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Abstract 

Both sequence comparison and phylogenetic inference are of great importance to bi

ologists; and these problems are fundamentally interdependent. Most methods for 

phylogenetic inference use a given sequence alignment as an input, and efficient mul

tiple alignment procedures often take advantage of a phylogenetic relationship of the 

sequences. However, the algorithms used in these problems are very computationally 

demanding. Also, the huge increase in size of publicly available genomic data has 

meant that many common tasks in bioinformatics are not possible to complete in a 

reasonable amount of time on a single processor. For example, inferring phylogenetic 

trees is an enormously difficult problem because of the huge number of potential al

ternative tree topologies, for that number grows exponentially. For a large number 

of taxa, it is not possible to perform an exhaustive search of the tree space. It is 

therefore clear that high performance computing, which can speed up the process of 

sequence analysis without sacrifice the quality of the results, is necessary. The role 

of high performance computing has also been credited in being the only solution for 

two of the grand challenges in biology: the understanding of evolution and the basic 

structure and function of proteins (D.A.Bader 2004). 

This PhD project aims to highlight the potential and effectiveness of high perfor

mance computing as a viable option for mining large datasets of genome sequences. 

My main contributions include proposals of parallel architecture and mechanisms 

which empower the algorithms of sequence comparison and phylogenetic analysis. 

More importantly, these solutions make it possible for biologists to analyze the 
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Xlll 

datasets that were previously considered too large, often leading to memory over

flow or prohibitively long time for computation. 

For sequence comparison, two new algorithms are presented for pairwise alignment 

and multiple alignment respectively to gain parallel computing power at low cost. The 

first one is a "block-based wavefront" algorithm developed to take advantage of dy

namic programming and parallel computing to produce optimal pairwise alignments 

in a reasonable time frame. The parallel alignment is executed in a block-based wave-

front where computing nodes will calculate the blocks along anti-diagonals in parallel. 

The novelty of this algorithm is a compromise of the workload of each process and the 

number of communications required, which makes the communication-to-computation 

ratio drop dramatically. Secondly, a fast and practicable algorithm for multiple se

quence alignment, known as PMSA, is designed. The proposed algorithm effectively 

parallelized all the three stages of the ClustalW algorithm, which outperforms pre

vious parallel schemes. With these improvements, the execution time of sequence 

comparison can be greatly reduced, and it is also possible to apply the proposed 

algorithms in large-scale sequence projects that were previously impossible. 

In order to improve the topological accuracy of phylogenetic tree, a parallel divide-

and-conquer model (pPhylo) is designed, which performs a more complete search of 

the tree space within limited time. This model is flexible; it can reconstruct the 

large Maximum Parsimony(MP) and Maximum Likelihood(ML) trees comprising up 

to 10,000 organisms and leads to significant improvements in run-time. Furthermore, 

the trees computed by the proposed model are consistently better than the previously 

known fastest and most accurate programs for MP and ML respectively. The model 

includes four key steps: dividing a large tree into subtrees, optimizing the subtrees 

in parallel, merging the computed subtrees in the correct order imposed by the de

composition and finally rearranging the global tree. Because ML is a harder problem 

than MP, a parallel global search method applied on an ML tree is also designed. The 

global search method further improves the accuracy of the supertree and can also find 

global configurations that were not found by operations on smaller local subsets. 
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xiv 

In related work, a pattern-constrained multiple sequence alignment algorithm 

(PCMSA) is presented to improve the accuracy of multiple sequence alignment. It 

begins by finding an optimal constrained pairwise alignment for each pair of sequences 

using a new equation. Based on these results, a center sequence is defined so that the 

sum of the pattern-constrained scores to other k-1 sequences is minimized (k is the 

number of sequences to be aligned). Finally, a multiple alignment is constructed by 

the alignment of the center sequence with the rest k-1 sequences progressively. In or

der to form a multiple sequence alignment, spaces are inserted into each pre-aligned 

pairwise sequence. The significance lies on its capability of aligning the sequences 

sharing the same patterns. It effectively brings the information available in the ex

isting pattern databases into multiple sequence alignment. It is also proven that the 

similarity score derived from the PCMSA has the worst-case guarantee on the quality 

of the alignment, a bound of approximation ratio of 2<k-i) to ^e similarity score of 

optimal alignment. 

My future work focuses on the improvement of the algorithms which appear in the 

popular research fields of computational biology; such as computation of the "Tree of 

life", protein structure alignment, multiple genome alignment, and analysis of virus 

evolution. I also want to integrate the grid computing technology with our current 

architecture, to implement all kinds of sequence analysis applications with improved 

efficiency. 
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Chapter 1 

Introduction 

The first chapter starts with an introduction to the relevant biological background. 

Following that, it presents the motivation behind conducting research in high perfor

mance computing for computational biology ranging from pairwise sequence align

ment, multiple sequence alignment, to phylogenetic reconstruction. Finally, it sum

marizes the major contributions of the work, and describes the structure of the thesis. 

1.1 Cellular biology and molecular genetics 

Two important molecules in all living cells are Nucleic Acids (DNA and RNA) and 

proteins. The DNA, RNA and proteins of an organism are all linear chains composed 

of smaller molecules. Each of these macromolecules stores information that provide 

an insight into an organism's heredity and function. They are assembled from a 

fixed alphabet of well-understood chemicals. DNA is made up of four chemical bases: 

adenine (A) and guanine (G), which are called purines, and cytosine (C) and thymine 

(T), referred to as pyrimidines. Each base has a slightly different composition, or 

combination of oxygen, carbon, nitrogen and hydrogen. RNA is a temporary medium 

of genetic information because it uses specific regions of DNA as template produced 

1 
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in a process called transcription. RNA is very similar to DNA, but has the Thymine 

bases replaced by Uracil. Proteins are composed of the 20 amino acids, denoted by 

A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, and V in sequence analysis 

software. 

The Central Dogma, a fundamental principle of molecular biology, states that 

genetic information flows from DNA to RNA to proteins. Using the genes of an 

organism as templates, RNA is produced. The RNA can then be used as instructions 

for producing proteins. The genetic code that resides in DNA is passed on from 

generation to generation. Figure 1.1 shows the procedure. 

genomic DNA 

Pre-mKNA 

Prote in structure 

Figure 1.1: Transcription and Translation 
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Although DNA is a relatively stable molecule, it may be damaged by certain 

chemicals or UV light. Additionally, errors are introduced to DNA through the 

process of copying in spite of proof reading machinery. Only point mutations affecting 

a single spot of DNA are commonly considered, although more complex mutations 

like rearrangements, duplications, and inversions are possible at the chromosome level. 

Point mutations take the forms of substitution, deletion, or insertion. Substitution is 

a change of one nucleotide in DNA sequences and insertion or deletion is an addition 

or a removal of one or more bases from DNA sequences. Mutations are responsible for 

inherited disorders and diseases. However, mutations would also create new species 

and adapt existing ones to changing environmental conditions because they are the 

source of the phenotype variation on which natural selection acts. 

Due to the huge volume of data flooding from biology including genome projects, 

proteomics, protein structure determination and the rapid expansion in digitalization 

of patient biomedical data, the path has been cleared for study of biological sequence 

data. 

1.2 Sequence analysis 

Analysis of biological sequence data in worldwide databases is the most commonly 

performed task in bioinformatics, in which the commonly used analysis techniques 

are sequence comparison and phylogenetic analysis. 

The initial step in any phylogenetic analysis is to establish homology statements 

across taxa. Sequence comparison establishes the degree of similarity between two or 

more sequences. The more similar two gene sequences are to each other, the more 

closely the organisms are related. Through protein sequence alignment, it can be 
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learned about the functionality of a protein without performing experiments: two 

proteins having 25% or above sequence identity will have similar structure fold, thus, 

a similar function (Rost 1999). 

An example is the sequence alignment between cancer and uncontrolled cell growth 

(Doolittle, Hunkapiller, Hood, Devare, Robbins, Aaronson k. Antoniads 1983). In this 

discovery, the sequence of cancer associated alignment with the sequence of the protein 

which had already been known as influencing the cell growth. The result proves the 

connection between cancer and cellular growth because the correlation between the 

two sequences is high. 

Multiple sequence alignment determines the position and nature of conserved re

gions in each member of the group. It carries more information than a pairwise one, 

as a protein can be matched against a family of proteins instead of only against 

another one. It is also a common input used by most methods for phylogenetic in

ference. Conserved segments of multiple sequence alignment usually correspond to 

structurally and functionally important parts of proteins. 

Evolution is a central concept in biology. A phylogenetic tree of a family of re

lated nucleic acid or protein sequences is a phylogenetic hypothesis of how the family 

might have been derived during evolution. The relationship of different sequences is 

reflected by the branching; Two sequences that are very much alike will be located 

in neighboring outside branches and will join a common branch beneath them. Phy

logenetic trees play an important role in answering many biological questions. For 

instance, when a gene is found in an organism or group of organisms, it is helpful to 

predict which ones might have an equivalent function on the basis of the phylgonetic 

analysis. It is also used to follow rapid changing species, such as a virus. An example 
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for an evolutionary tree of the monkeys and the Homo Sapiens is provided in Figure 

1.2. 

Years Ago ^ " " * » • y < f O cf CT * 
1 I * / 

5 

JO 

IS 

20 

25 

30 

35 

40 

. » v / ' 1 ' 

1 l s ' *' 

\ V 
'** ' 

"1 

""•*4 
45 1 

50 , 

55 | 

Common Ancestor 

Figure 1.2: Phylogenetic tree representing the evolutionary relationship between mon
keys and Homo Sapiens 

Sequence comparison and phylogenetic inference are fundamentally interdepen

dent because most methods for phylogenetic inference use a given multiple sequence 

alignment as an input. Another reason is that efficient multiple alignment procedures 

often take advantage of a phylogenetic relationship of the members to be aligned. 

Moreover, correction for biased representations (or weighting) of sampled sequences 

is possible only with a knowledge about interrelationship among the sequences. There

fore, ignoring this fact leads to biased and overconfident estimations. Whether the 

main interest is in sequence alignment or phylogeny, a major goal of computational 

biology is the co-estimation of both. Development of effective and efficient algorithms 

for these tasks has attracted researchers all over the world. 
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1.3 Rationale behind the research 

During the last decades, research in the fields of molecular biology and biochem

istry has provided the scientific community with huge amounts of sequence data. 

The National Center for Biotechnology Information's GenBank has more than 37 

million sequence records, and this collection has nearly doubled in size every year 

for decades. This exponential growth rate can be observed in Figure 1.3 (Gen-

Bank growth data is available at ht tp:/ / WWW.NCBI.NLM.NIH.GOV/GENBANK/ 

GENBANKSTATS.HTML). 

10 
x10 

—i 1 

| Q GenBankGrowth | . 

.0 

3 4s ' 
1980 ' 1985 1990 1995 2000 2005 

Year 

Figure 1.3: GenBank growth 

As the number of DNA and protein sequences in databases grows it is increasingly 

important to be able to create sequence alignments and phylogenetic trees for very 

long or very large numbers of sequences. 
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The algorithms of pairwise alignment based on dynamic programming provide op

timal solutions; however, they are computationally expensive, especially when com

paring whole genome. The computational load often exceeds the capacity of most 

computing systems. 

Multiple sequence alignment problems are NP-complete (An exact solution is con

jectured by computer scientists to not be solvable in polynomial time, that is, an 

NP-complete problem requires more steps than can be grounded by a polynomial). 

To solve this problem, some approximating and heuristic methods have been intro

duced. Some of these, called progressive methods, are developed to find near optimal 

solutions within reasonable lengths of time. However, they also suffer from high 

computational complexity when large datasets are aligned. Given that progressive 

methods require 0(n2) steps, where n is the number of sequences to be aligned, it is 

not surprising that these methods take many hours to run. For instance, the align

ment of a few hundred of protein sequences using the ClustalW, one of the commonly 

used MSA tools, requires several hours on a state-of-the-art workstation. 

The amount of sequence data available to reconstruct the evolutionary history 

of genes and species has also increased dramatically. As a consequence, the size of 

phylogenetic analysis has grown as well. Additionally, inferring phylogenetic trees 

is an enormously difficult problem for the large number of the potential alternative 

tree topologies, and this number grows exponentially with the number of taxa. Con

structing the "Tree of Life" is a collaborative effort by various research groups such as 

CIPRES (http://www.phylo.org) and ATOL (http://tolweb.org). The current tech

niques for reconstructing phylognies are heuristic for distance-based methods, Maxi

mum Parsimony (MP) and Maximum Likelihood (ML) methods. The distance-based 
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methods are fast but have high error on large datasets. MP and ML are NP-complete 

or even more complex. Moreover, the computation of the likelihood value for one 

single potential tree topology is computationally intensive. Methods that can quickly 

reconstruct MP and ML trees are of great benefit to the biological community. 

Increasing the speed and accuracy for sequence comparison and phylogenetic in

ference is an imperative. While serial versions of some algorithms can use shallow 

computation for a reasonable result in tolerant time, serious research demands deep 

computing in an acceptable time frame. High performance computing (HPC) is one of 

the most promising methods to absorb and process the amount of data available due 

to its potential for delivering high computational power. Two or more processors can 

be used simultaneously, in parallel processing, to divide and conquer tasks that would 

overwhelm a single processor. It is clear that development of high performance com

puting technologies is necessary for tackling various bioinformatics problems. Key 

research issues include dividing mechanisms to break a big problem into subprob-

lems, and to figure out how the subproblems relate to each other. The complexity of 

a problem is measured by the minimum number of messages that need to be sent to 

solve the problem and getting the maximum performance out of all the processors all 

the time. For example, the computations of dynamic programming based pairwise 

alignment are triggered by the flow of the data from neighboring elements. Elements 

which can be computed independently of each other are located in the anti-diagonal 

which "moves" across a matrix as the computation proceeds. However, such parti

tioning requires too much communication; it introduces inefficiencies by congesting 

the communication network. Therefore, a new method with good computational load 

balance and minimal communication is required. 
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1.4 Major contributions 

The algorithms of sequence comparison and phylogeny reconstruction are compu

tationally expensive. In addition, the very large databases used in computational 

biology give rise to serious algorithmic problems when exploring and analyzing the 

data contained in these databases. 

The main contributions of this research are a series of algorithmic and technical 

solutions which empower the algorithms of pairwise and multiple sequence alignment 

and phylogenetic tree construction. More importantly, these solutions make it possi

ble for biologists to analyze datasets that were previously considered too large, often 

leading to memory overflow or prohibitively long time for computation. 

First, a new parallel algorithm, called "block-based wavefront", is presented to 

produce optimal pairwise alignment with reliable output and reasonable cost. The 

proposed algorithm takes advantage of dynamic programming and parallel computing 

to produce optimal results in reasonable time. It distributes the computation of a 

similarity matrix along block-based anti-diagonals to multiple processors, because 

the computation of these blocks is independent. The novelty is a compromise of the 

workload of each processor and the number of communications required. Even though 

this algorithm will increase some serial computations when computing the elements 

within a block, it decreases the communication load dramatically, and globally the 

proposed algorithm achieves a near linear speedup with high scalability on long-scale 

datasets. 

Secondly, a fast and practicable algorithm for multiple sequence alignment is pro

posed. It effectively parallelized all the three stages of the ClustalW algorithm. For 

the first stage, the calculation of different sequence pairs is completely independent; 
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there is a very high degree of parallelism. For the second stage, the computation 

of guiding trees is parallelized. And for the last stage, we calculate profile scores in 

parallel in the iterative loops. Experimental results show that by distributing sub

routines to multiple processors, the execution time of the ClustalW program can be 

significantly reduced, which outperforms previous parallel schemes. With these im

provements, it is possible to apply the proposed algorithm in large-scale sequence 

projects that were previously impossible. 

Thirdly, a novel model is developed which has been proven to be the most ade

quate and accurate for the inference of huge, complex trees. The proposed model is 

flexible enough to reconstruct both Maximum Parsimony(MP) and Maximum Like-

lihood(ML) trees and leads to significant improvements in run-time. It also performs 

a more complete search of the tree space within limited time. Therefore, the parsi

mony and likelihood scores of trees computed by the proposed model are consistently 

better than the previously known fastest and most accurate programs for MP and 

ML respectively. 

Finally, a pattern-constrained multiple sequence alignment algorithm, PCMSA, is 

designed to be applied to multiple polypeptide sequence alignments. It uses pattern-

constrained pairwise alignments with further assembling of these "partial" alignments 

into an approximate alignment of multiple sequences. It effectively brings the infor

mation available in existing pattern databases into multiple sequence alignments. It 

is also able to guarantee that the generated alignment satisfies the pre-defined con

straints that particular patterns should be aligned together. In addition, it has the 

worst-case guarantee on the quality of the alignment. For example, running on the six 
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aminoacyl-tRNA synthetase sequences, the proposed algorithm aligns the aminoacyl-

transfer RNA synthetases class-I signature shared by these sequences together while 

the ClustalW fails to do. 

I integrated these solutions into a parallel sequence analysis system on a cus

tomized multi-node cluster, which significantly improves computational performance 

on sequence analysis problems in computational biology. In this system, a calculation 

which used to take hours is now carried out in minutes, and calculations that took a 

week can be completed less than several hours. Parts of this PhD study have been 

published in six journal papers and six peer-reviewed conference papers. 

1.5 Structure of the thesis 

The rest of this thesis is organized as follows: 

Chapter 2 presents a comprehensive survey spanning pairwise sequence alignment, 

multiple sequence alignment and phylogenetic tree inference; addresses problem com

plexity, and outlines HPC architectures. 

Chapter 3 describes a dedicated system to deliver high performance computing for 

the problems of sequence analysis. The hardware architecture and software compo

nents are studied. In the following chapters 4-6, the details of the proposed algorithms 

are addressed. 

Chapters 4 presents two new algorithms, for the problems of sequence comparison. 

The first one is focuses on dynamic programming based pairwise alignment, which 

produces an optimal result at the cost of huge requirements in both memory and 

time. The other is a fast and practicable algorithm for multiple sequence alignment. 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



12 

In Chapter 5, a parallel divide-and-conquer model, pPhylo, is designed to recon

struct phylogenetic trees, which is flexible enough to work with either MP or ML 

methods. 

Previous solutions to MSA use a substitution matrix, but they do not incorporate 

the knowledge of the sequences being aligned. In Chapter 6, a novel algorithm, 

pattern-constrained multiple sequence alignment, is presented to guarantee that the 

generated alignment satisfies the pre-defined constraints that some particular patterns 

should be aligned together. , 

Finally, Chapter 7 concludes this research project and addresses important aspects 

of future work. 
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Chapter 2 

Research Background and 
Literature Survey 

This chapter presents a detailed survey on the problems and methods in sequence 

comparison and phylogenetic analysis, addresses the complexity of the problems and 

outlines the architectural development of HPC systems. 

2.1 Methods for biological sequence similarity com

parison 

2.1.1 Sequence comparison 

Sequence comparison is used to tell whether two or more sequences are related and 

give an impression how close their relationship is in terms of sequence similarity. 

There are three possibilities of pairs of opposite symbols to evaluate the difference 

between two sequences: (i) identity, (ii) substitution or mismatch, (iii) insertion or 

deletion. When doing sequence alignment, identical or similar characters are put 

in the same column, and nonidentical characters can either be placed in the same 

13 
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column as a mismatch or opposite a gap in the other sequence. The goal of sequence 

alignment is to find an optimal alignment of sequences by bringing as many identical 

or similar characters as possible. 

Considering the following pair of DNA sequences: GAAGCAAT and GAC-

CAAT. When they are aligned one above the other: 

G A A G C A A T 

G A C - C A A T 

The only differences are a change from A to C in the third position and an extra 

G in the first sequence. It is noted that a gap, marked with "-", is introduced in 

order to align the bases before and after the gap perfectly. 

2.1.2 Scoring of alignments 

In sequence alignment, it is necessary to use a scoring scheme to reflect the bio

chemical properties that influence the relative replaceability of amino acid or nu

cleic acid sequences in an evolutionary scenario. Some amino acids have higher 

matching scores than others, and some have mismatch scores as well due to their 

evolution and chemical properties. The degree between two letters can be repre

sented in a substitution matrix. Examples of substitution matrices, known as BLO-

SUM50, BLOUSM62 (S.Henikoff & J.G.Henikoff 1992) and PAM250 (M.Dayhoff, 

R.M.Schwartz & B.C.Orcutt 1978), are useful for sequence alignment because of each 

matrix giving the changes expected for a given period of evolutionary time. 

A widely used scoring matrix is given below. It is extracted from probabilities. 

Let a and b be two sequences, a{ and bj be the ith symbol in a and jth symbol in 

b, R be a random model, w be the probability that a letter occurs in a sequence 
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independently. The probability of the two sequences is: 

P(a,b\R) = Hwail[wb] (2.1.1) 
« j 

Let M be a match model, 2 be the probability of aligned pairs of symbols, then 

the whole alignment probability is: 

P(a,b\M) = l[zatA (2.1.2) 
i 

The ratio of these two likelihood is: 

P{a,b\M) = Uj ^q,A = TT ^a„b, f 2 , -

p(o, b|A)'" n« ̂  Uj «*, ~ v «<*«*, 

In order to arrive at an additive scoring system, we take the logarithm of this 

ratio, 

s(x,y) = M ^ H (2.1.4) 
WXWy 

s(x, y) is the log-likelihood ratio of the residue pair (x,y) occurring as a really 

valid aligned pair against a random pair. The alignment score T between sequences 

a and b is the sum of individual scores s(x, y) for each aligned pair of residues. 

T = £«(<!«, 6t) (2-1.5) 
t 

The Dayhoff PAM matrix, shown in Figure 2.1, estimated 1572 changes in 71 

groups of protein sequences that were at least 85% similar. These changes were 

tabulated in a 20 x 20 matrix, which gave an individual score s(x,y) for residue x in 

sequence a and y in sequence b. 

The next point is gap penalty. For the alignment in the example above, there are 

six columns with identical characters, one column with distinct characters, and one 

column with a gap. Given that if a column has two identical characters, it is valued 
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Figure 2.1: PAM 250 substitution matrix 

+5 as a match, different characters valued -1 as a mismatch and a gap valued as -5. 

The cost can be computed in a straight way: 5 + 5 + (-1) + (-5) + 5 + 5 + 5 + 5 

= 24. 

