within the currently best candidate tree and the re­

arrangement of subtree i yields a better tree, worker W\ will miss this improvement

since it is still working on the old candidate tree.

It is this frequently occurring dependency during the IOP between steps i —• i + 1

(i — l...n, n = number of subtrees) that leads to parallel performance penalties.

Moreover, this causes a non-deterministic behavior since the parallel program tra­

verses another path in search space each time (even for identical starting trees and

number of processors) and might yield better or worse final tree topologies compared

to the serial program. The scalability for smaller number of processors is better since

every worker misses less improved trees.

The aforementioned problems have a significant impact on the IOP only, since

the FOP can be parallelized more efficiently. Furthermore, due to the significantly

larger proportion of computational time required by the FOP the parallel perfor­

mance of the slow hill-climbing version of RAxML is substantially better. Please

refer to (Stamatakis et al. 2004) for performance results of slow parallel hill-climbing

and a more detailed description of the parallelization.

The necessity to parallelize and improve performance of RAxML fast hill-climbing

has only been recognized within the context of using RAxML in conjunction with

pPhylo(ML) and is therefore an issue of future work.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

108

5.5.2 Working with ML-pPhylo(ML)

Following the framework of pPhylo, the overall program flow of pPhylo(ML) is out­

lined in Figure 5.14. Function pPhylo_subtree uses a heuristic ML method that

followed the idea of RAxML to build ML subset trees.

Re-implementat ion of pPhylo_subtree for ML

• Input:

— Set of y sequences in A{

— Starting subset tree T\Ai

• Output: A ML subset tree

• Algorithm:

1. Set Tbest\Ai= T\A{

2. For n subtrees in T ^ l ^ do:

(a) Remove a subtree from the best tree, T ^ t l A

(b) Reinsert the subtree into neighboring branches up to a specified dis­

tance of nodes

(c) Optimize the three local branches adjacent to the insertion point and

store the best 20 trees

(d) Perform global branch length optimizations on those 20 best topologies

only.

(e) Update the best tree, T^ t lA for next loop

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Mas te r process W o r k e r process

Read alignment & initial guide tree

T
Decompose into subproblem <& store

merging order

Distribute subproblems to worker
process

A
subproblem

Iterate o\>er all
subproblems

subtree

Compute subtrees with
sequential RAxML

Merge subtrees into new guide tree
according to the meiging order f\ iterate over all subtree IDs

&while likelihood improves

Subtree ID & best tree
Invoke parallel global rearrangement

to refine the guide tree

N

tearraneed tree

Rearrange individual subtree
within current best tree

Finish

Figure 5.14: pPhylo(ML) program flow

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

110

At final phase of global rearrangement, the supertree is refined (further optimized)

by a parallel global search method presented in pPhylo_grearrange for ML. In this

case, the master process distributes the IDs of the subtrees (simple integers) which

have to be rearranged along with the currently best tree (only if it has been improved)

to the working processes. Working processes rearrange a specified subtree within the

currently best tree and return the tree topology (only if it has a better likelihood)

along with a new work request. This process continues until no subtree rearrangement

can further improve upon the tree. The global search method further improves the

accuracy of the supertree and can also find optimal global configurations that were

not found by operations on smaller—local—subsets. The global search method shown

in parallel pPhylo_grearrange leads to significant improvements over RAxML.

Re-implementation of parallel pPhylo_grearrange for ML

• Input:

- set of k sequences, S = S\, S2..., «Sfc

— Supertree tree, T"

- number of available processes, P+l, p is number of working processes.

• Output: ML phylogenetic Tree, T^est

• Algorithm: Apply parallel global search method starting from T" until we reach

a local optimum.

— On master process(if myrank — 0)

1. Set an array of flag[l...pj for p working processes. Initially, flag[i] =

True, 1 < i < p.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

I l l

2. Distribute work by Sending a subtree ID (one of the subtree to be

arranged) along with the suptertree V to p working processes

3. Tbest=T

4. For n-(p) subtrees in T^st do:

(a) If Recv READY from process x

i. Send back the current score, T^t 's ML score, to process x

ii. If Recv Wtree from process x

7test=W / ' tree

/o r (l < i < p)

flag[i] = True,

hi. If flag[x] = True

Distribute new work by Sending a subtree ID along with

the currently best topology tree, Tbest, to process x.

Set flag[x] — False

else

Distribute work by Sending a subtree ID (of the subtree to

be arranged) to process x.

5. Send END message to working processes.

- On working processes (if myrank > 0)

1. Enter an infinite loop until it Recvs an END message

(a) Recv a subtree ID or subtree ID along with the current best tree,

Tbest, from master process.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

112

(b) Rearrange the subtree within current best tree T}>est to get a new

tree Wtree and Sends back a READY message.

(c) Recv the current Tbest's ML score from master process.

(d) if Wage's ML score > Test's ML score

Send back Wtree to master process.

2. Recv END message and exit.

In function parallel pPhylo_grearrange, in order to reduce communication be­

tween processes, we build an array: flag\p], for p number of working processes. The

array of flag controls whether the current best tree TbeSt should be distributed to each

working process along with the following work requests. For example, flag[l] — true

means process 1 need to be updated with the currently best topology tree. If a work­

ing process already has the best tree T^st, the master process only need to send a

subtree ID to it. Each working process will perform subsequent subtree rearrange­

ments of the current step on the improved topology. Furthermore, after a working

process obtains an improved tree, it will compare the score of the improved tree with

the current best score on the master process. Only if the improved tree is better

than the current best tree on master process, the working process sends it to master

process in case other working processes have updated the best tree already. These

strategies will cut half of communication time when data sets are large.

Because the sizes of individual subproblems vary significantly and the inference

time per subproblem can not be predicted because it is not known a priori how

many iterations will be performed by pPhylo_subtree before convergence. Thus,

depending on the subset decomposition can lead to significant load imbalance (see

Section 5.5.5 for a more detailed analysis). On the other hand, the computation

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

113

of single small subproblems can not be carried out by a parallel optimized method

as parallel pPhylo_grearrange for a supertree either due to their relatively small

size and thus limited scalability. In addition—according to some experiments with

a proprietary divide and conquer implementation in RAxML—a distinct method of

subtree-decomposition, which yields subproblems of equal size for better load-balance

does not appear promising. This is due to the fact that pPhylo_devide constructs

subproblems intelligently with regard to closely-related taxa based on the information

of the guide tree.

In the following sections of experiment design and experimental results, we ini­

tially describe the test datasets used. Thereafter, we report on serial performance

improvements of Rec-I-DCM3(RAxML) over stand-alone RAxML in section and fi­

nally analyze parallel program efficiency of pPhylo(ML).

5.5.3 Experiment design

Methodology

To the best our knowledge, RAxML, is the best known technique heuristic for solving

ML. Firstly, we design an experiment to show that Rec-I-DCM3(RAxML) method

would improves over stand-alone RAxML on all datasets in order to demonstrate the

benefits which arise from using the dividing method. Next, we assess the performance

gains of our method improves Rec-I-DCM3(RAxML) dramatically.

Test datasets

In our experiments, we used a large variety of biological datasets ranging in size

and type (DNA or RNA). All but one of the very large datasets (above 2K) are RNA

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

114

because we were unable to find DNA alignments of that size. This is mainly due to the

fact that RNA data is much more abundant since it is slower evolving and relatively-

easy to align as well. Some datasets have been downloaded from public databases and

sites containing more than 20% gaps have been removed. Other alignments have been

obtained from researchers who have manually inspected and verified the alignments.

• Datasetl: 500 rbcL DNA sequences (1398 sites) also known as the popular Zilla

dataset (Rice, Donoghue & Olmstead 1997).

• Dataset2: 2,560 rbcL DNA sequences (1,232 sites) (Kallerjo, Farris, Chase,

Bremer & Fay 1998).

• Dataset3: 4,114 aligned 16s ribosomal Actinobacteria RNA sequences (1,263

sites) (Maidak 2000).

• Dataset4: 6,281 aligned small subunit ribosomal Eukaryotes RNA sequences

(1,661 sites) (Wuyts et al. 2002).

• Dataset5: 6,458 aligned 16s ribosomal Firmicutes (bacteria) RNA sequences

(1,352 sites) (Maidak 2000).

• Dataset6: 7,769 aligned ribosomal RNA sequences (851 sites) from three phylo-

genetic domains, plus organelles (mitochondria and chloroplast), obtained from

the Gutell Lab at the Institute for Cellular and Molecular Biology, The Univer­

sity of Texas at Austin.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

115

5.5.4 Experimental results

Serial performance

In the first set of experiments we examine the serial performance of stand-alone

RAxML over Rec-I-DCM3(RAxML) in order to demonstrate the benefits which arise

from using the latter dividing method.

The respective maximum subset sizes of Rec-I-DCM3 are adapted to the size of

each dataset and are indicated in Table 5.4.

Table 5.4: Maximum Rec-I-DCM3 subproblem sizes
Dataset
Datasetl
Dataset2

Dataset3-6

Maximum subproblem size
100
125
500

In our experiments both methods start optimizations on the same starting tree.

Due to the relatively long execution time on large alignments we only executed one

Rec-I-DCM3(RAxML) iteration per dataset. The run time of one Rec-I-DCM3 iter­

ation was then used as inference time limit for RAxML. Table 5.5 provides the log

likelihood values for RAxML and Rec-I-DCM3 after the same amount of execution

time. Note that, the apparently small differences in final likelihood values are signif­

icant because those are logarithmic values and due to the requirements for high score

accuracy in phylogenetics (T.L.Williams et al. 2004).

The experiments clearly show that Rec-I-DCM3(RAxML) improves over stand­

alone RAxML on all datasets, i.e. yields better likelihood values than RAxML in

the same amount of time. This results serve as an argument for the choice of the

divide-and-conquer model instead of stand-alone RAxML.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

116

Table 5.5: Rec-I-DCM3(RAxML) versus RAxML log likelihood values after the same
t of inferen

Dataset
Datasetl
Dataset2
Dataset3
Dataset4
Dataset5
Dataset6

ce time
Rec-I-DCM3(RAxML) log likelihood

-99967
-355071
-383578

-1270920
-901904
-541255

RAxML log likelihood
-99982

-355342
-383988
-1271756
-902458
-541438

Parallel performance

In our second set of experiments we assess the performance gains of pPhylo(ML)

over the Rec-I-DCM3(RAxML). For each dataset we executed three individual runs

with Rec-I-DCM3(RAxML) and pPhylo(ML) on 4, 8, and 16 processors respectively.

