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ABSTRACT 

A microring resonator consists of a ring side-coupled to a bus waveguide, where the light exchange is 

achieved by means of evanescent coupling mechanism. It is a strong candidate for integrated optics due to 

its advantage of compact size, cascadable input/output ports, and the compatibility of CMOS fabrication. 

The microring resonator can be used to create many interesting phenomena that are difficult to obtain in 

other classical configurations.   

This thesis focuses on the theoretical analysis and experimental realization of induced transparency in 

optical devices derived from ring resonators. In this thesis, I propose a ring-bus-ring Mach-Zehnder 

interferometer (RBRMZI) system based on a 3×3 coupler, and show that such a system can generate an 

electromagnetically induced transparency (EIT)-like spectrum via phase engineering facilitated by inter-

pathways interference between RBR and MZI, instead of separate light interaction in two resonators alone. 

Both the transfer matrix formalism and the temporal coupled mode theory are investigated to model this 

induced transparency. The relationship between the two theories is obtained via the energy-conservation 

and Q-factors.  

In addition, the EIT-like spectrum in the RBRMZI is experimentally realized using silicon-on-

insulator technology. The best RBRMZI device has a transparency with a bandwidth of 0.25nm, a free 

spectral range of 12nm and a Q-factor of ~6300. With further measurements of the devices having strong 

ring-bus coupling, we obtain a Q~18000 when the circumference of one ring is 43.4μm and the 

circumference of the other ring is slightly detuned by ~0.035%. Moreover, we achieve a roundtrip loss as 

small as ~0.5% of the input energy. The measurement results agree well with theoretical prediction and 

2D-FDTD numerical calculations. 
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Chapter 1  Overview: Background, Objectives and Major 

Contributions 

1.1  Motivation 

The semiconductor industries have experienced tremendous technology development over the last 

half century. Until now, it is still possible to follow Moore’s law as scaling down the device dimension 

based on existing planar platform of integrated circuits (IC). This is possible due to the technological 

advancement paved in lithography systems leading to nanometer-scale dimensions using complementary 

metal-oxide-semiconductor (CMOS) technology. Nevertheless, further miniaturization or downscaling 

becomes increasingly challenging due to several intrinsic technical and commercial difficulties. For 

instance, although the continuous dimensional scaling may improve the transistor performance in terms of 

the gate switching delay, the global interconnect resistance delay has become the major bottleneck which 

inhibits the main circuit performance. Moreover, as the area of a chip becomes larger for facilitating ever 

more complex functionality, which in turn leads to huge increase in the total interconnect length, the 

severe power dissipation problem will deteriorate the IC performance. In a nutshell, further functionality 

growth and speed demand within conventional planar ICs would not be possible without compromise on 

performance, process complexity and cost.   

 

Fig. 1.1. Examples of optical devices based on microring resonators, including filters [1], buffers [2, 3], 

sensors [4], oscillators [5], micro-opto-mechanical systems (MOMS) [6] and modulators [7-8].  

The optical complementary approach in information processing, especially in the aspect of intra-chip 

and inter-chip data communications, has been explored in recent years. Optical devices can be realized in 

a small building block with high integration density and high operation performance. Optics has presented 

advantages over electronics in communications, such as high speed and large capacity, as one 
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transmission line can carry many signal channels at different wavelengths without disturbing each other, 

and optical signal does not suffer from time delay due to electronic parasitic effects.   

The realization of all-optical processing calls for both active and passive devices. Microring 

resonators are an essential optical device candidate for photonic integrated circuit that has been 

extensively exploited for a variety of devices [1-8], as shown in Fig. 1.1. The microring resonator is a 

form of Fabry-Pérot (FP) analog in optics where the resonant mode is excited by the evanescent coupling 

from the coupled waveguide [3]. However, compared to the normal FP etalon, the feedback mechanism of 

microring resonator is simply induced by a loop waveguide, without requiring of any Bragg grating, 

mirror or distributed feedback structures that are more difficult to fabricate. Thus, it has the advantage of 

being completely planar devices with input and output ports lying in the same plane and thus allowing 

easy cascading of many different devices on a wafer [2]. Besides the optical devices based on standalone 

microring resonators, many modified structures have been investigated using coupled resonators [9-17]. 

In particular, the synergistic integration of ring resonators with the Mach-Zehnder interferometer (MZI) 

has yielded interesting applications [18-26]. This highlights the flexibility and the versatility of microring 

resonator-based MZI devices in realizing various optical functionalities. 

1.2  Literature review 

    

Fig. 1.2. Examples of various microring resonator configurations. SEM images of (a) a 1R1B, (b) a 

1R2B, (c) a CROW [14], and (d) 2D array coupled ring resonators [15]. (e) Proposed embedded ring 

resonators [16], and (f) circular array of serially coupled resonators [17]. 

The simplest ring resonator is a bus waveguide shaped into one ring structure (1R1B) [see Fig. 1.2(a)]. 

When the round-trip optical path length in the ring is equal to an integral multiple of input wavelength, 

light couples into the ring and builds up inside, which is named on-resonance. The 1R1B becomes an add-

drop resonator (1R2B) if a second waveguide is situated in close proximity to the ring structure [see Fig. 

1.2(b)]. Besides the basic single-ring configurations, many progresses have been made in designing and 

fabricating more sophisticated devices through employing double/multiple rings, like the two-ring-two-

bus (2R2B) [9], the two-ring-one-bus (2R1B) [10], and the side-coupled double-ring resonator [11]. 

(a)

(b)

(c)

(d)

(e)

(f )
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Furthermore, various kinds of ring resonators cascaded in parallel or serial have been investigated, e.g., 

zigzag resonator chains [12], side-coupled integrated spaced sequence of resonators (SCISSOR) [13], 

coupled resonator optical waveguides (CROW) [see Fig. 1.2(c)] [14], as well as two-dimensional coupled 

ring resonator arrays [see Fig. 1.2(d)] [15]. It is worth noting that the cascaded ring resonator presents the 

box-like transmission, which is a promising candidate for digital signal processing due to its flat-top 

transmission response. This structure resembles a hybrid combination of distributed Bragg reflectors and 

ring resonators, with each ring serving as a frequency-dependent reflector [15]. In addition, certain novel 

configurations have been proposed recently, such as embedded ring resonators [16] and circular array of 

serially coupled resonators [17], as depicted in Fig. 1.2(e) and Fig. 1.2(f), respectively. 

One of the attractive topics on ring resonators is the optical buffer for storing/slowing light. It has 

been theoretically and experimentally reported that either the single resonator or the periodic coupled 

resonator arrays can reduce the group velocity of light [14, 17, 28-31]. The polymer CROW with 12 

resonators was experimentally demonstrated to have a flat delay of ~140ps over a 17GHz bandwidth [28]. 

Similarly, by applying 100 cascaded rings in the CROW structure, the on-chip group delay exceeding 

500 ps was obtained within a footprint below 0.09 mm2 [14]. Much improvement has been done in the 

circular array of ring resonators [17], where a large flat delay enhancement can be dynamically obtained 

by simply varying the loop coupling strengths. This structure creates a bandwidth delay product (BDP) of 

2Nπ due to the enhanced finesse in the circular loop, which is twice of that in the CROW and the 

SCISSOR with the number of N identical rings. However, even though the delay can be extendable with 

large number of resonators, the intrinsic limits BDP caused by the higher-order dispersion and rippling 

transmission spectrum in multiple rings inhibits the ring resonator as an optical buffer, e.g. the experiment 

result shows the CROW with 100 rings is only able to buffer one-bit data without distortion [14].  

The microring resonator devices have been fabricated on many material platforms, such as silicon-on-

insulator (SOI) [1, 4, 32, 33], polymer [24, 28] and III-V alloys (InP [2, 22] and GaAs/AlGaAs [3, 34]). 

Even though the structures have been theoretically predicted to exhibit the desired characteristics, the 

small size and stringent requirements for ring resonators impose severe challenges in practical 

fabrications. For example, in the cascaded ring resonators, any mismatch in the coupling region of ring-

to-ring or ring-to-waveguide bus will degrade the filter characteristics [15]. The losses in ring resonator is 

another problem that needs to be considered. The sidewall scattering loss caused in etching process is the 

dominant source of loss in SOI high-index waveguides. This problem could be solved by a novel etchless 

process without exposing the silicon surface to any plasma etching throughout the fabrication process [33]. 

The interest of this etchless process is to obtain the configuration of the microring resonator and the upper 

grown oxide cladding using selective thermal oxidation of silicon core [see Fig. 1.3(a)]. However, since 

the mode confinement is rather weak in the lateral edges, the fabricated ring has a relatively large radius 

of 50μm and a high propagation loss of 0.8dB/cm. Furthermore, the coupling-induced phase shift (CIPS) 

is an important fundamental source of resonance frequency mismatch in mutually coupled resonators [35]. 

Hence, the spectral response degradation in ring resonators caused by CIPS must be compensated in 
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designing and fabrication. Several approaches have been developed to offset the CIPS effect [35-37]. For 

instance, reference [37] provides a simple method to quantitatively analyze the CIPS for 2×2 directional 

couplers by incorporation of the second-order coupling effect in coupled-mode theory. It has also been 

experimentally demonstrated on SOI technology that the shifting phase in the high-order filters can be 

cancelled-out by using different gaps at the mutual coupling regions [37] [see Fig. 1.3(b)].  

 

Fig. 1.3. (a) Cross-sectional image of the coupling region in the etchless SOI ring resonator [33]. (b) A 

3rd-order filter made of three racetrack coupling resonators [37]. 

 

Fig. 1.4. (a) A MRDC device on SOI material [38]. (b) Schematic of a 3×3 WDM cross-connect grid 

using MRDC structures. The resonant wavelengths are indicated inside each ring. 

So far, all the microring resonator configurations discussed above are based on 2×2 couplers. In 2009, 

A. M. Prabhu firstly demonstrated a new resonator system using a 3×3 coupler for signal processing, 

which is named as a microring-assisted directional coupler (MRDC) [38], as shown in Fig. 1.4(a). The 

interesting feature of this system lies in the fact that the power coupling between the two side-coupled 

waveguides can be mediated by the ring resonance [39], giving different transmission responses at the 

two output ports. The resonant light couples into the through port (Tt) and induces associated dips in the 

cross-port spectrum (Tx). This feature suggests that this device allows novel cascaded microring 

architecture to be constructed for wavelength-division multiplexing (WDM), as shown in Fig. 1.4(b). 

Unlike the cross-connect grids using conventional single add-drop rings, the MRDC does not require 

direct waveguide crossings and thus avoids the problem of cross talks due to waveguide junction 

scattering. 

Next, we are going to review the microring resonator-based MZI devices. The MZI is a common 

element in integrated optical systems that has been extensively applied as sensors, switches and 

modulators. The root of the extreme applications of MZI devices owing to its two complementary outputs 
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and thus it is flexible to introduce different transmissions through changing the phase difference between 

two MZI arms. In order to enhance the phase difference and realize novel applications, one promising 

approach is to combine the ring resonator and the MZI together named as ring-enhanced MZI (REMZI), 

as depicted in Fig. 1.5(a) for the simplest schematic [18]. The phase response of the ring resonator can be 

detuned flexibly and it effectively enhances the interference between the upper arm and the lower arm in 

the MZI. The REMZI has exhibited many interesting properties, e.g., the sharp asymmetric Fano 

resonance profile [19]. The steep slope of the Fano resonance can be introduced to improve the 

performance of devices, like reducing the threshold power of a modulator/switch and increasing 

sensitivity of a sensor. It has been theoretically reported that the maximum sensitivity of an optimized 

REMZI sensor is increased by 30% while the operating power is reduced by 25% compared to that of a 

standalone 1R1B resonator sensor with an identical ring perimeter and loss [20]. Meanwhile, such a low 

operating power is very useful for the suppression of undesirable nonlinear effects. Much more research is 

dedicated to apply the nonlinear ring resonator to boost the accumulated nonlinear phase shift. It has been 

reported that the switching threshold can be reduced by four or more orders of magnitude to the level of 

milliwatts [21]. Some modified conventional REMZI with a feedback path between one MZI output and 

the input has been demonstrated as a thermo-optical tunable switching in InGaAsP-InP material [22] [see 

Fig 1.5(b)]. Because the feedback mechanism possesses a large transmission change with a small phase 

imbalance between two MZI arms, this unique design enables a substantial reduction of the switching 

power. The reduced power for complete switching is 26mW in comparison with 40mW of a conventional 

MZI switch. Similarly, using the feedback mechanism, the nest ring MZI (NRMZI) is proposed through 

connecting two ends of 1R2B device with a feedback loop in one MZI arm. The NRMZI is able to exhibit 

the box-like transmission spectrum with sharp transition edges, which is highly desirable for the digital 

switching and filtering [23]. 

Many configurations with multiple rings as the variations of basic one-ring MZI are also investigated, 

including integrated MZI based on two-ring resonators [9, 10], SCISSORs [24], as well as CROWs and 

two-dimensional resonators [25]. The amplitude and phase characteristics of various ring array 

configurations and how they can be used to physically engineer the MZI transmission behavior have been 

systematically studied in reference [25]. It is interesting to find that the two-ring MZI shown in Fig. 1.5(c) 

can effectively enhance the finesse and thus introduce a very sharp resonance, when the resonant light is 

strongly localized in the larger ring while the smaller ring is anti-resonant [10]. Through slightly detuning 

the two rings, the MZI can produce a very sharp narrow Fano resonance, which realizes the switching of 

high extinction ratio (>10dB) and large modulation depth (~1) with low switching power (n2IIN~10-5) at 

the point of the small ring is off resonant [9]. Besides the MZI configurations modified by cavity in one 

arm, reference [26] proposes a new dual-ring MZI with both arms integrated with resonators [see Fig. 

1.5(d)]. In this structure, one resonator is side coupled to one arm and the other ring is inserted into the 

second arm similar to a 1R2B. This device can create a narrow transparent peak between two resonant 

frequencies in the transmission spectrum (this induced transparency will be discussed in next paragraph). 
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Moreover, some new structures resembling to conventional MZI have been analyzed for switching, where 

a 100% switching can be produced with a small index perturbation of ~2×10-3 [27].  

 

Fig. 1.5. Schematics of various REMZI configurations. (a) One ring coupled REMZI [17]. (b) Feedback 

REMZI [22]. (c) Two-ring finesse enhanced REMZI [10]. (d) Dual-ring coupled MZI with each ring 

shaped into one arm [26]. 

In addition, microring resonators can generate many unusual effects that are difficult to achieve in 

conventional systems. For example, recent theoretical analyses have revealed that the phenomenon 

analogous to electromagnetically induced transparency (EIT) in atomic systems can also be remarkably 

observed in optical resonant cavities, which is well-known as coupled resonator-induced transparency 

(CRIT) [40-42, 43-46]. In order to elucidate the analogy between atomic EIT and photonic CRIT, let us 

first review EIT in an atomic three-level scheme as illustrated in Fig. 1.6(a). The quantum EIT involves 

the destructive interference between two excitation pathways, including 1 3  and 2 3 , to a common 

upper level 3 [43]. The atomic transition of 1 3  and 2 3  define the absorption of the probe laser 

field with frequency ωp and the control (pump) laser field with frequency ωc, respectively [46]. When a 

strong control field is resonantly applied to 2 3  transition, the excited state 3  splits into two dressed 

states as  3 2 2   , separated by the Rabi frequency of the control field ωc. The absorption of a 

weak probe beam, resonant with the 1 3  transition, vanishes due to the fact that a Fano-type 

interference occurs between the two indistinguishable quantum mechanical paths [40]. This interference 

is destructive owing to a π phase difference between the two contributions to the atomic response at the 

probe frequency. Therefore, the destructive interference between the two absorption amplitudes, 

containing excitation pathways from 1 3 2 3    indirectly and from 1 3  directly, leads to no 

(a) (b)

(c) (d)
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absorption of the applied fields between two separated dressed states, which is represented by an extreme 

narrow transparent window in the center of a broad transmission dip, as shown in Fig. 1.6(b).  

 

Fig. 1.6. (a) Three-level energy atomic system of EIT. (b) Signature of EIT, where ∆ is the angular 

frequency detuning of the probe field. (c) CRIT occurs in two mutually coupled rings. (d) Analogies of 

parameters between EIT and CRIT. η1 and ηc is the cross-coupling coefficient between R1 and bus, as 

well as R1 and R2, respectively. δ is the detuning and a1,2 are the intrinsic losses of R1,2 [40].  

In the atomic systems, the EIT occurs due to quantum destructive interference between two atomic 

transitions to a common energy level induced by coherently deriving the atom with an external laser, 

leading to a sharp reduction of absorption and resulting in a transparent window between two dressed 

states [43]. In a similar fashion, the CRIT occurs by virtue of the coherent interference between two 

resonant optical pathways instead enforced by the geometry of a system, which introduces a transparent 

region between the two resonance wavelengths. There are several approaches for combining EIT and ring 

resonators to obtain transparent spectrum in photonic systems [44-46]. Fig. 1.6(c) shows the optical CRIT 

analog to EIT in a mutually coupled two-ring system. Here, the mutual coupling of the two rings (ηc) 

works as the control laser field and the ring-bus coupling (η1) works as the probe field in the atomic 

system. When the circumferences of the two rings are identical, the resonance frequency (ω0) of a 

standalone ring splits to two separate resonances ω0±ηc due to a destructive interference between the two 

resonant fields from two rings, resembling the two dressed states caused by two atomic transitions. This 

inherent destructive interference is attributed to the fact that the resonant light must traverse a coupler 

twice, acquiring a net π phase shift before interfering with light in the initial ring. Fig. 1.6(d) shows the 

analogies of parameters between EIT in atomic systems and CRIT in ring resonators. The intrinsic losses 
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and coupling strengths in the two-ring resonator are analogous to the two different decay rates (Г and Г12) 

and transitions (ωp and ωc) in an atomic system, respectively, where Г=Г31+Г32 is the decay rate from 

level 3  to levels 1 and 2 , as well as Г12 is the decay rate from level 1 to level 2 . Thus, this analogy 

tells us that the CRIT only happens when the two resonators have different intrinsic losses and coupling 

strengths. In other words, the induced transparency requires that R1 is quite lossy, R2 is nearly lossless 

(a2>a1, a2~1), and the cross-coupling coefficient between R2 and the bus waveguide is much larger than 

that of the rather weak mutual coupling between R1 and R2 (η1>ηc, ηc~0).  

The first experimental realization of EIT-like spectrum in optical resonators is achieved using a pair 

of SOI microrings coupled to double waveguides structure, as shown in Fig. 1.7(a) [45]. Cascading the 

two rings together allows a resonance to form via multiple, constructively interfering “reflections” 

(Treflected) between the two rings, which will introduce EIT-like transparent region in-between two 

resonance frequencies in the through transmission (Tout) spectrum. Here, the two resonances with 

frequencies of ω1 and ω2 are analogue to the two separated dressed states in the atomic EIT system. 