However, the simple gap penalty model in which every gap which occurred has 

the same cost is not accurate enough. In order to obtain the best possible alignment 

between two sequences, an affine gap penalty model (O.Gotoh 1990) is introduced to 

define a cost function. In practice, the affine gap penalty model, Qx, is defined as the 

following equation: 

Qx = d + exx (2.1.6) 

In this equation, d is an opening gap penalty for any gap, e is an extension gap 

penalty for each element in a gap and x is the length of gaps. The rules of thumb 

for gap penalties are that an opening gap penalty should be 2-3 times larger than the 
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most negative value in the substitution matrix that is being used and an extension 

gap penalty should be 0.1 to 0.3 times the value of the opening gap penalty. 

2.1.3 Algorithms for pairwise alignment 

Pairwise alignment aims to find the best match between two DNA or protein se

quences. In generally, two categories of methods have been recognized. The first cat

egory is the dynamic programming based technique, such as the Needleman-Wunsch 

algorithm (S.B.Needleman Sz C.D.Wunsch 1970) and the Smith-Waterman algorithm 

(Smith & Waterman 1981&) (Smith & Waterman 1981a). Dynamic programming 

methods assure the optimal alignment by exploring all possible alignments and choos

ing the best. It does this by reading in a scoring matrix that contains values for every 

possible residue or nucleotide match. It finds an alignment with the maximum pos

sible score where the score of an alignment is equal to the sum of the matches taken 

from the scoring matrix. 

The key idea is that the best alignment that ends at the positions of a given pair 

in two sequences is the best alignment previous to the two positions plus the score 

for aligning the two positions. For two sequences a=ai<22...am and b=bib2...bn, the 

scoring relation is defined as the following: 

f F [ i - 1 ] [ ; - l ] + s(aA) 

F[i]\j] = max I F[i-l]\j]-g (2.1.7) 

[ F\i)\j-l)-g 

Where F[i, j] is the score at position i in the sequence a and position j in the 

sequence 6; s(aibj) is the score for aligning the characters at positions i and j ; g is 

a gap penalty. This relation defines a table F in terms of sequences a and 6; which 
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are of length m and n. Once this table is filled appropriately; F[m, n] contains the 

optimal alignment score overall. By tracing from this element to F[0,0] and recording 

the steps, an optimal alignment of the two sequences is constructed. 

FASTA (Pearson & Lipman 1988) and BLAST (Altschul, Gish, Miller, Myers & 

Lipman 1990) (Gish & States 1993) are based on the secondary category: heuristic 

sequence comparison. Heuristic methods can only provide sub-optimal solutions in 

which some good answers may be left out by trading speed for precision. They are 

widely used for searching large biological databases. 

The FASTA algorithm sets a size k for k-tuple subwords. It proceeds through the 

following four steps to determine an alignment score: 

1. Identify regions shared by the two sequences with k consecutive matching. 

2. Re-scan the ten regions with the highest density of identities using a scoring 

matrix. Trim the ends of the regions to include only those residues contributing 

to the highest score. Each region is a partial alignment without gaps. 

3. The best scoring initial regions are joined if their combined score is greater than 

a threshold. This initial score is used to rank the database sequences. 

4. The optimized alignment is calculated around the highest scoring initial regions 

using a modified version of the Smith-Waterman algorithm. 

BLAST (Basic Local Alignment Search Tool) is a heuristic method used to find 

the highest scoring locally optimal alignments, known as high-scoring segment pairs 

(HSP), between a query sequence and a database. The three steps involved in the 

BLAST algorithm are shown as following: 
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1. Given a length parameter w, for iu-length substrings(words) in the query se

quence, identify all of the substitutions of each word that have a similarity score 

greater than a threshold score T. These words are stored as an expanded word 

list. 

2. Use the expanded list to identify all of the matching words in sequences of the 

database. 

3. If two matches are found, extend each match both forwards and backwards 

using a scoring matrix, allowing gaps, to produce a score that is higher than 

a threshold score(the alignment is a HSP). Save all of the high scoring regions 

shared by the query sequence and each library sequence. The final gapped 

alignments are reported by the program. 

In summary, algorithms for pairwise alignment can be solved with time complexity 

of 0 (m x n) by following dynamic programming, where m and n are the length of 

the sequences. The challenge lies in the practical use of this technique, especially, 

when long sequences are compared, the computational load exceeds the capacity of 

the computing system. The complexity of heuristic algorithms remains on the order 

of 0 (m x n) but the number of computations based on residue-residue comparisons 

is greatly reduced. They tend to be more computational efficient than dynamic 

programming based algorithms. However, these algorithms sacrifice sensitivity for 

speed and therefore more distant sequence relationships may escape from detection. 
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2.1.4 Algorithms for multiple alignment 

Multiple sequence alignment (MSA) aims to extract the relationship among many 

sequences. It aligns more than two sequences to look for maximum matching of 

characters. As an exact alignment, in order to align several sequences, it needs to 

generalize dynamic programming (DP) from pairwise alignment to a multidimensional 

space. 

Let £ be a set of characters (residues), S be a set of sequences iS"i, S2,... S^, we 

define MSA of k sequences as k equal-length sequences S' = S[,S'2,...,S'k so that 

l^il = I£21 = ••• = \S'k\ ~ n'i a n d removing space characters from the x-th sequence 

of S' gives Sx for 1 < x < k. The sum-of-pairs (SP) score of an MSA is defined as 

the sum of the pair-wise scores of all pairwise between the sequences: 

]T Yl s(s**>svJ (2-1-8) 
l<x<y<fcl<t<n' 

where Sx,i is the i-th. residue in x-ih sequence and SVti is the i-th. residue in y-th 

sequence. Figure 2.2 illustrates the working space in a three dimensional alignment, 

in which sequences A, B and C are aligned. 

Direct extension of dynamic programming to MSA needs huge computational 

time and space. Given k sequences of length / each, the time complexity of dynamic 

programming solution is 0(2klk) for computations of the number of 0{lk) cells with 

recurrence relation 0(2k). For example: 6 sequences of length 100 requires 6.4 x 1013 

calculations. 

It has been proven that finding an optimal alignment is an NP-complete problem, 

which makes the running of MSA extremely slow, if not impossible, for genome-wide 

sequence analysis. To solve this problem, some approximating and heuristic methods 
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sequence A 

Figure 2.2: Three dimensional alignment 

have been introduced. It is convenient to classify these existing methods into three 

main categories according to their properties. 

Progressive alignment 

In a progressive alignment (Feng & Doolittle 1987), it repeatedly applies the pairwise 

alignment algorithm instead of aligning all sequences simultaneously. The major steps 

are described below. 

1. Determine distances between sequences. 

2. Use a distance-based method to construct a phylogeneitc tree for the sequences. 

3. Add sequences to the growing alignment using the order given by the tree. 

This approach is by far the most widely used method for its advantage of speed 

and simplicity combined with reasonable sensitivity. The main shortcoming of this 
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strategy is that once a sequence has been aligned, that alignment will never be mod

ified even though it conflicts with sequences added later. Another problem is the 

difficult choice of the suitable scoring matrices and gap penalties that apply to the 

set of sequences (Higgins, Thompson & Gibson 1996). Long insertions or deletions 

can cause problem due to the intrinsic limitations of the gap penalty. 

A popular tool based on progressive methods is ClustalW (Thompson, Higgins 

& Gibson 19946). In general, the ClustalW algorithm performs better when the 

sequences are relative close-related. T-coffee (Notredame, Holm h Higgins 1998) is 

an improvement to the ClustalW algorithm. This algorithm uses a consistency-based 

objective function to make it possible to minimize potential errors when sequences 

are aligned in a progressive manner, especially in the early stages of the alignment 

assembly. The main difference between T-Coffee and ClustaW is that in T-Coffee, an 

extended library replaces a substitution matrix. Another difference is that T-Coffee's 

primary library is made of a mixture of global alignments(produced by ClustalW) 

and local alignments (produced by Lalign (Huang k. Miller 1991)). This combination 

of local and global information enables T-Coffee to get better results than others. 

Iterative alignment 

Iterative alignment (Brocchieri &; Karlin 1998) is to repeatedly realign subgroups of 

sequences and then these subgroups into a global alignment of all of the sequences. 

This method can reduce the initial alignment errors of most closely related sequences 

instead of propagating them to align more distantly related sequences. It allows for 

a good conceptual separation between optimization and objective functions. 
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Consistency-based alignment 

In a consistency-based alignment (Bucka-Lassen, Caprani & Hein 1999), sequences are 

preprocessed so that the regions consistently conserved across the family can drive 

the alignment. The main advantage is to use information from structure analysis, 

sequence comparison, database search etc instead of a specific substitution matrix. 

In Table 2.1, a large number of MSA programs developed in recent years are 

summarized. 
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Table 2.1: Some MSA programs 
Program 
Align-m 

ClustalW, 
ClustalX 

ComAlign 

DIALIGN 

IterAlign 

Praline 

MAFFT 

MUSCLE 

PCMA 

POA 

Prrn 

T-coffee 

Algorithm 
Iterative/ 
Consistency-
based 

Progressive 

Consistency-
based 
Consistency-
based 
/Iterative 

Iterative 

Iterative 

Progressive/ 
Iterative 
Progressive/ 
Iterative 

Progressive/ 
Consistency 
based 
Progressive/ 
Iterative 
Progressive/ 
Iterative 

Progressive/ 
Consistency 
based 

Description 
Use a non-progressive local approach to 
guide a global alignment, which is a new 
algorithm for multiple alignment of highly 
divergent sequences. 
Each sequence is aligned with its closest 
neighbor in a guiding tree and the result
ing groups are then aligned to each other 
in the same way until all sequences are 
aligned. 
Combine several multiple alignments into 
a single, often improved alignment. 
Align gap-free segments as a whole with
out introducing gaps, which is an algo
rithm for sequences where local homology 
is driving signals. 
In each iteration, sequences are locally 
compared to others and that every seg
ment that shows high similarity with other 
proteins is replaced by a consensus. 

Sequences are iteratively replaced with a 
complete profile made from a multiple 
alignment that only includes their clos
est relatives until the collection of profiles 
converges. 
Rapid group-to-group alignment by fast 
Fourier transformation. 
Use a draft progressive step followed by an 
improved progressive and iterative refine
ment steps. 
Progressive method which aligns divergent 
groups by the T-Coffee strategy and aligns 
highly similar sequences as ClustalW. 

Directly align without the need for profiles 
by representing alignments as graphs. 
Doubly nested randomized iterative align
ment where group-to-group alignments 
are repeated to improve the overall score. 
Use an alignment library to seek for maxi
mum consistency of each residue pair with 
all other pairs of this library and guides 
the progressive step by means of this li
brary. 

Reference 
(VanWalle, Lasters &: 
Wyns 2004) 

(Thompson 
et al. 19946) 

(Bucka-Lassen 
et al. 1999) 
(Morgenstern, Freeh, 
Dress k Werner 1998), 
(Morgenstern 1999), 
(Morgenstern 2004) 

(Brocchieri & Karlin 
1998) 

(Heringa 1999) 

(Katoh, Misawa, Kuma, 
k Miyata 2002) 
(Edgar 2004a) (Edgar 
20046) 

(Pei, Sadreyev k 
Grishin 2003) 

(Lee, Grasso k Sharlow 
2002) 
(Gotoh 1996) 

(Notredame, Higgins k 
J. 2000) 
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2.2 Phylogenetic tree reconstruction 

2.2.1 Phylogenetic methods 

Phylogenetic trees have important applications in multiple alignment of biomolecular 

sequences (Thompson, Higgins k Gibson 1994 a) (Notredame, Higgins k Heringa 

2000) (Robert 2004), protein function prediction (Eisen 2003) (La, Sutch k Livesay 

2005) (Lichtarge, Bourne & Cohen 1996), and drug design (Searls 2003). There are 

two general categories of methods for calculating phylogenetic trees: distance-based 

and character-based methods. The methods of both categories use sequence data, in 

form of an alignment, to reconstruct phylogenetic trees. 

Distance-based methods calculate pairwise distances between taxa and connect 

those nodes that have the shortest distance into a new node replacing the old nodes, 

hence repeatedly reconstructing a phylogenetic tree. The analysis is based on the 

differences between sequences, rather than the original data. This technique is fast 

and quite simple for it merely groups the sequences according to their pairwise dis

tances instead of searching the huge solution space of trees made up of all possible 

solutions to the sequence data. Current popular distance-based methods, such as 

the Neighbor joining (NJ) method (Saitou k Nei 1987) (Studier k Keppler 1988) 

and other distance-based methods are reported by several papers (Moret, Roshan k 

Warnow 2002, Nakhleh, Moret, Roshan, John k Warnow 2002, Nakhleh, Roshan, 

St. John, Sun k Warnow 20016, Nakhleh, Roshan, St. John, Sun k Warnow 2001a). 

Whereas distance-based methods compress all sequence information into a single 

number (distance data), character-based methods attempt to infer the phylogeny 

based on all individual characters (nucleotides or amino acids). They search through 
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the space of all possible phylogenetic topologies i.e. trees. All trees that could possibly 

explain the evolutionary history of sequences are created and scored. The tree with the 

best score is the optimal solution for a sequence dataset. Two most popular methods 

are Maximum Parsimony (MP) (Camin & Sokal 1965) and Maximum Likelihood 

(ML) (Felsenstein 1981a). 

MP tries to find a tree which explains data with the least mutations. For example, 

an input of sequences has 4 species, each of which is represented by a sequence of 

3 characters: AAG, AAA, GGA and AGA. Try out different trees for these four 

sequences and count number of substitutions needed in each tree shown in Figure 2.3. 

The left tree in the figure shows the most parsimonious tree of this input, which has 

the parsimony length 3, is the minimum number of mutations of the input. Other 

right trees have the parsimony length 4 (require more substitution events). 

AAA 

AAA 
1 

AAG 
AAA 

1 

AGA 

AGA 

GGA 

1 

AJ 

A A A 

1 
A A A 

1 
AGA 

KO 

AAA ~> 

<3&\ 

AAA 

AAA 

AAA 

1 

AAG 
GGJV 

AAA 1 
AC* A. 

AAA 

Figure 2.3: MP tree 

ML searches a tree that maximizes the likelihood of data for a given evolutionary 

model. ML resembles MP in that the tree with the least number of changes will be 

most likely. However, ML evaluates trees using explicit evolutionary models. For 

example, in Figure 2.4, N1,...,N5 are the bases or residues observed in the extant 

ancestral taxa and edge length tt,...,£4 correspond to time. Let P(Ni\Nj,tk) be the 

probability that the residue at node Nj becomes the residue at node Ni in time tk. 
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root 

t4 

N4 

t1 

N5 

t2 

N2 

Figure 2.4: ML tree 

The probability of the tree is: 

P(N1,..., N5\T, t) = P(N1\N4, tl)P(N2\N4, t2)P(N3\N5, t3)P(N4\N5, t4)P(N5) 

(2.2.1) 

If we don't know the identity of the internal bases or residues at 7V4 and N5, the 

likelihood of the tree is obtained by: 

P(Nl,N2,NS\T,t)= Y^ P(Nl,...,N5\T,t) (2.2.2) 
N4,N5 

The problem of ML is to find the T" which maximizes P(N1, ...,N5\T,t) across 

all trees T. If we assume independence of evolution at different sites, we can compute 

the probability of a given tree site by site. For ancestors at interior nodes are gener

ally unknown in a tree, it need to generalize the likelihood by sum over all possible 

assignments of amino acids to the splits of the tree. ML methods can be used to 

explore relationships among more diverse taxa. 
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2.2.2 Complexity of phylogenetic analysis 

The most fundamental algorithmic problem of character-based methods consists in 

the immense amount of potential alternative tree topologies. This number grows 

exponentially with the number of sequences n, e.g. for n — 50 organisms there already 

exist 2.84 x 1076 alternative topologies according to the Equation 2.2.3, a number 

almost as large as the number of atoms in the universe (« 1080). 

Nu = (2n - 5) x (2n - 7) x ... x 3 x 1 = ^ - J f e - Z J ^ (2.2.3) 

where Nu is the number of unrooted trees for n taxa. 

MP problems are NP-complete which has already been demonstrated for the gen

eral version of the perfect phytogeny problem (Bodlaender, Fellows, Hallett, Wareham 

& Warnow 2000) and MP (Day, Johnson & Sankoff 1986) also known as the Steiner 

Tree problem in phylogenetics (Foulds & Graham 1982). Computing Maximum Like

lihood trees is also commonly believed to be NP-complete (Steel 1994), though this 

could not be demonstrated so far because of the significantly superior mathematical 

complexity. Some exemplary figures are outlined in Table 2.2. 

Table 2.2: Possible phylogenetic trees 
Taxa(n) 

2 
3 
4 
5 
6 
7 
8 

9 
10 

riooica tree 2"-2x(n-2)! 
1 
3 
15 
105 
954 
10,395 
135,135 
2,027,025 
34,459,425 

Unrooted tree 2 „i 3 " ( J . 3 ) , 

1 
1 
3 
15 
105 
954 

10,395 
135,135 
2,027,025 
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For constructing the Tree of Life, i.e., the evolutionary tree on all species on Earth, 

efficient MP and ML heuristics are required which allow for the analysis of large and 

complex datasets in a realistic amount of time, i.e. in the order of weeks. 

2.2.3 Current softwares for phylogenetic tree reconstruction 

Some of phylogenetic tree construction softwares are summarized in Table 2.3. The 

recently updated site by J.Felsenstein (Felsenstein 2004) provides a comprehensive list 

of nearly all available programs. One of the recent methods, RAxML (Stamatakis, 

Ludwig & Meier 2004) (Stamatakis, Ott, Ludwig & Meier 2005), is among the fastest, 

most accurate, and most memory-efficient ML heuristics on real biological datasets to 

the best of our knowledge. Furthermore, the global optimization method (fast Near

est Neighbor Interchange adapted from PHYML (Guindon & Gascuel 2003)) is not 

as efficient on real alignment data as RAxML. Thus, it is not suited to handle large 

real-data alignments of more than 1,000 sequences. Another approach which partially 

relies on divide and conquer has been implemented in TREE PUZZLE (Strimmer & 

Haeseler 1996). Although the program is very popular among biologists—mainly be

cause it assigns confidence values to the different clades of the tree—it is too slow 

to handle large alignments containing more than 500 taxa. Rec-I-DCM3 (Roshan, 

Moret, Warnow &; Williams 2004) is a new MP method that iteratively decomposes 

the dataset into subproblems, and solves them serially. The phylogenetic navigator 

(PHYNAV (S.V.Le, Schmidt & Haeseler 2004)) which is based on a zoom-in/zoom-out 

approach represents an interesting algorithmic alternative to Rec-I-DCM3 (Roshan 

et al. 2004). However, the program has a relatively high memory consumption 

(crashed on a 1.000-taxon tree with 1GB RAM when we ran it) compared to RAxML. 
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Table 2.3: This table is only a small selection of free software available for reconstruc-
tion phylogenetic tree, describing programs are recently developed or widely used. 

Program 
Neighbor 
Joining 

WEIGHBOP 

BIONJ 

TYipleML 

PHYLIP 

PAML 

MOLPHY 

Algorithm 
Distance-
based 

Distance-
based 

Distance-
based 
Distance-
based/ 
ML 

Distance-
based/ 
ML/MP 

ML 

ML 

Description 
Two nearest nodes are chosen and merged 
recursively until all of the nodes are paired 
together 
Weighbor is a weighted version of Neigh
bor Joining that gives significantly less 
weight to the longer distances in the dis
tance matrix. The resulting trees are less 
perturbed by adding distant taxa com
pared to Neighbor Joining, and negative 
branch lengths are avoided 

Use a simple model of the sampling noise 
of evolutionary distances. 
Estimate distances by local ML using a 
third taxon(or cluster) to improve long
distance estimation. 
A large package of free programs for par
simony, distance-based methods,ML and 
other methods. The ML programs have 
good tree searching capabilities, which 
also is able to apply several simple models. 
A package of free programs for phyloge
netic analysis using ML. It allows a wide 
variety of advanced models and some of 
programs are able to use gamma distri
butions to model heterogeneity of evolu
tionary rates among sequences,infer rate 
parameters for different genes and syn
onymous and nonsynonymous substitu
tion rates etc. 
A free package intended mainly for infer
ring phylogenetc tree by using ML and 
searching tree. 

Reference 
(Saitou & Nei 1987) 
(Studier &: 
Keppler 1988) 
(Bruno, Socci k. 
Halpern 2000) 

(Gascuel 1997) 

(Ranwez &: 
Gascuel 2002) 

(Felsenstein 1989) 
http: //evolution. gs 
.washing-
ton.edu/phylip.html 

(Yang 1997) 
http://abacus.gene.ucl 
.ac.uk/software 
/paml.html 

(Adachi &; 
Hasegawa 1996) 
http://www.plantbio.uga 
edu/ russell/ soft
ware, html 
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2.3 Architectural development of H P C systems 

In general, high performance computing (HPC) refers to hardware and software tech

niques for building computer systems to quickly perform large amount of computation. 

HPC includes computers, networks, algorithms and environments necessary to make 

such systems usable. These systems range from a departmental cluster of worksta

tions, up to the largest super-computers. The economic benefit of these systems is 

increasing as computer models grow more viable and increasingly augment or replace 

physical experimentation. The design of HPC systems is driven by the requirements 

of tera-scale grand challenges for various organizations, such as bioinformatics. 

A taxonomy of HPC (Parallel) architectures is shown in Figure 2.5 (Flynn.M. 

1972). Single instruction, multiple data streams (SIMD) consists of multiple proces

sors, a controller, and an interconnection network. The controller stores a program 

and broadcasts instructions to all processors simultaneously. Available processors 

perform the instructions on the contents of their own local memory. In SIMD archi

tecture, no processor can execute a second instruction unless all processors finish the 

previous instruction because the system is synchronous. 

A multiple instruction, multiple data streams (MIMD) machine typically con

sists of multiple processors and an interconnection network. This model allows each 

processor to store and execute its own program by providing multiple instruction 

streams in contrast to the SIMD. Often, all processors are executing the same pro

gram, but may be in different portions of the program at any given instant. MIMD 

machines are the most commonly used general-purpose parallel computers. There 

are mixed architectures where small number of processors are grouped together as a 

shared memory symmetric multiprocessor (SMP) and they are linked together in a 
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> Vector 

Figure 2.5: Parallel architecture 

distributed memory architecture. 

Synchronization is the act of bringing two or more processors to known points in 

their execution at the same clock time. In SIMD programming, synchronization is not 

an issue since every collective step is synchronized by the function of a control unit. 

