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Summary 
 

 

Gastric cancer ranks as the fourth most common cancer and the second leading cause 

of cancer
 
mortality globally. One of the main reasons for gastric cancers‟ poor outlook 

is the limited knowledge of the underlying molecular mechanisms of gastric 

oncogenesis. Proteomics has evolved rapidly in recent years and is now recognised as 

a powerful suite of tools to systematically dissect molecular abnormalities in cancer 

cells. However, proteomics has yet to be intensively applied to gastric cancer; 

consequently few global insights into gastric oncogenesis to date have emerged from 

this approach. In this thesis, we employed advanced proteomic techniques to study 

phosphorylated proteins, methylated proteins, and cell surface proteins of multiple 

gastric cancer cells on a large scale. Proteomic data were correlated with 

transcriptome data sets to gain deeper insights into aberrantly expressed proteins in 

gastric cancer cells. We found MET, a receptor tyrosine kinase, to be a dominant 

aberrant protein that was overexpressed in some gastric cancers. A quantitative 

proteomic approach was utilized to investigate molecular events associated with 

MET-directed therapy in gastric cancer cells. Remarkably MET was found to be 

present in the mitochondria of gastric cancer cells, as it was on the plasma membrane. 

Moreover, mitochondrial MET was identified as a direct target of the MET kinase 

inhibitor, PHA-665752. Taken together, data presented in this thesis offer a 

systematic and unbiased profile of multiple molecular abnormalities in gastric cancer 

cells, and has uncovered a novel mechanism of action of molecularly-directed cancer 

therapy. 
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Chapter 1. Introduction  
 

Gastric cancer 

 

Gastric cancer (GC) or stomach cancer is malignant tumor arising from gastric 

epithelium. Gastric cancer dates from antiquity, having been recorded by the Greek 

physician, Hippocrates (ca. 460-370 BCE) [1]. Gastric cancer has a distinctive 

geographic distribution of high incidence in East Asia, Eastern and Southern Europe, 

Central and South America.  

 

Gastric cancer is twice as common among men as in women. It is uncommon below 

the age of 45 years, most patients being 60–80 years old at diagnosis [2]. In various 

countries, at least 50% of all newly diagnosed cases already have metastatic disease 

for which there is no effective curative treatment. Moreover, among patients without 

metastases, only about half are suitable for gastrectomy with curative intent [3]. 

Relapse rates after curative gastrectomy are high [3], possibly because primary 

carcinomas develop in a wide field of cancerization. Thus, the fatality rate for gastric 

cancer remains high in most countries, except Japan, because surgery is currently the 

only treatment with curative potential.  

 

The lethality of gastric cancer is not, a priori, intractable or inevitable. Measures that 

prevent or halt gastric oncogenesis, sensitive and specific diagnostic methods for early 

stage disease, and the development of novel chemo- and/or biological therapy can all 

be expected to improve an otherwise bleak situation. Better food sanitation and 

increased intake of fresh vegetables and fruits are credited with lowering the 
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incidence of gastric cancer. Higher standards of personal hygiene decrease the risk of 

infection with Helicobacter pylori, a Gram negative rod that is a class I gastric 

carcinogen in humans [3].   

 

A positive trend over several decades has been the steadily declining incidence in 

most countries attributed to improved living standards, such that gastric cancer now 

ranks lower, at fourth place, among the most prevalent cancers worldwide. 

Regrettably, decreased gastric cancer incidence has not been matched by a 

proportionate decline in mortality [4]. Overall 5-year survival from GC, except in 

Japan, is only about 20% [5]. Indeed, the fact that GC causes more deaths annually 

than all other cancers, except lung cancer, is an urgent call to action to enhance the 

effectiveness of current methods of prevention, diagnosis and treatment [6]. 

 

There are recognizably distinct histotypes that have been classified in several ways. 

The most commonly used histological classification is that of Lauren who identified 

two main histotypes i.e. intestinal and diffuse types [7]. Intestinal-type tumours 

predominate in countries of high GC prevalence. The diffuse histotype tends to occur 

in younger patients without male predominance, is typical of hereditary GC arising 

from germline mutations, is more invasive and has poorer treatment outcomes. 

However histotype is not a clinically useful prognostic indicator. 

 

During the past several decades, numerous molecular abnormalities have been 

reported in various cancers, including gastric cancer. It is now evident that individual 

cancers can vary markedly from each other. It is estimated that, for most cancers, 

1000~10000 somatic mutations are present in a single tumor [8]. Thus, no single gene 
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or protein could ever completely explain the biology of cancer. For this reason alone, 

cancer cells need to be investigated and understood at the systems level.  

 

A turning point in cancer research was the completion of sequencing of the human 

genome, with its attendant technological advances [9]. Next-generation genomic 

approaches enable unbiased sequencing and analysis of tumor cells [6]. Compared to 

conventional hypothesis-based studies, high-throughput techniques that interrogate a 

global class of macromolecules unfettered by prior assumptions provide invaluable 

clues to understanding oncogenic mechanisms. Systematic investigation of cancer 

genomes has demonstrated the power to develop molecular tumor taxonomies, 

discover diagnostic, prognostic and predictive biomarkers. These insights are 

increasingly enabling targeted therapeutics and biologically informed clinical 

management of cancer susceptibility [10]. While much of recent cancer research has 

been performed on tumor DNA and RNA, it is clear that nucleic acids are not the 

direct executors of life activities. Cellular functions occur as a network which is 

mainly constructed by protein-protein interactions. Moreover, the majority of 

clinically validated biomarkers are proteins [11]. Effective molecular targets in 

targeted cancer therapeutics are also mainly proteins [12]. Therefore, these 

considerations motivate global investigation of  the protein inventory of GC as an 

urgent need. 

 

Proteomics 

 

Proteomics refers to a suite of techniques for system-wide investigations of proteins 

for discovery-based research [13]. Instead of studying individual proteins, proteomics 
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permits analysis of thousands of proteins in a single experiment for uncovering novel 

biological functions of the system. The capacity to achieve this was accelerated after 

completion of the human genome project which provided the sequence of genes 

encoding the human proteome. During my PhD training, this field has experienced 

phenomenal technical advancements.  

 

Only several years ago, two-dimensional gel electrophoresis, abbreviated as 2-DE or 

2-D electrophoresis, was the most widely used technique for proteomic studies. The 

technique separates proteins in the first dimension on the basis of the isoelectric point 

or electric charge of protein molecules. This is followed by electrophoretic resolution 

in the second dimension by a different property, usually molecular size by SDS-

PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis). Proteins are 

visualized as “spots” by various staining methods, which can be excised and digested 

individually for analysis by mass spectrometry (MS). MALDI (matrix-assisted laser 

desorption/ionization)-TOF (time-of-flight) or MALDI-TOF/TOF are the most 

common instruments that are coupled with 2-DE-based proteomics for identification 

of proteins. This method has inherent limitations. First, proteins must first be resolved 

in SDS-PAGE, thereby introducing a distinct bias to aqueous-soluble proteins. 

Hydrophobic proteins, such as membrane proteins, are difficult to analyze in 2-DE 

experiments. The capacity of electrophoresis also limits the amount of proteins that 

can be analyzed. Second, only visible proteins can be excised for digestion and MS 

analysis, thus introducing an additional level of bias to high-abundance proteins. 

Proteins of low-abundance are mostly invisible and will be missed in this workflow. 

Moreover, MALDI-MS has limited sensitivity in identifying low-abundance proteins, 

compared to linear ion trap mass spectrometers and Q-TOF mass spectrometers. Only 
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a few hundred of proteins of high abundance are typically identified after tedious 

experimental procedures. Nevertheless, 2-DE remains the method of choice for many 

laboratories engaged in proteomic studies due to its low cost and ease of maintenance. 

A survey of the current literature shows that the majority of gastric cancer proteomic 

studies were performed using 2-DE. 

 

The development and introduction of shotgun proteomics was a tremendous advance 

in the field. Here proteins from any complex sample are digested into short peptides 

by a proteolytic enzyme. The resulting peptides are subsequently separated by 

multiple-dimensional liquid chromatography (LC), typically 2 dimensional LC with 

the first dimensional separation property orthogonal to the second dimensional 

separtion. Each fraction from the first dimensional LC, after desalting and cleaning, is 

analyzed with a high performance liquid chromatography (HPLC) coupled to tandem 

mass spectrometery (LC-MS/MS) via a nanospray ionization. Linear ion trap and Q-

TOF are usually the mass spectrometers of choice for shotgun proteomics. Coupled 

with protein sequence database searching, shotgun proteomics is capable of 

identifying thousands of proteins in a proteome in a single experiment. By combining 

shotgun proteomics with subproteome enrichment, it is feasible to gain unprecedented 

depth of coverage and comprehensive data of post-translationally modified peptides 

and proteins that reside in specific subcellular organelles including membranes. 

Moreover, expression levels of thousands of proteins can also be measured 

simultaneously using isobaric labeling.  
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Oncogenic signaling pathways and phosphoproteomics of gastric cancers 

 

Recent improvements in survival of some malignancies, including chronic myeloid 

leukemia, non-small cell lung cancer and breast cancer, among others, owe much to 

advances in uncovering aberrantly active molecular pathways, from which 

molecularly-targeted agents have been developed as new strategies to control cancers 

[12]. Experimentally and clinically validated agents include, but are not limited to, 

inhibitors of receptor and non-receptor tyrosine kinases (EGFR, HER2, HER3, 

insulin-like growth factor receptor, MET, fibroblast growth factor receptor), HSP90, 

intracellular signaling pathways (PI3K, AKT, mTOR) and angiogenesis, and agents 

that interfere with DNA repair (PARP inhibitors) [14]. 

 

The efficacy of targeted agents appears to be cell context dependent. Deeper 

understanding is needed to identify molecular predictors of responses of cancer cells 

to such agents [15]. Cancer cells that are initially sensitive to suppression of a specific 

target commonly become resistant within one year of treatment [16]. Recent 

molecular mechanistic studies attribute acquired resistance to activation of alternative 

oncogenic signaling pathways that successfully bypass the point of inhibition. This is 

facilitated by extensive cross-talk known to exist among multiple receptor tyrosine 

kinase (RTK) signaling pathways [17]. Non-small cell lung cancer cells initially 

sensitive to EGFR inhibition acquire resistance by activating MET-HER3-PI3K 

signaling pathway [18]. Acquired resistance of HER2-overexpressing breast cancers 

is dependent on activation of insulin-like growth factor 1 receptor-PI3K/Akt signaling 

pathway [19]. There is evidence of improved efficacy when multiple targets are 

concomitantly suppressed [20]. Advancing these insights to durable clinical benefit 

will require in-depth understanding of oncogenic signaling networks in specific 
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cancer types from which molecular predictors of response and strategies for avoiding 

or subverting acquired resistance may be devised.  

 

Investigations into oncogenic signaling networks in gastric cancer have lagged 

relative to other common malignancies like lung cancer, breast cancer and leukemia. 

Therapeutics targeting HER2, EGFR, VEGFR, MET, IGFR and FGFR, that have 

proven efficacy in other cancers, are being tested in gastric cancer [21-25]. To date, a 

clinical trial directed at only one target, HER2, has reported significant but modest 

extension of survival of gastric cancer patients [21]. This remains to be confirmed in 

independent trials, especially as a related study found HER2 expression to be 

uncommon in gastric cancer and unrelated to prognosis [26]. A major challenge in 

developing targeted therapy is the current paucity of mechanistic understanding of 

gastric oncogenesis as mediated by signaling pathways [27]. 

 

Dynamic changes in the phosphorylation state of proteins are key functions of protein 

kinases and phosphoprotein phosphatases that mediate and modulate a broad variety 

of cell functions. In contrast to conventional biochemical assays which typically 

investigate individual phosphorylation sites, MS-based proteomics permits profiling 

of proteins phosphorylated at multiple sites on a large scale.  

 

Phosphoproteomic profiling of cancer cells sheds light on key components in 

oncogenic signaling networks, which are enriched of biomarkers of potential 

diagnostic and prognostic importance, and may also be candidate therapeutic targets 

[28-30]. The phosphoproteome of cancer cells has been investigated using antibody 

arrays, but this approach is limited by the high cost and low throughput [31]. 
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Phosphoproteins can also be purified by immunoaffinity binding followed by LC-

MS/MS analysis [32]; however, this is also a low-throughput method. Recent 

developments in shotgun proteomics of enriched phosphopeptides permit in-depth 

profiling of phosphoproteomes, and have boosted new insights into specific 

oncogenic signaling pathways, such as TGF-beta in colon cancer [33], HER2 in breast 

cancer [34],  IL2 in chronic lymphocytic leukemia [35], Ephrin B3 in lung cancer 

[36], and DNA damage response in melanoma cells [37]. However, a comprehensive 

and unbaised view of the cancer phosphoproteome of human cancers has not been 

reported yet, despite several phosphoproteomic reports on various organisms and cell 

types e.g. Phospho.ELM [38], PhosphoSitePlus [39], phosphoPep [40], PHOSIDA 

[41] and Uniprot. These phosphoproteomic studies on non-human or non-cancer cells 

have limited relevance for gastric cancer research because phosphorylation profiles 

are highly diverse and differ in a cell type-dependent manner. In the current literature, 

only a few publications have investigated phosphoproteomes of human cancers but 

with relatively obsolete techniques with limited detection capacity. Thus, only about 

20 phosphoproteins were identified from a set of five prostate cancer specimens [42]. 

Nearly 50 phosphorylated proteins were reported to be secreted by a gastric cancer 

cell line [43]. One hundred and eighty-one phosphoproteins were identified in a lung 

cancer cell line [44] and 260 in nine primary multiple myeloma bone marrow samples 

[45]. A total of 385 [46] and 296 [47] phosphoproteins were characterized in prostate 

cancer cell lines. No large-scale phosphoproteomic study of gastric cancer was 

reported prior to our report documented in Chapter 2.  

 

Owing to the substoichiometric nature of phosphorylated proteins, it is essential to 

enrich phosphorylated proteins and peptides prior to MS analysis. Several methods 
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are available for phosphopeptide enrichment in shotgun proteomics. These include 

phosphoramidate chemistry [48], strong cation exchange (SCX) [49], SCX-IMAC 

(immobilized metal affinity chromatography) [50], titanium dioxide (TiO2) [51] and 

electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) [52]. We 

have performed a comparative study of several phosphopeptides enrichment 

techniques including SCX, SCX-IMAC and ERLIC, and found that no single method 

is sufficient to enrich all phosphopeptides [53]. Hence, a combination of several 

different phosphopeptide enrichment methods  increases the depth of coverage of the 

phosphoproteome (Figure 1.1), consistent with an earlier comparative study which 

investigated the performance of phosphoramidate chemistry, IMAC and TiO2 [54].  

 

 

 

Figure 1.1. A comparative study of electrostatic repulsion-hydrophilic interaction 

chromatography (ERLIC) versus SCX-IMAC-based methods for phosphopeptide 

isolation/enrichment. We compared ERLIC with the well-established SCX-IMAC for identifying 

phosphopeptides in EGF-treated A431 cells. The ERLIC approach detected a higher number of 

phosphopeptides (17311) than SCX-IMAC (4850), but it detected fewer  unique phosphopeptides (926) 

than SCX-IMAC (1315). Only 12% of unique phosphopeptides were common to both approaches, 

suggesting that more comprehensive phosphoproteome coverage is generated by complementing SCX-

IMAC with ERLIC [53]. 

 

 

An obvious benefit of utilizing multiple complementary phosphopeptide enrichment 

techniques is the broader view of phosphorylation-mediated signaling pathways. We 

have shown this by generating  a more detailed map of EGFR signaling in A431 
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epidermoid carcinoma cells by combining three different phosphopeptide enrichment 

methods (Figure 1.2) [53].  

 

 

Figure 1.2. EGFR protein substrate interaction network. Non-phosphorylated proteins appear as 

circles, while phosphorylated proteins identified in different workflows appear in shapes as follows. 

Parallelogram, ERLIC; diamond, SCX-IMAC; hexagon, ERLIC and SCX-IMAC; triangle, ERLIC, 

SCX-IMAC, and SCX-only; square, SCX-IMAC and SCX-only. Kinases are shown as filled black 

symbols. Information about protein kinases was retrieved from NetworKIN [55].  

 

 

In Chapter 2, we have performed a comprehensive investigation of the gastric cancer 

phosphoproteome and transcriptome. LC-MS/MS-based phosphoproteomics profiling 

identified >3,000 phosphorylation sites in >1,200 proteins in five gastric cancer cell 

lines, whereas protein antibody-array-based phosphoproteomics further identified 46 

phosphorylated signaling proteins in clinically procured stomach tissues. The 

phosphoproteomics data set was correlated with large-scale gastric cancer 

transcriptional data sets of quantitative expression of >12,000 genes in a panel of 17 

gastric cancer cell lines relative to normal stomach. We report an expansive view of 

the gastric cancer oncokinome and phosphoproteome from an integrated 

bioinfomatics analysis of phosphoproteomics and transcriptome data sets. 
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Methyl proteomics of cancers 

 

While phosphorylation negatively charges a protein and thereby modulates its 

structure and biological activities, another type of post-translational modification, i.e. 

protein methylation, also has active roles in regulating protein functions and signal 

transduction by modulating the hydrophobicity and charge of proteins [56-59].  

Methylation of proteins at lysines and arginines has been known for decades [60-62]. 

Methylation was later found to modify various residues including lysine, arginine, 

histidine, proline, and the N- and C–terminal residues [56, 58, 63, 64]. Of these, 

methylation at lysine and arginine have been most extensively studied [62]. 

Methylation of proteins alters not only their hydrophobicity, but also their charges. 

The charge state of lysine and arginine residues is slightly altered when their amino 

groups are methylated [65]. Although methylation is more stable than 

phosphorylation in proteins, recent findings have nonetheless established protein 

methylation to be a reversible process [56]. Remarkably, the same amino acid residue 

can be methylated to different degrees. Thus, lysine residues may be mono-, di- or 

trimethylated, while arginine residues  are mono- and dimethylated [62]. Different 

methylation states of the same residue are known to have different impacts on the 

structure and/or function of the modified substrate proteins [65].  

 

Histones are the best studied methylated proteins [57, 63]. Lysine methylation also 

occurs in non-histone proteins, including p53, cytochrome c, VEGFR1 and ribosomal 

proteins [65]. Lysine methylation enhanced VEGFR kinase activity and altered the 

transcriptional activity of p53 [122, 123]. Interestingly, monomethylation and 

dimethylation of the same lysine residue had different effects on p53 activity [66, 67]. 

Protein arginine methylation is relatively well-studied. Currently eleven mammalian 
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protein arginine methyltransferases (PRMTs) have been identified [61]. Six of them 

catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to 

arginine residues[68]. Arginines flanked by one or more glycines are frequently 

methylated. Proteins that harbor glycine-arginine-rich (GAR) motifs are common 

targets for PRMTs [69]. Dozens of proteins have been reported to be methylated at 

arginine residues [57, 63]. It is worth noting that methylation sometimes occurs at the 

same residue that could also be subject to other covalent modifications. For example, 

the same lysine residue in p53 may be modified by acetylation, ubiquitination, 

sumoylation and methylation, each with distinct functional effects [65]. 

 

Methylated proteins regulate a variety of cellular functions including transcription, 

mRNA splicing, signal transduction and DNA repair, among other [56-58, 70]. Given 

its multifaceted effects, it is not surprising that protein methylation has been 

implicated in the pathogenesis of multiple diseases, including cancers in which anti-

tumor effects have been ascribed to protein methylation [56, 68].  Other investigators 

have suggested that PRMTs are promising targets for targeted therapies in prostate 

and breast cancer [68]. However, our knowledge of protein methylation is still 

fragmentary, and the breadth and depth of protein methylation remains to be fully 

documented [62, 68].  

 

Mass spectrometry-based proteomics offers a powerful approach for large scale 

investigation of methylated proteins. Instead of investigating methylation sites 

individually using conventional methods, over 200 novel putatively methylated 

proteins were reported from HeLa cells by MS-based proteomics [71]. Eighteen 

methylated proteins were uncovered from a proteomic analysis of rat liver Golgi 
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complex [72]. About 60 methylation sites were identified in immunoprecipitated 

methylated peptides from HeLa cells cultured in heavy methyl SILAC [73]. In this 

study, cells were grown in either normal or isotope-labeled methionine. The cell 

lysates were mixed prior to LC-MS/MS analysis, so that methylated peptides with 

methyl group donated by AdoMet displayed characteristic isotopic peak pairs in mass 

spectra, which added confidence in identifying methylation sites. Another study 

reported that not all methylated peptides exhibited isotopic peak pairs in heavy methyl 

SILAC experiments, probably due to presence of methyl donors other than AdoMet. 

In addition, methylation also takes place in vitro during sample preparation [74]. 

Given over-expressed target proteins and careful inspection of spectra, this study 

demonstrated the power of MS-based proteomics in identifying novel methylation 

sites. Another comprehensive proteomic study uncovered 155 methylated proteins 

from Leptospira interrogans [75].  

 

One major hurdle in profiling methylated peptides on a large scale is that methylated 

proteins are usually present in substoichiometric amount. Efficient enrichment of 

methylated proteins or peptides is challenging because, unlike phosphorylation, 

methylation only partially alters the hydrophobicity and charge of the modified 

residues. In some studies, antibodies were raised to specifically bind methylated 

peptides. However, the specificity of these antibodies is unsatisfactory [73]. An 

alternative method is to map methylation sites in a particular protein after having been 

enriched by immunopurification; however, this approach can hardly be considered 

high-throughput [74]. 

 



24 

In Chapter 3, we deployed advanced MS-based proteomics to globally profile 

methylated cellular proteins. We reasoned that exhaustive fractionation of the 

proteome by various chromatographic methods should enable methylated peptides of 

low abundance to be identified with high confidence. We demonstrated the utility of 

this approach by effectively identifying methylated proteins in a gastric cancer cell 

line, SNU5. Heavy methyl SILAC was further used to validate methylated peptides 

utilizing AdoMet and methionine as methyl donors. 

 

Membrane proteomics of cancers 

 

Membrane proteins have critical functions in both normal and malignant cells [76]. 

Some membrane proteins, especially glycosylated plasma membrane proteins, have 

proved to be major cancer biomarkers [77, 78]. Moreover, as plasma membrane 

proteins are more easily accessible, 60% of current drug targets are on the cell surface 

although they account for about 22% of all human protein-coding genes [79]. Plasma 

membrane proteins mediate several fundamental cellular functions such as regulation 

of cell growth, apoptosis and signal transduction and are widely regarded as the most 

important class of membrane proteins. Characterization of plasma membrane proteins 

in cancer and stem cells is an active area of research [80-82]. Even now, detection of 

selected cell surface proteins using immunohistochemistry and flow cytometry has 

become standard clinical practice in cancer diagnosis and prognosis [83, 84] .  

 

The cluster of differentiation (CD) molecules are a group of cell surface proteins that 

were identified initially in hematopoietic cells, and subsequently found in multiple 

cell types. A total of 389 human CD proteins were curated by the UniProt Swiss-Prot 
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Protein Knowledgebase as of January 2011 [85]. CD molecules are best known from 

studies of cell surface proteins as they encompass a plethora of vital functions. They 

include protein kinases, receptors, ligands and enzymes. Expression patterns of CD 

antigens on cancer cells have been proposed as rational, cancer-specific diagnostic 

and prognostic biomarkers, as well as potential molecular targets for therapeutic 

intervention [86].  

 

Receptor tyrosine kinases (RTKs), the most extensively studied cell surface 

membrane molecules [87], comprise 58 members grouped into 20 subfamilies based 

on kinase domain sequences [88]. RTKs currently dominate as diagnostic and 

therapeutic biomarkers of several types of cancer whose cells express mutationally 

activated, overexpressed or amplified RTKs that initiate and/or sustain malignant 

transformation [89, 90]. The development of inhibitors against HER2, KIT, EGFR, 

ALK and VEGFR are exemplars of disease-specific RTK biomarkers that are both 

diagnostic and therapeutic.  Compared to other common cancers, there is a dearth of 

molecularly-directed therapeutic agents for GC. However, recent evidence for a 

modest survival benefit in advanced GC patients who received trastuzumab with 

chemotherapy suggests that targeted therapy for GC has relatively untapped potential 

[91]. To this end, there is an urgent need to comprehensively document RTKs that are 

dysregulated in GC using large-scale characterization of plasma membrane proteins 

(17). Genomic approaches that interrogate tens of thousands of genes inherently fail 

to provide direct evidence of subcellular localization and are thus not optimally suited 

for investigating cell surface proteins. MS-based proteomics is a proven method for 

developing systematic inventories of membrane proteins [76, 92-94]. Few 

publications have documented the surface proteome of cancer cells. Conventional 2D-
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gel-based proteomics permits only limited throughput and sensitivity. 2D-gel 

electrophoresis coupled with MALDI-MS analysis identified only 33 plasma 

membrane proteins from cell lines derived from several cancers including 

neuroblastoma, lung adenocarcinoma, colon adenocarcinoma, acute lymphoblastic 

leukemia, and ovarian cancer [95]. Another study applying 2D-gel electrophoresis  

coupled with MALDI-MS to six human colorectal carcinoma biopsies characterized 

around 20 proteins of potential pathobiological importance [96]. Recent advances of 

LC-MS/MS-based proteomics allowed higher throughput. A study that compared the 

plasma membrane proteomes of proliferating and differentiated human colorectal 

carcinoma cells identified a total of 1125 proteins [97]. More than 100 cell surface 

proteins of acute myeloid leukemia cell lines were analyzed recently [94]. However, a 

comprehensive and unbiased inventory of the GC membrane proteome has yet to be 

reported.  

 

In Chapter 4, we demonstrate a strategy to systematically investigate membrane 

proteins from multiple cell sources by exploiting high-throughput technologies and 

computational methods. Analysis of transcriptome data sets integrated with LC-

MS/MS-based membrane proteome data sets revealed insights into membrane 

proteins at both mRNA and protein levels. This has generated the first global view of 

the membrane proteome in GC. Our data showed CD molecules to be extensively but 

variably expressed on the surface of GC cell lines derived and established from 

different patients. We found similarly variable expression of RTKs. The existence of 

distinct signatures of the plasma membrane proteome potentially stratifies GC into 

different molecular subtypes. Integrated analysis showed that cell surface proteins, 

including CD molecules and RTKs, are functionally organized in complex 
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interactomes. We validated our strategy by characterizing cell surface proteins by 

flow cytometry, immunostaining primary GC tumor tissues and by antibody array 

analysis of activated RTKs in cancerous and benign gastric epithelium.   

 

Quantitative proteomics 

 

Simultaneous quantitative proteomic profiling of multiple biological states in a high-

throughput manner holds significant potential for biological and biomedical 

discovery. This has encouraged rapid development in biological mass spectrometry 

methods for quantitative proteomics [98]. As MS is not inherently quantitative, 

protein or peptide samples are usually labeled with stable isotopes for relative 

quantitation. Quantitative information can be acquired either from MS spectra, such 

as stable isotope labeling by amino acids in cell culture (SILAC) [99], or MS/MS 

spectra e.g. using isobaric tags for relative and absolute quantitation (iTRAQ) [100]. 

 

SILAC has gained global popularity in quantitative proteomics in recent years [99]. In 

this method, cells are grown in a customized medium which replaces a specific amino 

acid, usually lysine and/or arginine, with their respective heavy stable isotope form. 

After culturing for a few generations, all the proteins in the cells are labeled with the 

heavy amino acid(s). Cell lysate from heavy cells is mixed with that from normal 

cells, and analyzed in a typical shotgun proteomic approach. Peptides from different 

samples display a characteristic peak pair in the resulting mass spectra. The 

abundance of peptides/proteins from each cell culture is inferred from the peak 

area/intensities. SILAC experiments are well suited for quantification of post-

translational modifications. However, the technique is limited by the requirement for  
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culture in vitro. Cells and tissues that have not been cultured in SILAC medium are 

not suitable for this workflow. 

 

iTRAQ is currently the most widely used approach for high-throughput protein 

quantitation by MS/MS. It enables simultaneous quantitation of up to 4 (4-plex 

iTRAQ) or 8 (8-plex iTRAQ) different biological samples. Furthermore, iTRAQ 

stable labelling reagents are incorporated “post-harvest” to protein samples at the 

peptide level via chemical reactions [100], allowing accurate protein quantitation 

from specimens of diverse origins, including cell lines, tissue samples, biological 

fluids, and so forth.  