Unlike the two-ring resonator in Fig. 1.6(c), since the field interaction between the two individual rings is 

facilitated by a double parallel waveguides, there is no direct mutual coupling between the two rings and 

thus no intrinsic resonance splitting. Here, the control field is determined by the frequency difference 

(|ω2–ω1|) and the probe field is determined by the two coupled bus waveguides. Therefore, the bandwidth 

and the amplitude of such a transparency can be detuned by adjusting the ring-to-ring distance between 

the two resonators [45]. However, in practice, a slight derivation of the ring-to-ring separation can 

seriously degrade the expected transparent peak due to the Vernier effect of the two ring resonances. 

Similarly applying the Vernier effect from cascaded cavities, the EIT-like profile has also been observed 

in the multiple photonic crystal (PhC) cavities system shown in Fig. 1.7(b) [46]. In comparison to the 

structure in Fig. 1.7(a), for the PhC resonator, only one bus waveguide is enough to assist the field 

interaction between the two cavities due to the bi-directional standing modes in PhC cavities. 

 

Fig. 1.7. The EIT-like spectrum realized by (a) the cascaded two 1R2B resonators configuration [45] 

and (b) multiple cavities in PhC structure [46]. The arrows indicate the light propagation direction. 

The characteristics of EIT-like (or CRIT) normally consist of a linear phase response followed by a 

narrow transparency in the transmission, which means that a large sensitivity (or responsivity) can be 

realized without dispersion. These characteristics conform to the requirement of optical filters, delay lines 

(or optical buffers), optical switching and bio-chemical sensing, where the extinction ratio and phase 
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linearity are certainly desired. Moreover, since the CRIT resonance is a result of an internal coupling 

between individual oscillators without requirements of extra pump laser and low temperature, CRIT is 

more flexible than EIT in optical applications. For example, the steep linear dispersion characteristic of 

the narrow transparent resonance can be used to reduce the velocity of light [47-51]. It has been 

experimentally reported that the light can be stored on-chip using the structure in Fig. 1.7(a), with longer 

times than the bandwidth-determined photon lifetime of the static device using ultrafast tuning of ring 

resonators [49]. Further advances also demonstrate that the transparency can reduce the propagating pulse 

with a positive delay of 8.5ns with low pulse deformation [50], and 25ps delay using thermo-optic 

detuning [51]. In addition, since the CRIT resonance is much narrower compared to that of individual 

resonator, the capability for controlling the linewidth of such resonance is important for low-power 

switching and tunable bandwidth filter. Through tuning the rings, it would enable applications for all-

optical interconnects and signal processing, where nonlinear component can be achieved using micron-

sized integrated silicon devices [45]. 

1.3  Objectives 

Based on the backgrounds introduced above, the thesis will focus on the theoretical investigation and 

experimental realization of the CRIT in ring resonator integrated MZI devices. The objectives of this 

thesis are summarized as follows: 

(1) To develop the transfer matrix formalism (TMF) and temporal coupled-mode theory (TCMT) for 

3×3 coupler (tri-coupler)-based devices.   

(2) To theoretically investigate the physics of ring-bus-ring (RBR) and ring-bus-ring Mach-Zehnder 

interferometer (RBRMZI) systems, as well as their potential applications. 

(3) To experimentally demonstrate and characterize the RBR and the CRIT in RBRMZI. 

1.4  Major contributions 

The major contributions are the theoretical analysis of RBR and RBRMZI using TMF and TCMT, as 

well as the experimental demonstration of the RBR and CRIT in RBRMZI. The original contributions are 

summarized as follows:   

(1) A new type of device - the RBR configuration was proposed and a general 3×3 coupling matrix 

for modeling the symmetric/asymmetric RBR configurations was developed. The RBR behaves like 

1R1B with two identical rings but has two separated resonances with two size-detuned rings. This 

uniqueness implies the RBR is applicable for channel-drop filter and 1×3 power splitter, which takes only 

half footprint of conventional devices.   

(2) A RBRMZI system capable of generating CRIT resonance was proposed and analyzed. 

Theoretical analysis using TMF and TCMT was performed, showing a good agreement with 2D-FDTD 

simulation results. Different from other existing EIT-like schemes where the high resonators’ finesses are 

required, the proposed CRIT spectrum in RBRMZI system is generated out of low-finesse resonators. The 
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transparency becomes sharper as the coupling strength between two resonators is increased, with the 

background spectrum significantly reduced as a result of additional phase shift from indirect coupling. 

For completeness, the RBRMZI with 3×3 multimode interferometer (MMI) coupler with high fabrication 

tolerance is also presented.  

(3) The CRIT in RBRMZI was experimentally demonstrated using SOI technology. A fair agreement 

was obtained between the theoretical prediction and measurement results. The basic characteristics of the 

transparent resonance were extracted, showing the transparency can be created without the requirement of 

different losses in the two rings and a very small difference of ring circumferences. The best transparency 

has a bandwidth of 0.25nm, a free spectral rage of 12nm and a quality factor around 6300.  

1.5  Thesis organization  

This thesis is organized into six chapters. Chapter 1 is the thesis overview, containing the motivation 

for the thesis, the literature review that provides the current research in the field of induced transparency 

using ring resonators, the objective, the major contributions and organization of the thesis. Chapter 2 

describes the optical mode theory of coupled waveguides and the basic theory of two simplest one-ring 

configurations (1R1B and 1R2B). Chapter 3 presents the detailed theoretical model of the RBR and the 

CRIT generated in RBRMZI using the TMF. Chapter 4 applies the mode analysis using TCMT to 

illustrate physics of a tri-coupler in RBR and the occurrence of CRIT in RBRMZI. Chapter 5 covers the 

experimental verification of the sharp transparent resonance in RBRMZI on SOI technique. Consequently, 

the thesis demonstrates the induced transparency in optical devices based on ring resonators. Chapter 6 

concludes the thesis and gives the directions for future work. Finally, the author’s publications, 

appendices and references are listed. 
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Chapter 2  Basic Theory  

2.1  Introduction 

The optical waveguide and directional coupler are the two basic components to form a ring resonator. 

Dielectric waveguides are an optical structure that guides light by confining it in a rectangular or square 

core of higher index surrounded by a cladding of lower index due to total internal reflection. A rigorous 

physical description for light propagation begins with Maxwell’s equations in the core and the cladding, 

and reduces them to a single wave equation. However, there is no analytical solution for rectangular 

dielectric waveguides since the electromagnetic fields extend beyond the core into a region where the 

geometry cannot be defined independently along orthogonal directions [3]. Although there are several 

analytical approximations of varying degrees of accuracy, notably Marcatili’s method, effective index 

method (EIM) and beam propagation method (BPM), the problem of rectangular waveguides is best 

addressed with numerical methods. In this chapter, we first briefly recall the mode theory in slab optical 

waveguides, and then introduce the EIM to analyze the propagation of light in three-dimensional (3D) 

waveguides, in order to save the calculation time. After that, the 2×2 coupling matrix which is adopted to 

analyze the power exchange in directional couplers is discussed. Based on the obtained matrix, we extend 

the analysis to two fundamental one-ring resonators and deduce the important figures of merit relevant to 

the two configurations. The theories in this chapter chiefly originate from several references [2, 3, 52]. 

2.2  Optical dielectric waveguides  

 

Fig. 2.1. (a) General schematic of a slab waveguide with asymmetric claddings. (b) Refractive-index 

profile of the slab waveguide in (a). 

Fig. 2.1(a) presents a slab waveguide with asymmetric claddings, where the light propagates along the 

z-axis and confined only along the x-axis. Since the light is only invariant in the y-axis, the localized 

solutions require that the field decays to zero at x→±∞ [3]. We assume the guided wave has a time-

dependency of exp[i(ωt-βz)], where β is the propagation constant and ω is the angular frequency. The 

permittivity (ε) and permeability (μ) are set as ε=ε0n1
2 and μ=μ1 for the core layer in Maxwell’s equations,  
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where n1 is the refractive index of the core area. We can reduce the Maxwell’s vector curl equations from 

six to three equations involving Ey, Hx and Hz (Hy, Ex and Ez) for TE (TM) polarized modes, and combine 

them into a second-order wave equation for the transverse electric (magnetic) field components. Then, by 

taking into account the boundary conditions at the core-cladding interfaces x=±d/2 for the perpendicular 

and tangential electric and magnetic fields, we can solve the guidance condition for TE modes [52], 
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and for TM modes,  
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 (2.3) 

where k1x are the wavenumbers in the core layer along the x-axis. α2 and α3 are the decay constants for the 

top and bottom cladding area, respectively. 

Now, we are going to consider the rectangular waveguide with a width of w and a thickness of d, as 

shown in Fig. 2.2(a). The EIM mentioned earlier due to its simplicity is used to analyze the propagating 

light. The EIM starts by solving the center slab waveguide with refractive index inside the core and the 

cladding layers for each segmented slab waveguide. Here, we take the center segment with n1, n2 and n3 

for example. In Fig. 2.2(b), since Ey is parallel to the boundaries, the eigenequation for the Ey component 

should be that of TE modes of a slab waveguide. From the solution of the slab waveguide discussed in Eq. 

(2.2), we get the propagation constant and thus the effective index distribution neff,1. Similar equations 

hold for the other two slab sections of y<0 and y>w, when n7>n8, n9, and n4>n5, n6 [52].   

  

Fig. 2.2. Effective index approximation for a rectangular waveguide. (a) A rectangle waveguide to be 

investigated using EIM. (b) Obtain the effective index profile neff(y) at three different dielectric regions. 

(c) Solve the slab waveguide problem with the obtained neff(y). 

Next, we solve the slab waveguide problem using the effective indices neff(y) in each slab segment, as 

presented in Fig. 2.2(c). At this moment, since the component Ey becomes to be perpendicular to the slab 

boundaries, the guidance condition for TM modes in Eq. (2.3) is applied to solve the problem, 
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Recall Eq. (2.2), we can see that a modal distribution is found as a function of x for each y position. 

This field distribution is called F(x, y) since it also changes with the variation of y. While the solution for 

the modal distribution in Eq. (2.4) is a function of only y, which is called G(y). Therefore, the total 

electric field Ey can be expressed with the separation of variables, which is the basic idea of the EIM,   

 ( , ) ( , ) ( )yE x y F x y G y  (2.5) 

However, in practice, the best way to solve the problem of modal distribution is numerical calculation 

for the waveguide with rectangular cross-section. Numerous commercial software packages are available 

for obtaining the mode profile and the effective index concurrently. The software considered for 

waveguide designs in this thesis is Opti-FDTD. The numerical calculation is based on the popular finite-

difference time-domain (FDTD) algorithm with a second-order numerical accuracy and an advanced 

boundary condition, i.e., uniaxial perfectly matched layer [53]. The waveguide material used in this thesis 

is silicon-on-insulator (SOI). As presented in Fig. 2.3(a), the SOI has a buffer oxide of thickness of 2μm, 

where the silicon core is sandwiched between two SiO2 layers. The rectangular waveguide with a width of 

w=450nm and a thickness of d=220nm supports only the fundamental TE-like polarization (electric field 

predominantly in the plane of the structure). Fig. 2.3(b) presents the contour plot of fundamental mode in 

the cross-section. The 3D-FDTD simulation result shows this waveguide has neff ~2.35 at the wavelength 

of 1550nm, which is pretty consistent with that obtained from EIM, where neff ~2.38.  

  

Fig. 2.3. (a) Sketch of the SOI rectangular waveguide. (b) Contour plot of the fundamental TE-

polarized mode in the cross-section with neff ~2.35 obtained from 3D-FDTD modeling.   

2.3  Coupled waveguides  

The light interaction in the ring resonator happens at the directional coupler region, which is based on 

parallel-coupled optical waveguides. As shown in Fig. 2.4, when two waveguides (WG p and WG q) are 

placed very close to each other, the optical power can be exchanged between their supporting modes via 

the evanescent wave. If the light is initially launched in one waveguide, it is eventually transferred to the 

other waveguide over some distance (the “beat length” Lπ labeled in Fig. 2.4), which couples it back into 

the first waveguide, and so forth. Usually, the beat length is dependent on the separation gap and the 

propagation constant of the two waveguides.  
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Fig. 2.4. Coupling of two parallel slab waveguides.  

The coupling strength between the coupled waveguides is calculated by using the modes of individual 

waveguides and applying a perturbation-based approach from coupled-mode theory (CMT) [3]. Here, we 

follow closely the procedure in reference [52] to obtain the coupling matrix for two arbitrarily coupled 

waveguides. The coupled-mode equations in the vector form is given by ∂s/∂z=iMs, where s is the 

eigenstate solution of coupled waveguides and M is a matrix consisting of propagation constant, coupling 

coefficient and overlap integrals. We consider the light propagating along the z-axis as depicted in Fig. 

2.4. Applying the Maxwell’s equations, the total field solutions can be written as linear combinations of 

individual waveguide modes,  
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Note the time dependency exp[j(ωt-βz)]
 
in both electric and magnetic fields, then the field amplitudes 

ap and aq satisfy the following matrix,  
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where βq,p is the propagation constant of a single waveguide without the presence of the other waveguide. 

Ĉ is the mean arithmetical value of two overlaps Ĉ=(Cpq+Cqp)/2, where Cpq,qp is the overlap integral 

between the two waveguides. κpq,qp and κpp,qq are the cross-coupling (q≠p) and self-coupling (q=p) 

coefficients. The overlap integral, cross-coupling and self-coupling coefficients can be numerically 

calculated from the integral of the electromagnetic field between the two waveguides [52],  
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 (2.8) 

where ε(x,y) is the permittivity distribution for the two waveguides. εq(x,y) is the permittivity distribution 

when only the waveguide q exists. Eq,p(z) is the purely imaginary part of electric fields. We can see from 

the above equations that, compared to the self-coupling coefficient, the overlap integral is much smaller 
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that it can be neglected (Ĉpq=0) due to the several order difference between the amplitudes of electric field 

and magnetic field. On the other hand, the total guided power in the two waveguides can be calculated by 

using the power conservation P=Re(E×H*)/2=|ap|
2+|aq|

2+Re[apaq
*Cpq+aqap

*Cqp]. As all the transverse field 

components are real for a lossless system, we consider ∂P/∂z=0 for arbitrarily amplitudes of ap,q, and 

obtain κpq-κpq=(γp-γq)(Cpq+Cqp)/2, where γp,q is a complex propagation constant modified by the overlap 

intergals and self-coupling coefficients in Eq. (2.7). Applying Cpq,pq~0, we arrive at κpq=κqp for the set of 

co-directional coupled waveguides, and get a simplified M matrix as, 

 
p p pp pq p p

q qp q qq q q

a a ad
i iM

a a adz

  
  
       

               
 (2.9) 

where βm+κmm (m=p,q) is the normalized propagation constant of each waveguide due to the existence of 

self-coupling coefficient κmm. Through solving the eigenstate problem of matrix |M-Iσ|=0, i.e., the two 

eigensolutions (σm) and associated eigenvalues (υm), we can express the output power with a matrix of 

s=Σcmνmexp(iσmz), where cm is solved from the initial values of ap,q at z=0 (ap0,q0). Finally, the coupling 

matrix to connect the input and output amplitudes is obtained by eliminating cm in s, 
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where  =(βq+βp+κqq+κpp)/2, Δβ=(βq-βp+κqq-κpp)/2 and ψ=(Δβ2+κpq
2)1/2. In the ideal case, the self-coupling 

coefficients are negligible κpp,qq~0 and two waveguides have the same propagation constant β, i.e.,   , 

Δβ=0 and ψ=κqp=κ, then Eq. (2.10) is simplified to a unitary matrix,  
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where the imaginary part i in the matrix suggests each cross-coupling will introduce a π/2 phase shift. 

Note that since the common phase term exp(iβz) only shifts the entire resonance spectrum, it will be 

removed in the following analyses throughout this thesis.  

However, in the more realistic situations, as shown in Fig. 2.5, either the racetrack coupling or the 

point coupling, there inevitably exist some non-idealities originated from three main sources. (1) We 

ignore the offset of the overlap integrals and the self-coupling coefficients in Eq. (2.11) by assuming an 

ideal case, i.e., a very weak coupling [e.g. cos(κz)>0.99]. When a strong coupling occurs, the overlap 

integrals and the self-coupling coefficients will introduce additional transmitted phase and result in 

coupling-induced phase shift (CIPS) [35]. (2) Due to the effects of the self-coupling coefficients and the 

overlaps, the propagation constants of the resonant mode and the guided mode are inherently phase- 

mismatched, which causes an asynchronous coupling and coupling loss at the directional couplers region. 
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(3) The coupling region is extended from the straight section to the curved section of the racetrack 

geometry. This extended coupling greatly increases the coupling strength, at a modest introduction of the 

junction loss and a reduction of the free spectral range, especially for a resonator with smaller ring radius. 

Extensive treatments of the optimized coupling of ring and waveguide can be found in reference [3].  

 

Fig. 2.5. Ring resonators in racetrack coupling and point coupling conditions.  

2.4  One-ring-one-bus  

 

Fig. 2.6. Left: Schematic of the 1R1B configuration. Right: (upper) 1R1B is equivalent with FP etalon;  

(lower) Energy distribution of 1R1B device at resonance. 

The configuration of one waveguide shaped into a ring (1R1B) is shown in the left of Fig. 2.6. The 

1R1B structure is simply created by feeding one output of a directional coupler back into one input port. 

The functionality of such a device is analogous to a Fabry-Pérot (FP) etalon with a partial reflective and a 

full reflective mirror, and thus it exhibits a periodic cavity resonance when the round-trip phase is equal to 

an integral multiple of 2π radians. Here, instead of using an infinite sum derivations in FP etalon, the 

basic spectral properties are deduced by assuming the matching fields and steady-state operation [3].  

It shows in Fig. 2.6 that the 1R1B resonator is mathematically formulated from two components: a 

coupling strength and a feedback path. The coupling strength involving the incident field E1, transmitted 

field E2 and circulating fields E3 and E4 are related via the matrix in Eq. (2.11),  
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relation of r2+t2=1 and are assumed to be independent of frequency. The feedback path connects the 

output from E3 back into the input E4 with E4=aexp(iδ)E3, where a=exp(-αringL/2)
 
is the round-trip 

amplitude transmission factor (or loss factor) and a=1 in a lossless case. L is the ring circumference and 
αring is the power loss in the ring per unit length. δ=k0neffL=tRω is the round-trip phase response (or 

normalized detuning). tR is the round-trip time and ω is the angular frequency. The ring is on resonance 

when δ is an even multiple of π, and it is on anti-resonance when δ is an odd multiple of π. Solving Eq. 

