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Summary

This thesis deals with the efficient modeling of a full-scale reverberation chamber (RC),

and a hybrid technique combining the discrete singular convolution (DSC) method and

method of moments (MoM) is proposed to overcome difficulties in RC modeling.

An RC is constituted by a large rectangular cavity, in which stirrers and antennas

are mounted/stationed. The large cavity is usually of rectangular shape, while stirrers

and antennas are arbitrarily shaped and oriented. The challenge in modeling an

RC is mainly from the large resonant cavity. Because of the existence of multiple

resonances, conventional iterative solvers encounter the slow convergence problem,

and direct solvers are usually utilized for solving matrix equations arising from RC

modeling. In this case, the memory and CPU time requirement increases drastically

with the number of unknowns, which limits the size of the RC to be modeled.

In this thesis, the hybridization of DSC method and MoM is developed to accelerate

RC analysis. The hybrid method utilizes the DSC method for the efficient modeling of

the large cavity, and applies the MoM to simulate stirrers and antennas. Using higher-

order basis, the DSC method can obtain better accuracy using coarser grids compared

to the conventional finite difference method. In this way, the number of unknowns is

greatly reduced. However, the DSC method is not flexible in modeling structures of

arbitrary shape. This is because structured grids are usually used to discretize the
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computational domain. Meanwhile, using coarse grids further reduces the flexibility

of the DSC method. The inflexibility of the DSC method is complemented by MoM

in the proposed hybrid method. A Huygens’ box is used to enclose a stirrer, and

Huygens’ principle is applied to obtain fields illuminating the stirrer. The induced

current on the stirrer can be solved using MoM, and it is considered as a secondary

source for the large cavity. The antenna is treated in the same way as the stirrer.

The large cavity excited by current sources are then modeled using the DSC method.

Since the induced current on stirrers and the excitation sources from antennas are

distributed in an irregular domain, it is difficult to model them directly in the DSC

method. A regularization technique for singular terms in differential equations is

therefore introduced to model arbitrarily distributed current sources. The proposed

hybrid method is first applied to the analysis of two-dimensional (2-D) transverse

magnetic (TM) RCs. Its advantages are demonstrated using numerical examples on

2-D TM RCs. It is then used for the modeling of three-dimensional RCs. Numerical

examples show that the proposed hybrid method is much more efficient than a pure

MoM-based commercial software.

In order to further reduce the memory requirement, a hybrid technique combin-

ing recursive update DSC (RUDSC) method and MoM is developed. In the hybrid

RUDSC-MoM, the DSC unknowns are first eliminated using a layer-based elimination

algorithm, and the MoM unknowns are solved by a direct solver. The RC is then

equivalent to a large cavity excited by known current sources, which is modeled by

adopting the RUDSC method. In the layer-based elimination algorithm, the cavity is

divided into many layers along its longest direction, and DSC unknowns are eliminated

layer by layer. Employing the local property of differential operators, the layer-based

elimination algorithm requires low memory cost. Meanwhile, the RUDSC method

consumes a small amount of memory because it only needs storing two sparse dif-
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ferentiation matrices. With its low memory consumption, the hybrid RUDSC-MoM

extends RC modeling to higher frequencies, which would be impossible using the

MoM-based commercial software.
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Chapter 1

Introduction

1.1 Motivation

As modern electromagnetic environment becomes more and more complex, today’s

electronic products should be designed so that they do not disturb the proper opera-

tion of other products. Meanwhile, they should also be able to withstand electromag-

netic radiation emitted from all kinds of sources. The electromagnetic compatibility

(EMC) is hence becoming a crucial aspect of modern electronic devices. In this case,

the effective and accurate testing of EMC becomes important for successful product

development. Typical EMC measurement environments include the open-area test

sites (OATS), (semi-) anechoic chambers (ACs), reverberation chambers (RCs) and

so on. Of these measurement facilities, the RC is becoming more and more popular

because of its unique advantages over other measurement facilities.

Figure 1.1 shows a typical RC environment. It consists of a shielded metallic

enclosure, a rotating stirrer and a transmitting antenna. The rotating stirrer changes

the boundary condition of the RC so that many different modes are excited. Hence,

RC is also called overmoded cavity. Near the center of RC, a test volume is created,

1



Figure 1.1: A typical RC environment.

where the field is statistically isotropic and uniform. There are two methods of rotation

for the stirrer: continuous and stepwise rotations, which are termed as mode-tuned

and mode-stirred, respectively. This thesis focuses on the mode-stirred RC. Therefore,

the term RC refers to mode-stirred RC in the rest of this thesis.

RC measurements have the following benefits. First, the RC simulates the real-

world electromagnetic environment much better than other facilities. When using

OATS or ACs, it is assumed that the equipment under test (EUT) radiates or receives

similarly to a monopole, dipole or other antennas. However, the direction, polarization

and amplitude of the incident wave are random in RC, which better simulates the

practical electromagnetic environment. Second, as a shielded metallic chamber, high

electric field strength can be obtained with a moderate input power to the RC, which

saves the cost of power amplifier. Finally, the building cost of RCs is lower than

that of ACs. ACs are usually made of broadband absorbing materials, which are

expensive and difficult to maintain. RCs are comprised of metallic materials, which
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are usually cheaper than absorbing materials. The advantages of RC measurements

lead to its standardization in 2003 [1], which indicates a more wide-spread use of this

measurement technique.

Although the RC was originally designed for EMC measurements, its application

has recently been extended. Other applications of RC include the measurement of

radar cross section [2], absorbing cross section [3, 4], multiple input multiple output

antennas [5–10], and small antennas [11–13]. Because of the statistical electromagnetic

environment provided by an RC, it is particularly suitable for the measurements of

wireless communication antennas. In many applications, RC works better than the

AC. In some cases, RC may be the unique choice because of its advantages over other

facilities.

In the meanwhile, new stirring techniques are being proposed to optimize the

stirring effectiveness and to reduce the measurement time [14–22]. The mechanical

stirring approach can produce electromagnetic environment satisfying the IEC stan-

dard [1]. However, rotating a stirrer is time consuming. A potential alternative to the

mechanical stirring is the electronic stirring [16–22]. In electronic stirring, the field

distribution inside the chamber is changed by switching on and off antennas located

at different positions. As the position of active excitation antennas changes, the field

distribution inside the RC varies. Compared to slowly rotating mechanical stirrers,

electronic stirring may significantly reduce the measurement time.

With the increasing popularity of RC, numerical RC analysis is attracting more

and more interest. RC modeling is important for the following reasons. First, RC

modeling can help RC designers optimize the performance of an RC and examine

the effectiveness of new stirring techniques. Although detailed information on RC
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was given in [1], only basic guidelines on designing and constructing an RC were pre-

sented, which were mostly derived from years of practical experience. An optimized

RC design is usually obtained through a time-consuming trial-and-error approach.

On the other hand, RC modeling allows RC designers to predict and optimize the

performance of an RC before its fabrication, which will save time and cost in RC

designing. Furthermore, it is economical to check the effectiveness of new stirring

methods using numerical techniques before costly experiments. Second, as an alterna-

tive to measurements, theoretical modeling can save the measurement cost. If one can

simulate the RC numerically, RC measurements can be supplemented with numerical

simulations, which can reduce the cost of experiments. Finally, numerical modeling

is also helpful for the development of new RC applications. Before actually using the

chamber and investigating new RC applications, one may simulate a new application

using modeling techniques. This will reduce the cost at an early stage.

Despite the great importance of RC modeling, efficient numerical techniques are

still not available for the analysis of a full-scale practical RC. This is mainly because

it is a challenging task to model such an electrically large resonant chamber in a

broad frequency range and over multiple stirrer positions. Because of an RC’s reso-

nance nature, conventional iterative solvers encounter the slow convergence problem

in solving matrix equations resulting from RC modeling. In this case, direct solvers

are usually utilized. This indicates that RC modeling requires large memory and

long CPU time [23], which in turn limits the size of the RC to be modeled. In the

meanwhile, many simulations are needed for the modeling of multiple stirrer posi-

tions. This again substantially increases the simulation time. In order to accelerate

RC modeling, a lot of efforts have been made towards the development of efficient

numerical RC modeling, which has led to two kinds of modeling techniques: statis-

tical and deterministic approaches. Statistical approaches [24–27] are mainly under

4



the hypothesis that an RC is well stirred, and plane wave superposition is applied to

simulate the statistical electromagnetic environment in the RC [24, 26, 27]. Because

statistical approaches do not model the large cavity directly, they are fast as long

as the equipment under test is not electrically large. On the other hand, statistical

approaches are not as accurate as deterministic approaches. Deterministic approaches

utilize accurate numerical methods to model the whole RC, and these include the

method of moments (MoM) [20,23,28–30], the finite element method (FEM) [16,31],

the finite difference time domain (FDTD) method [32–36], the transmission line ma-

trix (TLM) method [37–39], and so on. These methods are accurate but require high

computational resources in modeling a large RC. Therefore, it is highly important to

develop new methods for efficient and accurate modeling of full-scale RCs.

A careful examination shows that existing methods have their respective advan-

tages and disadvantages in modeling an RC. The MoM and FEM are geometrically

flexible, and they are good candidates for the modeling of stirrers. Moreover, the MoM

is particularly suitable for the analysis of conducting structures (e.g. the stirrer in an

RC), because only the surface of a conducting object needs discretization using MoM.

However, both MoM and FEM require the solution of a matrix equation, which is

computation intensive. On the other hand, the FDTD method does not need solving

matrix equation. The main drawback of the FDTD method is its low spatial resolu-

tion. This is due to the structured grids utilized by the FDTD method1. When thin

wire conducting structures (e.g. the wire antenna in an RC) are modeled, both FDTD

and FEM are not as powerful as MoM. The aforementioned discussions indicate that

a single numerical method is not competent for RC modeling. Hence, it is desirable to

hybridize different numerical methods in order to combine their respective advantages

1The FDTD method here refers to the conventional FDTD method. There are variants of FDTD
method with improved geometrical flexibility (e.g. the conformal FDTD method [40,41]).
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and to overcome their shortcomings, which motivates the work in this thesis.

1.2 Objectives

The goal of this thesis is to accelerate RC modeling by hybridizing different numer-

ical methods. In order to achieve the final objective, the following tasks have been

envisaged.

1. To find the best candidates for modeling individual parts of an RC, an exten-

sive literature survey is first conducted. This allows us to develop a powerful

hybrid method employing the most suitable modeling technique for every single

component of an RC and combining advantages of the state-of-the-art numerical

methods.

2. It is known that the main challenge in modeling an RC is from the large res-

onant cavity. On the other hand, the geometrical simplicity of the cavity can

be utilized to reduce the computational burden. For simplicity, we begin our

study by developing an efficient and accurate method for the modeling of a

two-dimensional (2-D) transverse magnetic (TM) cavity.

3. Since stirrers and transmitting antennas are arbitrarily shaped conducting ob-

jects, they may be simulated using MoM. The developed efficient cavity modeling

method will be combined with MoM to accelerate RC modeling. The 2-D TM

case will again be considered in order to explore the way of hybridization and

to study the advantages of the hybrid method.

4. The success of our 2-D hybrid method will pave the way for the development of 3-

D hybrid method. By developing a 3-D hybrid method, we expect to achieve the

fast analysis of 3-D RCs. The proposed hybrid method is expected to outperform

a pure MoM-based commercial software.
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5. For simplicity, a point current source can be used as the excitation in previous

steps. In practice, wire antennas are often used as transmitting antennas of an

RC. For the modeling of wire antennas, an MoM code will be implemented, and

it will be included in the 3-D hybrid method. After incorporating the MoM for

wire structures, the hybrid method will be able to efficiently model a practical

full-scale RC.

6. It is noted that the memory requirement for RC modeling is high because direct

solvers are usually used to solve the matrix equation. In order to reduce the

memory requirement, a new solution method will be developed. With its low

memory consumption, the new solution method will extends RC modeling to

higher frequencies.

It should be noted that the numerical modeling of 2-D transverse electric RC is

similar to that of the 2-D TM RC. Hence, only 2-D TM RC is considered in this thesis.

1.3 Key Contributions of the Thesis

In this thesis, three key contributions have been made for RC modeling. They are hy-

bridization of the discrete singular convolution (DSC) method and MoM for the mod-

eling of 2-D TM RCs, efficient analysis of 3-D medium-sized RCs by hybrid DSC-MoM,

and memory-efficient modeling of RCs using hybrid recursive update DSC (RUDSC)-

MoM. ’Medium-sized’ means the volume of the RC is from 12 λ3 to 100 λ3, where λ

is the wavelength.

Hybridization of DSC and MoM for 2-D TM RC Modeling

Through a thorough literature review, this thesis first finds the most suitable modeling

technique for every individual part of an RC. The DSC method is chosen to model the
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large cavity of an RC. The DSC method is a generalized higher-order finite difference

(FD) method. Compared to second-order methods, it needs much less unknowns

in modeling the large cavity. On the other hand, the DSC method is not able to

model arbitrarily shaped objects because of its coarse structured grids. The MoM is

therefore adopted to model the stirrers/antennas. The way of combining the DSC

method and MoM is first explored in the 2-D TM case, and the Huygens’ principle

and regularization technique are used to couple the two methods together. A few

numerical experiments are conducted to validate the proposed hybrid method and to

examine its performance. Taking advantage of the high efficiency of the DSC method,

the hybrid method is shown to be much more efficient than a pure MoM in modeling

2-D TM RCs.

Efficient Analysis of 3-D Medium-Sized RCs by Hybrid DSC-MoM

The success of 2-D hybrid method lays the foundation for a 3-D hybrid method. In

the 3-D case, the RWG basis is utilized to expand the induced current on the stirrer

and the equivalent current on Huygens’ box. The property of RWG basis is employed

to connect the DSC field solution with the excitation field in MoM. The regularization

technique for 3-D surface current is applied to model arbitrarily distributed current

sources in structured grids of the DSC method.

Modeling the large cavity using the DSC method, the number of unknowns is

greatly reduced. The performance of the proposed hybrid method is compared with a

pure MoM-based commercial software. It is found that the proposed hybrid method

requires much shorter CPU time and consumes less memory compared to the com-

mercial software. For medium-sized RCs, the proposed hybrid method takes a few

hundred seconds to analyze one stirrer position. The same task costs the commercial

software thousands of seconds. Therefore, the proposed hybrid method constitutes an
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important contribution to the development of efficient RC modeling techniques.

Hybrid RUDSC-MoM for Memory-Efficient Modeling of RCs

Due to the usage of a direct solver, the memory requirement of modeling an RC at

higher frequencies is beyond the capability of a personal computer. In order to reduce

the memory cost, a hybrid RUDSC-MoM is proposed in this thesis. In hybrid RUDSC-

MoM, the DSC and MoM unknowns are solved separately, each using the most suitable

method. In order to solve the DSC and MoM unknowns individually, a layer-based

elimination algorithm is developed to efficiently eliminate the DSC unknowns. Direct

solver is then utilized to solve the MoM unknowns. The RUDSC method is finally

applied to solve the DSC unknowns after obtaining the MoM solution. In the proposed

layer-based elimination algorithm, the cavity is divided into many layers along its

longest direction, and the DSC unknowns are arranged layer by layer. Utilizing the

local property of the curl operator, the layer-based elimination algorithm retains low

memory consumption. In the meanwhile, the storage complexity of RUDSC method

is low because only two sparse differentiation matrices need storing. With its reduced

memory cost, the hybrid RUDSC-MoM extends the modeling of a full-scale RC to

higher frequencies, which should be a leap in the development of efficient RC modeling

techniques.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows. In Chapter 2, a thorough literature

review is presented. Existing RC modeling techniques are first summarized, and their

advantages and shortcomings are discussed. Recent advances in computational elec-

tromagnetics (CEM) are then studied in order to choose the state-of-the-art techniques

for hybrid numerical RC modeling.
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Chapter 3 presents a hybrid method for the efficient modeling of 2-D TM RCs.

Formulation of the hybrid method is described in detail, and numerical examples are

presented to illustrate the benefits of the hybrid method. Performance of the 2-D

hybrid method is compared with that of a pure MoM.

In Chapter 4, 3-D hybridization of the DSC method and MoM is introduced.

Numerical examples on 3-D RCs are presented. Choice of grid size in the DSC method

is studied. CPU time and memory cost of the proposed 3-D hybrid method is compared

with those of a commercial software. Stirring effects of three different stirrers are

investigated using the proposed 3-D hybrid method.

The hybrid RUDSC-MoM is proposed in Chapter 5. Derivation of the RUDSC

method for the modeling of a large cavity is first described in detail. The advantages

of RUDSC method are shown through comparisons with alternative methods. Layer

division of a cavity along its longest direction is then introduced. Pseudocode of the

layer-based elimination algorithm is given. Computational and storage complexity of

the layer-based elimination algorithm is studied. Through the application of the layer-

based elimination algorithm, the RUDSC method is combined with MoM for memory-

efficient modeling of RCs. Furthermore, the MoM for wire structures is incorporated

into the 3-D hybrid method in order to take the practical transmitting antenna into

account.

Finally, Chapter 6 summarizes the work presented in this thesis, and gives recom-

mendations for future work.
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Chapter 2

Literature Review

As it is noted in Chapter 1, numerical RC modeling has attracted much interest

recently because of its great importance in RC design and applications. This chap-

ter first reviews existing RC modeling methods, and discusses their advantages and

weaknesses. Recent developments in CEM are then summarized in order to find the

state-of-the-art techniques to complement the weaknesses of existing RC modeling

methods.

2.1 Existing RC Modeling Methods

Existing RC modeling techniques can generally be classified into two categories. The

first one is the statistical models of RC [26,27]. Most statistical models are based on

the assumption of local plane waves in the RC, and they avoid the direct modeling of

the large cavity, which makes them highly efficient. However, statistical models can

only simulate the random environment instead of the RC itself. In order to model

the whole chamber, a lot of effort was made towards the development of deterministic

approaches, which utilize accurate numerical methods and need extensive computa-

tional resources. In order to understand their advantages and drawbacks, statistical
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and deterministic modeling approaches are summarized in Sections 2.1.1 and 2.1.2,

respectively.