The complexity and often the inflexibility of SIMD machines, strongly dependent on 

the synchronization requirements, have restricted their use mostly to special-purpose 

applications. In contrast, the asynchronous operation of MIMD computers makes 

them extremely flexible. For example, they are very well suited to the task-farming 

kind of parallelism, which is barely feasible at all on SIMD computers. But this asyn-

chrony makes general programming of MIMD computers hard. It requires concurrent 

programming expertise and hard work, such as using message-passing to synchro

nize the parallel parts of an application program. Another issue on MIMD computer 

programming is the explicit use of synchronization primitives to control nondeter-

ministic behavior. Nondeterminism appears almost inevitably in a system that has 

multiple independent threads of the control-for example, through race conditions. In 
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the struggle for dominance between SIMD and MIMD, SIMD appears to have fallen 

by the wayside. Even though the SIMD can be cost effective for certain task, the 

more flexible and more general purpose nature of MIMD approach has prevailed. 

Granularity is often used to refer to the relative size of the units of computation 

that executed in parallel. In particular, there is three task divisions: fine, coarse and 

medium. Fine-grained machines typically fall into the SIMD category. They consist 

of a relatively large number of small, simple processors, where all processors operate 

synchronously on the contents of their own memory. Coarse-grained machines con

sist of relatively few processors, each of which is large and powerful. They typically 

fall into the MIMD category, where processors operate asynchronously on the large, 

shared memory. There are also medium-grained machines which built from commod

ity microprocessors and designed in MIMD with both distributed and shared memory 

models. 

2.3.1 Shared memory architecture 

Shared memory machines have a single global image of memory that is available to all 

processors, typically through a common bus or switching network as shown in Figure 

2.6. In this model, any processor can read or write to any part of the memory. 

The single address map of a shared memory model simplifies the design of parallel 

programs. The interprocess communication is usually performed through shared vari

ables. When several processors are accessing the same logical address space, blocks of 

code that only one processor can execute at a time are required for safety. For exam

ples, POSIX threads (S.Kleiman, D.shah & B.Smaalders 1996) (Sum Mircosystems 
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Memory 

1 

Bus (eg) or. Switclrmg Network 

1 • • 1 ! 
Figure 2.6: Shared Memory Architecture 

1995) (of the IEEE 1996) are native threads of processing that run within a sin

gle process/application and share access to resources and memory at a fine-scale. 

OpenMP (R.Chandra & R.menon. 2001) (Board. 1977) (Quinn 2004) makes use of 

compiler directives, running systems and environment variables. The programmer 

provides hints to the compiler on how to parallelize sections of a correct serial imple

mentation. More recently, UPC (Unified parallel c) (Carlson, Draper, Culler, Yelick, 

Brooks & Warren 1999), an extension of C that provides a shared address space and 

a common syntax and semantics for explicitly parallel programming in c. 

These systems typically possess a relatively small number of processors (usually 

less than 16) which can share a common block of memory. It's easy to develop 

fast, efficient programs for this design because every processor has direct access to 

all data. However, the disadvantages of this type of arrangement are that it is not 

scalable beyond dozens of processors. After all, only a limited number of processors 

can be expected to share a block of memory. Also the technologies needed to connect 
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the processors are rather expensive. To overcome the hardware scalability limitations 

of shared memory systems, massive parallel computing with scalable systems using 

distributed memory architectures became the center of interest. 

2.3.2 Distributed memory architecture 

In distributed memory machines, each processor has access only to its local memory 

as show in Figure 2.7. Processors communicate by sending messages to each other 

through interconnection network. 

interconnection Net work 

Ml 

MB 

M2 

p? 

M3 

j , 

m 

Figure 2.7: Distributed Memory Architecture 

Distributed memory architectures scale very well on the other hand. But there 

is "time penalty" for communication between processors. In a distributed-memory 

architecture, communication between processors is performed by using a message-

passing paradigm. There are two message passing models: Parallel Virtual Machine 

(PVM)(Geist, Begulin, J.Dongarra, W.Jiang, R.Manchek & V.Sunderam. 1994) and 

Message Passing Interface (MP1) (MPI standard 2.0. 1997). PVM model enable it 
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to use a heterogeneous system containing different types of compute nodes. It could 

dynamically add or delete compute nodes and processors from an application program 

or from a system console. It supports for inter-operability both at the programming 

language level and the communication system. Therefore, PVM has extra capabilities 

to handle heterogeneous and faulty processors. MPI binds between a communication 

context and a group of processors. There is a unique communicator in each group 

and point-to-point process communication is allowed only within a group. 

2.4 Summary 

In this chapter, a review of problems and methods used in computational biology is 

presented. They are widely regarded as key technologies analyzing genomic sequence 

structures and functions, as well as understanding the whole genomes. The demand 

for computational power in this field will continue to grow as the complexity and 

the volume of data increase. It is clear that the development of high performance 

computing technologies has become crucial for deployment of the software systems to 

tackle the various problems. 
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Chapter 3 

H P C System Design for Sequence 
Analysis 

This chapter presents the hardware and software design for a generic parallel sequence 

analysis system, PSAS, which aims to perform sequence analysis with high accuracy 

within reasonable time. 

3.1 Hardware architecture 

A customized multi-node cluster as a hardware environment for the parallel sequence 

analysis system is here studied and proposed. For several reasons such a system is 

designed, such as its attractive performance/price ratio and adaptivity in handling 

scalable problem sizes. The cost can be an order of magnitude cheaper than a tra

ditional supercomputer while providing the same computational power. In addition, 

the configuration of the cluster is scalable, and it can be built ranging from a few 

compute nodes up to hundreds of nodes; a machine comparable with supercomputers. 

To users, the cluster behaves like a single system, but has higher performance through 

redundant processors, storage, and data paths. 

37 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



3S 

The building blocks are a group of customized ES45 compute nodes (Srivastava 

2001), as shown in Figure 3.1 . Each node has 4 Alpha-EV68 1GHz processors and 

an interconnect PCI adapter capable of over 280 MB/s sustained bandwidth. It also 

has a crossbar as its internal network with an aggregate bandwidth of 5.2 GB/s (1.33 

GB/s/processor). This is sufficient to deliver 1.0.64 byte/clock cycle to each processor 

in the node simultaneously. 

The compute nodes are interconnected by the Quadrics 128-port interconnect 

switch chassis as illustrated in Figure 3.2. Multiple connections are used in each node 

to increase aggregate throughput and to reduce queuing delays on the 4-processor 

compute nodes. The fast interconnect delivers up to 500 MB/s per node, with 32 

GB/s of cross-section bandwidth. 

A fat tree is designed for inter-node connection, which combines the characteristics 

of fully connected crossbar and tree structures. First, bandwidth scales with the 

increasing number of processors. Secondly, the internal connection count of a fat tree 

grows much more slowly, at the rate of 0(nlogn) (where n is the number of ports), as 

opposed to the crossbar switch growth rate of 0(n2) (Hewlett-Packard 2001). Figure 

3.3 shows a quaternary fat tree of dimensions 3, which connects 64 processing nodes 

using 16 switches. The bidirectional nature of the links localizes traffic to a sub-tree 

large enough to span both nodes. The uplinks in the top stage of a switch network 

can either be used for expansion or can be used as additional downlinks doubling the 

number of nodes that can be connected without reducing the bisectional bandwidth. 
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Figure 3.1: Architecture of a multi-processor compute node 
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Figure 3.2: Inter-connect between compute nodes 

3.2 Software system 

3.2.1 Communication between processes 

The proposed system exchanges information between processes through Message Pass

ing Interface (MPI) that uses Elan hardware, software and switches to provide ex

tremely low latency and high bandwidth communication. 

MPI uses objects, called communicators and groups, to define which collection of 

processes may communicate with each other. Within a communicator, each process 

has its own unique integer identifier, called rank, assigned by the system when the 

process initializes. Ranks are contiguous and begin at zero. They are used to specify 

the source and destination of messages. For reasons of efficiency, however, message 
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64 links 

Figure 3.3: Fat tree topology, which is made up of three-stage network combining 64 
nodes and the top stage with 64 links out 

passing systems generally associate only one process per processor. 

MPI provides a rich set of library functions for point-to-point and collective com

munication operations. MPI point-to-point operations typically involve message pass

ing between two different MPI tasks: one task is performing a send operation, and 

the other task is performing a matching receive operation. Most of the MPI point-to-

point routines can be used in either blocking or non-blocking mode. Blocking mode 

means that routines only return once communication completes, or when the user 

buffer can be used or re-used. Blocking communication is used to wait for everything 

to be ready, so that variables can safely be altered in order to avoid a deadlock. 

Process will be stopped until the send application buffer is free or the receive ap

plication buffer is written. That is, each block begins the computing only when its 
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previous division has completed the computing. In non-blocking communication the 

routine returns before communication is complete. Communication continues in the 

background while other work is performed. The application programmer takes care 

of the data integrity. 

Applications may require coordinated operations among multiple processes. For 

example, all processes need to cooperate to sum a set of numbers distributed among 

them. Collective communication must involve all processes in the scope of a communi

cator. All processes are, by default, members in the communicator MPLCOMM.WORLD. 

Types of Collective Operations are as following: 

• Synchronization - processes wait until all members of the group have reached 

the synchronization point. 

• Data movement - broadcast, scatter/gather, all to all. 

• Collective computation (reductions) - one member of the group collects data 

from the other members and performs an operation (min, max, add, multiply, 

etc.) on that data. 

These operations are implemented such that all processes call the same operation 

with the same arguments. Thus, when sending and receiving messages, one collective 

operation can replace multiple sending and receiving operations, resulting in lower 

overhead and higher performance. Two collective operations are commonly used: 

MPLBcast (&buffer,count,data type,root,comm) -Broadcasts (sends) a message 

from the process with rank "root" to all other processes in the group. As illustrated 

in Figure 3.4, all the processes receive the minimum integer, 7, from the "root", iV 
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Figure 3.4: Process Pi broadcast a message to all other processes of the group 

MPI_Allreduce (&sendbuf,&:recvbuf,count,data type,op,comm) - Applies a reduc

tion operation and places the result in all processes in the group. As shown in Figure 

3.5, MPLMINLOC is used to find a global minimum value, 1, and its location, Pi. 
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Figure 3.5: Perform and associate reduction operation, MPLMINLOC, across all 
processes in the group and place the result in all tasks. 

To establish a basic understanding and test on the multi-node cluster, we devel

oped a protocol program (shown in Appendix), dealing with a typical matrix problem 

of Jacobi iteration (solving Laplace's equation). 

3.2.2 Task schedule 

In most of the parallelism, a master-worker mechanism for task scheduling is used, as 

shown in Figure 3.6. A processor, PO, works as a master process communicating with 
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the outside and organizing jobs. The other processors, Pl,...,Pn, work as working 

processes. Any jobs requested from outside will be received as a socket communication 

(specifying analysis methods, input data and parameters). The master process decides 

an arrangement for data partitioning and dispatching dynamically according to the 

status of working processors. Working processes repeatedly perform jobs on a small 

fraction of data until all jobs are finished. 

Figure 3.6: Master and worker model 

3.3 Performance analysis 

There are a number of criteria for measuring the performance of parallel programs. 

Running time measures the amount of time from the starting of a parallel program 

to the end when the program obtains the final result of the computation. Speedup 

measures the performance improvement gained through parallelization, which is the 

ratio between the running time using single processor and multiple processors. 

When bench marking the performance improvement, it should also be noted that 

the maximum speedup achievable depends greatly on the degree of parallelism in a 

particular algorithm (Amdahl 1967). Amdahl's law states that potential program 
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speedup is denned as follows: if n is the number of processors, S is the amount of 

time spent on serial parts of a program, P is the amount of time spent on parts of 

the program that can be done in parallel, and we assume the total time as S + P — 1 

for algebraic simplicity, then the speedup is given by: 

speedup = _*+£_ = _ _ L _ (3.3.1) 

The speedup is limited by the fact that not all parts of code can be run in parallel. 

Substituting in the equation, when the number of processes goes to infinity, the 

speedup is still limited by ^. This indicates that the serial fraction of code has a strong 

effect on speedup and helps to explain the need for large problem sizes when using 

parallel computers. To get good performance it is necessary to run large applications 

with large data array sizes and lots of computation. The reason for this is that as the 

problem size increases the opportunity for parallelism grows and the serial fraction 

shrinks; and it shrinks in its importance for speedup. The linear speedup curve is 

rarely achieved because parallelism entails a certain amount of communication and 

management overhead. 

3.4 Overview of the system 

Upon setting up and configuring the hardware and supporting software, I developed 

a set of HPC algorithms for sequence analysis and organized them into a parallel 

sequence analysis system. These parallel algorithms have characteristics far different 

from traditional serial algorithms. They break up a large task into a set of smaller 

tasks, assign each of the smaller tasks to a processor to work and coordinate the 
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work between the processors periodically (problem dependent). In order to identify 

the parts of an algorithm that can be executed concurrently, it requires a thorough 

understanding of the algorithm, exploiting any inherent parallelism which may exist. 

Sometimes, it also needs a restructuring of the algorithm or an entirely new algo

rithm. Load imbalance is one of the main performance degradation factors of parallel 

algorithms running in the heterogeneous environments which are often used in clus

ter computing. The complexity of a problem is measured by the minimum number 

of messages that need to be sent to solve the problem while obtaining maximum 

performance out of all processors at all times. 

The details of the proposed algorithms are addressed in the following chapters 4-6. 

An overview of the system is shown in the Figure 3.7. 
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Figure 3.7: Parallel sequence analysis system 
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Key modules are as following: 

• Parallel Pairwise Sequence Alignment - take advantage of dynamic program

ming and parallel computing to produce optimal results. 

• Parallel Multiple Sequence Alignment -be able to align hundreds or thousands 

of sequences on multiple processors within reasonable time. 

• Parallel Model for Reconstructing Phylogenetic Trees - be flexible enough to 

reconstruct both Maximum Parsimony (MP) and Maximum Likelihood (ML) 

phylogenetic trees and perform a more complete search of the tree space within 

limited time, yielding better trees in terms of final parsimony and likelihood 

values than comparable programs. 

• Pattern-Constrained Multiple Sequence Alignment - guarantee that the gener

ated alignment satisfies the pre-defined constraints that some particular pat

terns should be aligned together. 

3.5 Summary 

This chapter introduced our initial work on the development of a parallel sequence 

analysis system; both on the hardware architecture and on the software system. With 

such a system, a number of algorithmic and technical solutions are designed for an 

assorted collection of applications. In the following chapters, details of these solutions 

will be discussed. 
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Chapter 4 

Parallel Computing for Sequence 
Comparison 

The initial step in any phylogenetic analysis is to establish homology statements across 

taxa. Sequence comparison is, in essence, a procedure by which we can recognize 

and describe potential homology among nucleotide or amino acid positions. The 

complexity of sequence comparison problems and the necessity to deal with huge 

amounts of sequence data makes the development of algorithms which are fast and 

require little memory become a great concern. To meet these demands, two new 

algorithms are presented in this chapter for analyzing these biological sequences to 

gain parallel computing power at low cost. The first one is a "block-based wavefront" 

algorithm developed to speedup optimal pairwise alignment. The second one is a fast 

and practical algorithm for multiple sequence alignment. With these improvement, 

it is possible to apply the proposed algorithms in large-scale sequence projects that 

were previously beyond their scope. 

48 
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4.1 Block-based wavefront a lgori thm for efficient 

pairwise al ignment 

4.1.1 Pairwise alignment via dynamic programming 

Dynamic programming based technique uses previous steps for optimal alignments 

of smaller subsequences. For two sequences a—aia2--.am and h—b\b2---bn, an m x n 

matrix F is constructed, indexed by i and j , one index for each sequence, where the 

element, F[i] [j], is the score of the best alignment between a,\, 02, •-., a% and bi,b2,-..,bj. 

In order to keep track of the different values for the different gap lengths, an affine 

gap model is applied. For local alignment, the score value F[i][;'] is built recursively 

by the following Equation 4.1.1. 

F[i][j] = max < 

F[i-l][j- 1] +*(o*6,-) 

I*[i - 1][7 - !] + *Mi) 
Iy[i - \)\j - 1] + s(aibj) 

0 

Ix[i]\j] =max 

Iy[i][j] — max 

F[x[\j-\]-d 

/x[i]b '- l]-e 

F[i-l)\j]-d 

Iy[i-W}-e 

(4.1.1) 

Where s(aibj) is the score for aligning the characters at positions i and j ; d is an 

open gap penalty; e is an extended gap penalty; F[i][7'] is the best score given a* with 

bj\ Ix is the best score given a{ aligns with a gap; Iy is the best score given bj aligns 

with a gap. 
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For example, given two sequences a =CATGT and b =ACGCTG, the score 

value can be evaluated systematically by using a tabular computation. In order to 

obtain the alignment, it starts at the highest-scoring positions in the score matrix 

and follows a trace path from those positions up to an element whose score is zero, 

as shown in Figure 4.1. In the first column and the first row, one can see the results 

of the calculations of F(OJ,— ) and F(—,bj). In the second row, one can see the 

propagation of the algorithm, given that a gap and a mismatch cost -1 and a match 

costs +2. 
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Figure 4.1: Example of the local alignment based on dynamic programming between 
two sequences: CATGT and ACGCTG 
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4.1.2 Possible solutions 

Pairwise alignment algorithms based on dynamic programming guarantee optimal 

results, but they impose extremely high requirements on both computer memory and 

execution time. 

A number of fine-grained parallel architectures have been developed for dynamic 

programming based algorithms. P-NAC was the first such machine and computed 

edit distance over a four-character alphabet (D.P.Lopresti 1987). More recent exam

ples, better tuned to the needs of computational biology, include BioScan(R.K.Singh 

& et al. 1996) , BISP (Chow, Hunkapiller, Peterson & Waterman 1991), and SAMBA 

(Guerdoux-Jamet & Lavenier 1997). An approach presented in (Schmidt, Schroder 

&; Schimmler 2002) is based on instruction systolic arrays (ISAs). IS As combine the 

speed and simplicity of systolic arrays with flexible programmability. Special-purpose 

hardware implementations can provide the fastest means of running a particular algo

rithm with very high PE (processing element) density. However, they are limited to 

one single algorithm, and thus cannot supply the flexibility necessary to run a variety 

of algorithms required for analyzing DNAs, RNAs, and proteins. 

In addition to architectures specifically designed for sequence comparison, existing 

programmable serial and parallel architectures have been used for solving sequence 

alignment problems. Alpern et.al. (Alpern, Carter & Gatlin 1995), Rognes (T.Rognes 

&; E.Seeberg 2000) and Wozniak (A.Wozniak 1997) explore instruction level paral

lelism in single-processor machines. Lander et. al. (E. Lander &; Taylor 1988) and 

Brutlag et.al. (Brutlag, Dautricourt, Diaz, Fier, Moxon &; Stamm 1997) discuss the 

implementation on a data parallel computer. Several other approaches are based on 

the SIMD concept, e.g. MGAP (Borah, Bajwa, Hannenhalli &; Irwin 1994), Kestrel 
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(Bias & et. al 2005), and Fuzion (Schmidt, Schroder k Schimmler 2002). SIMD and 

ISA architectures are programmable and can be used for a wider range of applica

tions, such as image processing and scientific computing. Since these architectures 

contain more general-purpose parallel processors, their PE density is less than the 

density of special-purpose ASICs. Nevertheless, SIMD solutions can still achieve sig

nificant runtime savings. However, the costs involved in designing and producing 

SIMD architectures are high. Therefore, none of the above solutions has a successor 

generation, making upgrading impossible. 

Reconfigurable systems are based on programmable logic such as field-programmable 

gate arrays (FPGAs) or custom-designed arrays. Several solutions including Splash-2 

(Hoang 1993) and Decipher (http://www.timelogic.com n.d.) are based on FPGAs 

while PIM has its own reconfigurable design (M.Gokhale k. et al. 1995). In (Oliver, 

Schmidt & Maskell 2005), it presented a new FPGA solution that achieves a speedup 

of more than 100 compared to a Pentium4 using a standard off-the-shelf FPGA. 

Compared to the previously published FPGA solutions, it uses a new partitioning 

technique for varying query sequence lengths. The design presented in (Yamaguchi, 

Maruyama & Konagaya 2002) is closest to this approach since it also uses a linear ar

ray of PEs on a reconfigurable platform. Unfortunately, FPGAs are generally slower 

and have lower PE densities than special-purpose architectures. They are flexible, 

but the configuration must be changed for each algorithm, which is generally more 

complicated than writing new code for a programmable architecture. 

Based on MIMD (Multiple Instruction, Multiple Data) architecture, Edmiston 

et.al (E.W. Edmiston & Smith 1988) presents parallel algorithms for sequence and 

subsequence alignment that achieve linear speedup and can use up to 0(min(m,n)) 
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processes, where m and n are the length of two sequences. But it stores the entire 

dynamic programming table, for example, if we want to align 2 sequences of 1 million 

base pairs long and that we only use one byte to store the score of each element in 

the score matrix, it will need \M x \M main memory. In this way, the memory 

will be easily used up and it will have to wait too long for memory swapping. More 

recently, Rajko and Aluru (S.Rajko & S.Aluru 2004) present a space and time optimal 

parallel algorithm for the pairwise sequence alignment. They claim that their method 

requires only 0((m+n)/p) space and runs in 0(mn/p) time. However, there are no 

any practical experiments to support this theory in the paper. 

4.1.3 Block-based wavefront 

Mathematically, the dynamic programming based method is: to construct an m x n 

matrix F , where m and n are the length of the two sequences. The Equation 4.1.1 

imposes data dependencies between the matrix elements in directions of left-to-right, 

top-to-down and main-diagonal. These dependencies imply a particular order of 

computation of the matrix. Following the recurrence equation, the matrix F is filled 

from top left to bottom right with i going from 1 to m and j from 1 to n. The 

order of computation of the elements in the similarity matrix is triggered by the 

flow of the data from neighboring elements: F[i — l][j• — 1] (or Ix[i — l]\j' — 1] or 

Iy[i - l}[j - 1]), F[i - l]\j] (or Ix[i - l]{j}) and F\i][j - 1] (or Iy[i\\j - 1]) at each step. 

The similarity matrix can be computed in parallel by distributing the computation 

along anti-diagonals because elements which can be computed independently of each 

other are located on a so-called wavefront. As illustrated in Figure 4.2 wavefront 

"moves" across the matrix as computation proceeds. 
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Figure 4.2: Wavefront moves across a matrix 

However, such a wavefront computation mode has a few problems. One problem 

is each parallel "wavefront" leads to lots of communications among processes. For 

example, after process 1 computes the top-left element, it has to send the result to 

processes 2 and 3. Therefore, this method demands an extremely fast inter-process 

communication such as on systolic arrays. The other problem is that it requires a 

very large number of processors if real biological data is to be considered. 