(2.12) with the feedback fields, the normalized transmission is obtained as, 
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 (2.13) 

Fig. 2.7 shows the general transmission calculated from Eq. (2.13) for 1R1B structure. When the 

incident light is on resonance in a lossless structure, i.e. a=1, the 1R1B predicts a unity intensity 

transmission for all values of normalized detuning δ and is termed an all-pass filter [3]. However, in 

practice, a strong confined light inside the ring can strengthen the effect of losses, such as the coupling 

loss and the scattering loss, which in turn induces periodical dips in the transmission spectrum. The 2π 

periodicity of resonant peaks is named as free spectral range (FSR).  

  

Fig. 2.7. Transmission (T) and buildup factor (B) as a function of δ in 1R1B device. 

2.4.1  Buildup factor, Finesse and Quality factor 

As discussed earlier, the resonant light can couple into the ring and acquire an effective 2mπ phase 

response for each round trip, thus the constructive interference at the coupler port entering the ring 

ensures that the circulating optical intensity is coherently built up to a higher value than that of initially 

injected [3]. This accumulated intensity is described by the buildup factor (B), that is a square modulus of 

the circulating intensity divided by the incident intensity, 
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where the final result refers to the situation that the incident light is resonant in a lossless system. The 

1R1B in these situations can obtain the maximum buildup factor that can be achieved. As one example 

illustrated in Fig. (2.7), the intensity inside the ring is ~19 times higher than the input light. This enhanced 

light can lead to a dramatically amplified nonlinear response [21] and multi-stability [9].  

The sharply peak resonance in the buildup factor is characterized by a finesse parameter, which is 

defined as the ratio of FSR (δFSR=δ2-δ1=2π) to the full-width at half-maximum (FWHM) of a resonance 

(ΔδFWHM). By expressing ΔδFWHM in Taylor formula for resonance phase with cosδ=1-δ2/2 at Eq. (2.14), 

we have ΔδFWHM=2(1-ar)/(ar)1/2. Then the finesse (F) is given by,
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 (2.15) 

Similar to the finesse as a figure of merit related to resonance sharpness, the quality factor (Q) of a 

resonator is a measure of the resonance sharpness relative to its central resonance frequency (ω). The Q-

factor is formally defined as the ratio between the stored energy circulating inside the resonator and the 

energy dissipated in one optical cycle [3], 

 
Stored energy 

Power loss  
Q

 
  (2.16) 

Here, the dissipation of energy includes all the losses inside the ring and power coupled out into the 

bus waveguide. However, since the dissipation is a temporal phenomenon, we consider the analysis in 

reference [3] using the transient response to derive the general expression of Q-factor and explore more 

relations. On one hand, we assume the ring resonator has been charged to an intensity of |E0|
2 before the 

input is switched off. Then the intensity stored in the ring after it travels the nth round-trip is given by 

|En|
2=exp(-αdisL)|En-1|

2=exp(-nαdisL)|E0|
2. Here we define the total loss coefficient αdis=αring+αe, where αe is 

the loss of energy responsible for the ring-bus coupling and it has the relation with r as r=exp(-αeL/2). If n 

is large enough, the variation of |En| can be treated as a continuous variable d|En|
2/dn=-αdisL|En|

2. On the 

other hand, since the amount of power lost in one roundtrip is equivalent to the rate of energy variation 

during per roundtrip time (tR), we can obtain d|En|
2/dn=-tRd|En|

2/dt by connecting the energy loss to power 

loss. Therefore, Q can be rewritten as,  

 

2 2

n R n R
2 2

disn n

E t E t
Q

Ld E dt d E dn

  


    (2.17) 

Next, we recall the relation between the FWHM in round-trip phase response and angular frequency 

(δ=tRω), and apply relations of r=exp(-αeL/2) and a=exp(-αringL/2) in the case of dis 1L  , then arrive at 

the relationship between linewith and total loss coefficient, 
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Combining Eq. (2.17) and Eq. (2.18), as well as translating the frequency into wavelength using the 

relation dλ=λ2dω/(2πc), where c is the speed of light in vacuum, we get the general expression of Q-factor 

defined in Eq. (2.16) as, 
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 (2.19) 

The relationship between the Q and F can be obtained as Q=neffL/λF=mF by implementing Eq. (2.17) 

into Eq. (2.18) with δ=k0neffL=tRω, where m=neffL/λ is the resonance order that directly relates the quality 

factor to the finesse. Also, the order is a measure of the number of wavelengths within the circumference 

and is indicative of the mth peak in the transmission spectrum. The physical meaning of the Q and F can 

be explained in this way. If we define N as the effective number of round-trips required to reduce the 

energy to 1/e of its initial value, i.e., exp(-NαdisL)=1/e,  we can solve N and express F in the terms of the 

loss coefficient αdis. Then we have, 
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    (2.20) 

Eq. (2.20) tells us that the finesse represents the effective number of round-trips made by the resonant 

light in the ring multiplied by a factor of 2π. Similarly, the quality factor Q=ωtRN represents the number 

of oscillations of the circulating field before being depleted to 1/e of the initial value. In other words, the 

F and Q respectively represent metrics for the intensity buildup and effective interaction time in a cavity 

resonator. The light interacts with the coupling interface for a finesse number of times while interacts 

with the ring interior for a quality number of cycles. This insight is very important for designing optical 

applications relying on the change of parameters of ring resonators [3, 6-8].  

2.4.2  Effective phase response 

The effective phase response is defined as the phase argument of the field transmission. If we rewrite 

Eq. (2.13) in a form of E2/E1=ei(π+δ)(a-re-iδ)/(1-areiδ),  the phase response () is deduced as, 

 1 1sin sin
tan tan

cos 1 cos

r ar

a r ar

   
 

              
 (2.21) 

Eq. (2.21) is the phase shift acquired by light in passing through the 1R1B structure from the input 

port to the output port. It is a combination of three parts that can be understood in this way: the π is 

attributed to the twice cross-couplings of light before exiting the resonator, each of which imposes π/2 

phase shift; the round-trip phase response δ is responsible for the light having to travel the ring one round 

before knowing whether it is on resonance; the last two tan-1() terms are primarily dependent on the value 

of δ, which determines the resonant light and further determines the total phase response.   

Fig. 2.8 presents the phase response of a 1R1B device for critical-coupled (r=a), under-coupled (r>a) 

and over-coupled (r<a) regimes. The critical-coupling implies the roundtrip absorption inside the cavity is 
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exactly equal to the amount of coupled energy. In this case, all the resonant light vanishes in the ring area 

and the transmission is zero. This is represented by the loss of phase information with a π discontinuity 

and the infinite phase sensitivity without bound. This critical-coupling is desirable for a filtering based on 

resonators to achieve 100% transfer of light. The under-coupling means the roundtrip absorption exceeds 

the coupled energy. Thus, there is almost no phase buildup and some counter-intuitive effects happen in 

this case, e.g., the phase response of the resonant light is unperturbed and the phase sensitivity has been 

inversed. The over-coupling means the roundtrip absorption is less than the coupled energy. There is a net 

optical field accumulation for the resonant light, which is reflected by a swing of 2π across the resonance 

in the phase spectrum. As shown in Fig. 2.8, under this over-coupled condition, the phase is significantly 

perturbed and the slope is sensitively dependent on the coupling strength. Such a phase sensitivity can be 

obtained by the normalized detuning derivative of the phase response, 

 

2 2 2

2 2 2 2

2
~1

2

cos cos
1

2 cos 1 2 cos

1

1 2 cos
a

d ar r ar a r

d a ar r ar a r

r
B

r r

  
  



     
   


 
 

 (2.22) 

It is interesting to point out that, in the very low loss case (a~1), the phase sensitivity is identical with 

the buildup factor across the entire spectrum. 

 

Fig. 2.8. Phase responses of 1R1B device at different coupling conditions (a=0.95). 

2.4.3  Group delay 

The phase sensitivity is directly related to the group delay of a resonant pulse that imposed by a ring. 

Such a group delay is given by differentiating the effective phase response to the angular frequency [3],  

 ~1'
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     (2.23) 

We can see the group delay is interpreted as round-trip time enhanced by the phase sensitivity. The 

relation between delay and effective number of round-trips N can be obtained by applying the conversion 

between F and B from Eq. (2.17) and Eq. (2.18),  
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Eq. (2.24) shows that the group delay approximately equals 2NtR in the lossless resonator when the 

coupling is very weak. Since an input pulse is being delayed in a resonator, i.e., its energy is stored and 

released by the ring, the group delay should be equal to twice of the cavity lifetime (tcav) as Tg=2tcav=2NtR, 

as verified by the last result in Eq. (2.24). Therefore, conversely, the phase sensitivity is expressed as the 

effective number of roundtrips that light travels inside the ring enhanced with a factor of two. 

Furthermore, Eq. (2.24) tells us that the transmission of 1R1B is a sum of the delayed pulse inside the 

ring resonator, thus it is worth investigating the temporal output. To do this, we convert the normalized 

time domain (tn=t/tR) to normalized frequency domain (δ) using Fourier Transform, 

 n n n n

1
( ) ( )exp( ) ( ) ( )* ( )exp( )

2
F f t i t T t F T it    



 

 

     (3.25) 

where T(δ) is transmission in Eq. (2.13), f(tn) is the input Gaussian pulse and T(tn) is the temporal output. 

 

Fig. 2.9. Calculations of interfering output field amplitudes for anti-resonant and resonant light with 

three different injected pulse widths. The dashed lines are the incident pulse. 

Fig. 2.9 presents the transmitted field amplitudes for three different pulse widths under anti-resonant 

and resonant conditions. In the anti-resonant case, as shown in Fig. 2.9(a), when the pulse width is less 

than the cavity lifetime, e.g., ~0.2tcav, the amplitudes of subsequent impulses come out with alternating 

signs. The amplitude sign of first pulse is positive and that of the second one is negative, and so forth. 

This is due to the fact that the anti-resonant light obtains π [or (2m+1)π] phase shift for one round trip 

inside the ring and gets another π phase response originated from the twice cross-couplings at the 
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coupling interface. However, the situation is quite different for the resonant case. When the input signal is 

on resonance, all the amplitudes of the output pulse are negative, owing to each roundtrip involving twice 

cross-couplings and the 2mπ effective phase shift (or zero phase shift) inside the ring. Fig. 2.9(b) and (c) 

show the outputs when the input pulse widths are ~tcav and ~8tcav, respectively. It is worth noting that, 

with the increase of the pulse width to a value larger than the cavity lifetime, the subsequent impulses 

destructively interfere at the output port to form an undisturbed pulse in the anti-resonant case, while 

constructively interfere to form a delayed (and inverted) pulse in the resonant case [3]. The delay of the 

pulse is applicable for all-optical buffering in integration of optical devices [28-31]. 

 

Fig. 2.10. Linear time responses of 1R1B device in three different coupling situations.  

Fig. 2.10 shows the temporal response of a super-Gaussian pulse {f(tn)=T0exp[(tn-t0)/σ]n, n>2} after 

passing through 1R1B under different coupling conditions. When a critical-coupling (r=a) happens, the 

complete resonant absorption inside the resonator renders no output in the center of the pulse and a rapid 

decay in the pulse amplitude. However, in under-coupled (r>a) and over-coupled (r<a) cases, the shape 

of output pulse remains similar to the input pulse except some slight sidelobes and distortion caused by 

high-order dispersion. The main difference between the two cases lies in the opposite sidelobes and group 

delay. The difference in sidelobes is on account of different coupling strengths r. The larger r implies less 

light couples into the ring and more light in the transmitted output. The negative delay in the under-

coupled case is named as fast light and the positive delay in the over-coupled case is named as slow light. 

This theoretical prediction is consistent with the experimental observation in ring resonators [50].  

2.5  One-ring-two-bus  

The one ring side-coupled to two waveguides (1R2B) structure is shown in Fig. 2.11. The 1R2B is 

analogue to the FP etalon with two couplers behaving as the two partial reflective mirrors. The  difference 

is the through (drop) transmission in 1R2B refers to the reflection (through) in FP etalon. The 1R2B is 

also named as add-drop resonator since the resonant light can be transferred from the input port to the 

drop port through the ring, as highlighted in the panel of Fig. 2.11. For simplicity, the two bus-ring 

couplers are assumed identical. With the feedback field related by the coupling matrices E6=E3a
1/2exp(iδ/2) 

and E4=E5a
1/2exp(iδ/2), the normalized through (T) and drop (D) transmission are deduced as,  

−100 −50 0 50 100

0

0.2

0.4

0.6

0.8

1

P
ow

er
 (

a.
u.

)

t/t
R

Input

r=a

r>a
r<a



Chapter 2 Basic Theory

 

23 | P a g e  

 

 

2 2 2 2 2
2

2 2 2 4
1

2 22 1 2 2 2
8

2 2 2 4
1

exp( ) 2 cos

1 exp( ) 1 2 cos

exp( 2) (1 )

1 exp( ) 1 2 cos

E r ra i r ar a r
T

E r a i ar a r

E t a i r a
D

E r a i ar a r

 
 


 

  
  

  

 
  

  

 (2.26) 

  

Fig. 2.11. Left: Schematic of 1R2B configuration. Right: (upper) 1R2B is equivalent with FP etalon; 

(lower) Power distribution of 1R2B device at resonance. 

2.5.1  Effective phase response 

If we express the transmissions in Eq. (2.26) in the alternative forms of E2/E1=rei(π+δ)(a-e-iδ)/(1-r2aeiδ) 

and E8/E1=ei(π+δ/2)/(1-r2aeiδ), the corresponding effective phase response in the through transmission (T) 

and drop output (D) are given by, 
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In Eq. (2.27), T has a similar formula with the phase response of 1R1B, and the δ/2 in D is attributed 

to the fact that the resonant light travels half ring before entering the drop port. Fig. 2.12 shows the 

transmissions and associated phase shifts of 1R2B device. When the launched light is off resonant, it 

seems the light passes along the input bus directly to the through port, thus there is no phase accumulation 

for both the through and drop transmissions (T,D~0). In the case of on resonance, the resonant light 

interferences destructively with previous delayed pulse at the through port, inducing dips in the through 

spectrum, and interferences constructively in the drop port, forming corresponding peaks in the drop 

spectrum. If there is no coupling loss and no absorption in the cavity, the total power in through and drop 

ports is equal to unity D+T=1. However, due to the presence of losses, the resonant light cannot be 

completely guided to the drop channel and the total power is no longer equal to one. That is why the 

spectra in Fig. (2.12) show the resonant peaks less than one while the resonant dips close to zero. In the 

phase response, the resonant peaks give a ~π phase swing in the drop output and the resonant dips give a 
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~π phase jump in the through transmission. The π amount of the phase shift comes from the two cross-

couplings of the resonant light before exiting the 1R2B configuration.   

   

Fig. 2.12. (a) Through (T) and drop (D) transmissions of 1R2B configuration, and (b) phase responses, 

2.5.2  Buildup factor, Finesse and Quality factor 

Similar to the 1R1B case, the buildup factor (B), the finesse (F) and quality factor (Q) of 1R2B device 

can be deduced respectively as,  
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 (2.28) 

where ΔδFWHM=2(1-ar2)/(ra1/2) is the FWHM of B. Eq. (2.28) tells us that the relations between the finesse 

buildup factor and quality factor of a 1R2B are analogous with those of a 1R1B structure. The comparison 

of the specifications in above equations and those of 1R1B reveals that the only difference between them 

is the coupling strength r2, which is caused by twice ring-bus couplings in 1R2B device.  

2.6  Summary 

In this chapter, we have introduced the waveguide mode theory and EIM for single optical 

waveguides, and coupled-mode theory for parallel-coupled waveguides. The fundamental specifications 

associated with two basic single-cavity structures, 1R1B and 1R2B, like the transmission, effective phase 

response, buildup factor, finesse, quality factor and group delay, are investigated.  
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Chapter 3  Coupled Resonator Induced Transparency in Ring-Bus-

Ring Mach-Zehnder Interferometer 

3.1  Introduction 

In this chapter, we propose a ring-bus-ring (RBR) configuration [see Fig. 3.1(a)], which consists of 

two resonators indirectly coupled by a tri-coupler formed between two resonators and one bus waveguide 

between them, and show that such a structure is capable of generating CRIT resonance when it is coupled 

to a Mach-Zehnder interferometer (RBRMZI), as schematically drawn in Fig. 3.1(b). Similar to many 

two-cavity systems in the references [9, 10], the RBR geometry also provides two resonant optical 

pathways P1 and P2 corresponding to dominant light localization in Ring 1 (R1) and Ring 2 (R2), 

respectively [see Fig. 3.1(c)]. Unlike in mutually coupled resonators where the field acquires /2 phase 

shift as it cross-couples from one resonator to another, the double coupling in the tri-coupler imparts  

phase shift to the coupling fields. As will be shown later, this  phase shift is responsible for generating 

narrow and almost loss independent transmission spectrum in RBRMZI. First, we present the theoretical 

model of the RBR device based on transfer matrix formalism (TMF). Then, we integrate the RBR with 

MZI and present its various transmission characteristics. Finally, the good agreements between the TMF 

theoretical prediction and 2D-FDTD simulation results for RBR and RBRMZI systems are given. 

 

Fig. 3.1. (a) Geometrical scheme of the RBR configuration and six fields inside it, where the dashed 

box indicates the tri-coupler. (b) Proposed RBRMZI structure with the third optical pathway (P3) in the 

MZI. (c) Two possible optical pathways (P1 and P2) excited in the RBR structure.  

3.2  Ring-bus-ring  

The spectrum of the RBR structure can be easily obtained by transfer matrix analysis. The tri-coupler 

is schematically indicated in Fig. 3.1(a), showing there are six fields involved in the coupling process. 