2.1.1 Statistical Modeling Approach

The theoretical basis of statistical modeling approaches is the plane wave superposi-

tion, which was well documented in [42]. Take the susceptibility test as an example.

Direct simulation of susceptibility test in RC involves the entire volume of the RC, the

stirrers, and the antennas. The computation time is a function of the chamber vol-

ume, the wall conductivity, the frequency range, and the EUT characteristics. Hence,

it will require long CPU time and large memory to directly simulate this measurement

scenario. On the other hand, under the hypothesis that the RC is well stirred, the

working volume may be considered as an electromagnetic environment where the inci-

dent wave is random in its incident angle, amplitude and polarization. Based on this

understanding, the plane wave superposition was proposed to simulate the random

environment of the RC. In the plane wave superposition, the simulation only involves

the EUT. Therefore, the computation time is only a function of the characteristics of

the EUT. Moglie et al. [35] combined the standard FDTD method with the plane wave

superposition to simulate the induced current on the load of a transmission line in an

RC. Good agreement was obtained between simulated and measured results both for

the average value and for the maximum value of the induced current on the line.

Recently, Bonnet et al. [25] proposed a stochastic collocation method for the sim-

ulation of a mode-stirred RC. This method relied on an analogy between an RC and

an empty enclosure whose wall conductivity was randomly characterized. The dis-

tribution law of cavity wall conductivity is obtained by measurements. A stochastic

collocation method was then applied to numerically assess electromagnetic field from
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a low number of empty cavity (without stirrer) simulations. Since efficient methods

exist for the modeling of an empty cavity, the stochastic collocation method notably

reduces the computation time.

In conclusion, the statistical modeling methods either model the EUT only or

simulate an empty cavity alone. They are very efficient because the EUT is not very

large and an empty cavity can be modeled efficiently using some special algorithm.

Nevertheless, statistical methods can only provide statistical parameters. They are

not useful for the characterization and optimization of an RC. Furthermore, they are

not as accurate as deterministic methods. Therefore, it is of great importance to

develop efficient deterministic modeling methods.

2.1.2 Deterministic Modeling Approach

In deterministic modeling methods, the whole structure of an RC is discretized, and

Maxwell’s equations are numerically solved to obtain the field or current solution.

They are therefore accurate but require long CPU time and large memory. Typical

deterministic methods include the MoM [20, 28–30, 43], the cavity Green’s function

method [20], the FEM [16, 19, 31, 44], the FDTD method [32–36, 45–48], the TLM

method [37–39], and the modal expansion method [18, 21, 49]. These methods are

summarized as follows.

The MoM

The MoM [43] is based on the integral equation, and it is a flexible and accurate

modeling technique. It usually adopts some kind of basis function to expand the

current. A set of matrix equation is obtained by substituting the current expansion

into the integral equation and enforcing the boundary condition. After solving the
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matrix equation, one can obtain the current distribution and then calculate the desired

parameters. In practice, triangle is usually used to discretize a surface structure, and

the RWG basis [50] is then adopted to expand the current flowing along the surface.

Because of its high accuracy and flexibility, the MoM has been widely used for the

analysis of scattering and radiation from arbitrarily shaped 3-D conducting objects.

In scattering and radiation problems, iterative solvers are usually used to solve the

matrix equation in order to reduce the memory cost.

Due to the resonance nature of an RC, iterative solvers may suffer from the slow

convergence problem, and direct solvers are commonly used to solve the matrix equa-

tion in RC modeling. In this case, the MoM has the storing and computational

complexity of O(N2) and O(N3), respectively. N is the number of unknowns, and

it scales as f 2 for 3-D conducting objects, where f denotes the frequency of inter-

est. In other words, the storage and computing complexity is approximately O(f 4)

and O(f 6), respectively. Hence, the CPU time and memory requirement increases

dramatically against the frequency, which prohibits the application of MoM at higher

frequencies. The MoM-based commercial software FEKOr was applied for RC mod-

eling in [30], and it was stated that the excessive runtime rendered RC simulations at

high frequencies useless. On the other hand, because of its geometry flexibility, the

MoM is particularly suitable for the modeling of stirrers and antennas inside an RC.

Therefore, the MoM may be hybridized with an efficient cavity modeling method to

realize efficient and flexible modeling of RCs.

Cavity Green’s Function Method

In a conventional MoM, the free space Green’s function is adopted, and the large

cavity is directly modeled, which makes the number of unknowns large. On the other

hand, the boundary condition of the large cavity can be enforced using cavity Green’s
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function, which is called the cavity Green’s function method. In cavity Green’s func-

tion method, only objects inside the chamber need discretization, which substantially

reduces the number of unknowns. Laermans et al. [29] proposed to model a 2-D

RC with cavity Green’s function. Although cavity Green’s function method greatly

reduces the number of unknowns, the computation of cavity Green’s function is com-

plicated and time-consuming. Laermans et al. concluded that only for very small

objects in a chamber, their method was advantageous over conventional MoM. Kildal

et al. [20, 28] developed the 3-D cavity Green’s function method for the modeling of

a dipole in RC, and they utilized a few special techniques to accelerate the calcula-

tion of cavity Green’s function. Kildal’s method is very powerful in modeling small

wire antennas in an RC. Nevertheless, when a full-scale RC with a mechanical stirrer

is modeled, the computation time would still be prohibitive due to the overhead of

calculating the cavity Green’s function, though its computation can be accelerated

by improved implementation of cavity Green’s function method [51]. Therefore, the

cavity Green’s function method is not applicable to RCs with relatively large objects

inside (e.g. an RC with mechanical stirrers and a large EUT).

The FDTD Method

The FDTD method [48] is a popular numerical technique in electromagnetics. It

directly discretizes Maxwell’s equations of differential form by approximating the dif-

ferential operators using central difference. The FDTD method is efficient because it

does not need to solve a linear equation. Furthermore, as it works in time-domain,

wide-band information can be obtained with one single simulation.

Due to its high efficiency, the FDTD method was widely used for RC modeling.

In [45–47], Kouveliotis et al. applied the FDTD method to the modeling of the

vibrating intrinsic RC. Moglie et al. [32] studied the loss modeling of the RC and
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analyzed the convergence of FDTD method. They simulated the susceptibility and

coupling tests in RC with the FDTD method [35, 36]. In [35], current induced on

the load of a transmission line was measured and simulated in an RC environment to

characterize the susceptibility of the transmission line. In order to study the level of

coupling between external field and an enclosure with slot, the induced current on a

loop inside the enclosure was simulated in [36]. Because the loss of an RC is frequency-

dependent, it is difficult to model the loss directly for wide-band excitation. In [33,34],

the loss was modeled in a postprocessing step to overcome the difficulty of modeling

dispersive loss. Even with the high efficiency of FDTD method, the modeling of a

medium-sized RC still requires a few days on a personal computer [32] . This is due

to the numerous multiple reflections and slow damping of energy in an RC.

A shortcoming of the FDTD method is that it is not as flexible as MoM. In the

FDTD method, structured grids are usually adopted to discretize the computational

domain. This makes it difficult to model the stirrers of an RC in the FDTD method.

In existing methods, staircase approximation is usually adopted to model the geometry

of a stirrer. In [52], the concept of digital geometry was introduced to generate the

staircase grids. Compared to the triangular representation of stirrers in MoM, the

staircase approximation introduces undesired roughness on the surface of the stirrer.

This will contaminate the field calculations significantly [53], in which case very fine

grids are required to suppress the error. Therefore, the FDTD method is not flexible

in modeling the stirrers of arbitrary shape. However, it is suitable for the modeling

of the large rectangular cavity.

The FEM

The FEM [44] is another popular numerical technique in electromagnetics. In FEM,

the fields are expanded with a proper basis. After substituting the field expansion into
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Maxwell’s equations, Galerkin’s matching process is applied to make the equations

satisfied. Utilizing tetrahedron for discretization of the computational domain, the

FEM is geometrically flexible. Based on Maxwell’s equations of differential form,

the FEM can easily model medium inhomogeneity. Therefore, the most widely used

commercial software high frequency structure simulatorr [54] is developed based on

the FEM.

Requiring the solution of a matrix equation, FEM analysis of an RC is also time-

consuming. In [16] and [19], Bunting et al. applied the FEM to investigate the

effectiveness of frequency stirring. However, they only simulated an internal cavity in

the 2-D case, and they took a cavity with aperture as a simplified model of an RC

in the 3-D case. Orjubin et al. [31] used the FEM modal approach for RC analysis.

They first determined the modes of an RC using the FEM and then expressed the

field in the RC with modal expansions in a single post-treatment. Compared with the

harmonic analysis, the computational cost is reduced with this FEM modal approach.

However, their derivations have many limitations and the validity of their method is

yet to be fully examined [31].

In conclusion, the FEM alone is not competent for efficient analysis of an RC. The

advantage of FEM lies in its geometrical flexibility and its ability in modeling material

inhomogeneity. For RC modeling, the FEM may be used to model arbitrarily shaped

EUT constituted by inhomogeneous materials.

Other Methods

Other RC modeling methods include the TLM method [37–39] and the modal-expansion

method [18, 21, 49]. In [37], the TLM method was used to optimize the design of the

stirrer. Instead of modeling the whole chamber, the stirrer was simulated in free
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space, and the free-space scattering performance was correlated with the chamber

performance. A low-resolution TLM model of an RC was validated in [38]. A variety

of statistical and heuristic approaches were used to quantify the level of agreement,

and the likely lower bound for the quality of comparisons between simulations and

measurements was set. Another purpose of [38] was to assess whether a coarse im-

plementation of a TLM model provided a sufficiently high level of agreement for RC

modeling. It was concluded that the agreement between simulation and measure-

ment was satisfactory considering the saving of simulation time. However, even with

the coarse model, it would require 200 days to simulate 200 stirrer positions of a

medium-sized RC. Meanwhile, the TLM method also utilizes structured girds, and

staircase approximation is usually adopted to model arbitrarily aligned stirrers, which

may introduce undesired error in field calculations. The modal-expansion method is

a semi-analytical method, and it is similar to the cavity Green’s function method.

It expands the fields in the chamber using standard cavity modes, and enforces the

boundary condition on the objects inside the chamber using some matching process.

The modal-expansion method avoids direct modeling of a large cavity, and it requires

less unknowns. However, it is only applicable to simple objects in a small cavity, and

a large number of modes will be required to accurately express the fields in a large

chamber. Furthermore, it is difficult to enforce the boundary condition of complicated

objects in a modal-expansion method.

2.2 Recent Advances in CEM

The review in Section 2.1.2 indicates that most existing RC modeling techniques uti-

lized conventional numerical methods, which are not optimized for RC modeling. To

improve the efficiency and accuracy of conventional methods, new numerical tech-

niques were recently developed. In order to examine their possible application in RC
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modeling, five recent advances in CEM are reviewed in this section. They are fast al-

gorithms based on integral equations, hybrid integral equation, higher-order methods,

hybrid techniques, and matrix free method.

2.2.1 Fast Algorithms Based on Integral Equations

As mentioned in Section 2.1.2, the MoM leads to computational and storing complex-

ity of O(N3) and O(N2), respectively. To accelerate the computation, fast algorithms

based on integral equations were developed. A widely used fast algorithm is the mul-

tilevel fast multi-pole algorithm (MLFMA) [55–57], which is based on the multi-pole

expansion of the free space Green’s function. The principle and procedure of MLFMA

were well documented in [57], and some tricks on implementation of MLFMA were

summarized in [56]. It should be mentioned that MLFMA reduces the computational

and storing complexity of MoM to O(N log N), which enables the solution of problems

with hundreds of thousands of unknowns on a single personal computer. With the aid

of parallel techniques, several research groups [56,58–60] successfully solved problems

with millions or even ten millions unknowns in only several hours.

The efficiency of MLFMA is no doubt attractive, however, this efficiency is ob-

tained at the cost of sacrificed accuracy. In [61], the multi-pole expansion error was

studied. It was shown that the expansion error was nearly 10 percent in some cases.

A 10 percent error occasionally occurring in MLFMA results in smaller error in the

matrix vector product, because MLFMA is for far-interactions only and there are no

approximations in near interactions. Hence, the final far fields are accurate [62], and

the MLFMA can be applied for the computation of radar cross section, antenna ra-

diation pattern and so on. In these situations, the accuracy requirement is relatively

low and MLFMA works well. However, when applied to the near-field computation,
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MLFMA doesn’t generate acceptable results [23]. To our best knowledge, the applica-

tion of other fast algorithms (e.g. the adaptive integral method [63]) are also limited

to scattering and radiation problems up to now. Therefore, most fast algorithms based

on integral equations are not applicable to RC modeling because of the high accuracy

requirement in RC analysis.

2.2.2 Hybrid Integral Equation

In modeling a closed structure, the combined field integral equation (CFIE) [64] is

usually used in order to eliminate the internal resonance. The CFIE is a linear com-

bination of the electric field integral equation (EFIE) and the magnetic field integral

equation (MFIE), and it is only applicable to closed objects due to the usage of the

MFIE. On the other hand, there are many structures with both open and closed sur-

faces. In order to efficiently model these structures, a hybrid integral equation (HIE)

was proposed based on the CFIE [65]. The HIE is essentially a hybridization of CFIE

and EFIE, in which CFIE is applied for the closed surface and EFIE is used for the

open surface. It was shown that the HIE was effective in improving the convergence

when the open surface was small compared to the closed surface [65].

The HIE seems very promising for RC modeling at its first look because the RC

is constituted by a large closed cavity with small open structures. However, a careful

examination indicates that the HIE is not applicable to RC modeling. HIE is effective

because the CFIE can make the internal resonant frequency of a cavity scatter become

a complex number [66]. However, because the resonant frequency of an RC is physical,

it can not be changed by the CFIE. Figure 2.1 illustrates the condition number of the

interaction matrix in modeling an internal cavity using different integral equations. It

is seen that the CFIE fails to reduce the condition number near the physical resonant
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Figure 2.1: Condition number of the interaction matrix in modeling an internal cavity
using EFIE, MFIE, and CFIE.

frequency of the cavity. Hence, the HIE can not be used for RC modeling.

2.2.3 Higher-Order Methods

Higher-order methods are based on modifications made to the expansion basis of

conventional methods. In conventional methods, the number of unknowns goes high

as the electrical size increases. The computational cost is hence increased drastically

with the frequency. Using higher-order basis, better accuracy can be obtained using

coarser grids. In this way, a significant reduction of the number of unknowns is

realized, and the CPU time and memory requirement is substantially reduced. In the

past, various authors developed higher-order MoM [67–69], FEM [70–73] and FDTD

method [74–76]. Of these new higher-order methods, the DSC method [74,75] is very

attractive. The DSC method [74, 75] is a generalized higher-order FD method. With

a higher-order interpolation basis (e.g. the Lagrange interpolation basis [75]), the

field quantities are expanded and the differential operators in Maxwell’s equations are

acted directly to the field expansion. With the expansion coefficients being constant,

the differential operators are actually taken upon the basis, whose derivatives can
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be computed analytically. In this way, Maxwell’s equations are discretized into a

matrix equation, which can be solved to obtain the field solution. It has been shown

that the DSC method is much more efficient and accurate than conventional FD

methods [75]. The DSC method is similar to the pseudospectral method [77, 78],

because they both aim to find the accurate approximation of the spatial differentials

in Maxwell’s equations. Discussions on the similarities and differences between them

can be found in [79,80].

In RC modeling, the DSC method is very suitable for the modeling of the large

cavity. The DSC method not only greatly reduces the number of unknowns, it also

needs little effort in building the matrix equation. This is due to the translation

invariant property of the curl operator and the analytical calculation of the differential

of basis functions. On the other hand, the higher-order MoM requires long CPU time

to calculate the interaction matrix. This is because integration of complicated higher-

order basis is needed in higher-order MoM.

2.2.4 Hybrid Techniques

Hybrid techniques combine different methods to explore their respective advantages.

The FEM and FDTD method are flexible in modeling inhomogeneous material. How-

ever, they require the absorbing boundary condition (ABC) to truncate the compu-

tational domain when modeling open-region problems, which increases the computa-

tional burden. On the other hand, it is time-consuming to solve problems involving

inhomogeneous media using MoM, but the radiation boundary condition is automati-

cally satisfied in the integral equation. Therefore, the finite element-boundary integral

method [81–85] was developed for modeling scattering and radiation by inhomoge-

neous media. Another kind of hybrid techniques [86–89] combine the FD method in
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time or frequency domain with MoM. The benefits are either modeling fine structure

with FD method [86–88] or eliminating the need for ABC in the FD method [89]. For

waveguide structures, the modal-expansion method has natural advantages. How-

ever, a pure modal-expansion method is only applicable to regular structures. To

model the irregular parts in a waveguide component, hybrid finite-element-modal-

expansion method was developed by Shen et al. [90]. More hybrid techniques combin-

ing modal-expansion and other methods can be found in [91]. For transient modeling

of a mixed-scale structure (i.e. large scale objects and fine features are coexistent), it

will be time consuming to model the whole structure using an explicit time-domain

methods, because the time step should be very small to satisfy the stability condition.

On the other hand, an implicit time-domain method is unconditionally stable but

it is awkward in modeling the large object due to the requirement of solving a ma-

trix equation. Hence, the hybrid implicit-explicit method was proposed for modeling

mixed-scale structures [92,93]. The hybrid implicit-explicit method accurately models

fine structures using an implicit method and efficiently analyzes the large object using

an explicit method. Therefore, the computational burden in solving a matrix equation

is greatly reduced, and the time step size can be chosen according to the grid size in

the explicit method. In summary, hybrid techniques are powerful in solving complex

electromagnetic problems. They combine advantages of different methods and over-

come their limitations. For RC modeling, a hybrid technique is desirable because it

can utilize the most suitable method in modeling every single component of the RC.

