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Abstract

Multiscale modeling approaches have attracted a lot of attention in the past

decade due to the computationally e�cient solutions o�ered by multiscale models

for problems characterized by multiple length/time scales. Multiscale methods

take advantage of the localized nature of physical problems and use more than

one computational model for an accurate description of a system across di�erent

length/time scales. Typical examples would be nanoindentation and nanoscratching

problems, where the region near the point of indentation or scratching is subject to

large deformation gradients and therefore require Angstrom scale descriptions, while

the region away from these points will experience signi�cantly smaller strains and

can be satisfactorily described using some suitable continuum models. The logical

approach for solving these problems would be to build a multiscale model that

advantageously couples di�erent computational models. In these cases, a multiscale

model that uses both the molecular dynamics and the �nite element/meshless

approach could be used, with the molecular dynamics method providing an accurate

solution in the region surrounding the crack tip, and the continuum model providing

a reasonably accurate solution in the far-�eld.

An atomistic or continuum model cannot in itself be used for these types of problems

as it might be computationally prohibitive to simulate the entire problem using

an atomistic model, whereas a continuum model may not be able to describe the

entire problem accurately. Building a multiscale model thus ensures accurate results

by using the most appropriate model to describe the physics at respective scales,
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Abstract

and also substantially reduces the computational expense by restricting the method

requiring a higher computational overhead to a small region of the problem domain,

only where it is essential, thereby making it feasible to study problems over larger

length/time scales.

The major challenge involved in developing a multiscale model is to ensure a

seamless interface between the constituent length/time scales. To address this

issue, a novel concurrent multiscale numerical method is proposed in this work to

provide a seamless coupling or handshaking between the atomistic and continuum

scales. The novelty in the proposed multiscale model is that it uses a strong-

form meshless Hermite-cloud method, which approximates both the �eld variable

and corresponding �rst-order derivative simultaneously, for continuum domain

discretization. Therefore, the coupling between the atomistic and continuum scales

is achieved by ensuring the compatibility of both the �eld variable and the �rst-order

derivative, and also ensuring force equilibrium across the overlapping transition

region. The use of a strong-form method further eliminates the need for any mesh

generation.

The proposed multiscale model is validated numerically by solving static and

transient benchmark problems in one and two-dimensional domains, and the results

are presented. In addition, nanoindentation and nanoscratching experiments on

copper thin �lms are simulated using the developed multiscale model and compared

with corresponding full atomistic simulations. The material properties obtained

from the nanoindentation simulation include the load-displacement graph and the

force/unit length values, obtained by dividing the maximum load on the indenter

by its contact perimeter. The nanoscratching problem is solved using an adaptive

node distribution scheme to maintain the size of the atomistic region constant.

The normal and tangential forces, and the coe�cient of friction obtained from the

simulation are analyzed and compared with the values reported in literature.

xii



Chapter 1

Introduction

Modeling and simulation has become an indispensable research tool, and this is

due to the rapid advancements that are taking place in the �eld of engineering

and science, together with a phenomenal increase in the computational resources.

Recently, there is a growing interest in the �eld of nanotechnology due to the

availability of a large number of experimental and modeling tools to characterize

materials at nanoscale. Nanoscale materials in particular, have attracted a lot of

research interest due to their inherent advantages like smaller size, lower structural

weight, better strength and improved electrical and mechanical properties. These

materials have a wide application potential in areas such as nano-electronics, drug-

delivery, sensors, medical diagnostic systems, material reinforcement etc. (Liu et al.,

2004).

One of the major challenges involved in simulating nanoscale systems is that they

are characterized by phenomena occurring across multiple length and/or time scales.

Figure 1.1 shows a multiscale framework, where the length and time scales typically

ranges from a few Angstroms and pico-seconds at the atomistic level to microns

and milli-seconds at the continuum level. Multiscale modeling is a newly developing

�eld that promises accurate and computationally e�cient solutions to such problems,

1



Chapter 1. Introduction

Source: http://www.zib.de/fackeldey/multiscale.html

Source : http://tu-freiberg.de/fakult4/imfd/cms/Multiscale/multiscale.html

Figure 1.1: Schematic of multiscale modeling approach.
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Chapter 1. Introduction

characterized by multiple length and/or time scales.

Multiscale methods take advantage of the fact that in many of the engineering

problems such as crack propagation or nanoindentation the physical phenomena is

localized. If we consider nanoindentation problem as an example, we �nd that the

region beneath the indenter, where the deformation gradients are very high and

the lattice structure is severely deformed, requires an Angstrom scale description,

while the region away from the indenter that experiences smaller strains, can be

satisfactorily described using a continuum model. Hence, we �nd that the problem

requires more than one computational model for an accurate description at di�erent

scales. In this case, the molecular dynamics (MD) method would be able to provide

solution at the atomic scale, where the atoms interact through empirical inter-

atomic potentials, while the continuum region can be modeled using the principles of

elasticity and can be discretized using the �nite element method (FEM) or meshless

approaches. In problems such as the above, a monoscale approach such as the MD or

FEM cannot in itself be used over the entire problem domain for two reasons; �rst,

a coarse scale description such as FEM may not be accurate and valid everywhere

in the problem domain; and second, it might be computationally prohibitive to

simulate the entire problem using a �ne scale approach such as the MD method.

An e�ective solution is therefore to build a model that advantageously couples

di�erent computational models to create a multiscale model. For example, atomistic

and continuum methods could be used in combination to model the nanoindentation

problem discussed above. In this case, a multiscale model that uses both MD and

FEM approaches may be able to capture the deformation behavior of the system,

with the atomistic model providing accurate solution around the indentation site

and the continuum model providing a reasonably accurate solution in the far-�eld.

Building a multiscale model has two major advantages; �rst, using the most

appropriate model to capture the essential physics at respective scales leads to better

3



Chapter 1. Introduction

and accurate results; second, the computational expense is greatly reduced, as the

method requiring a higher computational overhead is limited to a small region of

the problem domain, restricted only to those areas where it is essential. This makes

it computationally feasible to study problems over larger length scales with reduced

computational cost and increased e�ciency, without any signi�cant loss in the

solution accuracy. Multiscale modeling is not only restricted to modeling nanoscale

phenomena; rather the approach can be used for modeling any complex/hybrid

system characterized by multiple length/time scales.

Multiscale modeling also reduces the quantum of information that needs to be

analyzed. If the system is modeled entirely using the lowest time/length scale,

additional degrees of freedom would be involved and the simulation results would

contain a lot of unnecessary information from which meaningful results have to be

extracted. By reducing the number of degrees of freedom in the system, multiscale

models make analysis of results easier. The results obtained from a multiscale

model and the ideal one constructed entirely using the lowest length/time scale

would almost be the same, making the multiscale model cheaper in terms of the

computational cost.

The most important aspect in multiscale modeling is the information exchange

between di�erent scales. In order to do that, it is essential to have a proper

understanding of the ways in which the di�erent scales involved in the problem

are linked together. If we consider the nanoindentation problem, the deformation

behavior around the indenter, modeled with atomistic precision, might depend on

the deformation behavior of the surrounding region, modeled using a continuum

approach and vice-versa. To model this problem, we need to understand how the

atomistic and continuum scales are linked together, the degree to which they are

linked, the type of coupling that needs to be established between them and the

information that needs to be exchanged. The type of coupling and the information

to be exchanged may di�er from problem to problem, and the multiscale model has

4



Chapter 1. Introduction

to use the most appropriate coupling approach to obtain accurate and meaningful

results. The general classes of multiscale methods are discussed in the next section.

1.1 General Classi�cation of Multiscale Methods

The smallest length scales generally encountered in solid state systems is the

subatomic scale comprising of the nuclei and the electrons orbiting around them.

Tight-binding empirical models based on quantum mechanics principles are used at

these scales. At the next higher level is the atomic scale where atoms are treated

as a whole without any regard to the subatomic particles, and their motions are

governed by inter-atomic potentials. Molecular dynamics method is generally used

for modeling systems at these scales. At the highest level is the continuum scale

where matter is regarded as continuous and in�nitely divisible, without regard to

its atomic structure. Constitutive relations and physical laws are used for solving

continuum problems.

As mentioned in the previous section, coupling of length scales plays a major role

in multiscale modeling. The method used for coupling depends on the degree to

which di�erent scales in the problem are linked to each other. In systems where

the scales are weakly linked, coupling may be sequential. In such cases, calculations

are performed at individual scales separately and then information is passed on to

the next higher level. In systems where there is a stronger linking of the scales,

a concurrent approach is more appropriate, wherein a coupling scheme ensures

seamless exchange of information across the transition region. In certain cases the

scales may be so strongly coupled that the use of multiscale model may fail to provide

a solution.

The serial or hierarchical coupling is the simplest type of coupling that has been in

use for a long time and is very appropriate for modeling systems in which the scales

5



Chapter 1. Introduction

are weakly coupled. In this type of coupling the problem domain is broken down

into di�erent scales and information is passed on from the smallest scale to the next

higher level. The use of information from one scale as the input to the next scale

provides the necessary coupling. The simplest example of a serial coupling is the use

of constitutive rules that are obtained by carrying out atomistic scale simulations on

defect free crystals. Another much cited example is the work done by Clementi and

Reddaway (1988), where they used quantum mechanical, MD and �uid dynamic

simulations to compute the tidal circulation at Buzzard's bay. The hierarchical

model is valid only when the scales are well separated and the largest length scale

in the problem can be considered homogeneous and quasi-static, meaning that the

variations at the highest level do not a�ect the smaller scales (Rudd and Broughton,

2000). Though simple to implement, the serial approach is limited because the

�ne scale e�ects that are parametrized by atomistic simulation performed on simple

defect free crystals may not be able to accurately describe complex problems, which

might otherwise be possible from an ideal full atomistic simulation.

Concurrent multiscale models o�er better solutions to problems where the scales

are strongly coupled. In a concurrent multiscale approach, the simulations at

the individual scales are carried out at the same time and there is a continuous

exchange of information between the scales during the simulation. Atomistic-

continuum coupled concurrent multiscale models, that is the focus of this work,

have the atomistic scale centered over the domain of interest, with the continuum

scale surrounding it. The transition region between the two scales facilitates

smooth exchange of information by enforcing appropriate boundary conditions at

the interface to ensure consistency.

The recent reviews on concurrent multiscale models (Broughton et al., 1999; Vveden-

sky, 2004; Park and Liu, 2004; Liu et al., 2004; Miller and Tadmor, 2009), highlight

some of the major developments that have taken place in this �eld. Due to their

vast potential in modeling systems across multiple length and time scales, nanoscale
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systems in particular, concurrent multiscale approaches are increasingly �nding

applications in the �eld of science and engineering and have been successfully applied

to study crack propagation (Lee et al., 2009; Miller et al., 1998b; Kohlho� et al.,

1991; Park et al., 2005a; Ra�i-Tabar et al., 1998), nanoindentation (Chang et al.,

2007; Picu, 2000; Shenoy et al., 2000; Shiari et al., 2008; Smith et al., 2000; Wang

et al., 2008), nanomaterials (Karakasidis and Charitidis, 2007; Liu et al., 2008), wave

propagation (Smirnova et al., 1999), nanometric cutting (Sun et al., 2006), stress

analysis (Lidorikis et al., 2001; Liu et al., 2003) and in modeling complex biological

systems (Ayton et al., 2007; Demongeot et al., 2003). Multiscale approaches that

couple the atomistic and continuum scales are of greater signi�cance and �nd wide

applications in modeling systems at the micro/nano-scale (Curtin and Ronald, 2003).

Di�erent concurrent multiscale approaches basically di�er from each other in the

method used to model the transition region that facilitates the exchange of in-

formation between di�erent scales in the domains. The next section provides a

brief review of some of the concurrent multiscale models developed to date. The

review highlights the salient features of these multiscale models and also identi�es

their major features. The review mainly focuses on multiscale models that couple

atomistic and continuum domains. As the atomic and continuum descriptions

are incompatible, some approximation has to be made and boundary conditions

enforced, along the interface region, so that there is �handshaking� or a smooth

exchange of information. The way in which this �handshaking� is done di�erentiates

various multiscale models.

7
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1.2 An Overview of Di�erent Multiscale Models

1.2.1 The quasicontinuum method

The quasicontinuum method (QC) is an energy based multiscale approach that has

been successfully used to study a number of engineering problems such as crack

propagation/fracture, grain boundary deformation, nanoindentation etc. (Miller

et al., 1998a; Shenoy et al., 1998; Tadmor et al., 1999; Knap and Ortiz, 2001; Tadmor

et al., 1996; Miller et al., 1998b). The review paper by Miller and Tadmor (2002)

highlights the major improvements and development that method has undergone,

and also summarizes some of the key results obtained using it. The QC method

does not di�erentiate atomistic and continuum regions in the computational domain.

Instead, an atom or node in the domain is either classi�ed as a local representative

atom (repatom in short) or a non-local repatom. As the inter-atomic potentials used

in the atomistic models have a global/non-local support and the shape functions used

in the �nite element method have a local support, the non-local and local repatoms

can be indirectly identi�ed with the atomistic and continuum domains respectively.

The objective of the QC method is to determine an expression for the total potential

energy Π of the system and achieve equilibrium by minimization of this energy. In

the QC model the total potential energy of the system, consisting of N atoms, is

expressed as

Π = EQC(ũ) = EA −
N∑
i=1

f exti ũi (1.1)

where EA is the interaction energy of the atoms and fiũi is the potential energy due

to the external load fi on atom i. The interaction energy, EA, is a function of atomic

displacements ũi = xi − Xi, where xi(i = 1........N) is the atomic position of the

atoms in the domain, and Xi is some known reference con�guration. Assuming that

the interaction energy can be de�ned for each atom in the computational domain
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using the atomistic model, the interaction energy EA can be written as

EA = E(ũ1..........ũN) =
N∑
i=1

Ei(ũ1..........ũN) =
N∑
i=1

Ei(ũ) (1.2)

In order to reduce the number of degrees of freedom in the system, a set of atoms

are identi�ed as repatoms (nrep such that nrep � N) and all the remaining atoms

in the system are constrained to follow the displacements of these repatoms. The

repatom position can be chosen based on any set criteria, one such example being

the deformation gradient. If we consider a crack propagation problem as an example,

a majority of the atoms in vicinity of the crack tip, where the deformation gradients

are large, are chosen as repatoms, while only a few are chosen in the regions away

from the crack tip, where the behavior is elastic and the gradients are smaller. A

2D/3D �nite element mesh is then constructed from these repatom positions. The

displacement of all other atoms in the system is then determined from the nodal

repatom displacements U , using interpolation functions, as done in the �nite element

method. The modi�ed expression for the interaction energy is then obtained as

E(U) =
N∑
i=1

Ei( ˜u(U)) (1.3)

The error introduced due to this approximation is controlled by choosing every atom

as repatom in the critical regions.

To determine the total energy of the system, the problem domain is divided into

atomistic and continuum sub-domains and the interaction energy, which is the sum

of atomistic and continuum energies, is written as

EQC = E(U) =
∑
i∈A

Ei(ũ(U)) +
∑
i∈C

Ei(ũ(U)) (1.4)

with subscripts A and C denoting the atomistic and continuum domains respectively.

In simpler terms, the region with higher repatom density is taken as the atomistic
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region and the region with a lower repatom density is considered as the continuum

region. The energy in the atomistic region is calculated in the same manner as in

any full atomistic model, with an additional condition that the padding atoms in the

interface region are constrained to follow the displacements of the continuum region.

As the deformation gradient is uniform in the continuum region, the energy of the

continuum region, subject to an uniform deformation gradient F , is computed by

summing the energies of the atoms over the elements using the Cauchy-Born rule,

resulting in a modi�ed expression for the total energy as

EQC =
∑
i∈A

Ei(ũ(U)) +
∑
e∈C

neΩ0W (F e) (1.5)

where Ω0 is the Wigner-Seitz volume of a single atom in the reference con�guration

and ne is the number of atoms in an element e. An appropriate weighting function

is used for elements that are in the transition region between the atomistic and

continuum domains, to avoid the double counting of energy. The weighting function

takes the value of unity for elements that are not in the interface region.

The novel approach in QC method is the use of Cauchy-Born rule for computing

the energy in the continuum region using an atomistic approach. Also a single

expression for calculating the energies, based on the atomistic position alone, permits

adaptive re-meshing. However, in the QC method the forces on the nodes and atoms

are obtained as the derivatives of the energy functional. This leads to spurious

forces in the transition region, also known as ghost forces, and mainly arise due to

the mismatch between the non-local and local nature of atoms and nodes in the

transition region.
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1.2.2 Cluster-energy quasicontinuum method CQC(m)-E

In the QC method a set of representative atoms or repatoms are chosen to act as

nodes and a �nite element mesh is constructed between them. The displacement

of the all other atoms in the domain are then determined from the repatoms dis-

placements through interpolation functions. In the cluster-energy quasicontinuum

(CQC(m)-E) method (Eidel and Stukowski, 2009), the energy of each atom in the

domain is computed from the energy of a cluster of atoms surrounding each node,

with m denoting the number of atoms in the cluster. The energy of every repatom

I is then computed from the average energy of a set of CI atoms in the cluster as

ĒI(U) =
1

mI

∑
i∈CI

Ei(ũ(U)) (1.6)

where mI is the number of atoms in the cluster I. Obviously, the accuracy is

improved by increasing the number of atoms in the cluster, however with an

increased computational expense. The clusters are of same size, except in the

re�ned regions where the clusters are closer to each other and overlap, and also

in the atomistic region where m = 1. In regions where the clusters overlap each

other, the atoms are assigned to the cluster of the nearest repatom, so that the

same atom does not belong to more than one cluster. The energy of an atom in

the cluster is dictated by the atomic positions of other atoms in the cluster, the

displacements of which are controlled by the nodal/repatom displacements. The

total potential energy Π of the system is then computed as the weighted sum of the

repatom energies as

Π = Etot(U) =
∑
I∈R

nIĒI(U) =
∑
I∈R

nI

mI

∑
i∈CI

Ei(ũ(U)) (1.7)

where R is the set of atoms that are chosen as repatoms, and nI is an appropriate

weighting function assigned to each repatoms in the domain that satis�es the
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condition
∑
I∈R

nI = N, where N is the total number of atoms in the system. In the

fully re�ned atomistic region, where the cluster size is one, the weighting function

also tends to one. The number of atoms in the cluster and the weighting function

distinguish the atomistic and continuum regions. A value of m = 1 and n = 1

corresponds to the atomistic region, while for the continuum region both values are

greater than one. In summary, the energy of the repatoms in the continuum region is

obtained as the average value of the atomistic energy of the cluster, with the atoms

undergoing constrained deformation. The accuracy of the method largely depends

on an appropriate choice of cluster size.

1.2.3 Ghost force corrected quasicontinuum method

As mentioned in Section 1.2.1, the local-non-local mismatch between the continuum

and atomistic descriptions, gives rise to spurious forces in the transition region, also

known as ghost forces. The ghost force corrected quasicontinuum method (Shenoy

et al., 1999), aims to eliminate these ghost forces through a ghost force correction

technique. In this method, the ghost forces are determined for a given reference

con�guration as `dead loads' and the negative of this quantity is then applied at the

a�ected atomic/nodal locations, and the potential energy expression de�ned in Eq.

(1.5) is modi�ed as

EQC =
∑
i∈A

Ei(ũ(U)) +
∑
e∈C

neΩ0W (F e)−
∑
g

gIuI (1.8)

where g is the ghost force computed at the atomic/nodal location I. Though

the above equation corrects the ghost force errors at the interface, it assumes a

constant value of the ghost force which is only valid for an undeformed con�guration.

However, the ghost forces may not remain constant with a changing displacement

�eld and for a non-uniform deformations at the interface, the dead load ghost force

correction technique may lead to additional spurious forces that are not intended.
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To deal with this problem, a new de�nition was proposed for ghost force correction

that eliminates these forces in both the deformed as well as the undeformed

con�gurations. In this new technique, the ghost force on an atom/node is de�ned as

the force that the atom/node would not feel if the entire domain is discretized using

a fully atomistic or continuum approach respectively. The ghost force correction is

then incorporated using this revised de�nition and the problem of constant ghost

forces is dealt with by updating the ghost forces continuously. However this leads

to a di�erent expressions for the energy functional at every time instance, and no

one expression for the potential energy functional for minimization.

The ghost force correction can also be applied to the cluster-energy quasicontinuum

method and it is observed that with ghost force correction applied, the method

produces better and more accurate results even with smaller clusters. For a given

repatom force fCQC(m)−E, computed at every repatom location using a cluster of

radius r andm atoms, the unknown correct forces f ∗ is de�ned as the force computed

with an in�nite cluster radius or in other words with all atoms included in cluster.

An approximate correct force f̃ ∗, is then de�ned as the force on the repatom that

is computed with a slightly larger cluster radius (rnew > r). The di�erence between

the two forces is then taken as the ghost force

g = fCQC−E − f̃ ∗ (1.9)

The ghost force correction is then carried out in a similar fashion as done in the case

of the QC method using Eq. (1.8)

1.2.4 Bridging scale method

The bridging scale method (BSM) (Liu et al., 2006b; Park et al., 2005b; Qian et al.,

2004; Tang et al., 2006a; Wagner and Liu, 2003) is also an energy based formulation
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that couples atomic and continuum scales. In the BSM, the total displacement u of

a body is divided into �ne and coarse scale displacements and written as

u = u′ + u′′ (1.10)

where u′ and u′′ correspond to the coarse and �ne scale displacements respectively.

Consider a system consisting of na atoms with the atomic displacement ui, de�ned

at the ith atom with initial position Xi. The coarse scale component u′(Xi), is

a continuous displacement �eld that can be computed everywhere in the problem

domain using �nite element or meshfree shape functions de�ned over a set of nodal

locations nc. The coarse scale displacement u′(Xi), at an atomic position Xi can

therefore be interpolated as

u′(Xi) = Nd (1.11)

where d is the nodal displacement vector and N is the shape function matrix.

The �ne scale solution is the part of the total displacement that cannot be

represented by the coarse scale. The �ne scale displacement qi computed using

the molecular dynamics approach also includes a part of the solution that can be

computed using the coarse scale approach. Therefore, the �ne scale solution is

obtained by subtracting from the �ne scale displacement, qi, the projection of the

�ne scale displacement on the shape function NI , using a projection operator that

minimizes the mass weighted square of the di�erence between the coarse and total

scales at an atom, and is given as

∑
i

mi

(
qi −

∑
I

N i
IwI

)2

(1.12)

where wI is a set of nodal degrees of freedom that minimizes the above equation
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and mi is the atomic mass. The �ne scale displacement is �nally obtained as

u′′ = q −Nw or u′′ = q − Pq (1.13)

where P is the projection operator. The total displacement can be �nally obtained

as a sum of coarse and �ne scale displacements as

u = Nd+ q − Pq (1.14)

The terms Pq in the above equation is called the bridging scale that must be sub-

tracted from the total displacement to make the coarse and �ne scales independent

of each other.

The atomic displacements and their time derivatives are used to compute the

Lagrangian L of the system, from which the equations of motion for the �ne and

coarse scale degrees of freedom derived as

Md̈ = −∂U
∂d

(1.15)

MAq̈ = −∂U
∂q

(1.16)

where U is the potential energy and M, MA are the mass matrices corresponding to

the coarse and �ne scales respectively. The force obtained as the negative derivative

of the potential energy is a function of both �ne and coarse scales. As both q and u

satisfy the same equations of motion, the coarse scale solution can be obtained from

the �ne-scale solution by projection.

The objective of the BSM is to restrict the �ne scale description to a small region

in the problem domain, at the same time retaining the e�ects of the �ne scale in

the coarse scale region. The coupling in the BSM is thus achieved in two steps.