The general derivation of field coupling of three parallel waveguides has been well studied in coupled-

mode theory formalism [54], giving results in coupling matrix. In theory, the coupling of fields may occur 

for any combination of two out of three fields. However, in realistic case, the coupling is only noticeable 
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for two adjacent fields, and the coupling between R1 and R2 is very weak. This property is exploited to 

simplify our calculation, so that the coupling matrix for the tri-coupler can be expressed as,  

 

1 1 1 12 1

0 1 0 2 0

2 12 2 2 2

b r it t s

b it r it s
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(3.1)
 

where r denotes the reflection-coupling elements of the center waveguide (r0), R1 (r1), and R2 (r2), while 

the t denotes the cross-coupling elements between R1 (R2) and the center waveguide t1 (t2), and between 

the R1 and R2 (t12) [refer to Appendix A for detailed derivation]. The input and output amplitudes are the 

denoted s1,2,3 and b1,2,3, respectively. Referring to Fig. 3.1(a), the output fields (b1,2) and the input fields 

(s1,2) are related via feedback relationships, i.e., s1,2=b1,2A1,2=b1,2a1,2exp(-iδ1,2). a1,2=exp(-αringL1,2/2) are the 

round-trip amplitude transmission factors (a=1 in lossless situations), αring is the power loss coefficient 

and L1,2 are the ring circumferences. δ1,2=κ0neffL1,2 are the round-trip phase responses, where κ0 is the 

propagation vector in free space and neff is the effective index. Thus, by solving Eq. (3.1), one may obtain 

the following set of equations, 
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from which the through transmittance of the RBR (TRBR)  based on tri-coupler is deduced by applying the 

relationships in Eq. (A11) as,  
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with corresponding phase response of, 
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 (3.4) 

It should be noted that Eq. (3.3) and Eq. (3.4) look similar to the transmittance and the phase response  

of one-ring coupled to one bus waveguide (1R1B), but slightly modified due to the contribution of the 

resonant process of R1 (r1A1), R2 (r2A2) and the mixture of the two (r0A1A2). This can also be referred 

from the phase response where θ=1+2. Correspondingly, the buildup factor for each ring (B1,2) is also 

affected by the presence of the other ring, as shown in the following formula, 
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And the light intensity distribution in the RBR can be estimated by using the relative intensity buildup 

B21, defined as the ratio of the light intensity accumulated in R2 relative to that in R1 in a lossless case, 
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(3.6) 

In the case of identical rings (for the same coupling, t1=t2), it is expected that the light is equally 

distributed within RBR because of symmetry reason. This is different in the non-identical case (12), 

which gives asymmetric intensity distribution. Near R1 resonance [sin(1/2)~0)], the dominant light 

distribution is expected to be in Ring 1, whereas near R2 resonance [sin(2/2)~0], it is the opposite. Thus, 

the light intensity distribution within RBR is crucially dependent on the detuning of the resonance 

frequencies of the two rings, which in this thesis is denoted by γ, defined as the ratio of the roundtrip 

phase (or ring circumference) of the two rings, 

 2 1 2 1/ /L L     (3.7) 

The general spectral characteristics of RBR are shown in Fig. 3.2(a). The resonance order is chosen to 

be about 120 to reflect the typical dimensions of fabricated ring resonators (e.g., 5μm radius). When the 

two rings are identical (=1), expression of the through transmission, intensity buildup factor and relative 

buildup factor can be simplified as,  
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(3.8)
  
 

Here, the coupling coefficient r1,2 are simplified by the relation r1+r2=r0+1 in Eq. (A10). Because 

there is no distinction between the two rings in =1, the cavity system can be treated as if the system only 

consists of one cavity with the effective coupling coefficient r0, hence imitating the behavior of 1R1B 

system. This is shown in Eq. (3.8), where the expression for the through transmission is identical to that 

in 1R1B. In the RBR device, generally, the located light intensity in each ring for γ=1 is dependent on the 

coupling constant of each ring t1,2, as illustrated by the relative buildup factor in Eq. (3.8). This is in 

consistency with the assumption that the inter-resonator coupling con only be facilitated by virtue of 

coupling to the intermediate center waveguide. In the special case where the tri-coupler is symmetric 

(t1=t2), B21 is unity and we have t1
2=t2

2=r0
2/2, which implies that the value of the buildup factor in each 

ring is only half of that in 1R1B device [refer to Eq. (2.14)]. Therefore, at γ=1, the light equally splits to 

two rings and uniformly distributes in them, as shown in panel (1) of Fig. 3.2(c) where the fields 

calculated by 2D-FDTD simulation are equally confined in both rings.  

Unlike in other two-cavity systems [9, 40, 44], there is no resonance splitting resulting from mutual 

coupling of identical rings (γ=1). However, we can have very similar patterns for slightly non-identical 

rings, although it is not caused by mutual resonance splitting, but rather by isolated resonances of the 

rings, which are situated at 1=m2 (for R1) and 1=[round(m)/]2 (for R2). Here the round() is the 
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function that rounds a number to its nearest integer, and m is an integer. This is shown in Fig. 3.2(a), 

where =1.05 and =1.1 are chosen as illustrations. When the resonances coincide, there is only resonant 

dip as in the γ=1 case. When the two resonances do not coincide, the spectra have two distinct resonances. 

The two individual resonances become more widely separated in the increasing resonance order (e.g., 

δ1/2π>120), which is attributable to the Vernier effect of the two resonators. The field distributions 

corresponding to such resonances of γ=1.05 are shown in the panels (2)-(4) of Fig. 3.2(c). The resonances 

near the isolated resonance frequency of R1 (δ1/π=even) correspond to the dominant light localization in 

R1 [panel (2)], whereas the farther one corresponds to dominant light localization in R2 [panel (3)].  

 

Fig. 3.2. (a) Transmission spectrum and (b) buildup factors for different values of γ. (c) Fields 

distribution for γ=1, γ=1.05 and γ=2+Δγ as calculated using 2D-FDTD, where Δγ=0.006 is used to 

compensate the effect of coupling-induced phase shift [35].  

For better illustration, the B1,2 of the RBR device for the corresponding γ are shown in Fig. 3.2(b). It 

can be seen that the presence of resonant peaks in one ring corresponds to the presence of resonant dips in 

the intensity buildup of the other ring. This is attributable to the fact that the light acquires a π phase shift 

as it cross-couples two times from one ring to the other (each cross-coupling acquires π/2 phase shift), 
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which causes the two resonances to be in destructive interference. One special interest is that when the 

light is equally distributed within the RBR, as shown in panel (4) in Fig. 3.2(c). In this situation, the 

resonant light gains 2π phase jump as it has to cross-couple four times to go through both R1 and R2 for 

only once before exiting the structure. This is particular to the generation of EIT-like transmission in low-

finesse ring resonators, as will be explained in the next section.  

In the case of γ=2, there are two resonances in one free spectral range (FSR). One occurs at δ1/π is 

odd, and the other one occurs at δ1/π is even. At the location of δ1/π is odd, the two resonators are 

completely isolated from each other since R2 is on resonance while R1 is on anti-resonance. This 

condition renders the light distribution is trapped more strongly in R2 [see panel (5) in Fig. 3.2(c)], giving 

the transmission spectrum similar to that of 1R1B with higher amplitude contrast and narrower linewidth. 

On the other hand, at the locations of δ1/π is even, the resonant dips of both rings are overlapped with 

relatively different light intensities storing in each ring. At this case, if the two rings are equally placed 

with the center bus (r1=r2), then B21=a1
2/(1+a1)

2 suggests that the light intensity circulated in R1 is 

approximately four times as that in R2 at low loss conditions, which can be verified by the simulated field 

distributions in panel (6) of Fig. 3.2(c). 

From Fig. 3.2(a), we can observe that the resonance locations of R1 are fixed while the resonances 

spectrum of R2 move as γ is being varied. This is due to the fact that there exist two possible pathways in 

the RBR structure, as introduced earlier. This two-pathway property suggests the RBR structure is 

applicable for sensor application [55]. For instance, R1 is used as the reference ring and R2 is the sensing 

ring. The shift of coincident resonance is the detecting value, when γ changes during sensing. However, in 

comparison to the dual-ring coupled MZI in reference [55], the proposed RBR is more compact and 

favorable for device miniaturization. For better illustration the two pathways, we present a comparison 

between the transmissions of two standalone 1R1B devices with that of RBR structure, as shown in Fig. 

3.3(a). Here, T1 and T2 denote the transmissions of two 1R1B devices involving R1 and R2, respectively. 

Also, the constructive interference between the two pathways P1 and P2 at the output end is attributed to 

the four times cross-couplings, which totally gives a 2π phase shift. Note that the slight shift between the 

RBR resonances and the standalone P1 (R1) and P2 (R2) resonances result from the modification of the 

8-like round-trip path from the two rings [10]. Therefore, there is no phase difference for the resonant 

light passes through both rings in RBR or one ring in 1R1B configuration if the coupling-induced phase 

shift (CIPS) assumed to be absent. This explanation is verified by the FDTD calculation result shown in 

panel (4) at Fig. 3.2(c), where the field distributions is generally symmetrically located at the tri-coupler 

region with respect to the center waveguide. The explanation can also be supported by the coupling 

element (t12 and t21) in Eq. (A8), which describes the coupling between R1 and R2 without additional 

transmission phase or imaginary part.  

Fig. 3.3 (b) and (c) show the relative buildup B21 and the phase response of RBR compared to two 

individual 1R1B devices, respectively. The resonance spikes in the B21 spectrum imply that there are 

competing resonances between R1 and R2, since the light can only resonate in either one of the rings for 
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different operating frequency. For the phase responses, when the two resonances overlap (merging 

conditions), there is only 2π phase shift at the resonant order of 120, which accompanied with a 1R1B 

device under over-coupled conditions. This is clearly resembles the case ordinary 1R1B, as previously 

shown in Eq. (3.8). However, the phase response becomes qualitatively different when the two resonances 

are detuned from each other, producing a continuous or a step-like 4π phase shift where the (2π+2π) come 

from the (P1+P2). As long as the resonance detuning is smaller than the resonance linewidth, the phase 

swing is characteristically linear with the slope inversely dependent on the resonance detuning of the two 

rings, which are indicated by the peaks and dips in relative intensify buildup. As the resonance detuning 

increases with increasing resonance order, we can expect the phase to become increasingly undulated, 

resembling more into isolated 1R1B structures. Later we will show that this 4π linear phase is particularly 

important in the phase engineering of the CRIT spectrum when the RBR is coupled to MZI.   

  

Fig. 3.3. (a) Comparison of transmissions between RBR and two standalone 1R1B structures. (b) B21 of 

RBR for detuned cavity resonance. (c) Phase response of RBR can be decomposed of the sum of phases 

came from R1 and R2. The γ=1.05, a1=0.96, r1=0.59 and r2=0.52 are used. 

3.4  Ring-bus-ring Mach-Zehnder interferometer  

The EIT-like (or CRIT) spectrum characteristically consists of a linear phase in between two 

discontinuities, which translates into a transparent peak in between two resonant dips in amplitude 

spectrum [see Fig. 3.4(a)]. Therefore, in order to generate the CRIT spectrum, resonator systems with 

such phase discontinuity properties should be chosen. For better illustration, we compare RBRMZI with 

other two proposed structures in Fig. 3.4. In the two mutually coupled resonators system [40] [see Fig. 

3.4(b)], for example, the phase discontinuity is obtained when one of the resonators is tuned to under-

coupling situation, where the cavity loss dominates the coupling strength. On the other hand, in the 

cascade of two indirectly coupled resonators [45] [see Fig. 3.4(c)], the phase discontinuity naturally 
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occurs in the phase response of the through transmission (refer to Chapter 2 for detailed discussions of 

coupling conditions and phase responses). In the former case, the transparency is obtained by adjusting 

the inherent resonance splitting in between two resonators, whereas in the latter case, the transparent 

window is obtained by adjusting the resonance detuning between the two resonators.  In previous section, 

we showed that the interference of two optical pathways within RBR can be used to generate a 4π linear 

phase swing as long as the detuning is small enough compared to the resonance linewidths. This phase 

response of RBR can be further engineered to match the CRIT phase requirement is the RBR is integrated 

with MZI, in which one of the MZI arms is side-coupled with the RBR [see Fig. 3.4(d)]. 

 

Fig. 3.4. (a) Characteristics of EIT-like amplitude and phase spectrum. Various realizations of EIT-like 

spectra in (b) two mutually coupled resonators [40], (c) cascade of two indirectly coupled resonators 

and (d) RBRMZI device.  

The phase discontinuity is made possible because of additional non-resonant optical pathway (P3) in 

another MZI arm [see Fig. 1(b)], which results in a typical cosine-like MZI envelope. More generally, 

since the MZI itself may not be balanced due to fabrication variations and the presence of rings near one 

arm, this intrinsic asymmetry maybe represented by a phase bias (B) in the other arm [36]. The 

transmission of RBRMZI (tMZI) can be modeled with, 
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In the situation of lossless RBR component (a1,2=1, |tRBR|=1) and balanced MZI (B=0), the RBR 

transmission can be further simplified to a cosine term using the function of eiδ+e-iδ=2cosδ. Then the MZI 

transmission and phase response (MZI) are simplified as, 

 1RBR RBR RBR
MZI MZI MZIcos ,   cos

2 2 2 2
t

            
 

 (3.10)  

  

Fig. 3.5. (a) Profiles for three phase terms vs δ1 (b) Phase and transmission of cos(RBR/2) vs δ1.  

The origin of the phase discontinuity in MZI can be mathematically explained by the term cos(RBR/2) 

in Eq. (3.10). In order to illustrate the effects of phase on the emergence of transparent window, we plot 

the phase profile of RBR, MZI and the intermediate term, as shown in Fig. 3.5. Considering MZI in Eq. 

(3.10), the summation of the first two terms is a continuous profile. The amplitude of cos(RBR/2) changes 

its sign at the positions of δ1=m2π for R1 and δ1=[round(γm/γ)] for R2 (m is an integer), hence giving 

corresponding phase jumps π at those positions. However, in the physical sense, the phenomenon can be 

explained by means of the two optical pathways (P1 and P2) in RBR interfere with the third non-resonant 

optical pathway in the other arm of MZI (P3) around the R1 and R2 resonances, respectively. In this 

situation, the output amplitude is zero and the phase information is lost, rendering the π phase jump of 

phase response. Therefore, the destructive interferences enhance the transparent peak in between the two 

closely spaced resonance locations, rendering a transparent window. The EIT-like resonance in RBRMZI 

has a similar feature with that in the cascaded 1R2B resonators, i.e., the two dips at both sides of the 

transparency window correspond to the two ring resonances. However, the difference between the two 

configurations lies in the fact that the phase discontinuities requirement in RBRMZI comes from the 

engineering of MZI, as illustrated in Fig. 3.4(d), instead of the light interaction in two rings alone. Note 

that this phase discontinuity is especially true for other resonator structures, such as the through 

transmission of 1R1B in critically coupled situation and 1R2B resonators at lossless case. Since the phase 
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discontinuity occurs in the cases of MZI is an odd multiple of π i.e., MZI=(2m+1), it also follows the 

changes at the resonances of the two resonators (δ1=2mπ) in RBR structure. Thus, the locations of the 

phase discontinuities can be controlled by changing the resonance frequency detuning between the two 

resonators, which in turn determines the linewidth of the CRIT transmission.  

 

Fig. 3.6. (a) Transmission of lossless and balanced RBRMZI (TMZI) for different r0. (b) Plot of B1 and B2 

buildup factors for corresponding r0 values, where the dashed lines indicate the resonance locations. 

Fig. 3.6(a) presents the CRIT transmissions and the phase responses of RBR section for different 

coupling strengths (r0). Again, we choose γ=1.05 at the normalized frequency of 1/2 =121 for the 

purpose of illustration. It is important to note that the finesse of the transparent resonance increases along 

with increasing the coupling strength (or decreasing r0) due to stronger interaction (more interaction) 

between the two rings via the tri-coupler. Furthermore, as illustrated in Fig. 3.6(a), the phase response of 

RBR structure (RBR) becomes sharper in the enhancing the coupling strength. This is in contrast with 

other existing structure in Fig. 3.4(c), where low-finesse resonators do not provide sharp phase response. 

This difference can be explained by the way that the two resonators interact via the center waveguide in 

the RBR structure. When CRIT occurs, the light intensity is almost equally distributed in the two 

resonators [see panel (4) in Fig. 3.2(c)] and the light from the input waveguide cross-couples four times 

before exiting into the output waveguide. This means from the cross-coupling alone, the light acquires an 

abrupt phase change of 2π at the output port, and that the phase change is almost independent of the 

resonator finesse. In RBR device, since RBR is a combination of resonant and non-resonant processes [see 

Eq. 3.4], the phase jump caused by cross-coupling is not so clearly seen in high finesse resonators, since 

the phase contribution resulting from resonant process is the predominant factor. It is only when the 

resonators have low finesse that the 2π phase jump due to cross-coupling can be observed, which is 

illustrated in the bottom panel in Fig. 3.6(a) where r0=0.2.  

Another perspective from the buildup factor profile is also presented in Fig. 3.6(b). When the two 

resonances are well separated relative to their broadening, we have the same situation as in Fig. 3.2(a), 
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where the peak of the intensity buildup in one ring translates into a dip on the other. Here, the dip serves 

as the resonant process, while the rest serves as the background spectrum. As the broadening of the two 

resonances increases, we can see that the resonant dips start to influence the background spectrum and 

induce spectrum asymmetricity. Note that this is a rather familiar situation found in ring-enhanced Mach-

Zehnder interferometer (REMZI) [17], where asymmetric transmission spectrum is generated by inducing 

phase shift in one of MZI arms. Finally, when the two resonances are significantly broadened (e.g. at 

r0=0.2), we can see that the peak of intensity buildup in both rings shifts to the center of the two 

resonances, which leads to CRIT in Fig. 3.6(a). 

Note that manifesting phase discontinuity by a complete destructive interference is not exclusively 

RBRMZI. In fact, one should expect a similar phase response when a cascade of two resonators is side-

coupled with one of the MZI arm, which is named as dual-resonator Mach-Zehnder interferometer 

(DRMZI) for convenience here. By side-coupling two identical resonators in one MZI arm, one can 

mimic the phase response of RBRMZI, but with one significant difference. In RBR, the two resonators 

interact indirectly through the center waveguide, which in turn gives a phase response consisting of 

contributions of the two resonators as well as the mixture resonant pathways [the term δ1+δ2 as shown in 

Eq. (3.4)]. In DRMZI, the phase contribution of one resonator does not affect the other, and thus the 

phase response simply consists of a summation of individual phase responses from each resonator. Since 

the phase slope of two side-coupled resonators would be about twice that of the individual ones, this 

means the finesse of CRIT generated by DRMZI is always limited to the finesse of the individual 

resonators. This is in qualitative difference with RBRMZI where the finesse of CRIT is progressively 

higher as the finesse of individual resonators decreases.  

The comparison of RBRMZI and DRMZI is shown in Fig. 3.7(a), which plots the CRIT finesse (F), 

finesse enhancement (), and the extinction ratio (ER) as a function of coupling coefficient (r1). The 

finesse enhancement is defined as the ratio between the finesse of CRIT and the finesse of single side-

coupled ring (1R1B) η=FCRIT/F1R1B, where FCRIT=2π/δFWHM is the finesse of the CRIT transmission which 

has resonance linewidth of FWHM, and F1R1B=π(a1r1)
1/2(1-a1r1)

-1 is the finesse of a 1R1B taken from Eq. 