 

Linear ion trap MS is one of the most extensively employed MS instruments in 

current proteomic research, mainly due to its unsurpassed sensitivity as well as high 

ion capacity, fast scan rate, ease of use  and relatively low cost. Application of iTRAQ 

in linear ion trap mass spectrometers has been a great challenge because most of the 

low m/z iTRAQ reporter ions are not detected/captured in the ion trap after 

collisionally activated dissociation (CAD) fragmentation. iTRAQ reporter ions can be 

detected in many mass spectrometers in MS/MS mode, such as MALDI-TOF-TOF 

and Q-TOF [100], with the exception of the ion trap. In theory, iTRAQ reporter ions 

can only be detected with linear ion trap MS instruments with CAD fragmentation 

method if the precursor ion is a small peptide with m/z less than 3 times of iTRAQ 

reporter ions m/z.  

 

The recent introduction of a novel fragmentation method, pulsed-Q dissociation 

(PQD) is touted as a more robust method for iTRAQ reporter ions detection in the 
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linear ion trap MS [101]. We have developed a novel method which intergrated both 

CAD and PQD to perform iTRAQ experiments in linear ion trap MS (Figure 1.3) 

[102]. With the PQD−CAD hybrid method, we identified and quantified 1610 

proteins from a gastric cancer cell SNU5 in a single proteomic experiment with high 

accuracy with respect to protein quantification [87, 102]. 

 

 

Figure 1.3. Combined pulsed-Q dissociation (PQD) and collisionally activated dissociation (CAD) 

in linear ion trap mass spectrometer for iTRAQ quantitation. Integrating the advantages of PQD 

and CAD fragmentation methods in a PQD−CAD hybrid mode, together with PQD optimization and 

data manipulation with a bioinformatics algorithm, resulted in a robust, sensitive and accurate iTRAQ 

quantitative proteomic workflow. The workflow was superior to the default PQD setting when 

profiling the proteome of a gastric cancer cell line, SNU5. Taken together, we established an optimized 

PQD-CAD hybrid workflow in LTQ-MS for iTRAQ quantitative proteomic profiling that may have 

wide applications in biological and biomedical research [102]. 

 

We further optimized the iTRAQ workflow, and established another protocol for 

iTRAQ quantification using multiple dimensional chromatography coupled with a Q-

TOF mass spectrometer. The protocol resulted in enhanced proteome coverage and 

high quality of protein quantification, and has been successfully employed in this 

thesis for investigation of MET-directed targeted therapy in gastric cancer cells 

(Chapter 5 and reference [102, 103]). 
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MET “addiction” in gastric cancer cells 

 

Recent improvements in survival of some malignancies owe much to advances in 

uncovering aberrantly active molecular pathways, against which molecularly-targeted 

agents have been developed as new strategies to control cancers [12, 104]. However, 

molecular mechanisms underlying the curious dependence of some cancer cells, 

which contain multiple genomic, genetic and epigenetic abnormalities, on a single 

oncogenic molecule (the phenomenon of “oncogene addiction”) are incompletely 

understood [105-107].  

 

Receptor tyrosine kinases (RTKs) are the most extensively studied oncogenic targets 

and RTK inhibitors have proven anti-cancer therapeutic efficacy. A receptor tyrosine 

kinase, MET, whose ligand is hepatocyte growth factor (HGF), is frequently 

amplified and overexpressed [108, 109] in gastric cancer, the second highest cause of 

cancer
 
mortality globally [110, 111]. Human gastric cancer cell lines harboring MET 

amplicons and overexpressing MET are readily induced to apoptosis by selective 

inhibitors of MET [112, 113], several of which are under active development for 

clinical use [114]. One of the selective small molecular inhibitors, PHA-665752, 

(molecule weight of 641.61, Figure 1.4), specifically suppresses tyrosine 

phosphorylation of MET. PHA-665752 has >50-fold higher selectivity for MET than 

for other tyrosine and serine/threonine kinases [115]. The inhibition of MET-kinase 

function by PHA-665752 on cancer cells had been confirmed with siRNA knockdown 

of MET, and a number of downstream effectors of MET signaling pathways were 

confirmed to be effectively abrogated by this compound [112, 115]. PHA-665752 has 

been widely used as a potent and selective tool for the evaluation of MET-dependent 

cellular functions and signal transduction [112, 116-125].  
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Figure 1.4. Structure of MET inhibitor PHA-665752. 

 

The fact that only a subset of cancers is sensitive to killing by MET-directed 

therapeutics (hereafter referred to as sensitive cells) [114], raises an unexplained 

paradox. MET-overexpressing cancer cells could reasonably be expected to be more 

tolerant of MET kinase inhibition compared to cancer cells that do not overexpress 

MET. In reality, the opposite occurs. The underlying molecular mechanisms are 

incompletely understood. 

 

In Chapter 5, to investigate this paradox we undertook a systematic exploration of 

responses of a MET-overexpressing gastric cancer cell line, SNU5, to sublethal MET 

inhibition using iTRAQ-based quantitative proteomics approach. Our results 

unexpectedly showed a predominant perturbation of mitochondrial proteins in 

response to MET inhibition. Next, we found that MET inhibition was rapidly 

associated with altered mitochondrial functions. These observations raised the 

possibility that mitochondria might be a direct target of MET inhibition. Both protein 

immunoblotting and confocal microscopy showed the presence of highly activated 

MET in the mitochondria of sensitive cancer cells. Furthermore, we observed that 

activating phosphorylation of tyrosine residues of mitochondrial MET was critically 

modulated by sublethal PHA-665752 treatment.  
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Chapter 2. An Integrated Analysis of the Phosphoproteome 

and Transcriptome Provides an Expansive View of 

Molecular Signaling Pathways in Gastric Cancer 
 

Abstract 

 

We integrated LC-MS/MS-based and protein antibody array-based proteomics with 

genomics approaches to investigate the phosphoproteome and transcriptome of gastric 

cancer cell lines and endoscopic gastric biopsies from normal subjects and patients 

with benign gastritis or gastric cancer. More than 3,000 non-redundant 

phosphorylation sites in over 1,200 proteins were identified in gastric cancer cells. We 

correlated phosphoproteome data with transcriptome data sets and reported the 

expression of 41 protein kinases, 5 phosphatases and 65 phosphorylated 

mitochondrial proteins in gastric cancer cells. Transcriptional expression levels of 190 

phosphorylated proteins were >2-fold higher in gastric cancer cells compared to 

normal stomach tissue. Pathway analysis demonstrated over-presentation of DNA 

damage response pathway and underscored critical roles of phosphorylated p53 in 

gastric cancer. This is the first study to comprehensively report the gastric cancer 

phosphoproteome. Integrative analysis of phosphoproteome and transcriptome 

provided an expansive view of molecular signaling pathways in gastric cancer. 
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 Material and Methods 

 

All chemicals were purchased from Sigma-Aldrich (St Louis, MO, USA) unless 

otherwise stated. 

 

Cell culture and primary gastric tissues 

 

Seventeen gastric cancer cell lines and endoscopic biopsies of stomach tissues were 

investigated in this study. AGS, Kato III, SNU1, SNU5, SNU16, NCIN87 and 

Hs746T were from American Type Culture Collection (the ATCC, Manassas, 

Virginia, USA). MKN7 and IM95 cells were from Japan Health Science Research 

Resource Bank. All YCC cell lines were a gift from Dr. Sun Young Rha (Yonsei 

Cancer Center, Seoul, Korea). Normal stomach RNA samples were reference controls 

for transcriptome analysis. FirstChoice Human Stomach Total RNA was RNA from a 

single individual, while MVP Total RNA Human Stomach was pooled RNAs from 

two individuals. Fresh stomach biopsies were obtained from patients during 

gastroscopy performed for clinical indications, and immediately frozen in liquid 

nitrogen before protein array analysis. After histopathological diagnosis, 2 

histologically normal gastric biopsies, 7 biopsies of benign gastritis, and 3 pairs of 

gastric adenocarcinoma with their matched normal gastric tissues were analyzed. 

Clinical specimens were obtained in conformity with principles of the Declaration of 

Helsinki under a protocol approved by the SingHealth Centralised Institutional 

Review Board, Singapore. 

 

Gene expression analysis 
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Transcriptomes of 17 GC cell lines and normal stomach RNA samples were analyzed 

using two microarray formats, i.e. Affymetrix HG-U133 and HG-U133 Plus 2.0 

GeneChip
®
. Microarray data sets were averaged and normalized. Normal gastric 

tissue RNA served as reference controls to identify differentially expressed genes. 

Signal intensities of normal stomach tissue genes were averaged for each probe, and 

used as divisors for cognate signal intensities of gastric cancer cell lines. The product 

values were regarded as the relative expression levels of the respective genes in 

gastric cancer. Values for probes belonging to the same gene were grouped and 

averaged.  

 

Protein sample preparation 

 

Gastric cancer cells were lysed in 50 mM HEPES (pH 7.5), 8 M urea, 75 mM NaCl, 

protease inhibitor cocktail (COMPLETE, Roche Applied Science, Indianapolis, IN, 

USA) and phosphatase inhibitor cocktail (PHOSTOP, Roche Applied Science). 

Proteins were reduced in 10 mM DTT for 1 hr at 33 ºC, and then alkylated with 55 

mM iodoacetamide for 30 min at room temperature, before diluting 8 times with 50 

mM HEPES (pH 7.5) and digestion with trypsin in a 1:100 (trypsin/protein) mass 

ratio. Protein concentrations were measured using bicinchoninic acid (BCA) assay.  

 

Phosphopeptide enrichment 

 

Phosphopeptides were enriched using both ERLIC and SCX-IMAC as described [53]. 

Briefly, for ERLIC, approximately 2 mg of peptides were injected into a PolyLC 
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PolyWAX LP column (4.6 × 200 mm, 5 μm particle size, 300 Å pore size) mounted 

on a Shimadzu Prominence UFLC unit (Shimadzu Corp., Kyoto, Japan). For SCX-

IMAC, approximately 2 mg of peptides were fractionated using a 

PolySULFOETHYL A column (4.6 × 100 mm, 5 μm particle size, 200 Å pore size) 

on the UFLC unit. Each SCX fraction was dissolved in 100 μL of wash buffer (250 

mM acetic acid with 30% acetonitrile, pH 2.6), and subsequently added to 20 μL of 

IMAC slurry (50% gel) (PHOS-Select, Sigma-Aldrich) for 1 hr at room temperature 

with end-over-end rotation. Phosphopeptides were eluted with 100 μL of 200 mM 

Na3PO4 (pH 8.4) by incubating at room temperature for 5 min. Elution was repeated 

twice using 100 μL each of 50 mM Tris (pH 10) and 400 mM NH4OH (pH 11). The 

eluate was immediately pH-adjusted to pH 2.60 using 10 % formic acid. Peptides in 

salt solutions were vacuum-dried and desalted using SEP-PAK C18 cartridges 

(Waters Corp., Milford, MA, USA). 

 

LC-MS/MS analysis 

 

Each dried peptide fraction was reconstituted in 0.1% formic acid and analyzed at 

least twice using an LTQ-FT Ultra mass spectrometer (Thermo Fisher Scientific, Inc., 

Waltham, MA, USA) coupled with a Prominence
TM

 HPLC unit (Shimadzu), as 

described previously [102] with some modifications. Briefly, the peptide samples 

were injected from an auto-sampler (Shimadzu) and concentrated in a Zorbax peptide 

trap (Agilent, Palo Alto, CA, USA), and subsequently resolved in a capillary column 

(200 μm ID x 10 cm) packed with C18 AQ (5 μm particles, 100 Å pore size; Michrom 

BioResources, Auburn, CA, USA). Mobile phase buffer A (0.1 % formic acid in H2O) 

and buffer B (0.1 % formic acid in acetonitrile) were used to establish the 90 min 
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gradient, which began with a ramp from 5-30 % B over 66 min, followed by 10 min 

of 50 % B and a ramp from 50-80 % B in 4 min. The gradient was maintained at 80 % 

B for 2 min before re-equilibrating the column at 5 % B for 8 min. HPLC was 

operated at a constant flow rate of 20 μL/min and a splitter was used to create a flow 

rate of approximately 300 nL/min at the electrospray emitter (Michrom 

BioResources). Samples were ionized in an ADVANCE™ CaptiveSpray™ Source 

(Michrom BioResources) with an electrospray potential of 1.5 kV. The gas flow was 

set at 2, ion transfer tube temperature at 180 ºC and collision gas pressure at 0.85 

mTorr. The LTQ-FT Ultra was set to perform data acquisition in the positive ion 

mode. A full MS scan (350-2000 m/z range) was acquired in the FT-ICR cell at a 

resolution of 100,000 and a maximum ion accumulation time of 1000 msec. The AGC 

target for FT was set at 1e
+06

 and precursor ion charge state screening was activated. 

The linear ion trap was used to collect peptides and measure peptide fragments 

generated by CAD. The default AGC setting was used (full MS target at 3.0e
+04

, MS
n
 

1e
+04

) in the linear ion trap. The 10 most intense ions above a 500-count threshold 

were selected for fragmentation in CAD (MS2), which was performed concurrently 

with a 1 maximum ion accumulation time of 200 msec. Dynamic exclusion was 

activated for this process, with a repeat count of 1, exclusion duration of 20 s and ±5 

ppm mass tolerance. For CAD, the activation Q was set at 0.25; isolation width (m/z) 

2.0; activation time 30 ms; and normalized collision energy at 35%.  

 

Database search 

 

The extract_msn (version 4.0) program in Bioworks Browser 3.3 (Thermo Electron, 

Bremen, Germany) was used to extract tandem MS spectra in the dta format from the 
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raw data of LTQ-FT Ultra. Dta files were then converted into MASCOT generic file 

format using an in-house program for each raw file. Intensity values and fragment ion 

m/z ratios followed the default setting. These data were used to obtain protein 

identities by searching against the IPI human protein database (version 3.70; 174,138 

sequences) via multiple database search engines separately, including an in-house 

MASCOT server (version 2.2.03) (Matrix Science, Boston, MA), Sequest engine in 

BioworkBrowser (version 3.3, Thermo Scientific Inc.), X!Tandem [126] (Tornado 

edition, version 2010.01.01.4), and OMSSA (command line version 2.1.7) [127]. All 

searches were limited to a maximum of 2 missed trypsin cleavages; mass tolerances 

of 10 ppm for peptide precursors (0.05 Da precursor tolerance for search in OMSSA); 

and 0.8 Da mass tolerances for fragment ions. The fixed modification was 

carbamidomethyl at Cys residues, whereas variable modifications were oxidation at 

Met residues, and phosphorylation at Ser, Thr and Tyr residues. A combination of 

target and reverse sequence version decoy databases were used in Mascot, Sequest 

and OMSSA for estimation of false discovery rates (FDR). Here, 

FDR=2*Md/(Md+Mt), where Md represents the number of decoy matches, and Mt is 

the number of target matches. In X!Tandem, FDR was estimated by a default 

algorithm. FDR was adjusted to <1% for all searches by regulating cutoff values for 

peptide scores or expectation values. Output results from these engines were analyzed 

using in-house scripts.  

 

Motif analysis 

 

Phosphorylated sites for serines, threonines, and tyrosines were submitted to Motif-X 

algorithm (http://motif-x.med.harvard.edu) for motif extraction, using the IPI human 
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database as background. Extendible peptide sequences were centered on each 

phosphorylation site and extended to 13 amino acids (±6 residues). The minimum 

reported number of occurrences for a given motif was set at 2% of the total number of 

phosphorylation sites found for a given residue. Significance was set at 0.000001. 

Scansite [128] was also employed to predict the most likely kinases responsible for 

the phosphorylation sites in gastric cancer phosphoproteome. 

 

Antibody array experiments 

 

Protein lysates from stomach biopsies were probed for phosphorylated signaling 

proteins using Proteome Profiler antibody arrays (R&D Systems, Minneapolis, MN, 

USA). Manufactured in sets of 2, the arrays interrogate 46 kinases and kinase 

substrates, with specific anti-phospho-amino acid antibodies spotted in duplicate. 

Experiments were performed according to the supplier‟s instructions. Briefly, 100 ug 

protein lysate was diluted with blocking buffer in 5:1 ratio and incubated overnight 

with pre-blocked nitrocellulose membranes. After three washes, the membranes were 

incubated with a mixture of biotinylated detection antibodies for 2 hours at room 

temperature. Phosphorylated proteins were detected on washed membranes using 

streptavidin-horse radish peroxidase provided with the arrays and a chemiluminescent 

substrate reagent (Amersham ECL
TM

 Western Blotting System, GE Healthcare, UK) 

on Amersham Hyperfilm
TM

 ECL (GE Healthcare, UK). Developed x-ray films were 

scanned on a GS-800 Calibrated Densitometer (Bio-Rad Laboratories, UK). Pixel 

intensities for each spotted antibody were analysed using Axon GenePix Pro 6.0 

(Molecular Devices, USA).  
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Pathway analysis 

 

Canonical pathway mapping was performed using Ingenuity Pathway Analysis (IPA) 

application (www.ingenuity.com) against Ingenuity Pathway Knowledgebase.  
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Results 

 

LC-MS/MS-based phosphoproteomic analysis of gastric cancer cell lines 

 

Owing to the substoichiometric nature of protein phosphorylation, it is essential to 

enrich phosphopeptides in shotgun LC-MS/MS analysis [129]. Multiple enrichment 

methods are recommended for comprehensive shotgun phosphoproteome analysis 

[54, 130]. We employed two methods, electrostatic repulsion-hydrophilic interaction 

chromatography (ERLIC) and SCX-IMAC, to enrich phosphopeptides. The benefits 

of using two different enrichment methods are shown in Figure 2.1. SCX-IMAC and 

ERLIC increased the coverage of SNU5 phosphoproteome by 122% and 58%, 

respectively. Only 8% of non-redundant phosphopeptides identified were identified 

by both methods. Five cell lines, i.e. SNU5, SNU1, AGS, YCC1, and KatoIII, were 

included in phosphoproteomics analysis. Different gastric cancer cells are 

heterogeneous and their phosphoproteomes exhibit different characteristics. However, 

due to the qualitative nature of this study, we did not compare phosphoproteomes 

between cell lines; instead, we combined spectral data from all cell lines to achieve a 

comprehensive picture of gastric cancer phosphoproteome from diverse gastric cancer 

cells. 
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80535 358 ERLICSCX-IMAC

 

Figure 2.1. Comparison of SCX-IMAC and ERLIC in phosphoproteome coverage in SNU5 cells. 

Phosphoproteome of gastric cancer cell line, SNU5, was analyzed by SCX-IMAC and ERLIC. The 

number of non-redundant phosphopeptides identified by each method are shown in the Venn diagram. 

 

 

The complete translation of MS spectra obtained in LC-MS/MS experiments into 

peptide and protein assignments remains a major computational challenge in 

proteomics. Multiple protein sequence database search algorithms are available to 

interpret MS spectra, including Mascot, Sequest, X!Tandem [126] and OMSSA [127], 

among others. The sensitivity and specificity of database search engines are subject to 

substantial variations. While most studies are dependent on a single database search 

engine, the use of multiple database search engines has been shown to considerably 

enhance the sensitivity of shotgun proteomics [131]. In this study, we analyzed MS 

spectra using four different database search engines. False discovery rates (FDRs) 

were set at <1% for all searches (Table 2.1). The benefit of using multiple engines is 

illustrated in Figure 2.2 showing that spectra not identified in one engine e.g. Mascot, 

could be characterized by another e.g. Sequest. 
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Table 2.1. Protein identification using four database search engines. A total of 3600074 dta files 

were subject to target and decoy database search in Mascot, Sequest, X!Tandem and OMSSA. FDR for 

each search was set to <1%. The number of peptides, phosphopeptides and phosphorylation sites are 

shown. 

 

Engine Mascot Sequest X!Tandem OMSSA 

# Original peptide 

identifications 
410565 742250 1062278 354978 

Filtering criteria pep expect<0.028 

xc>1.8(+1), 

2.3(+2), 

2.8(+3 and 

above) 

select only 

first hits; 

pepExp<0.03; 

ppm<4 

select only 

first hits; 

MShits_ 

evalue<0.27 

# of total target 

peptides 
311677 140589 180325 65047 

FDR 0.97% 0.92% 0.97% 0.92% 

# of phosphopeptides 9939 7634 539 1679 

# of unique 

phosphopeptides 
1428 1135 294 341 

# of phosphoproteins 718 441 210 227 

# of unique 

phosphorylation sites 
1576 1371 357 413 

# of unique pS sites 1251 903 248 349 

# of unique pT sites 259 346 88 58 

# of unique pY sites 66 122 21 6 
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Figure 2.2. MS spectra interpreted by Mascot and Sequest. Annotated MS/MS spectra for peptides 

from (A) MET, identified via Mascot and (B) EGFR, identified via Sequest are shown. Spectrum 

annotated by Mascot is split to three parts according to mass range. Detected b ions and y ions are 

annotated. 

 

 

Mascot and Sequest identified 718 and 441 phosphorylated proteins, respectively. A 

total of 210 and 227 phosphoproteins were identified by X!Tandem and OMSSA, 

respectively. The advantage of combining multiple database search engines in 

phosphoproteomics is further shown in Figure 2.3. A single engine identified only 

17%-59% of all phosphoproteins. By combining results from four search engines, the 

numbers of phosphoproteins and unique phosphorylation sites were substantially 

increased to a total of 3021 unique phosphorylated peptides in 1211 phosphorylated 

proteins from gastric cancer cells. Among these, 547 (18%) phosphorylation sites and 

295 (24%) phosphoproteins were identified by at least two search engines. Non-

redundant phosphorylation sites comprised 2144 phosphorylated serines, 673 

phosphorylated threonines and 204 phosphorylated tyrosines. The distribution of pS, 
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pT and pY was 71%, 22.3% and 6.8%, respectively. These results are consistent with 

other findings that in some proteins, phosphorylation sites with high occupancy are 

likely associated with serine while those of low occupancy involve threonine [132]. 

Compared to previous reports of global phosphoproteome profiling [53], higher 

percentages of low-abundance phosphorylated threonines and tyrosines were 

identified in this study, reflecting increased sensitivity and greater phosphoproteome 

coverage of our workflow that combined different phosphopeptide enrichment 

methods (ERLIC and SCX-IMAC) and used multiple MS spectra interpretation 

approaches. 
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Figure 2.3 Identification and characterization of gastric cancer phosphoproteome. (A) Number of 

phosphorylated proteins identified from database search engines Mascot, Sequest, X!Tandem and 

OMSSA. Unique phosphoproteins identified by overlapping results from the four engines are shown. 

(B) Number of non-redundant phosphorylation sites (pS, pT and pY, respectively) for each engine and 

the total number from all engines are shown. (C) Venn diagram of 1211 non-redundant 

phosphoproteins identified by four database search engines. (D) Venn diagram of 3021 non-redundant 

phosphorylation sites identified by four database search engines. (E) Summary of gastric cancer 

proteome by known annotated and novel phosphorylation sites. Non-redundant phosphorylation sites in 

gastric cancer cells were compared with Uniprot human database.  

 

 

Confidence measures for correct localization of phosphorylation sites 

 

In shotgun proteomics, it is often difficult to pinpoint the correct position of 

phosphorylation sites with single amino acid resolution, especially for multiply 

phosphorylated peptides. To localize phosphorylation sites accurately, we first 

undertook a computational assessment of the phosphorylation site assignment using 
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the Ascore algorithm [133]. As shown in Figure 2.4, 64% of the localizations were 

assigned with >90% confidence (p<0.01) and 56% with >95% confidence (p<0.05). 

Near certainty (>99% confidence, p<0.001) of localization was achieved for 44% of 

the data set. It should be noted that Ascore algorithm did not take into account 207 

phosphopeptides with unambiguous localization, i.e. those for which the number of 

potential phosphorylation sites was equal to the number of phosphorylation sites. 

After including these 207 unequivocal phosphopeptides, the number of localizations 

with 99%, 95% and 90% confidence increased from 726, 930 and 1056 to 915 (55% 

increment), 1117 (68% increment) and 1242 (75% increment), respectively. This 

indicated that the majority of phosphorylation assignments were of high confidence.  

1056
930

726

207

1242
1117

915

0

200

400

600

800

1000

1200

1400

A
sc

or
e>1

0

A
sc

or
e>1

3

A
sc

or
e>1

9

un
eq

ui
vo

ca
l p

-s
ite

A
sc

or
e>1

0 o
r u

ne
qu

iv
oc

al
 p

-s
ite

A
sc

or
e>1

3 o
r u

ne
qu

iv
oc

al
 p

-s
ite

A
sc

or
e>1

9 o
r u

ne
qu

iv
oc

al
 p

-s
ite

categories

c
o

u
n

t

(p
<0

.1
)

(p
<0

.0
5)

(p
<0

.0
1)

 
 
Figure 2.4. Confidence of phosphorylation site localization analyzed by Ascore. Counts of non-

redundant phosphorylation sites with different Ascore cutoff values and/or unequivocal 

phosphorylation sites are shown.  

 

 

The quality of identification was further supported by the fact that many 

phosphorylation sites were found multiple times and in peptides that contained 
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different numbers and forms of phosphorylation sites. For instance, a phosphorylation 

site could be identified from fully or partially trypsin-digested peptides, with/without 

oxidized methionine, peptides with different charges and peptides with different 

numbers of phosphorylation modifications. As shown in Figure 2.5, 51% of 

phosphopeptides were singly phosphorylated, 27% were doubly phosphorylated and 

11% were triply phosphorylated. Only 1% of phosphopeptides carried four or more 

phosphates. This distribution was similar to phosphopeptides characterized in an 

earlier report [53]. Phosphopeptides detected in MS were ionized with different 

charges, as shown in Figure 2.5. 

 

 

Distribution of singly, doubly, triply and quadruply phosphorylated peptides 

by number of phosphate groups
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Figure 2.5. Distribution of gastric cancer phosphopeptides. (A) Distribution of singly (1p), doubly 

(2p), triply (3p) and quadruply (4p) phosphorylated peptides. (B) Distribution of singly, doubly, triply 

and quadruply charged phosphopeptides. 

 

 

To further confirm phosphorylation site localization of the whole data set, we 

performed a final manual inspection of MS/MS spectra of phosphopeptides. All the 

identified MS/MS spectra with their database search identification information are 

listed in supplemental Table 3 in reference [134] (provided in link 
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http://www.springerlink.com/content/62ru85452070n021/supplementals/). In most 

cases, multiple spectra were interpreted as a single phosphopeptide sequence; only the 

spectrum with the highest identification score was manually inspected, and supplied 

in our website (http://proteomics.sbs.ntu.edu.sg/). 

 

Characterizing the gastric cancer phosphoproteome 

 

To characterize the gastric cancer phosphoproteome, we first checked whether the 

phosphoproteins we identified in this study were also present in other human 

phosphoproteome data sets. Of the 3021 phosphorylation sites we identified, 1194 

(40%) were annotated in the Uniprot database. Thus, our data revealed 1827 novel 

phosphorylation sites in gastric cancer (Figure 2.3E).  

 

Subcellular localizations of gastric cancer phosphoproteins were annotated using 

Gene Ontology (Figure 2.6A). The majority were localized to the nucleus (38%), 

cytoplasm (34%) and plasma membrane (11%). It is noteworthy that we uncovered 

141 non-redundant phosphorylation sites in 65 mitochondrial proteins, 108 

phosphorylation sites (77%) of which have not been documented previously. 
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Figure 2.6. Classification of phosphoproteins based on Gene Ontology. Phosphorylated proteins in 

gastric cancer cells were classified according to subcellular localization (A) and biological process (B). 

Only biological processes with a hit number over 20 are shown. 

 

Biological process classification showed that transcription, RNA splicing, signal 

transduction, mRNA processing, cell cycle and DNA damage responses were 

dominant processes represented in the gastric cancer phosphoproteome. Proteins 

involved in protein transport, apoptosis, anti-apoptosis, protein phosphorylation, 

differentiation, adhesion and proliferation were also phosphorylated in gastric cancer 

cells (Figure 2.6B). 

 

Motif analysis of gastric cancer phosphoproteins 

 

Protein kinases phosphorylate their substrates at specific motifs. Motif analysis thus 

helps to shed light on the presence of activated protein kinases. To infer the identities 

of protein kinases that are active in gastric cancer, we analyzed our phosphoproteome 

data using Motif-X [135]. By limiting the significance to no more than 0.000001, 11 

pS motifs and 2 pT motifs were identified, each occurring in a minimum of 41 pS and 

14 pT peptide sequences. The enriched motifs were further annotated according to the 

Human Protein Reference Database [136]. Logo-like representations of the motifs are 

shown in Figure 2.7. Five acidic motifs associated with casein kinase 2 (CK2) and G 



50 

protein-coupled receptor kinase (GPCR kinase) were identified, and one basic motif 

identified was predicted to be specific to protein kinase A (PKA), PKC and AKT. 

