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ABSTRACT

Building communication schemes which allow participants to communicate effi-

ciently has always been a challenging yet intriguing problem for information the-

orists. Index Coding with Side Information (ICSI), first introduced by Birk and

Kol (1998) as Coding on Demand by an Informed Source (ISCOD), is a communi-

cation scheme dealing with a broadcast channel in which receivers have prior side

information about the messages to be broadcast. Exploiting the knowledge about

the side information, the sender may significantly reduce the number of required

transmissions compared with the naive approach. As a consequence, the efficiency

of the communication over this type of broadcast channels could be dramatically im-

proved. Apart from being a special case of the well-known (non-multicast) Network

Coding problem (Alhswede et al. (2000), Koetter and Médard (2003)), the ICSI

problem has also found various potential applications on its own, such as audio-

and video-on-demand, daily newspaper delivery, data pushing, and oppoturnistic

wireless networks.

While most of the known works on ICSI focus on the performances of index

codes of various kinds, the security and error correction aspects of those codes have

never been examined. Although the issues of security and error correction have been

thoroughly investigated in multicast Network Coding, on the side of non-multicast

Network Coding, where ICSI is one example, those issues are much less understood.

In this work, we make an attempt to fill in this gap.
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We first analyze the block security level of the linear index code based on a

matrix L, by examining the minimum distance and the dual distance of the column

space C(L) of L. Here the block security is a generalization of the notion of weak

security, introduced by Bhattad and Narayanan (2005) in the setups of Network

Coding. It turns out that these two distances of C(L) specify two closely related

thresholds, one is for the code to be block secure, the other is for it to be completely

insecure. When C(L) is an MDS code, the two thresholds are actually tight. We

then proceed to examine the strong security of linear index codes, which is the

information-theoretic security in the context of ICSI. We show that the coset coding

technique, an indispensable tool in securing a network code in the setting of Network

Coding, also provides us with an optimal solution for securing an index code.

Subsequently, we examine the index coding schemes in which errors are involved.

Several bounds and constructions for linear error-correcting index codes are estab-

lished. Syndrome decoding for error-correcting index codes, which is somewhat

different in nature from that for classical error-correcting codes, is also investigated.

Furthermore, we study the so-called static error-correcting index codes. Each of

such codes works for a family of instances of the ICSI problem. Analogous bounds

and constructions for nonlinear error-correcting index codes, as for linear case, are

also developed.

The second line of work in this thesis is on the computational aspects of the ICSI

problem. As shown in the work of Bar-Yossef et al. (2006), the minimum number

of transmissions required by a linear index code is equal to the so-called minrank of

the corresponding side information digraph. However, as shown by Peeters (1996),

finding the minrank of a side information graph is an NP-hard problem. There are

very few known families of (di)graphs for which minranks can be found in polynomial

time. They are perfect graphs, odd holes (cycles) and odd anti-holes, outerplanar
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graphs, and acyclic digraphs. In this work, we discover several more such families,

including connectively reducible digraphs, line digraphs of partially planar digraphs,

and graphs possessing a special tree structure. We also characterize (di)graphs of

extreme minranks, that is, (di)graphs with minranks close to one or to their orders

(i.e., number of vertices). Based on one of these characterizations, we are able to

show that deciding whether a digraph has minrank two is an NP-complete problem.

For comparison, the same decision problem for graphs can be solved in polynomial

time. Finally, based on the work of Chaudhry and Sprintson (2008), we write a

computer program to find the minranks of all non-isomorphic graphs of orders up

to 10.
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1. INTRODUCTION

1.1 Background

The problem of Index Coding with Side Information (ICSI) was introduced by Birk

and Kol [10, 11]. The coding scheme studied in the ICSI problem was originally

called Coding on Demand by an Informed Source (ISCOD). It was motivated by

applications such as audio and video-on-demand, and daily newspaper delivery, in

which a server (sender) broadcasts a set of messages to a set of clients (receivers).

During the transmission, each client might miss a certain part of the data, due to

intermittent reception, limited storage capacity or any other reasons. The server

has to find a way to deliver to each client all the missing messages, yet spending

a minimum number of transmissions. Via a slow backward channel, the clients let

the server know which messages they already have in their possession, and which

messages they request. By exploiting this information, the amount of the overall

transmissions can be significantly reduced [11].

Another possible application of the ICSI problem is in opportunistic wireless

networks. These are the networks in which a wireless node can opportunistically

listen to the wireless channel. As a result, a node may obtain packets that were not

designated to it [28,41,42]. In this way, a node obtains some side information about

the transmitted data. Exploiting this additional knowledge may help to increase the

throughput of the system.
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Consider the toy example in Fig. 1.1. It presents a scenario with one sender and

four receivers. Each receiver requires a different information packet (or message).

The naive approach requires four separate transmissions, one transmission per an

information packet. However, by utilizing the knowledge about the subsets of mes-

sages that receivers already have, and by coding the transmitted data, the sender

can satisfy all the demands by broadcasting just one coded packet.

The ICSI problem has been the subject of several recent studies [2,3,8,15,16,21,

22,25,27,28,36,46,69]. On the one hand, this problem is a special case of the well-

known (non-multicast) network coding (NC) problem [1,43]. On the other hand, it

was shown that every instance of the NC problem can be reduced to an instance of

the ICSI problem in the following sense. For each NC instance, we can construct an

ICSI instance such that there exists a scalar linear network code for the NC instance

if and only if there exists a perfect scalar linear index code for the corresponding

ICSI instance (see [27, 28] for more details).

S

R3

R4R1

R2

∑4
i=1 xi

hasx1, x2, x3
requestsx4

hasx2, x3, x4

requestsx1

hasx1, x3, x4
requestsx2

hasx1, x2, x4

requestsx3

Fig. 1.1: An example of the ICSI problem

Several previous works focused on the design of efficient index codes. Given an
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instance of the ICSI problem, Bar-Yossef et al. [3, 4] proved that finding the best

binary scalar linear index code is equivalent to finding the so-called minrank of a

(di)graph (together with a matrix whose rank is equal to the minrank), which is

an NP-hard problem [3, 53]. Here scalar linear index codes refer to linear index

codes in which each message is a symbol in the underlying field Fq. By contrast, in

vector linear index codes each message is a vector over Fq. Lubetzky and Stav [46]

showed that there exist instances for which scalar linear index codes over nonbinary

fields and combinations of linear index codes over two different fields outperform

binary scalar linear index codes. El Rouayheb et al. [27, 28] showed that for cer-

tain instances of the ICSI problem, vector linear index codes achieve strictly higher

transmission rate than scalar linear index codes. They also pointed out that there

exist instances in which vector nonlinear index codes outperform vector linear index

codes. Vector nonlinear index codes were also shown to outperform scalar nonlinear

index codes for certain instances by Alon et al. [2]. Several heuristic solutions for

the ICSI problem were proposed by El Rouayheb et al. [25] and by Chaudhry and

Sprintson [16]. Optimal scalar linear index codes for an ICSI instance described by

a random side information (di)graph was investigated by Haviv and Langberg [36].

A dynamic programming approach (Bellman [5]) was established by Berliner and

Langberg [8] to find in polynomial time optimal scalar linear index codes for ICSI

instances described by outerplanar graphs.

1.2 Contributions of this Thesis

Security issues and computational issues of the index coding schemes are the main

topics to be discussed in this thesis.

In Chapter 2, we study the security aspects of linear index codes. This is the
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first known work in this direction. We restrict ourselves to scalar linear index

codes due to the following reasons. First, although nonlinear codes are theoretically

interesting, they are usually not practically attractive, due to the high complexity

in encoding and decoding. It is known that vector linear index codes can achieve

better transmission rates than their scalar counterparts for certain instances of the

ICSI problem [27, 28]. However, if the block length of a vector index code for an

instance is fixed, we can model this vector index code as a scalar index code for

another instance of the ICSI problem (see the proof of Proposition 5.2.16).

A linear index code maps x ∈ Fn
q onto xL, where L is an n × N matrix over

Fq, and n,N ∈ N. Here Fq denotes the finite field with q elements. The number of

transmissions required when such an index code is used is N . We call N the length

of this index code.

We show that each linear index code provides a certain level of information

security. We describe this result in more details as follows. Let the code C(L) be

spanned by the columns of L, and let d and d⊥ be its minimum distance and dual

distance, respectively. Assume that there exists an adversary who can listen to all

transmissions from the sender. We say that a particular adversary is of strength t if

it has t messages in its possession. An index code is said to be b-block secure against

all adversaries of strength t if every adversary of strength t has no information (in

Shannon’s sense) about any block of b messages that are not in his possession . In

contrast, an index code is said to be completely insecure against any adversary of

strength t if an adversary who possesses an arbitrary set of t messages is always able

to reconstruct all of the other n − t messages. Then, we show that the index code

based on L is (d − 1 − t)-block secure against all adversaries of strength t ≤ d − 2

and is completely insecure against any adversary of strength at least n − d⊥ +

1 (Theorems 2.2.9 and 2.2.12). If C(L) is an MDS code, then the two bounds
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coincide. The technique used in the proof for this result is reminiscent of that used

in the constructions of (multiple) secret sharing schemes from linear error-correcting

codes [23, 50]. The results on the security of linear index codes can be further

employed to analyze the existence of solutions for a natural generalization of the ICSI

problem, so-called the Index Coding with Side and Restricted Information (ICSRI)

problem. In that problem, it is required that some receivers have no information

about some messages.

In the sequel, we also consider linear randomized index codes, which are based on

the use of random symbols. Using such index codes, the sender first generates ran-

dom symbols, mixes them with the original packets, and then broadcasts the mixed

packets. We show that the coset coding technique (which has been successfully

employed in Secure Network Coding literature [12, 26, 29, 59, 71]) yields an optimal

strongly secure linear randomized index code of length κq + µ (Theorems 2.4.10).

This randomized index code is strongly secure against an adversary that

(i) has t arbitrary messages in advance;

(ii) eavesdrops at most µ transmissions.

In other words, such an adversary gains no information (in Shannon’s sense) about

the messages that he does not possess. Observe that the length of the optimal code

does not depend on t. In fact, the construction of such a code is independent of

t. Here κq denotes the minrank over Fq of the side information hypergraph that

corresponds to the instance of the ICSI problem. As shown later in Corollary 2.2.8,

κq is equal to the length of an optimal scalar linear index code over Fq.

It is worth mentioning that the security models considered in this work (block

security and strong security) are special cases of a more general model referred to

as security against guessing in the context of Network Coding (see Bhattad and
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Narayanan [9]). In their model, an adversary can obtain some set M of linear

combinations of the (source) messages by eavesdropping on a certain set of links in

the communication network that connects the sender and the receivers. Let {Gp, Up}

(p ∈ P ) be pairs of sets of messages. The adversary can guess perfectly all messages

in Gp (p ∈ P ). In other words, the adversary has some side information about the

messages. The security requirement is that the adversary has no information (in

Shannon’s sense) about Up given his knowledge of M (eavesdropped information)

and Gp (side information) for every p ∈ P . When Gp is any subset of t messages

and Up is any subset of b messages (Gp ∩ Up = ∅), this model reduces to the b-

block security model. When Gp is any subset of t messages and Up is the set of the

remaining n− t messages, the model reduces to the strong security model.

Most of previous works on the security aspects (and on the error-correction

aspect, as a special case) of network coding dealt with the multicast scenario. One

of the main reasons for this limitation is that the optimal simultaneous transmission

rates for non-multicast networks have not been well characterized yet. It is known

that the ICSI problem can be modeled as a special case of the non-multicast Network

Coding problem [2, 28]. This fact restricts the ability to derive the results on the

security of the index coding schemes from the existing results on the security of

network coding schemes.

The preceding works on the ICSI problem consider a scenario where the transmis-

sions are error-free. In practice, of course, this might not be the case. In Chapter 3,

we assume that the transmitted symbols are subject to errors and extend some

known results on index coding to a case where each receiver can correct up to a

certain number of errors. It turns out that the problem of designing such error-

correcting index codes (ECIC’s) naturally generalizes the problem of constructing

classical error-correcting codes.
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More specifically, assume that the number of messages that the sender possesses

is n, and that the maximum number of errors is δ. We show that the problem of con-

structing an ECIC of minimum length is equivalent to the problem of constructing

a matrix L that has n rows and minimum number of columns, such that

wt (zL) ≥ 2δ + 1 for all z ∈ I,

where I is a certain subset of Fn
q \ {0} (Lemma 3.1.3). Here wt(x) denotes the

Hamming weight of the vector x and 0 is the all-zeros vector. If I = Fn
q \ {0},

this problem becomes equivalent to the well-known problem of designing a shortest-

length linear error-correcting code of given dimension and minimum distance.

We establish a lower bound (the α-bound) and an upper bound (the κ-bound)

on the shortest length of a linear ECIC that is able to correct every error pattern of

size up to δ (Theorem 3.2.5 and Proposition 3.2.8). These bounds are described in

more details as follows. Let H be the side information hypergraph that describes an

instance of the ICSI problem. Let Nq[δ,H] denote the minimum length of a linear

ECIC over Fq which ensures that every receiver Ri can recover the desired message

if the number of errors is at most δ. We use notation Nq[k, d] for the minimum

length of a linear error-correcting code of dimension k and minimum distance d over

Fq. The α-bound and the κ-bound are the following

Nq[α(H), 2δ + 1] ≤ Nq[δ,H] ≤ Nq[κq(H), 2δ + 1], (1.1)

where α(H) is the generalized independence number and κq(H) is the minrank (over

Fq) of H. The κ-bound (the second inequality) is obtained simply by concatenating

an optimal linear traditional error-correcting code and an optimal linear index code.
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For linear index codes, we also derive an analog of the Singleton bound (Theo-

rem 3.3.1). This result implies that (over sufficiently large alphabets) the concate-

nation of a standard MDS error-correcting code with an optimal linear index code

yields an optimal linear error-correcting index code. Finally, we consider a ran-

dom ECIC. By analyzing its parameters, we obtain an upper bound on its length

(Theorem 3.4.1).

When the side information hypergraph is a pentagon, and δ = 2, the inequalities

in (1.1) are shown to be strict. This implies that a concatenated scheme based

on a classical error-correcting code and on a linear non-error-correcting index code

does not necessarily yield an optimal linear error-correcting index code. Since the

ICSI problem can also be viewed as a source coding problem [2, 3], this example

demonstrates that sometimes designing a single code for both source and channel

coding can result in a smaller number of transmissions.

Based on the results obtained in Chapter 2 and the results on ECIC’s in this

chapter (Chapter 3), we give a construction of an optimal strongly secure linear

randomized error-correcting index code of length κq +µ+2δ (Theorem 3.5.5). This

randomized index code is strongly secure against an adversary that

(i) has t arbitrary messages in advance;

(ii) eavesdrops at most µ transmissions;

(iii) corrupts at most δ transmissions.

The decoding of a linear ECIC is somewhat different from that of a classical error-

correcting code. There is no longer a need for a complete recovery of the whole

information vector. As a consequence, each receiver no longer has to determine

the exact error vector in order to decode the desired message. We analyze the
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decoding criteria for the ECIC’s and show that the syndrome decoding, which might

be different for each receiver, outputs the correct result, provided that the number

of errors does not exceed the error-correcting capability of the code.

An ECIC is called static under a family of instances of the ICSI problem if it

works for all of these instances. Such an ECIC is desirable since it remains relevant

as long as the parameters of the problem vary within a particular range. Bounds

and constructions for static ECIC’s are studied in Section 3.7. Connections between

static ECIC’s and weakly resilient vectorial Boolean functions are also investigated.

At the end of Chapter 3, in Section 3.8, we briefly discuss the nonlinear ECIC’s

and establish several analogous results for bounds on minimum lengths of nonlinear

ECIC’s.

As shown by Bar-Yossef et al. [3, 4], the minrank of a digraph is precisely the

number of transmissions required in an optimal scalar linear index code for an in-

stance of the ICSI problem described by that digraph. The concept of minrank of

a graph was first introduced by Haemers [34], which serves as an upper bound for

the celebrated Shannon capacity of a graph [57]. This upper bound, as pointed

out by Haemers himself, although is usually not as good as the Lovász bound [45],

is sometimes tighter and easier to compute. Unfortunately, as shown by Peeters

[53], computing the minrank of a general graph (that is, the MinRank problem) is

a hard task. More specifically, Peeters showed that deciding whether a graph has

minrank three is an NP-complete problem. The interest on the MinRank problem

was resumed after the work of Bar-Yossef et al. [3], which proved that the binary

minrank of a digraph D characterizes the optimal binary scalar linear index code for

an ICSI instance with side information digraph D. Exact and heuristic algorithms

to find the minrank over F2 of a hypergraph (and a (di)graph as a special case) were

developed in the work of Chaudhry and Sprintson [16]. The minranks of random
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(di)graphs are investigated by Haviv and Langberg [36]. A dynamic programming

approach was proposed by Berliner and Langberg [8] to compute in polynomial time

the minranks of outerplanar graphs. It is also worth noting that approximating min-

ranks of graphs within any constant ratio is known to be NP-hard (see Langberg

and Sprintson [44]).

In Chapter 4, we make an attempt to characterize the (di)graphs that have

extreme minranks. In particular, it is shown that a digraph has minrank two over

F2 if and only if D is not a complete digraph and its complement, D, is fairly

3-colorable (Corollary 4.2.5). Here a digraph is fairly 3-colorable if one can color

its vertices by three colors in such a way that not only the endpoints of the same

arc have different colors but also all out-neighbors of the same vertex must share

the same color. Based on this characterization, we show later in Chapter 5 that

the problem of deciding whether a digraph has minrank two is NP-complete. In

contrast, for the case of graphs, it is known that the minrank of a graph G is two if

and only if G is not a complete graph and its complement, G, is bipartite, a condition

which can be verified in polynomial time (see, for instance West [67, p. 495]). Note

that a graph is bipartite if and only if it is 2-colorable.

The other characterizations are the following. A graph has minrank equal to its

order if and only if it contains no edges. By contrast, a digraph has minrank equal

to its order if and only if it contains no circuits. A graph of order n has minrank

n − 1 if and only if its largest connected component is a star graph and the other

components are one-vertex graphs.

In Chapter 5, we focus on the computational aspects of the ICSI problem. We

first establish that deciding whether a digraph has minrank two is already an NP-

complete problem (Corollary 5.1.2). Afterwards, a new upper bound on the minrank

of a digraph, so-called the circuit-packing bound, is introduced (Proposition 5.2.3).
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In certain cases, the circuit-packing bound is shown to be far better than the clique-

cover bound. So far, families of (di)graphs whose minranks are either known or

computable in polynomial time are the following. For graphs, they are odd holes

and odd anti-holes, perfect graphs, and outerplanar graphs. For digraphs, they

are acyclic digraphs. The circuit-packing bound, together with the lower bound

based on the order of a maximum acyclic subgraph, enables us to derive several

new families of digraphs whose minranks are computable in polynomial time. They

are the families of connectively reducible digraphs and line digraphs of partially

planar digraphs. For those two families of digraphs, the circuit-packing bound is

tight. This bound is also tight for other families of digraphs, including digraphs that

pack (a digraph packs if all of its subgraphs satisfy the min-max vertex equality, see

Section 5.2.2 for more details), line digraphs of fully reducible flow digraphs, and

line digraphs of special Eulerian digraphs. Moreover, for ICSI instances described

by the aforementioned families of digraphs, scalar linear index codes are shown to

be optimal (Proposition 5.2.16).

Based on the fact that outerplanar graphs can be decomposed into tree struc-

tures that support a dynamic programming approach, Berliner and Langberg [8]

established an efficient algorithm to find minranks of outerplanar graphs. Inspired

by their work, at the end of Chapter 5, we develop a dynamic programming al-

gorithm to compute in polynomial time the minranks of graphs having a special

structure. Such a graph can be described as a compound rooted tree, the nodes

of which are graphs whose minranks can be computed in polynomial time. The

algorithm computes the minranks of the subtrees from the leaves to the root, in a

bottom-up manner. The task of computing the minrank of the graph is accomplished

when the computation reaches the root of the compound tree. We end Chapter 5

by mentioning that the minranks of all non-isomorphic graphs of order up to 10
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can be found using a computer program that combines a SAT-based approach and

a Branch-and-Bound approach.

1.3 Organization of this Thesis

The main content of the thesis is organized into six chapters.

Chapter 1 provides a background on the ICSI problem, which is the main subject

of this work. It also summarizes the key results obtained in the thesis and contains

most of the basic definitions and notation used throughout the thesis.

Chapters 2 and 3 discuss the security aspects of scalar linear index codes. Bounds

and constructions for error-correcting index codes and strongly secure index codes

are established. A decoding algorithm for error-correcting index codes is proposed.

Most of the results in these two chapters contain the minrank of a side information

hypergraph (and (di)graph as a special case) in their formulations.

A deeper investigation of the minranks of side information (di)graphs is carried

out in Chapters 4 and 5. The structures of (di)graphs having extreme minranks are

examined. New families of (di)graphs whose minranks can be found in polynomial

time are discovered. Details on the computation of minranks of graphs of small

orders can be found in the Appendix.

The thesis is concluded in Chapter 6. Several intriguing open problems for future

research are proposed.

1.4 Notation and Definitions

1.4.1 Coding Theory Terminology

We use Fq to denote the finite field of q elements, where q is a power of prime. We

denote by F∗
q the set of all nonzero elements of Fq.
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Let [n] = {1, 2, . . . , n}. For the vectors u = (u1, u2, . . . , un) ∈ Fn
q and v =

(v1, v2, . . . , vn) ∈ Fn
q , the (Hamming) distance between u and v is defined to be the

number of coordinates where u and v differ, namely,

d(u,v) = |{i ∈ [n] : ui 6= vi}|.

If u ∈ Fn
q and M ⊆ Fn

q is a set of vectors (for instance, a vector subspace), then the

last definition can be extended to

d(u,M ) = min
v∈M

d(u,v).

The support of a vector u = (u1, u2, . . . , un) ∈ Fn
q is defined to be the set

supp(u) = {i ∈ [n] : ui 6= 0}.

The (Hamming) weight of a vector u, denoted wt(u), is defined to be |supp(u)|, the

number of nonzero coordinates of u. Suppose E ⊆ [n]. We write u C E whenever

supp(u) ⊆ E.

A k-dimensional subspace C of Fn
q is called a linear [n, k, d]q code if the minimum

distance of C ,

d(C )
4

= min
u∈C , v∈C , u 6=v

d(u,v),

is equal to d. Sometimes we may use the notation [n, k]q for the sake of simplicity.

We call n the length and k the dimension of the code. The vectors in C are called

codewords. It is easy to see that the minimum weight of a nonzero codeword in a

linear code C is equal to its minimum distance d(C ). A generator matrix G of an

[n, k]q code C is a k × n matrix whose rows are linearly independent codewords of
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C . Then C = {yG : y ∈ Fk
q}. The parity-check matrix of C is an (n−k)×n matrix

H over Fq such that c ∈ C ⇔ HcT = 0T . Given q, k, and d, let Nq[k, d] denote

the length of the shortest linear code over Fq that has dimension k and minimum

distance d.

The dual code or dual space of C is defined as C ⊥ = {u ∈ Fn
q : ucT =

0 for all c ∈ C }. The minimum distance of C ⊥, namely d(C ⊥), is called the dual

distance of C .

An (n,M, d)q code is an M -subset C of Fn
q that satisfies the property that the

(Hamming) distance between every two distinct vectors of C is at least d. We call

M the size of the code. We, again, call n and d the length and the distance of the

code, respectively. Given q, M , and d, let Nq(M,d) denote the length of a shortest

code of size M and distance d.

The following upper bound on the minimum distance of a q-ary linear code is

well known [49, Chapter 1].

Theorem 1.4.1 (Singleton bound). For an [n, k, d]q code, we have d ≤ n− k + 1.

Codes attaining this bound are called maximum distance separable (MDS) codes.

1.4.2 Linear Algebra Terminology

We use

ei = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

) ∈ Fn
q

to denote the unit vector, which has a one at the ith position, and zeros elsewhere.

For a vector y = (y1, y2, . . . , yn) and a subset B = {i1, i2, . . . , ib} of [n], where

i1 < i2 < · · · < ib, let yB denote the vector (yi1 , yi2 , . . . , yib).

For an n × k matrix M , let M i denote the ith row of M , and M [j] its jth
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column. For a set E ⊆ [n], let ME denote the |E| × k submatrix of M formed by

rows of M which are indexed by the elements of E. For a set F ⊆ [k], let M [F ]

denote the n× |F | submatrix of M formed by columns of M which are indexed by

the elements of F . For a matrix M over Fq, we use rankq(M) to denote the rank

of M over Fq.

For a set of vectors S over Fq, we use notation spanq(S) to denote the linear

space spanned over Fq by the vectors in S.

1.4.3 Graph Theory Terminology

A simple graph is a pair G = (V(G), E(G)) where V(G) is the set of vertices of G and

E(G) is a set of unordered pairs of distinct vertices of G. We refer to E(G) as the set

of edges of G. A typical edge of G is of the form {u, v} where u ∈ V(G), v ∈ V(G),

and u 6= v. If e = {u, v} ∈ E(G) we say that u and v are adjacent. We also refer to

u and v as the endpoints of e.

A simple digraph is a pair D = (V(D), E(D)) where V(D) is the set of vertices of

D, and E(D) is a set of ordered pairs of distinct vertices of D. We refer to E(D) as

the set of arcs (or directed edges) of D. A typical arc of D is of the form e = (u, v)

where u ∈ V(D), v ∈ V(D), and u 6= v. The vertices u and v are called the endpoints

of the arc e. The arc e is called an out-going arc of u and an in-coming arc of v.

Simple (di)graphs have no loops and no parallel (arcs) edges. In this thesis, only

simple (di)graphs are considered. Therefore, we use (di)graphs to refer to simple

(di)graphs for succinctness.

For a digraph D = (V(D), E(D)), unless specified otherwise, we label the vertices

of D by the natural numbers 1, 2, . . . , |V(D)|. In other words, if |V(D)| = n then we

take V(D) = [n]. The number of vertices |V(D)| is called the order of D, whereas

the number of arcs |E(D)| is called the size of D. The complement of a digraph
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D = (V(D), E(D)), denoted by D = (V(D), E(D)), is defined as follows. The vertex

set is V(D) = V(D). The arc set is

E(D) =
{
(u, v) : u ∈ V(D), v ∈ V(D), u 6= v, (u, v) /∈ E(D)

}
.

Analogous conventions and concepts are also defined for graphs.

Given a digraph D = (V(D), E(D)), the graph G = (V(G), E(G)) where V(G) =

V(D) and E(G) =
{
{u, v} : (u, v) ∈ E(D)

}
is called the underlying graph of D.

Given a graph G, the digraph DG obtained from G by replacing each edge {u, v} of

G by two arcs (u, v) and (v, u) is called the digraph corresponding to G.

A digraph D = (V(D), E(D)) is called symmetric if it satisfies the property that

(u, v) ∈ E(D) if and only if (v, u) ∈ E(D). A complete graph is a graph that contains

all possible edges. A complete digraph is a digraph that contains all possible arcs. In

other words, it is a symmetric digraph whose underlying graph is a complete graph.

A graph G = (V(G), E(G)) is called bipartite if V(G) can be partitioned into two

subsets A and B such that for every edge {u, v} ∈ E(G), it holds that u ∈ A and

v ∈ B, or vice versa.

A subgraph of a graph G (digraph D, respectively) is a graph (digraph, respec-

tively) whose vertex set V is a subset of that of G (D, respectively) and whose edge

set (arc set, respectively) is a subset of that of G (D, respectively) restricted on the

vertices in V .

Let V be a subset of vertices of a graph G = (V(G), E(G)) (digraph D =

(V(D), E(D)), respectively). The subgraph of G (D, respectively) induced by V

is a graph (digraph, respectively) whose vertex set is V , and edge set (arc set, re-

spectively) is {{u, v} : u ∈ V, v ∈ V, {u, v} ∈ E(G)} ({(u, v) : u ∈ V, v ∈

V, (u, v) ∈ E(D)}). We refer to such a subgraph as an induced subgraph of G (D,
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respectively).

A path in a graph G (digraph D, respectively) is a sequence of distinct vertices

(u1, u2, . . . , uk), such that {ui, ui+1} ∈ E(G) ((ui, ui+1) ∈ E(D), respectively) for all

i ∈ [k − 1].

A circuit (cycle, respectively) in a digraph D = (V(D), E(D)) (graph G =

(V(G), E(G)), respectively) is a sequence of pairwise distinct vertices

C = (i1, i2, . . . , i`),

where (is, is+1) ∈ E(D) ({is, is+1} ∈ E(G), respectively) for all s ∈ [` − 1] and

(i`, i1) ∈ E(D) ({i`, i1} ∈ E(G), respectively) as well. Let V(C) = {i1, i2, . . . , i`} be

the set of vertices of C. A digraph (graph, respectively) is called acyclic if it contains

no circuits (cycles, respectively).