(2.15). The extinction ratio is defined as ER=TMZI(δCRIT)/TMZI(δCRIT±Δδ), where CRIT is the normalized 

frequency at which CRIT occurs, and  is the detuning at which the background transmission spectrum 

is already present. In principle, one can choose any detuning value as long as it sufficiently represents the 

existence of background spectrum. Here, we choose the detuning to be 3/(2FCRIT), or ω=3ωFWHM/2 in 

the absolute sense.  

It can be clearly observed from Fig. 3.7(a) that, for DRMZI, the finesse increases with decreasing 

coupling strength, while the finesse enhancement is relatively constant. This is in contrast with RBRMZI, 

where the finesse and the finesse enhancement increase dramatically when the coupling strength is 

decreased. The relatively constant finesse enhancement in DRMZI shows that high finesse CRIT can only 

be generated out of high finesse background envelope, which means high background transmission, and 

results in low ER. This is confirmed in Fig. 3.7(a), where the ER of DRMZI is not more than ~20, while 
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that of RBRMZI can be as high as ~300. Such qualitative difference is illustrated in Fig. 3.7(b), where the 

CRIT transmissions of RBRMZI and DRMZI are plotted against the normalized detuning from the 

respective CRIT frequency. Here, the value of r1 is chosen so that the finesse of both transmissions is the 

same (i.e., ~200). Clearly, it can be seen that the background spectrum of DRMZI is about 100 times 

higher compared to that of RBRMZI, which is consistent with ER in Fig. 3.7(a).  

 

Fig. 3.7. (a) Calculated finesse, finesse enhancement, and extinction ratio of RBRMZI and DRMZI for 

a typical loss coefficient (a1=0.995) as a function of coupling coefficient (r1). (b) Comparison of 

transmission spectrum of RBRMZI and DRMZI for the same finesse (~200). It can be seen that the 

envelope effect in DRMZI is much more serious compared to that in RBRMZI.  

3.5  Simulation results  

In this section, we show that the analytical calculation agrees well with the FDTD numerical method. 

The simulation parameters are adopted based on the silicon-on-insulator (SOI) material platform (refer to 

Chapter 2). The 3D structure is reduced to a 2D structure by the effective index approximation, where the 

reduced index of the silicon core is nsi=2.841 for single quasi-TE mode. For design simplicity, the 

coupling strength for the two rings between the center waveguide are set to be identical (t1=t2) with a 

coupling length of LC=6µm and a gap separation of g=200nm. The coupling length and the gap separation 
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can be further tuned to adjust the coupling conditions for fixed cavity lengths. The cavity circumference 

ratio of R1 and R2 is designed to be γ=1.05, using the quarter-round radius of 5µm. This radius is chosen 

to be 5μm so that the bending loss is negligible for SOI waveguides [32]. The RBRMZI consists of two 

3dB multimode interferometer (MMI), which has a 3.5μm width and a 10.7μm length. The input/output 

MMI ports are tapered with a length of 5μm to minimize the insertion loss. A Gaussian input light pulse 

(λcenter=1550nm) is launched (based on the eigen-mode of the input waveguide) into the waveguide and 

the simulation grid size is made to be less than λ/10neff for simulation accuracy.  

  

Fig. 3.8. (a) Comparison between the 2D-FDTD calculation results (thick faded) and the transfer matrix 

formalism (thin bold) for RBR and RBRMZI. (b) Intensity distributions (in dB scale) of RBRMZI for 

three different frequencies. Fitted loss and size detuning are a1=0.99 and γ=1.0497,respectively.  

Fig. 3.8(a) presents the simulation results of buildup factors and transmission for rather weakly 

coupling RBR and RBRMZI, which are theoretically fitted using the transfer matrix formalisms described 

earlier. To obtain a better fitting, the wavelength dependencies of effective index (neff) and coupling 

constant (r0) are taken into account. From commercial mode solving, for the wavelength spectrum of 
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interest (1.59<λ<1.64), neff and r0 can be numerically expressed as a function of λ as neff(λ)=-1.247λ+4.258 

and r0(λ)=-4λ+6.693 respectively, where λ is in microns. In general, the analytical formalism should agree 

well with the FDTD simulation results, except for some spectral non-idealities that have been overlooked 

in our model. For example, besides the nonzero transmission phases in coupling elements caused by the 

non-negligible overlap integrals and self-coupling coefficients in Eq. (A6), the coupling-induced phase 

shift (CIPS) from RBR perturbation in coupled MZI arm can also result in the transmission and buildup 

factor spectra to be asymmetric. This unexpected effect can be partly incorporated by introducing a phase 

bias (B) between two MZI arms, whereB is around -0.25π for the fittings. 

It can be seen from Fig. 3.8(a) that the transmission of RBR structure varies over different resonance 

orders. This is attributable to the fact that resonance detuning changes over the spectrum due to Vernier 

effect as described in Fig. 3.2(a). Around λ=1.595μm, one can see that the resonances are well detuned 

and RBR functions like two standalone 1R1B devices. This is manifested in two distinct resonant dips of 

different transmission contrast, since the two rings have different sizes and so have different effective 

cavity losses. Take the buildup factor for example, the B1 spectrum is broader than B2 due to the slight 

larger cavity size of R2 (γ>1). Consequently, the light resonates slightly longer in R2 and enhances the 

effective loss, giving a narrower resonant linewidth compared to that of R1. Similarly, the lower 

transmission dips in R2 resonance spectrum are due to the higher effective loss in R2. On the other hand, 

near λ=1.615μm and λ=1.635μm, the resonance detuning decreases and the RBR transmission begins to 

merge into a single resonant dip. The field intensity distributions of RBRMZI for three frequencies are 

shown in the panels of Fig. 3.8(b), which are similar to those in Fig. 3.2(c). The ω=ω1 and ω=ω2 

correspond to the dominated light are in R1 and R2, respectively. The CRIT starts to occur near 

λ=1.635μm, albeit with high background spectrum. This is because the two resonators do not strongly 

interact, and thus result in a weak CRIT effect. The intensity distribution corresponding to CRIT is shown 

in the bottom panel.    

 

Fig. 3.9. (a) Simulated transmission of RBRMZI and, (b)  buildup factors for different  gaps (in µm).  
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As highlighted earlier in Fig. 3.6, the transparent window can be designed to be sharper and with 

narrower linewidth with stronger coupling strength. One method is to increase the coupling length within 

the range of beat length, and the other one is to decrease the coupling gap. In the later case, the resonance 

positions are fixed for better comparison using the same FSR. Fig. 3.9(a) shows the comparison of the 

CRIT for different gap separations, where the gap is varied gradually from 200nm down to 130nm. As 

expected, the FDTD calculation results show that the CRIT effect becomes stronger as indicated in 

decreasing resonance amplitude. Correspondingly, the simulated buildup factor for each gap separation is 

also shown in Fig. 3.9(b). It can also be seen that the buildup factor becomes significantly asymmetric 

when strong CRIT takes place (e.g., at the 130nm gap). It should be noted that the CRIT becomes 

increasingly asymmetric and the peak seems to shift to the longer wavelength as the coupling strength 

increases. As previously discussed, such a red shift of the CRIT is caused by the additional transmission 

phases in the RBR section and the imbalanced phase bias of two MZI arms. The increase in phase shift as 

the coupling strength increases inside the resonators modifies the resonance condition and consequently 

shifts the resonance wavelength. Such a shift can also be referred to the movement of the dips in buildup 

factor B2 with different gap separations. 

   

Fig. 3.10. (a) Schematic of RBRMZI integrated with a 3×3 MMI coupler. (b) A close-up of the MMI 

coupler. (c) Calculated intensity distributions of MMI with lunched input light from different channels.  

In fabrication, even though many microring resonator-based devices have been realized upon various 

material platforms, the desired characteristics of resonators could be degraded due to the narrow gap 

separations in the directional coupler region. For instance, in the SOI material, it shows that the non-

adiabatic mode transition at the coupler section will cause large excess mode conversion losses when a 

narrow gap is used, e.g., g<100nm [56]. Furthermore, the fabricated directional couplers may fuse 

together as a slab waveguide, which seriously destroys the expected properties of structures. MMI coupler, 

as one potential alternative type of couplers, has been theoretically and experimentally employed in SOI 

ring resonators [57-58]. The MMI coupler has the advantage of high fabrication tolerance due to its low 

sensitivity to the wavelength and polarization variations. As a general guideline, we can apply a 3×3 MMI 

coupler instead of the directional tri-coupler into the RBRMZI, as shown in Fig. 3.10(a). The MMI 

section has a width of 2.7μm and a length of 9μm with 450 nm gap separation between channels [see Fig. 

3.10(b)]. For a better comparison with the RBRMZI using directional couplers in Fig 3.8(a), we adopt a 
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radius of 4.05μm to fix the FSR of R1. The field distributions of the MMI coupler lunched from different 

input channels are shown in Fig. 3.10(c). The light equally splits into the three output channels when the 

input light is injected from the middle channel [upper panel]. When the input light is launched from one 

side channel, large amount of intensity is guided into the opposite output channel and the center output 

channel, aiming to strengthen the interaction between the two rings [lower panel]. 

The simulated transmission of RBRMZI integrated with MMI coupler is presented in Fig 3.11. Even 

though the extinction ratio and modulation depth of the CRIT resonance are lower than that of RBRMZI 

with a directional coupler, the sharp CRIT resonances are still clearly observed since a strong coupling 

happens. The non-unity transparent peaks and non-zero transmission dips can be explained by two 

reasons. One reason is the insertion losses between the MMI channels and MMI multimode waveguide 

result in the light intensity at two MZI arms are not identical, giving rise to the non-complete destructive 

interferences between the optical pathways. The other reason is the ring-bus coupling in the RBR part is 

not under critical-coupled condition, thus, the resonant light can still leak into the output port. Compared 

to the CRIT in Fig. 3.8, there are several fake transparent peaks and the resonance positions have been 

slightly shifted in Fig. 3.11. We believe this is due to the combination effect as a result of the working 

mechanism of MMI coupler and the resonant properties of RBR resonator. 

  

Fig. 3.11. Simulated transmission of RBRMZI integrated with a MMI coupler for three CRIT orders. 

3.6  Summary  

The RBRMZI structure has been theoretically explored for its capability of generating a narrow EIT-

like transparency with high extinction ratio and finesse enhancement. Since the EIT-like spectrum in the 

RBRMZI is generated by inter-pathway interference between RBR and MZI arms, a low-finesse resonator 

is required for CRIT, instead of other existing schemes which requires high finesse resonator. Finally, the 

FDTD simulations are performed to verify the theoretical model and good agreements are obtained. For 

completeness, the RBRMZI integrated with MMI coupler is proposed for relaxing fabrication requirement. 

The proposed device can be useful for fast optical switching and sensor application, since they require 

both high finesse and high ER.   
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Chapter 4  Temporal Coupled Mode Theory in Ring-Bus-Ring 

Mach-Zehnder Interferometer  

4.1  Introduction 

Temporal coupled mode theory (TCMT) is a promising approach to revealing work mechanisms of 

resonators since it gives analysis to the time-dependent behavior between the incident/transmitted waves 

and resonant modes using time differential equations [59]. The dynamic equation has been tremendously 

successful in modeling a wide variety of passive and active optical resonant devices [41, 48, 60, 61]. In 

these structures, the resonators are typically loaded with one or several incoming/outgoing ports to allow 

frequency-selective power transfer between the ports. In the case when only a single mode is present in a 

lossless resonator, the mode coupling between bus and resonator can be described in terms of a unitary S-

matrix that derived from the standard TCMT [62]. However, when more than one resonant mode is  

presented, there is a possibility that the optical modes inside the resonator can only be expressed using a 

non-orthogonal basis function, since the cavity by itself couples to the ports and thus is an open structure 

[63]. The presence of such non-orthogonality will strongly affect the response of the multimode system. 

For example, an induced transparency in the transmission spectrum resembling atomic EIT effect can be 

achieved in a structure with a middle waveguide sandwiched by two side-coupled photonic crystal (PhC) 

cavities [63]. This transparent feature is applicable for all-optical dynamical storage of light in solid state 

[41, 48] and high performance modulator [64]. However, in the above examples, most devices are based 

on the 2×2 coupler, but few on the 3×3 coupler (tri-coupler) [63]. In Chapter 3, the transfer matrix 

formalism (TMF) was developed to investigate the RBRMZI configuration, as shown in Fig. 4.1, where 

the resonant modes interact with each other at a tri-coupler, demonstrating the capability of generating 

EIT-like (CRIT) transparent spectrum in such a device.  

 

Fig. 4.1. Left: schematic of RBRMZI. Right: two characteristics of mode coupling inside RBR part.  

In this chapter, we further our investigation by applying TCMT to illustrate the transparency property 

of the RBRMZI intuitively. The upper MZI arm in Fig. 4.1 depicts the schematic of the RBR structure, 

which consists of two rings, ring1 (R1) and ring2 (R2) with single mode u1 and u2 respectively, indirectly 

coupled through a middle bus waveguide between each other. Due to the presence of a tri-coupler at the 
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coupling region, the mode decay inside the RBR structure is qualitatively different compared to other 

existing resonators based on a 2×2 coupler. As illustrated in the right side of Fig. 4.1, the RBR has two 

main differences: two resonant modes (u1 and u2) decay to the middle bus simultaneously (upper figure) 

and the ring-bus coupling can induce an indirect coupling between the two outer rings through the bus 

(lower figure). This chapter is started by applying the coupling of mode analysis to the simplest single-

ring case to highlight the essence of TCMT. We then exploit the fact that the energy of the system is 

conserved to find the coupling matrix of the tri-coupler. After that, the obtained matrix is used to explain 

the essential properties of the CRIT spectrum through integration of RBR with MZI. Unlike the TMF 

method which requires complex derivation, the TCMT is extraordinarily simple and illustrative since it 

demonstrates the transparency mimicking an EIT expression. Finally, a good agreement is obtained 

between the three methods, TCMT, TMF and FDTD simulation results.  

4.1  One-ring-one-bus  

 

Fig. 4.2. Configuration of 1R1B with one single-mode transmitted inside it. 

The single-ring resonator evanescently side-coupled to one input bus waveguide (1R1B in short) is 

shown in Fig. 4.2. It can be seen that the incident light going from the input port (sin) couples into the ring 

resonator and excites the resonant mode u(t), then transfers into the output port (sout). The dynamic energy 

flow equations connecting sin, sout and u(t) in 1R1B can be modeled as, 

 
i i in

out in

(1 1 )du dt i u u i s

s s i u

   


   
 

 (4.1) 

where the first equation describes the evolution of the ring resonator mode in time and ωi is the resonance 

frequency, 1/τi is the intrinsic decay rate due to ring absorption and 1/τ is the external decay rate of the 

energy coupled into the bus. The second equation illustrates the connection of the incident and transmitted 

waves, where η is the coupling coefficient associated with the ring-bus interaction. 

The ring-bus coupling coefficient (η) and the decay rate (1/τ) are related by energy-conservation, i.e., 

the energy for the overall 1R1B, including both ring and bus, is conserved. To see this, we consider a 

situation where the external incident wave is absent at the initial time (t=0). Then at t>0, the ring supports 

a traveling wave u(t) with a amplitude of U(t) and the total power flowing through the ring is represented 

as |U(t)|2 [60]. In the case that there is no absorption inside the ring area (1/τi~0), the power of the ring 

exponentially decays into the bus determined by |u|2=|U(t)|2exp(-2t/τ). When we consider the bus as a 

receiver, the traveling mode in the ring evanescently couples into the bus and engenders the transmitted 

( )u t
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wave (sout). Thus, we have d|u|2/dt=-2|u|2/τ=-η2|u|2 and obtain the relation of 2/τ=η2. Through solving Eq. 

(4.1) with this relation and sin~exp(iωt), the normalized transmission of the 1R1B is given by,  

 
1 1

out i i
1R1B 1 1

in i i

( )

( )

s i
t

s i

   
   

 

 

  
 

  
   (4.2) 

     

Fig. 4.3. Comparison of transmissions calculated from TMF (thick-faded) and TCMT (dashed). Lc=2μm, 

r0=0.99, vg=c/4.25 and a=0.995 are used.  

We can see that Eq. (4.2) describes the transmission of the 1R1B device using the intrinsic loss and 

decay rate in temporal domain. Conceptually, it should be consistent with the transmission obtained from 

Eq. (2.13) using TMF method. In fact, the two methods are related by two considerations: the energy 

conservation and Q-factor. In order to find out this consistency, we first consider the energy conservation 

to get the relation between the coupling coefficients. The total stored energy |u(t)|2 and the entire power 

flowing through any cross section of the ring waveguide |U(t)|2 can be related by |u(t)|2=|U(t)|2tR, where tR 

is the cavity round-trip time given by tR=L/vg. L and vg are the ring circumference and group velocity of 

the traveling wave in the resonator, respectively. Therefore, the reduction of the total stored energy in per 

round-trip time should be equal to the increase of the transmitted wave sout originated from the decaying 

of the traveling wave with amplitude U(t). Then, mathematically, we can obtain the relationship of the 

coupling coefficients in time and in space as follows,  

 2 2 22 2 2 2 2
out 0 0 0( ) ( ) (1 )g g gv v v

s U t t u t t r
L L L

         (4.3)                           

where t0 and r0 are the cross coupling coefficient and reflection coefficient in TMF, respectively. On the 

other hand, using the definition of Q-factor in Eq. (2.19), the total Q-factor (Qt) is obtained by solving the 

full-width at half-maximum (FWHM) linewidth of resonance frequency (ωFWHM=2/τi+t0
2) from Eq. (4.2) 

as Qt
-1 =ωFWHM/ωi=Qi

-1+Qe
-1=λFWHM/λi. Qi =(τi1,2ω1,2)/2 is the intrinsic quality factor accounting for the ring 

absorption and Qe=(L1,2ω1,2)/(t0
2vg) is the external quality factor that is responsible for the ring-bus 

coupling. The notation λFWHM is the FWHM and λi is the resonance wavelength. Then by applying in the 

result in Eq. (4.3) and Qt=Qi
-1+Qe

-1, all the parameters in Eq. (4.2) can be rewritten via the parameters of 

TMF (e.g. r0, a and δ). Fig. 4.3 presents the comparison of the transmissions obtained from Eq. (4.2) and 

TMF from Eq. (2.13). It shows that the two approaches agree very well each other.   
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4.2  Ring-bus-ring  

In this section, we develop the mode analysis of RBR configuration loaded on the upper MZI arm in 

Fig. 4.1. Due to the presence of the tri-coupler at the coupling region, the incident light couples into the 

two rings simultaneously, Eq. (4.1) without modification cannot be adopted to model the mode coupling 

in the RBR case. In addition, the indirect coupling between the two outer rings that induced by the ring-

bus coupling must be taken into account. To do this, we recall the general TCMT for a resonant system 

with the existence of more than one resonant modes [62], 

 
T

i in

out in

( )du dt i u i s

s s i u

     
  

 (4.4) 

where Ω and Γi are 2×2 Hermitian matrices in which the diagonal elements represent the resonance 

frequencies and intrinsic losses respectively. Γ is a Hermitian matrix describing the decay rates of two 

resonant modes of the two rings with respect to the middle bus. H is a matrix whose elements are the ring-

bus coupling coefficients. The expressions of u, Ω, Γi, H and Γ are given by,  
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 (4.5) 

where the parameters with subscripts 1 and 2 correspond to the rings R1 and R2, respectively. The 

formula of decay rate matrix Γ is obtained in the following way: the overall RBR system is energy 

conserving. Following the similar procedure in 1R1B that the power in the transmitted wave comes from 

the traveling mode, we have d(u*u)/dt=u*(-iΩ*-Γ*)u+u*(iΩ-Γ)u=-2u*Γu=-sout
*sout=-u*H*Hu. Thus, Γ can be 

expressed in terms of Н as Γ=H*H/2. In the expression of Γ, the diagonal elements η1,2
2/2 are the decay 

rates of the corresponding resonant mode u1,2 to the middle bus. The non-zero elements η1η2/2 are the 

indirect coupling between the two outer rings induced by the direct ring-bus coupling. Therefore, the two 

resonant modes form a non-orthognal basis, since ΓΩ≠ΩΓ [63].  