2.2.5 Matrix Free Method

Solving a matrix equation is usually necessary for frequency-domain methods. How-

ever, a time-domain method1 does not require the trouble of solving a matrix equation

1Here, we refer to an explicit time-domain method. For implicit time-domain method, it is still
needed to solve a matrix equation.
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directly (e.g. the FDTD method). In a time-domain method, Maxwell’s equations

can be numerically solved using a marching-on-in-time (MOT) scheme. Starting from

zero and recursively updating the electromagnetic fields, solution to the time-domain

Maxwell’s equations can be obtained without solving a matrix equation. Recently,

the concept of MOT was extended to frequency-domain methods [94]. Beginning with

the time-domain Maxwell’s equations and assuming periodic excitation, a recursive

update scheme was derived to obtain the frequency-domain solution without solving

a matrix equation. The method was named as matrix free method in [95]. Under a

given condition, the matrix free method converges to the solution of frequency-domain

Maxwell’s equations, and it is particularly useful when conventional iterative solvers

fail. Furthermore, the matrix free method only consumes a small amount of memory

because only two sparse differentiation matrices need storing. Therefore, the matrix

free method can be utilized to reduce the memory requirement of RC modeling, and

this will be discussed in Chapter 5.

2.3 Summary

This chapter first reviewed existing RC modeling methods. It was found that a single

numerical method was not efficient or flexible enough to achieve full-scale analysis

of an RC. Among existing methods, the MoM is very suitable for the modeling of

stirrers/antennas of an RC, but it incurs a heavy computational burden in modeling

the large cavity. Recent advances in CEM were then studied, and their possible

application in RC modeling was discussed. Among these new numerical methods, the

DSC method can be used to reduce the computational burden in modeling a large

cavity, and the matrix free method is useful for reducing the memory requirement.

Furthermore, a hybrid technique is highly desirable for RC modeling because it can

utilize the most powerful technique for every single component of an RC. The rest
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of this thesis will develop a hybrid method combining the DSC method and MoM

for efficient RC modeling. Meanwhile, the matrix free method will be applied in the

hybrid method for memory-efficient modeling of RCs.

25



Chapter 3

Hybrid DSC-MoM Analysis of 2-D

TM RCs

3.1 Introduction

During the historical development of RC, the 2-D TM RC was extensively studied due

to its simplicity [16,18,29]. The 2-D case was usually considered in the early stage of

new stirring or modeling methods. This is because the success in 2-D will lay a solid

foundation for the development of 3-D methods.

In this chapter, a new hybrid technique combining the DSC method and the MoM

is proposed for the efficient analysis of a 2-D TM RC. The metallic stirrer is viewed as

a current sheet along whose surface the tangential electric field is forced to zero. The

DSC method is used to model the cavity excited by the original source plus the current

sheet, which are expressed on the grids of the DSC method using the regularization

technique [96]. The MoM is used to enforce the boundary condition along the stirrer.

Solutions from the above two steps are coupled together with the aid of the equivalence

principle. The validity and advantage of the proposed hybrid technique is shown
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Figure 3.1: A 2-D TM RC with a metallic stirrer.

through comparisons with results from alternative methods. Taking advantage of the

high efficiency of the DSC method, the new hybrid technique is shown to be a lot

more efficient than a pure MoM with approximately the same memory cost.

The rest of this chapter is organized as follows. Section 3.2 describes the proposed

hybrid technique in detail. Section 3.3 demonstrates the validity and efficiency of our

hybrid technique through numerical simulations. Finally, Section 3.4 concludes the

work described in this chapter.

3.2 Formulation

The problem considered is a 2-D TM RC shown in Figure 3.1. The dimension of the

enclosure is a × b and the length of the stirrer is l. The rotating angle φ is defined

as the angle between the stirrer and the positive x-direction. The RC is excited by a
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line current source J1
z located at (x0, y0).

The rectangular cavity can be easily modeled with the DSC method. However,

the rotating stirrer poses difficulty for structured grids, especially when coarse grids

are required to achieve high efficiency. Therefore, we solve the problem in two steps.

First, the stirrer is viewed as a current sheet J2
z and the DSC model is then obtained,

as shown in Figure 3.2. Second, the tangential electric field along the stirrer is forced

to zero with application of the MoM, and the MoM model shown in Figure 3.3 is

obtained. To relate the two steps together, a Huygens’ box S is placed around the

stirrer in the MoM model, and the equivalence principle is used to couple solutions

from the DSC method and MoM.

3.2.1 The DSC Model

In the DSC model, Maxwell’s equations governing fields in the cavity are of the form:

Hx = − 1

jωµ

∂Ez

∂y
, (3.1a)

Hy =
1

jωµ

∂Ez

∂x
, (3.1b)

Ez =
1

jωε

(
∂Hy

∂x
− ∂Hx

∂y

)
− 1

jωε

(
J1

z + J2
z

)
. (3.1c)

The computational domain is discretized by the standard Yee’s cell [48] and the

differential operators in (3.1) are approximated using the regularized Lagrange inter-

polation basis presented in [75]. For the completeness of this thesis, the regularized

Lagrange interpolation basis is briefly introduced as follows. It should be mentioned

that the two-dimensional or three-dimensional regularized Lagrange interpolation ba-

sis is the product of one-dimensional regularized Lagrange interpolation basis in each

dimension. Therefore, only one-dimensional regularized Lagrange interpolation basis
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Figure 3.2: Illustration of the DSC model.

Figure 3.3: Illustration of the MoM model.
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Figure 3.4: An arbitrary point along the ξ-axis (ξ can be x or y).

is described here. The one-dimensional Lagrange interpolation basis is

FM,k (ξ) =
M∏

j=−M+1
j 6=k

(ξ − ξj)

(ξk − ξj)
, k = −M + 1, ...− 1, 0, 1, ...M, (3.2)

where ξ can be x, y, or z. ξk is the kth grid point, and k is the local index of grid

points, as shown in Figure 3.4. In order to improve its smoothness and localization,

the Lagrange interpolation basis is multiplied by a Gaussian regularizer, and the

regularized Lagrange interpolation basis is obtained

LM,k (ξ) = FM,k (ξ) exp

[
−(ξ − ξk)

2

2σ2

]
, (3.3)

where σ is used to control the bandwidth of the Gaussian envelop, and it is chosen

to be 44ξ, as suggested in [74]. 4ξ is the grid size in the ξ-direction. The first and

second order ordinary differentials of LM,k are

L′M,k (ξ) = F ′
M,k (ξ) exp

[
−(ξ − ξk)

2

2σ2

]
− LM,k (ξ)

(ξ − ξk)

σ2
, (3.4)

L′′M,k (ξ) = F ′′
M,k (ξ) exp

[
−(ξ − ξk)

2

2σ2

]
− F ′

M,k (ξ) exp

[
−(ξ − ξk)

2

2σ2

]
ξ − ξk

σ2

−L′M,k (ξ)
(ξ − ξk)

σ2
− LM,k (ξ)

1

σ2
. (3.5)
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F ′
M,k and F ′′

M,k can be calculated using the recursive algorithm provided in Appendix

C of [97]. The interpolation polynomial in (3.2) gives the error level of 42M
ξ [97].

Hence, the regularized Lagrange interpolation basis defined in (3.3) is called the 2M -

th order interpolation basis. If M=1 and σ is infinitely large, the regularized Lagrange

interpolation function reduces to the linear interpolation function and the DSC method

becomes the FD method.

Since J1
z exists at one point and J2

z distributes along a one-dimensional surface [96],

they are hard to be resolved by the structured grids in the DSC method. Fortunately,

the regularization technique [96] can be used to express these singular currents on the

structured grids of the DSC method. Take J2
z as an example. In Figure 3.2, J2

z is

a singular electric current distributing along the stirrer’s contour C, which is a one-

dimensional continuous surface in a two-dimensional space. Using the regularization

technique, the regularized form of J2
z at the mth grid point (xi, yj) is [96]

J2
zR(xi, yj) =

∫

C

ζε(xi − xc)ζε(yj − yc)J
2
z (xc, yc)dl, (3.6)

where (xc, yc) is a point on C and J2
z (xc, yc) is the value of the induced current at

point (xc, yc). ζε represents the regularized Dirac function, whose definition is [96]

ζε(ξi − ξc) =




1− 0.5|d| − |d|2 + 0.5|d|3, if d ≤ 1

1− 11
6
|d|+ |d|2 − 1

6
|d|3, if 1 ≤ d ≤ 2

0, otherwise




, (3.7)

where

d =
ξi − ξc

4ξ

, (3.8)

31



and ξ can be either x or y. The validity of the above regularization has been demon-

strated both theoretically and numerically in [96] and is hence adopted in our work.

Because J2
z is unknown, it is first expanded using the pulse basis as

J2
z =

NC∑

l=1

ζ(x− xl, y − yl)sl, (3.9)

where ζ represents the Dirac function and sl is the value of J2
z at point (xl, yl). Sub-

stituting the current expansion (3.9) into (3.6) and replacing the integral in (3.6) with

a trapezoidal rule, we have

J2
zR(xi, yj) = 4

NC∑

l=1

ζε(xi − xl)ζε(yj − yl)sl, (3.10)

whose matrix form is

j2zR = Rs, (3.11)

where s is the vector constituted by the expansion coefficients of J2
z and 4 is the

sampling step on C. R is named as the regularization matrix whose elements are

R(m,n) = ζε(xi − xn)ζε(yj − yn)4, (3.12)

where i and j are the indices of the mth DSC grid point in the x and y directions,

respectively. (xn, yn) is the coordinate of the nth sampled point on C. The case of

J1
z is much simpler because it is known and exists at only one point. With a similar

procedure, the regularized value of J1
z on the mth grid point is

j1
zR(m) = ζε(xi − x0)ζε(yj − y0)v

1
z , (3.13)
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where v1
z is the value of J1

z . Following the approximation of differential operators

presented in [75] and expressing the singular sources with (3.11) and (3.13), (3.1) is

transformed into the following linear equations

hx = − 1

jωµ
Axez, (3.14a)

hy =
1

jωµ
Ayez, (3.14b)

ez =
1

jωε

(
Byhy −Bxhx

)− 1

jωε

(
j1zR + Rs

)
, (3.14c)

where hx, hy and ez are unknown vectors constituted by the values of Hx, Hy and Ez

at grid points, respectively. Matrices Ax, Ay, Bx and By are differentiation matrices

[97] resulting from the differential of the Lagrange interpolation basis. These matrices

are highly sparse and can be filled efficiently with a recursive procedure [97]. Details

about the calculation of differentiation matrices can be found in Appendix A.1.

3.2.2 The MoM Model

In the DSC model, the effect of the induced current along the stirrer is considered as

a secondary source for the large cavity. However, the boundary condition along the

surface of the conducting stirrer is not satisfied. In order to force the tangential field

along the stirrer to zero, we first substitute the current expansion (3.9) into the 2-D

TM EFIE

4

ωµ
Ei

z(~r) =

∫

C

Jz(~r
′)H(2)

0 (k |~r − ~r′|)d~r′ (3.15)

and then invoke the point matching process upon it. Finally, we have

4

ωµ
Ei

z(~rm) =
NC∑
n=1

sn

∫

Cn

H
(2)
0 (k |~rm − ~r′|)d~r′, (3.16)
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whose matrix form becomes

4

ωµ
ei

z = Ls, (3.17)

where ei
z is the incident field vector and H

(2)
0 is the second kind Hankel function of

order zero. L is the interaction matrix defined as

L(m,n) =

∫

Cn

H
(2)
0 (k |~rm − ~r′|)d~r′. (3.18)

When filling the matrix L, the problem of singularity is encountered when |m− n| ≤
1 and it is circumvented through the small argument approximation to the Hankel

function [98].

3.2.3 Hybridization

In order to find the unknown incident field Ei
z on the stirrer, a Huygens’ box S is

placed around the stirrer, as shown in Figure 3.3. Along the surface of Huygens’ box,

tangential electric and magnetic fields should be continuous. The Huygens’ box is not

required to be conformal with Yee’s grid used in DSC because interpolation can be

used to obtain field information on Huygens’ box. The equivalent currents across the

box can be viewed as sources of Ei
z. The equivalent currents are related to the total

fields as

~J(~rS) = n̂× ~H(~rS), ~M(~rS) = −n̂× ~E(~rS), (3.19)

where n̂ is the unit normal vector inwards to the surface of the box, and ~H(~rS) and

~E(~rS) are the total fields across the box.
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Since unknown vectors hx, hy and ez in (3.14) are defined by the values of total

fields at grid points, ~H(~rS) and ~E(~rS) across the box can be computed using the

unknown vectors in (3.14) through interpolation. Hence, we obtain

hb
x = Wxhx, hb

y = Wyhy, eb
z = Wzez, (3.20)

where those vectors with superscript b consist of field quantities on the Huygens’

box and matrices W are interpolation matrices filled with the values of interpolating

polynomials. Elements of these interpolation matrices are defined in Appendix B.1.

From (3.19) and (3.20), the equivalent currents on the box are related to the

unknown vectors hx, hy, and ez in (3.14) as:

jbz = TxzWxhx + TyzWyhy, (3.21a)

mb
x = TzxWzez, mb

y = TzyWzez, (3.21b)

where jbz, mb
x, and mb

y are vectors consisting of the equivalent electric and magnetic

currents across the box. Matrices T represent the translation from fields to equivalent

currents and they can be obtained from (3.19) as follows. For the TM case, the z-

component of the magnetic field is zero, and x- and y-components of the electric field

are zero. Meanwhile, the unit vector n̂ has no z-directed component. Therefore, (3.19)

can be written as

Jz(~rS) =n̂x(~rS)Hy(~rS)− n̂y(~rS)Hx(~rS), (3.22a)

Mx(~rS) = −n̂y(~rS)Ez(~rS), (3.22b)

My(~rS) = n̂x(~rS)Ez(~rS), (3.22c)
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where n̂x and n̂y denote the x- and y-components of the unit vector n̂, respectively.

From (3.22a), one can have

Txz(m,n) =



−n̂y(~r

m
S ), if m = n

0, otherwise


 , (3.23)

and

Tyz(m,n) =




n̂x(~r
m
S ) if m = n

0, otherwise


 , (3.24)

where ~rm
S denotes the vector position of the mth point on Huygens’ box. From (3.22b)

and (3.22c), matrices Tzx and Tzy can be defined as

Tzx(m,n) =



−n̂y(~r

m
S ), if m = n

0, otherwise


 , (3.25)

and

Tzy(m,n) =




n̂x(~r
m
S ), if m = n

0, otherwise


 . (3.26)

Once we have the equivalent currents across the Huygens’ box, the magnetic vector

potential ~A and electric vector potential ~F from the equivalent currents are calculated

as:

~A(~r) = −jµ

4

∫ ∫

S

~J(~r′)H(2)
0 (k|~r − ~r′|)d~r′, (3.27a)

~F (~r) = −jε

4

∫ ∫

S

~M(~r′)H(2)
0 (k|~r − ~r′|)d~r′. (3.27b)

For the 2-D TM case, the electric field is related to the vector potentials through the
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following equation

~E = −jω ~A− 1

ε
∇× ~F . (3.28)

Therefore, the electric field illuminating the stirrer is

Ei
z = −ωµ

4

∫ ∫

S

J b
z(~r

′)H(2)
0 (k|~r − ~r′|)d~r′ + j

4

∫ ∫

S

M b
y(~r

′)
∂H

(2)
0 (k|~r − ~r′|)

∂x
d~r′

− j

4

∫ ∫

S

M b
x(~r

′)
∂H

(2)
0 (k|~r − ~r′|)

∂y
d~r′. (3.29)

Invoking a point matching process upon both sides of equation (3.29), one can obtain

ei
z = Zxzm

b
x + Zyzm

b
y + Zzzj

b
z, (3.30)

where matrices Z represent the relationship between fields and currents and their

elements are given as:

Zxz(m,n) = −j

4

∂H
(2)
0 (k|~rm − ~rn|)

∂y
4, (3.31a)

Zyz(m,n) =
j

4

∂H
(2)
0 (k|~rm − ~rn|)

∂x
4, (3.31b)

Zzz(m,n) = −ωµ

4
H

(2)
0 (k|~rm − ~rn|)4, (3.31c)

where 4 is the sampling step size on S and the derivatives of the Hankel function are

∂H
(2)
0 (k|~rm − ~rn|)

∂x
= −kH

(2)
1 (k|~rm − ~rn|) xm − xn

|~rm − ~rn| ,

∂H
(2)
0 (k|~rm − ~rn|)

∂y
= −kH

(2)
1 (k|~rm − ~rn|) ym − yn

|~rm − ~rn| ,

where H
(2)
1 is the second kind Hankel function of order one.
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From (3.21), (3.30), and the first two equations of (3.14), we have

ei
z = Nez, (3.32)

where

N = ZxzTzxWz + ZyzTzyWz − 1

jωµ
Zzz(TxzWxAx −TyzWyAy).

Eliminating hx and hy in (3.14c) using (3.14a) and (3.14b), and combining (3.14c)

with (3.17) through (3.32), we obtain




4

ωµ
N −L

M
1

jωε
R







ez

s


 =




0

− 1

jωε
j1zR


 , (3.33)

where

M = I +
1

ω2µε
(BxAx + ByAy) .

For RC simulation, matrix L is usually of small scale because the electrical size of a

stirrer is much smaller than that of the chamber. Therefore, we may eliminate s in

(3.33) and derive the following matrix equation with respect to ez:

[
M +

4

jω2µε
RL−1N

]
ez = − 1

jωε
j1zR. (3.34)

Equation (3.34) has impressed all the excitations and imposed all the boundary con-

ditions. Therefore, we can obtain the unique solution of Ez by solving (3.34). Once

Ez is obtained, all the other field components as well as the induced current can be

computed accordingly. Since iterative solvers encounter convergence problems in RC

simulation [23], a Gaussian elimination procedure provided by MATLABR© is used for
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solving (3.34) in this chapter.

In the proposed hybrid method, radiated fields of equivalent currents are calculated

on stirrer’s surface. It is known that there is a singularity problem if a field point

is very close to the source point. Furthermore, fields vary very rapidly when the

observation points are near the source points, which incurs difficulty for accurate

numerical calculation of radiated fields. In order to avoid the mentioned singularity

and retain high accuracy, the surface of Huygens’ box should be selected at some

distance away from the stirrer. On the other hand, computational load increases as

the size of Huygens’ box becomes big.