To solve these problems, we proposed a "block-based wavefront" algorithm to 

compute blocks instead of individual elements. The algorithm divides the similarity 

matrix by column into p groups (p is the number of processors) evenly with a number 

of complete columns, and assigns each processor one such group. The columns in each 

processor are grouped into blocks with the height of B (B is the height of block that 

would be adjusted according to the number of rows). Therefore, the computation of 

a given block requires only the column segment of the block to its immediate left, 

and the main-diagonal element, a total B + 1 elements. The parallel alignment is 
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executed in a block-based wavefront such that computing nodes will first calculate 

the blocks along the first anti-diagonal in parallel, then along the second anti-diagonal 

in parallel, the third, the fourth,..., until the last anti-diagonal. 

Figure 4.3 shows an example of computing a 16 x 16 matrix on 4 processors. The 

horizontal sequence x with 16 columns is distributed evenly to 4 processors. In each 

round, processes compute a 4 x 4 block of matrix. Initially process pi starts computing 

block 1 in round 1. Then processes pi and p2 can work in round 2, processes pi, p2 

and p3 at round 3 and so on. 

y \ 

Figure 4.3: Block-based wavefront with 4x4 block size 

In a wavefront computation mode, each element on different processes can be com

puted only after receiving two input values (elements of the left-to-right and the main 

diagonal). However, in the proposed algorithm, if a block has 4 rows and 4 columns, 
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16 elements will be computed after receiving 5 input values. Thus, communication-

to-computation ratio drops from 2:1 to 5:16, an 84% reduction. Even though this 

algorithm will increase some serial computations when computing elements within a 

block, it decreases the communication load dramatically. The computing time com

plexity of each process is ^^p when distributing the whole work load to p processes. 

A procedural description of the proposed algorithm is shown in Table 4.1. Each 

process P{ receives the required elements of the neighbor block from the previous 

process Pj_i, then it computes a m/p x B block. After the computation of a block, 

it sends the requested elements to the next process Pi+\. 

This algorithm does not need a global control: that is, once it is started it continues 

to complete the whole matrix over the cluster of compute nodes without the external 

intervention. We would step back from global update and ask only what each process 

need to do its job and what it must pass on to other processes. In order to ensure 

that no data value is updated at step t +1 until the data values in neighboring blocks 

have been updated at step t. We use a blocking communication mode. Process will 

be stopped until the Send application buffer is free or Recv application buffer is 

written. That is, each block will not begin computing until its previous division has 

completed computing. 

4.1.4 Experimental results 

In order to evaluate the performance of the proposed algorithm, a dataset consisting 

of sequences that range from 100k to 900k nucleotides was used. The algorithm was 

run on 4 to 48 processors to study the execution time and speedup. For uniproces

sor performance, the serial version is used as a baseline. During the experiments, 
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Table 4.1: Parallel algorithm to compute the score matrix F 

-Input : 
Sequence x and y of length m and n 
Substitution matrix: s(a, b) 
Gap penalty: g 
Block's height: B 
Number of processes: p + 1 (p is number of working processes) 

-Output: Score of the optimal local alignment of x and y 

-Algorithm : 
1. Connect to p + 1 processes and establish each process's rank: myrank 

2. On master process (if myrank = 0) 
xjwidth = —, x is divided into p pieces: x = x\, x2,..., xp 

y.width — B, y is divided into n/B pieces: y — 3/1,3/21 •••iVn/B 
For i = 1 to p do 

Send j/j to next process: myrank + 1 
For j = 1 to n/B do 

Send j/j to next process: myrank + 1 

3. On working processes (if myrank > 0) 
Recv xmyra„fc, part of sequence x from master process 
For j = 1 to n /B do 

If Recv 3/j and neighbor block's most right column from previous process: myrank—1 
Compute for a dynamic programming based alignment( xmyrank and yj) 

Send yj and own block's most right column to next process: myrank + 1 
Report the highest score in matrix F 
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the height of block (parameter "B") is assigned 100. In order to remove the unpre-

dicted noise generated by the operating system, five consecutive runs for each pair of 

sequences were performed. The average results as from the five runs were used. 

Table 4.2 lists the execution time for different problem sizes. If we use the largest 

data as an example, we can notice that the execution time is dramatically reduced 

from more than four days when running a serial program to about 2 hours when 

running the parallelized program on 48 processors. 

Table 4.2: Execution time (sec) 
Proc 

No. 

lOOfcx 

lOOfc 

300A;x 

300A; 

900/cx 

900fc 

1 

3824 

38000 

39000C 

4 

1159 

10200 

10366C 

8 

605 

5400 

5300C 

12 

487 

3999 

3500C 

16 

318 

2805 

2775c 

20 

254 

2200 

2140C 

24 

210 

1700 

1730C 

28 

188 

1500 

1530C 

32 

168 

1383 

1326( 

36 

162 

1222 

1260C 

40 

156 

1188 

1170C 

44 

144 

1061 

1020C 

48 

132 

952 

8700 

Figure 4.4 displays the speedup. It can be found that, for 100A; x 100K sequences, 

there is a little drop in speedup when more processors are added to the task. However, 

as the sequence sizes increase the speedup approaches the optimal linear speedup. 

The lack of speedup for the smaller dataset is a result of there not being enough jobs 

to fully exploit all the 48 processors' computing power. According to Amdahl's Law 

presented in Section 3.3, as the problem size increases, the opportunity for parallelism 

grows, and the serial fraction shrinks in its importance for speedup. Thus, the best 

speedup curve is obtained for the largest sequences that are aligned. The granularity 

of work is more reasonable and the speedup becomes linear for multiple processors 

because of the large sequence size. 
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Figure 4.4: Speedup of the "block-based wavefront" algorithm for optimal pairwise 
alignment 

4.2 Parallelized multiple sequence alignment 

4.2.1 Introduction 

Progressive alignments are widely used heuristic algorithms to compute multiple se

quence alignment, of which the ClustalW algorithm has become the most popular 

one. It provides weights to sequences and adjustable parameters with reasonable de

faults (Gibson, D. & Thompson 2002). It is a straightforward progressive alignment 

strategy where sequences are added one by one to the multiple alignment according 

to the order indicated by a pre-computed guiding tree. Because of the nature of the 

algorithm, the processing time can be considerably reduced if the computational loads 

are distributed over multiple processors. 
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Several parallel algorithms for multiple sequence alignment have been developed in 

recent years. The parallel version of the ClustalW program reported by Mikhailov et 

al. (Mikhailov, Cofer &: Gomperts n.d.) is designed for shared memory multiprocessor 

machines. It achieves a speedup of 10 on a 16-processor shared memory machine. 

It parallelized the initial phase of the pairwise sequence alignments because all the 

pairwise alignments are independent. The guiding tree construction phase of the 

algorithm was also parallelized in it. However, the final phase was only partially 

parallelized. Usually, these machines are commodity parallel architectures and quite 

expensive. 

Kleinjung et al. (kleinjung, Douglas & Heringa 2002) have reported a parallel 

progressive alignment strategy without a guiding tree. Their implementation is not 

a strict parallelization of the ClustalW algorithm. Recently, Li (Li 2003) and Justin 

Ebedes et al. (Ebedes & Datta 2004) parallelized of the ClustalW algorithm for dis

tributed memory architectures by using MPI. Li concluded that the serial ClustalW 

implementation spends almost 96% running time in the first stage for pairwise align

ment of the n input sequences. At the phase of building a guiding tree, Li has 

parallelized the procedure of constructing a guiding tree, but did not achieve any 

significant improvement in speedup. Justin Ebedes et al. did not parallelize this 

phase at all. However, when handling larger taxa sets, such as n > 5000, the second 

phase of construction a guiding tree spends more than 30% running time instead of 

4%. This is one of the reasons that the speedup of the two programs decreases when 

employing more processors for large taxa sets. 
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4.2.2 The proposed algorithm 

It is known that the ClustalW algorithm involves three stages: first, pairwise align

ments are made in order to calculate the divergence of each pair of sequences. For a 

number of n input sequences, using the symmetry of the pairwise matrix, one needs to 

estimate n^w~ ' pairs of sequences. Next, a Neighbour-Joining (NJ) tree, or Guiding 

Tree, is constructed. It is used to guide the final progressive multiple alignment. Fi

nally, the sequences are progressively aligned according to the hierarchy in the guiding 

tree. In the progressive alignment, the most similar sequences are aligned first, then 

followed by the alignment of more distant sequences or groups of sequences (profile 

alignment). In short, for n sequences, each of the sequences with an average length 

of /, the execution time complexity of the three steps are 0(n2l2) , 0(n3) and 0(nl2) 

respectively(Catalyurek, Stahlberg, Ferreira, Kurc & Saltz 2002). 

Using different numbers of the GPCRs as input data, we have implemented the 

ClustalW algorithm and a typical fraction of execution time is illustrated in Figure 4.5 

(where PW denotes Pairwise Alignment, GT for Guiding Tree and PA for Progressive 

Alignment in the figure label). The fraction of execution time has shown that, when 

a small number of sequences is treated, the execution time in building a guiding 

tree counts less than 5%. However, when the number of sequences increases, say, 

800 sequences are treated, the execution time for this stage grows sharply, in this 

case 35%. Our experimental results are quite encouraging for parallelization of the 

building of a guiding tree. 

We have developed a parallelized algorithm, PMSA, which has a number of dif

ferences with the existing programs. It effectively parallelizes all the three stages of 

the ClustalW algorithm. The details of the algorithm are given in Table 4.3. 
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Figure 4.5: Fraction of execution time of ClustalW 

Given a set of n sequences, S = S\,..., Sn, the algorithm firstly builds an n x n 

matrix M and each element M[i, j] corresponds to the distance between object i and 

object j in the original dataset. Since the calculations of the distances between each 

pair of clusters are computationally independent tasks, a static matrix row-based 

partition is designed to decompose the tasks into p groups evenly (p is the number of 

available processors in the cluster) and assign to each processor one such group, as 

illustrated in Figure 4.6. 

Upon the completion of the distance matrix, M, all the pairwise alignment scores 

are stored. Note that the matrix M is separated in p processors. In the stage of 

building a guiding tree, working processes find the minimum of the nearest neighbor 

distances locally in parallel for the number of n — 1 iterations. The nearest nodes can 

be defined by minimizing the expression DisUj — (n - l)Mjj - (Ri + Rj), where My 

is the distance between node i and j shown in the distance matrix; Rx is the row sum 
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Figure 4.6: Static Row-Based Matrix Partitioning 

over row x of the distance matrix; Rx = ^2l<k<N Mxk; N is the remaining number 

of nodes adjacent to the root. The local winner communicates to other processes, 

and finally performs a redundant search for the global winner, Distgmin^grninj, by 

using the MPI_AUreduce and MPLBroadcast. At the end of each iteration, a global 

synchronization is needed in order to update the matrix for next iteration. The master 

process P0 defines a new node, y, whose three branches join gmini, gminj and the rest 

of the tree. The lengths of the tree branch from y to gmini and gminj are defined: 

L • • = Mgmi"'.?"""; _i_ Rsrmni Rgminj T = M — L which arp 
J-Jgmim,y — 2 2(N—1) ' ffmtnJ>1/ gmmx,gmvnj 1-/gminj,y > WUIVJI cue 

the lengths of the new branches. When the nodes gmini and gminj are joined, they 

are replaced with a new node, y, with the distance to the remaining nodes given by 

Myk = M9min3,k+M3miniik-M?mini,0min^ p o r e l e m e n t g m a y n Q t bg i n t h e s a m f i p r o c e s s 

which does the update, at each step of update, it must determine if the elements 
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needed are in the same process and which process should do the update. This non

local data, which is needed for updating, should be fetched by communicating with 

messages. Note that in this case, the master process PO joins the computations in 

addition to organizing jobs, in order to reduce communication between processes. 

Once a guiding tree is constructed, the master process P0 analyzes it and iden

tifies sequence pairings. Those which are independent of other groups, according to 

the guiding tree, are computed in parallel. The master process PQ then waits for 

the results and serially completes the multiple alignments. In general, we only can 

parallelize the alignments of the same level in the tree. When we progress through 

higher levels of the tree, it is difficult to keep load balancing. So the PMSA paral

lelizes about 5-10% of the codes for this stage by calculating profile scores in parallel, 

gaining considerable execution time reduction depending on the size of a problem. 

In our algorithm, collective communications instead of point-to-point communica

tions are deployed, which involve all processes in a communicator. The MPI_Allreduce 

is used to combine values from all processes and distribute the result back to all 

processes. The MPI_Bcast is used to broadcast a message from the process with 

the global minimum to all other processes of the group. 

4.2.3 Evaluation of the results 

To test the overall scaling of the proposed algorithm for multiple sequence align-

ment(PMSA) , three datasets with 500, 800 and 1000 sequences of the GPCRs family 

are used. We ran five trials of the PMSA on 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44 

and 48 processors and reported the average execution time. For uniprocessor per

formance, we used the Clustalwl.81 as a baseline. The results are shown in Figure 
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Table 4.3: Parallel algorithm to compute multiple alignment 

-Input: 
A set of n sequences:S 
Substitution matrix: s(a,b) 
Gap penalty: g 
Number of processes: p+1 (p is number of working processes) 

-Output : Multiple alignment 

-Algorithm : 
1. Connect to p + 1 processes and establish each process's rank: myrank 
2. Master process P0 reads in the set of sequences S 
3. Master Process P0 sends a block of sequences, gap penalty to the working processes 

/*Pairwise alignment*/ 
4. Each process Pit 0 < i < p, calculates —r rows of M, which are a block of sequences 

aIignment : |gzg 
5. Set N = n 

/*Building NJ-tree*/ 
6. For TV > 2 do 

a. Each process computes a block of Rx's for its own sub-matrix, Rx = X f̂cLi dXk (x 
represents the node for which we are computing now) (Ma = 0). 

b. Working processes send back the block of Rx to master process. 
c. Master process collects all the rows' Rx (1 < x < N) and broadcast the N number 

of R^ to all working processes. 

d. Each working process computes DisUj on its own matrix (for each ijj, since the 

matrix is symmetric) DisUj — Mij — Y^iA ', find the minimum Distminiiminj 
e. Through MPI_Allreduce with operation MPLMINLOC to find the global mini

mum LJI SZgmini ̂ gminj 
f. The process, the owner of the global minimum, broadcasts the gmini and gminj 

to other processes 
g. Master process defines a new node, y, whose three branches join gmini, gminj 

and the rest of the tree. Define the lengths of the tree branch from y to mini and minj: 
T • • — M9mini,gminj . Rgminj-Rgminj T 1 / . . _ _ / " \A/hirh arfl t h p 

J-'gmini,y — 2 2(N—\) ' 9minJ>y — *ylgmini,grain] J-'gminj,y t wim_ii a i c LMC 

lengths of the new branches. 
h. Processes update the distance of its own matrix from y to each other node 

(k ^ gmini or gminj) as: Myk - tfr"?^Mr-a-%-.r->, 
i. Remove the distances to nodes mini and minj from the matrix, and decrease N 

by 1. 

/*Progressive alignment*/ 
7. Master process P0 analyzes the guide tree, identifies sequence pairings that can be evaluated 
independently and sends them to idle processes Pi, 1 < i < p to perform alignment. 
8. Master process P0 gathers resulting pairs evaluated by processes Pi, 1 < i < p and serially 
completes the multiple alignments 
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Figure 4.7: Overall scaling of parallelized multiple sequence alignment 

In this experiment, speedup of more than 20 times is gained for the three datasets 

of GPCRs protein sequences when running on 48 processors in this application. More

over, aligning 1000 GPCRs proteins sequences, total time is reduced from about 4 

hours on one processor to about 9 minutes on 48 processors, which no doubt signifi

cantly increases research productivity. 

It also can be observed from the figure that the parallel version scales up to 15.79 

using 16 processors. The fairly flat curve of the speedup at the high end of processor 

numbers suggests that computational gain from further division of the matrix will 

be discounted by the overhead communication between the processes. Especially at 

the stage of building a guiding tree, for the number of n — 1 iterations, an array 

of Rx, 1 < x < N, needs to be collected by the master process and broadcast to 
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each process before utilizing it for computing the value, Dist. Additionally, a global 

synchronization is needed in order to update the matrix for next iteration. So there 

are the number of n— 1 (n is the number of input sequences) rounds of communications 

among all the processes. Another strong effect on the speedup is the serial fraction 

in the stage of progressive alignment. In this stage, only the alignments of the same 

level in the guiding tree can be parallelized, which is about 5-10% of the codes. 

4.2.4 Comparison with previous parallel schemes 

As the speedup achieved in the phase of pairwise alignment and that achieved in 

progressive alignment are quite similar, in the following experiment we only compared 

the PMSA with the ClustalW-MPI program from Li (Li 2003) on the second stage, 

building guiding trees, to show its performance. We ran five trials of the PMSA and 

ClustalW-MPI on 4, 8, 16 and 32 processors on two large datasets with 3990 and 

6500 sequences. We also executed the serial ClustalW 1.81 and ClustalW 1.83. As 

a result, the ClustalW 1.81 produced no results on the datasets with 3990 and 6550 

sequences, and the ClustalW 1.83 failed to build a guiding tree on the dataset with 

6550 sequences even though it improved the method of building a NJ tree based on 

the ClustalW 1.81. 

From the average execution time presented in Table 4.4, we can see that the 

PMSA reduces the execution time dramatically while the ClustalW-MPI program 

does not make any speedup at the phase of building a tree on multiple processors. 

The results show that the PMSA is superior to the ClustalW-MPI in terms of parallel 

performance. For example, on 32 processors, the ClustalW-MPI takes more than 7 

hours to build a NJ tree, while the PMSA only needed less than 1 hour on the larger 
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dataset. 

Table 4.4: Comparison of runtime (in seconds) of ClustalW-MPI_NJ to our PMSA_NJ 
1,8,16 and 32 

Processors 
No. 

4 
8 
16 
32 

3rocessors. 
3990-sequences 

ClustalW-MPLNJ 
4419 
4370 
4409 
4504 

PMSA.NJ 
1257 
884 
742 
697 

6500-sequences 

ClustalW-MPLNJ 
26339 
24591 
25278 
25418 

PMSA.NJ 
5474 
4313 
3141 
2888 

4.3 Summary and discussions 

In this chapter, we presented and evaluated two parallel computational algorithms 

for sequence comparison. These algorithms allow researchers to compare biological 

sequences at a much higher speed than the serial methods. Moreover, they also 

make it possible to analyze problems that were previously considered too large. The 

generated alignments of these algorithms are the first step in building a phylogenetic 

tree on the homologous group of proteins. Once an alignment has been completed 

phylogenetic tree reconstruction itself presents significant computational challenges. 
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Chapter 5 

Reconstruction of M P and ML 
Phylogenetic Trees 

Maximum parsimony (MP) and maximum likelihood (ML) methods are most favored 

approaches attempted to infer phylogenetic trees for their accuracy. However, their 

search space is huge - there are 2n-3"7n-3)! u n r o o t e d trees, where n is the number 

of taxa. When n increases, there is an incredible increase in the number of possible 

bifurcating topologies to be evaluated. It is easy to get struck in local optimum, 

and there can be many optimal trees. Additionally, as sequence length increases, 

it requires an increased time allocation to compute cost for each topology. It can 

become very pronounced with likelihood methods that require more complex models 

of evolution while this may be a relatively minor problem for distance and parsimony 

methods. In addition, in some cases, there are multiple solutions, each of which is 

typically saved and further evaluated in order to find a more optimal solution. For 

instance, an enormous number of optimal trees (more than 100,000) need to be saved 

and evaluated. Many heuristic algorithms have been proposed to speedup the process 

of constructing phylogenetic trees. However some of these algorithms do not perform 

a sufficiently rigorous search of the tree space and often result in sub- optimal trees. 

69 
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In order to perform a more complete search of the tree space within limited time 

limit, a parallel divide-and-conquer model (pPhylo) is designed in this chapter. 

5.1 Computational tasks 

5.1.1 Minimum Parsimony criterion 

Given two sequences X = x\,X2,-.-,xn and Y = y\, 7/2,..., yn of the same length, the 

hamming distance H(X,Y) between them is defined as the number of different pairs 

(x{, yi). Let T be a tree whose nodes are labeled by sequences of length k over E; H(e) 

be the hamming distance of each edge e in the tree T, then the parsimony length of 

the tree T is defined by ]Cee£(r) H(e)- We outline the MP algorithm as following: 

Outline of Maximum Parsimony algorithm 

• Input: Set of S of n aligned sequences, each of length k. 

• Output: A phylogenetic tree T. 

• Algorithm: 

— Bijectively leaf-labeled by elements from S, and additional sequences of 

length k labeling the internal nodes of T such that the parsimony length 

of T is minimized over all such possible leaf-labeled phylogenetic trees. 

That is Y2e£E(T) -^(e) ^S minimized. 
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5.1.2 Maximum Likelihood criterion 

ML is a powerful technique to investigate phylogeny, however the exhaustive search 

for all tree topologies extremely is compute-intensive. Previous studies have shown 

that large datasets are challenging for MP heuristics implemented in these packages 

(Roshan et al. 2004) (U.Roshan, Moret, Williams & Warnow 20046). We can expect 

the same or even worse because ML is a harder problem. The outline of maximum 

likelihood is shown as following: 

Outline of Maximum Likelihood algorithm 

• Input: Set of k aligned sequences at the leafs S\, ...,Sk 

• Output: A phylogenetic tree T. 

• Algorithm: 

1. Pick a model of evolution: P(Si\Sj,t),l < i,j < k 

2. Enumerate all possible tree topologies T with k leafs. 

3. For each T, maximize over all possible edge length t: 

P(SU ...,Sk\T,t) = E S t + I s,,., P(Si,..., S2k-i\T,t), (for there are 2k - 1 

internal nodes). 

4. Return the tree T with the highest probability, P. 

5.1.3 Models of base substitution 

It is essential to have a mathematical model to understand the mechanisms of change 

and is required to estimate both the rate of evolution and the evolutionary history of 

sequences. One of the main advantages of maximum likelihood over other methods 
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is that it permits using complex evolutionary models to estimate model parameters 

and thus makes inferences of evolution simultaneously. 