We arrive at the following set of equations by substituting Eq. (4.5) into Eq. (4.4),  
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 (4.6)  

Similar to the TMF, the differential equations look like that of 1R1B in Eq. (4.1), but they are now 

modified due to the contribution of the resonant process of u1 (η1
2/2), u2 (η2

2/2) and the mixture of the two 

resonant modes (η1η2/2). This is also different from the two mutually coupled resonators system [refer to 

Eq. (B1) in Appendix B], where the ring-bus direct coupling is only accessible for one of the rings (ring1). 

Whereas the interaction between excited mode u2 in ring2 and the propagating waves (sin and sout) in the 

bus waveguide is relied on the loading factor term (ηcu2) imposed by mode u2 on mode u1. However, in 

the RBR, the light interaction works in the tri-coupler section formed by a ring-bus-ring interface. Within 
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conventional 2×2 couplers, it is impossible to obtain mixture interaction between the two cavities without 

mutual coupling between them, e.g. in the two cascaded 1R2B configuration [refer to Eq. (B5)]. Solving 

the differential equations in Eq. (4.6) with the time dependency of sin~exp(iωt), we can get the relative 

buildup B21 which is defined as the ratio of the light circulation in R2 relative to that of R1,  

 
1 1

i1 i2

2 2 21
, ~02 1 2 i1 2 1
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1 2 1 i2 1 2

i
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i
      

     
 





    
      

 (4.7) 

which represents the light intensity distribution in the two rings. It is quite clear that the light relative 

buildup is proportional to coupling strengths η1,2 and inversely proportional to the cavity size detuning (or 

frequency detuning Δω1,2=ω-ω1,2). The normalized transmission (t=sout/sin) of RBR system is obtained by 

solving Eq. (4.6) with Eq. (4.7), 

 
1 2 1 2 2 2

out 1 i1 1 2 i2 2 1 2
RBR 1 2 1 2 2 2

in 1 i1 1 2 i2 2 1 2

( 2)( 2) 4

( 2)( 2) 4

s i i
t

s i i

       
       

 

 

      
 

      
  (4.8) 

When the resonance frequencies of the two rings coincide ∆ω1=∆ω2 (one special case is the two rings 

are identical) and the losses are the same 1/τi1=1/τi2=1/τi, the transmission can be simplified to,  
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 (4.9) 

which again looks very similar to the transmission of 1R1B in Eq. (4.2), except the different coupling 

strength terms (η1
2+η2

2)/2 and τ-1. In fact, the two equations are equivalent with each other, as verified by 

the transmission response of RBR later. Following the similar procedure in single-ring resonator, R1,2 are 

assumed to support traveling wave u1,2(t) with a amplitude of U1,2(t). Considering the energy conservation 

in the overall RBR system, we arrive at |sout|
2=t1

2|U1(t)|
2+t2

2|U2(t)|
2=η1

2|u1(t)|
2+η2

2|u2(t)|
2, where t1,2 are the 

cross-coupling coefficients of the two rings and the middle bus waveguide in TMF. Between t1,2 and r0 

(the reflection coefficient of the middle bus), there exists a relation of r0
2+t1

2+t2
2=1 [refer to Eq. (A8)]. 

Recombining the above relation with Eq. (4.3), we can yield the relationship between the temporal and 

spatial coupling coefficients, 
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t v L t v L
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 (4.10) 

where ηeff
 is the effective coupling coefficient for the tri-coupler, which represents the total power coupled 

to the bus from the resonant modes. The second row in Eq. (4.10) implies that, when the two rings have 

the same resonances with an identical cavity circumference, the bus in RBR and 1R1B will receive a 

same fraction of power from the resonant ring(s), making the two equations, Eq. (4.3) and Eq. (4.10), be 

equivalent. This explains why the RBR behaves like a 1R1B when the two rings are identical.  

To verify the theoretical analyses, Fig. 4.4 presents the comparison of transmissions calculated from 

the FDTD simulation, TMF and TCMT for one resonance order. Excellent agreement is obtained between 
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the three approaches. We can see only one resonance dip when ω1=ω2 and two distinguished resonances 

when ω1≠ω2. Note that there is no resonance splitting at ω1=ω2, which is unlike other two-cavity systems. 

The existence of resonance splitting completely depends on the additional phase shift that introduced into 

resonant mode u1 by the presence of the second ring (R2). As mentioned in Chapter 3, there is no 

difference whether the resonant light passes through two rings in RBR or one ring in 1R1B, owning to the 

2π phase shift from four-time cross-couplings. Whereas, for the two mutually coupled rings structure [40], 

it naturally has the resonance splitting, since R2 introduces a π phase shift due to twice cross-couplings 

between two rings. This π phase difference gives rise to a destructive interference between the two ring 

resonant modes in the output port [refer to Eq. (B3)]. In the two-cascaded 1R2B configuration, the power 

exchange between the cavities are facilitated by double parallel buses, thus, the existence of resonance 

splitting is dependent on the ring-to-ring separation [see Eq. (B6)]. The resonance splitting only occurs 

when the coupling phase () between the two rings is not an integral number of π (≠mπ). In other 

situations, when =mπ, the additional phase (4π) caused by R2 is a combination of three parts, π from 

twice cross-couplings between R1 and R2, π from half circumference of R2, and 2π from coupled buses. 

Such a 4π phase results in a constructive interference and thus the resonance splitting disappears.  

  

Fig. 4.4. Comparison of RBR transmissions obtained from TCMT and TMF (solid lines) and FDTD 

simulations (open circles). Note that the profiles of two analytic theories are not distinguishable due to 

excellent fitting between the two.  

The proposed RBR device provides new possibilities for designing various microring resonator-based 

devices. For instance, it is possible to add drop ports at each ring to redirect the input light through the 

resonant rings, as shown in Fig. 4.5(a). The power in each output port can be calculated from the modified 

equations of Eq. (4.6), where the decay rates caused by drop channels should be included. Panel (1)-(3) in 

Fig. 4.5(b) show how the incident light is transferred at three different wavelengths. The RBR filter is 

flexible and relatively more compact compared to other cascaded ring filters since it can drop light to left 

and right simultaneously using one coupler. As highlighted earlier in Eq. (4.7), how much light located in 

the rings relies on the ring-bus coupling strengths and frequency detuning. This property suggests another 

potential application of the RBR device as a selective power splitter. At the position of coincident 
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resonance, RBR can behave like a 1×3 power splitter with arbitrary fraction of input intensity through 

varying the coupling strengths of the tri-coupler. One special case is under the critical-coupled condition, 

the transmission is zero and thus the RBR functions as a 1×2 splitter. When the coupling in the tri-coupler 

is symmetric, it gives 50% to 50% splitting, as shown in panel (4).  

 

Fig. 4.5. (a) Schematic of proposed RBR channel dropping filter. (b) Panel (1)-(3) show the dominated 

light at three wavelengths. Panel (4) shows the intensity distribution of a 1×2 RBR power splitter.  

4.4  Ring-bus-ring Mach-Zehnder interferometer 

For simplicity, we consider a balanced MZI with two perfect 3dB splitter/combiner at the input/output 

end, the transmission of the MZI enhanced with RBR is modeled by tMZI=i(tRBR+1)/2, 
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 (4.11) 

The general shapes of Eq. (4.11) are plotted in Fig. 4.6 for two different situations. The RBRMZI  

transmission exhibits an atomic EIT-like (or CRIT) feature that a narrow transparent peak occurs in the 

center of a broader transmission background. The occurrence of the CRIT resonance can be analyzed in 

the following procedures. For better analysis, we assume that the tri-coupler has a symmetric coupling 

(η1=η2) and the intrinsic losses in the two rings are identical (1/τi1=1/τi2=1/τi). When a strong coupling 

occurs, i.e., η1
2/2 |ω1-ω2| 1/τi, there are two minima and a maximum at the positions of ω=ω1,2 and 

ω=(ω1+ω2)/2 in the transmission spectrum respectively, 

         42
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 (4.12) 

When the resonance detuning Δω1,2 are much less than the resonator’s free spectral range (FSR), i.e., 

Δω1,2 2πvg/L1,2, the transmission power of Eq. (4.11) in a lossless case (1/τi1,2~0) can be deduced as,   
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where  =ω-(ω1+ω2)/2. We recall the EIT absorption expression (Tabs) in atomic system from reference 

[65] as Tabs= Ω1
2ΓΔ2/ [Δ2Γ2+ 4(Δ2-Ω2

2 /4)2], where Ω1 and Ω2 are respective Rabi frequencies of the probe 
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field and pump field, respectively. Γ is decay rate and Δ is detuning of the probe field from the atomic 

resonance. It can be seen that the fraction in Eq. (4.13) mimics the behavior of EIT equation if we regard 

ω2-ω1~Ω2,  ~Δ and 2η1
2~Ω1. From this analogy, we can see that no drive power is needed to generate 

transparency in ring resonator system. The function of powerful drive laser (Ω1) used to create EIT in 

atomic vapor is realized by the interaction between the two rings (2η1
2). It is worth noting that the 

bandwidth of the transparent resonance (П) is arbitrarily narrow in low loss case, 
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Fig. 4.6. Transmissions of RBRMZI system under two conditions. Solid curve is for ω2-ω1=1.2GHz 

and dashed curve is for ω2-ω1=2.4GHz, where Qi/Qe≈50 is used. 

Eq. (4.14) clearly tells us that the transparency becomes sharper with increasing coupling strength η1. 

This can be explained by the presence of non-orthogonal modes in RBR device, which renders a strong 

interaction between two cavities. The arbitrary position of the transparent resonance ω=(ω1+ω2)/2 with a 

tunable bandwidth П has several important applications. For instance, the RBRMZI device can serve as 

tunable source of slow light since the group delay (Tg) that originated from the transparency is 

approximately Tg ≈П
-1 [41]. This resonator’s compound delay line has certain advantages over the slow 

light technique in classical systems. For example, the resonator’s delay time is strongly dependent on the 

detuning of frequency separation |ω2-ω1|. The detuning have been examined experimentally using pump-

probe scheme [46] and electro-optic effect [64] on silicon platform. Furthermore, the transparent position 

of the CRIT in ring resonators could be arbitrarily controlled to satisfy different resonance frequencies, 

whereas the atomic EIT signal is limited only to a small number of accessible transition frequencies. This 

advantage especially highlights the application of microring resonators for all-optical communication and 

signal processing. In addition, the resonator systems have much lower loss compared to that in real atomic 

systems. In the atomic systems, since the spontaneous emission is not fully suppressed, a significant 

amount of input light is absorbed [41]. Another application of CRIT is for low-power switching realized 

in all-pass ring resonator, as presented in Fig 4.6, where the transparency is shifted from the dashed curve 

to the solid curve. The perturbation theory calculation [61] shows that a slightly variation in the group 

index of the larger ring (Δng~0.001) can obtain 100% switching of the transparent frequency due to the 

Vernier effect of the two ring resonances.  
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Finally, we present that the theoretical prediction is in good agreement with simulation results from 

2D-FDTD method. The MMI with a width of 2.4μm and a length of 5μm is adopted to connect MZI arms. 

We use a circumference ratio of the two rings as γ=1.05, a radius of 5μm and a coupling length of 4μm. 

Fig. 4.7 shows the FDTD calculation results of the RBRMZI, which is fitted using the TMCT described 

earlier and the TMF in Eq. (3.3). In the curve fitting, γ=1.0498, r0=0.575 and the loss factor a=0.995 are 

used. Generally, the analytical formulas agree well with the simulation results, except some non-idealities 

that are not taken into account in our TMCT model. For example, the small shift of transparent peak 

(~5GHz) caused by the asymmetricity in the simulation result originates from phase bias (B) between 

two MZI arms [refer to Eq. (3.9)] and wavelength dispersion [36]. We also note that the different 

contrasts in the fitted curves are attributed to the occurrence of a rather strong coupling (r0=0.575). Such 

difference can be reduced with weak coupling through optimizing RBR parameters.  

  

Fig. 4.7. Comparison of transmissions obtained from FDTD simulation (open circles), TCMT (solid) 

and TMF (thick-faded) for balanced arm length RBRMZI.  

We have mentioned the CRIT property can also be created in the relatively similar configurations 

with two PhC cavities in PhC system or two detuned aperture-side-coupled FP cavities in plasmonic 

system instead of rings [63], as shown in Fig. 4.8(a) and Fig. 4.8(b), respectively. We believe that the 

mode analysis of the tri-coupler in RBRMZI is also helpful for analyzing the induced transparency in the 

two similar devices. Take the PhC system for example, this structure consists of a center PhC waveguide 

sandwiched by two side-coupled PhC cavities with different dielectric constants. The difference in 

dielectric constants gives the two cavities different resonance frequencies, which are corresponding to the 

two resonance dips in EIT-like spectrum. However, in general, the RBR structure exhibits two individual 

resonances when the two resonances do not coincidence with each other. It is thus interesting to see the 

transmission response of such a PhC system. Considering the standing wave in PhC resonator with 

modified Eq. (4.6), the forward transmission (s+/sin) can be obtained as, 
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where all parameters have the same physics as those in Eq. (4.11). Compared to Eq. (4.11), Eq. (4.15) has 

the remarkable similar expression except the modified decay rate terms (η1,2
2/2). This difference comes 
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from the different work mechanisms of the two kinds of resonators, i.e. standing wave in PhC cavity and 

traveling wave in ring resonator. Therefore, in PhC cavity, the resonant modes decay in both forward and 

backward directions, rendering in the decay rate for the transmitted wave is divided by a factor of two. 

The EIT-like spectrum described by Eq. (4.15) can also be explained by the bi-directional transmissions 

in PhC cavities. When the two resonance modes in the PhC cavities decay equally to the two output ports, 

such a PhC system will possess only a single independent decay port, which gives rise to the all-optical 

induced transparency analog of atomic EIT [63]. 

  

Fig. 4.8. Schematics of two similar configurations. (a) PhC system with two side-coupled cavities. The 

boxes indicate the positions of the two cavities with different dielectric constants. (b) Plasmonic 

structure with two aperture-side-coupled FP resonators. 

4.5  Summary 

The TCMT is originally developed for the RBR structure and used to analyze the CRIT in RBRMZI 

configuration. Due to the presence of a tri-coupler at the coupler region, the mode decay in the RBR is 

different compared with other traditional resonators based on a 2×2 coupler. The TCMT shows that an 

arbitrary narrow transparent resonance can be tuned by coupling coefficients and frequencies spacing, 

which is applicable for low-power switching and tunable delay line. The two theories, TCMT and the 

TMF, are related via energy-conservation and Q-factor. A good agreement is achieved between TCMT, 

TMF and the 2D-FDTD numerical calculations.  
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Chapter 5  Experimental Realization of Coupled Resonator Induced 

Transparency  

5.1  Introduction 

Silicon-on-insulator (SOI) technology offers tremendous potential benefits for realizing ultra-compact 

integrated optics, owning to its compatibility with CMOS fabrication procedure for building large-scale 

on-chip optical devices. The high-index contrast SOI waveguide shows a strong confinement of guided 

modes, which allows building high-density photonic circuits with small radius and low bending loss on 

silicon substrates [32]. The CRIT based on resonant cavities has been experimentally demonstrated in 

SOI technology [45], however, in practice, it is still difficult to detune the resonant interaction between 

the internal pathways in optical systems. The transparent spectrum with narrow linewidth in current 

existing configurations can only be obtained under very stringent fabrication conditions. In the cascaded 

1R2B system [45], for example, the required resonator circumference difference between two rings is 

only ~8nm, which is clearly difficult to control in fabrication. In other configurations based on mutually 

coupled microspheres [44, 50] and microrings [40, 47, 50], the two almost identical resonators are 

required to have infinitesimally different intrinsic cavity losses and coupling strengths. This stringent 

requirement means that it needs to actively tune the cavity loss or gain, which clearly will impose 

additional complexity in device designs and fabrication. In Chapters 3 and 4, it has been theoretically 

proposed that the RBRMZI is capable of generating narrow CRIT resonance by means of synergistic 

integration of ring-bus-ring geometry with the Mach-Zehnder interferometer.  

In this chapter, we present the experimental realization of the CRIT in RBRMZI fabricated on SOI 

under ePIXfab silicon photonics platform [67]. Different from other systems, a high-Q transparency is 

achieved by the RBRMZI with two rings having the same intrinsic loss and a relatively large perimeter 

difference of 2.2μm. This chapter begins by extracting the basic parameters from the measurements of 

1R2B and MMI. Then we move on to the characterization of the RBR and RBRMZI, and show a good 

agreement between the measured results and the theory.  

5.2  Experimental setup 

Fig. 5.1 illustrates the fiber-to-grating mechanism (a) and the schematic of the measurement setup (b). 

The coupling between the standard single-mode optical fibers and strip waveguides is facilitated by a 

focusing grating coupler fabricated on the input/output ports within a footprint of 18.5μm×28μm. The 

fiber is near vertically butt-coupled to the grating (~10o off the vertical axis) with a coupling efficiency of 

~30% [68]. The fiber-to-waveguide coupling efficiency has a Gaussian spectral profile with a bandwidth 

of ~30nm. As we will see later, this bandwidth is broad enough to characterize microring resonator since 

the free spectral rang (FSR) is normally less than 30nm for the resonator with a radius of 5μm. The device 

under test (DUT) is excited with an ASE broadband source with wavelengths ranging from 1520nm to 
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1610nm. The output power passes through a 90:10 power splitter, where 10% fractional power is guided 

to a fiber power meter for alignment purpose while all the rest is forwarded to an optical spectrum 

analyzer for normalization with the input spectrum.  

