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Summary

The classical sequence-structure-function paradigm for proteins illustrates that the

amino acid sequence of a protein determines its three-dimensional (3D) structure

and function. With the great success of genome sequencing projects, the gap

between the number of sequence-known proteins and the number of structure-

known proteins is widening rapidly. In-silico prediction of protein structure from

amino acid sequence has the potential to bridge this gap.

This thesis presents the machine learning-based computational methods that

we developed to predict four protein structural attributes: (1) protein structural

class, (2) protein fold, (3) G-protein-coupled receptors, and (4) protein contact

map.

First, for protein structural class prediction, we propose to use the chaos game

representation and recurrence quantification analysis to extract a set of features

directly from the amino acid sequences. Fisher’s discriminant algorithm is adopted

as the classification algorithm, and about 65% overall accuracy is achieved for

proteins from low-similarity datasets. Comparisons with other methods (that use

the same kind of input information) show that the proposed method has higher

or comparable accuracy depending on different datasets tested. When the similar

idea is applied using the predicted protein secondary structure to predict the class,

the resulting prediction accuracy could exceed 80%.

Second, for taxonomy-based protein fold recognition, a new method named
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TAXFOLD is proposed by extracting a comprehensive set of global and local fea-

tures from the PSI-BLAST and PSIPRED profiles. These features are then fed

into support vector machine to make fold recognition. Experimental tests on seven

datasets demonstrate that TAXFOLD makes an average 6.9% improvement over

the best available taxonomic method and performs comparably well with the best

conventional template-based fold recognition methods.

Third, for hierarchical classification of GPCRs, we develop a new method named

PCA-GPCR that could classify GPCRs at all the five levels of the GPCR classifi-

cation hierarchy. It relies on a comprehensive set of 1497 sequence-derived features.

Because the number of dimensions of the feature space is very high, the principal

component analysis is employed to reduce the dimensionality to 32. Jackknife tests

on a large dataset show that the overall accuracies of PCA-GPCR at five levels

(from the first to the fifth) are 99.5%, 88.8%, 80.47%, 80.3%, and 92.34%, respec-

tively. Experimental comparisons show that PCA-GPCR consistently outperforms

the BLAST-based classification and other competing predictors.

At last, for protein contact map prediction, a consensus approach named LRcon

is proposed to improve the performance of existing predictors. Our new approach

combines the prediction results from several complementary predictors by using

a logistic regression model. Tests on the targets from the recent CASP9 exper-

iment and a large dataset consisting of 856 protein chains show that LRcon not

only outperforms its component predictors but also simple averaging and voting

schemes.
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Chapter 1

Introduction

1.1 Sequence-based In-silico Prediction of Pro-

tein Structure

Proteins are macromolecules performing numerous functions in biological organ-

isms. The ‘building blocks’ of proteins are the 20 naturally occurring amino acids

(residues). Typically, a protein may consist of 50 to hundreds of amino acids, which

are bonded together by peptide bonds. The linear sequence of the amino acids in

a protein is called the primary sequence of the protein. The composition of amino

acids and their order of appearing in a protein sequence are believed to play an

important role in determining the protein’s 3D structure and function, as indicated

in the classical sequence-structure-function paradigm for proteins [1].

With the accomplishment of various genome sequencing projects, the gap be-

tween the number of proteins with known sequences and the number of proteins

with known structures is becoming larger and larger. For example, there are

12,167,392 protein sequences in the release 46 of the NCBI’s RefSeq database

(March 10, 2011). However, only 68,812 protein structures are deposited in the

RCSB Protein Data Bank (PDB) [2] (July 05, 2011), which account for only
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0.57% of protein sequences. Figure 1.1 shows the growing gap in the last 9 years.

Sequence-based in-silico prediction of protein structure is probably the only way

to bridge this large gap, so it has received intensive attention over the past five

decades [3].

2003 2004 2005 2006 2007 2008 2009 2010 2011
0

5

10

15

N
um

be
r 

of
 s

eq
ue

nc
es

 (
m

ill
io

ns
)

Year

 

 

2003 2004 2005 2006 2007 2008 2009 2010 2011

0.02
0.04
0.06
0.08

N
um

be
r 

of
 s

tr
uc

tu
re

s 
(m

ill
io

ns
)

Sequences
Structures

Figure 1.1: The numbers of protein sequences in the NCBI’s RefSeq database (left
y-coordinate) and the experimentally solved protein structures in PDB (right y-
coordinate) in the last 9 years.

In fact, in-silico prediction of the 3D structure of a protein from its amino acid

sequence is one of the grand challenges in computational biology which remains

unsolved after five decades of efforts [4]. It has been tackled from different aspects

and levels. For example, protein structures have been predicted at 1D, 2D, and 3D

levels, where the 1D and 2D predictions largely serve as intermediate steps for the
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3D prediction. At the 1D level, each amino acid of a protein is predicted into certain

structural features, such as secondary structure [5, 6] and solvent accessibility [7].

That is to say, the primary sequence of a protein is translated into a sequence

of structural features as the result of the 1D prediction. Currently, about 82%

accuracy has been achieved for the three-state secondary structure prediction [8].

At the 2D level, one of the most intensively studied problems is the prediction of

contact map [9–14], which depicts the topological relationship between the residues

of a protein. Even though the accuracy of contact map prediction is quite low at

present, it is still valuable information that can be used to enhance the 3D structure

prediction [15]. At the 3D level, it is desired to predict the coordinates of all atoms

or residues of a protein [16]. The 3D structure prediction methods can be broadly

divided into three categories: comparative modeling, threading, and free modeling

(or Ab initio modeling) [17]. In comparative modeling, the homologous sequences

(have > 35% sequence similarity with the target sequence) with known 3D structure

are identified and used to infer the 3D structure of the target sequence. The most

popular comparative modeling methods are MODELLER [18] and SWISS-MODEL

[19]. The threading approach [20, 21] is also termed fold recognition, which aims

to detect proteins sharing the same fold (please see Section 1.2.2 for the definition

of protein fold) with the target sequence and use them to build the model of the

target protein. The last category, free modeling, builds the 3D model of the target

proteins from scratch based on physical principle or fragment assembly. The most

representative method in this category may be attributed to the pioneer work

(ROSETTA) by David Baker [22]. A highly influential platform for the assessment

of various protein structure prediction methods is CASP (Critical Assessment of

Techniques for Protein Structure Prediction). It is a community-wide, worldwide

experiment for protein structure prediction and held every two years since 1994.

According to the last three CASP experiments (CASP7, CASP8, CASP9), the I-
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TASSER server [16] developed by the Zhang lab (http://zhanglab.ccmb.med.

umich.edu/) represents the state-of-the-art method for 3D structure prediction

[23–25].

Besides the above 1D, 2D and 3D predictions of protein structure, significant

efforts have been made to predict many other protein structural attributes (for a

comprehensive review of these attributes, please see [26]). In this thesis, we will

consider sequence-based in-silico predictions of the following four protein struc-

tural attributes: (1) structural class, (2) fold type, (3) G-protein-coupled receptor

(GPCR) family, and (4) contact map. When developing predictors for these struc-

tural attributes, we bear in mind three aims to be achieved whenever possible:

• Make the methods simple and fast.

• Improve the predictive quality over the state-of-the-art methods.

• Provide web servers for public use.

1.2 Protein Structural Class, Fold Type, GPCR

Family and Contact Map

In this section, the backgrounds about protein structural class, fold type, GPCR

family and contact map are briefly presented.

1.2.1 Protein Structural Class

There are two important databases in which protein structures are classified hi-

erarchically: SCOP (Structural Classification of Proteins) [27] and CATH (Class,

Architecture, Topology and Homologous superfamily) [28]. The SCOP classifica-

tion of proteins has been constructed manually by visual inspection and structure

12
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comparison, whereas the CATH classification applies a combination of automated

and manual procedures. SCOP provides a detailed and comprehensive description

of the structural and evolutionary relationships of protein structures. It organizes

the protein structures hierarchically at different levels (from top to bottom): class,

fold, superfamily, family, and species. In comparison, CATH clusters proteins at

four levels only: class, architecture, topology, and homologous superfamily.

Both SCOP and CATH define structural class but their definitions are different.

At the class level of SCOP, the tertiary structures of proteins are categorized into

11 structural classes: (1) α, (2) β, (3) α+β, (4) α/β, (5) multi-domain proteins, (6)

membrane and cell surface proteins, (7) small proteins, (8) coiled coil proteins, (9)

low resolution proteins, (10) peptides, and (11) designed proteins. According to the

secondary structure composition and packing within the structure, CATH defines

four structural classes: mainly-α, mainly-β, α-β, and protein domains which have

low secondary structure content. Because the structural classes defined in CATH

do not differentiate between α+β and α/β (as defined by SCOP), we do not adopt

its definition here. In the remaining of this thesis, the definition of structural class

is based on the database SCOP by default.

The knowledge of the structural class is beneficial to study protein function,

regulation and interactions. For instance, the information about structural class

has been used when developing methods to tackle problems such as contact map

prediction [29], conformation search [30], DNA-binding sites prediction [31], sec-

ondary structure content prediction [32], discrimination of outer membrane proteins

[33], protein folding rates prediction [34], and so on. Therefore, if we can predict

the structural class of a protein from its amino acid sequence, it would provide

substantial help in other related researches on proteins.

Sequence-based prediction of the first four major structural classes (α, β, α+β,

α/β) has been intensively studied [35–61]. The classification of these classes is

13



mainly based on the types and arrangements of their secondary structural elements

(i.e., α helix, β sheet, and random coil). Proteins in the α (resp. β) class contain

mainly helices (resp. strands), and proteins in the α + β and α/β classes contain

a mixture of α helices and β strands —the α helices and β strands are largely

segregated in the α+β class, but instead largely interspersed in the α/β class [62].

Figure 1.2 shows representative structures for the four major SCOP classes.

Figure 1.2: Cartoon structures of proteins in the four structural classes. (a) α
class, PDB ID: 2QB0; (b) β class, PDB ID: 2K57; (c) α + β class, PDB ID: 3BH8;
(d) α/β class, PDB ID: 3DEI.
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1.2.2 Protein Fold Type

The arrangement type and topological connection of secondary structure elements

in space are commonly defined as the fold of a protein. For example, TIM barrel

is a typical protein fold consisting of eight α helices and eight parallel β strands

that alternate along the peptide backbone, which is shown in Figure 1.3. The fold

level in SCOP is a level below the class level, and thus a detailed classification

of the class. For example, the α class is further classified into many different

folds: globin-like, long α-hairpin, type I dockerin domain, LEM/SAP HeH motif,

DNA/RNA-binding 3-helical bundle, and so on. Like the structural class, fold can

be used to measure the overall structural similarity between different proteins.

How many types of protein folds are there? Taking into account the huge num-

ber of amino acid sequences, one would expect a high number of different folds.

But in fact it is not the case. The number of folds is instead very limited, for exam-

ple, the total number of folds in globular, water-soluble proteins was estimated to

be about 1,000 [63, 64]. According to the PDB Statistics (http://www.pdb.org/

pdb/static.do?p=general_information/pdb_statistics/index.html), the to-

tal number of folds available in the PDB (based on SCOP, V1.75) is 1,393. The

growth in the number of folds available in the PDB in the last 21 years is illus-

trated in Figure 1.4. As seen from the figure, the number of folds seems to become

stable in recent years, because no new folds were found in the PDB library during

the years 2009-2011. A study [65] already claimed that the current PDB library

of the solved protein structures is complete at the level of single-domain proteins,

which brought better opportunities to solve the protein structure prediction prob-

lem. With the advance from PSI:Biology (Protein Structure Initiative, http://

sbkb.org/about/psi.html), more protein 3D structures become available, which

however would change the above conclusion.

15
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Figure 1.3: Structure illustration of the TIM barrel fold with a typical protein
(PDB ID: 2PDG).

16



1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
0

200

400

600

800

1000

1200

1400

Year

G
ro

w
th

 in
 th

e 
nu

m
be

r 
of

 fo
ld

s 
av

ai
la

bl
e 

in
 th

e 
P

D
B

 b
as

ed
 o

n 
S

C
O

P

 

 

Yearly
Total

Figure 1.4: The number of folds available in the PDB based on SCOP from 1990
to 2011.
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A protein’s fold is more evolutionarily conserved than its amino acid sequence.

Thus, one of the key steps in the template-based modeling of protein structure

prediction is to identify the fold of a target sequence [4]. Through fold recognition

we are able to identify proteins with known structures that share common folds

but have very low sequence similarity with the target sequence. The folds of the

identified structures can then be used as templates to model the structure of the

target sequence. The conventional methods for fold recognition is threading, in

which the target sequence is aligned against a library of potential fold templates

to find the best template [21]. Another category of fold recognition approach is

taxonomy-based fold recognition [66, 67] (also called protein fold type prediction

[68, 69]), which classifies a query protein into one of the known folds and has been

shown very promising for protein fold recognition.

1.2.3 G-Protein-Coupled Receptor Family

G-protein-coupled receptors (GPCRs) comprise the largest family of integral mem-

brane proteins and act as cell surface receptors responsible for the transduction of

extracellular signals into intracellular reactions [70]. The structure of a GPCR gen-

erally comprises seven α-helical transmembrane domains and thus GPCRs are also

known as 7TM receptors [71]. Figure 1.5 shows the structure of a typical GPCR

protein, β2-adrenergic receptor [72].

Many diseases associated with differentiation, proliferation, angiogenesis, can-

cer, development, and cell survival involve the malfunction of these receptors, which

makes them the most important drug targets [73, 74]. For example, among the

1,357 unique components from the 21,000 FDA approved drug products (FDA,

December 2005), more than a quarter of drugs target the Class A Rhodopsin-like

GPCRs [75].

Although GPCRs play an important role in drug market, their 3D experimen-
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Figure 1.5: The structure (shown in green cartoon) of β2-adrenergic receptor (taken
from http://en.wikipedia.org/wiki/Beta-2_adrenergic_receptor).

tal structures are largely unavailable [76]. Relative to globular proteins, the overall

low success rate for GPCR structure determination is mainly due to the difficulties

in the expression of recombinant receptors because of the inefficient transport and

insertion of receptors in the plasma membrane and the toxic effect on host cells

[77]. In addition, GPCR purification requires detergents that have a negative effect

on receptor yields and stability. Finally, the crystallization process is hampered by

the presence of detergents, inherent GPCR flexibility, and the relatively small hy-

drophilic loops that provide few potential crystal contacts [77, 78]. Until now, there

are only four human GPCRs that have their structures solved, i.e. β2-adrenergic

[72], adenosine A2a [79], CXCR4 chemokine [80], and dopamine D3 receptors [81].

Therefore, sequence-based analysis of GPCRs [71] and GPCR modeling [82] are of

great value, especially for the purpose of modern drug discovery.

The GPCRDB (G-Protein-Coupled Receptor Data Base) is a molecular-class
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information system that collects, combines, validates and stores large amounts of

heterogenous data on GPCRs [71] (http://www.gpcr.org/7tm/). Based on phar-

macological classification and/or binding ligand types of GPCRs, GPCRDB hierar-

chically organizes GPCRs into families, sub-families, etc. (Figure 1.6). For exam-

ple, the current version (as of 4 Mar 2011) of the GPCRDB classifies GPCRs into

six families, four of which are further classified into sub-families, sub-sub-families

and so forth. One interesting question arises: could the GPCRs be accurately clas-

sified by using the sequence information alone? In recent years, some methods for

sequence-based classification of GPCR families were already developed to answer

this question [54, 83–87].

Figure 1.6: An illustration of the GPCR family page in the GPCRDB system [88].
The GPCR family tree is shown on the left and GPCRs in the Amine sub-family
are shown on the right.
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1.2.4 Protein Contact Map

Contact map is a 2D description of protein structure. It is represented by a sym-

metrical matrix M with elements being 0 or 1. The element Mij in M is 1 if the

distance between the ith and the jth residue of the protein in 3D space is less than

a preassigned threshold, and 0 otherwise. A graph can be used to depict the matrix

by plotting the matrix on a 2D space (each element with value 1 is represented by

a dot). One of the clear advantages of this representation is that a contact map is

invariant to rotations and translations of the 3D structures. Figure 1.7 shows an

example of contact map.
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Figure 1.7: An example of contact map. The contacts are omitted for those residue
pairs being very close along the sequence (|j − i| < 6).

The information embedded in the contact map is useful in a variety of researches
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on proteins. As shown in [89], it is possible to reconstruct the 3D coordinates of

a protein using its contact map under certain circumstances. Contact maps are

also used for protein superimposition and to describe similarity between protein

structures [90]. In addition, the predicted contact maps can be used to evaluate

protein models [91], select the models generated by structure prediction programs

[92], improve the predictions of 3D structure [15], helix-helix interactions [93],

transmembrane helix packing arrangements [94], protein folding rates [95], and

so on. Therefore, sequence-based prediction of contact map has attracted much

attention in the past years and has been a part of the CASP since CASP2 [96].

However, the prediction accuracy of contact map is notoriously low [92].

1.3 Thesis Organization

A statistical machine learning approach is typically concerned with the develop-

ment of algorithms and techniques to construct models for the observed data and

then to make predictions for the query data. It has been widely employed to solve

various kinds of problems in computational biology: protein structure prediction

[16, 97], RNA-binding sites prediction [98], gene finding [99], promoter predic-

tion [100, 101], RNA secondary structure prediction [102], and so on. This thesis

presents several machine learning algorithms that we developed for solving the fol-

lowing four problems: (1) protein structural class prediction, (2) taxonomy-based

fold recognition, (3) hierarchical classification of GPCRs, and (4) protein contact

map prediction. The thesis is organized as follows.

Chapter 2 aims at predicting protein structural class for amino acid sequences

from a low-similarity dataset. We propose to decompose the chaos game represen-

tation (CGR) of an amino acid sequence into two time series. Then, a non-linear

analysis technique, called recurrence quantification analysis (RQA), is applied to
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analyze these time series. For a given protein sequence, a total of 16 features are

calculated with RQA, which are fed into Fisher’s discriminant algorithm to make

predictions. Two widely used low-similarity datasets were used to evaluate the

proposed method: 1189 (containing 1092 proteins) and 25PDB (containing 1673

proteins). Their pairwise sequence identities are below 40% and 25%, respectively.

It was demonstrated that the overall accuracies of the step-by-step procedure (eval-

uated by jackknife test) are 65.8% and 64.2% for 1189 and 25PDB datasets, re-

spectively. Comparisons based on the two datasets show that the overall accuracies

of our method are higher than or comparable with the other methods (excluding

those methods that use the predicted secondary structure information).

Chapter 3 further improves the prediction of protein structural class by utiliz-

ing the predicted secondary structure information. In particular, PSIPRED is first

used to predict the secondary structure for each protein sequence. A comprehen-

sive set of 24 features are then generated from the predicted secondary structure by

using CGR, RQA, K-string based information entropy and segment-based analysis.

These feature vectors are finally fed into Fisher’s discriminant algorithm for the

prediction of protein structural class. We tested the proposed method on three

benchmark datasets in low similarity and achieved the overall prediction accura-

cies of 82.9%, 83.1% and 81.3%, respectively. Comparisons with existing methods

showed that our method performs better or comparably well for all the tested

datasets. A web server that implements the proposed method is freely available at

http://www1.spms.ntu.edu.sg/~chenxin/RKS_PPSC/. The high prediction ac-

curacy achieved by our proposed method is attributed to the design of a com-

prehensive feature set on the predicted secondary structure sequences, which is

capable of characterizing the sequence order information, local interactions of the

secondary structural elements, and spacial arrangements of α helices and β strands.

Thus, it is a valuable method to predict protein structural class particularly for
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low-similarity amino acid sequences.

Chapter 4 proposes to improve taxonomy-based fold recognition with global

and local features. A new taxonomy-based protein fold recognition method called

TAXFOLD is developed. It extensively exploits the sequence evolution information

from PSI-BLAST profiles and the secondary structure information from PSIPRED

profiles. A comprehensive set of 137 features is constructed, which allows for the

depiction of both global and local characteristics of PSI-BLAST and PSIPRED

profiles. We tested TAXFOLD on six datasets and compared it with several ma-

jor existing taxonomic methods for fold recognition. Its recognition accuracies

range from 79.6% to 90% for 27, 95 and 194 folds, achieving an average 6.9% im-

provement over the best available taxonomic method. Further test on the Lindahl

benchmark dataset shows that TAXFOLD is comparable to the best conventional

template-based threading method at the SCOP fold level. These experimental re-

sults demonstrate that the proposed set of features is highly beneficial to protein

fold recognition. A web server that implements the proposed method is freely

available at http://www1.spms.ntu.edu.sg/~chenxin/TAXFOLD/.

Chapter 5 presents a new method called PCA-GPCR, to classify GPCRs hier-

archically at five levels using a comprehensive set of 1497 sequence-derived features.

The principal component analysis is first employed to reduce the dimension of the

feature space to 32. Then, the resulting 32-dimensional feature vectors are fed into

a simple yet powerful classification algorithm, called intimate sorting, to predict

GPCRs at five levels. The prediction at the first level determines whether a pro-

tein is a GPCR or a non-GPCR. If it is predicted to be a GPCR, then it will be

further predicted into certain family, subfamily, sub-subfamily and subtype by the

classifiers at the second, third, fourth, and fifth levels, respectively. To train the

classifiers applied at five levels, a non-redundant dataset is carefully constructed,

which contains 3178, 1589, 4772, 4924, and 2741 protein sequences at the respective
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levels. Jackknife tests on this training dataset show that the overall accuracies of

PCA-GPCR at five levels (from the first to the fifth) are 99.5%, 88.8%, 80.47%,

80.3%, and 92.34%, respectively. We further perform predictions on a dataset of

1238 GPCRs at the second level, and on another two datasets of 167 and 566

GPCRs at the fourth level. The overall prediction accuracies of our method are

consistently higher than those of the existing methods compared. The comprehen-

sive set of 1497 features are believed to be capable of capturing information about

amino acid composition, sequence order as well as various physicochemical proper-

ties of proteins. Therefore, high accuracies are achieved when predicting GPCRs

at all the five levels with our proposed method. For the convenience of public use,

a web server was developed, which is freely available at http://www1.spms.ntu.

edu.sg/~chenxin/PCA_GPCR/.

Chapter 6 presents a consensus approach to improve the prediction of protein

contact map. In this chapter, a consensus contact map prediction method called

LRcon is developed, which combines the prediction results from several comple-

mentary predictors by using a logistic regression model. Tests on the targets from

the recent CASP9 experiment and a large dataset D856 consisting of 856 protein

chains show that LRcon not only outperforms its component predictors but also the

simple averaging and voting schemes. For example, LRcon achieves 41.5% accu-

racy on the D856 dataset for the top L/10 long-range contact predictions, which is

about 5% higher than its best-performing component predictor. The improvements

made by LRcon are mainly attributed to the application of a consensus approach

to complementary predictors and the logistic regression analysis under the machine

learning framework.

Chapter 7 finally summarizes the thesis and provides some suggestions for the

future research direction.
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Chapter 2

Prediction of Protein Structural

Class by Recurrence

Quantification Analysis and

Chaos Game Representation †

2.1 Introduction

In this chapter, we aim to predict the four main protein structural classes (α, β,

α + β, and α/β) from the amino acid sequences. We list in Table 2.1 the major

protein structural class prediction methods developed in last decade. As we can see

from the table, these methods differ in two aspects: one is the input information

and the other is the classification algorithm, which are reviewed as follows.

† This chapter is mainly based on an article published in Journal of Theoretical Biology as:
Jian-Yi Yang, Zhen-Ling Peng, Zu-Guo Yu, Rui-Jie Zhang, Vo Anh, and Desheng Wang, Pre-
diction of protein structural classes by recurrence quantification analysis based on chaos game
representation, Journal of Theoretical Biology, 257:618-626, 2009.
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Table 2.1: List of the input information and classifiers used by existing structural class
predictors.

Reference
Input information Classifier Year

AAC CUSTOM PSC PSS PSSM FunD

[35] X LMD 1995
[36] X LMD 1995
[37] X Bayes 2000
[38] X NN 2000
[39] X SVM 2001
[40] X X STD 2002
[41] X SVM 2003
[42] X IS 2004
[43] X FC 2005
[44] X X MULTI 2006
[45] X X Ensemble 2006
[46] X SVM 2006
[47] X LogitBoost 2006
[48] X X Rough sets 2006
[49] X X X LR 2007
[50] X X IDQD 2007
[51] X X X X SVM 2008
[52] X SVM 2008
[53] X FKNN 2008
[54] X X CD 2008
[55] X X X X X MULTI 2008
[56] X X SVM 2009
[60] X FD 2009
[57] X X X X X SVM 2009
[61] X FD 2010
[58] X SVM 2010
[59] X SVM 2011

Meaning of abbreviations: AAC: amino acid composition; CUSTOM: other custom-designed features using solely the amino acid
sequence, such as pseudo-amino acid composition, dipeptide composition, physicochemical measure, sequence-order descriptor,
and so on; PSC: predicted secondary structure; PSS: predicted secondary structure; PSSM: position-specific score matrix; FunD:
functional domain; MULTI: multiple classifiers; LMD: least Mahalanobis distance, STD: stepwise discriminant analysis, IDQD:
increment of diversity combined with quadratic discriminant, CD: covariant-discriminant, LR: logistic regression, FD: Fisher’s
discriminant; IS: intimate sorting; FC: fuzzy clustering; FKNN: Fuzzy k-nearest neighbor; NN: neural network; SVM: support
vector machine.
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The major types of input information include the amino acid sequence, pre-

dicted secondary structure content, predicted secondary structure, functional do-

main [42], and PSI-BLAST profile (i.e., PSSM matrix) [103]. The most widely

used are the amino acid composition and other features computed from individual

amino acid sequences [35–41, 43, 47, 53, 54, 56, 60]. The amino acid compo-

sition represents a protein as a twenty-dimensional vector corresponding to the

frequencies of 20 amino acids in a given protein’s amino acid sequence [35–39, 43].

However, these features ignored the important sequence order information which

has been shown beneficial to the predictions. To overcome this limitation to some

extent, various new feature sets were designed, e.g., dipeptide composition and

pseudo amino acid (PseAA) composition [104]. These custom-designed set of fea-

tures have been shown very successful in the prediction of protein structural class

[46, 53, 54, 56, 60], especially for high-similarity protein datasets. However, when

low-similarity datasets with pairwise sequence similarity below 40% were tested,

these methods were not so effective any more. For instance, for the widely used

dataset 25PDB whose sequence similarity is about 25%, the reported overall ac-

curacies with these methods were below 70% [44, 45, 53, 54, 56, 60]. To address

this challenge, Kurgan et al. [49, 55] proposed to incorporate the predicted sec-

ondary structure content (i.e., composition of α-helix, β-strand, and random coil)

and evolutionary information embedded in the PSI-BLAST profile. Thus, higher

prediction accuracy was reported. In addition, with more protein structural class

related features extracted from the predicted secondary structure (e.g., PSIPRED),

over 80% prediction accuracy could be achieved [51, 57–59, 61] for low-similarity

protein datasets.