First, the �ne scale degrees of freedom outside the MD region are eliminated and

appropriately accounted, so that the coarse scale does not become redundant. The
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elimination introduces an additional boundary force in the MD equations of motion

in the form of a time history kernel that represents the dissipation of �ne scale energy

outside the MD region. The time history kernel is solved analytically using Laplace

transform taking advantage of the periodic nature of atomic lattices, but can also

be solved numerically in complicated cases. Next, the coarse scale internal forces

are computed from the �ne scale internal force ensuring the exchange of information

between MD and continuum regions.

The clear distinction between the coarse and �ne scales in the BSM results in a

smaller number of integration points and time steps for integrating the equations

of motion. Finally, the bridging scale method can also be used to solve dynamic

problems at �nite temperature.

1.2.5 Finite element atomistic (FEAt) method

The FEAt method (Izumi et al., 2001; Kohlho� et al., 1991) is one of the earliest

multiscale models to be developed. The method is based on a force-based formu-

lation and accounts for the local/non-local mismatch at the atomistic/continuum

interface by employing a non-local continuum formulation in the interface region.

In the FEAt method, the coupling between the atomistic and continuum domains

is e�ected through a set of interface and pad atoms. The continuum region is

graded down at the transition region such that the nodes coincide with both the

transition and pad atoms. The method uses the Embedded atom model (EAM) in

the atomistic region and hence the padding region thickness must at least be equal

to twice the cut-o� radius used in the inter-atomic potential, to ensure that the

atoms have their compliment of neighbors. Coupling between the two domains is

achieved by enforcing appropriate boundary conditions at the interface.

The FEAt method in addition, addresses the non-local/local mismatch between the

atomistic and continuum domains by using a non-local continuum formulation in
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the interface region. The energy of the an element i in the continuum region is

de�ned in two ways; a local non-linear formulation for elements that are fully in the

continuum region and a non-local formulation for the elements in the pad region,

which are given as

E
(non−linear)
i =

´
Ωi
Wnon−linear(X)dV

E
(non−local)
i =

´
Ωi
Wnon−local(X)dV

(1.17)

where Ωi is the volume of element i, and W , the strain energy density at a point X,

is de�ned in the two regions as

Wnon−linear(X) = 1
2
[C.ε(X)] : ε(X) + 1

6
[ε(X)T .C ′.ε(X)] : ε(X)

Wnon−local(X) = 1
2

´
Ωi [C

∗(X −X ′).ε(X ′)] : ε(X)dV ′
(1.18)

where ε(X) is the strain tensor evaluated at the point X, C∗ is a material-dependent

non-local kernel, and C, C ′ are elastic constants that are chosen such that the

mismatch between the material models used in the atomistic and continuum domains

is minimized.

The use of a non-local continuum formulation minimizes transition e�ects when

moving from a non-local atomistic region to a local continuum region. The total

energy of the elements in the continuum region is then obtained by summing the

local or non-linear and the non-local energies. The energy of the atoms in the

atomistic region is found from the atomic positions that includes both the interface

and pad atoms and is given as.

EA =
∑

i∈(A,I,P )

Ei(rA, rI , rp) (1.19)

where subscripts A, I, P correspond to atomistic, interface and padding regions

respectively. The model is then iteratively solved, wherein the interface atoms

provide the boundary conditions for the FE solution and the interface and pad
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atom positions provide the boundary conditions for the atomistic simulation. The

problem of ghost forces are automatically taken care in the FEAt method by the

use of a force based formulation, and the use of a non-local FE formulation in the

transition region results in an improved solution.

1.2.6 Coupling of length scales (CLS) method

The CLS method (Rudd and Broughton, 2000; Broughton et al., 1999) is a hybrid

multiscale method that couples quantum to continuum scales. The method was

initially used to solve the problem of fracture in silicon, wherein the dynamics of

crack propagation is progressively modeled using the tight-binding (TB) approxi-

mation, MD and FE approaches. The TB model is used in the region closest to

the crack tip. The CLS method thus aims to provide a seamless coupling between

FE/MD/TB models.

Although the CLS method involves both TB/MD as well as FE/MD coupling, only

the FE/MD coupling approach, that is relevant to the present work, is discussed

here. As with the FEAt method, the FE/MD coupling in the CLS method involves

grading down the �nite element mesh in the interface region to coincide with both

the pad and the interface atoms. The thickness of the pad atoms is at least equal to

twice the cut-o� radius used in the inter-atomic potential. The CLS method uses a

linear elastic formulation in the continuum region, with the potential energy in the

continuum region de�ned as the sum over i elements as

Ec =
∑
i

Ei (1.20)

where the energy of an element i, of volume Ωi, is computed from the strain energy
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density W (X), de�ned at a point X, as

Ei =

ˆ
Ωi

Wlinear(X)dV (1.21)

The CLS method uses the Stillinger Weber potential in the atomistic region that

consists of both two and three body interactions. The total energy in the atomistic

region is then calculated as the sum of the energies of both two and three body

interactions. In calculating the energy of the atomistic domain, a bond contributes

its full energy if the constituent atoms forming the bond are either in the atomistic

or interface region, and is scaled by a factor of half if any one or more of the atoms

forming the bond belongs to the padding region.

Finally, the total energy of the system is obtained as the sum of the atomistic and

continuum energies, and also the weighted energies in the interface region as

E =
∑
i∈(A,I)

E
(2)
i (rA, rI , rP ) +

∑
i∈(A1)

E
(3)
i (rA, rI) +

∑
i∈(A2,I)

Ê(3)
i

(rA, rI , rP ) +
∑
i

wiEi

(1.22)

where the subscripts A, I, P correspond to the atomistic, interface and padding

regions respectively, E(2) and E(3) correspond to the energies due to two and three-

body interactions, and wi is a weighting factor for the continuum region that is

assigned a value one for elements that are entirely in the continuum region and

half for those at the interface. The energy term due to the three-body interactions

has two components, E(3) and Ê3, in the regions A1 and A2, which are a subset of

the atomistic region such that A1 ∪A2 = A. The �rst term accounts for three-body

interactions that are entirely in the atomistic region, while the second term accounts

for three-body interactions that cross the interface, and is computed by scaling the

three-body energy using a weighting factor wij, that depends on the number of
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atoms from the padding region that were involved in the bond formation, as

Ê(3)
i

=
1

6

∑
j 6=i

∑
k 6=(i,j)

wijV
(3)
ijk (rij, rik) (1.23)

The total energy functional in the CLS method is similar to that obtained for the

QC method except for the weighting factor introduced in the interface region for

computing the total energy. The method therefore experiences ghost forces similar

to that of the QC method.

The unique feature of the CLS method is that in addition to atomistic/continuum

coupling, the method also couples quantum and atomistic scales. The method used

for MD/TB coupling is in principle similar to the one used for MD/FE coupling,

the di�erence being that both quantum and atomistic models are non-local. Also,

the energy of the quantum region is calculated for all the atoms together and not

on a per-atom basis as done in the MD model.

1.2.7 Coupled atomistic and discrete dislocation (CAAD)

method

The CADD method (Shilkrot et al., 2002a;b; 2004) is similar to the other multiscale

approaches such as the Finite element atomistic (FEAt) method and coupling

of length scales (CLS) method discussed above, wherein the problem domain

is spatially divided into atomistic and continuum domains that are individually

modeled using the MD and continuum approaches. The CADD method in addition

allows for the presence of discrete dislocations (DD) in the continuum region. These

dislocations are permitted to move and interact with one another and also with the

atoms in the atomistic region. In CAAD method, the continuum deformation �eld

is thus described by the movement and interactions of the continuum dislocations.

The CADD method is developed in two-dimensional setting and allows dislocations
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presence only in a direction perpendicular to the x − y plane, but the dislocations

can be of any type. The 2D setting is achieved by employing periodic boundary

conditions along the z direction in the atomistic region, and permitting three degrees

of freedom at every node in the continuum region.

The CADD method uses the embedded atom method (EAM) in the atomistic

region and the DD method (Van Der Giessen and Needleman, 1995) to handle the

continuum region with discrete dislocations. The objective is to solve the boundary

value problem, subject to some traction force T0 and displacements u0, to obtain

the position of the atoms, nodes and discrete dislocations. To do this, the problem

domain Ω is �rst divided into atomistic and continuum regions ΩA and ΩC that

are connected through an interface region ∂ΩI , with the subscripts A,C and I,

referring to atomistic, continuum and interface regions respectively. The dislocations

in the continuum domain is de�ned in terms of the Burgers vector bi and dislocation

position di, corresponding to the ith dislocation. The degrees of freedom in the

atomistic region are the atomistic positions rA and rI , while those in the continuum

region are the nodal displacements UC , UI , and the discrete dislocation positions di.

Coupling between the atomistic and continuum domains, through the interface

region, is achieved by introducing a set of pad atoms that ensure that the atoms near

the interface have a complement of neighbors. The thickness of the padding region

must at least be greater than the cut-o� length used in the inter-atomic potential.

The position of the pad atoms rp, is dictated by the continuum displacement �elds.

The continuum region is graded down to the atomic scale at the interface region to

coincide with the interface atoms and the displacement of these interface nodes is

determined from the atomic positions. The total potential energy for the atomistic

domain that also includes the pad atoms P is given as

EA =
∑

i∈(A,I,P )

Ei(rA, rI , rP )− fAuA (1.24)
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where uA is the atomic displacement and fA is the external load. The atomistic

forces are obtained as the partial derivatives of the atomistic energy EA, with respect

to the atomic positions rA and rI . Similarly, the potential energy of the continuum

domain is calculated from the sum of the energies of the �nite elements, and the

external work due to applied initial traction To as

EC =
∑

i∈(I,C)

Ei(UI , UC , d
i)−
ˆ

∂Ω

ToudA (1.25)

The coupling approach in CADD method also involves the detection and passing of

dislocation information between the two domains which can be explained as follows.

Dislocations that originate in the atomistic region are �rst detected and passed on to

the continuum regions as discrete dislocations. Dislocations are detected through a

detection band, which is a thin strip of elements positioned in the atomistic region at

a small distance from the atomistic/continuum interface. Dislocations are detected

by de�ning a plastic strip strain tensor for these elements as

EP =
(b⊗m)sym

d
+

(m⊗ b)(b⊗m)

2d2
(1.26)

where m, b and d correspond to slip plane normal, Burgers vector and inter-planar

spacing respectively, and sym indicates symmetry. With a prior knowledge of the

characteristic of dislocations expected in a crystal, the plastic strain matrix EP
i is

calculated for all the possible dislocations, and an additional dislocation is added

for the no slip condition, for which the Burger vector b = 0. With an update in

the atomistic positions, the actual strains, E are computed for the elements in the

detection band. Whenever the E value approaches any of the computed Ei values,

a dislocation core with a known Burgers vector is detected in that element, which

is then passed on to the continuum domain as discrete dislocations.

To pass the dislocations, the displacements of the atoms and nodes are modi�ed

by adding the continuum elastic displacements of a dislocation dipole to the
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atomistic/nodal displacements, thereby eliminating the atomistic core and adding

a new dislocation in the continuum region. The reverse process of detecting and

passing a dislocation in from the continuum to atomistic region is done easily. In

addition to dislocations, the atomistic region can also contain defects such as grain

boundaries, vacancies, voids, or amorphous regions. However, only the dislocation

information is allowed to cross the atomistic/continuum interface.

1.2.8 Bridging domain method

The bridging domain method (BDM) (Xiao and Belytschko, 2004) to couple atom-

istic and continuum domains is an energy based method, that minimizes ghost force

e�ects by making a gradual transition from the non-local atomistic region to the

local continuum region. The BDM divides the problem domain into atomistic and

continuum regions Ωa and Ωc that overlap each other in the interface region Ωint,

also known as the bridging domain. In the BDM, we begin with by de�ning the total

energy or Hamiltonian H, of the system which is the sum of potential and kinetic

energies. The Hamiltonian for the atomistic and continuum regions are given as

Ha = W a(xi) +
∑
i

1

2mi

P a
i ·P a

i (1.27)

Hc = W c(xI) +

ˆ
Ωc

1

2
ρvTvdΩc −

∑
I

f
ext

I uI (1.28)

where W a(xi) is the total potential energy of the atomistic region computed as

the sum of the energies of the pair-wise interactions, three body potentials and

external forces if any and mi, Pi correspond to the mass and momentum of the

ith atom respectively. In the second equation, W c(xI) is the potential energy of

the continuum region that is computed from the strain energy density, f ext is the

external force, ρ is the density, and uI , v(x, t) are the displacement and velocity

of the I th node. The method adopts a Lagrangian approach and assumes that the
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deformations in the continuum region are small and therefore the region is defect

free.

In the interface region or bridging domain, where the atomistic and continuum

regions overlap, the total energy is computed as the linear combination of the

atomistic and continuum energies, by introducing scaling parameter α, de�ned as

α =


1 Ωc − Ωint

[0, 1] Ωint

0 Ωa − Ωint

(1.29)

The Hamiltonian for the problem, which is the sum of atomistic and continuum

Hamiltonians is obtained as

H = (1− α)Ha + αHc =
∑
i

(1− α)
P a
i · P a

i

2mi

+ (1− α)W a +
∑
I

α
P c
I · P c

I

2mI

+ αWC

(1.30)

Displacement compatibility in the interface region is ensured by constraining the

atomistic displacements to follow the interpolated continuum displacement �eld at

every reference atomic position as

hi = u(Xi)− ũi =
∑
I

N(Xi)UI − ũi (1.31)

where ũi is the displacement of an atom in the interface region and u(Xi) is the

interpolated displacement �eld at an atomic position Xi. Compatibility is ensured

by forcing the di�erence hi to zero, which is achieved using the Lagrange multiplier

or the augmented Lagrange method. If the augmented Lagrangian approach is used,

the Hamiltonian is modi�ed as

Hmodified = H +
∑
i

λTi hi +
1

2

∑
i

βhTi hi (1.32)
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where λ is a vector of Lagrange multipliers for every degree of freedom of an atom,

and β is a penalty term. The forces on the nodes and atoms are obtained by

di�erentiating this energy functional that includes the e�ect of the displacement

constraint. The penalty term β introduced in the BSM does not have any physical

signi�cance and is just introduced for mathematical convenience.

The BSM method does not impose strong compatibility in the interface region and

therefore the �nite element mesh need not be scaled down to atomistic dimensions

for enforcing displacement constraints. This is one of the major advantages of this

method that permits more freedom in mesh generation. However, this reduces the

accuracy of the solution and also makes it less amenable for adaptive simulations,

where the atomistic and continuum regions change with time.

1.2.9 AtC method

The AtC method (Badia et al., 2007; 2008; Fish et al., 2007; Parks et al., 2008),

is similar in principle to the BDM discussed in the previous section, the di�erence

being that it uses a force formulation instead of an energy based approach of the

BDM. As done in the BDM, the problem domain is divided into atomistic region

ΩA and continuum region ΩC that overlap each other in the interface region Ωint,

and coupling is achieved by blending of the forces in the interface region.

In the AtC method, we begin with by de�ning the forces in the atomistic and

continuum regions. Neglecting the external forces, the forces in the atomistic and

continuum regions can be expressed as

F I = −
nelem∑
e=1

´
Ωc
P (F )∂N

I

∂X
dV

fα =
∑
β 6=α

fαβ
(1.33)

where F I is the force on the node I, P is the �rst Piola Kirchho� stress tensor,
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F is the deformation gradient, N I is the shape function of the I th node, fα is the

force on atom α, and fα,β is the force exerted by the atom β on atom α. The forces

in the interface region are scaled using linear scaling parameters η and χ, and the

atomistic and continuum forces in the interface region are obtained as

fα =
∑
β 6=α

ηα,βfαβ

F I = −
nelem∑
e=1

´
Ωc
χP (F )∂N

I

∂X
dV

(1.34)

The correction factor ηα,β = (ηα + ηβ)/2, introduced for scaling the atomic forces in

the atomistic and interface region, ensures that the Newton's third law is satis�ed,

meaning that the scaled force on an atom α due to the atom β is the same as the

scaled force exerted on atom β due to atom α.

Coupling between the atomistic and continuum regions is achieved by �rst ensuring

strong compatibility in the handshaking region by constraining the displacements of

the atoms to follow the displacement of the continuum nodes. Next, atomic forces

in the interface region are transmitted to the nodes as

F I =

nelem∑
e=1

ˆ
Ωc

χ

[
−P (F )

∂N I

∂X

]
dV +

∑
α=SI

∑
β 6=α

ηα,βfαβN I(Xα) (1.35)

Only the atoms α within the element S, containing the node, are considered for

transferring the forces. The AtC method also su�ers from spurious ghost forces that

a�ects its accuracy and can be corrected using the dead load correction technique

used to correct the ghost forces in the QC method.
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1.2.10 A concurrent multiscale method based on the mesh-

free method and molecular dynamic analysis

One of the common features of the multiscale methods discussed so far is that they

use the �nite element approach for discretizing the continuum region. Multiscale

models that use a meshless formulation in the continuum region are relatively new,

and are gaining more attention due to the advantages o�ered by meshless methods

over the conventional �nite element approaches. The following sections provide a

brief overview of some of the multiscale models that use a meshless method for

continuum domain discretization.

The concurrent multiscale method to couple atomic and continuum domains de-

veloped by Gu and Zhang (2006), uses the weak-form radial point interpolation

method (RPIM), in the continuum region and couples it with the MD method used

in the atomistic region. The RPIM method uses the radial basis function (RBF) for

constructing the shape function in which the �eld variable such as the displacement

u, is interpolated as

u(x) =
n∑
i=1

Ri(r)ai+
l∑

j=1

pj(x)bj = RTa+BT b (1.36)

where Ri(r) is the multiquadratics RBF with r de�ned as the distance between the

interpolation point and the �eld node, pj(x) are monomial functions, l is the number

of polynomial basis functions, n is the number of nodes included in the interpolation

domain of a point, and a and b are interpolation constants that are determined

by constraining Eq. (1.36) to be satis�ed at all n �eld nodes included in the

interpolation domain of a point. Solving for the constants, the nodal displacement

vector is �nally obtained using the RPIM shape function ϕ(x) as

u(x) =
∑
i∈n

ϕi(x)ui (1.37)
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An important property of the RBF shape functions is that they satisfy the kronecker

delta property. The shape function can also be used to approximate the velocity

vector in a similar function.

The constitutive equations in the continuum domain are obtained using the Cauchy-

Born rule. The atoms in the deformed and undeformed con�guration are related

through a deformation gradient F . The Piola-Kirchho� stress tensor is then

constructed from the deformation gradient F , and the strain energy density wc as

P = ∂wc(F )/∂F . The strain energy density is computed by summing the atomistic

potential, wa, within a single element, as done in the case of the quasicontinuum

method. As the RPIM is a meshfree technique, a virtual representative cell is

constructed around every point of interest and the deformation gradient at that

point is applied over the whole cell. The strain energy density of the continuum

point is then found by summing the energies of the atoms within the cell as

wc =
1

V C

[∑
j

wajv(r)−
∑
j

wajv(r
0)

]
(1.38)

where V C is the volume of the representative cell and wajv(r), w
a
jv(r

0) are the

potential energy of the atoms in the representative cell in the deformed and

undeformed con�gurations respectively. The Hamiltonian Canonical equations of

motion for the continuum domain are then obtained as

Ṗ c
I = −∂H

C

∂Xc
I

=

ˆ
Ωc

0

∂wc
∂ucI

dΩ (1.39)

ẊC
I = u̇cI =

∂HC

∂PC
I

=
pcI
mc
I

(1.40)

where HC is the Hamiltonian in the continuum region, and mc
I , P

C
I and XC

I are

the mass, momentum and position of node I respectively. A lumped mass matrix is

used while solving the equations. The equations of motion for the atomistic region

are obtained using the MD model.
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The atomic domain Ωa and continuum domain Ωc are coupled through a transition

region Ωt, in which additional transition particles are introduced, to ensure dis-

placement compatibility and force equilibrium. For a transition particle k with

displacement uk, and subject to a force fk, the compatibility and equilibrium

conditions can be written as

uck = uak (1.41)

f ck + fak = 0 (1.42)

To ensure conservation of mass and energy, the total energy in the transition domain

is obtained as a linear combination of atomistic and continuum energies, as done

in the case of the Bridging Domain method (see Section 1.2.8). The Hamiltonian

of the problem domain is then obtained as the linear combination of atomistic,

continuum and transition particles using Eq. (1.32). The introduction of transition

particles permit independent distributions of the atoms and nodes and also help

in the transfer of the energy between the two domains. The number of transition

particles can be varied based on the compatibility requirements.

1.2.11 Multiscale simulation based on MLPG method

The multiscale method based on the Meshless Local Petrov-Galerkin (MLPG)

method (Shen and Atluri, 2004), to couple atomic and continuum domains, uses

the weak-form MLPG method for discretizing the continuum region. The MLPG

method involves a meshless interpolation for the trial function and integration of the

weak-form by an appropriate choice of a test function. In the MLPG method, the

trial and test functions can be chosen from di�erent function spaces with di�erent

support domains sizes, making the method very �exible. In the MLPG based

multiscale method, radial basis function (RBF) is chosen to interpolate the trial

function due to its Kronecker delta property. The �eld variable u(x) in the domain Ω
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is interpolated using the radial basis function in a same manner as done in Eq. (1.36).

The method uses a multiquadratics RBF function of the form Ri(x) = (r2
i + c2)β,

where c and β are the shape parameters that are assigned the value 1 and 1.03

respectively.

The computational domain is divided into an equivalent continuum model (ECM)

region, where the deformation is assumed to be homogeneous and de�ned in terms

of the deformation gradient F , and a pure MD region, where the deformation is

inhomogeneous. The ECM and MD regions are then coupled through the MLPG

method. The ECM region contains both atoms and meshless nodes. The distribution

of the nodes in the ECM region can be random and need not be coincident with the

atoms.

The constitutive relation in the ECM region is obtained from atomistic calculations.

The strain energy density, W , in the ECM region is obtained as W = Πs/Ωs, where

Πs is the potential energy of the atoms in the representative cell and Ωs is the volume

of the local domain. The Piola-Kirchho� stress tensor S and the tangent sti�ness

material modulus, D, are then derived as from the strain energy density as

S =
∂W

∂E
=

2

Ωs

∂Πs

∂C
(1.43)

D = 4
∂2W

∂C∂C
=

4

Ωs

∂2Πs

∂C∂C
(1.44)

where C is the Cauchy-Green stress tensor that is given as F TF . Using the law of

conservation of linear momentum,the following equation is obtained

∇(SF T ) + f = ρw (1.45)

where f is the body force, and ρ and w correspond to the density and acceleration

respectively. The weak-form of the above equation, using the test function, V , in
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the local domain Ωs, is obtained as

ˆ
Ωs

[∇(SF T ) + f − ρw]V ∂Ω = 0 (1.46)

The non-linear local symmetric weak-form of the above equation is solved using

the total Lagrangean method. Finally, the position and displacement of an atom

in the ECM region is obtained by interpolation using the RBF shape function.

The displacement of an atom ui in the ECM region is interpolated from the nodal

displacements uα, using the RBF shape function φα as

ui =
n∑

α=1

φα(Xi)uα (1.47)

As the number of nodes in the ECM region is less than the number of atoms, the

atomic displacements computed using the above equation is only an average value

and is therefore unable to capture the thermal �uctuations.

In order to capture the thermal �uctuations and also enable the elastic waves

generated in the atomistic region to pass into the continuum region, thereby

ensure seamless coupling, appropriate inter-facial conditions are employed. The real

displacement, qi, of an atom i in the ECM region, taking into account the thermal

�uctuations is written as qi = ui + δui, where δui is the additional component that

takes into account the thermal �uctuations. The total potential energy of the system

can then be written as

Π(q1, ........qNMD+NECM
) = Π0(uECM ; qMD) +

∂Π0

∂uECM
δuECM (1.48)

where Π0 is the zeroth-order approximation of the potential energy and δuECM is

the thermal �uctuation vector that accounts for the missing atomistic degrees of

freedom. Replacing Π0 with the �rst-order approximation of the potential energy,
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the Newton's equation of motion can �nally be obtained in a matrix form as

MMDq̈MD = f 0
MD −KδuECM (1.49)

where MMD is the diagonal mass matrix, f 0
MD is the force vector and K =

∂2Π0/∂uECM∂qMD is the tangent sti�ness matrix. The MLPG multiscale method

thus ensures seamless coupling by taking into account the thermal �uctuation of

atoms in the ECM region that permits the successful transfer of atomistic energy

across the atomic/continuum interface.