It is difficult to derive a general rule for the optimal value of the box size since

the optimal value is dependent on the shape of the stirrer. A simple criterion for

determining the box size is to ensure that the minimum distance between Huygens’ box

and stirrer is larger than the DSC grid size. This choice not only avoids the singularity

problem but also facilitates accurate numerical calculation of fields radiated by the

equivalent currents.

3.3 Numerical Results

To show the validity of the proposed method, simulations are conducted and our

results are compared with those from alternative methods. CPU time and memory

requirement is also compared to show the advantage of our method. For the pure MoM,

the pulse basis and point matching [98] are used, and the spatial sampling density is

chosen to be at least one tenth λ, where λ is the wavelength at the frequency of

interest for single frequency analysis. According to [75], grid sizes in the DSC method

are chosen to be around one sixth λ. For wide frequency range analysis, frequency
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sweep with uniform frequency step 4f is used, and λ is determined as the wavelength

at the highest frequency. All the simulations presented in this section are conducted

on a personal computer with 2.66 GHz CPU and 2 GB RAM.

0 100 200 300 400 500
10

20

30

40

50

60

70

80

90

100

110

120

Frequency (MHz)

|E
z| (

dB
)

 

 

4th−Order DSC Solution

2nd−Order FD Solution

Figure 3.5: Magnitude of Ez at point (0.8 m,0.8 m) with a current source of 1 A/m2

at point (0.53 m,0.5 m) in a 2-D TM cavity of dimension 3 m×1 m.

3.3.1 DSC Modeling of a 2-D TM Cavity

First, the high efficiency of the DSC method is shown through numerical simulations

on a 2-D TM cavity. Geometry of the 2-D TM cavity is the same as that of the 2-D

TM RC shown in Figure 3.1, except for that the stirrer is removed. The cavity is of

dimension 3 m× 1 m, and it is excited by a current source placed at (0.53 m,0.5 m).

Amplitude of the current source is 1 A/m2.

Figure 3.5 illustrates the solution to the magnitude of Ez at point (0.8 m,0.8

m). The frequency range is from 50 MHz to 500 MHz. Good agreement is observed
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between solutions from the fourth-order DSC method (M=2) and the FD method

(M=1, σ=108). There are some differences at the sharp resonant frequency points.

This is because fields change very rapidly near these points and they are hence hard

to be accurately computed. It should be noted that, the grid size used in the DSC

method is 0.1 m. Therefore, without the application of regularization technique, the

source placed at (0.53 m,0.5 m) can not be captured using such coarse grids. Table 3.1

presents comparison of time and memory requirement between the fourth-order DSC

method and the second-order FD method. The memory cost results are obtained from

the MATLAB Profiler [99]. Obviously, the DSC method requires much less unknowns

and it is more efficient than the FD method.

Table 3.1: Comparison Between DSC and FD methods for Analyzing the 2-D TM

Cavity at One Frequency Point

Method Grid Size Number of Unknowns CPU Time Memory Usage

DSC method 0.1 m 300 4.7 seconds 12 KB

FD method 0.025 m 4800 60.2 seconds 120 KB

3.3.2 Analysis of a 2-D TM Cavity with a Small Cylinder

The high efficiency of the DSC method was demonstrated in Section 3.3.1. In order

to examine the performance of the hybrid method, a 2-D TM cavity with a small

square cylinder is considered in this section. Figure 3.6 illustrates the geometry and

dimensions of this test model. The side length of the cylinder is 1 mm. The structure

is excited by a line current source of amplitude 1 A/m2, whose location is noted in

Figure 3.6. We choose this test model because the induced current on the cylinder

has been computed and reported by De Zutter et al. [29]. Since the cylinder is small,

it is hard to resolve it with the coarse grids used in the DSC method. However, our
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Figure 3.6: Geometry of a 2-D TM cavity with a small square cylinder inside.

hybrid technique can model this structure easily. In the hybrid method, the Huygens’

box is a square with side length 5 cm, which is concentric with the cylinder.

Figure 3.7 shows the induced current J2
z on the cylinder over two frequency ranges.

Good agreement is observed between our results and those from the pure MoM, as

well as published ones. In both our method and the pure MoM, the small cylinder

is described using four pulse bases. In the pure MoM, grid sizes of dx = 2.94 cm and

dy = 2.95 cm, leading to 86 unknowns, are adopted for the low frequency range, where

dx and dy represent spatial steps used to model the x-directed and y-directed cavity

walls, respectively. For the higher frequency range, dx = 1.85 cm and dy = 1.86 cm

are used, leading to 134 unknowns. In the DSC implementation, 4x = 2.5 cm and

4y = 2.52 cm are adopted for both frequency ranges, and the number of unknowns is

513. Over the low frequency range, our method takes about 48 seconds with a fourth-

order DSC, while a pure MoM requires about 180 seconds. The advantage of the hybrid

technique is not significant over the low frequency range. For the higher frequency
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Figure 3.7: Current induced on the small cylinder in two frequency ranges (4f = 5
MHz).
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Table 3.2: Time and Memory Cost Comparisons Between Our Hybrid Technique and
a Pure MoM for One Stirrer Position

Frequency
range

Methods
Number
of field
points

CPU time Memory Grid size

200 MHz
Pure MoM

41 5 seconds 2 MB
dx = 0.1 m,
dy=0.0996 m

201 7.8 seconds 2 MB
dx = 0.1 m,
dy=0.0996 m

Our
method

201 0.8 second 2 MB
4x = 0.25 m,
4y=0.2525 m

50-200 MHz
Pure MoM 1 625 seconds 2 MB

dx = 0.1 m,
dy=0.0996 m

Our
method

1 84 seconds 2 MB
4x = 0.25 m,
4y=0.2525 m

range, the mesh size for the pure MoM should be reduced and the computation time

increases dramatically to about 310 seconds. However, with our hybrid method, the

same mesh can be used for the DSC method and the computation time is 36 seconds. It

should be mentioned that comparison with MoM adopting the cavity Green’s function

[29] is not made because the information about CPU time was not reported in [29].

3.3.3 Modeling of a 2-D TM RC

A 2-D TM RC is simulated in this section. Geometry of the 2-D TM RC is shown in

Figure 3.1. Its dimensions are: a = 5 m, b = 7.07 m, l = 0.5 m, x0 = 3 m, and y0 =

3.5 m. Furthermore, the middle point of the stirrer is located at the point (3 m, 2 m)

and the current source is of 1 A/m2.

At the frequency f = 200 MHz, magnitudes of Ez along two lines are calculated and

plotted in Figure 3.8 and Figure 3.9 for different rotating angles φ. A wide frequency

range analysis, usually required in RC modeling, is also conducted and magnitudes

of Ez at the point (2 m, 4 m) from 50 to 200 MHz are plotted in Figure 3.10 for
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Figure 3.8: Observed |Ez| along the line between two points (1 m, 2 m) and (1 m, 4
m) for different rotating angles.

45



1 1.5 2 2.5 3 3.5
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x−coordinate (m) (y=4 m)

|E
z| (

kV
/m

)

Excitation frequency : f=200 MHz; Rotating angle : φ=0o

 

 
MoM
Hybrid DSC−MoM

(a) φ = 0o

1 1.5 2 2.5 3 3.5
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x−coordinate (m) (y=4 m)

|E
z| (

kV
/m

)

 Excitation frequency : f=200 MHz; Rotating angle : φ=45o

 

 

MoM
Hybrid DSC−MoM

(b) φ = 45o

Figure 3.9: Observed |Ez| along the line between two points (1 m, 4 m) and (3.5 m,
4 m) for different rotating angles.
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Figure 3.10: Observed |Ez| at the point (2 m, 4 m) from 50 MHz to 200 MHz (4f = 1
MHz) for different rotating angles.
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two stirrer positions. In all these cases, our results agree well with those from a pure

MoM.

513 and 261 unknowns are used in our proposed method and the pure MoM, respec-

tively. Table 3.2 compares the time and memory cost between our hybrid technique

and the pure MoM. Table 3.2 also shows the grid sizes used for modeling the cavity. To

make the efficiency comparisons more convincing, the stirrer is modeled with 20 pulse

bases in both our method and the pure MoM. It is seen that memory requirements of

our method and a pure MoM are approximately the same. This is because memory

cost in our method is mainly determined by inverting the left-hand side matrix of

(3.34), which is not as sparse as the differentiation matrices. However, our method

is at least six times as fast as a pure MoM. Moreover, it is observed that when the

number of field points is increased from 41 to 201, computation time with the pure

MoM is increased by more than 50%. This is because when the number of field points

is large, computation of the Hankel function and integration on the current will incur

a heavy extra computational load in the MoM. However, in our hybrid technique,

only simple interpolation is needed and little extra computation will be introduced for

the near-field computation. Hence, when the number of field points is the same, our

method is nearly ten times as fast as a pure MoM.

Finally, in order to illustrate the efficiency of our proposed method in modeling

a large RC, we also show the results obtained at higher frequencies. Wide frequency

range analysis of the 2-D TM RC is conducted from 350 to 500 MHz. At the frequency

of 500 MHz, the chamber is of electrical size 8.3 λ× 11.8 λ. The magnitudes of Ez for

two stirrer positions are plotted in Figure 3.11. It is observed that the magnitude of

Ez is strongly dependent on φ at these higher frequencies. For this problem, 4x and

4y are chosen to be 0.1 m and 0.0996 m, respectively, and the interpolation basis used
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Figure 3.11: Observed |Ez| at the point (2 m, 4 m) from 350 MHz to 500 MHz (4f = 1
MHz) for different rotating angles.

is of order 12. The stirrer is modeled with 20 pulse bases. The number of unknowns

is 3430. In modeling this large RC, the CPU time by our proposed method is 610

seconds for one stirrer position. With the same number of frequency points, modeling

the large RC with our proposed method requires even less CPU time than modeling

the smaller RC with a pure MoM (cf. Table 3.2).

3.4 Concluding Remarks

In this chapter, a hybrid technique has been proposed for efficient modeling of a 2-D

TM RC. We have considered the stirrer as a current sheet where tangential electric

fields are enforced to be zero. The original problem is then decomposed into two

sub-problems. One is a large cavity excited by the original source in addition to the

current sheet, which is modeled using the DSC method. The other is to enforce the
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tangential fields along the stirrer to be zero, and it is solved with the MoM. The

two sub-problems are coupled together through the equivalence principle and they are

solved simultaneously.

Numerical results have been presented to show the validity and advantage of the

proposed method. The high efficiency of the DSC method was first shown through

comparison with the FD method. Advantages of the proposed hybrid method was

demonstrated through comparisons with a pure MoM. In all the simulations, results

from the hybrid method agree well with those from the pure MoM as well as published

ones. Taking advantage of the DSC method’s high efficiency, the proposed hybrid

technique is shown to be much more efficient than a pure MoM with approximately

the same memory cost. Another advantage of the hybrid method is the efficient

computation of fields at a large number of points with simple interpolation. On the

other hand, computation of a Hankel function and integration on the current are

required in a pure MoM for a near-field computation, which will be time consuming

when the number of near-field points is large. Furthermore, the proposed hybrid

method overcame the inflexibility of the DSC method by modeling arbitrarily shaped

structures using MoM. It was shown that the small square cylinder and the arbitrarily

aligned stirrer could be easily modeled using the proposed hybrid method.

The high efficiency and flexibility of the 2-D hybrid method justify its promising

potential for 3-D RC modeling. A 3-D hybrid technique combining the DSC method

and MoM will be developed in the next chapter.
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Chapter 4

Efficient Modeling of 3-D

Medium-Sized RCs Using Hybrid

DSC-MoM

4.1 Introduction

In Chapter 3, a 2-D hybrid DSC-MoM technique was developed and its advantages

were demonstrated. This chapter presents a 3-D hybrid DSC-MoM method for efficient

modeling of 3-D medium-sized RCs.

Similar to the 2-D case, the 3-D large cavity is efficiently modeled by the DSC

method, and the stirrer is simulated by the flexible MoM. Different from the 2-D case,

the triangular mesh is utilized to discretize the stirrer and the Huygens’ box, and the

RWG basis is adopted to expand the induced current on the stirrer and the equivalent

current along Huygens’ box. Exploiting the property of RWG basis, solutions from the

two methods are combined together using the equivalence principle. The validity and

advantages of the proposed 3-D hybrid technique are shown through comparisons with
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the commercial software FEKO. Employing the high efficiency of the DSC method,

the hybrid technique can analyze one stirrer position of a medium-sized RC in a few

hundred seconds on a single personal computer, for which FEKO needs thousands

of seconds CPU time. The memory requirement of the proposed method is also less

than that of FEKO. Furthermore, our hybrid method provides efficient calculation of

electric field strength at a large number of field points, which is of great interest in

RC analysis. Simulations show that our method only takes 1.7 seconds to compute

electric field strength at 4026 field points.

The rest of this chapter is organized as follows. Section 4.2 describes the proposed

hybrid technique in detail. Section 4.3 demonstrates the validity and efficiency of our

hybrid technique through numerical examples. Finally, Section 4.4 concludes the work

described in this chapter.

4.2 Formulation

Figure 4.1 shows a 3-D RC, which consists of a large metallic cavity of Lx × Ly × Lz,

and a mechanical stirrer S. A transmitting antenna is positioned at a corner of the

RC. In practice, the transmitting antenna can be a horn or a log-periodic antenna.

For simplicity, the transmitting antenna is replaced by a current source ~J0 in this

work, which doesn’t affect the analysis of the RC itself.

Similar to the 2-D case, the 3-D RC modeling can be decomposed into two sub-

problems. The first is to force the tangential electric field along the surface of the

stirrer to zero, which results in an integral equation. The second one is a large cavity

excited by the original current source ~J0 and a current sheet ~JS, where ~JS is the in-

duced current on the stirrer. The first and second subproblems are solved using the
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Figure 4.1: Geometry of a typical 3-D reverberation chamber.

MoM and the DSC method, respectively. As shown in Figure 4.2, by enclosing the

stirrer with a Huygens’ box Sb, the field impinging the stirrer is exactly the radiated

field by the equivalent electric current ~Jb and magnetic current ~Mb along the Huy-

gens’ box. At the same time, ~Jb and ~Mb are related to the field solution of the second

subproblem through the equivalence principle. The two subproblems are thus coupled

together. By solving the two subproblems simultaneously, the induced current as well

as the fields in the RC can be obtained.

4.2.1 The MoM Model

Figure 4.2 illustrates the MoM model. The conducting stirrer is illuminated by the

radiated fields of the equivalent current along Huygens’ box. In order to enforce the

tangential electric field along the stirrer surface to zero, the following 3-D EFIE is

applied along S

t̂ (~r) ·
∫ ∫

S

(
1 +

1

k2
∇∇·

)
~JS (~r′) G (~r, ~r′) d~r′ = − j

ωµ

[
t̂ (~r) · ~Ei (~r)

]
, for ~r ∈ S,

(4.1)
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Figure 4.2: The MoM model: a metallic stirrer enclosed by a Huygens’ box. The
conducting stirrer is illuminated by the radiated fields of the equivalent current along
Huygens’ box.

where ~Ei is the electric field illuminating S, t̂ (~r) is the unit vector tangential to S

at ~r, k is the wavenumber, and G represents the free space Green’s function [98]. It

is known that the electric field illuminating the stirrer is radiated by the equivalent

currents ~Jb and ~Mb. ~Ei is then written as,

~Ei (~r) = −jωµ

∫ ∫

Sb

(
1 +

1

k2
∇∇·

)
~Jb (~r′) G (~r, ~r′) d~r′

−∇×
∫ ∫

Sb

~Mb (~r′) G (~r, ~r′) d~r′. (4.2)

Substituting (4.2) into (4.1), one can derive

t̂ (~r) ·
[
jωµ

∫ ∫

S

(
1 +

1

k2
∇∇·

)
~JS (~r′) G (~r, ~r′) d~r′

]
=

−t̂ (~r) ·
[
jωµ

∫ ∫

Sb

(
1 +

1

k2
∇∇·

)
~Jb (~r′) G (~r, ~r′) d~r′

]

−t̂ (~r) ·
[
∇×

∫ ∫

Sb

~Mb (~r′) G (~r, ~r′) d~r′
]

, for ~r ∈ S. (4.3)
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Figure 4.3: RWG basis function.

The stirrer surface S and the Huygens’ box surface Sb can be discretized using a set of

planar triangles. ~JS, ~Jb, and ~Mb are then expanded with the famous RWG basis [50].

The RWG basis function is defined in a pair of triangles shown in Figure 4.3. The two

triangles T+
n and T−

n share edge n. The RWG basis function ~fn (~r) is defined as [50]

~fn (~r) =




ln
2A+

n
(~v+

n − ~r) ~r in T+
n

ln
2A−n

(~r − ~v−n ) ~r in T−
n

0 otherwise




, (4.4)

where v+
n and v−n are vertices of T+

n and T−
n opposite edge n, respectively. ln is the

length of edge n, and A+
n and A−

n are areas of T+
n and T−

n , respectively. The surface

divergence of fn (~r) is

∇ · ~fn (~r) =




− ln
A+

n
~r in T+

n

ln
A−n

~r in T−
n

0 otherwise




. (4.5)

In order to use RWG basis function, the surface of an object is first discretized into

a set of triangles. The RWG basis function is then defined on two adjacent triangles

sharing a edge. Since the divergence of the current is proportional to the surface charge

density through the equation of continuity, (4.5) indicates that the total charge density

associated with adjacent triangle pairs is zero. As there is no accumulation of charges

55



on an edge, the RWG function is said to be divergence conforming.