A variety of classification algorithms have been used in protein structural class

prediction, for example, covariant-discriminant analysis [54], fuzzy clustering [43],

LogitBoost [47], Bayesian decision theory [37], neural network [38], and support
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vector machine (SVM) [39, 41, 46, 51, 57]. From the table, we can see that SVM

[105] is probably the most commonly used algorithm in protein structural class

prediction.

In this chapter, we would like to introduce a new comprehensive feature set

that was extracted from the primary sequence based on chaos game representation

[106] and recurrence quantification analysis [107]. We demonstrate by experiments

on two benchmark datasets that the prediction of protein structural class can be

improved for low-similarity amino acid sequences.

2.2 Materials and Methods

2.2.1 Datasets

Two widely used low-similarity protein datasets, 25PDB and 1189, are used to

evaluate the proposed method and provide a comprehensive and unbiased com-

parison with the existing prediction methods. They are downloaded from RCSB

Protein Data Bank [2] (http://www.rcsb.org/pdb/home/home.do) with the PDB

IDs listed in [44]. The dataset 25PDB contains 1673 proteins of pairwise sequence

similarity being about 25%, while the dataset 1189 contains 1092 proteins of 40%

sequence similarity. Table 2.2 shows for the above two datasets the numbers of

proteins belonging to each structural class, where protein structural classifications

are retrieved from the database SCOP [27] and considered as true for prediction

evaluation.

Table 2.2: The number of proteins in the datasets.

Dataset α β α/β α + β Total

25PDB 443 443 346 441 1673
1189 223 294 334 241 1092
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2.2.2 Reverse Encoding for Amino Acids

Several different DNA codons may code the same amino acid. For example, the

amino acid Leucine (L) can be coded by six DNA codons: TTA, TTG, CTT, CTA,

CTC, and CTG. As a result, there are many candidate DNA sequences that can

be translated into a given protein sequence. Here we use the reverse encoding

method listed in Table 2.3, which has been used in [108]. Deschavanne and Tufféry

[108] explained that “the rationale for the choice of this fixed code was to keep a

balance in base composition so as to maximize the difference between the amino

acid codes”. Two more selected reverse encoding methods will be discussed in

Section 2.3.

Table 2.3: The reverse encoding of amino acids in Ref. [108].

A=GCT G=GGT M=ATG S=TCA C=TGC H=CAC N=AAC T=ACT D=GAC I=ATT
P=CCA V=GTG E=GAG K=AAG Q=CAG W=TGG F=TTC L=CTA R=CGA Y=TAC

2.2.3 Chaos Game Representation of Proteins

Chaos game representation (CGR) of protein structures was first proposed by Fiser

et al. [106]. We denote this CGR by 20-CGR because 20 letters were used in this

method to represent a protein sequence. Later Basu et al. [109] and Yu et al. [110]

proposed other kinds of CGRs for proteins, in which 12 and 4 letters were used to

represent protein sequences, respectively. We denote them by 12-CGR and 4-CGR,

respectively. We previously applied a 6-letter model to cluster 49 large proteins in

[111], so we will discuss below this model (denoted by 6-CGR) as well.

From previous section, a protein sequence could be transformed back into DNA

sequences with a fixed reverse encoding of amino acids [108]. It thus allows the

CGR of DNA sequences [112] to be applied to protein sequences as well. For the

sake of convenience, we denote this representation method by AAD-CGR (Amino
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Acids to DNA). Our subsequent discussions in this chapter are mainly based on

this representation.

After a protein sequence is transformed into a DNA sequence, we can use AAD-

CGR [112] to analyze it. We recapture the concept of CGR briefly here. CGR on

a DNA sequence is defined in a square [0, 1]× [0, 1], where the four corner vertices

correspond to the four letters A, C, G and T. The first point of the plot is placed

half way between the center of the square and the vertex corresponding to the

first letter of the DNA sequence; the i-th point of the plot is then placed half

way between the (i − 1)-th point and the vertex corresponding to the i-th letter.

The obtained plot is then called CGR of the DNA sequence, or equivalently the

AAD-CGR of the protein sequence. The AAD-CGR of a typical protein is shown

in Figure 2.1 as an example.

It is not easy to analyze the resulting 2-dimension plot directly. Noting that

the AAD-CGR of proteins is determined by the (x, y) coordinates, we proposed

in our previous work [113] to decompose the AAD-CGR plot into two time series

and then analyze them by multifractal analysis. Any point in the AAD-CGR plot

is determined by two coordinates, namely, x and y coordinates. Thus, two time

series can be generated from the AAD-CGR plot: the first time series comprises the

x-coordinates of the plotted points and the second comprises their corresponding y-

coordinates. We denote them as CGRx and CGRy, respectively. Figure 2.2 shows

the two time series generated from the AAD-CGR plot depicted in Figure 2.1.

Because the AAD-CGR plot can be uniquely reconstructed from these two

time series, all the information presented in the AAD-CGR plot is included in

the time series. In addition, the information in the AAD-CGR plot is derived

from the primary sequence of proteins. Therefore, analysis of the two time series

is equivalent to analysis of the primary sequence of a protein. It is anticipated

that such analysis could provide better results than direct analysis on the primary
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Figure 2.1: AAD-CGR of a protein (PDB ID: 1AAB). One point in the figure
represents one corresponding amino acid in the protein sequence. The order for
the points (corresponding to the order in the protein sequence) is saved (not shown
in the figure). See text for more details about how to obtain such plots.
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Figure 2.2: Two time series generated from the plots of Figure 2.1. The first time
series (left panel) comprises the x-coordinates of the points in Figure 2.1 and the
second (right panel) comprises their respective y-coordinates.
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sequences of proteins.

Previously, we applied the 20-CGR to predict the structural class for 100 large

proteins based on multifractal analysis [113]. A shortcoming of this approach is

that it requires the protein length to be long enough (often > 300, i.e. large

proteins). However, many proteins (especially the domain sequences) in the PDB

library, can not meet this requirement. In order to overcome this shortcoming, we

adopt another analysis technique called recurrence quantification analysis (RQA)

[107], which is described below.

2.2.4 Recurrence Plot

Recurrence plot (RP) is a purely graphical tool originally proposed by Eckmann

et al. [114] to detect patterns of recurrence in the data. It is able to describe the

natural time correlation information in a time series. Given a time series z1z2 · · · zL

of length L, we first embed it into the space Rm of dimension m using a time delay

τ . Let us define

Zi = (zi, zi+τ , zi+2τ , · · · , zi+(m−1)τ ), i = 1, 2, · · · , Nm, (2.1)

where Nm = L − (m − 1)τ . Hence, we obtain Nm vectors (i.e., points) in the

embedding space Rm. The values of m and τ have to be chosen appropriately

based on nonlinear dynamical theory [115] and it will be discussed in Section 2.2.6.

We further construct a distance matrix (DM=(Di,j)) of size Nm×Nm from the Nm

points. Its elements are the (Euclidean) distances between all pairs of points after

being scaled down by the maximum distance. As a result, all the element values of

DM are located in the interval between 0 and 1, one advantage of which is to allow

the recurrence plots in different scales to be statistically compared [115]. Finally,

we define a recurrence matrix (RM) by applying a threshold ε (namely radius) on
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the element values of DM. Formally, let RM=(Ri,j(ε))Nm×Nm
and

Ri,j(ε) = H(ε − Di,j), i, j = 1, 2, · · · , Nm (2.2)

where H is the Heaviside function; that is,

H(x) =











0, if x < 0,

1, if x ≥ 0.
(2.3)

Recurrence plot is simply a visualization of RM by plotting points on i-j plane

for those elements in RM with values equal to 1. If Ri,j(ε) = 1, we say the j-th

point recurs with reference to the i-th point. For any ε > 0, the RP has always a

black line along main diagonal since Ri,i(ε) ≡ 1. Furthermore, the RP is symmetric

with respect to the main diagonal as Ri,j(ε) = Rj,i(ε).

For example, the RPs for the two time series shown in Figure 2.2 are given in

Figure 2.3. ε is a crucial parameter of RP. If ε is chosen too small, then there

might leave only a few of recurrence points so that we can not learn any recurrence

structure of the underlying time series. But if ε is too large, almost all the points

will be enclosed in the neighbor of a point, thereby introducing a lot of structure

artifacts. Because the elements Di,j in the matrix DM is between 0 and 1, the

allowed range of ε is set to be [0, 1]. For the sake of discussion convenience, we

represent ε as a percentage between 0% and 100% in the rest of this chapter. We

will discuss the selection of ε value in Section 2.2.6.
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Figure 2.3: The corresponding RPs for the two time series in Figure 2.2. The
parameters used are m = 8, τ = 2, and ε = 30%. Note that there is a black
line along the main diagonal in the plots since a point always recurs with itself.
Moreover, the points in the RP are symmetric with respect to the main diagonal
line.

2.2.5 Recurrence Quantification Analysis

Recurrence quantification analysis (RQA) is a nonlinear technique used to quantify

the information supplied by a recurrence plot [116, 117]. RQA has been successfully

applied to many different fields [118, 119]. The ability of RQA to deal with protein

sequences was investigated in [120–124]. The works using signal analysis methods

in elucidation of protein sequence-structure relationships were reviewed in [107].

In analyzing time series, unlike the multifractal analysis [111, 113, 125], RQA

does not have a strict requirement for the length of time series. Therefore, it is

possible to apply RQA in the prediction of structural class of small proteins. For

convenience, we briefly describe RQA as follows. There are 8 recurrence variables

used to quantify each RP [115, 126]. We refer the readers to Refs. [115, 126]

as there are detailed descriptions of these variables. Because the RP is symmetric

with respect to the main diagonal, the recurrence points considered in the following

definitions will only comprise those in the upper triangle of a RP (excluding the

main diagonal line as well).
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The first recurrence variable is called recurrence (%REC). It is a measure of

the density of recurrence points in a RP, taking a value ranging from 0 (when there

is no recurrent point) to 1 (when all points are recurrent). That is,

%REC =
# recurrent points in upper triangle

Nm(Nm − 1)/2
, (2.4)

where # stands for counting the number of points.

The second recurrence variable is called determinism (DET ). It measures the

proportion of recurrent points that form diagonal line structures. Before evaluat-

ing this variable, we need to set the minimum number of recurrent points that a

diagonal line segment requires. The commonly used number is 2, which is used in

this study as well. Formally, we define determinism as

DET =
# recurrent points in diagonal lines

# recurrent points
. (2.5)

The third recurrence variable is called linemax and denoted by Lmax. It simply

represents the length of the longest diagonal line segment in RP, and essentially

inversely scales with the largest positive Lyapunov exponent [114]. Note that in

general, the longer a time series, the longer diagonal line segments as well. In

order to cancel the length influence of the time series (equal to the length of the

corresponding protein amino acid sequence), we normalize the length of the longest

diagonal line segment by dividing Nm. That is,

Lmax =
length of the longest diagonal line in RP

Nm
. (2.6)

The fourth recurrence variable is entropy (ENT ), which is the Shannon infor-

mation entropy of the distribution probability of the length of the diagonal lines.
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That is,

ENT = −
Lmax
∑

k=Lmin, p(k)6=0

p(k) log2(p(k)), (2.7)

where Lmin is the minimum length of diagonal lines in RP and

p(k) =
# diagonal lines of length k in RP

# diagonal lines in RP
. (2.8)

The fifth recurrence variable is called trend (TND), which quantifies the sta-

tionarity degree of time series. It is calculated as the level that the local recurrences

of diagonal lines fits their displacements from the main diagonal by least squares

regression, where the local recurrence of a diagonal line refers to the proportion

of points on the diagonal line that are the recurrence points. We would like to

emphasize that the variable %REC is defined on the whole upper triangle of RP

while the local recurrence is instead defined only on a certain diagonal line of RP.

The remaining three variables are defined based on the vertical line structure.

The sixth recurrence variable is called laminarity (LAM). It is analogous to DET ,

but calculated using recurrence points forming vertical line structures. That is,

LAM =
#recurrent points in vertical lines

#recurrent points
. (2.9)

The seventh variable, called trapping time (TT ), is the normalized average

length of vertical line structures (i.e., average length of vertical line structures

divided by Nm). The eighth recurrence variable is the maximum normalized length

of the vertical lines in RP, which is analogous to the definition of Lmax and denoted

by Vmax.
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2.2.6 Selection of Parameters

As mentioned in Section 2.2.4, we have to select the values of three parameters in

RP: embedding dimension m, time delay τ , and radius ε. Because RP is analyzed by

RQA, we use the variable %REC to select these parameters. Similar to that done

in [115], we examine the values of %REC for embedding dimensions m between 6

and 9, and time delay τ from 1 to 4. A general guideline is that ε should be selected

such that %REC remains low (often less than 5%) [115]. We are looking for small

(or smooth) changes in parameter settings yielding small (or smooth) changes in

output measures.

The time series used here is the x-coordinate sequence (CGRx) in AAD-CGR of

protein 1AAB. In order to decide the values of the parameters in RQA, we present

the surface plots for embedding dimensions m from 6 to 9, delays τ from 1 to 4

and radius ε from 10% to 39% in Figure 2.4. We finally select m = 8 and τ = 2,

because we observed from the figure that the changes for %REC are relatively

small for m = 7, 8, 9, that the changes are smooth for m = 8 with the increase of

radius ε and τ , and that the values of %REC are relatively stable when τ ≥ 2.

The value of ε is select to be 30% to make sure %REC is smaller than 5% [115].

Note that these parameters are kept the same for all proteins in all datasets used

in this chapter.

2.2.7 Fisher’s Discriminant Algorithm

For each protein, a set of 16 features (2 × 8, 2 means two RPs, and 8 means 8

variables used to quantize each RP) can be computed as described above, and

these features will be fed into a classification algorithm to predict the protein’s

structural class. In this chapter, a simple yet powerful algorithm Fisher’s linear

discriminant algorithm [127] is used as the classification algorithm.
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Figure 2.4: Surface plots of %REC (%) with embedding dimensions varying be-
tween 6 and 9, and delays between 1 and 4. The plots are for the time series CGRx
of the protein shown in Figure 2.2. In the calculation, the parameter ε varies
between 10% and 49%.
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Fisher’s discriminant algorithm works as follows. It first builds a classifier with

a training set. A training set H = {x1, x2, · · · , xn} is given to contain training

vectors from two classes. There are n1 training vectors from one class forming a

subset H1 and n2 training vectors from another class forming a subset H2. Hence,

n1 + n2 = n and H = H1 ∪ H2. Assume that each xi is a m-dimension vector.

Then, a parameter vector w = (w1, w2, · · · , wm)T is estimated such that it allows

as many training vectors as possible to be accurately predicted. Specifically,

mj =
1

nj

∑

xi∈Hj

xi, j = 1, 2, (2.10)

Sj =
∑

xi∈Hj

(xi −mj)(xi −mj)
T , j = 1, 2, (2.11)

Sw = S1 + S2, (2.12)

and

w = S−1
w (m1 − m2), (2.13)

By Fisher’s discriminant rule, x is hence assigned to the class of H1 if dist =

(m1 − m2)
TS−1

w [x − 1
2
(m1 + m2)] > 0 and to the class of H2 otherwise.

For protein structural class prediction, we proposed a step-by-step procedure

to cluster protein structures [111, 125]. It works by discriminating proteins in a

class from proteins in other classes using three steps. One predictor is trained in

each step. After testing all the possible procedures (altogether 12 combinations),

we find that the following procedure results in higher overall accuracy:

• Step 1: discriminate proteins in the β class from proteins in the {α, α +

β, α/β} classes;

• Step 2: discriminate proteins in the α/β class from proteins in the {α, α+β}

classes;
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• Step 3: discriminate proteins in the α class from the proteins in the α + β

class and the remaining proteins are assigned to the α + β class.

2.2.8 Performance Evaluation

In statistical prediction, the following three cross-validation tests are often used to

examine the power of a predictor: independent dataset test, sub-sampling (such

as 5-fold or 10-fold sub-sampling) test, and jackknife test [35]. Of these three,

the jackknife test can always yield an unique result for a given benchmark dataset

[55, 128, 128–130]. Hence, in this chapter, we use the jackknife test to evaluate our

method. In the jackknife test, each of the proteins in the dataset is in turn singled

out as a tested protein, and the predictor is trained with the remaining proteins.

Therefore, jackknife is also called leave-one-out test.

The prediction accuracies are then measured by the following formulae.

Accα =
a

Na
, Accβ =

b

Nb
, Accα+β =

c

Nc
, Accα/β =

d

Nd
, (2.14)

and

Accoverall =
o

No

. (2.15)

In the above, a, b, c and d denote the number of correctly predicted proteins in

α, β, α+β and α/β classes, respectively. Na, Nb, Nc and Nd denote the total number

of proteins in α, β, α+β and α/β classes, respectively. Furthermore, o = a+b+c+d

and No = Na + Nb + Nc + Nd.
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2.3 Results and Discussions

2.3.1 Accuracy of the Proposed Method

The prediction accuracies of the proposed method evaluated on the datasets 25PDB

and 1189 are given in Table 2.4. We can see the overall accuracy for the dataset

25PDB is 1.6% lower than that for the dataset 1189, which might be due to the

fact that the sequence similarity of the former dataset is lower than that of the

latter.

Table 2.4: Accuracies from AAD-CGR with step-by-step algorithm.

Dataset α β α + β α/β Overall

1189 60.5 67.7 61.4 71.0 65.8
25PDB 58.0 65.0 65.1 69.9 64.2

2.3.2 Comparisons with Other Methods

For the four-class prediction problem, the one-against-all algorithm [46, 131, 132]

is widely used to transfer it into two two-class problems. Therefore, we calculate

the prediction accuracies of our method based on the one-against-all algorithm as

well, for a fair comparison with other methods. The accuracies of our method and

other representative methods that do not make use of predicted secondary structure

information are listed in Table 2.5. Comparison with those methods that utilize

the predicted secondary structure information will be made in Chapter 3.

On the 1189 dataset, note that the method in [55] made use of the PSI-BLAST

profile [103] and the predicted secondary structure content, which contains more

information than the single amino acid sequence used by our method and other

methods listed in the table. This may help explain the higher overall accuracy of

this method over other methods.
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Table 2.5: Comparison of our method with other methods. The accuracies of other

methods are taken directly from the corresponding references. The best results are high-

lighted in bold.

Dataset Reference # Features α β α + β α/β Overall

1189 [37] 19 NA NA NA NA 53.8
[44] 66 57.0 62.9 25.3 64.6 53.9
[45] 34 NA NA NA NA 58.9
[53] 27 48.9 59.5 26.6 81.7 56.9
[133] 50 NA NA NA NA 54.7
This chapter 16 62.3 67.7 63.1 66.5 65.2
[55] 50 75.8 75.2 31.8 82.6 67.6

25PDB [44] 66 69.1 61.6 38.3 60.1 57.1
[45] 34 NA NA NA NA 59.9
[49] 58 77.4 66.4 45.4 61.3 62.7
[56] 56 76.5 67.3 45.8 66.8 64.0
This chapter 16 64.3 65.0 61.7 65.0 64.0

Because the remaining methods in the table make use of the same kind of input

information, the following comparison excludes the method in [55]. From the table,

we can see that the overall prediction accuracy of our method is higher than others

(from 6.3% to 11.4%). Although the accuracy in predicting α/β class proteins

in [53] is higher than ours, our prediction accuracies are higher for all the other

classes. Overall, the improvement made by our method ranges between 4.8% and

37.8%.

On the 25PDB dataset, our method is comparable with the methods in [49, 56]

and better than those in [44, 45]. Specifically, the overall prediction accuracy of our

method is 4.1% and 6.9% higher than those in [45] and [44], respectively. Another

remarkable feature is for the prediction of the α+β class, where our method makes

more than 15% improvements over other methods compared. Unfortunately it

comes with almost the same amount of accuracy decrease for predicting the α class

compared to [49, 56]. In addition, our method used only 16 features, which is less

than those used by other methods, suggesting the effectiveness of the proposed
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method.

We look into the reasons why the proposed method achieves better predictions

than others. It should be noted that most existing methods [37, 44, 45] are based

on amino acid composition. As a result, the important information from sequence

order is ignored in these methods. On the other method, for the methods based

on PseAA [104, 134], sequence order information is partially incorporated. Exper-

iments also demonstrated that the better prediction results can be obtained with

PseAA [53] than with the simple amino acid composition [37, 44]. The impact

of coupling effect among different amino acid components on the performance of

protein structural class prediction were made in [135–137]. When it comes to the

method proposed here, the protein sequence was converted into time series based

on CGR, so that the order information would not be lost in this transform. By

analyzing the resulting two time series with RQA, the prediction would take the

sequence order information into consideration. Consequently, better prediction

results are anticipated from the proposed method.

In order to predict protein structural class more accurately, Chou and Cai [42]

proposed a method based on functional domain. In this method, each protein is

presented by a 7785-dimensional vector. It was used to predict protein structural

classification among 7 classes: α, β, α/β, α + β, multi-domain, small protein, and

peptide. A very high success rate (98%) was obtained on 2230 proteins in which

none of protein has more than 20% pairwise sequence similarity to any others.

This suggests that a feature representation containing more useful information of a

protein is helpful in predicting protein structural class. Unfortunately, this method

[42] did not test on the two datasets that we used here and, moreover, it is difficult

to implement due to the excessive number of features used [57], which prevents

from further comparisons with our method.
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2.3.3 Effect of Reverse Encoding

Besides the reverse encoding method listed in Table 2.3, we test two other encoding

methods to see whether they have any significant impact on the final prediction

results. We compute the corresponding results for two randomly selected encoding

methods (as seen in Table 2.6). The encoding method in Table 2.3 is denoted by

En1, and those in Table 2.6 by En2 and En3, respectively. Based on the one-

against-all procedure, the prediction results are listed in Table 2.7. From the table,

the overall accuracy from En1 is the highest, which is consistent with the conclusion

in [108] (i.e., the encoding method in Table 2.3 generally resulted in a better result).

As mentioned in [108], En1 is selected to “keep a balance in base composition so

as to maximize the difference between the amino acid codes”. We simply measure

the difference between a pair of amino acid codes by the number of mismatching

bases. For example, the difference between the codes for A=GCT and for G=GGT

in En1 is 1. The total difference between the amino acid codes in each setting is

thus defined as the sum over the 190 (=20 × 19/2) pairs of amino acid codes. We

find that the total difference value in En1 (455) is higher than those in En2 (448)

and En3 (442). This might explain to some extent why En1 has better result than

En2 and En3.

Table 2.6: Two more reverse encoding methods for amino acids (denoted as En2 and

En3, respectively).

A=GCA G=GGA M=ATG S=TCG C=TGT H=CAT N=AAT T=ACA D=GAT I=ATA
P=CCC V=GTA E=GAA K=AAA Q=CAA W=TGG F=TTT L=CTT R=CGC Y=TAT

A=GCC G=GGG M=ATG S=TCC C=TGT H=CAT N=AAT T=ACC D=GAC I=ATC
P=CCT V=GTC E=GAG K=AAG Q=CAG W=TGG F=TTC L=TTG R=CGT Y=TAT
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Table 2.7: Prediction accuracies from En1, En2 and En3 based on the one-against-all

procedure. The best results are highlighted in bold.

Dataset Encoding α β α + β α/β Overall

1189 En1 62.3 67.7 63.1 66.5 65.2
En2 46.6 54.1 59.0 65.9 57.2
En3 53.1 57.5 51.5 63.5 56.7

25PDB En1 64.3 65.0 61.7 65.0 64.0
En2 49.2 58.2 58.3 72.5 58.8
En3 52.6 59.6 57.4 69.4 59.2

2.3.4 Results of Other CGRs

We compare the results from AAD-CGR (En1) and the other four CGRs: 20-CGR,

12-CGR, 6-CGR, and 4-CGR in this subsection. A similar procedure introduced

in Section 2.2.6 is used to determine the values of the parameters in RQA. The

values of the parameters for each CGR are listed in Table 2.8. Based on the one-

against-all procedure, the prediction accuracies with these methods are shown in

Table 2.8, which indicates that the results vary with different CGRs. In terms

of overall accuracy, the results from AAD-CGR are relatively better than other

CGRs. Therefore, we recommend to choose AAD-CGR as the CGR of proteins to

predict protein structural class.

2.4 Conclusions

In this chapter, we proposed a method to improve the protein structural class

prediction by using chaos game representation (CGR) and recurrence quantification

analysis (RQA) to extract features directly from the amino acid sequences. With

the reverse encoding of amino acids in [108], AAD-CGR was introduced in this

chapter. In order to analyze AAD-CGR of proteins more effectively, we decomposed

47



Table 2.8: Accuracies obtained with five different CGRs. The numbers in parentheses

after each method are the values of the parameters (m, τ, ε) used in RQA. The best

results are highlighted in bold.

Dataset Method α β α + β α/β Overall

1189 4-CGR (6, 1, 25) 46.2 57.5 51.0 63.5 55.6
6-CGR (7, 1, 25) 44.0 60.2 56.4 64.1 57.2
12-CGR (7, 1, 25) 39.9 49.3 59.3 63.8 54.0
20-CGR (7, 1, 30) 44.4 54.4 51.5 63.2 54.4

AAD-CGR (8, 2, 30) 62.3 67.7 63.1 66.5 65.2

25PDB 4-CGR (6, 1, 25) 51.2 60.0 57.1 68.2 58.6
6-CGR (7, 1, 25) 51.5 57.3 50.8 65.6 55.8
12-CGR (7, 1, 25) 46.5 58.0 57.6 68.8 57.1
20-CGR (7, 1, 30) 51.7 58.9 51.0 69.1 57.0

AAD-CGR (8, 2, 30) 64.3 65.0 61.7 65.0 64.0

the AAD-CGR of proteins into two time series. RQA was then used to analyze the

time series and 16 (2×8) features were extracted. To predict protein structural class

with Fisher’s linear discriminant algorithm, we applied a step-by-step procedure

to these features. The resulted overall accuracies are 65.8% and 64.2% for two

low-similarity datasets 1189 and 25PDB (sequence similarity being 40% and 25%,

respectively), respectively. The other four different CGRs of proteins were also

tested. The accuracies from AAD-CGR are comparatively higher, which suggests

to better use AAD-CGR to predict protein structural class.