Once again for each individual run we used the same starting tree for the serial and

parallel inference. Furthermore, the same subset sizes as indicated in Table 5.4 were

used. In order to determine the speedup we measured the execution time of one serial

and pPhylo(ML) iteration for each dataset/number of processors combination. The

average serial and parallel execution time per dataset and number of processors over

three individual runs are outlined in Figure 5.15.

Due to the hard-to-resolve dependencies in parallel pPhylo_grearrange and the

size imbalance of the subproblems the overall speedup and scalability of pPhylo(ML)

are moderate. As already mentioned the requirement to devise a more efficient par-

allelization of the IOP of RAxML has only recently been recognized within the con­

text of using RAxML in conjunction with pPhylo(ML). A separate analysis of the

speedup values in Table 5.6 for the parallelization of the base, global, and whole

method shows that the parallel performance losses originate mainly from parallel

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

117

number of processors

Figure 5.15: Time to complete one iteration of Rec-I-DCM3(RAxML) for datasets
1-6 and 1 up to 16 processors.

pPhylo_grearrange.

It is important to note that pPhylo(ML) executes a more thorough search, i.e. yields

better trees than the serial global optimization with RAxML. Therefore, the compar­

ison can not exclusively be based on speedup values alone but must also consider

the final likelihood values attained by pPhylo(ML) which are significantly better.

To demonstrate this pPhylo(ML) is granted the overall execution time of one serial

Rec-I-DCM3(RAxML) iteration, i.e. the same response time. The final log likelihood

values of Rec-I-DCM3(RAxML) and pPhylo(ML) (on 16 processors) after the same

amount of global execution time are listed in Table 5.7. As already mentioned in the

apparently small differences in final likelihood values are significant. Furthermore,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Table 5.6: Average base method, global method, and overall speedup values for one
iteration of serial program per dataset and number of processors over three runs

Number of Processors

Datase t l

4

8

16

Dataset2

4

8

16

Dataset3

4

8

16

Dataset4

4

8

16

Dataset5

4

8

16

Dataset6

4

8

16

base method

4

4.7

4.85

3

5.3

7

1.95

5.5

6.7

2.9

4.2

8.3

2.3

4.8

7.6

3.2

4.8

5.4

global method

2.4

2.8

2.78

2.68

3.2

4.2

2.6

5

5.7

2.3

4.9

5.3

2.7

4.4

5.1

1.95

2.5

2.8

overall speedup

2.6

3.6

3.5

2.7

3.45

4.6

2.2

5.3

C..2

2.6

4.6

6.3

2.5

4.7

5.8

2.2

3

3.3

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

119

the computational effort to attain those improvements is not negligible due to the as­

ymptotic increase of the log likelihood in the FOP (see Figure 5.13 in Section 5.5.1).

Table 5.7: Average Log likelihood scores of Rec-I-DCM3(RAxML) and pPhylo(ML)
(on 16 processors) per dataset after the same amount of global execution time over
three individual runs

Dataset
Dataset 1
Dataset2
Dataset 3
Dataset4
Dataset5
Dataset6

Rec-I-DCM3(RAxML) log likelihood
-99967
-355088
-383524

-1270785
-902077
-541019

pPhylo(ML) log likelihood
-99945

-354944
-383108
-1270379
-900875
-540334

In heuristics for hard optimization problems, 90%-95% accuracy is often consid­

ered excellent. Heuristics used in phylogenetic reconstruction must be much more

accurate if it has at least 99:99% accuracy in order to produce topologically accurate

trees. Thus, the log likelihood score is better, the topology of tree is more accurate.

5.5.5 Evaluation of performance limits

The general parallel performance limits of RAxML have already been outlined in

Section 5.5.1. At this point we discuss the parallel performance limits of the base

method by the examples of the Dataset3 and Dataset6, which initially appear to yield

fairly sub-optimal speedups—especially on 16 processors—in column base method of

Table 5.6. We show that those values are actually near-optimal.

For the sake of this analysis we measured the number of subproblems as well as

the inference time per subproblem for one Rec-I-DCM3 iteration on those datasets.

As already mentioned, the main problem consists in a significant load imbalance in

subproblem sizes. The computations for the Dataset3 comprises 19 subproblems,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

120

which are dominated by three computations that require more than 5.000 seconds

(maximum 5.569 seconds). We determined the optimal schedule of those 19 subprob-

lems on 15 processors (since 1 processor serves as master process) and found that

the maximum inference time of 5.569 seconds is the limiting factor, i.e. the mini­

mum execution time for those 19 jobs on 15 processors is 5.569 seconds. With this

data at hand we can easily calculate the maximum attainable speedup by dividing

the sum of all subproblem inference time through the minimum execution time, i.e.

37353secs/5569sec5 = 6.71 which corresponds to our experimental results. Note that,

there is no one-to-one correspondence since the values in Table 5.6 are average values

over several iterations and three runs per dataset with different guide trees and thus

different decompositions.

The analysis of Dataset6 shows a similar image: there is a total of 43 subproblems

which are dominated by 1 long subtree computation of 12.164 seconds and three

smaller ones ranging from 5.232 to 6.235 seconds. An optimal schedule for those 43

subproblems on 15 processors shows that the large subproblem which requires 12.164

is the lower bound on the parallel solution of subproblems. The optimal speedup for

the specific decomposition on this dataset is therefore 63620secs/12164secs = 5.23.

5.6 Summary

In this chapter, a parallel divide-and-conquer model (pPhylo) is designed to flexibly

reconstruct the large MP and ML trees comprising up to 10,000 organisms. The

proposed model is able to perform a more complete search of the tree space within

limited time. It significantly reduces response time for large trees and improves final

tree quality at the same time. Experimental results show that the trees computed

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

121

by the proposed model are consistently better than the previously known fastest and

most accurate programs for MP and ML respectively.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 6

Pattern-Constrained Sequence
Matching

The quality of inference of phylogenetic trees heavily depends on the quality of an

alignment which serves as input for phylogeny programs. Therefore, a "good" multiple

alignment is the most important prerequisite for conducting phylogenetic analysis.

Most of the existing progressive MSA methods use a substitution matrix independent

of the position, the essential problem of which is that they incorporate no external

knowledge of the sequences being aligned. This chapter presents a novel algorithm

to improve the accuracy of multiple sequence alignment. The significance of the

proposed algorithm lies on its capability of aligning the sequences sharing the same

patterns. Moreover, it is proven that the similarity score of the proposed algorithm

has an approximation ratio 2<k-i) ^° ^n e similarity score of the optimal alignment,

where k is the number of sequences.

122

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

123

6.1 Problems with existing methods

In progressive MSA methods, one uses dynamic programming to build MSA initially

with the most related sequences and then progressively adding less related sequences

or groups of sequences to the initial alignment. These methods use a substitution

matrix independent of the position, which has however a serious problem. They do

not incorporate knowledge of the sequences being aligned and therefore cannot assure

the alignment of similar structures and common patterns shared by the sequences.

Comet and Henry (Comet & Henry 2002) conclude that the dynamic programming

algorithm does not always align patterns in two sequences. In order to clarify it,

they plot the distribution of the patterns from the databank PROSITE Rel. 14

according to the number of non-aligned patterns divided by the total number of

pairwise comparisons. The statistical results prove that the dynamic programming

algorithm does not align patterns when occurrences are not similar or when they are

very short and do not belong to the most similar regions.

Methods have been proposed to solve this problem. In fact, two algorithms, PHI-

BLAST (Pattern-Hit Initiated BLAST) (Altschul, Madden, schaffer, Zhang, Zhang,

Miller & Lipman 1997) and SWP (Smith-Waterman algorithm with Patterns) (Comet

& Henry 2002), attempting to combine motif with pairwise alignments have been

quite successful, although they are not for MSA problems. PHI-BLAST is a search­

ing program that combines matching of regular expressions with local alignments

surrounding the match. Given a protein sequence S and a regular expression pattern

P occurring in S, PHI-BLAST searches a database for sequences that include the

pattern and have significant similarity to the query sequence. SWP is an algorithm

designed specifically to incorporate patterns into the Smith-Waterman algorithm. It

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

124

compares subsequences letter by letter as in the Smith-Waterman but attributes a

supplementary bonus/reward when patterns are matched.

We have been investigating into solutions to the problem in MSA and making use

of the knowledge of the sequences being aligned, including patterns in the PROSITE

databank (Hofmann, Bucher, Falquet k Bairoch 1999), BLOCKS+ (Henikoff, Henikoff

k Pietrokovski 1999) (Henikoff, Greene, Pietrokovski & Henikoff 2000), eBlocks data­

base (Su, Lu & Brutlab 2002), as well as motif and structural information. As a result,

we have developed a pattern-constrained algorithm for MSA (PCMSA), in particular,

multiple polypeptide sequence alignment.

6.2 Pat terns as constraints

Patterns are defined as multiply aligned segments corresponding to highly conserved

regions of protein sequences in the proposed algorithm. These patterns can be re­

trieved from previously constructed databases.

In the PROSITE databank, patterns are represented by regular expressions. Each

element in a pattern is separated from its neighbor by a '-'. Repetition of an element

of a pattern can be indicated by following that element with a numerical value or, if

it is a gap (V), by numerical range between parentheses. Thus, a pattern [AC]-x-V-

x(4) is translated into [Ala or Cys]-any-Val-any-any-any-any. The ROSITE databank

currently contains patterns and profiles specific for more than a thousand protein

families or domains. Each of these signatures comes with documentation providing

background information on the structures and functions of these proteins.

The BLOCKS+ database is constructed from the PROSITE databank, supple­

mented with additional families from the PRINTS (Attwood, Flower, Lewis, Mabey,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

125

Morgan, Scordis, Selley & Wright 1999), PfamA (Bateman, Birney, Durbin, Eddy,

Finn &; Sonnhammer 1999), ProDom (Corpet, Gouzy & Kahn 1998) and Domo (Gracy

& Argos 1998) protein family databases. In the BLOCKS+ database, patterns are

ungapped segments corresponding to the most highly conserved regions of proteins.

Our algorithm aims to find better alignments of multiple polypeptide sequences,

using the patterns from the above databases as the constraints. It uses pattern

constrained pairwise alignments with further assembling of these "partial" alignments

into an approximate alignment of k sequences. It also has the worst-case guarantee

on the quality of the alignment.

To start with, let S be a set of k sequences Si,...,Sk, the center sequence Sc e S

be the sequence such that the sum of pairwise scores constrained by patterns to the

other k-1 sequences is minimized. The sum score of MSA with respect to a center

sequence Sc is the sum of pairwise scores of with any other sequences defined as

following:

£ £ SiS^S^) (6.2.1)
l<i<fc,x#cl<i<n'

where n' is the length of the alignment; iSCii is the z-th residue in the center sequence

Sc and Sx>i is the i-th residue in x-ih sequence.