Currently, there are a number of amino acid substitution models. These mod

els can be classified according to the number of different substitution types they 

allowed for and whether they incorporate different or equal base frequencies. The 

most general model of a time reversible nucleotide substitution process is the General 

Time Reversible (GTR) model (Rodriguez, Oliver, Marin & Medina 1990) (Lanave, 

Preparata, Saccone &; Serio 1984), in which, probabilities for each substitution are 

different and base frequencies are unequal. From this model, all simplified models 

can be obtained by further restricting the parameters. 

The HKY85 model (Felsenstein 1980) allows unequal base frequencies but only 

transitions and transversions have different probabilities. 

The K2P model is derived from the HKY85 model by setting equal base frequen

cies, while the Felsenstein model (Felsenstein 19816) is derived from the HKY85 by 

setting same substitutions probabilities. 

The JC model (Jukes &: Cantor 1969) is the simplest model that has equal base 

frequencies, 0.25, and only one type substitution. There is a tradeoff in complexity 

between simple and elaborate models of nucleotide substitution among general tree 

scoring methods such as distance-based methods, MP and ML. When a model is more 

elaborate, more parameters have to be estimated, It will get more accurate result at 

cost of more modeling time. An overview of the most common models is provided in 

Figure 5.1. 
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Model 
, Stationary 

Transition probability • nucleotide 
matrix frequencies 

Number of 
parameters 

Jukes-Cantor model 

Felsenstein 

Kimura 2 parameter 
model (K2P) 

Hasegawa, Kishino 
& Yano (HO7) 

All substitution? 
have an equal 

probability and 
base frequencies are 

equal 

All substitutions 
have an equal 

probability, but 
there are unequal 
base frequencies 

Transitions and 
transversions have 

different 
probabilities, but 

there are equal 
base frequencies 

Transitions and 
transversions have j 5 

different 
probabilities. 

base freqiKiicies are 
unequal 

General time 
reversible model 
(GTR) 

Different 
probabilities for 
each substitution, 
base frequencies are 
unequal 

Figure 5.1: Substitution models 
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5.1.4 Tree rearrangement 

Hill-climbing search is the most popular technique used by biologists for finding better 

trees, which is shown in the following four steps: 

1. Construct an initial tree. 

2. Construct a set of "neighboring trees" by making small rearrangements of the 

initial tree. 

3. If any of the neighboring trees are better than the initial tree, then select it/them 

and use as a starting point for new round of rearrangements. It is possible that 

several neighbors are equally good. 

4. Repeat steps 2 and 3 until a tree that is better than all of its neighbors is found. 

There are three main methods used to move from one tree topology to another: 

Nearest Neighbor Interchange (NNI) - NNI rearranges two adjacent branches 

per internal branch. A tree with n taxa has 2(n-3) neighbors. An example is shown 

in Figure 5.2. 

Figure 5.2: Neighbor interchange options referred to as (left to right) AC—BD, 
AB—CD, AD—BC, of an unrooted tree with 4 subtrees A;B;C; and D. 
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Subtree Pruning and Regrafting (SPR)-SPR (Maddison 1991) removes a 

branch with a subtree from a tree, and adds it between two nodes somewhere else in 

the tree, which is shown in Figure 5.3 

D C 

Figure 5.3: Break a branch, remove the subtree D, and attach it to one of the other 
branches 

Tree Bisection and Reconnection(TBR)-TBR (Maddison 1991) is the most 

popular method. It splits a tree into two subtrees and connects both parts between 

all possible nodes of the other as shown in Figure 5.4. TBR could explore more trees 

than NNI and SPR for the neighborhood of a tree induced by them is as subset of 

TBR's (Maddison 1991) (Allen & Steel 2001). 

T$ 
B 

cA 

D A, 
B D 

^A. / e 

Figure 5.4: Remove an edge e from tree, and then reconnected by creating a new 
edge between the midpoints on edge in subtree C and D 

NNI, SPR and TBR tree rearrangements have been compared by Roderic Page 

(Page 1993). From his examples, it can be concluded that TBR and SPR are superior 
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than NNI to escape local optimum for the neighborhoods induced by TBR and SPR 

are larger than NNI. 

5.1.5 T N T 

Among the current heuristic techniques for solving MP on large datasets, TNT (Tree 

analysis using New Technology) performs very well ((Goloboff 1999), (U.Roshan, 

Moret, Williams & Warnow 2004a), (P.Hovenkamp 2004), (R.Meier & Ali 2005), 

(G.Giribet 2005)). In addition to a very fast implementation of hill-climbing heuris

tics, TNT implements other search strategies, such as divide-and-conquer and genetic 

algorithms, which allow the analysis of large datasets in a reasonable time limit (much 

faster than other software packages). It is better than PAUP* (a very popular soft

ware package used in the phylogenetic research community) in searching for MP trees 

(refer to (Roshan 2004)). In TNT package, various search heuristics of smarter local 

search are implemented, such as: 

Pars imony ra tchet (Nixon 1999)- It uses TBR (refer to 5.1.4 for more details) 

hill-climbing method, to search MP tree. When it reaches local optimum, it modifies 

the input data to move out of local optimum, then runs TBR hill-climbing on the 

new data. After the new data reaches local optimum, the dataset is changed back 

and continues to do hill-climbing. 

Drift -It uses a traditional simulated annealing technique to escape local op

timum. When it reaches local optimum, it will move to trees with a worse score 

according to a probability. Then it continues to do hill-climbing on these trees. 

Sectorial search -It computes smaller subsets of a dataset, then solves them 

using TBR hill-climbing. 
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5.1.6 Disk-Covering methods 

Disk Covering Methods (DCM) (Huson, Nettles & Warnow 1999) (Huson, Vawter 

& Warnow 1999) (Warnow, Moret & St. John 2001) (U.Roshan et al. 2004a) are a 

different class of methods for solving MP on large datasets. They divide a problem 

into smaller subproblems and solve them serially. DCMs are booster methods in the 

sense that they improve upon the base method by applying it smaller instances of 

the subproblems. 

For different decomposition methods, there are variants of DCMs. DCM1 (Huson, 

Nettles & Warnow 1999) was designed for use with distance-based method and yields 

better results than several distance-based methods. The second DCM (Huson, Vawter 

& Warnow 1999), DCM2, was designed to speed-up heuristic searches for MP trees. 

The results have proven that DCM2 would improve MP on small datasets. 

DCM1 can produce small enough subproblems in size, but the structure induced 

by the decomposition is often poor. DCM2 overcomes the drawback of DCM1 but 

the resulting subproblems are too large. Therefore, it is too slow to produce results 

when boosting MP on large dataset. Both the decomposition of DCM1 and DCM2 

are based on a distance matrix computed on the dataset so that they can produce 

only one time of decomposition. 

DCM3 is designed to produce smaller size of subproblems than DCM2, which 

decomposition is obtained on the dynamically updated guide tree and will produce 

different decomposition for different trees. Since DCM3 uses a guide tree, it can 

iteratively improve the guide tree. 

The Rec-I-DCM3 (U.Roshan et al. 2004a) (U.Roshan et al. 20046) method is 

designed to use iteration for escaping local optimum, and recursive-DCM3 to enable 
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further localization and reduction in problem size. Their study shows that Rec-I-

DCM3 convincingly outperformed the unboosted default heuristics of TNT (Goloboff 

1999) on all datasets and at all the limited time allotted for computation. The Rec-I-

DCM3 method is the first technique that allows a successful application of parsimony 

heuristics with high accuracy within reasonable time limits. The current study of it 

focuses mainly on techniques for MP. However, ML is a harder problem than MP 

because it is not known how to compute the ML score of a given tree in polynomial 

time. 

5.2 Problems in previous parallel computing 

Despite the fact that parallel implementations of MP or ML programs are techni

cally solid in terms of performance and parallelization techniques, they significantly 

drag behind algorithmic development. That is, programs are parallelized that mostly 

do not represent the state-of-the-art algorithms any more and are out-competed by 

the most recent serial algorithms in terms of final tree quality and CPU time. For 

example, the largest tree computed with parallel fastDNAml (Stewart, Hart, Berry, 

Olsen, Wernert k. Fischer 2001), which is based on the fastDNAml algorithm (ROlsen, 

H. Matsuda k. Overbeek 1994) contains 150 taxa. There also exists a distributed im

plementation of this code (Hart, Grover, M.Liggett, Repasky, Shields, Simms, Sweeny 

& Wang 2003). The same holds for a technically very interesting JAVA-based distrib

uted implementation of fastDNAml: DPRml (Keane, Naughton, Travers, Mclnerney 

h McCormack 2005). In addition to using an old search algorithm, significant per

formance penalties are caused by using JAVA in terms of both memory efficiency and 

speed of numerical calculations. Those language-dependent limitations will become 
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more significant when trees comprising more than 417 taxa (currently largest tree 

with DPRml, personal communication) are computed with DPRml. The authors of 

DPRml are however well-aware of those limitations (personal communication) and 

plan to integrate algorithmic concepts from RAxML and PHYML into DPRml. 

The technically challenging parallel implementation of TrExML (Wolf, S.Easteal, 

Kahn, McKay & L.Jermiin 2000) (Zhou, Till, Zomaya & Jermiin 2004) has been 

used to compute a tree containing 56 taxa. However, TrExML is probably not suited 

for computation of very large trees since the main feature of the program consists 

in a more exhaustive exploitation of search space for medium-sized alignments. Due 

to this exhaustive search strategy the execution time increases more rapidly than for 

other programs with the number of taxa. The largest tree computed with the parallel 

version of TREE-PUZZLE (Schmidt, Strimmer, Vingron & Haeseler 2002) contained 

257 taxa due to the limitations caused by the data structures used (personal communi

cation). As already stated, TREE-PUZZLE provides mainly advantages concerning 

quality-assessment for medium-sized trees. M.J. Brauer et al. (Brauer, Holder, 

Dries, Zwickl, Lewis & Hillis 2002) have implemented a parallel genetic tree-search 

algorithm that has been used to compute trees of up to 228 taxa. In addition, there 

exist the previous parallel and distributed implementations of RAxML (Stamatakis 

et al. 2004) (Stamatakis, Ott, Ludwig &; Meier 2005). To the best of our knowl

edge, Parallel RAxML has been used to compute the largest ML-based phylogeny 

to date containing 10.000 organisms on a medium-sized PC cluster using approxi

mately 3.200 accumulated CPU hours. Finally, RAxML has also been parallelized for 

SMPs with OpenMP exploiting fine-grained loop-level parallelism (Stamatakis, Ott 

& Ludwig 2005). This approach has limited scalability however, beyond 4-way CPUs 
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and is mainly intended to solve memory problems and increase cache efficiency for 

the computation of very large alignments. 

Therefore, in order to reconstruct, with high accuracy, phylogenetic trees at a 

much larger scale, further speedup and improvements are imperative. 

5.3 A parallel divide-and-conquer model 

In this section, a parallel divide-and-conquer model is designed for distributed memory 

clusters. 

5.3.1 Overall structure 

The task-scheduling mechanism of the model is based on a master-worker architecture, 

which consists of four main steps. 

1. At the beginning, a master process reads in an alignment file with a starting 

tree (an initial guide tree) which is computed with the randomized parsimony 

component. Then, it performs recursively division of the main problem into 

smaller subproblems, and stores the merging order (subset-guidetree, rurTree) 

which is required to correctly execute the merging step. The decomposition is 

illustrated in function pPhylo_divide in full details. Some definitions used are 

shown as following: 

Short subtree Suppose there is a tree T with an edge e in it. Let Qi, 

Q2, Q$ and Q4 be the four subtrees around e; q\, q2, q$ and q4 be the set of 

leaves closet to e in each of the four subtrees respectively. The distance between 
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them is measured by the hamming distances (see section 5.1.1) on the edges. 

The set of nodes in q\ \J q2 [j qz [J q^ is the short subtree around e. 

Short subtree graph Short subtree graph is the union of cliques formed 

on "short subtrees" around each edge in T. 

Separator Separator is the short subtree of a special edge, which would 

produce the most balanced bipartition of the leaves in tree T when removed. 

Outline of pPhylo_divide 

• Input: 

— Set of k sequences S = S\,S2, •••, Sk 

— Maximum subset size MS 

— Starting tree T 

• Output: Set of subproblems, allsubsets — A\, A2,..., Am (m is the total 

number of subsets) 

• Algorithm: Recursively divide a set of k sequences S into subproblems 

(a) Compute edge weighting for each edge by using the hamming dis

tances. 

(b) Compose short subtree graph around edges by selecting set of all 

leaves that are elements in a short quartet around an edge, that is 

subi,sub2,..., subx (where x is the number of subsets). 

(c) Find a separator, spt, by selecting an edge that when removed, pro

duces the most balanced bipartition of the leaves as centroid edge, Ec. 

The spt is the leaves of the short subtree around Ec. The subsets 

are then defined to be A{ = spt U subi, 1 < i < x. 
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(d) For Ai (1 < % < x) 

If (A'iS size >MS){ 

Let T\Ai be the result of restricting tree T to Ai for each i. 

/*Recursively compute the subsets for Ai */ 

pPhylo_divide {Au MS, T\A{) 

} 

Else{ 

Add Ai to allsubsets. 

Re-build subset-guidetree, rurTree. 

/*Produce a subset-guidetree, rurTree, to keep the merge order. The 

rurTree is expressed in a string format that uses parenthesis to start 

and end subtree groups, commas to separate group members, and 

subproblems names to name tree leaves.*/ 

} 

The division into subproblems is executed recursively until all subproblems 

contain less taxa than the user-specified size of the maximum subproblem, MS. 

The subproblems, being smaller in size and evolutionary diameter, are easier and 

faster to analyze than the full dataset. These subproblems are also independent 

to be analyzed in multiple processes. 

2. All individual subproblems are then dynamically dispatched to the working 

processes, which locally solve them by using the function: pPhylo_subtree, 

then return the respective subtrees to the master process. For there are different 

base methods to build MP or ML subset trees, more details in this function will 

be given in section 5.4.1 and 5.5.2. Here is a general description, where T\Ai 
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is the result of restricting tree T to Ai for each i. 

Outline of pPhylo_subtree 

• Input: 

— Set of y sequences in Ai 

— Starting subset tree T\A+ 

• Output: MP or ML subset tree 

• Algorithm: 

— Build a subset tree for subproblem by using a base method (MP or 

ML). 

3. Once all subproblems have been solved, the subset trees are merged serially 

(pairwise at a time) in the order determined by subset-guidetree, rurTree, into 

the new guide tree. We design a stack structure in order to read out subset trees 

according to subset guide-tree. The detail of merging method, pPhylo_merge, 

is explained below: 

Outline of pPhylo_merge 

• Input: 

— set of m subset trees, ST = st\, st2..., stm 

— subset guide-tree, rurTree 

• Output: supertree, 7" 

• Algorithm: Use a postorder tree walk algorithm to search subset-guidetree, 

rurTree, in order to merge subset trees into a suptertree, T". 
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(a) set char* ptr=rurTree; 

/*Design a stack structure to read out subset trees sti,st2,..., stm ac

cording to subset guide-tree, rurTree.*/ 

(b) While(*ptr!=NULL){ 

i. Switch(*p£r){ 

A. Case '(': 

/*push '(' into the stack*/ 

Push(sti) ; 

Break; 

B. Case 'st^: 

/*Push subset tree stj into the stack*/ 

Push(sfj) ; 

C. Case ') ' : 

Do{ 

/*pop out subset trees between '(' and ') ' from stack*/ 

Set y=Popout(); 

}while(y!='(') 

/* Merge these subset trees pairwise at a time serially.*/ X" = 

SCM(sii, sty) 

Push(T'); 

D. default: 

break; } / / end of switch 

ii. ptr++; } / / end of while 

The Strict Consensus Merger(SCM) (Huson, Nettles & Warnow 1999, Huson, 

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



So 

Vawter &; Warnow 1999) described below, is used to do combine two subset 

trees into a single tree. 

Strict Consensus Merger SCM method takes two trees ti and i2 on 

possibly different leaf sets, identifies the a share leaf set X, and computes the 

strict consensus, tx, of ti and t2, each restricted to the leaf set X, finally adds 

the remaining taxa from t\ and t2 into tx, so that the two trees can be merged 

together with strict consensus. 

4. At the last phase, a hill-climbing MP or ML search on the supertree, T", is ap

plied to do a global rearrangement as described in function pPhlo_grearrange. 

Full details of this function designed for MP and ML methods will be presented 

in the sections 5.4.1 and 5.5.2. 

Outline of pPhlo_grearrange 

• Input: 

— Set of k sequences, S = Si,S2, •••, <Sfc 

— Supertree tree, T" 

• Output: MP or ML phylogenetic Tree, T^st 

• Algorithm: 

— Apply a global search method (MP or ML) starting from T" until we 

reach a local optimum. 

At the end, the master process verifies if the specified amount of iterations have 

already been executed and if so terminates the program. Otherwise, it will initiate a 

new round of subproblem decomposition, subproblem inference, subset trees merging, 
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and global optimization. Note that the time required for subproblem decomposition 

and subproblem merging is negligible compared to MP or ML inference time of the 

subset trees and guide tree. 

5.3.2 Dynamic distribution of tasks 

In the proposed model, the master process distributes tasks dynamically. Each work

ing process enters an infinite loop. It firstly sends a READY message to the master 

process to inform that it has ready to receive any message. When it receives an END 

message, the process cleans up and exits. Otherwise, it receives a SUBSET as a task 

to construct a subset tree by using a base method. If a working process finishes its 

task, it will send back SUBSET TREE result. 

The master process keeps a count of how many working processes are available 

and sends out a subset to a working process when the process identifies itself as 

READY. If there are no more new tasks, this routine sends END message to all 

working processes. Finally, the master waits until all working processes are idle (that 

is, it receives a READY message from all working processes) and then sends a final 

message with the special value END to all working processes. 

It is very clear that the load balancing cannot be a problem in this paradigm since 

each process takes a new task as soon as it is free. Note that in this model, the master 

process does not compute subtrees. The main framework is outlined as following: 

Outline of pPhylo 

• Input: 

- S = Si,S2..-,Sk of aligned biomolecular sequences, k is the number of 
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sequences 

— n, the number of iterations 

— T, starting tree 

— MS, maximum subproblem size 

— p+1, the number of available processes, p is the number of working processes 

• Output: A MP or ML phylogenetic Tree, T^t. 

• Algorithm: 

— Connect to p+ 1 processes and establish each process's rank No.: myrank 

— On master process (if myrank = 0) 

1. Initialize a subset-guidetree, rurTree and allsubsets, to record recursive 

calls as the topology for merging subtrees and to save a total set of 

subproblems. 

2. For n iterations do 

(a) pPhylo_divide(S, MS, T) 

/*Construct a recursive DCM3 decomposition using T\S (a guide-

tree tree on dataset S) as the guide tree to produce a total set of 

subproblems, allsubsets = A\, A<i,..., Am (m is the total number of 

subsets). Produce a subset-guidetree, rurTree, to keep the merge 

order.*/ 

(b) For m subsets do 

Keep a count of how many working processes are available 

and Send out a SUBSET to a working process when the process 

identifies itself as READY. 
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Master process Collects SUBSET TREEs from working processes. 

(c) If there are no more new tasks, master process waits until all 

working processes are idle and then Sends a final message with 

the special value END to the all salve processes. 

(d) pPhylo_merge(5T, rurTree) 

/*Use a postorder tree walk algorithm to search subset-guidetree, 

rurTree, in order to merge subset trees into a suptertree, T'.*/ 

(e) pPhylo_grearrange(T", S) 

I* Apply a global search method starting from T" until we reach 

a local optimum.*/ 

(f) Set V = TJbest. 

(g) Broadcast the new 7" to every available process for next itera

tion. 

- On working processes (if myrank > 0) 

1. Enter an infinite loop. Firstly Send READY to the master process to 

inform that it has ready to receive any message. Then, Recv SUBSET 

from the master process as tasks to construct subset trees by using: 

pPhylo_subtree(A, T\Ai). 

2. If finish a task, Send back a SUBSET TREE to the master process. 

3. When Recv an END message from master process, this process cleans 

up and exits. 
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5.4 M P phylogenetic tree reconstruction 

Although Rec-I-DCM3 would reconstruct MP trees on large datasets of up to 14,000 

taxa, a drastic improvement is still necessary in order to achieve better accuracy 

in less time. In this section, we show how the proposed model working with MP 

methods improves the performance of reconstructing trees. For convenience, we call 

it as pPhylo(MP). For this study we use the serial TNT program (Goloboff 1999), the 

best implemented MP heuristic, as the base method and TBR as the global search 

method (see section 5.1.5 and 5.1.4 for details regarding the use of TNT and TBR). 

Note that, the MP criterion returns those binary trees with the lowest parsimony 

score. 

5.4.1 Working with MP-pPhylo(MP) 

We now describe the two re-implemented functions dedicated for MP method, pPhylo_subtre 

and pPhylo_grearrange, in the pseudo code below for more details. Each working 

process computes subtrees on subproblems within a batch using the TNT method 

shown in pPhylo .subtree for MP. As the final step, pPhylo_gr ear range for 

MP applies a hill-climbing MP search on the supertree until it reaches local opti

mum. Note that this part of the code takes a non-significant amount of time because 

it is doing a search on the full dataset, which is very large. It is a bottle-neck in the 

execution time of pPhylo(MP). However, in the next section of pPhylo boosting ML 

method, we improve this step and obtain better performance. 

Re-implementation of pPhylo_subtree for MP 

• Input: 
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— Set of y sequences in Ai 

— Starting subset tree T\Ai 

• Output: MP phylogenetic subset tree 

• Algorithm: 

— Apply the base heuristic basic method, TNT, to T\Ai to compute the 

subset tree. 

Re-implementation of pPhylo_grearrange for MP 

• Input: 

— Set of k sequences, S — S\, S2, •••, Sk 

— Supertree tree, T" 

• Output: MP phylogenetic Tree, Tbest 

• Algorithm: 

— Apply TBR search starting from T' until it reaches a local optimum, let 

T" be the resulting local optimum 

— be t ±best= * 

— Broadcast Tbest to working processes for iterative improvement. 

5.4.2 Experiment design 

Methodology 

To the best our knowledge, Rec-I-DCM3, is the best known technique heuristic for 

solving MP. Therefore, we ran the Rec-I-DCM3 to compare pPhylo(MP) against. We 
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studied two versions of pPhylo(MP): one on 4 processes that we call P4-pPhylo(MP) 

and one on 10 processes which we call PlO-pPhylo(MP). On each dataset we ran five 

trials of Rec-I-DCM3, P4-pPhylo(MP) and PlO-pPhylo(MP). 