We compared our results with several existing methods. The prediction accu-

racy of the α class of the methods in [49, 55, 56] is higher than ours. Nevertheless,

the overall accuracies of our method are higher than or comparable with those of

the other methods (that use the same kind of input information), depending on

different datasets tested. However, we can see that the accuracy is still far from

satisfactory. Chapter 3 will present an approach that uses the predicted secondary

structure to further improve the prediction accuracy.
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Chapter 3

Improving Protein Structural

Class Prediction with Predicted

Secondary Structure †

3.1 Introduction

In this chapter, we will improve the prediction of protein structural class further by

using predicted secondary structures. As we can see from Chapter 2, the accuracy

of existing methods for protein structural class prediction are far from satisfactory

for low-similarity datasets. Recently, Kurgan et al. [49, 51, 55, 57] proposed to ex-

tract features from the predicted secondary content and/or the predicted secondary

structure rather than directly from the protein’s amino acid sequence, and reported

that higher prediction accuracy can be consequently achieved. Inspired by this, we

† This chapter is mainly based on an article published in BMC Bioinformatics as:
Jian-Yi Yang, Zhen-Ling Peng, and Xin Chen, Prediction of protein structural classes for low-
homology sequences based on predicted secondary structure, BMC Bioinformatics, 11:S9, 2010.

49



intend to improve the protein structural class prediction further for low-similarity

proteins by extracting novel features from predicted secondary structure.

We would like to introduce a new comprehensive feature set that was con-

structed from the predicted secondary structure. The method for extracting fea-

tures are similar with that in Chapter 2. First, chaos game representation is used

to transform the predicted secondary structure into two time series. Second, the

time series are analyzed by recurrence quantification analysis. The difference from

the method in Chapter 2 is the analysis in this chapter is for predicted secondary

structures rather than the amino acid sequences. We demonstrate by experiments

on three benchmark datasets that the prediction of protein structural class can be

further improved for low-similarity proteins.

3.2 Materials and Methods

3.2.1 Datasets

The proposed method is tested on three low-similarity protein datasets that are

widely used in the literature, and compared to a variety of existing methods [37,

44, 45, 49, 51, 53, 55, 60, 133, 138]. The first two datasets have been mentioned

in Chapter 2 and they are referred to as 25PDB and 1189. The third protein

dataset, referred to as 640, was first studied in [55]. It contains 640 proteins of 25%

sequence similarity, and freely available from the web server at http://biomine.

ece.ualberta.ca. The number of proteins in this dataset in the α, β, α/β and

α + β classes are 138, 154, 177, and 171, respectively. The distribution of proteins

in the four classes for the first two datasets is listed in Table 2.2 of Chapter 2.

It is worth noting that protein sequences of the 25PDB dataset are also provided

at http://biomine.ece.ualberta.ca/SCPRED/SCPRED.htm by the study of [51].

However, some of them are different from those in our test dataset that were instead
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downloaded from the PDB library, which would not allow for a fair performance

comparison if one uses the prediction accuracy values given in the paper [51]. We

looked into these sequence differences, and found that our test dataset is indeed

the latest version in the PDB library. Therefore, we re-implemented the approach

SCPRED by following the details presented in the paper [51] and tested on our test

dataset. Experimental results showed that the prediction accuracies of SCPRED

got further improved by 0.6% over those reported in [51].

3.2.2 Secondary Structure Prediction

Every amino acid in a protein sequence can be predicted into one of the three

secondary structural elements, H (helix), E (strand), and C (coil). It is a problem

known as protein secondary structure prediction, and many computational ap-

proaches have been developed in the past decades to predict the 3-state secondary

structure from protein sequences. In this study we chose PSIPRED [6], which pre-

dicts protein secondary structure based on the position specific scoring matrices

generated by PSI-BLAST [103] and was shown to outperform any other compet-

ing prediction methods [139]. For example, the protein 1E0G has a domain with

the amino acid sequence DSITYRVRKGDSLSSIAKRHGVNIKDVMRWNSDTAN-

LQPGDKLTLFVK. If we submit this sequence to the PSIPRED 2.6 web server

(http://bioinf.cs.ucl.ac.uk/psipred/), the predicted secondary structure to

be returned will be CCEEEEECCCCCHHHHHHHHCCCHHHHHHHCCCCCCC-

CCCCEEEEEEC.
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3.2.3 Chaos Game Representation of Predicted Secondary

Structure

To use the predicted secondary structural sequences to predict protein structural

class, Kurgan and colleagues [49, 51] extract a set of features that contains the

predicted secondary structure content, aiming to quantify the amount of residues

in the amino acid sequence that assume helical and strand conformation. However,

we can easily see that this approach did not make full use of the predicted se-

quence of protein secondary structure but disregard its high-level information such

as sequence order. For example, if a predicted secondary structure sequence is ran-

domly permutated, we could obtain a new secondary structure sequence belonging

to a different structural class. However, these two sequences have the same content

such that the aforementioned approach will erroneously predict them into the same

protein structural class. Hence, a set of new features are needed to describe the pre-

dicted protein secondary structure in order to achieve the more accurate prediction

of protein structure class. To this end, Kurgan and colleagues [55, 57] proposed a

large set of features from the predicted secondary structure and/or the PSI-BLAST

profile, which is followed by feature selection to select those class-related features.

About 80% accuracy was obtained with these new methods.

We propose here a way to build a new set of features based on the CGR of

secondary structure sequences. Noting that the CGR introduced in Chapter 2 is

applied on the amino acid sequence rather that on the secondary structure se-

quence, we thus briefly introduce it below. Given a secondary structure sequence,

we start with a equilateral triangle with the unit length of sides and each vertex

associated with a distinct letter of H, E and C. For each letter of the given sec-

ondary structure sequence, we then plot a point inside the triangle in the following

way. The first point is placed half way between the center of the triangle and the
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vertex corresponding to the first letter of the secondary structure sequence, and

the i-th point is then placed half way between the (i − 1)-th point and the ver-

tex corresponding to the i-th letter. The obtained plot is then called the CGR of

the secondary structure sequence. Figure 3.1 depicts the CGRs for four proteins,

each belonging to a different structural class. It is very interesting to see that for

proteins in α and β classes, the plotted points tend to be distributed around the

sides HC and EC, respectively. For proteins in α+β and α/β classes, however, the

points lie around both sides HC and EC without preference.
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Figure 3.1: The CGRs of predicted secondary structure for proteins from four structural
classes. The blue edges represents the sides of equilateral triangles and the black points
represent the CGR points. The order of the black points (corresponding to the order in
the predicted secondary structure) is saved, but not shown in the figure. The PDB IDs
for four proteins are 1A6M (α class), 1AJW (β class), 1GQOV (α/β class), and 1DEF
(α + β class).
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Observe that each secondary structure sequence gives rise to a distinct (x, y)-

coordinate sequence of the plotted points. Hence we can faithfully model a CGR

plot as a combination of two time series, one composed of the x-coordinates and

the other of the y-coordinates. For simplicity, we call them x-time series and y-

time series, respectively. Because a CGR plot can be fully reconstructed from the

corresponding x and y time series, no information present in the CGR plot would

be lost in the combination of two time series. For example, the eight time series

corresponding to the four CGR plots of Figure 3.1 are depicted in Figure 3.2.

The average values of x- and y-time series points are calculated respectively as

x̄ =
1

L

L
∑

i=1

xi and ȳ =
1

L

L
∑

i=1

yi, (3.1)

where L denotes the length of the time series and xi and yi are the coordinate

values of the i-th point in CGR. As the average values for proteins in the α-class

tend to be smaller than those for proteins in the other classes (see Figure 3.2),

these two quantities will be used as the first two features in our proposed approach

for protein structural class prediction.

3.2.4 Recurrence Plot and Recurrence Quantification Anal-

ysis

Similar to that done in Chapter 2, the recurrence plots of the time series obtained

from CGR can be drawn after the parameters (m, τ , and ε) are fixed. While the

values of m and τ have to be chosen appropriately based on nonlinear dynamical

theory [115], τ is often set to be 1 in practical. Because an α-helix segment generally

comprises at least three residues, we set m to be 3 in this study. We will discuss

the selection of the ε value in Section 3.2.9. The RPs for the four x-time series (and

y-time series) of Figure 3.2 are shown in Figure 3.3 (and Figure 3.4, respectively).
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Figure 3.2: Eight time series that represent the four CGRs in Figure 3.1. Each panel in
Figure 3.1 gives rise to two time series (x- and y-coordinates, respectively). As a result,
we obtain eight time series for four CGRs.
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points in the RP are symmetric with respect to the main diagonal line.
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Figure 3.4: The corresponding RPs for the four y-time series in Figure 3.2. The
parameters used are m = 3, τ = 1, and ε = 20%. Some interesting patterns can be seen
to emerge from the plots, but it is not so easy to characterize them. In this study we
chose RQA.
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RQA has been introduced in Chapter 2 to analyze the primary sequences of

proteins. Here we use it instead to analyze the predicted secondary structure se-

quences. Compared to 20 states (i.e., bases) of amino acid sequence, the predicted

secondary structure sequences have only three states (i.e., H, E and C). By applying

RQA on each time series obtained from CGR in Section 3.2.3, we obtain eight re-

currence variables to characterize a predicted secondary structure sequences. These

eight recurrence variables are computed in a similar way as described in Chapter

2 and their definitions are thus omitted here to avoid repetition. These variables

will be included into our set of features for the protein structural class prediction.

3.2.5 K-string Based Information Entropy

Given a predicted secondary structure sequence of length L, we call any substring

s1s2 · · · sK of length K a K-string, where each si represents a letter in the set

{H, E, C}. There are totally 3K distinct K-strings for any K. We denote the

occurrence frequency of the K-string s1s2 · · · sK by f(s1s2 · · · sK). The probability

of this K-string occurring in the given predicted secondary structure sequence are

then estimated as

p(s1s2 · · · sK) =
f(s1s2 · · · sK)

L − K + 1
. (3.2)

When K = 1, p(H), p(E), and p(C) are simply the corresponding probabilities of

H, E and C occurring in the given predicted secondary structure sequence.

The K-th order information entropy IK is hence calculated as

IK = −
∑

s

∑

s1s2···sK−1

p(s)p(s|s1s2 · · · sK−1) log2(p(s|s1s2 · · · sK−1)), K > 1,

where the first sum is over the set {H, E, C} and the second one is over all possible

(K − 1)-strings. p(s|s1s2 · · · sK−1) is the conditional probability of the letter s
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occurring after the (K − 1)-string s1s2 · · · sK−1 in the given predicted secondary

structure sequence. It can be calculated by Bayes’ rule as

p(s|s1s2 · · · sK−1) =
f(s1s2 · · · sK−1s)

f(s1s2 · · · sK−1)
, K > 1. (3.3)

The two quantities, p(H) and p(E), are included in our feature set. They are

equivalent to the predicted secondary structure content and have been shown to be

helpful in improving the accuracies of protein structural class prediction [51]. p(C)

is not included as its value depends on p(H) and p(E) due to p(H)+p(E)+p(C) = 1.

In addition, we include I2, I3, · · · , IK in our feature set; however, the value of K

remains to be determined. We will discuss this issue later in Section 3.2.9.

3.2.6 Segment-based Analysis

While proteins in the α+β class and α/β class contain both α helices and β strands,

they differ in the distributions of α helices and β strands. The α helices and β

strands are largely segregated in the α + β class, but instead largely interspersed

in the α/β class. While the exact distributions can only be known from the spatial

arrangement of secondary structure segments, it is still reasonable to expect that

they could be more or less inferred from their secondary structure sequences. To

this end, we construct below three features from the secondary structure sequences

characterizing the distributions of α helices and β strands, and hope that they can

be used to differentiate between the α + β class from α/β class.

As the first step of feature construction, we reduce a secondary structure se-

quence into a segment sequence, which is composed of helix segments and strand

segments (denoted by α and β, respectively). Here, a helix segment refers to a

continuous segment of all H symbols in the secondary structure sequence, and a

similar definition is also applied to a strand or coil segment. Since at least three
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and two residues are generally required to form an α helix segment and an β strand

segment respectively, we will ignore those helix and strand segments that do not

meet this size requirement. Moreover, in order to focus on the arrangement of α

helix and β strand segments, the coil segments are ignored as well. For example,

given a secondary structure sequence, CCEECCCHHCCHHHHEEEHHHHCCCC-

CCECCEECCHHHCCEEEEEEC, its reduced segment sequence is βαβαβαβ, in

which the α helices and β strands are largely interspersed, suggesting that the

corresponding protein more likely belongs to the α/β class rather than α+β class.

Let pt denote the probability of transitions between α and β segments in a

segment sequence, which is essentially the relative frequency of the substring αβ

or βα occurring in the segment sequence. Let pcα
(respectively, pcβ

) denote the

probability of two consecutive α (respectively, β) segments. Note that pt + pcα
+

pcβ
= 1; therefore, any probability can be deduced from the other two. In order

to measure the degree of segment aggregation, we chose two of the above three

probabilities to be included into our feature set. In our experimental study, pt

and pcα
are used. The third feature represents the probability of helix (or strand)

segments occurring in a segment sequence, denoted by p(α) (or p(β)). Clearly,

p(α) + p(β) = 1. p(β) is used in this study.

3.2.7 Fisher’s Discriminant Algorithm

As discussed above, we extract a set of 23+K − 1 features from the predicted

secondary structure sequences. Therefore, each protein is represented by a (23+K−

1)-D vector. The value of K is chosen in order to maximize the overall prediction

accuracy. For classification algorithms, we use the same algorithm as in Chapter

2, i.e., Fisher’s discriminant algorithm [127], whose details have been presented in

Chapter 2.

Fisher’s discriminant algorithm is designed for a two-class problem, i.e., it pro-
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vides a binary classifier. We could transform a four-class problem of protein struc-

tural class prediction into six two-class problems, namely, α-vs-β, α-vs-(α + β),

α-vs-(α/β), β-vs-(α + β), β-vs-(α/β) and (α + β)-vs-(α/β). That is to say, six bi-

nary classifiers are trained and each classifier gives one vote for its preferred class.

The final prediction will be the class with the most votes. Once a tie happens, we

calculate a weight as the sum of the absolute value of dist over all votes in the tied

cases and the final prediction is hence the class with the largest weight.

3.2.8 Prediction Assessment

We extract a set of 23+K − 1 features from the predicted secondary structure se-

quences. These feature vectors are fed into Fisher’s discriminant algorithm [127] for

the prediction of protein structural class. The prediction accuracies are measured

by the number of correctly predicted proteins divided by the number of proteins

observed. They are computed by the same formulae as 2.14 and 2.15 in Chapter

2. The jackknife test is used to evaluate our method.

3.2.9 Selection of ε and K

As mentioned above, the value ε in RQA and the number K for K-string remain

to be determined. Here, we choose their values by aiming to achieve the highest

overall prediction accuracy as possible. For this purpose, a simple grid search

strategy is adopted, where ε is allowed to take a value only between 1% to 50%

and K only between 2 to 15. We use the dataset 25PDB to compute the overall

prediction accuracies (i.e., Accoverall) for different combinations of ε and K based

on the jackknife test. Once selected, the values of ε and K are kept the same for

all tested sets. For example, when K = 2, Accoverall for different values of ε are

shown in the left panel of Figure 3.5. When ε = 39%, Accoverall for different values
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of K are shown in the right panel of Figure 3.5.
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Figure 3.5: The overall prediction accuracies of the dataset 25PDB with varying values
of ε and K. When K = 2, ε ranges from 1% to 50% (left panel). When ε = 39%, K
ranges between 2 and 15 (right panel).

By the above grid search, we found that the highest accuracy (83.0%) is obtained

with the combination of ε = 48% and K = 14 (giving rise to 36 features) and the

second highest accuracy (82.9%) is given by the combination of ε = 39% and

K = 2 (giving rise to 24 features), which is only 0.1% lower. We also notice that,

to gain such a negligible accuracy improvement, the first combination requires a

larger amount of computer time and memory to calculate feature vectors of higher

dimension (i.e., 36-dimension v.s. 24-dimension). Based on this observation, we

chose ε = 39% and K = 2 in our experiments.

3.3 Results and Discussions

3.3.1 Prediction Accuracies for Three Benchmark Datasets

The proposed method is tested on three benchmark datasets in low similarity:

25PDB, 640, and 1189. The resulting prediction accuracies are listed in Table 3.1.

It can be seen that the overall accuracies for the three datasets are all above 80%.
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To be specific, the overall accuracies of 82.9%, 83.1% and 81.3% are achieved for

the datasets 25PDB, 640 and 1189, respectively. If comparing the four structural

classes to each other, the predictions of proteins in the α classes are always the best

(with accuracies about 90% for all the datasets). Satisfactory prediction accuracies

(about 85%) are also achieved for proteins in the β and α/β classes. However, it

seems very challenging to predict proteins in α + β classes as their prediction

accuracies are relatively low (ranging between 65.6% and 71.4%) when compared

with the other classes. It is still consistent with the previous observation [55] that

the low prediction accuracy might be due to the non-negligible overlaps between α+

β class and the other classes. A web server that implements the proposed method

is freely available at http://www1.spms.ntu.edu.sg/~chenxin/RKS_PPSC/.

3.3.2 Comparison with Existing Methods

The proposed method were compared with some representative methods [37, 44,

45, 49, 51, 53, 55, 57, 60, 133, 138], and the results are listed in Table 3.1. Except

for the method SCPRED [51], the listed accuracy values are taken directly from

their references. Because some inconsistencies were found between our test dataset

25PDB and the one used in [51] to test SCPRED (see Section 3.2.1), the direct

comparison with the accuracy values reported in [51] would not be fair. There-

fore, we re-implemented the SCPRED method following the details presented in

the reference paper and applied it to our test dataset. It turns out that, the ob-

tained accuracies (by jackknife test) for predicting proteins in the α, β, α + β and

α/β classes are 93.7%, 81.3%, 71.7% and 73.1%, respectively, giving rise to the

improvements of 1.1% 1.2% and 0.7% for the first three classes over those given

in the reference paper. The overall prediction accuracy hence increases by 0.6%

with our test dataset as well. These new accuracy values are listed in Table 3.1,

and we used them as the performance measurements of the method SCPRED for
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comparison.

Table 3.1: Prediction accuracies of our method for three datasets and comparison with

other reported results. The accuracies are evaluated by jackknife test and measured by

the percentage of correctly predicted proteins. The best results are highlighted in bold

face.

Dataset Reference α β α + β α/β Overall

25PDB [44] 69.1 61.6 60.1 38.3 57.1
[138] 60.6 60.7 44.3 67.9 58.6
[45] NA NA NA NA 59.9
[49] 77.4 66.4 45.4 61.3 62.7
[56] 76.5 67.3 45.8 66.8 64.0
Chapter 2 64.3 65.0 61.7 65.0 64.0
[51] 93.7 81.3 71.7 73.1 80.3
[57] 92.3 83.7 68.3 81.2 81.4
This chapter 92.8 83.3 70.1 85.8 82.9

640 [55] 73.9 61.0 33.9 81.9 62.3
[51] 90.6 81.8 66.7 85.9 80.8
This chapter 89.1 85.1 71.4 88.1 83.1

1189 [37] NA NA NA NA 53.8
[44] 57.0 62.9 25.3 64.6 53.9
[133] NA NA NA NA 54.7
[53] 48.9 59.5 26.6 81.7 56.9
[45] NA NA NA NA 58.9
Chapter 2 62.3 67.7 63.1 66.5 65.2
[55] 75.8 75.2 31.8 82.6 67.6
[51] 87.4 84.7 53.1 84.7 78.3
[57] 92.3 87.1 65.4 87.9 83.5
This chapter 89.2 86.7 65.6 82.6 81.3

Note that at the time of performing experiments in [61], the method MODAS

[57] had not been published and thus originally we did not compare our method

with MODAS in [61]. For the sake of completion, we also compare our method

with it here. From Table 3.1, we can see that the proposed method performs

best on the 1189 dataset and comparably well with the method MODAS on the

25PDB dataset. In particular, the overall accuracy of our method is 1.5% higher
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than MODAS on the 25PDB dataset, while 2.2% lower than MODAS on the 1189

dataset. These suggest that two methods are complementary to each other and

better prediction could be achieved by combining them. A possible reason why

MODAS performs better than our method on the 25PDB dataset is that MODAS

made use of additional information, i.e., the evolutionary information obtained

from PSI-BLAST [103].

We compare our method with SCPRED below in detail, as both methods used

the same kind of information, i.e., predicted secondary structure. Compared to

the overall accuracy values that were obtained with the method SCPRED, our

method makes improvements of 2.6%, 2.3%, and 3% for the three tested datasets,

respectively. We also notice that significant improvements were made in particular

for the α +β class and the α/β class. For example, the proposed method obtained

the 85.8% accuracy for predicting proteins of the α/β class from the dataset 25PDB,

which is 12.7% higher than that given by the method SCPRED. When the dataset

1189 is tested, the accuracy for predicting proteins of the α+β class is 12.5% higher

than that given by the method SCPRED. Bear in mind that both SCPRED and

our proposed method use features that are extracted from the secondary structure

predicted with PSIPRED [6]. The prediction improvements hence clearly indicate

that our features are more comprehensive and informative than those used by

SCPRED.

3.3.3 Contribution of Features

To represent a protein, we used three different approaches to extract features from

the predicted secondary structure sequences — recurrence quantification analysis,

K-string based information entropy, and segment-based analysis. For brevity, let

R, K and S denote the feature subsets generated by the corresponding approaches.

Below, we investigate how these feature subsets contribute to the prediction results.
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Table 3.3 lists the overall prediction accuracies that were obtained with all the

possible combinations of feature subsets. For weighted random assignment, the

overall prediction accuracy would be 25.3%, 25.6%, 25.2% for 25PDB, 1189 and

640, respectively [140]. It can be seen that when the feature subsets are used

individually, the resulting overall prediction accuracies for three datasets are all

well above 26%. It means that these predictions are not random at all. In other

words, every feature subset makes its own positive contributions to the predictions.

On the other hand, as more features are involved in the prediction, the overall

accuracy values are shown to increase steadily (The only exceptional case is when

the feature subset K is combined with the feature subset R, the accuracy value

decreases slightly from 81.4% to 81.2%). For example, when tested on the dataset

640, the prediction accuracy with the feature subset R is 80.5%. If the feature

subset K is included, the accuracy value increases to 81.1%. If the feature subset

S is further included, i.e., all the extracted features are used, the accuracy value

increases by another 2.0% up to 83.1%. Therefore, we can conclude that these

three feature subsets can make complementary contributions to each other to the

predictions of protein structural class.

Table 3.2: Overall accuracies obtained with different combinations of feature subsets.

See text for the notations of R,K and S. The best results are highlighted in bold face.

Dataset R K S R + K R + S K + S R + K + S

25PDB 81.4 76.0 72.7 81.2 82.3 78.2 82.9
640 80.5 77.2 73.9 81.1 82.5 78.9 83.1
1189 79.6 75.8 73.0 80.3 81.0 79.7 81.3
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3.3.4 Differentiating Between the α + β and α/β Classes

Because the segment-based features (i.e., the feature subset S) are aimed to dif-

ferentiate between the α + β and α/β classes, it is very interesting to know how

effective they are. To avoid any potential outside effects, we would like to make

tests on (pure) datasets that comprise proteins only in the α + β and α/β classes.

For this purpose, we generate a subset for each benchmark dataset by removing all

the proteins in the α class or the β class, and then train the classifier (i.e., Fisher’s

discriminant algorithm in our study) on these reduced subsets instead of the whole

datasets.

Table 3.3: The accuracies of differentiating between the α + β and α/β classes. The
datasets comprise only proteins in the α + β and α/β classes. The best results are
highlighted in bold face.

Ref. [51] R + K R + K + S

Dataset α + β α/β Overall α + β α/β Overall α + β α/β Overall

25PDB 83.2 76.0 80.1 79.1 84.4 81.4 82.8 86.4 84.4
640 77.2 89.3 83.3 78.4 85.9 82.2 83.6 88.1 85.9
1189 63.1 88.6 77.9 76.8 83.2 80.5 81.3 83.8 82.8

Table 3.3 lists the prediction accuracy values obtained with the reduced subsets

using different combinations of feature subsets. As we can see from the table,

the combination R + K provides the overall prediction accuracies that are only

comparable to those given by the method SCPRED. In particular for the dataset

640, it even gives a lower accuracy value (82.2% v.s. 83.3%). With the addition of

the feature subset S, the overall prediction accuracies got improved by about 3.0%,

and most importantly, all exceed those given by the method SCPRED. Specifically,

there are the accuracy improvements of 4.3%, 2.6%, and 4.9% for the three tested

datasets, respectively. These experiments further demonstrate that the segment-

based features are very valuable for differentiating between the α + β and α/β
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classes.

3.4 Conclusions

To predict structural class for low-similarity protein sequences (i.e., pairwise se-

quence similarity being between 20% and 40%), existing methods work very poorly,

with only relatively low accuracies obtained. In this chapter, we aim to develop

a new method so as to improve the prediction accuracy. To do so, we first use

PSIPRED to predict the secondary structure sequence from a given amino acid se-

quence. Then, the chaos game representation (CGR) is employed to represent the

predicted secondary structure as two time series, from which a comprehensive set

of 24 features are generated by three different approaches — that is, the recurrence

quantification analysis, K-string based information entropy, and segment-based

analysis. The resulting feature vectors, each representing one protein, are fed into

Fisher’s discriminant algorithm for the final prediction of protein structural class.

Experimental results showed that all these features can make their own positive

and complementary contributions so that higher prediction accuracies are achieved.

For example, to predict proteins in the dataset 25PDB, our method achieved the

accuracies of 92.8%, 83.3%, 70.1% and 85.8% for the α, β, α + β and α/β classes,

respectively, and the overall accuracy of 82.9%, which is 2.6% higher than that

given by the method SCPRED. In addition, our method is shown to be compa-

rable to the method MODAS, which made use of both the predicted secondary

structure and the evolutionary information.

By comparisons with existing methods, we may attribute the high prediction

accuracy of the proposed method to the superior performance of PSIPRED predict-

ing secondary structures and the comprehensive set of features constructed. The

first attribution can be seen from the comparison with the method proposed in
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[49], which used the secondary structure prediction tool developed in [32] instead

of PSIPRED. A previous study [139] showed that PSIPRED is superior to any

other competing secondary structure prediction method. The second attribution

can be seen from the comparison with the method SCPRED, which differs from

our proposed method mainly in the selection of features. We used three different

approaches to extract a comprehensive set of features from the predicted secondary

structures, where the recurrence quantification analysis is used to capture the se-

quence order information of the time series, the K-string based information entropy

to reflect certain short-term (local) interaction along the secondary structure, and

the segment-based features to characterize the spacial arrangements of α helices

and β strands. Thus, our proposed method may provide a promising tool for

the accurate prediction of protein structural class, in particular for low-similarity

amino acid sequences. A web server that implements the proposed method is freely

available at http://www1.spms.ntu.edu.sg/~chenxin/RKS_PPSC/.