Three main processes are developed as following:

1. Identifying all patterns shared by sequences.

It is necessary to find all occurrences of patterns shared by sequences. In this

case, a list of patterns defined by regular expressions in the PROSITE databank or

the BLOCKS+ database is generated for that purpose. These regular expressions

are referenced to locate and recognize all patterns in sequences. The function step

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

126

in UNIX is used to find patterns in each sequence, which returns non-zero if some

substring of a sequence matches a pattern described in the list, and zero if there is no

match. Then the common patterns shared by sequences are identified. There are also

other cases in which users define patterns by themselves according to the conserved

regions and structural information shared by sequences.

2. Defining a center sequence Sc E S.

We define a center sequence Sc € S such that XL#c^m('S*>,^c) IS maximized,

where Sim(Sz,Sc) is the similarity score of pattern-constrained alignment between

sequences Sz and Sc. Care must be taken to handle the variety of pattern matches,

such as inversion of the same pattern or a pattern appearing several times in the

same sequence. Let Sa and Sb be two sequences of length m and n, and p be a shared

pattern between the two sequences. The similarity scores of pattern-constrained align­

ments can be computed by using a customized dynamic programming algorithm as

in Equation 6.2.2.

Simi-hj-i + S(Sa[i], Sb[j]), l< z<k,z^c

Sirriij = max <
Sirrii-xj -wx,x>l

Sirriij-y — wy,y > 1

Sirrii-ienj-ien + \score(p)\ x reward + score(p)

(6.2.2)

Where Sim^j is the similarity score obtained when aligning the beginning se­

quences ^[l.-.i] and S^l.-.j] (the Sim^ score is larger, the distance D(Sa[l...i], St,[l...j})

is smaller); p is a shared pattern ending at position (i, j); len is the length of p;

«S>(50[t]5t[;']) is the score for aligning the characters at position i and j in sequence

5 a and S&; wx and wy are the penalties for gaps of length x and y in sequence Sa

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

127

and Sb', score(p) is the score of aligning two occurrences of the pattern p. In the

position (i, j), its score is determined by four paths, three of them are the same with

the original algorithm: match, insertion and deletion. Another path is the match of

the shared pattern beginning at the (i — len + 1, j — len + 1). Figure 6.1 shows the

dependency. In order to favor the alignment of patterns, it gives an additive reward

to the score when a pattern matching. It is possible for two occurrences of a pattern

to have a negative alignment score so that we use \score(p)\ x reward + score(p) to

ensure a positive reward of the pattern match. And it is obvious that this score also

would correlate with the strength of match among patterns.

•

\ . J

-.

*. / s

•,

i-Ien-hl,j-le 1 ,
^

\ • / \

• -

i+l)
-

W ^ ^ .

,

>

(i. j)
\, , , .

Figure 6.1: Block dependency

When doing trace back, it also needs to consider a pattern path. If the current

maximum score is determined by a pattern score with reward, the trace back path

should be along a diagonal to trace back len steps.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

128

In some situation, the occurrences of patterns may have different lengths if they

are obtained from regular expression databases, such as the the PROSITE databank.

This is because the same PROSITE regular expression in two sequences can contain

variable length of subpatterns. In order to match such patterns, we first set the area

with variable length, such as x(5,8), as the area of insertions/deletions in the patterns.

Let position (i,j) be the current indices of aligning two occurrences (x and y) of a

pattern, (xb-..xe) be the area of insertions/deletions in the occurrence x, (yb---ye) be

the area of insertions/deletions in the occurrence y. If position (i,j) does not belong

to the insertion/deletion area, the letter x{ faces the letter j/j. If position (i,j) belongs

to the insertions/deletions area, the Needleman-Wunsch algorithm is used align two

substrings of (xf,...xe) and (yb---ye)-

For those patterns from the BLOCKS+ database, instead of a regular expression

database, the occurrences of patterns are of the same length, which can reduce some

hypothetical affects when doing variable length pattern matching.

3. Constructing the alignment M with the rest (k-1) sequences in S

Initially, let M = Sc. Sequence Sz(l < z < k, z ^ c) is added to M progressively

by using Equation 6.2.2 such that the alignment of each newly added sequences, Sz

with Sc is optimal. In order to form a multiple sequence alignment, spaces need to

be inserted into each pre-aligned sequences.

6.3 Bound evaluation

The similarity score of the PCMSA algorithm is bounded by an approximation ratio

of 2(k-u t o the- similarity score of the optimal pattern-constrained alignment.

Given S — Si,..., Sk, Sc G S is the center sequence for which J2%^c Sim(Si, Sc) is

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

129

maximum and a multiple alignment M.

Let M* be the optimal pattern-constrained alignment of S, Sim(M*) is the simi­

larity score of M*.

Let Mc be the pattern-constrained alignment induced by the center sequence Sc,

Sim(Mc) is the similarity score of Mc.

d*(Si,Sj) is the value of pattern-constrained alignment between Si and Sj

induced by M*.

Sim(Si,Sj) is the similarity score of the pattern-constrained pairwise align­

ment it induces on Si, Sj.

d(Si, Sj) is the distance between Si, Sj, Sim(Si, Sj) — d (g
1

g) .

D(Si,Sj) is the optimal distance between sequences Si, Sj.

Proof:

Using the triangular inequality, we have d(Si, Sj) < d(Si, Sc) + d(Sc, Sj). For each

Si,i 7̂ c, the alignment Mc induces an optimal pairwise alignment between Sc and

Si. Thus, d(Si, Se) = D{SU Se)t and d(Su Sj) < D{SU Sc) + D{SC, Sj).

We have:

Lemma For 1 < i, j < k, i ^ j it holds that d(Si, Sj) < D(Si, Sc) + D(SC, Sj).

Let's show that the approximation ratio:

Sim(Mc) > k ^ I
Sim(M') — 2(fc-l) ^ 2

Proof:

2Sim(Mc) = J2¥j Sim(St, Sj) = £ l # J ^

According to the lemma: d(Si,Sj) < D(Si, Sc) + D(SC, Sj), we have

Let X be ^ ^ D(SC, Si) and we get:

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

130

2Sim(Mc) > ^ ^

On the other hand,

2Sim{M*) = £ ¥ i Sim'iS^ Sj)

^ < J

Based on the definition of S"c

E, £ ,* £>($, $) > E, E,#c £>(&, 5,) = Ei A" = kx

Thus,

2Sim{M*) < -±

And finally,

5tm(Mc) •> 2(fc-i)x kX k ^ 1
Sim(M') — I E — 2(k-l)X ~ 2(fc-l) * 2

6.4 Experimental results

To evaluate the performance of the PCMSA algorithm, it is compared with the

ClustalW program, the most widely used method for multiple sequence alignment,

on two datasets.

Test da tase ts

• Datasetl: six aminoacyl-tRNA synthetase sequences, SYR_PHOLL, SYR.CAEEL,

COA1.POVBK, SYQ.HUMAN, CBI02_STRAW and SP1JIARFA. The shared

pattern in aminoacyl-transfer RNA synthetases is PS00178: aminoacyl-transfer

RNA synthetases class-I signature.

PS00178: P - x(0,2) - [GSTAN] - [DENQGAPK] - x - [LIVMFP] - [HT] -

[LIVMYAC] - G - [HNTG] - [LIVMFYSTAGPC]

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

131

• Dataset2: eight sequences, CYTC.HUMAN, CYT.ONCMY, CYT1_MAIZE,

CYTX.ONCVO, KNG1.BOVIN, ADPP_BACSU, MARAY_ENTFA and KGUAJ3ACFI

The eight sequences share a PROSITE pattern PS00278: staphyloccocal entero-

toxin/Streptococcal pyrogenic exotoxin signature 2.

PS00278: [GSTEQKRV] - Q - [LIVT] - [VAF] - [SAGQ] - G - DG - [LIVMNK]

- TK - x - [LIVMFY] - x - [LIVMFYA] - [DENQKRHSIV] ,

For the Dataset 1, the six aminoacyl-tRNA synthetase sequences are aligned in

Figure 6.2. Aminoacyl-tRNA synthetases (P.Schimmel 1987) are a group of enzymes

which activate amino acids and transfer them to specific tRNA molecules as the first

step in protein biosynthesis. In prokaryotic organisms there are at least twenty differ­

ent types of aminoacyl-tRNA synthetases, one for each different amino acid. In eu-

karyotes there are generally two aminoacyl-tRNA synthetases for each different amino

acid: one cytosolic form and a mitochondrial form. While all these enzymes have a

common function, they are widely diverse in terms of sub unit size and of quaternary

structure. These aminoacyl-tRNA synthetases are referred to as class-I synthetases

(M.Delarue & D.Moras 1993) (P.Schimmel 1991) (G.M.Nagel & R.F.Doolittle 1991)

and seem to share the same tertiary structure based on a Rossmann fold. It was found

that the aminoacyl-tRNA synthetases share a region of similarity in the consensus

tetrapeptide PS00178: P - x(0,2) - [GSTAN] - [DENQGAPK] - x - [LIVMFP] - [HT]

- [LIVMYAC] - G - [HNTG] - [LIVMFYSTAGPC], which is well conserved. This

pattern is defined as aminoacyl-transfer RNA synthetases class-I signature. Figure

6.2 indicates that the ClutalW algorithm is unable to align the pattern PS00178, but

the PCMSA makes it possible to align the region of similarity in their N-terminal

section.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

132

spIQ7N565|SYR_PHOLL
sp|0.19625 |SYR_CAEEL
sp|P03088|C0A1_P0VBK
sp|P47897|SYQ_HUHAN
sp | Q82B58 | CBI02_STRAtf
sp|Q05308|SPl RARFA

TPAK-PQTIW-D YS A 'NVAKQHHVGHLP 3T11GDAAVRTLEFLGHKVIR
PKLT-RKRVLV-DFSSpMIAKEMHVGHLF^TIIGDSICRLFEAVGFDVLR
S AEN DFSSDSPERKMLPCYSTARIP LfolLNEDLTC
HKP G- ENYKTP -G YWTP HTMNLL KQHL EITGG- -QVRTRF PJPEPNGILE
LSGGQQQRVAI-GSVLTPHPKVLVLDEPTSALD PAAAEEVLA
SKNAPSDIKNVNSWWVDPATNKWIEARSKKAAK AAATAAGLTA

sp|Q7N565|SYR_PHOLL
sp|Q1982 5|SYR_CAEEL
sp|P03088|C0A1_P0VBK
sp|P47897|SYQ_HUHAN
sp|Q82B58|CBI02_STRAU
sp|Q05308|SPl RARFA