Invoking Galerkin method upon both sides of (4.3), one can obtain the following

equation

Zejb + Zcmb = ZjS, (4.6)

where jb, mb, and jS are vectors constituted by current expansion coefficients of ~Jb,

~Mb, and ~JS, respectively. Matrices Ze, Zc, and Z are defined as

Ze
mn = −jωµ

∫ ∫

Sm

~fm (~r) ·
∫ ∫

Sn
b

~fn (~r′) G (~r, ~r′) d~r′d~r

− 1

jωε

∫ ∫

Sm

∇ · ~fm (~r)

[∫ ∫

Sn
b

∇′ · ~fn (~r′) G (~r, ~r′) d~r′
]

d~r, (4.7)

Zc
mn = −

∫ ∫

Sm

~fm (~r) ·
[
∇×

∫ ∫

Sn
b

~fn (~r′) G (~r, ~r′) d~r′
]

d~r, (4.8)

and

Zmn = jωµ

∫ ∫

Sm

~fm (~r) ·
[∫ ∫

Sn

~fn (~r′) G (~r, ~r′) d~r′
]

d~r

+
1

jωε

∫ ∫

Sm

∇ · ~fm (~r)

[∫ ∫

Sn

∇′ · ~fn (~r′) G (~r, ~r′) d~r′
]

d~r. (4.9)

In (4.7)-(4.9), Sm represents the domain of the mth RWG basis on the surface of the

stirrer S, and Sn
b is the domain of the nth RWG basis on the surface of the Huygens’

box Sb.

Matrix Z is the same as the interaction matrix in the conventional MoM solution of
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the EFIE. Matrix Ze only has a difference of negative sign from the interaction matrix

in MoM solution of the EFIE. Except for a difference of negative sign, matrix Zc is the

same as the interaction matrix in the conventional MoM solution of the MFIE [98].

The calculation of matrix elements and the treatment of singularity are thus similar to

those in the conventional MoM. In this work, the integral over a triangle is calculated

with a Gaussian quadrature. Since the Huygens’ box doesn’t overlap with the stirrer,

there is no singularity in matrices Zc and Ze. The singularity encountered when filling

the matrix Z is dealt with using the analytical and numerical integrations [98]. The

numerical calculation of integrals in (4.7) to (4.9) and the treatment of singularity were

well documented in [98]. For readers’ convenience, Appendix C details the numerical

calculation of integrals appearing in (4.7) to (4.9).

4.2.2 The DSC Model

The DSC model is shown in Figure 4.4, where the conducting stirrer has been replaced

by a current sheet ~JS. The RC is then equivalent to a large cavity excited by current

sources ~J0 and ~JS, which can be efficiently modeled using the DSC method. It should

be explained that ~J0 is the original current source replacing the transmitting antenna.

Maxwell’s equations governing the fields in the DSC model are

∇× ~EDSC = −jωµ ~HDSC , (4.10a)

∇× ~HDSC = ~JS + ~J0 + jωε ~EDSC . (4.10b)

Taking curl on both sides of (4.10a), and eliminating ∇ × ~HDSC using (4.10b), one

can obtain

∇×∇× ~EDSC − ω2µε ~EDSC = −jωµ
(

~JS + ~J0

)
. (4.11)
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Figure 4.4: The DSC model: a large cavity excited by the original source ~J0 and the

current sheet ~Js. For simplicity, the transmitting antenna has been replaced by a
current source ~J0. This is reasonable when the main concern is the analysis of the RC
itself.

In (4.11), there are totally six differential operators, and they are expanded as follows

in the DSC method. First, using the interpolation basis, arbitrary field component f

can be expanded as

f(x, y, z) =
M∑

i=−M+1

M∑
j=−M+1

M∑

k=−M+1

Ki,j,k
M (x, y, z)f(xi, yj, zk), (4.12)

where

Ki,j,k
M (x, y, z) = LM,i(x)LM,j(y)LM,k(z),

L represents regularized Lagrange interpolation bases, and 2M is the order of the

interpolation bases. The definition of L can be found in equation (3.3), and it is

omitted here for simplicity. (xi, yj, zk) is a point neighboring to the point (x, y, z),

and i, j, and k are local indexes of the point in x-, y-, and z-directions, respectively.

Hence, at a point (x0, y0, z0), these differential operators can be expressed as shown in

(4.13) (on the top of next page), where L
′
and L

′′
represent ordinary like derivatives
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∂2f(x, y, z)

∂x2
=

M∑

i=−M+1

L
′′
M,i(x)f(xi, y0, z0), (4.13a)

∂2f(x, y, z)

∂y2
=

M∑
j=−M+1

L
′′
M,j(y)f(x0, yj, z0), (4.13b)

∂2f(x, y, z)

∂z2
=

M∑

k=−M+1

L
′′
M,k(z)f(x0, y0, zk), (4.13c)

∂2f(x, y, z)

∂x∂y
=

M∑

i=−M+1

M∑
j=−M+1

L
′
M,i(x)L

′
M,j(y)f(xi, yj, z0), (4.13d)

∂2f(x, y, z)

∂x∂z
=

M∑

i=−M+1

M∑

k=−M+1

L
′
M,i(x)L

′
M,k(z)f(xi, y0, zk), (4.13e)

∂2f(x, y, z)

∂y∂z
=

M∑
j=−M+1

M∑

k=−M+1

L
′
M,j(y)L

′
M,k(z)f(x0, yj, zk), (4.13f)

of the first and second orders, respectively. Differentials of interpolation bases can be

numerically computed with a recursive procedure [97].

For numerical implementation of the DSC method, Yee’s grid [48] can be used

to discretize the computational domain. Since the current sources ~J0 and ~JS may

not be conformal with the structured grids, the regularization technique [96] can be

adopted to express the current sources on the structured grids. The validity of the

regularization technique has been rigorously proved by Tornberg [96] with more details.

The regularization technique was applied in Chapter 3 for the development of a 2-D

hybrid method.

Discretizing the computational domain with Yee’s grids, expressing the current

sources on the Yee’s grid with the regularization technique, and approximating the

differential operators with (4.13), the partial differential equation (4.11) can be trans-
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formed to a set of linear equations for the unknown scalar field quantities

(D + C1I) eDSC = C2 (RSjS + R0j0) , (4.14)

where C1 = −ω2µε, and C2 = −jωµ. eDSC is the unknown spatial expansion coeffi-

cients for the electric field. D is the differentiation matrix [97], and I is the identity

matrix. Definition of matrix D is elucidated in Appendix A.2. j0 is the vector consti-

tuted by discrete sampling of ~J0. RS and R0 are regularization matrices for ~JS and

~J0, respectively. Numerical computations of RS and R0 are detailed in the next two

paragraphs.

For an arbitrary current ~JS distributed on a three-dimensional surface S, using

the regularization technique, the regularized current ~JR
S at the mth DSC grid point

~rm can be computed as

~JR
S (~rm) =

∫ ∫

S

ζε(~rm − ~r′) ~JS(~r′)d~r′, (4.15)

where

ζε(~rm − ~r′) = ζε(xm − x′)ζε(ym − y′)ζε(zm − z′),

ζε represents the regularized Dirac function defined in [96]. (x′, y′, z′) and (xm, ym, zm)

are coordinates of ~r′ and ~rm, respectively. Substituting the expansion of ~JS into (4.15),

one can derive

~JR
S (~rm) =

NS∑
n=1

jn
S

∫ ∫

Sn

ζε(~rm − ~r′)~fn(~r′)d~r′. (4.16)

Depending on the direction of the field component designated at ~rm, different compo-

nents should be extracted in (4.16). From (4.16), one can obtain the definition of RS
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as

RS (m,n) =

∫ ∫

Sn

ζε(~rm − ~r′)â · ~fn(~r′)d~r′, (4.17)

where the unit vector â represents the direction of the electric field component desig-

nated to the mth DSC grid point.

~J0 may be a surface or line current source. When ~J0 is a surface current source, it

can be expanded using the RWG basis, and then its regularization matrix will be the

same as (4.17). If ~J0 is a line current source, its regularized form ~JR
0 at ~rm is

~JR
0 (~rm) =

∫

C

ζε(~rm − ~r′) ~J0(~r
′)d~r′, (4.18)

where C represents the domain of ~J0. C can be of arbitrary shape. Expanding ~J0

with pulse function basis and replacing the integration with a trapezoidal rule, (4.18)

becomes

~JR
0 (~rm) =

NC∑
n=1

ζε(~rm − ~rn) ~J0(~rn)Cn, (4.19)

where NC is the total number of discrete segments for C, and Cn is the length of the

nth segment. ~rn is the center of Cn. Therefore, matrix R0 has the form of

R0 (m,n) = ζε(~rm − ~rn)â · ~J0 (~rn)
1

|â · ~J0 (~rn) |
Cn. (4.20)

If ~J0 is a point current source, the integral in (4.18) will reduce to a product.

In order to enforce the boundary condition of the conducting rectangular cavity,

symmetric extension is used for normal electric or tangential magnetic field compo-
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nents near cavity walls. For tangential electric or normal magnetic field components

near cavity walls, anti-symmetric extension is used to force them to be zero along the

conducting walls.

4.2.3 Hybridization

On the surface Sb of Huygens’ box, the equivalent currents ~Jb and ~Mb are related to

the field solution in the DSC model by the equivalence principle

~Jb (~r) = n̂× ~Hb
DSC (~r) , ~r ∈ Sb,

~Mb (~r) = −n̂× ~Eb
DSC (~r) , ~r ∈ Sb, (4.21)

where n̂ is the inward unit vector normal to the Huygens’ box. ~Hb
DSC and ~Eb

DSC

denote the magnetic and electric fields on Huygens’ box, respectively. In the MoM

model, ~Mb and ~Jb are expanded using the RWG basis. In order to relate the current

expansion coefficients with ~Hb
DSC and ~Eb

DSC , one may invoke a Galerkin’s matching

process upon (4.21). However, that will introduce extra computation. On the other

hand, an interesting property of RWG basis is that the expansion coefficient for the

nth basis happens to be the value of the current component normal to the nth shared

edge. Utilizing the aforementioned property of the RWG basis, one can easily obtain

jn
b = n̂ne ·

(
n̂× ~Hb

DSC (~rn)
)

, (4.22a)

mn
b = −n̂ne ·

(
n̂× ~Eb

DSC (~rn)
)

, (4.22b)

where jn
b and mn

b are the nth current expansion coefficients for ~Jb and ~Mb. n̂ne is the

unit vector normal to the nth shared edge, which lies in T+
n and points towards the

free vertex of T+
n , as shown in Figure 4.5. ~rn can be an arbitrary point on the nth

shared edge. In this work, ~rn is chosen to be the middle point of the nth edge. The
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Figure 4.5: Illustration of the vector n̂ne.

matrix form of (4.22) is

jb = Thjh
b
DSC, (4.23a)

mb = Temeb
DSC, (4.23b)

where hb
DSC and eb

DSC are, respectively, vectors constituted by values of magnetic and

electric fields at the centers of shared edges. Furthermore,

jb =

[
jb,1 jb,2 ... jb,Nb

]T

, (4.24)

and

hb
DSC =

[
hbx

DSC,1, ..., hbx
DSC,Nb

, hby
DSC,1, ..., hby

DSC,Nb
, hbz

DSC,1, ..., hbz
DSC,Nb

]T

,

(4.25)

where jb,k is the kth expansion coefficient of ~Jb, and hbξ
DSC,k denotes the value of ξ-

component of magnetic field at the center of the kth shared edge. Nb is the total

number of shared edges on Huygens’ box, and ξ can be x, y, or z. The form of

mb is the same as jb. Replacing ’j’ by ’m’, one can obtain the expression of mb

from (4.24). Furthermore, the expression of eb
DSC can be obtained from (4.25) by
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replacing ’h’ with ’e’. Matrices Thj and Tem represent the translation between fields

and currents, and they are obtained from equation (4.22) as follows. Using the vector

identity ~a · (~b× ~c) = (~a×~b) · ~c, (4.22) is rewritten as

jn
b = ûn · ~Hb

DSC (~rn) ,

mn
b = −ûn · ~Eb

DSC (~rn) , (4.26)

where ûn = n̂ne×n̂. Since both the magnetic and electric fields have three components,

one can observe from (4.26) that matrices Thj and Tem are of size Nb×3Nb, and they

are defined as

Thj(m,n) =




um
x , for m = n,

um
y , for m = n−Nb,

um
z , for m = n− 2Nb,

0 otherwise.




,

and Tem = −Thj. um
x , um

y , and um
z are the x, y, and z components of the vector ûm,

respectively.

Since ~rn may not happen to be a grid point in the DSC model, interpolation may

be required to obtain the electric and magnetic fields at ~rn. By the field expansion

(4.12), ξ-component of ~Hb
DSC (~rn) and ~Eb

DSC (~rn) can be calculated as

Hbξ
DSC (~rn) =

M∑
i=−M

i6=0

M∑
j=−M

j 6=0

M∑

k=−M
k 6=0

whξ
i,j,kH

(i,j,k)ξ
DSC , (4.27a)

Ebξ
DSC (~rn) =

M∑
i=−M

i6=0

M∑
j=−M

j 6=0

M∑

k=−M
k 6=0

weξ
i,j,kE

(i,j,k)ξ
DSC , (4.27b)

where the superscript ξ represents the direction of the field component, and it can be

x, y, or z. E
(i,j,k)ξ
DSC and H

(i,j,k)ξ
DSC are values of ξ-component of electric and magnetic
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Figure 4.6: Definition of local indexes (ξ can be x, y, or z, and ξn is the ξ-component
of ~rn).

fields at the (i, j, k)th grid point around ~rn. i, j, and k are local indexes in x, y, and

z-directions for DSC grid points surrounding ~rn. Figure 4.6 illustrates how the local

index of the grid points is defined. weξ
i,j,k and whξ

i,j,k represent interpolating weights for

ξ-component of electric and magnetic fields, respectively.

It should be noted that all field components have mutually different grid points in

Yee’s grids. Therefore, with the same index (i,j,k), the values of interpolating weight

are different for every field component. Equation (4.27) can be written in the matrix

form as

hb
DSC = WhhDSC, (4.28a)

eb
DSC = WeeDSC, (4.28b)

where vector hDSC is constituted by the expansion coefficients of magnetic field at

DSC grid points. Construction of interpolation matrices Wh and We is described in

detail in Appendices B.2 and B.3, respectively. Using (4.28), (4.23) can be rewritten

as

jb = ThjW
hhDSC, (4.29a)

mb = TemWeeDSC. (4.29b)
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Using (4.29), jb and mb in (4.6) can be eliminated, resulting in

ZeThjW
hhDSC + ZcTemWeeDSC = ZjS. (4.30)

hDSC in (4.30) can be eliminated with eDSC utilizing (4.10a). By discretizing the curl

operator in (4.10a) with the DSC method, the following relationship is obtained

hDSC =
1

C2

DeeDSC, (4.31)

where De is a differentiation matrix arising from the curl operator of (4.10a), and its

evaluation is detailed in Appendix A.3. Using (4.31), (4.30) can be further simplified

as

PSeDSC = ZjS, (4.32)

where

PS =
1

C2

ZeThjW
hDe + ZcTemWe.

Combining (4.32) with (4.14) and rearranging the equations, one can easily obtain




D + C1I −C2RS

PS −Z







eDSC

jS


 =




C2R0j0

0


 . (4.33)

By solving (4.33), the electric field eDSC and the induced current jS can be obtained.

In (4.33), the differentiation matrix D is sparse, and therefore most part of the left-

hand-side matrix in (4.33) is sparse. At the same time, it is known that iterative

solvers have the problem of slow convergence in solving matrix equation arising from

RC modeling due to its resonant nature. Hence, in this work, the direct sparse matrix
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solver from UMFPACK [100] is employed for the solution of (4.33).

The derivation so far is based on the assumption that the RC is lossless. In practice,

an RC has losses due to the cavity wall, the aperture leakage, a receiving antenna, and

the loss in the equipment under test [42]. In order to take the small loss into account,

the homogeneous loss model by Kildal [28] is adopted in this work. In the loss model

by Kildal, the permittivity is assumed to be complex, and its value is calculated from

the quality factor Q of an RC by

ε′ = ε0

(
1− j

Q

)
, (4.34)

where ε0 and ε′ represent the permittivity of free space and the lossy material, re-

spectively. In order to consider the loss, one only needs to replace ε0 with ε′ in the

previous formulation. It is known that the loss from a receiving antenna dominates

the value of quality factor Q at low frequencies [42]. Therefore, Q can be calculated

as [42]

Q =
16π2V

λ3
, (4.35)

where V is the volume of the cavity, and λ is the wavelength at the frequency of

interest.

4.3 Numerical Examples

Numerical examples are presented in this section to demonstrate the validity and

advantages of our proposed method. A C++ code is written to implement our hybrid

method. The performance of the hybrid method is compared with the commercial

software FEKO. Unless otherwise stated, simulations are conducted on a personal

computer with a 2.67 GHz CPU and a 3.25 GB RAM. In FEKO and our MoM model,
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the maximum length of the triangle edge is chosen to be one-tenth of λ. For multi-

frequency analysis, frequency sweeping with a uniform frequency step size is adopted,

and λ is chosen to be the wavelength at the highest frequency of interest. All integrals

are calculated with a four-point Gaussian quadrature. Because iterative solvers have

the problem of slow convergence [23], the direct solver is used in FEKO. In simulations

that follow, the source current ~J0 is chosen to be a point source.

4.3.1 Performance Comparison

Using an RC with a single-plate stirrer, the hybrid code is first validated against

FEKO, and its advantages over FEKO are demonstrated.

The geometry of the RC is shown in the inset of Figure 4.7. The single-plate stirrer

is 4.25 m away from the bottom of the cavity, and it is parallel to the bottom surface

of the cavity. The longer side of the plate is along the y-direction. The current source

~J0 is located at the point (2 m, 2 m, 1.6 m), and all the three orthogonal components

of ~J0 are set to be 1 A/m2. The dimension of the large cavity is 8.5 m×12.5 m×6

m. Starting from 41 MHz, the mode density of the cavity is above 1 mode per MHz.

Therefore, the RC can theoretically operate from 41 MHz. According to [30], the

most interesting frequency band for this RC would be 41 MHz to 82 MHz, where its

performance needs analysis and optimization.