1.2.12 Multiscale simulation based on the temperature-

related Cauchy-Born rule

Multiscale methods that use the Cauchy-Born rule in the continuum domain to

derive the constitutive relations from the atomistic potentials, assume that the

deformations in the region are homogeneous and takes place at zero temperature,

and therefore cannot be used to study the temperature e�ects on materials at

nanoscale. Temperature is found to have an impact on the material properties at

nanoscale (Xiao et al., 2006), which necessitates the need for a temperature-related

homogenization technique. The multiscale simulation based on the temperature-

related Cauchy-Born (TCB) rule (Xiao and Yang, 2007) addresses this issue by

developing a constitutive relations that takes into account the thermal energy of the

atoms in addition to their potential energy.

As per the TCB rule, the atoms are subject to local harmonic vibrational modes in

addition to the homogeneous deformation at a given temperature. These vibrational

modes are mostly uncoupled. The total free energy, WH , for a crystalline solid
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consisting of N atoms at a temperature T (X), is obtained as

WH(F, T ) =

Nq∑
i

wc(F
q
i )Ai + nkB

Nq∑
i

nqiT
q
i ln

[
~(D̄(F q

i )1/2n

kBT

]
(1.50)

where wc is the strain energy per unit volume, F is the deformation gradient, n is

the number of degrees of freedom per atom, ~ is the Plank's constant, kB is the

Boltzmann constant, ρn is the number of atoms per unit volume, Nq is the number

of quadrature points in the domain, Ai is the volume associated with one quadrature

point representing nqi atoms, and D is the dynamic matrix that is calculated from

the vibrational co-ordinates and mass of the atoms. The second term in the above

equation accounts for the temperature e�ects. The modi�ed expression for the Piola-

Kirchho� stress tensor is obtained using the the free energy density, wH , that is a

function of the deformation gradient as well as the temperature as

P (F, T ) =
∂wH(F, T )

∂F
(1.51)

Equation 1.51 is used as the constitutive relation in multiscale modeling of materials

at �nite temperature.

The meshfree particle method is used in the continuum region, wherein the displace-

ments u are approximated as

uh(X, t) =
∑
I

wI(X)uI(t) (1.52)

where X is the material co-ordinate in the reference con�guration and wI are

Lagrangian kernels that are computed using a quadratic spline weighting functions.

Substituting the above equation in the Galerkin weak-form of the momentum

conservation equation leads to the equation of motion as

mI üiI = ρ0V
0
I üiI = f extiI − f intiI (1.53)
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where V 0
I is the volume associated with particle I, and f extiI , f intiI are the external

and internal nodal forces respectively.

Thus, the multiscale method based on the meshfree particle method uses the TCB

rule to obtain the constitutive relations from atomistic calculations. This is done

as follows. First, a voronoi cell is constructed with a meshfree particle, PI , at the

center and subjecting the atoms in the cell to the same deformation gradient as that

experienced by the particle, and the strain energy density of the cell is computed

at zero temperature. The dynamic mass matrix is then computed by assuming that

the atoms within the cell undergo identical harmonic vibration. The atoms in the

cell are then assumed to be at the same constant temperature as that of particle

PI and the free energy is computed using Eq. (1.50). The stresses on the particle

is then computed using Eq. (1.51). Finally, numerical integration is carried out to

compute the internal and external nodal forces and the equation of motion de�ned

in Eq. (1.53) is solved.

1.3 Research Objectives

In general, most of the multiscale models discussed above, with just a few exceptions,

use the �nite element method for the discretization of the continuum domain.

Though the �nite element method is a popular choice for continuum simulations, it

su�ers from certain drawbacks such as mesh generation and re-meshing issues when

solving nonlinear and moving boundary problems. Meshless methods (Belytschko

et al., 1996), which are more recent in origin, have been successful in handling some

these issues linked to conventional �nite element approaches. Multiscale methods

that use a meshless technique instead, for continuum discretization, are relatively

new and have been successful in solving engineering problems. Most of the multiscale

methods that use a meshless formulation in the continuum region (Wang et al., 2009;

Shen and Atluri, 2004; Gu and Zhang, 2006), use a weak-form approach such as the
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Element-Free Galerkin (EFG) method or the Radial Basis function (RBF) approach

for discretizing the governing partial di�erential equation, and therefore still require

some form of background mesh for numerical integration. To address the above

issues, we propose in this project, a novel multiscale algorithm and its applications

with the following objectives:

� Develop a multiscale algorithm based on a strong-form meshless technique,

namely the Hermite-Cloud method to couple atomistic and continuum scales

As mentioned above, most multiscale models use the �nite element method to

discretize the continuum region, and even those using a meshless framework,

use the weak-form formulation for the discretization of the governing partial

di�erential equation, and still require a background mesh for integration. In

the present work, we proposed a multiscale model that uses the strong-form

meshless Hermite-Cloud method, which totally avoids mesh generation in the

continuum domain, making the computer implementation of the multiscale

algorithm much simpler.

� Ensure higher order compatibility in the transition region. Handshaking

models generally ensure �eld variable or displacement compatibility in the

transition region, meaning that the continuity of the �eld variable is ensured

between the two scales. The Hermite-cloud method, used in this work for

continuum domain discretization, approximates both the �eld variable and

the �rst-order derivative. Hence, in this work we propose an improved

coupling/handshaking algorithm that ensures compatibility of both the �eld

variable and its �rst-order derivative and also ensures the equilibrium of forces,

across the overlapping transition region.

� Numerically validate the developed multiscale model via comparison with bench-

mark problems. The developed multiscale model is validated by solving several

benchmark static and transient problems that involve both length and time
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scale coupling. The simulation results are compared with both the analytical

solution as well as a full atomistic simulation. The Laplace equation, Poisson

equation with di�erent forcing functions and local high gradients, and the

classical wave propagation problem in one and two space dimensions are used

to demonstrate the capability of the handshaking algorithm in coupling both

length and time scales.

� Simulate nanoindentation and nanoscratch numerical experiments using the

developed multiscale model. Nanoindentation and nanoscratch techniques

have emerged as successful tools to evaluate material properties at nanoscale.

Nanoindentation involves the continuous monitoring of the load and dis-

placement data during the testing process and analyzing the resulting load-

displacement graph to evaluate the mechanical properties, without the need for

imaging the resulting indent. Nanoscratching involves scratching the sample

surface with an indenter at a constant speed and at a de�ned normal force for

a de�ned distance to determine tribological properties such as surface friction,

abrasive wear etc. Though the MD method has been successfully used to

simulate indentation and scratch experiments, the simulation sizes that are

possible with this approach are greatly limited by the computational power.

This limitation can be overcome with the use of multiscale models. Therefore,

the proposed multiscale model is �nally used to simulate indentation and

scratching experiments on a copper thin �lm.

1.4 Report Outline

The need for a multiscale model, the di�erent multiscale models developed to couple

the atomistic and continuum length scales, and �nally the objective and scope

of the present work were presented in this chapter. The remaining chapters are

organized as follows. Following this introduction, Chapter 2 provides an overview
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of the individual computational models that make up the multiscale framework,

namely the MD method used in the atomistic region and the meshless Hermite-

cloud method used for modeling the continuum region. The algorithmic details of

the newly developed handshaking/coupling algorithm, proposed in this work, to

couple atomistic and continuum domains is discussed in Chapter 3. The numerical

results of the static and transient test cases, carried out in both one and two space

dimensions to validate the multiscale model, are presented in Chapter 4, while

Chapter 5 presents the simulation results of the indentation and scratch experiments

performed on a copper specimen using the developed multiscale model. Finally,

Chapter 6 presents the conclusion and makes recommendations for further work in

this direction.
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Chapter 2

Mathematical Modeling of Atomistic

and Continuum Domains

The main objective of this work is to develop a multiscale model that couples

atomistic and continuum domains. The mathematical models used in the atomistic

and continuum domain namely, the Molecular dynamics (MD) method and the

meshless Hermite-cloud method are discussed in this chapter. MD method has

been traditionally used for simulating atomic scale behavior and is used to simulate

systems with a large number of atoms, which is otherwise too large from a quantum

mechanics perspective. Meshless methods are relatively new when compared to

the �nite element approaches and are increasingly being used to solve continuum

problems. Meshless methods use a set of nodes scattered in the domain for solving

the di�erential equation, eliminating the need for a prede�ned mesh.

This chapter is organized in three sections. The �rst section provides an overview

of meshless methods and highlights their salient features in comparison to the

�nite element method. The meshless Hermite-cloud method, used for continuum

discretization in this work is also discussed. The second section provides an

introduction to the molecular dynamics method and the basic steps involved in
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it, and the last section provides the summary.

2.1 Continuum Region � Meshless Hermite-cloud

Method

2.1.1 Meshless method : overview and motivation

Building a mathematical model is the �rst step in describing any physical problem

in engineering or science. Most mathematical models of such problems are in the

form of partial di�erential equations (PDE), with appropriate initial and boundary

conditions prescribed. Closed-form analytical solutions to such equations rarely

exist, and therefore numerical approaches have emerged as a popular choice to solve

PDE's. Three of the most popular approaches used in the numerical solutions

of PDE's include, the �nite element method (FEM), the �nite di�erence method

(FDM) and the �nite volume method (FVM).

The �nite element method involves discretizing the domain into elements and

approximating the �eld variable in each element using polynomial functions. The

�nite element method thus converts the PDE into a system of algebraic equations,

which are then readily solved. The method, primarily developed to solve elasticity

and structural problems, is increasingly �nding applications in design and product

development activities in the �eld of aerospace and automobile engineering, wherein

it has signi�cantly reduced lead times. The capability of the method to model

complicated geometries together with a strong mathematical base has led to the

development of a number of commercial softwares such as ABAQUS, ANSYS,

etc., that are based on the �nite element formulation. These softwares allow easy

visualization of the �eld variable distribution in the domain and also provide a

number of options for �ne tuning the model, depending on the accuracy level
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required. In the �nite di�erence method, the di�erential equations is replaced with

�nite di�erence equations that approximate the derivatives at a set of grid points in

the domain. These algebraic �nite di�erence approximations are then solved to get

the solution at these grid points. In the �nite volume method, the domain is divided

into a number of control volumes, instead of elements, with the �eld variable located

at the centroid of the control volume. The governing equations are then integrated to

obtain the solution. As the solution provided by the FVM satis�es the conservation

of mass, momentum and energy, the method is widely used in the �eld of �uid

mechanics.

The FEM and FDM, commonly used in the �eld of solid mechanics, have a few

issues when solving PDE's

� The FEM, popularly used for the analysis of solid and structures, has problems

mainly related to mesh generation. The main disadvantage with the FEM is

that it requires a prede�ned mesh for solving the problem. Mesh generation

is a very time consuming activity that requires a lot of human intervention.

� Generally in FEM, the primary or the �eld variables such as displacement or

temperature is well approximated. However, secondary variables like stresses

obtained from the method are generally less accurate and also discontinuous

at the element interfaces.

� Element distortions is a serious concern in handling problems with large

deformations when using the FEM. It is also di�cult to simulate complex

problems such as crack propagation, where the direction of crack growth might

be arbitrary and might not be in line with the nodal locations, or problems

that involve phase transition or material breakage.

� Adaptive meshing that involves re-meshing the domain at regular intervals is

very challenging and computationally expensive when using the FEM. Also,

the solution accuracy is greatly a�ected due to numerical errors introduced by
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the mapping of �eld variables between successive stages of mesh re�nement.

� The FDM, though well suited for modeling problems in the domain of �uid

mechanics, su�ers from the fact that it requires a regular uniform mesh and it's

application is limited to problems in rectangular domain or simpler geometries

Meshless methods (Nguyen et al., 2008), were mainly motivated from these issues

related to other numerical approaches. The basic idea in meshless methods is to

eliminate, either partially or fully, the need for a mesh and thereby overcome the

issues associated with it. In a meshless approach, the problem is solved by scattering

a set of discrete nodes in the problem domain including the boundaries. There is no

mesh and therefore no prior information is required about the relationship between

nodes. The �eld variable is approximated using shape function generated in real

time and the problem is solved by discretizing the governing equation. Due to

their attractive features, meshless methods are increasing �nding applications in the

area of applied mechanics (Li and Liu, 2002). Some of the salient features of these

methods are

� The shape functions for the scattered nodes are generated in real time and

are not prede�ned. The time consuming activity of creating a mesh with

prede�ned shape functions is thus eliminated. There are also no connectivity

issues as in the case of FEM.

� As no prior information is required to describe the relationship between nodes,

the process of node generation can be easily automated. Also, the geometry

can be more accurately represented using nodes than while using elements.

� As meshless methods do not require a prede�ned mesh, nodes can be easily

added or subtracted in the problem domain. Adaptive meshing for problems

such as crack-propagation or those involving large deformations, is therefore

handled more easily. The accuracy of the method can be easily controlled as

nodes can be easily added or subtracted at the required locations
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� Secondary variables such as stress and strains can be approximated with higher

accuracy than in FEM by the use of higher-order basis functions.

Meshless methods may be classi�ed based on two criteria: �rst, based on the method

used for constructing the shape function or interpolation function, and second, based

on the method used to discretize the governing partial di�erential equation. Based on

the method used to construct the interpolation function, they may classi�ed as �nite

di�erence, �nite series and �nite integral representation methods. Meshless methods

that use a �nite series or the �nite integral representation ensure consistency by an

appropriate choice of basis and weighting functions respectively, while methods that

use a �nite di�erence representation ensure convergence using Taylor's series.

Depending on the method used to discretize the governing PDE meshless methods

many be classi�ed as strong-form or weak-form based approaches. Strong-form

based approaches use a collocation technique to discretize the PDE, while weak-

form approach are based on Galerkin weak formulations. Di�erent techniques

used for constructing shape functions are combined with either a strong or weak-

form approach resulting in di�erent meshless schemes. The strong and weak-form

methods used to discretize the PDE and the method used for constructing shape

function are discussed in the following sections.

2.1.2 Strong-form and weak form methods

Meshless methods based on strong-form or weak-form formulation, approximate

the strong or weak-form of the governing partial di�erential equation respectively.

Strong-form methods use a collocation approach to discretize the governing di�er-

ential equation. Weak-form methods on the other hand, numerically integrate the

weak-form of the governing equation using a background mesh, and therefore these

methods are not strictly meshless. However, the mesh is required only for numerical

integration and can therefore be much simpler than the one used in FEM.
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Meshless methods based on weak-form approaches include the di�use element

method (Nayroles et al., 1992), element free galerkin method (Belytschko et al.,

1994) and the point interpolation method (Liu and Gu, 2001b), to name a few.

Their characteristics such as good stability, accuracy, and the ability to naturally

satisfy Neumann boundary condition due to their weak form, have made these a

popular choice in the �eld of solid mechanics. However, as mentioned earlier, weak-

form methods are not strictly meshless as they still require a background mesh

for numerical integrating the system matrices, which is computationally expensive.

To avoid global integration that is computationally demanding, certain weak-form

approaches such as the meshless local Petrov-Galerkin method (Atluri and Zhu,

1998), the local point interpolation method (Liu and Gu, 2001a) etc., have been

developed. In these methods the local weak-form is integrated in local domains

that are in the form of simple regular shapes such as circles, rectangles or triangles.

Even with these methods, numerical integration is still an issue when dealing with

complex shapes or in the region close to the boundary.

In comparison to weak-form based approaches, meshless methods based on strong-

form discretization have an early developmental history, starting from the smooth

particle hydrodynamics (SPH) (Lucy, 1977; Gingold and Monaghan, 1977; Mon-

aghan, 1982). In SPH, the governing equation in strong-form is localized by

introducing a smoothing function. The method has been popularly used to simulate

problems in astrophysics such as the formation of stars and galaxies, supernovas,

black holes, stellar collisions and even modeling the universe (Springel, 2010; Berczik

and Kolesnik, 1993). The major shortcoming of the SPH method is its inability to

accurately enforce boundary conditions, tensile instability zero-energy mode and a

lack of consistency in interpolation (Li and Liu, 2002). A number of improvements

have been proposed to SPH to address some of these issues (Monaghan, 2000; Ran-

dles and Libersky, 1996). The generalized �nite di�erence method (GFDM) (Perrone

and Kao, 1975; Jensen, 1972), based on strong-form discretization, was developed
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in the seventies and was one of the earliest methods to introduced the concept of

an arbitrary mesh. In the GFDM, the partial di�erential equation is replaced by

numerical di�erential formulae that are based on polynomial interpolation. This

method was initially used to solve problems expressed in a local formulation and

later on extended to those expressed in a variational form. The GFDM method

also su�ers from the fact that the discrete equations developed by these are not

symmetric, positive de�nite or well-conditioned etc., and has also been improved

upon and extended by many researchers (Gavete et al., 2003).

Some of the other meshless methods developed based on a strong-form approach

include the vortex method (Chorin, 1973), meshfree collocation method (Zhang

et al., 2001), hp-cloud method (Liszka et al., 1996) and the �nite point method

(Onate et al., 1996). The major advantages of the strong-form methods are: they are

algorithmically simple to implement, computationally e�cient and truly meshless in

the sense that they do not require a mesh either for interpolating the �eld variable or

for numerical integration (Li and Liu, 2002). Due to these advantages strong-form

methods have been used to solve a number problems in the �eld of �uid mechanics.

However, these method su�er from certain drawbacks that include stability and

accuracy issues in solving partial di�erential equations with derivative and Neumann

boundary conditions and therefore �nd little application in solving solid mechanics

problems that involves stress boundary conditions (Liu and Gu, 2003). Various

approaches have been proposed to overcome some of these issues associated with

strong-form methods, and some of major developments in this direction include

the Hermite-cloud method (Li et al., 2003), stabilized least-square radial point

collocation method (Liu et al., 2006a) and the meshfree weak-strong form methods

(Liu and Gu, 2003). The current work uses one such method, namely the Hermite-

cloud method that is based on the classical reproducing kernel particle method. The

reproducing kernel particle method and the Hermite-cloud method based on it are

explored in the following sections.
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2.1.3 Smooth particle hydrodynamics and reproducing ker-

nel particle methods

Smooth particle hydrodynamics method (Gingold and Monaghan, 1977; Lucy, 1977),

is a meshless technique that uses the integral transform technique to develop an

approximate solution fh(x) of a �eld variable f(x) as

fh(x) =

ˆ

Ω

K(x− ξ, h)f(ξ)dξ (2.1)

where K(x − ξ, h) is known as the kernel, weighting or the smoothing function, h

is the smoothing length that determines the size of the smoothing domain Ω, also

known as the support or in�uence domain. The �eld value at a given point is then

approximated as the weighted sum of the �eld variable values, f , within the support

domain Ω. The kernel function should be chosen in such a way that it satis�es

certain conditions, in order for Eq. (2.1) to be valid. The kernel function should

be compact meaning that K(x − ξ, h) should be equal to zero outside the support

domain, it should be orthogonal and its integral over the domain Ω should be unity.

Some possible choice of window functions include Gaussian functions, wavelets and

splines. The SPH method was mainly used to solve problems without boundaries,

such as those in the areas of astrophysics.

The major problem associated with the SPH method is its inability to provide

accurate results at the boundaries (Monaghan, 1988). The Reproducing kernel

methods (RKPM) developed by Liu et al. (1995b) addresses this issue by introducing

a correction function in the SPH method, in addition to the kernel function, for

construction of the window function. The correction function introduced in RKPM

results in an improved and accurate solution at the boundaries, adds stability to

the solution and also ensures linear or C1 consistency near the boundary(Liu et al.,

1996a; Liu and Jun, 1998). In the RKPM, The �eld variable f(x) is approximated
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as

fh(x) =

ˆ

Ω

C(x, ξ)K(x− ξ, h)f(ξ)dξ (2.2)

where C(x, ξ) is the correction function that is developed based on the concept that

any function can be represented as a sum of linearly independent functions (Liu

et al., 1995a). A typical choice for the correction function is given as

C(x, ξ) = C1(x) + C2(x)(ξ − x) (2.3)

where the correction co-e�cients C1 and C2 are determined by de�ning moments

over a region B(x), where the kernel function is not zero. The correction function

takes a values of unity in the interior of the domain and therefore has no e�ects in

the interior. It is mainly introduced to provide accurate solutions at the boundaries,

and also adds stability to the kernel (Liu et al., 1995a). RKPM has been widely

used in solving problems in many areas of engineering (Liu et al., 1996b). The

Hermite-cloud method, used for continuum discretization in this work, is based on

the RKPM and is discussed in detail in the next section.

2.1.4 Hermite-cloud method

The Hermite-Cloud method (Li et al., 2003) is a strong-form meshless method that

uses the classical reproducing kernel particle method (RKPM), the point collocation

technique and the Hermite interpolation theorem to obtain an approximate solution

for both the �eld variable and its �rst-order derivative. As highlighted in the

previous section, the classical RKPM constructs an approximate solution, fh(x)

or fh(x, y) corresponding to unknown functions f(x) and f(x, y) respectively, using
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the correction and kernel functions as

fh(x, y) =

ˆ

Ω

C(x, s)K(x− s)f(s)ds (2.4)

fh(x, y) =

ˆ

Ω

C(x, y, s, t)K(x− s, y − t)f(s, t)dsdt (2.5)

The Hermite-Cloud method uses the �xed RKPM, where the kernel function

k(x− s, y − t) is �xed about the center point (xk,yk), and the approximate solution

given in Eq. (2.5) is modi�ed as

fh(x, y) =

ˆ

Ω

C(x, y, s, t)K(xk − s, yk − t)f(s, t)dsdt (2.6)

The kernel function in Eq. (2.6) is constructed by a suitable choice of a weighted

window function. In the Hermite-Cloud method, a cubic spline window function is

chosen for constructing the kernel function as

K(xk − s, yk − t) = [W ∗((xk − s)/∆x)W ∗((yk − t)/∆y)]/(∆x∆y) (2.7)

where W ∗(z) is the cubic spline window function of the form

W ∗(z) =


0 |z| ≥ 2

(2− |z|)3/6 1 ≤ |z| ≤ 2

(2/3)− z2(1− 0.5|z|) |z| ≤ 1

(2.8)

The parameter z is de�ned as z = (xk − s)/∆x or z = (yk − s)/∆y, where ∆x and

∆y correspond to the cloud size, with respect to the center point (xk, yk), along

the x and y directions respectively. The cloud size may be varied depending on the

problem and the accuracy level desired.

Next, the correction function C(x, y, s, t) in Eq. (2.6) is constructed as a product of
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the row basis function vector B(s, t) and column coe�cient vector C∗(x, y) as

C(x, y, s, t) = B(s, t)C∗(x, y) (2.9)

The basis function vector is constructed from a set of linearly independent polyno-

mial basis functions as B(s, t) = {b1(s, t), b2, ..., bm}, where m is the degree of the

polynomial basis function. The basis functions vector is appropriately chosen based

on the dimension and order of the problem to be solved. For example, to solve a

second order partial di�erential equation, the basis function vector in one and two

space dimensions may be chosen as

B(s) =
{

1, s, s2
}

;m = 3 (2.10)

B(s, t) =
{

1, s, t, s2, st, t2
}

;m = 6 (2.11)

The column coe�cient vector C∗(x, y) = {c1, c2, ..., cm}T is a m × 1 vector of

correction function coe�cients, which are the unknowns and are determined using

the fact that Eq. (2.6) satis�es the consistency condition for any basis function

bi(x, y) as

bi(x, y) =

ˆ

Ω

C(x, y, s, t)K(xk − s, yk − t)bi(s, t)dsdt (i = 1..m) (2.12)

As the governing PDE is discretized using a strong-form approach, Eq. (2.6) above

can be written in the discrete form as

bi(x, y) =
NP∑
n=1

C(x, y, sn, tn)K(xk − sn, yk − tn)bi(sn, tn)∆Vn

=
NP∑
n=1

B(sn,tn)C∗(x, y)K(xk − sn, yk − tn)bi(sn, tn)∆Vn i = 1, 2, ...,m

(2.13)
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where NP is the total number of scattered nodes in the interior and boundaries

of the domain Ω, and ∆Vn is the cloud area corresponding to the nth node. In

the Eq. (2.13) above, the basis function vector and the kernel function are known.