ANHVGDWGTQF GHLIAYLEKVQNENASDMA-LSDLEAFYRE
VNHIGDTJGTQF GHLIAHLYDRFPDFLKKLPDISDLQAFYKE
|GM ilLHWEAVTVQTEVIG ITSMLNLHAG
lIGHAKAINFNFGYAKAMTJGICFLRFIiDTMPEKEEAKFFTAICDHVAIirLGY
VLQRLVHDLG- TTVLHAEHRLERWQYADRVALl|PAPGAP|
GTYEIT — VSDDVIVPVRDYTJGGDALSGCTLAFPVTl

sp|Q7N565f
sp|Q19825|
sp|P03088|
sp|P47897|
sp|Q82B58|
sp|Q05308|

5YR_PH0LL
SYR_CAEEL
C0A1_P0VBK
SYQ_HUMAN
CBI02_STRAW
S P 1 RARFA

AKKHYD ED E E F AIRARGYWKL QGGDE YC RTMWRKL VDITHAQNOQTYDR
SKKRFDEDEQFKKRAYEYWKLQSHDGDIVKAWWTICDVSKKYNQIVYNY
SQKVHEHGGGKPIQGSNFHFFAVGGE P
TPYKVTYASDYFDQLYAWAVELIRRG—LAYVCHQRGEELKGHNTLPSPW
t TL GTPJP E VM A AS P VYP P WD L GRL AG WSPLPLTV
GGF L TAGHClAVEGKGHILKTEHTGGOIG —: TV

sp|Q7N5651SYR_PH0LL

spl Q198251SYR~CAEZL

sp]P030B8IC0A1_P0VBK

sp|P47897|SYQ_HUHAN

sp|Q82B58|CBI02_STRA«

s p | Q 0 5 3 0 8 | S P l RARFA

(a)

-TI-IG-D.

TI-IG-D.

— I - i - E .

V—T P--A K-P-Q-T— I--V—V-D-Y S—-A-PNVAKQHHVGHUS
IFLNTDYLRRQISLLASEGVKLP-KLTRKRV--L—V-D-F S S - - PNIAKEHHVGHL 35

L p _ _ c Y - S — T — A - R — I p L ~ PKLHEDLTCGNL,

V — T PH-THNLLK-Q-HLE—I--TGGQVRTRF P PEPNGILHIGHASAINFNFGYA.

7 — X V - - L — - H - A E H - R — L E R V — V - Q - Y ADRV-ALL'APGAPLTLGTP-P-EV-HA-A.

L — T AG-nEI-TVSDD-V—I--VP--VRD-YDGGDALSGCTLAF-'VYGGFLTAGHC-A--V-EG-K.

(b)

Figure 6.2: (a)ClustalW aligns 6 sequences in Datasetl with one pattern; (b)PCMSA
aligns 6 sequences in Datasetl with one pattern

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

133

In Figure 6.3, eight sequences of inhibitors of cysteine proteases (A.J.Barrett 1987)

(N.D.Rawlings & A.J.Barrett 1990)(V.Turk & W.Bode 1991) in Dataset 2 are aligned.

Inhibitors of cysteine proteases are found in the tissues and body fluids of animals,

in the larva of the worm Onchocerca volvulus (S.Lustigman, B.Brotman, T.Huima

& A.M.Prince 1991), as well as in plants. They are grouped into three distinct but

related families:

(1) Type 1 cystatins (or stefins), molecules of about 100 amino acid residues with

neither disulfide bonds nor carbohydrate groups.

(2) Type 2 cystatins, molecules of about 115 amino acid residues which contain

one or two disulfide loops near their C-terminus.

(3) Kininogens, which are multifunctional plasma glycoproteins.

Sequences known to belong to these families detected all have a consensus pattern,

PS00278: [GSTEQKRV]-Q-[LIVT]-[VAF]-[SAGQ]-G-DG-[LIVMNK]-TK-x-[LIVMFY]-

x-[LIVMFYA]-[DENQKRHSIV], in which five residues have been proposed to be im­

portant for the binding to the cysteine proteases. As shown in Figure 6.3, the PCMSA

successfully works out staphyloccocal enterotoxin/Streptococcal pyrogenic exotoxin

signature 2 while the ClustalW fails to align the conserved pattern.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

134

s p j P 0 1 0 3 4 |
s p | Q 9 1 1 9 5 |
s p | P 3 1 7 2 6 |
s p | P 2 2 0 8 5 |
s p | P 0 1 0 4 4 |
s p | P 5 4 5 7 0 |
s p | 0 0 7 1 0 7 |
s p | Q 6 4 P Y l |

CYTC_HUHAN
CYT_0NCHY
CYT1_HAIZE
CYTX_0NCV0
KNG1_B0VIN
ADPP_BACSU
HRAY_ENTFA
KGUA BACFR

—HAGPLRAPLLLLAILAVALAVSPAAGS— • — . - ^ —
HEUKIWP LFAVAFTVAN-AG ,——— , - —

KHRIVSLVAALLVLLALAAVSSTRSTQKES
IHLLLFSWALVQLQGAKSARAKNPSKHES
VKRAQRQWSGHNYEVHYSIAQTMCSKEEFSFLTPDCKSLS5GDTGECTDKAHVDVKLRI
EKTIA^EQIFSGKVIDLYVE^VELPMGKAS •
HGLFFHQFTPSLLIILFILVLYGLLGYLDDFIKVFK ____^___ ,__
AKVIIFSAPSGSGKSTIINYLLAQKLNLAFS- . • - , — — — —

s p | P O 1 0 3 4 |
s p | Q 9 1 1 9 5 |
s p | P 3 1 7 2 6 |
s p | P 2 2 0 8 S |
s p | P 0 1 0 4 4 |
s p | P 5 4 5 7 0 |
s p | O 0 7 1 0 7 |
s p | Q 6 4 P Y l |

CYTC_HUHAN
CYT_0NCHY
CYT1_HAI2E
CYTX_0NCV0
KNG1_B0VIN
ADPP_BACSH
HRAY_ENTFA
KGUA BACFR

, S P G KP-PRLVGGPHDASVEEE GVRRALDFA-VGEYNK A
LIGGPMDANMNDQ GTRDALQFA-WEHNK K

VAD NA-GHLAGGIKDVPANENDL—QLQELARFA-VNEHNQ— K
KTGENQDR-PVLLGGUEDRDPKDE EILELLPSI-LHKVNE Q

SSFSQKCDLYPVKDFVQPP-TRLCAGCPKPIPVDSP DLEEPLSHS-IAKLNA E
KREIVKHPGAVAVLAVTDEGKIIHVK QFRKPLERT-IVEIPAGKLE

KRNHGLNSRQKL 3GQIFGGLVFYFVYR 3EGFSDTLDLFGVAEVPLG—I
»*«.«* ISATSRPPRGNEKHGVEYFFLSPD——EFRQRIANNEFLEYEE---V

s p | P 0 1 0 3 4 |
s p | Q 9 1 1 9 5 |
s p | P 3 1 7 2 6 |
s p | P 2 2 0 8 S |
s p | P 0 1 0 4 4 |
s p | P 5 4 5 7 0 |
s p | 0 0 7 1 0 7 1
s p | Q 6 4 P Y l |

CYTC_HUHAN
CYT_0NCHY
CYT1_MAIZE
CYTX_0NCV0
KNG1_B0VIN
ADPP_BACSD
MRAY_ENTFA
KGUA BACFR

SNDMYHSRALQWRARKQIVAGVNYFLDVEpRTTCTKTQPNLDNCPFHDQPHLKRKAFC
TNDHFVRQVAKWMAQKQWSGHKYIFTVQHGRTPCRKGG-VEKVCSVHKDPQHAVPYKC
ANALLG--FEKLVKAHTQWAGTHYYLTIEUKDGEVKK LYEAKVWEKPWENFKQLQ
SNDEYHLHPIKLLKVaSQWAGVKYKHDVQpRSQCKKSSNEKVDLTKCKKLEGHPEKVH
HDGAFYFKIDTVKKAWQWAGLKYSIVFIft.RETTCSKGS-NEELTKSCEINIHGQILHC

KGEEPEYTALRELEEETGYTAKKLTKITAFYTSPGFADEIVHVFLAEELSVLEEKRELDE
FYGVFIIFgLVGFSNAVNLTDGIDG-LVAGLGTISFGTYAIIAWKQQQFDWIICLSVIG
YTDRFYG—TLKAQVEKQLAAGCjHWFDVPlVVGGCMIKKYYGERALSLFIQPPCIDELRR

sp|PO1034|

sp|Q91195|

sp|P31726|

sp|P22085|

sp|P01044|

sp|P54570|

sp|007107|

sp|Q64PYl|

CYTCJUHAN

CYT_0NCHY

CYTIJAIZE

CYTX~0NCV0

KNG1J0VIN

ADPPJACSU

HRAY_ENTFA

KGUA BACFR

(a)

- A L Q — V -

--Q V-A—K—V~
F - I — K — L ~

~ P - — I K — L -

FVQPPTRLCAGCPKPIPVD
A — K

- V — R A - R - —

- V — N A - Q — -

- V — K A - K

- L — K V - S

KQIVAGVNYFLDVE

KQWSGHKYIFTVQ

TQWAGTMYYLTIE

SQWAGVKYKHDVQ

PDLEEPLSHSIAKLNAEHDGAFYFKIDTVKKilTOWAGLKYSIVFI

- D F — I K V F K - K R N - H G - -

—E VYTD--RFYGT—

- L — N S R Q K L I -

- L — K A - Q V E -

l-L-

1 -

V-

V-

-EQIFSGKVIDLYVE)VELPN-

-GQIFGGLVFYFVYR5E

KQL AAGQNWFDVD /VGGCNIKKYY

(b)

Figure 6.3: (a)ClustalW aligns 8 sequences in Dataset2 with one pattern; (b)PCMSA
aligns 8 sequences in Dataset2 with one pattern

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

135

6.5 Summary and discussions

The proposed algorithm effectively brings the information available from the existing

pattern databases into multiple sequence alignment. Researchers can now pay more

attention to the biological characters on sequence alignment than common string

sequence alignment. For the rapid increase of protein-coding sequences, the pattern-

based algorithm becomes more important for interpreting the large volume of sequence

data.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 7

Conclusions and Future Work

This final chapter concludes the research work in the PhD study and discusses various

aspects of future work for better HPC solutions to the problems of computational

biology and exploration of more applications.

7.1 Conclusions

The objective of this study is to use the power of high performance computing to speed

up the processes of sequence analysis, and to avoid compromising with incomplete

results, missing some optimal results and shallow computing on large datasets.