Four proline-directed motifs were also identified. These were predicted to reflect 

activation of MAP kinase (MAPK), extracellular signal-regulated kinase 1/2 

(ERK1/2), PKA, AKT, PKC, glycogen synthase kinase 3 alpha/beta (GSK3A/B) and 

CDK5. Motif-X analysis failed to identify any pY motif from a total of 193 non-

redundant pY peptides, probably due to the low abundance of tyrosine-

phosphorylated peptides. To evaluate the kinase specificity of the tyrosine 

phosphopeptides, we individually checked pY peptides based on known motifs 

retrieved from the literature [136] using in-house programs. This revealed six types of 

motifs, i.e. anaplastic lymphoma receptor tyrosine kinase (ALK), EGFR, JAK2, 

SHP1, Src kinase substrate motifs and TC-PTP phosphatase substrate motif in 193 

non-redundant tyrosine phosphopeptides (Figure 2.7G).  

 

Motif-X analysis is based on phosphopeptide sequences that were detected in LC-

MS/MS experiments. However, as our analysis may still have missed some low-

abundance phosphopeptides, we employed Scansite to analyze kinase motifs in the 

full protein sequence database of the gastric cancer phosphoproteome. This identified 

motifs for ABL, AKT, AMPHI, ATM, CAM, CASN, CDC2, CDK5, CLK2, CORT, 

CRK, DNA_PK, EGFR, ERK1, FGR, FYN, GRB2, GSK3, INSR, ITK, ITSN, LCK, 

NCK, p38, p85, PDGFR, PDK1, PDZ, PIP3, PKA, PKC, PLCg, SHC, SHIP, SRC, 

and 14-3-3 (supplemental Table 5 in reference [134], provided in link 

http://www.springerlink.com/content/62ru85452070n021/supplementals/)).  
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Figure 2.7. Motif analysis of gastric cancer phosphoproteome. Non-redundant 13-mer 

phosphorylated peptide sequences were analyzed in Motif-X. Motifs were classified according to 

annotations in Human Protein Reference Database. Logo-like representations of motifs are classified 

into acidic (A), proline-directed (B), basic (C) and others (D, E, F). Tyrosine-phosphopeptide motif 

was not identified by Motif-X and thus manual evaluation of a total of 193 non-redundant pY peptides 

was carried out for known motifs. Tyrosine phosphorylation motifs and their counts in gastric cancer 

cells are shown in (G). 
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Protein kinases and phosphatases in gastric cancer 

 

In LC-MS/MS based phosphoproteomics experiments, we were able to identify 15 

phosphorylated protein kinases i.e. adaptor-associated kinase 1 (AAK1), 

calcium/calmodulin-dependent serine protein kinase (CASK), CDK3, DYRK1B, 

EGFR, GSK3B, insulin receptor (INSR), mitogen-activated protein kinase kinase 2 

(MAP2K2), MET, polycystic kidney disease 2 (PKD2), protein kinase N2 (PKN2), 

PI-3-kinase-related kinase SMG1, serine/arginine-rich protein-specific kinase 2 

(SRPK2), NCK interacting kinase (TNIK) and tau tubulin kinase 2 (TTBK2) (Table 

2.2).
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Table 2.2. Phosphorylated protein kinases in gastric cancer. List of protein kinases identified by LC-MS/MS-based and protein antibody array-based phosphoproteomics 

analysis of gastric cancer cell lines and primary gastric tissues. The expression of each protein kinase gene in the transcriptomes of 17 gastric cancer cell lines relative to 

normal stomach tissues is shown. The values are the average of 17 gastric cancer cell lines. 
#
 indicates the phosphorylation site was annotated previously in the literature. 

*
 

indicates the protein kinase‟s role in gastric cancer was documented previously in the literature. § indicates the protein kinase‟s role in other cancers was documented 

previously in the literature. 
@

 indicates the antibody detects both phosphorylation sites in the protein kinase. 

 

protein/gene 

protein kinase/ 

phosphatase 

family 

Description 

phospho

rylation 

site 

Identified 

By 

Relative 

expression 

level in 

gastric cancer 

transcriptome 

If 

annotated 

# 

Documented 

in gastric 

cancer * 

Documented 

in other 

cancers § 

protein kinases 

AAK1/AP2 Other 
AP2 associated kinase 1; Adaptor-

associated kinase 1 
S623 MS 0.97 Yes No Yes 

AAK1/AP2 Other 
AP2 associated kinase 1; Adaptor-

associated kinase 1 
S624 MS 0.97 Yes No Yes 

AAK1/AP2 Other 
AP2 associated kinase 1; Adaptor-

associated kinase 1 
T620 MS 0.97 Yes No Yes 

AKT/AKT1 AGC AKT1 kinase S473 Antibody 2.30 Yes Yes Yes 

AKT/AKT1 AGC AKT1 kinase T308 Antibody 2.30 Yes Yes Yes 

AMPKa1/ 

PRKAA1 
CAMK 

protein kinase, AMP-activated, 

alpha 1 catalytic subunit 
T174 Antibody 1.03 Yes No Yes 

AMPKa2/ 

PRKAA2 
CAMK 

protein kinase, AMP-activated, 

alpha 2 catalytic subunit 
T172 Antibody 1.39 Yes No Yes 

CASK CAMK 

calcium/calmodulin-dependent 

serine protein kinase (MAGUK 

family) 

S192 MS 1.82 No No Yes 

CDK3 CMGC cyclin-dependent kinase 3 T42 MS 1.65 No Yes Yes 

CDK3 CMGC cyclin-dependent kinase 3 Y43 MS 1.65 No Yes Yes 

DYRK1B CMGC 
dual-specificity tyrosine-(Y)-

phosphorylation regulated kinase 
Y273 MS 2.32 Yes No Yes 
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1B 

EGFR TK epidermal growth factor receptor T648 MS 2.20 No No No 

EGFR TK epidermal growth factor receptor S695 MS 2.20 Yes No No 

EGFR TK epidermal growth factor receptor T693 MS 2.20 Yes No No 

ERK1/MAPK3 CMGC mitogen-activated protein kinase 3 
T185/Y1

87
@

 
Antibody 0.79 Yes Yes Yes 

ERK1/MAPK3 CMGC mitogen-activated protein kinase 3 
T202/Y2

04
@

 
Antibody 0.79 Yes Yes Yes 

ERK2/MAPK1 CMGC mitogen-activated protein kinase 1 
T185/Y1

87
@

 
Antibody 1.46 Yes Yes Yes 

ERK2/MAPK1 CMGC mitogen-activated protein kinase 1 
T202/Y2

04
@

 
Antibody 1.46 Yes Yes Yes 

FAK/PTK2 TK protein tyrosine kinase 2 Y397 Antibody 1.39 Yes Yes Yes 

FGR TK 
proto-oncogene tyrosine-protein 

kinase FGR 
Y412 Antibody 0.18 Yes No Yes 

FYN TK 
proto-oncogene tyrosine-protein 

kinase fyn 
Y420 Antibody 0.34 Yes Yes Yes 

GSK3A CMGC glycogen synthase kinase 3 alpha S21/S9
@

 Antibody 1.52 Yes No Yes 

GSK3B CMGC glycogen synthase kinase 3 beta S21/S9
@

 Antibody 1.48 Yes No Yes 

GSK3B CMGC glycogen synthase kinase 3 beta Y216 MS 1.48 Yes No Yes 

HCK TK tyrosine protein kinase HCK Y411 Antibody 0.26 Yes Yes Yes 

INSR TK insulin receptor; CD220 S720 MS 0.62 No No Yes 

JNK1/MAPK8 CMGC mitogen-activated protein kinase 8 
T183/Y1

85
@

 
Antibody 1.28 Yes Yes Yes 

JNK1/MAPK8 CMGC mitogen-activated protein kinase 8 
T221/Y2

23
@

 
Antibody 1.28 Yes Yes Yes 

LCK TK 
lymphocyte-specific protein 

tyrosine kinase 
Y394 Antibody 0.23 Yes Yes Yes 

LYN TK 
Yamaguchi sarcoma viral (v-yes-1) 

related oncogene homolog 
Y397 Antibody 0.79 Yes Yes Yes 

MARK2 CAMK MAP/microtubule affinity- S423 MS 1.28 Yes Yes Yes 
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regulating kinase 2 

MEK1/MAP2K1 STE 
mitogen-activated protein kinase 

kinase 1 

S218/S22

2
@

 
Antibody 1.64 Yes Yes Yes 

MEK1/MAP2K1 STE 
mitogen-activated protein kinase 

kinase 1 

S222/S22

6
@

 
Antibody 1.64 Yes Yes Yes 

MEK2/MAP2K2 STE 
mitogen-activated protein kinase 

kinase 2 

S218/S22

2
@

 
Antibody 1.64 Yes Yes Yes 

MEK2/MAP2K2 STE 
mitogen-activated protein kinase 

kinase 2 

S222/S22

6
@

 
Antibody 1.64 Yes Yes Yes 

MET TK 
met proto-oncogene (hepatocyte 

growth factor receptor) 
S1006 MS 4.33 No No No 

MET TK 
met proto-oncogene (hepatocyte 

growth factor receptor) 
S1008 MS 4.33 No No No 

MET TK 
met proto-oncogene (hepatocyte 

growth factor receptor) 
T1011 MS 4.33 No No No 

MET TK 
met proto-oncogene (hepatocyte 

growth factor receptor) 
T678 MS 4.33 No No No 

MET TK 
met proto-oncogene (hepatocyte 

growth factor receptor) 
T992 MS 4.33 No No No 

MET TK 
met proto-oncogene (hepatocyte 

growth factor receptor) 
T993 MS 4.33 No No No 

MET TK 
met proto-oncogene (hepatocyte 

growth factor receptor) 
Y666 MS 4.33 No No No 

MET TK 
met proto-oncogene (hepatocyte 

growth factor receptor) 
S1000 MS 4.33 Yes No No 

MET TK 
met proto-oncogene (hepatocyte 

growth factor receptor) 
S988 MS 4.33 Yes No No 

MET TK 
met proto-oncogene (hepatocyte 

growth factor receptor) 
S990 MS 4.33 Yes No No 

MET TK 
met proto-oncogene (hepatocyte 

growth factor receptor) 
S997 MS 4.33 Yes No No 

MSK1/RPS6KA5 AGC 
ribosomal protein S6 kinase, 

90kDa, polypeptide 5 

S376/S36

0
@

 
Antibody 0.29 Yes No Yes 

MSK2/RPS6KA4 AGC ribosomal protein S6 kinase, S376/S36 Antibody 2.27 Yes No Yes 
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90kDa, polypeptide 4 0
@

 

mTOR/FRAP1 Atypical 
mechanistic target of rapamycin 

(serine/threonine kinase) 
S2448 Antibody 1.25 Yes Yes Yes 

p38a/MAPK14 STE 
mitogen-activated protein kinase 

14 

T180/Y1

92
@

 
Antibody 2.37 Yes No Yes 

p70S6K/RPS6KB1 AGC 
ribosomal protein S6 kinase, 

70kDa, polypeptide 1 
T229 Antibody 1.02 Yes Yes Yes 

p70S6K/RPS6KB1 AGC 
ribosomal protein S6 kinase, 

70kDa, polypeptide 1 
T389 Antibody 1.02 Yes Yes Yes 

p70S6K/RPS6KB1 AGC 
ribosomal protein S6 kinase, 

70kDa, polypeptide 1 

T421/S4

24
@

 
Antibody 1.02 Yes Yes Yes 

PKD2 CAMK 
polycystic kidney disease 2 

(autosomal dominant) 
S812 MS 0.55 Yes Yes Yes 

PKN2 AGC 
polycystic kidney disease 2 

(autosomal dominant) 
S582 MS 1.70 Yes No No 

PKN2 AGC 
polycystic kidney disease 2 

(autosomal dominant) 
S583 MS 1.70 Yes No No 

PYK2/PTK2B TK protein tyrosine kinase 2 beta Y402 Antibody 1.13 Yes Yes Yes 

RSK1/RPS6KA1 AGC 
ribosomal protein S6 kinase, 

90kDa, polypeptide 1 
S221 Antibody 1.06 Yes No Yes 

RSK1/RPS6KA1 AGC 
ribosomal protein S6 kinase, 

90kDa, polypeptide 1 
S380 Antibody 1.06 Yes No Yes 

RSK2/RPS6KA3 AGC 
ribosomal protein S6 kinase, 

90kDa, polypeptide 3 
S221 Antibody 2.46 Yes No Yes 

RSK2/RPS6KA3 AGC 
ribosomal protein S6 kinase, 

90kDa, polypeptide 3 
S380 Antibody 2.46 Yes No Yes 

RSK3/RPS6KA2 AGC 
ribosomal protein S6 kinase, 

90kDa, polypeptide 2 
S380 Antibody 0.39 Yes No Yes 

SMG1 Atypical 
phosphatidylinositol 3-kinase-

related protein kinase 
S2940 MS 0.93 No No Yes 

SMG1 Atypical 
phosphatidylinositol 3-kinase-

related protein kinase 
S2946 MS 0.93 No No Yes 

SMG1 Atypical 
phosphatidylinositol 3-kinase-

related protein kinase 
T2947 MS 0.93 No No Yes 
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SRC TK 
proto-oncogene tyrosine-protein 

kinase 
Y419 Antibody 1.11 Yes Yes Yes 

SRPK2 CMGC 
Serine/arginine-rich protein-

specific kinase 2 
S496 MS 1.53 No No Yes 

SRPK2 CMGC 
Serine/arginine-rich protein-

specific kinase 2 
T492 MS 1.53 No No Yes 

SRPK2 CMGC 
Serine/arginine-rich protein-

specific kinase 2 
S494 MS 1.53 Yes No Yes 

SRPK2 CMGC 
Serine/arginine-rich protein-

specific kinase 2 
S497 MS 1.53 Yes No Yes 

SRPK2 CMGC 
Serine/arginine-rich protein-

specific kinase 2 
T498 MS 1.53 Yes No Yes 

TNIK STE 
TRAF2 and NCK interacting 

kinase 
S680 MS 1.25 Yes No Yes 

TTBK2 CK1 tau tubulin kinase 2 T1070 MS 0.75 No No No 

YES/YES1 TK 
Yamaguchi sarcoma viral 

oncogene homolog 1 
Y426 Antibody 0.86 Yes Yes Yes 

protein phosphatases 

PTPN14 PTP 
Tyrosine-protein phosphatase non-

receptor type 14 
S312 MS 3.58 No No Yes 

PTPN14 PTP 
Tyrosine-protein phosphatase non-

receptor type 14 
S314 MS 3.58 No No Yes 

PTPRF PTP 
Isoform 1 of Receptor-type 

tyrosine-protein phosphatase F 
T1801 MS 3.26 No No Yes 

PTPRF PTP 
Isoform 1 of Receptor-type 

tyrosine-protein phosphatase F 
T1811 MS 3.26 No No Yes 

PTPRF PTP 
Isoform 1 of Receptor-type 

tyrosine-protein phosphatase F 
T1825 MS 3.26 No No Yes 

PTPN12 PTP 
Tyrosine-protein phosphatase non-

receptor type 12 
S435 MS 2.89 Yes No Yes 

PTPRA PTP 
cDNA FLJ56484, highly similar to 

Receptor-type tyrosine-protein 
S171 MS 2.89 No Yes Yes 
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phosphatase alpha 

PTPRA PTP 

cDNA FLJ56484, highly similar to 

Receptor-type tyrosine-protein 

phosphatase alpha 

S172 MS 2.89 No Yes Yes 

PTPRA PTP 

cDNA FLJ56484, highly similar to 

Receptor-type tyrosine-protein 

phosphatase alpha 

T161 MS 2.89 No Yes Yes 

MTMR7 DSP 
Isoform 1 of Myotubularin-related 

protein 7 
S213 MS 0.86 No No No 
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We also found ten phosphorylation sites in five protein phosphatases (phosphorylation 

sites in parenthesis), i.e. PTPN12 (S435), PTPN14 (S312, S314), PTPRA (S171, 

S172, T161), PTPRF (T1801, T1811, T1825) and MTMR7 (S213) in gastric cancer 

cells (Table 2.2). Four of these i.e. PTPN12, PTPN14, PTPRA and PTPRF, belong to 

classical transmembrane protein tyrosine phosphatases. Nine of the ten 

phosphorylation sites have never been reported in the literature. As most of these 

protein phosphatases tended to be over-expressed in the 17 gastric cancer cells, this 

class of enzymes may participate in modulating the phosphoproteome in gastric 

cancer.  

 

We next evaluated the expression of these kinase and phosphatase genes in our 

transcriptome data sets of 17 gastric cancer cell lines that quantified the expression of 

>12,000 genes relative to pooled normal stomach tissues. Relative expression of 221 

protein kinase and 80 protein phosphatase genes were quantified in 17 gastric cancer 

cell lines. These data showed over-expression of subsets of protein kinase and 

phosphatase genes. Taking the geometric mean of 17 cell lines, PLK1, NEK2, CDC2, 

FGFR4, TRRAP, MELK, MET, PBK, PLK2 and TTK were the top ten over-

expressed protein kinase genes, while the top ten over-expressed protein phosphatase 

genes were DUSP9, CDC25B, PTPRU, DUSP14, CDKN3, PTPN14, PTPRF, TPTE, 

PTPN12 and MTMR10.  

 

The relative expression of protein kinases and phosphatases that were phosphorylated 

in gastric cancer (Table 2.2) confirmed EGFR, MET and CDKs as over-expressed and 

activated kinases and also revealed many novel kinases whose involvement in gastric 
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cancer was hitherto unknown. These novel gastric cancer protein kinases include 

fibroblast growth factor receptor 4 (FGFR4), nemo-like kinase (NLK) and NIMA 

(never in mitosis gene a)-related kinase 2 (NEK2), among others. Although protein 

kinase N2 (PKN2) has not yet been linked to any cancer type, it had unusually high 

transcriptional expression and was activated in gastric cancer.  

 

Phosphoproteomics of primary gastric tissues using antibody arrays 

 

To extend our study of gastric cancer phosphoproteome from cell lines to in vivo 

clinical samples for the detection of low abundance phosphoproteins that are beyond 

the sensitivity of LC-MS/MS based phosphoproteomics, we utilized antibody arrays 

that interrogated 46 phosphorylated signaling molecules to investigate the kinome in 

flash frozen gastric tissues obtained by endoscopic biopsies. These tissues comprised 

2 histologically normal antral biopsies, 7 cases of benign gastritis, and 3 pairs of 

gastric adenocarcinoma (2 intestinal histotype and 1 diffuse histotype) with their 

cognate matched normal tissues. All tissues were frozen within seconds after biopsy. 

Compared to absent signals in the phosphate-buffered saline-spotted negative 

controls, the antibody array results revealed the expression of 40 phosphoproteins in 

gastric tissues (Figure 2.8). Of these, 27 were phosphorylated protein kinases (Table 

2.2).  
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1 2 3 4 5 6 7 8 9 10

a Pos
p38α 

(T180/Y192)

ERK1/2 

(T202/Y204, 

T185/Y187)

JNK pan (T183/Y185, 

T221/Y223)

GSK3α/β 

(S21/S9)

b EMPTY

MEK1/2 

(S218/S222, 

S222/S226)

MSK1/2 (S376/360) AMPKα1 (T174) Akt (S473)

c TOR (S2448) CREB (S133) HSP27 (S78/S82) AMPKα2 (T172) β-catenin

d Src (Y419) Lyn (Y397) Lck (Y394) STAT2 (Y689) STAT5α (Y699)

e Fyn (Y420) Yes (Y426) Fgr (Y412) STAT3 (Y705) STAT5β (Y699)

f Hck (Y411) CHK2 (T68) FAK (Y397) STAT6 (Y641)
STAT5α/β 

(Y699)

g Pos EMPTY Neg

1 2 3 4 5 6 7 8

a EMPTY P53 (S392) EMPTY Pos

b Akt (T308) P53 (S46) EMPTY EMPTY

c p70 S6 kinase (T389) P53 (S15) P27 (T198)
Paxillin

(Y118)

d
p70 S6 kinase 

(T421/S424)

RSK1/2/3 

(S380)
P27 (T157)

PLCγ1 

(Y783)

e p70 S6 kinase (T229) RSK1/2 (S221) c-Jun (S63) PYK2 (Y402)

f STAT1 (Y701) STAT4 (Y693)
eNOS

(S1177)
Neg
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Figure 2.8. Representative antibody array images of primary gastric tissues. Proteome Profiler 

Human Phospho-Kinase Array Kit (R&D Systems) was used to simultaneously detect phosphorylation 

sites in a panel of protein kinases and key signaling proteins in fresh frozen primary endoscopic gastric 

tissues i.e. normal, gastritis, and gastric cancer tissues. (A) Layout of protein antibody array composed 

of membrane A and membrane B. (B) Representative images of protein arrays of two cases of primary 

gastric cancers, each with its matched non-cancerous tissue, one case each of normal stomach and 

benign gastritis biopsies. Refer to Figure 2.9 for all images. 

 

 

 

Several phosphorylated proteins displayed substantially stronger signals in tumor 

tissues than in normal antral tissues and benign gastritis samples, implying potentially 

critical roles in gastric cancer. They were TP53 (S15, S392, S46), SRC (Y419), YES 

(Y426), STAT5b (Y699), nitric oxide synthase 3 (eNOS) (S1177), STAT2 (Y689), 

STAT6 (Y641), MEK1/2 (S218/S222, S222/S226), AKT (S308), ribosomal S6 kinase 
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1 (RSK1) (S221, S380), RSK2 (S221, S380), RSK3 (S380), and ribosomal protein S6 

kinase I (p70S6K) (T229, T389, T421/S424).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.9. Protein antibody array analysis of primary stomach tissues. R&D Systems Proteome 

Profiler Human Phospho-Kinase Array Kit was used to simultaneously detect phosphorylation sites 

in a variety of protein kinases and key signaling proteins in primary endoscopic gastric tissues from 12 

human subjects: 2 histologically normal antral biopsies, 3 pairs of gastric adenocarcinoma with their 

cognate matched normal mucosa, and 7 cases of histologically benign gastritis. (A) Layout of protein 

antibody array. The array is composed of membrane A and membrane B. (B) Images of antibody arrays 

generated by each biopsy of primary stomach tissues. 
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Our results also showed that inflammation in gastric tissues induced substantial 

changes in phosphoproteins. Benign gastritis samples had clearly different patterns of 

phosphorylated signaling molecules compared to normal stomach tissues. Tyrosine 

412 of Src family tyrosine kinase FGR/SRC2 was highly phosphorylated in gastritis, 

but not in normal or cancerous stomach tissues. Other phosphorylation sites 

specifically associated with stomach inflammation included Y402 in PYK2, S78/S82 

in HSP27, T202/Y204 and T185/Y187 in ERK1/2, T180/Y192 in p38a, Y118 in 

paxillin, S63 in c-Jun and Y701 in STAT1. Several tyrosine kinases appeared 

deactivated in gastritis compared to normal stomach, including FAK, YES, FYN, 

HCK, JUN, CHK2, LCK, GSK3A/B, AMOKa1 and p70S6K. Compared to gastritis, 

cancerous tissues exhibited higher levels of nuclear phosphoproteins including TP53, 

STATs, CREB, CHK2 as well as tyrosine kinases such as GSK3A/B, FAK, FYN, 

LCK, AMPKA1, JNK, HCK and p70S6K. It is noteworthy that matched cancerous 

and non-cancerous tissues from the same patient had very similar phosphoproteome 

patterns, consistent with field cancerization in this disease [137] (Figure 2.9 and 

Figure 2.10).  
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Figure 2.10. Phosphorylated signaling molecules determined by antibody array analysis of 

primary gastric tissues. One pooled sample of histologically normal stomach tissue from two 

individuals, 7 cases of histologically benign gastritis, as well as 3 pairs of gastric adenocarcinoma and 

matched normal tissues were analyzed on protein antibody arrays. Each phosphorylation site for every 

sample was detected in duplicate. (A) Normalized intensities of gastritis tissues, cancer and matched 

normal tissues relative to normal stomach tissues are shown. (B) Normalized intensities of a case of 

gastric cancer and its matched normal tissue relative to benign gastritis tissues are shown. 

 

 

 

LC-MS/MS-based and antibody array-based phosphoproteomics analysis jointly 

identified 74 phosphorylation sites in 41 protein kinases in gastric cancer cell lines 

and primary stomach tissues (Table 2.2). Eighteen of these phosphorylation sites 

(24%) are novel. Literature mining revealed that 37 of the 41 identified protein 

kinases (90%) have been implicated in different cancers, whereas only 19 (46%) have 

been associated with gastric cancer. 
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Discussion 

 

In this study, we have integrated LC-MS/MS-based phosphoproteomic, protein 

antibody array and transcriptomic techniques, undergirded by bioinformatic analysis, 

to generate an expansive view of phosphoproteome and molecular signaling pathways 

in gastric cancer. This is the first comprehensive view of the gastric cancer 

phosphoproteome.  

 

Phosphoproteins are the most pervasive signaling molecules, whereas many over-

expressed proteins are likely to be critical in carcinogenesis. We have investigated the 

phosphoproteome of both gastric cancer cell lines and clinical samples. Protein 

antibody array-based phosphoproteomics was employed to detect low abundance 

phosphorylated proteins in clinical tissues. Since the main focus of this study is not to 

compare phosphoproteomes between cancer and normal samples, only three pairs of 

gastric adenocarcinoma with their cognate matched normal tissues, in addition to 9 

normal and benign samples, were included in this study. However, to characterize the 

differential expression of the phosphoproteins as identified in gastric cancer, more 

comprehensive clinical investigations are required. 

 

It is noteworthy that the overlap between phosphoproteome from LC-MS/MS and 

phosphoproteome from protein antibody array is negligible. One reason is that the 

commercially available protein antibody array for probing phosphoproteins contains 

only 40 phosphoproteins. In addition, most of these proteins are low abundance 

signaling proteins that are rarely identified by LC-MS/MS approaches due to dynamic 

range.  
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Integrating phosphoproteome and transcriptome data sets is a powerful strategy for 

understanding cancer biology and mining potential gastric cancer biomarkers. 

Moreover, cancer therapeutics is being transformed by highly efficacious agents 

targeted at abnormally activated oncogenic tyrosine kinases. Focusing on 

phosphorylated proteins which were >2-fold transcriptionally over-expressed, we 

identified 190 dysregulated phosphoproteins. Our study confirmed previous reports 

that MET transcriptional overexpression (>40-fold higher than normal stomach 

tissues) is a prominent feature of some gastric cancer cells [108, 109] while our 

phosphoproteomics data set identified the presence of MET in its phosphorylated and 

active state. Selective inhibition of MET effectively is known to kill MET over-

expressing gastric cancer cells [24, 112] and is the rationale for ongoing clinical trials 

of MET inhibitors for gastric cancer therapy. Our data also showed over-expression of 

several genes whose protein products were phosphorylated and have been proposed as 

useful prognostic markers and/or therapeutic targets for gastric cancer, including 

EGFR [138], TOP2A [87], minichromosome maintenance 2 (MCM2) [87], 

erythropoietin-producing hepatocellular (Eph) A2 receptor [139], CTNNB1 [87], and 

hepatoma-derived growth factor (HDGF) [87]. The data sets also reveal novel 

overexpressed and phosphorylated proteins whose roles in gastric cancer have yet to 

be defined, such as EIF2S3, LMNB2, KIF23, SLC7A5/CD98 and MCM3 although 

some have been associated with other types of cancers. For instance, SLC7A5/CD98 

is a proposed prognostic indicator of adult acute leukemia [140], breast cancer [87], 

lung cancer [141] and renal cancer [142]. Our integrated analyses suggest that such 

molecules could provide helpful insights into processes underlying gastric 

oncogenesis.  
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The DNA damage response (DDR) pathway appears overrepresented in the pathway 

analysis of the 190 over-expressed phosphoproteins. DNA damage in the absence of 

physiological repair responses is the origin of many diseases, including cancers [143]. 