Therefore the equation can be re-written in matrix form with the correction function

coe�cients as unknowns

A(xk, yk)C
∗(x, y) = BT (x, y) or

C∗(x, y) = A−1(xk, yk)B
T (x, y) (2.14)

where A is a symmetric moment matrix of size m × m that is independent of x and

y and is related to the �xed cloud point (xk, yk) as

Aij(xk, yk) =
NP∑
n=1

bi(sn, tn)K(xk − sn, yk − tn)bj(sn, tn)∆Vn i, j = 1, 2, ...,m (2.15)

From Eqs. (2.9) & (2.14), the approximate solution of the unknown function f(x, y)

in Eq. (2.6), can be obtained as

fh(x, y) =

ˆ

Ω

B(s, t)C∗(x, y)K(xk − s, yk − t)f(s, t)dsdt

=

ˆ

Ω

B(s, t)A−1(xk, yk)B
T (x, y)K(xk − s, yk − t)f(s, t)dsdt (2.16)

which can be written in a discrete form as

fh(x, y) =
NP∑
n=1

B(sn, tn)A−1(xk, yk)B
T (x, y)K(xk − sn, yk − tn)∆Vn fn (2.17)

and �nally in a concise form as

fh(x, y) =
NP∑
n=1

Nn(x, y)fn (2.18)

where Nn(x, y) corresponds to the shape function of the nth node. The shape
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functions are polynomial functions in the x and y directions, and their derivatives

are obtained by di�erentiating the basis function vector. The shape functions satisfy

the consistency condition for all the independent basis functions. As an example, if

the basis function vector is chosen as B(s, t) = {1, x, y}, the consistency condition

in Eq. (2.13) can be written as

NP∑
n=1

Nn(x, y) = 1 (2.19)

NP∑
n=1

Nn(x, y)xn = x (2.20)

NP∑
n=1

Nn(x, y)yn = y (2.21)

The �rst-order derivatives of the unknown function f(x, y) can also be approximated

in a similar fashion as

fhx (x, y) =
NT∑
m=1

Mm(x, y)fxm (2.22)

fhy (x, y) =
NT∑
m=1

Mm(x, y)fym (2.23)

where NT is the total number of scattered nodes in Ω with NT ≤ NP , and

Mm(x, y) are the shape function corresponding to the �rst-order derivatives fx(x, y)

and fy(x, y) of the unknown function f(x, y) at themth nodes, which are constructed

in a similar fashion as Nn(x, y). Using the Hermite interpolation theorem, an

approximate solution of the function f(x, y) can be �nally obtained as

fh(x, y) =
NP∑
n=1

Nn(x, y)fn+
NT∑
m=1

(
x−

NP∑
n=1

Nn(x, y)xn

)
Mm(x, y)fxm

+
NT∑
m=1

(
y −

NP∑
n=1

Nn(x, y)yn

)
Mm(x, y)fym

(2.24)

In order to evaluate the additional unknowns fx(x, y) and fy(x, y), an additional

set of auxiliary conditions are introduced. These are obtained by taking the partial
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derivatives of the Eq. (2.24) with respect to variables x and y as

fh,x(x, y) =
NP∑
n=1

Nn,x(x, y)fn+

+
NT∑
m=1

(
1−

NP∑
n=1

Nn,x(x, y)xn

)
Mm(x, y)fxm−

NT∑
m=1

(
NP∑
n=1

Nn,x(x, y)yn

)
Mm(x, y)fym

+
NT∑
m=1

(
x−

NP∑
n=1

Nn(x, y)xn

)
Mm,x(x, y)fxm+

NT∑
m=1

(
y −

NP∑
n=1

Nn(x, y)yn

)
Mm,x(x, y)fym

(2.25)

fh,y(x, y) =
NP∑
n=1

Nn,y(x, y)fn+

+
NT∑
m=1

(
1−

NP∑
n=1

Nn,y(x, y)yn

)
Mm(x, y)fym−

NT∑
m=1

(
NP∑
n=1

Nn,y(x, y)xn

)
Mm(x, y)fxm

+
NT∑
m=1

(
x−

NP∑
n=1

Nn(x, y)xn

)
Mm,y(x, y)fxm+

NT∑
m=1

(
y −

NP∑
n=1

Nn(x, y)yn

)
Mm,y(x, y)fym

(2.26)

where fh,x(x, y) and fh,y(x, y) are the approximate partial derivatives of the ap-

proximate solution de�ned in Eq. (2.24), with subscripts after comma indicating

di�erentiation with respect to variables x or y direction. The above set of equation

can be simpli�ed using Eqs. (2.19)-(2.23) as

NP∑
n=1

Nn,x(x, y)fn−
NT∑
m=1

(
NP∑
n=1

Nn,x(x, y)xn

)
Mm(x, y)fxm−

NT∑
m=1

(
NP∑
n=1

Nn,x(x, y)yn

)
Mm(x, y)fym = 0

(2.27)

NP∑
n=1

Nn,y(x, y)fn−
NT∑
m=1

(
NP∑
n=1

Nn,y(x, y)yn

)
Mm(x, y)fym−

NT∑
m=1

(
NP∑
n=1

Nn,y(x, y)xn

)
Mm(x, y)fxm = 0

(2.28)

where Nn,x(x, y) and Nn,y(x, y) are the �rst-order derivatives of the shape function

Nn(x, y) with respect to the x and y directions, respectively. The derivatives of the
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shape function can be obtained by di�erentiating the basis function vector. The

auxiliary conditions are mainly introduced to solve for the additional unknowns

fx(x, y) and fy(x, y).

Finally, the approximate solution de�ned in Eqs. (2.22)-(2.24) along with the

auxiliary equations de�ned in Eqs. (2.27)-(2.28) are solved together to obtain the

approximate solutions fh(x, y), fhx (x, y), and fhy (x, y) corresponding to the function

f(x, y) and its �rst-order derivatives fx(x, y) and fy(x, y), respectively.

Problem discretization

In the Hermite-Cloud method, the PDE system is discretized using the point

collocation method (Russell and Shampine, 1972), wherein the governing equation

and the boundary conditions are satis�ed at all the collocation points in the domain.

Consider a partial di�erential boundary value problem de�ned in the domain Ω as

Lf(x, y) = F (x, y) (2.29)

f(x, y) = G(x, y) along ΓD (2.30)

∂f(x, y)/∂n = H(x, y) along ΓN (2.31)

where L is a di�erential operator, and ΓD, ΓN are the Dirichlet and Neumann

boundaries. Using the point collocation approach, Eqs. (2.29)-(2.31) can be

discretized at a scattered point (xi, yi) as

Lfh(xi, yi) = F (xi, yi) i = 1.....NΩ (2.32)

fh(xi, yi) = G(xi, yi) i = 1.....ND (2.33)

∂fh(xi, yi)/∂n = H(xi, yi) i = 1.....NN (2.34)

where fh(xi, yi) is the approximate solution of the function f(x, y) and NΩ, ND, NN

are the number of scattered points inside the domain and along the Dirichlet and
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Neumann boundaries, respectively. The approximate solutions de�ned in Eqs.

(2.22)-(2.24) are substituted into the discretized from of the PDE de�ned in Eqs.

(2.32)-(2.34), and combined with the auxiliary conditions de�ned in Eqs. (2.27)-

(2.28), leading to a set of algebraic equations corresponding to the unknown variables

fi, fxi and fyi, which can be expressed in a matrix form as

[Aij](NP+2NT )×(NP+2NT ){Xi}(NP+2NT )×1 = {Bi}(NP+2NT )×1 (2.35)

where A is the coe�cient matrix, which can be constructed from the discretized

form of PDE de�ned in Eqs. (2.32)-(2.34) and the auxiliary conditions de�ned in

Eqs. (2.27)-(2.28) as follows. Consider a node i, in the interior of the domain and

not subject to any boundary condition, with the nodal location given as (xi, yi).

The entries in the ith row and jth column of matrix A is then given as

Aij =

[
[LNj(xi, yi)]1×NP ,

[
L

((
xi −

NP∑
n=1

Nn(xi, y)xn

)
Mj(xi, yi)

)]
1×NT

, ...

...

[
L

((
yi −

NP∑
n=1

Nn(xi, y)yn

)
Mj(xi, yi)

)]
1×NT

]
(2.36)

where Nj and Mj are the shape function computed at the jth node. Similarly,

for a boundary node b, subject to Dirichlet or Neumann boundary condition, the

corresponding bth row entries in the A matrix are given as

Adj =
[
[Nj(xi, yi)]1×NP , [0]1×NT , [0]1×NT

]
Anj =

[
[0]1×NP , [Mj(xi, yi)]1×NT , [Mj(xi, yi)]1×NT

]
(2.37)

with row index d and n corresponding to Dirichlet and Neumann boundary condition

respectively. Finally, the entries corresponding to the auxiliary conditions are added
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to the coe�cient matrix making it complete.

Aaxj =

[
[Nj,x(xi, yi)]1×NP ,

[
−

(
NP∑
n=1

Nn,x(xi, yi)xn

)
Mj(xi, yi)

]
1×NT

, ...

...

[
−

(
NP∑
n=1

Nn,x(xi, yi)yn

)
Mj(xi, yi)

]
1×NT

]
(2.38)

Aayj =

[
[Nj,y(xi, yi)]1×NP ,

[
−

(
NP∑
n=1

Nn,y(xi, yi)xn

)
Mj(xi, yi)

]
1×NT

, ...

...

[
−

(
NP∑
n=1

Nn,y(xi, yi)yn

)
Mj(xi, yi)

]
1×NT

]
(2.39)

where row index ax and ay corresponding to Eqs. (2.27) and (2.28) respectively.

The unknown column vector X, in Eq. (2.35) includes the �eld variable f(x, y) and

its �rst-order derivatives fx(x, y) and fy, and is given as

{Xi}(NP+2NT×1) = {{fi}(1×NP ), {fxi}(1×NT ), {fyi}(1×NT )}T (2.40)

Finally, the right hand side vector B is obtained from governing di�erential equation,

Dirichlet and Neumann boundary conditions (Eqs. (2.32)-(2.34)) and the auxiliary

equation (Eqs. (2.27)-(2.28)) as

{Bi}(NP+2NT×1) = {{F (xi, yi)}(1×NΩ), {G(xi, yi)}(1×ND), {H(xi, yi)}(1×NN ), {0}(1×2NT )}T

(2.41)

The set of algebraic equations given in Eq. (2.35) are solved using any of the direct

or iterative solvers, and �nally the results obtained are substituted back in Eqs.

(2.22)-(2.24) to obtain approximate solutions of the �eld variable f(x, y) and its

�rst-order derivatives fx(x, y) and fy(x, y) at all the scattered points.
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Numerical validation

The source code used in this work for continuum simulation using the Hermite-cloud

method is validated by solving a benchmark test problem. A rectangular domain

of dimensions L×H, under plane stress condition and subject to pure bending load

M , is considered as shown in Fig. 2.1. The governing equations for this problem

are the plane stress equilibrium equations that are given as (Lam et al., 2006)

E

1− µ2

{
∂2u

∂x2
+

1 + µ

2

∂2v

∂x∂y
+

1− µ
2

∂2u

∂y2

}
+ X = 0 (2.42)

E

1− µ2

{
∂2v

∂y2
+

1 + µ

2

∂2u

∂x∂y
+

1− µ
2

∂2v

∂x2

}
+ Y = 0 (2.43)

where u and v are the displacements along the x and y directions, E and µ are the

Young's modulus and Poisson's ratio of the material respectively, and X, Y are the

body forces that are taken as zero for this problem.

The domain is supported at hinge points A and B, and subject to a unit bending

moment M . Both x and y displacements are constrained at Point A, while only

the y displacements are constrained at point B. The boundary conditions for the

problem are given as

σx =
E

1− µ2

{
∂u

∂x
+ µ

∂v

∂y

}
=
My

I
at x = 0 andL (2.44)

τxy =
E

2(1 + µ)

{
∂v

∂x
+
∂u

∂y

}
= 0 at x = 0 andL (2.45)

σy =
E

1− µ2

{
∂v

∂y
+ µ

∂u

∂x

}
= 0 at y = ±H/2 (2.46)

τxy =
E

2(1 + µ)

{
∂v

∂x
+
∂u

∂y

}
= 0 at y = ±H/2 (2.47)
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Figure 2.1: Plane stress problem under pure bending.

with displacement constraints at point A and B given as

u = 0; v = 0 at (0, 0) and v = 0 at (L, 0) (2.48)

where, σ and τ correspond to the normal and shear stress respectively, and

I = H3/12 is the moment of inertial for the domain.

The analytical solution for this problem is given as (Lam et al., 2006)

u =
M

EI

(
x− L

2

)
y (2.49)

v =
M

2EI

(
xL− x2 − µy2

)
y (2.50)

and the �rst-order derivatives the displacements, with respect to x and y directions,

are given as

∂u

∂x
=

M

EI
y (2.51)

∂u

∂y
=

M

EI

(
x− L

2

)
(2.52)

∂v

∂x
=

M

EI

(
L

2
− x
)

(2.53)

∂v

∂y
= −µM

EI
y (2.54)

56



Chapter 2. Mathematical Modeling of Atomistic and Continuum Domains

The Young's modulus and Poisson's ration for this problem are taken as 1 and 0.25

respectively. The problem is numerically solved using the Hermite-cloud method

using a uniform 11×11 point distribution. 1. The source codes for the Hermite-

Cloud algorithm were developed using Matlab version 7.4, and run on a Pentium

Duo Core Machine (3GHz) with 3.25GB RAM. The results, namely the u and v

displacements and their �rst-order derivatives, obtained using the Hermite-cloud

method are compared with that of the analytical solution in Figs. 2.2 and 2.3.

From the �gure it can be observed that the numerical results agree well with the

analytical solution. This is further supported by the global error value of less than

1%, observed for the solution. The error global error values observed for the �rst-

order derivatives are also less than 1%.
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(a)

(b)

Figure 2.2: Plane stress problem: comparison of analytical and numerical solution
(a) u displacement (b) v displacement.
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(a) (b)

(c) (d)

Figure 2.3: Plane stress problem: comparison of analytical and numerical solution:
displacement derivatives (a) ux (b) vx (c) uy (d) vy .
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2.2 Molecular Dynamics

Molecular dynamics, is a simulation technique that follows the time evolution of a

set of interacting atoms in a system, which might be in solid liquid or gaseous state.

It is like a virtual microscope that provides a snapshot of the position, velocity and

orientation of atoms at di�erent time instances. The atoms in the system are thus

followed at successive time intervals, as they move, interact and collide with other

atoms or the system boundary. The simulation is based the following assumptions

(Leach, 2001; Rapaport, 2004; Haile, 1997)

� The atoms/molecules in the system are spherically symmetric and they inter-

act with each other through de�ned potentials. The trajectory of the atoms are

de�ned by their instantaneous position and velocity. The interaction potential

is a continuous function that depends on the instantaneous atomic positions

as well as the inter-atomic spacing, also known as soft-sphere model.

� The system is isolated meaning that the system energy, mass, and the number

of atoms remain constant with time.

The MD method thus provides solution to an N -body problem, consisting of

atoms/molecules interacting with one another through de�ned potentials. The

equations of motion of the interacting atoms can be written using the Lagrangian

function as
d

dt

∂L

∂ṙi
− ∂L

∂ri
= 0 i = 1...N (2.55)

where, ri = (xi, yi, zi) is the Cartesian coordinate of an atom i, with ṙ denoting the

time derivative, and N is the number of atoms in the system. The Lagrangean L

for the system can be computed from the kinetic and potential energies as

L =
∑
i

mi

2
(ẋ2

i + ẏ2
i + ż2

i )− U(r1, r2, ....rn) (2.56)
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where mi is the atomic mass and U is the potential energy of the system that is a

function of atomic coordinates. Equations (2.55) and (2.56) �nally lead to Newton's

equation of motion that can be expressed as

mir̈i = −∂U(r1, r2, ....rn)

∂ri
or (2.57)

fi =
N∑

j=1;j 6=i

fij (2.58)

where fi is the force on atoms i due to its interactions with other atoms in the

system. If the initial position and velocities are known at a particular time instance,

the phase-space trajectory de�ned in terms of the atomic position and momenta

(momentum), can be determined at subsequent time intervals by integrating the

equations of motion, Eq. (2.57). Macroscopic properties can then be computed

from the atomic trajectories and momenta as time averages. The major steps in an

MD simulation involves, modeling of the system by de�ning appropriate potentials,

integrating the equations of motion by applying suitable boundary conditions and

�nally obtaining macroscopic properties from the atomic trajectories. Each of these

steps are discussed brie�y in the following sections.

2.2.1 Modeling the system - inter-atomic potentials

The �rst and the most important step in MD simulation is the choice of a potential

function to model the system of interacting atoms. Macroscopic properties of a

system can be accurately computed by quantum mechanical principles that account

for interactions at both atomic as well as subatomic level. However, such simulations

are both time consuming and computationally expensive and therefore can simulate

only a small number of atoms. MD simulation thus adopts a classical approach to

simulate larger number of atoms by the use of inter-atomic potentials. The inter-
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atomic potentials are developed based on the Born-Oppenheimer approximation

(Leach, 2001), that ignores the electronic motion within the atoms and computes

the energy of the system only based on nuclear positions. This assumption is valid

as the mass and the time scale with which electrons move are much smaller than

that of the nuclei. The electronic degrees of freedom are thus incorporated into the

potential function, which is a function of atomic coordinates.

The potential function of an atomic system is generally of the form

U(r1, r2, ....rn) =
∑
i

φ(ri) +
∑
i,j>i

φ(ri, rj) +
∑

i,j>i,k>j

φ(ri, rj, rk) + .... (2.59)

where rn is the radius of the nth atom, φm is an m-body potential which is the

sum of energies due to external forces, pair-wise interaction, three body interaction

etc. The �rst term that represents the energy due to external forces are usually

ignored and multi-body interactions are usually restricted to three, in order to reduce

computational costs.

Pair-wise interactions model the attractive and repulsive forces between atomic

nuclei surrounded by negatively charged electrons, also known as the electron cloud.

A popular model to describe pair-wise interactions is the Lennard-Jones (LJ) 12−6

potential given as

φ(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

rij = ri − rj (2.60)

where rij is the distance between the atoms i and j, σ represents equilibrium

distance, the distance at which the energy φ(r) is zero meaning that the attractive

and repulsive forces are in equilibrium, and ε is the well depth (see Fig. 2.4) that

indicates how strongly the atoms attract each other. The 1/r12 term in the potential

represents short range repulsive forces and is based on Pauli's principle, while long

range attractive forces represented by the 1/r6 term is based on van der waals forces.
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The potential has unit of ε, which is electron volt (eV).

The force between atoms can be computed as the derivative of the potential function

with respect to inter-atomic distance as

fij = −∂U(r)

∂r
=

(
48ε

σ2

)[(
σ

rij

)14

− 1

2

(
σ

rij

)8
]
rij (2.61)

Computing the forces between atoms using the above equation requires N2 computa-

tions. In order to save computational cost and make the computer implementation of

the algorithm simpler, a cuto� radius rc is introduced, and an atoms are considered

to interact only within the cuto� radius. Considering only pairwise interactions the

potential function in Eq. (2.59) can be written as

U(r) =


φ(rij) r ≤ rc

0 r > rc

(2.62)

A cuto� radius of 2.5σ and 3.2σ are commonly used in simulations that use LJ

potential. The 12− 6 LJ potential is widely used pair-wise potential for simulating

problems in the �eld of engineering and science.

The other commonly used potential to simulate pair-wise interaction is the Morse

potential (see Fig. 2.5)

φ(rij) = Do

(
e−2α(rij−ro) − 2e−α(rij−ro)

)
(2.63)

fij = 2αDo

(
e−2α(rij−ro) − e−α(rij−ro)

)
(2.64)

where φ(rij) is the potential energy function, and Do, α and ro are potential

parameters that correspond to the cohesion energy, elastic modulus and equilibrium

bond distance, respectively.

The higher-order interaction terms in the potential function de�ned in Eq. (2.59)
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Source : http://www.sv.vt.edu/classes/MSE2094_NoteBook/MolecDyn/lj.html

Figure 2.4: 12− 6 Lennard Jones potential.

Source : http://www.ask.com/wiki/Morse_potential

Figure 2.5: Morse potential.
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are generally restricted to a maximum of three-body potential due to practical

limitations. Commonly used multi-body potentials include the Treso� potential,

Brenner potential and the embedded atom model (EAM) potentials.

Finally, the interaction force, Eqs. (2.61) and (2.64), obtained as the derivative

of the energy function, Eqs. (2.60) and (2.63), with respect to the inter-atomic

distance, is substituted in the Newton's equation of motion de�ned in Eq. (2.57),

and then numerically integrated to obtain the atomic trajectories and momenta.

2.2.2 Initial and boundary conditions

Before starting the simulation, the problem variables have to be initialized. This

involves assigning the initial coordinates, velocities and acceleration for the atoms.

The initialization is done as follows

� The initial positions are assigned by positioning the atoms at their respective

lattice sites in a unit cell. The arrangement is done in such a way that required

density (ρ = N/V ) is achieved, where N is the total number of atoms in the

unit cell and V is the volume. Generally used lattice structures include simple

cubic, face centered cubic (FCC) or body centered cubic (BCC) lattices in 3D

and a square or triangular lattice in 2D.

� The velocity vector v is assigned a magnitude based on the Maxwell distribu-

tion at a given temperature as

v =
√

2 ∗ T (2.65)

where T is the temperature, and are assigned random velocity directions. In

this work, an uniform random number generator in the interval [−1, 1] is used

for the purpose. The resulting velocities are scaled to ensure that the net
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momentum is zero. i.e.,

p =
∑
i

mivi = 0 (2.66)

� The accelerations for all the atoms are initially set to zero

In a macroscopic system, the number of atoms near the system boundary can

neglected in comparison to the total number of atoms. However, the total number

of atoms N in a simulated system, no matter how larger the simulated system is,

would be much lesser than the number of atoms contained in a macroscopic piece of

matter (of the order of 1023). Therefore, the ratio of the number of atoms near the

system boundary to the total number of atoms would be much larger than in reality

and therefore boundary e�ects become important. To carry out simulations that

would capture the behavior of interior atoms, without boundary e�ects, periodic

boundary condition are used, wherein the simulation region is replicated in�nitely

in all three Cartesian directions.

In enforcing periodic boundary conditions, we assume that any atom/atoms that

leaves the simulation region through a bounding face re-enters through the opposite

face. Also, the atoms that are within the cut-o� radius of a boundary interact with

atoms in the adjacent copy of the system or atoms near the opposite side of the

boundary, known as the wrap around e�ect. The periodic boundary conditions are

imposed in the simulation by checking the position of the atom after each time step

and making necessary adjustments to bring atoms back into the simulation cell. The

use of such a boundary condition helps in modeling a system that is bounded and

at the same time free of physical boundary.

2.2.3 Non-dimensional units

The numbers normally encountered in atomic scale simulations are very small and

may introduce round o� errors while programming. To avoid this di�culty, MD
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simulations are carried out in reduced/dimensionless units in order to work with

numbers closer to unity. The use of dimensionless units also permits scaling,

wherein the dimensionless model can be used to describe a class of problems and the

properties measured in dimensionless units can be appropriately scaled depending

on the problem of interest. All quantities such as temperature, pressure, etc., can

be expressed in terms of these reduced units.