At the frequency of 82 MHz, |Ex| is calculated along the line shown in the in-

set of Figure 4.7. According to (4.34) and (4.35), the permittivity is set to be ε′ =

ε0 (1− j4.8643× 10−4). h- and p-refinements are first conducted. Figure 4.7 presents

the L2 error of |Ex| using different spatial sampling densities. The reference results are

obtained using the grid size of λ/dmax = 9.7561, where dmax = max{dx, dy, dz}. dx, dy,
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Figure 4.7: L2 error of |Ex| along a line inside the RC shown in the inset. The cavity
is of dimension 8.5 m×12.5 m×6 m. The stirrer is a rectangular plate of dimension
8 m× 0.8 m, and its center is located at the point (6.6 m, 6.25 m, 4.25 m). A point
current source is located at P0 (2 m, 2 m, 1.6 m). All three orthogonal components of
the current source is set to be 1 A/m2. Field strength is observed along the straight
line connecting points P1 (1 m, 10.5 m, 3 m) and P2 (7.5 m, 10.5 m, 3 m). dmax

denotes the maximum grid size in x-, y-, and z-directions.

and dz represent the grid size in x-, y-, and z-directions, respectively. RC modeling

usually requires statistical analysis, where a lot of simulations are needed and com-

putational efficiency becomes very important. Since the computational load increases

rapidly with a decreasing grid size, the grid size is chosen to be around five points

per wavelength to retain the good computational efficiency while achieving accept-

able accuracy. The order of basis function is twelve in conducting the h-refinement.

Figure 4.8 illustrates the error versus the order of basis function. The computational

efficiency doesn’t degrade a lot as the order of basis function increases and one may

choose the order according to the desired accuracy. In this work, the order of ba-
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Figure 4.8: L2 error of |Ex| versus the order of basis function. |Ex| is calculated along
the line shown in the inset of Figure 4.7. The reference results are obtained using the
32nd order basis function.

sis function is chosen to be twelve. Therefore, all simulation results that follow are

obtained with DSC order of twelve and grid size around λ/5.

Figures 4.9 to 4.11 present the field distribution along the straight line indicated in

the inset of Figure 4.7 at the frequency of 82 MHz. Results from our proposed hybrid

method agree well with those from FEKO. Figure 4.12 presents the observed electric

field strength at the center of the RC from 40 MHz to 82 MHz. The frequency step

is 0.1 MHz. Good agreement is again obtained between our proposed hybrid method

and FEKO.

Another observation from Figure 4.12 is that the proposed method doesn’t produce

spurious modes. When spurious modes are present, there will be spurious resonant
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Figure 4.9: |Ex| along the straight line between points P1 and P2 in the RC shown in
the inset of Figure 4.7.
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Figure 4.10: |Ey| along the straight line between points P1 and P2 in the RC shown
in the inset of Figure 4.7.
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Figure 4.11: |Ez| along the straight line between points P1 and P2 in the RC shown
in the inset of Figure 4.7.
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Figure 4.12: Er (Er =
√|Ex|2 + |Ey|2 + |Ez|2) at the center of the RC (illustrated in

the inset of Figure 4.7) from 40 MHz to 82 MHz.
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Table 4.1: Time and Memory Cost Comparisons Between Our Hybrid Method and
FEKO for One Stirrer Position and One Frequency Point

Method Grid size (m)* Number of
unknowns

CPU time
(seconds)

Peak memory (GB)

Hybrid
DSC-MoM

dx=0.7727
dy=0.7353
dz=0.75

lmax=0.3659

3915 183 0.66

FEKO lmax=0.3659 16424 2130.97 2.019

* lmax denotes the maximum length of triangle edge in the MoM.

frequencies and the frequency response will become messy [101]. Figure 4.12 shows

that the proposed method doesn’t generate any spurious resonant frequencies. The

DSC method has also been applied to calculate the resonant frequencies of a microstrip

line with a rectangular shield [74], where no spurious solution was observed. Spurious

solutions in higher-order finite difference methods have been studied in [102]. It has

been found that exact differentiation doesn’t produce any spurious modes. However,

using higher-order basis may introduce spurious modes when asymmetric approxima-

tion (e.g. one-sided finite difference) is used to deal with complicated boundaries. In

modeling the rectangular conducting cavity, there is no need to use asymmetric ap-

proximation. Therefore, the proposed method doesn’t produce spurious solution for

RC modeling.

Table 4.1 summarizes CPU time and memory cost comparisons between our pro-

posed method and FEKO. The proposed hybrid method is about ten times faster than

FEKO. In FEKO, filling the interaction matrix requires calculation of integrals over

the cavity. Furthermore, the LU decomposition of a full matrix is time consuming. In

the proposed hybrid technique, integral over the surface of a large cavity is avoided.

In modeling the cavity, the differentiation matrix D in this example has a sparsity

of 95.55%, and its filling is fast. Meanwhile, LU decomposition of a sparse matrix is
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Figure 4.13: Geometry of an RC with a five-paddle stirrer. Dimension of the five
paddles is the same. Angle between two adjacent paddles is 122.09o. The center of
paddle III is located at (6.6 m, 6.25 m, 4.25 m). The dimension of the cavity is the
same as the one shown in the inset of Figure 4.7.

efficient as well. More importantly, with coarse grids in the DSC method, the num-

ber of unknowns is reduced to one-fourth of that in FEKO. The memory usage of

the proposed method is only one third of that by FEKO. It should be noted that

the memory cost in the proposed hybrid method is mainly caused by the LU solver.

This is different from the case in FEKO, where both interaction matrix and LU solver

consume a lot of memory.

4.3.2 Study of Stirring Effect

After having validated the proposed hybrid method and demonstrated its high effi-

ciency, the proposed method is used to study the stirring effect of three stirrers. The

first stirrer is the one shown in the inset of Figure 4.7, which is a single-plate stirrer

of dimension 0.8 m×8 m. The second one is a larger single-plate stirrer of dimension

1.6 m×8 m. The third one is a five-paddle stirrer consisting of five equal-sized square
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Figure 4.14: Electric field strength at the point (4.25 m, 6.36 m, 3 m) during one stirrer
rotation cycle with a single-plate stirrer of dimension 0.8 m×8 m. The excitation
frequency is 82 MHz.

plates of side length 1.6 m. Geometry of the third stirrer is shown in Figure 4.13. For

the single-plate stirrers, the center of the stirrer is located at the point (6.6 m, 6.25 m,

4.25 m). For the five-paddle stirrer, the center of paddle III is located at the point (6.6

m, 6.25 m, 4.25 m). All three stirrers are assumed to be rotated clockwise (looking

toward the positive y-direction) around a y-directed straight line passing through the

point (6.6 m, 6.25 m, 4.25 m). The angle by which a stirrer has been rotated is named

as the rotation angle φ.

Figures 4.14-4.16 illustrate the strength of the three orthogonal electric field com-

ponents at the point (4.25 m, 6.36 m, 3 m) during one stirrer rotation cycle. In all

three cases, a point source is adopted as the excitation. The definition of the point

source is the same as in Section 4.3.1. The step size of rotation angle is 1 degree.

For single-plate stirrers, 180 stirrer positions are considered, because a single-plate

75



0 20 40 60 80 100 120 140 160
25

30

35

40

45

50

55

60

Rotation angle φ (degree)

E
le

ct
ri

c 
fi

el
d

 s
tr

en
g

th
 (

d
B

V
/m

)

 

 

|E
x
|

|E
y
|

|E
z
|

Figure 4.15: Electric field strength at the point (4.25 m, 6.36 m, 3 m) during one stirrer
rotation cycle with a single-plate stirrer of dimension 1.6 m×8 m. The excitation
frequency is 82 MHz.
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Figure 4.16: Electric field strength at the point (4.25 m, 6.36 m, 3 m) during one stirrer
rotation cycle with the five-paddle stirrer illustrated in Figure 4.13. The excitation
frequency is 82 MHz.
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Figure 4.17: Distribution of Er along a plane in the RC at four stirrer positions with
excitation frequency of 82 MHz. The stirrer is the single-plate stirrer of dimension 0.8
m× 8 m.

stirrer goes back to its original position after being rotated by 180 degrees. For the

five-paddle stirrer, 360 stirrer positions are considered. From Figures 4.14-4.16, one

can easily observe different stirring effects of the three stirrers. A single-plate stirrer of

dimension 0.8 m×8 m has little stirring effect, though its length is several wavelengths.

When the width of the single-plate stirrer is increased to 1.6 m, field strengthes change

a lot during one stirrer rotation cycle. This phenomena indicates that the width of

the stirrer should be large enough to make the stirrer effective. With the five-paddle

stirrer, more drastic variations are observed during one stirrer rotation cycle. This

is reasonable and expected, since the five-paddle stirrer introduces more irregularities

during one stirrer rotation cycle.

Figures 4.17-4.19 show the electric field strength distribution along a plane (x∈[1

m, 7.5 m], y∈[4 m, 10 m], and z=3 m) in the RC. The electric field strength distribution
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Figure 4.18: Distribution of Er along a plane in the RC at four stirrer positions with
excitation frequency of 82 MHz. The stirrer is the single-plate stirrer of dimension 1.6
m× 8 m.
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Figure 4.19: Distribution of Er along a plane in the RC at four stirrer positions with
excitation frequency of 82 MHz. The stirrer is the five-paddle stirrer illustrated in
Figure 4.13.
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is plotted at four stirrer positions, which are φ = 0o, 45o, 90o, and 135o. Figure 4.17

indicates that the small single-plate stirrer doesn’t cause noticeable variation of the

electric field strength distribution. With the larger single-plate stirrer and the five-

paddle stirrer, the electric field strength distribution changes a lot as the stirrer rotates,

which can be observed in Figures 4.18 and 4.19. When calculating the electric field

strength, the spatial step size is 0.1 m in both x- and y-directions. Therefore, for one

stirrer position, the electric field strength is calculated at 4026 points. If FEKO is used,

it will take a long time to calculate the electric field strength at such a large number of

field points. This is because FEKO needs to calculate the integral over a large cavity in

computing the electric field strength. In the proposed method, electric field strength

can be quite efficiently calculated using the field expansion (4.12). In calculating the

electric field strength at 4026 points, the proposed method only takes 1.7 seconds.

Therefore, the proposed method renders efficient calculation of electric field strength

at a large number of field points, which is of great interest in RC modeling.

To further evaluate the performance of each stirrer, the number of independent

samples is calculated using the first-order autoregressive model presented in [103]. The

number of independent samples N ′ is calculated using the following formula [103]:

N ′ = N × 1− ρ

1 + ρ
× 0.522 ×

(
µ̂y

σ̂y

)2

, (4.36)

where

µ̂y =
1

N

N∑
t=1

yt,

σ̂2
y =

1

N − 1

N∑
t=1

(yt − µ̂y)
2 ,

ρ =
Cov(Y1, Y2)√

(V ar(Y1)V ar(Y2))
.
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Table 4.2: Number of Independent Samples for Different Stirring Approaches Using
Various Stirrers

Independent sam-
ple size-M*(Ex)

Independent sam-
ple size-MP3*

Independent sample
size-MPOS8*(Ex)

Single-plate stirrer
(1.6 m× 8 m)

2 5 10

Five-paddle stirrer 3 8 16

* M: mechanical stirring only; MP3: mechanical stirring and three-axis polarization
stirring; MPOS8: mechanical stirring and position stirring at eight positions.

N is the total number of samples. yt is the t-th sample. Y1 is the collection of yt, and

Y2 is obtained by cyclic exchange of Y1. Namely,

Y1 = [y1, y2...yN−1, yN ], Y2 = [y2, y3...yN , y1].

The terms ’Cov’ and ’V ar’ denote the covariance and variance, respectively.

N ′ is calculated for different stirrers with three stirring approaches, which are

mechanical stirring, mechanical and polarization stirring, and mechanical and position

stirring. For mechanical stirring, the magnitude of Ex is sampled at the center of the

RC for every stirrer position. In mechanical and polarization stirring, the magnitudes

of three orthogonal field components are sampled at the center of the RC for every

stirrer position. Mechanical and position stirring samples the magnitude of Ex at a

few locations for one stirrer position. In this work, field points for positions stirring

are chosen as the eight corners of a cuboid centered at (4 m, 6.5 m, 3 m). Dimensions

of the cuboid are 2 m, 1.5 m, and 3 m in the x, y, and z-directions, respectively.

Table 4.2 presents the number of independent samples obtained using different

stirrers with various stirring approaches. Results for the single-plate stirrer (0.8 m× 8
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Table 4.3: Time and Memory Cost for One Stirrer Position and One Frequency Point
with the Proposed Hybrid Method

Stirrer type
Number of
Unknowns*

Total CPU
time (seconds)

Peak memory (GB)

Single-plate stirrer
(0.8 m×8 m)

3915 183 0.66

Single-plate stirrer
(1.6 m×8 m)

4155 289 0.85

Five-paddle stirrer 4206 329 0.88

* Grid sizes are the same as those given in Table 5.1.

m) are not shown since it fails to generate independent samples. Table 4.2 shows that

N ′ can be increased by combining mechanical stirring with other stirring methods.

Furthermore, the five-paddle stirrer generates larger N ′ than the single-plate stirrer.

However, N ′ is not large for all cases, which indicates that the stirring efficiency is

not good. Optimized design of the stirrer may improve the stirring efficiency.

Table 4.3 presents the memory cost and total CPU time for one stirrer position.

For the three RCs, the proposed method achieves the analysis of one stirrer position in

a few hundred seconds, while FEKO may take thousands of seconds CPU time. The

maximum peak memory cost in the three cases is 0.88 GB. It should be noted that

the memory cost and CPU time are affected not only by the number of unknowns, but

also by the sparsity of the left hand side matrix of (4.33). Therefore, the memory cost

and CPU time for the second and third stirrers are different, though the numbers of

unknowns are similar. However, the left hand side matrix of (4.33) is always sparse,

because its major part is the differentiation matrix. Therefore, the memory costs

presented in this work are representative.

Lastly, the proposed method is used to model the RC with five-paddle stirrer at 164
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Figure 4.20: Distribution of Er along a plane in the RC at four stirrer positions with
excitation frequency of 164 MHz. The stirrer is the five-paddle stirrer illustrated in
Figure 4.13.

MHz to investigate its ability in modeling a larger RC. The simulation is conducted

on an IBM x3950M2 server with 48 cores and 256 GB RAM. Every core has a clock

speed of 2.66 GHz, and one core is used in this work. For this example, the number

of unknowns is 34943. Four stirrer positions are simulated. Figure 4.20 illustrates the

field distribution along a plane (x∈[1 m, 7.5 m], y∈[4 m, 10 m], and z=3 m) in the RC

at four stirrer positions. For one stirrer position, the simulation takes 1.94 hours CPU

time and 45.57 GB memory. In this simulation, the memory cost is dominated by the

solution of matrix equation. To avoid the solution of matrix equation, the matrix free

method [94] can be used, and its application to the proposed method will be discussed

in the next chapter.

4.4 Concluding Remarks

This chapter has described a new hybrid technique combining the DSC method and

MoM for efficient modeling of a 3-D RCs. The RC modeling has been implemented
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in two steps by replacing the metallic stirrer with a current sheet and enforcing the

tangential electric field along the stirrer surface to be zero. In the first step, the

tangential electric field along the stirrer surface is enforced to be zero by the application

of an EFIE. In the second step, the current sheet and the original current source are

taken as the excitation of the large metallic cavity. The MoM is used to solve the

EFIE in the first step, and the DSC method is adopted to solve the cavity problem in

the second step. The two steps are combined together by the equivalence principle.

The proposed hybrid method combines the flexibility of the MoM and the high

efficiency of the DSC method. Employing the geometry flexibility of RWG basis, it

can be used to model stirrers of arbitrary shape. With the high efficiency of the DSC

method, the proposed hybrid method has been shown to be ten times as fast as FEKO.

The memory cost by the proposed method is also less than that of FEKO. With a

single personal computer, it takes the proposed hybrid method a few hundred seconds

in analyzing one stirrer position of a practical medium-sized RC, for which FEKO may

need thousands of seconds CPU time. Meanwhile, with the field expansion (4.12), the

proposed method can efficiently calculate the electric field strength at a large number

of field points.

For simplicity, only a point source is considered in this chapter. However, with the

flexibility of the regularization technique, line or surface sources can be easily modeled

using the proposed method. Furthermore, transmitting antennas can also be taken

into account using the hybrid method, which will be discussed in the next chapter.

Due to the usage of a direct solver, the memory requirement is high in solving a large

scale matrix equation. In chapter 5, the matrix free method [94] will be combined

with proposed method to reduce the memory usage drastically.
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Chapter 5

Memory-Efficient Modeling of RCs

Using Hybrid RUDSC-MoM

5.1 Introduction

Memory requirement of RC modeling is usually high due to the usage of direct solvers.

Among existing methods, the cavity Green’s function method [20,28] greatly reduces

the memory requirement through avoiding direct modeling of the cavity. However,

as the size of the object inside the cavity increases, filling the interaction matrix

may require long CPU time in cavity Green’s function method. Although the hybrid

DSC-MoM technique presented in the last chapter consumes less memory compared

to many conventional numerical methods, its memory requirement is still high due to

the usage of a direct solver, which limits the frequency range of RC modeling.

A recent advancement in cavity modeling is the RUDSC method. The recursive

update (RU) method [94] is also known as the matrix free method [95], which means

it doesn’t need to solve a matrix equation. Therefore, the RU method is very useful

when conventional iterative solvers fail. Furthermore, the RUDSC method renders low
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memory consumption because it only needs storing two sparse differentiation matrices.

On the other hand, the RU method can not be directly applied in the hybrid DSC-

MoM method because the matrix free method is developed for solving differential

equations only.

This chapter presents a hybrid RUDSC-MoM method for memory-efficient analy-

sis of RCs. In the hybrid RUDSC-MoM method, the cavity is efficiently modeled by

the RUDSC method, and antennas and stirrers are simulated using the flexible MoM.

In order to solve DSC and MoM unknowns separately, a layer-based elimination al-

gorithm is utilized to eliminate the DSC unknowns. The MoM unknowns are then

solved using a direct solver. Once the solution for the MoM model is obtained, the

original RC is equivalent to a cavity excited by known current sources. The equivalent

problem is finally solved using the RUDSC method. The proposed method avoids the

non-convergence problem encountered by conventional iterative solvers in RC analysis.

Taking advantage of the layer-based elimination algorithm and the RU technique, the

memory requirement of the new hybrid method is much smaller than that of using a

direct solver, which extends RC analysis to higher frequencies. Numerical simulations

are presented to show the efficacy of the proposed method.