We began by studying the algorithms of sequence comparison. The complexity

of sequence comparison problems and the necessity to deal with large-scale biological

sequences makes the development of fast algorithms with low memory requirements

becomes a great concern. To meet these demands, two new algorithms for analyzing

these biological sequences are presented to gain parallel computing power at low cost.

The first one is a "block-based wavefront" algorithm developed to speedup optimal

pairwise alignment. Evaluation of the experimental results shows that the proposed

algorithm can take the advantage of dynamic programming technique and utilize

136

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

137

parallel computing to meet the requirements of comparing long sequences without

compromising the optimal results. The second one is a fast and practicable algorithm

for multiple sequence alignment. The proposed algorithm effectively parallelized the

stage of building guiding trees and the other stages of the ClustalW algorithm. It

results in significantly better performance than other comparable implementations.

We then proceeded to the reconstruction of phylogenetic trees. One of the "grand

challenges" in HPC computational biology is the computation of the "Tree of life"

containing all living organisms. Currently the most accurate methods for the recon­

struction of phylogenetic trees are based on maximum parsimony (MP) and maxi­

mum likelihood (ML). Among MP and ML, Rec-I-DCM3 and RAxML are the fastest

and most accurate programs respectively. In this research, a flexible parallel divide-

and-conquer model was designed, which significantly outperforms REC-I-DCM3 and

RAxML on all the real-world tested data sets containing from 5000 to 13,921 organ­

isms. With respect to memory requirements and reasonable inference time, it appears

to be the only model which is currently capable to handle huge alignments (over 5.000

taxa). If we take the Dataset 1 as an example, the best trial of the model finds a

better score than any previous method. Achieving the best known score took about

123 hours by the Rec-I-DCM3, whereas the proposed model found it within 24 hours.

We also designed a pattern-constrained multiple sequence alignment algorithm to

ensure that the generated alignment satisfies the criterion that crucial residues are

aligned together. The proposed method effectively brings the information available in

existing pattern databases into multiple sequence alignment. It is able to differentiate

patterns which need to be aligned together from other residues, an essential property

for accurate and biologically meaningful sequence alignment. It is proven that the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

138

similarity score worked out by this method has an approximation ratio of 2tk-i) t o t n a t

of the optimal pattern-constrained alignment, where k is the number of sequences.

We integrated these solutions into a parallel sequence analysis system on a cus­

tomized multi-node cluster, which significantly improves computational performance

on sequence analysis problems in computational biology. It should be pointed out

that such a parallel and distributed system is developed for a general MIMD archi­

tecture, which is widely available in computational biology laboratories, instead of

an expensive special hardware design. Applications of these novel algorithms avoid

prohibitively long computations for full datasets, which is essential for meaningful in­

terpretation of empirical data. Researchers, working on problems involving enormous

computations, complex optimizations etc, will benefit from using the system.

7.2 Future Work

In the future, we hope to further improve our system regarding the previously ad­

dressed shortfalls and to add more extensive functions for other complex problems in

computational biology.

7.2.1 Computation of the "tree of life"

Despite the fact that the parallel divide-and-conquer model currently enables the

computation of comparatively large trees, the scalability and efficiency of pPhylo(MP)

and pPhylo(ML) still needs to be improved. We have discussed the technical as well

as algorithmic problems and limitations concerning the parallelization of the global

method and the load imbalance within the base method in Chapter 5. Thus, the

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

139

development of a more scalable parallel algorithm for global optimization and a more

thorough investigation of subproblem load imbalance constitute the main issue of

future work.

One straight-forward technical solution to this problem is the design of a hybrid

message-passing/shared-memory (MPI/OpenMP) parallelization of global rearrange­

ment algorithm, for two reasons: Firstly, the fine-grained shared memory paralleliza­

tion leads to super linear speedups on large datasets (Stamatakis, Ott & Ludwig 2005)

due to improved cache efficiency; it will help to resolve memory shortage problems on

very large and long alignments containing more than 10,000 sequences. Secondly, such

an implementation will reduce the number of working processes which has a significant

impact on the parallel efficiency of the current implementation. This reduction in the

number of workers while maintaining the same amount of computational power will

have a positive impact on the performance of the base as well as the global method.

7.2.2 Sequence analysis using grid computing

Parallel computing on a cluster of compute nodes has been already used successfully

in sequence analysis, but it is not enough, due to the limit of the number of compute

nodes. Grid computing has a potential for the expansion in computing performance by

connecting a large number of computers or clusters with high performance networks.

Grid system can incorporate more computational resources and help us speedup the

experimental time. In the future, we want to integrate the grid technology and our

system to implement all kinds of sequence analysis applications, so that we can speed

up the sequence analysis time by many compute nodes of the grid system.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

140

7.2.3 Development of more applications

We have focused mainly on boosting sequence analysis. Other problems in com­

putational biology remain unsolved as far as parallel computing is concerned. We

are interested in more challenging algorithms in computational biology and hope to

extend our work in the years ahead.

Protein structure alignment

Computer programs have been created that give scientists the ability to look at the

three dimensional shape of proteins. Examining a protein in three dimensions allows

for greater understanding of protein functions. A complete three-dimensional struc­

ture is synthesized by tertiary structure. Unfortunately predicting protein structure

from sequences is not an easy task. The common technique used is the comparison

of a proposed shape to a database of known shapes, which is called structural align­

ment. It is of a value for the comparison of proteins in the so called "twilight zone",

where the proteins are no longer recognizable because their sequences have changed

too much through mutations, insertions and deletions during their evolution, but

often their structures are preserved well. Protein structural alignment plays an im­

portant role in protein structure prediction, fold family classification, motif finding,

and phylogenetic tree reconstruction and etc. It is analogous to sequence alignment,

but more challenging because they are complex three-dimensional structures. There

are some characteristics of the protein structure comparison that suggest HPC: large

databases, frequent updates of the databases, high computational requirements and

visualization.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

141

Multiple genome alignment

In this area, the most striking change is the sheer volume of the available data.

In 1995, the first two publications of microbial whole genome sequencing projects

were published. Only several years later, there are almost 60 completed and anno­

tated genomes available, such as eubacteria, archaebacteria, yeast and etc. Multiple

genome alignment seeks to identify all similarities between a set of genome sequences.

It will help us to identify differences between organisms, find functional assignment,

evolution history and conserved region. However, multiple genome alignment is a

challenging task due to its high demands for computational power and memory ca­

pacity Additionally, genomes have some different natures with single protein se­

quence or DNA sequence containing a single gene or operon, such as rearrangements

(e.g. exon shuffling or other non-syntenous regions resulting from intra-molecular

recombinations), large insertions or deletions (sequences that share several regions of

local similarity separated by unrelated regions), repeated elements (e.g. duplicated

genes/operons, transposons, SINES,LINES etc.), tandem repeats, and inherent prob­

lems of gene regulatory elements, including their small size and relative resistance to

small insertions/deletions or substitutions. Therefore, it needs a faster algorithm to

align whole genomes with reliable output, reasonable cost and better display. This

may present a serious challenge for efficient parallel execution.

Analyzing the evolution of virus

Phylogenetic analysis and ancestral inference of related nucleic acid or protein se­

quences are widely used to address problems in virus evolution, and have played a

very important role in the prediction and identification of newly emerging etiological

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

142

agents. Due to larger population sizes, shorter generation time and higher mutation

rates, virus evolves on a faster time scale than larger organisms. Hence, the study of

virus evolution often requires that existing methods of analysis are modified or that

novel methods are developed. This future work is reconstructing the evolutionary

history of different virus and paying particular attention to understanding their ori­

gins and the reasons for their emergence, persistence and virulence. It must involve

the comparative analysis of pathogen sequence data in an evolutionary framework

because these factors are the direct consequence of viral evolution. For example, the

extensive sequencing and phylogenetic projects has revealed the diversity and com­

plex reticulate evolutionary relationships of HIV. The extremely high rate of sequence

change of HIV has had important implications for its control by vaccination. The

urgency for effective control of HIV by vaccination is greater because more than thirty

five million people currently infected. Therefore, the work is extremely important.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Bibliography

Adachi, J. & Hasegawa, M. (1996), Molphy version 2.3: programs for molecular phy-

logenetics based on maximum likelihood., in 'Computer Science Monographs',

Vol. 28, Institute of Statistical Mathematics, Minato-ku, Tokyo.

A.J.Barrett (1987), 'The cystatins: a new class of peptidase inhibitors', Trends

Biochem. Sci. 12, 193-196.

Allen, B. & Steel, M. (2001), 'Subtree transfer operations and their induced metrics

on evolutionary trees.', Annals of combinatorics 5, 1-13.

Alpern, B., Carter, L. &: Gatlin, K. (1995), 'Microparallellism and high per­

formance protein matching', In Proceeding of Supercomputing '95,San Diego,

California,December3-8, ACM SIGARCH and IEEE Computer Society .

Altschul, S., Gish, W., Miller, W., Myers, E. & Lipman, D. (1990), 'Basic local

alignment search tool', J. Mol. Biol. 215, 403-410.

Altschul, S., Madden, T., schaffer, A., Zhang, J., Zhang, Z., Miller, W. & Lipman,

D. (1997), 'Gapped blast and psi-blast: a new generation of protein database

search programs', Nucleic Acids Res. 25, 3389-3402.

Amdahl, G. (1967), 'Validaity of the single processor approach achieving large-scale

computing capabilities.', In AFIPS Conference Proceedings. AFIPS Press,Reston

30, 483-485.

143

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

144

Attwood, T., Flower, D., Lewis, A., Mabey, J., Morgan, S., Scordis, P., Selley, J. &

Wright, W. (1999), 'Prints prepares for the new millennium', Nucleic Acids Res.

27(1), 220-225.

A.Wozniak (1997), 'Using video-oriented instructions to speed up sequence compari­

son', Computer Applications in the Biosciences 13(2), 145-150.

Bateman, A., Birney, E., Durbin, R., Eddy, S., Finn, R. & Sonnhammer, E. (1999),

'Pfam 3.1: 1313 multiple alignments and profile hmms match the majority of

proteins', Nucleic Acids Res. 27(1), 260-262.

Bias, A. D. &: et. al (2005), 'The ucsc kestrel parallel processor', IEEE Transactions

on Parallel and Distributed Systems 16(1), 80-92.

Board., O. A. R. (1977), Openmp: A proposed industry standard api for shared

memory programming.., in 'http://www.openmp.org'.

Bodlaender, H. L., Fellows, M. R , Hallett, M. T., Wareham, T. & Warnow, T.