Test datasets 

In our experiments, we used a large variety of biological datasets ranging in size and 

type (DNA or RNA). All of the very large datasets are above 6K. 

• Datasetl: 6,281 aligned small subunit ribosomal Eukaryotes RNA sequences 

(1,661 sites) (Wuyts, de Peer, Winkelmans & Wachter 2002). 

• Dataset2: 6,458 aligned 16s ribosomal Firmicutes (bacteria) RNA sequences 

(1,352 sites) (Maidak 2000). 

• Dataset3: 6,722 three-domain rRNA sequences from Robin Gutell (1122 sites) (Maidak 

2000). 

• Dataset4: 7,769 aligned ribosomal RNA sequences (851 sites) from three phylo-

genetic domains, plus organelles (mitochondria and chloroplast), obtained from 

the Gutell Lab at the Institute for Cellular and Molecular Biology, The Univer

sity of Texas at Austin. 

• Dataset5: 11361 set of all bacteria ssu rRNA sequences from the European 

rRNA database (1, 360 sites) (Maidak 2000). 

• Dataset6: 13921 proteobacteria 16s rRNA sequences from the RDP (1359 sites) 

(Maidak 2000). 

The respective maximum subset sizes of pPhylo(MP) adapted to the size of each 

dataset are indicated in Table 5.1. In Roshan's PhD thesis (Roshan 2004), these 
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Table 5.1: Maximum pPhylo(MP) subproblem sizes 
Dataset 

Datasetl-4 
Dataset5-6 

Maximum subproblem size/dataset size 
1/4 
1/8 

subset sizes were shown to perform well in comparison to other ones on these datasets. 

We constructed five starting trees for each trial using a randomized greedy heuristic 

for MP and each trial was given the same starting tree. 

Implementation and platform 

Our experiments were performed on a cluster of 4 customized compute nodes, each 

with 4 Intel Itanium 733MHz processors, PCI 66 MHz I/O bandwidth and 266MHz 

data bus frequency. (Note that the full-instrumented pPhylo(MP) requires a mini

mum of two processes). 

5.4.3 Experimental results 

Comparing MP scores as a function of time 

In our experiments we wanted to see which method approaches the best known score 

on each dataset the fastest. In general the closer the scores are to the "optimal" or best 

known scores on a given dataset, the more closely related we can expect trees of that 

score to be topologically. And the further they are from the best known score their 

topological divergence can increase. Refer to (T.L.Williams, B.M.E.Moret, T.Berger-

Wolf, U.Roshan & T.Warnow 2004) for an experimental study of the relationship 

of tree topologies and MP scores. Thus, we want to get as close as possible to the 

optimal MP score on a given dataset. 
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In Figures 5.5 through 5.10 we plot the average MP score above the best known 

score as a percentage of the best known score on each dataset. The best known scores 

have been found by previously doing much longer analysis of serial Rec-I-DCM3 on 

these datasets. Our results in Figure 5.5 through 5.10 show the average MP scores 

above the best score, as a percentage of the best score on the given datasets. We 

first note that the average scores of P4-pPhylo(MP) are better than average scores 

of Rec-I-DCM3 on every point in time. However, the average score found by P10-

pPhylo(MP) is better than the best score of the best trial of Rec-I-DCM3 and the 

average trial of P4-pPhylo(MP) at the end of 24 hours. On datasets 1 to 4, P10-

pPhylo(MP) has a much lower score than Rec-I-DCM3 and P4-pPhylo(MP) at hour 

1. We see an immense improvement there. However, on datasets 5 and 6, the hill-

climbing search takes too long due to the much larger sizes of the datasets. Therefore 

we do not see this drastic drop in scores initially as we do for datasets 1 through 4. 

Interestingly, on dataset 1 the best P4-pPhylo(MP) trial and the PlO-pPhylo(MP) 

trial find a better score than the best known one so far. Achieving the best known 

score took about 123 hours by the serial Rec-I-DCM3, whereas the pPhylo(MP) found 

it within 24 hours. Since this is the smallest dataset we used, the hill-climbing search 

was not much of a bottleneck. As a result we see that the parallel runs were able to 

achieve many more iterations and thus find a very good score very quickly. 
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Figure 5.5: The average MP score of each method above the best known score as a 
percentage of the best known score on Datasetl 
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Figure 5.7: The average MP score of each method above the best known score as a 
percentage of the best known score on Dataset3 
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Figure 5.10: The average MP score of each method above the best known score as a 
percentage of the best known score on Dataset6 
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Table 5.2: The best scores found over all five trials of Rec-I-DCM3, P4-pPhylo(MP), 
and the single trial of PlO-pPhylo(MP) at the end of 24 hours. 
Dataset No. 

1 
2 
3 
4 
5 
6 

Best known score 

232616 

156192 

91874 

99815 

272047 

240921 

Rec-I-DCM3 

232618 

156235 

91918 

99870 

272157 

241064 

P4-pPhylo(MP) 

232580 

156213 

91899 

99866 

272142 

241010 

PlO-pPhylo(MP) 

232580 

156203 

91890 

99845 

272085 

241001 

Comparing the score of the best run of serial and parallel 

In Table 5.2, we compare the best scores found in 24 hours by Rec-I-DCM3, P4-

pPhylo(MP), and PlO-pPhylo(MP). We also include the best know scores ever found 

on these data-sets by analyses that were ran for a week on much faster machines. 

The table shows that PlO-pPhylo(MP) finds the best scores on larger Dataset (except 

datasetl) at the end of 24 hours. 

Speedup of parallel over serial 

• Scaling of pPhlo_MP 

We compare the time taken by one iteration of Rec-I-DCM3, P2-pPhylo(MP) 

(pPhylo(MP) over two processes), P4-pPhylo(MP), and PlO-pPhylo(MP) on 

each dataset. Our results show that the parallel approach performs well and 

reduces the execution time shown in Figure 5.11. For example, the elapsed 

time of dataset 3 is reduced from 2.6 hours on a single processor to 1.37 hours 

on 2 processors, and less than 1 hour on 4 or more than 4 processors. 

• P4-pPhylo(MP) and PlO-pPhylo(MP) speedup over Rec-I-DCM3 at 24 hours 

In the Figure 5.12, we compute the time taken by the average P4-pPhylo(MP) 
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Figure 5.11: Time to complete one iteration of Rec-I-DCM3, P2-pPhylo(MP), P4-
pPhylo(MP), and PlO-pPhylo(MP) on datasets 1 to 6. 

and PlO-pPhylo(MP) trials to reach the best score of the average Rec-I-DCM3 

trial and divide it by the time taken by average Rec-I-DCM3 trial to reach 

its best score. Thus we look at the speedup obtained by P4-pPhylo(MP) and 

PlO-pPhylo(MP). On all the datasets P4-pPhylo(MP) and PlO-pPhylo(MP) 

reach the best score of Rec-I-DCM3 at least in half the time. On dataset4 P10-

pPhylo(MP) reaches the best Rec-I-DCM3 score three times faster, despite the 

bottleneck of the serial hill-climbing phase. We do not see much of an improve

ment of PlO-pPhylo(MP) over P4-pPhylo(MP) on dataset 6 mainly because the 

hill-climbing phase is taking too long. 

• Comparison of iterations in 24 hours 
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trials to reach the best Rec-I-DCM3 average score and the time taken by the average 
Rec-I-DCM3 trial to reach its best average score. 

Table 5.3 compares the number of iterations of the serial and parallel Rec-

I-DCM3 versions. PlO-pPhylo(MP) is again able to do man more iterations 

(compared to serial) on the smaller datasets because the hill-climbing search is 

faster there. 

5.4.4 Evaluation of performance limits 

The fairly flat curve of the elapsed time at the high end of processor number shown in 

Figure 5.11 suggests that computational gain from further distribution of the subsets 

will be discounted by the overhead communication between the processes. Another 

factor limiting the scalability of this algorithm is the relatively few serial portions of 
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Table 5.3: Improvement in iterations within 24 hours 
Dataset No. 

1 
2 

3 
4 
5 
6 

Rec-I-DCM3 iterations 

4 
5 
6 
4 
4 

5 

P4-pPhylo(MP) itera
tions 
10 
15 
14 
10 
8 
9 

PlO-pPhylo(MP) itera
tions 
21 

33 
31 
17 
13 
11 

the program. One major portion is global rearrangement by hill-climbing heuristic 

search on the complete phylogenetic tree, which takes about half of time in one 

iteration. Clearly by reducing the time spent on the full dataset we can expect much 

better improvements. The Strict Consensus Merger and the actual decomposition, 

although both serial, take much less time, almost negligible, in comparison to the 

time of subtree computing and global rearrangement. 

5.5 ML phylogenetic tree reconstruction 

In previous section, our model has been shown to work with MP methods. We now 

describe how it working with ML methods, called pPhylo(ML), improves the perfor

mance of reconstructing ML trees. Note that, the ML criterion tries to maximize 

the probability of "evolving" the observed sequences. Whichever tree provides the 

maximum value for this likelihood function wins. ML is a harder problem than MP 

because it is not known how to compute the ML score of a given tree in polynomial 

time. RAxML is—to the best of our knowledge—among the currently fastest, most 

accurate, as well as most memory-efficient ML heuristics on real biological datasets. 
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However, the computation of comparatively large trees is limited by memory con

sumption. Thus, our parallel divide-and-conquer model is required to intelligently 

select overlapping sub-alignments for computing smaller subtrees in parallel. 

Provided the high memory efficiency of RAxML (which the program inherited 

from fastDNAml) compared to other programs and the good performance on large 

real-world data it appears to be best-suited for use with our model. Therefore, we 

use a heuristic ML method which followed the idea of RAxML (Stamatakis, Ludwig 

& Meier 2005) as the base method and a new parallel version of RAxML developed 

in this study as global search method. 

Due to the complexity of the problem and the ML criterion it is not possible to 

avoid global optimizations of the tree all-together. All divide and conquer approaches 

for ML to date execute global optimizations at some point (see Section 5.2). 

We now look at RAxML and issues relating to parallelizing it. 

5.5.1 Parallelizing RAxML 

In this section we briefly outline the algorithm of RAxML, which is required to un

derstand the structure and intrinsic difficulties which arise with the parallelization of 

the global search method. 

RAxML initially computes a starting tree, which contains all sequences of the 

alignment using a fast greedy MP search. The MP search is performed by an appro

priately modified version of Joe Felsenstein's dnapars program (Felsenstein 2004). 

One important property of the dnapars program is that it yields distinct starting 

trees depending on the input order permutation of the sequences. By randomizing the 

sequence input order, the program can start the optimization from different points of 
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search space each time it is executed. Therefore, by executing several RAxML runs 

it is more likely to find good trees and avoid local maxima since each run will yield 

a distinct final tree. Thus, the confidence into the final result obtained by RAxML is 

higher than for strictly deterministic programs. However, in pPhyml(ML), the global 

RAxML search is initiated with a fixed starting tree (guide tree). 

After the computation of the starting tree or reading in the guide tree, the likeli

hood of the candidate topology is improved by subsequent application of topological 

alterations. To evaluate and select candidate alternative topologies RAxML uses a 

mechanism called lazy subtree rearrangements (Stamatakis, Ludwig & Meier 2005). 

This mechanism initially performs a rapid pre-scoring of a comparatively large number 

of alternative topologies. After the pre-scoring step a few (20) of the best pre-scored 

topologies are analyzed more thoroughly. To the best of our knowledge, RAxML is 

currently one of the fastest and most accurate programs on real alignment data due 

to this ability to quickly pre-score a large number of alternative tree topologies and 

the low memory consumption. 

As outlined in the example in Figure 5.13 the optimization process can be clas

sified into two main computational phases: 

1. Difficult parallelization: The Initial Optimization Phase (IOP) where the 

likelihood increases steeply and many improved pre-scored topologies are en

countered during a single iteration of RAxML. 

2. Straight-forward Parallelization: The Final Optimization Phase (FOP) 

where the likelihood improves asymptotically and practically all improved topolo

gies are obtained by thoroughly optimizing the 20 best pre-scored trees. 

The difficulties, which arise with the parallelization of RAxML, are mainly due 
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Figure 5.13: Initial and final optimization phase of RAxML for an alignment with 
150 sequences 

to hard-to-resolve dependencies caused by the detection of many improved trees 

(Stamatakis, Ludwig & Meier 2005) during the IOP. Moreover, the fast version of the 

hill-climbing algorithm of RAxML that is used for global optimization with pPhyloML 

further intensifies this problem, since it terminates after the IOP. During one iteration 

of RAxML all n subtrees of the candidate topology are subsequently removed and 

re-inserted into neighboring branches (subtree rearrangements). The hard-to-resolve 

dependency occurs when the lazy rearrangement of a subtree i yields a topology with 

a better likelihood than the candidate topology even though it is only pre-scored. In 

this case the improved topology is kept and rearrangement of subtree i + 1 is per

formed on the new topology. Especially, during the IOP when the likelihood increases 

steeply, improved pre-scored topologies are frequently encountered in the course of 

one iteration, i.e. n lazy subtree rearrangements. Since the lazy rearrangement of one 

single subtree is fast, a coarse-grained MPI-parallelization of one RAxML-iteration 

T r "150-taxa" 

— final 
optimization 

Initial 
/Optimization 

J I I I I L 
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can only be based on assigning the rearrangement of distinct subtrees within the 

current candidate tree simultaneously to the workers processes. This represents a 

non-deterministic solution to the potential dependencies between rearrangements of 

subtrees i and % + 1. This means that when two workers w0 and W\ simultaneously 

rearrange subtrees i and i + 1 within the currently best candidate tree and the re

arrangement of subtree i yields a better tree, worker W\ will miss this improvement 

since it is still working on the old candidate tree. 

It is this frequently occurring dependency during the IOP between steps i —• i + 1 

(i — l...n, n = number of subtrees) that leads to parallel performance penalties. 

Moreover, this causes a non-deterministic behavior since the parallel program tra

verses another path in search space each time (even for identical starting trees and 

number of processors) and might yield better or worse final tree topologies compared 

to the serial program. The scalability for smaller number of processors is better since 

every worker misses less improved trees. 

The aforementioned problems have a significant impact on the IOP only, since 

the FOP can be parallelized more efficiently. Furthermore, due to the significantly 

larger proportion of computational time required by the FOP the parallel perfor

mance of the slow hill-climbing version of RAxML is substantially better. Please 

refer to (Stamatakis et al. 2004) for performance results of slow parallel hill-climbing 

and a more detailed description of the parallelization. 

The necessity to parallelize and improve performance of RAxML fast hill-climbing 

has only been recognized within the context of using RAxML in conjunction with 

pPhylo(ML) and is therefore an issue of future work. 
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5.5.2 Working with ML-pPhylo(ML) 

Following the framework of pPhylo, the overall program flow of pPhylo(ML) is out

lined in Figure 5.14. Function pPhylo_subtree uses a heuristic ML method that 

followed the idea of RAxML to build ML subset trees. 

Re-implementat ion of pPhylo_subtree for ML 

• Input: 

— Set of y sequences in A{ 

— Starting subset tree T\Ai 

• Output: A ML subset tree 

• Algorithm: 

1. Set Tbest\Ai= T\A{ 

2. For n subtrees in T ^ l ^ do: 

(a) Remove a subtree from the best tree, T ^ t l A 

(b) Reinsert the subtree into neighboring branches up to a specified dis

tance of nodes 

(c) Optimize the three local branches adjacent to the insertion point and 

store the best 20 trees 

(d) Perform global branch length optimizations on those 20 best topologies 

only. 

(e) Update the best tree, T^ t lA for next loop 
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At final phase of global rearrangement, the supertree is refined (further optimized) 

by a parallel global search method presented in pPhylo_grearrange for ML. In this 

case, the master process distributes the IDs of the subtrees (simple integers) which 

have to be rearranged along with the currently best tree (only if it has been improved) 

to the working processes. Working processes rearrange a specified subtree within the 

currently best tree and return the tree topology (only if it has a better likelihood) 

along with a new work request. This process continues until no subtree rearrangement 

can further improve upon the tree. The global search method further improves the 

accuracy of the supertree and can also find optimal global configurations that were 

not found by operations on smaller—local—subsets. The global search method shown 

in parallel pPhylo_grearrange leads to significant improvements over RAxML. 

Re-implementation of parallel pPhylo_grearrange for ML 

• Input: 

- set of k sequences, S = S\, S2..., «Sfc 

— Supertree tree, T" 

- number of available processes, P+l, p is number of working processes. 

• Output: ML phylogenetic Tree, T^est 

• Algorithm: Apply parallel global search method starting from T" until we reach 

a local optimum. 

— On master process(if myrank — 0) 

1. Set an array of flag[l...pj for p working processes. Initially, flag[i] = 

True, 1 < i < p. 
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2. Distribute work by Sending a subtree ID (one of the subtree to be 

arranged) along with the suptertree V to p working processes 

3. Tbest=T 

4. For n-(p) subtrees in T^st do: 

(a) If Recv READY from process x 

i. Send back the current score, T^t 's ML score, to process x 

ii. If Recv Wtree from process x 

7test=W / ' tree 

/o r ( l < i < p) 

flag[i] = True, 

hi. If flag[x] = True 

Distribute new work by Sending a subtree ID along with 

the currently best topology tree, Tbest, to process x. 

Set flag[x] — False 

else 

Distribute work by Sending a subtree ID (of the subtree to 

be arranged) to process x. 

5. Send END message to working processes. 

- On working processes (if myrank > 0 ) 

1. Enter an infinite loop until it Recvs an END message 

(a) Recv a subtree ID or subtree ID along with the current best tree, 

Tbest, from master process. 
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(b) Rearrange the subtree within current best tree T}>est to get a new 

tree Wtree and Sends back a READY message. 

(c) Recv the current Tbest's ML score from master process. 

(d) if Wage's ML score > Test's ML score 

Send back Wtree to master process. 

2. Recv END message and exit. 

In function parallel pPhylo_grearrange, in order to reduce communication be

tween processes, we build an array: flag\p], for p number of working processes. The 

array of flag controls whether the current best tree TbeSt should be distributed to each 

working process along with the following work requests. For example, flag[l] — true 

means process 1 need to be updated with the currently best topology tree. If a work

ing process already has the best tree T^st, the master process only need to send a 

subtree ID to it. Each working process will perform subsequent subtree rearrange

ments of the current step on the improved topology. Furthermore, after a working 

process obtains an improved tree, it will compare the score of the improved tree with 

the current best score on the master process. Only if the improved tree is better 

than the current best tree on master process, the working process sends it to master 

process in case other working processes have updated the best tree already. These 

strategies will cut half of communication time when data sets are large. 

Because the sizes of individual subproblems vary significantly and the inference 

time per subproblem can not be predicted because it is not known a priori how 

many iterations will be performed by pPhylo_subtree before convergence. Thus, 

depending on the subset decomposition can lead to significant load imbalance (see 

Section 5.5.5 for a more detailed analysis). On the other hand, the computation 
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of single small subproblems can not be carried out by a parallel optimized method 

as parallel pPhylo_grearrange for a supertree either due to their relatively small 

size and thus limited scalability. In addition—according to some experiments with 

a proprietary divide and conquer implementation in RAxML—a distinct method of 

subtree-decomposition, which yields subproblems of equal size for better load-balance 

does not appear promising. This is due to the fact that pPhylo_devide constructs 

subproblems intelligently with regard to closely-related taxa based on the information 

of the guide tree. 

In the following sections of experiment design and experimental results, we ini

tially describe the test datasets used. Thereafter, we report on serial performance 

improvements of Rec-I-DCM3(RAxML) over stand-alone RAxML in section and fi

nally analyze parallel program efficiency of pPhylo(ML). 

5.5.3 Experiment design 

Methodology 

To the best our knowledge, RAxML, is the best known technique heuristic for solving 

ML. Firstly, we design an experiment to show that Rec-I-DCM3(RAxML) method 

would improves over stand-alone RAxML on all datasets in order to demonstrate the 

benefits which arise from using the dividing method. Next, we assess the performance 

gains of our method improves Rec-I-DCM3(RAxML) dramatically. 

Test datasets 

In our experiments, we used a large variety of biological datasets ranging in size 

and type (DNA or RNA). All but one of the very large datasets (above 2K) are RNA 
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because we were unable to find DNA alignments of that size. This is mainly due to the 

fact that RNA data is much more abundant since it is slower evolving and relatively-

easy to align as well. Some datasets have been downloaded from public databases and 

sites containing more than 20% gaps have been removed. Other alignments have been 

obtained from researchers who have manually inspected and verified the alignments. 

• Datasetl: 500 rbcL DNA sequences (1398 sites) also known as the popular Zilla 

dataset (Rice, Donoghue & Olmstead 1997). 

• Dataset2: 2,560 rbcL DNA sequences (1,232 sites) (Kallerjo, Farris, Chase, 

Bremer & Fay 1998). 

• Dataset3: 4,114 aligned 16s ribosomal Actinobacteria RNA sequences (1,263 

sites) (Maidak 2000). 

• Dataset4: 6,281 aligned small subunit ribosomal Eukaryotes RNA sequences 

(1,661 sites) (Wuyts et al. 2002). 

• Dataset5: 6,458 aligned 16s ribosomal Firmicutes (bacteria) RNA sequences 

(1,352 sites) (Maidak 2000). 

• Dataset6: 7,769 aligned ribosomal RNA sequences (851 sites) from three phylo-

genetic domains, plus organelles (mitochondria and chloroplast), obtained from 

the Gutell Lab at the Institute for Cellular and Molecular Biology, The Univer

sity of Texas at Austin. 
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5.5.4 Experimental results 

Serial performance 

In the first set of experiments we examine the serial performance of stand-alone 

RAxML over Rec-I-DCM3(RAxML) in order to demonstrate the benefits which arise 

from using the latter dividing method. 

The respective maximum subset sizes of Rec-I-DCM3 are adapted to the size of 

each dataset and are indicated in Table 5.4. 

Table 5.4: Maximum Rec-I-DCM3 subproblem sizes 
Dataset 
Datasetl 
Dataset2 

Dataset3-6 

Maximum subproblem size 
100 
125 
500 

In our experiments both methods start optimizations on the same starting tree. 