The rest of this chapter is organized as follows. Section 5.2 describes the pro-

posed method in detail and analyzes its complexity. Section 5.3 demonstrates the

validity and efficiency of our proposed method through numerical examples. Efficacy

of RUDSC method for cavity modeling is demonstrated, and choice of parameters

in RUDSC method is studied. Results from the hybrid RUDSC-MoM method are

compared with those from alternative methods to validate the proposed method. Ad-

vantages of the new hybrid method are demonstrated through comparison with exist-

ing methods. Numerical experiments are conducted to study the computational and
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storing requirement of the proposed method. Finally, Section 5.4 concludes the work

descried in this chapter.

5.2 Formulation

In this section, the hybrid DSC-MoM method is extended to take the transmitting

antenna into consideration. RUDSC modeling of a cavity is also introduced and its

hybridization with MoM is described. Algorithm complexity of the proposed hybrid

method is finally analyzed.

5.2.1 Hybrid DSC-MoM Analysis of an RC

In the last chapter, the hybrid DSC-MoM method was developed for the analysis of 3-

D RCs excited using a point current source. In this subsection, the hybrid DSC-MoM

method is extended to account for the transmitting antenna. In the hybrid method,

Maxwell’s equations of differential form are used to describe fields in a cavity, and

integral equations are adopted to simulate the conducting stirrer and antenna inside

the RC. Discretizing differential and integral equations and coupling solutions of these

equations using the equivalence principle, one can obtain the following matrix equation

Ax = b, (5.1)

where x = [eDSC jS ia]
T , b =

[
0 0 − ei

0

]T
, and

A =




D + C1I −C2RS −C2Ra

PS −Z 0

Pa 0 −Za




. (5.2)
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Figure 5.1: Two wire segments C+
n and C−

n .

The superscript T denotes the transpose operation. eDSC, jS, and ia are unknown

expansion coefficients of the electric field, induced current on stirrer and excitation

source from the antenna, respectively. eDSC represents the DSC unknowns. jS and ia

constitute the MoM unknowns. D = DhDe, C1 = −ω2µε, and C2 = −jωµ. I is the

identity matrix. Dh and De are differentiation matrices arising from curl operators

on magnetic and electric fields, respectively. Definition of matrices RS, Z and PS can

be found in Chapter 4. Matrix Za is the MoM interaction matrix for a wire antenna1,

and ei
0 is the excitation vector due to the voltage source of the wire antenna. Details

on calculation of Za and ei
0 can be found in [98]. Computation of Ra and Pa is

elucidated in the next two paragraphs.

Since ~Ia is a line current source, its regularized form ~IR
a at ~rm is [96]

~IR
a (~rm) =

∫

C

ζε(~rm − ~r′)~Ia(~r
′)d~r′, (5.3)

where C represents the domain of ~Ia. ~rm is the position of the mth DSC grid point,

and ζε represents the regularized Dirac function defined in [96]. With a triangle basis

function, ~Ia is expanded as

~Ia(~r) =
Na∑
n=1

ina~sn(~r), (5.4)

1In this work, we assume that the transmitting antenna for the RC is a wire antenna. Other types
of antennas can be considered in a similar way as long as they can be modeled using the MoM.
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where Na is the total number of basis functions. ~sn(~r) represents the triangle basis

function [98], which is defined as

~sn(~r) =




~r+
n−~r

l+n
~r ∈ C+

n

~r−~r−n
l−n

~r ∈ C−
n

0 otherwise




. (5.5)

C+
n and C−

n are two wire segments as shown in Figure 5.1 . ~r±n represents the node of

C±
n opposite to the common node of C+

n and C−
n . l±n is the length of C±

n . Substituting

(5.4) into (5.3), one obtains

~IR
a (~rm) =

Na∑
n=1

ina

∫

Cn

ζε(~rm − ~r′)~sn(~r′)d~r′, (5.6)

where Cn denotes the support of ~sn. Replacing the segmental integral with a Gaussian

quadrature, (5.6) becomes

~IR
a (~rm) =

Na∑
n=1

ina

G∑
g=1

wgζε(~rm − ~r′n,g)~sn(~r′n,g), (5.7)

where ~r′n,g is position of the gth integral point on Cn, and wg is the weight for the gth

integral point. Therefore, the regularization matrix Ra is defined as

Ra(m,n) =
1

2πa

G∑
g=1

wgζε(~rm − ~r′n,g)~sn(~r′n,g), (5.8)

where a is the radius of the wire. The term 1/2πa is due to the conversion from ~Ia to

~Ja.

Following the procedure in obtaining matrix PS (refer to equations (4.21) to (4.32)
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in Chapter 4), one can write matrix Pa as

Pa =
1

C2

Ze
aT

a
hjW

h
aD

e + Zc
aT

a
emWe

a,

where elements in matrices Zc
a and Ze

a are defined as

Zc
a(m,n) = −

∫ ∫

Cm

~sm (~r) ·
[
∇×

∫ ∫

Sn
b

~fn (~r′) G (~r, ~r′) d~r′
]

d~r, (5.9)

Ze
a(m,n) = −jωµ

∫ ∫

Cm

~sm (~r) ·
∫ ∫

Sn
b

~fn (~r′) G (~r, ~r′) d~r′d~r

− 1

jωε

∫ ∫

Cm

∇ · ~sm (~r)

[∫ ∫

Sn
b

∇′ · ~fn (~r′) G (~r, ~r′) d~r′
]

d~r. (5.10)

In (5.9) and (5.10), ~sm is the triangle basis function used to expand the current on

wire structures [98], and Cm denotes the support domain of ~sm. ~fn is the RWG basis

function [98] utilized to express the current on Huygens’ box, and Sn is the effective

domain of ~fn. Matrices Ta
hj, Wh

a , Ta
em, and We

a have the same definition as Thj, Wh,

Tem, and We, respectively. Procedures for obtaining these matrices can be found in

Chapter 4.

5.2.2 RUDSC Modeling of a Cavity

The RUDSC method starts with the time-domain Maxwell’s equations of differential

form

∂ ~E(t)

∂t
=

1

ε
∇× ~H(t)− σ

ε
~E(t)− 1

ε
~J(t), (5.11)

∂ ~H(t)

∂t
= − 1

µ
∇× ~E − σ∗

µ
~H(t), (5.12)
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Figure 5.2: A cavity excited by known current sources.

where σ and σ∗ denote the electric and magnetic conductivities, respectively. In

this work, the current excitation ~J(t) includes the induced current on the stirrer

and the excitation source from the antenna, which are denoted by ~JS(t) and ~JSa(t),

respectively, as shown in Figure 5.2.

With a time periodic excitation of angular frequency ω, time domain electromag-

netic fields have the form ~E(t) = Ê(t)ejωt, and ~H(t) = Ĥ(t)ejωt, where Ê(t) and Ĥ(t)

are constants in the steady state. Meanwhile, the excitation ~J(t) is written as Ĵejωt.

Replacing temporal derivatives with respect to ~E(t) and ~H(t) by the FD, the following

equations are obtained

Ên+1ejω τ
2 − Êne−jω τ

2

τ
=

1

ε
∇× Ĥn+ 1

2 − σ

ε
Ên+1ejω τ

2 − 1

ε
Ĵe−jω τ

2 , (5.13)

Ĥn+ 1
2 ejω τ

2 − Ĥn− 1
2 e−jω τ

2

τ
= − 1

µ
∇× Ên − σ∗

µ
Ĥn+ 1

2 ejω τ
2 , (5.14)

where τ denotes the marching step size, n is the index of marching steps, Ên and Ĥn+ 1
2

are the values of Ê(t) and Ĥ(t) at points nτ and nτ + τ
2
, respectively. Rearranging
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equations (5.13) and (5.14), one can derive the following RU scheme

Ên+1 = C3

(
Ên +

τ

ε
ejω τ

2∇× Ĥn+ 1
2 − τ

ε
Ĵ
)

, (5.15)

Ĥn+ 1
2 = C4

(
Ĥn− 1

2 e−jω τ
2 − τ

µ
∇× Ên

)
, (5.16)

where

C3 =
ε

ε + στ
e−jωτ , and C4 =

µ

µ + σ∗τ
e−jω τ

2 .

It has been shown that the RU scheme in equations (5.15) and (5.16) is convergent as

long as

τ ≤ h

√
εµ

8
, (5.17)

where h is the spatial grid size [94]. It can be shown that Ên and Ĥn+ 1
2 will be

solutions of the frequency-domain Maxwell’s equations if the following two conditions

are satisfied

τ ≤ tol1
ω

, (5.18)

||Ên+1 − Ên||2
||Ên||2

≤ tol2, and
||Ĥn+ 1

2 − Ĥn− 1
2 ||2

||Ĥn− 1
2 ||2

≤ tol2. (5.19)

In this work, the value of τ is chosen according to (5.17) and (5.18), and the RU

is continued until (5.19) is satisfied. The choice of tol1 and tol2 will be studied in

Section 5.3.1, and it will be shown that tol1 and tol2 can be set to 6×10−2 and

1×10−4, respectively.

In order to numerically find the steady state values of Ên+1 and Ĥn+ 1
2 , the DSC

method [75] is adopted to approximate the curl operators. Advantages of RUDSC

over RU finite difference (RUFD) [94,95] will be demonstrated in Section 5.3. Similar
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to hybrid DSC-MoM in Chapters 3 and 4, the regularization technique [96] is used

to model arbitrarily oriented current sources in structured grids. Applying the DSC

method to equations (5.15) and (5.16), the following equations are obtained

en+1 = C3

(
en +

τ

ε
ejω τ

2 Dhh
n+ 1

2 − τ

ε
(Raia + RSjS)

)
, (5.20)

hn+ 1
2 = C4

(
hn− 1

2 e−jω τ
2 − τ

µ
Dee

n

)
, (5.21)

where en+1 and hn+ 1
2 are vectors consisting of the spatial expansion coefficients of

Ên+1 and Ĥn+ 1
2 , respectively. Starting from n = 0, equations (5.20) and (5.21) are

recursively updated until condition (5.19) is satisfied. Solution to the DSC unknowns

is then obtained. It should be noted that the initial values of en+1 and hn+ 1
2 will

affect the convergence of RU method. As suggested in [94], a robust choice is to set

the initial values to zeros.

5.2.3 Hybridization of RUDSC and MoM

The RU method can not be used to solve MoM unknowns because it is developed

for solving differential equations only. In order to hybridize RUDSC with MoM, the

DSC unknowns are first eliminated using a layer-based elimination algorithm, and the

MoM unknowns are obtained using a direct solver. The DSC unknowns can then be

derived using the RU method.

The layer-based elimination algorithm was first proposed by Jin for finite element

(FE) modeling of scattering from a large cavity [104–106], and it has been widely

used in the FE analysis of scattering from large objects with a deep cavity [107–110].

Analyzing scattering from a large open cavity is a challenging problem in CEM, and

it is similar to RC modeling because an internal cavity is modeled in both problems.
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Besides layer-based elimination algorithm, the connection scheme [111] is another way

of modeling scattering from a deep open cavity, and it was used together with MLFMA

for efficient analysis of scattering from a large object with a deep cavity [112]. In either

layer-based elimination algorithm or connection scheme, the cavity is divided into a

few sections along its longest direction, and the whole cavity is modeled section by

section to reduce the memory cost.

In this thesis, a layer-based elimination algorithm is developed to eliminate the

DSC unknowns with low memory cost. This section first introduces the layer division

of a cavity and then describes the elimination of DSC unknowns in a layer-by-layer

manner.

In (5.2), the bandwidth of matrix D will be limited if the elements of eDSC are

arranged properly. Therefore, one may utilize the characteristics of matrix D to

eliminate unknowns eDSC with low memory consumption. Figure 5.3 illustrates one

way to order the DSC unknowns. The cavity is divided into many layers along its

longest dimension, which is the z-axis. In Yee’s grid, grid points of the three orthogonal

electric field components Ex, Ey and Ez are allocated as follows: Ex and Ey grid points

will be laid on the same plane, which is denoted as Ex, Ey sub-layer. Ez grid points

will be on another plane, which is named as Ez sub-layer. As shown in Figure 5.3,

a Ez sub-layer is 0.5dz away from its neighboring Ex, Ey sub-layer, where dz is the

DSC grid size in the z-direction. In Figure 5.3, the first Ex, Ey sub-layer and the first

Ez sub-layer constitutes the first layer. The next two sub-layers will form the second

layer. Following this way and going from the bottom towards the top of the cavity,

one will have NL layers, where NL = Lz/dz. Besides the NL layers, there is another

Ez sub-layer remaining (c.f. Figure 5.3). It is denoted as the last sub-layer of Ez,

which contains NSz unknowns.
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Figure 5.3: Layer division of a cavity along its longest direction. Ex, Ey sub-layer de-
notes a sub-layer where Ex and Ey grid points are defined, and Ez sub-layer represents
a sub-layer where Ez grid points are located. One layer consists of a Ex, Ey sub-layer
and a Ez sub-layer.

Arranging the elements of eDSC as shown Figure 5.3, matrix D will be bandlimited,

and its half bandwidth is (M +1)NS, where M = 0.5Oz
N . Oz

N is the order of the basis

function in the z-direction, and NS is the number of unknowns in one layer. Utilizing

the limited bandwidth of D, eDSC can be eliminated from the bottom to the top in

a layer-by-layer manner. When eliminating the first NS unknowns (unknowns in the

first layer), only a small portion of matrix A is involved due to the limited bandwidth

of matrix D. The memory requirement of eliminating unknowns in one layer is thus

not large. After the first NS unknowns are eliminated, the second NS unknowns

(unknowns in the second layer) are eliminated in the same way, and the memory can
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be reused. This process is repeated from the bottom to the top of the cavity until

the first NDSC unknowns are eliminated, where NDSC = NLNS + NSz is the number

of unknowns in the DSC model. The aforementioned elimination process will change

(5.1) into a new matrix equation




D′ −C2R
′
S −C2R

′
a

0 −Z′S Z′Sa

0 Z′aS −Z′a







eDSC

jS

ia




=




0

0

−ei
0




. (5.22)

From equation (5.22), one can solve jS and ia using a direct solver, because NMoM

is relatively small, where NMoM is the total length of jS and ia. It should be noted

that matrix D′ is not sparse after the layer-by-layer elimination process. Matrices

R′
S and R′

a are of large dimension, and they are not stored in the memory. For

the convenience of understanding, the aforementioned algorithm is described in detail

using a pseudocode in Algorithm 1. In Algorithm 1, matrix D is divided into many

blocks. One block represents the relationship between unknowns inside one layer or

in two different layers. The first and second subscripts of a matrix variable denote the

block numbers in row and column directions, respectively. The symbol ’←’ denotes

the assignment operation, and ’m : n’ means from m to n. ’∗’ represents matrix

multiplication operation. Furthermore, P=[PS Pa]
T , R=[−C2RS − C2Ra], Dt =

D + C1I, and

ZSa =



−Z 0

0 −Za


 . (5.23)

Matrices P and R are divided into NL+1 blocks along their column and row directions,

respectively. The first NL blocks of matrices P and R are of dimension NMoM × NS
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and NS ×NMoM , respectively. Dimensions of the last blocks of matrices P and R are

respectively NMoM ×NSz and NSz ×NMoM .

Considering the complexity of matrix inversion and counting the number of multi-

plication operations, one can estimate the computational complexity of the layer-based

elimination algorithm from Algorithm 1.

The proposed layer-based elimination algorithm has a similar concept with the one

in [104]. They are different in the following two aspects. First, the former is designed
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for the hybrid DSC-MoM, and the latter is for the FEM. Therefore, definition of a

layer is different in these two cases. Second, the method presented in [104] is developed

for analyzing scattering from a deep cavity. In that case, the external and internal

problems are separated by the conducting cavity, and they are coupled through the

opening of the cavity. Therefore, the layer-based elimination process is independent

of the external problem in the case of scattering analysis. In RC modeling, the MoM

and DSC unknowns are directly coupled. Therefore, the MoM interaction matrices

are affected by the elimination process.

For scattering problems, one is not interested in fields inside the cavity. On the

other hand, fields inside the cavity are of the main interest in RC modeling. Since

matrices D′, R′
S, and R′

a are not stored during the layer-based elimination process,

eDSC remains unsolved after the MoM solution is obtained, and it is derived using the

RUDSC method.

5.2.4 Complexity Analysis

The most costly part in our proposed method is the layer-based elimination algorithm.

In eliminating unknowns of one layer, (MNS + NMoM) columns of (MNS + NMoM)

rows in matrix A are rewritten and stored. In the meanwhile, rows and columns

corresponding to unknowns currently to be eliminated need storage. In order to store

these elements, the memory requirement is O [(MNS + NS + NMoM)2]. Therefore, the

memory requirement of the layer-based elimination algorithm is quadratically depen-

dent on M , NS and NMoM . In the pseudocode of Algorithm 1, the computational

complexity of every matrix multiplication operation is indicated and the most time

consuming part of Algorithm 1 is highlighted. The computational complexity for elim-

inating unknowns in one layer is O [N3
S + N2

S(MNS + NMoM) + NS(MNS + NMoM)2]
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Figure 5.4: An empty cavity excited by a point current source. The current source is
located at point P1 (2 m, 2 m, 1.6 m). All three orthogonal components of the current
is set to 1 A/m2. Electric field is observed along the straight line connecting points
P2 (7.5 m, 10.5 m, 3 m) and P3 (1 m, 10.5 m , 3 m).

(c.f. Algorithm 1 for derivation of computational complexity). Hence, the CPU time

for the elimination of unknowns in one layer is cubically proportional to NS, and

quadratically dependent on M and NMoM . Since the CPU time for every layer is

approximately the same, the total CPU time is linearly dependent on NL. With a

fixed basis order, the memory requirement of RUDSC method is linearly dependent

on NDSC , and its computational complexity is O(NDSC) for one step of update.

5.3 Numerical Simulations

Simulation results are presented in this section to demonstrate the performance of our

proposed method. The RUDSC method is first studied via simulations on a cavity.