For the LJ potential de�ned in Eq. (2.60), the dimensionless terms r∗ and t∗

corresponding to the length and time scales respectively, can be expressed in terms

of the LJ potential parameters σ and ε as

r∗ = r/σ (2.67)

t∗ = t/
√
mσ2/ε (2.68)

The mass in reduced units is taken as one, corresponding to the mass of one atom.

The interaction force for the LJ potential de�ned in Eq. (2.61), can be expressed in

reduced units as

fij = 48
N∑

j=1;j 6=i

[(
1

r∗ij

)14

− 1

2

(
1

r∗ij

)8
]
r∗ij (2.69)

Other physical properties such as kinetic and potential energies can also be expressed

in terms of reduced units in a similar fashion.

2.2.4 Velocity rescaling

Thermal energy may be released into or consumed by the system due to numerical

errors, choice of the time step, ambient temperature or incorrect initializations.

To prevent the temperature of the system from drifting and to establish thermal

equilibrium, the velocities need to be rescaled at regular time intervals, and is done

as

v
′

i =

√
Td
T
vi (2.70)
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where Td is the desired temperature. The average temperature is used instead of

the instantaneous temperature. The frequency between two rescaling has to be

determined for each problem. Rescaling is generally not done during the initial

phase to avoid possible interference with energy conservation.

2.2.5 Numerical integration

The equation of motion given by Eq. (2.57) is an N -body problem for which an

analytical solution is not feasible if the number of atoms exceeds two. Hence, to

obtain the position and velocity of the atoms after every time step the equations

of motion have to be numerically integrated. Integration algorithms used for this

purpose are generally based on �nite di�erence schemes. If the position and the

velocity at time t are known, the integration scheme can be used to compute the

same quantities after a time t + ∆t. Widely used integration methods in MD

simulation include the leapfrog and the predictor corrector methods (Rapaport,

2004). Choosing an appropriate integration scheme is important as it determines the

total computational time. A proper choice of an integration algorithm is generally

based on the following criteria; it should be computationally e�cient, must permit

longer time step and must satisfy energy conservation properties.

The leapfrog scheme, based on Taylor's series expansion, is widely used because it is

simpler to implement and requires only one force computation per time step, greatly

reducing the computational e�ort. The method also has good energy conservation

properties. The truncation error of the algorithm is of the order of h4 and h2 in

computing displacements and velocities respectively; where h = ∆t is the time step

of numerical integration. In the leapfrog method the velocities and coordinates are
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updated as:

vi(t+ h/2) = vi(t− h/2) + hai(t) (2.71)

ri(t+ h) = ri(t) + hvi(t+ h/2) (2.72)

vi(t) = vi(t− h/2) + (h/2)ai(t) (2.73)

where ri, vi and ai correspond to the displacement, velocity and acceleration of the

ith atom respectively. The time step has to be carefully chosen as it needs to be

su�ciently small to model the vibrations of atomic bonds correctly but not too small

such that the computational e�ort becomes very high. Typical time steps used in

MD simulations is in the order of one femtosecond (1fs = 10−15s).

The leapfrog algorithm computes the position and velocities at di�erent time steps.

To obtain the velocity and position at the same time instance, a two step approach

is used. In this approach, the velocities are computed for the �rst half time step and

the coordinate values are updated for one full time step based on these computed

velocities. Finally, the velocity values are updated for the next half time step based

on the new acceleration values. The two step approach, used in this work, is given

as

vi(t+ h/2) = vi(t) + (h/2)ai(t) (2.74)

ri(t+ h) = ri(t) + hvi(t+ h/2) (2.75)

vi(t+ h) = vi(t+ h/2) + (h/2)ai(t+ h) (2.76)

2.2.6 Measuring physical properties

The �nal step in MD simulation is evaluating macroscopic properties from the

microscopic information such as the atomic position and velocities, and is done

using the principles of statistical mechanics. Statistical mechanics provides the
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mathematical base to relate the motion and distribution of atoms in a N -body

system to the macroscopic observables such as pressure, temperature, energy etc.

The thermodynamic state of a system is de�ned in terms of properties of the system

such as temperature, pressure, etc. The microscopic state of the system is de�ned in

terms of the atomic positions r and momenta p, that form the coordinates of phase

space. The ensemble is a collection of points in the phase space corresponding to

a particular thermodynamic state. An ensemble is thus a collection of all possible

microscopic states of system that correspond to a thermodynamic state. There are

di�erent ensembles possible such as the micro canonical ensemble (NV E), canonical

Ensemble (NV T ), Isobaric-Isothermal Ensemble (NPT ), etc. The commonly used

micro-canonical (NV E) ensemble is characterized by a �xed number of atoms, N ,

a �xed volume, V , and a �xed total energy, E, corresponding to an isolated system.

The ensemble average is the average taken over di�erent microscopic states of

a system, evolving over time with di�erent initial conditions and is given as

〈A〉ensemble = A(pN , rN), where A is the macroscopic property. Computing the

ensemble averages for a macroscopic sample, containing a large number of atoms,

is very di�cult as all possible microscopic states of the system have to be known.

Hence in MD simulations, the physical properties, which are a function of the particle

coordinates and velocities, are obtained as time averages, expressed as

〈A〉time =
1

M

M∑
t=1

A(pN , rN) (2.77)

where t is the simulation time andM is the number of time steps. The time average

thus calculated can be approximated to the ensemble average by the use of Ergodic

hypothesis. As per this hypothesis, given su�cient time, the time average can be

equated to the ensemble average or < A >ensemble=< A >time. As the simulation

is done over a su�cient period of time, the accuracy of this hypothesis is ensured

because, with inde�nite time, the system will pass through all possible states. The
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time averages for the potential and kinetic energy can be expressed as

KE = 〈KE〉 =
1

2M

M∑
j=1

{
N∑
i=1

miv
2
i

}
(2.78)

PE = 〈PE〉 =
1

M

M∑
i=1

Vi (2.79)

where Vi is the potential energy function and mi, vi are the mass and velocity of the

ith atom respectively.

2.2.7 Limitations of MD simulation

With the rapid growth in computation resources and the availability of accurate

inter-atomic potentials, MD simulations have emerged as a successful tool to

simulate complex physical phenomena such as fracture, defects in crystals, friction,

biological systems such as DNA, RNA, and also to study the electronic properties of

materials. However, the method su�ers from a few shortcomings (Liu et al., 2004)

� The length and time scales that can be analyzed using MD simulations

are still limited. Even with the most advanced computers available today,

MD simulations can handle at most billion atoms which in spatial scale

is still in the sub-microns range. Problems in the nanoscale regime that

involve billions of atoms and span several microns are still very large for MD

simulations. Similarly, the maximum temporal scales that can be simulated

in MD simulation is only of the order of nanoseconds. The time scale can

be only increased by proportionally reducing the number of atoms, and the

development of parallel MD algorithms is still a great challenge. It is therefore

di�cult to compare the results of MD simulation with that of laboratory

experiments that carried out on much larger length and times scales.

� In MD simulation, only a small representative region of the total system
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is simulated, due to computational constraints. To account for the region

surrounding this representative region rigid/periodic boundary conditions are

used. The results obtained form such a simpli�cation might not exactly

simulate the actual macroscopic system.

� The major step in the MD simulation involves determination of the forces,

which are obtained as the derivative of the potential energy function. The

accuracy of the method therefore depends on the proper choice of the potential

and its ability to mimic the behavior of the actual system being simulated.

Also, the integration algorithm and the time step used for integrating the equa-

tions of motion, to a great extent, determine the computational requirement

and accuracy of the simulation.

2.3 Chapter Summary

This chapter provided an overview of the molecular dynamics method and the mesh-

less Hermite-cloud method used to model the atomistic and continuum domains.

From the discussion it can be observed that though the MD method is very e�ective

in simulating atomistic systems, the length and time scales that can be simulated

by it are still somewhat constrained by the huge requirement of computational

resources. The meshless Hermite-cloud on the other hand is a truly meshless

method that eliminates mesh generation completely and is algorithmically simple

to implement. It would therefore be wise to combine the best of both approaches,

by developing a multiscale model that retains atomistic precision where required

and uses the meshless framework elsewhere. This would permit the study systems

with larger length and time scales, which is otherwise not feasible with a full MD

model. The major issue in the development of a multiscale model is to devise an

e�cient coupling algorithm to couple di�erent scales in the problem. This would be

the focus of the discussion in the next chapter.
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Atomic-Continuum Coupling

The coupling algorithm to couple atomistic and continuum domains is discussed in

detail in this chapter. First, the general framework of the multiscale problem and

the role of the transition region in ensuring seamless transfer of information between

the two domains is discussed. Domain decomposition methods, and speci�cally

the Schwarz alternating scheme, based on which the coupling algorithm in this

work is developed, is discussed in the next section. The last section presents the

handshaking/coupling algorithm that provides the necessary interface between the

atomic and continuum domains, which are discretized using the molecular dynamics

(MD) and Hermite-cloud methods respectively, and explained in Sections 2.2 and

2.1.4. This is followed by the chapter summary.

3.1 General Framework and Classi�cation of Mul-

tiscale Problems

The general framework of a multiscale problem is shown Fig. 3.1. In the �gure,

circles and triangles correspond to atoms and meshless nodes respectively. The

problem domain is divided into atomic and continuum subdomains Ωa and Ωc such
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Figure 3.1: General framework of multiscale problem.

that Ω = Ωa ∪ Ωc, where subscripts a and c refer to the atomistic and continuum

domains respectively. The continuum domain may be either treated using the �nite

element or meshless approach, while the atomistic region is treated using the MD

method. The transition region Ωt = Ωa ∩ Ωc, is the region where the atomic

and continuum domains overlap, and contains both atoms and meshless nodes.

Compatibility and equilibrium conditions are enforced in the interface region by

prescribing appropriate boundary conditions.

The interface region that couples the two domains is further subdivided into

handshaking and padding regions, depending on the problem to be solved. The

handshaking region is where atoms and �nite element/meshless nodes co-exist. The

padding region on the other hand ensures that the atoms in the atomistic region
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have their complement of neighbors. The thickness of the padding region is mainly

dictated by the cut-o� length rcut, used in the inter-atomic potential and the motion

of padding atoms is governed by the continuum displacement �eld.

Displacement compatibility at the interface may be enforced in di�erent ways for

di�erent models. In certain multiscale models, the continuum mesh is re�ned such

that the �nite element/meshless nodes coincide with the atoms. If the continuum

region is discretized using a �nite element mesh, it has to be fully re�ned at the

interface region such that there is a one-to-one correspondence between �nite element

nodes and atoms. This condition is more easily achieved when using meshless nodes.

A coarse mesh may be used in the regions away from the interface. The one-to-one

correspondence may not be necessary in certain class of multiscale problems.

Multiscale models may be fundamentally classi�ed, based on the modeling criteria,

as follows

1. Energy/Force based approach. This classi�cation is based on the method used

to achieve equilibrium in the problem. In energy-based methods, an energy

functional is de�ned for the entire problem and equilibrium is achieved by

minimizing this energy functional. In force-based methods, the forces are

determined at all degrees of freedom and equilibrium is achieved by forcing

these forces to zero. In energy based methods spurious forces, also known

as ghost forces, are generated in the transition region, due to the mismatch

between the non-local and local nature of atoms and nodes in the transition

region, while it is automatically taken care of in force-based methods. However,

the problem with force-base methods is that there is no well de�ned energy

functional and their convergence rates are generally slower compared to energy

based methods.

2. Boundary conditions. Displacement compatibility is required to ensure proper

coupling of atomistic and continuum regions and may be enforced in a
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`strong' or `weak' sense. In the case of strong compatibility there is a one-

to-one correspondence between atoms and nodes in the padding region, and

atoms and the nodes move together. In transferring continuum displacement

to atomic region, the displacement of a pad atom Uα is determined from

nodal displacement U I using the shape function N I de�ned at the I th node.

Similarly, in the reverse direction, the displacement of a set of nodes are

determined from the reference co-ordinates of the atoms. However, in this case

the displacement compatibility may need to be enforced only on a subset of pad

atoms. The major drawback of enforcing strong compatibility is that, if a �nite

element mesh is used in the continuum region, it has to fully re�ned to coincide

with that of atomic locations. To overcome this issue, some multiscale method

enforce weak-compatibility, wherein there is no direct correspondence between

atoms and nodes and displacement boundary conditions are satis�ed only in

an average sense. However, these methods take more time for convergence and

are generally less accurate.

3. Continuum model. The continuum region in the multiscale model can be

treated using a �nite element or meshless approaches as mentioned earlier.

The type of continuum model used depends on the problem to be solved. In

simple cases, a linear elastic model may be used with elastic constants modi�ed

to ensure compatibility with a atomistic model or a non-linear formulation may

be used for more complex problems.

3.2 Domain Decomposition Methods

Domain decomposition methods are used in the numerical solutions of partial

di�erential equations, wherein a boundary value problem is solved by splitting it

into di�erent boundary value problems on smaller subdomains, and the solution is

obtained by iterating the solution between adjacent subdomains. As the problems
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on the individual subdomains are independent, these methods are well suited for

parallel computing.

Domain decomposition methods can be classi�ed as overlapping and non-overlapping

methods, depending on the nature of the interacting subdomains. In overlapping

domain decomposition methods, the subdomains overlap and intersect each other,

while in non-overlapping methods, the subdomains only share a common boundary.

Examples of overlapping decomposition methods include the Schwarz alternating

method and the additive Schwarz method and those in the non-overlapping cate-

gory include the balancing domain decomposition (BDDC) method and the �nite

element tearing and interconnect (FETI) method. In non-overlapping methods, the

continuity of the solution across the subdomain interface is enforced by representing

the value of the solution on all neighboring subdomains by the same unknown. These

methods are also known as iterative sub-structuring methods.

In the Schwartz method for overlapping subdomains (Quarteroni and Valli, 2005),

used in this work, the problem domain Ω is decomposed into overlapping subdomains

Ω1 and Ω2 such that Ω = Ω1 ∪ Ω2 as shown in Fig. 3.2. Consider a boundary value

problem de�ned in the domain Ω as

Lu = f in Ω (3.1)

u = g on ∂Ω (3.2)

where L is the di�erential operator, ∂Ω the problem boundary, and Γ1 and Γ2,

shown in the Fig. 3.2, the boundaries of the overlapping subdomains respectively.

The problem is solved iteratively by using an initial starting guess u0
2 for the values
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Figure 3.2: An example of overlapping subdomains.

along Γ1 and �rst solving for un1 as


Lun1 = f in Ω1

un1 = g on ∂Ω1\Γ1

un1 = un−1
2 on Γ1

(3.3)

and then subsequently solving for un2 as


Lun2 = f in Ω2

un2 = g on ∂Ω2\Γ2

un2 = un1 on Γ2

(3.4)

where un1 and un2 are the solutions at the nth iteration in subdomains Ω1 and Ω2

respectively. The iterations are repeated till convergence of solution.

If the boundary value problem in Eq. (3.1) is discretized as Au = f , the above
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iterations can be expressed as

un+1/2 = un +

 A−1
Ω1

0

0 0

 (f − Aun) (3.5)

un+1 = un+1/2 +

 0 0

0 A−1
Ω2

 (f − Aun+1/2) (3.6)

where AΩ is the discrete form of the di�erential operator. The above version is also

known as the multiplicative Schwarz method. An improved version of the above

method is the additive Schwarz method, that enables parallel computing, and is

given as

un+1 = un +


 A−1

Ω1
0

0 0

+

 0 0

0 A−1
Ω2


 (f − Aun) (3.7)

The di�erence between additive and multiplicative versions of the Schwarz method

is similar to the di�erence between the Jacobi and Gauss-Seidel methods.

3.3 Atomic-continuum Coupling Algorithm Based

on the Schwarz Alternating Method

The coupling algorithm ensures seamless coupling between the atomic and con-

tinuum models and is based on the Schwarz method for overlapping subdomains,

discussed in the previous section. Handshaking/coupling is achieved by ensuring

the compatibility of both the �eld variable and its �rst-order derivative, between

the atomic and continuum domains and also force equilibrium in the transition

region. The details of the coupling algorithm are presented in this section.

Consider a partial di�erential boundary value problem Lu(x) = P (x) de�ned over

the domain Ω, with appropriate Dirichlet and Neumann conditions de�ned along
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the boundary. The multiscale algorithm can be explained as follows. The problem

domain is �rst decomposed into the atomic and continuum subdomains Ωa and

Ωc respectively, such that Ω = Ωa ∪ Ωc, where superscripts a and c refer to the

atomistic and continuum domains respectively. The atomic domain is restricted to

the strategic region where atomic physics dominates, and the remaining region is

modeled using the continuum approach. The molecular dynamics and the meshless

Hermite-cloud methods, (see Sections 2.2 and 2.1.4), are used to discretize the atomic

and continuum domains respectively.

The transition region Ωt = Ωa ∩ Ωc, is the region where the atomic and continuum

domains overlap, and contains both atoms and meshless nodes. It is the region where

compatibility and equilibrium conditions are enforced. The atomic and continuum

domains fully extend into the transition domain. The atomic and continuum

domains can therefore be seen as the union of the transition region Ωt containing

both atoms and nodes, and a pure atomic Ωpa or continuum domain Ωpc containing

only atoms or nodes respectively. Therefore, the atomic and continuum domains

can be mathematically expressed as Ωa = Ωpa ∪ Ωt and Ωc = Ωpc ∪ Ωt.

Initially, the continuum domain that includes the transition region is solved using

the Hermite-cloud method by enforcing appropriate boundary conditions along the

transition and problem boundary. To begin with, the boundary conditions in the

transition region are obtained from the initial position and velocity of the nodes

in the transition region, and for subsequent iterations, the boundary conditions

are generated from results of the atomistic simulation. Displacement compatibility

between the atomistic and continuum domains is ensured by constraining the atoms

in the transition region to follow the displacement of the nodes or

uci(X
a)− uai = 0 in Ωt (3.8)

where uci(X
a) is the continuum displacement evaluated at an atomic location Xa
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and uai is the atomic displacement. As the number of nodes and atoms are not equal,

this condition may not be exactly satis�ed at every point but may be satis�ed when

the average value is taken over all points in the transition region.

An interpolation function is used to evaluate the continuum displacement at an

atomic location. The Hermite-cloud method provides both the �eld variable and

derivative information that can be used to construct piecewise Hermite interpolation

polynomials of order 2n−1 between any two nodes in the transition region, where n

is the number of nodes. If we consider two meshless nodes x1 and x2 in the transition

region with the �eld variable u1, u2, and their corresponding �rst-order derivatives

u1,x and u2,x, a Hermite interpolation polynomial can be constructed between them

as

u(x) = a0 + a1x+ a2x
2 + a3x

3 (3.9)

where the coe�cients (a0−a3) of the interpolation polynomial can be evaluated from

the �eld variable and its �rst-order derivative information available at both the nodes

x1 and x2. Proceeding in a similar fashion, a piecewise interpolation polynomial can

be constructed between any two nodes in the transition domain. The interpolation

polynomial can now be used to evaluate the value of the �eld variable at any atomic

position in the transition domain and then generate the boundary condition for

carrying out the MD simulation. As the Hermite interpolation polynomial matches

both the �eld variable and �rst-orders derivative at the nodal locations, �rst-order

compatibility is ensured between the atomic and continuum domains.

The MD simulation is now carried out and the results are used to generate the

boundary conditions for carrying out the continuum simulation. To transfer the

information from the atoms to nodes, following an atomistic simulation, we make

use of the Lagrange interpolation polynomials (Chapra and Canale, 2002). The

Hermite interpolation polynomial discussed above cannot be used in this case, as

the atomistic simulation results do not contain the derivative information. In this
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case we only have the �eld variable values at the atomic locations. If we consider

two atomic points (xi, xj) with �eld variable values (ui, uj) in the transition region,

a Lagrange polynomial can be constructed between them as

un(x) =
n∑
i=0

Li(x)u(xi)

where n is the number of data points and Ri(x) is given as

Ri(x) =
n∏

j=0

j 6=i

x− xj
xi − xj

The interpolation polynomial can then be used to evaluate the �eld variable values

at all the nodal locations in the transition domain.

The MD and continuum simulations are repeated iteratively until convergence is

reached within a single time step. Convergence is ascertained by verifying that

the norm of the �eld variable or the displacement values between two successive

iterations lies below an acceptable error tolerance

||uk+1 − uk||2 ≤ δ (3.10)

where and uk+1 and uk are the �eld variable values in the transition domain Ωt, at

time steps k and k + 1 respectively and δ is the error tolerance. Mathematically,

this is equivalent to solving two di�erent boundary value problems that generate

boundary conditions for one another, as in the Schwarz scheme, and can be expressed

as

L(ua(x)) = P (x) in Ωa(includes Ωt) (3.11)

L(uc(x)) = P (x) in Ωc(includes Ωt) (3.12)

In addition to displacement compatibility, it is also important for the coupling
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scheme to ensure equilibrium of forces in the transition domain. To ensure force

equilibrium, we adopt the method used by (Fish et al., 2007), wherein the forces

are gradually weakened in the transition region by introducing scaling parameters

α and β such that

α = 1 inΩc

β = 1 inΩa

α + β = 1 inΩt

(3.13)

The parameter α and β linearly vary from 0 to 1 in the transition region. The force

on any node I in the transition region is then computed as the weighted sum of the

atomic and continuum forces as

FI =
∑

α {L(u(xc))}+
∑
ξ 6=η

βη,ξfηξN
I(xa) (3.14)

where fηξ is the force exerted by atoms ξ on atom η, N the shape function, and the

scaling parameter βη,ξ between atoms η and ξ is given as

βη,ξ = (βη + βξ)/2 (3.15)

where βη is the scaling parameter evaluated at an atomic location Xa
η . The use

of the scaling parameter βη,ξ in the atomic domain ensures that the force on atom

η due to atom ξ is the same as the force exerted on atom ξ due to η, and hence

Newton's third law is satis�ed (Fish et al., 2007). The coupling algorithm thus

ensures both �rst-order compatibility and force equilibrium in the transition region.

The algorithmic steps for solving the problem using the coupling scheme discussed

above is listed in Table 3.1.

The coupling algorithm for both static and transient problems is the same, except

that in the transient case the algorithmic steps have to be repeated within every

time step until the solution within that time step converges. Once convergence is

achieved, the solution is marched forward to the next time step, and the procedure
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is repeated until the required time.

The major advantage of using interpolation polynomials for transferring information

between the nodes and atoms and vice versa is that the atoms and nodes are not

required to be coincident in the transition region. In other words, the continuum

nodes need not be graded down to coincide with their corresponding atomic points

in the transition region, which permits more freedom in the nodal distribution.

Multiple time step for numerical integration

The time scales in the atomic and continuum domains are di�erent; with the time

scales in the atomic domain generally being smaller than the continuum time scales.

Therefore, it would be computationally advantageous to go for a multi-time step

algorithm for the numerical integration of the equations of motion. If the time step

for atomic domain is chosen as ∆ta, the time step in the continuum domain ∆tc is

chosen as a multiple of the atomic time step as

∆tc = n∆ta (3.16)

where n is an integer. Therefore, within each time step, the calculations in the

atomic domain are repeated n times until they match with the continuum time

step.

3.4 Chapter Summary

In this chapter, a novel multiscale algorithm was proposed to couple atomistic

and continuum domains, which were individually modeled using the molecular

dynamics and the strong-form meshless Hermite-cloud methods described in Chapter

2, respectively. The handshaking/coupling method provides a smooth exchange
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Table 3.1: Multiscale algorithm for atomic-continuum coupling.

I Determine the positions of all the atoms and the meshless nodes in
the atomic and continuum domains.