A (di)graph is called (strongly) connected if there is a path from each vertex

in the (di)graph to every other vertex. The (strongly) connected components of a

(di)graph are its maximal (strongly) connected subgraphs.

An edge e of a graph G is a bridge of G if G − e, the graph obtained from G

by removing e, has more connected components than G. In particular, an edge

e in a connected graph G is a bridge if and only if its removal renders the graph

disconnected. A connected graph without any bridge (bridgeless) is called 2-edge

connected.

A cut C = (S, T ) of a graph G is a partition of the vertex set V(G) of G into two

parts S and T . The cut-set of a cut C = (S, T ) is the set

{
{u, v} ∈ E(G) : u ∈ S, v ∈ T

}
.
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The size of a cut is the number of edges in its cut-set. A min-cut is a cut whose size

is not larger than the size of any other cut. If a connected graph is bridgeless then

the size of each min-cut is at least two.

If (u, v) is an arc in a digraph D = (V(D), E(D)), then v is called an out-neighbor

of u. The set of out-neighbors of a vertex u in the digraph D is denoted by ND
O (u).

We simply use NO(u) whenever there is no potential confusion. We refer to |ND
O (u)|

as the out-degree of u in D, denoted by degDO(u). For a graph G, we denote by NG(u)

the set of neighbors of u, namely, the set of vertices adjacent to u.

An independent set in a graph G is a set of vertices of G with no edges connecting

any two of them. An independent set in G of largest cardinality is called a maximum

independent set in G. The cardinality of such a maximum independent set is referred

to as the independence number of G, denoted by α(G).

A clique of a (di)graph is a set of vertices that induces a complete subgraph of

that (di)graph. A clique cover of a (di)graph is a set of cliques that partition its

vertex set. A minimum clique cover of a (di)graph is a clique cover of minimum

number of cliques. The number of cliques in such a minimum clique cover of a

(di)graph is called the clique cover number of that (di)graph. We denote by cc(G)

the clique cover number of a graph G and cc(D) the clique cover number of a digraph

D.

A tree is a connected acyclic graph. A rooted tree is a tree with one special vertex

designated to be the root. In a rooted tree, the parent of a vertex v is the vertex

connected to it on the path from v to the root. Every vertex except the root has a

unique parent. If v is the parent of a vertex u then u is the child of v.

Definition 1.4.2 ([34]). Let D = (V(D), E(D)) be a digraph of order n.
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1. An n× n matrix M = (mi,j) over an arbitrary field F is said to fit D if





mi,j 6= 0, i = j,

mi,j = 0, i 6= j, (i, j) /∈ E(D).

2. The minrank of D over F is defined to be

minrkF(D) = min{rankF(M) : M is over F and M fits D}

When F = Fq, we simply write minrkq(D) instead of minrkFq
(D). We also have

analogous definitions for a graph.

A (directed) hypergraph is a pair (V , E), where V is a set of vertices and E is a set

of hyperacrs. A hyperarc e itself is an ordered pair (T,H), where T and H are both

subsets of V . They respectively represent the tail and the head of the hyperarc e.

If T = {v}, i.e., T consists of only one vertex v, then we simply write (v,H) instead

of ({v}, H).

1.4.4 Information Theory Terminology

Let X and Y be discrete random variables taking values in the sets ΣX and ΣY ,

respectively. Let Pr(X = x) denote the probability that X takes a particular value

x ∈ ΣX . The following notation is standard in Information Theory (see [20] for the

background).

The (binary) entropy of X is defined as

H(X) = −
∑

x∈ΣX

Pr(X = x)× log2 Pr(X = x).
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The conditional entropy of X given Y is defined as

H(X | Y ) = −
∑

x∈ΣX ,y∈ΣY

Pr(X = x, Y = y)× log2 Pr(X = x | Y = y).

This definition can be naturally extended to H(X | Y1, Y2, . . . , Yn) for n discrete

random variables Yi, i ∈ [n].

If the probability distribution of X is unchanged given the knowledge of Y ,

that is, Pr(X = x|Y = y) = Pr(X = x) for all x ∈ ΣX and y ∈ ΣY , then

H(X | Y ) = H(X). Indeed,

H(X | Y ) = −
∑

x∈ΣX

(
∑

y∈ΣY

Pr(X = x, Y = y)

)
× log2 Pr(X = x)

= −
∑

x∈ΣX

Pr(X = x)× log2 Pr(X = x)

= H(X).



2. SECURE INDEX CODE WITH SIDE INFORMATION

Part of the work in this chapter was presented in the 2011 IEEE Symposium on

Information Theory [22]. We investigate the security aspects of the Index Coding

with Side Information problem. Building on the results of Bar-Yossef et al. [3,4], the

properties of linear index codes are further explored. The notion of weak security,

considered by Bhattad and Narayanan [9] in the context of network coding, is gen-

eralized to block security. It is shown that the linear index code based on a matrix

L, whose column space C(L) has length n, minimum distance d and dual distance

d⊥, is (d− 1− t)-block secure (and hence also weakly secure) if the adversary knows

in advance t ≤ d− 2 messages, and is completely insecure if the adversary knows in

advance more than n− d⊥ messages. Strong security is examined under the circum-

stance that the adversary possesses some t messages in advance and eavesdrops at

most µ transmissions. We prove that for sufficiently large q, an optimal linear index

code that is strongly secure against such an adversary has length κq + µ. Here κq is

a generalization (to the case of hypergraph) of the minrank over Fq of the side infor-

mation digraph for the ICSI problem in its original formulation [3]. As mentioned

earlier in Section 1.2, both block security and strong security are, in fact, special

cases of a more general security model called security against guessing, which was

also introduced in the work of Bhattad and Narayanan [9].
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2.1 Index Coding and Some Basic Results

In Chapter 2 and Chapter 3, we follow the most general model studied by Alon

et al. [2]. The Index Coding with Side Information (ICSI) problem considers the

following communications scenario. There is a unique sender S, who has a vector

of messages x = (x1, x2, . . . , xn) ∈ Fn
q in his possession, which is a realized value

of a random vector X = (X1, X2, . . . , Xn). The random variables X1, X2, . . . , Xn

hereafter are assumed to be independent uniformly distributed random variables

over Fq. There are also m receivers R1, R2, . . . , Rm. For each i ∈ [m], the receiver

Ri has some side information, that is, Ri has a subset of messages {xj}j∈Xi
, where

Xi ( [n]. In addition, each Ri, for i ∈ [m], is interested in receiving the message

xf(i), for some demand function f : [m] → [n]. Here we assume that f(i) /∈ Xi for

all i ∈ [m]. The assumption that each receiver is interested in exactly one message

is not a limitation of the model. In fact, we can consider an equivalent problem by

splitting each receiver who requests multiple messages into multiple receivers, each

of whom requests exactly one message and have the same set of side information

[3, 10]. Let X = (X1,X2, . . . ,Xm). An instance of the ICSI problem (or an ICSI

instance, for short) is given by a quadruple (m,n,X , f). It can also be conveniently

described by a (directed) hypergraph [2].

Definition 2.1.1. Let (m,n,X , f) be an ICSI instance. The corresponding side

information (directed) hypergraph H = H(m,n,X , f) is defined by the vertex set

V(H) = [n] and the hyperarc set E(H), where

E(H) =
{(

f(i),Xi

)
: i ∈ [m]

}
.

We often refer to (m,n,X , f) as an ICSI instance described by the hypergraph H.
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Fig. 2.1: The hypergraphs H1, H2 and the digraph D2

For instance, consider an ICSI instance where n = 3 (three messages), m = 4

(four receivers), f(1) = 1, f(2) = 2, f(3) = 3, f(4) = 2, X1 = {2, 3}, X2 = {1},

X3 = {1, 2}, and X4 = {3}. The hypergraph H1 that describes this instance has

three vertices 1, 2, 3, and has four hyperarcs. These are e1 = (1, {2, 3}), e2 = (2, 1),

e3 = (3, {1, 2}), and e4 = (2, 3). This hypergraph is depicted in Fig. 2.1a.

Remark 2.1.2. In the original setting of the ICSI problem [3], we have m = n and

f(i) = i for all i ∈ [n]. In that case, the corresponding side information hypergraph

has precisely n hyperarcs where each of them has a different origin vertex. Then it

is simpler to describe such an ICSI instance by a digraph D = (V(D) = [n], E(D)),

so-called side information digraph [3, 46]. For each hyperarc (i,Xi) of H, there will

be |Xi| arcs (i, j) of D, for j ∈ Xi. Equivalently, E(D) = {(i, j) : i, j ∈ [n], j ∈ Xi}.

In this case, we refer to D as the underlying digraph of the hypergraph H.

As an example, let H2 (Fig. 2.1b) be the hypergraph obtained from H1 by

deleting the hyperarc e4. The hypergraph H2 describes the ICSI instance obtained

from the aforementioned instance by removing the last receiver. This new ICSI

instance can also be described by the side information digraph D2 (Fig. 2.1c).

Furthermore, when it satisfies that xj ∈ Xi if and only if xi ∈ Xj for all i 6= j,

the side information digraph D is symmetric, that is, (i, j) ∈ E(D) if and only if

(j, i) ∈ E(D). In that case, we may consider the underlying graph G of D instead,
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which is referred to as the underlying graph of the hypergraph H. We also call G

the side information graph of the corresponding ICSI instance.

Definition 2.1.3. An index code over Fq for an ICSI instance (m,n,X , f) (or just

an (m,n,X , f)-IC over Fq), is an encoding function

E : Fn
q → FN

q ,

such that for each receiver Ri, i ∈ [m], there exists a decoding function

Di : FN
q × F|Xi|

q → Fq,

satisfying

∀x ∈ Fn
q : Di(E(x),xXi

) = xf(i).

We also refer to such an (m,n,X , f)-IC over Fq as an H-IC over Fq, where H =

H(m,n,X , f) is the corresponding side information hypergraph. The parameter N

is called the length of the index code. In the scheme corresponding to this code, S

broadcasts a vector E(x) of length N over Fq.

Definition 2.1.4. An index code of minimum length is called optimal.

Definition 2.1.5. A linear index code is an index code for which the encoding

function E is a linear transformation over Fq. Such a code can be described as

∀x ∈ Fn
q : E(x) = xL,

where L is an n×N matrix over Fq. The matrix L is called the matrix corresponding
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to the index code E. We also refer to E as the index code based on L. Notice that

the length of E is the number of columns of L.

Let E ⊆ [n] and u ∈ Fn
q . Recall that uCE means supp(u) ⊆ E. If some receiver

knows xj for all j ∈ E and uCE, then this receiver can compute the value of xuT.

Hereafter, we assume that the sets Xi’s for i ∈ [m] are known to S. Moreover,

we also assume that the index code E is known to each receiver Ri for i ∈ [m].

In practice this can be achieved by a preliminary communication session, when the

knowledge of the sets Xi’s for i ∈ [m] and of the code E are disseminated between

the participants of the scheme.

Let

C(L) = spanq

({
L[j]T

}
j∈[N ]

)
,

the subspace spanned by the transposed columns of L. The following lemma was

implicitly formulated by Bar-Yossef et al. [3, 4] for the case where m = n, f(i) = i

for all i ∈ [m], and q = 2. This lemma specifies a sufficient condition on C(L) so

that L corresponds to a linear (m,n,X , f)-IC over Fq. We reproduce this lemma

with its proof in its general form for the sake of completeness of the presentation.

Lemma 2.1.6. Let L be an n × N matrix over Fq and suppose S broadcast xL.

Then, for each i ∈ [m], the receiver Ri can reconstruct xf(i) if there exists a vector

u(i) ∈ Fn
q satisfying

1. u(i) C Xi;

2. u(i) + ef(i) ∈ C(L).

Proof. Assume that u(i)CXi and u(i)+ef(i) ∈ C(L). Since u(i)+ef(i) ∈ C(L), there
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exists β ∈ FN
q such that

u(i) + ef(i) = βLT.

By taking the transpose and pre-multiplying by x, we obtain

x(u(i) + ef(i))
T = (xL)βT.

Therefore,

xf(i) = xeT
f(i) = (xL)βT − xu(i)T.

Observe that Ri is able to find u(i) and β from the knowledge of L. Moreover, Ri

is also able to compute xu(i)T since u(i) C Xi, and receives xL from S. Therefore,

Ri is able to determine xf(i). �

Remark 2.1.7. Lemma 2.1.6 implies that L corresponds to a linear (m,n,X , f)-IC

over Fq if C(L) ⊇ spanq
(
{u(i) + ef(i)}i∈[m]

)
, for some u(i) C Xi, i ∈ [m]. We show

later in Corollary 2.2.6 that this condition is also necessary. Finding such an L with

minimum number of columns by a careful selection of u(i)’s is a difficult task (in

fact, the corresponding decision problem is NP-complete [3, 53]), which, however,

yields a linear coding scheme with minimum number of transmissions.

2.2 Block Secure Linear Index Codes

2.2.1 Block Security and Weak Security

In this section, we assume the presence of an adversary A who can listen to all trans-

missions. Assume that S employs a linear index code based on L. The adversary

is assumed to possess side information {xj}j∈XA
, where XA ( [n]. For short, we say

that A knows or possesses xXA
. The strength of the adversary A is defined to be
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|XA|. Denote X̂A
4

= [n] \ XA. Note that by listening to S, the adversary also knows

s = xL. We define below several levels of security for linear index codes.

Definition 2.2.1. Suppose that the sender S possesses a vector of messages x ∈ Fn
q ,

which is a realized value of a random vector X. An adversary A possesses xXA
.

Consider a linear (m,n,X , f)-IC over Fq based on L.

1. For B ⊆ X̂A, the adversary is said to have no information about xB if

H(XB |XL,XXA
) = H(XB). (2.1)

In other words, despite the partial knowledge on x that the adversary has (his

side information and the transmissions he eavesdrops), the symbols xB still

look completely random to him.

2. The index code is said to be b-block secure against XA if for every b-subset

B ⊆ X̂A (a b-subset is a subset of size b), the adversary has no information

about xB.

3. The index code is said to be b-block secure against all adversaries of strength

t (0 ≤ t ≤ n − 1) if it is b-block secure against XA for every XA ⊂ [n], where

|XA| = t.

4. The index code is said to be weakly secure against XA if it is 1-block secure

against XA. In other words, after listening to all transmissions, the adversary

has no information about each particular message that he does not possess in

the first place.

5. The index code is said to be weakly secure against all adversaries of strength t

(0 ≤ t ≤ n− 1) if it is weakly secure against XA for every t-subset XA of [n].
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6. The index code is said to be completely insecure against XA if an adversary,

who possesses {xi}i∈XA
, by listening to all transmissions, is able to determine

xi for all i ∈ X̂A.

7. The index code is said to be completely insecure against any adversary of

strength t (0 ≤ t ≤ n − 1) if an adversary, who possesses an arbitrary set of

t messages, is always able to reconstruct all of the other n− t messages after

listening to all transmissions.

Remark 2.2.2. Even when the index code is b-block secure (b ≥ 1) as defined

above, the adversary is still able to obtain information about dependencies between

various xi’s in X̂A (but he gains no information about any group of b particular

messages). This definition of b-block security is a generalization of that of weak

security [9,58]. Obviously, if an index code is b-block secure against XA (b ≥ 1) then

it is also weakly secure against XA, but the converse is not always true.

2.2.2 Necessary and Sufficient Conditions for Block Security

In the sequel, we consider the sets B ⊆ [n], where B 6= ∅, and E ⊆ [n], where

E 6= ∅. Moreover, we assume that the sets XA, B, and E are disjoint, and that they

form a partition of [n], namely XA ∪ B ∪ E = [n]. Hence, X̂A = [n] \ XA = B ∪ E.

Here, XA corresponds to the set of messages that the adversary A possesses, B

corresponds to the set of messages that A is trying to gain information about, and

E corresponds to the set of remaining messages.

Lemma 2.2.3. Assume that for all uCXA and for all αi ∈ Fq, i ∈ B (not all αi’s

are zeros),

u+
∑

i∈B

αiei /∈ C(L). (2.2)
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Then,

1. for all i ∈ B:

Li ∈ spanq
(
{Lj}j∈E

)
; (2.3)

2. the system

yLE = wLB (2.4)

has at least one solution y ∈ F
|E|
q for every choice of w ∈ F

|B|
q .

Proof.

1. If rankq(LE) = N then the first claim follows immediately. Otherwise, assume

that rankq(LE) < N . As the N columns of LE are linearly dependent, there

exists y ∈ FN
q \ {0} such that yLT

E = 0.

(a) If for all such y and for all i ∈ B we have yLT
i = 0, then

Li ∈
((

spanq ({Lj}j∈E)
)⊥)⊥

= spanq
(
{Lj}j∈E

)

for all i ∈ B.

(b) Otherwise, there exist y ∈ FN
q and i ∈ B such that yLT

E = 0 and

yLT
i 6= 0. Without loss of generality, assume that

L =




LXA

LB

LE



.

Let c = yLT ∈ C(L). Then

c = (cXA
|cB|cE) =

(
yLT

XA

∣∣yLT
B

∣∣yLT
E

)
.
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Hence cB = yLT
B 6= 0 and cE = yLT

E = 0. Let u = (cXA
|0|0)C XA and

αi = ci for all i ∈ B. Then αi’s are not all zero and u+
∑

i∈B αiei = c ∈

C(L), which contradicts (2.2).

2. By (2.3), each row of LB is a linear combination of rows of LE. Hence wLB

is also a linear combination of rows of LE. Therefore, (2.4) has at least one

solution. �

The following lemma provides us with a criterion to decide whether the index

code based on a particular matrix L is block secure against an adversary A.

Lemma 2.2.4. Suppose that S employs a linear (m,n,X , f)-IC over Fq based on L.

For a subset B ⊆ X̂A = [n] \ XA, the adversary, after listening to all transmissions,

has no information about xB if and only if

∀uC XA, ∀αi ∈ Fq with αi, i ∈ B, not all zero:

u+
∑

i∈B

αiei /∈ C(L).
(2.5)

In particular, for each i /∈ XA, the adversary A has no information about xi if and

only if

∀uC XA : u+ ei /∈ C(L).

Proof. Assume that (2.5) holds. We need to show that the entropy of XB is not

changed given the knowledge of XL and XXA
. It suffices to show that for all

g ∈ F
|B|
q :

Pr(XB = g |XL = s, XXA
= xXA

) =
1

q|B|
, (2.6)

where x ∈ Fn
q and s = xL.
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Consider the following linear system with the unknown z ∈ Fn
q





zB = g

zXA
= xXA

zL = s

,

which is equivalent to





zB = g

zXA
= xXA

zELE = s−gLB−xXA
LXA

. (2.7)

In order to prove that (2.6) holds, it suffices to show that for all choices of

g ∈ F
|B|
q , (2.7) always has the same number of solutions z. Notice that the number

of solutions z of (2.7) is equal to the number of solutions zE of

zELE = s− gLB − xXA
LXA

, (2.8)

where s, g, and xXA
are known. For any g ∈ F

|B|
q , if (2.8) has a solution, then it

has exactly q|E|−rankq(LE) different solutions. Therefore, it suffices to prove that (2.8)

has at least one solution for every g ∈ F
|B|
q .

Since s = xL, we have

xELE = s− xBLB − xXA
LXA

. (2.9)
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Subtracting (2.9) from (2.8) we obtain

(zE − xE)LE = (xB − g)LB,

which can be rewritten as

yLE = wLB, (2.10)

where y
4

= zE − xE and w
4

= xB − g. Due to Lemma 2.2.3, (2.10) always has a

solution y, for every choice of w. Therefore (2.8) has at least one solution for every

g ∈ F
|B|
q .

Now we prove the converse. Assume that (2.5) does not hold. Then there exist

uC XA and αi ∈ Fq for i ∈ B, where αi’s for i ∈ B are not all zero, such that

∑

i∈B

αiei = c− u,

for some c ∈ C(L). Hence, similarly to the proof of Lemma 2.1.6, the adversary

obtains
∑

i∈B

αixi = x

(
∑

i∈B

αiei

)T

= x(c− u)T = xcT − xuT.

Note that the adversary can calculate xcT from s, and can also find xuT based

on his own side information. Therefore, A is able to compute a nontrivial linear

combination of xi’s, i ∈ B. Hence the entropy H(XB |XL,XXA
) < H(XB). Thus,

the adversary gains some information about the xB. �

The following corollary generalizes Lemma 2.1.6 by providing a necessary and

sufficient condition for a receiver’s ability to recover the desired message. Equiva-

lently, it provides a necessary and sufficient condition for a receiver (or an adversary)

to have no information about a particular message. Observe that, for one particular
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message, a receiver (or an adversary) can recover that message or otherwise has no

information about it.

Corollary 2.2.5. Let L be an n×N matrix over Fq and let S broadcast xL. Then

for each i ∈ [m], the receiver Ri can reconstruct xf(i) if and only if there exists a

vector u(i) ∈ Fn
q such that

1. u(i) C Xi;

2. u(i) + ef(i) ∈ C(L).

Equivalently, the receiver Ri (or any adversary that owns xXi
) has no information

about xf(i) if and only if the above condition is not satisfied.

Proof. The second statement is a reformulation of the last assertion in Lemma 2.2.4.

The first statement is proved as follows. Suppose that there exists a vector u(i) ∈ Fn
q

satisfying the two stated conditions. By Lemma 2.1.6, the receiver Ri can determine

xf(i). Conversely, suppose that Ri can reconstruct xf(i). Then the aforementioned

condition must be satisfied, for otherwise, Ri would have no information about

xf(i). �

Corollary 2.2.6. The matrix L corresponds to a linear (m,n,X , f)-IC over Fq if

and only if for all i ∈ [m], there exists a vector u(i) ∈ Fn
q satisfying

1. u(i) C Xi;

2. u(i) + ef(i) ∈ C(L).
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Definition 2.2.7. Let H = H(m,n,X , f) be the hypergraph that describes an ICSI

instance (m,n,X , f). The minrank over Fq of H is defined to be

κq(H) = κq(m,n,X , f)
4

= min
{
rankq

(
{u(i) + ef(i)}i∈[m]

)
: u(i) ∈ Fn

q ,u
(i)
C Xi

}
,

(2.11)

We simply write κq when there is no potential confusion.

1 2

3

e1

e3

e2

e4

Fig. 2.2: The hypergraph H1

For instance, let us consider the hypergraph H1 (Fig. 2.2) that describes the

following ICSI instance: n = 3 (three messages), m = 4 (four receivers), f(1) = 1,

f(2) = 2, f(3) = 3, f(4) = 2, X1 = {2, 3}, X2 = {1}, X3 = {1, 2}, and X4 = {3}.

It is straightforward to verify that κ2(H1) = 2. We may select u(1) = (0, 1, 1),

u(2) = (0, 0, 0), u(3) = (1, 1, 0), and u(4) = (0, 0, 0). Then

rank2({u
(1) + e1,u

(2) + e2,u
(3) + e3,u

(4) + e2})

= rank2{(1, 1, 1), (0, 1, 0), (1, 1, 1), (0, 1, 0))}

= 2.

It follows from Corollary 2.2.6 that L corresponds to a linear (m,n,X , f)-IC

over Fq if and only if C(L) ⊇ spanq({u
(i) + ef(i)}i∈[m]), for some u(i) C Xi, i ∈ [m].

Therefore, κq(m,n,X , f) is the shortest possible length of a linear (m,n,X , f)-IC

over Fq.
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Corollary 2.2.8. The length of an optimal linear (m,n,X , f)-IC over Fq is κq =

κq(m,n,X , f).

When m = n and f(i) = i for all i ∈ [n], the quantity κq is precisely the minrank

over Fq of the side information digraph D, which was introduced by Haemers [34]

(see also [3]). Indeed, suppose that u(i)CXi for all i ∈ [n] and let A = (ai,j) be the

n× n matrix whose ith row is precisely u(i) + ei, i ∈ [n]. Recall from Remark 2.1.2

that D = (V(D), E(D)), where V(D) = [n] and

E(D) =
{
e = (i, j) : i, j ∈ [n], j ∈ Xi

}
.

Then A fits D, that is,





ai,j 6= 0, i = j,

ai,j = 0, i 6= j, (i, j) /∈ E(D).

Conversely, if A′ fits D then by multiplying each row of A′ with a suitable nonzero

constant (which does not change the rank of A′), one obtains a matrix A which

is of the aforementioned form. Therefore, κq defined as in (2.11) is indeed the

minimum rank over Fq of a matrix that fits the side information graph D. Thus, by

Definition 1.4.2, κq is precisely the minrank over Fq of D.

Theorem 2.2.9. Consider a linear (m,n,X , f)-IC over Fq based on L. Let d be

the minimum distance of C(L).

1. This index code is (d − 1 − t)-block secure against all adversaries of strength

t ≤ d− 2. In particular, it is weakly secure against all adversaries of strength

t = d− 2.
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2. This index code is not weakly secure against at least one adversary of strength

t = d− 1. More generally, if there exists a codeword of C(L) of weight w, then

this index code is not weakly secure against at least one adversary of strength

t = w − 1.

3. Every adversary of strength t ≤ d− 1 is able to find a list of qn−t−N vectors in

Fn
q which includes the vector of messages x.

Proof.

1. Assume that t ≤ d − 2. By Lemma 2.2.4, it suffices to show that for every

t-subset XA of [n] and for every (d− 1− t)-subset B of X̂A = [n] \ XA,

∀uC XA, ∀αi ∈ Fq with αi, i ∈ B, not all zero :

u+
∑

i∈B

αiei /∈ C(L).
(2.12)

For such u and αi’s, we have wt(u +
∑

i∈B αiei) ≤ wt(u) + wt(
∑

i∈B αiei) ≤

t + (d − 1 − t) = d − 1 < d. Moreover, as supp(u) ∩ B = ∅ and αi’s,

i ∈ B, are not all zero, we deduce that u+
∑

i∈B αiei 6= 0. We conclude that

u+
∑

i∈B αiei /∈ C(L).

2. We now show that the index code is not weakly secure against at least one

adversary of strength t = d− 1. The more general statement can be proved in

an analogous way.

Pick a codeword c = (c1, c2, . . . , cn) ∈ C(L) such that wt(c) = d and let

supp(c) = {i1, i2, . . . , id}. Take XA = {i1, i2, . . . , id−1}, where |XA| = d − 1.

Let

u = (c/cid − eid).
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Then, u C XA and u + eid = c/cid ∈ C(L). By Lemma 2.1.6, A is able to

determine xid . Hence the index code is not weakly secure against the adversary

A, who knows d− 1 messages xi’s in advance.

3. Consider the following linear system of equations with unknown z ∈ Fn
q





zXA
= xXA

zL = s

,

which is equivalent to





zXA
= xXA

zX̂A
LX̂A

= s− xXA
LXA

. (2.13)

The adversary A attempts to solve this system. Given that s and xXA
are

known, the system (2.13) has n − t unknowns and N equations. Note that

t ≤ d − 1, and thus by applying Theorem 1.4.1 to C(L) we have n − t ≥

n − d + 1 ≥ N . If rankq(LX̂A
) = N then (2.13) has exactly qn−t−N solutions,

as required.

Next, we show that rankq(LX̂A
) = N . Assume, by contrary, that the N (trans-

posed) columns of LX̂A
, denoted by c(1), c(2), . . . , c(N), are linearly dependent.

Then there exist βi ∈ Fq for i ∈ [N ], not all zero, such that
∑N

i=1 βic
(i) = 0.

Let

c =
N∑

i=1

βiL[i]T ∈ C(L) \ {0}.

(Recall that L[i] denotes the ith column of L). Then cX̂A
=
∑N

i=1 βic
(i) = 0

and hence wt(c) = wt(cXA
) ≤ t ≤ d− 1. This is a contradiction, which follows
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from the assumption that the N rows of LX̂A
are linearly dependent. �

Example 2.2.10. Let q = 2. Assume that XA = ∅ and that Xi 6= ∅ for all

i ∈ [m]. For each i ∈ [m] choose some ji ∈ Xi. Let L be the binary matrix whose

(transposed) columns form a basis of the space C(L) = spanq
(
{eji + ef(i)}i∈[m]

)
.

Then d(C(L)) = 2. Since t = |XA| = 0, we have d − 1 − t = 1. Therefore by

Theorem 2.2.9 the index code based on L is weakly secure against A. Moreover, by

the Singleton bound, L has at most N ≤ n−d+1 = n−1 columns. In other words,

the index code based on L requires at most n− 1 transmissions.