69

http://www1.spms.ntu.edu.sg/~chenxin/RKS_PPSC/




Chapter 4

Improving Taxonomy-based

Protein Fold Recognition by

Using Global and Local Features †

4.1 Introduction

Protein fold recognition from amino acid sequences is one of the fundamental prob-

lems in structural bioinformatics, as fold information could facilitate the identifi-

cation of a protein’s tertiary structure and function. In the last two decades,

a substantial amount of research effort has been devoted to developing efficient

and effective computational methods for protein fold recognition. These computa-

tional methods can be broadly classified into two categories, i.e., template-based

[20, 21, 97, 141–144] and taxonomy-based [66, 68, 132, 145–148]. In recent years,

† This chapter is mainly based on an article published in Proteins: Structure, Function, and

Bioinformatics as:
Jian-Yi Yang and Xin Chen, Improving taxonomy-based protein fold recognition by using global
and local features, Proteins: Structure, Function, and Bioinformatics, 79:2053-2064, 2011.
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the taxonomy-based method has attracted great attention due to its encouraging

performance.

The taxonomy-based method for protein fold recognition was first proposed in

1995 by Dubchak et al. [145, 146]. It follows a popular belief that there are only

a limited number of different protein folds in nature. Consequently, the problem

of protein fold recognition can be viewed as a classification problem so that it can

be tackled by using the methods in machine learning. Most implementations of

the taxonomy-based method, if not all, have adopted the SCOP protein structural

classification architecture [27], with which a query protein is classified into one of

the known folds. To implement a classification task, two major procedures are

generally required — feature extraction and a machine learning classifier. Below

we briefly review the existing taxonomy-based methods from these two aspects.

Feature extraction refers to a procedure by which we extract features from a

query amino acid sequence so as to represent the underlying protein as a fixed-

length numerical vector. Dubchak et al. [145, 146] first proposed a way to extract

features using global description of amino acid sequence. Since then, many new fea-

tures have been developed to improve the recognition accuracy, such as those based

on pseudo-amino acid composition [104, 147], structural properties of amino acid

residues and amino acid residue pairs [149], autocross-covariance transformation

[66], and hidden Markov model structural alphabet [150]. Besides the features ex-

tracted directly from amino acid sequences, some features are constructed through

exploiting information such as predicted secondary structure [68], sequence evo-

lution [66, 68], functional domain [151], and predicted solvent accessibility [149].

These features were reported capable of achieving satisfactory fold recognition ac-

curacies, especially when they are utilized in combination [152, 153].

A machine learning classifier is basically an algorithmic procedure that assigns

each fixed-numerical vector a pre-defined class label. For protein fold recognition, a

72



number of classifiers have been applied, such as Neural Networks (NNs) [132, 145,

146], Support Vector Machines (SVMs) [66, 132, 149, 153], probabilistic multi-class

multi-kernel classifier [152] and various ensemble classifiers [68, 147, 148, 151, 154].

Note that feature extraction is a key step towards the success of classification.

For protein fold recognition, however, it is not yet clear what features are the

most discriminative. In this study, we look into this challenging problem and ex-

plore various ways to extract features from PSI-BLAST profiles [103] and also from

PSIPRED profiles [6]. These two profiles are believed to contain rich information

about protein sequence evolution and secondary structure, respectively. To depict

their global and local characteristics, we extract 82 features from PSI-BLAST pro-

files and 55 features from PSIPRED profiles, resulting in a comprehensive set of

137 features. With these features we have developed a new taxonomy-based fold

recognition method called TAXFOLD, which additionally uses an SVM-based clas-

sifier. As our experimental tests on seven datasets demonstrate, TAXFOLD can

achieve an average 6.9% accuracy improvement over the best available taxonomic

method, indicating that the proposed set of features has the enhanced power to

discriminate between different folds.

4.2 Materials and Methods

4.2.1 Datasets

We used seven datasets in this study to evaluate our proposed method: DD,

RDD, EDD, F95, F194, F710 and Lindahl. The first dataset was originally cre-

ated by Ding and Dubchak[132], and later revised by Shen and Chou [147]. It

comprises 311 protein domain sequences for the training purpose and 383 se-

quences for testing, each of which is classified into one of 27 folds. It was re-

ported that none of the testing sequences shared more than 35% sequence sim-
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ilarity to any of the training sequences [132]. However, Chen and Kurgan [68]

later found seven duplicate pairs between the training and testing sequences. Our

close inspection further revealed that 11 training sequences and 76 testing se-

quences were already updated in the latest release of SCOP database (release

1.75, June 2009, http://astral.berkeley.edu/). See details in Supporting Infor-

mation A (available at http://onlinelibrary.wiley.com/doi/10.1002/prot.

23025/suppinfo). Moreover, there exists a domain (1BUCA1) which is no longer

classified into any of the above 27 folds. Based on these observations, we updated

the dataset accordingly, so that the latest domain sequences are experimented and

the domain 1BUCA1 is excluded from further consideration. The resulting dataset

is thus called the revised DD dataset (RDD), to distinguish from its original dataset

(called DD).

The other four datasets (EDD, F95, F194, and F710) are constructed with the

same procedure as done in [66], except that the latest release of SCOP (release

1.75, June 2009) is used. The domain sequences that have less than 40% pair-

wise similarity are first extracted from the Astral SCOP 1.75 release (http://

astral.berkeley.edu/) and then those shorter than 31 residues are further re-

moved, resulting in a total of 10493 domain sequences. Of these sequences, 3397

are classified into one of the above-mentioned 27 folds, so we use them to con-

struct an extended DD dataset (EDD). In order to cover more folds, we construct

another three datasets by selecting the folds that contain at least 26, 11, and 2

sequences, respectively. Consequently, three datasets comprises 6364, 8026, and

10011 sequences from 95, 194, and 710 folds, respectively. We call them F95, F194,

and F710, respectively.

The above four datasets, RDD, EDD, F95 and F194, are available at http://

www1.spms.ntu.edu.sg/~chenxin/TAXFOLD/. The dataset F710 is used to test the

performance of the proposed method in real-world application. The last dataset is
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Lindahl benchmark dataset [155], which can be downloaded from http://www.

bioinfo.se/protein-id/. This dataset contains 976 proteins in three SCOP

levels: family, superfamily and fold. The pair-wise sequence similarity in this

dataset is smaller than 40%. This dataset is used to compare our method with

template-based threading methods.

Note that, in this study, we make fold recognition for domain sequences rather

than the whole protein sequences. For multiple-domain proteins, we will make fold

recognition for each individual domain sequence separately.

4.2.2 Feature Extraction Methods

In this study, we extract features from both profiles of PSI-BLAST [103] and

PSIPRED [6], where the rich sequence evolution information and secondary struc-

ture information are present. The features are carefully developed so that they can

depict both global and local characteristics of profiles. Global characteristics refer

to the patterns that the whole profile is held by, while local characteristics refer

to the patterns particular to some profile fragment. Accordingly, the features thus

extracted are called global and local features, respectively. We further divide the

global features into two categories. If a global feature does not depend on sequence

order, we call it a globalA feature (e.g., the first-order entropy of sequences); oth-

erwise, a globalB feature. The whole procedure of feature extraction is depicted in

Figures 4.1, 4.3 and 4.4.

4.2.2.1 PSI-BLAST Profile-based Features

The PSI-BLAST profile is represented as a so-called position-specific score matrix

(PSSM), which is obtained through aligning a query amino acid sequence to the

NCBI’s Non Redundant (NR) database by using PSI-BLAST [103] with three iter-

ations and a cutoff E-value of 0.001 . The PSSM is a log-odds matrix of size L×20,
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where L is the length of the query sequence and 20 is due to the 20 amino acids (see

Figure 4.1 for an example of PSSM). Its elements are the log-odds ratios between

the observed base frequencies and the background base frequencies, followed by

scaling by 10 and rounding down to the nearest integer. Therefore, the positive

(resp., negative) element values mean that the corresponding amino acids appear

more (resp., less) often than expected from the background.

       A   R   N   D   C   Q   E   G   H   I   L   K   M   F   P   S   T   W   Y   V

 1 S   4  -3  -2  -3  -3  -3  -3  -3  -4  -4  -4  -3  -4  -5  -3   5   2  -5  -4  -3     .08 .05 .05 .05 .05 .05 .05 .05 .04 .04 .04 .05 .04 .04 .05 .08 .07 .04 .04 .05 S 

 2 L  -5  -6  -7  -7  -5  -6  -7  -7  -6   0   6  -6   3   4  -7  -6  -5  -5  -2   0     .04 .04 .04 .04 .04 .04 .04 .04 .04 .06 .09 .04 .08 .08 .04 .04 .04 .04 .05 .06 L 

 3 E  -3  -5  -1  -1  -3  -4  -3  -5  -5  -6  -6  -5  -5  -7  -5   5   6  -7  -6  -5     .05 .04 .06 .06 .05 .05 .05 .04 .04 .04 .04 .04 .04 .04 .04 .09 .09 .04 .04 .04 T 

 4 A   3  -2  -2   3  -2   0   3   0  -3  -4  -4   0  -4  -5   1   0  -2  -6  -5  -3     .07 .05 .05 .07 .05 .05 .07 .05 .04 .04 .04 .05 .04 .04 .06 .05 .05 .04 .04 .04 A 

 5 A   2   1  -1   3  -4   0   2   0   0  -5  -3   1  -4  -5  -1   0   0  -5  -4  -3     .06 .06 .05 .07 .04 .05 .06 .05 .05 .04 .04 .06 .04 .04 .05 .05 .05 .04 .04 .04 D 

 6 Q  -4  -3  -2   4  -8   6   4  -6  -1  -4  -7  -3  -6  -8  -6  -4  -5  -7  -6  -3     .05 .05 .05 .08 .04 .09 .08 .04 .06 .05 .04 .05 .04 .04 .04 .05 .04 .04 .04 .05 Q 

 7 K  -1   2  -4  -4  -5  -2   1  -5  -1   3  -2   5  -2  -1  -3  -3  -2   3  -3   1     .05 .06 .04 .04 .04 .05 .06 .04 .05 .07 .05 .08 .05 .05 .04 .04 .05 .07 .04 .06 K 

 8 S   3   0  -1   1  -2   2   1  -1   0  -2  -2   2  -3  -2  -3   1   0  -5  -1  -2     .06 .05 .05 .06 .05 .06 .06 .05 .05 .05 .05 .06 .04 .05 .04 .06 .05 .04 .05 .05 A 

 9 N   2  -2   1  -2  -4  -2  -3  -4   0   1   4  -1   1  -2  -5  -2   0  -5  -3  -1     .06 .05 .06 .05 .04 .05 .04 .04 .05 .06 .07 .05 .06 .05 .04 .05 .05 .04 .04 .05 L 

10 V  -4  -7  -7  -7  -5  -7  -7  -8  -7   5   2  -7  -2  -4  -7  -6  -5  -7  -5   6     .05 .04 .04 .04 .05 .04 .04 .04 .04 .09 .07 .04 .06 .05 .04 .04 .05 .04 .05 .10 V 

11 T  -2   4   0  -3  -6   4  -1  -4  -4  -2   1   4  -1  -3  -5  -2  -2  -6  -5  -1     .05 .07 .05 .04 .04 .07 .05 .04 .04 .05 .06 .07 .05 .04 .04 .05 .05 .04 .04 .05 R 

12 S   1   1   0   2  -5   1   1  -2   1  -5  -4   3  -3  -5  -4   2   0  -6  -4  -4     .06 .06 .05 .06 .04 .06 .06 .05 .06 .04 .04 .07 .04 .04 .04 .06 .05 .04 .04 .04 K 

13 S   0  -5  -1  -3   0   0  -2  -5  -1  -1  -3  -4  -1  -3  -5   5   3  -6  -5  -1     .06 .04 .05 .05 .06 .06 .05 .04 .05 .05 .05 .04 .05 .05 .04 .08 .07 .04 .04 .05 S 

14 W  -9  -9 -10 -11  -9  -8  -9  -9  -8  -4  -4  -9  -7   2 -10  -9  -9  13  -1  -9     .04 .04 .04 .03 .04 .04 .04 .04 .04 .05 .05 .04 .04 .08 .04 .04 .04 .17 .07 .04 W 

15 A   3   0   1   1  -3   1   2   2  -2  -5  -4   1  -3  -5  -1   1  -1  -5  -4  -3     .07 .05 .06 .06 .04 .06 .06 .06 .05 .04 .04 .06 .04 .04 .05 .06 .05 .04 .04 .04 A 

16 K   0   0  -1  -3  -4   1   0  -1  -1   0   0   3   0  -3   1   0   0  -5  -3   0     .05 .05 .05 .04 .04 .06 .05 .05 .05 .05 .05 .06 .05 .04 .06 .05 .05 .04 .04 .05 K 

17 A   0  -5  -6  -5  -1  -5  -5  -6  -4   3   2  -5   4   1  -3  -5  -3  -1  -4   5     .06 .04 .04 .04 .05 .04 .04 .04 .04 .07 .06 .04 .07 .06 .05 .04 .05 .05 .04 .08 V 

18 S   0   0  -1  -2  -3  -1   1   0  -1  -3  -2   3   0   0  -3   1  -1  -1   3  -2     .05 .05 .05 .05 .04 .05 .06 .05 .05 .04 .05 .06 .05 .05 .04 .06 .05 .05 .06 .05 K 

19 A   2   0  -1   0  -1   2  -1   2  -2  -3  -3   2  -2  -4   1   0  -1  -4  -4  -2     .06 .05 .05 .05 .05 .06 .05 .06 .05 .04 .04 .06 .05 .04 .06 .05 .05 .04 .04 .05 A 

20 A  -2  -2   5   5  -2   0   0  -1   2  -2  -4  -1  -5  -3  -4  -1   0  -6  -3  -3     .05 .05 .08 .08 .05 .05 .05 .05 .06 .05 .04 .05 .04 .04 .04 .05 .05 .04 .04 .04 N 

21 W   1   0  -2  -2   1  -1  -1   0  -1   1   0   1   0  -1   1   0  -1   3   1   0     .05 .05 .04 .04 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 .06 .05 .05 W 

22 G   1  -1   1   2  -4   1   3   0   0  -2  -3   0  -1  -4   0   0   0  -4  -3  -1     .06 .05 .06 .06 .04 .06 .06 .05 .05 .05 .04 .05 .05 .04 .05 .05 .05 .04 .04 .05 E 

23 T   2  -1   0   1  -4   1   2   1   2  -4  -3   1  -3  -4  -1   0   1  -5  -3  -2     .06 .05 .05 .06 .04 .06 .06 .06 .06 .04 .04 .06 .04 .04 .05 .05 .06 .04 .04 .05 A 

24 A   1  -1   3  -3  -1  -3  -2  -3   5   1  -1  -3  -3   0  -4   0   0  -3   2   1     .06 .05 .06 .04 .05 .04 .05 .04 .07 .06 .05 .04 .04 .05 .04 .05 .05 .04 .06 .06 H 

25 G   1  -3  -4  -4  -1  -4  -1   6  -5  -5  -6  -4  -6  -6  -4   0  -3  -6  -6  -2     .07 .05 .05 .05 .06 .05 .06 .09 .04 .04 .04 .05 .04 .04 .05 .06 .05 .04 .04 .05 G 

26 P   1  -1  -2  -1  -3   0  -1  -1   0   1   1  -1   1  -1  -2   0   1  -4  -2   2     .06 .05 .05 .05 .04 .05 .05 .05 .05 .06 .06 .05 .06 .05 .05 .05 .06 .04 .05 .06 V 

27 E   1   0   1   1  -2   0   2  -1  -1  -1   0   1  -1  -1  -3   0   0  -4  -2  -1     .06 .05 .06 .06 .05 .05 .06 .05 .05 .05 .05 .06 .05 .05 .04 .05 .05 .04 .05 .05 E 

28 F   0  -6  -6  -7  -5  -6  -6  -6  -6   4   2  -6   3   5  -6  -4  -2  -4  -2   2     .06 .04 .04 .04 .04 .04 .04 .04 .04 .08 .07 .04 .07 .08 .04 .04 .05 .04 .05 .07 F 

29 F  -4  -7  -7  -8  -6  -6  -7  -7  -5  -3   3  -7   2   7  -7  -6  -6   3   5  -2     .05 .04 .04 .03 .04 .04 .04 .04 .04 .05 .07 .04 .07 .10 .04 .04 .04 .07 .08 .05 F 

30 M   0   0  -1  -1  -2   0   0  -1  -1   1   1   0   1  -1  -3   0   1  -2   0   1     .05 .05 .05 .05 .04 .05 .05 .05 .05 .05 .05 .05 .05 .05 .04 .05 .05 .04 .05 .05 I 

31 A   0   5   0  -2  -5  -1  -1  -3   1  -2  -2   3  -1  -3  -5  -2  -1   2  -3  -3     .05 .08 .05 .05 .04 .05 .05 .04 .06 .05 .05 .07 .05 .04 .04 .05 .05 .06 .04 .04 R 

32 L  -5  -6  -7  -7  -3  -6  -7  -7  -6   3   5  -6   4   3  -7  -6  -4  -1   0   1     .04 .04 .04 .04 .05 .04 .04 .04 .04 .07 .08 .04 .08 .07 .04 .04 .04 .06 .06 .06 L 
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Figure 4.1: Illustration of the procedure to extract features from PSI-BLAST profiles. A
PSSM is first transformed to a FM, from which a consensus sequence is then constructed.
In order to extract local features, the FM is further divided into three fragments of equal
length.

It should be noted that PSSMs have been considered in many taxonomy-based

fold recognition methods. For example, Chen and Kurgan [68] extracted from

PSSM a 20-D profile-based composition vector (PCV) in a way by which the nega-

tive elements of PSSM are first replaced by zero and then each column is averaged.

Although replacing negative elements by zero can ensure that the elements of PCV

are all nonnegative, it would definitely lose valuable evolutionary information that

might be beneficial to fold recognition. In order to avoid this disadvantage, we

propose an alternative way to extract features from PSSMs, as detailed below.

Our feature extraction method starts by transforming each element sij of the
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PSSM into s′ij using

s′ij = 20.1×sij . (4.1)

Note that this transformation is the inverse of the algorithmic operation that PSI-

BLAST used to compute the PSSM log-odds ratios [103]. The resulting value s′ij

thus represents a ratio between the observed base frequency and the corresponding

background based frequency, and is guaranteed to be nonnegative even when sij is

negative. We further apply the normalization to the values s′ij such that each row

would sum to one. Let fij denote the normalized value of s′ij. All the values fij

form a matrix, which we called the frequency matrix (FM).

In order to extract globalA features (i.e., sequence order-free features), a so-

called consensus sequence (CS) [156] is first constructed from the FM as follows:

µ(i) = argmax{fij : 1 ≤ j ≤ 20}, 1 ≤ i ≤ L (4.2)

where “arg” stands for the argument of the maximum. The i-th base CS(i) of

the consensus sequence is then set to be the µ(i)-th amino acid in the amino acid

alphabet. It can be seen that a consensus sequence retains the most valuable

evolutionary information from the PSSM. Then, we compute

AACCS(j) =
n(j)

L
, 1 ≤ j ≤ 20 (4.3)

where n(j) is the number of the amino acid j occurring in the CS. It will give 20

features corresponding to the amino acid composition of the CS. Moreover, we also

include the entropy into our feature set, that is,

ECS = −

20
∑

j=1

AACCS(j) ln AACCS(j) (4.4)
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where the base of the logarithm is Euler’s number e.

Note that the above features can be computed with the original protein se-

quences as well. Our experimental results in Section 4.3.2 show that the features

extracted from CSs are more fold-specific discriminative than those from the orig-

inal protein sequences. Another entropy-based feature is directly computed from

FM to reflect the global characteristic of the PSSM.

EFM = −
1

L

L
∑

i=1

20
∑

j=1

fij ln fij (4.5)

In order to extract local features, we first divide FM into λ non-overlapping

fragments of equal length (see Figure 4.1)1. Then, for each fragment s, by applying

a similar procedure in [151], the following 20 features are computed:

AOFs(j) =
1

lens

∑

i

fij, 1 ≤ s ≤ λ, 1 ≤ j ≤ 20 (4.6)

where the summation is done over the fragment s and lens is the length of the

fragment s. AOFs(j) represents the average occurrence frequency of the amino

acid j in the fragment s during the evolution process. The features AOF1(j) and

AOFλ(j) in the first and last fragments may reflect the sequence characteristics at

the N-terminus and C-terminus, respectively. How to determine the optimal value

of λ will be discussed in Section 4.3.1.

In summary, for each query domain sequence, a total of (22 + 20 × λ) features

are extracted from its PSI-BLAST profile, among which 22 are globalA features

and 20 × λ are local features.

1The last fragment may be longer because L is not always divisible by λ.
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4.2.2.2 PSIPRED Profile-based Features

The PSIPRED profile of a query protein contains the secondary structure infor-

mation predicted with PSIPRED [6]. It comprises a state sequence and three

probability sequences. The state sequence is a sequence of three possible symbols

H, E and C, representing states of helix, strand and coil, respectively. The three

probability sequences, each for one state, are the sequences of probability values

with which the states occur along the query amino acid sequence. See Figure 4.2

for an example. We make use of all these sequences to extract features.

First, we extract several global features from a state sequence. These features

are defined similarly as those in Chapter 3 and we recapture the basic steps in

extracting them from the state sequence.

The first two features (p(H) and p(E) in Section 3.2.5 of Chapter 3) describe

the helix and strand contents of the state sequence. In addition, the entropy of the

state sequence and the length L of the query domain sequence are also included

into our feature set because our experiments show that they can improve prediction

accuracies. Note that these are four globalA features. Another three globalA

features are extracted with segment-based analysis: pt, pcα
, and p(β) (please refer

to Section 3.2.6 of Chapter 3)).

In addition, we extract 18 globalB features using CGR and RQA. The procedure

of extracting features from a state sequence based on CGR and RQA is illustrated

in Figure 4.3. For the details about CGR and RQA and the features, please refer

to Chapters 2 and 3.

Now, we show how to extract features from the probability sequences. Denote

the three probability sequences by ph = (ph1, ph2, · · · , phL), pe = (pe1, pe2, · · · , peL)

and pc = (pc1, pc2, · · · , pcL), respectively. Three globalA features are computed as
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        C      H      E 

D   C  0.999  0.001  0.002   0.997  0.001  0.002 

I   H  0.414  0.705  0.038   0.358  0.609  0.033 

D   H  0.466  0.507  0.083   0.441  0.480  0.079 

E   H  0.310  0.627  0.065   0.309  0.626  0.065 

C   H  0.488  0.519  0.064   0.456  0.485  0.060 

E   C  0.528  0.453  0.166   0.460  0.395  0.145 

N   C  0.782  0.178  0.059   0.767  0.175  0.058 

G   C  0.930  0.075  0.033   0.896  0.072  0.032 

G   C  0.956  0.035  0.033   0.934  0.034  0.032 

F   C  0.813  0.073  0.129   0.801  0.072  0.127 

C   C  0.784  0.102  0.068   0.822  0.107  0.071 

S   C  0.569  0.426  0.018   0.562  0.421  0.018 

G   H  0.226  0.804  0.008   0.218  0.775  0.008 

V   H  0.170  0.790  0.037   0.171  0.792  0.037 

C   H  0.151  0.807  0.038   0.152  0.810  0.038 

H   H  0.296  0.635  0.055   0.300  0.644  0.056 

N   C  0.816  0.165  0.031   0.806  0.163  0.031 

L   C  0.943  0.051  0.036   0.916  0.050  0.035 

P   C  0.968  0.065  0.051   0.893  0.060  0.047 

G   C  0.915  0.060  0.085   0.863  0.057  0.080 

T   C  0.778  0.075  0.204   0.736  0.071  0.193 

F   E  0.373  0.074  0.607   0.354  0.070  0.576 

E   E  0.262  0.055  0.684   0.262  0.055  0.683 

C   E  0.136  0.044  0.768   0.143  0.046  0.810 

I   E  0.315  0.037  0.635   0.319  0.037  0.643 

C   C  0.786  0.058  0.205   0.749  0.055  0.195 

G   C  0.954  0.013  0.031   0.956  0.013  0.031 

P   C  0.933  0.054  0.014   0.932  0.054  0.014 

D   C  0.911  0.111  0.014   0.879  0.107  0.014 

S   H  0.398  0.807  0.007   0.328  0.666  0.006 

A   H  0.132  0.907  0.019   0.125  0.857  0.018 

L   H  0.200  0.879  0.030   0.180  0.793  0.027 

A   H  0.242  0.856  0.014   0.218  0.770  0.013 

G   H  0.314  0.742  0.029   0.289  0.684  0.027 

Q   H  0.380  0.641  0.046   0.356  0.601  0.043 

I   C  0.583  0.433  0.095   0.525  0.390  0.086 

G   C  0.754  0.276  0.090   0.673  0.246  0.080 

T   C  0.857  0.098  0.066   0.839  0.096  0.065 

D   C  0.884  0.062  0.086   0.857  0.060  0.083 

C   C  0.997  0.001  0.001   0.998  0.001  0.001 

A m i n o a c i d s e q u e n c e

P S I P R E D

S t a t e s e q u e n c e T h r e e p r o b a b i l i t y s e q u e n c e s

S c a l e

Figure 4.2: An example of PSIPRED profile.
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Figure 4.3: Illustration of the procedure to extract features from the state sequences of
PSIPRED profiles by applying CGR and RQA.

follows:

ph =
1

L

L
∑

i=1

phi, pe =
1

L

L
∑

i=1

pei, pc =
1

L

L
∑

i=1

pci. (4.7)

To depict the sequence order information present in the probability sequences,

we apply autocovariance (AC) transformation on the probability sequences. AC is

the covariance of the sequence against a time-shifted version of itself. That is, for

the sequence t = (t1, t2, · · · , tL) of length L, the AC transformation will return

ACl,t =
1

L − l

L−l
∑

i=1

(ti − t̄)(ti+l − t̄), l = 1, 2, · · · , lmax (4.8)

where t̄ is the average over all ti, l the lag (distance) between two positions along

the sequence and lmax the maximum of l. All these ACl,t will be used as features.

For the three probability sequences, we thus obtain 3× lmax globalB features. The

selection of the optimal value of lmax will be discussed in Section 4.3.1.

Note that AC transformation was previously applied to PSSM for fold recog-

nition [66], resulting a huge number of features, which makes it difficult to train

SVM-based classifiers. We have tried to incorporate these features into our feature

set but the results were not improved and thus we do not use these features in this
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study.