DDR comprises a variety of signaling pathways, which are activated by DNA damage 

and replication stress, and are transduced by kinase cascades, mainly through a pair of 

protein kinases, ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-

related). Both ATM and ATR in turn phosphorylate a number of substrates, including 

checkpoint kinase 1 (CHK1) and CHK2, and influence cell cycle, DNA repair, DNA 

replication, and many other biological processes involving nucleic acids, as well as 

diverse signaling pathways like insulin-IGF-1-PI3K-AKT pathway [144]. As shown 

in Figure 2.11, our data sets identified over-expression of mRNA levels of many 

components in this pathway. Moreover, phosphorylation of some critical player in this 

pathway was identified. Specifically, our data suggest that hyperphosphorylated TP53 

might be one characteristic of gastric cancer. While normal stomach tissues 

consistently displayed basal levels of phosphorylated TP53, cancerous tissues from 

both intestinal-type gastric adenocarcinomas had markedly elevated levels of TP53 

phosphorylated at S392, S46 and S15. In contrast, matched non-cancerous gastric 

tissue from the same patients displayed only basal phosphorylation (Figure 2.9).  
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Figure 2.11. DNA damage response pathway in gastric cancer. Pathway is modified based on cell 

cycle checkpoint control pathway from Ingenuity Pathway Analysis. Over-expressed phosphoproteins 

are shaded in grey. Relative mRNA expression level of proteins is shown in blue. Phosphorylation sites 

are shown in red.  

 

 

The integrated approach we adopted generated an unbiased view of the gastric 

oncokinome. The human kinome contains 518 protein kinases classified into 10 

groups based on catalytic domain sequence similarities i.e. AGC, CAMK, CK1, 

CMGC, STE, TK, TKL, RGC, Atypical and Other [145]. Protein phosphatases play 

equally critical roles in setting the levels of protein phosphorylation in cells and in 

regulating many physiological processes [146]. However, proportionately much less 

research has focused on protein phosphatases in cancer cells. Protein phosphatases are 

classified according to their substrate specificities into protein tyrosine phosphatase 

(PTP), serine/threonine phosphatase (STP), protein histidine phosphatase (PHP), and 
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dual-specific phosphatases (DSPs) [146, 147]. Like protein kinases, phosphorylation 

of protein phosphatases is an important regulatory mechanism [146]. Relative 

expression levels of protein kinases and phosphatases, as well as their 

phosphorylation status, are functionally crucial to cancer phenotypes. By integrating 

transcriptional expression levels of 221 protein kinase and 80 protein phosphatase 

genes in 17 gastric cancer cell lines with phosphoproteomic data, our data help to 

define the dynamic molecular terrain of protein kinases and protein phosphatases 

(Table 2.2) from which key pathways in gastric oncogenesis may be discerned.  

 

It is also worth noting that 30 over-expressed phosphoproteins (16%) were associated 

with mitochondria, implying critical roles for this organelle in gastric oncogenesis 

(Table 2.3). Mitochondria are pivotal in cell metabolism, survival and apoptosis. 

Several protein kinases and protein tyrosine phosphatases are known to reside in 

mitochondria while other mitochondrial proteins are themselves kinase substrates. As 

well as being the target of all major kinase signaling pathways, intramitochondrial 

signaling also occurs [148, 149]. Mitochondrial phosphoproteomes of mammalian 

cardiomyocytes [150], hepatocytes [151], pancreatic beta-cells[152], yeast[153] and 

Arabidopsis thaliana [154] have been reported. However, there is yet no systematic 

documentation of mitochondrial phosphoproteins in cancer cells. Our data 

demonstrated that TOMM20 (translocase of outer mitochondrial membrane 20) was 

over-expressed and phosphorylated in some gastric cancer cells. This protein is a 

central receptor component of the TOM complex (translocase of the outer membrane 

of mitochondria) that recognizes and translocates cytosolically synthesized 

mitochondrial preproteins. In addition to TOMM20, several mitochondrial proteins 

were also dysregulated in gastric cancer. Mitochondrial ribosomal proteins (MRPS16, 
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MRPL11, and DAP3) were all phosphorylated and highly expressed, reflecting active 

synthesis of mitochondrial proteins. Among other phosphorylated mitochondrial 

proteins we identified were proteins of the electron transfer chain, mitochondrial 

permeability transition pore, mitochondrial ribosomal proteins, as well as various 

enzymes involved in apoptosis and metabolism. These data not only support the role 

of phosphorylation in regulating mitochondrial proteins but also point to key roles of 

mitochondrial functions in oncogenic processes.                   
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Table 2.3. Phosphorylated mitochondrial proteins in gastric cancer cells. 

 

IPI gene description site Mascot Omssa Tandem Sequest 
If 

Annotated 

IPI00000690 AIFM1 Isoform 1 of Apoptosis-inducing factor 1, mitochondrial S56 N N Y N N 

IPI00000858 RDBP cDNA FLJ56180, highly similar to Negative elongation factor E S58 Y N N Y N 

IPI00003985 BCS1L Mitochondrial chaperone BCS1 T308 N N N Y N 

IPI00004902 ETFB Isoform 1 of Electron transfer flavoprotein subunit beta T172 N N N Y N 

IPI00007001 MRPL11 39S ribosomal protein L11, mitochondrial S88 N N N Y N 

IPI00007001 MRPL11 39S ribosomal protein L11, mitochondrial T86 N N N Y N 

IPI00007001 MRPL11 39S ribosomal protein L11, mitochondrial Y89 N N N Y N 

IPI00007188 SLC25A5 ADP/ATP translocase 2 S127 N N Y N N 

IPI00007979 MT-ND2 NADH-ubiquinone oxidoreductase chain 2 S301 N N N Y N 

IPI00007979 MT-ND2 NADH-ubiquinone oxidoreductase chain 2 T20 N N N Y N 

IPI00007979 MT-ND2 NADH-ubiquinone oxidoreductase chain 2 T45 N N N Y N 

IPI00007979 MT-ND2 NADH-ubiquinone oxidoreductase chain 2 Y298 N N N Y N 

IPI00008528 MT-ATP6 ATP synthase protein 8 T11 N N N Y N 

IPI00008528 MT-ATP6 ATP synthase protein 8 T24 N N N Y N 

IPI00008528 MT-ATP6 ATP synthase protein 8 T6 N N N Y N 

IPI00008528 MT-ATP6 ATP synthase protein 8 T7 N N N Y N 

IPI00009444 MRPL27 39S ribosomal protein L27, mitochondrial T69 Y N N N N 

IPI00009960 IMMT Isoform 1 of Mitochondrial inner membrane protein S746 N N N Y N 

IPI00009960 IMMT Isoform 1 of Mitochondrial inner membrane protein T42 N N Y N N 



74 

IPI00009960 IMMT Isoform 1 of Mitochondrial inner membrane protein T43 N N Y N N 

IPI00009960 IMMT Isoform 1 of Mitochondrial inner membrane protein T731 N N N Y N 

IPI00009960 IMMT Isoform 1 of Mitochondrial inner membrane protein T753 N N N Y N 

IPI00010906 CLN3 CLN3 protein S12 Y N N N N 

IPI00010906 CLN3 CLN3 protein S14 Y N N N N 

IPI00010906 CLN3 CLN3 protein T19 Y N N N N 

IPI00011062 CPS1 
Isoform 1 of Carbamoyl-phosphate synthase [ammonia], 

mitochondrial 
T1078 N N N Y N 

IPI00011307 MTHFD2 
Bifunctional methylenetetrahydrofolate 

dehydrogenase/cyclohydrolase, mitochondrial 
S252 N N N Y N 

IPI00011307 MTHFD2 
Bifunctional methylenetetrahydrofolate 

dehydrogenase/cyclohydrolase, mitochondrial 
T244 N N N Y N 

IPI00011307 MTHFD2 
Bifunctional methylenetetrahydrofolate 

dehydrogenase/cyclohydrolase, mitochondrial 
T261 N N N Y N 

IPI00011307 MTHFD2 
Bifunctional methylenetetrahydrofolate 

dehydrogenase/cyclohydrolase, mitochondrial 
T324 N N N Y N 

IPI00011307 MTHFD2 
Bifunctional methylenetetrahydrofolate 

dehydrogenase/cyclohydrolase, mitochondrial 
Y304 N N N Y N 

IPI00011635 BCL2L13 Isoform 2 of Bcl-2-like protein 13 S27 N N N Y N 

IPI00011635 BCL2L13 Isoform 2 of Bcl-2-like protein 13 T15 N N N Y N 

IPI00011635 BCL2L13 Isoform 2 of Bcl-2-like protein 13 Y13 N N N Y N 

IPI00012728 ACSL1 Isoform 1 of Long-chain-fatty-acid--CoA ligase 1 T41 N N N Y N 

IPI00012728 ACSL1 Isoform 1 of Long-chain-fatty-acid--CoA ligase 1 T46 N N N Y N 

IPI00013146 MRPS22 28S ribosomal protein S22, mitochondrial S77 N N N Y N 

IPI00013146 MRPS22 28S ribosomal protein S22, mitochondrial T90 N N N Y N 

IPI00013146 MRPS22 28S ribosomal protein S22, mitochondrial Y196 N N N Y N 

IPI00013146 MRPS22 28S ribosomal protein S22, mitochondrial Y250 N N N Y N 

IPI00013623 SLC27A3 Isoform 1 of Long-chain fatty acid transport protein 3 S110 N N N Y N 

IPI00013623 SLC27A3 Isoform 1 of Long-chain fatty acid transport protein 3 S128 N N N Y N 
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IPI00015833 CHCHD3 
Coiled-coil-helix-coiled-coil-helix domain-containing protein 3, 

mitochondrial 
S39 N N N Y N 

IPI00018120 DAP3 28S ribosomal protein S29, mitochondrial S252 N N N Y N 

IPI00021016 TSFM Isoform 1 of Elongation factor Ts, mitochondrial S181 N N N Y N 

IPI00021338 DLAT 
Dihydrolipoyllysine-residue acetyltransferase component of pyruvate 

dehydrogenase complex, mitochondrial 
S98 N N N Y N 

IPI00021338 DLAT 
Dihydrolipoyllysine-residue acetyltransferase component of pyruvate 

dehydrogenase complex, mitochondrial 
T102 N N N Y N 

IPI00021338 DLAT 
Dihydrolipoyllysine-residue acetyltransferase component of pyruvate 

dehydrogenase complex, mitochondrial 
T107 N N N Y N 

IPI00022002 MRPS27 
cDNA FLJ54536, highly similar to Mitochondrial 28S ribosomal 

protein S27 
S232 N N N Y N 

IPI00022002 MRPS27 
cDNA FLJ54536, highly similar to Mitochondrial 28S ribosomal 

protein S27 
S236 N N N Y N 

IPI00022002 MRPS27 
cDNA FLJ54536, highly similar to Mitochondrial 28S ribosomal 

protein S27 
S237 N N N Y N 

IPI00022002 MRPS27 
cDNA FLJ54536, highly similar to Mitochondrial 28S ribosomal 

protein S27 
S68 N N N Y N 

IPI00022002 MRPS27 
cDNA FLJ54536, highly similar to Mitochondrial 28S ribosomal 

protein S27 
S69 N N N Y N 

IPI00022002 MRPS27 
cDNA FLJ54536, highly similar to Mitochondrial 28S ribosomal 

protein S27 
Y242 N N N Y N 

IPI00022585 AKAP1 
cDNA FLJ56047, highly similar to A kinase anchor protein 1, 

mitochondrial 
S76 N N N Y N 

IPI00024145 VDAC2 Isoform 2 of Voltage-dependent anion-selective channel protein 2 S35 Y N N N N 

IPI00024145 VDAC2 Isoform 2 of Voltage-dependent anion-selective channel protein 2 S37 Y N N N N 

IPI00024145 VDAC2 Isoform 2 of Voltage-dependent anion-selective channel protein 2 S42 Y N N N N 

IPI00024145 VDAC2 Isoform 2 of Voltage-dependent anion-selective channel protein 2 S44 Y N N N N 

IPI00024145 VDAC2 Isoform 2 of Voltage-dependent anion-selective channel protein 2 T43 Y N N N N 

IPI00024145 VDAC2 Isoform 2 of Voltage-dependent anion-selective channel protein 2 T57 Y N N N N 

IPI00024145 VDAC2 Isoform 2 of Voltage-dependent anion-selective channel protein 2 T60 Y N N N N 



76 

IPI00026958 FDXR Isoform Short of NADPH:adrenodoxin oxidoreductase, mitochondrial S414 N N N Y N 

IPI00026958 FDXR Isoform Short of NADPH:adrenodoxin oxidoreductase, mitochondrial S432 N N N Y N 

IPI00026958 FDXR Isoform Short of NADPH:adrenodoxin oxidoreductase, mitochondrial T404 N N N Y N 

IPI00028077 PSEN1 Isoform 1 of Presenilin-1 S366 Y N N Y N 

IPI00076042 HSPD1 Short heat shock protein 60 Hsp60s2 S222 N N N Y N 

IPI00076042 HSPD1 Short heat shock protein 60 Hsp60s2 T225 N N N Y N 

IPI00076042 HSPD1 Short heat shock protein 60 Hsp60s2 T232 N N N Y N 

IPI00096066 SUCLG2 Succinyl-CoA ligase [GDP-forming] subunit beta, mitochondrial S408 N N N Y N 

IPI00096066 SUCLG2 Succinyl-CoA ligase [GDP-forming] subunit beta, mitochondrial T33 N N N Y N 

IPI00096066 SUCLG2 Succinyl-CoA ligase [GDP-forming] subunit beta, mitochondrial T396 N N N Y N 

IPI00096066 SUCLG2 Succinyl-CoA ligase [GDP-forming] subunit beta, mitochondrial T413 N N N Y N 

IPI00170877 MRPL10 
cDNA FLJ45232 fis, clone BRCAN2021718, highly similar to Homo 

sapiens mitochondrial ribosomal protein L10 (MRPL10), mRNA 
Y63 N N N Y N 

IPI00216932 ACSS1 Isoform 1 of Acetyl-coenzyme A synthetase 2-like, mitochondrial S62 N N N Y N 

IPI00216932 ACSS1 Isoform 1 of Acetyl-coenzyme A synthetase 2-like, mitochondrial Y58 N N N Y N 

IPI00218342 MTHFD1 C-1-tetrahydrofolate synthase, cytoplasmic T712 N N Y N N 

IPI00218342 MTHFD1 C-1-tetrahydrofolate synthase, cytoplasmic T714 N N Y N N 

IPI00219613 PITRM1 
cDNA FLJ10321 fis, clone NT2RM2000504, highly similar to Homo 

sapiens pitrilysin metallopeptidase 1 (PITRM1), mRNA 
T289 N N N Y N 

IPI00219613 PITRM1 
cDNA FLJ10321 fis, clone NT2RM2000504, highly similar to Homo 

sapiens pitrilysin metallopeptidase 1 (PITRM1), mRNA 
T430 N N N Y N 

IPI00219613 PITRM1 
cDNA FLJ10321 fis, clone NT2RM2000504, highly similar to Homo 

sapiens pitrilysin metallopeptidase 1 (PITRM1), mRNA 
T434 N N N Y N 

IPI00219613 PITRM1 
cDNA FLJ10321 fis, clone NT2RM2000504, highly similar to Homo 

sapiens pitrilysin metallopeptidase 1 (PITRM1), mRNA 
Y433 N N N Y N 

IPI00294398 HADH 
Isoform 1 of Hydroxyacyl-coenzyme A dehydrogenase, 

mitochondrial 
S103 N N N Y N 

IPI00294398 HADH 
Isoform 1 of Hydroxyacyl-coenzyme A dehydrogenase, 

mitochondrial 
T102 N N N Y N 
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IPI00296053 FH Isoform Mitochondrial of Fumarate hydratase, mitochondrial Y2 Y N N N N 

IPI00303568 PTGES2 Prostaglandin E synthase 2 S55 N N Y N N 

IPI00303722 FAM136A Protein FAM136A S43 N N Y N N 

IPI00304435 NIPSNAP1 Protein NipSnap homolog 1 Y185 N N N Y N 

IPI00304925 HSPA1A Heat shock 70 kDa protein 1A/1B S633 Y N N Y N 

IPI00304925 HSPA1A Heat shock 70 kDa protein 1A/1B T636 Y N N N N 

IPI00304925 HSPA1A Heat shock 70 kDa protein 1A/1B Y525 N N N Y N 

IPI00306301 PDHA1 Mitochondrial PDHA1 S270 Y N N Y N 

IPI00306301 PDHA1 Mitochondrial PDHA1 T269 N N N Y N 

IPI00337541 NNT NAD(P) transhydrogenase, mitochondrial Y722 N N Y N N 

IPI00383309 WHSC1L1 Putative uncharacterized protein pp14328 T6 Y N N N N 

IPI00383309 WHSC1L1 Putative uncharacterized protein pp14328 T8 Y N N N N 

IPI00440493 ATP5A1 ATP synthase subunit alpha, mitochondrial T432 N N N Y N 

IPI00465436 CAT Catalase T107 N N Y N N 

IPI00604664 NDUFS1 NADH-ubiquinone oxidoreductase 75 kDa subunit S493 Y N N N N 

IPI00645805 IVD Isovaleryl-CoA dehydrogenase, mitochondrial S155 N N N Y N 

IPI00645805 IVD Isovaleryl-CoA dehydrogenase, mitochondrial S165 N N N Y N 

IPI00645805 IVD Isovaleryl-CoA dehydrogenase, mitochondrial Y158 N N N Y N 

IPI00657692 COL4A3BP alpha 3 type IV collagen binding protein isoform 3 S59 N N Y N N 

IPI00790834 ACAD9 Acyl-Coenzyme A dehydrogenase family, member 9, isoform CRA_b S14 N N N Y N 

IPI00790834 ACAD9 Acyl-Coenzyme A dehydrogenase family, member 9, isoform CRA_b Y2 N N N Y N 

IPI00792673  24 kDa protein T43 N N Y N N 

IPI00853430 PRODH Putative uncharacterized protein PRODH S15 N N Y N N 

IPI00908510 CDS2 Phosphatidate cytidylyltransferase S5 Y N N N N 

IPI00005792 PABPN1 Isoform 1 of Polyadenylate-binding protein 2 S52 N N Y N Y 

IPI00011857 CHAF1B Chromatin assembly factor 1 subunit B S429 Y N N N Y 
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IPI00011857 CHAF1B Chromatin assembly factor 1 subunit B T433 Y N N N Y 

IPI00016676 TOMM20 Mitochondrial import receptor subunit TOM20 homolog S135 Y N N N Y 

IPI00016676 TOMM20 Mitochondrial import receptor subunit TOM20 homolog S138 Y N N N Y 

IPI00018120 DAP3 28S ribosomal protein S29, mitochondrial T272 N N N Y Y 

IPI00022613 NOP14 Isoform 1 of Nucleolar protein 14 S96 Y N N N Y 

IPI00023780 DNAJC5 Isoform 2 of DnaJ homolog subfamily C member 5 S10 Y Y N Y Y 

IPI00024087 PDHA2 
Pyruvate dehydrogenase E1 component subunit alpha, testis-specific 

form, mitochondrial 
S291 Y N N N Y 

IPI00024087 PDHA2 
Pyruvate dehydrogenase E1 component subunit alpha, testis-specific 

form, mitochondrial 
S298 Y N N N Y 

IPI00024087 PDHA2 
Pyruvate dehydrogenase E1 component subunit alpha, testis-specific 

form, mitochondrial 
Y287 Y N N N Y 

IPI00024087 PDHA2 
Pyruvate dehydrogenase E1 component subunit alpha, testis-specific 

form, mitochondrial 
Y299 Y N N N Y 

IPI00024976 TOMM22 Mitochondrial import receptor subunit TOM22 homolog S15 N N Y N Y 

IPI00028077 PSEN1 Isoform 1 of Presenilin-1 S365 Y N N Y Y 

IPI00028077 PSEN1 Isoform 1 of Presenilin-1 S367 N N N Y Y 

IPI00032872 MRPS16 28S ribosomal protein S16, mitochondrial T130 Y N Y N Y 

IPI00166807 OXR1 Isoform 3 of Oxidation resistance protein 1 S112 Y N N N Y 

IPI00166807 OXR1 Isoform 3 of Oxidation resistance protein 1 S113 Y N N N Y 

IPI00166807 OXR1 Isoform 3 of Oxidation resistance protein 1 S115 Y N N N Y 

IPI00171176 PANK2 Isoform 1 of Pantothenate kinase 2, mitochondrial S189 Y N N N Y 

IPI00171769 FUNDC2 FUN14 domain-containing protein 2 S151 Y N N N Y 

IPI00257508 DPYSL2 Dihydropyrimidinase-related protein 2 S522 Y N N N Y 

IPI00257508 DPYSL2 Dihydropyrimidinase-related protein 2 T509 Y N N N Y 

IPI00257508 DPYSL2 Dihydropyrimidinase-related protein 2 T521 Y N N N Y 

IPI00304925 HSPA1A Heat shock 70 kDa protein 1A/1B S631 N N N Y Y 

IPI00334190 STOML2 Stomatin-like protein 2 T327 Y N N N Y 
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IPI00402231 DNAJC5 Isoform 1 of DnaJ homolog subfamily C member 5 S10 N Y N N Y 

IPI00410079 FAM82A2 Isoform 1 of Regulator of microtubule dynamics protein 3 S44 Y N N N Y 

IPI00410079 FAM82A2 Isoform 1 of Regulator of microtubule dynamics protein 3 S46 Y N N N Y 

IPI00023780 DNAJC5 Isoform 2 of DnaJ homolog subfamily C member 5 S12 N N N Y Y 

IPI00023780 DNAJC5 Isoform 2 of DnaJ homolog subfamily C member 5 S8 N Y N Y Y 

IPI00023780 DNAJC5 Isoform 2 of DnaJ homolog subfamily C member 5 Y17 N N N Y Y 

IPI00402231 DNAJC5 Isoform 1 of DnaJ homolog subfamily C member 5 S8 N Y N N Y 
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Conclusion 

 

In conclusion, this is the most comprehensive report to date of the phosphoproteome 

of gastric cancer cells. We also provide the first documentation of gastric cancer 

kinome and phosphatome at both transcriptional and post-translational levels. We also 

documented phosphorylated mitochondrial proteins. Nonetheless, this study marks an 

early phase of unraveling global oncogenic signaling networks in gastric cancer as 

many of the phosphoproteins identified here are completely novel. Hence, elucidation 

of their functions and roles in gastric cancer require further investigations. 
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Chapter 3. Large-scale Analysis of Arginine and Lysine 

Methylated Proteins Reveals Proteins Involved in 

Metabolism Are Regulated by Methylation in Cancer Cells 
 

 

Abstract 

 

The critical roles of protein methylation in cellular signaling and human diseases are 

underestimated at present, partly for technical reasons. MS-based proteomics could 

offer a powerful approach for large scale investigation of protein methylation, but the 

lack of efficient chromatographic methods for enrichment of methylated peptides is a 

major hurdle. Here we report that exhaustive subfractionation of the whole proteome 

by various approaches, including cellular fractionation, peptide chromatography using 

strong cation exchange (SCX) and electrostatic repulsion-hydrophilic interaction 

chromatography (ERLIC), resulted in deep coverage of the methyl proteome. Heavy 

methyl SILAC experiment was performed to validate methylated peptides. We 

identified >3000 lysine- and arginine- methylation sites in a gastric cancer cell line, 

SNU5. Bioinformatic analysis revealed that lysines and arginines having a 

neighboring methionine are frequently methylated. Almost all enzymes involved in 

metabolic processes including glycolysis, citric acid cycle, and oxidative 

phosphorylation, were found to be methylated in SNU5 cells, suggesting tight 

regulation of aerobic glycolysis in cancer cells by protein methylation. In conclusion, 

this study demonstrates a workflow for large-scale analysis of methylated proteins, 

which could yield new insights such as the potential link between protein methylation 

and cancer metabolism.  
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Materials and Methods 

 

Cell Culture 

 

SNU5, a gastric cancer cell line, was obtained from the American Type Culture 

Collection (Manassas, Virginia, USA) and cultured in Iscove‟s modified Dulbecco‟s 

medium supplemented with 20% fetal bovine serum (FBS), 100 U penicillin, and 100 

µg streptomycin per mL (Invitrogen, Carlsbad, California, USA). For heavy methyl 

SILAC experiments, SNU5 cells were cultured in RPMI-1640 medium supplemented 

with 10% dialyzed fetal bovine serum (Invitrogen). Both normal culture medium and 

medium with heavy L-methionine (1-13C, methyl-D3) (Cambridge Isotope 

Laboratories Inc, Andover, Massachusetts, USA) were used in the SILAC experiment. 

RPMI-1640 deficient in methionine, lysine and arginine was obtained from Biowest 

(Miami, Florida, USA). Normal methionine, lysine and arginine were purchased from 

Sigma-Aldrich (St. Louis, Missouri, USA).  

 

Subcellular fractionation 

 

SNU5 cells were washed twice with phosphate-buffered saline (PBS), and suspended 

in ice-cold cell homogenization medium (CHM) containing 105 mM MgCl2, 10 mM 

KCl, 10 mM Tris-HCl, pH 6.7. Cells were homogenized until >90% cells were 

disrupted. Sucrose was then added to the cell homogenate to a final concentration of 

0.25 M. The sample was next centrifuged for 5 min at 1000 ×g and 4 
o
C. The pellet 

was collected as the nuclear fraction. The supernatant was further centrifuged for 10 

min at 5000 ×g and 4
 o

C. The resulting pellet was washed once with CHM 
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supplemented with 1 M sucrose. This final pellet was regarded as the mitochondrial 

fraction. Membrane fraction was obtained as described previously [131, 155]. Briefly, 

SNU5 whole cell lysate was cleared of debris and unbroken cells by centrifugation for 

15 min at 1000 ×g and 4
o
C. The supernatant was then diluted 10-fold with 0.1 M 

Na2CO3 and incubated for 1 hr at 4
o
C with gentle shaking, followed by 

ultracentrifugation at 125000 ×g for 1 hr. The resulting pellet was washed with Milli-

Q water twice, and considered as the membrane fraction.  

 

In-gel digestion of proteins 

 

About 200 µg protein from the cytosolic, nuclear, mitochondrial and membrane 

fractions was digested in-gel as described previously [156]. Briefly, proteins were 

reduced with 5 mM DTT and alkylated with 55 mM iodoacetamide before trypsin 

digestion at a protein to enzyme ratio of 1:100.  

 

In-solution digestion of proteins 

 

Proteins were lysed in 50 mM HEPES (pH 7.5), 8 M urea, 75 mM NaCl, protease 

inhibitor cocktail (COMPLETE, Roche Applied Science, Indianapolis, Indiana, USA) 

and phosphatase inhibitor cocktail (PHOSTOP, Roche Applied Science). Proteins 

were reduced by adding dithiothreitol (final concentration 10 mM) to the sample 

solution at 33 ºC for 1 hr, and then alkylated by adding 55 mM iodoacetamide to a 

final concentration of 55 mM and incubating the samples at room temperature for 30 

min, before diluting 8-fold with 50 mM HEPES (pH 7.5) and digestion with trypsin in 

a 1:100 (trypsin/protein) mass ratio. Peptide samples were desalted using SEP-PAK 
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C18 cartridges (Waters Corporation, Milford, Massachusetts, USA) and vacuum-dried 

prior to phosphopeptide enrichment. 

 

ERLIC fractionation 

 

Peptide digests was fractionated using ERLIC chromatography. Mobile phase was a 

gradient mixture of Buffer A (85% acetonitrile, 1% formic acid, 10 mM ammonium 

acetate) and Buffer B (30% acetonitrile, 0.1% formic acid). Digests were reconstituted 

in Buffer A and loaded into a PolyWAX LP™ column (4.6 × 200 mm, 5-μm particle 

size, 300-Å pore size; PolyLC, Columbia, Maryland, USA) on a Prominence™ HPLC 

unit (Shimadzu, Kyoto, Japan). The sample was fractionated using a gradient of 100% 

buffer A for 5 min, 0–30% buffer B for 25 min, 30–100% buffer B for 2 min, and 

finally 100% buffer B for 8 min at a constant flow rate of 1 ml/min for a total of 40 

min. Finally the column was washed with 10 ml of 200 mM triethylamine phosphate 

(TEAP) with 60% acetonitrile, pH 2.0 to elute all peptides. The eluted fractions were 

monitored via a UV detector at 280 nm. Fractions were collected at 1-min intervals 

and vacuum dried.  

 

Phosphoproteomic data set 

 

Phosphopeptides were enriched using ERLIC [52] and SCX-IMAC as described [53]. 

Data published earlier [134] were re-analyzed in this study.  

 

Rat liver data sets 
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Rat liver proteome data sets are described previously [157, 158]. Briefly, proteins 

from male Sprague Dawley rats (230-250g) were digested in solution, prior to LC-

MS/MS analysis in LTQ FT Ultra. A total of 1068 MS analysis were included. 