2.2.3 Complete Insecurity

Theorem 2.2.9 provides a threshold for the security level of a linear index code based

on L. If A has a prior knowledge of any t ≤ d−2 messages, where d = d(C(L)), then

the index code is still secure, that is, the adversary has no information about any

d−1− t particular messages from {xj}j∈X̂A
. On the other hand, the index code may

no longer be secure against an adversary of strength t = d − 1. The last assertion

of Theorem 2.2.9 shows us the difference between being block secure and being

strongly secure (we define the strong security rigorously later in Definition 2.4.2).

More specifically, if the index code is strongly secure, the messages xX̂A
, which are

not leaked to the adversary in advance, look completely random to the adversary,

that is, the probability to guess them correctly is 1/qn−t. However, if the index code

is (d− 1− t)-block secure (for t ≤ d− 2), then the adversary is able to guess these

messages correctly with probability 1/qn−t−N .

For an adversary of strength t ≥ d, the security of the index code depends on

the properties of L, in particular, it depends on the weight distribution of C(L).

From Theorem 2.2.9, if there exists c ∈ C(L) with wt(c) = w, then the index code
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is not weakly secure against some adversary of strength t = w − 1. In general,

the index code might still be (b-block or weakly) secure against some adversaries of

strength t for t ≥ d. While we cannot make a general conclusion on the security of

the index code when the adversary’s strength is larger than d − 1, Lemma 2.2.4 is

still a useful tool to evaluate the security in that situation. However, as shown in

Theorem 2.2.12, if the size of XA is sufficiently large, then A is able to determine all

the messages in {xj}j∈X̂A
. We first recall the following well-known result in coding

theory.

Theorem 2.2.11 ([37], p. 66). Let C be an [n, k, d]q code with dual distance d⊥ and

M denote the qk × n matrix whose qk rows are codewords of C. If r ≤ d⊥ − 1 then

each r-tuple from Fq appears in an arbitrary set of r columns of M exactly qk−r

times.

Theorem 2.2.12. The linear index code based on L is completely insecure against

any adversary of strength t ≥ n − d⊥ + 1, where d⊥ denotes the dual distance of

C(L).

Proof. Suppose the adversary knows a subset {xj}j∈XA
, where XA ( [n] and |XA| =

t ≥ n − d⊥ + 1. By Corollary 2.2.5, it suffices to show that for all j ∈ X̂A, there

exists u ∈ Fn
q satisfying simultaneously uC XA and u+ ej ∈ C(L).

Indeed, take any j ∈ X̂A, and let ρ = n− t ≤ d⊥− 1. Consider the ρ indices that

are not in XA. By Theorem 2.2.11, there exists a codeword c ∈ C(L) with

c` =





1 if ` = j,

0 if ` /∈ XA ∪ {j}

.

Then supp(c) ⊆ XA ∪ {j}. We define u ∈ Fn
q such that u C XA as follows. For
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` ∈ XA, we set u` = c`, and for ` /∈ XA, we set u` = 0. It is immediately clear that

c = u + ej. Therefore, by Corollary 2.2.5, the adversary can reconstruct xj. We

have shown that the index code is completely insecure against an arbitrary set XA

satisfying |XA| ≥ n− d⊥ + 1, hence completing the proof. �

When C(L) is an MDS code, we have n − d⊥ + 1 = d − 1, and hence the

two bounds established in Theorems 2.2.9 and 2.2.12 are actually tight. In that

case, the third statement in Theorem 2.2.9 implies Theorem 2.2.12 as follows. This

statement asserts that an adversary of strength t = d− 1 can find a list of qn−N−d+1

vectors that includes the vector of messages x. Since C(L) is an MDS code, we have

n − N − d + 1 = 0. Therefore, the list contains only one element, namely x itself.

Thus the index code is completely insecure against any adversary of strength d− 1.

The following example further illustrates the results stated in these theorems.

Example 2.2.13. Let n = 7, m = 7, q = 2, and f(i) = i for all i ∈ [m]. Suppose

that the receivers have in their possession sets of messages as appear in the third

column of the table below. Suppose also, that the demands of all receivers are as in

the second column of the table.

Receiver Demand {xj}j∈Xi

R1 x1 {x6, x7}

R2 x2 {x5, x7}

R3 x3 {x5, x6}

R4 x4 {x5, x6, x7}

R5 x5 {x1, x2, x6}

R6 x6 {x1, x3, x4}

R7 x7 {x2, x3, x6}



2. Secure Index Code with Side Information 41

For i ∈ [7], let u(i) ∈ F7
2 such that supp(u(i)) = Xi. Assume that an index code

based on L with C(L) = spanq
({

u(i) + ei

}
i∈[7]

)
is used. For instance, we can take

L to be the matrix whose set of columns is
{
L[i]

4

= (u(i) + ei)
T
}
i∈[4]

. It is easy to

see that C(L) is a [7, 4, 3]2 Hamming code with d = 3 and d⊥ = 4.

Following the coding scheme, S broadcasts the following four bits:

s1 = x(u(1) + e1)
T,

s2 = x(u(2) + e2)
T,

s3 = x(u(3) + e3)
T,

s4 = x(u(4) + e4)
T.

Each Ri for i ∈ [7], can compute x(u(i) + ei)
T by using a linear combination

of s1, s2, s3, s4. Then, each Ri can subtract x(u(i))T (his side information) from

x(u(i) + ei)
T to retrieve xi = xeT

i .

For example, consider R5. Since

x
(
u(5) + e5

)T
= x

(
(u(1) + e1) + (u(2) + e2)

)T
= s1 + s2,

R5 subtracts x1 + x2 + x6 from s1 + s2 to obtain

(s1 + s2)− (x1 + x2 + x6) = (x1 + x2 + x5 + x6)− (x1 + x2 + x6) = x5.

If an adversary A has knowledge of a single message xi, then by Theorem 2.2.9,

A is not able to determine any other message x`, for ` 6= i. Indeed, d(C(L)) = 3,

while t = 1, the code is weakly secure against all adversaries of strength t = 1. If

none of the messages are leaked, then the adversary has no information about any

group of 2 messages. On the other hand, the code is completely insecure against

any adversary of strength t ≥ 4; in that case A is able to determine the remaining
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7− t messages.

2.3 Index Coding with Side and Restricted Information

Results on the block security of a linear index code can be employed to study the lin-

ear coding schemes for an extension of the ICSI problem, so-called the Index Coding

with Side and Restricted Information (ICSRI) problem. An instance (m,n,X ,Z, f)

of the ICSRI problem consists of almost the same parameters as that of the ICSI

problem. The only new parameter, which is Z = (Z1,Z2, . . . ,Zm), represents the

sets of messages that the receivers are not allowed to obtain. The goal is that at

the end of the communication round, for each i ∈ [m], the receiver Ri obtains the

message xf(i) and has no information about xj for all j ∈ Zi. The notion of a linear

(m,n,X , f)-IC over Fq is naturally extended to that of a linear (m,n,X ,Z, f)-IC

over Fq.

Let

F(m,n,X ,Z, f)
4

=
m⋃

i=1

{
u+ ej : uC Xi, j ∈ Zi

}
.

The following proposition provides a necessary and sufficient condition for a linear

index code to be also a solution to an instance of the ICSRI problem.

Proposition 2.3.1. The linear (m,n,X , f)-IC over Fq based on L is also a linear

(m,n,X ,Z, f)-IC if and only if C(L) ∩ F(m,n,X ,Z, f) = ∅.

Proof. Let S employ the (m,n,X , f)-IC over Fq based on L. Then clearly Ri can

recover xf(i) for all i ∈ [m]. Due to Lemma 2.2.4, for each i ∈ [m] and j ∈ Zi, the

receiver Ri has no information about xj if and only if

∀uC Xi : u+ ej /∈ C(L).
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Hence we complete the proof. �

Example 2.3.2. Consider an instance (m,n,X ,Z, f) of the ICSRI problem where

m, n, X , and f are defined as in Example 2.2.13. Moreover, Z = (Z1,Z2, . . . ,Z7),

where Z1 = {2, 3, 4, 5}, Z2 = {1, 3, 4, 6}, Z3 = {1, 2, 4, 7}, and Z4 = Z5 = Z6 =

Z7 = ∅. Consider the index code based on L constructed in Example 2.2.13.

It is straightforward to verify that C(L) ∩ F(m,n,X ,Z, f) = ∅. Therefore, by

Proposition 2.3.1, this index code also provides a solution to this instance of the

ICSRI problem.

Let

κq = κq(m,n,X ,Z, f)
4

= min
{
rankq

(
{u(i) + ef(i)}i∈[m]

)}
,

where the minimum is taken over all choices of u(i) C Xi that satisfy

spanq
(
{u(i) + ef(i)}

)
∩ F(m,n,X ,Z, f) = ∅. (2.14)

Let κq = +∞ if there are no choices of u(i)’s that satisfy (2.14). Then the following

proposition is immediate.

Proposition 2.3.3. If κq < +∞ then the length of an optimal linear (m,n,X ,Z, f)-

IC over Fq is κq. If κq = +∞ then there does not exist a linear (m,n,X ,Z, f)-IC

over Fq.

2.4 Strongly Secure Index Code with Side Information

In this section, we consider a less powerful adversary, who owns some prior side

information and eavesdrops at most µ transmissions.
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2.4.1 A Lower Bound on the Length of a Strongly Secure Index Code

We start this section with a generalization of the definition of index codes to that

of randomized index codes. Consider η ∈ N random variables G1, G2, . . . , Gη, which

are distributed independently and uniformly over Fq. Let G = (G1, G2, . . . , Gη) and

let g = (g1, g2, . . . , gη) be a realization of G.

Definition 2.4.1. An η-randomized (m,n,X , f)-IC over Fq for an ICSI instance

(m,n,X , f) is an encoding function

E : Fn
q × Fη

q → FN
q ,

such that for each receiver Ri, i ∈ [m], there exists a decoding function

Di : FN
q × F|Xi|

q → Fq,

satisfying

∀x ∈ Fn
q : Di(E(x, g),xXi

) = xf(i),

for every g ∈ Fη
q , which is a realization of the random vector G.

An η-randomized index code is linear over Fq if it has a linear encoding function

E,

E(x, g) = (x|g)L,

where L is an (n + η) × N matrix over Fq. Observe that by simply treating

x1, x2, . . . , xn, g1, g2, . . . , gη as messages, the results from previous sections still apply

to linear randomized index codes.

Definition 2.4.2. The linear η-randomized (m,n,X , f)-IC over Fq based on L is
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said to be (µ, t)-strongly secure if the following holds. An adversary A who possesses

t arbitrary messages xXA
, for some t-subset XA of [n], and is able to listen to at most

µ among N transmissions, gains no information about other messages. Equivalently,

H
(
X X̂A

|XXA
, (X|G)L[W ]

)
= H

(
X X̂A

)
,

for any W ⊆ [N ] and |W | ≤ µ.

Remark 2.4.3. If µ = t = η = 0, a (µ, t)-strongly secure η-randomized (m,n,X , f)-

IC over Fq becomes a normal (m,n,X , f)-IC over Fq.

We henceforth assume that each message is requested by at least one receiver,

for otherwise, that “useless” message can be discarded without doing any harm to

the coding scheme.

Lemma 2.4.4. If L corresponds to a (µ, t)-strongly secure linear η-randomized

(m,n,X , f)-IC over Fq, then η ≥ µ.

Proof. We prove this lemma by contradiction. Suppose that L corresponds to a

(µ, t)-strongly secure η-randomized (m,n,X , f)-IC over Fq and that η < µ.

For a subsetW of [N ] let C(L[W ]) be the space spanned by (transposed) columns

of L indexed by elements of W . Let E = {n + 1, n + 2, . . . , n + η}. For all subsets

W of [N ] with |W | ≤ µ, it holds that

H
(
X X̂A

| (X|G)L[W ],XXA

)
= H

(
X X̂A

)
,

that is, an adversary who owns xXA
gains no information about xX̂A

after eavesdrop-

ping |W | transmissions. Therefore, applying Lemma 2.2.4 with C(L) being replaced
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by C(L[W ]) (equivalently, L being replaced by L[W ]), we conclude that C(L[W ])

does not contain a vector c that satisfies cX̂A
6= 0 and cE = 0. We refer to this

property of C(L[W ]) as Property A.

Let L′ =
(
LX̂A∪E

)T
be the matrix obtained from L by first deleting rows of L

indexed by XA, and then taking its transpose. We claim that rankq(L
′) ≤ µ − 1.

Indeed, take any µ rows of L′, say L′
j1
, . . . ,L′

jµ , we show that these µ rows are

linearly dependent. Let L′′ be the submatrix of L′ formed by the last η columns.

Since η < µ, the µ rows L′′
j1
, . . . ,L′′

jµ are linearly dependent. Hence there exist

α1, α2, . . . , αµ, not all zeros, such that

µ∑

`=1

α`L
′′
j`
= 0,

which implies
µ∑

`=1

α`L
′
j`
= 0,

due to Property A. The claim follows.

Now let r = rankq(L
′) < µ, and let

{L′
j1
,L′

j2
, . . . ,L′

jr}

be a basis of the space spanned by rows of L′. Suppose that the receiver Ri requests

xf(i) where f(i) ∈ X̂A. By Corollary 2.2.5, C(L) contains a vector c = u + ef(i)

where u C Xi. Therefore, cE = 0 and cX̂A
6= 0. On the other hand, there exists

β1, β2, . . . , βr such that
(
cX̂A
|cE
)
=

r∑

`=1

β`L
′
j`
.

Since r < µ and cE = 0, by Property A we have cX̂A
= 0, which is a contradiction.

�



2. Secure Index Code with Side Information 47

Remark 2.4.5. By Lemma 2.4.4, a randomized index code requires at least µ

random symbols in order to be (µ, t)-strongly secure. We show in the next subsection

that using µ random symbols is also sufficient.

Lemma 2.4.6. Supose that L corresponds to a linear µ-randomized (m,n,X , f)-IC

over Fq. If this randomized index code is (µ, t)-strongly secure, then for all i ∈ [µ],

there exists a vector v(i) ∈ Fn+µ
q satisfying

1. v(i) C [n];

2. v(i) + en+i ∈ C(L).

Proof. Assume, by contradiction, that for some i ∈ [µ], we have v(i) + en+i /∈ C(L)

for all v(i)C [n]. By Corollary 2.2.5, a virtual receiver with side information {xj}j∈[n]

would have no information about gi after receiving all transmissions. In other words,

we have

H
(
Gi | (X|G)L,X

)
= H(Gi), (2.15)

and, in particular, for a smaller set of side information,

H
(
Gi | (X|G)L,XXA

)
= H(Gi). (2.16)

Since the randomized index code is (µ, t)-strongly secure, for every µ-subset W of

[N ] and every t-subset XA of [n], we have

H
(
X X̂A

| (X|G)L[W ],XXA

)
= H

(
X X̂A

)
. (2.17)

We claim that if the realized value of Gi is known to the adversary, this randomized
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index code is still (µ, t)-strongly secure. In other words, we aim to show that

H
(
X X̂A

| (X|G)L[W ],XXA
, Gi

)
= H

(
X X̂A

)
, (2.18)

for every µ-subset W of [N ] and every t-subset XA of [n]. Indeed, the left-hand side

of (2.18) is equal to

H
(
X X̂A

| (X|G)L[W ],XXA

)
− I
(
X X̂A

;Gi | (X|G)L[W ],XXA

)
,

which is

H
(
X X̂A

)
− I
(
X X̂A

;Gi | (X|G)L[W ],XXA

)

due to (2.17). Hence, it suffices to show that

I
(
X X̂A

;Gi | (X|G)L[W ],XXA

)
= 0.

Using (2.15) we have

I
(
X X̂A

;Gi | (X|G)L[W ],XXA

)
= H

(
Gi | (X|G)L[W ],XXA

)

− H
(
Gi | (X|G)L[W ],XXA

,X X̂A

)

= H
(
Gi | (X | G)L[W ],XXA

)

− H
(
Gi | (X|G)L[W ],X

)

= H(Gi)− H(Gi)

= 0,

where the third transition is due to (2.15) and (2.16). Thus, we have shown that

the randomized index code is still (µ, t)-strongly secure if the adversary knows the
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realized value of Gi. Equivalently, discarding the random variable Gi from the

scheme does not affect its strong security. However, this contradicts Lemma 2.4.4,

as the resulting code has less than µ random symbols. �

The following theorem proves a lower bound on the length of a (µ, t)-strongly

secure linear randomized index code.

Theorem 2.4.7. The length of a (µ, t)-strongly secure linear η-randomized (m,n,X ,

f)-IC over Fq is at least κq + µ. In other words, a linear randomized index code

requires at least κq + µ transmissions in order to be (µ, t)-strongly secure.

Proof. Suppose the linear randomized index code is based on L. We divide the

proof into several cases.

Case 1: η = µ. Then, by Corollary 2.2.6 and Lemma 2.4.6, the subspace C(L) must

contain:

1. the vectors u(i) + ef(i) for some u(i) C Xi, for all i ∈ [m];

2. the vectors v(i) + en+i, for some v(i) C [n], for all i ∈ [µ].

Due to linear independence of these vectors and to the definition of κq, the

length of the code is at least

dim(C(L)) ≥ rankq

({
u(i) + ef(i)

}
i∈[m]

)
+ rankq

({
v(i) + en+i

}
i∈[µ]

)

≥ κq + µ.

Case 2: η > µ, and for every i ∈ [η] there exists some vector v(i) C [n] such that

v(i) + en+i ∈ C(L). In this case, similarly to Case 1, we have

dim(C(L)) ≥ κq + η > κq + µ.
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Therefore, L has at least κq + µ columns.

Case 3: η > µ, and for some i ∈ [η], it holds that v(i)+en+i /∈ C(L) for all v(i)C [n].

By following exactly the same argument as in the proof of Lemma 2.4.6, we

deduce that discarding Gi does not affect the strong security of the randomized

index code. By doing so, we obtain a new (µ, t)-strongly secure randomized

index code, which has η−1 random variables. This code is based on L′, which

is obtained from L by deleting its (n+ i)th row.

The above argument can be applied until either the number of random vari-

ables decreases to µ, or the code in consideration satisfies the condition of

Case 2. In both cases, the resulting randomized index code has length at least

κq + µ. As the length of the code does not change during the process, we

conclude that the length of the original code is at least κq + µ. �

2.4.2 A Construction of Optimal Strongly Secure Index Codes

In this subsection, we provide a construction of an optimal (µ, t)-strongly secure

µ-randomized linear (m,n,X , f)-IC over Fq, which has length attaining the lower

bound established in Theorem 2.4.7. This construction requires q to be as large

as κq + µ − 1. The proposed construction is based on the coset coding technique,

originally introduced by Ozarow and Wyner [52]. This technique has been adopted

in a variety of network coding applications [12, 26,29,59,71].

Construction A: Let L(0) correspond to a linear (m,n,X , f)-IC over Fq of

optimal length κq. Let M be an invertible matrix of order N = κq + µ, so that the

last µ rows of M form a generator matrix of an MDS code. Let P be the submatrix

of M formed by the first κq rows, and Q the submatrix formed by the last µ rows
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of M . Let

L =




L(0)P

Q


 .

Lemma 2.4.8. The matrix L in Construction A corresponds to a µ-randomized

(m,n,X , f)-IC over Fq.

Proof. Let g ∈ Fµ
q be a random vector, uniformly distributed over Fµ

q . The encoding

process is as follows

x 7→ (x|g)L = xL(0)P + gQ =
(
xL(0)|g

)
M .

Since M is invertible, each receiver is able to recover (xL(0)|g). Therefore, for each

i ∈ [m], the receiver Ri can recover xL(0), and hence, can also recover xf(i), as L
(0)

corresponds to a linear (m,n,X , f)-IC over Fq. �

Lemma 2.4.9. The µ-randomized (m,n,X , f)-IC based on the matrix L in Con-

struction A is (µ, t)-strongly secure.

Proof. Suppose that the adversary A possess a message vector xXA
, where |XA| = t.

Additionally, A can eavesdrop µ transmissions, that is, it has knowledge of b
4

=

(x|g)L[W ], for some W ⊆ [N ] and |W | = µ. Below, we show that the entropy of

X X̂A
is not changed given the knowledge of (X|G)L[W ] and of xXA

. It suffices to

show that for all a ∈ Fn−t
q :

Pr
(
X X̂A

= a | (X|G)L[W ] = b,XXA
= xXA

)
=

1

qn−t
. (2.19)
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The probability on the left-hand side of (2.19) can be rewritten as

Pr
(
X X̂A

= a, (X|G)L[W ] = b |XXA
= xXA

)

Pr
(
(X|G)L[W ] = b |XXA

= xXA

) . (2.20)

The numerator in (2.20) is given by

Pr
(
X X̂A

= a, (X|G)L[W ] = b |XXA
= xXA

)

= Pr
(
X X̂A

= a |XXA
= xXA

)

× Pr
(
(X|G)L[W ] = b | xX̂A

= a,XXA
= xXA

)

=
1

qn−t
Pr
(
(X|G)L[W ] = b |X X̂A

= a,XXA
= xXA

)

=
1

qn−t

1

qµ

=
1

qn−t+µ
.

(2.21)

The penultimate transition can be explained as follows. We have

b = (X|G)L[W ] = XL(0)P [W ] +GQ[W ]. (2.22)

The matrix Q[W ] is invertible due to the fact that Q is a generator matrix of an

[N,µ] MDS code. Since X is known, the system (2.22) has a unique solution given

by

G =
(
b−XL(0)P [W ]

)
(Q[W ])−1.
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Since G is uniformly distributed over Fµ
q ,

Pr
(
(X|G)L[W ] = b |X X̂A

= a,XXA
= xXA

)

= Pr
(
G =

(
b−XL(0)P [W ]

)
(Q[W ])−1

)

=
1

qµ
.

Similarly to (2.21), the denominator in (2.20) is

Pr
(
(X|G)L[W ] = b |XXA

= xXA

)

=
∑

c∈Fn−t
q

Pr
(
X X̂A

= c |XXA
= xXA

)

× Pr
(
(X|G)L[W ] = b |X X̂A

= c,XXA
= xXA

)

= qn−t 1

qn−t

1

qµ

=
1

qµ
.

(2.23)

From (2.20), (2.21), and (2.23), we obtain (2.19), as claimed. �

From Theorem 2.4.7, Lemma 2.4.8, and Lemma 2.4.9, we have the following

theorem.

Theorem 2.4.10. The length of an optimal (µ, t)-strongly secure linear η-randomized

(m,n,X , f)-IC over Fq is at least κq +µ. Moreover, the code based on the matrix L

established in Construction A achieves this bound (q ≥ κq + µ− 1).



3. INDEX CODE AND ERROR CORRECTION

Part of the work in this chapter was presented in the 2011 IEEE Symposium on

Information Theory [21]. In this chapter, a generalization of index coding scheme,

where transmitted symbols are subject to errors, is studied. Error-correcting meth-

ods for such a scheme, and their parameters, are investigated. In particular, the

following question is discussed: given the side information hypergraph of index cod-

ing scheme and the maximal number of erroneous symbols δ, what is the shortest

(optimal) length of a linear index code which guarantees that every receiver is able

to recover the required information? This question turns out to be a generaliza-

tion of the problem of finding the shortest length of an error-correcting code with a

prescribed error-correcting capability in the classical coding theory.

The Singleton bound and two other bounds, referred to as the α-bound and the

κ-bound, for the optimal length of a linear error-correcting index code (ECIC) are

established. For large alphabets, a construction based on the concatenation of an

optimal index code with an MDS classical code, is shown to attain the Singleton

bound. For smaller alphabets, however, this construction may not be optimal. A

random construction is also analyzed. It yields another implicit bound on the length

of an optimal linear ECIC.

The problem of decoding a linear ECIC is studied. It is shown that in order

to decode correctly the desired symbol, the decoder is required to find a vector

that belongs to an affine space containing the actual error vector. The syndrome
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decoding is shown to produce the correct output if the weight of the error pattern

is less or equal to the error-correcting capability of the corresponding ECIC.

Furthermore, we introduce the notion of a static ECIC, which is suitable for use

with a family of ICSI instances. Several bounds on the length of static ECIC’s are

derived, and constructions for static ECIC’s are discussed. Connections of these

codes to weakly resilient Boolean functions are also established.

Finally, we discuss the nonlinear ECIC’s. Analogous bounds on the length of an

optimal ECIC are established.

3.1 Error-Correcting Index Code with Side Information

Due to noise, the symbols received by Ri, i ∈ [m], may be subject to errors. Consider

an ICSI instance (m,n,X , f), and assume that S broadcasts a vector E(x) ∈ FN
q .

Let ε(i) ∈ FN
q be the error affecting the information received by Ri, i ∈ [m]. Then

Ri actually receives the vector

yi = E(x) + ε(i) ∈ FN
q ,

instead of E(x). The following definition is a generalization of Definition 2.1.3.

Definition 3.1.1. Consider an ICSI instance described by H = H(m,n,X , f). A

δ-error-correcting index code (δ-error-correctingH-IC, or simpler, (δ,H)-ECIC) over

Fq for this instance is an encoding function

E : Fn
q → FN

q ,
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such that for each receiver Ri, i ∈ [m], there exists a decoding function

Di : FN
q × F|Xi|

q → Fq,

satisfying

∀x, ε(i) ∈ Fn
q , wt(ε

(i)) ≤ δ : Di(E(x) + ε(i),xXi
) = xf(i).

The definitions of the length, of a linear index code, and of the matrix corre-

sponding to a linear index code are naturally extended to an error-correcting index

code. Note that if E is an H-IC over Fq, then it is a (0,H)-ECIC, and vice versa.

Definition 3.1.2. An optimal linear (δ,H)-ECIC over Fq is a linear (δ,H)-ECIC

over Fq of the smallest possible length Nq[δ,H].

Consider an ICSI instance described by H = H(m,n,X , f). We define the set of

vectors

I(q,H)
4

=
{
z ∈ Fn

q : ∃i ∈ [m] such that zXi
= 0 and zf(i) 6= 0

}
.

For all i ∈ [m], we also define

Yi
4

= [n] \
(
{f(i)} ∪ Xi

)
.

Then the collection of supports of all vectors in I(q,H) is given by

J (H)
4

=
⋃

i∈[m]

{
{f(i)} ∪ Yi : Yi ⊆ Yi

}
. (3.1)
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The necessary and sufficient condition for a matrix L to be the matrix corresponding

to some (δ,H)-ECIC is given in the following lemma.

Lemma 3.1.3. The matrix L corresponds to a (δ,H)-ECIC over Fq if and only if

wt (zL) ≥ 2δ + 1 for all z ∈ I(q,H). (3.2)

Equivalently, L corresponds to a (δ,H)-ECIC over Fq if and only if

wt

(
∑

i∈K

ziLi

)
≥ 2δ + 1,

for all K ∈ J (H) and for all choices of zi ∈ F∗
q, i ∈ K.

Proof. For each x ∈ Fn
q , we define

B(x, δ) = {y ∈ FN
q : y = xL+ ε, ε ∈ FN

q , wt(ε) ≤ δ},

the set of all vectors resulting from at most δ errors in the transmitted vector

associated with the information vector x. Then the receiver Ri can recover xf(i)

correctly if and only if

B(x, δ) ∩ B(x′, δ) = ∅,

for every pair x,x′ ∈ Fn
q satisfying:

xXi
= x′

Xi
and xf(i) 6= x′

f(i).

(Recall that Ri is interested only in the bit xf(i), not in the whole vector x.)

Therefore, L corresponds to a (δ,H)-ECIC if and only if the following condition

is satisfied: for all i ∈ [m] and for all x,x′ ∈ Fn
q such that xXi

= x′
Xi

and xf(i) 6= x′
f(i),
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it holds

∀ε, ε′ ∈ FN
q , wt(ε) ≤ δ, wt(ε′) ≤ δ : xL+ ε 6= x′L+ ε′. (3.3)

Denote z = x′−x. Then, the condition in (3.3) can be reformulated as follows: for

all i ∈ [n] and for all z ∈ Fn
q such that zXi

= 0 and zf(i) 6= 0, it holds

∀ε, ε′ ∈ FN
q , wt(ε) ≤ δ, wt(ε′) ≤ δ : zL 6= ε− ε′. (3.4)

An equivalent condition is that for all z ∈ I(q,H),

wt(zL) ≥ 2δ + 1.

Since for z ∈ I(q,H) we have

zL =
∑

i∈supp(z)

ziLi,

the condition (3.2) can be restated as

wt

(
∑

i∈K

ziLi

)
≥ 2δ + 1,

for all K ∈ J (H) and for all choices of nonzero zi ∈ Fq, i ∈ K. �

The next corollary follows from Lemma 3.1.3 in a straightforward manner. It

is not hard to see that the conditions stated in Lemma 3.1.3 and in the corollary

below are, in fact, equivalent.