II Do until the required number of time steps

III Compute the force on each node in the transition region using Eq.
(3.14)

IV Solve the continuum domain, with boundary conditions enforced the
transition and problem boundaries.

V

Use the �eld variable and �rst-order derivative information to
construct a Hermite polynomial of order 2n− 1, between any two
nodes nodes in the transition region. Interpolate to obtain the �eld
variable values at all the atomic locations in the transition region.

VI
Constrain the atoms in the transition region to follow the
displacement of the nodes and then solve the atomic domain, with
boundary conditions enforced the transition and problem boundaries.

VII Update the values in the transition boundary from the results in step
VI and go to step II

VIII Repeat steps II to VII till solution converges.

IX Increment the time step

X End Do

XI Output simulation results

XII Stop
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of information by ensuring both displacement compatibility and force equilibrium

in the overlapping transition region. The highlight of the proposed method is

that it enables the construction of higher order interpolation polynomials in the

transition domain that ensure compatibility of both the �eld variable and its �rst-

order derivative in the transition region. Also, the use of interpolation polynomials

in the transition domain means that nodal distribution in the transition domain

need not be fully re�ned to coincide with the atomic locations, which permits more

freedom for the nodal distribution in the continuum domain. In the next chapter,

accuracy of the proposed algorithm is veri�ed through benchmark problems in one

and two space dimensions.
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Results and Discussions

In this chapter, the multiscale model is validated by solving some benchmark test

problems and comparing the results with closed form analytical solutions. The

problems analyzed using the multiscale model are divided into static test cases that

involve only length scale coupling, and transient cases that involve coupling of both

time and length scales. Further, the static test cases include one and two-dimensional

Laplace and Poisson equations with di�erent forcing functions, and those involving

local high gradients. The transient test cases include the classical wave propagation

problem in both one and two dimensional space.

In all the numerical examples presented, the atomic and continuum domains are

respectively modeled using the harmonic potential and the Hermite-cloud method,

detailed in Chapter 2, unless speci�ed otherwise. The atomic mass (m) in reduced

units and the spring constant (k) de�ned in the harmonic potential are set to unity

unless speci�ed otherwise. In the Hermite-cloud simulation, the cloud size for the

cubic spline window function de�ned in Eq. (2.8) is taken as 1.17 times the nodal

spacing, in both the x and y directions respectively, to ensure that su�cient nodes

are included in the interpolation domain. The basis function vector de�ned in Eq.

(2.13) is taken to be quadratic, and the cloud area de�ned in Eq. (2.13) is set to
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unity. The distributions of nodes in continuum domains are uniform. The error

tolerance de�ned in Eq. (3.10) is set at 1×10-5 for all problems. The numerical

accuracy of the multiscale model is measured using a global error measure de�ned

as (Aluru and Li, 2001)

ψ =
1

|fmax|

√√√√ 1

NT

NT∑
i=1

(fe − fc)2 (4.1)

where ψ is the global error in the computed solution, fe and fc the respective

exact and numerically computed solutions, fmax is the maximum value of the exact

solution in the domian, and NT the total number of nodes and atoms scattered in

the computational domain.

To study the results of the multiscale simulation in comparison to a full atomistic

simulation, a relative error measure is used and is de�ned as (Gu and Zhang, 2006)

ξ =

∑m
i f

AD−
∑n

i f
MM∑m

i f
AD

(4.2)

where ξ is the relative error, fAD the solution obtained by a pure atomistic

simulation consisting ofm atoms, and fMM the solution obtained from the multiscale

simulation, consisting of n atoms and nodes taken together. The source codes for

the current multiscale method were developed using Matlab version 7.4, and run on

a Pentium Duo Core Machine (3GHz) with 3.25GB RAM.

4.1 Static Problems with Coupled Length Scales

4.1.1 1-D Problems

In this section the multiscale model is used to solve one dimensional boundary value

problems. The computational model for 1-D multiscale problems is shown in Fig.
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4.1. The atomic and continuum domains constitute approximately one half of the

computational domain, and overlap in the transition region.

The �rst example considered is the simple Poisson equation, for which the governing

equation and boundary conditions are

∂2u

∂x2
=

105

2
x2 − 15

2
− 1 ≤ x ≤ 1 (4.3)

∂u

∂x
(x = −1) = −10 (4.4)

u(x = 1) = 1 (4.5)

The problem domain [-1, 1] is divided into continuum, atomic and transition domains

in the region [-1, 0.2], [-0.2, 1] and [-0.2, 0.2], respectively. The continuum and atomic

domains contain 25 nodes and 49 atoms, with an average spacing of 0.05 and 0.025

units respectively. The problem is solved as per the procedure detailed in Table 3.1.

The analytical solution for this problem is given as

u =
35

8
x4 − 15

4
x2 +

3

8
(4.6)

Figure 4.2 shows the comparison between the analytical and numerical results for

this problem. The numerical results are compared with both the analytical solution

and a pure atomistic simulation, using the global and relative error measures de�ned

in Eqs. (4.1)-(4.2), and the values are tabulated in Table 4.1. From the tabulated

values it can be noted that there is a good agreement between the analytical and

numerical results, as seen from a small global error value of 0.0083. A relative error

value of 0.0063 shows that the results of the multiscale simulation are not only

accurate but also close to a pure atomistic simulation. The atomistic simulation

used for comparison is carried out with the same atomic spacing as in the multiscale

model.
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Figure 4.1: Computational model for static 1-D problems.

Figure 4.2: Comparison of analytical and multiscale simulation results for the 1-D
Poisson equation.
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The next example considered is the one-dimensional heat conduction problem with

an internal heat source. The problem has a steep gradient and is governed by the

following di�erential equation and boundary conditions

∂2T

∂x2
= −2s2 sech2[s(x− 0.5)] tanh[s(x− 0.5)] (4.7)

T (x = 0) = − tanh(3s) (4.8)

T (x = 1) = tanh(3s) (4.9)

The corresponding exact analytical solution is

T (x) = tanh[s(x− 0.5)] (4.10)

The parameter s is taken as 30 in this problem.

The one-dimensional computational model for this problem is similar to the previous

problem with the continuum, atomic and transition domains de�ned in the regions

[0, 0.7], [0.3, 01], and [0.3, 0.7] respectively. There are a total of 22 nodes in the

continuum domain with an average nodal spacing of 1/30 units, and 43 atoms in

the atomic domain with an average atomic spacing of 1/60 units. The results of the

multiscale simulation are plotted against the analytical solution in Fig. 4.3, and the

error values are given in Table 4.1. It is observed from the �gure that the method

satisfactorily captures the higher gradient with relatively few nodes/atoms, and is

able to produce results that are almost identical to a pure atomistic simulation.

The �nal 1-D problem considered is the Poisson equation with a local high gradient,

for which the governing equation and boundary conditions are

∂2u

∂x2
= −6x−

[
2

α2
− 4

(
x− β
α2

)2
]

exp

[
−
(
x− β
α

)2
]
, 0 ≤ x ≤ 1 (4.11)
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Figure 4.3: Comparison of analytical and multiscale simulation results for the 1-D
heat conduction equation with a heat source.

u(x = 0) = exp

(
−β2

α2

)
(4.12)

u(x = 1) = −1 + exp

(
−
(

1− β
α

)2
)

(4.13)

and the analytical solution is

u = −x3 + exp

(
−
(
x− β
α

)2
)

(4.14)

The computational model for this problem is same as that of the previous problem.

It has 15 nodes and 29 atoms with an average nodal and atomic spacing of 0.05 and

0.025 units, respectively. In the present simulation, α and β values are taken as

0.05 and 0.5 respectively. Figure 4.4 shows the comparison between the analytical

and numerical results, and the error values presented in Table 4.1. The results once

again validate the multiscale model and its capability to simulate problems with

local high gradient accurately.

The results of the 1-D problems provide us with some valuable insight on the
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Figure 4.4: Comparison of analytical and multiscale simulation results for the Pois-
son equation with a local high gradient.

characteristics of the multiscale model. Figure 4.5 shows the variation of the global

error from the start of the simulation until its convergence, as per the criteria de�ned

in Eq. (3.10). The results show that the convergence rate is rapid in the initial phase,

after which it ceases quite abruptly. The width of the transition domain a�ects the

global error and the convergence rate of the solution, as seen in Figs. 4.6 and 4.7.

Increasing the width of the transition region, in multiples of the nodal spacing,

ensures a better exchange of information between the domains, as evident from

the reduced global error values and the number of iterations required for solution

convergence. An optimum width for the transition domain has to be chosen based on

the accuracy requirements and also taking into account the additional computations

that would be required in the transition domain.

In general, for engineering problems involving atomic-continuum coupling, the

strategic region is discretized using an atomistic approach. This region generally

constitutes a localized region where accuracy of the solution is of importance.

Therefore, it would be bene�cial to study the performance of the multiscale model
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with an increased atomic density. Figure 4.8 shows the variation of global error for

an increasing number of atoms and a �xed number of nodes. As expected, the global

error decreases with an increase in the number of atoms. However, the decrease in

error is rapid only in the initial phase after which the accuracy does not increase

signi�cantly. This may be attributed to an increase in the interpolation errors in

the transition region.

Table 4.1: Comparison of global and relative errors for static 1-D problems.

Problem type
Atoms/node
distribu-
tion

Global
error (ψ1 )
(multi-
scale
simula-
tion)

Global
error (ψ2 )
(atomic
simulation

Relative
error
ξ = ψ1 − ψ2

No. of
iterations
for con-
vergence

Poisson equation
with forcing
function

49 Ö 25 0.0083 0.0020 0.0063 17

1-D Heat
conduction
equation

43 Ö 22 0.0200 0.0040 0.0160 08

Poisson equation
with local high
gradient

29 Ö 15 0.0807 0.0095 0.0712 08
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Figure 4.5: Variation of global error with the number of iterations.

Figure 4.6: E�ect of the transition region width on the global error.
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Figure 4.7: E�ect of the transition region width on the solution convergence.

Figure 4.8: E�ect of density ratio on the global error.
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4.1.2 2-D Problems

In the two-dimensional domain, we begin with the Poisson equation over an unit

square, governed by the following equation

∂2u

∂x2
+
∂2u

∂y2
= −4π2 sin(2πx)y2(1− y)2 +

sin(2πx)(2− 12y + 12y2) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 (4.15)

subjected to uniform Dirichlet boundary conditions along its edges

u(x = 0) = u(x = 1) = u(y = 0) = u(y = 1) = 0 (4.16)

The multiscale computational model for this problem, shown in Fig. 4.9, is a unit

square containing 110 nodes and 189 atoms. The atomic and nodal spacing is

uniform in both x and y directions and is equal to 0.05 and 0.1 units, respectively.

The atomic domain is at the center with continuum domain on both sides and the

transition region providing the necessary coupling at the overlapping regions. The

exact solution for this problem is

u(x, y) = sin(2πx)y2(1− y)2 (4.17)

Figure 4.10 compares the multiscale simulation results with the exact analytical

solution, and the results of a pure atomistic simulation are presented in Fig. 4.11.

As with 1-D problems, the atomistic simulation is carried out with the same atomic

spacing, in both the x and y directions, as in the multiscale model. The results of

the multiscale simulation are in good agreement with both the analytical results and

the atomistic simulation, which is evident from the global and relative error values of

0.0690 and 0.0652 respectively, as shown in Table 4.2. This further demonstrates the

capability of the multiscale model in ensuring a smooth coupling in two-dimensional
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Figure 4.9: Computational model of the �rst type for 2-D problems.

domains.

In the computational model shown in Fig. 4.9, the transition region is primarily

oriented along the axis which leads to minimal information exchange along the y

axis. This type of coupling is simpler to implement and is well suited for simple

problems or those that have a steeper gradient along a particular axis, in which case,

the primary direction of coupling may be chosen accordingly. A better version of this

computational model is shown in Fig. 4.12, where the atomic domain is completely

within the continuum domain and the transition region is of uniform width in

both the x and y directions. This computational model is used in subsequent 2-

D problems.

The next problem considered is the Laplace equation in a square domain with mixed

Dirichlet and Neumann Boundary conditions

∂2u

∂x2
+
∂2u

∂y2
= 0 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 (4.18)

u(x = 0) = −y3 (4.19)
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Figure 4.10: Comparison of analytical and multiscale simulation results for the 2-D
Poisson equation.

Figure 4.11: Comparison of analytical and atomistic simulation results for the 2-D
Poisson equation.
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Figure 4.12: Computational model of the second type for 2-D problems.

u(x = 1) = −1− y3 + 3y2 + 3y (4.20)

∂u

∂y
(y = 0) = 3x2 (4.21)

∂u

∂y
(y = 1) = −3 + 6x+ 3x2 (4.22)

The exact solution of this problem is

u(x, y) = −x3 − y3 + 3x2y + 3xy2 (4.23)

The computational model for this problem contains 81 atoms and 120 nodes with

uniform spacing of 0.05 and 0.1 units in the atomic and continuum domains,

respectively. The spacing is constant in both the x and y directions. The width

of the transition region is equal to the nodal spacing or twice the atomic spacing

in all directions. The results of the multiscale simulation and a pure atomistic

simulation are shown in Figs. 4.13 and 4.14. A relative error of 0.0008 supports the

conclusion that the present multiscale ensures an accurate and e�cient coupling,
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Figure 4.13: Comparison of analytical and multiscale simulation results for the 2-D
Laplace equation.

Figure 4.14: Comparison of analytical and atomistic simulation results for the 2-D
Laplace equation.
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which is evident when comparing the total number of nodes and atoms (201) in the

multiscale model against the total number of atoms (441) in the atomistic model.

The �nal problem considered is the Poisson equation with a local high gradient over

a square domain for which the governing equation and boundary conditions are

∂2u

∂x2
+
∂2u

∂y2
= −6x− 6y −

[
4

α2
− 4

(
x− β
α2

)2

− 4

(
y − β
α2

)2
]

exp

[
−
(
x− β
α

)2

−
(
y − β
α

)2
]
, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1(4.24)

u(x = 0) = −y3 + exp

[
−
(
β

α

)2

−
(
y − β
α

)2
]

(4.25)

u(x = 1) = −1− y3 + exp

[
−
(

1− β
α

)2

−
(
y − β
α

)2
]

(4.26)

∂u

∂y
(y = 0) =

2β

α2
exp

[
−
(
β

α

)2

−
(
x− β
α

)2
]

(4.27)

∂u

∂y
(y = 1) = −3− 2

(1− β)

α2
exp

[
−
(
x− β
α

)2

−
(

1− β
α

)2
]

(4.28)

The analytical solution is

u(x, y) = −x3 − y3 + exp

[
−
(
x− β
α

)2

−
(
y − β
α

)2
]

(4.29)

The α and β values for this problem are taken as 0.05 and 0.5 respectively. The

problem has a local high gradient near the point (0.5, 0.5). The computational

model and the atomic/nodal distributions for this problem are the same as that of

the previous problem. The results of the multiscale and pure atomistic simulations

are shown in Figs. 4.15 and 4.16, which clearly indicate that the multiscale model

is able to capture the local high gradient satisfactorily and as e�ectively as a pure

atomistic simulation, with small global and relative error values of 0.0393 and 0.0123

respectively. The multiscale simulation is particularly suitable for these types of
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Figure 4.15: Comparison of analytical and multiscale simulation results for the 2-D
Poisson equation with local high gradient.

Figure 4.16: Comparison of analytical and atomistic simulation results for the 2-D
Poisson equation with local high gradient.
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Table 4.2: Comparison of global and relative errors for static 2-D problems.

Problem type
Atoms/node
distribu-
tion

Global
error (ψ1 )
(multi-
scale
simula-
tion)

Global
error (ψ2 )
(atomic
simulation

Relative
error
ξ = ψ1 − ψ2

No. of
iterations
for con-
vergence

Poisson equation 189 Ö 110 0.0690 0.0038 0.0652 06

Laplace
equation

81 Ö 120 0.0008 1× 10−14 0.0008 18

Poisson equation
with local high
gradient

81Ö 120 0.0393 0.0270 0.0123 34

problems involving local high gradients, wherein the atomic domain can be strictly

restricted to the zone with the high gradient and a continuum description can be

used elsewhere, thereby substantially reducing the computational e�ort.

4.2 Transient Problems with Coupled Length and

Time Scales

4.2.1 Wave propagation problems

In this section the accuracy of the multiscale model is validated by solving transient

problems which involve the coupling of both length and time scales. The transient

problems analyzed include the classical wave propagation problem in both one and

two dimensional space, and the vibration of a stretched elastic string and membrane.
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Case-1 Smooth harmonic wave

The �rst problem considered is the homogeneous wave propagation problem in an

in�nite domain without boundaries. The governing equation and initial conditions

for this problem are given by

∂2u

∂t2
=
∂2u

∂x2
− ∞ < x <∞, t > 0 (4.30)

u(x, 0) = f(x) − ∞ < x <∞, (4.31)

∂u

∂t
(x, 0) = g(x) − ∞ < x <∞ (4.32)

where u(x, t) is the displacement of the wave at any time t.

The problem being second-order in time requires two initial conditions. In this

problem, the velocity �eld (∂u/∂t)(x,0), at initial time is taken as zero. The problem

is solved for two di�erent initial conditions; a continuous Gaussian pulse and a piece-

wise linear `hat function'. The initial conditions for the two di�erent test cases are

given as

u(x, 0) = u0exp
(
−(x− b)2

2c2

)
−Gaussian pulse (4.33)

u(x, 0) = u0

 1− |x| |x| ≤ 1

0 otherwise
− Hat function (4.34)

where u0 is the amplitude of the wave, and parameters b and c control the center

position of the wave peak and its width respectively. In this work, the constants

are chosen such that the initial displacement is of the form u(x, 0) = u0e
−10x2

. The

solution of the wave equation at any time t for the initial conditions de�ned above can

be obtained using the d'Alembert's solution of the wave equation as (Gockenbach,

2002)

u(x, t) =
1

2
(f(x− ct) + f(x+ ct)) +

1

2c

ˆ x+ct

x−ct
g(s)ds (4.35)
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The computational model for this problem is shown in Fig. 4.17. A �nite domain

[-5, 5] is considered for numerically solving the problem. However, the simulation is

stopped su�ciently before the wave reaches the boundary, to avoid any boundary

e�ects. The atomic domain is located in the central region [-2, 2] and contains 201

atoms with an average spacing of 0.02 units. The continuum domain on either side,

in the regions [-5, -1] and [1, 5] contains 81 nodes with an average nodal spacing of

0.1 units. The atomic and continuum regions overlap each other in the transition

regions [-2, -1] and [1, 2].

The atomic domain in this problem is modeled using a spring-mass system de�ned

by a harmonic potential as

ϕ(u) =
1

2
k
∑
n

(un+1 − un)2 (4.36)

where k is the spring constant. The governing equation for the atomic domain, given

in Eq. (2.57), can be discretized by only considering nearest neighbor interactions

as

mu
′′

= un−1 − 2un + un+1 (4.37)

The solution to this equation at any given time step can then be obtained using the

leap frog scheme detailed in Section 2.2.5.

In the continuum domain, the Hermite-cloud method and the leap frog scheme

are used for space and time discretization respectively. Using the Hermite-cloud

method, the displacement u(x) and the governing PDE in Eq. (4.30) can be spatially

discretized as

uh(x, t) =
NP∑
n=1

Nn(x)un(t)+
NT∑
m=1

(
x−

NP∑
n=1

Nn(x)xn

)
Mm(x)ux(t) (4.38)

∂2u(x, t)

∂t2
=
∂2u(x, t)

∂x2
=

NP∑
n=1

Nn,xx(x)u(t) (4.39)
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Figure 4.17: Computational model for 1-D wave propagation problems.

Using the spatially discretized Eqs. (4.38)-(4.39), and the leap frog scheme de�ned

in Eqs. (2.74)-(2.76), the PDE can be discretized in both space and time domains,

and the displacement at any time t+ 1 can be obtained as

∂ut+1/2

∂t
=
∂ut

∂t
+

∆tc

2

(
NP∑
n=1

Nn,xx(x)u(t)

)
(4.40)

ut+1 = ut + ∆tc
∂ut+1/2

∂t
(4.41)

∂ut+1

∂t
=
∂ut+1/2

∂t
+

∆tc

2

(
NP∑
n=1

Nn,xx(x)ut+1

)
(4.42)

With the atomic and continuum domains discretized, the multiscale problem is now

solved as per the procedure detailed in Table 3.1. A time step of ∆tc = 0.01 units is

used in the continuum domain and the multiplication factor n de�ned in Eq. (3.16)

is taken as 5. The global and relative error measures de�ned in Eqs. (4.1)-(4.2) are

used for the comparison of the results.

The results of the multiscale simulation at di�erent time instances, for the two

di�erent initial conditions considered are presented in Figs. 4.18 and 4.19, and the

maximum global and relative error values observed are tabulated in Table 4.3. The

results of the pure atomistic simulation for the Gaussian input wave, used as a

benchmark for comparing the multiscale simulation results, is shown in Fig. 4.20.
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The results show good agreement between the analytical and numerical solutions,

supporting the accuracy of the multiscale model and the relative errors less than

5%, as observed from the table, indicates that the multiscale model is able to match

the performance of the pure MD simulation. By adopting a multiscale approach, the

atomic detail is only retained wherever essential, reducing the number of atoms in

the domain and thereby the computational expense. In computing the global error

of the computed solution, only the atoms and nodes within the domain of in�uence

of the wave are considered (Gockenbach, 2002).

The two di�erent wave patterns considered in the study present two di�erent types

of inputs. The Gaussian wave corresponding to a smooth continuous input and the

piecewise linear �hat� function corresponds to a discontinuous wave. The multiscale

model performs well for both test cases which can be veri�ed from the error values

in the Table 4.3. Also, the wave amplitude is preserved in both the cases, except for

some smoothing e�ect observed in the case of the `hat' function that might be due

to the damping e�ects of the numerical scheme. However, the wave is able to pass

through the transition region into the continuum domain. Some wave re�ections

are also observed as the wave leaves the atomistic region and crosses the interface.

These re�ections are caused by the atomistic information that cannot be completely

represented by the continuum, and similar traits have also been observed by other

researchers (Wagner and Liu, 2003; Tang et al., 2006a;b).

The wave propagation problem with a Gaussian input pulse can also be solved in

a 2-D domain, for which the computational model is similar to the one shown in

Fig. 4.9. The problem is solved with 852 nodes and 4221 atoms, with all other

parameters remaining the same. The results of the simulation are presented in Fig.

4.21. The maximum global error in the observed in the solution is 0.1467. A problem

that requires 10521 atoms if discretized fully using the atomistic approach, requires

only 5073 points (atoms plus nodes) when solved using the multiscale approach,

indicating a reduction of almost 50%.
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Figure 4.20: Snapshots of pure MD simulation results for 1-D wave propagation with
a Gaussian input wave (case-1).
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Figure 4.21: Snapshots of analytical and multiscale simulation results at di�erent
time instances for 2-D wave propagation problem with a Gaussian input
wave (case-1).
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Case-2 Harmonic wave with an oscillatory component

Next, we consider an input wave with initial displacement at time t = 0, as a

Gaussian pulse of the form (Wagner and Liu, 2003; Tang, 2008),

u(x, 0) =

 0.02
[
e−10x2−e−6.25

1−e−6.25

]
(1 + 0.1 cos(80πx) |x| ≤ 1.25,

0 otherwise
(4.43)

The term (1 + 0.1 cos(80πx) introduces an oscillatory component in the input wave

that is contained in the atomic region.