 

LC-MS/MS analysis 

 

Each dried peptide fraction was reconstituted in 0.1% formic acid and analyzed at 

least twice using an LTQ-FT Ultra mass spectrometer (Thermo Fisher Scientific, Inc., 

Waltham, Massachusetts, USA) coupled with a ProminenceTM HPLC unit 

(Shimadzu), as described previously [159, 160] with some modifications. Briefly, the 

peptide samples were injected from an auto-sampler (Shimadzu) and concentrated in a 

Zorbax peptide trap (Agilent, Palo Alto, California, USA), and then resolved in a 

capillary column (200 μm ID x 10 cm) packed with C18 AQ (5-μm particle size, 100-

Å pore size; Michrom BioResources, Auburn, California, USA). Mobile phase buffer 

A (0.1% formic acid in H2O) and buffer B (0.1% formic acid in acetonitrile) were 

used to establish the 90 min gradient, which began with a ramp from 5-30% B over 66 

min, followed by 10 min of 50% B and a ramp from 50%-80% B over 4 min. The 

gradient was maintained at 80% B for 2 min before re-equilibrating the column at 5% 

B for 8 min. HPLC was operated at a constant flow rate of 20 μL/min and a splitter 

was used to create a flow rate of approximately 300 nL/min at the electrospray emitter 

(Michrom BioResources). Samples were ionized in an ADVANCE™ CaptiveSpray™ 

Source (Michrom BioResources) with an electrospray potential of 1.5 kV. The gas 

flow was set at 2, ion transfer tube temperature at 180 ºC and collision gas pressure at 

0.85 mTorr. The LTQ-FT Ultra was set to perform data acquisition in the positive ion 

mode. A full MS scan (350-1600 m/z range) was acquired in the FT-ICR cell at a 
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resolution of 100,000 and a maximum ion accumulation time of 1000 msec. The AGC 

target for FT was set at 1e+06 and precursor ion charge state screening was activated. 

The linear ion trap was used to collect peptides and measure peptide fragments 

generated by collisionally activated dissociation (CAD). The default AGC setting was 

used (full MS target at 3.0e+04, MSn 1e+04) in the linear ion trap. The 10 most 

intense ions above a 500-count threshold were selected for fragmentation by CAD 

(MS2), which was performed concurrently with a 1 maximum ion accumulation time 

of 200 msec. Dynamic exclusion was activated for this process, with a repeat count of 

1, exclusion duration of 20 s and ±5 ppm mass tolerance. For CAD, the activation Q 

was set at 0.25; isolation width (m/z) 2.0; activation time 30 ms; and normalized 

collision energy at 35%.  

 

Database search 

 

The MS raw files were converted to mzXML format and mgf format using Trans-

Proteome Pipeline [161]. Protein database search was performed by uploading mgf 

files to an in-house Mascot cluster server (version 2.2.07) (Matrix Science, Boston, 

MA) against a concatenated target and decoy version of manually annotated non-

redundant UniProt Knowledgebase protein sequence database (40516 sequences, 

downloaded on 8 October 2010). The search was limited to a maximum of 2 missed 

trypsin cleavages; #13C of 2; mass tolerance of 20 ppm for peptide precursors; and 

0.8 Da mass tolerance for fragment ions. Fixed modification at cysteine was set to 

methylthio for iTRAQ data sets, and carbamidomethyl for non-iTRAQ data sets. For 

all data sets, oxidation of methionine, mono- and di-methylation at lysine and 

arginine, as well as trimethylation at lysine were included as variable modifications. 
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For iTRAQ data sets, variable modifications also included iTRAQ labeling at N-

terminal residues, lysine and tyrosine. Phosphorylation at serine, threonine and 

tyrosine was included as variable modifications for phosphoproteomic data sets. In 

heavy methyl SILAC experiments, variable modifications for these data sets included 

oxidation at light and heavy methionine (OxiM, +15.994915 Da; OxiM4, 

+20.017100), light and heavy monomethylation at lysine or arginine (methyl1kr, + 

14.015650 Da; methyl1krH, + 18.037835 Da), light and heavy dimethylation at lysine 

or arginine (methyl2kr, + 28.031300 Da; methyl2krH, + 36.075670 Da), light and 

heavy trimethylation at lysine (methyl3k, + 42.046950 Da; methyl3kH, + 54.113505 

Da), as well as heavy methionine (metH, + 4.022185 Da). For all searches, false 

discovery rate (FDR) was set below 1%. In heavy methyl SILAC experiments, only 

peptides with either light or heavy methylation were included for subsequent analysis. 

SILAC pairs were matched from the raw data, and signal intensities were measured 

for each light and heavy peak. SILAC pairs with peak intensity ratios between 0.70 ~ 

1.43 were empirically considered as valid light and heavy methyl SILAC pairs. 
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Results 

 

Experimental design 

 

Similar to other PTMs, methylated proteins/peptides are of low abundance in the 

proteome. But unlike phosphopeptides that can be enriched using various methods, 

enrichment of methylated peptides is challenging [57]. Proteomic methods based on 

immunoprecipitation of methylated proteins have identified only a limited number of 

methylation sites and methylated proteins [71, 73].  

 

In this study (Figure 3.1), we reasoned that methylated proteins/peptides could be 

identified with confidence after extensive fractionation of the proteome using 

complementary proteomic approaches. The search space for methyl proteome is 

extremely large in that methylation occurs to multiple residues and in different 

degrees (i.e. monomethylation, dimethylation and trimethylation) [73]. Therefore, the 

chance of false positive and degree of ambiguity are large [74]. Although methylation 

occurs at multiple amino acids, here we focused on methylation at arginines and 

lysines which are of critical biological significance [62]. Through manual check of 

spectra, we found identifications with estimated FDR <1% by Mascot search against 

target-decoy databases still contains peptide-sequence matches that are unlikely 

correct and unambiguous. So, the identified methylation sites from large spectral data 

sets were not considered to be confident unless they met stringent criteria through 

manual check of all the spectra: a) Mowse score for the peptide identification is 

higher than identity score or homolog score; b) the peptide is identified from at least 2 

MS/MS spectra; c) the assignment of post-translational modification sites is 

unambiguous; d) the majority of the strongest peaks of the spectra could be explained 
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by their corresponding peptide sequences; e) Noisy and weak spectra are removed. 

Even higher confidence of identification could be achieved by validating methylated 

peptides using heavy methyl SILAC [73]. 

 

Proteomic analysis of SNU5 cells

(426 MS runs)

Database search for methylated peptides

2356 methylated sites 

(1650 from K and 706 from R)

827 methylated proteins

Heavy methyl SILAC proteomic analysis

(50 MS runs)

Criteria for selecting methylated peptides:

•False Discovery Rate <1%

•Mowse score higher than 

identify or homolog score

•At least two MS/MS spectra

•Unambiguous assignment of methylation sites

•Manual check of MS/MS spectra

550 unique methylation sites

(367 from K and 183 from R)

283 methylated proteins

Database search for methylated peptides

Criteria for selecting methylated peptides:

•False Discovery Rate <1%

•Mowse score higher than identify or homolog score

•SILAC pairs with peak intensity ratios between 0.70 ~ 1.43

2776 methylation sites 
(1927 from K and 849 from R)

938 methylated proteins  

130 methylation sites 
(90 from K and 40 from R)

84 methylated proteins

 

Figuer 3.1 Workflow for methyl proteome. Methylated proteins were identified from an integrated 

analysis of 426 MS analysis of proteins from a gastric cancer cell SNU5. Heavy methyl SILAC 

experiment was used to add confidence to methylated proteins. Stringent criteria were used to ensure 

data quality. 

 

 

Methylated proteins in gastric cancer 

 

In order to identify methylated proteins in gastric cancer cells, we re-analyzed our 

mass spectral data sets acquired for a human gastric cancer cell line, SNU5. 

Subproteomes of SNU5 cells comprising nucleus proteome, membrane proteome, and 

mitochondrial proteome, were included. The collection also included gastric cancer 

phosphoproteome data sets. Phosphopeptides from SNU5 digests were enriched using 

two complementary phosphopeptides enrichment methods, i.e. SCX-IMAC and 
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ERLIC [52, 53]. Also included in this study were iTRAQ-labeled SNU5 proteomic 

data sets analyzed using pulsed-Q dissociation (PQD) and collisionally activated 

dissociation (CAD) [159]. All samples were analyzed in LTQ FT ultra. Together, this 

study is comprised of 426 raw files, representing a comprehensive investigation of 

SNU5 cell proteome. 

 

We found methylation that was not rare in human gastric cancer cells. At a false 

discovery rate <1% level, 36253 methylated peptides were identified with high 

confidence. To ensure even better data quality, we performed manual check of the 

best MS/MS spectra for each unique peptides. A total of 1698 unique methylated 

peptides from 827 proteins satisfied the stringent criteria as described previously. In 

total, 2356 methylated sites (1650 from K and 706 from R) were uncovered.  

 

To further add confidence to identification of methylated peptides by MS, we 

performed in vivo heavy methyl SILAC experiment as described by Ong, et al [73]. 

SNU5 cells were cultured in medium containing either light or heavy methionine, and 

digested, prior to separation into 25 fractions with ERLIC. Replicate samples were 

analyzed in LTQ FT Ultra. A total of 550 unique methylation sites were confidently 

confirmed from 1232 peptides in 283 proteins. We compared this list with the 

previous data set generated from 426 various MS analyses of the same cell and found 

130 unique methylation sites that were identified from both data sets. All together, 

2776 methylation sites from 938 proteins were identified from SNU5 gastric cancer 

cells.  
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In Uniprot database, monomethylation and dimethylation at R493 in polyadenylate-

binding protein 1 (PABP1), an mRNA-binding protein involved in protein translation 

iniation, are documented. In our proteomic data sets, two high quality spectra were 

recorded (Figure 3.2). Consistently, heavy methyl SILAC experiments also identified 

methylation at this site. Characteristic isotopic peak pairs are displayed in Figure 3.2. 

The upper spectra also provide evidence for a novel methylation site, i.e. 

monomethylated R506. 

 

iVANTSTQToMGPxRPAAAAAAATPAVxR

R493x,R506x

VANTSTQTMGPyRPAAAAAAATPAVR

R493y

P11940, PABP1_HUMAN Polyadenylate-binding protein 1 

 
 
Figure 3.2. Methylation sites in protein PABP1. Methylation sites identified from protein PABP1 by 

proteomic and SILAC analysis. Monomethylation and dimethylation of arginine 493 are annotated in 

Uniprot database. Two representative spectra for these two sites from proteomic profiling are annotated 

here. Characteristic SILAC peak pairs for these two methylation sites are shown in the inserts. One 

novel methylation site at arginine 506 was identified, too. Lowercase letters in peptide sequence 

represent post-translational modifications: i,iTRAQ; o, oxidation; p, phosphorylation; x, 

monomehtylation; y, dimethylation. 
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Several technical limitations of MS-based methyl proteome analysis may account for 

methylation sites that were identified only in non-SILAC experiments. First, not all 

peptides are methylated from AdoMet as the methyl donor. Therefore these 

methylated peptides will not be labeled as heavy in the SILAC experiment. Second, 

SILAC pairs of some low abundance methylated peptide may not be obviously visible 

and detectable in the presence of strong peaks. Third, in vitro methylation may occur 

during protein sample preparation for MS analysis, as reported previously [74]. 

Fourth, endogenous amino acid substitution could result in an unusual peptide that 

shares the same mass with a methylated peptide [73]. Fifth, acetylation may be 

detected as trimethylation because their mass differences are very close [73]. 
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iGITIDISLWzKFETSiK

iMDSTEPPYSQyKR

xKLEDGPKFLiK

iMDSTEPPYSQxKxR VETGVLyKPGoMVVTFAPVNVTTEVK

VETGVLzKPGMVVTFAPVNVTTEVKGITIDISLWKFETSzK

Q5VTE0, EF1A3_HUMAN Putative elongation factor 1-alpha-like 3

K55y

K79z

iGSFyKYAWVLDiK

K84z

K165y

VETGVLxKPGoMVVTFAPVNVTTEVK

K273x

K386x

K165x,R166x
K273y

K273z

 
 

Figure 3.3. Methylation sites in protein EF1A. Methylation sites identified from protein EF1A by 

proteomic and SILAC analysis. Methylation sites labeled in red are annotated in UniProt database. 

Characteristic SILAC peaks are shown where available. Lowercase letters in peptide sequence 

represent post-translational modifications: i,iTRAQ; o, oxidation; p, phosphorylation; x, 

monomehtylation; y, dimethylation; z, trimethylation. 
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Figure 3.4. Numbers of methylation sites on lysine and arginine identified in SNU5 gastric cancer 

cells. Methylation sites on lysines and arginines were counted and compared to UniProt database. Only 

unique methylation sites were taken into account. 

 

 

 

Comparison of our data set to UniProt Knowledgebase 

 

To date, very few methylated proteins have been identified in the literature. 

Methylated arginines are more extensively studied, whereas lysine methylation is 

mainly focused on histone [62]. In this study, 2776 methylation sites were confidently 

identified from both proteome profiling and SILAC experiments. As shown in Figure 

3.4, around 70% methylation occurs at lysine, indicating that lysines are even more 

likely to be methylated than arginines. The monomethylation is more likely to happen 

at lysines, whereas arginines are slightly more frequently dimethylated compared to 

those are monomethylated, in consistence with literature [56, 162]. Dimethylated 

arginine are divided into two types, i.e. asymmetric di-methylarginine and symmetric 
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dimethylated arginine [162]. However, MS-based approach does not tell the 

difference since their masses are the same. 

 

We reviewed the UniProt Knowledgebase for annotated methylation sites. Only 334 

unique methylation sites from 102 proteins were recorded as of 3 July, 2011. These 

methylation sites were almost equally distributed between arginines and lysines. Less 

than 1% of our identified methylation sites were annotated in the UniProt database. 

This is not surprising considering the small number of annotated methylated proteins 

in UniProt. Our data set thus greatly expanded the inventory and knowledge of 

methylated proteins (Figure 3.4). 

 

Protein domain analysis 

 

Arginine methylated is catalyzed by a series of protein arginine methyltransferases 

(PRMTs). The exact number of PRMTs, as well as their functions, is still uncertain 

[56]. Much less is known about lysine methyltransferases. Proteins containing the 

SET (suppressor of variegation, enhancer of zeste and trithorax) domain catalyzes 

lysine methylation [65]. Protein methyltransferases demonstrate specificity for amino 

acid sequences and the tertiary structure of protein substrates [62]. By analyzing the 

protein domains of methylated proteins, we sought to identify the enriched protein 

motifs that were frequently recognized by methyltransferases. Results of protein 

domain analysis of the 938 methylated proteins using Database for Annotation, 

Visualization and Integrated Discovery (DAVID, v6.7) are shown in Table 3.1. Our 

results showed domains involved in domain terms “RNA recognition”, “nucleotide-

binding”, “DNA/RNA helicase” and “histone core” were highly represented in 

methylated proteins, in consistent with the fact that transcription is known to be 
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tightly regulated by protein methylation [63]. Our results also suggested potential 

roles of methylated proteins in the cytoskeleton since several protein domains were 

associated with “filament” and “actin binding”. To our knowledge, this has not been 

reported previously. Interestingly, we found NAD(P)-binding domain to be highly 

enriched in our methyl proteome, suggesting that methylated proteins may be 

extensively involved in regulating metabolism.  

  

Table 3.1. Protein domain analysis of methylated proteins.  Gene symbols of 938 methylated 

proteins were uploaded to DAVID for protein domain analysis. INTERPRO database annotated >95% 

of our queries. Homo sapiens was set as background. Protein domains harbored by at least 20 gene 

products with significance <10
-6  

are shown. 

 
INTERPRO 

terms 

Protein domain Count % P value 

IPR000504 RNA recognition motif, RNP-1 50 5.48 2.87E-19 

IPR012677 Nucleotide-binding, alpha-beta 

plait 

50 5.48 4.37E-19 

IPR018039 Intermediate filament protein, 

conserved site 

29 3.18 5.99E-18 

IPR016044 Filament 29 3.18 5.99E-18 

IPR001664 Intermediate filament protein 27 2.96 1.24E-15 

IPR001715 Calponin-like actin-binding 21 2.30 2.38E-10 

IPR016040 NAD(P)-binding domain 26 2.85 2.31E-07 

IPR012335 Thioredoxin fold 20 2.19 9.73E-07 

 

 

 

 

 

Motif analysis of gastric cancer methyl proteome 

 

To gain functional insights into the methylated peptide sequences, we first employed 

Motif-X to analyze the 13-mer amino acid sequences centered on each methylated 

residue [135]. Of 2776 methylation sites, 1927 (69%) were at lysines (K), whereas 

849 (31%) were at arginines (R). More motifs were matched from K-methylated 

peptides than those from R-methylated peptides (Figure 3.5). Our data show protein 

methylation is prone to occur in a motif containing charged residues, including 
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aspartic acid (D), glutamic acid (E), K and R. Lysines and arginines close to 

methionines are frequently methylated. Lysines close to the N-terminal of proteins 

were likely to be methylated, too, probably because most proteins begin with an N-

terminal methionine. Amino acids with hydrophilic side chains such as alanine (A), 

isoleucine (I), leucine (L), tyrosine (Y) and valine (V), might also influence protein 

methylation. Glutamic acid appeared frequently in methylated peptides, in consistence 

with the literature which report that glycine and arginine-rich (GAR) motifs are often 

targets of protein arginine methyltransferases (PRMTs) [68, 69]. Our results showed 

lysine-methylated proteins were preferentially flanked by glycines, too. 

 

Methyl proteome has not been investigated previously in large scale. We asked the 

question whether the motifs we found from human gastric cancer cell SNU5 are also 

found in other data sets. To this end, a methyl proteomic investigation of a different 

organism, Rattus rattus, was profiled for motif analysis. A total of 1068 MS analyses 

of rat liver were pooled for database search of methylated proteins. Majority of these 

rat liver samples were fractionated with ERLIC [157, 158]. At FDR<1%, 1605 

methylated sites were identified from rat liver. Motifs identified from methylated 

proteins from rat liver are shown in Figure 3.5, bordered with blue. Interestingly, 

despite a small number of motifs were unique for human gastric cancer and rat liver, 

the majority of these methyl motifs were similar. The methyl motifs could be 

classified into several groups: a) motifs containing residues with charged side chain, 

b) motifs containing N-terminal methionine, c) motifs containing residues with 

hydrophilic side chain, and d) motifs containing glycine. The repeated motifs present 

in both human gastric cancer and rat liver methyl proteomes add confidence to our 

data sets, and indicate the motifs we identified might be evolutionarily conserved.  
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Figure 3.5. Sequence analysis of gastric cancer and rat liver methylproteome. Motif analysis of 

lists of 13-mer peptide sequences pre-aligned at the methylated lysine and arginine were performed 

using Motif-X software. Significance cutoff was set to 0.001, and minimum occurrence was 10. Letter 

„X‟ indicates absence of amino acid. K and R in the center of each motif are methylated. IPI human or 

rat proteome was set as background to statistical inference. Motifs with red border are for human 

gastric cancer methyl proteome, whereas blue borders indicated motifs from rat liver methyl proteome. 

 

 

 

 

Analysis of amino acid composition of gastric cancer methyl proteome 

 

To further understand the frequency of each amino acid in methylated peptides, the 

number of each amino acid in the gastric cancer 13-mer peptide sequences were 

counted. The frequency of each amino acid was subsequently normalized with its 

frequency in whole human proteome (Figure 3.6a). Glycine is the most commonly 

appeared amino acid in R-methylated peptides, except R itself, consistent with 
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previous discovery of GAR motif [68, 69]. Interestingly, methionine is the second 

most frequent residue appeared in R-methylated peptides, and the most frequent 

residue in K-methylated peptides, except K itself. The analysis reinforces the 

observation that lysines and arginines are likely to be methylated if there is a nearby 

methionine.  

 

Next we investigated the co-existence of every two amino acids in methylated peptide 

sequences. A matrix of combinations of two amino acids was generated from peptide 

sequences containing 13 amino acids centered on methylated K and R was used in this 

analysis. Each data point was normalized against the total number of peptide 

sequences (Figure 3.6b). Lysines in K-methylated peptides appeared to be prone to 

co-exist with multiple residues including A, D, E, G, I, K, L, P, S and V. Top four 

amino acids that co-exist with arginines in R-methylated peptides comprise L, E, A 

and G.  

 

The co-existence analysis of methylated peptides was then normalized to a 

background of whole human proteome. The co-existence matrix of K-methylated 

peptides markedly changed (Figure 3.6c). Although the co-existence patterns of K- 

and R- methylated peptides in Figure 3.6b are dissimilar from each other, their pattern 

in Figure 3.6c are strikingly similar. For both K- and R- methylated peptides, 

methionine became the most dominant amino acid in the matrix. Two methionines are 

the most likely co-existed residues in methylated peptides after subtracting the 

background. Methylated peptides are also featured with co-existence of methionine 

with alanine, aspartic acid and glycine. This analysis is in good agreement with our 
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analysis in Figure 3.6a, and reinforces the finding that a nearby methionine may 

enhance the chance that a peptide is methylated at lysines. 

 

 

a

b

c

 
 

Figure 3.6. Amino acid composition analysis of gastric cancer methyl proteome. Normalized 

occurrence for each amino acid in the lists of 13-mer peptide sequences of methylated peptides is 

shown. Occurrence of each amino acid in the human Swissprot protein database was used for 

normalization. (b) Normalized co-existence matrix for each two amino acid combinations in K-

methylated peptides (left panel) and R-methylated peptides (right panel). Color keys and histograms (in 

cyan) representing distribution of data points are shown below each matrix. (c) Data points from (b) 

were compared to normalized co-existence matrix generated from whole human proteome, and 

percentages of fold-change of methylated peptides against the whole human proteome are displayed. 

The left and right panel are the heatmaps for K-methylated and R-methylated peptides, respectively. 

 

 

 

 

 

 

 

Methylated proteins in cancer metabolism 
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Consistent with the results of our protein domain analysis, pathway analysis using 

DAVID and KEGG databases showed glycolysis and citric acid cycle to be 

significantly processes enriched in the methyl proteome. We checked our methyl 

proteome and strikingly found that almost every key enzyme involved in glycolysis, 

citric acid cycle and oxidative phosphorylation to be methylated (Figure 3.7). Most of 

these methylation sites are novel, i.e. have not been reported previously. Several 

methylation sites were not only supported by high quality MS/MS spectra, but also 

evidenced with characteristic SILAC pairs (proteins accompanied with blue stars in 

Figure 3.7). 
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Figure 3.7. Methylated proteins involved in metabolism. This cartoon depicts metabolic processes 

including glycolysis, citric acid cycle and oxidative phosphorylation. Methylated proteins involved in 

these processes are shown in red ellipse, whereas proteins in grey ellipses, whereas proteins in grey 

ellipses were not detected as methylated. Proteins labeled with a blue star were characterized with 

SILAC pairs in heavy SILAC experiments. GPI, glucose-6-phosphate isomerase; PFKP, 6-

phosphofructokinase; ALDO, aldolase; TPI1, triosephosphate isomerase 1; GAPDH, glyceraldehyde-3-

phosphate dehydrogenase; PGK, phosphoglycerate kinase; PGAM, phosphoglycerate mutase; ENO, 

enolase; LDH, lactate dehydrogenase; PK, Pyruvate kinase; COX, cytochrome c oxidase; CYC, 

cytochrome c; SDH, succinate dehydrogenase; NDUF, NADH dehydrogenase (ubiquinone); VDAC, 

voltage-dependent anion channel ; HK, hexokinase; ANT, adenine nucleotide translocator; FH, 

fumarate hydratase; MDH, malate dehydrogenase; PC, pyruvate carboxylase; PDH, pyruvate 

dehydrogenase; CS, citric synthase; ACO, acyl-CoA oxidase; IDH, isocitrate dehydrogenase; OGDH, 

oxoglutarate dehydrogenase; SUCL, succinate-CoA ligase. 
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Discussion 

 

A robust system like a cellular biological system relies on responses to various 

endogenous and exogenous inputs. In cells, rapid responses (within seconds) mediated 

by protein phosphorylation have been extensively studied. Much less attention has 

been directed to responses mediated by another class of protein modification i.e. 

methylation, which is relatively more stable than phosphorylation.  

 

Critical roles of protein methylation in multiple biological processes have been 

extensively elaborated in a few proteins such as histones. However, the breadth and 

depth of protein methylation is currently uncertain. In sharp contrast to thousands of 

phosphorylation sites documented in the literature, merely 334 unique methylation 

sites from 102 proteins were recorded in the UniProt database as of July 2011. 

 

We have overcome the technical obstacles that have dogged mass spectrometry of 

methylated proteins on a large scale by extensively resolving the whole proteome into 

its components by means of subcellular organelle fractionation and multidimensional 

chromatography using both ERLIC and SCX. Thousands of methylated peptides were 

identified from re-analysis of published data sets where no enrichment of methylated 

proteins or peptides had been performed. Although the number of methylated peptides 

was not large from single MS analysis, the combination of more than 400 MS 

analyses resulted in unique K and R methylation sites from a gastric cancer cell line 

SNU5 in excess of 3000. Confidence of identification of some methylated peptides 

was further increased by experimental validation using heavy methyl SILAC in the 

same cells.  
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Although a very limited repertoire of methylated proteins has been developed over the 

past several decades, investigators have speculated that many more methylated 

proteins remain to be identified. Our data are the first to provide experimental 

evidence that protein methylation is not rare in cancer cells. Over 1700 proteins were 

found to be putatively methylated in our data sets. Less than 1% of these methylation 

sites are annotated in UniProt protein knowledgebase. Therefore this study provides 

an unprecedented rich reservoir for functional studies of protein methylation. 

 

For the first time, large scale analysis of methylation allows sequence analysis of 

methylated proteins. A few motifs were significantly enriched in methylated proteins 

(Figure 3.3). Lysines and arginines that are close to methionines were frequently 

methylated. This has not been reported in literature. The underlying reason is 

unknown. Our data suggested cryptic roles of methionine in the biology of protein 

methylation which awaits further investigation. 

 

In good agreement with the literature, we found that methylated proteins tend to 

contain protein domains that interact with nucleic acids. It may be speculated that 

nucleic acid turnover produces a rich pool of adenosines that could potentially 

produce AdoMet in the presence of methionine.  

 

While involvement of methylated proteins in transcription, mRNA splicing and DNA 

repair have been reported [56, 62, 65], our data revealed an unexpected and intriguing 

association of the methyl proteome; namely the striking and extensive methylation of 

enzymes involved in metabolism. The different metabolism between cancer and 

normal cells was observed by Otto Warburg, and is known as the “Warburg effect” 

[163, 164]. Normal cells rely primarily on mitochondrial oxidative phosphorylation to 

generate ATP. In contrast, cancer cells tend to rely on aerobic glycolysis. The basis 
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for this phenomenon is not fully understood yet. In our study, we found almost all key 

enzymes which catalyze the processes of glycolysis, citric acid cycle and oxidative 

phosphorylation to be methylated. The majority have multiple putative methylation 

sites, suggesting tight regulation by methyltransferases. We speculate that methylation 

marks on these enzymes may have modulated their functions such that energy 

production was directed preferentially to glycolysis instead of mitochondrial oxidative 

phosphorylation. 
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Conclusion 

 

This study presents a workflow for large-scale analysis of protein methylation. 

Extensive fractionation of the whole proteome resulted better coverage of the methyl 

proteome than immunopurification of methylated peptides/proteins. We catalogued 

the most comprehensive inventory of protein methylation in a gastric cancer cell line, 

SNU5. Sequence analysis of methylated proteins showed that lysine and arginine 

residues with a neighboring methionine residue are frequently methylated. Strikingly, 

we found that almost all enzymes involved in glycolysis, citric acid cycle and 

oxidative phosphorylation were methylated. 
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Chapter 4. An Integrative Membrane Proteome and 

Transcriptome Approach Defines the Surface Phenotype of 

Gastric Cancer Cells 
 

Abstract 

 

Cell surface proteins are a rich reservoir for diagnostic and therapeutic biomarker 

discovery; however, little is known about the cell surface proteome of gastric cancer, 

the fourth most common cancer and the second most lethal cancer
 
globally. We 

present here a strategy for investigating the gastric cancer cell surface proteins by 

integrated bioinformatic analysis of  membrane proteomic and transcriptomic data 

sets . Our data revealed wide but diverse expression of CD molecules by gastric 

cancer cells. A few receptor tyrosine kinases (RTKs) were highly expressed. 