In summary, a total of (28 + 3 × lmax) features have been extracted from a

PSIPRED profile. Among these, 4 globalA features and 21 globalB features are

extracted from the state sequence, while 3 globalA features and 3 × lmax globalB

features are from the probability sequences. Combining these features with those

extracted from PSI-BLAST, we obtain (50 + 20 × λ + 3 × lmax) features in total,

which will be fed into a SVM-based classifier to perform protein fold recognition.

4.2.3 Support Vector Machines

SVMs are one of the state-of-the-art machine learning algorithms for binary classi-

fication introduced by Vapnik [105]. SVMs have been extensively applied in various

fields and theoretical descriptions about SVMs abound in the literature. Protein

fold recognition is a multi-class classification problem, which can be converted into

binary classification problems by using either one-against-one or one-against-all

strategy. For the implementation of SVMs, we use the LIBSVM package [157] with

the one-against-one classification strategy.

There are four basic kernel functions commonly used by SVMs; that is, linear,

polynomial, radial basis function (RBF) and sigmoid. Here, we choose the RBF

kernel because it produces higher prediction accuracy than other kernel functions

(see e.g., [51, 66, 68]). It is formally defined as

K(xi,xj) = e−γ‖xi−xj‖
2

(4.9)

where γ is a kernel parameter, xi and xj are the feature vectors of proteins i and

j, respectively. The values of γ and the cost parameter C (used to control the

trade-off between allowing training errors and forcing rigid margins) are optimized

as follows.
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In our experiments, grid search is used to select the optimal values of C and

γ. The grid is set to be C = [20, 21, · · · , 210] and γ = [2−1, 2−2, · · · , 2−10]. For the

original DD dataset and the RDD datasets, the C and γ in SVM are optimized

based on standard 5-fold cross-validation on the training datasets. Then the in-

dependent testing datasets are used to evaluate the accuracies of TAXFOLD. For

the EDD, F95 and F194 datasets, the following adjusted n-fold cross-validation is

adopted to assess TAXFOLD. First, a dataset (e.g., EDD) is randomly partitioned

into n subsets of equal size. Second, 80% of (n−1) subsets are used to train SVMs,

the remaining 20% of the (n − 1) subsets are used to find the optimal C and γ,

and the remaining subset (called validation set) is used to evaluate the prediction

accuracies. The second step is repeated n times with each of the n subsets used

exactly once as the validation set.

We want to mention that the above test procedure has some limitations. Be-

cause it uses different parameters in each of the n runs, this test is not the conven-

tional cross-validation but n independent tests. It may not provide the best model

(i.e., a fixed set of SVM parameter values that works the best for all the datasets as

a whole) due to the different parameter values used for different tests on different

datasets. These are the limitations of the performed tests that we shall emphasize

in this chapter.

4.2.4 The Proposed Method

Figure 4.4 illustrates the overall architecture of our proposed method called TAX-

FOLD. The query amino acid sequence submitted to TAXFOLD is first input into

PSI-BLAST and PSIPRED to obtain the sequence evolution information and pre-

dicted secondary structure. Then, a comprehensive set of features are extracted

from the output profiles of PSI-BLAST and PSIPRED, as described above. These

features are finally fed into an SVM-based classifier for fold recognition. Com-
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Figure 4.4: The overall architecture of TAXFOLD. The proposed set of features are
enclosed inside a red box. The detailed procedures of 1© and 2© in the figure are already
illustrated in Figure 4.1 and Figure 4.3, respectively.
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pared to the existing taxonomy-based methods such as PFRES [68], TAXFOLD

differs mainly by a novel set of features which are so carefully designed that they

are capable of capturing both global and local characteristics of PSI-BLAST and

PSIPRED profiles. For the experiments in this study, we train SVM-based classi-

fiers in TAXFOLD for three different numbers (27, 95, and 194) of folds.

For public use, we have developed a web server for TAXFOLD at http://www1.

spms.ntu.edu.sg/~chenxin/TAXFOLD/. The top five predictions and their corre-

sponding probability estimates are provided for users to determine the reliability

of predictions.

4.2.5 Performance Evaluation

Two metrics, precision and recall, are used to evaluate the performance of TAX-

FOLD on each individual fold. They are defined respectively as

p(i) =
TP(i)

TP(i) + FP(i)
, i = 1, 2, · · · , µ (4.10)

and

r(i) =
TP(i)

TP(i) + FN(i)
, i = 1, 2, · · · , µ (4.11)

where TP(i), FP(i) and FN(i) represent the numbers of true positives, false posi-

tives and false negatives, respectively, and µ the total number of folds under con-

sideration.

Note that the using only the above two metrics might not be able to reflect the

performance of a classifier robustly. For example, if a predictor simply predicts any

protein to be the same fold type, then the recall value for this fold will be 1 and

0 for other folds. Therefore, a more robust metric called F-measure is often used,
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which is basically a harmonic mean of precision and recall as define below.

Fm(i) =
2 × p(i) × r(i)

p(i) + r(i)
, i = 1, 2, · · · , µ (4.12)

The overall accuracy Q of a classifier is defined as the ratio of correctly predicted

instances against all the tested instances [66, 132, 149]. It can be calculated as

Q =

µ
∑

i

TP(i)

µ
∑

i

[TP(i) + FN(i)]

. (4.13)

It will be used to evaluate the overall performance of TAXFOLD.

4.3 Results and Discussions

4.3.1 Optimal Values of λ and lmax

As mentioned earlier, the values of λ and lmax remain to be determined. In this

study, we choose their values by aiming to achieve the overall prediction accuracy

as high as possible. To this end, we run TAXFOLD on the training sequences of

the dataset RDD and compute the overall accuracies Qs with varying values of λ

and lmax based on 5-fold cross-validation. Figure 4.5 depicts all Qs obtained when

λ ranges from 1 to 5 and lmax from 1 to 15. The highest accuracy of 77.2% is thus

achieved when λ = 3 and lmax = 9. For the sake of simplicity and generality, we set

the default values of λ and lmax in TAXFOLD to be 3 and 9, respectively, and all

the rest experiments are carried out with these default values. This setting hence

gives rise to a total of 137 (= 50+20× 3+3× 9) features among which 29, 48 and

60 are globalA, globalB and local features, respectively (see Figure 4.4).

86



 

 

l
max

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

λ

1

2

3

4

5

71

72

73

74

75

76

77

Figure 4.5: The overall accuracies for the RDD training dataset obtained by varying the
values of λ and lmax from 1 to 5 and 1 to 15, respectively
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4.3.2 Analysis of Feature Contribution

In order to investigate the contributions of features to the overall prediction accu-

racy, we divide the 137 features into three subsets: S1 (contains 29 globalA fea-

tures), S2 (contains 48 globalB features), and S3 (contains the remaining 60 local

features). In addition, to assess the contributions of predicted secondary structure

and evolutionary information, we separate features generated from the PSIPRED

profile and PSI-BLAST profile and denote them as PSIPRED and PSI-BLAST,

respectively. The feature of protein length can be incorporated into both subsets.

Table 4.1: Overall accuracies (%) on four datasets obtained with different combinations

of feature subsets. For the dataset RDD, the overall accuracies are obtained from the

independent testing sequences. For the other datasets, the overall accuracies are obtained

instead by applying 10-fold cross-validation. Enclosed in the parentheses are the number

of features of the corresponding feature subset. The accuracies from feature subsets

PSIPRED and PSI-BLAST are obtained with/without the feature of protein length.

Dataset S1
(29)

S2
(48)

S3
(60)

PSIPRED
(54/55)

PSI-BLAST
(82/83)

S1+S2
(77)

S1+S3
(89)

S2+S3
(108)

S1+S2+S3
(137)

RDD 72.8 66.8 72.3 70.4/71.2 70.9/74.9 79.1 78.3 78.8 83.2

EDD 76 77.5 80 78.3/78.8 81.7/82.5 86.5 86.3 88.9 90

F95 62.2 61.2 72.3 62.2/63.1 74.1/75.5 75.3 78.3 81.5 82.4

F194 58.6 57 70.5 57.7/58.8 72.2/73 71.3 76.2 78.8 79.6

Table 4.1 lists the overall prediction accuracies obtained with all the possible

combinations of feature subsets S1, S2, and S3. It can be seen that when the

feature subsets are used individually, the resulting overall prediction accuracies

range from 57.7% to 82.5% for the four tested datasets. The feature subsets S1

and S2 perform comparatively well for all datasets, while the feature subset S3

performs the best for three datasets (EDD, F95 and F194). As more features are

used, the overall accuracy values increase steadily. For instance, the combination

of the feature subsets S2 and S3 achieves the accuracies of 78.8%, 88.9%, 81.5%,

and 78.8% for the four tested datasets, making at least 6.5% improvement over

those obtained with any individual feature subset S2 or S3. If all these feature
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subsets are used together, the accuracy values increase to the maximum possible

for all datasets (83.2%, 90%, 82.4%, and 79.6%, respectively). Therefore, these

three feature subsets could make complementary contributions to each other for

improving protein fold recognition.

From Table 4.1, we can see that the PSI-BLAST features seem to make higher

contributions than the PSIPRED features for all tested datasets. This is especially

obvious for the F95 and F194 datasets, where the PSI-BLAST features achieve

more than 10% improvement compared with the PSIPRED features. However, just

using the PSI-BLAST features can not obtain the best prediction accuracy. As can

be seen from Table 4.1, when the PSIPRED features are combined with the PSI-

BLAST features, the accuracies are improved by 8.3%, 6.5%, 6.9%, and 6.6% for

the four tested datasets, respectively. This suggests that the PSI-BLAST features

and PSIPRED features make complementary contributions to each other and it

is important to use both kinds of features for enhanced protein fold recognition.

In addition, it is interesting to see that the feature of protein length improves the

accuracy by about 1%, suggesting the necessariness of using this feature.

In order to demonstrate the advantage of features extracted from the consensus

sequences rather than directly from the corresponding amino acid sequences (please

refer to Section 4.2.2.1), we compared their respective prediction accuracies. When

the 21 globalA features are extracted from the original amino acid sequences (see

4.3 and 4.4), the overall accuracies are only 51.3%, 42.9%, 27.5%, and 22% for the

four tested datasets. When these features are instead extracted from the consensus

sequences, the prediction accuracies increase to 63.1%, 62.7%, 47.8%, and 43.7%,

respectively, making an average 18.4% improvement. These indicate that the con-

sensus sequences contain much more evolution information than the amino acid

sequences, thereby leading to more accurate protein fold recognition.
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4.3.3 Accuracies for Four Tested Datasets

TAXFOLD is evaluated on four datasets, RDD, EDD, F95 and F194, and the re-

sulting overall accuracies are listed in the last column of Table 4.1. The precision,

recall and F-measures of individual folds and the corresponding values of the pa-

rameters C and γ in SVMs are presented in Supporting Information C (available

at http://onlinelibrary.wiley.com/doi/10.1002/prot.23025/suppinfo).

We can see that the overall accuracies for the first three datasets are all above

80% (i.e., 83.2%, 90% and 82.4%, respectively). It is commonly believed that, the

larger number of training sequences, the more reliable a classifier to be trained.

Although both RDD and EDD are made of sequences from the same 27 folds, the

latter contains more sequences than the former. Therefore, it is not surprising to

see that the overall accuracy for EDD is higher than that for the dataset RDD.

Moreover, as revealed in [66], the prediction becomes very challenging as more

folds are considered. This can also be observed from Table 4.1, where the accuracy

value decreases from 90% to 82.4% and further to 79.6% when the number of folds

increase from 27 to 95 and 194, respectively.

We also performed histogram analysis on the F-measure values over all the folds.

We count the number of folds that have F-measure values in one of the following five

intervals: [0, 0.6), [0.6, 0.7), [0.7, 0.8), [0.8, 0.9), [0.9, 1]. The resulting histograms

are shown in Figure 4.6. Note that, among the 27 folds used for the dataset RDD,

22 obtained the F-measures over 70%. When more sequences of these 27 folds are

experimented in the dataset EDD, the F-measures become over 70% for all the

folds. Indeed, all the folds achieve a F-measure value over 80%, except for the fold

OB-fold. These F-measure results further indicate that TAXFOLD can achieve

superior performance for this 27-class fold recognition problem.

TAXFOLD can still achieve satisfactory prediction for 95 and 194 folds, al-
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Figure 4.6: Histogram of the F-measure values for four tested datasets.
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though the F-measures get relatively lower values. For the five folds in the dataset

F95, their F-measures are all below 60%. For the dataset F194, there are 21 folds

with F-measures less than 60%. Among these 21 folds, 11 have no more than 20

sequences. This might partially explain their low F-measures because it is generally

very hard to train a reliable classifier on a small number of instances. It is thus

anticipated that the performance of TAXFOLD on a large number of folds would

be improved as more amino acid sequences are accumulated.

4.3.4 Fold Recognition for 710 Folds

The current version (1.75) of SCOP database has 1195 folds, which is significantly

more than those (27, 94, and 194 folds) we discussed. This fact makes it difficult

for real-world use of TAXFOLD. In order to make prediction for as many folds

as possible, we further test the performance of TAXFOLD with the dataset F710.

By using this large dataset, the likelihood of a newly sequenced protein to be the

prediction target of TAXFOLD should be about 60% (710/1195).

With the dataset F710, we are able to perform fold recognition for 710 folds,

which is an approximation of real-world situation. We assess the prediction accu-

racy of TAXFOLD on this dataset based on 2-fold cross-validation. The overall

accuracy of 68.1% is achieved and the distribution of F-measures for individual

folds is shown in Figure 4.7. There are 417 folds that can be predicted with F-

measures higher than 60%. On the other hand, the F-measures for 185 folds are

lower than 10%. Among these folds, there are 183 folds containing less than 10

sequences, which is a major reason for the low accuracies. In general, it is hard for

taxonomic methods to make accurate predictions for folds that contain only small

number of sequences. It is anticipated that when more sequences are accumulated

in the SCOP database, we are able to improve the prediction and at the same time

make predictions for more folds.
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4.3.5 Comparisons with Taxonomy-based Methods

In order to demonstrate the effectiveness of the proposed method, we compare

TAXFOLD with several major existing taxonomy-based methods on four datasets.

The original DD dataset has been widely used to evaluate various methods.

For a fair comparison, we tested TAXFOLD on both the original DD dataset and

its revised version RDD. Both the accuracies that were reported in the literature

and those obtained from our experiments are listed in Table 4.2. It should be

noticed that the reported accuracies of ACCFold AC [66], ACCFold ACC [66] and

Shamim [149] were measured by applying 2-fold cross-validation on the training

sequences of the original DD dataset, while the reported accuracies of the other

methods were obtained with the independent testing sequences. So, we ran ACC-

Fold ACC on the testing sequences of the original DD dataset2, and obtained its

prediction accuracy (66.6%) which turns out to be slightly lower than the accuracy

(70.1%) measured via 2-fold cross-validation. Besides, we ran four major existing

methods, PFRES [68], ACCFold AC [66], ACCFold ACC [66] and Shamim [149]

on the revised DD dataset RDD, and collected their overall prediction accuracies

in Table 4.2. Their corresponding precision, recall and F-measures can be found in

Supporting Information C. It is evident from Table 4.2 that, when tested on the

original DD dataset, TAXFOLD achieves an accuracy of 71.5%, which is at least

1% higher than that of any other method. When tested on the revised DD dataset

RDD, all the tested methods had their accuracies increased. However, TAXFOLD

still achieves the highest overall accuracy of 83.2%, which is 3.1-17% higher than

those of the other tested methods.

We further tested the above methods on the datasets EDD, F95, and F194.

However, we found that the running of ACCFold ACC and PFRES on these large-

2The PSSMs were acquired from the authors.
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Table 4.2: Comparisons of prediction accuracies (%) obtained from the original DD

dataset and its revised dataset RDD. Note that the prediction accuracies for the original

DD dataset are taken directly from their corresponding references, except for the methods

ACCFold AC and ACCFold ACC.

Methods References Qa Qb

D-D [132] 56 NA
PFP-Pred [147] 62.1 NA
GAOEC [148] 64.7 NA
Multi-kernel [152] 68.1 NA
PFP-FunDSeqE [151] 70.5 NA
SWPSSMc [158] 67.8 NA
Shamim [149] 60.5 66.2d

ACCFold AC [66] 65.3 73.6e

ACCFold ACC [66] 66.6 73.8f

PFRES [68] 68.4 80.1
TAXFOLD This chapter 71.5 83.2
a Overall accuracies for the original DD dataset.
b Overall accuracies for the revised dataset RDD.
c Cited from [66].
d The accuracy obtained with the feature set Feature4.
e The accuracy obtained with the parameter LG being 8.
f The accuracy obtained with the parameter LG being 10.

sized datasets with 10-fold cross-validation seems no way to complete in a rea-

sonable amount of time (executed on a workstation with 8 CPUs of 2.8GHz each

and 24GB RAM). Therefore, to make the comparisons possible, we adopt 2-fold

cross-validation rather than 10-fold cross-validation for them. Even with 2-fold

cross-validation, it is still too challenging to complete the test of PFRES on the

largest dataset F194. Note that PFRES relies on an ensemble classifier which

consists of six individual classifiers (SVMs, multiple logistic regression, instance

learning-based Kstar, IB1 algorithms, Nav̈ıe Bayes, and random forest), and it

was reported that this ensemble classifier made only a slight accuracy improve-

ment over the individual classifier random forest (68.4% vs. 66.8%) when tested on

the original DD dataset [68]. Based on these observations, to run PFRES on the

dataset F194, we activate the classifier random forest only. Although the resulting

accuracy might be biased against PFRES, we include it for the sake of a complete
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comparison. On the other hand, for the method Shamim, the feature set Feature4

as described in [149] can yield the best prediction on the original DD dataset. So,

this feature set is applied to the other three datasets as well. Table 4.3 lists the

overall accuracies obtained with these methods. The corresponding precision, recall

and F-measures are presented in Supporting Information C.

Table 4.3: Comparisons of overall accuracies (%) on three large-sized datasets. These

accuracies are obtained via 2-fold cross-validation.

Datasets Shamim ACCFold AC ACCFold ACC PFRES TAXFOLD

EDD 61 73.9 77.3 81.1 86.9
F95 41.6 62.5 71.8 68 76.5
F194 35.4 58.6 68.8 60a 72.6

a The accuracy obtained with the classifier random forest alone.

In general, 10-fold cross-validation shall yield a higher accuracy value than 2-

fold cross-validation because more sequences are used to train a classifier in the

former case. It is true for our method TAXFOLD as we can see from Tables 4.1

and 4.3, and so is for the methods Shamim, ACCFold AC, ACCFold ACC, as the

accuracy values obtained with 2-fold cross-validation are lower than those reported

in the literature which were instead obtained with 5-fold cross-validation.

It is evident from Table 4.3 that TAXFOLD outperforms any other method

for all the tested datasets. Shamim performs the worst among these methods,

which we believe is due to the fact that it does not exploit PSI-BLAST profiles.

Therefore, we conclude that the sequence evolution information is a key factor for

successful protein fold recognition. PFRES performs better than ACCFold ACC

for the dataset EDD but worse for two datasets F95 and F194. It might be ex-

plained in part by the fact that PFRES was developed (trained) particularly for

the recognition of 27 folds. Compared with other methods, TAXFOLD achieves

5.8-25.9%, 4.7-34.9% and 3.8-37.2% improvements for the datasets EDD, F95 and

F194, respectively. We believe that the superior performance of TAXFOLD shall
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be attributed to a comprehensive set of features developed, which is capable of cap-

turing both global and local characteristics of PSI-BLAST and PSIPRED profiles

of a query protein domain.

Further comparisons are made on F-measures of the individual folds. We count

the number of folds for which TAXFOLD has a lower (resp., equal or higher) F-

measure value than any other methods. It implies that, for the folds to be counted,

TAXFOLD performs worse (resp., comparatively or better) than the method under

comparison. The detailed tally is shown in Table 4.4, where we can see that

TAXFOLD performs better for a majority of folds in all cases.

Moreover, statistical test is applied to the F-measure values of TAXFOLD and

other methods to assess their statistical significance. The average F-measure values

on the corresponding test folds are tested as follows. Shapiro-Wilk test is first used

to determine if the samples are normally distributed (at 0.05 significance level).

If they follow normal distribution, the paired t-test is then used for statistical

test on the differences between TAXFOLD and other methods; otherwise, the non-

parametric Wilcoxon rank sum test is used. The resulting p-values are also reported

in Table 4.4. We can see that the p-values are smaller than 0.05 for all the

tested datasets and methods except the case of ACCFold Acc on the F194 dataset,

indicating that TAXFOLD has made statistically significant improvements over

any other method for fold recognition.
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Table 4.4: Comparisons with other methods on the four benchmark datasets. RDD represents revised DD dataset. The columns
marked by W, E, and B mean respectively the number of folds that TAXFOLD has worse, equal, and better performance compared
with the corresponding method. The p-values are used to measure the statistical significance.

Methods
RDD EDD F95 F194

W E B p-values W E B p-values W E B p-values W E B p-values

Shamim 0 1 26 3.75e-9 0 0 27 1.42e-10 0 0 95 5.41e-30 0 3 191 1.21e-48
ACCFold AC 2 3 22 4.36e-5 0 0 27 1.01e-8 3 0 92 8.32e-15 25 13 156 2.38e-7
ACCFold ACC 5 4 18 0.003 0 0 27 7.41e-4 11 1 83 7.36e-6 79 21 94 0.541
PFRES 6 6 15 0.013 3 1 23 2.12e-5 2 0 93 9.99e-13 15 7 172 9.98e-12
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4.3.6 Comparisons with Template-based Methods

TAXFOLD is further compared with the conventional template-based threading

methods: RAPTOR [141], HHPred [142], FOLDPro [97], SP5 [143], DescFold [144],

and BoostThreader [159]. To this end, the Lindahl benchmark dataset [155] is used

and 2-fold cross-validation is adopted to assess the accuracy. As done in [66], before

performing predictions, the dataset is preprocessed so that the number of proteins

in each category is larger than or equal to a threshold Nmin. For details about this

preprocessing, please refer to [66].

The accuracies of TAXFOLD, ACCFold AC, ACCFold ACC, and eight template-

based methods are listed in Table 4.5. First, we can see that TAXFOLD performs

consistently better than ACCFold AC and ACCFold ACC at each SCOP level.

Second, for the family and superfamily levels, when the number of samples in each

category is very small, the taxonomic methods including TAXFOLD perform worse

than the template-based threading methods. This is not surprising because a few

samples in general do not allow us to train an accurate classifier. When the number

of samples increases, the performance of taxonomic methods is improved, which

can be seen from the accuracy increase from Subset0 to Subset1 and Subset2. Nev-

ertheless, at the fold level, TAXFOLD achieved an accuracy comparable to the best

template-based threading method (BoostThreader; for Subset0), still showing that

TAXFOLD is very promising for protein fold recognition.
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Table 4.5: Comparisons with template-based methods on the Lindahl benchmark dataset. Note that the only the top 1 accuracies
(%) are reported for all methods.

Family Superfamily Fold

Subset0 Subset1 Subset2 Subset0 Subset1 Subset2 Subset0 Subset1 Subset2
Nmin = 1 Nmin = 3 Nmin = 4 Nmin = 1 Nmin = 3 Nmin = 5 Nmin = 1 Nmin = 3 Nmin = 5

No. of sequences 555 97 47 434 225a 91a 321 239a 177
No. of categories 176 13 5 86 23a 6a 38 16a 8

TAXFOLD 68.6 90.7 100 39.3 61.7 84.5 40.6 56.9 67.7
ACCFold ACCb 53.9 79.6 95.7 23.1 55.4 78.3 29.9 41.4 51.9
ACCFold ACb 53.1 79.5 93.6 20 47.7 64 28 41.3 50.9

RAPTORb 86.6 56.3 38.2
Fuguec 82.2 41.9 12.5
HHPredc 82.9 58.8 25.2
SPARKSc 81.6 52.5 24.3
SP5c 82.4 59.8 37.9
FOLDProc 85 55.5 26.5
DescFold Ic 80.7 57.8 24.9
DescFold IIc 81.1 60.6 32.4
BoostThreaderd 86.5 66.1 42.6

a Slightly different from those in [66] because of random partition of the dataset into two subsets for cross-validation. In our
partition, we tried to make the number of samples in each subset of the same category as even as possible.

b The results were cited from [66].
c The results were cited from [144].
d The results were cited from [159].
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4.4 Conclusions

In this study, we have developed a new taxonomy-based method called TAXFOLD

for protein fold recognition. It extensively exploits the sequence evolution informa-

tion from PSI-BLAST profiles [103] and the secondary structure information from

PSIPRED profiles [6]. A comprehensive set of 137 features is thus constructed,

which has been demonstrated capable of depicting both global and local character-

istics of profiles. We notice that some computational methods already proposed to

exploit PSI-BLAST and PSIPRED profiles for feature extraction (e.g., [68]). How-

ever, we carried out this task in quite a few different ways, as briefly summarized

below.

(1) We deal with the negative elements of PSSMs by applying an inverse algo-

rithmic operation rather than simply replacing all of them by zero. The later

would lose sequence evolution information to some extent.

(2) We extract features from the consensus sequences constructed from PSSMs

rather than from their respective amino acid sequences. The former retains

richer sequence evolution information.

(3) We divide PSI-BLAST profiles into several non-overlapping fragments which

allows for the depiction of local characteristics (e.g., at N-terminus and C-

terminus).

(4) We reduce the state sequences of PSIPRED profiles into the so-called segment

sequences, which allows us to characterize the spatial arrangements of α helices

and β strands.

(5) We apply AC transformation to the probability sequences of PSIPRED profiles

for feature extraction. To our best knowledge, this is the first attempt to
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extract features from the probability sequences.

Four datasets (RDD, EDD, F95 and F194) are used to test and compare the

proposed method TAXFOLD with the major existing methods. The first two

datasets contain protein domain sequences from 27 folds, and the third and fourth

contain sequences from 95 and 194 folds, respectively, representing different levels

of challenges that we might face for the task of fold recognition. Our experiments

show that, among all the tested methods, TAXFOLD achieves the highest over-

all accuracies of 83.2%, 90%, 82.4% and 79.6% respectively for the four tested

datasets, making an average accuracy improvement of 6.9% over the best available

method. We further tested TAXFOLD with a dataset containing a large number of

folds (710 folds). The resulting overall accuracy is relatively low (68.1%), because

for as many as 185 fold types there are less than ten sequences. Comparisons on

the Lindahl benchmark dataset shows that TAXFOLD performs comparably with

the best conventional template-based threading methods at the SCOP fold level.