(2000), 'The hardness of perfect phylogeny, feasible register assignment and other

problems on thin colored graphs', Theoretical Computer Science 244, 167-188.

Borah, M., Bajwa, R., Hannenhalli, S. &; Irwin, M. (1994), A simd solution to the se­

quence comparison problem on the mgap, in 'Proc. ASAP'94', IEEE CS, pp. 144-

160.

Brauer, M., Holder, M., Dries, L., Zwickl, D., Lewis, P. k Hillis, D. (2002), 'Genetic

algorithms and parallel processing in maximum-likelihood phylogeny inference.',

Molecular Biology and Evolution 19, 1717-1726.

Brocchieri, L. &; Karlin, S. (1998), 'Asymetric-iterated multiple alignment of protein

sequences.', JMB. 276, 249-264.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://'http://www.openmp.org'

145

Bruno, W., Socci, N. & Halpern, A. (2000), 'Weighted neighbor joining: A likelihood-

based approach to distance-based phylogeny reconstruction', Mol. Biol. Evol.

17, 189-197.

Brutlag, D., Dautricourt, J., Diaz, R., Fier, J., Moxon, B. & Stamm, R. (1997), 'Blaze:

An implementation of the smith-waterman sequence comparison algorithm on a

massively paralllel computer', Computers and Chemistry 17, 203-207.

Bucka-Lassen, K., Caprani, O. & Hein, J. (1999), 'Combining many multiple align­

ments in one improved alignment.', Bioinformatics. 15(2), 122-130.

Camin, J. & Sokal, R. (1965), 'A method for deducing branching sequences in phy­

logeny.', Evolution. 19, 311-326.

Carlson, W., Draper, J., Culler, D., Yelick, K., Brooks, E. k Warren, K. (1999),

'Aintrodction to upc and language specification.', Technical Report CCSTR-99-

157.

Catalyurek, U., Stahlberg, E., Ferreira, R., Kurc, T. & Saltz, J. (2002), 'Improv­

ing performance of multiple sequence alignment analysis in multi-client environ­

ments', Workshop on High Performance Computational Biology, held in con­

junction with International Parallel and Distributed Processing Symposium. .

Chow, E., Hunkapiller, T., Peterson, J. & Waterman, M. (1991), Biological informa­

tion signal processor, in 'Proc. ASAP'91\ IEEE CS, pp. 144-160.

Comet, J.-P. & Henry, J. (2002), 'Pairwise sequence alignment using a prosite pattern-

derived similarity score', Computers and Chemistry. 26, 421-436.

Corpet, F., Gouzy, J. & Kahn, D. (1998), 'The prodom database of protein domain

families', Nucleic Acids Res. 26(1), 323-326.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

146

D.A.Bader (2004), 'Computational biology and high-performance computing', Com­

munications of the ACM. 47, 35-40.

Day, W. H. E., Johnson, D. S. & Sankoff, D. (1986), 'he computational complexity

of inferring rooted phylogenies by parsimony', Math. Bios. 81, 33-42.

Doolittle, R., Hunkapiller, M., Hood, L., Devare, S., Robbins, K., Aaronson, S. &;

Antoniads, H. S. s. (1983), 'virus one gene v-sis, is derived from the gene encoding

a platelet-derived growth factor', Science. 221, 275-277.

D.P.Lopresti (1987), 'P-nac: A systolic array for comparing nucleic acid sequences',

Computer 20(7), 98-99.

E. Lander, J. M. & Taylor, W. (1988), 'Protein sequence comparison on a data parallel

computer', proc. International Conference on Parallel Processing, pp. 257-263.

Ebedes, J. & Datta, A. (2004), 'Multiple sequence alignment in parallel on a work­

station cluster.', Bioinformatics 20(7), 1193-1195.

Edgar, R. C. (2004a), 'Muscle: a multiple sequence alignment method with reduced

time and space complexity', BMC Bioinformatics 5(1), 113.

Edgar, R. C. (20046), 'Muscle: multiple sequence alignment with high accuracy and

high throughput.', Nucl. Acids Res. 32(5), 1792-1797.

Eisen, J. A. (2003), 'Phylogenomics: intersection of evolution and genomics', Science

300, 1706-1707.

E.W. Edmiston, N.G. Core, J. S. &; Smith, R. (1988), 'Parallel processing of biological

sequence comparison algorithms', International Journal of Parallel Programming

17(3), 259-275.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

147

Felsenstein, J. (1980), 'A simple method for estimating evolutionary rates of base

substitutions by through comparative studies of nucleotide sequences.', J. Mol.

Evol. 16, 111-120.

Felsenstein, J. (1981a), 'Evolutionary trees from dna sequences: A maximum likeli­

hood approach.', J. Mol. Evol. 17, 368-376.

Felsenstein, J. (19816), 'Evolutionary trees from DNA sequences: A maximum likeli­

hood approach', Journal of Molecular Evolution 17, 368-376.

Felsenstein, J. (1989), 'Phylip - phylogeny inference package (version 3.2).', Cladistics

5, 164-166.

Felsenstein, J. (2004), 'Phylip (phylogeny inference package) version 3.6'. Distrib­

uted by the author. Department of Genome Sciences, University of Washington,

Seattle.

Feng, D. & Doolittle, R. (1987), 'Progressive sequence alignment as a prerequisite to

correct phylogenetic tress', J.Mol.Evol. 25, 451-360.

Flynn.M. (1972), 'Some computer organizations and their effectiveness.', IEEE Trans.

Comput. C-21, 94.

Foulds, L. R. &; Graham, R. L. (1982), 'The Steiner problem in phylogeny is NP-

complete', Advances in Applied Mathematics 3, 43-49.

Gascuel, O. (1997), 'Bionj: an improved version of the nj algorithm based on a simple

model of sequence data.', Mol. Biol. Evol. 14, 685-695.

Geist, A., Begulin, A., J.Dongarra, W.Jiang, R.Manchek & V.Sunderam. (1994),

PVM- Parallel Virtual Machine- A User's Guide and Tutorial for Networked Par­

allel computing, MIT Press.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

148

G.Giribet (2005), 'A review of tnt: Tree analysis using new technology', Systematic

Biology 54(1), 176-178.

Gibson, T., D., H. & Thompson, J. (2002), 'On-line help for clustal w', http://www-

igbmc. ustrasbg.fr/BioInfo/Clustal W/.

Gish, W. & States, D. (1993), 'Identification of protein coding regions by database

similarity search', Nature Genet. 3, 266-272.

G.M.Nagel Sz R.F.Doolittle (1991), 'volution and relatedness in two aminoacyl-trna

synthetase families.', Proc. Natl. Acad. Sci.U.S.A. 88, 8121-8125.

Goloboff, P. (1999), 'Analyzing large data sets in reasonable times: solution for com­

posite optima.', Cladistics. 15, 415-428.

Gotoh, O. (1996), 'Significant improvement in accuracy of multiple protein sequence

alignments by iterative refinement as assessed by reference to structural align­

ments', J.Mol.Biol. 264, 823-838.

Gracy, J. k. Argos, P. (1998), 'Automated protein sequence database classification,

ii. delineation of domain boundaries from sequence similarities', Bioinformatics.

14, 174-187.

Guerdoux-Jamet, P. & Lavenier, D. (1997), 'Samba: hardware accelerator for biolog­

ical sequence comparison', CABIOS 12(6), 609-615.

Guindon, S. & Gascuel, O. (2003), 'A simple, fast, and accurate algorithm to estimate

large phylogenies by maximum likelihood.', Syst. Biol. 52(5), 696-704.

Hart, D., Grover, D., M.Liggett, Repasky, R., Shields, C., Simms, S., Sweeny, A. &;

Wang, P. (2003), Distributed parallel computing using windows desktop system.,

in 'Proceedings of CLADE'.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://www-
http://ustrasbg.fr/BioInfo/Clustal

149

Henikoff, J., Greene, E., Pietrokovski, S. & Henikoff, S. (2000), 'Increased coverage of

protein families with the blocks database servers', Nucleic Acids Res 28, 228-230.

Henikoff, S., Henikoff, J. & Pietrokovski, S. (1999), 'Blocks+: A non-redundant data­

base of protein alignment blocks dervied from multiple compilations', Bioinfor-

matics. 15(6), 471-479.

Heringa, J. (1999), 'Two strategies for sequence comparison: profile preprocessed

and secondary structure-induced multiple alignment', Computational Chemistry.

23, 341-364.

Hewlett-Packard (2001), 'AlphaServer sc:terascale single-system-image supercomput-

ing', White Papers. .

Higgins, D., Thompson, J. &; Gibson, T. (1996), 'Using clustal for multiple sequence

alignments', Methods Enzymol. 266, 383-402.

Hoang, D. (1993), Searching genetic databases on splash 2, in 'Proc. IEEE Workshop

on FPGAs for Custom Computing Machines', IEEE CS, pp. 185-191.

Hofmann, K., Bucher, P., Falquet, L. & Bairoch, A. (1999), 'The prosite database',

Nucleic Acids Res. 27, 215-219.

http://vjuruu.timelogic.com (n.d.).

Huang, X. & Miller, W. (1991), 'A time-efficient linear-space local similarity algo­

rithm', Adv.Appl.Math. 12, 337-357.

Huson, D., Nettles, S. & Warnow, T. (1999), 'Disk-covering, a fast-converging method

for phylogenetic tree reconstruction', Journal of Computational Biology 6, 369-

386.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://vjuruu.timelogic.com

150

Huson, D., Vawter, L. k. Warnow, T. (1999), Solving large scale phylogenetic prob­

lems using DCM2, in 'Proc. 7th Int'l Conf. on Intelligent Systems for Molecular

Biology (ISMB'99)', AAAI Press, pp. 118-129.

Jukes, T. &; Cantor, C. (1969), 'Evolution of protein molecules.', In H. Munro (editor),

Mammalian protein metabolism, Academic Press, New York III, 21-132.

Kallerjo, M., Farris, J. S., Chase, M. W., Bremer, B. & Fay, M. F. (1998), 'Simulta­

neous parsimony jackknife analysis of 2538 rbcL DNA sequences reveals support

for major clades of green plants, land plants, seed plants, and flowering plants',

Plant. Syst. Evol. 213, 259-287.

Katoh, K., Misawa, K., Kuma, K.-i., & Miyata, T. (2002), 'Mafft: a novel method for

rapid multiple sequence alignment based on fast fourier transform.', Nucl. Acids

Res. 30(14), 3059-3066.