Bioinformatic analysis highlighted a shortlist of proteins of potential pathobiological 

significance in gastric cancer. Flow cytometry analysis confirmed expression of 

selected surface proteins. Furthermore, immunohistochemical analysis of 49 pairs of 

gastric cancer tissues and their matched normal tissues in a tissue microarray format 

suggested that gastric cancer could be stratified by expression patterns of selected 

surface markers. Our data collectively define the gastric cancer surface phenotype for 

the first time. Integrative analysis of membrane proteomics and transcriptomics could 

be extended to mine cell surface biomarkers for other cancers. 
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 Materials and Methods 

 

Membrane protein enrichment and digestion 

 

Each of six GC cells, i.e. SNU5, IM95, AGS, MKN7, KatoIII and SNU1 was lysed 

using HES buffer (20 mM HEPES, pH7.4, 1 mM EDTA, 250 mM sucrose) 

supplemented with protease inhibitors as described previously [131]. Cell lysates 

were diluted with 0.1 M Na2CO3, pH 11 and incubated at 4ºC with gentle rotation for 

1 hour [155]. The suspension was centrifuged for 45 min at 250000 ×g and 4 ºC. The 

resulting membrane pellet was washed twice with Milli-Q water and centrifuged for 

30 min at 250000 ×g. The washed pellet was dissolved in 2 % SDS. About 0.5 mg of 

membrane protein was resolved in SDS-PAGE. Each sample lane was cut into 15 

bands, and proteins in each band were digested using trypsin, prior to LC-MS/MS 

analysis. 

 

LC/MS/MS analysis 

 

Membrane protein digests from each cell line were analyzed in an LTQ-FT Ultra 

mass spectrometer (Thermo Fisher, Waltham, Massachusetts, USA) coupled to a 

Prominence
TM

 HPLC unit (Shimadzu, Kyoto, Japan), as described previously [131]. 

Briefly, peptide samples were injected from an auto-sampler (Shimadzu) and 

concentrated in a Zorbax peptide trap (Agilent Technologies, Santa Clara, California, 

USA), and subsequently resolved in a capillary column (200 μm ID x 10 cm) packed 

with C18 AQ (5-μm particle size, 100-Å pore size, Michrom BioResources, Auburn, 

California, USA). The samples were ionized in an ADVANCE™ CaptiveSpray™ 
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Source (Michrom BioResources) with an electrospray potential of 1.5 kV. The LTQ-

FT Ultra was set to perform data acquisition in the positive ion mode. The 10 most 

intense ions above a 500 count threshold were selected for fragmentation. 

 

Protein identification by MS 

 

The MS raw files were converted to mzXML format and mgf format using Trans-

Proteome Pipeline. Protein database search was performed by uploading mgf files to 

an in-house Mascot cluster server (version 2.2.07) (Matrix Science, Boston, MA) 

against a concatenated target and decoy version of manually annotated non-redundant 

UniProt Knowledgebase protein sequence database (40516 sequences, downloaded on 

8 October 2010). The search was limited to a maximum of 2 missed trypsin 

cleavages; #
13

C of 2; mass tolerance of 20 ppm for peptide precursors; and 0.8 Da 

mass tolerance for fragment ions. Fixed modification was carbamidomethyl at Cys 

residues, while variable modification was oxidation at methionine residues. 

PeptideProphet [165] and ProteinProphet [166] from Trans-Proteome Pipeline (TPP) 

were employed to estimate false discovery rates at both peptide and protein levels. 

Only protein groups with a probability above 0.9 were considered as identifications. 

False discovery rate of protein identification was estimated at below 1% by receiver 

operating characteristic curves for each cell line. Membrane proteins were defined 

according to Gene Ontology annotation [167] and transmembrane topology using 

TMHMM (version 2.0) [168]. Relative abundance of proteins identified in GC cell 

lines was estimated by normalized spectral index (SIN) as reported [169].  

 

Subcellular classification 
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Term associations for each protein-encoding gene symbol were retrieved from Gene 

Ontology Homo sapiens annotation database updated on 30 January 2010. Membrane 

proteins were grouped according to annotations associated with membrane, plasma 

membrane, endoplasmic reticulum membrane, mitochondrial membrane, Golgi 

apparatus membrane, nuclear membrane, lysosomal membrane, endosome membrane, 

peroxisomal membrane, peroxisomal membrane and other membranes. 

 

Gene expression analysis 

 

Transcriptome data sets were described in Chapter 2.  

 

Flow cytometry analysis 

 

Fluorescence-conjugated antibodies against extracellular domains of CD molecules, 

CD13-PE, CD14-FITC, CD15-FITC, CD49e-PE, CD326-PE, CD44-APC, CD9-

FITC, CD38-PE-cy5, CD59-FITC, and CD55-PE, were obtained from BD 

Biosciences (Franklin Lakes, New Jersey, USA). Mouse IgG1-FITC and IgG2a-PE 

were isotype controls. Antibodies were incubated with GC cells (cell density 

5~10×10
5
/ml) for 0.5 hour at 4ºC before analysis in a flow cytometer (FACSCalibur, 

BD Biosciences). 

 

Immunostaining of tissue microarrays 
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Two or three 0.6 mm diameter disks were cored from tumor-rich paraffin blocks of 

each of 49 gastric adenocarcinomas (Beecher Instruments, Wisconsin, USA) and from 

adjacent histologically normal gastric epithelium, and arrayed on standard glass 

microscope sides. Use of archived tissues from the Pathology Department, Singapore 

General Hospital was approved by the SingHealth Institutional Review Board.  

 

Histological evaluation and assignment of Lauren histotypes were reviewed by KHL 

and WKW. Immunostaining was performed using the basic IHC Kit with Antibody 

Amplifier™ (ProHisto, South Carolina, USA), EnVision Detection, Peroxidase/DAB, 

Rabbit/Mouse System (Dako, Denmark) and the following primary antibodies: anti-

MET (C-12; sc-10; 1 µg/ml); anti-FGFR2 (ab58201; 0.2 µg/ml; Abcam, Cambridge, 

UK); anti-FGFR4 (sc-124; 0.2 µg/ml); anti-EPHA3 (ab5386; 1.25 µg/ml; Abcam); 

anti-EPHB2 (ab5418; 5 µg/ml; Abcam) and anti-ITGB4 (sc-9090; 0.6 µg/ml). Except 

where stated, all antibodies were from Santa Cruz Biotechnology, CA, USA. The 

recommended tissue for each antibody was stained as a positive control.  

 

All stained tissue microarrays were scored independently by two pathologists. Each 

tumor and its adjacent normal epithelium were scored by the product of staining 

intensity and percentage of positively-stained cancer or normal epithelial cells. 

Staining intensity was scored on a scale of 0 – 3 (0 – no staining; 1 – weak; 2 – 

moderate and 3 – strong staining). The scores of each pair of cancer (T) and adjacent 

histologically normal (N) tissues were compared. T>N and T<N denote higher or 

lower staining, respectively, in GC compared to matched normal gastric epithelium. 

T=N denotes equal staining in tumor and matched normal tissues.  
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Statistical analyses 

 

Statistical tests were performed in R (version 2.13.0). Fisher's exact 2-tail test was 

performed using the function "fisher.test". The function "cor" was used to calculate 

correlation coefficients. 
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Results 

 

Gastric cancer membrane proteomes by LC-MS/MS 

 

Membrane proteomes of six gastric cancer cell lines derived from both primary (AGS, 

SNU1 and IM95) and metastastic (SNU5, Kato III and MKN7) carcinoma were 

systematically investigated. The confidence of protein identifications was ensured by 

matching MS spectra to manually annotated, non-redundant UniProt Knowledgebase 

protein sequence database using Mascot search engine, followed by PeptideProphet 

[165] and ProteinProphet [166] qualification. Membrane proteins were specified both 

by sequence prediction by TMHMM computation and Gene Ontology annotations. 

Both approaches identified a total of 1473 membrane proteins, of which 86 and 479 

membrane proteins were identified only by TMHMM and GO, respectively (Figure 

4.1a).  



114 

 

Primary

AGS SNU1 IM95 SNU5 KatoIII

Enrichment of membrane proteins

LC-MS/MS

Database search using Mascot against UniProt

PeptideProphet & ProteinProphet

Identification of membrane proteins

1473 membrane proteins 

479 908 86Gene Ontology TMHMM

Six gastric cancer cell lines

MKN7

Protein quantification by normalized spectral index

Subcellular
organelle

AGS IM95 Kato III MKN7 SNU1 SNU5
# total  

proteins
Plasma membrane 251 238 218 123 324 192 558
Endosome 24 17 21 12 29 22 53
Endoplasmic 
reticulum

135 138 113 76 161 95 235

Golgi 55 55 40 32 74 39 119
Lysosome 16 13 14 3 10 13 32
Mitochondrion 82 88 57 55 86 50 113
Nuclues 37 36 26 14 40 26 55
Peroxisome 10 11 8 7 14 10 20
Vesicles 7 7 5 2 11 5 14

a b

c

 
 
Figure 4.1 Gastric cancer membrane proteome characterized by MS-based proteomics. (a) 

Workflow of membrane proteome characterization. Cell lines from primary and metastatic gastric 

cancers were lysed before enrichment of membrane proteins and LC-MS/MS analysis. Database search 

results from Mascot were qualified by PeptideProphet and ProteinProphet, and quantified by 

normalized spectral index (SIN ). Membrane proteins were identified by Gene Ontology annotation and 

TMHMM prediction. (b) Summary of subcellular distribution of gastric cancer membrane proteins. (c) 

Distribution of predicted transmembrane helices in gastric cancer membrane proteins. 

 

 

 

A summary of membrane proteins identified from various subcellular organelles in 

gastric cancer cells is shown in Figure 4.1b. About 38% of membrane proteins were 

plasma membrane proteins. 

 

The robustness of our workflow was reflected not only by the large number of 

identified membrane proteins, but also by that fact that highly hydrophobic membrane 

proteins were identified. Over 51% of proteins were predicted to have multiple 

transmembrane helices (Figure 4.1c). Proteins with more than 20 transmembrane 
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helices, including PIEZO1 (Q92508) and voltage-dependent L-type calcium channel 

subunit alpha-1C (Q13936), were identified. 

 

A total of 78 CD molecules were widely expressed on the surface of gastric cancer 

cells, although only 6 were identified in all six cell lines, indicating molecular 

heterogeneity among GC cell lines. Expression of 16 RTKs was detected also, among 

which EPHA2 and EGFR were ubiquitously expressed in all six cell lines and ERBB2 

was expressed in 5 lines.  

 

Transcriptome analysis of membrane proteins  

 

We analyzed transcription levels of membrane proteins in a panel of 17 GC lines. Our 

previously published transcriptome data sets of six histologically benign gastric 

epithelial tissues from non-cancer subjects and 17 GC cell lines [170] were utilized in 

this analysis. Based on Gene Ontology, 4336 of 10307 annotated gene products were 

membrane proteins, including 336 CD molecules and 45 RTKs. Overexpressed genes 

were defined as those whose transcripts were ≥2-fold more abundant in GC cells  than 

in non-cancerous tissues, whereas underexpressed genes were defined as those with 

cancer-to-control mRNA ratios ≤0.5. We performed cumulative curve analysis for 

genes of both CD molecules and RTKs, as shown in Figure 4.2. Inspection of the 

cumulative curves of CD gene expression revealed an interesting difference; namely, 

that the height of the starting point of the cumulative curve of overexpressed CD 

genes was higher than that of underexpressed CD genes (135 versus 30). This 

indicated that overexpression was a less frequent abnormality than underexpression 

with respect to CD molecules in GC (Figure 4.2a). In our data set, 201 of 336 (60 %) 

CD genes were overexpressed in at least 1 cell line, whereas 306 CD genes (91 %) 
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were underexpressed in at least 1 line. Therefore, underexpression at the mRNA level 

was a more frequent event in GC cells. The cumulative incremental steps of 

underexpressed CD genes was gradual across the 17 cell lines, suggesting that 

underexpression of CD genes was  likely a random event. In contrast, only 29 of 201 

(14 %) CD genes were overexpressed in ≥10 cell lines, compared to 144 of 201 (72 

%) that were overexpressed in ≤5 lines, indicating that the majority of overexpressed 

CD genes were infrequent abnormalities. Strikingly, transcriptomic analysis of RTK 

genes (Figure 4.2b) displayed similar features as we observed for CD genes.  
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Figure 4.2. Cumulative curves of CD and RTK gene transcription in 17 GC lines. Cumulative 

numbers of overexpressed and underexpressed  CD genes (a) and RTK genes (b) in a panel of 17 GC 

lines are shown. 

 

 

 

GC cell surface proteins from integrated analysis of proteome and transcriptome data 

 

Expression levels of mRNA do not correspond with protein abundance in many cases 

due to post-transcriptional and post-translational modifications, and variable protein 

stabilities [171, 172]. We reasoned that aberrant genes would be more confidently 

identified by selecting those that had both abnormally high expression of mRNA and 
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the cognate proteins.  To this end, we extracted mRNA levels of 976 membrane 

proteins identified by LC-MS/MS from the transcriptome data sets. From this, we 

found 57 CD molecules and 16 RTKs thus characterized at both mRNA and protein 

levels. MS-detectable surface proteins, including CD molecules and RTKs, which 

were measured as transcriptionally overexpessed in six gastric cancer lines are shown 

in Figure 4.3 as proteins of potential pathological significance.  

 

Proteins whose corresponding mRNAs were underexpressed, such as EPHA3, 

EPHA4, EPHA7, DDR2, INSRR and CSF1R, were rarely identified by LC-MS/MS. 

PDGFRA was underexpressed in all GC lines, except SNU1 in which MS data 

identified 14 peptides for PDGFRA in SNU1, but none in the other five cell lines. 
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Figure 4.3. Bivariate map of aberrantly expressed cell surface proteins by integrative analysis of 

proteome and transcriptome data. Cell surface proteins identified by LC-MS/MS are shown with 

their mRNA expression for six gastric cancer lines. Spot size is proportional to logarithmic values of 

protein normalized spectral indices and colors indicate log2 ratios (cancer cells to benign gastric 

epithelium controls) of mRNA expression. Ratios >2 are shown in red, <0.5 in green. Ratios between 2 

- 0.5 are in black. 

 

 

 

Surface proteins on GC cells are organized in compact networks. Figure 4 shows 

bioinformatic analysis of GC surface protein networks based protein-protein 

interactions documented by Search Tool for the Retrieval of Interacting 

Genes/Proteins (STRING, version 8.3, string-db.org). The presence of these 
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extensively networked interactions point to detailed knowledge of molecular 

organizations as a critical step to understanding the pathobiology of GC. 

 



120 

 
 
Figure 4.4. Protein interaction networks of the surface proteomes of GC cells. CD molecules and 

RTKs expressed on six gastric cancer cells are shown as interactome maps. The node size of each 

protein is proportional to the logarithmic transformed values of protein abundance as measured by its 

normalized spectral index. Node color denotes expression of the cognate mRNA relative to benign 

gastric epithelium. The color gradient from green to dark green indicates log2 transformed mRNA 

ratios < -1, whereas the color gradient from dark red to red represents log2 transformed mRNA ratios > 

1. Ratios denoting expression levels less than ± 2-fold different from benign controls are in black. 

Interactions between proteins, as retrieved from STRING database, are shown in light blue dashed 

edges. 
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The sensitivity of our strategy was supported by re-identification of known 

biomarkers of established or potential pathological significance. Overexpression of 

CD340/ERBB2/HER2 has recently elicited great clinical interest as a therapeutic 

target in gastric cancer [91]. This protein was detected readily and its mRNA was 

overexpressed in four of the 6 GC cell lines investigated (Figure 4.3). MET, a 

candidate therapeutic target, was transcriptionally overexpressed in two cell lines. 

Most peptides from MET were identified in SNU5 cells, consistent with previous 

studies by us and others [103, 112, 170]. Bivariate analysis also identified a recently 

proposed gastric cancer target, CD332/FGFR2. Peptides from FGFR2 were detected 

only in Kato III. FGFR2 mRNA was >6 times higher in Kato III than in controls; 

FGFR2 peptides were detected 1611 times in this cell line but in none of the others, 

suggesting that FGFR2 is a highly aberrant feature in a subset of GC. Our data 

confirm another study which reported FGFR2 overexpression in three of 11 GC cell 

lines (including Kato III) [173].  

 

Our integrative analysis also captured other emerging candidate biomarkers. LC-

MS/MS detected as many as 110 peptides from EPHA2 in AGS cells, while 

transcriptome data likewise showed that EPHA2 mRNA was >19-fold more abundant 

in this cell line compared to benign controls. Similarly, EGFR was most highly 

transcribed in SNU1, and was also the cell line from which LC-MS/MS identified the 

highest number of EGFR peptides. Our data also highlighted aberrant high expression 

of CD98 in all six GC lines. This is in accordance with reports that CD98 expression 

in the gastrointestinal tract was among the highest compared to most other tissues 

[174]. CD98 is a widely expressed plasma membrane amino-acid transporter that also 

binds integrins, thereby regulating cell proliferation, survival, migration and adhesion. 
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Although CD98 has not been associated with GC, our data suggest that this protein 

merits attention as a potential GC biomarker. 

 

The utility of integrating proteome and transcriptome data sets was validated by the 

appearance of two groups of proteins whose functions accurately reflect the clinical 

phenotype of gastric cancer i.e. invasiveness and altered cellular metabolism  (Figure 

5.3 and Figure 5.4). Four classes of proteins implicated in invasive and metastatic 

behavior were well expressed in gastric cancer cells. These were (a) integrins 

(CD49f/ITGA6, CD29/ITGB1, CD49b/ITGA2, CD51/ITGAV, CD104/ITGB4 and 

CD49e/ITGA5); (b) other adhesion proteins (CD171 and CD155); (c) cell surface 

proteins known to be associated with tumor invasion (CD147/basigin, 

CD156B/ADAM17 and CD156C/ADAM10); and (d) tetraspanins (CD9, CD81 and 

CD151). Metabolism-related cell surface proteins were highly expressed by gastric 

cancer cells. Overexpression of CD73/NT5E, CD98/SLC3A2, CD298/ATP1B3 and 

CD320/transcobalamin receptor was consistent with enhanced uptake and metabolism 

of extracellular metabolites (nucleotides, amino acids, calcium, cobalamin) and ATP 

hydrolysis. Surface proteins related to immune responses were also present in gastric 

cancer cells. CD55 (decay-accelerating factor) and CD59 (protectin) are cell surface 

proteins that protect tumor cells against complement-mediated cytolysis that were 

reported to be broadly expressed in gastrointestinal tumor cells [175].  

 

Flow cytometry analysis confirms surface proteome 

 

We compared the surface proteome developed by the integrative approach with 

immunophenotype data of 14 GC cell lines interrogated for the expression of selected 

surface proteins by flow cytometry (Figure 4.5). Flow cytometric analysis can 
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validate the presence of surface proteins, and quantify the percentage of the 

subpopulation of cells that express the surface protein. However owing to the 

sensitivity of fluorescence detection, signal strength from flow cytometry does not 

indicate the absolute amount of the protein of interest. Therefore, some proteins that 

are not identified by MS due to low abundance may still be detected by flow 

cytometry. The comparison validated the integrative approach. For example, CD14, 

CD36 and CD38 were not identified by MS and had very weak or no expression by 

flow cytometry. In contrast, flow cytometry confirmed high expression of CD9 in 10 

of 14 GC cell lines, further suggesting a potential pathological role of this tetraspanin 

protein in GC.  

 

cell CD9 CD13 CD14 CD15 CD36 CD38 CD44 CD49e CD55 CD59 CD133 CD326

AGS 85.9 0.2 0.0 93.8 0.1 0.1 44.2 82.9 84.6 97.5 0.0 56.1

Fu97 76.0 98.5 0.6 19.2 0.7 0.8 3.2 96.5 94.9 98.7 2.7 10.4

KatoIII 96.8 1.0 0.3 85.9 0.3 2.4 52.1 1.3 36.6 2.6 11.6 13.2

NCIN87 95.8 4.2 1.3 98.4 1.2 0.4 6.1 65.5 97.5 96.4 0.2 96.4

SNU1 0.0 0.5 0.3 0.1 0.0 0.0 1.3 51.6 99.5 99.2 0.1 0.0

SNU5 21.2 11.1 0.1 0.8 0.0 0.1 8.0 3.7 2.3 1.0 0.2 1.6

SNU16 72.8 0.9 0.1 38.0 0.1 0.4 64.5 1.4 99.4 79.0 0.4 0.0

YCC1 82.3 0.1 0.0 97.1 0.1 0.3 0.3 18.6 99.7 99.6 0.0 95.2

YCC2 98.8 93.5 1.2 63.6 1.2 1.0 33.7 13.7 99.6 98.6 0.4 96.9

YCC3 95.8 0.9 0.2 98.9 0.3 0.3 51.7 0.1 26.6 4.2 0.0 79.0

YCC6 99.1 11.0 0.1 48.1 0.1 4.6 1.6 15.9 42.7 1.7 1.5 95.8

YCC9 95.4 2.7 0.0 96.7 0.0 0.7 55.3 38.1 90.5 92.0 0.1 87.5

YCC11 39.4 1.1 0.0 45.1 7.9 0.1 37.6 98.5 99.6 98.3 0.0 0.8

YCC16 14.3 57.6 0.2 0.2 1.6 0.3 57.2 96.0 99.7 99.2 0.0 0.2

≥75%

≥50%

≥25%

≥1%

≥0%

 
 

Figure 4.5. The GC surface proteome by flow cytometry. The table is color coded according to the 

percentage of cells showing positive staining for each protein in 14 GC lines.  

 

 

Overall, flow cytometric data showed good concordance with transcriptomic and 

proteomic data sets. The GC surface proteome included CD44 and CD133, putative 

markers of cancer stem cells, which were both identified by MS. CD44 was not 

detected by MS in SNU1 and SNU5 cells, and  was also minimally expressed as 

evaluated by flow cytometry. The AGS cell line had a high percentage of CD44-

positive cells and multiple CD44 peptides by LC-MS/MS. Only one cell line, Kato III, 
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among the six proteomic data sets in this study contained MS-detectable CD133 

peptides. Flow cytometry again supported the MS results: 11% of Kato III cells 

expressed CD133, whereas the other five cell lines showed <1% CD133 positivity.  

 

CD49e/ITGA5, an integrin, was widely but variably expressed in the surface 

proteome. It was detected in AGS and SNU1 cells, but not in Kato III and SNU5 

cells. Flow cytometry data were in good agreement showing 83% and 52% CD49e 

positivity in AGS and SNU1 cells, respectively, but <4% positivity in Kato III and 

SNU5 cells.  

 

CD59 was identified with high abundance in three of the 6 cell lines by MS (Figure 

3). Flow cytometry data confirmed expression of CD59 in AGS and SNU1 (>97%). 

CD59 was not identified in SNU5 and Kato III. Consistent with this, fewer than 3% of 

SNU5 and Kato III cells were CD59-expressing by flow cytometry. Flow cytometry 

also revealed proteins that were not detected by MS in this study. For example, CD55 

was highly expressed in gastric cancer cells and was co-expressed with CD59 in the 

majority of cell lines we investigated. 

 

Tissue microarray analysis of gastric cancer verified disease-associated biomarkers 

 

We next asked whether integrative analysis of gastric cancer membrane data sets 

would facilitate discovery of clinically relevant biomarkers. We investigated the 

expression of six surface proteins - MET, CD332/FGFR2, EPHA2, ITGB4 and 

EPHB2 - by immunostaining 49 pairs of primary gastric adenocarcinomas and their 

matched adjacent non-cancer tissues. Although FGFR4 was not identified in our 

bivariate analysis, we included it in our study of tissue microarrays as a control 
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because of its recently reported high expression in GC [176]. The clinicopathologic 

characterstics of these 49 cases are summarized in Table 4.1. Expression of the six 

proteins in primary GC tissues is summarized in Table 4.2 according to tumor 

histotypes (Lauren intestinal, diffuse or mixed types). In most tumor-normal tissue 

pairs, expression of the six surface proteins was different between tumors (T) and 

adjacent non-cancer tissues (N) i.e. N<T or N>T was the usual finding. It was 

uncommon for a tumor and its matched normal tissue to show similar expression 

(N=T); this pattern having occurred only once for FGFR2 and EPHB2.  

 

Table 4. 1. Clinicopathologic characterstics of 49 cases of gastric cancers.  

 
# 

Lauren histotype Age Gender Ethnicity 

1 
Diffuse 60 M Chinese 

2 
Intestinal 58 F Chinese 

3 
Intestinal 78 M Chinese 

4 
Intestinal 66 M Chinese 

5 
Intestinal 78 M Chinese 

6 
Intestinal 61 M Chinese 

7 
Intestinal 71 F Malay 

8 
Intestinal 77 M Chinese 

9 
Mixed 57 M Malay 

10 
Intestinal 73 M Chinese 

11 
Diffuse 39 M Chinese 

12 
Mixed 45 F Chinese 

13 
Mixed 52 M Chinese 

14 
Intestinal 46 F Chinese 

15 
Diffuse 77 M Chinese 

16 
Intestinal 57 M Chinese 
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# 
Lauren histotype Age Gender Ethnicity 

17 
Diffuse 64 M Chinese 

18 
Diffuse 71 F Chinese 

19 
Diffuse 65 F Chinese 

20 
Diffuse 71 M Chinese 

21 
Intestinal 76 M Chinese 

22 
Diffuse 71 F Chinese 

23 
Mixed 65 M Indian 

24 
Diffuse 51 F Malay 

25 
Intestinal 71 M Chinese 

26 
Diffuse 69 M Chinese 

27 
Diffuse 61 M Chinese 

28 
Intestinal 79 M Chinese 

29 
Diffuse 66 F Chinese 

30 
Diffuse 70 M Chinese 

31 
Intestinal 88 M Chinese 

32 
Intestinal 63 M Chinese 

33 
Intestinal 53 M Indian 

34 
Intestinal 67 M Chinese 

35 
Intestinal 69 M Chinese 

36 
Intestinal 85 F Chinese 

37 
Intestinal 71 F Malay 

38 
Diffuse 68 F Chinese 

39 
Intestinal 80 M Chinese 

40 
Diffuse 42 F Chinese 

41 
Intestinal 78 F Chinese 

42 
Intestinal 76 M Chinese 

43 
Diffuse 47 F Chinese 

44 
Diffuse 70 M Chinese 
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# 
Lauren histotype Age Gender Ethnicity 

45 
Intestinal 47 M Chinese 

46 
Intestinal 62 M Chinese 

47 
Intestinal 83 F Chinese 

48 
Intestinal 71 M Chinese 

49 
Intestinal 71 M Chinese 

 

EPHB2 expression was increased in GC tissues in 39 of 49 tumor-normal pairs 

(79.6%). Although EPHB2 expression has been reported in gastric adenocarcinoma 

[177], our data are the first to show increased expression in malignant compared to 

adjacent histologically non-malignant gastric epithelium. FGFR4 expression showed 

the opposite pattern, having decreased expression in GC tissues in 38 of 40 tumor-

normal pairs. EPHA2, ITGB4 and MET were each overexpessed in 28 of 49 GC 

tissues (57.1%) compared to adjacent non-cancer tissues. Remarkably, 71% and 75% 

of intestinal type GCs overexpessed MET and EPHA2, respectively. There was a 

significantly higher proportion of the intestinal histotype compared to the diffuse 

histotype among both MET and EPHA2 overexpressing GC (p=0.029 and 0.0047, 

respectively, by Fisher‟s exact 2-tail test). There was also a trend for FGFR2 and 

ITGB4 to be more highly expressed in intestinal type GCs (60%) (Figure 4.6 a,b,c). 

 

Expression of EPHB2 and ITGB4 were positively correlated in the 49 pairs of tissues 

(r=0.52), as were MET and EPHA2 (r=0.50). Interestingly, the correlation of MET 

and EPHA2 expression was stronger in the diffuse histotype (r=0.60). We also found 

significant correlation between expression of MET and FGFR2 (r=0.54) and of 

EPHA2 and FGFR4 (r=0.57) in diffuse GC tumors. No significant correlation was 

found in the intestinal histotype tumors (Figure 4.6d,e,f). Overall, stronger 
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correlations among the six surface proteins examined by immunostaining were found 

in diffuse than in intestinal GC (Figure 4.6g). 
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Table 4.2. Expression of six selected surface proteins by immunostaining 

microarrays of primary GC tissues. 