 

 

Fig. 5.1 (a) Illustration of the near-vertical coupling with focusing gratings in the measurement. (b) 

Schematic of the measurement setup for ring resonator devices. 

5.3  Characterization of basic parameters 

5.3.1  One-ring-two-bus  

One of the fabricated 1R2B devices using the directional racetrack coupler is shown in Fig. 5.2. All 

1R2B DUTs have a fixed radius of R=5μm and a coupling gap separation (g) varied orderly as 200nm, 

300nm and 400nm. For each group of devices with the same coupler gap, the coupling length (Lc) is 

changed progressively by 2μm increment from 6μm to 14μm. Therefore, in this way, we could estimate 

and plot the coupling coefficient (r) value as a function of Lc.  
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Fig. 5.2. Fabricated 1R2B device with R=5μm and g=300nm.  

 

Fig. 5.3. Measured through and drop output of resist coated 1R2B devices with g=300nm, where the 

coupling length varies from 6μm to 14μm. The fitting focuses on one resonance. 

Fig. 5.3 shows the fitted through and drop transmissions for various 1R2B with a gap separation of 

300nm and a coupling length ranging from 6μm to 14μm. The theoretical model agrees well with the 

measurement results within one resonance order. The curve-fitting guideline is described as follows: (1) 

the ring circumference L=2(πR+Lc) is used to convert the normalized detuning δ=2πngL/λ and relate the 

coupling length Lc to wavelength domain. The initial estimation of group index ng is taken from FSR as 

ng=λ
2/ΔλFSRL that calculated from the differentiation of resonance situation ngL=mλ. The obtained group 

index is ng~4.21 (~4.64) for resist coated DUTs (bare silicon DUTs). (2) For 1R2B, the resonance peaks 

in the drop spectrum is much more sensitive to the effect of loss than the resonance dips in the through 

spectrum. We can assume an empirical value for loss factor (a) based on reference [36], e.g., a=0.995 

(a=1 in lossless case), and obtain the initial estimation of coupling coefficient r by fitting the through 

transmission near the resonances (δ~m2π). (3) The obtained r is then applied into the resonance peaks of 

the drop transmission to extract the real loss factor. Through repeating the above steps, we finally obtain 

1530 1540 1550 1560 1570 1580
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

6

r=0.925
a=0.994

8

r=0.89
a=0.995

10

r=0.845
a=0.996

12

r=0.79
a=0.996

14

r=0.73
a=0.993

λ(nm)

N
or

m
al

iz
ed

 o
ut

pu
t (

a.
u.

)

Input Through

Drop

R

cL

g



Chapter 5 Experimental Realization of Coupled Resonator Induced Transparency

 

53 | P a g e  

 

the fitted parameters as labeled in Fig. 5.3. It shows that the extracted loss factors remain almost constant 

as a~0.995 in different 1R2B devices, and this value will be used to characterize the RBR and RBRMZI 

structures that fabricated on the same chips. As expected, the coupling coefficient r decreases (or 

coupling strength increases) with the increasing of coupling length. In order to understand the trend of 

this variation, we recall the expression of r=cos(κz) in Eq. (2.12), and get a linear function of,   

 1 0
c

π π

ππ
cos ( )

2 2

L
r z L

L L
  

   
 

 (5.1) 

where Lπ=π/2κ is the beat length and z=(Lc+L0) is the total coupling length. L0 is regarded as an offset that 

takes into account the coupling occurs at the curve region before/after the directional coupler. 

 Therefore, we can calculate the coupling strength r for any coupling length Lc using the above linear 

relation. Fig. 5.4(a) presents two fitted linear regressions of wavelengths around 1540 nm and 1580nm. In 

general, the linear trend agrees well with the theoretical model in Eq. (5.1). As we can see, due to the 

wavelength dispersion, the value of r becomes more sensitive to λ as Lc increases from 6μm to 14μm. 

This dispersion also partly explains why the resonance linewidths of the transmissions in Fig. (5.3) 

gradually broaden with the increase of wavelength. In the longer wavelength regime, i.e., λ=1580nm, the 

coupling length relative to λ is smaller and thus the beat length should be shorter. This understanding is 

supported by the experimental results that the sets of [L0, Lπ] for 1540nm and 1580nm are founded to be 

[2.45μm, 39.27μm] and [2.24μm, 32.06μm], respectively.  

  

Fig. 5.4. (a) Plot of coupling coefficient r with the variation of coupling length Lc for two wavelengths. 

(b) Set of [L0, Lπ] as a function of gap at wavelength around λ=1550nm.  

Following the above fitting procedure, we can similarly deduce the values of [L0, Lπ] for devices with 

a gap separation of 200nm and 400nm. Then, it is possible to further extract the initial guess of [L0, Lπ] 

for devices with any gap separation, as reflected by the linear relation in Fig. 5.4(b). Here we take one 

special gap separation g=150nm for example. We obtain the set of [L0, Lπ]=[3.22μm, 12.43μm], and 

deduce r=0.4 in the case of Lc=6μm. The obtained r (r1,2 in tri-coupler) will be used later to figure out the 

coupling coefficient for the center waveguide (r0=2r-1) of the tri-coupler in RBR and RBRMZI.  
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We should point out that the curve-fitting can only focus on one resonance order (or one FSR) due to 

the effect of wavelength dispersion. To cover the entire spectrum, the dispersion effect on the coupling 

coefficient r and group index ng need to be considered. We investigate the exact values of ng and r for 

each resonance position, and obtain r=-2.51λ(μm)+4.62 and ng=-0.051λ(μm)+4.222, respectively. As 

shown in Fig. 5.5(a), the r and ng decrease gradually in the longer wavelength region. Fig. 5.5(b) shows a 

good fitting is obtained through the whole spectrum for four FSRs from 1530nm to 1585nm. 

 

Fig. 5.5. (a) Linear variations of ng and r as functions of λ. (b) Fitting covers the entire spectra. 

5.3.2  Multimode interferometer  

  

Fig. 5.6. (a) Fabricated 3dB MMI. (b) Measured MMI outputs of various MMI lengths (in μm).  

 We are going to characterize the 1×2 multimode interferometer (MMI) coupler that will be integrated 

in RBRMZI. Fig. 5.6(a) shows a single fabricated 3dB MMI coupler with a MMI width (WMMI) of 3.5μm 

and a MMI length (LMMI) of 11.5μm. The 5μm length waveguides are tapered at the input/output ports to 

reduce the insertion loss. The measured spectra of five MMIs with different LMMI are shown in Fig. 5.6(b).  

As we can see, each MMI coupler works very well with the balanced two outputs covering the entire flat 

spectrum. The ideal MMI device should be DUT2 with a length of LMMI=10μm since both the bar (open 

circle) and cross (solid line) outputs are around 3dB, which suggests the splitting imbalance and the 

insertion loss are minimum. However, we have chosen DUT3 into RBRMZI design before the fabrication. 

In fact, the adoption of DUT3 is acceptable even though the insertion loss seems to be larger than that in 
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DUT2. Moreover, it has been examined that the waveguide bending loss and propagation loss are much 

smaller compared to the MMI insertion loss [23]. Thus, in DUT3, only the insertion loss needs to take 

into account and thus the estimated transmission factor is ~0.88 for one MMI output amplitude.  

5.4  Ring-bus-ring Mach-Zehnder interferometer  

We first measure the independent RBR device. In the RBR, the first ring (R1) has a radius of R=5μm 

with a coupling length Lc=6μm. The radius of the second ring (R2) is adjusted by the cavity size detuning 

γ, which is defined as the ratio between the circumference of R2 and that of R1. This means that the RBR 

structure is symmetric when γ=1, that is the two rings have the same radius and thus give rise to the 

identical coupling coefficient (r1=r2) with the middle waveguide. For other values of γ, the RBR is 

asymmetric due to the slight difference in radii and coupling coefficients (r1≠r2). Fig. 5.7(a) shows the 

fabricated RBR device with two identical rings (γ=1). Fig. 5.7(b) presents the measured transmissions of 

RBR (TRBR) with i-line resist cladding (upper panel) and with air cladding (lower panel), respectively. In 

the ideal case of γ=1, the RBR should behave like 1R1B and exhibit only one resonance dip during per 

FSR [refer to Eq. (3.8)]. However, in realistic case, due to the presence of inevitable fabrication non-

uniformity, the fitted γ is slightly different from unity as γ=1+Δγ, where Δγ=±0.00033 is the deviation of 

the designed value γ, as labeled in Fig. 5.7(b). When a strong coupling (r0=2r1,2-1=0.4) occurs at the resist 

coated RBR, the two separated resonances merge to one indistinguishable resonance due to a strong 

interaction between the two resonant modes (upper panel). On the other hand, as expected from the theory, 

we have two resonances when the coupling strength is rather weak (r0=0.98) (lower panel). 

Next, the measurement extends to the RBRMZI device presented in Fig. 5.8. Two 3dB MMI couplers 

with WMMI=3.5μm and LMMI=11.5μm are integrated to optimize the MZI splitting and combing loss. The 

5μm-length tapers are applied to connect input/output ports with the MZI arms to reduce the insertion loss. 

The RBR component in the upper MZI arm is identical with the independent RBR device, e.g., a fixed 

Lc=6μm, R1 has R=5μm and the cavity size of R2 is detuned by γ.  

 

Fig. 5.7. (a) Fabricated RBR with γ=1 and g=250nm in bare silicon. (b) Measured (thick-faded) and 

fitted spectrum (solid line) of RBR devices.  
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Fig. 5.8. Fabricated RBRMZI with γ=1.05 and g=150nm (Note that this figure is combined by three 

parts due to the limited visibility of the microscope). 

  

Fig. 5.9. Measured (thick-faded) and fitted (solid) transmissions of RBRMZI devices (TRBRMZI). (a) 

g=150nm in bare silicon and (b) g=200nm with resist coating.  

Fig. 5.9 shows the fitted transmissions of RBRMZI (TRBRMZI) for six DUTs. DUT1 to 3 (DUT4 to 6) 

have a gap separation of 150nm (200nm) with bare silicon (resist coating). Please note that the resist 

coatings were initially processed for passivation purpose and then removed in some devices in order to 

compare the transparent resonances in DUTs under two different conditions, with resist coating and bare 

silicon. The procedure of curve fitting is explained in the following: (1) The round-trip loss a=0.995 is 

obtained for 1R2B fitting and the MMI transmission factor of 0.88 is obtained from MMI fittings. (2) The 

group index is adopted from RBR fitting as ng~4.21/4.64 for resist coated/bare silicon devices. In order to 
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fit the whole spectrum, the variation of group index as functions of wavelength λ are taken into account as 

ng=0.00564λ(μm)+4.2017 and ng=0.017λ(μm)+4.6126, respectively. (3) The cavity size detuning γ that 

determines the locations of two individual resonances is obtained through adjusting the relative separation 

between the two resonances over the entire spectrum. (4) The coupling coefficient r1,2 that determines the 

linewidth of the two resonances is deduced from 1R2B fitting. Here, we still assume r1=r2 for the 

asymmetric/symmetric RBR element since the radius difference (∆R) between R1 and R2 is so small that 

the variation of r1 and r2 can be ignored, e.g. ∆R=91nm at γ=1.05. (5) The initial guess of the MZI 

imbalance phase (B) that determines the asymmetricity of the Fano-lineshape is derived from fitting the 

spectra of RBRMZI with symmetric RBR component. It is much easier to get B in the case of γ~1 since 

the resonance is characterized only by a single-cavity. Through repeating step (2) to (5) for fine-

adjustments until the fitting converges, it is possible to find a combination of the imbalance phase and the 

coupling coefficient that fit well the experimental results. In this way, we obtain B~0.31π and r1,2~0.88 

for DUT1 to 3, while B~-0.7π and r1,2~0.74 for DUT4 to 6. It is worth pointing out that the high 

imbalance phase B~-0.7π makes the transparent resonance be inverted in DUT4 to 6, which is known as 

coupling-induced absorption [44]. Moreover, the coupling strength in the first three DUTs is weaker 

(larger r1,2) than the coupling of the rest three DUTs even though the gap separation of the directional tri-

coupler seems to indicate the contrary. This is explained by the mode-field size of the guided mode gets 

larger with more extended tail due to leaky evanescent field in the resist-coated devices. 

Even though the best-fitted values of γ are shown in Fig. 5.9, it is interesting to highlight that there 

exists two possible fittings for symmetric RBR cases (DUT2 and DUT5) at γ~1 using slightly different 

group indices and cavity size detunings. This is because γ is too near unity to figure out which resonance 

comes from R1 or R2. There is also no discerning pattern deduced from the relative resonance separation 

which changes over different resonance orders. Thus, it is quite possible to fit the two special situations 

with ±Δγ considering that in symmetric limit, that is R1and R2 are interchangeable. Here, we take the 

resonance order of 130 in DUT2 for example, it can be fitted with two sets of (γ, ng) as (1+0.00033, 

4.6375) and (1-0.00033, 4.639). In fact, since the RBR structure is symmetric and γ is so near to one that 

it is likely to obtain reasonable fit with γ=1 while fixing all other fitting parameters, e.g. r1,2, ng and B. 

We believe that this is owing to the value of γ should not deviate in the presence of coupling-induced 

phase shift (CIPS) due to the symmetry of RBR, i.e., the amount of CIPS in R1 and R2 are identical and 

the CIPS is almost cancelled-off with each other. This idea is strongly supported by the experimental 

findings indicated in Fig. 5.9. The calculated cavity size derivation Δγ/γ in DUT2 (DUT5) is only ~0.03% 

which is around 10 times smaller than that of Δγ/γ~0.3% in the asymmetric RBR shown by DUT1 and 3 

(DUT4 and 6). Moreover, it is also evident that the measurement of devices in the bare silicon with high-

contrast index exhibits more noise than the resist-coated devices. This is due to the fact that the bare 

silicon devices experience stronger reflection from the waveguide surface roughness and the input/output 

gratings, which contributes to the additional noise in the measurement results.  
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The advantage of the RBRMZI can be seen from DUT2 where the CRIT resonance has a bandwidth 

of 0.25nm, a free spectral rage of 12nm and Q~6300. For this device, the circumference difference of the 

two rings is around 2.2μm, which is much larger compared to the reported result of ~8nm in another 

CRIT system based on cascaded 1R2B resonators [45]. The finesse value of this transparency ~70 is 

obtained using relatively lower finesse rings ~23. For other cases like DUT 01, 03, 04 and 06, the ring 

resonances are detuned further away from each other, rendering in weaker inter-cavity interaction 

between the two outer rings. We further extract the Q-factors of CRIT resonance in more device 

measurements shown in Fig. 5.10. It is interesting to see that, for γ~1, the Q-factor is almost constant over 

the entire resonance positions, while it increases gradually with the increase of wavelength for γ~1.05 and 

γ~0.95 (see the solid line plots as an example). This trend is consistent with the fitting that it is hard to see 

the Veriner effect of the two ring resonances and thus partly explains why there are two existing fittings at 

γ is almost unity. Fig. 5.10 clearly tells us that the highest Q-factor is also achieved in this special 

situation γ~1. This result is in agreement with our earlier understanding that the CIPS is nearly cancelled 

in the symmetric RBR part. Thus, a very slight deviation of cavity size detuning will give rise to very 

sharp CRIT feature. Based on the collected results in Fig. 5.10, we estimate that Δγ/γ ~0.035% cavity size 

deviation with r1~0.8 power coupling strength and ~0.5% cavity loss (or a=0.995) are sufficient to 

generate transparent resonance with Q-factors more than 18000.  

  

Fig. 5.10. Measured Q-factors of the RBRMZI devices for different cavity size detuning γ. 

5.5  Summary 

In this chapter, we experimentally realize the CRIT through RBR geometry synergistically integrated 

with MZI based on SOI technology. The transparency can be created without the requirement of different 

losses in the two rings and a very small difference of ring circumferences. The measurement result agrees 

well with the theoretical prediction, where the sharpest transparent resonance generates from slight cavity 

size detuning and low ring finesse at strong coupling condition.  
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Chapter 6  Conclusions and Future Work 

6.1  Conclusions 

In this thesis, I have theoretically analyzed and experimentally demonstrated the induced transparency 

in RBRMZI on SOI technology. Starting from the introduction of the waveguide mode theory, the 

effective index method used to solve the mode field of rectangular waveguides is discussed. The matrix 

formalism of two coupled waveguides is developed to analyze two basic one-ring configurations, 1R1B 

and 1R2B. The fundamental parameters and their relations are derived and discussed in details. 

The main work began by investigating the RBR structure based on a tri-coupler. In this coupler, the 

self-coupling coefficients and overlap integrals should be neglected at weak coupling situations. At strong 

coupling conditions (e.g. r<0.99), the non-zero self-coupling coefficients and overlap integrals will 

introduce the asymmetry to the resonances. The 4π phase response of the RBR geometry can exhibit an 

EIT-like characteristic when the RBR is integrated with MZI. The destructive interferences between the 

three optical pathways in RBRMZI lead to the generation of CRIT in low-finesse resonators at strong 

coupling conditions. In addition, compared to another dual-ring MZI, the RBRMZI exhibits higher 

extinction ratio, finesse enhancement and lower background spectrum. The theoretical work extends to 

illustrate the CRIT using the mode analysis from TCMT. It shows an arbitrary narrow transparency can 

be flexibly obtained by modifying the resonance frequency and coupling strengths. The TCMT and the 

TMF are related via energy-conservation and Q-factors. 

Finally, we demonstrate the CRIT in RBRMZI on SOI material platform. The transparency does not 

require different losses in the two rings (a1≠a2) and a very small difference of ring circumferences (e.g., in 

the range of nm). The measurement result agrees well with the theoretical prediction, where the sharpest 

transparent resonance generates from slight cavity size detuning and low ring finesse at strong coupling 

condition. Applying a slight cavity size detuning of γ~1.05 and a coupling coefficient of r1~0.88, the best 

transparency is obtained with a bandwidth of 0.25nm, a FSR of 12nm and a Q~6300. Based on the further 

measurement results, it shows that the transparency with Q~18000 can be created using a power coupling 

of r1~0.8, a roundtrip loss of a~0.995, a circumference of the one ring 43.4μm and a relative 

circumference deviation of the other ring Δγ/γ ~0.035%. The transparency in RBR-MZI is applicable for 

low-power switching and tunable delay lines in signal processing based on chip-sized devices.  

6.2  Future work 

The future work should be focused on the improvement of current devices and the exploration of 

some possible applications using the RBRMZI. 