These together clearly indicate that the proposed set of features is highly beneficial

to protein fold recognition. Therefore, we believe that TAXFOLD is a promis-

ing and practical tool for protein fold recognition. For public use, a web server

for TAXFOLD is freely accessible at http://www1.spms.ntu.edu.sg/~chenxin/

TAXFOLD/.
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Chapter 5

An Improved Classification of

G-Protein-Coupled Receptors

Using Sequence-Derived Features †

5.1 Introduction

GPCRs play a key role in diverse physiological processes such as neurotransmission,

secretion, cellular differentiation, cellular metabolism, and so forth [70]. It has been

estimated that almost two-thirds of drugs on the market interact with GPCRs [160],

which indicates that GPCRs are pharmacologically important. Therefore, both

academic and industrial researchers are very interested in the studies on GPCRs

to understand their structures and functions. As mentioned in Chapter 1, the 3D

protein structures of GPCRs are largely unavailable [76]. Although some advanced

† This chapter is mainly based on an article published in BMC Bioinformatics as:
Zhen-Ling Peng*, Jian-Yi Yang*, and Xin Chen, An improved classification of G-protein-coupled
receptors using sequence-derived features, BMC Bioinformatics, 11:420, 2010. (*Contributed

equally)
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technologies such as NMR spectroscopy allow to detect the 3D protein structures,

their experiments are generally very time-consuming and costly. In contrast, a

large number of GPCR primary sequences are known [161]. To facilitate the iden-

tification and characterization of novel receptors [161], it is therefore very valuable

to develop a computational method to predict GPCRs from the protein primary

sequences.

Based on their binding ligand types, GPCRs are often classified into different

groups, some of which are further divided into subgroups, sub-subgroups, etc. The

GPCRDB database [71] (http://www.gpcr.org/7tm/) is one of the most popular

database for GPCRs, which organizes GPCRs using a hierarchical structure. As

in [162, 163], we call each layer of this hierarchical structure a level. The top

layer is then referred to as the second level1, and the second layer is referred to

as the third level, etc. According to the latest version of the GPCRDB database

(Version 9.9.1, September 2009), GPCRs in the second level are classified into five

families or classes 2; that is, (1) Class A Rhodopsin like, (2) Class B Secretin like,

(3) Class C Metabotropic glutamate/pheromone, (4) Vomeronasal receptors (V1R

& V3R), and (5) Taste receptors T2R. For the first four families above 3, each is

further divided into subfamilies located at the third level. Furthermore, located

on the fourth and fifth levels of the hierarchical structure are the sub-subfamilies

and subtypes, respectively. On the other hand, given a new protein, the first step is

to determine whether it is a GPCR or a non-GPCR. Therefore, we add one more

level on the top of the hierarchical structure of the above classification system. It

is referred to as the first level. The complete hierarchical structure of five levels is

illustrated in Figure 5.1.

In this chapter we will look into the following classification problem, which

1We will add one more layer on the top of the hierarchical structure later.
2In the older versions of the GPCRDB database, e.g., June 2006 release, GPCRs are classified
into six families in this level.

3The fifth family in the second level has no subfamily.
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Figure 5.1: The hierarchical structure for GPCRs. The organization of GPCR sequences
in the GPCRDB database does not include the first level in this figure. We add it in this
study because we performed prediction at this level.

is referred to as a five-level classification problem. Given a protein sequence, we

need to determine whether it is a GPCR or a non-GPCR. If it is predicted into

a GPCR, we need to further determine which family, subfamily, sub-subfamily,

and subtype it belongs to. To tackle this problem, a set of distinct classifiers is

generally needed for each level depicted in Figure 5.1. In the literature, many

computational methods have been proposed to predict GPCRs. However, to our

best knowledge, there are no methods that can deal with the five-level problem

completely, (i.e., allow to make predictions at all the five levels). For example, the

methods presented in [164–167] predict GPCRs just at a single level (the second,

third or fourth level), and the methods in [168] predict GPCRs only at the third

and fourth levels. The prediction methods in [163] and [162] instead considered

three and four levels, respectively.

Today’s academic and industrial researchers are both interested in the func-
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tional roles of GPCRs at the finest subtype level. This is mainly because each sub-

type demonstrates its own characteristic ligand binding property, coupling partners

of trimeric G-proteins, and interaction partners of oligomerization [169]. Therefore,

discrimination of functions of a GPCR subtype from the others (i.e., prediction of

GPCRs at the fifth level as shown in Figure 5.1) becomes very important in the

effort to decipher GPCRs. However, we can expect that it is a challenging task

that shall not be easier than the prediction of GPCRs at any of the first four levels.

Fortunately, more and more GPCR sequences are now being accumulated into the

GPCRDB database, which makes it possible to accurately predict GPCRs at all

the five levels. This is the main goal of our present study.

A lot of related work has been done previously. In general, there are two impor-

tant components in a classification task — one is feature extraction and the other

is a classification algorithm. Feature extraction means how to extract features from

protein sequences so that each protein is represented as a fixed-length numerical

vector. Various methods have been proposed to extract information from protein

sequence in the past decades (See e.g., [54, 83–86]). The commonly used feature

extraction methods are based on amino acid composition [164–166] and dipeptide

composition [162, 167, 168, 170, 171], and more complicated ones include Chou’s

pseudo amino acid composition [83], the cellular automaton image approach [84],

profile hidden Markov models [172], fast Fourier transform [173], wavelet-based

time series analysis [174], and Fisher Score Vectors [175]. Once protein sequences

are represented by numerical vectors, any general-purpose classification algorithms

can be used for classification, for instance, covariant discriminant [84, 164–166],

nearest neighbor [162], bagging classification tree [168], and support vector ma-

chines [167, 170, 171, 173–175].

In this chapter, we focus on predicting GPCRs at the five levels. Five groups of

descriptors are used to extract information from the amino acid sequences. These
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five groups are (1) amino acid composition and dipeptide composition, (2) autocor-

relation descriptors, (3) global descriptors, (4) sequence-order descriptors, and (5)

Chou’s pseudo amino acid composition descriptors. These descriptors reflect vari-

ous physicochemical properties of proteins and have been adopted to predict many

other protein attributes, such as protein subcellular localization [86, 176], outer

membrane protein [177], nuclear receptors [178], and protein structural classes

[54, 85]. By combining these descriptors, a comprehensive set of 1497 features

are calculated for each amino acid sequence. By applying the principal component

analysis on a dataset, we then reduce them to a set of 32 features that could retain

as much of the data variability as possible. Finally, a simple yet powerful algorithm

called intimate sorting is employed to predict GPCRs, and the experimental tests

on the benchmark datasets show that the classifications can be improved. Jack-

knife test shows that the overall accuracies of the proposed method at the first,

second, third, fourth, and fifth levels are 99.5%, 88.8%, 80.47%, 80.3%, and 92.34%,

respectively. Comparisons with several existing methods show that the proposed

method consistently achieves higher prediction performance.

5.2 Materials and Methods

5.2.1 Datasets

We construct a collection of non-redundant datasets from the latest release of the

GPCRDB database (Version 9.9.1, September 2009, http://www.gpcr.org/7tm/)

to evaluate and train the classifiers for the GPCRs prediction. As mentioned in the

Section 5.1, the sequences in the GPCRDB database are organized in four levels:

family or class, subfamily, sub-subfamily, and subtype. We download the GPCR

sequences from the GPCRDB database and then filter out the high-similarity se-

quences using the program CD-HIT [179]. In order to ensure that there are enough
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sequences to train the classifiers, we apply different thresholds in CD-HIT for se-

quences at different levels. They are 0.4, 0.7, 0.8, and 0.9 for the family, subfamily,

sub-subfamily, and subtype levels, respectively. After filtering, only families (sub-

families, sub-subfamilies, and subtypes) with more than 10 sequences are retained

for training classifiers. Because the fifth family (Taste receptors T2R) has no sub-

family and there are only 14 sequences remaining after filtering by CD-HIT, it

is therefore ignored in subsequent analysis. At the end, we obtained 1589, 4772,

4924, and 2741 GPCRs at the family, subfamily, sub-subfamily and subtype lev-

els, respectively. The name of families, subfamilies, sub-subfamilies, and subtype,

together with the number of GPCR proteins retained at each level are listed in

the Additional file 1 (available at http://www.biomedcentral.com/content/

supplementary/1471-2105-11-420-s1.pdf).

The GPCR protein sequences retained at the family level are used to construct

a positive dataset for training and evaluation. A negative dataset of non-GPCRs

is then constructed in a almost the same way as in Ref. [175], except the latest

version of ASTRAL SCOP (Version 1.75, http://astral.berkeley.edu/) is used.

Firstly, we download the sequences that have less than 40% similarity to each

other (i.e., the file with the name “seq.75;item=seqs;cut=40”). Then, remove those

sequences of length less than 30, and those having similarity above 40% using CD-

HIT. Finally, a total of 10325 sequences remain, from which 1589 sequences are

randomly selected to form a negative dataset. Because these selected proteins are

organized into five levels, for the sake of convenience, we call them the datasets

GDFL (GPCR Datasets in Five Levels). They are available at the web server

provided in this chapter.

In addition, in order to perform comparison with other existing methods di-

rectly, four benchmark datasets from previous studies are experimented in this

study as well. For the sake of simplicity, they are referred to as D167, D566, D1238
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and D365, respectively. We know that all of them were constructed based on the

older version of the GPCRDB database. The proteins in the dataset D167 [165]

(belonging to the fourth level) are classified into four sub-subfamilies: (1) acetyl-

choline, (2) adrenoceptor, (3) dopamine, and (4) serotonin. The dataset D566 [166]

(belonging to the fourth level) instead includes proteins in seven sub-subfamilies:

(1) adrenoceptor, (2) chemokine, (3) dopamine, (4) neuropeptide, (5) olfactory type,

(6) rhodopsin, and (7) serotonin. D1238 [164] (belonging to the second level)

comprises proteins from three families: (1) rhodopsin like, (2) secretin like, and

(3) metabotrophic/glutamate/pheromone. The last dataset D365 [84] (belonging

to the second level) comprises proteins in the six families: (1) rhodopsin-like, (2)

secretin-like, (3) metabotrophic/glutamate/pheromone; (4) fungal pheromone, (5)

cAMP receptor and (6) frizzled/smoothened family. The numbers of proteins in

the above four datasets are given in Table 5.1. Furthermore, 365 non-GPCR se-

quences are taken from the Swiss-Prot database to serve as a negative dataset

against D365 [84].

The sequence similarity level is an important factor that affects the effectiveness

of a classification method. Therefore, it is worthwhile to take a look at the sequence

similarity levels of proteins in these datasets before performing any evaluation test.

For simplicity, we analyze the similarity level of the whole dataset rather than the

subsets in the dataset. Chou and Elrod [164–166] reported that all the receptor

sequences in the aforementioned datasets were generally lower than 40%, according

to their definition of the average sequence similarity percentage between two protein

sequences. Here, we run a protein sequence clustering program called CD-HIT [179]

on each dataset with the varying thresholds of sequence similarity. For example, if

a threshold of 0.9 is used, the proteins having pairwise residue identities of 90% or

above would be placed into a same cluster. In general, the fewer resulting clusters

imply the higher overall sequence similarities. The test results are shown in Table
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Table 5.1: The number of proteins in the four datasets and the corresponding prediction

accuracies. Tot(i) is the number of sequences observed in class i, c(i) is the number of

correctly predicted sequences of class i, and ACC is the prediction accuracy.

Dataset Family/sub-subfamily Tot(i) c(i) ACC(%)

D167 Acetylcholine 31 31 100
Adrenoceptor 44 44 100
Dopamine 38 36 94.74
Serotonin 54 53 98.15
Overall 167 164 98.2

D566 Adrenoceptor 66 65 98.48
Chemokine 92 90 97.83
Dopamine 43 40 93.02
Neuropeptide 31 30 96.77
Olfactory 84 84 100
Rhodopsin 183 180 98.36
Serotonin 67 65 97.01
Overall 566 554 97.88

D1238 Rhodopsin-like 1103 1102 99.91
Secretin-like 84 83 98.81
Metabotrophic/glutamate/pheromone 51 50 98.04
Overall 1238 1235 99.76

D365 Rhodopsin-like 232 222 95.69
Secretin-like 39 34 87.18
Metabotrophic/glutamate/pheromone 44 39 88.64
Fungal pheromone 23 22 95.65
CAMP receptor 10 10 100
Frizzled/smoothened 17 11 64.71
Overall 365 338 92.6
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5.2, where the proteins are clustered with the thresholds of 0.9, 0.8, 0.7, 0.6, 0.5

and 0.4, respectively. In particular, 100 clusters are obtained for 167 proteins in the

dataset D167 with the threshold of 0.9. It indicates that there are high-similarity

protein pairs, but they only take up a small proportion of the total number (i.e.,

12861 = 167 × 166/2) of distinct protein pairs. The use of the threshold of 0.4

further reduces the number of clusters to 30, which could suggest that the average

sequence similarity of proteins is quite low. However, to avoid the overestimation

of prediction accuracy, it would be better if those high-similarity sequences are

filtered out with CD-HIT. For instance, the dataset D365 does not contain any

protein pairs having ≥ 40% pairwise sequence similarity except in the E-cAMP

receptor family, which contains too few (only 10) GPCRs to apply filtering.

Table 5.2: The CD-HIT clustering results for the four benchmark datasets. γ denotes

the threshold for the sequence similarity percentage. The row of γ = 1.0 gives the total

number of proteins in each dataset.

Dataset

γ D167 D566 D1238 D365

1.0 167 566 1238 365
0.9 100 346 777 361
0.8 73 226 540 361
0.7 61 169 421 361
0.6 52 142 358 359
0.5 38 106 281 357
0.4 30 69 207 356

5.2.2 Physicochemical Properties

In order to capture as much information of protein sequences as possible, a variety

of physicochemical properties [180] are used in the procedure of feature extraction.

These physicochemical properties are listed in Table 5.3, of which the first eighteen

are used to measure the physicochemical properties of individual amino acids and
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the last two to measure the physicochemical distances between two amino acids.

Table 5.3: The physicochemical properties of the amino acids and distances between
two amino acids.

Order Physicochemical property Range of property Reference

1 Hydrophobicity scales [−1.14, 1.81] [180]
2 Average flexibility indices [0.295, 0.544] [180]
3 Polarizability parameter [0, 0.409] [180]
4 Free energy of solution in water [−2.24, 4.91] [180]
5 Residue accessible surface area in tripeptide [75, 255] [180]
6 Residue volume [36.3, 135.4] [180]
7 Steric parameter [0, 1.02] [180]
8 Relative mutability [18, 134] [180]
9 Hydrophobicity [-2.53, 1.38] [104]
10 Hydrophilicity [-3.4, 3] [104]
11 Side-chain mass [1, 130] [104]
12 Normalized van der Waals volume [0, 8.08] [181]
13 Polarity [4.9, 13.0] [181]
14 Polarizability [0, 0.409] [181]
15 Charge Positive, Neutral, Negative [181]
16 Secondary structure Helix, Strand, Coil [181]
17 Solvent accessibility Buried, Exposed, Intermediate [181]
18 Relative hydrophobicity Polar, Neutral, Hydrophobic [181]
19 Grantham chemical distance [0, 215] [181]
20 Schneider-Wrede physicochemical distance [0, 1] [86]

5.2.3 Sequence-Derived Features

As mentioned in the introduction, amino acid composition was widely used to

transform GPCR sequences into 20-dimension numerical vectors [164–166]. How-

ever, the sequence order information would be completely lost. In order to address

this issue, dipeptide composition was proposed to represent GPCR sequences by

400-dimension vectors, which captures local-order information and has been re-

ported to improve classifications [162, 167, 168, 170, 171]. Recently, GPCR-CA

[84] utilized the conception of Chou’s pseudo amino acid composition [104] to rep-

resent each protein sequence by 24 features. The first 20 features corresponded to

the amino acid composition and the remaining four features were calculated from

a so-called cellular automation image. These four features were shown capable of
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reflecting a protein’s overall sequence pattern. Inspired by this study, we seek a

new set of features that can comprehend as much information as possible from

GPCR sequences. To this end, we investigat the following five groups of features,

where the parameters are set to the same values as in [181].

5.2.3.1 Amino Acid Composition (AAC) and Dipeptide Composition

(DC)

Amino acid composition is defined as the occurrence frequencies of 20 amino acids

in a protein sequence. That is,

fA(i) =
nA(i)

L
, (5.1)

where each i = 1, 2, · · · , 20 corresponds to a distinct amino acid and nA(i) is the

number of amino acid i occurring in the protein sequence of length L.

Similarly, dipeptide composition is defined as the occurrence frequencies of the

400 dipeptides (i.e., 400 amino acid pairs). That is,

fD(i) =
nD(i)

L − 1
, (5.2)

where each i = 1, 2, · · · , 400 corresponds to one of the 400 dipeptides and nD(i) is

the number of dipeptide i occurring in the sequence.

5.2.3.2 Autocorrelation Descriptors (AD)

We use three autocorrelation descriptors — normalized Moreau-Broto autocorre-

lation descriptors, Moran autocorrelation descriptors and Geary autocorrelation

descriptors. They are all defined based on the value distributions of the first eight

physicochemical properties of amino acids along a protein sequence (see Table 5.3).

The measurement values of these properties are first standardized before we pro-
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ceed to calculate the three autocorrelation descriptors. The standardization is

performed as follows.

P (i) =
P0(i) − P̄0

σ
, i = 1, 2, · · · , 20, (5.3)

where P0(i) are the property value of the amino acid i, P̄0 = 1
20

20
∑

i=1

P0(i), and

σ =

√

1
20

20
∑

i=1

(P0(i) − P̄0)2.

Normalized Moreau-Broto autocorrelation descriptors are defined as:

NMBA(d) =
MBA(d)

L − d
, d = 1, 2, · · · , 30, (5.4)

where MBA(d) =
L−d
∑

i=1

P (Ri)P (Ri+d), Ri and Ri+d are the amino acids at position

i and i + d along the protein sequence, respectively. As mentioned earlier, we use

the same parameter values as in [181], so the maximum value of d is 30.

Moran autocorrelation descriptors are defined as:

MA(d) =

1
L−d

L−d
∑

i=1

(P (Ri) − P̃ )(P (Ri+d) − P̃ )

1
L

L
∑

i=1

(P (Ri) − P̃ )2

, d = 1, 2, · · · , 30, (5.5)

where P̃ = 1
L

L
∑

i=1

P (Ri) is the average value of the property of interest along the

sequence.

Geary autocorrelation descriptors are defined as:

GA(d) =

1
2(L−d)

L−d
∑

i=1

(P (Ri) − P (Ri+d))
2

1
L−1

L
∑

i=1

(P (Ri) − P̃ )2

, d = 1, 2, · · · , 30. (5.6)

For each autocorrelation descriptor, we obtain 240 (= 30×8) features. In total,
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720 (= 240 × 3) features will be obtained to describe a protein sequence.

5.2.3.3 Global Descriptors (GD)

These descriptors were firstly proposed by Dubchak et al. [145] to predict protein

folding classes, and later applied to predict human Pol II promoter sequences [101].

They are constructed as follows. Firstly, given each of the following seven amino

acid properties: normalized van der Waals volume, polarity, polarizability, charge,

secondary structure, solvent accessibility and relative hydrophobicity (i.e., proper-

ties 12–18 listed in Table 5.3), the 20 amino acids are divided into three groups

according to their property values. Then, for a given amino acid sequence, we may

obtain a new sequence of three symbols, each corresponding to one group of amino

acids. Finally, three group of quantities are defined on the new sequence; that is,

composition (Comp), transition (Tran) and distribution (Dist), as demonstrated

below.

For the sake of simplicity, suppose that a sequence is made of only two letters

(A and B). Comp is defined as the occurrence frequency of each letter in the se-

quence. For example, we have a sequence BABBABABBABBAABABABBAAAB-

BABABA, in which there are 14 As and 16 Bs. Therefore, the occurrence frequen-

cies of A and B are 14/(14+16)×100.00 = 46.67 and 16/(14+16)×100.00 = 53.33,

respectively. Tran is used to represent the occurrence frequency of pairs AB or

BA. In the above sequence, there are 21 transitions from one letter to another; so

Tran is computed as (21/29)×100.00 = 72.14. On the other hand, Dist calculates

the relative positions of the first, 25%, 50%, 75% and 100% of the total amount of

a particular letter in the sequence. In the above sequence, for example, the first,

25%, 50%, 75% and 100% of the total amount of the letter B are located at the first,

6th, 12th, 20th and 29th positions, respectively. The quantities Dist for the letter

B are hence 1/30× 100.00 = 3.33, 6/30× 100.00 = 20.00, 12/30× 100.00 = 40.00,
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20/30 × 100.00 = 66.67 and 29/30 × 100.00 = 96.67. Similarly, we can find the

Dist values for the letter A; they are 6.67, 23.33, 53.33, 73.33 and 100.00. At the

end, the global descriptors of the above sequence become (Comp; Tran; Dist) =

(46.67, 53.33; 72.14; 6.67, 23.33, 53.33, 73.33, 100.00, 3.33, 20.00, 40.00, 66.67, 96.67).

Suppose there are n distinct symbols in a sequence, then the number of features

in Comp, Tran, and Dist are
(

n
1

)

,
(

n
2

)

, and 5 × n, respectively. Recall that the

20 amino acids are divided into three groups by each amino acid property, which

leads to a new sequence of three symbols (n = 3). Following the similar procedure

demonstrated above, we will obtain 21 (=
(

3
1

)

+
(

3
2

)

+ 5 × 3) features to describe

the new sequence (of three symbols). Combining all the features to be extracted

based on the seven amino acid properties, we will obtain a total of 147 (=21 × 7)

features for each input protein sequence from the global descriptors.

5.2.3.4 Sequence-Order Descriptors (SD)

In order to derive sequence-order descriptors, we rely on two distance measures for

amino acid pairs. One is called the Grantham chemical distance matrix [181], and

the other called the Schneider-Wrede physicochemical distance matrix [86]. Then,

the jth-rank sequence-order-coupling number is defined as:

τ(j) =

L−j
∑

i=1

(d(Ri, Ri+j))
2, j = 1, 2, · · · , 30, (5.7)

where d(Ri, Ri+j) is one of the above distances between the two amino acids Ri

and Ri+j located at position i and i + j, respectively.

The quasi-sequence-order descriptors are defined as:
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QSO(i) =























fA(i)
20
∑

j=1
fA(j)+ω

30
∑

j=1
τ(j)

, (1 ≤ i ≤ 20)

ω·τ(i)
20
∑

j=1
fA(j)+ω

30
∑

j=1
τ(j)

, (21 ≤ i ≤ 50)
(5.8)

where ω is a weighting factor (default ω = 0.1).

We end up with 60 (= 30 × 2) sequence-order-coupling numbers and 100 (=

50× 2) quasi-sequence-order descriptors. In total, there are 160 features extracted

from the sequence-order descriptors.

5.2.3.5 Chou’s Pseudo Amino Acid Composition Descriptors (PseAAC)

This set of features were originally developed by Chou [104] and have been used

widely to predict various attributes of proteins, such as outer membrane pro-

tein [177], nuclear receptors [178], and protein structural classes [54, 85]. The

Chou’s pseudo amino acid composition descriptors are defined similarly as the

quasi-sequence-order descriptors. The difference lies in the coupling number τ(j),

which is modified to:

θ(d) =
1

L − d

L−d
∑

i=1

Θ(Ri, Ri+d), d = 1, 2, · · · , 30, (5.9)

where Θ(Ri, Ri+d) is the dth-tier correlation factor that reflects the sequence order

correlation between all the most contiguous residues along a protein chain. It is

defined as:

Θ(Ri, Ri+d) =
1

3

{

[H1(Ri) − H1(Ri+d)]
2 + [H2(Ri) − H2(Ri+d)]

2 + [M(Ri) − M(Ri+d)]
2
}

,

(5.10)

where H1(Ri), H2(Ri) and M(Ri) are the hydrophobicity, hydrophilicity, and side-

chain mass of amino acid, respectively [104]. The original values of them are
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standardized similarly as we have done in the definition of autocorrelation descrip-

tors (i.e., eq. (3)). Finally, the Chou’s pseudo amino acid composition descriptors

are defined as:

PseAAC(i) =























fA(i)
20
∑

j=1
fA(j)+ω

30
∑

d=1
θ(d)

, (1 ≤ i ≤ 20)

ω·θ(i−20)
20
∑

j=1
fA(j)+ω

30
∑

d=1
θ(d)

, (21 ≤ i ≤ 50)
(5.11)

where ω is a weighting factor (default ω = 0.1). It will generate 50 features from

the Chou’s pseudo amino acid composition descriptors.

In summary, a comprehensive set of 1497 features, which measure the protein

sequences from different aspects, will be generated from the above five descriptors.

The number of features in each group of descriptors is listed in Table 5.4. These

features are used to represent every protein sequence, and may be directly fed

into a classification algorithm. Note that, however, there are some correlations or

redundancies among these features such as the first twenty features in the fourth

and fifth groups of features. On the other hand, the dimension of the features

is too large, which might make it difficult to work with many machine learning

algorithms for classification. Therefore, it is necessary to reduce the dimension.

In this study, we adopt one of the most popular and powerful techniques, namely,

principal component analysis, for the purpose of dimensionality reduction.

Table 5.4: The number of features in each group of descriptors.

Order Name Number of features

(i) Amino acid composition (AAC) and dipeptide composition (DC) 420
(ii) Autocorrelation descriptors (AD) 720
(iii) Global descriptors (GD) 147
(iv) Sequence-order descriptors (SD) 160
(v) Chou’s pseudo amino acid composition descriptors (PseAAC) 50
(vi) All features 1497
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5.2.4 Principal Component Analysis

Principal Component Analysis (PCA) is a classical statistical method which is still

widely used in modern data analysis. PCA involves a mathematical procedure

that transforms a large number of (possibly) correlated variables into a smaller

number of uncorrelated variables, called principal components (PCs), that retain

as much variability of the data as possible [182]. Given a data matrix denoted by

X = (X1, X2, · · · , Xp), where Xi is a column vector of size n which is equal to

the number of proteins of interest and p denotes the number of protein sequence

features, a typical PCA is performed as follows. First, we shall standardize every

Xi by

Yi =
Xi − X̄i

√

Var(Xi)
, i = 1, 2, · · · , p, (5.12)

where X̄i and Var(Xi) are the mean and variance of the vector components of Xi,

respectively. Then, the covariance matrix of Y = (Y1, Y2, · · · , Yp) is obtained as

Cov(Y ) =
1

n − 1
Y TY. (5.13)

For the covariance matrix Cov(Y ), we find all its eigenvalues λ1 ≥ λ2 ≥ · · · ≥

λp and the corresponding eigenvectors, E1, E2, · · · , Ep. Note that each Ei =

(Ei,1, Ei,2, · · · , Ei,p)
T is a column vector of size p and E1, E2, · · · , Ep are linearly un-

correlated according to the basic knowledge of linear algebra. Finally, we construct

the i-th PC PC(i) as the linear combination of Y1, Y2, · · · , Yp with the coefficients

being the elements of the i-th eigenvector Ei, i.e.,

PC(i) = Ei,1Y1 + Ei,2Y2 + · · · + Ei,pYp, i = 1, 2, · · · , p. (5.14)

We can see that each PC(i) is a column vector with size n and the j-th element
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in PC(i) represents the i-th PC of protein j. Thereafter, a total of p uncorrelated

PCs are obtained.