 

  
Lauren Histotype total 

Diffuse Intestinal Mixed 

MET 

T>N 6 20 2 28 

T=N 0 0 0 0 

T<N 11 8 2 21 

FGFR2 

T>N 8 17 3 28 

T=N 0 1 0 1 

T<N 9 10 1 20 

FGFR4 

T>N 2 8 1 11 

T=N 0 0 0 0 

T<N 15 20 3 38 

EphA2 

T>N 5 21 2 28 

T=N 0 0 0 0 

T< N 12 7 2 21 

ITGB4 

T>N 8 18 2 28 

T=N 0 0 0 0 

T<N 9 10 2 21 

EphB2 

T>N 12 25 2 39 

T=N 1 0 0 1 

T<N 4 3 2 9 

total 17 28 4 49 

 



130 

 

 
 
Figure 4.6. Expression of selected plasma membrane proteins using GC tissue microarrays. 

Summary of protein expression in (a) all gastric cancers; (b) diffuse type gastric cancer; and (c) 

intestinal type gastric cancer. Percentages of cases where protein expression was higher in cancerous 

tissues than in matched non-cancerous tissues are shown. Correlation coefficients between the 

expression of six plasma membrane proteins were calculated by R and is shown as a correlation heat 

map for (d) all gastric cancers; (e) diffuse type gastric cancers; and (f) intestinal type gastric cancers. 

Highly correlated protein pairs are shown in (g). 
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Discussion 

 

Compared to other common cancers, gastric cancer lacks clinically useful diagnostic 

and therapeutic biomarkers. The cell surface proteome is a rich reservoir of protein 

biomarkers of pathological importance. However, this reservoir remains largely 

untapped because systematic investigation with comprehensive documentation of 

gastric cancer surface proteins has not hitherto been attempted.  

 

Although recent progress in genomics and LC-MS/MS-based proteomics permits 

large-scale analysis of gene products, each approach alone has limitations in 

providing comprehensive qualitative and quantitative information of cell surface 

proteins. Here we demonstrate the power of an integrative analysis of cell surface 

proteins using membrane proteomics and transcriptomics. 

 

Cell surface proteins of six gastric cancer cell lines were investigated in this study. 

This first systematic phenotype of the GC surface reveals that GC cells have various 

“faces” that are very different from benign gastric epithelium (Figure 4.4). This raises 

the possibility that GC tumors may be stratified by their surface phenotypes. A 

majority of cell surface proteins are expressed at lower levels in GC compared to 

benign gastric epithelium, but a few are present at extremely high levels on the 

plasma membrane. These may act as the “drivers” of gastric oncogenesis by 

transducing external signals. However, our data also point to different “driver” 

proteins acting on the surface of GC cells from different tumors. 
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mRNA expression is not always correlated with protein expression, mainly due to 

post-transcriptional and post-translational modifications [171]. Proteins that are 

highly transcribed, as quantified by transcriptomics, and highly expressed, as 

quantified by normalized spectral index, could be the focus for discovering 

biomarkers that are relevant to the pathogenesis of GC. As shown in Figure 4.3, a 

total of 57 CD molecules and 16 RTKs characterized at both mRNA and protein 

levels constitute a proposed shortlist for biomarker discovery in GC research. 

 

The validity of this strategy was confirmed by flow cytometry and tissue microarray 

analyses. Surface proteins that were not detected by MS were also negative or weakly 

positive by flow cytometry while MS-detected proteins were confirmed by flow 

cytometry. Moreover, the proportion of gastric cancer cells expressing surface 

markers by flow cytometry in 14 different gastric cancer cells showed high 

concordance with proteomic and transcriptomic data sets. Immunostaining of primary 

GC tumor tissues was further validation of the strategy of integrative analysis for 

identification of disease-relevant biomarkers. Among 49 pairs of tumor-normal 

tissues, five surface proteins were highly overexpressed in tumor tissues compared to 

their matched normal controls. Furthermore, our data showed that diffuse and 

intestinal histotypes of GC had distinct patterns of surface protein expression.  A 

signature comprising four surface proteins, i.e. MET, EphA2, FGFR4, CD104/ITGB4, 

was preferentially expressed in intestinal type GC, whereas diffuse type GC tended to 

underexpress these proteins. 
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Conclusion 

 

We have demonstrated that integration of membrane proteomic and transcriptomic 

data  provides valuable insights into proteins expressed on the surface of cancer cells. 

This analytical approach when applied to our data has uncovered a global view of 

gastric cancer surface proteins. This strategy could be readily extended to study the 

surface proteomes of other cancers. 
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Chapter 5. Quantitative Proteomics Discloses MET 

Expression in Mitochondria as a Direct Target of MET 

Kinase Inhibitor in Cancer Cells 

Abstract 

 

Cancer cells with MET overexpression are paradoxically more sensitive to MET 

inhibition than cells with baseline MET expression. The underlying molecular 

mechanisms are incompletely understood. Here, we have traced early responses of 

SNU5, a MET-overexpressing gastric cancer cell line, exposed to sublethal 

concentration of PHA-665752, a selective MET inhibitor, using iTRAQ-based 

quantitative proteomics. More than 1900 proteins were quantified, of which >800 

proteins were quantified with at least five peptides. Proteins whose expression was 

perturbed by PHA-665752 included oxidoreductases, transfer/carrier proteins and 

signaling proteins. Strikingly, 38 % of proteins whose expression was confidently 

assessed to be perturbed by MET inhibition were mitochondrial proteins. Upon MET 

inhibition by a sublethal concentration of PHA-665752, mitochondrial membrane 

potential increased and mitochondrial permeability transition pore was inhibited 

concomitant with widespread changes in mitochondrial protein expression. We also 

showed the presence of highly activated MET in mitochondria, and striking 

suppression of MET activation by 50 nM PHA-665752. Taken together, our data 

indicate that mitochondria are a direct target of MET kinase inhibition, in addition to 

plasma membrane MET. Effects on activated MET in the mitochondria of cancer cells 

that are sensitive to MET inhibition might constitute a novel and critical non-

canonical mechanism for the efficacy of MET-targeted therapeutics. 
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Materials and Methods 

 

Chemicals 

 

All chemicals were purchased from Sigma-Aldrich (St. Louise, Missouri, USA) 

unless otherwise stated. A selective MET inhibitor PHA-665752 [115] was from 

Pfizer Global Research and Development (La Jolla Laboratories, San Diego, 

California, USA). Stock solutions of this compound were prepared in DMSO, stored 

in -80°C and diluted with fresh medium before use. In all experiments, the final 

concentration of DMSO was <0.1%. 

 

Cell culture 

 

Gastric cancer cell lines were cultured as described in Chapter 2.  

 

Gene expression profiling 

 

Transcriptomics data sets of gene expression has been described in Chapter 2. 

 

MTT assay 

 

Cell viability based on redox enzyme activity was quantified using 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, the MTT assay as described 

[112].  

 



136 

iTRAQ protein sample preparation 

 

Four experimental groups of SNU5 cells were prepared in the absence or presence of 

PHA-665752. Three groups were exposed to 50 nM PHA-665752 for three durations 

i.e. 4 hr, 24 hr and 72 hr. A parallel group without treatment served as the control. 

After treatment, proteins were extracted and three independent biological replicate 

flasks for each experimental condition were pooled and quantified by BCA protein 

assay kit as described previously [159]. 

 

Isobaric labeling 

 

Two-hundred micrograms of protein from each experimental condition were 

tryptically digested and labeled with 4-plex iTRAQ reagents (Applied Biosystems, 

Foster City, California, USA) as follows: control, 114; 4 hr, 115; 24 hr, 116; 72 hr, 

117. The labeled samples were pooled and resolved into 20 fractions using strong 

cation exchange (SCX) [159]. Eluted fractions were vacuum dried and desalted using 

SEP-PAK C18 cartridges (Waters, Milford, Massachusetts, USA). Dried peptides 

were stored at -80°C before MS analysis.  

 

LC-MS/MS analysis 

 

The LC-MS/MS analysis was performed as previously described [159, 178] with 

some modifications. Briefly, dried iTRAQ-labeled peptide samples were dissolved in 

HPLC grade water (J.T.Baker, Phillipsburg, New Jersey, USA) acidified with 0.1% 

formic acid, and sequentially injected and separated in a home-packed nanobored C18 



137 

column with a picofrit nanospray tip (75 μm ID × 15 cm, 5 μm particles) (New 

Objectives, Woburn, Massachusetts, USA) on a TempoTM nano-MDLC system 

coupled with a QSTAR
®
 Elite Hybrid LC-MS/MS system (Applied Biosystems). 

Each sample was divided into two equal aliquots and independently analyzed by the 

LC-MS/MS over a gradient of 120 min. The flow rate of LC system was set 

constantly at 300 nL/min. Data acquisition in QSTAR Elite was set to positive ion 

mode using Analyst
®

 QS 2.0 software (Applied Biosystems). Precursors with a mass 

range of 300-2000 m/z and a calculated charge of +2 to +4 were selected for 

fragmentation. For each MS spectrum, a maximum of three most abundant peptides 

above 5 count threshold were selected for MS/MS. Each selected precursor ion was 

dynamically excluded for 30 s with a mass tolerance of 0.03 Da. Smart IDA was 

activated with automatic collision energy and automatic MS/MS accumulation. The 

fragment intensity multiplier was set to 20 and maximum accumulation time was 2 s.  

 

MS spectrum analysis 

 

Spectra acquired in LC-MS/MS system from the two independent runs were 

submitted in a batch to ProteinPilot (v2.0.1, Applied Biosystems) for peak-list 

generation, as well as protein identification and quantification against the 

International Protein Index (IPI) human database (version 3.34; 67758 sequences) 

supplemented with porcine trypsin. The Paragon algorithm in ProteinPilot software 

was configured as previously described [178] with some modifications. Briefly, 

default parameters including fixed and variable modifications for samples digested 

using trypsin and labeled with 4-plex iTRAQ reagents (peptide labeled) were 

employed. The search was done thoroughly where all cleavage variants were 
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considered. The confidence threshold for both peptide and protein identification was 

set to 70%. Default precursors and fragments mass tolerances for QSTAR ESI MS 

instrument were adopted by the software. A concatenated target-decoy database 

search strategy was also employed to estimate the false discovery rate (FDR) [179]. 

FDR was calculated as two folds of the percentage of decoy matches divided by the 

total matches. After stringent filtering as described in Results, FDR of the reported 

iTRAQ data set was <1%. ProteinPilot software employed the peak area of iTRAQ 

reporters for quantification. Details of the quantification algorithm can be found in the 

supplier‟s manual. Isoform-specific strategy was adopted to deal with quantification 

of isoforms. Quality control of the data set is addressed in Results.  

 

Bioinformatics 

 

Gene IDs of the proteins of interest were searched in a batch using PANTHER 

classification system [180] against NCBI (H. sapiens) dataset and the results were 

presented as genes. Most protein groups had more than one molecular function hit. 

Cellular localization information of the 50 proteins of interest was checked manually 

in Gene Ontology [167]. 

 

Western blotting 

 

Western blotting was performed using primary antibodies at the dilutions indicated: 

1:500 SDHB (clone 21A11), 1:500 NDUFS3 (clone 17D95), 1:1000 VDAC1 (clone 

20B12), 1:1000 MET (clone C-12), 1:1000 phospho-MET (Y1234/1235), 1:1000 

phospho-MET (Y1349), 1:1000 E-cadherin (G-10), 1:2500 actin (Clone C4), 1:2000 
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alpha-tubulin (clone B-7). Phospho-MET antibodies were from Cell Signaling 

(Danvers, Massachusetts, USA), actin antibody was from Millipore (Billerica, 

Massachusetts, USA), while the other primary antibodies were from Santa Cruz 

Biotechnology, Inc (Santa Cruz, California, USA). Antibody against integrin αL 

(1:500), MHM23, was kindly from Dr Alex Law (School of Biological Sciences, 

Nanyang Technological University, Singapore). 

 

Mitochondrial membrane potential analysis 

 

Cells with or without PHA-665752 treatment were washed with ice-cold PBS and 

incubated with 5 µg/ml rhodamine 123 for 1 hr, followed by flow cytometric analysis 

on FACS Calibur and CellQuest Pro software (Becton Dickinson, Franklin Lakes, 

New Jersey, USA). 

 

Mitochondrial permeability transition pore analysis 

 

The activity of mitochondrial transition pore was evaluated by the MitoProbe™ 

Transition Pore Assay Kit (Becton Dickinson) following the manufacturer‟s 

instruction. Briefly, cells were washed twice with ice-cold Hanks‟ balanced salt 

solution (HBSS) containing 1.3 mM calcium (Invitrogen) before incubation in the 

presence or absence of cobalt chloride at 37 °C for 15 min, followed by flow 

cytometry analysis as described above. 

 

Confocal microscopy 
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SNU5 cells were washed with HEPES twice, before incubating with 500 nM Mito 

Tracker Red CMXRos (Invitrogen) for 15 min. Cells were then fixed in 3% 

paraformaldehyde for 20 min and permeabilized with 0.1% Triton X-100 for 2 min. 

After blocking nonspecific antibody binding sites with 1% BSA for 1 hr at 37 °C, 

cells were probed with primary antibodies (1:500) overnight at 37 °C and Alexa 488- 

conjugated goat-anti-rabbit secondary antibodies (Invitrogen) for 1 hr at 37 °C. 

Finally the cells were washed with PBS and counterstained with Vectashield 

mounting medium with DAPI (Vector Laboratories, Burlingame, California, USA). 

Images were captured with a Zeiss LSM 710 confocal microscope. 

 

Mitochondria isolation 

 

Mitochondria isolation kit (Miltenyi Biotec, Bergisch Gladbach, Germany) was 

employed to isolate mitochondria following the manufacturer‟s protocol. Briefly, 

5×10
7
 SNU5 cells with or without treatment were washed twice with PBS, and lysed 

in 2 ml of the provided lysis buffer supplemented with Complete Protease Inhibitor 

Cocktail Tablets and phosSTOP (Roche, Basel, Switzerland). The crude cell lysate 

was incubated with anti-TOM22 MicroBeads for 1 hr at 4 °C with gentle shaking. 

Subsequently, the suspension was loaded onto a pre-equilibrated MACS column, 

washed thrice with separation buffer before removing the column from the magnetic 

field and eluting the mitochondria. 
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Results 

 

MET expression and susceptibility of gastric cancer cells to PHA-665752 

 

As PHA-665752 is differentially cytotoxic in cancer cells depending on MET 

expression levels [112], we first evaluated MET expression data of a panel of 16 

gastric cancer cell lines, (AGS, Kato III, SNU1, SNU5, SNU16, NCIN87, Hs746T, 

MKN7, IM95, YCC1, YCC2, YCC3, YCC6, YCC9, YCC11 and YCC16) in order to 

focus on a model cell line for systematic proteomics exploration. Our transcriptome 

data showed that SNU5 cells had markedly elevated levels of MET transcription (>40-

fold compared with normal human stomach tissues), while MET expression of SNU1 

cells was comparable to the controls (Figure 5.1). MET protein expression levels of 

these two cell lines were compared by immunoblotting (Figure 5.2). SNU5 and SNU1 

cells showed, respectively, high and low expression of MET, in agreement with our 

transcriptome data as well as a previous study [112]. We determined cytotoxic 

responses of the two gastric cancer cell lines to PHA-665752 using MTT assay 

(Figure 5.3). The mean IC50 of PHA-665752 in SNU5 cells was approximately 77 

nM, while SNU1 cells were relatively resistant to the compound (IC50>500 nM). 

SNU5 was selected as the model cell line in subsequent temporal quantitative 

proteomics analyses because it was highly sensitive to PHA-665752. Conversely, 

SNU1 was chosen as being representative of gastric cancer cells resistant to MET 

inhibition in functional studies. 
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Figure 5.1. Relative MET expression and susceptibility of GC cells to PHA-665752. MET mRNA 

expression in 16 gastric cancer cell lines relative to pooled normal human gastric tissues was 

determined from transcriptome data sets. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 5.2. MET expression in SNU5 and SNU1. SNU5 and SNU1 cells were lysed for western 

blotting using anti-MET antibody. Actin immunostaining served as the loading control. 

 

 

SNU5 SNU1 

MET 

actin 



143 

 

 

 

 

 

 

 

 

 

Figure 5.3. Effects of PHA-665752 on SNU5 and SNU1 cells. MTT assays were used to determine 

effects of PHA-665752 on viability of selected gastric cancer cell lines: (B) SNU5, (C) SNU1. 

Treatment duration with PHA-665752 was 72 hr. Each MTT data point was averaged from 4 replicates. 

Error bars at PHA-665752 concentrations 100 nM in panel B are not visible at this resolution. 

 

 

Temporal quantitative proteomics analysis 

 

We treated SNU5 cells with PHA-665752 and analyzed the temporal dynamics of the 

proteome. First, we sought to determine an appropriate concentration of PHA-665752 

for quantitative proteomic investigation of SNU5 cells, in order to trace early cellular 

responses of the cells to MET inhibition. The ideal treatment conditions with PHA-

665752 should suppress phosphorylation of MET without causing substantial cell 

death. SNU5 cells were exposed for varying durations to two concentrations of PHA-

665752 around its IC50 (determined at 72 hr) and tested for viability using MTT 

assays. Our results showed that 50 nM PHA-665752 did not significantly impair cell 

viability, whereas 150 nM was rapidly cytotoxic (Figure 5.4). As such, we regarded 

50 nM as a sublethal concentration for SNU5 cells, and adopted these conditions for 

the subsequent proteomics study.  
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Figure 5.4. MTT assays of SNU5 cells in response to PHA-665752. (A) 50 nM and (B) 150 nM 

PHA-665752 were used to treat SNU5 cells. Each data point was averaged from four replicates. 

 

 

It is worth noting that it remains a daunting challenge that some small molecule 

kinase inhibitors exhibit off-target effects that cannot be ignored [181]. To minimize 

off-target effects in this study, we selected one of the most potent and specific MET 

inhibitors PHA-665752, which is >20 times more selective for MET than other 

protein kinases [115]. Moreover, we applied it to a cell line SNU5 that overexpresses 

MET at unusually high levels i.e. >40 times higher than normal stomach tissue. In 

addition, we intentionally employed a low concentration of PHA-665752, i.e. 50 nM, 

which is sublethal to SNU5 cells but sufficient to inhibit MET activity. This further 

refined the data as arising from specific inhibition of MET since most off-target 

effects happen when inhibitors are used at high concentrations, such as >1 uM. We 

A 

B 
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believe, in this scenario, the probability of inhibiting other proteins with even 

comparable or higher affinity than MET is low or negligible. Furthermore, previous 

work has documented that the differential effects of PHA-665752 are truly attributed 

to its effect on MET using small interfering (si) RNA targeting the MET receptor 

transcript in SNU5 cells [112]. Finally, growth factor effectors in the downstream of 

MET signaling pathway, including ERK1/2, AKT, STAT3 and FAK, were effectively 

abrogated by 50 nM PHA-665752 [112]. Thus, MET could reasonably be considered 

the main target of 50 nM PHA-665752 in SNU5 cells in this study.  

 

We used iTRAQ reagents to label the tryptically digested proteome, coupled with 

shotgun multi-dimensional liquid chromatography and tandem mass spectrometry 

[182] to profile the temporal proteome responses (Figure 5.5A). This approach 

allowed simultaneous comparison of the proteomes at four time points (0, 4 hr, 24 hr, 

and 72 hr) after PHA-665752 treatment, to capture both the early and late responses 

of the SNU5 proteome.  

 

Quality control of quantitative MS data set 

 

To ensure the reliability of the quantitative datasets, three independent biological 

replicates of SNU5 cells were pooled for the proteomics study (Figure 5.5A). 

Moreover, the iTRAQ-labeled samples were analyzed twice by LC-MS/MS to 

minimize technical variations. The ProteinPilot database search in a concatenated 

target and decoy strategy returned 26276 target matches and only one decoy match. A 

total of 1908 target proteins were identified and quantified with estimated FDR of 

<1%. We next employed stringent inclusion criteria to filter the data set. A total of 

806 proteins quantified with high confidence i.e. quantified from at least five 
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peptides, of which there are at least two unique peptides, and having error factors 

<1.5, were advanced to the next phase of analysis (Supplemental Table 1 in reference 

[103], provided in the link http://www.mcponline.org/content/9/12/2629/suppl/DC1).  
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Figure 5.5. Quantitative proteomic analysis shows dominant effects on mitochondrial proteins. 

(A) Schematic diagram of the iTRAQ-LC-MS/MS experimental workflow. (B) Distribution of the 

relative expression levels of temporal proteomes. Ratios were calculated in log space before converting 

into linear space. (C) Subcellular classification of the differentially expressed proteins based on Gene 

Ontology. Details of the proteins are shown in Supplemental Table 2 (provided in the link 

http://www.mcponline.org/content/9/12/2629/suppl/DC1). Note that one protein may have >1 

subcellular localization hits. (D) Schematic display of the functions and localizations of PHA-665752-

perturbed expression of mitochondrial proteins. *, mitochondrial proteins whose exact localization 

within the mitochondrion is uncertain; OMM, outer mitochondrial membrane; IMM, inner 

mitochondrial membrane; mPTP, mitochondrial permeability transition pore; ETC, electron transport 

chain. 
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Estimation of cutoff for confidently defining perturbed proteins 

 

The cutoff for defining perturbed and unperturbed protein expression in iTRAQ 

experiments depends on the characteristics of biological samples as well as MS 

instruments. To avoid setting the cutoffs arbitrarily, we examined the distribution of 

the expression levels of the 806 proteins (Figure 5.5B). The three relative expression 

levels of these proteins i.e. 4hr/control, 24hr/control and 72hr/control, were all 

normally distributed indicating that sublethal treatment of this compound only 

modulated a small percentage of the SNU5 proteome. Thus, we focused on the top 5% 

proteins whose expression was most perturbed by PHA-665752 treatment. With this 

criterion, protein ratios <0.774 were regarded as underexpressed, while ratios >1.181 

were considered overexpressed, thereby narrowing the reliable differentially 

expressed proteins to a small number of 50 (Supplemental Table 2 in reference [103], 

provided in the link http://www.mcponline.org/content/9/12/2629/suppl/DC1), which 

reflected significant effects of MET inhibition in SNU5 cells. 

 

Western blotting validation of iTRAQ ratios 

 

To further evaluate the accuracy of iTRAQ ratios for the shortlisted 50 proteins, we 

examined the expression of three representative proteins, NDUFS3, SDHB, and 

VDAC1, by semi-quantitative western blot analysis. NDUFS3 and SDHB, proteins of 

the mitochondrial ETC, were quantified by MS with unique peptide numbers of 6 and 

3, respectively, while VDAC1 a component of mPTP, was quantified with 10 unique 

peptides. As shown in Figure 5.6 and Table 5.1, western blot data showed similar 

trends corresponding iTRAQ ratios.  
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Figure 5.6. Western blotting validation of selected proteins in the iTRAQ data set. (A) DNUFS3 

from ETC Complex I; (B) SDHB from ETC Complex II; and (C) VDAC1 were validated using 

western blot analysis. Matched results from western blots and iTRAQ (bar chart) are shown together 

for comparison.  
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Table 5.1. Differentially expressed mitochondrial proteins in MET-inhibited SNU5 cells as quantified by iTRAQ. Proteins reliably identified from the iTRAQ data set 

and documented to be localized in mitochondria are listed. *, proteins validated using western blotting. 

Mitochondrial 

function 
Accessions Protein description 

Gene 

symbol 

% of 

sequence 

coverage 

# of 

unique 

peptide 

4h/ctrl 24hr/ctrl 72hr/ctrl 

Ratio N Ratio N Ratio N 

ETC Complex I IPI00025239.2 NADH dehydrogenase iron-sulfur protein 2 NDUFS2 26.1 3 0.838±0.116 6 0.613±0.058 6 0.772±0.059 6 

ETC Complex I IPI00025796.3 NADH dehydrogenase iron-sulfur protein 3 NDUFS3 * 41.7 6 0.813±0.070 5 0.712±0.055 5 0.922±0.054 5 

ETC Complex II IPI00294911.1 succinate dehydrogenase iron-sulfur subunit SDHB * 29.6 3 0.921±0.045 5 0.701±0.041 5 0.922±0.062 5 

ETC Complex III IPI00013847.4 ubiquinol-cytochrome-c reductase complex core protein 1 UQCRC1 45.4 8 0.921±0.045 16 0.612±0.053 14 0.811±0.040 15 

ETC Complex III IPI00305383.1 ubiquinol-cytochrome-c reductase complex core protein 2 UQCRC2 42.8 4 0.863±0.066 8 0.551±0.032 8 0.802±0.062 8 

ETC Complex IV IPI00017510.3 cytochrome c oxidase subunit 2 COX2 23.3 3 0.691±0.034 13 0.431±0.029 13 0.772±0.052 13 

ETC Complex IV IPI00025086.3 cytochrome c oxidase subunit 5A COX5A 64.7 3 0.784±0.074 8 0.615±0.080 8 0.894±0.085 8 

ETC electron transporter IPI00029264.3 cytochrome c1 heme protein CYC1 44.3 4 0.761±0.044 6 0.603±0.057 6 0.856±0.104 6 

mPTP IPI00216308.5 voltage-dependent anion-selective channel protein 1 VDAC1 * 40.3 10 0.713±0.068 14 0.532±0.046 14 0.874±0.083 14 

mPTP IPI00007188.5 adenine nucleotide translocator 2 ANT2 72.1 10 0.818±0.114 6 0.563±0.059 6 0.814±0.085 6 

others IPI00604707.4 dihydrolipoamide S-acetyltransferase DLAT 40.0 6 1.621±0.536 8 0.896±0.169 5 1.083±0.083 8 

others IPI00073772.5 fructose-1,6-bisphosphatase 1 FBP1 50.6 9 0.942±0.055 27 1.163±0.079 33 1.483±0.100 33 

others IPI00022793.4 trifunctional enzyme beta subunit HADHB 45.9 5 0.784±0.074 7 0.722±0.055 6 0.926±0.104 7 

others IPI00007242.1 galectin-2 LGALS2 59.1 6 1.037±0.117 15 0.986±0.111 15 1.963±0.221 15 

others IPI00017334.1 prohibitin PHB 58.1 6 0.844±0.080 8 0.523±0.054 8 0.766±0.156 9 

others IPI00027252.6 prohibitin-2 PHB2 63.2 6 0.862±0.058 11 0.502±0.048 11 0.642±0.049 11 

others IPI00183695.9 protein S100-A10 S100A10 70.1 4 0.661±0.038 28 0.712±0.048 28 1.062±0.062 29 

others IPI00007084.2 mitochondrial aspartate-glutamate carrier protein SLC25A13 29.1 7 0.856±0.104 8 0.662±0.057 9 0.903±0.069 8 

others IPI00790115.1 CDNA FLJ90278 fis, mitochondrial precursor SLC25A3 39.6 2 0.681±0.033 8 0.581±0.039 8 0.892±0.052 8 
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Quantitative proteomics data set reveals perturbed cellular responses after sublethal 

PHA-665752 treatment 

 

The iTRAQ dataset provided identification and quantification of 806 proteins with 

various molecular functions as classified by PANTHER (Figure 5.7), including 50 

proteins (Supplemental Table 2 in reference [103], provided in the link 

http://www.mcponline.org/content/9/12/2629/suppl/DC1) whose expression had been 

perturbed by PHA-665752-induced MET inhibition. These proteins represent various 

cellular responses as shown in Figure 5.7. Consistent with the specificity of MET 

inhibition, although proteins involved in nucleic acid binding and the cytoskeleton 

were the two most abundant groups, very few (<3%) were perturbed in expression by 

PHA-665752. Remarkably, sublethal concentration of this compound mainly affected 

the expression of several other groups of proteins, including oxidoreductases, 

calcium-binding proteins, transfer/carrier proteins involved in transport of specific 

substances and signaling proteins.  
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Figure 5.7. Classification of molecular functions of proteins quantified by iTRAQ. Gene IDs of the 

806 proteins were batch searched using PANTHER classification system against NCBI (H.sapiens). 

728 unique genes were mapped to a total of 891 hits of molecular functions. Fifty perturbed proteins 

mapped to 49 unique genes and a total of 59 hits of molecular functions. The numbers of non-perturbed 

and perturbed hits are shown. 

 

 

Our data showed that 7 (29%) of the 24 molecular function hits were associated with 

calcium-binding proteins, including annexins (i.e. annexin A2 (IPI00455315.4), 

annexin A4 (IPI00793199.1), annexin A5 (IPI00329801.12)), calmodulin-related 

proteins comprising hippocalcin-like protein 1 (IPI00219344.4), protein S100-A4 

(IPI00032313.1), protein S100-A10 (IPI00183695.9) and mitochondrial aspartate-

glutamate carrier protein (IPI00007084.2). Modulation of calcium-binding proteins by 

PHA-665752 treatment suggested that calcium signaling might be a downstream 

response to inhibition of MET kinase activity. Calcium signaling has been extensively 
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documented to be tightly modulated e.g. by G protein-coupled receptors and tyrosine 

kinase receptors [183]. It is worth noting that the link between calcium and MET 

signaling is supported by the recent observation that MET, when stimulated by HGF, 

regulated calcium signals in human liver tumor cells [184].  