Due to the relatively long execution time on large alignments we only executed one 

Rec-I-DCM3(RAxML) iteration per dataset. The run time of one Rec-I-DCM3 iter

ation was then used as inference time limit for RAxML. Table 5.5 provides the log 

likelihood values for RAxML and Rec-I-DCM3 after the same amount of execution 

time. Note that, the apparently small differences in final likelihood values are signif

icant because those are logarithmic values and due to the requirements for high score 

accuracy in phylogenetics (T.L.Williams et al. 2004). 

The experiments clearly show that Rec-I-DCM3(RAxML) improves over stand

alone RAxML on all datasets, i.e. yields better likelihood values than RAxML in 

the same amount of time. This results serve as an argument for the choice of the 

divide-and-conquer model instead of stand-alone RAxML. 
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Table 5.5: Rec-I-DCM3(RAxML) versus RAxML log likelihood values after the same 
t of inferen 

Dataset 
Datasetl 
Dataset2 
Dataset3 
Dataset4 
Dataset5 
Dataset6 

ce time 
Rec-I-DCM3(RAxML) log likelihood 

-99967 
-355071 
-383578 

-1270920 
-901904 
-541255 

RAxML log likelihood 
-99982 

-355342 
-383988 
-1271756 
-902458 
-541438 

Parallel performance 

In our second set of experiments we assess the performance gains of pPhylo(ML) 

over the Rec-I-DCM3(RAxML). For each dataset we executed three individual runs 

with Rec-I-DCM3(RAxML) and pPhylo(ML) on 4, 8, and 16 processors respectively. 

Once again for each individual run we used the same starting tree for the serial and 

parallel inference. Furthermore, the same subset sizes as indicated in Table 5.4 were 

used. In order to determine the speedup we measured the execution time of one serial 

and pPhylo(ML) iteration for each dataset/number of processors combination. The 

average serial and parallel execution time per dataset and number of processors over 

three individual runs are outlined in Figure 5.15. 

Due to the hard-to-resolve dependencies in parallel pPhylo_grearrange and the 

size imbalance of the subproblems the overall speedup and scalability of pPhylo(ML) 

are moderate. As already mentioned the requirement to devise a more efficient par-

allelization of the IOP of RAxML has only recently been recognized within the con

text of using RAxML in conjunction with pPhylo(ML). A separate analysis of the 

speedup values in Table 5.6 for the parallelization of the base, global, and whole 

method shows that the parallel performance losses originate mainly from parallel 
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number of processors 

Figure 5.15: Time to complete one iteration of Rec-I-DCM3(RAxML) for datasets 
1-6 and 1 up to 16 processors. 

pPhylo_grearrange. 

It is important to note that pPhylo(ML) executes a more thorough search, i.e. yields 

better trees than the serial global optimization with RAxML. Therefore, the compar

ison can not exclusively be based on speedup values alone but must also consider 

the final likelihood values attained by pPhylo(ML) which are significantly better. 

To demonstrate this pPhylo(ML) is granted the overall execution time of one serial 

Rec-I-DCM3(RAxML) iteration, i.e. the same response time. The final log likelihood 

values of Rec-I-DCM3(RAxML) and pPhylo(ML) (on 16 processors) after the same 

amount of global execution time are listed in Table 5.7. As already mentioned in the 

apparently small differences in final likelihood values are significant. Furthermore, 
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Table 5.6: Average base method, global method, and overall speedup values for one 
iteration of serial program per dataset and number of processors over three runs 

Number of Processors 

Datase t l 

4 

8 

16 

Dataset2 

4 

8 

16 

Dataset3 

4 

8 

16 

Dataset4 

4 

8 

16 

Dataset5 

4 

8 

16 

Dataset6 

4 

8 

16 

base method 

4 

4.7 

4.85 

3 

5.3 

7 

1.95 

5.5 

6.7 

2.9 

4.2 

8.3 

2.3 

4.8 

7.6 

3.2 

4.8 

5.4 

global method 

2.4 

2.8 

2.78 

2.68 

3.2 

4.2 

2.6 

5 

5.7 

2.3 

4.9 

5.3 

2.7 

4.4 

5.1 

1.95 

2.5 

2.8 

overall speedup 

2.6 

3.6 

3.5 

2.7 

3.45 

4.6 

2.2 

5.3 

C..2 

2.6 

4.6 

6.3 

2.5 

4.7 

5.8 

2.2 

3 

3.3 
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the computational effort to attain those improvements is not negligible due to the as

ymptotic increase of the log likelihood in the FOP (see Figure 5.13 in Section 5.5.1). 

Table 5.7: Average Log likelihood scores of Rec-I-DCM3(RAxML) and pPhylo(ML) 
(on 16 processors) per dataset after the same amount of global execution time over 
three individual runs 

Dataset 
Dataset 1 
Dataset2 
Dataset 3 
Dataset4 
Dataset5 
Dataset6 

Rec-I-DCM3(RAxML) log likelihood 
-99967 
-355088 
-383524 

-1270785 
-902077 
-541019 

pPhylo(ML) log likelihood 
-99945 

-354944 
-383108 
-1270379 
-900875 
-540334 

In heuristics for hard optimization problems, 90%-95% accuracy is often consid

ered excellent. Heuristics used in phylogenetic reconstruction must be much more 

accurate if it has at least 99:99% accuracy in order to produce topologically accurate 

trees. Thus, the log likelihood score is better, the topology of tree is more accurate. 

5.5.5 Evaluation of performance limits 

The general parallel performance limits of RAxML have already been outlined in 

Section 5.5.1. At this point we discuss the parallel performance limits of the base 

method by the examples of the Dataset3 and Dataset6, which initially appear to yield 

fairly sub-optimal speedups—especially on 16 processors—in column base method of 

Table 5.6. We show that those values are actually near-optimal. 

For the sake of this analysis we measured the number of subproblems as well as 

the inference time per subproblem for one Rec-I-DCM3 iteration on those datasets. 

As already mentioned, the main problem consists in a significant load imbalance in 

subproblem sizes. The computations for the Dataset3 comprises 19 subproblems, 
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which are dominated by three computations that require more than 5.000 seconds 

(maximum 5.569 seconds). We determined the optimal schedule of those 19 subprob-

lems on 15 processors (since 1 processor serves as master process) and found that 

the maximum inference time of 5.569 seconds is the limiting factor, i.e. the mini

mum execution time for those 19 jobs on 15 processors is 5.569 seconds. With this 

data at hand we can easily calculate the maximum attainable speedup by dividing 

the sum of all subproblem inference time through the minimum execution time, i.e. 

37353secs/5569sec5 = 6.71 which corresponds to our experimental results. Note that, 

there is no one-to-one correspondence since the values in Table 5.6 are average values 

over several iterations and three runs per dataset with different guide trees and thus 

different decompositions. 

The analysis of Dataset6 shows a similar image: there is a total of 43 subproblems 

which are dominated by 1 long subtree computation of 12.164 seconds and three 

smaller ones ranging from 5.232 to 6.235 seconds. An optimal schedule for those 43 

subproblems on 15 processors shows that the large subproblem which requires 12.164 

is the lower bound on the parallel solution of subproblems. The optimal speedup for 

the specific decomposition on this dataset is therefore 63620secs/12164secs = 5.23. 

5.6 Summary 

In this chapter, a parallel divide-and-conquer model (pPhylo) is designed to flexibly 

reconstruct the large MP and ML trees comprising up to 10,000 organisms. The 

proposed model is able to perform a more complete search of the tree space within 

limited time. It significantly reduces response time for large trees and improves final 

tree quality at the same time. Experimental results show that the trees computed 
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by the proposed model are consistently better than the previously known fastest and 

most accurate programs for MP and ML respectively. 
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Chapter 6 

Pattern-Constrained Sequence 
Matching 

The quality of inference of phylogenetic trees heavily depends on the quality of an 

alignment which serves as input for phylogeny programs. Therefore, a "good" multiple 

alignment is the most important prerequisite for conducting phylogenetic analysis. 

Most of the existing progressive MSA methods use a substitution matrix independent 

of the position, the essential problem of which is that they incorporate no external 

knowledge of the sequences being aligned. This chapter presents a novel algorithm 

to improve the accuracy of multiple sequence alignment. The significance of the 

proposed algorithm lies on its capability of aligning the sequences sharing the same 

patterns. Moreover, it is proven that the similarity score of the proposed algorithm 

has an approximation ratio 2<k-i) ^° ^n e similarity score of the optimal alignment, 

where k is the number of sequences. 

122 
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6.1 Problems with existing methods 

In progressive MSA methods, one uses dynamic programming to build MSA initially 

with the most related sequences and then progressively adding less related sequences 

or groups of sequences to the initial alignment. These methods use a substitution 

matrix independent of the position, which has however a serious problem. They do 

not incorporate knowledge of the sequences being aligned and therefore cannot assure 

the alignment of similar structures and common patterns shared by the sequences. 

Comet and Henry (Comet & Henry 2002) conclude that the dynamic programming 

algorithm does not always align patterns in two sequences. In order to clarify it, 

they plot the distribution of the patterns from the databank PROSITE Rel. 14 

according to the number of non-aligned patterns divided by the total number of 

pairwise comparisons. The statistical results prove that the dynamic programming 

algorithm does not align patterns when occurrences are not similar or when they are 

very short and do not belong to the most similar regions. 

Methods have been proposed to solve this problem. In fact, two algorithms, PHI-

BLAST (Pattern-Hit Initiated BLAST) (Altschul, Madden, schaffer, Zhang, Zhang, 

Miller & Lipman 1997) and SWP (Smith-Waterman algorithm with Patterns) (Comet 

& Henry 2002), attempting to combine motif with pairwise alignments have been 

quite successful, although they are not for MSA problems. PHI-BLAST is a search

ing program that combines matching of regular expressions with local alignments 

surrounding the match. Given a protein sequence S and a regular expression pattern 

P occurring in S, PHI-BLAST searches a database for sequences that include the 

pattern and have significant similarity to the query sequence. SWP is an algorithm 

designed specifically to incorporate patterns into the Smith-Waterman algorithm. It 
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compares subsequences letter by letter as in the Smith-Waterman but attributes a 

supplementary bonus/reward when patterns are matched. 

We have been investigating into solutions to the problem in MSA and making use 

of the knowledge of the sequences being aligned, including patterns in the PROSITE 

databank (Hofmann, Bucher, Falquet k Bairoch 1999), BLOCKS+ (Henikoff, Henikoff 

k Pietrokovski 1999) (Henikoff, Greene, Pietrokovski & Henikoff 2000), eBlocks data

base (Su, Lu & Brutlab 2002), as well as motif and structural information. As a result, 

we have developed a pattern-constrained algorithm for MSA (PCMSA), in particular, 

multiple polypeptide sequence alignment. 

6.2 Pat terns as constraints 

Patterns are defined as multiply aligned segments corresponding to highly conserved 

regions of protein sequences in the proposed algorithm. These patterns can be re

trieved from previously constructed databases. 

In the PROSITE databank, patterns are represented by regular expressions. Each 

element in a pattern is separated from its neighbor by a '-'. Repetition of an element 

of a pattern can be indicated by following that element with a numerical value or, if 

it is a gap (V), by numerical range between parentheses. Thus, a pattern [AC]-x-V-

x(4) is translated into [Ala or Cys]-any-Val-any-any-any-any. The ROSITE databank 

currently contains patterns and profiles specific for more than a thousand protein 

families or domains. Each of these signatures comes with documentation providing 

background information on the structures and functions of these proteins. 

The BLOCKS+ database is constructed from the PROSITE databank, supple

mented with additional families from the PRINTS (Attwood, Flower, Lewis, Mabey, 
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Morgan, Scordis, Selley & Wright 1999), PfamA (Bateman, Birney, Durbin, Eddy, 

Finn &; Sonnhammer 1999), ProDom (Corpet, Gouzy & Kahn 1998) and Domo (Gracy 

& Argos 1998) protein family databases. In the BLOCKS+ database, patterns are 

ungapped segments corresponding to the most highly conserved regions of proteins. 

Our algorithm aims to find better alignments of multiple polypeptide sequences, 

using the patterns from the above databases as the constraints. It uses pattern 

constrained pairwise alignments with further assembling of these "partial" alignments 

into an approximate alignment of k sequences. It also has the worst-case guarantee 

on the quality of the alignment. 

To start with, let S be a set of k sequences Si,...,Sk, the center sequence Sc e S 

be the sequence such that the sum of pairwise scores constrained by patterns to the 

other k-1 sequences is minimized. The sum score of MSA with respect to a center 

sequence Sc is the sum of pairwise scores of with any other sequences defined as 

following: 

£ £ SiS^S^) (6.2.1) 
l<i<fc,x#cl<i<n' 

where n' is the length of the alignment; iSCii is the z-th residue in the center sequence 

Sc and Sx>i is the i-th residue in x-ih sequence. 

Three main processes are developed as following: 

1. Identifying all patterns shared by sequences. 

It is necessary to find all occurrences of patterns shared by sequences. In this 

case, a list of patterns defined by regular expressions in the PROSITE databank or 

the BLOCKS+ database is generated for that purpose. These regular expressions 

are referenced to locate and recognize all patterns in sequences. The function step 
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in UNIX is used to find patterns in each sequence, which returns non-zero if some 

substring of a sequence matches a pattern described in the list, and zero if there is no 

match. Then the common patterns shared by sequences are identified. There are also 

other cases in which users define patterns by themselves according to the conserved 

regions and structural information shared by sequences. 

2. Defining a center sequence Sc E S. 

We define a center sequence Sc € S such that XL#c^m('S*>,^c) IS maximized, 

where Sim(Sz,Sc) is the similarity score of pattern-constrained alignment between 

sequences Sz and Sc. Care must be taken to handle the variety of pattern matches, 

such as inversion of the same pattern or a pattern appearing several times in the 

same sequence. Let Sa and Sb be two sequences of length m and n, and p be a shared 

pattern between the two sequences. The similarity scores of pattern-constrained align

ments can be computed by using a customized dynamic programming algorithm as 

in Equation 6.2.2. 

Simi-hj-i + S(Sa[i], Sb[j]), l< z<k,z^c 

Sirriij = max < 
Sirrii-xj -wx,x>l 

Sirriij-y — wy,y > 1 

Sirrii-ienj-ien + \score(p)\ x reward + score(p) 

(6.2.2) 

Where Sim^j is the similarity score obtained when aligning the beginning se

quences ^[l.-.i] and S^l.-.j] (the Sim^ score is larger, the distance D(Sa[l...i], St,[l...j}) 

is smaller); p is a shared pattern ending at position (i, j); len is the length of p; 

«S>(50[t]5t[;']) is the score for aligning the characters at position i and j in sequence 

5 a and S&; wx and wy are the penalties for gaps of length x and y in sequence Sa 
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and Sb', score(p) is the score of aligning two occurrences of the pattern p. In the 

position (i, j), its score is determined by four paths, three of them are the same with 

the original algorithm: match, insertion and deletion. Another path is the match of 

the shared pattern beginning at the (i — len + 1, j — len + 1). Figure 6.1 shows the 

dependency. In order to favor the alignment of patterns, it gives an additive reward 

to the score when a pattern matching. It is possible for two occurrences of a pattern 

to have a negative alignment score so that we use \score(p)\ x reward + score(p) to 

ensure a positive reward of the pattern match. And it is obvious that this score also 

would correlate with the strength of match among patterns. 

• 
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Figure 6.1: Block dependency 

When doing trace back, it also needs to consider a pattern path. If the current 

maximum score is determined by a pattern score with reward, the trace back path 

should be along a diagonal to trace back len steps. 
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In some situation, the occurrences of patterns may have different lengths if they 

are obtained from regular expression databases, such as the the PROSITE databank. 

This is because the same PROSITE regular expression in two sequences can contain 

variable length of subpatterns. In order to match such patterns, we first set the area 

with variable length, such as x(5,8), as the area of insertions/deletions in the patterns. 

Let position (i,j) be the current indices of aligning two occurrences (x and y) of a 

pattern, (xb-..xe) be the area of insertions/deletions in the occurrence x, (yb---ye) be 

the area of insertions/deletions in the occurrence y. If position (i,j) does not belong 

to the insertion/deletion area, the letter x{ faces the letter j/j. If position (i,j) belongs 

to the insertions/deletions area, the Needleman-Wunsch algorithm is used align two 

substrings of (xf,...xe) and (yb---ye)-

For those patterns from the BLOCKS+ database, instead of a regular expression 

database, the occurrences of patterns are of the same length, which can reduce some 

hypothetical affects when doing variable length pattern matching. 

3. Constructing the alignment M with the rest (k-1) sequences in S 

Initially, let M = Sc. Sequence Sz(l < z < k, z ^ c) is added to M progressively 

by using Equation 6.2.2 such that the alignment of each newly added sequences, Sz 

with Sc is optimal. In order to form a multiple sequence alignment, spaces need to 

be inserted into each pre-aligned sequences. 

6.3 Bound evaluation 

The similarity score of the PCMSA algorithm is bounded by an approximation ratio 

of 2(k-u t o the- similarity score of the optimal pattern-constrained alignment. 

Given S — Si,..., Sk, Sc G S is the center sequence for which J2%^c Sim(Si, Sc) is 
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maximum and a multiple alignment M. 

Let M* be the optimal pattern-constrained alignment of S, Sim(M*) is the simi

larity score of M*. 

Let Mc be the pattern-constrained alignment induced by the center sequence Sc, 

Sim(Mc) is the similarity score of Mc. 

d*(Si,Sj) is the value of pattern-constrained alignment between Si and Sj 

induced by M*. 

Sim(Si,Sj) is the similarity score of the pattern-constrained pairwise align

ment it induces on Si, Sj. 

d(Si, Sj) is the distance between Si, Sj, Sim(Si, Sj) — d ( g
1

g ) . 

D(Si,Sj) is the optimal distance between sequences Si, Sj. 

Proof: 

Using the triangular inequality, we have d(Si, Sj) < d(Si, Sc) + d(Sc, Sj). For each 

Si,i 7̂  c, the alignment Mc induces an optimal pairwise alignment between Sc and 

Si. Thus, d(Si, Se) = D{SU Se)t and d(Su Sj) < D{SU Sc) + D{SC, Sj). 

We have: 

Lemma For 1 < i, j < k, i ^ j it holds that d(Si, Sj) < D(Si, Sc) + D(SC, Sj). 

Let's show that the approximation ratio: 

Sim(Mc) > k ^ I 
Sim(M') — 2(fc-l) ^ 2 

Proof: 

2Sim(Mc) = J2¥j Sim(St, Sj) = £ l # J ^ 

According to the lemma: d(Si,Sj) < D(Si, Sc) + D(SC, Sj), we have 

Let X be ^ ^ D(SC, Si) and we get: 
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2Sim(Mc) > ^ ^ 

On the other hand, 

2Sim{M*) = £ ¥ i Sim'iS^ Sj) 

^ < J 

Based on the definition of S"c 

E, £ ,* £>($, $) > E, E,#c £>(&, 5,) = Ei A" = kx 

Thus, 

2Sim{M*) < -± 

And finally, 

5tm(Mc) •> 2(fc-i)x kX k ^ 1 
Sim(M') — I E — 2(k-l)X ~ 2(fc-l) * 2 

6.4 Experimental results 

To evaluate the performance of the PCMSA algorithm, it is compared with the 

ClustalW program, the most widely used method for multiple sequence alignment, 

on two datasets. 

Test da tase ts 

• Datasetl: six aminoacyl-tRNA synthetase sequences, SYR_PHOLL, SYR.CAEEL, 

COA1.POVBK, SYQ.HUMAN, CBI02_STRAW and SP1JIARFA. The shared 

pattern in aminoacyl-transfer RNA synthetases is PS00178: aminoacyl-transfer 

RNA synthetases class-I signature. 

PS00178: P - x(0,2) - [GSTAN] - [DENQGAPK] - x - [LIVMFP] - [HT] -

[LIVMYAC] - G - [HNTG] - [LIVMFYSTAGPC] 
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• Dataset2: eight sequences, CYTC.HUMAN, CYT.ONCMY, CYT1_MAIZE, 

CYTX.ONCVO, KNG1.BOVIN, ADPP_BACSU, MARAY_ENTFA and KGUAJ3ACFI 

The eight sequences share a PROSITE pattern PS00278: staphyloccocal entero-

toxin/Streptococcal pyrogenic exotoxin signature 2. 