In order to reduce the dimension of the feature space, only the first m PCs are

used to represent each protein sequence (m ≤ p). It is generally hard to determine

the optimal value of m. In this study, we aim to find a value of m that could make

the overall prediction accuracy of GPCRs as high as possible, which we will further

discuss later.

We want to mention that when applying PCA to a dataset with n proteins

based on the jackknife test, a total of n different runs would be performed. In each

run, the proteins in the training set are used to find the eigenvectors E1, E2, · · · , Ep,

in order to reduce the dimension of the remaining proteins. If all proteins in the

dataset are used to find the eigenvectors in PCA, it would lead to over-estimation

of the performance because the information in the test instance is used during

training in such case.

5.2.5 Intimate Sorting Algorithm

Many classification algorithms in the literature have been used to predict GPCRs,

for instance, covariant discriminant [84, 164–166], nearest neighbor [162], bagging

classification tree [168], and support vector machines [167, 170, 171, 173–175]. In

this study, we use a simple yet powerful algorithm called intimate sorting [176].

This algorithm is easy to implement and does not need to set any parameters as

some other algorithms (e.g., support vector machines).

Suppose that a training set consists of N proteins {P1,P2, · · · ,PN}, each of

which Pi is a λ-dimension vector, Pi = (pi,1, pi,2, · · · , pi,λ)
T. The GPCR classes

of these proteins are already known, and each protein belongs to exactly one of

the µ classes. The intimate sorting algorithm aims to place a query protein P =

(p1, p2, · · · , pλ)
T into one of the µ classes based on the information from the N
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proteins in the training set. To this end, a measure of similarity score between P

and Pi is defined as

Φ(P,Pi) =
P · Pi

‖P‖‖Pi‖
, i = 1, 2, · · · , N, (5.15)

where P · Pi =
λ
∑

j=1

pjpi,j, ‖P‖ =

√

λ
∑

j=1

p2
j and ‖Pi‖ =

√

λ
∑

j=1

p2
i,j. When P ≡ Pi, it

can be easily seen that Φ(P,Pi) = 1, suggesting that they are most likely to belong

to a same class. In general, we have −1 ≤ Φ(P,Pi) ≤ 1. The higher the Φ(P,Pi)

value, the more likely two proteins belong to a same class. Among the N proteins

in the training set, the one with the highest score with the query protein P is picked

out, which we denote by Pk, k ∈ [1, N ]. If there is a tie, we would randomly select

one of them. In the final step, the intimate sorting algorithm simply assigns P into

the same GPCR class as Pk.

5.2.6 Prediction Assessment

In this chapter, we also use the jackknife test [183] to evaluate our method. The

prediction accuracies (ACC) and overall accuracy (OACC) are measured by the

following formulae:

ACC(i) =
C(i)

Tot(i)
, i = 1, 2, · · · , µ, and OACC =

µ
∑

i

C(i)

µ
∑

i

Tot(i)

, (5.16)

where Tot(i) is the total number of sequences in class i, C(i) the number of correctly

predicted sequences of class i, and µ the total number of classes under considera-

tion. Note that this prediction assessment method was already adopted in several

previous studies, e.g., [83, 84, 162, 174].
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5.3 Results and Discussions

5.3.1 Selection of m

As we mentioned earlier, the number of PCs in PCA, i.e., m, remains to be de-

termined. Here, we choose its value by aiming to achieve the overall prediction

accuracy as high as possible. To this end, we use the dataset D365 to compute

the overall prediction accuracies OACCs of GPCR families for varying values of

m. When m ranges from 1 to 80, OACCs thus obtained are plotted in Figure 5.2.

We found that the highest accuracy (92.6%) is achieved with m = 32. Based on

this observation, we chose m = 32 in our experiments.

5.3.2 Predicting GPCRs at Five Levels

For simplicity, we call the proposed method PCA-GPCR. PCA-GPCR preforms

the prediction at five levels, and its flowchart structure is depicted in Figure 5.3.

By the first-level classifier a new protein sequence is predicted to be either a GPCR

or a non-GPCR. If it is predicted to be a GPCR, it will be further classified into

one of the four families, which is done by the second-level classifier. The third-

level classifiers hence determine which subfamily the protein belongs to. For some

subfamilies (see Additional file 1), the fourth-level classifiers determine the sub-

subfamily of the protein. Finally, the fifth-level classifiers determine the subtypes of

the protein, if any (see Additional file 1). We carried out the experiments on the

collection of datasets GDFL (Please see Section 5.2.1 for the details of datasets).

Jackknife tests show that the overall accuracies of PCA-GPCR are 99.5%, 88.8%,

80.47%, 80.3%, and 92.34% for the five levels, respectively. The details of exper-

imental results are presented in the Additional file 1. It is commonly believed

that, the smaller number of training sequences, the less reliable a classifier to be
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Figure 5.2: Selection of m. The overall prediction accuracies of GPCR families for the
D365 dataset obtained by varying the number m of principle components. The highest
overall accuracy is achieved when m = 32, which is marked by the dotted lines.
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Figure 5.3: The structure of PCA-GPCR. For the name of the families, subfamilies,
sub-subfamilies, and subtypes, please refer to the Additional file 1. The fourth and
fifth levels are only applicable for some subfamilies and subtypes, which are also listed
in the Additional file 1.
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trained. Therefore, it is not surprising to see that the prediction accuracies are

higher at the first and second levels and relatively lower at the third and fourth

levels. On the other hand, to filter out high-similarity sequences, we used CD-HIT

with a less stringent threshold (0.9) for the fifth level than the one for any other

levels, which results in a larger number of training sequences for the fifth level.

This might partly explain why the accuracy achieved for the fifth level (subtype)

is higher than those of the second, third and fourth levels. For the convenience of

public use, a web server was already developed, which is freely available at http://

www1.spms.ntu.edu.sg/~chenxin/PCA_GPCR/.

5.3.3 Contribution of Features

Inspired by the PCA-based feature selection method described in [182, 184], we use

the following procedure to assess the contributions of the 1497 features to prediction

accuracy. Recall that in the previous principle component analysis on the dataset

D365 we obtained 32 eigenvectors E1, E2, · · · , E32, and each eigenvector comprises

1497 components. Let us denote Ei = (Eij), where 1 ≤ i ≤ 32 and 1 ≤ j ≤ 1497.

To find the i-th PC in PCA, Eij is used to weight the j-th feature. In this sense, the

value Eij can be viewed as the weight of contributions that the j-th feature makes

to the i-th PC. To combine the contributions to all the PCs, we may compute

wj =
√

∑32
i=1 E2

ij . Then, wj can be naturally viewed as the weight of contributions

that the j-th feature makes to the final prediction accuracy because our method is

based on these 32 PCs. In general, the higher the weight wj , the more contributions

the j-th feature makes.

The contribution of each of the 1497 features is computed and depicted in Figure

5.4(A), where we can see that the contributions of the amino acid composition

(AAC) in the first group of descriptors are much higher than those of the dipeptide

composition (DC). Therefore, we separate the AAC from the DC in the first group
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Figure 5.4: Contribution of features. The meanings of the notations AAC, DC, AD,
GD, SD, and PseAAC can be found in Table 5.4. The divisions of these six subsets are
marked by vertical lines.
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of descriptors in the following discussions. In addition, we find that the features

from the autocorrelation descriptors (AD) made the highest contributions among

all the features. Because there are 1497 features, it is not convenient to discuss

the contributions of all individuals one by one. Instead, we compute the average

contributions of the features in the following six subsets: AAC, DC, AD, GD, SD,

and PseAAC. Their results are shown in Figure 5.4(B). It is evident from the figure

that the highest average contribution is obtained with the features in the PseAAC

subset (0.1657). The slightly lower contributions are provided by the AD and

AAC subsets (0.1595 and 0.1579, respectively). On the contrary, the features in

the GD and SD subsets achieve the average contributions only slightly higher than

0.14. The features in the DC subset instead achieve the least average contribution

(0.1092). In summary, if we arrange the features in the six subsets in a decreasing

order according to their average contributions, then we obtain PseAAC, AD, AAC,

GD, SD, and DC.

In particular, among the AD subset, some features made quite high contribu-

tions while the others made relatively low contributions, as we can see in Figure

5.4(A). For a thorough investigation, we plot the contributions of all the features

in the AD subset again in Figure 5.5. These features are divided into eight groups

according to the physicochemical properties used to compute them. In Figure 5.5,

the eight groups of features are separated by vertical longer lines and indicated

by P1, P2, . . . , P8, respectively. Note that Pi represents the i-th physicochemical

property listed in Table 5.3. It is evident from Figure 5.5 that the highest contri-

butions are due to the features computed with the physicochemical properties P3,

P5 and P6; they are the polarizability parameter, residue accessible surface area

in tripeptide and residue volume, respectively. For the group P3, we can further

divide its 90 features into three subgroups according to three different autocorre-

lation descriptors (normalized Moreau-Broto, Moran, and Geary autocorrelation
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descriptors). These three subgroups are separated by shorter vertical lines in Fig-

ure 5.5, and indicated by P3.1, P3.2 and P3.3, respectively. In each subgroup, the

feature contributions are computed with the values of d varying from 1 to 30 (from

left to right on the horizontal axis). Observe that Moran and Geary autocorrelation

descriptors (P3.2 and P3.3) made much higher contributions than the normalized

Moreau-Broto descriptors (P3.1). Furthermore, for Moran and Geary autocorre-

lation descriptors, the features that are computed with a value of d in the range

from 20 to 30 generally give rise to a fairly high contribution, while the maximum

is attained when d = 26. The similar characteristics can also be observed for the

groups P5 and P6 from Figure 5.5.

5.3.4 Comparison with BLAST-based Classification

The most straightforward method for predicting GPCRs might be based on homol-

ogy search by sequence alignment tools such as BLAST and PSI-BLAST [103]. A

given GPCR sequence is hence predicted into the class to which its most similar

GPCR sequence belongs. However, as the pairwise sequence similarities get lower,

such an alignment-based method would rarely yield satisfactory predictions. For

instance, when applied to the dataset GDFL for the prediction at the first level, the

BLAST-based method achieved the overall accuracy of 74.58%, which is 14.92%

lower than that from PCA-GPCR. Note that PCA-GPCR is instead an alignment-

free method. The above experimental results therefore show that an alignment-free

method is very promising in the high accurate prediction of GPCR classes.
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5.3.5 Comparison with Previous Methods

In order to demonstrate the superior performance of PCA-GPCR, we make compar-

isons with a number of previous methods. Depending on the predictive capability

of previous methods, the comparisons are made at a single level and at the first

two levels, as follows.

5.3.5.1 Comparison at a Single Level

Because many previous methods predicted GPCR at a single level [164–167], we

also predict GPCR at just one level in order to compare with them fairly. Three

benchmark datasets that contain a proportion of high-similarity sequence pairs,

D167, D566 and D1238, are used here (Please see Section 5.2.1 for the details of

these datasets). The first two datasets comprise GPCRs from the fourth level,

and the last one is composed of GPCRs from the second level. The resulting

prediction accuracies for these datasets are listed in Table 5.1. We can see that the

overall accuracies for three datasets are all above 97%. To be specific, the overall

accuracies of 98.2%, 97.88%, and 99.76% are achieved for the datasets D167, D566,

and D1238, respectively. They are slightly higher than the accuracies reported in

Refs. [162, 164–168, 171]. Indeed, these prediction accuracies are all very high and,

in some cases, has reached 100% or nearly 100%.

Because the dataset D167 has been widely used to test various methods, it is

adopted here for further detailed comparison with the other five methods [162, 165,

167, 168, 171]. The experimental results are presented in Table 5.5. It is evident

from the table that our method achieved the highest overall prediction accuracy.

Our method performs better than any other tested methods in the predictions of

the GPCR sub-subfamilies except for the sub-subfamily Serotonin.
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Table 5.5: Comparison with other methods at the fourth level based on the D167 dataset.

The results of other methods are taken directly from the corresponding references. The

best results are highlighted in bold.

Reference Acetylcholine Adrenoceptor Dopamine Serotonin Overall

[165] 67.74 88.64 81.58 88.89 83.23
[168] 90.3 86.4 78.9 79.6 83.2
[167] 93.6 100 92.1 98.2 96.4
[162] 93.3 100 94.7 100 97.6
[171] 96.7 100 92.1 100 97.6
This chapter 100 100 94.74 98.15 98.2

5.3.5.2 Comparison with GPCR-CA at the First Two Levels

We further compare our method with GPCR-CA [84] on the dataset D365, which

comprises GPCRs from the second level. Unlike the datasets tested in the above

subsection, D365 contains almost no high-similarity sequence pairs. Note that the

GPCR-CA is able to predict GPCRs at the first two levels.

The prediction accuracies of both GPCR-CA and PCA-GPCR at the first and

second levels are listed in Table 5.6 and Table 5.7, respectively. At the first level,

to distinguish GPCRs from non-GPCRs, our method achieves the overall accuracy

of 95.21%, which is 3.57% higher than that of GPCR-CA. At the second level, the

overall accuracy of our method improves over GPCR-CA by 9.04%. Meanwhile,

according to the prediction accuracies of individual families, our method performs

much better than GPCR-CA except for the rhodopsin-like family. It is also notice-

able that a substantial improvement of 86.95% (= 95.65%−8.70%) has been made

for the prediction of the fungal pheromone family. We check this in detail and find

that the reason for this is because the high similarity scores (in the intimate sorting

algorithm) between the 32D vectors (formed by the 32 principal components) that

are used to represent the GPCRs in this family.

GPCR-CA extracts 24 features, including 20 features from amino acid compo-
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Table 5.6: Comparison with GPCR-CA in identifying the GPCRs and non-GPCRs. The

results of GPCR-CA are directly taken from the Ref.[84]. The best results are highlighted

in bold.

Protein type GPCR-CA[84] This chapter

GPCR 92.33 96.99
Non-GPCR 90.96 93.42
Overall 91.64 95.21

Table 5.7: Comparison with GPCR-CA for the dataset D365 in predicting GPCR fam-

ilies. The results of GPCR-CA are directly taken from the Ref.[84]. The best results are

highlighted in bold.

Family GPCR-CA This chapter

Rhodopsin-like 96.55 95.69
Secretin-like 74.36 87.18
Metabotrophic/glutamate/pheromone 81.82 88.64
Fungal pheromone 8.70 95.65
CAMP receptor 60 100
Frizzled/smoothened 47.06 64.71
Overall 83.56 92.60
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sition and four features from cellular automaton image [84]. While the last four

features were reported to be able to reveal the protein’s overall sequence patterns,

only four features might not suffice to reveal overall sequence patterns completely.

On the contrary, our method explores the amino acid sequences comprehensively to

gain as much information from the protein primary sequences as possible. Both the

amino acid composition and the dipeptide composition are utilized in our method

and, moreover, the important sequence-order information and a variety of physic-

ochemical properties of amino acids are carefully explored as well. We believe that

it is this comprehensive set of features that lead our method to a higher prediction

accuracy.

5.4 Conclusions

In this chapter, we have proposed a new method called PCA-GPCR to predict

GPCRs at five levels. In this method, a comprehensive set of 1497 sequence-

derived features are generated from five groups of descriptors — that is, amino

acid composition and dipeptide composition, autocorrelation descriptors, global de-

scriptors, sequence-order descriptors, and Chou’s pseudo amino acid composition

descriptors. These features are able to capture the information about the amino

acid composition, sequence order as well as various physicochemical properties of

proteins. Because of the high dimensionality of the feature space, the principal

component analysis is hence used to reduce the dimension from 1497 to 32. The

resulting 32-dimensional feature vectors are finally fed into a simple yet powerful

intimate sorting algorithm for the prediction of GPCRs at five levels.

Evaluating on the datasets constructed from the latest version of the GPCRDB

database, the overall accuracies of our method from the first level to the fifth level

are 99.5%, 88.8%, 80.47%, 80.3%, and 92.34%, respectively. We further test and

133



compare our method with other methods based on four benchmark datasets widely

used in the literature. At the second level, for a dataset containing 1238 GPCRs,

the overall accuracy of our method reaches 99.76%. At the fourth level, for two

different datasets that contain 167 and 566 GPCRs, the overall accuracies of our

method reach up to 98.2% and 97.88%, respectively. They are all higher than

those of other methods under comparison. At the first two levels, we further test

our method on a low-similarity dataset (with only a few sequence pairs of more

than 40% sequence similarity). The overall accuracies thus achieved at the first

level and second level are 95.21%, 92.6%, respectively, which are 3.57% and 9.04%

higher than those of the other compared method GPCR-CA.

We conclude that the high prediction accuracy of the proposed method is at-

tributed to the comprehensive set of features that we constructed from five groups

of descriptors. It is anticipated that our method could contribute more to the char-

acterization of novel proteins and gain more insights into their functions, thereby

facilitating drug discovery. A web server that predicts GPCRs at five levels with our

proposed method is freely available at http://www1.spms.ntu.edu.sg/~chenxin/

PCA_GPCR/.
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Chapter 6

A Consensus Approach to

Predicting Protein Contact Map

via Logistic Regression †

6.1 Introduction

As mentioned in Chapter 1, sequence-based prediction of contact map has attracted

great attention in the past years. Many computational methods are already pro-

posed to predict protein contact map. These methods can be classified into two

major categories: (i) methods based on correlated mutations [9, 10, 185–187], and

(ii) methods based on machine learning [11, 12, 14, 29, 188–191]. There also exist

some other methods, e.g., based on template-threading [190, 192] and integer lin-

ear optimization [193]. However, the accuracy of contact prediction, especially for

† This chapter is mainly based on an article published in Lecture Notes in Bioinformatics as:
Jian-Yi Yang and Xin Chen, A consensus approach to predicting protein contact map via logistic
regression, Lecture Notes in Bioinformatics, Springer Verlag, 6674:136-147, 2011.
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long-range contact prediction, is still rather low [92, 194].

In this chapter, we intend to improve the accuracy of contact map prediction by

using a consensus approach, which means that the prediction results from several

existing predictors will be consolidated. To our best knowledge, not much effort has

been made to develop a consensus contact prediction method except the following

two approaches. Confuzz is a consensus approach based on the weighted average

of the probability estimates from individual predictors (please refer to the website

of CASP9). The other approach is based on integer linear programming [195].

We instead choose to tackle this problem in a different way. We consolidate the

prediction results from individual predictors by using a logistic regression analysis

under the machine learning framework. Tests on the CASP9 dataset as well as

on another large dataset show that the proposed method not only outperforms its

component predictors but also the simple averaging and voting schemes.

6.2 Materials and Methods

6.2.1 Datasets

In this chapter, two datasets are used to test the proposed method, which are down-

loadable at http://www3.ntu.edu.sg/home2008/YANG0241/LRcon/. The first one

was collected from the targets in the recent CASP9 experiment. In CASP9, there

are 28 participating groups in the contact prediction category. As one group might

have several contact prediction models for the same target, here we selected the

results only from the “model 1” of each predictor. In addition, we removed from

further consideration those groups that made predictions for just a few targets and

those targets that were predicted by just a few participating groups. As a result,

we obtained 80 targets and 23 predictors. For the sake of convenience, we denote

this dataset by D80. Finally, the true contact map for each target was derived from
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its 3D structure provided on the CASP9 website.

The second dataset was harvested from the PDB library [2] using the selected

protein chains from the latest (May 2010) PDB select 25% list [196]. Originally,

there are 4869 protein chains in this list. A subset was extracted as follows. First,

those chains with length less than 50 and/or coordinates information missing for

some amino acids were removed. Second, those with pair-wise sequence similarity

higher than 25% and those with sequence similarity to the NNcon training set [191]

higher than 25% were further removed. This filtering process ends up with a total

of 856 chains. We denote this dataset by D856.

6.2.2 Contact Definition

Two residues are defined to be in contact if the Euclidean distance between the 3D

coordinates of their Cα atoms is less than or equal to 8 Å [12, 190, 191]. The CASP

experiments [194], however, used Cβ atoms instead of Cα atoms in determining two

residues in contact. In this study, we choose the former definition because (i) it is

a definition close to the one used in 3D structural modeling [197] and (ii) it was

already used by two methods (i.e., [190] and [191]) that will be included in our

consensus predictor.

For a protein with length L, the (true) contact information for all pairs of

residues can be represented by a matrix C = (cij)L×L, where cij = 1 if the residues

i, j are in contact and cij = 0 otherwise. This matrix is often called a contact map.

It is in fact a 2D description of protein structure, and a specific example of contact

map is given in Figure 6.1.

Depending on the separation of two residues along the sequence, the residue-

residue contact is classified into three classes: short-range contact (separation 6 ≤

s < 12), medium-range contact (12 ≤ s < 24) and long-range contact (s > 24).

Contacts for those residues too close along the sequence (s < 6) are omitted.
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Figure 6.1: An example of contact map at sequence separation s ≥ 6. The left panel is
a cartoon visualization of the 3D structure of the protein (PDB ID: 2NWF). The right
panel is the contact map of this protein. A blue point in the figure indicates that the
pair of residues are in contact. Note that the map is symmetrical with respect to the
black main diagonal line.

6.2.3 Performance Evaluation

The predicted contact map PC = (pcij)L×L is a matrix of probability estimates.

The element pcij is the estimate for the contact probability of the residues i and

j. In general, the top λL predictions (sorted by the probability estimates) are

selected, which are then compared with the true contact map for evaluation. In

the literature [13, 14, 29, 191, 194], the value of λ is usually set to be 0.1 or 0.2

and two metrics are used to evaluate the predictions: accuracy (Acc) and coverage

(Cov).

Acc =
TP

TP + FP
, Cov =

TP

TP + FN
, (6.1)

where TP, FP, TN and FN, are true positive, false positive, true negative and false

negative predictions, respectively. A residue pair is said to be a positive (resp.,

negative) pair if the two residues are (resp., are not) in contact.

In addition, a more robust metric called F-measure (Fm) is also used, which is
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basically a harmonic mean of precision and recall as defined below:

Fm = 2 ·
Acc × Cov

Acc + Cov
(6.2)

6.2.4 Consensus Prediction via Logistic Regression

Suppose there are p predictors, then we have p predicted contact maps for each

protein. We attempt to combine these p maps to make a consensus prediction.

The first difficulty appears that the output of some predictors (e.g., FragHMMent

[11]) is not the whole map but part of the map. To overcome it, the probability

estimates for those missing predictions are simply set to be 0 (i.e., not in contact).

A direct and simple way to combine the p predicted contact maps is to average

over the p probability estimates for each residue pair and then select the top λL

predictions. We call this method the averaging scheme. Another way is to first

select the top λL predictions from each predicted map and then use these selected

predictions to vote. The residue pairs with votes in the top λL positions are then

output to be the top λL predictions. We call this method the voting scheme.

In this chapter, we propose to combine the p predicted contact maps via a lo-

gistic regression analysis. Logistic regression (LR) is a non-linear regression model

in particular for a binary response variable [198]. It estimates the posterior prob-

abilities by using the following formula:

P (Yi = 1|Pi) =

exp(α +
p

∑

j=1

βjpij)

1 + exp(α +
p

∑

j=1

βjpij)

(6.3)

where P (Yi = 1|Pi) is the posterior probability of the i-th residue pair being in

contact given Pi. Pi = (pi1, pi2, · · · , pip) is a probability vector for the i-th residue

pair, of which each component pij is the probability estimate of the component
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predictor j on the i-th residue pair. The constants α and βj (j = 1, 2, · · · , p)

are the regression coefficients whose values can be estimated with a training set

through Quasi-Newton optimization [198]. We used the implementation of LR in

the software package Weka [199] (with default parameters) for our experiments.

6.2.5 Overall Architecture

Figure 6.2 depicts the overall architecture of our proposed method named LRcon.

It comprises two major procedures: training and testing. In the training procedure,

a logistic regression model (LR-Predictor) is built up with a training set of protein

chains. In the testing procedure, a query amino acid sequence is first input into p

individual predictors and, for each predictor, the top λL predictions are selected.

Then, we take the union of all the selected residue pairs for further consideration

(Please refer to Section 6.2.6 for more details). For each selected pair, the proba-

bility estimates of the p predictors are used to form a feature vector, which is then

fed into the LR-Predictor for consensus contact prediction. Finally, the top λL

contact predictions are selected as our consensus predictions.

For the D80 datasets, we use 23 predictors from CASP9 to build our consensus

predictor. For the D856 dataset, only three predictors (SVM-SEQ (RR204) [190],

NNcon (RR119) [191] and FragHMMent (RR158) [11]) are instead used, because

there is no software available for the other predictors except SVMcon (RR002) [12].

SVMcon is excluded because it was developed based on the same classification

algorithm as SVM-SEQ, so their predicted results are expected to have a large

overlap.
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Figure 6.2: The overall architecture of LRcon. In the training procedure, the consensus
predictor is built upon p individual predictors M1,M2, · · · ,Mp. The set TD is used to
store the training feature vectors of the selected residue pairs. During the testing, the
prediction result is stored in rrLR

i = (rLR
i,1 , rLR

i,2 , pLR
i ), where 1 ≤ rLR

i,1 , rLR
i,2 ≤ L are the

indices of the predicted residue pair i, and pLR
i is its probability estimate. k1, · · · , kλL

are the indices of the top λL predictions.
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6.2.6 Selection of Residue Pairs

Given a protein of length L, the total number of residue pairs is (L+1−s)×(L−s)/2

for sequence separation at least s. If all these residue pairs are used, we would not

be able to obtain a reliable LR-Predictor, due to at least two factors: (1) A large

number of training samples does not allow to estimate the regression coefficients in

a reasonable amount of computing time; (2) Most of the residue pairs belong to the

negative class, so that a small proportion of positive samples make the predictions

be severely biased against the positive class. This would inevitably discount the

performance of LRcon if we choose to work this way.

Here we propose to use the union of the residue pairs corresponding to the top

λL predictions from each of the p component predictors. For a protein of length

L, we denote the set of the top λL residue pairs returned by the k-th predictor

by Rk = {rk
1 , r

k
2 , · · · , rk

λL}, where rk
i = (rk

i,1, r
k
i,2) represents a residue pair with

1 ≤ rk
i,1, r

k
i,2 ≤ L. The residue pairs selected for this protein to train and test our

LR-Predictor are then taken from the set

RLR =

p
⋃

k=1

Rk (6.4)

6.3 Results

In the following, the experimental results are evaluated on the top 0.1L and 0.2L

predictions at sequence separations 6 ≤ s < 12, 12 ≤ s < 24 and s ≥ 24.
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6.3.1 Results on the CASP9 Dataset
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Figure 6.3: Histogram of the accuracy, coverage and F-measure for the top 0.1L pre-
dictions of LRcon and other predictors on the CASP9 dataset D80. The predictor codes
for the component predictors are directly taken from CASP9. Ave and Vot represent the
averaging and voting schemes, respectively.