Corollary 3.1.4. For all i ∈ [m], let

M i
4

= spanq
(
{Lj : j ∈ Yi}

)
.
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Then, the matrix L corresponds to a (δ,H)-ECIC over Fq if and only if

∀i ∈ [m] : d(Lf(i),M i) ≥ 2δ + 1. (3.5)

The next corollary also follows directly from Lemma 3.1.3 by considering an

error-free setup, that is, δ = 0.

Corollary 3.1.5. The matrix L corresponds to an H-IC over Fq if and only if

wt

(
∑

i∈K

ziLi

)
≥ 1,

for all K ∈ J (H) and for all choices of zi ∈ F∗
q, i ∈ K, or, equivalently,

∀i ∈ [m] : Lf(i) /∈ spanq({Lj}j∈Yi
).

Remark 3.1.6. The conditions stated in Corollary 3.1.5 and Corollary 2.2.6 are,

as expected, equivalent. Indeed, for each i ∈ [m] we have

Lf(i) /∈ spanq({Lj}j∈Yi
)⇐⇒ ∃v(i) : v(i)LT

f(i) = 1 and v(i)LT
Yi

= 0

⇐⇒ ∃v(i) : c(i) = v(i)LT ∈ C(L) satisfies c
(i)
f(i) = 1 and

c
(i)
Yi

= 0

⇐⇒ ∃u(i) ∈ Fn
q : u(i)

C Xi and c(i) = u(i) + ef(i) ∈ C(L).

Example 3.1.7. Let q = 2, m = n = 3, and f(i) = i for i ∈ [3]. Suppose
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X1 = {2, 3}, X2 = {1, 3}, and X3 = {1, 2}. Let

L =




1 1 1 0

1 1 0 1

1 0 1 1




.

Note that the rows of L generate a [4, 3, 1]2 code, which has minimum distance one.

Nevertheless, the index code based on L can still correct one error. Indeed, let

H = H(3, 3,X , f), we have

I(2,H) = {100, 010, 001}.

Since each row of L has weight at least three, it follows that wt(zL) ≥ 3 for all

z ∈ I(2,H). By Lemma 3.1.3, L corresponds to a (1,H)-ECIC over F2.

In fact, for this instance, even a simpler index code of length three, based on

L′ =




1 1 1

1 1 1

1 1 1




,

is a (1,H)-ECIC over F2.

Example 3.1.8. Assume that m = n and f(i) = i for all i ∈ [m]. Furthermore,

suppose that Xi = ∅ for all i ∈ [m] (that is, there is no side information available

to the receivers). Let H = H(m,n,X , f). Then, I(q,H) = Fn
q \ {0}. Hence, by

Lemma 3.1.3, the n×N matrix L corresponding to a (δ,H)-ECIC over Fq (for some

integer δ ≥ 0) if and only if it is a generating matrix of an [N, n,≥ 2δ + 1]q linear

code. Thus, under these settings, the problem of designing an optimal linear ECIC
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is reduced to the problem of constructing an optimal classical linear error-correcting

code.

Observe however, that for general X , changing the order of rows in L can lead

to ECIC’s with different error-correcting capabilities. Therefore, the problem of

designing an optimal linear ECIC is essentially the problem of finding the matrix

L corresponding to that code. However, the minimum distance of the code gener-

ated by the rows of L is not necessary a valid indicator for goodness of an ECIC.

Sometimes, as Example 3.1.7 shows, matrix L with redundant rows yields a good

ECIC.

3.2 The α-Bound and the κ-Bound

Let (m,n,X , f) be an ICSI instance, and letH be the corresponding side information

hypergraph. Next, we introduce the following definitions for the hypergraph H.

Definition 3.2.1. A subset H of [n] is called a generalized independent set in H if

every nonempty subset K of H belongs to J (H).

Definition 3.2.2. A generalized independent set of maximum size in H is called a

maximum generalized independent set. The size of a maximum generalized indepen-

dent set in H is called the generalized independence number, and denoted by α(H).

In the following two lemmas, we consider an ICSI instance (m,n,X , f) in which

m = n and f(i) = i for all i ∈ [n]. Let D be the underlying digraph of the side

information hypergraph H, that is, D is the side information digraph of this ICSI

instance (see Remark 2.1.2). A maximum acyclic induced subgraph of D is an acyclic
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subgraph which is induced by a set of maximum number of vertices. We use α(D)

to denote the order of a maximum acyclic induced subgraph of D. The two lemmas

below show that α(H) is indeed a generalization of α(D) and α(G).

Lemma 3.2.3. α(H) = α(D).

Proof. It suffices to show that a generalized independent set in H induces an acyclic

subgraph of D and vice versa.

Let H be a generalized independent set in H. If |H| = 1, then obviously H

induces an acyclic subgraph of D. Assume that |H| ≥ 2. Take any subset K of H

where |K| ≥ 2. Since K ∈ J (H), there exists some i ∈ [n] such that i = f(i) ∈ K

and j ∈ Yi for all j ∈ K \{i}. Recall that Yi = [n]\ ({i} ∪ Xi). As (i, j)’s for j ∈ Xi

are the only arcs of D that originate from i, we deduce that D has no arc of the

form (i, j) for every j ∈ K \{i}. Therefore, K cannot form a circuit in D. Since this

conclusion holds for any such K, we conclude that H induces an acyclic subgraph

of D.

Conversely, suppose that H induces an acyclic subgraph of D. We aim to show

that H is a generalized independent set in H. Take an arbitrary nonempty subset

K of H and let DK be the K-induced subgraph of D. If K = {i} for some i, then

obviously K ∈ J (H). Suppose |K| ≥ 2. Since DK is also acyclic, there exists some

vertex i ∈ K with no out-going arcs in DK . In other words, (i, j) /∈ E(DK) for every

j ∈ K \{i}. Therefore, j ∈ Yi for every j ∈ K \{i}, which implies that K \{i} ⊆ Yi.

Hence K = {f(i) = i}∪
(
K \{i}

)
∈ J (H). Since K is an arbitrary nonempty subset

of H, we conclude that H is a generalized independent set of H. �

Lemma 3.2.4. If D is symmetric, then α(H) = α(G).

Proof. It suffices to show that if D is symmetric, then the set of generalized inde-
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pendent sets of H and the set of independent sets of G coincide.

Let H be a generalized independent set in H. If |H| = 1, then obviously H

is an independent set in G. Assume that |H| ≥ 2. For any pair of vertices i, j in

H, the set {i, j} belongs to J (H). By definition of J (H), either (i, j) /∈ E(D) or

(j, i) /∈ E(D). Since D is symmetric, there are no arcs between i and j, in neither

directions. Therefore, H is an independent set in G.

Conversely, let H be an independent set in G. For each i ∈ H, since there are

no arcs in D from i to any of the other vertices in H, we deduce that H \ {i} ⊆ Yi.

Due to (3.1), every subset of H that contains i belongs to J (H). This holds for an

arbitrary i ∈ H. Therefore, every nonempty subset of H belongs to J (H). Hence

H is a generalized independent set of H. �

Next, we present a lower bound on the length of a (δ,H)-ECIC over Fq. We call

this bound the α-bound.

Theorem 3.2.5 (α-bound). The length of an optimal linear (δ,H)-ECIC over Fq

satisfies

Nq[δ,H] ≥ Nq[α(H), 2δ + 1].

Proof. Consider an n × N matrix L, which corresponds to a (δ,H)-ECIC over Fq.

Let H = {i1, i2, . . . , iα(H)} be a maximum generalized independent set in H. Then,

every subset K ⊆ H satisfies K ∈ J (H). Therefore,

wt

(
∑

i∈K

ziLi

)
≥ 2δ + 1

for all K ⊆ H, where K 6= ∅, and for all choices of zi ∈ F∗
q, i ∈ K. Hence,

the α(H) rows of L, namely Li1 ,Li2 , . . . ,Liα(H)
, form a generator matrix of an
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[N,α(H), 2δ + 1]q code. Therefore,

N ≥ Nq[α(H), 2δ + 1]. �

Example 3.2.6. Let q = 2, m = n = 5, f(i) = i for all i ∈ [m], and δ = 2. Assume

X1 = {2, 3, 4}, X2 = {3, 4, 5}, X3 = {4, 5, 1}, X4 = {5, 1, 2}, X5 = {1, 2, 3}.

Let H = H(5, 5,X , f). Then

J (H) =
{
{1}, {1, 5}, {2}, {2, 1}, {3}, {3, 2}, {4}, {4, 3}, {5}, {5, 4}

}
.

It is easy to check that α(H) = 2. Therefore, Theorem 3.2.5 implies that

N2[2,H] ≥ N2[2, 5] = 8.

The last equality can be verified by [31].

Remark 3.2.7. In [3], when m = n and f(i) = i for all i ∈ [n], the quantity

α(D) = α(H) was shown to be a lower bound for the length of a linear (non-error-

correcting) index code. However, the α-bound in Theorem 3.2.5 does not follow from

the results in [3]. The reason is that the concatenation of an optimal linear error-

correcting code with an optimal linear (non-error-correcting) index code might fail

to produce an optimal linear ECIC. This fact is illustrated later in Example 3.2.10.

The following proposition is based on the fact that concatenation of a δ-error-

correcting code with an optimal linear (non-error-correcting) H-IC over Fq yields a

linear (δ,H)-ECIC over Fq.
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Proposition 3.2.8 (κ-bound). The length of an optimal (δ,H)-ECIC over Fq sat-

isfies

Nq[δ,H] ≤ Nq[κq(H), 2δ + 1].

Proof. Let G, which is an n × κq(H) matrix, correspond to an optimal H-IC over

Fq. Denote

y = xG ∈ Fκq(H)
q .

Let M be a generator matrix of an optimal [N, κq(H), 2δ + 1]q code C , where

N = Nq[κq(H), 2δ + 1].

Consider a scheme where S broadcasts the vector yM ∈ FN
q . If less than δ errors

occur, then each receiver Ri is able to recover y by using C . Hence each Ri is able

to recover xf(i). Therefore, for the index code based on L,

L = GM ,

each receiver Ri is capable to recover xf(i) if the number of errors is at most δ. The

length of the corresponding ECIC is N = Nq[κq(H), 2δ + 1]. Therefore,

Nq[δ,H] ≤ Nq[κq(H), 2δ + 1]. �

By combining the results in Theorem 3.2.5 and in Proposition 3.2.8, we obtain

the following corollary.



3. Index Code and Error Correction 66

Corollary 3.2.9. The length of an optimal linear (δ,H)-ECIC over Fq satisfies

Nq[α(H), 2δ + 1] ≤ Nq[δ,H] ≤ Nq[κq(H), 2δ + 1].

It is shown in the example below that the inequalities in Corollary 3.2.9 can be

strict. In particular, it follows that mere application of an error-correcting code on

top of an index code may fail to provide us with an optimal linear ECIC. This fact

motivates the study of ECIC’s.

Example 3.2.10. Let q = 2, m = n = 5, δ = 2, and f(i) = i for all i ∈ [m].

Assume

X1 = {2, 5}, X2 = {1, 3}, X3 = {2, 4}, X4 = {3, 5}, X5 = {1, 4}.

Let H = H(5, 5,X , f). Then we have

J (H) =
{
{1}, {1, 3}, {1, 4}, {1, 3, 4},

{2}, {2, 4}, {2, 5}, {2, 4, 5},

{3}, {1, 3}, {3, 5}, {1, 3, 5},

{4}, {1, 4}, {2, 4}, {1, 2, 4},

{5}, {2, 5}, {3, 5}, {2, 3, 5}
}
.

The side information graph G of this instance is a pentagon. It is easy to verify that

α(H) = α(G) = 2. It follows from [4, Theorem 9] that κ2(H) = minrk2(G) = 3.

From [31] we have

N2[2, 5] = 8 and N2[3, 5] = 10.



3. Index Code and Error Correction 67

Due to Corollary 3.2.9, we have

8 ≤ N2[2,H] ≤ 10.

Using a computer search, we obtain that N2[2,H] = 9, and the corresponding opti-

mal scheme is based on

L =




1 1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 1 0

1 1 0 0 0 1 1 1 0

0 1 1 0 0 1 0 1 1

1 0 1 0 1 0 0 1 1




.

It is technical to verify that for all K ∈ J (H),

wt

(
∑

i∈K

Li

)
≥ 5.

Therefore by Lemma 3.1.3, for the index code based on L, each receiver Ri is able

to recover xi, if the number of errors is less than or equal to 2. Observe that the

length of the ECIC corresponding to L lies strictly between the α-bound and the

κ-bound.

The following bounds on the minranks of graphs are known to hold [34]. Note

that the second inequality in the theorem below is also called the clique-cover bound

for minranks, as χ(G) is nothing other than the clique cover number of G.

Theorem 3.2.11 (Sandwich Theorem). Let χ(G) denote the chromatic number of
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the complement of the graph G. Then,

α(G) ≤ minrkq(G) ≤ χ(G).

Consider the basic case when m = n and f(i) = i for all i ∈ [m], and the side

information digraph D is symmetric. We have α(H) = α(G) (Lemma 3.2.4) and

κq(H) = minrkq(G) (see the discussion that follows Corollary 2.2.8), where G is the

side information graph (the underlying graph of H). If G satisfies α(G) = χ(G), then

α(H) = α(G) = minrkq(G) = κq(H).

Hence from Corollary 3.2.9 we have

Nq[δ,H] = Nq[α(H), 2δ + 1] = Nq[κq(H), 2δ + 1],

for all q, and the corresponding bounds in Corollary 3.2.9 are tight.

Definition 3.2.12. A graph G is called perfect if for every induced subgraph G ′ of

G, it holds that α(G ′) = χ(G ′).

Perfect graphs include families of graphs such as trees, bipartite graphs, interval

graphs, and chordal graphs. If the side information graph G is perfect, then the

bounds in Corollary 3.2.9 are tight. For the full characterization of perfect graphs,

the reader can refer to [18].
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3.3 The Singleton Bound

The following bound generalizes the Singleton bound for classical linear error-correcti-

ng codes to linear ECIC’s.

Theorem 3.3.1 (Singleton bound). The length of an optimal linear (δ,H)-ECIC

over Fq satisfies

Nq[δ,H] ≥ κq(H) + 2δ.

Proof. Let L be the n×Nq[δ,H] matrix corresponding to some optimal (δ,H)-ECIC

over Fq. Let L
′ be the matrix obtained by deleting any 2δ columns from L.

By Lemma 3.1.3, L satisfies

wt

(
∑

i∈K

ziLi

)
≥ 2δ + 1,

for all K ∈ J (H) and all choices of zi ∈ F∗
q, i ∈ K. We deduce that the rows of L′

also satisfy

wt

(
∑

i∈K

ziL
′
i

)
≥ 1,

for all such K and zi’s. By Corollary 3.1.5, L′ corresponds to a linear H-IC over Fq.

Therefore, by Corollary 2.2.8, L′ has at least κq(H) columns. We deduce that

Nq[δ,H]− 2δ ≥ κq(H),

which concludes the proof. �

The following corollary from Proposition 3.2.8 and Theorem 3.3.1 demonstrates

that, for sufficiently large alphabets, a concatenation of a classical MDS error-

correcting code with an optimal (non-error-correcting) index code yields an optimal
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linear ECIC. On the contrary, as it is illustrated in Example 3.2.10, this does not

hold for the index coding schemes over small alphabets.

Corollary 3.3.2 (MDS error-correcting index code). For q ≥ κq(H) + 2δ − 1,

Nq[δ,H] = κq(H) + 2δ. (3.6)

Proof. From Theorem 3.3.1, we have

Nq[δ,H] ≥ κq(H) + 2δ.

On the other hand, from Proposition 3.2.8,

Nq[δ,H] ≤ Nq[κq(H), 2δ + 1] = κq(H) + 2δ,

for q ≥ κq(H)+2δ−1 (by taking doubly-extended Reed-Solomon codes). Therefore,

for these q, (3.6) holds. �

Remark 3.3.3. Let q = 2, m = n = 2` + 1 (` ≥ 2), and f(i) = i for all i ∈ [n].

Let X1 = {2, n} and Xn = {1, n − 1}. For 2 ≤ i ≤ n, let Xi = {i − 1, i + 1}. Let

H = H(n, n,X , f). Notice that the side information graph G is the odd cycle of

length n. Therefore, α(H) = α(G) = `. From [4], κ2(H) = minrk2(G) = `+ 1. From

the α-bound,

N2[δ,H] ≥ N2[`, 2δ + 1].

From the Singleton bound,

N2[δ,H] ≥ (`+ 1) + 2δ.
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As there are no nontrivial binary MDS codes, we have

N2[`, 2δ + 1] ≥ `+ 2δ + 1,

for all δ > 0. Therefore, in this case the α-bound is at least as good as the Singleton

bound.

3.4 Random codes

In this section we prove an implicit upper bound on the optimal length of the ECIC’s.

The proof is based on constructing a random ECIC and analyzing its parameters.

Theorem 3.4.1. Let H = H(m,n,X , f) describe an ICSI instance. Then there

exists a linear (δ,H)-ECIC over Fq of length N if

∑

i∈[m]

qn−|Xi|−1 <
qN

Vq(N, 2δ)
,

where

Vq(N, 2δ) =
2δ∑

`=0

(
N

`

)
(q − 1)`

is the volume of the q-ary sphere in FN
q .

Proof. We construct a random n × N matrix L over Fq, row by row. Each row is

selected independently of other rows, uniformly over FN
q . Define vector spaces

M i
4

= spanq
(
{Lj : j ∈ Yi}

)
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for all i ∈ [m]. We also define the following events:

∀i ∈ [m] : Event Ei
4

=
{
d(Lf(i),M i) < 2δ + 1

}
,

and

Event EFail
4

=
{
L does not correspond to a (δ,H)-ECIC over Fq

}
.

The event Ei represents the situation when the receiver Ri cannot recover xf(i).

Then, by Corollary 3.1.4, the event EFail is equivalent to ∪i∈[m]Ei. Therefore,

Pr (EFail) = Pr


 ⋃

i∈[m]

Ei


 ≤

∑

i∈[m]

Pr (Ei) . (3.7)

For a particular event Ei, i ∈ [m],

Pr (Ei) ≤
q|Yi| Vq(N, 2δ)

qN
. (3.8)

There exists a matrix L corresponding to a (δ,H)-ECIC over Fq if Pr (EFail) < 1.

It is enough to require that the right-hand side of (3.7) is smaller than 1. By plugging

in the expression in (3.8), we obtain a sufficient condition on the existence of a linear

(δ,H)-ECIC over Fq:

Vq(N, 2δ)

qN

∑

i∈[m]

q|Yi| < 1. �

Remark 3.4.2. The bound in Theorem 3.4.1 does not take into account the struc-

ture of the sets Xi’s, other than their cardinalities. Therefore, this bound generally

is weaker than the κ-bound. On the other hand, for a particular ICSI instance, it

is easier to calculate this bound, while computing the κ-bound in general is a hard

problem.
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Remark 3.4.3. The bound in Theorem 3.4.1 implies a bound on κq(H), which is

tight for some H. Indeed, fix δ = 0. The bound implies that there exists a linear

index code of length N whenever

∑

i∈[m]

qn−|Xi|−1 < qN . (3.9)

Let m = n = 2` + 1 (` ≥ 2), and f(i) = i for all i ∈ [n]. Let X1 = [n] \ {1, 2, n}

and Xn = [n] \ {1, n − 1, n}. For 2 ≤ i ≤ n − 1, let Xi = [n] \ {i − 1, i, i + 1}.

Let H = H(n, n,X , f) be the corresponding side information hypergraph. The side

information graph G is the complement of the odd cycle of length n. We have

|Xi| = 2`− 2 for all i ∈ [n]. Then (3.9) becomes

N > 2 + logq(2`+ 1).

If q > 2`+1 then we obtain N ≥ 3. Observe that in this case κq(H) = minrkq(G) = 3

(see [2, Claim A.1]), and thus the bound is tight.

3.5 Strongly Secure Linear Error-Correcting Index Codes

In this section we consider an active adversary who not only owns some side infor-

mation and eavesdrops some transmissions, but also corrupts some transmissions

from S. Note that a simple concatenation of an error-correcting scheme and a secu-

rity scheme may not necessarily work. Indeed, applying an error-correcting code on

top of a secure index code may sabotage the security of the scheme. Conversely, if

error-correcting index coding is followed by security coding, the scheme is no longer

resistant to errors.
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3.5.1 A Lower Bound on the Length of a Strongly Secure Linear Error-Correcting

Index Code

The notion of randomized index codes introduced in Subsection 2.4.1 can be natu-

rally extended to that of δ-error-correcting randomized index codes. Then we have

the following definition.

Definition 3.5.1. A randomized index code is referred to as a (µ, t)-strongly secure

δ-error-correcting randomized index code if it is not only (µ, t)-strongly secure (see

Definition 2.4.2) but also capable of correcting δ errors (see Definition 3.1.1).

The next theorem establishes a lower bound on the length of a (µ, t)-strongly

secure δ-error-correcting linear randomized index code.

Theorem 3.5.2. The length of a (µ, t)-strongly secure δ-error-correcting linear η-

randomized (m,n,X , f)-IC over Fq is at least κq + µ+ 2δ.

Proof. Let L correspond to a (µ, t)-strongly secure δ-error-correcting η-randomized

(m,n,X , f)-IC over Fq. Let L′ be the matrix obtained from L by deleting any

2δ columns of L. Since L corresponds to a δ-error-correcting index code, by

Lemma 3.1.3 it satisfies

wt

(
∑

i∈K

ziLi

)
≥ 2δ + 1,

for all K ∈ J (H) and all choices of nonzero zi ∈ Fq, i ∈ K. We deduce that the

rows L′
i’s of L

′ also satisfy

wt

(
∑

i∈K

ziL
′
i

)
≥ 1.

By Corollary 3.1.5, L′ still corresponds to an η-randomized (m,n,X , f)-IC over

Fq. Since less information about x is broadcast if L′ is used, we deduce that L′

also corresponds to a (µ, t)-strongly secure η-randomized (m,n,X , f)-IC over Fq.
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Therefore, by Theorem 3.2.5, L′ has at least κq + µ columns. We then deduce that

L has at least κq + µ+ 2δ columns. �

3.5.2 A Construction of an Optimal Strongly Secure Linear Error-Correcting

Index Code

In this subsection we provide a construction that produces randomized index codes

attaining the bound established in Theorem 3.5.2. This construction requires q to

be as large as κq + µ+ 2δ.

Construction B: Let L(0) correspond to a linear (m,n,X , f)-IC over Fq of

optimal length κq. LetM be a generator matrix of an [N = κq+µ+2δ, κq+µ, 2δ+1]q-

MDS code, so that the last µ rows of M form a generator matrix of another MDS

code. For instance, we can take a generator matrix of a Generalized Reed-Solomon

code (see, for instance [39])

M =




1 1 · · · 1

α1 α2 · · · αN

...
... · · ·

...

α
κq−1
1 α

κq−1
2 · · · α

κq−1
N

α
κq

1 α
κq

2 · · · α
κq

N

α
κq+1
1 α

κq+1
2 · · · α

κq+1
N

...
... · · ·

...

α
κq+µ−1
1 α

κq+µ−1
2 · · · α

κq+µ−1
N




,

where α1, α2, . . . , αN are pairwise distinct elements in Fq. Let P be the submatrix

of M formed by the first κq rows, and Q the submatrix formed by the last µ rows
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of M . Let

L =




L(0)P

Q


 .

Lemma 3.5.3. The matrix L in Construction B corresponds to a δ-error-correcting

µ-randomized (m,n,X , f)-IC over Fq.

Proof. Let g ∈ Fµ
q be a randomized vector, uniformly distributed over Fµ

q . The

encoding process is as follows

x 7→ (x|g)L = xL(0)P + gQ =
(
xL(0)|g

)
M .

Since M is a generator matrix of a δ-error-correcting code, if at most δ errors occur,

then each receiver is able to recover (xL(0)|g). Therefore, for each i ∈ [m], the

receiver Ri can recover xL(0), and hence, can also recover xf(i), as L
(0) corresponds

to a linear (m,n,X , f)-IC over Fq. �

Lemma 3.5.4. The matrix L in Construction A corresponds to a (µ, t)-strongly

secure µ-randomized (m,n,X , f)-IC over Fq.

Proof. The proof of this lemma is the same as that of Lemma 2.4.9. �

From Theorem 3.5.2, Lemma 3.5.3, and Lemma 3.5.4, we have the following

theorem.

Theorem 3.5.5. The length of an optimal (µ, t)-strongly secure δ-error-correcting

linear η-randomized (m,n,X , f)-IC over Fq is at least κq + µ + 2δ. Moreover, the

code based on the matrix L established in Construction B achieves this bound (q ≥

κq + µ+ 2δ).
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3.6 Syndrome Decoding

Consider the (δ,H)-ECIC over Fq based on a matrix L. Suppose that the receiver

Ri, i ∈ [m], receives the vector

y(i) = xL+ ε(i), (3.10)

where xL is the codeword transmitted by S, and ε(i) is the error pattern affecting

this codeword.

In the classical coding theory, the transmitted vector c, the received vector y,

and the error pattern e are related by y = c + e. Therefore, if y is known to the

receiver, then there is a one-to-one correspondence between the values of unknown

vectors c and e. For index coding, however, this is no longer the case. The following

lemma shows that, in order to recover the message xf(i) from y(i) using (3.10), it is

sufficient to find just one vector from a set of possible error patterns. This set is

defined as follows:

Li(ε
(i)) =

{
ε(i) + z : z ∈ spanq

(
{Lj}j∈Yi

)}
.

We henceforth refer to the set Li

(
ε(i)
)
as the set of relevant error patterns.

Lemma 3.6.1. Assume that the receiver Ri receives y
(i).

1. If Ri knows the message xf(i) then it is able to determine the set Li(ε
(i)).

2. If Ri knows some vector ε̂ ∈ Li

(
ε(i)
)
then it is able to determine xf(i).

Proof.
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1. From (3.10), we have

y(i) = xf(i)Lf(i) + xXi
LXi

+ xYi
LYi

+ ε(i). (3.11)

If Ri knows xf(i), then it is also able to determine

ε(i) + xYi
LYi

= y(i) − xf(i)Lf(i) − xXi
LXi
∈ Li

(
ε(i)
)
.

Since Ri has knowledge of L, it is also able to determine the whole Li(ε
(i)).

2. Suppose that Ri knows a vector

ε̂ = ε(i) +
∑

j∈Yi

zjLj ∈ Li(ε
(i)),

for some z ∈ F
|Yi|
q . We show that Ri is able then to determine xf(i). Indeed,

we rewrite (3.11) as

y(i) = xf(i)Lf(i) + xXi
LXi

+ (xYi
− z)LYi

+ ε̂. (3.12)

The receiver Ri can find some solution of the equation

y(i) = x̂f(i)Lf(i) + xXi
LXi

+ x̂Yi
LYi

+ ε̂, (3.13)

with respect to the unknowns x̂f(i) and x̂Yi
. Observe that (3.13) has at least

one solution due to (3.12).

From (3.12) and (3.13), we deduce that

0 = (x̂f(i) − xf(i))Lf(i) + (x̂Yi
− xYi

+ z)LYi
.
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This equality implies that x̂f(i) = xf(i) (otherwise, by Corollary 3.1.4, the sum

in the right-hand side will have nonzero weight). Hence, Ri is able to determine

xf(i), as claimed. �

We now describe a syndrome decoding algorithm for linear error-correcting index

codes. From (3.11), we have

y(i) − xXi
LXi
− ε(i) ∈ spanq

(
{Lf(i)} ∪ {Lj}j∈Yi

)
.

Let Ci = spanq
(
{Lf(i)}∪{Lj}j∈Yi

)
, and let H(i) be a parity check matrix of Ci. We

obtain that

H (i)ε(i)
T
= H(i)

(
y(i) − xXi

LXi

)T
. (3.14)

Let β(i) be a column vector defined by

β(i) = H(i)
(
y(i) − xXi

LXi

)T
. (3.15)

Observe that each Ri is capable of determining β(i). Then we can rewrite (3.14) as

H(i)ε(i)
T
= β(i).

This leads us to the formulation of the following decoding procedure for Ri (see

Fig. 3.1).

Remark 3.6.2. Gaussian elimination can be used to solve (3.17) for x̂f(i). However,

since L also corresponds to an (m,n,X , f)-IC over Fq, there is more efficient way to

do so. From Corollary 2.2.6, there exists a vector u(i) C Xi satisfying u(i) + ef(i) ∈
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• Input: y(i), xXi
, L.