The computational model for this problem is similar to the one shown in Fig. 4.17,

except that the atomic domain located in the region [-3, 3] contains 301 atoms. Time

integration in the atomic and continuum domains is carried out using the Leap frog

and the implicit Newmark integration schemes, respectively. The Newmark scheme

used for time integration in the continuum domain is given as (Reddy, 1993)

ut+1 = ut + ∆t
∂ut

∂t
+

∆t2

2

∂2ut+α

∂t2
(4.44)

∂ut+1

∂t
=
∂ut

∂t
+ ∆t

∂2ut+β

∂t2
(4.45)

where
∂2ut+γ

∂t2
= (1− γ)

∂2ut

∂t2
+ γ

∂2ut+1

∂t2
(4.46)

Using the Hermite-cloud method detailed in Chapter 2, the approximate solution

uh(x, t) for the displacement u(x, t) and the corresponding auxiliary equation are

written as

uh(x, t) =
NP∑
n=1

Nn(x)un(t)+
NT∑
m=1

(
x−

NP∑
n=1

Nn(x)xn

)
Mm(x)uxm(t) (4.47)
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NP∑
n=1

Nn,x(x)un(t)−
NT∑
m=1

(
NP∑
n=1

Nn,x(x)xn

)
Mm(x)uxm(t) = 0 (4.48)

The acceleration component in Eq. (4.30), is discretized spatially as

∂2u(x, t)

∂t2
=
∂2u(x, t)

∂x2
=

NP∑
n=1

Nn,xx(x)u(t) (4.49)

Substituting Eqs. (4.47) and (4.49) into Eq. (4.44), while taking α and β values as

0.5, and �nally combining with the auxiliary equation Eq. (4.48), the displacement

at any time (t+ 1) is discretized in both space and time domains as


 [AL1

ij ]NP×NP [AL2
ij ]NP×NT

NT×NP [AL4
ij ]NT×NT



 {u

t+1
i }NP×1

{ut+1
xi }NT×1


=


 [AR1

ij ]NP×NP [AR2
ij ]NP×NT

NT×NP [AR4
ij ]NT×NT



 {u

t
i}NP×1

{utxi}NT×1

+ ∆t

 {v
t
i}NP×1

{vtxi}NT×1


(4.50)

where

v =
∂ui
∂t

(velocity) (4.51)

[AL1
ij ] = Nj(xi)−

∆t2

4
Nj,xx(xi); (4.52)

[AR1
ij ] = Nj(xi) +

∆t2

4
Nj,xx(xi) (4.53)

[AL2
ij ] = [AR2

ij ] =

(
xi −

NP∑
n=1

Nn(xi)xn

)
Mj(xi) (4.54)

[AL2
ij ] = [AR3

ij ] = Nj,x(xi) (4.55)

[AL4
ij ] = [AR4

ij ] =

(
−

NP∑
n=1

Nn,x(xi)xn

)
Mj(xi) (4.56)

The Leap frog scheme, detailed in Section 2.2.5, is for time integration in the atomic

domain and a time step of ∆tc = 0.01 units is used in the continuum domain, with

the multiplication factor n de�ned in Eq. (3.16) taken as 5.
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The simulation is run for 360 time steps corresponding to t = 3.6 units in

the continuum domain. Figure 4.22 shows four snap shots of the analytical

and numerical solution of the normalized displacements at the beginning of the

simulation and after every 120 time steps. The analytical solution is obtained

using the d'Alembert's solution of the wave equation (Gockenbach, 2002). As the

wave is symmetrical about the origin, the results are plotted only for half of the

computational domain.

The results of the multiscale simulation are compared with the analytical solution

using the global error measure within every time step. Only the atoms and nodes

within the domain of in�uence of the wave are considered for computing the global

error, de�ned in Eq. (4.1). The domain of in�uence of a point x0 is de�ned as

the interval [xo − ct, xo + ct] over which it has an in�uence on the solution u(x, t),

where c is the wave speed. It is observed from the Fig. 4.22 that the results of the

multiscale simulation are in line with the analytical solution. The maximum global

error observed during the entire simulation is 0.0545. It is also observed that the

wave is able to successfully pass through the transition domain into the continuum

region.

The results of the simulation are comparable with those obtained by other multiscale

models such as the bridging scale method (Tang et al., 2006a), the pseudo-spectral

multiscale method (Tang et al., 2006b) and the �nite di�erence approach with

velocity inter-facial conditions (Tang, 2008). In the bridging scale method and

the pseudo-spectral multiscale method, the re�ections are reduced by using the

time history kernel technique to develop inter-facial boundary conditions for atoms

at the atomic-continuum interface. The �nite di�erence approach for multiscale

simulations uses the velocity inter-facial conditions to reduce the re�ections in

nonlinear lattices. Although the re�ections observed in the proposed method is

slightly higher when compared to the other methods mentioned, it possesses other

inherent merits, such as the use of a meshless technique and a simple handshaking
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algorithm. The perturbations observed in the numerical solution are due to the

re�ection of the oscillatory wave, as it passes from the atomic domain into the

continuum region, and is caused by the di�erences in the atomic and nodal spacing.

Case-3 Anharmonic wave

The same wave problem is now analyzed with a non-linear potential function in the

atomic domain. The problem de�nition, boundary and initial conditions, and the

computational model for this problem are same as in case-1, except that in this case

the atomic domain is modeled using an anharmonic potential function of the form

φ(u) =
1

2
k1

∑
n

(un+1 − un)2 +
1

4
k2

∑
n

(un+1 − un)4 (4.57)

The governing equation in the MD domain, taking nearest neighbor interactions,

can be written as

mu
′′

= k1(un−1 − 2un + un+1) + k2((un+1 − un)3 − (un − un−1)3) (4.58)

where k1 and k2 are the constants for the linear and non-linear terms. Taking k2 as

zero would result in case-1. In this problem, the constants k1 and k2 are assigned

the values 1 and 100 respectively.

The numerical results at di�erent time instances obtained from the multiscale model

are presented in Fig. 4.23. Figure 4.24 compares the global error variation during

the simulation for both the harmonic (case-1) and an harmonic (case-3) cases and

the maximum error values are tabulated in Table 4.3. The non-linearity considered

in the atomic region has resulted in greater wave re�ections and an increase in error

values, as observed from the �gure and table. However, it can be observed that the

wave is able to pass through the transition region into the continuum region and the

global and relative errors observed are still low at 5%.
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Figure 4.24: Global error variation as a function time for wave propagation prob-
lems.

The energy transfer between the atomic and continuum domain can be observed by

plotting the total energy of the atomistic region with time. The total energy in the

atomistic region is computed as the sum of potential and kinetic energy of all atoms

in the atomic and transition regions. As the wave propagates from the atomic region

to the continuum region its energy is also transferred. A good coupling scheme must

ensure a complete transfer of energy. The energy plot for the atomistic region for

both the linear and non-linear test cases is presented in Fig. 4.25.

It can be observed from the �gure that the coupling algorithm is able to transfer

almost all of the energy out of the atomistic region except for the energy lost due

to re�ections. The presently developed multiscale model is therefore successful in

coupling a linear as well a non-linear atomistic model with a continuum model.

The results are also in line with the results obtained by other researchers for such

benchmark problems (Xiao and Belytschko, 2004; Tang et al., 2006b). It has to

be noted that the atomistic models used in this work assume nearest neighbor

interaction and is therefore not strictly global, unlike the potentials encountered
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Figure 4.25: Energy of the atomistic region as a function of time for wave propaga-
tion problems.

in real applications. However, the algorithm can be extended in a straight forward

manner to include global e�ects.

4.2.2 Vibration of a stretched elastic string

Next, we consider the transverse vibration of a stretched elastic string of length

L aligned along the x axis and �xed at both ends. The string is displaced from

its initial position by giving it a small initial displacement. The aim is to obtain

the de�ection of the string at any time t. The mass of the string is assumed to

be constant and the gravitational forces are neglected. The displacement is strictly

limited to the transverse direction. The transverse vibration of the string is governed

by the second-order one-dimensional wave equation, with governing equations and

boundary conditions given as
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∂2u

∂t2
=

∂2u

∂x2
0 ≤ x ≤ 1 (4.59)

u(0, t) = 0 ∀t (4.60)

u(1, t) = 0 ∀t (4.61)

where u = f(x, t) is the transverse displacement. The initial conditions are de�ned

in terms of the initial displacement and velocity which are taken as

u(x, 0) = u0 sin(2πx)
∂u

∂t
(x, 0) = 0 (4.62)

The multiscale model for this problem is set up as shown in Fig. 4.26, and contains

24 nodes and 90 atoms in the atomic and continuum domains, with an average

atomic and nodal spacings of 0.00667 and 0.025 units respectively. A time step of

0.01 units is used for time integration in the continuum domain. The exact solution

for the problem is

u(x, t) = uo sin(2πx) cos(2πt) (4.63)

The normalized displacements at di�erent time instances obtained from the multi-

scale model are plotted in Fig. 4.27 and the global error values are shown in Table

4.3. The results once again demonstrate the ability of the present multiscale model

to e�ectively couple atomic and continuum domains.

The time step used for numerical integration and the multiplication factor n used

for computing the time step in the continuum domain varies with the problem and

has to be chosen judiciously. A smaller value of n would mean that the time steps in

the atomic and continuum domains are not signi�cantly di�erent and hence will not

lead to any substantial saving in the computational cost. On the contrary, a large

value of n might lead to a decrease in accuracy of the solution and if not meeting
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Figure 4.26: Computational model for transverse vibration of a stretched string

Figure 4.27: Comparison of analytical and multiscale simulation results at di�erent
time instances for the transverse vibration of a stretched string.

the stability requirements in the atomic domain, and may also cause the numerical

scheme to fail.
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4.2.3 Vibration of stretched elastic membrane

Finally, we consider the vibration of a stretched elastic membrane over a square

domain of length 5 units. The motion of the membrane is governed by the two-

dimensional wave equation

∂2u

∂x2
+
∂2u

∂y2
=
∂2u

∂t2
0 ≤ x ≤ 5, 0 ≤ y ≤ 5 , t ≥ 0 (4.64)

where u(x, y, t) is the displacement of the membrane. The membrane is �xed along

the boundaries, with the following boundary conditions

u(0, y, t) = u(5, y, t) = u(x, 0, t) = u(x, 5, t) = 0 (4.65)

The membrane is given an initial displacement in the form of a Gaussian wave,

u(x, y, 0) = u0 exp
{
−
[
(x− 2.5)2 + (y − 2.5)2

]}
(4.66)

where u0 is the amplitude of the Gaussian wave. The initial velocity �eld is taken as

zero. The analytical solution for this problem is obtained by separation of variables

as

u(x, y, t) = u0

∞∑
m=1

∞∑
n=1

Bmnϕmn(x, y) cos(2πωmnt) (4.67)

where

Bmn =

(
25

4
π

)
sin
(mπ

2

)
sin
(nπ

2

)
exp

(
−
(
m2 + n2

100

)
π2

)
(4.68)

ϕmn(x, y) = sin
(mπx

5

)
sin
(nπy

5

)
(4.69)

ωmn = (1/2)
√
m2 + n2 (4.70)

The computational model used in this problem is same as that used in the static 2-D

problems shown in Fig. 4.12, with the number of atoms and nodes in the atomic,
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transition, and continuum domains being similar. A time step of ∆ta = 0.004 units

is used in the atomic domain with the multiplication factor n taken as 5. The

simulation is run for 200 time steps corresponding to t = 4 units in the continuum

domain.

Figure 4.28 shows the snapshots of the MD and numerical results plotted after every

50 time step interval, starting with time t = 0. The multiscale simulation results are

comparable with the results obtained by (Zong and Lam, 2002), with a maximum

global error of 0.0726 observed during the entire simulation.

In conclusion, the multiscale method not only fares well in coupling length scales,

but also ensures accurate and e�cient coupling of both time and length scales, which

is well corroborated by the results, displaying smooth propagation of waves from the

atomic to continuum domains. The inter-facial re�ection observed in the proposed

method would form the focus in the future works, wherein the ways to reduce can

be explored.

Table 4.3: Comparison of global and relative errors for transient 1-D problems.

Problem type
Atoms/node
distribu-
tion

Global
error (ψ1 )
(multiscale
simulation)

Global
error (ψ2 )
(atomic
simulation

Relative
error
ξ = ψ1 − ψ2

Wave propagation
-Gaussian Wave and
harmonic potential.

81Ö201 0.02994 0.002313 0.02767

Wave propagation
-`Hat' function

81Ö201 0.024948 0.002644 0.0223

Wave propagation -
non-linear potential.

81Ö201 0.05641 0.04816 0.00825

Vibration of a
stretched string

24Ö90 0.02413 0.00033 0.0238
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Figure 4.28: Snapshots of analytical and multiscale simulation results at di�erent
time instances for 2-D wave propagation problem.
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4.3 Chapter Summary

In this chapter the present multiscale numerical scheme, developed to couple the

atomic and continuum domains, was validated through benchmark test problems

in one and two dimensional space. The static examples involving the Poisson

and Laplace equations with di�erent boundary conditions and high gradients show

that this multiscale method is highly capable of coupling length scales and is able

to deliver results that are accurate and comparable to those obtained from pure

atomistic simulations. The ability of the current method in coupling both time and

lengths scales is further validated through transient wave propagation problems in

both one and two dimensional space. The present multiscale method thus ful�lls

its objective of providing accurate results at a reduced computational expense by

employing multiple time/length scales, while ensuring a seamless interface between

the two domains. In the next chapter, nanoindentation and nanoscratch experiments

on a copper thin �lm will be investigated using the presently developed multiscale

model.
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Multiscale Simulation of

Nanoindentation and Nanoscratching

With rapid advances in the �eld nanotechnology, nano-parts and components are in-

creasingly �nding applications in the �eld of semi-conductor, optical and mechanical

industries. Nanotribology has therefore emerged as a new �eld for the character-

ization of materials at these scales, and is gaining more research focus in recent

years. Nanoindentation and nanoscratching are two very popular techniques used

for determining the mechanical and wear properties of nanostructures, nanoscale

systems such as MEMS/NEMS, thin �lms, coatings and nanocomposites.

Numerical simulations of nanoindentation and nanoscratching experiments have

been successfully performed and compared with experimental data. Molecular

dynamics (MD) simulation has been the preferred choice for modeling materials

at nanoscales, and nanoindentation and nanoscratching experiments have been

successfully simulated using full atomistic models using empirical inter-atomic

potentials (Mulliah and et al., 2004; Lee et al., 2005; Komanduri et al., 2000a; Peng
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et al., 2010). However, as discussed in earlier chapters, the MD approach is bounded

by an upper limit on the number of atoms that can be included in the study. The

advantages of a multiscale approach have already been highlighted in the previous

chapters, and to support this claim a multiscale model was successfully developed

an validated.

In this chapter, nanoindentation and nanoscratching experiments on copper thin

�lms are simulated using the developed multiscale model. In the following sections,

the multiscale model for nanoindentation and nanoscratching simulations are ex-

plained in detail. Each section begins with a review of the method, followed by

a description of the mathematical model, and �nally presents the �ndings of the

numerical simulations.

5.1 Multiscale Simulation of Nanoindentation

5.1.1 Review of instrumented indentation

The term hardness may be de�ned as the ability of a material to resist permanent

indentation or deformation, when in contact with an indenter under load (ASM,

2000). Conventional hardness testing generally involves the pressing of an indenter

of known geometry into the test material and measuring the hardness directly or

indirectly from the contact pressure. Most commonly used hardness tests include

the Brinell, Rockwell, Vickers and Knoop tests. In these tests, the hardness value

may be expressed as the contact pressure (load by supporting area in kgf/mm2)

or in the form of a hardness number, as in the case of Rockwell tests. Micro-

indentation hardness testing is used to measure very low harness values. The test

uses a diamond indenter of a known geometry, which is forced into the surface, with

applied forces in the range of 1 to 1000gf (ASM, 2000). The hardness is found

from the resulting indent on the specimen. Microhardness testing is very similar to
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conventional hardness tests, except that it is done on a microscopic scale using high

precision instruments.

On the other hand, instrumented indentation or nanoindentation is a relatively new

technique used for characterization of materials at nanoscales. Unlike conventional

hardness testing, nanoindentation test involves continuous monitoring of load and

displacement information over the entire loading cycle to evaluate hardness (Oliver

and Pharr, 1992; Pharr, 1998; Oliver and Pharr, 2004). Modern instruments allow

loads as small as 1nN to be applied, and displacements in the range of 0.1nm to be

measured (ASM, 2000).

The major advantage with the nanoindentation technique is that there is no need

to measure the resulting indent, greatly reducing the possibility of errors. Instead,

the method uses load-displacement data to obtain the contact area, and thereby

evaluate the hardness of the material. The load-displacement data can in addition

be used to obtain a lot of other useful information such as the Young's modulus,

fracture toughness, strain hardening index, stain hardening rate, yield strength,

residual stresses, etc. (Fischer-Cripps, 2006). Due to their inherent advantages,

the nanoindentation technique is increasingly being used to study the tribological

properties of metals, thin �lms and coatings (VanLandingham, 2003).

Testing method

A schematic of the nanoindentation test set-up is shown in Fig. 5.1. The experiment

involves pressing an indenter of known geometry into the test specimen, with

a known load applied using actuators, and measuring the displacement through

displacement sensors. At maximum load the indenter is held for some time to

minimize creep e�ects, which is then followed by an unloading cycle. The experiment

is carried out in a controlled environment to avoid thermal drift, which may occur

due to changes in the dimensions of the specimen or the indenter due to temperature
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Figure 5.1: Schematic of nanoindentation test setup (VanLandingham, 2003).

�uctuations. The unloading rate is constant and elastic recovery takes place during

the unloading cycle. However, the unloading curve is assumed to be purely elastic

and any plastic recovery during the unloading phase is assumed to be small and

therefore neglected (Oliver and Pharr, 2004).

Typical indenters used in nanoindentation tests include the Berkovich, Vicker's,

Knoop, and Cube corner indenters. The Berkovich indenter, with a face half-angle

of θ = 65.30, has the same projected area to depth ratio as that of a four sided Vickers

indenter, and is mostly preferred in nanoindentation experiments. The Berkovich

indenter can be ground to have a sharp tip and its face angle can be made accurately,

it is therefore often used for hardness and Young's modulus measurements.

Interpreting the load-displacement curve

Hardness value in an nanoindentation experiment is given by the contact pressure at

the maximum load, which is chosen such that it produces permanent plastic strain

in the material. In this state of permanent plastic strain, a further increase in load

produces a corresponding increase in the contact area, thereby keeping the contact
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pressure constant. When this state is reached, the contact pressure can be equated

to the hardness of the material and the resulting hardness value is referred to as the

indentation hardness (Fischer-Cripps, 2006).

A typical load-displacement graph obtained from a nanoindentation test is shown

in Fig. 5.2. The loading phase is assumed to be both elastic and plastic, while

only elastic recovery is assumed to takes place during the unloading phase. In

the �gure, P is the applied load and h is the displacement, measured with respect

to a reference point or datum. The load-displacement (P-h) curve contains the

following information; the maximum load Pmax and the corresponding displacement

hmax, the elastic unloading sti�ness, S = dP/dh, de�ned as the slope of the linear

portion of the unloading curve at the beginning of the unloading cycle, and the �nal

depth of the resulting indent hf , measured after the removal of the indenter. The

accuracy of the properties determined from the load-displacement graph depends

on how accurately these values are measured. The �nal displacement is less than

the maximum displacement because of elastic recovery that takes place during

the unloading process. The most important parameter to note from the load-

displacement curve is the unloading sti�ness that is used to calculate the area of

contact.

A schematic of the deformation pattern observed during an indentation test is shown

in Fig. 5.3, where h is the total depth of penetration, hf the �nal depth after removal

of load, hc the contact depth, which is the depth until which the indenter and the

material are in contact, and hs the sink-in depth that denotes the amount by which

the material sinks in along the line of contact of the indenter and the specimen, due

to elastic recovery.

The unloading sti�ness and contact area have to be determined to evaluate the

hardness and elastic modulus of the material. The contact sti�ness is found from

the slope of the initial portion of the unloading curve. This is done by �tting
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Figure 5.2: Schematic of load-displacement curve from an indentation experiment
(Oliver and Pharr, 2004).

Figure 5.3: Schematic of deformation pattern observed during an indentation test
(Oliver and Pharr, 2004).
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a curve from the unloading data and then �nding the slope of the resulting �t.

Earlier, Doerner and Nix (1986) used a linear �t for the unloading curve based on a

�at punch approximation. Later, Oliver and Pharr (1992) improved this, by using

a power law relation of the form

P = α(h− hf )m (5.1)

where α and m are the �tting constants that are determined empirically for di�erent

materials. The value of m is typically in the range of 1.2 to 1.6. The unloading

sti�ness is then found as the slope of the resulting �t, obtained by di�erentiating

the above equation at the maximum depth hmax as

S =

(
dP

dh

)
h=hmax

= αm(hmax − hf )m−1 (5.2)

The projected contact area is found using an area function A = f(hc), which relates

the contact depth and the projected cross sectional area as

A = c0h
2
c + c1hc + c2h

1/2
c + c3h

1/4
c + ...c8h

1/128
c (5.3)

where c0...c8 are constants whose values depend on the indenter geometry. For a

perfect Berkovich tip, the constant c0 takes a value of 24.56 (for an ideal Berkovich

indenter, the projected area is given as 3
√

3 tan2 θh2
c , and substituting θ = 65.30

we obtain A = 24.5h2
c). The constants c1..c8 are used to account for the non-ideal

indenter geometry and blunting of the tip (Oliver and Pharr, 1992).

The contact depth in Eq. (5.3) is determined from the load-displacement graph as

hc = hmax − ε
Pmax
S

(5.4)
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where ε is a constant that depends on the indenter geometry, and takes a value of

0.72 for a conical punch or 0.75 for a Berkovich indenter. The second term in the

above equation is included to account for sink-in e�ects, when a �at elastic half space

is indented by a rigid punch (Oliver and Pharr, 2004). The above equation however

does not account for material pile-up at the periphery. This assumption works well

in testing of hard materials, where pile-up is negligible, but may overestimate the

hardness values when indenting soft materials at high loads. Finally, the hardness

of the material is determined from the maximum load and projected contact area as

H =
Pmax
Ac

(5.5)

The Young's modulus, obtained from the load-displacement curve is the e�ective

Young's modulus that accounts for displacements in both the indenter and the

specimen, and is given as

1

Eeff
=

1− ν2

E
+

1− ν ′2

E ′
(5.6)

where Eeff is the e�ective Young's modulus of the indenter and the specimen, and E,

ν, E ′ and ν ′ are the Young's modulus and Poisons ratio of the specimen and indenter

respectively. The e�ective Young's modulus can be related to the projected contact

area and unloading sti�ness through the relationship developed by Sneddon (1965),

for the indentation of an elastic half space by a solid of revolution as

Eeff = S

√
π

2β
√
A

(5.7)

where β is a dimensionless parameter that depends on the indenter geometry and is

introduced to account for sti�ness variation caused by non axi-symmetric indenters.

The β value for a standard Berkovich indenter is 1.034.
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Error sources

Although nanoindentation testing is a well established technique, it is prone to errors

which have to be properly accounted to obtain accurate results. The major sources

for errors in nanoindentation experiments are as follows:

� Establishing the datum or reference point before the start of indentation can

be a possible source of error. The initial contact depth has to be determined

accurately and added to the �nal depth measured from the experiment to

avoid errors when computing the hardness.

� Load frame compliance might cause the displacement of the load frame to be

added to the total depth of indentation. Therefore, the load frame has to be

calibrated accurately and the displacement due to load frame compliance has

to be subtracted from the �nal displacement.

� Errors might be introduced due to the inherent nature of the specimen leading

to sink-in or pile up e�ects, causing an increase or decrease in measured area

of contact, and resulting in incorrect hardness.

5.1.2 Multiscale model

The 2D multiscale model for the nanoindentation problem considered in this study

is shown in Fig. 5.4. The model consists of a copper thin �lm and a rigid triangular

indenter. The copper �lm is of dimensions 87.04ÅÖ70.95Å, and is divided into three

regions viz. the atomistic, continuum and handshake regions. The handshaking

region that bridges the atomistic and continuum domains consists of both atoms

and nodes. A triangular indenter of size 28.16ÅÖ14.08Å, and an included angle of

90o is used in the simulation. The indenter is assumed to be rigid, which means that

there are no interactions between the atoms of the indenter.
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Figure 5.4: Multiscale model of nanoindentation showing atomic (AR), continuum
(CR) and handshaking (HR) regions.