Keane, T., Naughton, T., Travers, S., Mclnerney, J. &; McCormack, G. (2005),

'Dprml: Distributed phylogeny reconstruction by maximum likelihood.', Bioin-

formatics 21(7), 969-974.

kleinjung, J., Douglas, N. & Heringa, J. (2002), 'Parallelized multiple alignment',

Bioinformatics. 18, 1270-1271.

La, D., Sutch, B. &: Livesay, D. R. (2005), 'Predicting protein functional sites

with phylogenetic motifs', Proteins: Structure, Function, and Bioinformatics

58(2), 309-320.

Lanave, C , Preparata, C , Saccone, C. & Serio, G. (1984), 'A new method for calcu­

lating evolutionary substitution rates.', J. Mol. Evol. 20, 86-93.

Lee, C , Grasso, C. h Shadow, M. F. (2002), 'Multiple sequence alignment using

partial order graphs.', Bioinformatics 18(3)), 452-464.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

151

Li, K.-B. (2003), 'Clustalw-mpi: Clustalw analysis using distributed and parallel

computing.', Bioinformatics 19, 1585-1586.

Lichtarge, O., Bourne, H. R. &: Cohen, F. E. (1996), 'An evolutionary trace method

defines binding surfaces common to protein families', J. Mol. Biol. 257, 342-358.

Maddison, D. (1991), 'The discovery and importance of multiple islands of most

parsimonious trees.', Systematic Biology. 42(2), 200-210.

Maidak, B. e. a. (2000), 'The rdp (ribosomal database project) continues.', Nucleic

Acids Research. 28, 173-174.

M.Dayhoff, R.M.Schwartz & B.C.Orcutt (1978), 'A model of evolutionary change in

proteins', Atlas of Protein Sequence and Structure. 30, 345-352.

M.Delarue k, D.Moras (1993), 'The aminoacyl-trna synthetase family: modules at

work', BioEssays 15, 675-687.

M.Gokhale h et al. (1995), 'Processing in memory: The terasys massively parallel

pirn array', Computer 28(4), 23-31.

Mikhailov, D., Cofer, H. &; Gomperts, R. (n.d.), 'Performance optimization of

clustalw: parallel clustalw, ht clustal, and multiclustal.', White papers, Silicon

Graphics, Mountain View, CA. .

Moret, B., Roshan, U. & Warnow, T. (2002), Sequence length requirements for phy-

logenetic methods, in 'Proc. 2nd Int'l Workshop Algorithms in Bioinformatics

(WABF02)', Vol. 2452 of Lecture Notes in Computer Science, Springer-Verlag,

pp. 343-356.

Morgenstern, B. (1999), 'Dialign2:improvement of the segment-to-segment approach

to multiple sequence alignment', Bioinformatics. 15, 211-218.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

152

Morgenstern, B. (2004), 'Dialign: multiple dna and protein sequence alignment at

bibiserv.', Nucl. Acids Res.. 32(suppl 2), 33-36.

Morgenstern, B., Freeh, K., Dress, A. & Werner, T. (1998), 'Dialign:finding local

similarities by multiple sequence alignment.', Bioinformatics. 14, 290-294.

MPI standard 2.0. (1997), MPI-Forum, MPI.

Nakhleh, L., Moret, B., Roshan, U., John, K. S. & Warnow, T. (2002), The accu­

racy of fast phylogenetic methods for large datasets, in 'Proc. 7th Pacific Symp.

Biocomputing (PSB'2002)', World Scientific Pub., pp. 211-222.

Nakhleh, L., Roshan, U., St. John, K., Sun, J. & Warnow, T. (2001a), Designing fast

converging phylogenetic methods, in 'Proc. 9th Int'l Conf. on Intelligent Systems

for Molecular Biology (ISMB'01)', Vol. 17 of Bioinformatics, Oxford U. Press,

pp. S190-S198.

Nakhleh, L., Roshan, U., St. John, K., Sun, J. k Warnow, T. (20016), The perfor­

mance of phylogenetic methods on trees of bounded diameter, in 'Proc. 1st Int'l

Workshop Algorithms in Bioinformatics (WABI'01)', Vol. 2149 of Lecture Notes

in Computer Science, Springer-Verlag, pp. 214-226.

N.D.Rawlings k. A.J.Barrett (1990), 'Evolution of proteins of the cystatin superfam-

ily', J. Mol. Evol. 30, 60-71.

Nixon, K. C. (1999), 'The parsimony ratchet, a new method for rapid parsimony

analysis', Cladistics 15, 407-414.

Notredame, C , Higgins, D. & Heringa, J. (2000), 'T-coffee: A novel method for

multiple sequence alignments', Journal of Molecular Biology 302, 205-217.

Notredame, C , Higgins, D. & J., H. (2000), 'T-coffe: A novel method for fast and

accurate multiple sequence alignment.', J. Mol. Biol. 302, 205-217.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

153

Notredame, C , Holm, L. & Hlggins, D. (1998), 'Coffee:an objective function for

multiple sequence alignment', Bioinformatics. 14(5), 407-422.

of the IEEE, P. A. S. C. (1996), Portable applications standards committee of the

ieee,information technology-portable operation system interface (posix)-part 1:

System application program interface (api)., in 'ISO/IEC 9945-1, ANSI/IEEE

Std. 1003.1.'.

O.Gotoh (1990), 'Optimal sequence alignment allowing for long gaps', Bull. Math.

Biol. 52(3), 359-373.

Oliver, T., Schmidt, B. & Maskell, D. (2005), Reconfigurable architectures for bio-

sequence database scanning on fpgas. to ne published in IEEE Transaction on

Circuits and Systems II.

Page, R. (1993), 'On islands of trees and efficacy of different methods of branch

swapping in finding most parsimonious trees', Systematic Biology 42(1), 200-

210.

Pearson & Lipman (1988), 'Improved tools for biological sequence comparison',

Proc.Natl.Acad.Sci.USA. 85, 2444-2448.

Pei, J., Sadreyev, R. & Grishin, N. V. (2003), 'Pcma: fast and accurate multiple

sequence alignment based on profile consistency.', Bioinformatics 19(3)), 427-

428.

P.Hovenkamp (2004), 'Review of tnt tree analysis using new technology, version 1.0.',

Cladistics 20, 378-383.

P.Schimmel (1987), 'Aminoacyl trna synthetases: general scheme of structure-

function relationships in the polypeptides and recognition of transfer rnas', Annu.

Rev. Biochem 56, 125-158.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://Proc.Natl.Acad.Sci.USA

154

P.Schimmel (1991), 'Classes of aminoacyl-trna synthetases and the establishment of

the genetic code', Trends Biochem. Sci. 16, 1-3.

Quinn, M. (2004), Parallel Programming in C with MPI and OpenMP, McGrawHill.

Ranwez, V. &; Gascuel, 0 . (2002), 'Improvement of distance-based phylogenetic meth­

ods by a local maximum likelihood approach using triplets.', Mol Biol Evol

19, 1952-1963.

R.Chandra, L.Dagum, D. D. J. &: R.menon. (2001), Parallel programming in OpenMP,

Academic Press.

Rice, K., Donoghue, M. & Olmstead, R. (1997), 'Analyzing large datasets: rbcL 500

revisited', Systematic Biology 46(3), 554-563.

R.K.Singh & et al. (1996), 'Bioscan: a network sharable computational resource for

searching biosequence databases', CABIOS 12(3), 191-196.

R.Meier & Ali, F. (2005), 'The newest kid on the parsimony block: Tnt (tree analysis

using new technology)', Systematic Entomology 30, 179-182.

Robert, C. E. (2004), 'Muscle: multiple sequence alignment with high accuracy and

high throughput', Nucleic Acids Research 32(5), 1792-1797.

Rodriguez, F., Oliver, J., Marin, A. k. Medina, J. (1990), 'The general stochastic

model of nucleotide substitution.', J. Theor. Biol. 142, 485-501.

ROlsen, G. J., H. Matsuda, R. H. & Overbeek, R. (1994), 'fastdnaml: A tool for

construction of phylogenetic trees of dna sequences using maximum likelihood.',

Computer Applications in the Biosciences (CABIOS) 30, 41-48.

Roshan, U. (2004), 'Algorithm techniques for improving the speed and accuracy of

phylogenetic methods.', PhD thesis .

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

155

Roshan, U., Moret, B. M. E., Warnow, T. & Williams, T. L. (2004), 'Rec-i-

dcm3: a fast algorithmic technique for reconstructing large phylogenetic trees',

Proceedings of the IEEE Computational Systems Bioinformatics conference

(CSB),Stanford, California, USA .

Rost, B. (1999), 'Twilight zone of protein sequence alignments', Protein Eng. 12, 85-

94.

Saitou, N. & Nei, M. (1987), 'The nigehbor-joining method: a new method for recon­

structing phylogenetic tree.', J Mol Evol 4, 406-425.

S.B.Needleman & C.D.Wunsch (1970), 'A general method applicable to the search for

similarities in the amino acid sequence of two proteins', J.Mol.Biol. 48, 443-453.

Schmidt, B., Schroder, H. & Schimmler, M. (2002), Massively parallel solutions for

molecular sequence analysis, in 'Proc. 1st IEEE Int. Workshop on High Perfor­

mance Computational Biology'.

Schmidt, H., Strimmer, K., Vingron, M. k. Haeseler, A. (2002), 'Tree-puzzle: max­

imum likelihood phylogenetic analysis using quartets and parallel computing.',

Bioinformatics 18, 502-504.

Searls, D. B. (2003), 'Pharmacophylogenomics: gene, evolution, and drug targets',

Nature Reviews Drug Discovery 2, 613-623.

S.Henikoff h J.G.Henikoff (1992), 'Amino acid substitution matrices from protein

blocks', Proc.Natl.Acad.Sci. 89, 10915-10919.

S.Kleiman, D.shah & B.Smaalders (1996), Rec-i-dcm3: a fast algorithmic technique

for reconstructing large phylogenetic trees, in 'Programming with Threads',

Prentice Hall, Englewood Cliffs, NJ.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

156

S.Lustigman, B.Brotman, T.Huima & A.M.Prince (1991), 'Characterization of an

onchocerca volvulus cdna clone encoding a genus specific antigen present in in­

fective larvae and adult worms', Mol. Biochem. Parasitol. 45, 65-75.

Smith, T. &: Waterman, M. (1981a), 'Comparison of biosequences', Adv.Appl.Math.

2, 482-489.

Smith, T. & Waterman, M. (19816), 'Identification of common molecular subse­

quences', J. Mol. Biol. 147, 195-197.

S.Rajko &; S.Aluru (2004), 'Space and time optimal parallel sequence alignments',

Transaction on Parallel and Distributed Systems. 15(1), 1070-1081.