In current devices, the fittings of the asymmetric transparent resonances are based on the assumption 

of the symmetric tri-couplers (r1=r2) in the RBR structures. However, it is not clear whether the fabricated 

gap separations in the tri-coupler region were open or identical (most likely not) as they were designed, as 
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well as the possible effects of different coupling coefficients (r1≠r2) have not been discussed. In addition, 

further investigations found that much better fittings were obtained using different coupling strengths. 

Therefore, it is necessary to show the scanning-electron micrographs of the RBR structures to see whether 

the tri-couplers have the uniform gap separations and waveguide widths. Another problem is the current 

transparency resonance is not pronounced. The sharpness of the transparency can be increased at strong 

coupling condition. However, the stronger coupling will aggravate the CIPS and the asymmetricity. There 

are several approaches that can be used to overcome this problem. Firstly, we can apply the symmetric tri-

coupler in RBR to cancel the CIFS in the two rings. R1 and R2 should have the same radius in order to 

guarantee their identical ring-bus coupling strengths, which are different in current devices. Secondly, it is 

possible to eliminate the MZI imbalance caused by the loaded RBR through varying the wire width of the 

other bare MZI arm [36]. Thirdly, the variations of waveguide widths came from optical proximity, i.e., 

waveguide width in coupler region is narrower than that of isolated ones, can be compensated by optical 

proximity correction through adding certain geometries on the re-sized mask.  

The active tuning (like switching) is a promising application for the narrow CRIT resonance. Fast 

switching speed and low-power consuming (or high extinction ratio) are the two important requirements 

in active optical devices. The CRIT used for switching with high extinction ratio has been proposed in 

reference [64], but the switching speed of this CRIT has not been investigated yet. In fact, a tradeoff 

exists where these two requirements. Let us take the resonance of 1R1B for example. In order to get low-

power consuming modulation, a high-Q resonance is desirable. However, the higher Q leads to longer 

effective cavity lifetime and lower optical losses, suggesting that more time must be taken by the 

resonator to maintain the same modulation depth [7]. This tradeoff between the switching speed and the 

power consuming can be broken by the high-Q transparency in RBRMZI with low ring finesse (or low 

cavity lifetime). The advantage of CRIT in RBRMZI is that both requirements can be satisfied at strong 

coupling condition, in contrast to a push-pull relation of the two requirements in conventional CRIT 

schemes or single-cavity resonators. Therefore, an active device with fast switching speed and low-power 

consuming can be realized using the CRIT in RBRMZI.   
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Appendix A. Derivation of 3×3 Coupling Matrix 

Fig. A1 shows the geometric outline of three parallel coupled waveguides with the power guidance in 

z direction. In order to make the notations consistent with that in RBR structure in main content, the three 

waveguides shall be orderly notated with 1, 0, 2.  

 

Fig. A1. Configuration of three parallel coupled waveguides oriented along z-axis, where s1,0,2 (0) is the 

value of s at the position of z=0. 

In order to simplify the calculation and analysis, we make the following assumptions for practical 

waveguide configurations: (1) The three waveguides should be identical with the same parameters, e.g. 

waveguide dimension and refractive index. (2) The waveguide-waveguide coupling is only noticeable for 

two adjacent elements. Conceptually, the coupling of light can occur between any two of the three 

waveguides. However, in the more realistic case, due to the fact that the coupling between two outer 

waveguides is only assisted by the presence of the center one, the direct coupling between them so weak 

that can be negligible (κ12=0). (3) The overlap integrals are much smaller that can be negligible (Ĉpq=0, 

q,p=1,2,3) compared with the self-coupling coefficients under both weak and strong coupling conditions, 

since the several orders of difference between the amplitudes of electric field and magnetic field [refer to 

Eq. (2.8)]. (4) The self-coupling coefficients should be taken into account at strong coupling conditions 

and be neglected at weak coupling conditions. Since at the weak coupling cases, the electric field overlap 

could be very small due to weak field perturbations between two neighboring waveguides. (5) In general, 

the self-coupling terms for the middle waveguide and two outer waveguides are not identical due to the 

different mode perturbations. Based on the above assumptions, the M-matrix in Eq. (2.7) can be rewritten 

as the following form for a general tri-coupler, 

 
11 1

1 00 2

2 22

0

0

M

  
   

  

 
   
  

 (A1) 

where β is the propagation constant of a standalone waveguide without the presence of the other 

waveguides, κ11,00,22 are the self-coupling coefficients and κ1,2 are the cross-coupling coefficients between 

the side waveguide 1,2 with the center waveguide 0.  

In Eq. (A1), we can see that the propagation constants in the diagonal elements are modified with the 

self-coupling coefficients, which will cause coupling-induced phase shift in the resonances. Generally, 

x

1(0)s

0 (0)s

2 (0)s

zy
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where κ1≠κ2 and κ11≠κ22≠κ00, one has the characteristic equation in the form of cubic equation, suggesting 

that it is too complicated to be solved analytically. However, we can assume κ11=κ22 since the fields 

integral of the cross-coupling counterparts are much larger compared to those in self-coupling coefficient. 

Refer to Eq. (2.8), mathematically, the self-coupling coefficient is calculated from a square of the fields 

with the perturbation of other waveguides. Since the “squared” field term can make the field tail shorter, 

which means that the fields overlap with ∆ε(x) becomes to quadratically smaller. In this regard, the field 

overlap of cross-coupling coefficients is much more sensitive to the variation of gap separations than that 

in the self-coupling coefficients. Therefore, when the gap separations are not so different (e.g. <50nm), it 

is still reasonable to assume that κ11=κ22≠κ00 in the case of κ1≠κ2. 

Based on the above discussions, we follow closely the procedure from Eq. (2.9) to Eq. (2.11). Solving 

the equation |M-Iσ|=0 for Eq. (A1), the three eigenvalues (σ) and corresponding eigenvectors (υ) can be 

expressed as the following equations, 

  
 

T

1,3 1,3 1 2 1

T

2 11 2 1 2

, 1 ( ) ,

, 1 0 .

        

     

    

   
 (A2) 

where  =β+(κ11+κ00)/2, ψ=(Δβ2+κ2)1/2, Δβ=(κ11-κ00)/2 and κ2=κ1
2+κ2

2 is the effective coupling constant 

for the tri-coupler. Then substituting the three eigenvectors to s=Σmcmνmexp(iσmz), where cm is the 

coefficients to be determined later. The output s can be expressed as, 

 

1 2 3
1 1

0 1 3 0
1 1

2 2

2 1 1 1 2 2 2 1 3

exp( ) exp( ) exp( )

exp( ) 0 exp( )

( )exp( ) ( )exp( ) ( )exp( )

i z i z i z
s c

s i z i z c

s c
i z i z i z

  
    
 

        

 
    

           
         

  (A3) 

Substituting the eigenvalues in Eq. (A2) to Eq. (A3) and considering the initial conditions for power 

at z=0, we can find cm in terms of sm (0) from Eq. (A3) as the following matrix,  

 

2
1 1 2 1

21
0 2 1 2 02

2
2 1 2 2

( ) ( ) (0)

2 0 2 (0)
2

( ) ( ) (0)

c s

c s

c s

      
     
 

      

       
         
            

 (A4) 

Then Eq. (A3) is substituted with Eq. (A4) to eliminate cm, where the relations of 2cosδ=(eiδ +e-iδ),  

2isinδ=(eiδ-e-iδ) and ψ2-Δβ2=κ2 are used. Finally, we obtain a general 3×3 coupling matrix to connect the 

incident light and output response, 

 

1 1 1 1 12 12 1

0 1 0 0 2 0

2 21 21 2 2 2 2

exp( ) exp( ) (0)

exp( ) exp( ) (0)

exp( ) exp( ) (0)

s r i it t i s

s i z it r i it s

s t i it r i s

 
 

 

     
          
          

 (A5) 

where rq and tq are real values, and φ are the additional transmission phases at strong coupling condition. 

The matrix elements in Eq. (A5) are expressed as the following set of equations,   
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1 2
1 2 0 0

2 2
1 2

1 1 2 2

2 2
2 1

2 2 2 2

12 12 21 21

sin( ), sin( ), exp( ) cos( ) sin( ),

exp( ) cos( ) sin( ) exp( ),

exp( ) cos( ) sin( ) exp( ),

exp( ) exp( )

t z t z r i z i z

r i z i z i z

r i z i z i z

t i t i

      
  

    
  

    
  

 


   

 
    

 
 

    
 

  1 2
2

cos( ) sin( ) exp( ) .z i z i z
   
 

 
   

 

 (A6) 

We can observe that all the phases are caused by ∆β from the self-coupling terms when a strong 

coupling occurs. In the case that the two outer waveguides are symmetrically located from the center one, 

the cross-coupling coefficients have κ1=κ2. Then Eq. (A6) can be simplified to,  

 

1
1 2 0 0

1 1 2 2

12 12 21 21

sin( ), exp( ) cos( ) sin( ),

1
exp( ) exp( ) cos( ) sin( ) exp( ) ,

2

1
exp( ) exp( ) cos( ) sin( ) exp( ) .

2

t t z r i z i z

r i r i z i z i z

t i t i z i z i z

    
 

    


    



   

 
     

 
 

     
 

 (A7) 

If we consider the asymmetric coupling case (κ1≠κ2) in weak coupling situations, then all the self-

coupling coefficients κ11,00,22 can be neglected and thus the three waveguides have the same propagation 

constant β. In mathematical form, the common phase term exp( )i z  becomes to exp(iβz), κ11=κ22=κ00=0, 

Δβ=0 and ψ=κ, then all the additional transmission phases disappear. Therefore, the following equations 

can be deduced from Eq. (A7), 

 
 
 

 

2 2 2 2
1 2 2 1

0 1 22 2

1 2 1 2
1 2 12 21 2

cos( ) cos( )
cos( ),  ,  ,

sin( ) sin( )
,  , cos( ) 1 .

z z
r z r r

z z
t t t t z

     
 

      
  

 
  

    
     (A8) 

Further the assumption under weak coupling conditions, when the coupling is symmetrical (κ1=κ2), 

the coupling constants in Eq. (A8) can be simplified to the following set of equations [Note that these 

equations can also be obtained from Eq. (A7), when all the self-coupling terms are neglected.], 

 0 1 2 1 2 12 21

sin( ) cos( ) 1 cos( ) 1
cos( ),  , , .

2 22

z z z
r z t t r r t t

    
         (A9) 

Note that the relationships among the coupling coefficients in Eq. (A8) can be obtained upon 

substituting coupling constants, which will be helpful for deducing the through transmission and buildup 

factors in Chapter 2. For example, 

 
2 2 2 2 2 2 2 2
1 2 2 1 2 1 1 2

2 1 02 2 2

cos( ) cos( ) ( )cos( ) ( )
1

z z z
r r r

          
  

    
        (A10) 
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where Eq. (A10) is substituted with κ2=κ1
2+κ2

2 and r0=cos(κz) to cancel the numerator. Following the 

same method for other coupling coefficients in Eq. (A8), it shows that the following other relationships 

can be derived,  

 
1 2 2 21 1 2 1 1 12 2 1 2 12 21 0

2 2 2 2 2
1 0 1 2 0 2 2 1 0 1 2

,  , ,

, , 1.

t r t t t t r t t t r r t t r

r r t r r r t r r t t

     

          
  (A11) 

  

Fig. A2. BPM simulation results of three coupled waveguides. In each panel, the left part is the 

schematic representation of the evanescent coupling of modes and the right part is the monitor power 

normalized to the input power. The couplings are symmetric at (a)-(b) and asymmetric at (c)-(e).  

The coupling constants in Eq. (A8) and Eq. (A9) can be verified with beam propagation method 

(BPM) numerical simulations. As shown in Fig. A2, when the two outer waveguides are located with the 

same separation from the center one (the symmetric case), the input light from the center waveguide splits 

equally to both outer elements. See panel (a), at the position where the center waveguide has a minimum 

value of zero, both the two outer waveguides have a maximum normalized power of 0.5, which is in 

agreement with the maximum square value of the cross-coupling constant 1 sin( ) 2t z for two adjacent 

waveguides in Eq. (A9). This also explains why the maximum normalized power that can be achieved for 

the center guide is 0.5, when the light is lunched from one side waveguide [see panel (b)]. However, the 

situation becomes different when the two outer waveguides are located with different spaces from the 

center one (asymmetric case), the power still can be completely transferred to the other two waveguides if 

the light is launched from the center waveguide [see panel (c)]. The difference from the symmetric case 
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[see panel (a)] lies in the fact that the amount of the light split to two outer waveguides depends largely on 

the cross-coupling coefficients (t1 and t2) in Eq. (A8) of two neighboring waveguides. When the input 

power is started from the side waveguide, it cannot be completely guided to the opposite waveguide due 

to the maximum absolute value of the transmission coefficient between two outer waveguides t12 is no 

longer unity [see panel (d) and (e)]. Therefore, the simulation results agree with the theoretical predictions 

using Eq. (A8) and Eq. (A9), and suggest they can be used for analyzing the proposed RBR configuration. 

Note that, similar to the two coupled waveguides case, the common phase propagation term exp( )i z in 

Eq. (A5) is not considered in analytical formulations since it only shifts the resonance positions without 

changing the spectrum characteristics. 
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Appendix B. CRIT in Other Two-Ring Systems 

   

Fig. B1. Schematics of (a) two mutually coupled rings and, (b) two cascaded 1R2B resonator. 

The CRIT can be obtained from two existing configurations shown in Fig. B1, two mutually coupled 

resonators system and two cascaded 1R2B system. For the mutual coupled resonators in Fig. B1(a), the 

equations for the evolution of resonator modes in time are given by, 

 
1 1 i1 e 1 c 2 e in

2 2 i2 2 c 1

out in e 1

( 1 1 )

( 1 )

du dt i u i u i s

du dt i u i u

s s i u

    
  


    

  

 
 (B1) 

where ηc represents the mutual coupling coefficient between modes u1 and u2. ηe is the coupling between 

R1 and the bus that can be expressed with 1/τe=ηe
2/2. The coupling coefficients in Eq. (B1) are related to 

that of the transfer matrix formalism in spatial domain. It can be seen from R1 that the traveling wave u2 

in R2 of amplitude U2(t) plays a similar role to the incident wave sin. Thus one can consider the mutual 

coupling term to have a form of iηc
U2(t), where ηc׳

 serves as the coupling between a power normalized ׳

wave U2(t) and an energy normalized mode u1(t). Similar to the 1R1B case in Eq. (4.3), we can obtain 

ηc
tc(vg1/L1)=׳

1/2, where tc is the mutual coupling coefficient of R1 and R2 in space formulation. Converting 

to energy normalization for R2 by iηc
|U2=iηcu2(t) and |U2(t)׳

2=vg2/L2|u2(t)|
2, we then obtain ηc=ηc

(vg2/L2)׳
1/2 

and get the expression of ηc with foregoing relations as ηc=tc(vg1/L1)
1/2

 (vg2/L2)
1/2 [60] .     

The normalized transmission is obtained by solving Eq. (B1) as, 

 
2 2

out 1 i1 e 2 i2 c
2 2

in 1 i1 e 2 i2 c

( 1 2)( 1 )

( 1 2)( 1 )

s i i

s i i

     
     

     


     
  (B2) 

where Δω1,2=ω-ω1,2. For simplicity, we assume that the resonances of the both rings coincide ∆ω1,2=∆ω 

and the intrinsic loss in the two rings are identical 1/τi1,i2=1/τi. Eq. (B2) can be rewritten as, 

 

1/2 1/22 2 2 2 2 2
c e i e c e i e

out

1/2 1/22 2 2 2 2 2
in

c e i e c e i e

( 16 ) 1 4 ( 16 ) 1 4

( 16 ) 1 4 ( 16 ) 1 4

i is

s i i

         

         

                  
                  

 (B3) 

Eq. (B3) clearly tells us that the coincident resonance splits to two individual resonances with the 

positions of ω±|ηc
2-ηe

2/16|1/2. When there is no coupled bus where the resonance splitting is solely due to 

mutual coupling between the two rings, the detuned resonances can be expressed simply by ω±ηc. 
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Furthermore, when the intrinsic loss in R2 is negligible (1/τi2~0) and ∆ω1=∆ω2, the power response in 

Eq. (B3) can be rewritten as the EIT-like expression in the following form, 

 

2 2 1 2 2
out 1 i i 1

22 2 2 2 2
in i 1 c

8(2 ) (2 )( )
1

( ) (2 ) 4 ( ) (2 ) 4

s
T

s

    

    

   
  

      
 (B4) 

From Eq. (B4) and the assumption of 1/τi2~0, we can conclude that the transparent spectrum can only 

be obtained when the two rings have different intrinsic losses, i.e. the loss in R2 is very low (1/τi2~0) and 

much smaller than that of R1 (1/τi2 1/τi1), where an under-coupling is required. 

For the two cascaded 1R2B system shown in Fig. B1(b), we assume the coupling strengths at all 

directional couplers are identical, then the coupled-mode equations connecting the incident light, resonant 

modes and the through transmission are given by, 

 

1 1 i1 e 1 e in e 2
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 (B5)  

where =kneffL stands for the coupling phase between the two resonant modes and L is the ring-to-ring 

separation. The through transmission is obtained by solving Eq. (B5) as,  
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 (B6) 

Expressing e-iδ=cosδ-isinδ, we obtain the resonance positions as ω±(ηe
2/2)sin when ∆ω1,2=∆ω. Thus, 

the occurrence of resonance splitting relies on the transmission phase  caused by ring-to-ring separation. 

When the phase  is an integral multiple of π (=mπ), there is no resonance splitting, and the transmission 

can be simplified to that of 1R2B, while the resonance splitting always exists in other situations. When 

the two resonances don’t coincide ∆ω1≠∆ω2, the ring-to-ring separation satisfies exp(i2)=1 and the 

intrinsic losses are negligible 1/τi1,i2~0, the power in Eq. (B6) can be rewritten as the EIT-like expression,  

 

2 2 2 2
t e e

22 2 2 2 2
in e 2 1

2 (2 )( )
1

(2 ) ( ) 4 ( ) ( ) 4

s
T

s

  

    


  

      
 (B7) 

where  =ω-(ω1+ω2)/2. A comparison between Eq. (B4) and Eq. (B7) reveals two main differences 

between the two systems. The first difference is the bandwidth of the transparency is determined by the 

mutual coupling ηc in the mutual coupled resonators, while it is determined by the detuning of resonance 

frequencies (or the separation of two resonances) in the two cascaded 1R2B system |ω2-ω1|. The second 

difference is the CRIT only happens when the two resonant frequencies are coincident with each other in 

the former system, whereas the later system requires the two rings to resonate in different frequencies.  
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