The copper �lm is modeled with both atomistic and continuum approaches, while

only an atomistic approach is used to model the indenter. The region close to

the indentation site, where the deformation gradient and strains rates are large,

is modeled with atomistic precision, and molecular dynamics simulation is used to

obtain the trajectories of the atoms in this region. The continuum approach is

used in the regions that are far from the indentation site, where the deformation

gradient and the strains rates are much lower and deformations are mostly elastic.

The continuum region is discretized using meshless nodes and the displacements are

obtained using the Hermite-cloud method.

The rigid indenter is initially placed at a distance of 5Å from the surface of the

�lm to avoid any attractive forces to be developed between the indenter and the

�lm, before the start of the simulation. The displacements along the three edges of

the �lm are constrained in both the x and y directions, and the top surface facing

the indenter is set free. The simulation is displacement controlled, meaning that

the indenter is incrementally moved towards the �lm from its initial position at a
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constant speed of 100m/s until it reaches a depth of 10Å into the �lm, after which

it is held for 100 times steps before being retracted back at the same speed.

The indentation speed, which is set at 100m/s is higher than the speeds encountered

in indentation experiments (10−9 to 10−6m/s) (Komanduri et al., 2000a). However,

due to the limitations on the computational resources, it is not possible to perform

MD simulations at lower speeds. In general indentation simulations use indentation

speeds in the range of 1-100m/s (Lee et al., 2005). Though the indentation speed

used in the simulation is on the high side, it is still su�ciently slow for the simulation

to be considered quasi-static, within each time step (Zhu et al., 2005).

As the copper �lm is modeled in 2D, plane strain conditions are assumed for

continuum calculations. The Young's modulus and Poisson's ratio for the copper

substrate are taken as 128GPa and 0.34 respectively (ASM, 1990). The calculations

are carried out iteratively, using the multiscale algorithm detailed in Table 3.1,

until convergence is attained. For the purpose of comparison, the simulation is also

repeated with a full atomistic model, solved using the MD approach.

Atomistic model

In the atomistic region, the molecular dynamics method is used to obtain the atomic

trajectories, de�ned in terms of the atomic position and momentum as mentioned

in Section 2.2. Initially, the face centered cubic atoms of copper are placed in their

respective lattice positions along the closely-packed 〈111〉 plane. The indenter is

modeled in the form of a simple triangle and is assumed to be rigid, which implies

that there is no change in the relative position of the indenter atoms during the

simulation. A pair-wise Morse potential is used to model the interactions between

the copper atoms in the �lm, and also the interactions between copper atoms in the
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�lm and the atoms of the indenter, as

ϕ(rij) = Do

(
e−2α(rij−ro) − 2e−α(rij−ro)

)
(5.8)

where ϕ(rij) is the potential energy function, rij the inter-atomic distance between

the atoms i and j, and Do, α and ro are the constants that correspond to the

cohesion energy, elastic modulus and equilibrium bond distance, respectively. The

potential parameters for the copper-copper interactions in the �lm, and between the

copper atoms in the �lm and those of the indenter, are given in Table 5.1 (Inamura

et al., 1992). To reduce computational e�ort, only nearest neighbor interactions

are considered with a cut-o� radius set at 2.5ro. All calculations are performed in

reduced units.

The interactive force Fi, on an atom i, is obtained as the negative derivative of the

interaction potential de�ned above as

Fi = −
∑

j=1,j 6=i

∇ϕ(rij) = 2αDo

(
e−2α(rij−ro) − e−α(rij−ro)

)
= mi

d2ri
dt2

(5.9)

where mi is the mass of atom i and r is its atomic vector position. The Newton's

equations of motion are then numerically integrated to obtain the atomic position

and velocities.

The Leap-Frog scheme, explained in Section 2.2.5, is used for integrating the

Table 5.1: Morse potential parameters.

Parameter
Copper-
Copper

Copper-
Indenter

D 0.3429 0.1

α 1.3588 1.7

ro 2.7202 2.2
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equations of motion in the atomic domain, with the time step ∆t chosen such that it

is smaller than the time period of thermal oscillations in the system but su�ciently

large to lead to achieve a reasonable computational time (Wang et al., 2008). Based

on this criteria, the time step for integration is set at ∆t =1fs.

5.1.3 Numerical results

In this section, we present the results of the nanoindentation problem simulated

using the developed multiscale model. The results of the simulation are also

compared with a full atomistic model solved using the MD approach. The simulation

begins with the rigid indenter initially positioned at a distance of 5Å above the

copper �lm. Figure 5.5 shows the snapshots of the simulation at di�erent stages of

the indentation process, starting from the initial position, progressing to the touch-

down phase on the �lm, after which the indenter moves further into the �lm until it

reaches a maximum depth of 10Å, and it is held for 100fs and �nally retracted back

at the same speed.

Within each time step, the force on the indenter is found by summing up the forces

on all indenter atoms. The load-displacement (force vs. indentation depth) curve

obtained from the simulation is shown in Fig. 5.6. In the �gure, the vertical

axis corresponds to the net force experienced by the indenter during indentation,

with positive and negative values corresponding to repulsive and attractive forces

respectively. Similarly, the horizontal axis corresponds to the indentation depth,

with a negative value indicating that the indenter position is above the copper �lm.

A maximum normal force of 34.01nN was observed just before the indenter reaches

its maximum depth of 9.97Å. Small negative forces of 0.13nN and 1.4133nN

respectively were observed just before the indenter touches the �lm and immediately

after it was retracted from the �lm, and were caused by the attractive forces

developed between the atoms of the indenter and the �lm. The load-displacement
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Figure 5.5: Snapshots of the simulation at di�erent stages of indentation.
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Figure 5.6: Load-displacement curve form multiscale simulation.

curve exhibits the general traits observed in nanoindentation experiments. The

initial elastic deformation is characterized by an increase in the force with an increase

in indentation depth. Distinct peaks observed in the indentation curve, followed by

subsequent drop in forces indicate plastic deformation. Also, the forces are higher

at successive peaks, which show that with an increase in indentation depth a higher

force is required to cause plastic deformation, indicating some strain-hardening in

the material.

Figure 5.7 compares the load-displacement curve of the present simulation with

those obtained from numerical simulations of indentation carried out on FCC metals,

obtained from open literature (Wang et al., 2008; Peng et al., 2010; Jeng and Tan,

2004). As the simulation parameters are di�erent in each case, the load-displacement

curves are all normalized for comparison. From the �gure it can be observed that

the results of the present multiscale simulation exhibit similar trends with those

reported in the literature.

The displacement pro�le at the end of the simulation is shown in Fig. 5.8, and

it can be observed that the maximum displacement occurs below the indenter and
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Figure 5.7: Comparison of the load-displacement curves.

the displacement gradually reduces away from the indentation site. There are no

abrupt changes or discontinuities observed in the displacement gradient supporting

the fact that the handshaking algorithm in the present multiscale method has been

successful in ensuring the seamless exchange of information between the atomic

and continuum domains. Some material pile-up is observed near the indentation

site, as evident from the displacement pro�le. Such pile-up phenomena have been

observed in indentation testing of metallic materials, speci�cally while testing copper

specimens (Beegan et al., 2003; Suresh et al., 1999; McElhaney et al., 1998).

Figure 5.9 compares the results of the multiscale simulation against a full MD

simulation, where the entire �lm is modeled using the atomistic approach. Though

the two indentation curves follow each other closely in the initial stages, they

proceed to take slightly di�erent paths thereafter, with a maximum variation of 17%

observed in the force-values. While the forces computed at every time instance, using

the MD and multiscale approaches do show variations, both curves have a similar

pro�le, indicating the adequacy of the present multiscale method for nanoindentation

simulation. Such variations have also been reported by other researchers, where
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they have reasoned it to the di�erences in precision level of MD and continuum

simulation, the di�erences in boundary conditions (Picu, 2000), the inconsistencies

in the multiscale method (Liu et al., 2004), the linear elasticity assumption in the

continuum region, and the presence of spurious forces at the interface(Shilkrot et al.,

2002b). The linear assumption in the continuum region renders the multiscale

method sti�er, which explains why the maximum force obtained from the multiscale

method is lower than the atomistic model.

Comparing the results of the present multiscale method with the pure MD results,

we �nd that the present multiscale method is accurate and able to achieve reasonably

comparable results as that of a full atomistic simulation, at a fraction of the

computational cost. For simulations done on a Pentium Duo Core Machine (3GHz)

with 3.25GB RAM, the clock time noted for the full MD simulation was 3,038s

against 235s for the multiscale method, a speed-up of more than one order, albeit

with some reduction in accuracy. The present multiscale method has however

been able to capture the load-displacement curve with reasonable accuracy, and

its performance and accuracy can be further improved by addressing some of the

issues mentioned earlier.

As the current simulation is done in 2D, the contact area de�ned in Eq. (5.5) is

Table 5.2: Force/unit length values from MD and multiscale simulations.

Method
Included
Angle of
Indenter

Maximum
Force (nN)

Contact
Perimeter (Å)

Force per
unit Length

(N/m)

900 34.0127 14.142 2.405

Multiscale 750 25.0051 12.606 1.983

model 1050 38.5471 16.426 2.346

MD
simulation

900 36.8133 14.142 2.603
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Figure 5.8: Displacement pro�le at the end of simulation.

Figure 5.9: Comparison of load-displacement curves from MD and multiscale simu-
lation.
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substituted with the contact perimeter, and the force per unit length values are

reported, instead of the hardness values. The force per unit length values obtained

by both the multiscale method and full MD simulation are reported in Table 5.2. To

study the impact of the indenter pro�le on the measured properties, the simulations

are repeated with di�erent included angles of the indenter and the results are also

presented in Table 5.2. From the table, we �nd that for a constant indentation

depth, the force per unit length is almost the same for included angles of 900 and

1050. However, for the case of 750 angle, the force per unit length is lower by

about 16%. This drop may be attributed to the fact that the sharper indenter, with

a reduced contact perimeter, results in a signi�cant reduction of the indentation

force. The load-displacement curves for the three test cases are shown in Fig. 5.10,

and it can be observed that the curves have a similar pro�le, with the maximum

force increasing for larger indenter angles.

The multiscale simulation was also carried out at varying indentation speed starting

at 100m/s and increasing till 250m/s. The maximum force observed in each case is

Figure 5.10: Comparison of load-displacement curves for di�erent indenter angles.
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Figure 5.11: Plot of maximum indentation force at di�erent indentation speeds.

plotted in Fig. 5.11. From the �gure, we �nd that the maximum force gradually

increases from 34.01nN at 100m/s to 70.32nN at 250m/s, which is consistent with

the other experimental work (Peng et al., 2010; Saha and Nix, 2002) that have noted

an increase in hardness at higher indentation speeds.

5.2 Multiscale Simulation of Nanoscratching

5.2.1 Review of nanoscratch testing

Nanoscratch testing is an experimental technique used to evaluate the adhesion

and wear properties of nanoscale systems, thin �lms and coatings. A typical

nanoscratching test set-up is shown in Fig. 5.12. During the test, scratches are made

on the test specimen with a indenter of known geometry, which is drawn across the

specimen at a constant speed and a constant or progressively increasing load. The

testing involves indentation followed by scratching along the scratch direction, and

�nally unloading of the specimen. The critical load in a scratching test is de�ned
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Source: http://www.pvd-coatings.co.uk/pvd-coating-technology/testing-
equipment/scratch-tester/

Figure 5.12: Schematic of nanoscratching test setup.

as the load at which failure occurs, when a constant load is used. When using an

increasing load, it is de�ned as the smallest load at which failure occurs. The load

at which the material fails is indicative of its wear resistance. Nanoscratch testing

can be carried out in the same machine used for nanoindentation testing.

A 60o conical diamond indenter, with a tip radius of 1µm is generally used in

scratching tests as its easy to align it along the scratch direction. Typical scratch

distance in these tests is of the order of 500µm, with the scratch velocity and loads

in the range of 5µm/s and 0-2.5mN respectively (Li and Bhushan, 2002). The main

variables in nanoscratch testing are the indentation depth, scratch velocity, scratch

direction and the indenter shape, which have in�uence on the friction coe�cient,

scratch hardness, friction force and abrasive wear properties measured from the

test.
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5.2.2 Multiscale model

The multiscale model for the nanoscratching problem is somewhat similar to that

used in the nanoindentation problem (see Fig. 5.4). In this case, the copper thin

�lm is of dimensions 176.64ÅÖ66.51Å, with the MD region of size 94.72ÅÖ33.27Å,

positioned a distance of 64Å and 33.25Å from the left and bottom faces of the

copper �lm, respectively. A rigid triangular indenter of size 28.16ÅÖ14.08Å, with

an included angle of 90o is used in the experiment. The indenter is assumed to be

rigid, which means that there are no interactions between the atoms of the indenter.

The copper �lm is modeled with both atomistic and continuum approaches, while

only an atomistic approach is used to model the indenter. The atomic and continuum

regions are modeled using the MD and Hermite-cloud methods. The face centered

cubic atoms of copper are initially placed in their respective lattice positions, along

the closely-packed 〈111〉 plane, and modeled using the Morse potential, mentioned

in Eq. (5.8), with the potential parameters given in Table 5.1, and the forces in

the atomistic region are obtained using Eq. (5.9). The calculations are carried out

iteratively within each time step, using the multiscale algorithm detailed in Table

3.1, until convergence is attained.

The rigid indenter is initially placed at a distance of 121.61Å and 5Å from the left and

top surfaces of the �lm respectively. A vertical distance of 5Å is provided between

the �lm and indenter to avoid any attractive forces to be developed between the

indenter and the �lm, before the start of the simulation. The displacements along

the three edges of the �lm are constrained in both the x and y directions, and the

top surface facing the indenter is set free. The indenter is incrementally moved

towards the �lm from its initial position at a constant speed of 100m/s until it

reaches a depth of 5Å, after which scratching is performed along the x direction,

for a distance of 35Å with a scratch velocity of 100m/s. Plane strain conditions are

assumed in the calculations.
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Adaptive node distribution scheme

To further demonstrate the capability of the multiscale algorithm, an adaptive node

distribution scheme is used in this problem. This is done by translating the atomistic

region by a distance of 5.12Å, in the x direction, every time the indenter exceeds a

scratching length of 4Å. By doing so, the size of the atomistic region can be kept

constant during the simulation, instead of progressively increasing its size as the

the scratch length increases. During each translation, atoms are added along the

scratch direction and subtracted in the region behind the indenter. The nodes in the

surrounding continuum region are also modi�ed accordingly. While doing so, the

displacements and velocities of the added/deleted atoms and nodes are transferred

to one another using the same interpolation functions used in the coupling algorithm

(see Section 3.3).

5.2.3 Numerical results

In this section, the results of nanoscratching experiments are presented. The

simulation begins with the rigid indenter initially positioned at a distance of 5Å

above the copper �lm, which is then gradually moved to a depth of 5Å, followed

by scratching for a distance of 35Å. For the purpose of the present discussion,

the duration from the start of the simulation till the indenter reaches a depth of

indentation 5Å will be denoted as the indentation phase, and the duration from the

start to the end of scratching will be denoted as the scratch phase. The start and end

positions for scratching is chosen such that there is a su�cient distance between the

indenter and the sides of the copper �lm, so as to avoid boundary e�ects. A scratch

velocity of 100m/s, though somewhat higher than typical experimental values, is

used in the simulation to achieve a reasonable computational time.

Figure 5.13 shows the snapshots of the simulation at di�erent time instance. The
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�rst two �gures show the atomic and nodal position during the indentation phase,

and the remaining �gures show the same at di�erent scratch lengths. The scratching

action can be compared to that of ploughing, with atoms being piled-up before the

indenter face. The pile-up is caused by the large negative rake angle, which is the

angle between the indenter face and the direction of scratching(Komanduri et al.,

2000b).

The forces measured in the scratching experiment are the normal force or the

indentation force and then tangential or the scratch force. Figure 5.14 show the

variation of normal and tangential forces during the indentation phase. From

the �gure, it can be observed that the normal force increases with indentation

depth reaching a maximum of 10.46nN at 5Å, and its shape resembles the load-

displacement curve obtained from nanoindentation simulation (see Fig. 5.6). The

scratch force however remains close to zero during the indentation phase.

The variation of the normal and tangential forces during the scratching phase is

shown in Fig. 5.15. The tangential force gradually builds up during the scratch

phase before reaching a value of 8.37nN at a scratch length of 1.5Å, after which it

�uctuates about a mean value of 7.17nN, over the remaining scratch length. During

the scratch phase, the normal force initially drops from its peak value after which

it exhibits �uctuations similar to the tangential force. However, the normal force

is greater than the tangential force for most part of the scratching phase, with the

average normal force (7.4337nN) being higher than the average value of tangential

force (7.1773nN). The discontinuous force �uctuation observed during the scratching

process, is caused by the dislocation nucleation and propagation, and has been

observed in MD/multiscale simulations carried out by other researchers (Cao et al.,

2010; Shiari et al., 2007).

The tribological property of interest from the nanoscratching experiment is the

coe�cient of friction, which is obtained as the ratio of tangential force to the
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Figure 5.13: Snapshots of the nanoscratch simulation during the indentation and
scratch phases.
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Figure 5.14: Variation of normal force during the indentation phase.

Figure 5.15: Variation of tangential force as a function of scratch length.
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normal force during the scratching phase. Figure 5.16 shows the plot of the friction

coe�cient as a function of scratch length. The coe�cient of friction obtained from

the simulation is in the range of 0.76-1.22 with an average value of 0.974. In

computing the average, only the values obtained after a scratch distance of 1.5Å

are used, which is the distance after which the tangential force reaches a steady

state. A direct comparison with experimental data is not possible as the simulation

is performed in 2D. Moreover, the coe�cient of friction obtained experimentally

depends on a number of factors, such as load, environmental conditions, type of

lubrication used, etc. However, the results of the present simulation are in reasonable

agreement with values obtained from multiscale/MD simulation of nanoscratching

experiments, reported in open literature (Mulliah and et al., 2004; Akabane et al.,

2007; Cao et al., 2010; Noreyan and Amar, 2008; Shiari et al., 2007; Komanduri

et al., 2000b).

Figure 5.16: Coe�cient of friction as a function of scratch length.
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5.3 Chapter Summary

In this chapter, 2D concurrent multiscale simulations were carried out to study

nanoindentation and nanoscratching tests on a copper thin �lm. The multiscale

method is able to accurately simulate nanoindentation, which is evident by compar-

ing the load-displacement pro�le of the multiscale simulation with a full atomistic

simulation and also with MD/multiscale simulation reported in literature. Seamless

exchange of information between the atomic and continuum domains is indicated by

the smooth displacement pro�le that does not exhibit any distinct discontinuities.

By using the contact perimeter in 2D, the force per unit length values are extracted

from the simulation and also compared for di�erent included angles of the indenter.

The force per unit length exhibits an increasing trend with an increase in indentation

speed. The capability of the multiscale model was further validated by the use

of an adaptive node distribution scheme for the nanoscratching problem, which

maintains a constant size of the atomistic region. The forces and coe�cient of

friction obtained from the nanoscratching simulations also compare well with the

values in open literature. In conclusion, the present multiscale model is able to

provide an e�cient and su�ciently accurate solutions to the nanoindentation and

scratching problems, by restricting the atomic scale detail to a small region.
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Conclusions and Recommendations

The major contribution from this work is the development of a new multiscale

algorithm to concurrently couple atomistic and continuum scales. The main

challenge in developing the multiscale model is the development of a handshaking

algorithm to ensure a seamless interface between the di�erent length/time scales.

In the following sections the major achievements and conclusions of this work are

highlighted, and some possible avenues for future work in this direction are identi�ed.

6.1 Major Theoretical Achievements

The main achievement from this work is the development of a novel multiscale

technique based on the molecular dynamics and the strong-form meshless Hermite-

cloud methods. The major achievements from this work are listed below:

1. The �rst major contribution is the development of multiscale algorithm to

concurrently couple atomistic and continuum scales by ensuring displacement

compatibility and force equilibrium in the overlapping transition or hand-

shaking region. The multiscale method further uses a meshless method for

continuum discretization, which addresses some of the limitations of other
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continuum approaches such as the FEM. The highlight of the developed

multiscale algorithm is its simplicity and elegance, which eliminates the need

for complex mesh generation activity in the continuum domain.

2. The multiscale method uses a strong-form approach, instead of the more

prevalent weak-form approaches, for the discretization of the governing PDE,

making it a truly meshless multiscale scale method that does not require a

background mesh for numerical integration. The source code implementation

of the this multiscale algorithm is therefore more compact and abridged

compared with those based on traditional �nite elements.

3. The use of the meshless Hermite-cloud method for continuum discretization

enables the construction of higher order interpolation polynomials in the

overlapping transition region, and therefore compatibility of both the �eld

variable and its �rst-order derivative is ensured in the transition region.

Further, the use of interpolation polynomials permit more freedom in the nodal

distribution in the continuum domain, and the continuum nodes need not be

fully re�ned to coincide with the atomic locations in the transition region.

4. The proposed multiscale model was validated numerically by solving static

and transient benchmark problems in one and two-dimensional domains. The

static problems solved include the Poisson and Laplace equations with di�erent

boundary conditions and high gradients, and transient problems include wave

propagation problems in both one and two dimensional spaces. The numerical

accuracy of the multiscale model is measured by using both a global error

measure, and also by comparing the results with a full atomistic simulation.

The numerical results show that the proposed method is e�cient and accurate,

and also provides a seamless coupling between the two domains.
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6.2 Tribology Studies via the Currently Developed

Multiscale Method

The present multiscale model was employed to simulate solve two engineering prob-

lems of interest, namely nanoindentation and nanoscratching on a two-dimensional

copper thin �lm.

The results from the nanoindentation simulation, namely the load-displacement

graph obtained from the multiscale method shows only slight quantitative variation

from that of the full atomistic model. More importantly, the graphs from both

simulations show a similar trend thus validating the multiscale method. The

displacement pro�le without discontinuities further supports the e�ciency of the

multiscale method in ensuring smooth exchange of information between the atom-

istic and continuum domains. The material properties extracted from the simulation

include the force/unit length obtained by dividing the maximum load on the indenter

by its contact perimeter. The capability of the multiscale model is also validated by

the use of an adaptive node distribution scheme for solving the nanoscratch problem,

wherein the size of the atomistic region is maintained constant. The forces and the

coe�cient of friction obtained from the simulation compare well with the values

reported in literature.

6.3 Final Remarks

In conclusion, a multiscale model that provides accurate and e�cient solutions to

couple di�erent length/time scales has been successfully developed, and substantially

validated through benchmark problems and tribological problems of interest. In

addition, this multiscale method is completely mesh free. By restricting the atomic

scale detail to a small region, the method is able to save on computational resources,
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achieving computational speed-up of more than one-order.

6.4 Recommendations

In this work, the developed multiscale model was used to solve two tribological

problems of interest, namely nanoindentation and nanoscratching. This work can

be de�nitely extended to include more complex problem, and a few possibilities are

listed below:

� The method can be used to solve more challenging problems such as analysis

of MEMS/NEMS systems, crack propagation in crystals, other tribological

problems such as friction and wear, nanoscale metal cutting, material charac-

terization, biological systems at nanoscale, etc.

� The multiscale model developed in this work is based on certain assumptions;

namely, the empirical atomic potentials used in the atomistic domains are

relatively simple potentials, temperature e�ects have not been included in

the study, the continuum model is a linear elastic model, and the movement of

dislocations from atomistic to continuum regions has not been considered. The

main focus in this work was the development and validation of the multiscale

model. In the future, some of the issues mentioned above can be advanced

and/or addressed to achieve a more re�ned model.
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