Srivastava, N. (2001), 'Aalphaserver sc45 system overview', Compaq Computer Cor­

poration, Marlboro, MA, USA .

Stamatakis, A., Ludwig, T. & Meier, H. (2004), Parallel inference of a 10.000-taxon

phylogeny with maximum likelihood., in 'Proceedings of 10th International Euro-

Par Conference', pp. 997-1004.

Stamatakis, A., Ludwig, T. & Meier, H. (2005), 'Raxml-iii:a fast program for max­

imum likelihood-based inference of large phylogenetic trees.', Bioinformatics

21(4), 456-463.

Stamatakis, A., Ott, M. & Ludwig, T. (2005), Raxml-omp: An efficient program for

phylogenetic inference on smps, in 'Proceedings of of 8th International Confer­

ence on Parallel Computing Technologies (PaCT)'. Preprint available on-line at

WWW.ICS.FORTH.GR/~STAMATAK.

Stamatakis, A., Ott, M., Ludwig, T. &; Meier, H. (2005), Draxml@home: A distrib­

uted program for computation of large phylogenetic trees. To be published in

Future Generation Computer Systems (FGCS).

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://www.ics.forth.gr/~stamatak

157

Steel, M. A. (1994), 'The maximum likelihood point for a phylogenetic tree is not

unique', Systematic Biology 43(4), 560-564.

Stewart, C , Hart, D., Berry, D., Olsen, G., Wernert, E. k Fischer, W. (2001), Par­

allel implementation and performance of fastdnaml - a program for maximum

likelihood phylogenetic inference., in 'Proceedings of SC2001'.

Strimmer, K. &, Haeseler, A. (1996), 'Quartet puzzling: A maximum-likelihood

method for reconstructing tree topologies.', Mol. Biol. Evol. 13, 964-969.

Studier, J. &; Keppler, K. (1988), 'A note on the neighbor joining method of saitou

and nei.', Mol. Biol. Evol. 5, 729C731.

Su, Q., Lu, L. & Brutlab, D. (2002), 'http://fold.stanford.edu/eblocks'.

Sum Mircosystems, I. (1995), Sun microsystems, inc. posix threads., in

'www.sun.com/developer-products/sig/threads/posix.html'.

S.V.Le, Schmidt, H. k. Haeseler, A. (2004), Phynav: A novel approach to reconstruct

large phylogenies, in 'Proceedings of GfKl conference'.

Thompson, J. D., Higgins, D. G. h Gibson, T. J. (1994a), 'Clustal w: improving the

sensitivity of progressive multiple sequence alignment through sequence weight­

ing, position specific gap penalties and weight matrix choice', Nucleic Acids Res.

22(22), 4673-4680.

Thompson, J., Higgins, D. &; Gibson, T. (19946), 'Clustal w: Improving the sensitivity

of progressive multiple sequence alignment through sequence weighting, position-

specific gap penalties and weight matrix choice', Nucleic Acid Res. 22, 4673-

4680.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://'http://fold.stanford.edu/eblocks'
http://'www.sun.com/developer-products/sig/threads/posix.html'

158

T.L.Williams, B.M.E.Moret, T.Berger-Wolf, U.Roshan & T.Warnow (2004), 'The

relationship between maximum parsi-mony scores and phylogenetic tree topolo­

gies.', Technical Report TR-CS-2004-04, Department of Computer Science, The

University of New Mexico. .

T.Rognes & E.Seeberg (2000), 'Six-fold speed-up of smith-waterman sequence data­

base searches using parallel processing on common microprocessors', Bioinfor-

matics 16, 699-706.

U.Roshan, Moret, B., Williams, T. &; Warnow, T. (2004a), 'Performance of suptertree

methods on various dtaset decompositions, in o.r.p.binida-emonds, editor, phy­

logenetic super-trees: Combining information to reveal the tree of life', Compu­

tational Biology. 3, 301-328.

U.Roshan, Moret, B., Williams, T. & Warnow, T. (20046), 'Rec-i-dcm3: A fast al­

gorithmic technique for reconstruct-ing large phylogenetic trees', Proceedings of

the IEEE Compu-tational Systems Bioinformatics conference. .

VanWalle, I., Lasters, I. &; Wyns, L. (2004), 'Align-m-a new algorithm for multiple

alignment of highly divergent sequences', Bioinformatics 20, 1428-1435.

V.Turk k. W.Bode (1991), 'The cystatins: protein inhibitors of cysteine proteinases',

J. Mol. Evol. 285, 213-219.

Warnow, T., Moret, B. & St. John, K. (2001), Absolute convergence: True trees from

short sequences, in 'Proc. 12th Ann. ACM-SIAM Symp. Discrete Algorithms

(SODA'01)', SIAM Press, pp. 186-195.

Wolf, M., S.Easteal, Kahn, M., McKay, B. k. L.Jermiin (2000), "Trexml: A maxi­

mum likelihood program for extensive tree-space exploration.', Bioinformatics

16(4), 383-394.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

159

Wuyts, J., de Peer, Y. V., Winkelmans, T. & Wachter, R. D. (2002), 'The European

database on small subunit ribosomal RNA', Nucleic Acids Research 30, 183-185.

Yamaguchi, Y., Maruyama, T. & Konagaya, A. (2002), High speed homology search

with fpgas, in 'Proc. Pacific Symposium on Biocomputing'02', pp. 271-282.

Yang, Z. (1997), 'Paml: a program package for phylogenetic analysis by maximum

likelihood.', Computer Applications in BioSciences 13, 555-556.

Zhou, B., Till, M., Zomaya, A. k, Jermiin, L. (2004), Parallel implementation

of maximum likelihood methods for phylogenetic analysis., in 'Proceeding of

IPDPS2004'.

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Appendix A

Sample Code for Jacobi Iteration

To establish a basic understanding and test on the multi-node cluster, we developed

a protocol program, dealing with typical matrix problem of Jacobi iteration (solve

Laplace's equation).

As illustrated in Figure A.l, the algorithm involves a main loop of an iterative

solver where, at each iteration, the value at a point is replaced by the average of the

North , South, East and West neighbours, as illustrated. Boundary values do not

change. We focus on the inner loop, where most of the computation is done.

Since this algorithm has a simple structure, a data-parallel approach can be used

to derive an equivalent parallel code. The array can be distributed across processes,

and each process is assigned the task of updating the entries on the part of the array

it owns.

A parallel algorithm is derived from a choice of data distribution. The data

distribution should be balanced, allocating (roughly) the same number of entries

to each processor; and it should minimize communication. There are two possible

distributions, as shown in Figure A.2:

• ID (block) distribution, where the matrix is partitioned in one dimension, and

160

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

161

-*V~

•**+• - • * « -

Figure A.l: Jacobi iteration, four-point stencil

2D (block,block) distribution, where the matrix is partitioned in two dimensions.

Since the communication occurs at block boundaries, communication volume is

minimized by the 2D partition which has a better area to perimeter ratio. However,

in this partition, each processor communicates with four neighbors, rather than two

neighbors in the ID partition. When the ratio of n/p (n is the problem size, p is the

number of processors) is small, communication time will be dominated by the fixed

overhead per message, and the first partition will lead to better performance. When

the ratio is large, the second partition will result in better performance.

Suppose we use the second partition. Table A.l gives the pseudo code of the

parallel Jacobi algorithm. The ghost points are stored on other processors which

are required for the calculation of the next iteration of the unknowns on a local

processor. Communications are simplified if an overlap area is allocated at each

process for storing the values to be received from the neighbor process. Essentially,

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

162

ID partition ID |inrtrtitm

Figure A.2: Jacobi partition

storage is allocated for each entry both at the producer and at the consumer of that

entry. If an entry is produced by one process and consumed by another, then storage

is allocated for this entry at both processes. With such scheme there is no need for

dynamic allocation of communication buffers, and the location of each variable is

fixed. Such scheme works whenever the data dependencies in the computation are

fixed and simple.

Table A.l: Parallelized Jacobi algorithm

Choose initial values for the own mesh points and the ghost points
Choose initial Precision (e.g. Precision = 1010)
While Precision > e (e.g. e = 10 -5)

1. Calculate next iteration for the own domain
2. Send the new iteration on boundary of domain to neighboring processors
3. Receive the new iteration for the ghost points
4. Calculate Precision

End While

Figure A.3 shows the running parameters of the parallel program: resource request

via prun; number of nodes (-N); number of processes (-n); number of CPUS per

process (-c). Using this protocal, we tested various conditions for tuning our system

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

and obtaining benchmarks in performance analysis.

J F atlas.birc.rttu.edu sg - PuTTY
a t las l s - aa - Iwpi -o j a c o b i j acob i . i
a t l o s l > I s - a l
t o t a l ' IS
drtrxr-xr-x 2 a s f l i n s t a f f

- r v x t - x r - x 1 a s f l i n s t a f f
-XV-l — -c— 1 a s f l i n s t a l l
a t l a3 l> prun -N 2 -n

Tie fol lowing i s the
234S.0
3256.0
8521.0
6985.0
9872.0
9874.0

16546.0
14859.0
14655.0
15678.0
| a t l 6 L 3 l 3

4785.0 9875.0
5318.8 6303.0
6155.5 5582.5
5296.2 3680.5
5278.5 5899.B
6237.5 6152.2
6648.2 S051.5
4244.5 74B7.8

2 - c 4 J acob!

!

B192 Feb 13
8192 Feb 13

20304 Feb 13
492!

transformed matr ix :
6872.0
6864.0
5306.5
5943.6
4322.8
6047.8
7707.5
5430.2

61BX.5 4504.0 5624.2
2343.0 3464.0

1
1256.0

9324.0
8656.2
6034.8
4009.0
4456.5
7120.S
4663.8
£854.0
5924.0
6544.0

3546,
6290,
7233.
4355,
5034.
3763.
5506.
5470.
6405.
9B75.

5 Feb 13

,0 7558.0
.0 7229.0
,2 5797.0
,8 5127.B
2 3496.8
8 S575.2
8 4289.0
0 2881.8
5 5312.0
0 6542.0

18:57 .
18:19 .
1B:57 ;ji
18;33 jl

9546.0
7217.8
5124.0
3345.2
5359.2
4691.8
3348.5
5109.0
4769.5

*
acobi
acotai

3546
5065
3736
3733
4834
3738.
6143.
2030,
4272,

•e

.0

.2

.2

.2

.5

.5

.

745B
6548
2224
234S
4443,
3S9S,

,0 2659,
,6
,0

9752.0 4654.0

1025,
1246.
6548.

Is3

,iD
. 0
,0

. : •

.0
3
•

,0
D

Figure A.3: Jacobi Results

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

http://birc.rttu.edu