PS00278: [GSTEQKRV] - Q - [LIVT] - [VAF] - [SAGQ] - G - DG - [LIVMNK] 

- TK - x - [LIVMFY] - x - [LIVMFYA] - [DENQKRHSIV] , 

For the Dataset 1, the six aminoacyl-tRNA synthetase sequences are aligned in 

Figure 6.2. Aminoacyl-tRNA synthetases (P.Schimmel 1987) are a group of enzymes 

which activate amino acids and transfer them to specific tRNA molecules as the first 

step in protein biosynthesis. In prokaryotic organisms there are at least twenty differ

ent types of aminoacyl-tRNA synthetases, one for each different amino acid. In eu-

karyotes there are generally two aminoacyl-tRNA synthetases for each different amino 

acid: one cytosolic form and a mitochondrial form. While all these enzymes have a 

common function, they are widely diverse in terms of sub unit size and of quaternary 

structure. These aminoacyl-tRNA synthetases are referred to as class-I synthetases 

(M.Delarue & D.Moras 1993) (P.Schimmel 1991) (G.M.Nagel & R.F.Doolittle 1991) 

and seem to share the same tertiary structure based on a Rossmann fold. It was found 

that the aminoacyl-tRNA synthetases share a region of similarity in the consensus 

tetrapeptide PS00178: P - x(0,2) - [GSTAN] - [DENQGAPK] - x - [LIVMFP] - [HT] 

- [LIVMYAC] - G - [HNTG] - [LIVMFYSTAGPC], which is well conserved. This 

pattern is defined as aminoacyl-transfer RNA synthetases class-I signature. Figure 

6.2 indicates that the ClutalW algorithm is unable to align the pattern PS00178, but 

the PCMSA makes it possible to align the region of similarity in their N-terminal 

section. 
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spIQ7N565|SYR_PHOLL 
sp|0.19625 |SYR_CAEEL 
sp|P03088|C0A1_P0VBK 
sp|P47897|SYQ_HUHAN 
sp | Q82B58 | CBI02_STRAtf 
sp|Q05308|SPl RARFA 

TPAK-PQTIW-D YS A 'NVAKQHHVGHLP 3T11GDAAVRTLEFLGHKVIR 
PKLT-RKRVLV-DFSSpMIAKEMHVGHLF^TIIGDSICRLFEAVGFDVLR 
S AEN DFSSDSPERKMLPCYSTARIP LfolLNEDLTC 
HKP G- ENYKTP -G YWTP HTMNLL KQHL EITGG- -QVRTRF PJPEPNGILE 
LSGGQQQRVAI-GSVLTPHPKVLVLDEPTSALD PAAAEEVLA 
SKNAPSDIKNVNSWWVDPATNKWIEARSKKAAK AAATAAGLTA 

sp|Q7N565|SYR_PHOLL 
sp|Q1982 5|SYR_CAEEL 
sp|P03088|C0A1_P0VBK 
sp|P47897|SYQ_HUHAN 
sp|Q82B58|CBI02_STRAU 
sp|Q05308|SPl RARFA 

ANHVGDWGTQF GHLIAYLEKVQNENASDMA-LSDLEAFYRE 
VNHIGDTJGTQF GHLIAHLYDRFPDFLKKLPDISDLQAFYKE 
|GM ilLHWEAVTVQTEVIG ITSMLNLHAG 
lIGHAKAINFNFGYAKAMTJGICFLRFIiDTMPEKEEAKFFTAICDHVAIirLGY 
VLQRLVHDLG- TTVLHAEHRLERWQYADRVALl|PAPGAP| 
GTYEIT — VSDDVIVPVRDYTJGGDALSGCTLAFPVTl 

sp|Q7N565f 
sp|Q19825| 
sp|P03088| 
sp|P47897| 
sp|Q82B58| 
sp|Q05308| 

5YR_PH0LL 
SYR_CAEEL 
C0A1_P0VBK 
SYQ_HUMAN 
CBI02_STRAW 
S P 1 RARFA 

AKKHYD ED E E F AIRARGYWKL QGGDE YC RTMWRKL VDITHAQNOQTYDR 
SKKRFDEDEQFKKRAYEYWKLQSHDGDIVKAWWTICDVSKKYNQIVYNY 
SQKVHEHGGGKPIQGSNFHFFAVGGE P 
TPYKVTYASDYFDQLYAWAVELIRRG—LAYVCHQRGEELKGHNTLPSPW 
t TL GTPJP E VM A AS P VYP P WD L GRL AG WSPLPLTV 
GGF L TAGHClAVEGKGHILKTEHTGGOIG —: TV 

sp|Q7N5651SYR_PH0LL 

spl Q198251SYR~CAEZL 

sp]P030B8IC0A1_P0VBK 

sp|P47897|SYQ_HUHAN 

sp|Q82B58|CBI02_STRA« 

s p | Q 0 5 3 0 8 | S P l RARFA 

(a) 

-TI-IG-D. 

TI-IG-D. 

— I - i - E . 

V—T P--A K-P-Q-T— I--V—V-D-Y S—-A-PNVAKQHHVGHUS 
IFLNTDYLRRQISLLASEGVKLP-KLTRKRV--L—V-D-F S S - - PNIAKEHHVGHL 35 

L p _ _ c Y - S — T — A - R — I p L ~ PKLHEDLTCGNL, 

V — T PH-THNLLK-Q-HLE—I--TGGQVRTRF P PEPNGILHIGHASAINFNFGYA. 

7 — X V - - L — - H - A E H - R — L E R V — V - Q - Y ADRV-ALL'APGAPLTLGTP-P-EV-HA-A. 

L — T AG-nEI-TVSDD-V—I--VP--VRD-YDGGDALSGCTLAF-'VYGGFLTAGHC-A--V-EG-K. 

(b) 

Figure 6.2: (a)ClustalW aligns 6 sequences in Datasetl with one pattern; (b)PCMSA 
aligns 6 sequences in Datasetl with one pattern 
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In Figure 6.3, eight sequences of inhibitors of cysteine proteases (A.J.Barrett 1987) 

(N.D.Rawlings & A.J.Barrett 1990)(V.Turk & W.Bode 1991) in Dataset 2 are aligned. 

Inhibitors of cysteine proteases are found in the tissues and body fluids of animals, 

in the larva of the worm Onchocerca volvulus (S.Lustigman, B.Brotman, T.Huima 

& A.M.Prince 1991), as well as in plants. They are grouped into three distinct but 

related families: 

(1) Type 1 cystatins (or stefins), molecules of about 100 amino acid residues with 

neither disulfide bonds nor carbohydrate groups. 

(2) Type 2 cystatins, molecules of about 115 amino acid residues which contain 

one or two disulfide loops near their C-terminus. 

(3) Kininogens, which are multifunctional plasma glycoproteins. 

Sequences known to belong to these families detected all have a consensus pattern, 

PS00278: [GSTEQKRV]-Q-[LIVT]-[VAF]-[SAGQ]-G-DG-[LIVMNK]-TK-x-[LIVMFY]-

x-[LIVMFYA]-[DENQKRHSIV], in which five residues have been proposed to be im

portant for the binding to the cysteine proteases. As shown in Figure 6.3, the PCMSA 

successfully works out staphyloccocal enterotoxin/Streptococcal pyrogenic exotoxin 

signature 2 while the ClustalW fails to align the conserved pattern. 
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s p j P 0 1 0 3 4 | 
s p | Q 9 1 1 9 5 | 
s p | P 3 1 7 2 6 | 
s p | P 2 2 0 8 5 | 
s p | P 0 1 0 4 4 | 
s p | P 5 4 5 7 0 | 
s p | 0 0 7 1 0 7 | 
s p | Q 6 4 P Y l | 

CYTC_HUHAN 
CYT_0NCHY 
CYT1_HAIZE 
CYTX_0NCV0 
KNG1_B0VIN 
ADPP_BACSU 
HRAY_ENTFA 
KGUA BACFR 

—HAGPLRAPLLLLAILAVALAVSPAAGS— • — . - ^ — 
HEUKIWP LFAVAFTVAN-AG ,——— , - — 

KHRIVSLVAALLVLLALAAVSSTRSTQKES 
IHLLLFSWALVQLQGAKSARAKNPSKHES 
VKRAQRQWSGHNYEVHYSIAQTMCSKEEFSFLTPDCKSLS5GDTGECTDKAHVDVKLRI 
EKTIA^EQIFSGKVIDLYVE^VELPMGKAS • 
HGLFFHQFTPSLLIILFILVLYGLLGYLDDFIKVFK ____^___ ,__ 
AKVIIFSAPSGSGKSTIINYLLAQKLNLAFS- . • - , — — — — 

s p | P O 1 0 3 4 | 
s p | Q 9 1 1 9 5 | 
s p | P 3 1 7 2 6 | 
s p | P 2 2 0 8 S | 
s p | P 0 1 0 4 4 | 
s p | P 5 4 5 7 0 | 
s p | O 0 7 1 0 7 | 
s p | Q 6 4 P Y l | 

CYTC_HUHAN 
CYT_0NCHY 
CYT1_HAI2E 
CYTX_0NCV0 
KNG1_B0VIN 
ADPP_BACSH 
HRAY_ENTFA 
KGUA BACFR 

, S P G KP-PRLVGGPHDASVEEE GVRRALDFA-VGEYNK A 
LIGGPMDANMNDQ GTRDALQFA-WEHNK K 

VAD NA-GHLAGGIKDVPANENDL—QLQELARFA-VNEHNQ— K 
KTGENQDR-PVLLGGUEDRDPKDE EILELLPSI-LHKVNE Q 

SSFSQKCDLYPVKDFVQPP-TRLCAGCPKPIPVDSP DLEEPLSHS-IAKLNA E 
KREIVKHPGAVAVLAVTDEGKIIHVK QFRKPLERT-IVEIPAGKLE 

KRNHGLNSRQKL 3GQIFGGLVFYFVYR 3EGFSDTLDLFGVAEVPLG—I 
»*«.«* ISATSRPPRGNEKHGVEYFFLSPD——EFRQRIANNEFLEYEE---V 

s p | P 0 1 0 3 4 | 
s p | Q 9 1 1 9 5 | 
s p | P 3 1 7 2 6 | 
s p | P 2 2 0 8 S | 
s p | P 0 1 0 4 4 | 
s p | P 5 4 5 7 0 | 
s p | 0 0 7 1 0 7 1 
s p | Q 6 4 P Y l | 

CYTC_HUHAN 
CYT_0NCHY 
CYT1_MAIZE 
CYTX_0NCV0 
KNG1_B0VIN 
ADPP_BACSD 
MRAY_ENTFA 
KGUA BACFR 

SNDMYHSRALQWRARKQIVAGVNYFLDVEpRTTCTKTQPNLDNCPFHDQPHLKRKAFC 
TNDHFVRQVAKWMAQKQWSGHKYIFTVQHGRTPCRKGG-VEKVCSVHKDPQHAVPYKC 
ANALLG--FEKLVKAHTQWAGTHYYLTIEUKDGEVKK LYEAKVWEKPWENFKQLQ 
SNDEYHLHPIKLLKVaSQWAGVKYKHDVQpRSQCKKSSNEKVDLTKCKKLEGHPEKVH 
HDGAFYFKIDTVKKAWQWAGLKYSIVFIft.RETTCSKGS-NEELTKSCEINIHGQILHC 

KGEEPEYTALRELEEETGYTAKKLTKITAFYTSPGFADEIVHVFLAEELSVLEEKRELDE 
FYGVFIIFgLVGFSNAVNLTDGIDG-LVAGLGTISFGTYAIIAWKQQQFDWIICLSVIG 
YTDRFYG—TLKAQVEKQLAAGCjHWFDVPlVVGGCMIKKYYGERALSLFIQPPCIDELRR 

sp|PO1034| 

sp|Q91195| 

sp|P31726| 

sp|P22085| 

sp|P01044| 

sp|P54570| 

sp|007107| 

sp|Q64PYl| 

CYTCJUHAN 

CYT_0NCHY 

CYTIJAIZE 

CYTX~0NCV0 

KNG1J0VIN 

ADPPJACSU 

HRAY_ENTFA 

KGUA BACFR 

(a) 

- A L Q — V -

--Q V-A—K—V~ 
F - I — K — L ~ 

~ P - — I K — L -

FVQPPTRLCAGCPKPIPVD 
A — K 

- V — R A - R - — 

- V — N A - Q — -

- V — K A - K 

- L — K V - S 

KQIVAGVNYFLDVE 

KQWSGHKYIFTVQ 

TQWAGTMYYLTIE 

SQWAGVKYKHDVQ 

PDLEEPLSHSIAKLNAEHDGAFYFKIDTVKKilTOWAGLKYSIVFI 

- D F — I K V F K - K R N - H G - -

—E VYTD--RFYGT— 

- L — N S R Q K L I -

- L — K A - Q V E -

l-L-

1 -

V-

V-

-EQIFSGKVIDLYVE)VELPN-

-GQIFGGLVFYFVYR5E 

KQL AAGQNWFDVD /VGGCNIKKYY 

(b) 

Figure 6.3: (a)ClustalW aligns 8 sequences in Dataset2 with one pattern; (b)PCMSA 
aligns 8 sequences in Dataset2 with one pattern 
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6.5 Summary and discussions 

The proposed algorithm effectively brings the information available from the existing 

pattern databases into multiple sequence alignment. Researchers can now pay more 

attention to the biological characters on sequence alignment than common string 

sequence alignment. For the rapid increase of protein-coding sequences, the pattern-

based algorithm becomes more important for interpreting the large volume of sequence 

data. 
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Chapter 7 

Conclusions and Future Work 

This final chapter concludes the research work in the PhD study and discusses various 

aspects of future work for better HPC solutions to the problems of computational 

biology and exploration of more applications. 

7.1 Conclusions 

The objective of this study is to use the power of high performance computing to speed 

up the processes of sequence analysis, and to avoid compromising with incomplete 

results, missing some optimal results and shallow computing on large datasets. 

We began by studying the algorithms of sequence comparison. The complexity 

of sequence comparison problems and the necessity to deal with large-scale biological 

sequences makes the development of fast algorithms with low memory requirements 

becomes a great concern. To meet these demands, two new algorithms for analyzing 

these biological sequences are presented to gain parallel computing power at low cost. 

The first one is a "block-based wavefront" algorithm developed to speedup optimal 

pairwise alignment. Evaluation of the experimental results shows that the proposed 

algorithm can take the advantage of dynamic programming technique and utilize 
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parallel computing to meet the requirements of comparing long sequences without 

compromising the optimal results. The second one is a fast and practicable algorithm 

for multiple sequence alignment. The proposed algorithm effectively parallelized the 

stage of building guiding trees and the other stages of the ClustalW algorithm. It 

results in significantly better performance than other comparable implementations. 

We then proceeded to the reconstruction of phylogenetic trees. One of the "grand 

challenges" in HPC computational biology is the computation of the "Tree of life" 

containing all living organisms. Currently the most accurate methods for the recon

struction of phylogenetic trees are based on maximum parsimony (MP) and maxi

mum likelihood (ML). Among MP and ML, Rec-I-DCM3 and RAxML are the fastest 

and most accurate programs respectively. In this research, a flexible parallel divide-

and-conquer model was designed, which significantly outperforms REC-I-DCM3 and 

RAxML on all the real-world tested data sets containing from 5000 to 13,921 organ

isms. With respect to memory requirements and reasonable inference time, it appears 

to be the only model which is currently capable to handle huge alignments (over 5.000 

taxa). If we take the Dataset 1 as an example, the best trial of the model finds a 

better score than any previous method. Achieving the best known score took about 

123 hours by the Rec-I-DCM3, whereas the proposed model found it within 24 hours. 

We also designed a pattern-constrained multiple sequence alignment algorithm to 

ensure that the generated alignment satisfies the criterion that crucial residues are 

aligned together. The proposed method effectively brings the information available in 

existing pattern databases into multiple sequence alignment. It is able to differentiate 

patterns which need to be aligned together from other residues, an essential property 

for accurate and biologically meaningful sequence alignment. It is proven that the 
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similarity score worked out by this method has an approximation ratio of 2tk-i) t o t n a t 

of the optimal pattern-constrained alignment, where k is the number of sequences. 

We integrated these solutions into a parallel sequence analysis system on a cus

tomized multi-node cluster, which significantly improves computational performance 

on sequence analysis problems in computational biology. It should be pointed out 

that such a parallel and distributed system is developed for a general MIMD archi

tecture, which is widely available in computational biology laboratories, instead of 

an expensive special hardware design. Applications of these novel algorithms avoid 

prohibitively long computations for full datasets, which is essential for meaningful in

terpretation of empirical data. Researchers, working on problems involving enormous 

computations, complex optimizations etc, will benefit from using the system. 

7.2 Future Work 

In the future, we hope to further improve our system regarding the previously ad

dressed shortfalls and to add more extensive functions for other complex problems in 

computational biology. 

7.2.1 Computation of the "tree of life" 

Despite the fact that the parallel divide-and-conquer model currently enables the 

computation of comparatively large trees, the scalability and efficiency of pPhylo(MP) 

and pPhylo(ML) still needs to be improved. We have discussed the technical as well 

as algorithmic problems and limitations concerning the parallelization of the global 

method and the load imbalance within the base method in Chapter 5. Thus, the 
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development of a more scalable parallel algorithm for global optimization and a more 

thorough investigation of subproblem load imbalance constitute the main issue of 

future work. 

One straight-forward technical solution to this problem is the design of a hybrid 

message-passing/shared-memory (MPI/OpenMP) parallelization of global rearrange

ment algorithm, for two reasons: Firstly, the fine-grained shared memory paralleliza

tion leads to super linear speedups on large datasets (Stamatakis, Ott & Ludwig 2005) 

due to improved cache efficiency; it will help to resolve memory shortage problems on 

very large and long alignments containing more than 10,000 sequences. Secondly, such 

an implementation will reduce the number of working processes which has a significant 

impact on the parallel efficiency of the current implementation. This reduction in the 

number of workers while maintaining the same amount of computational power will 

have a positive impact on the performance of the base as well as the global method. 

7.2.2 Sequence analysis using grid computing 

Parallel computing on a cluster of compute nodes has been already used successfully 

in sequence analysis, but it is not enough, due to the limit of the number of compute 

nodes. Grid computing has a potential for the expansion in computing performance by 

connecting a large number of computers or clusters with high performance networks. 

Grid system can incorporate more computational resources and help us speedup the 

experimental time. In the future, we want to integrate the grid technology and our 

system to implement all kinds of sequence analysis applications, so that we can speed 

up the sequence analysis time by many compute nodes of the grid system. 
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7.2.3 Development of more applications 

We have focused mainly on boosting sequence analysis. Other problems in com

putational biology remain unsolved as far as parallel computing is concerned. We 

are interested in more challenging algorithms in computational biology and hope to 

extend our work in the years ahead. 

Protein structure alignment 

Computer programs have been created that give scientists the ability to look at the 

three dimensional shape of proteins. Examining a protein in three dimensions allows 

for greater understanding of protein functions. A complete three-dimensional struc

ture is synthesized by tertiary structure. Unfortunately predicting protein structure 

from sequences is not an easy task. The common technique used is the comparison 

of a proposed shape to a database of known shapes, which is called structural align

ment. It is of a value for the comparison of proteins in the so called "twilight zone", 

where the proteins are no longer recognizable because their sequences have changed 

too much through mutations, insertions and deletions during their evolution, but 

often their structures are preserved well. Protein structural alignment plays an im

portant role in protein structure prediction, fold family classification, motif finding, 

and phylogenetic tree reconstruction and etc. It is analogous to sequence alignment, 

but more challenging because they are complex three-dimensional structures. There 

are some characteristics of the protein structure comparison that suggest HPC: large 

databases, frequent updates of the databases, high computational requirements and 

visualization. 
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Multiple genome alignment 

In this area, the most striking change is the sheer volume of the available data. 

In 1995, the first two publications of microbial whole genome sequencing projects 

were published. Only several years later, there are almost 60 completed and anno

tated genomes available, such as eubacteria, archaebacteria, yeast and etc. Multiple 

genome alignment seeks to identify all similarities between a set of genome sequences. 

It will help us to identify differences between organisms, find functional assignment, 

evolution history and conserved region. However, multiple genome alignment is a 

challenging task due to its high demands for computational power and memory ca

pacity Additionally, genomes have some different natures with single protein se

quence or DNA sequence containing a single gene or operon, such as rearrangements 

(e.g. exon shuffling or other non-syntenous regions resulting from intra-molecular 

recombinations), large insertions or deletions (sequences that share several regions of 

local similarity separated by unrelated regions), repeated elements (e.g. duplicated 

genes/operons, transposons, SINES,LINES etc.), tandem repeats, and inherent prob

lems of gene regulatory elements, including their small size and relative resistance to 

small insertions/deletions or substitutions. Therefore, it needs a faster algorithm to 

align whole genomes with reliable output, reasonable cost and better display. This 

may present a serious challenge for efficient parallel execution. 

Analyzing the evolution of virus 

Phylogenetic analysis and ancestral inference of related nucleic acid or protein se

quences are widely used to address problems in virus evolution, and have played a 

very important role in the prediction and identification of newly emerging etiological 
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agents. Due to larger population sizes, shorter generation time and higher mutation 

rates, virus evolves on a faster time scale than larger organisms. Hence, the study of 

virus evolution often requires that existing methods of analysis are modified or that 

novel methods are developed. This future work is reconstructing the evolutionary 

history of different virus and paying particular attention to understanding their ori

gins and the reasons for their emergence, persistence and virulence. It must involve 

the comparative analysis of pathogen sequence data in an evolutionary framework 

because these factors are the direct consequence of viral evolution. For example, the 

extensive sequencing and phylogenetic projects has revealed the diversity and com

plex reticulate evolutionary relationships of HIV. The extremely high rate of sequence 

change of HIV has had important implications for its control by vaccination. The 

urgency for effective control of HIV by vaccination is greater because more than thirty 

five million people currently infected. Therefore, the work is extremely important. 
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Appendix A 

Sample Code for Jacobi Iteration 

To establish a basic understanding and test on the multi-node cluster, we developed 

a protocol program, dealing with typical matrix problem of Jacobi iteration (solve 

Laplace's equation). 

As illustrated in Figure A.l, the algorithm involves a main loop of an iterative 

solver where, at each iteration, the value at a point is replaced by the average of the 

North , South, East and West neighbours, as illustrated. Boundary values do not 

change. We focus on the inner loop, where most of the computation is done. 

Since this algorithm has a simple structure, a data-parallel approach can be used 

to derive an equivalent parallel code. The array can be distributed across processes, 

and each process is assigned the task of updating the entries on the part of the array 

it owns. 

A parallel algorithm is derived from a choice of data distribution. The data 

distribution should be balanced, allocating (roughly) the same number of entries 

to each processor; and it should minimize communication. There are two possible 

distributions, as shown in Figure A.2: 

• ID (block) distribution, where the matrix is partitioned in one dimension, and 
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Figure A.l: Jacobi iteration, four-point stencil 

2D (block,block) distribution, where the matrix is partitioned in two dimensions. 

Since the communication occurs at block boundaries, communication volume is 

minimized by the 2D partition which has a better area to perimeter ratio. However, 

in this partition, each processor communicates with four neighbors, rather than two 

neighbors in the ID partition. When the ratio of n/p (n is the problem size, p is the 

number of processors) is small, communication time will be dominated by the fixed 

overhead per message, and the first partition will lead to better performance. When 

the ratio is large, the second partition will result in better performance. 

Suppose we use the second partition. Table A.l gives the pseudo code of the 

parallel Jacobi algorithm. The ghost points are stored on other processors which 

are required for the calculation of the next iteration of the unknowns on a local 

processor. Communications are simplified if an overlap area is allocated at each 

process for storing the values to be received from the neighbor process. Essentially, 
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Figure A.2: Jacobi partition 

storage is allocated for each entry both at the producer and at the consumer of that 

entry. If an entry is produced by one process and consumed by another, then storage 

is allocated for this entry at both processes. With such scheme there is no need for 

dynamic allocation of communication buffers, and the location of each variable is 

fixed. Such scheme works whenever the data dependencies in the computation are 

fixed and simple. 

Table A.l: Parallelized Jacobi algorithm 

Choose initial values for the own mesh points and the ghost points 
Choose initial Precision (e.g. Precision = 1010) 
While Precision > e (e.g. e = 10 -5) 

1. Calculate next iteration for the own domain 
2. Send the new iteration on boundary of domain to neighboring processors 
3. Receive the new iteration for the ghost points 
4. Calculate Precision 

End While 

Figure A.3 shows the running parameters of the parallel program: resource request 

via prun; number of nodes (-N); number of processes (-n); number of CPUS per 

process (-c). Using this protocal, we tested various conditions for tuning our system 
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Figure A.3: Jacobi Results 
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