• Step 1: Compute the syndrome

β(i) = H (i)
(
y(i) − xXi

LXi

)T
.

• Step 2: Find the lowest Hamming weight solution ε̂ of the system

H(i)ε̂T = β(i). (3.16)

• Step 3: Given that x̂Xi
= xXi

, solve the system for x̂f(i):

y(i) = x̂L+ ε̂. (3.17)

• Output: x̂f(i).

Fig. 3.1: Syndrome decoding procedure.

C(L). Hence u(i) + ef(i) = αLT for some α ∈ FN
q . Therefore

x̂f(i) = x̂
(
u(i) + ef(i)

)T
− x̂u(i)T = x̂LαT − x̂u(i)T =

(
y(i) − ε̂

)
αT − x̂u(i)T.

With the knowledge of L and xXi
, the receiver Ri can determine α and x̂u(i)T.

Therefore, it can also determine x̂f(i). Note that (3.17) may have more than one

solution x̂ with x̂Xi
= xXi

. However, as shown in the next theorem, if at most δ

errors occur in y(i), then it always holds that x̂f(i) = xf(i).

Theorem 3.6.3. Let y(i) = xL+ε(i) be the vector received by Ri, and let wt(ε(i)) ≤

δ. Assume that the procedure in Fig. 3.1 is applied to (y(i),xXi
,L). Then, its output

satisfies x̂f(i) = xf(i).



3. Index Code and Error Correction 81

Proof. By Lemma 3.6.1, it is sufficient to prove that ε̂ ∈ Li(ε
(i)). Indeed, since

H (i)ε(i)
T
= H(i)ε̂T = β(i),

we have

H(i)
(
ε̂− ε(i)

)T
= 0.

Hence, ε̂− ε(i) ∈ Ci, and therefore,

ε̂− ε(i) = zf(i)Lf(i) +
∑

j∈Yi

zjLj, (3.18)

for some zf(i) ∈ Fq and zj ∈ Fq, j ∈ Yi.

Since ε(i) is a solution of (3.16), and wt(ε(i)) ≤ δ, we deduce that wt(ε̂) ≤ δ as

well. Hence,

wt

(
zf(i)Lf(i) +

∑

j∈Yi

zjLj

)
= wt

(
ε̂− ε(i)

)
≤ 2δ.

Therefore, by Corollary 3.1.4, zf(i) = 0. Hence, ε̂ ∈ Li(ε
(i)), as desired, and therefore

x̂f(i) = xf(i). �

Remark 3.6.4. Step 2 in Fig. 3.1 is computationally hard. Indeed, the problem of

finding ε̂ over F2 of the lowest weight satisfying

H(i)ε̂T = β(i), (3.19)

for a given binary vector β(i) corresponds to the decision problem coset weights,

which was shown by Berlekamp et al. [7] to be NP-complete.
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3.7 Static Error-Correcting Index Codes

3.7.1 Static Error-Correcting Index Codes

In previous sections of this chapter, we focus on designing an optimal linear δ-error-

correcting index code for a particular ICSI instance. When the parameters m, n, X ,

and f are changed, it is very likely that an error-correcting index code for the current

instance can no longer be used for the new instance. Therefore, an interesting task

is to design an error-correcting index code that works for a family of ICSI instances.

Definition 3.7.1. Let Γ be a set of instances (m,n,X , f) for the ICSI problem. A

δ-error-correcting index code over Fq is said to be static under the set Γ if it is a

δ-error-correcting (m,n,X , f)-IC over Fq for all instances (m,n,X , f) ∈ Γ.

Recall that an instance (m,n,X , f) can be described by the side information

hypergraph H(m,n,X , f). For a set Γ of instances (m,n,X , f), let

J(Γ)
4

=
⋃

(m,n,X ,f)∈Γ

J (H(m,n,X , f)), (3.20)

where J (H(m,n,X , f)) is defined as in (3.1). We also define

n(Γ)
4

= max
{
n : (m,n,X , f) ∈ Γ

}
.

Lemma 3.7.2. The n(Γ) × N matrix L corresponds to a δ-error-correcting index

code that is static under Γ if and only if

wt

(
∑

i∈K

ziLi

)
≥ 2δ + 1,
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for all K ∈ J(Γ) and for all choices of zi ∈ F∗
q, i ∈ K.

Proof. The proof is immediate from Definition 3.7.1 and Lemma 3.1.3. Note that

when L is used for an instance (m,n,X , f) ∈ Γ with n < n(Γ), then the last n(Γ)−n

rows of L are simply discarded. �

One particular family of interest is Γ(n, ρ), the family that contains all instances

where each receiver owns at least n − ρ messages as its side information. More

formally,

Γ(n, ρ) =
{
(m,n′,X , f) : n′ ≤ n and ∀i ∈ [m], |Xi| ≥ n− ρ

}
.

A δ-error-correcting index code that is static under Γ(n, ρ) will provide successful

communication between the sender and the receivers under the presence of at most

δ errors, despite a possible change of the sets of side information, a change of the

set of receivers, and a change of the demand function, as long as each receiver still

possesses at least n− ρ messages.

In the rest of this section, we assume that N ≥ 1, n ≥ ρ ≥ 1 and δ ≥ 0.

Definition 3.7.3. An n × N matrix L is said to satisfy the (ρ, δ)-Property if any

nontrivial linear combination of at most ρ rows of L has weight at least 2δ + 1.

Proposition 3.7.4. The n×N matrix L corresponds to a δ-error-correcting linear

index code that is static under Γ(n, ρ), if and only if L satisfies the (ρ, δ)-Property.

Proof. By Lemma 3.7.2, it suffices to show that J(Γ(n, ρ)) is the collection of all

nonempty subsets of [n], whose cardinalities are not greater than ρ.

Consider an instance (m,n′,X , f) ∈ Γ(n, ρ). For all i ∈ [m], we have |Xi| ≥ n−ρ
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and Yi = [n′] \ (f(i) ∪ Xi), and thus we deduce that

|Yi| ≤ n′ − 1− (n− ρ) ≤ n′ − 1− (n′ − ρ) = ρ− 1.

Hence by (3.1), the cardinality of each set in J (H(m,n′,X , f)) is at most

1 + (ρ− 1) = ρ.

Therefore, due to (3.20), every set in J(Γ(n, ρ)) has at most ρ elements.

It remains to show that every nonempty subset of [n] whose cardinality is at most

ρ belongs to J(Γ(n, ρ)). Consider an arbitrary ρ′-subset K = {i1, i2, . . . , iρ′} of [n],

with 1 ≤ ρ′ ≤ ρ. Consider an instance (m = 1, n,X , f) ∈ Γ(n, ρ) with X1 = [n] \K

and f(1) = i1. Since

Y1 = K \ {i1},

we have

K = {i1} ∪ Y1 ∈ J (H(m,n,X , f)) ⊆ J(Γ(n, ρ)).

The proof follows. �

3.7.2 An Application: Weakly Resilient Functions

In this section we introduce the notion of weakly resilient functions. Hereafter, we

restrict the discussion to the binary alphabet.

The concept of binary resilient functions was first introduced by Chor et al. [17]

and independently by Bennet et al. [6].

Definition 3.7.5. A function f : FN
2 → Fn

2 is said to be t-resilient if f satisfies

the property that it runs through every possible output n-tuple an equal number of
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times when t arbitrary inputs are fixed and the remaining N − t inputs run through

all the 2N−t input tuples once. Moreover, if f is a linear transformation then it is

called a linear t-resilient function. We also refer to t as the resiliency of f .

The applications of resilient functions can be found in fault-tolerant distributed

computing, quantum cryptographic key distribution [17], privacy amplification [6]

and random sequence generation for stream ciphers [13]. The equivalence between

a linear error-correcting code and a resilient function was established by Chor [17].

Theorem 3.7.6 ([17]). Let L be an n × N binary matrix. Then L is a generator

matrix of a linear error-correcting code with minimum distance d = t+1 if and only

if f(z) = zLT is t-resilient.

Remark 3.7.7. Vectorial boolean functions with certain properties are useful for de-

sign of stream ciphers. These properties include high resiliency and high nonlinearity

(see, for instance, [13]). Nevertheless, linear resilient functions are still particularly

interesting, since they can be transformed into highly nonlinear resilient functions

with the same parameters. This can be achieved by a composition of the linear

function with a highly nonlinear permutation (see [33, 70] for more details).

Below we introduce a definition of a ρ-weakly t-resilient function, which is a

weaker version of a t-resilient function.

Definition 3.7.8. A function f : FN
2 → Fn

2 is said to be ρ-weakly t-resilient if f

satisfies the property that every set of ρ coordinates of f runs through every possible

output ρ-tuple an equal number of times when t arbitrary inputs are fixed and the

remaining N − t inputs run through all the 2N−t input tuples once.
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Remark 3.7.9. A ρ-weakly t-resilient function f : FN
2 → Fn

2 can be viewed as

a collection of
(
n
ρ

)
different t-resilient functions FN

2 → F
ρ
2, each such function is

obtained by taking some ρ coordinates in the image of f . Similarly to [17], consider a

scenario, in which two parties are sharing a secret key, which consists of N randomly

selected bits. Suppose that at some moment t out of the N bits of the key are leaked

to an adversary. By applying a t-resilient function to the current N -bit key, two

parties are able to obtain a completely new and secret key of n bits, without requiring

any communication or randomness generation. However, if the parties use various

parts of the key for various purposes, they may require several secret ρ-bit keys

rather than one secret n-bit key. In that case a ρ-weakly t-resilient function can

be used. By applying a ρ-weakly t-resilient function to the current N -bit key, the

parties obtain a set of
(
n
ρ

)
different ρ-bit keys, each key is new and secret (however

these keys might not be independent of each other). With the same number of inputs

N and outputs n, a weakly resilient function may have strictly higher resiliency than

a resilient function (see Remark 3.7.17).

Theorem 3.7.10. Let L be an n × N binary matrix. Then L satisfies the (ρ, δ)-

Property if and only if the function f : FN
2 → Fn

2 defined by f(z) = zLT is ρ-weakly

2δ-resilient.

Proof.

1. Suppose that L satisfies the (ρ, δ)-Property. Take any ρ-subset K ⊆ [n]. By

Definition 3.7.3, the ρ × N submatrix LK of L is a generating matrix of the

error-correcting code with the minimum distance ≥ 2δ+1. By Theorem 3.7.6,

the function fK : FN
2 → F

ρ
2 defined by fK(z) = zLT

K is 2δ-resilient. Since K

is an arbitrary ρ-subset of [n], the function f is ρ-weakly 2δ-resilient.
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2. Conversely, assume that the function f is ρ-weakly 2δ-resilient. Take any

subset K ⊆ [n] where |K| = ρ. Then the function fK : FN
2 → F

ρ
2 defined by

fK(z) = zLT
K is 2δ-resilient. Therefore, by Theorem 3.7.6, LK is a generating

matrix of a linear code with minimum distance 2δ+1. Since K is an arbitrary

ρ-subset of [n], by Proposition 3.7.4 L satisfies the (ρ, δ)-Property. �

3.7.3 Bounds and Constructions

In this section we study the problem of constructing a matrix L satisfying the (ρ, δ)-

Property. Such an L with the minimum number of columns is called optimal. It

turns out that this is a special case of the problem of finding an optimal linear

error-correcting index code. However, in this special case, as more structure is given

to the sets of side information, the bounds and constructions based on α(H) and

κq(H) (see Section 3.2) are much simpler.

Recall that in the proof of Proposition 3.7.4 it is shown that

J(Γ(n, ρ)) =

ρ⋃

i=1

(
[n]

i

)
,

the set of all nonempty subsets of [n] of cardinality at most ρ. Consider an instance

(m∗, n,X ∗, f ∗) satisfying

J (H∗) = J(Γ(n, ρ)) =

ρ⋃

i=1

(
[n]

i

)
, (3.21)

where H∗ = H(m∗, n,X ∗, f ∗) is the side information hypergraph corresponding to

this instance. Such an instance can be constructed as follows. For each subset K =

{i1, i2, . . . , iρ′} ⊆ [n] (1 ≤ ρ′ ≤ ρ), we introduce a receiver which requests the message

xi1 , and has side information {xj : j ∈ [n]\K}. It is straightforward to verify that we
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indeed obtain an instance (m∗, n,X ∗, f ∗) satisfying (3.21). The problem of designing

an optimal matrix L satisfying the (ρ, δ)-Property then becomes equivalent to the

problem of finding an optimal (δ,H∗)-ECIC. Thus, Nq[H
∗, δ] is equal to the number

of columns in an optimal matrix that satisfies the (ρ, δ)-Property. In other words,

Nq[H
∗, δ] is the length of an optimal δ-error-correcting linear index code that is

static under Γ(n, ρ).

The corresponding α-bound and κ-bound for Nq[H
∗, δ] can be stated as follows.

Theorem 3.7.11. Let ρ∗ be the smallest number such that an [n, n− ρ∗,≥ ρ + 1]q

code exists. Then we have

Nq[ρ, 2δ + 1] ≤ Nq[δ,H
∗] ≤ Nq[ρ

∗, 2δ + 1].

Proof. The first inequality follows from the α-bound and from the fact that α(H∗) =

ρ, which is due to (3.21).

For the second inequality, it suffices to show that κq(H
∗) = ρ∗. By Corol-

lary 3.1.5, a matrix L corresponds to an H∗-IC if and only if {Li : i ∈ K} is linear

independent for every K ∈ J (H∗). Since J (H∗) is the set of all nonempty subsets

of cardinality at most ρ, this is equivalent to saying that every set of at most ρ rows

of L is linear independent. This condition is equivalent to the condition that LT is

a parity check matrix of an [n, n − N,≥ ρ + 1]q code [49, Chapter 1]. Therefore, a

linear H∗-IC of length N exists if and only if an [n, n − N,≥ ρ + 1]q code exists.

Since ρ∗ is the smallest number such that an [n, n − ρ∗,≥ ρ + 1]q code exists, we

conclude that κq(H
∗) = ρ∗. �

Corollary 3.7.12. The length of an optimal δ-error-correcting linear index code
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over Fq that is static under Γ(n, ρ) satisfies

Nq[δ,H
∗] ≥ ρ∗ + 2δ,

where ρ∗ is the smallest number such that an [n, n− ρ∗,≥ ρ+ 1]q code exists.

Proof. This is a straightforward corollary of Theorem 3.3.1 (the Singleton bound)

and Theorem 3.7.11. �

Remark 3.7.13. We can see that the three bounds on the length of an optimal

linear error-correcting index code that is static under Γ(n, ρ) established above can

be computed explicitly by solely using the results from classical error-correcting

codes. By contrast, the original bounds for general ECIC involve the computation

of α(H) and κq(H), which are hard problems.

Corollary 3.7.14. For q ≥ max{n−1, ρ+2δ−1}, the length of an optimal δ-error-

correcting linear index code over Fq that is static under Γ(n, ρ) is ρ+ 2δ.

Proof. When q ≥ n− 1, an (optimal) [n, n− ρ, ρ+ 1]q code exists (one may choose

an extended Reed-Solomon code [49, Chapter 11]). Therefore ρ∗ = ρ. Following the

lines of the proof of Theorem 3.7.11, there exists a δ-error-correcting index code of

length Nq[ρ, 2δ + 1], which is static under Γ(n, ρ). As q ≥ ρ+ 2δ − 1, we have

Nq[ρ, 2δ + 1] = ρ+ 2δ

(for example, by taking an extended RS code). Due to Corollary 3.7.12, this static

error-correcting index code is optimal. �
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Remark 3.7.15. We observe from the proof of Theorem 3.7.11 that the problem

of constructing an optimal linear (non-error-correcting) index code which is static

under Γ(n, ρ), is, in fact, equivalent to the problem of constructing a parity check

matrix of a classical linear error-correcting code.

Example 3.7.16. Let n = 20, ρ = 10, δ = 1 and q = 2. From [31], an optimal

binary linear code of length 20 and minimum distance 11 has dimension 3. We

deduce that ρ∗ = 17. We also have N2[17, 3] = 22. Theorem 3.7.11 implies the

existence of a one-error-correcting index code of length 22 which can be used for

any instance in which each receiver owns at least 10 out of (at most) 20 messages as

side information. It also implies that the length of any such static error-correcting

index code is at least N2[10, 3] = 14. Corollary 3.7.12 provides a better lower bound,

which is 19 = 17 + 2.

Remark 3.7.17. Below we show that with the same number of inputs N and

outputs n, a weakly resilient function may have strictly higher resiliency t. From

Example 3.7.16, there exists a linear vectorial Boolean function f : (F2)
22 → (F2)

20

which is 10-weakly 2-resilient. According to [31], an optimal linear [22, 20]2 code has

minimum distance d = 2. Hence, due to Theorem 3.7.6, the resiliency of any linear

vectorial Boolean function g : (F2)
22 → (F2)

20 cannot exceed one.

The problem of constructing an n×N matrix L that satisfies the (ρ, δ)-Property

is a natural generalization of the problem of constructing the parity check matrix H

of a linear [n, k, d ≥ ρ+1]q code. Indeed, H is a parity check matrix of an [n, k, d ≥

ρ + 1]q code if and only if every set of ρ columns of H is linearly independent.

Equivalently, any nontrivial linear combination of at most ρ columns of H has

weight at least one. For comparison, L satisfies the (ρ, δ)-Property if and only if
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any nontrivial linear combination of at most ρ columns of LT has weight at least

2δ + 1.

Some classical methods for deriving bounds on the parameters of error-correcting

codes can be generalized to the case of linear static error-correcting index codes.

Below we present a Gilbert-Varshamov-like bound.

Theorem 3.7.18. If

ρ−1∑

i=1

(
n− 1

i

)
(q − 1)i

2δ∑

j=0

(
N

j

)
(q − 1)j < qN ,

then there exists an n×N matrix L that satisfies the (ρ, δ)-Property.

Proof. We build up the set R of rows of L one by one. The first row can be any

vector in FN
q of weight at least 2δ + 1. Now suppose we have chosen r rows so that

no nontrivial linear combination of at most ρ among these r rows have weight less

than 2δ + 1. Recall that

Vq(N, 2δ) =
2δ∑

`=0

(
N

`

)
(q − 1)`

denotes the volume of the q-ary sphere in FN
q . There are at most

Vq(N, 2δ)

ρ−1∑

i=0

(
r

i

)
(q − 1)i

vectors that are at distance less than 2δ+1 from any linear combination of at most

ρ− 1 among r chosen rows (this includes vectors at distance less than 2δ + 1 from

0). If this quantity is smaller than qN , then we can add another row to the set R so

that no nontrivial linear combination of at most ρ rows in R has weight less than

2δ + 1. We repeat this process until r = n. �
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Remark 3.7.19. If we apply Theorem 3.4.1 to the instance (m∗, n,X ∗, f ∗) defined

in the beginning of this section, then we obtain a bound, which is somewhat weaker

then its counterpart in Theorem 3.7.18, namely the n×N matrix L as above exists

if
ρ∑

i=1

(
n

i

)
qi−1 <

qN

Vq(N, 2δ)
.

3.8 Nonlinear Error-Correcting Index Codes

We now turn our attention to nonlinear ECIC’s. Analogous results for bounds on

the length of optimal nonlinear ECIC’s can be established.

Definition 3.8.1. Let E be a nonlinear ECIC over Fq. The size of E is defined to

be

size(E) =
∣∣{E(x) : x ∈ Fn

q

}∣∣ .

Definition 3.8.2. Let (m,n,X , f) be an ICSI instance and H = H(m,n,X , f).

1. The two vectors x and x′ in Fn
q are called confusable if there exists an i ∈ [n]

such that xf(i) 6= x′
f(i) and yet xj = x′

j for all j ∈ Xi.

2. The confusion graph of H = H(m,n,X , f), denoted C(H), is the graph on the

vertex set Fn
q , where two vertices x and x′ are adjacent if and only if they are

confusable.

Lemma 3.8.3. Let (m,n,X , f) be an ICSI instance described by the side informa-

tion hypergraph H. Then E : Fn
q → FN

q is a (δ,H)-ECIC over Fq if and only if

d(E(x),E(x′)) ≥ 2δ + 1 whenever x and x′ are adjacent in C(H).

Proof. Suppose that d(E(x),E(x′)) ≥ 2δ + 1 for every pair of adjacent vertices x

and x′ of C(H). In other words, suppose that confusable vectors are encoded to
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codewords of distance at least 2δ + 1 from each other. Then a nearest neighbor

decoding will always be able to recover the transmitted vector of messages if the

number of erroneous symbols in the received vector is at most δ. Hence E is a

(δ,H)-ECIC over Fq.

Conversely, suppose that E is a (δ,H)-ECIC over Fq. Consider a pair of confus-

able vectors x and x′. If d(E(x),E(x′)) ≤ 2δ, there exists a vector y ∈ FN
q such

that

d(E(x),y) ≤ δ,

and

d(E(x′),y) ≤ δ,

If y is received, since xXi
= x′

Xi
and xf(i) 6= x′

f(i), it is impossible for the receiver to

determine its desired message. This contradicts our assumption that E is a (δ,H)-

ECIC over Fq. �

Lemma 3.8.4. A subset H ⊆ [n] is a generalized independent set of H if and only

if for all nonempty subsets K ⊆ H, there exists some i ∈ [m] such that f(i) ∈ K

and Xi ∩K = ∅.

Proof. By definition, H is a generalized independent set of H if and only if every

nonempty subset K of H belongs to

J (H) =
⋃

i∈[m]

{
{f(i)} ∪ Yi : Yi ⊂ Yi

}
.

Equivalently, for every nonempty subset K of H, there exists i ∈ [m] such that

f(i) ∈ K and K \ {i} ⊆ Yi. In other words, for such a K, there exists i ∈ [m] such

that f(i) ∈ K and Xi ∩K = ∅. �
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The following lemma generalizes the second statement in [3, Lemma 19].

Lemma 3.8.5. If H is a generalized independent set of H, then the set of vertices

V (H) = {x ∈ Fn
q : xCH}

forms a clique in the confusion graph C(H).

Proof. It suffices to show that for any xCH and yCH, where x 6= y, it holds that

x and y are adjacent in C(H).

Let T = {j : xj = yj} and S = supp(x) ∪ supp(y). Then K = S \ T 6= ∅ since

x 6= y. As K ⊆ H, by Lemma 3.8.4, there exists some i ∈ [m] such that f(i) ∈ K

and Xi ∩K = ∅. Since f(i) ∈ K, we have xf(i) 6= yf(i). On the other hand, since

Xi ∩K = ∅, by definition of K, we have xj = yj for all j ∈ Xi. Hence, x and y are

adjacent in C(H). �

The α-bound for nonlinear ECIC’s is stated as follows.

Proposition 3.8.6. The length of an optimal (δ,H)-ECIC over Fq satisfies

Nq(δ,H) ≥ Nq

(
qα(H), 2δ + 1

)
,

where Nq(M,d) denotes the length of a shortest code of size M and distance d.

Proof. Let E be an optimal (δ,H)-ECIC over Fq of length N = Nq(δ,H). Let H be

a maximum generalized independent set of H. Then |H| = α(H). By Lemma 3.8.5,

the set V (H) = {x ∈ Fn
q : xCH} forms a clique in H. Moreover |V (H)| = qα(H).

By Lemma 3.8.3, the set C (H)
4

= {E(x) : x ∈ V (H)} forms an (N, qα(H), 2δ + 1)q

code. Therefore,

N ≥ Nq

(
qα(H), 2δ + 1

)
.
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The proof follows. �

Remark 3.8.7. This lower bound for general ECIC’s is certainly less than or equal

to the respective bound for linear ECIC’s, which is Nq[α(H), 2δ + 1].

The Singleton bound for nonlinear ECIC’s is stated as follows.

Proposition 3.8.8. The length of an optimal (δ,H)-ECIC over Fq satisfies

Nq(δ,H) ≥ κ∗
q + 2δ,

where κ∗
q is the length of an optimal H-IC over Fq.

Proof. Let E be an optimal (δ,H)-ECIC over Fq of length N = Nq(δ,H). By

Lemma 3.8.3,

d(E(x),E(x′)) ≥ 2δ + 1, (3.22)

for every pair of confusable vectors x and x′ in Fn
q . Let Ed : Fn

q → FN−2δ
q be

obtained from E as follows

(Ed(x))i = (E(x))i, i ∈ [N − 2δ].

In other words, the values of Ed is obtained from the corresponding values of E by

discarding the last 2δ coordinates. Then from (3.22) we have

d
(
Ed(x),Ed(x′)

)
≥ 1,

for every pair of confusable vectors x and x′ in Fn
q . Again by Lemma 3.8.3, Ed is an

H-IC over Fq. Therefore, its length is bounded from below by κ∗
q. Thus, N−2δ ≥ κ∗

q,
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which concludes the proof. �

An immediate corollary of this bound is that for sufficiently large q, an optimal

ECIC can be obtained by applying an MDS code on top of an optimal nonlinear IC.

Corollary 3.8.9. For q ≥ κ∗
q + 2δ − 1,

Nq(δ,H) = κ∗
q + 2δ,

where κ∗
q is the length of an optimal H-IC over Fq.

There has been very limited knowledge on the length κ∗
q of an optimal H-IC

over Fq. It was shown by Bar-Yossef et al. [3, 4] (in the original setting of the ICSI

problem) that κ∗
q is bounded from below by α(D) where D is the corresponding

side information (di)graph. Therefore, for ICSI instances whose side information

(di)graphs D satisfy α(D) = minrkq(D), we have κ∗
q = α(D) = minrkq(D). For such

instances, there exist optimal ECIC’s which are linear. The instances described by

perfect graphs and acyclic digraphs are the only known families of ICSI instances

which possess this special feature [3]. In Chapter 5, several new families of such

instances are discovered.



4. (DI)GRAPHS OF EXTREME MINRANKS

The minrank of a graph was introduced by Haemers [34] to bound the Shannon

capacity [57] of a graph. This parameter of a digraph has recently drawn much

more attention from the research community after the work of Bar-Yossef et al. [3].

In their paper, it was shown that the binary minrank of a digraph D characterizes the

length of an optimal binary scalar linear index code for an ICSI instance described

by the digraph D. A generalization of this result for an arbitrary finite field Fq is

straightforward. Since a graph can be regarded as a symmetric digraph, the same

result also holds for graphs. In this chapter, we characterize the (di)graphs that

have extreme minranks. Based on these characterizations, it is shown in the next

chapter that the problem of deciding whether the minrank of a digraph is equal to

two is NP-complete. In contrast, the same question for graphs can be answered

in polynomial time. In the context of index coding, we only study minranks of

(di)graphs over a finite field Fq. However, all of our results presented in Chapter 4

and Chapter 5 (except Theorem 4.2.4, Corollary 4.2.5, and Corollary 5.1.2) still hold

for an arbitrary field F. This is because the characteristic of the field does not play

any role in their proofs.

4.1 (Strongly) Connected Components and MinRanks

Lemma 4.1.1 (Folklore). Let G = (V(G), E(G)) be a graph. Suppose that G1,G2, . . . ,Gk

are subgraphs of G that satisfy the following conditions
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1. The sets V(Gi), i ∈ [k], partition V(G);

2. There is no edge of the form {u, v} where u ∈ V(Gi) and v ∈ V(Gj) for i 6= j.

Then

minrkq(G) =
k∑

i=1

minrkq(Gi).

In particular, the above equality holds if G1,G2, . . . ,Gk are all connected components

of G.

Proof. The proof follows directly from the fact that a matrix fits G if and only if it

is a block diagonal matrix (relabeling the vertices if necessary), the blocks of which

fit the corresponding subgraphs Gi’s, i ∈ [k]. �

Lemma 4.1.2 (Folklore). Let D = (V(D), E(D)) be a digraph. If D1,D2, . . . ,Dk

are all strongly connected components of D, then

minrkq(D) =
k∑

i=1

minrkq(Di).

Proof. Suppose that Vi is the set of vertices that induces Di, i ∈ [k]. Then {Vi}i∈[k]

forms a partition of V(D). Relabeling the vertices of D if necessary, we may assume

without loss of generality that for every i < j

1. vi < vj whenever vi ∈ Vi and vj ∈ Vj;

2. There are no arcs of the form (vj, vi) where vi ∈ Di and vj ∈ Dj.

If M i is a matrix that fits Di, i ∈ [k], then the diagonal block matrix M whose

diagonal blocks are M i clearly fits D. Moreover, rankq(M) =
∑k

i=1 rankq(M i).

Hence minrkq(D) ≤
∑k

i=1 minrkq(Di).
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It remains to show that minrkq(D) ≥
∑k

i=1 minrkq(Di). Suppose that the matrix

M fits D. Then M is an upper-triangular block matrix, as shown in Fig. 4.1. If we

let M i,i be the sub-matrix of M formed by the rows and columns indexed by the

elements of Vi, then M i,i fits Di and hence,

rankq(M) ≥
k∑

i=1

rankq(M i,i) ≥
k∑

i=1

minrkq(Di).