 

Of the 29 proteins classified as having transfer/carrier function, 6 proteins (21%) 

responded to PHA-665752 at nanomolar concentration. Aside from the three annexin 

proteins and mitochondrial aspartate-glutamate carrier protein that were also 

classified in the calcium-binding protein category, another two phosphate carrier 

proteins i.e. adenine nucleotide translocator 2 (IPI00007188.5) and mitochondrial 

phosphate carrier protein (IPI00790115.1) were modulated by this compound.  

 

Five of 17 (29%) proteins classified as signaling molecules, cytokine macrophage 

migration inhibitory factor (IPI00790382.1), myristoylated alanine-rich protein kinase 

C substrate (IPI00219301.7), COP9 constitutive photomorphogenic homolog subunit 

8 (IPI00009480.1), galectin 2 (IPI00007242.1) and Rho GDP dissociation inhibitor 

alpha (IPI00794402.1), showed perturbed expression (Figure 5.7), as a probable 

consequence of altered signal transduction induced by PHA-665752.  

 

As shown in Table 5.1, most of the mitochondrial proteins showed a similar trend of 

response to the compound. They were down-regulated at 4 hr, further down-regulated 

at 24 hr and partially recovered at 72 hr. This typical pattern of perturbed 

mitochondrial protein expression indicated a gradual but reversible effect of PHA-

665752 on the SNU5 proteome.  
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Dominant roles of mitochondrial proteins in PHA-665752-induced MET inhibition 

 

Interestingly, we found that many of the perturbed proteins in this data set were 

associated with mitochondria. Hence, we performed a bioinformatics classification 

based on subcellular localization information from Gene Ontology [167] to determine 

how many perturbed proteins were mitochondrial. Not surprisingly, a significant 

number of the perturbed proteins were cytosolic. However, it was noteworthy that 19 

proteins, i.e. 38% of the 50 proteins whose expressions were altered by PHA-665752, 

were localized in mitochondria (Figure 5.5C), indicating a disproportionately 

dominant role of mitochondria in cellular responses to PHA-665752 treatment. 

Specifically, proteins from the two pivotal mitochondrial complexes i.e. electron 

transfer chain (ETC) and mitochondrial permeability transition pore (mPTP), were 

significantly perturbed by PHA-665752. Additionally, mitochondrial proteins 

involved in metabolism, signal transduction, survival and apoptosis were also affected 

by PHA-665752 treatment (Figure 5.5D).  

 

Mitochondrial ETC is perturbed by PHA-665752 

 

Eight (42%) of the 19 dysregulated mitochondrial proteins were components of the 

ETC in the inner mitochondrial membrane (IMM) (Figure 5.5D, Table 5.1). ETC is 

comprised of Complex I (NADH dehydrogenase), Complex II (succinate 

dehydrogenase), Complex III (cytochrome bc1 complex) and Complex IV 

(cytochrome c oxidase). Proteins from all four ETC complexes had decreased by 4 hr 

after PHA-665752 treatment, were further inhibited at 24 hr and had partially 

recovered at 72 hr. These findings showed that PHA-665752 at a sublethal 

concentration rapidly modulated the expression of multiple ETC component proteins.  
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The ETC operates mainly through its constituent oxidoreductase enzyme activities. 

As the MTT assay measures cellular oxidoreductase enzyme activities, mainly of the 

ETC, we asked if oxidoreductase activity of the ETC was diminished by PHA-

665752. By cross-referencing MTT assay data (Figure 5.4) with iTRAQ data (Table 

5.1) at 24 hr of treatment with 50 nM PHA-665752, significant decreases in ETC 

protein expression levels were associated with only a small decrease of ETC 

oxidoreductase enzyme activity at the same time point, suggesting that despite 

inhibition of ETC protein expression, mitochondria retained substantial 

oxidoreductase enzyme activities required for cell survival. 

 

One of the most important functions of ETC is to maintain the MMP [185]. The 

energy released by electron transport pumps protons across the IMM, generating the 

electrochemical and pH gradients. We examined the MMP using rhodamine 123 

staining and flow cytometry [186]. Rhodamine 123, a cationic dye, has a strong 

emission at 529 nm that is quenched as it accumulates within mitochondrial 

intermembrane space, and then dequenched (with increased fluorescence) when 

released into the cytosol. Our data showed that rhodamine 123 fluorescence of SNU5 

cells did not change upon treatment with nanomolar concentration of PHA-665752 

until exposure was prolonged beyond 24 hr (Figure 5.8). The decrease in rhodamine 

123 fluorescence at 48 hr and 72 hr was the evidence of an increase in MMP and 

hyperpolarization of the mitochondria [186]. However, MMP of the PHA-665752-

resistent cell line, SNU1, did not change with the same treatment (Figure 5.8) and 

even at a higher concentration (300 nM, data not shown). 
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Figure 5.8. PHA-665752 effects on MMP of SNU5 and SNU1 cells. Mitochondrial membrane 

potentials were analyzed in SNU5 (left panel) and SNU1 (right panel) cells treated with 50 nM (bold 

solid line) PHA-665752 for 0.5, 2, 24, 48 and 72 hours. Control untreated cells were analyzed in 

parallel (dotted line). Flow cytometry data are presented as histograms of the FL1 channel. 

 

 

 

mPTP responses to PHA-665752 treatment 

 

We observed inhibited expression of two core components of mPTP i.e. VDAC1 and 

ANT2 [187-189], from the quantitative proteomics datasets (Table 5.1, Figure 5.5). 

The effect on VDAC1 was confirmed by western blot analysis (Figure 5.6). mPTP is 

generally regarded as a crucial channel which permits the exchange of metabolites 
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and ions [190]. Exchange of molecules is controlled by the flickering of mPTP 

between open and closed states [189]. Channel opening or an increase in the 

frequency of mPTP flickering is extensively documented as an event tightly 

associated with both necrotic and apoptotic cell death [191]. Therefore, we next asked 

whether mPTP was functionally associated with MET inhibition by PHA-665752. 

Flickering of mPTP was evaluated using the calcein AM/CoCl2 method [192]. 

Strikingly, mPTP was rapidly and effectively inhibited by 50 nM PHA-665752 in 

SNU5 cells within 30 min (Figure 5.9). It is worth noting that inhibition of the mPTP 

was sustained for at least 72 hr. The resistant gastric cancer line SNU1 did not show 

inhibition of mPTP, but only rapid and transient activation of mPTP (Figure 5.9).  
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Figure 5.9. mPTP of SNU5 and SNU1 cells in response to PHA-665752 treatment. mPTP of SNU5 

(left panel) and SNU1 (right panel) cells was determined after treatment with 50 nM PHA-665752 

(bold solid line) for 0.5, 2, 24, 48 and 72 hours. Control untreated cells were analyzed in parallel 

(dotted line). Flow cytometry data are presented as histograms of the FL1 channel. 

 

 

 

MET is present in mitochondria of SNU5 cells 

 

The rapid effects of PHA-665752 on mitochondrial proteins and functions of SNU5 

cells raised the possibility that this MET-selective inhibitor may act directly on 

mitochondria. Two reasons led us to hypothesize that MET might be present in 

mitochondria where it would be a target for PHA-665752. First, as PHA-665752 has 
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high specificity for MET kinase [115], the rapid mitochondrial responses could well 

be mediated by MET. Second, cells in which MET gene is highly amplified 

overexpress MET proteins that may be constitutively activated. High intracellular 

levels of activated MET could facilitate its translocation or localization to intracellular 

organelles such as mitochondria. Indeed EGFR, another oncogenic RTK, was found 

to translocate to mitochondria and nucleus when activated [193, 194]. Moreover, 

MET has been reported to be translocate to the nucleus when stimulated by HGF 

[184, 195]. However, no publication to date has reported the presence of MET in the 

mitochondria. 

 

We employed two approaches to investigate whether MET is present in mitochondria 

of sensitive cells. Immunoblotting analysis could demonstrate the presence of MET in 

isolated mitochondria fraction in a semi-quantitative manner, although it may suffer 

from contamination of proteins from other organelles since no current technique is 

capable of enriching mitochondria to 100% purity. Confocal microscopic analysis 

provided additional complementary evidence visually.  

 

Immunoblotting was used to probe MET and phospho-MET in SNU5 whole cell 

lysate and isolated mitochondrial lysate. In order to maximize mitochondria 

enrichment efficiency and minimize contaminations from other organelle, we 

employed a newly developed method for mitochondria isolation based on 

superparamagnetic microbeads conjugated to anti-TOM22 antibody [196]. The 

protocol is fast, reproducible and standardized, resulting in mitochondria of high 

purity, with minimal contamination from cytoskeleton, cytosol, Golgi apparatus, 

endosome, endoplasmic reticulum and nucleus [196]. We employed several controls 
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to further confirm the purity of isolated mitochondria in this study. Known plasma 

membrane proteins including E-calcium-dependent adhesion molecules (E-

cadherin)/CD324 and integrin αL/CD18 were present in whole cell lysate, but were 

almost absent in mitochondria fractions, indicating minimal plasma membrane 

contamination (Figure 5.10A). The cytoskeleton protein, actin, displayed a similar 

pattern, whereas mitochondrial protein, SDHB, exhibited the opposite distribution, 

further proving the purity of isolated mitochondria (Figure 5.10A). Equal loading of 

proteins for whole cell lysate and mitochondria fraction was confirmed by Ponceau S 

staining [197]. 
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Figure 5.10. Expression of MET and phospho-MET in mitochondria. (A) Whole cell lysate and 

isolated mitochondrial lysate from untreated SNU5 and SNU1 were immonoblotted using antibodies as 

indicated. (B) Confocal images of SNU5 cells loaded with MitoTracker Red CMCRos, DAPI, and 

Alexa 488-conjugated antibodies against MET, phospho-MET (Y1234/1235), and phospho-MET 

(Y1349). Channels for DAPI, MET or pMET, MitoTracker, and merge are shown. 

 

 

In striking contrast to E-cadherin, integrin αL and actin that were present in whole cell 

lysate but not in the mitochondrial fraction, MET was expressed at a high level in 

mitochondria of SNU5 cells (Figure 5.10A). Remarkably, phosphorylated MET 

appeared to be enriched in mitochondria. Signals of pMET (Y1234/1235) and pMET 

(Y1349) were higher in mitochondria than in whole cell lysate, indicating that 
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mitochondrial MET was highly activated. SNU1 cells demonstrated minimal 

expression of MET compared to SNU5 cells.  

 

To further confirm the presence of MET in mitochondria of SNU5 cells visually, we 

employed confocal microscopy to determine if MET and mitochondria were co-

localized. Figure 5.11B shows SNU5 cells fluorescently labeled with DAPI (blue 

channel), Mito Tracker Red CMXRos (red channel), and Alexa 488-conjugated 

antibodies against MET, pMET (Y1234/1235), and pMET (Y1349) (green channel). 

As expected, both MET and phosphorylated MET were found in high abundance in 

the plasma membrane of SNU5 cells. Remarkably, MET and phosphorylated MET 

also co-localized with mitochondria, as indicated by yellow colored areas in merged 

images. These results were consistent with immunoblotting experiments (Figure 

5.10A). In contrast, SNU1 displayed very weak fluorescence for MET and phospho-

MET using the same staining protocol (data not shown). 

 

Taken together, these data provided convincing experimental evidence for the 

presence of MET in mitochondria of SNU5 cells. 
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Figure 5.11. Mitochondrial MET is inhibited by MET inhibitor. Whole cell lysate and isolated 

mitochondrial lysate were prepared from control untreated SNU5 cells and SNU5 cells treated with 50 

nM PHA-665752 for 0.5 hr and 2 hr. Antibodies against MET, phospho-MET (Y1234/1235), phospho-

MET (Y1349) and actin were used in immunoblotting. 

 

 

PHA-665752 inhibits phosphorylation of mitochondrial MET in SNU5 cells 

 

Next we asked whether mitochondrial MET that was highly phosphorylated would 

respond to treatment with PHA-665752 for 0.5 hr and 2 hr. As shown in Figure 5.11, 

immunoblotting demonstrated that MET expression level in  whole cell lysates was 

not altered by the compound at both time points but phosphorylation of MET was 

inhibited, consistent with previous reports [112, 115]. Importantly, phosphorylation of 

mitochondrial MET was inhibited in isolated mitochondrial lysates. Phosphorylation 

of MET at Y1234/Y1235 was suppressed by 50 nM PHA-665752 as early as 0.5 hr 

after treatment. Phosphorylation of Y1234/1235 was further inhibited when the 

treatment was prolonged for 2 hr. Phosphorylation of Y1349 in mitochondrial MET 

was inhibited by PHA-665752 at 2 hr.  
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Discussion 

 

A curious observation in cancer research is that some cancers appear to be highly 

dependent for survival and progression on a single oncogene that is usually 

overexpressed [104, 106]. MET has essential functions in both normal and malignant 

cells [198]. It is not entirely clear why gastric cancer cells that overexpress MET are 

paradoxically much more sensitive to MET inhibition than cells whose MET 

expression is comparable to normal stomach [112].  

 

In an effort to dissect the underlying molecular mechanisms, we have established a 

model to inhibit MET activity using a potent MET inhibitor PHA-665752 in a 

sensitive gastric cancer cell line SNU5. A resistant line SNU1 was utilized as control. 

A sublethal concentration of PHA-665752, sufficient to inhibit MET activation, was 

intentionally utilized to minimize off-target effects, and to investigate early cellular 

responses. Previously it has been demonstrated that effects of PHA-665752 are truly 

attributed to its effect on MET in SNU5 cells [112]. iTRAQ-based proteomics 

experiments allowed us to identify and quantify >1900 proteins with a FDR<1%. 

After stringent quality control of the data set, we narrowed down our focus to >800 

proteins with at least five peptides quantified, and 50 proteins that were significantly 

deregulated upon MET inhibition. Our study revealed several cellular responses to 

PHA-665752 treatment in SNU5 cells, including modulation of oxidoreductases, 

calcium-binding proteins, transfer/carrier proteins involved in transport of specific 

substances and signaling proteins. Remarkably, we observed deregulation of 

mitochondrial proteins from ETC, mPTP, among others, formed a dominant protein 

group among the 50 deregulated proteins.  
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The observations prompted us to ask whether perturbation of mitochondrial functions 

is one of the early responses of PHA-665752 treated SNU5 cells. It is worth noting 

that, in the current literature, aberrant mitochondrial functions are mainly documented 

when cells are induced to apoptosis or other forms of cell death by lethal interventions 

as downstream consequences of cytotoxic factors [199-201]. Here we speculated that 

mitochondria might be a driving determinant of cellular death-survival decisions. Our 

cytometric data demonstrated that mitochondria of sensitive SNU5 cells rapidly 

responded to sublethal concentration of PHA-665752. In contrast, the resistant cell 

SNU1 displayed different patterns. These data indicated that mitochondrial 

deregulation appeared to be early response during MET inhibition.  

 

To further understand the mechanisms, we hypothesized that MET might be present 

in mitochondria of sensitive cells as a direct target of PHA-665752. Currently, MET 

is known to be present in the plasma membrane, and MET inhibitors, including small 

molecular inhibitors and monoclonal antibodies, are considered to act through plasma 

membrane MET. However, it is possible that MET might reside in other organelles. 

Both MET and EGFR, another receptor tyrosine kinase that was once considered to be 

in the plasma membrane only, are capable of translocating to the nucleus [184, 194]. 

Activated EGFR translocates to mitochondria where it actively modulates 

mitochondrial proteins [193]. Our immunoblotting and confocal data both 

demonstrated that MET is present in mitochondria. Importantly, mitochondrial MET 

is hyperphosphorylated, indicating it is functionally highly active. In contrast, SNU1 

cells display minimal expression of MET and phosphorylated MET. Furthermore, we 

demonstrated that PHA-665752 could effectively suppress the phosphorylation of 
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mitochondrial MET. These data suggest that mitochondrial MET is a direct target of 

PHA-665752. 

 

Accumulating evidence suggests that many mitochondrial proteins, including ETC 

and mPTP components, that maintain the functions of this organelle, are tightly 

modulated by protein kinases including protein kinase A (PKA), PI3K/Akt/PKB, Raf-

MEK-ERK, and MAPK [149, 202]. Phosphorylated mitochondrial MET may play 

active roles in modulating phosphorylation status of various mitochondrial proteins 

involved in mitochondrial functions. Deregulation of mitochondrial proteins and 

dysfunctional mitochondrial processes are likely consequences of inhibition of 

mitochondrial MET. Our findings also plausibly link RTK-targeted therapeutics with 

the Warburg effect [203]. Mitochondria are key regulators of glycolysis. We have 

found expression of several glycolysis-associated mitochondrial proteins, for 

example, VDAC1 and ANT2, was concurrently regulated rapidly in response to PHA-

665752 treatment in SNU5 cells (Supplemental Table 2 in reference [103], provided 

in the link http://www.mcponline.org/content/9/12/2629/suppl/DC1).  

 

Our observations have uncovered novel mechanisms through which a kinase inhibitor 

directly acts on mitochondrial targets and influences mitochondrial functions in 

sensitive cells. This may explain the rapidly lethal effects of some targeted therapies 

and advance understanding of how these anti-cancer agents work. As localization of 

MET to mitochondria was not found in resistant cells, this may be a hallmark of 

sensitive cells and have potential implications in personalized cancer therapeutics. 
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Our findings do not contradict but rather enhance the conventional paradigm that 

MET inhibitors including small molecule inhibitors and monoclonal antibodies act on 

plasma membrane MET [114]. As shown in Figure 5.11, phosphorylation of MET in 

whole cell lysate was rapidly inhibited by 50 nM PHA-665752, consistent with global 

suppression of MET molecules by the inhibitor as others have reported [112, 115]. As 

reported previously, baseline phosphorylation of downstream signaling effectors, such 

as ERK1/2, AKT, STAT3, and FAK, were effectively abrogated by 50 nM PHA-

665752, confirming that canonical MET signaling pathway was inhibited by this 

compound [112]. However, this study provides evidence for an additional and novel 

locus of MET inhibition i.e. mitochondrial MET, that may be critical in contributing 

to the efficacy of MET inhibition in sensitive cells.  

 

We are still unclear about the origin of the mitochondrial MET. One possibility is 

translocation of auto-phosphorylated plasma membrane MET to mitochondria. It is 

also possible that a fraction of synthesized MET is directly localized to mitochondria 

due to certain signal peptide sequence or post-translational modification. Localization 

of MET to mitochondria may correlate with the high genetic expression of MET in 

sensitive cells. The substrates of mitochondrial MET remain to be determined. Future 

work is also needed to demonstrate whether the failure of MET to localize to 

mitochondria affects the behavior and response of sensitive cells. 
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Conclusion 

 

In an effort to understand molecular mechanisms of the curious sensitivity of MET-

overexpressing cancer cells to MET inhibition, we have uncovered novel mechanisms 

of MET inhibition in sensitive cells. In response to low concentration of MET 

inhibitor, sensitive cells displayed substantial deregulation of mitochondrial proteins 

and functions. This study is the first to show the presence of activated MET in 

mitochondria of sensitive cancer cells which might be a direct target of MET 

inhibitor. 
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Chapter 6. Conclusions and Future Directions 
 

Despite the global importance of gastric cancer as a major killer, the underlying 

molecular abnormalities of this dreaded disease are poorly understood. Although MS-

based proteomics offers a powerful tool to systematically dissect the molecular 

mechanisms of gastric oncogenesis, this technology has not thus far been fully 

exploited as evidenced by the paucity of published studies to date. Proteomic 

techniques have evolved rapidly in recent years. Two dimensional gel electrophoresis 

(2-DE), which was once the method of choice for proteomic studies, suffers from 

limited sensitivity and bias towards soluble proteins. Current reports of the gastric 

cancer proteome were mainly from 2-DE-based investigations. Advanced LC-

MS/MS-based shotgun proteomics has gained worldwide popularity in the field of 

proteomics, and has been applied to study a variety of diseases, including cancers. 

However, there is scarce information about gastric cancer from MS-based shotgun 

proteomics . 

 

We started the thesis by profiling aberrantly modified proteins at post-translational 

level in various gastric cancer cell lines. Two post-translational modifications were 

investigated, i.e. phosphorylation and methylation.  

 

Phosphorylated proteins are modified with a phosphate group which imposes negative 

charge(s) to serine, threonine or tyrosine residues in proteins, and thereby modulates 

the functions of proteins. Signal transduction is mediated by relays of phosphorylation 

events. Oncogenic signaling pathways are usually feature aberrant activation of 

protein kinases which catalyze phosphorylation of proteins that promote proliferation 
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and suppress apoptosis of cancer cells. The main challenge in investigating 

phosphorylated proteins is that they are present in substoichiometric amount. 

Enrichment of phosphorylated proteins/peptides is essential for their characterization 

in shotgun proteomics. In Chapter 2, we applied a complementary phosphoproteomics 

protocol, i.e. SCX-IMAC coupled with ERLIC [33] to comprehensively catalogue 

phosphoproteome of five gastric cancer cell lines. Stringent filtering criteria were 

applied to the data sets in order to generate a high-confidence inventory of the gastric 

cancer phosphoproteome. Phosphoproteins from primary GC tissues (cancerous tissue 

versus matched normal tissue) were also investigated using antibody arrays, which for 

the first time shed light on differential phosphoprotemic profiles between gastric 

cancer and matched histologically normal gastric epithelium. To gain more insights 

into the expression levels of phosphoproteins, we integrated proteomic data with 

transcriptomic data sets. One hundred and ninety phosphorylated proteins which were 

over-expressed at mRNA levels were highlighted in the integrative analysis. This has 

led to the discovery of overpresentation of DNA damage response (DDR) pathway in 

gastric cancer cells. Our data also provide the first global view of the gastric 

oncokinome and oncophosphatome. By integrating transcriptional expression levels 

of 221 protein kinases and 80 protein phosphatase genes in a panel of 17 gastric 

cacner cell lines with phosphoproteomics data sets, work in this thesis helps to define 

the dynamic molecular terrain of protein kinases and protein phosphatases from which 

key pathways in gastric concogenesis may be discerned. Our data also provide 

insights of phosphorylated mitochondrial proteins that were aberrantly expressed in 

gastric cancer cells.  
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Much less attention has been directed to cellular functions mediated by protein 

methylation, which is relatively more stable than phosphorylation. In Chapter 3, we 

performed the first large scale analysis of the gastric cancer methyl proteome. 

Through data mining from over 400 MS analyses, we confidently uncovered >3000 

unique K and R methylation sites from a gastric cancer cell line, SNU5. Large scale 

analysis of protein methylation allows, for the first time, sequence analysis of 

methylated proteins. Lysine and arginine residues close to methionine residues were 

frequently methylated. This cryptic observation merits further investigations. In good 

agreement with the literature, we found that methylated proteins tend to contain 

protein domains that interact with nucleic acids. This is probably because there is a 

rich pool of adenosines in nucleic acids that could potentially produce AdoMet in the 

presence of methionine. Remarkably, our data showed that almost all the keys 

enzymes involved in glycolysis, citric acid cycle and oxidative phosphorylation were 

methylated in cancer cells. The methylation marks imposed to these enzymes may 

have regulated their functions and directed energy production preferentially to 

glycolysis instead of mitochondrial oxidative phosphorylation. 

 

The cell surface proteome is a rich reservoir of protein biomarkers of pathological 

importance. However, this reservoir remains largely untapped because a systematic 

investigation with comprehensive documentation of gastric cancer surface proteins 

has not hitherto been attempted. We characterized cell surface proteome of six gastric 

cancer cells in Chapter 4. “Faces” of gastric cancer were depicted for the first time, 

which allows us to stratify gastric cancers by their surface proteins. The validity of the 

cell surface proteins identified by proteomics was further confirmed by flow 

cytometry and GC tissue microarray immunostaining. A signature comprising four 



172 

surface proteins, i.e. MET, EphA2, FGFR4, CD104/ITGB4, was preferentially 

expressed in intestinal type gastric cancers, whereas diffuse type gastric cancer cells 

tended to underexpress these proteins.  

 

Of the aberrantly expressed proteins we identified from the phosphoproteome, methyl 

proteome and cell surface proteins, MET was one of the most dominant protein 

abnormalities in gastric cancer cells. MET-directed targeted therapy is considered to 

be a promising strategy to control gastric cancers. However, the molecular 

mechanisms for why MET inhibition is extremely effective in a subset of gastric 

cancers, but not in others, are not fully understood. Therefore, we attempted to 

elucidate possible mechanisms by quantitative proteomics as described in Chapter 5. 

Unexpectedly, we found that proteins significantly perturbed by a MET inhibitor, 

PHA-665752, included oxidoreductases, calcium-binding proteins, transfer/carrier 

proteins and signaling proteins. Bioinformatic analysis showed that 39% of the 

perturbed proteins were mitochondrial. Biochemical assays revealed that the 

mitochondrial permeability transition pore (mPTP) was rapidly inhibited by the 

compound, followed by altered mitochondrial protein expression and mitochondrial 

hyperpolarization in inhibitor-sensitive SNU5 cells but not in a resistant cell line, 

SNU1. This prompted us to speculate that MET inhibition by PHA-665752 in 

sensitive GC cells modulates mitochondrial functions. Further experiments with 

isolated mitochondria showed the presence of highly activated MET in mitochondria, 

and striking suppression of MET activation by 50 nM PHA-665752. Taken together, 

our data indicate that mitochondrial MET is a direct target of MET kinase inhibition, 

in addition to plasma membrane MET. Effects on activated MET in the mitochondria 
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of cancer cells that are sensitive to MET inhibition might constitute a novel and 

critical non-canonical mechanism for the efficacy of MET-targeted therapeutics. 

 

In summary, this thesis has documented a few comprehensive proteomic studies of 

gastric cancers that enabled us to discover patterns of aberrantly expressed proteins 

and the likely importance of mitochondrial function in gastric cancer cells. These 

findings contribute to global efforts to deepen understanding of molecular 

mechanisms that initiate and perpetuate gastric oncogenesis. 

 

The aberrant oncogenic signaling pathways uncovered in this thesis merit future 

mechanistic studies. Multiple proteins in the DDR pathway were up-regulated and 

modulated by protein kinases. It would be of interest to investigate and understand the 

underlying mechanisms of this up-regulation, and roles of protien kinases responsible 

for this modulation. Extensive methylation of metabolism-related enzymes suggests 

cancer metabolism may be tightly modulated by the corresponding enzymes. Based 

on these data, a hypothesis could be proposed that proteins involved in cancer 

metabolism are regulated by protein methylation. Identification of the enzymes 

responsible for these methylation events is of interest in future work to interrogate 

molecular mechanisms of altered metabolism in cancers. Our surface proteome 

shortlisted a few potential markers for gastric cancer. Although some have been 

validated using tissue microarray of a cohort of 49 sample pairs, validation in larger 

independent cohorts is required in the future.   

 

Much of our efforts have focused on the discovery of mitochondrial MET. This non-

classical localization of MET could be translocated from plasma membrane upon 
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auto-phosphorylation. It may also result from direct translocation to mitochondria 

immediately after protein synthesis, probably via a mitochondrial signal sequence, or 

via an endocytosis pathway. It is intriguing to ask what the source of mitochondrial 

MET might be and why MET is present in the mitochondria in some cancer cells but 

not in others. Another critical question is to uncover the functions of mitochondrial 

MET. A hypothesis could be proposed that mitochondrial MET phosphorylates some 

mitochondrial proteins which in turn influence mitochondrial functions including 

apoptosis and/or metabolism. Future experiments could be designed to interrogate the 

protein substrates of mitochondrial MET and their associations with mitochondrial 

functions.  

 

Our data showed mitochondrial MET was plausibly associated with the sensitivity of 

cancer cells to a MET kinase inhibitor. However, the effect was indistinguishable 

from that of MET localized in the plasma membrane. It would be of interest to 

investigate the actions of mitochondrial MET and plasma membrane MET separately, 

and ask the question which localization of MET is the decisive factor that impacts 

drug sensitivity. If mitochondrial MET is proven to be a critical factor contributing to 

the drug sensitivity, we could generate a hypothesis that mitochondrial kinases are 

present in other types of cancer cells (i.e. is not limited to gastric cancer cells), and 

their presence determines responses to agents targeted at the particular kinase. 

Experiments could be designed to profile the repertoire of activated protein kinases in 

various cancer cells, and whether their presence affects the sensitivity of the cancer 

cells to molecularly-directed agents. 
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