In order to estimate the regression coefficients of LR and to assess the perfor-

mance of LRcon, we applied 10-fold cross-validation to the CASP9 dataset D80.

For the top 0.1L predictions, Figure 6.3 shows the average accuracy, coverage,

and F-measure of LRcon, its component predictors, and the averaging and voting

schemes (refer to Section 6.2.4) for a comprehensive comparison. It is evident from

the figure that the averaging and voting schemes could perform better than most

component predictors, but never all in any cases. On the contrary, the LRcon

is able to outperform all the component predictors and the averaging and voting

schemes as well. In addition, we can see from the F-measures that the prediction
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of long-range contact is much more challenging than the prediction of short-rang

and medium-range contacts. For the top 0.2L predictions, LRcon also outperforms

all the component predictors and the averaging and voting schemes. The detailed

results are presented in Figure 6.4.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

 

 

R
R

00
2

R
R

04
3

R
R

08
0

R
R

08
1

R
R

10
3

R
R

11
4

R
R

11
9

R
R

13
8

R
R

14
7

R
R

15
8

R
R

20
2

R
R

20
4

R
R

21
4

R
R

21
5

R
R

23
6

R
R

24
4

R
R

26
2

R
R

35
7

R
R

37
5

R
R

39
1

R
R

42
2

R
R

49
0

R
R

05
1

A
ve

V
ot

LR
co

n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

C
ov

er
ag

e
 

 

R
R

00
2

R
R

04
3

R
R

08
0

R
R

08
1

R
R

10
3

R
R

11
4

R
R

11
9

R
R

13
8

R
R

14
7

R
R

15
8

R
R

20
2

R
R

20
4

R
R

21
4

R
R

21
5

R
R

23
6

R
R

24
4

R
R

26
2

R
R

35
7

R
R

37
5

R
R

39
1

R
R

42
2

R
R

49
0

R
R

05
1

A
ve

V
ot

LR
co

n

6≤s<12

12≤s<24

s≥24

6≤s<12

12≤s<24

s≥24

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
−

m
ea

su
re

 

 

R
R

00
2

R
R

04
3

R
R

08
0

R
R

08
1

R
R

10
3

R
R

11
4

R
R

11
9

R
R

13
8

R
R

14
7

R
R

15
8

R
R

20
2

R
R

20
4

R
R

21
4

R
R

21
5

R
R

23
6

R
R

24
4

R
R

26
2

R
R

35
7

R
R

37
5

R
R

39
1

R
R

42
2

R
R

49
0

R
R

05
1

A
ve

V
ot

LR
co

n

6≤s<12

12≤s<24

s≥24

Figure 6.4: Histogram of the accuracy, coverage and F-measure for the top 0.2L predic-
tions of LRcon and other predictors on the CASP9 dataset D80.

We assess the statistical significance of the prediction differences between LR-

con and each other predictor as follows. The test method is similar to what used

in Chapter 4. First, 80% protein chains are selected at random from the original

dataset to construct a (sub)dataset. This is repeated 100 times so as to obtain

100 different datasets. Then, we collected the prediction results of all the tested

predictors from these 100 datasets. Finally, Shapiro-Wilk test is used to determine

if the F-measure values of the 100 datasets are normally distributed. If they follow
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normal distribution, the paired t-test is applied to assess their statistical signifi-

cance on the F-measure differences; otherwise, the non-parametric Wilcoxon rank

sum test is used. We summarized in Table 6.1 the experimental results tested on

the CASP9 dataset.

Table 6.1: The results of the statistical significance tests for the F-measures of LRcon
and other predictors on the D80 dataset. The ‘+’ /‘-’ indicates that the method in a
given column is significantly better/worse than the method in a given row with p-value <
0.001, and ‘=’ means that the results are not shown statistically different. ‘A’, ‘V’, and
‘L’ in the table represent the averaging scheme, voting scheme, and LRcon, respectively.

Top 0.1L predictions Top 0.2L predictions

Predictor 6 ≤ s < 12 12 ≤ s < 24 s ≥ 24 6 ≤ s < 12 12 ≤ s < 24 s ≥ 24

A V L A V L A V L A V L A V L A V L

RR002 + + + + + + + + + + + + + + + + + +
RR043 + + + + + + + + + + + + + + + + + +
RR080 + + + + + + + + + + + + + + + + + +
RR081 + + + + + + + + + + + + + + + + + +
RR103 + + + + + + + + + + + + + + + + + +
RR114 + + + + - + + - + + + + + - + + - +
RR119 + + + + + + + + + + + + + + + + + +
RR138 + + + + + + + + + + + + + + + + + +
RR147 + + + + + + + + + + + + + + + + + +
RR158 + + + + + + + + + + + + + + + + + +
RR202 + + + + + + + + + + + + + + + + + +
RR204 + + + + + + + + + + + + + + + + + +
RR214 - - + - - + = - + - - + - - + - - +
RR215 + + + + + + + + + + + + + + + + + +
RR236 + + + + - + + - + + + + + - + + - +
RR244 + + + + + + + + + + + + + + + + + +
RR262 + + + + - + + - + + + + + - + + - +
RR357 + + + + + + + + + + + + + + + + + +
RR375 + + + + + + + + + + + + + + + + + +
RR391 - - + - - + - - + - - + - - + - - +
RR422 + + + + + + + + + + + + + + + + + +
RR490 - - + - - + - - + - - + - - + - - +
RR051 + + + + + + + + + + + + + + + + + +
A = - + = - + = - + = - + = - + = - +
V + = + + = + + = + + = + + = + + = +

We can observe from the above tests that: (1) The averaging scheme appears to

perform better than the voting scheme, (2) Neither the averaging nor voting scheme

achieve a better prediction than all the component predictors (in particular, e.g.,
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RR391 and RR490), and (3) LRcon outperforms all the other predictors, including

the averaging and voting schemes.

6.3.2 A Good CASP9 Contact Prediction Example

A good CASP9 example that where LRcon outperforms all the other predictors is

depicted in Figure 6.5. The true contact map and the predicted contact maps (top

0.2L predictions) at sequence separation s ≥ 24 of five best CASP9 predictors and

LRcon are shown in Figure 6.5 as well. From the figure, we can see that the five best

CASP9 predictors correctly identify most of the contacts (at top 0.2L predictors)

for this target. LRcon further improves the predictions of these predictors, yielding

the highest accuracy (0.904), coverage (0.155), and F-measure (0.265).

6.3.3 Results on the D856 Dataset

Because the size of the D856 dataset is significantly larger than that of the D80

dataset, we adopt here a different way, rather than using 10-fold cross-validation,

to evaluate the prediction results of LRcon as follows. First, the 856 protein chains

in the D856 dataset are partitioned at random into a training and a test dataset

of equal size (i.e., 428 protein chains in each). Note that the training and test

datasets are independent each other, so no sequence in the test dataset has over

25% sequence similarity with any sequences in the training dataset. Second, three

predictors, SVM-SEQ[190], NNcon[191], and FragHMMent[11], are used to make

predictions on both the training and test datasets. Third, we use the predictions of

these three predictors on the training dataset to estimate the regression coefficients

of LR. Finally, the performance of LRcon is assessed on the test dataset.

The experimental results of LRcon and other predictors on the independent

test dataset are listed in Tables 6.2 and 6.3. We can see from the tables that
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Figure 6.5: A good contact prediction example. The top panel is a cartoon visualization
of the 3D structure of the CASP9 target T0532. The lower panels are the true contact
map and predicted contact maps at sequence separation s ≥ 24. The blue points in the
upper triangles represent the true contact map. The red points in the lower triangles
represent the top 0.2L predictions of five CASP9 predictors and LRcon.
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Table 6.2: Comparison of accuracies, coverage and F-measures on the independent test
(sub)dataset of the D856 dataset for the top 0.1L predictions. The best results are shown
in bold.

6 ≤ s < 12 12 ≤ s < 24 s ≥ 24

Predictor Acc Cov Fm Acc Cov Fm Acc Cov Fm

FragHMMent .365 .116 .176 .306 .079 .126 .275 .026 .047
NNcon .591 .187 .284 .455 .118 .187 .283 .026 .048
SVM-SEQ .610 .193 .293 .483 .125 .199 .366 .034 .062
Ave .529 .167 .254 .415 .108 .171 .365 .034 .062
Vot .563 .178 .271 .443 .115 .182 .314 .029 .053
LRcon .650 .206 .313 .531 .138 .218 .415 .039 .071

Table 6.3: Comparison of accuracies, coverage and F-measures on the independent test
(sub)dataset of the D856 dataset for the top 0.2L predictions. The best results are shown
in bold.

6 ≤ s < 12 12 ≤ s < 24 s ≥ 24

Predictor Acc Cov Fm Acc Cov Fm Acc Cov Fm

FragHMMent .340 .219 .267 .272 .143 .188 .275 .052 .088
NNcon .478 .308 .374 .376 .198 .260 .235 .045 .075
SVM-SEQ .508 .327 .103 .407 .215 .281 .398 .323 .061
Ave .377 .243 .295 .316 .167 .218 .288 .055 .092
Vot .474 .305 .371 .371 .195 .256 .289 .055 .092
LRcon .538 .346 .421 .443 .234 .306 .355 .067 .113
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LRcon outperforms all the other predictors in terms of accuracy, coverage and

F-measure. For example, LRcon achieves an average accuracy of 41.5% for the

top L/10 long-range contact predictions, which is about 5% higher than its best-

performed component predictor (i.e., SVM-SEQ). We also conduct a statistical

significance test in the same way as we did earlier on the CASP9 dataset, and

the results are shown in Table 6.4. It can be seen that the simple averaging and

voting schemes perform better than NNcon and FragHMMent, but worse than

SVM-SEQ. On the other hand, LRcon once again consistently outperforms all the

other predictors, including the simple averaging and voting schemes.

Table 6.4: The results of the statistical significance tests for the F-measures of LRcon
and other predictors on the independent test (sub)dataset of the D856 dataset. ‘A’,
‘V’, and ‘L’ in the table represent the averaging scheme, voting scheme, and LRcon,
respectively.

Top 0.1L predictions Top 0.2L predictions

Predictor 6 ≤ s < 12 12 ≤ s < 24 s ≥ 24 6 ≤ s < 12 12 ≤ s < 24 s ≥ 24

A V L A V L A V L A V L A V L A V L

FragHMMent + + + + + + + + + + + + + + + + + +
NNcon - - + - - + + + + - - + - - + + + +
SVM-SEQ - - + - - + - - + - - + - - + - - +
A = + + = + + = - + = + + = + + = + +
V - = + - = + + = + - = + - = + - = +

6.4 Discussions

In this section, we discuss how the performance of LRcon is affected by the fol-

lowing three factors: the residue pair selection, the component predictors and the

classification algorithm.
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6.4.1 The Impact of Residue Pair Selection

For each protein chain, we have used formula (6.4) to select the residue pairs

for training and testing LRcon. In order to demonstrate the effectiveness of this

filtering process, we tested the performance of LRcon when all the residue pairs

satisfying the sequence separation condition were used. Because it takes too much

computing time and computer memory, we just tested the results of LRcon for the

top 0.1L predictions at sequence separation s ≥ 24 using the CASP9 dataset D80.

In this case, the resulting average accuracy of LRcon decreases to 0.806, which is

0.026 lower than that obtained with the filtering process employed (see Figure 6.3).

Therefore, it is necessary to train LRcon with a properly selected subset of residue

pairs in order to achieve more accurate contact map prediction.

6.4.2 The Impact of Individual Predictors

The major reason of LRcon’s superior performance is believed that its compo-

nent predictors can make complementary predictions to each other. We say two

predictors M1 and M2 are complementary if their correct predictions (denoted re-

spectively by TP1 and TP2) among the top λL predictions are not completely the

same or one is not a subset of the other. We have the following two observations.

First, the sizes of TP1 and TP2 should be as large as possible (≤ λL) for LRcon

to be accurate enough. Second, in order to improve over M1 and M2 by combining

them, TP1 and TP2 should not be the same. Otherwise, we would not be able to

make any improvement by combining them; instead, the predictions might even

become worse. However, we have not developed a metric to quantitatively measure

the complementarity between two predictors in this chapter.

We conduct the experiments on the CASP9 dataset D80 to further confirm the

above observations as follows. As mentioned in Section 6.2.1, when we selected
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component predictors, only “model 1” of each predictor was used in our previous

experiments. For some participating groups there are several prediction models.

For instance, the participating group RR114 in CASP9 have five prediction models

for each target. We looked into these five models and found that their prediction

results were in fact very similar, indicating that these models are not complemen-

tary to each other. When all models were used for each participating group in

CASP9, we obtained 28 predictors in total. Using these predictors as component

predictors of LRcon, we found that the predictions became worse than before. For

example, the accuracy value decreased slightly from 0.832 to 0.827 for the case of

the top 0.1L predictions at sequence separation s ≥ 24. Therefore, one possible

way to further improve the performance of LRcon is to select just those accurate

while complementary predictors as component predictors. To this end, some met-

rics might be needed to quantify the complementary property among individual

predictors.

6.4.3 The Impact of Classification Algorithm

Besides the logistic regression, the following four classification algorithms are ex-

perimented to explore the impact of a classification algorithm on the performance

of LRcon. They are random forest (RF), k-nearest neighbor (k-NN), Naive Bayes

(NB), and J48. The details about these algorithms can be obtained from Weka

[199]. Because the running time of the SVM algorithm is much more than others

and we can not get the results from it in a reasonable time, we do not discuss this al-

gorithm here. We chose the algorithm implementations in Weka in our subsequent

experiments. Except for k-NN, where k was set to be 10 to produce probability

estimates, the parameters for RF, NB, and J48 were all set to be their respective

default values.

The experimental results of LR and the other four algorithms on the datasets
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D80 and D856 are presented in Tables 6.5, 6.6, 6.7, and 6.8. We can see that the

accuracies, coverage and F-measures of LR are consistently higher than those of

any other algorithm on the D80 dataset. When tested on the the D856 dataset, LR

and NB achieved comparable results and better than the other three algorithms.

These observations lead to our selection of LR as the classification algorithm in

this chapter.

Table 6.5: Comparison of accuracies, coverage and F-measures of five classification
algorithms on the CASP9 dataset D80 for the top 0.1L predictions. The best results
are shown in bold.

6 ≤ s < 12 12 ≤ s < 24 s ≥ 24

Algorithm Acc Cov Fm Acc Cov Fm Acc Cov Fm

RF .824 .283 .422 .810 .219 .345 .816 .069 .127
NB .769 .264 .393 .756 .204 .322 .780 .066 .122
J48 .736 .253 .377 .724 .196 .308 .741 .061 .113
KNN .797 .274 .407 .777 .210 .330 .799 .067 .124
LR .839 .288 .429 .822 .222 .350 .832 .070 .129

Table 6.6: Comparison of accuracies, coverage and F-measures of five classification
algorithms on the CASP9 dataset D80 for the top 0.2L predictions. The best results
are shown in bold.

6 ≤ s < 12 12 ≤ s < 24 s ≥ 24

Algorithm Acc Cov Fm Acc Cov Fm Acc Cov Fm

RF .689 .479 .565 .721 .394 .510 .786 .134 .228
NB .654 .454 .536 .656 .359 .464 .744 .126 .216
J48 .658 .458 .540 .680 .372 .481 .741 .126 .215
KNN .685 .476 .562 .707 .386 .500 .773 .131 .225
LR .710 .493 .582 .727 .398 .514 .799 .136 .232
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Table 6.7: Comparison of accuracies, coverage and F-measures of five classification
algorithms on the independent test (sub)dataset of the D856 dataset for the top 0.1L
predictions. The best results are shown in bold.

6 ≤ s < 12 12 ≤ s < 24 s ≥ 24

Algorithm Acc Cov Fm Acc Cov Fm Acc Cov Fm

RF .594 .188 .286 .464 .120 .191 .352 .033 .060
NB .650 .206 .313 .531 .138 .218 .406 .038 .069
J48 .621 .197 .299 .492 .127 .202 .394 .037 .067
KNN .623 .197 .299 .488 .126 .201 .383 .036 .065
LR .650 .206 .313 .531 .138 .218 .415 .039 .071

Table 6.8: Comparison of accuracies, coverage and F-measures of five classification
algorithms on the independent test (sub)dataset of the D856 dataset for the top 0.2L
predictions. The best results are shown in bold.

6 ≤ s < 12 12 ≤ s < 24 s ≥ 24

Algorithm Acc Cov Fm Acc Cov Fm Acc Cov Fm

RF .485 .313 .380 .388 .205 .268 .312 .059 .099
NB .540 .348 .423 .440 .232 .304 .349 .066 .111
J48 .506 .326 .396 .414 .218 .286 .323 .061 .103
KNN .508 .327 .398 .404 .213 .279 .325 .062 .104
LR .538 .346 .421 .443 .234 .306 .355 .067 .113
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6.5 Conclusions

Prediction of protein contact map plays an important role in the prediction of

protein 3D structure. However, the accuracy of current computational methods is

rather low. In this chapter, we explored the possibility of improving the accuracy

of an individual protein contact predictors by using a consensus approach.

Under the machine learning framework, an improved sequence-based protein

contact map prediction method, named LRcon, has been developed based on lo-

gistic regression. LRcon is built upon the prediction results from its component

contact map predictors. For each residue pair, the probability estimates of the

component predictors are used to form a feature vector, which is then fed into the

logistic regression-based algorithm to make a consensus prediction. Logistic re-

gression models are trained and assessed under the machine learning framework by

using independent training and test datasets. Experimental results on the CASP9

dataset and another large-sized dataset containing 856 protein chains show that

LRcon can make statistically significant improvements over its component predic-

tors and the simple averaging and voting schemes as well. We believe that these

improvements made by LRcon are mainly attributed to the application of a consen-

sus approach to the complementary predictors and the logistic regression analysis

under the machine learning framework.
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Chapter 7

Conclusion

7.1 Summary

In the post-genomic era, the gap between the number of sequence-known pro-

teins and the number of structure-known proteins is widening rapidly. Developing

efficient computer-based algorithms for predicting 3D structures from sequences

promises to bridge this gap to a large extent. In this dissertation, we have pre-

sented several machine learning algorithms that aimed at solving the following

four problems: (1) protein structural class prediction, (2) taxonomy-based fold

recognition, (3) hierarchical classification of GPCRs, and (4) protein contact map

prediction. In the following, I summarize for each problem how the three aims

mentioned in Chapter 1 are fulfilled.

(1) For protein structural class prediction, we have used CGR and RQA to extract

features directly from the amino acid sequences and the predicted secondary

structure. They are relatively simple and very fast. We compared the proposed

method with the stat-of-the-art methods SCPRED and MODAS, showing that

our method has higher or comparable predictive accuracy. For public use, a

web server was provided at http://www1.spms.ntu.edu.sg/~chenxin/RKS_
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PPSC/.

(2) For taxonomy-based fold recognition, we extract a comprehensive set of 137

features from the PSI-BLAST and PSIPRED profiles. Because this method

relies on the alignment against the NCBI’s Non Redundant database, it runs

relatively slow. The majority of running time is spent in the generation of the

profiles. We have comprehensively compared our method with ten taxonomic

fold prediction methods and nine threading methods, showing our method per-

forms better than other taxonomic methods and is comparable with threading

methods. For public use, a web server was provided at http://www1.spms.

ntu.edu.sg/~chenxin/TAXFOLD/.

(3) For hierarchical classification of GPCRs, a total of 1497 features are gener-

ated directly from the amino acid sequence, followed by PCA to reduce the

dimensionality. Because our method is an alignment-free method and a very

simple yet powerful classifier (intimate sorting) is used, it runs very fast and

can make predictions for one protein in less than one second. Comparison with

other methods shows the proposed method perform consistently well on all the

tested datasets. For public use, a web server was provided at http://www1.

spms.ntu.edu.sg/~chenxin/PCA_GPCR/.

(4) For protein contact map prediction, because our consensus method explores the

outputs from several individual predictors with logistic regression, its running

time mainly depends on its component predictors. Once the results from other

predictors are in hand, our method can make consensus prediction for one

protein in a few seconds. Comparison shows that our method is statistically

better than its component predictors. Because some component predictors

(e.g., SVM-SEQ) often take several hours or even longer to process a protein

of about 300 amino acids, no web server is provided for our consensus method.
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7.2 Technical Contributions

The technical contributions of this dissertation include:

• Representation of each amino acid sequence by two time series based on CGR.

• Application of RQA to the time series for feature extraction, which can avoid

loss of sequence-order information to some extent.

• Application of CGR and RQA techniques to the predicted secondary struc-

ture.

• Development of the K-string based information entropy of the predicted sec-

ondary structure.

• Segment-based analysis of the predicted secondary structure to characterize

the spatial arrangements of α helices and β strands and differentiate between

the α + β and α/β classes.

• Development of a web server, RKS-PPSC, for protein structural class predic-

tion (http://www1.spms.ntu.edu.sg/~chenxin/RKS_PPSC/).

• Creation of five datasets (RDD, EDD, F95, F194, F710) for the assessment

of fold prediction (see Appendix A).

• Dealing with the negative elements of PSSMs by applying an inverse algo-

rithmic operation rather than simply replacing all of them by zero.

• Extraction of features from the consensus sequences (which retains richer

sequence evolution information) constructed from PSSMs rather than from

their respective amino acid sequences.
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• Division of the PSI-BLAST profiles into several non-overlapping fragments

which allows for the depiction of local characteristics (e.g., at N-terminus and

C-terminus).

• Application of the autocovariance transformation to the probability sequences

of PSIPRED profiles for feature extraction.

• Development of a web server, TAXFOLD, for protein fold prediction (http://

www1.spms.ntu.edu.sg/~chenxin/TAXFOLD/).

• Comprehensive comparison of TAXFOLD with ten taxonomic fold prediction

methods and nine threading methods.

• Creation of a dataset (GDFL) at five levels for assessment of hierarchical

classification of GPCRs (see Appendix A).

• Development of a hierarchical classifier to comprehensively predict GPCRs

at five levels, till the subtype level of the GPCRDB information system.

• Development of a web server, PCA-GPCR, for GPCRs classification (http://

www1.spms.ntu.edu.sg/~chenxin/PCA_GPCR/).

• Creation of a large non-redundant dataset (D856) for the assessment of pro-

tein contact map prediction (see Appendix A).

• Development of a logistic regression based consensus predictor for protein

contact map prediction.
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7.3 Limitations and Future Work

The studies performed in this dissertation contribute to the improved prediction of

several structural attributes of proteins. The limitations and several other related

research topics are summarized as follows.

1. For protein structural class prediction, only four major structural classes (α, β,

α+β, α/β) were considered in this thesis. As mentioned in Chapter 1, there are

other classes in SCOP but the majority of existing methods make predictions

for only four major structural classes. To the best of our knowledge, there

are only three methods working for seven classes [42, 57, 200]. However, the

prediction accuracies for some classes are relatively low. For example, only 58%

prediction accuracy is reported for the membrane proteins class [57], which

is an important class of proteins acting as the targets of many drugs [160].

The major reason shall be due to the very small number of samples in these

classes. With the PSI:Biology phase and the technical advance in structure

determination, such as X-ray crystallography and NMR spectroscopy, more

and more protein structures will become available in the PDB library and the

SCOP database. It then allows us to test whether the prediction methods

proposed in this dissertation can still work equally well on a large number of

structural classes, or instead a totally new method is desired.

2. For taxonomy-based protein fold recognition, there are more than 1000 different

folds in SCOP (V1.75) and the number of folds considered in this thesis is at

most 710. Satisfactory results (about 80% overall accuracy) were achieved when

the number of folds considered is less than 200. However when we consider 710

folds, the accuracy of our method decreases to about 68.1%, and even worse

results are expected if all the folds in SCOP are considered. Therefore, it
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is very challenging to develop a taxonomic fold recognition method that can

make highly accurate prediction for a large number of folds being considered.

In addition, it is interesting to see if fold recognition can be enhanced by a

mixed approach of taxonomic fold recognition and template-based threading.

Some related research is in progress.

3. For hierarchical classification of GPCRs, we can see that the accuracies of

PCA-GPCR in classifying some individual categories are still very low, which is

largely due to the small number of samples in the respective categories. It is an-

ticipated that these accuracies could be improved once more data from the up-

dated version of the GPCRDB database is used to train a reliable classifier. Be-

sides the classification, it is very interesting to investigate other GPCR-related

research, such as improving GPCR modeling [82] and studying the character-

istics of those pharmaceutically important human GPCRs (e.g., Adenosine,

Adrenergic, Chemokine, Dopamine, Histamine, and Muscarinic acetylcholine)

[75], in particular considering the pharmaceutical value of GPCRs.

4. For protein contact map prediction, the work done in this thesis may serve as a

good starting point to construct consensus predictors. To do so, some advanced

method may be needed to quantitatively measure the complementarity of indi-

vidual predictors in order to choose those highly complementary predictors for

making a consensus prediction. On the other hand, a more advanced classifi-

cation algorithms than logistic regression, such as support vector machine and

neural network, may be employed to further improve the accuracy in contact

map prediction.

5. Lastly, it is interesting to see how well the ideas and methodologies in this thesis

can be applied to predict many other protein attributes: protein subcellular

localization [86], membrane protein types [177], nuclear receptors [178], residue
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depth [201], protease types [202], and so on.
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[70] T.E. Hébert and M. Bouvier. Structural and functional aspects of G-protein-

coupled receptor oligomerization. Biochem. Cell Biol., 76:1–11, 1998.

[71] F. Horn, J. Weare, M.W. Beukers, S. Hörsch, A. Bairoch, W. Chen, O. Ed-
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Appendix A

Appendix A provides the links of the datasets used in this dissertation.

1. Datasets used in Chapters 2 and 3. The updated datasets 25PDB, 1189, 640,

and the predicted secondary structure for each dataset are available at: http://

www1.spms.ntu.edu.sg/~chenxin/RKS_PPSC/.

2. Datasets used in Chapter 4. The five datasets RDD, EDD, F95, F194, and F710

used are available at http://www1.spms.ntu.edu.sg/~chenxin/TAXFOLD/.

3. Datasets used in Chapter 5. The GDFL dataset at five levels is available at

http://www1.spms.ntu.edu.sg/~chenxin/PCA_GPCR/.

4. Datasets used in Chapter 6. The datasets D80 and D856 are available at

http://www3.ntu.edu.sg/home2008/YANG0241/LRcon/.
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