Thus, minrkq(D) ≥
∑k

i=1 minrkq(Di).
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Fig. 4.1: Matrix M that fits D

�

These two lemmas suggest that it is sufficient to study the minranks of connected

graphs and strongly connected digraphs.
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4.2 (Di)Graphs of Extreme MinRanks

In this section, we investigate the structural properties of (di)graphs that have ex-

treme minranks.

4.2.1 (Di)Graphs of MinRank One

Lemma 4.2.1 (Folklore). Let D = (V(D), E(D)) be a digraph. Then minrkq(D) = 1

if and only if D is a complete digraph. The same statement holds for a graph.

Proof. Suppose D is a digraph. If minrkq(D) = 1, by definition there exists a matrix

M = (mi,j) of rank one over Fq that fits D. Then the rows of M must be scalar

multiples of each other. Moreover, by definition, ai,i 6= 0 for all i ∈ V(D). Hence

ai,j 6= 0 for all i ∈ V(D) and all j ∈ V(D). Therefore, (i, j) ∈ E(D) for all i 6= j,

i ∈ V(D) and j ∈ V(D). In other words, D is a complete digraph.

Conversely, suppose that D is a complete digraph. Then J , the all-one matrix,

fits D and minrkq(J) = 1, which implies that minrkq(D) = 1. The same arguments

hold for graphs. �

4.2.2 (Di)Graphs of MinRank Two

We first study (di)graphs of minranks at most two. In this section, only binary

alphabet is considered. We first introduce the following concept of a fair coloring

of a digraph. Recall that a k-coloring of a graph G = (V(G), E(G)) is a mapping φ :

V(G) → [k] which satisfies the condition that φ(u) 6= φ(v) whenever {u, v} ∈ E(G).

We often refer to φ(u) as the color of u. If there exists a k-coloring of G, then we

say that G is k-colorable.
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Definition 4.2.2. Let D = (V(D), E(D)) be a digraph. A fair k-coloring of D is a

mapping φ : V(D)→ [k] that satisfies the following conditions:

(C1) If (u, v) ∈ E(D) then φ(u) 6= φ(v);

(C2) For each vertex u of D, it holds that φ(v) = φ(ω) for all out-neighbors v and

ω of u.

If there exists a fair k-coloring of D, we say that we can color D fairly by k colors,

or, D is fairly k-colorable.

We refer to the condition (C2) as the fairness of the coloring, since this condition

guarantees that all out-neighbors of each vertex share the same color.

Lemma 4.2.3. A digraph D = (V(D), E(D)) is fairly 3-colorable if and only if there

exists a partition of V(D) into three subsets A, B, and C that satisfy the following

conditions:

1. For every i ∈ A: either NO(i) ⊆ B or NO(i) ⊆ C;

2. For every i ∈ B: either NO(i) ⊆ A or NO(i) ⊆ C;

3. For every i ∈ C: either NO(i) ⊆ A or NO(i) ⊆ B.

Proof. If D is fairly 3-colorable, let A, B, and C respectively be the sets of vertices

of D that share the same color. Then clearly A, B, and C partition V(D). Moreover,

since all out-neighbors of each vertex must have the same color, the three conditions

above are obviously satisfied. Conversely, if those conditions are satisfied, then

φ : V(D)→ [3] defined by

φ(u) =





1, u ∈ A,

2, u ∈ B,

3, u ∈ C,
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is a fair 3-coloring of D. �

Theorem 4.2.4. Let D = (V(D), E(D)) be a digraph. Then minrk2(D) ≤ 2 if and

only if D, the complement of D, is fairly 3-colorable.

Proof. Suppose V(D) = [n]. By definition, minrk2(D) ≤ 2 if and only if there exists

an n × n binary matrix M of rank at most two which fits D. The matrix M has

rank less than or equal to two if and only if there are two rows of M that span its

row space. Without loss of generality, suppose that they are the first two rows of

M , namely, M 1 and M 2. Let

B = supp(M 1) ∩ supp(M 2)

and

A = supp(M 1) \B, C = supp(M 2) \B.

Since the binary alphabet is considered, for every i ∈ [n], one of the following must

hold: (1) M i = M 1; (2) M i = M 2; (3) M i = M 1 +M 2. Hence for every i ∈ [n]

i ∈ supp(M i) ⊆ A ∪B ∪ C.

This implies that A ∪ B ∪ C = [n].

Suppose that i ∈ A. Then either M i = M 1 or M i = M 1 +M 2. The former

holds if and only if supp(M i) = A ∪ B. Equivalently, we obtain that (i, j) ∈ E(D)

for all j ∈ A ∪ B \ {i}. In other words, (i, j) /∈ E(D) for all j ∈ A ∪ B. The latter

holds if and only if supp(M i) = A∪C. Similarly, this equality in turn is equivalent

to the property that (i, j) /∈ E(D) for all j ∈ A ∪ C. In summary, for every i ∈ A

1. (i, j) /∈ E(D), for all j ∈ A;
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2. Either (i, j) /∈ E(D), for all j ∈ B, or (i, j) /∈ E(D), for all j ∈ C; In other

words, either ND
O (i) ⊆ B or ND

O (i) ⊆ C.

Analogous conditions hold for every i ∈ B and for every i ∈ C as well. Therefore,

by Lemma 4.2.3, minrk2(D) ≤ 2 if and only if D is fairly 3-colorable. �

The following corollary characterizes the digraphs of minrank two.

Corollary 4.2.5. A digraph D has minrank two over F2 if and only if D is fairly

3-colorable and D is not a complete digraph.

4.2.3 (Di)Graphs of MinRanks Equal to Their Orders

For graphs, it is simple to characterize graphs of minranks equal to their orders.

Proposition 4.2.6. Let G be a graph of order n. Then minrkq(G) = n if and only

if G has no edges.

Proof. If G has no edges, a matrix fits G if and only if it is a diagonal matrix

whose entries on the main diagonal are all nonzero. The rank of such a matrix is n.

Therefore, minrkq(G) = n. Suppose that minrkq(G) = n and (i, j) is an edge of G.

Then the matrix M , where M k = ek for all k /∈ {i, j} and M i = M j = ei + ej,

fits G. Moreover, rankq(M ) = n − 1. Hence, minrkq(G) ≤ n − 1. We obtain a

contradiction. �

For digraphs, the characterization is not that obvious.

Theorem 4.2.7. Let D be a digraph of order n. Then minrkq(D) = n if and only if

D is acyclic.
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Proof. Equivalently, we show that minrkq(D) ≤ n− 1 if and only if D has a circuit.

Suppose without loss of generality that C = (1, 2, . . . , `) is a circuit in D. We

construct a matrixM fittingD as follows. For j /∈ V(C), letM j = ej. For i ∈ [`−1],

let M i = ei − ei+1. Finally, let M ` = e1 − e`. Clearly, M fits D. Moreover, as

M ` =
∑`−1

i=1 M i, we have rankq(MV(C)) = `− 1. Hence

rankq(M ) = rankq
(
MV(C)

)
+ rankq

(
M [n]\V(C)

)

= (`− 1) + (n− `)

= n− 1.

Therefore, minrkq(D) ≤ n− 1.

Conversely, suppose that minrkq(D) ≤ n − 1. Then there exists a matrix M

fitting D whose rows are linearly dependent. In other words,
∑

i∈I αiM i = 0 for

some nonempty subset I ⊆ [n] and for some αi ∈ F∗
q, i ∈ I. Let D′ be the subgraph

of D induced by the vertices in I and M ′ the sub-matrix of M restricted to the

rows and columns indexed by the elements of I. Obviously M ′ fits D′. We show

that there exists a circuit in D′. Since
∑

i∈I αiM
′
i = 0, each column of M ′ has at

least two nonzero entries. Therefore, for each vertex v of D′, there exists another

vertex u of D′ such that (u, v) is an arc in D′. Starting from an arbitrary vertex v1

of D′ and applying this property recursively, we obtain a sequence of vertices in D′

v1, v2, . . . , vs, vs+1, . . . ,

where (vs+1, vs) is an arc in D′ for every s ≥ 1. Since D′ has a finite number of

vertices, there must be a time (we care about the first time only) when a vertex

appears twice in the above sequence. This vertex, together with the other vertices

lying between its two occurrences, form a circuit inside D′, which is also a circuit
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inside D. �

The existence of a circuit in a digraph can be detected by using a depth-first

search, the time complexity of which is polynomial with respect to the order of the

digraph. Hence, as a consequence of Theorem 4.2.7, the problem of deciding whether

a digraph has minrank equal to its order can be solved in polynomial time.

4.2.4 Graphs of MinRanks One Less Than Their Orders

We only consider graphs.

Definition 4.2.8. A graph G = (V(G), E(G)) is called a star graph if |V(G)| ≥ 2

and there exists a vertex v ∈ V(G) such that E(G) =
{
{u, v} : u ∈ V(G) \ {v}

}
.

b b

b
b

b

b

Fig. 4.2: A star graph

Theorem 4.2.9. Let G be a connected graph of order n ≥ 2. Then minrkq(G) = n−1

if and only if G is a star graph.

Proof. We first suppose that minrkq(G) = n−1. If n = 2 then G must be a complete

graph, which is also a star graph. We assume that n ≥ 3. As G is connected,

there exists a vertex v of degree at least two. Let v1 and v2 be any two distinct

vertices adjacent to v. Our goal is to show that for every vertex u 6= v, we have

{u, v} ∈ E(G), and those are all possible edges.
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1. Suppose for a contradiction that {u, v} /∈ E(G) for some u 6= v. Since G

is connected, there exists ω such that {u, ω} ∈ E(G). Then either ω 6= v1

or ω 6= v2. Suppose that ω 6= v2. We create a matrix M as follows. Let

Mu = Mω = eu+eω,M v = M v2 = ev+ev2 , andM i = ei for i /∈ {u, v, v2, ω}.

Then M fits G and rankq(M) = n − 2. Therefore, minrkq(G) < n − 1. We

obtain a contradiction. Thus, all other vertices are adjacent to v.

2. Suppose for a contradiction that there exist two adjacent vertices, namely u

and ω, both are different from v. As we just proved, both u and ω must be

adjacent to v. We create a matrix M as follows. We take Mu = M v =

Mω = eu + ev + eω, and M i = ei for i /∈ {u, v, ω}. Clearly M fits G and

moreover, rankq(M ) = n−2, which implies that minrkq(G) < n−1. We obtain

a contradiction.

Conversely, assume that G is a star graph, where E(G) =
{
{v, vi} : i ∈ [n− 1]

}
,

vi ∈ V(G) \ {v} for all i ∈ [n − 1]. We create a matrix M fitting G by taking

M vi = ev + evi for i ∈ [n − 1], and M v = ev + ev1 . Since M v ≡M v1 , we deduce

that rankq(M) = n − 1. Hence minrkq(G) ≤ n − 1. On the other hand, since

{vi : i ∈ [n− 1} is a maximum independent set in G, we obtain that α(G) = n− 1.

By Theorem 3.2.11, minrkq(G) ≥ α(G) = n− 1. Thus, minrkq(G) = n− 1. �

Corollary 4.2.10. Let G be a graph of order n ≥ 2 and let G1,G2, . . . ,Gk be all of

its connected components, with

|V(G1)| ≥ |V(G2)| ≥ · · · ≥ |V(Gk)|.

Then minrkq(G) = n− 1 if and only if the following conditions are satisfied

1. G1 is a star graph having at least two vertices,
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2. Gi is a one-vertex graph for every i ≥ 2.

Proof. Suppose that minrkq(G) = n− 1. Then G must have some connected compo-

nent that contains at least two vertices. Otherwise, by Proposition 4.2.6, minrkq(G)

would be n. Hence, as the largest component, G1 must contain at least two vertices.

Suppose for a contradiction that there exists another connected component, say G2,

that contains more than one vertex. As each of G1 and G2 contains at least one edge,

by Lemma 4.1.1 and Proposition 4.2.6, we obtain

minrkq(G) = minrkq(G1) +minrkq(G2) +
k∑

i=3

minrkq(Gi)

≤
(
|V(G1)| − 1

)
+
(
|V(G2)| − 1

)
+

k∑

i=3

|V(Gi)|

< n− 1.

We have a contradiction. Therefore, except from G1, all other connected components

each contains precisely one vertex. Moreover, minrkq(G1) = |V(G1)|−1, for otherwise,

minrkq(G) = minrkq(G1) +
k∑

i=2

minrkq(Gi)

≤
(
|V(G1)| − 2

)
+

k∑

i=2

|V(Gi)|

< n− 1.

Therefore, by Theorem 4.2.9, G1 must be a star graph.

Conversely, suppose that G1 is a star graph with at least two vertices, and that
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Gi for i > 1 contains precisely one vertex. Then |V(G1)| = n− k + 1 and

minrkq(G) = minrkq(G1) +
k∑

i=2

minrkq(Gi)

=
(
|V(G1)| − 1

)
+ (k − 1)

= n− 1. �



5. COMPUTATION OF MINRANKS OF SIDE INFORMATION

(DI)GRAPHS

In this chapter, the computational aspects of the ICSI problem are investigated.

Firstly, we show that deciding whether a digraph has minrank two is an NP-complete

problem. For comparison, there is a polynomial time to decide if a graph has min-

rank two. Secondly, we establish a new upper bound for the minrank of a digraph,

namely the circuit-packing bound, which is arguably more suitable for digraphs than

the best currently known upper bound. Employing this new bound, we point out

several families of digraphs whose minranks can be found in polynomial time. More-

over, for ICSI instances described by such digraphs, scalar linear index codes are

shown to be optimal. Thirdly, a polynomial time dynamic programming algorithm

is developed to compute the minranks of a family of graphs possessing a special tree

structure. Intuitively, such graphs are obtained by gluing together, in a tree-like

structure, several graphs for which the minranks can be determined in polynomial

time. Finally, using a computer program, we compute the minranks of all non-

isomorphic graphs of order up to 10.

5.1 The Hardness of the MinRank Problem for Digraphs

In this section, we first prove that it is an NP-complete problem to decide whether

a given digraph is fairly k-colorable (see Definition 4.2.2), for k ≥ 3. The hardness
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of this problem, by Lemma 4.2.1 and Corollary 4.2.5, leads to the hardness of the

problem of deciding whether a given digraph has minrank two over F2. The fair

k-coloring problem is defined formally as follows.

Problem: FAIR k-COLORING

Instance: A digraph D

Question: Is D fairly k-colorable?

Theorem 5.1.1. The fair k-coloring problem is NP-complete for k ≥ 3.

Proof. This problem is obviously in NP. For NP-hardness, we reduce the k-coloring

problem to the fair k-coloring problem. Suppose that G = (V(G), E(G)) is an arbi-

trary graph. We aim to build a digraph D = (V(D), E(D)) so that G is k-colorable

if and only if D is fairly k-colorable. Suppose that V(G) = [n]. For each i ∈ [n], we

build the following gadget, which is a digraph Di = (Vi, Ei). The vertex set of Di is

Vi = {i} ∪
{
ωi,j : j ∈ NG(i)

}
,

where ωi,j are newly introduced vertices. We refer to ωi,j as a clone (in Di) of the

vertex j ∈ [n]. The arc set of Di is

Ei =
{
(ωi,j, i) : j ∈ NG(i)

}
.

Let NG(i) = {i1, i2, . . . , ini
}. Then Di can be drawn as in Fig. 5.1.

Moreover, we also introduce n new vertices, which are p1, p2, . . . , pn. The digraph

D = (V(D), E(D)) is built as follows. The vertex set of D is

V(D) =
(
∪n

i=1 Vi
)
∪ {p1, p2, . . . , pn}.
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b b b

i

ωi,i1 ωi,i2
ωi,ini

Fig. 5.1: Gadget Di for each vertex i of G

The arc set of D is

E(D) =
(
∪n

i=1 Ei
)
∪
(
∪n

i=1 Qi

)
,

where Qi consists of (pi, i) and the arcs that connect pi and all the clones of i. More

formally,

Qi =
{
(pi, i)

}
∪
{
(pi, ωi′,i) : i′ ∈ [n], i ∈ NG(i′)

}
.

For example, if G is the graph in Fig. 5.2, then D is the digraph in Fig. 5.3.

1

2

3

Fig. 5.2: The graph G

Our goal now is to show that G is k-colorable if and only if D is fairly k-colorable.

Suppose that G is k-colorable and φG : [n]→ [k] is a k-coloring of G. We consider

the mapping φD : V(D)→ [k] defined as follows

1. For every i ∈ [n], φD(i)
4

= φG(i);

2. If i ∈ NG(i′) then φD(ωi′,i)
4

= φD(i) = φG(i), in other words, clones of i have
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1
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3

ω3,1

p1 p2 p3

Fig. 5.3: The digraph D built from the graph G in Fig. 5.2

the same color as i;

3. For every i ∈ [n], φD(pi) can be chosen arbitrarily, as long as it is different

from φD(i).

We claim that φD is a fair k-coloring for D. We first verify the condition (C1) (see

Definition 4.2.2). It is straightforward from the definition of φD that the endpoints

of each of the arcs of the forms (pi, i) for i ∈ [n], and (pi, ωi′,i) for i ∈ NG(i′), have

different colors. It remains to check if i and ωi,j for j ∈ NG(i) have different colors.

On the one hand, ωi,j is a clone of j, and hence has the same color as j. In other

words,

φD(ωi,j) = φD(j) = φG(j).

On the other hand, since j ∈ NG(i), we obtain that

φG(j) 6= φG(i) = φD(i).

Therefore, φD(ωi,j) 6= φD(i) for all i ∈ [n] and j ∈ NG(i). Thus, (C1) is satisfied.

We now check if (C2) (see Definition 4.2.2) is also satisfied. The out-neighbors
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of pi are i and its clones ωi′,i (i ∈ NG(i′)). These vertices have the same color in D,

namely φG(i), by the definition of φD. Thus (C2) is also satisfied. Therefore φD is a

fair k-coloring of D.

Conversely, suppose that φD : V(D) → [k] is a fair k-coloring of D. Condition

(C2) guarantees that all clones of i have the same color as i, namely, φD(ωi′,i) = φD(i)

if i ∈ NG(i′). Therefore, by (C1), if {i, j} ∈ E(G), that is, j ∈ NG(i), then

φD(i) 6= φD(ωi,j) = φD(j).

Hence, if we define φG : [n] → [k] by φG(i) = φD(i) for all i ∈ [n], then it is a

k-coloring of G. Thus G is k-colorable.

Finally, notice that the order of D is a polynomial with respect to the order

of G. More specifically, V(D) = 2|V(G)| + 2|E(G)| and E(D) = |V(G)| + 4|E(G)|.

Moreover, building D from G, and also obtaining a coloring of G from a coloring

of D, can be done in polynomial time with respect to the order of G. Since the

k-coloring problem (k ≥ 3) is NP-hard [40], we conclude that the fair k-coloring

problem is also NP-hard. �

Corollary 5.1.2. Given an arbitrary digraph D, deciding whether minrk2(D) = 2 is

NP-complete.

In contrast, for a graph G, it was observed by Peeters [53] that G has minrank

two if and only if G is a bipartite graph and G is not a complete graph, which can be

verified in polynomial time. This fact can also be derived by applying Theorem 4.2.4

to DG, the digraph corresponding to G (DG is obtained from G by replacing each

edge of G by two opposite arcs). Indeed, we first observe that a symmetric digraph

is fairly 3-colorable if and only if it is fairly 2-colorable. Therefore, a symmetric
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digraph is fairly 3-colorable if and only if its underlying graph is 2-colorable, i.e.,

is a bipartite graph. Hence, by Theorem 4.2.4, minrk2(D
G) ≤ 2 if and only if G is

bipartite. As G and DG have the same minrank, we conclude that minrk2(G) ≤ 2 if

and only if G is bipartite.

5.2 Circuit-Packing Bound

In this section we introduce a new upper bound for the minrank of a digraph. This

bound reveals some new families of digraphs whose minranks are computable in

polynomial time.

5.2.1 The Bound

We first introduce an easy lemma.

Lemma 5.2.1. If D′ is a subgraph of a digraph D then

minrkq(D) ≥ minrkq(D
′).

The same conclusion also holds for graphs.

Proof. Let M be a matrix that fits D and has rank equal to the minrank of D.

Then the sub-matrix M ′ of M restricted on the rows and columns indexed by the

vertices in V(D′) is a matrix that fits D′. Then

minrkq(D
′) ≤ rankq(M

′) ≤ rankq(M ) = minrkq(D). �

The following lower bound on the minrank of a digraph is an immediate corollary

of Theorem 4.2.7, which was also established by Bar-Yossef et al. [3, 4].
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Corollary 5.2.2. For a digraph D we have

minrkq(D) ≥ α(D),

where α(D) denotes the order of a maximum acyclic induced subgraph of D.

Proof. Let D′ be a maximum acyclic induced subgraph of D of order α(D). Since

D′ is acyclic, by Lemma 5.2.1 and Theorem 4.2.7 we have

minrkq(D) ≥ minrkq(D
′) = α(D). �

Let ν0(D) be the circuit packing number of D, namely, the maximum number

of vertex-disjoint circuits in D. We establish below an upper bound on minranks of

digraphs. This bound was also obtained independently by Chaudhry et al. [14, 15].

Proposition 5.2.3 (Circuit-packing bound). The following holds for every digraph

D or order n:

minrkq(D) ≤ n− ν0(D).

Proof. Suppose D contains ν0(D) vertex-disjoint circuits C1, C2, . . . , Cν0(D), where

Ci =
(
ui,1, ui,2, . . . , ui,ni

)
, i ∈ [ν0(D)].

We construct a matrix M fitting D as follows. Let

A
4

= [n] \ ∪i∈[ν0(D)]V(Ci).
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For v ∈ A let M v = ev. For i ∈ [ν0(D)] and s ∈ [ni − 1], let

Mui,s
= eui,s

− eui,s+1
,

and let

Mui,ni
= eui,1

− eui,ni
.

Clearly, M fits D. Moreover, as

Mui,ni
=

ni−1∑

s=1

Mui,s
,

we have

rankq
(
MV(Ci)

)
= ni − 1

for all i ∈ [ν0(D)]. Since V(Ci)’s, i ∈ [ν0(D)], are pairwise disjoint, we have

rankq(M) =

ν0(D)∑

i=1

rankq
(
MV(Ci)

)
+ rankq (MA)

=

ν0(D)∑

i=1

(ni − 1) +


n−

ν0(D)∑

i=1

ni




= n− ν0(D).

Thus, minrkq(D) ≤ n− ν0(D). �

The clique-cover bound for graphs (see Theorem 3.2.11) can be easily extended

to a bound for digraphs as follows.

Proposition 5.2.4. It holds for any digraph D that minrkq(D) ≤ cc(D).

Proof. Let V(D) = [n] and W = {W1,W2, . . . ,Wcc(D)} a minimum clique cover of
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Fig. 5.4: Example where the circuit-packing bound outperforms the clique-cover bound

D. Then [n] = ∪cc(D)
i=1 Wi. We aim to construct a matrix M that fits D and has rank

at most cc(D). Notice that by definition, W1,W2, . . . ,Wcc(D) partition V(D). For

each i ∈ [cc(D)] and j ∈ Wi, let M j =
∑

s∈Wi
es. Then M fits D and

rankq(M ) ≤

cc(D)∑

i=1

rankq (MWi
) ≤

cc(D)∑

i=1

1 = cc(D). �

Whereas for graphs the clique-cover bound is the best known bound, for digraphs

that are not symmetric, this is not the case. The worst scenario for the clique-cover

bound is when the digraph has no two arcs of opposite directions. For such a digraph,

this bound becomes trivial, as the size of the smallest clique cover is equal to the

order of the digraph. The following example emphasizes the fact that for certain

digraphs, the circuit-packing bound can be significantly better than the clique-cover

bound.

Example 5.2.5. Let Dk be the digraph of order n = 3k depicted in Fig. 5.4.

As there are no arcs of opposite directions, all cliques in Dk are of cardinality

one. Therefore, the clique-cover bound gives minrkq(Dk) ≤ 3k. On the other hand,

as Dk contains k vertex-disjoint circuits, namely Ci = (3i + 1, 3i + 2, 3i + 3) for

i = 0, 1, . . . , k− 1, the circuit-packing bound yields minrkq(Dk) ≤ 2k = 3k− k. The

gap between the two bounds is a third of the order of the digraph.
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5.2.2 Digraphs Attaining Circuit-Packing Bound

A feedback vertex (arc, respectively) set of D is a set of vertices (arcs, respectively)

whose removal destroys all circuits in D. Let τ0(D) (τ1(D), respectively) denote the

minimum size of a feedback vertex (arc, respectively) set of D. Then it is clear that

α(D) = n− τ0(D).

Corollary 5.2.6. If ν0(D) = τ0(D) then

minrkq(D) = n− ν0(D) = n− τ0(D).

Proof. By Corollary 5.2.2 and Proposition 5.2.3 we have

n− τ0(D) ≤ minrkq(D) ≤ n− ν0(D).

Hence, the proof follows. �

When D satisfies ν0(D) = τ0(D), we say that D satisfies the min-max vertex

equality. In that case, the circuit-packing bound is actually tight. Similarly, let

ν1(D) denotes the maximum number of arc-disjoint circuits in D. We say that D

satisfies the min-max arc equality if ν1(D) = τ1(D).

The first family of digraphs for which the circuit-packing bound is tight is the

family of fully reducible flow digraphs [30]. A flow digraph is a digraph that contains

a special vertex called root, from which any vertex is reachable by a path. A fully

reducible flow digraph is a flow digraph that satisfies the property that every circuit

C in the digraph has a unique vertex vC such that every path from the root to a

vertex of C must contain vC. Interestingly, it was proved by Shamir [56] that there

is a linear time algorithm to find ν0(D) = τ0(D) for a fully reducible flow digraph
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D. As a consequence, the minrank of a fully reducible flow digraph (recognizable in

polynomial time with respect to its size [63]) can be calculated in linear time with

respect to its size.

The second family of digraphs that satisfy the min-max vertex equality is the

family of connectively reducible digraphs [61]. This family actually generalizes both

the family of fully reducible flow digraphs and the family of cyclically reducible di-

graphs [66]. A polynomial time algorithm was provided by Szwarcfiter [61] to recog-

nize a member of this family and subsequently find a maximum set of vertex-disjoint

circuits as well as a minimum feedback vertex set. Therefore, by Corollary 5.2.6,

minrkq(D) = n− ν0(D) = n− τ0(D)

for a connectively reducible digraph D and moreover, it can be found in polynomial

time.

The third family of digraphs for which the circuit-packing bound is tight is the

family of digraphs that pack [32]. A digraph packs if the min-max vertex equality

holds for all of its subgraphs. The digraphs in this family are exactly ones that

have no minor isomorphic to an odd double circuit or F7, a special digraph of

order 7 (interested readers may refer to [32] for more details, also for a structural

characterization of this family of digraphs). For instance, strongly planar digraphs

[32] belong to this family. As far as we know, there are no known polynomial time

algorithms to find a minimum feedback vertex set of a digraph that packs.

The last three families of digraphs for which the circuit-packing bound is tight

are families of line digraphs of planar digraphs, of fully reducible flow digraphs, and

of (special) Eulerian digraphs.

Definition 5.2.7. Let D = (V(D), E(D)) be a digraph. Then the digraph L =
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(V(L), E(L)) with V(L) = E(D) and

E(L) =
{
(e, e′) : e = (u, v) ∈ E(D), e′ = (v, w) ∈ E(D)

}
,

is called the line digraph of D. We denote the line digraph of D by L(D). The

digraph D is called a root digraph of L(D).

Lemma 5.2.8. ν0(L(D)) = ν1(D).

Proof.

1. ν0(L(D)) ≥ ν1(D). It suffices to show that the existence of a set of arc-disjoint

circuits in D implies the existence of a set of vertex-disjoint circuits of the

same size in L(D). Let {C1, C2, . . . , Ck} be a set of arc-disjoint circuits in D,

where Ci = (vi,1, vi,2, . . . , vi,ri), ri ≥ 2, i ∈ [k]. Let ei,j = (vi,j , vi,j+1), for

i ∈ [k] and j ∈ [ri − 1]. Moreover, let ei,ri = (vi,ri , vi,1) for i ∈ [k]. Let

C ′i = (ei,1, ei,2, . . . , ei,ri) for i ∈ [k]. Then C ′i is also a circuit in L(D) for every

i ∈ [k]. Moreover, as the circuits C1, C2, . . . , Ck share no common edges in D,

we deduce that C ′1, C
′
2, . . . , C

′
k share no common vertices in L(D). Therefore,

they form a set of k vertex-disjoint circuits in L(D).

2. ν0(L(D)) ≤ ν1(D). It suffices to show that the existence of a set of vertex-

disjoint circuits in L(D) implies the existence of a set of arc-disjoint circuits

of the same size in D. Let {C ′1, C
′
2, . . . , C

′
k} be a set of vertex-disjoint circuits

in L(D), where C ′i = {ei,1, ei,2, . . . , ei,ri} for i ∈ [k]. Suppose that ei,j =

(vi,j, vi,j+1) ∈ E(D) for i ∈ [k] and j ∈ [ri], where vi,j and vi,j+1 are vertices of

D. Then vi,ri+1 ≡ vi,1 for i ∈ [k]. For each i ∈ [k], consider the sequence of
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(possibly repeated) vertices

vi,1, vi,2, . . . , vi,ri+1.

Since vi,1 ≡ vi,ri+1 and (vi,j, vi,j+1) ∈ E(D) for all j ∈ [ri], there exist j0 and j1

such that

(a) 1 ≤ j0 < j1 ≤ ri;

(b) vi,j0 ≡ vi,j1+1;

(c) vi,j0 , vi,j0+1, . . . , vi,j1 are distinct.

Then Ci = (vi,j0 , vi,j0+1, . . . , vi,j1) is a circuit inD. Since the circuits C
′
1, C

′
2, . . . , C

′
k

share no common vertices in L(D), we obtain that the circuits C1, C2, . . . , Ck

share no common edges in D. �

Lemma 5.2.9. τ0(L(D)) = τ1(D).

Proof. Let F = {e1, e2, . . . , ek}, where ei ∈ E(D) for i ∈ [k], be an arbitrary set of

arcs of D. We can also consider F as a set of vertices of L(D). It suffices to show

that F is a feedback arc set of D if and only if F is a feedback vertex set of L(D),

for every such set F .

Let D − F be the digraph obtained from D by removing all arcs in F . Let

L(D)− F be the digraph obtained from L(D) by removing all vertices in F . Then

L(D) − F = L(D − F ). As shown in the proof of Lemma 5.2.8, the existence of

a circuit in D − F would result in the existence of a circuit in L(D − F ) and vice

versa. Therefore, D − F is acyclic if and only if L(D) − F is acyclic. Thus, F is a

feedback arc set of D if and only if F is a feedback vertex set of L(D). �
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Proposition 5.2.10. Let D be a digraph. If ν1(D) = τ1(D) then ν0(L(D)) =

τ0(L(D)) and

minrkq(L(D)) = |V(L(D))| − ν0(L(D)) = |E(D)| − ν1(D).

Proof. Suppose that ν1(D) = τ1(D). By Lemma 5.2.8 and Lemma 5.2.9, ν0(L(D)) =

τ0(L(D)). Therefore, applying Corollary 5.2.6 to L(D) we obtain

minrkq(L(D)) = |V(L(D))| − ν0(L(D)) = |E(D)| − ν1(D). �

Definition 5.2.11. A (di)graph that can be drawn on a plane in such a way that

its (arcs) edges intersect only at their endpoints is called planar.

It is known that the min-max arc equality is satisfied for planar digraphs [48], for

fully reducible flow digraphs [54], and for a special family of Eulerian digraphs [55].

Therefore, by Proposition 5.2.10, the min-max vertex equality is satisfied for the

line digraphs of the members of these families. In summary, we have the following.

Corollary 5.2.12. The circuit-packing bound is tight for the following families of

digraphs: connectively reducible digraphs, digraphs that pack, line digraphs of planar

digraphs, line digraphs of fully reducible flow digraphs, and line digraphs of special

Eulerian digraphs.

Definition 5.2.13. A digraph is called partially planar if all of its strongly con-

nected components are planar.

Since the strongly connected components of a planar digraph are also planar,

a planar digraph is partially planar. However, the converse is not always true, as
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shown in Fig. 5.5.
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Fig. 5.5: A partially planar digraph that is not planar

Proposition 5.2.14. There is a polynomial time algorithm to recognize the line

digraph of a partially planar digraph and subsequently determine its minrank.

Proof.

1. Recognition Phase:

There is a one-to-one correspondence between the set of strongly connected

components of order at least two of D and the set of strongly connected compo-

nents of L(D) in the following sense. If Di’s, i ∈ [k], are all strongly connected

components of D each of which contains at least two vertices, then L(Di)’s,

i ∈ [k], are all strongly connected components of L(D). Therefore, to de-

termine whether a given digraph L is the line digraph of a partially planar

digraph, it suffices to determine whether each of its strongly connected com-

ponents Li (i ∈ [k]) is the line digraph of a planar digraph. Note also that we

can find all strongly connected components of a digraph in linear time [62].

For each i ∈ [k], employing a polynomial time algorithm, we can determine
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whether Li is a line digraph of a digraph [60]. If the answer is YES, then

the algorithm also outputs a digraph D′
i, which is a root digraph of Li and is

strongly connected.

Suppose L = L(D), where D is a digraph. Moreover, let Li = L(Di), where

Di’s, i ∈ [k], are all strongly connected components of D of order at least

two. By [35, Theorem 3], D′
i and Di are actually isomorphic, i ∈ [k]. Hence,

to complete the Recognition Phase, one needs to test the planarity of D′
i for

every i ∈ [k]. It is well known that this task can be done in linear time [38].

Thus, the Recognition Phase can be done in polynomial time.

2. MinRank Computation Phase:

Upon the completion of the Recognition Phase, if it is confirmed that L is

indeed the line digraph of a partially planar digraph, then the second phase

is carried out to compute minrkq(L). We show that this phase can also be

done in polynomial time. Indeed, by Lemma 4.1.2, it suffices to show that

minrkq(Li) for i ∈ [k] can be found in polynomial time.

On the one hand, since D′
i (which is isomorphic to Di) is planar, as shown by

Lucchesi and Younger [48], ν1(D
′
i) = τ1(D

′
i). Therefore, by Proposition 5.2.10,

minrkq(Li) = |V(Li)| − ν0(Li) = |E(D
′
i)| − ν1(D

′
i).

On the other hand, ν1(D
′
i) can be computed in polynomial time [47]. There-

fore minrkq(Li) for each i ∈ [k] can be computed in polynomial time. Thus,

minrkq(L) can be found in polynomial time. �

In summary, we have the following.
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Corollary 5.2.15. There are polynomial time algorithms to recognize a member

and subsequently determine the minrank of that member of the following families of

digraphs: connectively reducible digraphs (which includes fully reducible flow digraphs

and cyclically reducible digraphs), and line digraphs of partially planar digraphs.

Note that since a strongly connected component of a fully reducible flow digraph

may no longer be a fully reducible flow digraph, the arguments in the proof of

Proposition 5.2.14 do not work for line digraphs of fully reducible flow digraphs.

We now discuss vector index codes and their transmission rates. Consider an

ICSI instance (n, n,X , f). We treat each message xi (i ∈ [n]) as a vector in Ft
q

for some t ≥ 1. An encoding function E : Ftn
q → Fk

q that enables each receiver Ri

to recover xi based on E(x) and its side information is called a vector index code

of block length t. We call the ratio k/t the transmission rate of the vector index

code (see [2, 28]). An interesting task is to find an optimal vector index code, that

is, a vector index code that achieves minimum transmission rate. When the block

length t equals one, the vector index codes become the scalar index codes, and the

aforementioned problem becomes the familiar problem of finding a scalar index code

of minimum length.

Consider an ICSI instance described by a digraph D. In the remainder of this

section, we show that if minrkq(D) = α(D) then an optimal scalar linear index

code (block length t = 1) always achieves the minimum transmission rate. As

a consequence, we obtain several families of side information digraphs, listed in

Corollary 5.2.12, for ICSI instances described by which, scalar linear index codes

are already optimal. Before this work, only perfect graphs and acyclic digraphs are

known to have this property.

Proposition 5.2.16. If minrkq(D) = α(D) then the optimal transmission rate of an
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ICSI instance described by D is α(D). As a result, scalar linear index codes achieve

the optimal rate.

Proof. First, observe that a vector index code for an ICSI instance described by D

with block length t ≥ 1 is a scalar index code for another ICSI instance described

by Dt and vice versa, where Dt = (V(Dt), E(Dt)) is defined as follows. The vertex

set is V(Dt) = {(i, r) : i ∈ [n], r ∈ [t]}, and the arc set is

E(Dt) =
{(

(i, r), (j, s)
)
: (i, j) ∈ E(D), r, s ∈ [t]

}
.

Note that in the ICSI instance described by Dt, there are nt receivers, each requests

precisely one bit of information. There are now n groups of receivers, in each of

which all t receivers own the same side information. Each of these groups of t

receivers corresponds to one receiver in the original instance.

Suppose that I = {i1, i2, . . . , iα(D)} induces a maximum acyclic subgraph of D.

By the definition of Dt, the set

It =
{
(ij, r) : j ∈ [α(D)], r ∈ [t]

}

induces an acyclic subgraph of Dt. Therefore

α(Dt) ≥ |It| = |tα(D)|.

Hence, by [3, Theorem 6], any scalar index code for the ICSI instance described by

Dt has length at least tα(D). Therefore, any vector index code for the ICSI instance

described by D has transmission rate at least α(D) = (tα(D))/t, which is equal to

the rate of an optimal scalar linear index code. We recall that a straightforward

generalization of [4, Theorem 5] shows that minrkq(D) (= α(D) in this case) equals
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the rate of an optimal scalar linear index code over Fq. The proof is complete. �

5.3 On MinRanks of Graphs Having Tree Structures of Type I

We present in this section a new family of graphs whose minranks can be found in

polynomial time.

5.3.1 Tree Structure of Type I

Let P be a collection of finitely many families of graphs that satisfy the following

requirements:

1. Each family is closed under the operation of taking induced subgraphs, that

is, every induced subgraph of a member of a family of P also belongs to that

family;

2. There is a polynomial time algorithm to recognize a member of each family;

3. There is a polynomial time algorithm to find the minrank of every member of

each family.

For instance, we may choose P to be the collection of the following three families:

perfect graphs [3,19], outerplanar graphs [8,68], and graphs of orders bounded by a

constant. Instead of saying that a graph G belongs to a family in P, with a slight

abuse of notation, we often simply say that G ∈P.

Let U and V be two disjoint nonempty sets of vertices of G. Let

sG(U, V ) =
∣∣∣
{
{u, v} : u ∈ U, v ∈ V, {u, v} ∈ E(G)

}∣∣∣,

denotes the number of edges each of which has one endpoint in U and the other

endpoint in V .



5. Computation of MinRanks of Side Information (Di)Graphs 128

Definition 5.3.1. A connected graph G = (V(G), E(G)) is said to have a tree struc-

ture of Type I if there exists a partition Γ = [V1, V2, . . . , Vk] of the vertex set V(G)

that satisfies the following three requirements:

(R1) The Vi-induced subgraph Gi of G belongs to a family in P, for every i ∈ [k];

(R2) sG(Vi, Vj) ∈ {0, 1} for every i 6= j;

(R3) The graph T = (V(T ), E(T )), where V(T ) = [k] and

E(T ) =
{
{i, j} : sG(Vi, Vj) = 1

}
,

is a rooted tree; The tree T can also be thought of as a graph obtained from

G by contracting each Vi to a single vertex.

The 2-tuple T = (Γ, T ) is called a tree structure of Type I of G.

G1

G3G2

G4 G5 G6 G7

1

32

4 5 6 7

GraphG The corresponding treeT

Fig. 5.6: A tree structure of Type I of a graph G

If a tree structure of Type I T = (Γ, T ) of G is given, where Γ = [V1, V2, . . . , Vk],

then we can define the following terms:

1. Each Vi-induced subgraph Gi of G is called a node of T ;



5. Computation of MinRanks of Side Information (Di)Graphs 129

2. If i is the parent of j in T , then Gi is called the parent (node) of Gj in T ;

We also refer to Gj as a child (node) of Gi; Nodes with no children are called

leaves; The node with no parent is called the root;

3. For each i ∈ [k] let Si be the subgraph of G induced by Vi ∪ (∪j∈desT (i)Vj),

where desT (i) denotes the set of descendants of i in T ;

4. If Gj is a child of Gi, and {u, v} ∈ E(G), where u ∈ Vi and v ∈ Vj, then u is

called a downward connector (DC) of Gi and v is called the upward connector

(UC) of Gj ; Each node may have several DCs but at most one UC; DCs and

UC of a node are called connectors of that node.

5. Let mdc(T ) denote the maximum number of DCs of a node of T .

For any c > 0 we define the following two families of connected graphs

F1(c)
4

=
{
G : G is connected and has a tree structure T = (Γ, T ) of Type I

satisfying mdc(T ) ≤ c
}
,

and

F2(c)
4

=
{
G : G is connected and has a tree structure T = (Γ, T ) of Type I

satisfying mdc(T ) ≤ c and each node of T is 2-edge connected
}
,

A tree structure of Type I of a graph G that proves the membership of G in F1(c)

or F2(c) is called a relevant tree structure of G.

5.3.2 An Algorithm for MinRanks of Graphs in F1(c)

In this section we establish that the minrank of a member of F1(c) can be found in

polynomial time.
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Theorem 5.3.2. Let c > 0 be a constant and G ∈ F1(c). Suppose further that a

tree structure of Type I T = (Γ, T ) of G with mdc(T ) ≤ c is known. Then there is

an algorithm that computes the minrank of G in polynomial time.

To prove Theorem 5.3.2, we describe below an algorithm that computes the

minrank of G when G ∈ F1(c) and investigate its complexity.

First, we introduce some notation which is used throughout this section. If v is

any vertex of a graph G, then G−v denotes the graph obtained from G by removing v

and all edges incident to v. In general, if V is any set of vertices, then G−V denotes

the graph obtained from G by removing all vertices in V and all edges incident to

any vertex in V . In other words, G − V is the subgraph of G induced by V(G) \ V .

Note that if G ∈ P then the minrank of G − V can be computed in polynomial

time for every subset V ⊂ V(G). If e = {u, v} ∈ E(G) then G − e denotes the graph

obtained from G by removing the edge e without removing its endpoints u and v.

In general, if E is any set of edges, then G − E denotes the graph obtained from G

by removing all edges in E without removing their endpoints. The union of two or

more graphs is a graph whose vertex set and edge set are the unions of the vertex

sets and of the edge sets of the original graphs, respectively.

The following results from [8] are particularly useful in our discussion. Their

proofs can be found in the full version of [8] at http://www.openu.ac.il/home/

mikel/papers/outer.pdf.

Lemma 5.3.3 ([8]). Let v be a vertex of a graph G. Then

minrkq(G − v) ≤ minrkq(G) ≤ minrkq(G − v) + 1.
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Lemma 5.3.4 ([8]). Let G1 and G2 be two graphs with one common vertex v. Then

minrkq(G1 ∪ G2) = minrkq(G1 − v) +minrkq(G2 − v)

+
(
minrkq(G1)−minrkq(G1 − v)

)(
minrkq(G2)−minrkq(G2 − v)

)
.

In other words, the minrank of G1 ∪ G2 can be computed explicitly based on the

minranks of G1, G1 − v, G2, and G2 − v.

ALGO-1:

Suppose G ∈ F1(c) and a relevant tree structure of G is given. The algorithm

computes the minrank by dynamic programming in a bottom-up manner, from the

leaves of T to its root. Suppose that Γ = [V1, V2, . . . , Vk] and Gi is induced by Vi for

i ∈ [k]. Let vi be the UC (if any) of Gi for i ∈ [k]. For each i, ALGO-1 maintains

a table which contains the two values, namely, minranks of Si and Si − vi. The

minrank of the latter is omitted if Gi is the root node of T . A key point is that the

minranks of Si and Si − vi can be computed in polynomial time from the minranks

of Sj’s and of (Sj − vj)’s where Gj’s are children of Gi, and from the minranks of at

most 2c subgraphs of Gi. Each of these subgraphs is obtained from Gi by removing

a subset of a set that consists of at most c vertices of G. When the minrank of Si0

is determined, where Gi0 is the root of T , the minrank of G is found.

At the leaf-nodes:

Suppose Gi is a leaf and vi is its UC. Since Gi has no children, Si ≡ Gi. Hence,

minrkq(Si) = minrkq(Gi),
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and

minrkq(Si − vi) = minrkq(Gi − vi).

Both of these values can be computed in polynomial time, as Gi ∈P.

At the intermediate nodes:

Suppose the minranks of Sj and Sj − vj are known for all j such that Gj is a child

of Gi. The goal of the algorithm at this step is to compute the minranks of Si and

Si − vi in polynomial time. It is complicated to analyze directly the general case

where Gi has an arbitrary number (at most c) of downward connectors. Therefore,

we first consider a special case where Gi has only one downward connector (Case 1).

The results established in this case are then used to investigate the general case

(Case 2).

Case 1: Gi has only one DC u and has r children, namely Gj1 ,Gj2 , . . . ,Gjr , all of

which are connected to Gi via u.

Let K be the subgraph of G induced by the following set of vertices

V(K) = V(Sj1) ∪ V(Sj2) ∪ · · · ∪ V(Sjr) ∪ {u}.

Notice that the graphs Gi and K share exactly one vertex, namely, u. Hence

by Lemma 5.3.4, once the minranks of Gi, Gi−u, K, and K−u are known, the

minrank of Si = Gi ∪ K can be explicitly computed. Similarly, if vi 6= u and

the minranks of Gi − vi, Gi − vi − u, K, and K− u are known, the minrank of

Si− vi = (Gi− vi)∪K can be explicitly computed. Observe also that if vi ≡ u
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b

b b b

b
vi

u

Gi

Sj1 Sj2 Sjr

Si

K

vj1 vj2 vjr

Fig. 5.7: Gi has only one downward connector

then by Lemma 4.1.1,

minrkq(Si − vi) = minrkq(Gi − u) +minrkq(K − u).

Again by Lemma 4.1.1,

minrkq(K − u) =
r∑

`=1

minrkq(Sj`),

which is known. Moreover, as Gi ∈ P, the minranks of Gi, Gi − vi, Gi − u,

and Gi − vi − u can be determined in polynomial time. Therefore it remains

to compute the minrank of K efficiently. According to the following claim,

the minrank of K can be explicitly computed based on the knowledge of the

minranks of Sj` and Sj` − vj` for ` ∈ [r].
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Claim 5.3.5. The minrank of K is equal to





minrkq(K − u), if ∃h ∈ [r] s.t. minrkq(Sjh − vjh) = minrkq(Sjh)− 1,

minrkq(K − u) + 1, otherwise.

Proof. Suppose there exists h ∈ [r] such that

minrkq(Sjh − vjh) = minrkq(Sjh)− 1.

By Lemma 5.3.3,

minrkq(K) ≥ minrkq(K − u).

Therefore, in this case it suffices to show that a matrix that fits K and has rank

equal to minrkq(K − u) exists. Indeed, such a matrix M can be constructed

as follows:

1. Its sub-matrix restricted on V(Sj`) for ` 6= h has rank equal tominrkq(Sj`);

2. Its sub-matrix restricted on V(Sjh)\{vjh} has rank equal to minrkq(Sjh−

vjh);

3. Mu = M vjh
= eu + evjh

;

4. All other entries are zero.

Since the sets V(Sj`) (` 6= h), V(Sjh) \ {vjh}, and {u, vjh} are pairwise dis-

joint, the above requirements can be met without any contradiction arising.
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Moreover,

rankq(M ) =
∑

6̀=h

minrkq(Sj`) +minrkq(Sjh − vjh) + 1

=
∑

6̀=h

minrkq(Sj`) +minrkq(Sjh)

= minrkq(K − u).

We now suppose that minrkq(Sj` − vj`) = minrkq(Sj`) for all ` ∈ [r]. We prove

that

minrkq(K) = minrkq(K − u) + 1

by induction on r.

1. The base case: r = 1.

b

b

u

vj1

K

J

Sj1

Fig. 5.8: The base case when r = 1

Let J = (V(J ), E(J )) where V(J ) = {u, vj1} and E(J ) =
{
{u, vj1}

}
.

Then K = J ∪ Sj1 and V(J ) ∩ V(Sj1) = {vj1}. Moreover,

minrkq(J ) = minrkq(J − vj1) = 1.
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Therefore by Lemma 5.3.4,

minrkq(K) = minrkq(Sj1 − vj1) +minrkq(J − vj1)

= minrkq(Sj1) + 1

= minrkq(K − u) + 1.

2. The inductive step: suppose that the assertion holds for r ≥ 1. We aim

to show that it also holds for r + 1.

b

b b

u

Sj1 Sjr

K

vj1 vjr b

Sjr+1

vjr+1b b b

J
b b b

I

Fig. 5.9: The inductive step

Let J be the subgraph of G induced by

{u} ∪
(
∪r

`=1 V(Sj`)
)
.

Since minrkq(Sj` − vj`) = minrkq(Sj`) for all ` ∈ [r], by the induction
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hypothesis, we have

minrkq(J ) = minrkq(J − u) + 1.

Let I be the subgraph of G induced by {u} ∪ V(Sjr+1). As

minrkq(Sjr+1 − vjr+1) = minrkq(Sjr+1),

similar arguments as in the base case yield

minrkq(I) = minrkq(I − u) + 1.

Applying Lemma 5.3.4 to the graphs I and J we obtain

minrkq(K) = minrkq(I ∪ J )

= minrkq(I − u) +minrkq(J − u) + 1

=
r+1∑

`=1

minrkq(Sj`) + 1,

which is equal to minrkq(K − u) + 1. �

Case 2: Gi has d DCs, namely, u1, u2, . . . , ud. Let {Gj : j ∈ It} for 1 ≤ t ≤ d, be

the set of children of Gi connected to Gi via ut.

Recall that the goal of the algorithm is to compute the minranks of Si and

Si−vi in polynomial time, given that the minranks of Sj and Sj−vj are known

for all children Gj’s of Gi.

For each t ∈ [d] let Kt be the subgraph of G induced by the following set of
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u1 u2
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N2

Gi

Fig. 5.10: Gi has several downward connectors

vertices

{ut} ∪
(
∪j∈It V(Sj)

)
.

As in Case 1, based on the minranks of Sj’s and Sj−vj for j ∈ It, it is possible

to compute the minranks of Kt and Kt − ut explicitly for all t ∈ [d].

Let

N1 = K1 ∪ Gi,

and

Nt = Nt−1 ∪ Kt,

for every t ∈ [d] and t ≥ 2. Observe that Nd ≡ Si. Below we show how the

algorithm computes the minranks of Nd and Nd−vi inductively in polynomial

time.

1. At the base case, the minranks of N1−U , for every subset U ⊆ {vi, u2, u3,
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. . . , ud}, are computed as follows.

If vi ≡ u1 ∈ U , then

N1 − U = (K1 − u1) ∪ (Gi − U).

Since

V(K1 − u1) ∪ V(Gi − U) = ∅,

by Lemma 4.1.1,

minrkq(N1 − U) = minrkq(K1 − u1) +minrkq(Gi − U),

which is computable in polynomial time.

Suppose that either vi 6≡ u1 or vi /∈ U . By Lemma 5.3.4, since

N1 − U = K1 ∪ (Gi − U),

and

V(K1) ∩ V(Gi − U) = {u1},

the minrank of N1 − U can be determined based on the minranks of K1,

K1−u1, Gi−U , and Gi−U−u1. The minranks of these graphs are either

known or computable in polynomial time. As mdc(T ) ≤ c, there are at

most 2d ≤ 2c (a constant) such subsets U . Hence, the total computation

in the base case can be done in polynomial time.

2. At the inductive step, suppose that the minrank of Nt−1 − U , t ≥ 2, for

every subset U ⊆ {vi, ut, ut+1, . . . , ud} are known. Our goal is to show

that the minrank of Nt − V for every subset V ⊆ {vi, ut+1, ut+2, . . . , ud}
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can be determined in polynomial time. Observe again that there are at

most 2c such subsets V .

If vi ≡ ut and vi ∈ V , then

Nt − V = (Nt−1 − V ) ∪ (Kt − ut).

Moreover, as we have

V(Nt−1 − V ) ∩ V(Kt − ut) = ∅,

by Lemma 4.1.1,

minrkq(Nt − V ) = minrkq(Nt−1 − V ) +minrkq(Kt − ut),

which is known.

Suppose that either vi 6≡ ut or vi /∈ V . Since

Nt − V = (Nt−1 − V ) ∪ Kt,

and

V(Nt−1 − V ) ∩ V(Kt) = {ut},

the minrank of Nt−V can be computed based on the minranks of Nt−1−

V , Nt−1−V −ut, Kt, and Kt−ut, which are all available from the previous

inductive step.

When the inductive process reaches t = d, the minranks of Nd and Nd−vi

are found, as desired. The analysis of Case 2 is completed.
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When the algorithm reaches the root node of T , the minrank of G is found.

5.3.3 An Algorithm to Recognize a Graph in F2(c)

In order for ALGO-1 to work, it is assumed that a relevant tree structure of the

input graph G ∈ F1(c) is given. Therefore, the next question is how to design an

algorithm that recognizes a graph in that family and subsequently finds a relevant

tree structure for that graph in polynomial time. Unfortunately, we are unable to

provide such an algorithm at the moment. However, the same task is possible for a

sub-family of F1(c), namely, F2(c).

Theorem 5.3.6. Let c > 0 be any constant. Then there is a polynomial time

algorithm that recognizes a member of F2(c). Moreover, this algorithm also outputs

a relevant tree structure of that member.

In order to prove Theorem 5.3.6, we introduce ALGO-2 (Fig. 5.11). We show

below that ALGO-2 indeed does what it is claimed to do.

Claim 5.3.7. If ALGO-2 terminates successfully, that is, it terminates without any

error message printed out, then G ∈ F2(c) and the output is a relevant tree structure

of G.

Proof. Suppose that ALGO-2 terminates successfully. In the Splitting Phase, the

algorithm first splits G into two vertex-disjoint components (subgraphs) that are

connected to each other by exactly one edge in G. It then keeps splitting the ex-

isting components, whenever possible, each into two new smaller (vertex-disjoint)

components that are connected to each other by exactly one edge in the original
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ALGO-2:
Input: A connected graph G = (V(G), E(G)) and a constant c > 0.
Output: If G ∈ F2(c), the algorithm prints out a confirmation message,
namely “G ∈ F2(c)”, and then returns a relevant tree structure of G. Other-
wise, it prints out an error message “G /∈ F2(c)”.
Initialization: Create two empty queues, Q1 and Q2, which contains graphs
as their elements. Push G into Q1.
Splitting Phase:

while Q1 6= ∅ do
for A = (V(A), E(A)) ∈ Q1 do
if there exist U and V that partition V(A) and sA(U, V ) = 1 then
Let B and C be subgraphs of A induced by U and V , respectively
Push B and C into Q1

else if A ∈P then
Push A into Q2

else
Print the error message “G /∈ F2(c)” and exit

end if
end for

end while

Verifying Phase:
Suppose Q2 contains k′ graphs A1,A2, . . . ,Ak′ . The number of connectors of
each graphs Ai for i ∈ [k′] is computed. If Ai has at most c+1 connectors for
every i then print out the message “G ∈ F2(c)” and output the vertex parti-
tion [V(A1), . . . ,V(Ak′)] together with the rooted tree T ′ = (V(T ′), E(T ′)) con-
structed as follows. Let V(T ′) = [k′] and E(T ′) =

{
{i, j} : sG(V(Ai),V(Aj)) =

1
}
. The root of T ′ is i0, where Ai0 is any node that has at most c connectors.

Otherwise, print out the error message “G /∈ F2(c)” and exit.

Fig. 5.11: ALGO-2

G

Fig. 5.12: Splitting Phase of ALGO-2
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component (see Fig. 5.12). A straightforward inductive argument shows the follow-

ing

1. Throughout the Splitting Phase, the vertex sets that induce the components

of G partition V(G); Hence V(Ai)’s, i ∈ [k′], partition V(G);

2. Throughout the Splitting Phase, any two different components of G are con-

nected to each other by at most one edge in G; Therefore, sG(V(Ai),V(Aj)) ∈

{0, 1} for every i 6= j;

3. At any time during the Splitting Phase, the graph that is obtained from G by

contracting the vertex set of each component of G to a single vertex is a tree;

Therefore, T ′ is a tree;

4. In the Splitting Phase, every component of G is connected; Hence, as there

are no bridges in each of the subgraph Ai for i ∈ [k′], they are all 2-edge

connected.

It is also clear that each Ai belongs to a family in P. Since G passes the Verifying

Phase successfully, T ′ = (Γ′ = [V(A1), . . . ,V(Ak′)], T
′) is already qualified to be a

tree structure of Type I of G. It remains to show that mdc(T ′) ≤ c. Indeed, firstly,

the root node Ai0 has at most c connectors, hence at most c downward connectors.

Secondly, the other nodes Ai for i 6= i0, each has a parent node and has at most

c + 1 connectors. Hence, each of them has at most c DCs. Hence mdc(T ′) ≤ c, as

desired. �

Claim 5.3.8. If G ∈ F2(c) then ALGO-2 terminates successfully.

Proof. Suppose G ∈ F2(c) and T = (Γ, T ), where Γ = [V1, V2, . . . , Vk], is a relevant

tree structure of G. As each Gi is 2-edge connected, throughout the Splitting Phase,
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the splits always occur at and only at the edges of G each of which connects two

different nodes of T . The Splitting Phase stops when and only when there are no

more components that contain such an edge within each of them. Therefore, at

the end of the Splitting Phase, the set of components of G generated by algorithm,

namely {A1,A2, . . . ,Ak′}, coincide with the set of nodes {G1,G2, . . . ,Gk} of T . The

Verifying Phase also terminates successfully. Indeed, firstly, since each node Gj

(j ∈ [k]) has at most c downward connectors in T , the node Ai (i ∈ [k]) has at

most c + 1 connectors in T ′. Secondly, a node Ai0 that has at most c connectors

always exists since we can choose, for instance, the root node of T . �

Claim 5.3.9. The running time of ALGO-2 is polynomial with respect to the order

of G.

Proof. Notice that every single task in ALGO-2 can be accomplished in polynomial

time. Those tasks include: finding a min-cut of size one in a graph, deciding whether

a graph belongs to P, counting the number of connectors of each component of G,

and building a rooted tree based on the components of G.

Let consider the “while loop” and the “for loop”. After each intermediate it-

eration in the while loop, as at least one component gets split into two smaller

components, the number of components of G is increased by at least one. Since

the vertex sets of the components are pairwise disjoint, there are no more than

n = |V(G)| components at any time. Hence, there are no more than n iterations

in the while loop. Since the number of graphs in Q1 cannot exceed n, the number

of iterations in the for loop is also at most n. Thus, in total, the running time of

ALGO-2 is polynomial with respect to n. �
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5.4 MinRanks of (Di)Graphs of Small Orders

To aid further research on the behavior of minranks of graphs, we have carried out

a computation of binary minranks of all non-isomorphic graphs of orders up to 10.

Order Number of non-isomorphic graphs Total running time

1 1 < 1 seconds
2 2 < 1 seconds
3 4 < 1 seconds
4 11 < 1 seconds
5 34 < 1 seconds
6 156 < 1 seconds
7 1, 044 < 1 seconds
8 12, 346 25 seconds
9 274, 668 56 minutes
10 12, 005, 168 4.3 days

Fig. 5.13: Running time for finding minranks of graphs or small orders

A reduction to the Satisfiability (SAT) problem [16] provides us with an ele-

gant method to compute the binary minrank of a (hyper,di)graph. We observed

that while the SAT-based approach is very efficient for (di)graphs having many

edges, it does not perform well for simple instances, such as a graph on 10 vertices

with no edges (minrank 10), or a digraph on seven vertices 0, 1, . . . , 6, with six arcs

(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6) (minrank seven). For such naive instances, the

SAT solver that we used, Minisat [24], was not able to terminate after hours. This

weirdness might be attributable to the fact that the SAT instances corresponding to

a (di)graph with fewer (arcs) edges contain more variables than those correspond-

ing to a (di)graphs with more (arcs) edges on the same of set of vertices (see the

Appendix A.2 for more details).

To achieve our goal, we wrote a sub-program which used a Branch-and-Bound

algorithm to find minranks in an exhaustive manner. When the input graph was
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of large size, that is, its size surpassed a given threshold, a sub-program using a

SAT solver was invoked; Otherwise, the Branch-and-Bound sub-program was used.

We noticed that there were graphs of order 10 that have around 21–22 edges, for

which the Branch-and-Bound sub-program could find the minranks in less than one

second, while the SAT-based sub-program could not after 3 or 4 hours. For graphs

of order 10, we observed that the threshold 24, which we actually used, did work

well. The most time-consuming task is to compute the minranks of all 12, 005, 618

non-isomorphic graphs of order 10. This task actually took more than four days to

finish.

We put all details of the SAT-based approach [16] and the Branch-and-Bound

approach in Appendix A. The minranks of all non-isomorphic graphs of orders at

most six are listed in Appendix B for illustration. The minranks and the correspond-

ing matrices that achieve the minranks of all non-isomorphic graphs of orders up

to 10 are available at web.spms.ntu.edu.sg/~daus0001/mr-small-graphs.html.

Computation of the minrank of a single (di)graph is available at web.spms.ntu.

edu.sg/~daus0001/mr.html.



6. CONCLUSION

We have studied the security aspects and the computational aspects of the Index

Coding with Side Information (ICSI) problem.

For block security, given a linear index code based on a matrix L, we have

established two bounds on the security level of the code. These bounds employ

the minimum distance and the dual distance of C(L), the subspace spanned by

the (transposed) columns of L. While the dimension of this subspace, which is

equal to the number of columns of L in this setting, corresponds to the number

of transmissions in the scheme (that is, the efficiency of the code), the minimum

distance determines the security of the scheme.

Open Problem I: Find a trade-off between the efficiency and the block security of

a linear index code.

We now elaborate more on this problem. Consider an ICSI instance (m,n,X , f).

Let Wi
4

=
{
c(u(i) + ef(i)) : c ∈ F∗

q, u(i) C Xi

}
for i ∈ [m]. We have established

(in Corollary 2.2.6) that L corresponds to a linear (m,n,X , f)-IC over Fq if and

only if C(L) ∩Wi 6= ∅ for all i ∈ [m]. Here C(L) denotes the (transposed) column

space of L. Then the Open Problem I can be restated as follows: given an instance

(m,n,X , f), what is the trade-off between the dimension and the minimum distance

of a vector space C ⊆ Fn
q that satisfies C ∩Wi 6= ∅ for all i ∈ [m]?

Open Problem II: Find constructions of families of linear index codes that possess

good efficiency and good block security.
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At one extreme, when only the efficiency is considered, it is known that designing

an optimal linear index code is an NP-hard problem. At the other extreme, if we

ignore the efficiency, we may ask the following question.

Open Problem III: How hard is it to find a linear index code that provides the

highest level of block security?

We discuss below a different view of the Open Problem III. Let us consider the

original setting of the ICSI problem [3], in which q = 2, m = n, and f(i) = i for

all i ∈ [n]. Let A = (ai,j)n×n be the binary side information matrix, defined by

ai,j = 1 if and only if either j = i ∈ [n] or j ∈ Xi. Equivalently, A is obtained

by taking the sum of the adjacency matrix of the side information digraph and the

identity matrix. It is not hard to see that the task specified in the Open Problem

III is equivalent to the task of finding a way to turn certain off-diagonal 1’s into 0’s

in A, so that the rows of the resulting matrix generate an error-correcting code of

minimum distance as large as possible. Note that the row space of such a matrix

corresponds to the transposed column space of a matrix L associated with a linear

index code. It is very likely that this task is a hard problem. For comparison, even

finding the minimum distance of an error-correcting code given its generating matrix

corresponds to an NP-complete decision problem [65].

For strong security, we have introduced a lower bound on the length of a linear

index code that is resistant to eavesdropping, information leaking, and errors. Index

codes that achieve this bound have been constructed for sufficiently large alphabets.

Open Problem IV: Investigate the strong security of linear index codes over small

alphabets, such as the binary alphabet.

It seems that one cannot obtain the perfect strong security for linear index codes

over small alphabets. However, we may consider the asymptotic strong security

instead. In that case, vector linear index codes with block lengths approaching
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infinity are more suitable. A valid question is: does the concatenation of binary

wiretap codes (studied by Ozarow and Wyner [52]) and optimal binary vector linear

index codes yield (asymptotically) optimal security levels and optimal transmission

rates? Note that this question has been answered in the affirmative for the case of

wiretap codes and scalar linear index codes that are over sufficiently large alphabets

(Chapter 2 and 3).

We have also constructed a number of bounds on the length of an optimal error-

correcting index code. As it is shown in Example 3.2.10, a separation of error-

correcting code and index code sometimes leads to a non-optimal scheme. This

raises a question of designing coding schemes in which the two layers are treated as

a whole. We have discussed a general decoding procedure for linear error-correcting

index codes. The difference between decoding of a classical error-correcting code and

decoding of an error-correcting index code is that in the latter case, each receiver

does not require a complete knowledge of the error vector. This difference may help

to ease the decoding process. We state our sixth open problem below.

Open Problem VI: Find constructions of error-correcting index codes with good

parameters and efficient decoding methods.

It has been shown that the minrank of the side information hypergraph is ac-

tually the length of an optimal scalar linear index code. However, it is, in general,

extremely hard to compute the minrank of a hypergraph. Therefore, it would be

desirable to find families of graphs, digraphs, and hypergraphs whose minranks can

be determined in polynomial time. The second main contribution of this thesis is

the revelation of some new families of (di)graphs for which the minrank computation

can be done in polynomial time. We state below several open problems related to

minranks of hypergraphs ((di)graphs).

Open Problem VII: Examine the hardness of the following decision problem:
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decide whether a digraph has minrank two over a nonbinary field Fq.

Open Problem VIII: Find a polynomial time algorithm to recognize a member

of F1(c) (see Section 5.3).

Open Problem IX: Find efficient exact algorithms for computing minrank of a

hypergraph over a nonbinary field Fq.

Open Problem X: Find new families of hypergraphs ((di)graphs) whose minranks

can be found in polynomial time.
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APPENDIX



A. AN EXACT ALGORITHM FOR FINDING MINRANKS OF

(DI)GRAPHS OVER F2

A.1 The Algorithm

We described below the algorithm for digraphs. For graphs, it is completely the

same.

Main()
{
Input a digraph D and a threshold θ;
if |E(D)| ≤ θ then
Find-MinRank-Using-BranchAndBound(D);

else
Find-MinRank-Using-SAT-Solver(D);

end if
}

Fig. A.1: Main module

The Branch-and-Bound (BB) module runs through the set of all matrices that

fit D (possibly ignores some) and finds out a matrix that has smallest minrank.

Suppose D is of order n.

The BB module builds up a search tree as follows. The nodes of the tree are

grouped into n+1 different layers. The root node belongs to Layer 0. The children

of the root node belong to Layer 1. The children of each of the children of the root

node belong to Layer 2, and so forth. Each node in Layer i (i ∈ [n]) is labeled by a

row vector u = (u1, u2, . . . , un) ∈ Fn
2 satisfying ui = 1 and uj = 0 if (i, j) /∈ E(D).
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In other words, the label of each node in Layer i is a candidate for the ith row of

a matrix that fits D. The sets of labels of the children of each node in Layer i − 1

(2 ≤ i ≤ n) is precisely the set of all such row vectors u. The n labels of the nodes

on an arbitrary path from the root to a leaf (excluding the root) form the rows

of a matrix that fits D. Traversing all such paths of the search tree, we can find

all matrices that fit D. The following example illustrates the search tree described

above.

root

100

010 011

001 101 001

110

101

010 011

001 101 001 101

1

23

digraphD

The search treeLayer0

Layer1

Layer2

Layer3

Fig. A.2: An example of the search tree built by the BB module

The BB module during its running time maintains a global bound, which is a

“current best” candidate for the minrank of D. This bound is the rank of a matrix

that fits D and has lowest rank among all previously examined matrices. The global

bound is updated every time a matrix with lower rank is examined. Based on this

bound, the algorithm may prune the branches (i.e., it bypasses those branches and

goes upwards to examine other branches) that surely do not contain matrices with

lower ranks than the current best rank. Hence, the search space can be reduced

significantly. At the beginning, we can initiate this bound to be any upper bound
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for minrk2(D), found by some fast heuristic algorithm. Some candidates are those

established by Chaudhry and Sprintson [16]. In the case of graphs, we actually used

a simple upper bound for cc(G) (hence it is also an upper bound forminrk2(G)), which

was obtained by coloring G greedily. Note that we should choose different heuristic

algorithms in different scenarios. Indeed, if we want to compute the min-rank of

only one (di)graph, an algorithm that outputs a good bound in half a minute seems

to be fine. However, if we are computing the minranks of millions of (di)graphs,

such an algorithm would be a very poor choice. In such a case, an algorithm that

quickly produces a not-so-good bound might be preferred.

Find-MinRank-Using-SAT-Solver(D)
{
lower-bound := 1; upper-bound := |V(D)|;
while upper-bound > lower-bound +1 do
k := b(upper-bound + lower-bound)/2c;
Create the corresponding SAT instance Ik(D);
sat := SAT-Solver(Ik(D));
if sat = SATISFIABLE then
upper-bound := k;

else
lower-bound := k;

end if
end while
Print out upper-bound as the minrank of D;
}

Fig. A.3: SAT-based module

The issue of creating the SAT instance Ik(D) is discussed in details in the next

section.
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A.2 Reduction to SAT Problem

In this section, we discuss a reduction of the ICSI problem to the SAT problem

(Fig. A.3). The reduction is attributed to Chaudhry and Sprintson [16]. Although

the reduction works for ICSI instances described by hypergraphs, we here restrict

ourselves to the case of (di)graphs, and provide more details on the implementation

of the reduction.

Suppose the digraph D describes the following ICSI instance. There are n re-

ceivers R1, R2, . . . , Rn, and n messages x1, x2, . . . , xn in F2. The receiver Ri (i ∈ [n])

possesses {xj}j∈Xi
as side information, and requests xi. Given a value k > 0, based

on a SAT solver, we want to decide whether the sender can satisfy the demands

from all receivers by broadcasting at most k linear combinations of the xi’s.

Suppose the k encoding vectors are

gj = (g1,j , g2,j , . . . , gn,j) ∈ Fn
2 , j ∈ [k].

The sender broadcasts k bits

xgT
j =

n∑

i=1

xigi,j , j ∈ [k].

Suppose Ri (i ∈ [n]) uses the decoding vector

qi = (qi,1, qi,2, . . . , qi,k) ∈ Fk
2.

He applies the decoding vector to the received bits

qi

(
xgT

1 ,xg
T
2 , . . . ,xg

T
k

)T
=

n∑

r=1

(
k∑

j=1

gr,jqi,j

)
xr.
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The receiver Ri can retrieve xi successfully if and only if





∑k
j=1 gi,jqi,j = 1,

∑k
j=1 gr,jqi,j = 0, ∀r /∈ {i} ∪ Xi.

If we regard 0 as FALSE and 1 as TRUE, then the summation and the product

in F2 are equivalent to the XOR ⊕ and the AND ∧ operators in Boolean logic,

respectively. Therefore, it is possible for the sender to satisfy all demands with k

linear combinations of the messages if and only if the following Boolean formula is

satisfiable

Bk
4

=
n∧

i=1





[
k⊕

j=1

(
gi,j ∧ qi,j

)
]
∧




∧

r/∈{i}∪Xi

[
k⊕

j=1

(
gr,j ∧ qi,j

)
]




 . (A.1)

Most of the current SAT solvers require the input to be in CNF (Conjunctive Normal

Form), that is, the input formula should be a conjunction of clauses

C1 ∧ C2 ∧ · · · ∧ Cs,

where each clause Ci is a disjunction of literals

Ci = Li,1 ∨ Li,2 ∨ · · · ∨ Li,r,

and each literal is either a plain variable or a negated variable.

Any Boolean formula can be transformed into an equivalent formula, that is, a

formula with the same set of variables and the same satisfiability property, based

on rules about logical equivalences. However, a straightforward transformation can

lead to an exponential explosion of the formula, that is, the number of clauses is
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increased exponentially. To avoid the exponential blowup in the size (number of

variables plus number of clauses) of the formula, the Tseitin transformation is often

used. The Tseitin transformation [64] transforms an arbitrary Boolean formula into

a new one such that not only the satisfiability is preserved but also the size of the

new formula is linear with respect to the size of the original one. Given a formula

φ, the idea is to introduce a fresh variable τθ for every sub-formula θ of φ. Then one

adds constraints in CNF which ensure that τθ ←→ θ holds. Finally, one adds ∧τφ

to the formula to make sure that the satisfiability is preserved.

The Tseitin transformations of the basic formulas that we need are

τ ←→ (a ∧ b) (a ∨ τ) ∧ (b ∨ τ) ∧ (a ∨ b ∨ τ),

τ ←→ (a) (a ∨ τ) ∧ (a ∨ τ),

τ ←→ (a⊕ b) (a ∨ b ∨ τ) ∧ (a ∨ b ∨ τ) ∧ (a ∨ b ∨ τ) ∧ (a ∨ b ∨ τ).

(A.2)

For each i ∈ [n] we consider the following formula

k⊕

j=1

(
gi,j ∧ qi,j

)
= (gi,1 ∧ qi,1︸ ︷︷ ︸

hi,1

)⊕ (gi,2 ∧ qi,2︸ ︷︷ ︸
hi,2

)

︸ ︷︷ ︸
si,1

⊕(gi,3 ∧ qi,3︸ ︷︷ ︸
hi,3

)

︸ ︷︷ ︸
si,2

...

⊕ · · · ⊕ (gi,k ∧ qi,k︸ ︷︷ ︸
hi,k

).

︸ ︷︷ ︸
si,k−1

By introducing fresh variables hi,j’s and si,j’s for the sub-formulas of the formula
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above, we obtain a new formula

(hi,1 ←→ (gi,1 ∧ qi,1)) ∧ · · · ∧ (hi,k ←→ (gi,k ∧ qi,k))

∧ (si,1 ←→ (hi,1 ⊕ hi,2)) ∧ (si,2 ←→ (si,1 ⊕ hi,3)) ∧ · · · ∧ (si,k−1 ←→ (si,k−2 ⊕ hi,k))

∧ si,k−1.

We now apply (A.2) to the above formula and obtain a formula in CNF

Ci
4

= (gi,1 ∨ hi,1) ∧ (qi,1 ∨ hi,1) ∧ (gi,1 ∨ qi,1 ∨ hi,1)

∧ (gi,2 ∨ hi,2) ∧ (qi,2 ∨ hi,2) ∧ (gi,2 ∨ qi,2 ∨ hi,2)

...

∧ (gi,k ∨ hi,k) ∧ (qi,k ∨ hi,k) ∧ (gi,k ∨ qi,k ∨ hi,k)

∧ (hi,1 ∨ hi,2 ∨ si,1) ∧ (hi,1 ∨ hi,2 ∨ si,1) ∧ (hi,1 ∨ hi,2 ∨ si,1) ∧ (hi,1 ∨ hi,2 ∨ si,1)

∧ (hi,3 ∨ si,1 ∨ si,2) ∧ (hi,3 ∨ si,1 ∨ si,2) ∧ (hi,3 ∨ si,1 ∨ si,2) ∧ (hi,3 ∨ si,1 ∨ si,2)

...

∧ (hi,k ∨ si,k−2 ∨ si,k−1) ∧ (hi,k ∨ si,k−2 ∨ si,k−1) ∧ (hi,k ∨ si,k−2 ∨ si,k−1)

∧ (hi,k ∨ si,k−2 ∨ si,k−1)

∧ si,k−1.
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Similarly, for each i ∈ [n] and r /∈ {i} ∪ Xi we consider the following formula

k⊕

j=1

(
gr,j ∧ qi,j

)
= (gr,1 ∧ qi,1︸ ︷︷ ︸

ti,r,1

)⊕ (gr,2 ∧ qi,2︸ ︷︷ ︸
ti,r,2

)

︸ ︷︷ ︸
ui,r,1

⊕(gr,3 ∧ qi,3︸ ︷︷ ︸
ti,r,3

)

︸ ︷︷ ︸
ui,r,2

...

⊕ · · · ⊕ (gr,k ∧ qi,k︸ ︷︷ ︸
ti,r,k

).

︸ ︷︷ ︸
ui,r,k−1︸ ︷︷ ︸
ui,r,k

By introducing fresh variables ti,r,j’s and ui,r,j ’s to the sub-formulas of this formula,

we obtain a new formula

Di,r
4

= (ti,r,1 ←→ (gr,1 ∧ qi,1)) ∧ · · · ∧ (ti,r,k ←→ (gr,k ∧ qi,k))

∧ (ui,r,1 ←→ (ti,r,1 ⊕ ti,r,2)) ∧ (ui,r,2 ←→ (ui,r,1 ⊕ ti,r,3)) ∧ · · ·

∧ (ui,r,k−1 ←→ (ui,r,k−2 ⊕ ti,r,k))

∧ (ui,r,k ←→ ui,r,k−1)

∧ ui,r,k.
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We can rewrite Di,r in CNF as follows

Di,r = (gr,1 ∨ ti,r,1) ∧ (qi,1 ∨ ti,r,1) ∧ (gr,1 ∨ qi,1 ∨ ti,r,1)

∧ (gr,2 ∨ ti,r,2) ∧ (qi,2 ∨ ti,r,2) ∧ (gr,2 ∨ qi,2 ∨ ti,r,2)

...

∧ (gr,k ∨ ti,r,k) ∧ (qi,k ∨ ti,r,k) ∧ (gr,k ∨ qi,k ∨ ti,r,k)

∧ (ti,r,1 ∨ ti,r,2 ∨ ui,r,1) ∧ (ti,r,1 ∨ ti,r,2 ∨ ui,r,1) ∧ (ti,r,1 ∨ ti,r,2 ∨ ui,r,1)

∧ (ti,r,1 ∨ ti,r,2 ∨ ui,r,1)

∧ (ti,r,3 ∨ ui,r,1 ∨ ui,r,2) ∧ (ti,r,3 ∨ ui,r,1 ∨ ui,r,2) ∧ (ti,r,3 ∨ ui,r,1 ∨ ui,r,2)

∧ (ti,r,3 ∨ ui,r,1 ∨ ui,r,2)

...

∧ (ti,r,k ∨ ui,r,k−2 ∨ ui,r,k−1) ∧ (ti,r,k ∨ ui,r,k−2 ∨ ui,r,k−1) ∧ (ti,r,k ∨ ui,r,k−2 ∨ ui,r,k−1)

∧ (ti,r,k ∨ ui,r,k−2 ∨ ui,r,k−1)

∧ (ui,r,k−1 ∨ ui,r,k) ∧ (ui,r,k−1 ∨ ui,r,k)

∧ ui,r,k.

We obtain the following formula (in CNF)

B′
k =

n∧

i=1



Ci

∧

 ∧

r/∈{i}∪Xi

Di,r





 ,

which is a Tseitin transformation of the formula Bk given in (A.1). Therefore, B′
k

is satisfiable if and only if Bk is satisfiable. Thus, the sender can satisfy all requests

from the receivers by sending out at most k linear combinations of the messages if

and only if B′
k is satisfiable. Since B

′
k is in CNF, its satisfiability can be tested using

any SAT solver.
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The formula B′ has n(2kn + 2k − 1) − 2k
∑n

i=1 |Xi| variables and n(7kn − n −

2)− (7k − 1)
∑n

i=1 |Xi|. Observe that
∑n

i=1 |Xi| is the number of arcs in the case of

digraphs and is two times the number of edges in the case of graphs. Therefore, for

two (di)graphs of the same order, the (di)graph with fewer (arcs) edges produces a

CNF formula consisting of more variables. That might explain why the SAT-based

algorithm seems to be not very good at dealing with (di)graphs having very few

(arcs) edges.

A.3 Generating Lists of Non-Isomorphic Graphs

In order to compute the minranks of all graphs of certain order, we first need to

produce a list of all non-isomorphic graphs of that order. The Nauty package,

written by McKay [51], is a good tool for that purpose. Once the package (http:

//cs.anu.edu.au/~bdm/nauty/) is installed, we can first use the command (in

Linux)

./geng n graphs-n-vertices.txt

to generate a list of all non-isomorphic graphs over n vertices and write the list to the

file graphs-n-vertices.txt. If we also use the option -l then the graphs are canonically

labeled. The graphs in this list are written in the compact graph6 format. If we

want to write them in a readable format, we can call

./listg -q -e graphs-n-vertices.txt graphs-n-vertices-readable.txt

Then in the file graphs-n-vertices-readable.txt, each graph will be written in the

following format

n m a1 b1 a2 b2 · · · am bm,
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where n and m are the number of vertices and edges, respectively, and {ai, bi} is the

ith edge of the graph. For more information on how to use other functionalities of

the Nauty package, please refer to its user guide.



B. MINRANKS OF GRAPHS OF SMALL ORDERS

B.1 MinRanks of Graphs of Orders One to Four
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B.2 MinRanks of Graphs of Order Five
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Graphs of minrank three:
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Graphs of minrank four:
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B.3 MinRanks of Graphs of Order Six

Graphs of minrank one:
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Graphs of minrank three:
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Graphs of minrank four:
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Graphs of minrank five:
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Graphs of minrank six:
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(ρ, δ)-Property, 83

2-edge connected, 17

ND
O (u), 18

NG(u), 18

NO(u), see ND
O (u)

Nq(M,d), 14

Nq[k, d], 14

[n], 13

F1(c), 129

F2(c), 129

F(m,n,X ,Z, f), 42

G − E, 130

G − V , 130

G − e, 130

G − v, 130

Γ(n, ρ), 83

I(q,H), 56

J (H), 56

Li, 77

Nq[δ,H], 56

P, 127

T , 128

X , 22

XA, 26

Xi, 22

Yi, 56

Z, 42

Zi, 42

α(D), 62

α(G), 18

α-bound, 63, 94

α(H), 61

ei, 14

C(L), 25

H(· | ·), see conditional entropy

H(·), see entropy

J(Γ), 82

Fq, 12

F∗
q, 12

κ-bound, 65

κq, 34

C, 13

mdc(T ), 129

minrk, 19

182
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ν0(D), 115

ν1(D), 118

κq, 43

Si, 129

sG(U, V ), 127

spanq, 15

τ0(D), 118

τ1(D), 118

X̂A, 28

n(Γ), 82

H-IC over Fq, see index code

(m,n,X , f)-IC over Fq, see index code

acyclic, 17

adjacent, 15

adversary, 27

strength, 27

arc, 15

in-coming, 15

out-going, 15

bridge, 17

circuit, 17

circuit packing number, 115

circuit-packing bound, 115

clique, 18

clique cover, 18

minimum, 18

number, 18

clique-cover bound

digraph, 116

graph, 67

code

(n,M, d)q, 14

[n, k, d]q, 13

[n, k]q, 13

dimension, 13

generator matrix, 13

length, 13

linear, 13

MDS, 14

parity-check matrix, 14

size, 14

codeword, 13

coloring, 100

fair, 100

conditional entropy, 20

confusable, 92

connected component, 17

connector

downward, 129

upward, 129

Construction
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A, 50

B, 75

cut, 17

cycle, 17

DC, see connector, downward

digraph, 15

complement, 16

complete, 16

connectively reducible, 119

fully reducible flow, 119

order, 15

partially planar, 122

planar, 122

size, 15

strongly connected, 17

symmetric, 16

that pack, 119

underlying graph, 16

distance

dual, 14

Hamming, 13

ECIC, 55

(δ,H)-, 55

optimal, 56

edge, 15

endpoint, 15

entropy, 19

fairly k-colorable, 101

feedback set

arc, 118

vertex, 118

fit, 18

generalized independent number, 61

graph, 15

bipartite, 16

bridgeless, 17

complement, 16

complete, 16

confusion, 92

connected, 17

corresponding digraph, 16

order, 16

perfect, 68

size, 16

star, 105

hyperarc, 19

hypergraph, 22

underlying digraph, 23

underlying graph, 24

IC, see index code
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ICSI instance, 22

ICSRI, 42

independence number, 18

independent set, 18

generalized, 61

maximum, 18

maximum generalized, 61

index code, 24

based on L, 25

block length, 125

error-correcting, 55

length, 24

linear, 24

matrix corresponding to, 25

optimal, 24

randomized, 44

static, 82

transmission rate, 125

line digraph, 119

minrank

digraph, 19

graph, 19

hypergraph, 34

no information, 27

node, 128

child, 129

leaf, 129

parent, 129

root, 129

out-degree, 18

out-neighbor, 18

path, 17

Pr, 19

relevant error pattern, 77

relevant tree structure, 129

resilient function, 84

weakly, 85

security

block, 27

completely insecure, 28

strong, 44

weak, 27

side information

digraph, 23

graph, 24

hypergraph, 22

Singleton bound, 14, 69, 95

strongly connected component, 17

subgraph, 16
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induced, 17

maximum acyclic induced, 62

support, 13

tree, 18

rooted, 18

tree structure of Type I, 128

UC, see connector, upward

vertex, 15

child, 18

parent, 18

weight, 13