The hybrid RUDSC-MoM is validated through comparison with existing methods.

Complexity of the proposed method is then studied in detail. Numerical examples on

a full-scale RC are presented to demonstrate the application of the proposed method.

Unless otherwise stated, a twelfth-order basis is used in the DSC method, and grid
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Figure 5.5: Accuracy of RUDSC method using different values of tol2.

sizes of the DSC method and MoM are set to one fifth and one tenth of the wavelength,

respectively. If not specified, a personal computer with two quad-core CPUs and a 8

GB RAM is used in this section, and one core is utilized to run the simulations.

5.3.1 Modeling a Cavity Using RUDSC Method

This subsection first discusses how to choose the values of tol1 and tol2. The RUDSC

method is then validated against a direct solver and the commercial software FEKO,

and its advantages are demonstrated through comparison with the RUFD method and

the biconjugate gradient method. For all simulations in this subsection, the test model

is a conducting cavity shown in Figure 5.4. σ∗ and σ are set to zero and 2.218×10−6

S/m, respectively. All simulations in this subsection are conducted on a personal

computer with a 2.66 GHz CPU and a 2 GB RAM.

tol1 is chosen to ensure that sin(ωτ
2

) is in its linear region and the imaginary part
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Table 5.1: Time and Memory Cost Comparisons Between RUFD and RUDSC

Frequency Method
Unknowns
No.

CPU time Memory
Grid size
(m)

82 MHz
RUFD 67,971 1.47 hours 6.6 MB

hx = 0.3696,
hy=0.3788,
hz=0.3750

RUDSC 7,779 0.48 hour 2.7 MB
hx = 0.7727,
hy=0.7353,
hz=0.7500

200 MHz RUDSC 133,482 14 hours 61 MB
hx = 0.3036,
hy=0.2976,
hz=0.3000

of ej ωτ
2 is close to zero. It is known that the sinusoidal function is in its linear region

if its argument is below 0.1. Therefore, the imaginary part of ej ωτ
2 is ωτ

2
if ωτ is below

0.2. In simulations that follow, tol1 is chosen to be 6 × 10−2 so that the imaginary

part of ej ωτ
2 is below 3× 10−2. tol2 is a measure of the convergence of the RU scheme.

Figure 5.5 shows the relative error versus the value of tol2 in modeling the conducting

cavity shown in Figure 5.4. The excitation frequency is 82 MHz. Figure 5.5 indicates

that tol2 can be chosen to be 1× 10−4 in order to obtain a relative error of 1× 10−2.

Figure 5.6(a) presents the solution vector e computed using different methods.

Good agreement is observed between the RUDSC method and the direct solver. Fig-

ure 5.6(b) illustrates |Ex| along a straight line (defined in Figure 5.4) in the conducting

cavity. Also shown in 5.6(b) are the results obtained using the RUFD method. Grid

sizes in RUDSC and RUFD methods are set to be one-fifth and one-tenth of the wave-

length, respectively. It is seen that the RUDSC method can obtain good agreement

with FEKO, while the RUFD method fails to get good results using the grid size of

one-tenth of the wavelength. Table 5.1 presents the CPU time and memory cost by

the RUDSC and RUFD methods. Even without refining the grids, the RUFD method

requires more CPU time and memory than the RUDSC method.
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(a) Solution vector obtained using different methods.

(b) |Ex| in a conducting cavity excited by a current point source.

Figure 5.6: Validation of the RUDSC method.
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Figure 5.7: Convergence behaviors of the RUDSC method and the biconjugate gradi-
ent iterative solver in modeling a conducting cavity.
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Table 5.2: Time and Memory Cost Comparisons for One Stirrer Position and
One Frequency Point

Method Grid size (m)*

Number
of un-
knowns

CPU time
(seconds)

Peak memory (GB)

Hybrid
RUDSC-

MoM

dx=0.7727,
dy=0.7353
dz=0.75,
lmax=0.3659

3915 887 0.03

Hybrid
DSC-
MoM

The same as
those shown in
the row above

3915 183 0.66

FEKO lmax=0.3659 16424 2130.97 2.019

* lmax denotes the maximum length of triangle edge in the MoM.

Lastly, the RUDSC method is used to model the same cavity at the frequency of

200 MHz. At this frequency, the cavity is more than eight-wavelength long, and the

number of unknowns is 0.133482 million. Table 5.1 summarizes the computational

resources required by the RUDSC method. Figure 5.7 presents the convergence be-

haviors of the RUDSC method and the biconjugate gradient iterative solver. It is seen

that the memory usage of the RUDSC method is very low, even though the number

of unknowns is very large. More importantly, the RUDSC method avoids the con-

vergence problem encountered by conventional iterative solvers like the biconjugate

gradient iterative solver.

5.3.2 Validation of Hybrid RUDSC-MoM Method

An RC with a single-plate stirrer is considered in order to validate the hybrid RUDSC-

MoM method. It has the same geometry and dimension as the one considered in

Section 4.3.1. The excitation frequency is 82 MHz, and the excitation and observation

points are the same as those used in Section 4.3.1.
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Figure 5.8: |Ex| along a straight in the RC with a single-page stirrer.

Figures 5.8 to 5.10 illustrate the magnitudes of Ex, Ey, and Ez obtained using

three different approaches. Good agreement is observed between results from different

methods, which validates the hybrid RUDSC-MoM method. Table 5.2 presents the

computational resources required by three different methods in modeling the RC with

a single-plate stirrer. Simulations in this subsection are conducted on a personal

computer with a 2.67 GHz CPU and a 3.25 GB RAM. Although the hybrid RUDSC-

MoM requires more CPU time compared to the hybrid DSC-MoM, it is faster than the

commercial software. More importantly, the hybrid RUDSC-MoM requires much less

memory compared to the other two methods. Therefore, the hybrid RUDSC-MoM

method can extend RC modeling to higher frequencies.

5.3.3 Performance Study

After the code validation, the complexity of the proposed hybrid method is studied

in detail. The computational and storing requirement of the layer-based algorithm is
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Figure 5.9: |Ey| along a straight in the RC with a single-page stirrer.

Figure 5.10: |Ez| along a straight in the RC with a single-page stirrer.
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Figure 5.11: Computational and storing complexity of the proposed layer-based elim-
ination algorithm against NS for elimination of unknowns in one layer (NMoM = 173).

first investigated. Figure 5.11 presents the complexity of the layer-based algorithm

against NS. It is seen that the computation and storage complexity for eliminat-

ing unknowns in one layer is O(N3
S) and O(N2

S), respectively, which agrees with the

analysis in Section 5.2.4. Figure 5.12 illustrates the CPU time required by the layer-

based elimination algorithm against NL, which indicates that the CPU time is linearly

dependent on NL.

Figures 5.13 and 5.14 present the storage and computation complexity of the layer-

based elimination algorithm against NMoM . These two figures show that the algorithm

complexity against NMoM is O(Nα
MoM), where the value of α is dependent on the ratio

between (M+1)NS and NMoM . When (M+1)NS/NMoM is smaller than one, α is close

to two; otherwise it is smaller than one. This phenomenon can be explained using the

complexity analysis in Section 5.2.4. It is known that the computational and stor-
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Figure 5.12: Computational complexity of the proposed layer-based elimination algo-
rithm against NL (NS=227 and NMoM=173).
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gorithm against NMoM for elimination of unknowns in one layer (NS = 227).

ing complexity of the layer-based elimination algorithm is O [(MNS + NS + NMoM)2]

and O [N3
S + N2

S(MNS + NMoM) + NS(MNS + NMoM)2], respectively. When NMoM

is smaller than (M + 1)NS, the CPU time and memory cost is less sensitive to the

value of NMoM and the value of α is smaller. If NMoM is larger than (M + 1)NS, the

value of NMoM will dominate the CPU time and memory cost, and the value of α is

close to 2.

The complexity of RUDSC method is illustrated in Figure 5.15. As expected,

both CPU time and memory cost are linearly dependent on NDSC in the RUDSC

method. Meanwhile, it can be observed that the memory requirement of RUDSC

method is very low compared to the layer-based elimination algorithm. Hence, the

memory requirement of the layer-based elimination algorithm can be considered as

the memory requirement of the hybrid RUDSC-MoM method.
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Figure 5.15: Computational and storing complexity of the RUDSC method. The CPU
time is for RU of 1000 steps.

In summary, the numerically estimated complexity agrees well with the algorithm

analysis in Section 5.2.4. The storage requirement of the proposed method is only

quadratically dependent on NS and NMoM , and it is independent of NL. It should be

noted that Oz
N also affects the complexity of the proposed method. Since Oz

N can be

fixed in practice, its effect is therefore not studied here.

5.3.4 An RC with a Five-Paddle Stirrer

Finally, the hybrid RUDSC-MoM is applied for the modeling of an RC with a five-

paddle stirrer, which is also simulated in Section 4.3.2. Figures 5.16 and 5.17 illustrate

the distribution of |Ez| inside the RC at 82 MHz and 200 MHz, respectively. The

excitation is the same as the one used in Section 4.3.2. The field is observed along

a straight line connecting points (1 m, 3 m, 10.5 m) and (7.5 m, 3 m, 10.5 m). The
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Figure 5.16: Field distribution in the RC with a five-paddle stirrer at 82 MHz.
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Figure 5.17: Field distribution in the RC with a five-paddle stirrer at 200 MHz.
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Figure 5.18: Current distribution along a dipole in the RC with a five-paddle stirrer
at 200 MHz. The center of the dipole is at (2 m, 1.6 m, 2 m), and it is aligned in the
direction (1, 1, 1).

rotation angle φ is the angle by which the stirrer is rotated. Field distribution at two

stirrer positions (φ = 0o and φ = 5o) is illustrated in Figures 5.16 and 5.17. At the

frequency of 200 MHz, the distribution of |Ez| changes significantly when the stirrer

is rotated by 5o. On the other hand, distribution of |Ez| does not change much at the

frequency of 82 MHz. This is expected because the field distribution is more sensitive

to the geometrical variation at higher frequency.

A dipole antenna is then used to excite the same RC. As the stirrer is rotated,

the variation of current distribution along the dipole antenna is studied. The dipole

is 0.75 m long, and it is aligned along the direction (1,1,1), as shown in the inset of

Figure 5.18. A voltage source is used to excite the dipole antenna at its center. Figure

5.18 presents the current distribution along the dipole antenna at two different stirrer
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positions. It is seen that the current distribution changes a lot due to the rotation of

the stirrer. This indicates that the reflection coefficient of the dipole antenna may be

different due to the rotation of the stirrer. The same phenomenon has been observed

in measurements [113].

In modeling the RC at 200 MHz, 42,437 unknowns are used for the cavity, and

1,749 unknowns are utilized for the stirrer. The dipole antenna is discretized into 11

segments. The memory cost for modeling the RC excited by a current point source

is 2.12 GB, and the CPU time for one stirrer position is 17.5 hours. The CPU time

and memory cost is 2.46 GB and 18 hours for modeling one stirrer position of the

RC excited by a dipole antenna. If a pure MoM is used, the number of unknowns is

estimated to be 139,350, and more than 144 GB memory would be needed to store

the interaction matrix. Solving the matrix equation with a direct solver may double

the memory cost, which is far beyond the capacity of a modern personal computer.

5.4 Concluding Remarks

This chapter has described a hybrid technique combining the RUDSC method and

MoM for memory-efficient modeling of RCs. The hybrid DSC-MoM method has first

been extended to model the transmitting antenna of an RC. The RUDSC method has

been proposed for efficient modeling of a cavity. A layer-based elimination algorithm

has been developed to eliminate the DSC unknowns with low memory cost. The MoM

unknowns have then been solved using a direct solver, and the RC is finally equivalent

to a cavity excited by known current sources, which is efficiently modeled using the

RUDSC method.

Efficiency of the proposed method has been compared with alternative methods.
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It has been shown that the hybrid RUDSC-MoM consumes much less memory and

achieves faster speed than a pure MoM-based commercial software. The complexity

of the proposed method has been analyzed, and numerical simulations have been

conducted to study its CPU time and memory requirement. Numerically estimated

complexity result agrees well with the one from algorithm analysis. It has been shown

that the memory requirement of the proposed method is independent of the RC’s

depth. The hybrid RUDSC-MoM substantially reduces memory requirement of RC

modeling, which extends the frequency range of RC analysis to what is impossible with

a pure MoM-based commercial software. The proposed method has also taken the

transmitting antenna into consideration, and it has been used to study the variation

of current distribution along a dipole antenna at different stirrer positions. It has

been found that the current distribution along the dipole antenna is greatly affected

by a rotating stirrer, which will in turn influence the reflection coefficient of the dipole

antenna.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

In this thesis, a thorough literature review on RC modeling has first been conducted

in Chapter 2. It has been found that a lot of efforts have been made towards the

development of efficient RC modeling techniques. Nevertheless, existing RC modeling

techniques are not efficient or flexible enough to provide fast analysis of a full-scale

RC. This is mainly because of the resonance nature of an RC, which leads to slow con-

vergence problem when using iterative solvers. Meanwhile, most existing RC modeling

methods utilize a single numerical method, and they have their respective strengthes

and weaknesses in RC modeling. In order to accelerate the analysis of RC, hybrid tech-

nique has been proposed as the strategy to combine advantages of different methods

and to overcome their weaknesses.

Recent advances in CEM have then been reviewed, which allows us to combine

the strengthes of the state-of-the-art techniques. The MLFMA and HIE methods

are found to be inapplicable to RC modeling due to the resonance nature of the

RC. On the other hand, the DSC method, a generalized higher-order FD method, is
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highly efficient in modeling the cavity of an RC. Nevertheless, the DSC method is

not flexible in modeling the stirrers and antennas of an RC because of its structured

grids. Furthermore, the RU method is found to be very useful for solving differential

equations when conventional iterative solvers encounter slow convergence problem.

Considering the flexibility of MoM and the efficiency of the DSC method, hy-

bridization of the DSC method and MoM has been developed in Chapter 3 for effi-

cient RC analysis. The 2-D TM case is first considered for its simplicity. The hybrid

method models the RC in two steps. In the first step, an EFIE is used to enforce

the boundary condition along the surface of the stirrer, and it is solved using the

MoM. In the second step, the stirrer is replaced by a current sheet, and the RC is

equivalent to a cavity excited by a original source and the induced current on the

stirrer. Fields in the cavity are governed by Maxwell’s equations of differential form,

which are numerically solved using the DSC method. In order to couple solutions of

the two methods, the stirrer is enclosed using a Huygens’ box, and the electric field

illuminating the stirrer is connected to the field solution in the DSC method using

the equivalence principle. In the meanwhile, the regularization technique for singu-

lar terms in differential equations is adopted to model arbitrarily distributed current

sources in the structured grids of the DSC method.

Numerical simulations on 2-D TM RC have been conducted in order to explore the

benefits of the hybrid DSC-MoM method. Advantages of the DSC method over the

second order FD method has first been demonstrated. Compared to the FD method,

the DSC method requires less number of unknowns and achieves faster analysis of a

2-D TM cavity using less memory. The hybrid method is then applied to calculate the

induced current on a small square cylinder in a 2-D TM cavity, which was calculated

and reported by Laermans et al. [29]. Results from the proposed hybrid method agree
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well with those from alternative methods. The proposed method has also been used

to model a 2-D TM RC, and good agreement has been observed between the proposed

method and a pure MoM. Efficiency of the hybrid method has been compared against

a pure MoM. Taking advantage of the high efficiency of the DSC method, the hybrid

DSC-MoM method is shown to be at least six times faster than a pure MoM in

modeling a 2-D TM RC. Meanwhile, the memory cost of the proposed method is

approximately the same as that of a pure MoM.

After the success of the 2-D hybrid method, a 3-D hybrid DSC-MoM method has

been developed in Chapter 4 in order to accelerate the analysis of 3-D RCs. Similar

to the 2-D case, the 3-D hybrid method models the cavity and stirrer using the DSC

method and MoM, respectively. In the 3-D hybrid method, surfaces of the stirrer and

Huygens’ box are discretized into a set of planar triangles. The induced current on the

stirrer and the equivalent current along the Huygens’ box are expanded using the RWG

basis. The property of RWG basis is utilized to connect the DSC field solution with the

expansion coefficients of the equivalent current, and the 3-D regularization technique

is adopted to model arbitrarily distributed current sources in DSC’s structured grids.

Using an RC with a single-plate stirrer, the 3-D hybrid method has been validated

against a pure MoM-based commercial software. It has been observed that results from

the proposed method agree well with those from the commercial software. Performance

comparison has also been made between the proposed method and the commercial

software. The proposed hybrid method has been shown to be more than ten times

faster than the commercial software, and its memory consumption is only one third of

that by the commercial software. The hybrid method has also been used to study the

stirring effectiveness of three stirrers. It has been found that the width of the stirrer

should be large enough to make the stirrer effective. Furthermore, irregularity of the
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stirrer is helpful in enhancing the stirring effectiveness.

Despite its improved efficiency, the memory requirement of hybrid DSC-MoM

method is still high, which limits the frequency range of RC modeling. In order to

reduce the memory consumption and to extend the frequency range of RC modeling,

a hybrid RUDSC-MoM method has been developed in Chapter 5. The assumption

that a point current source is adopted as the excitation in Chapter 4 is eliminated

by taking a practical transmitting antenna into consideration. The MoM for 3-D

wire structures is incorporated into the hybrid RUDSC-MoM method. In the hybrid

RUDSC-MoM method, a layer-based elimination algorithm is used to eliminate the

MoM unknowns, and a direct solver can then be adopted to solve the MoM unknowns

because the number of MoM unknowns is usually not large. The RUDSC method is

then applied to obtain the solution to the DSC unknowns. The algorithm complexity

of the hybrid RUDSC-MoM method has also been analyzed. The storing requirement

has been shown to be independent of the cavity’s depth.

The hybrid RUDSC-MoM method has been validated through comparison with

alternative methods. Its CPU time and memory cost are compared against the hybrid

DSC-MoM and a pure MoM-based commercial software. Numerical simulations have

showed that the hybrid RUDSC-MoM method reduces the memory requirement by

twenty times and sixty times compared to the hybrid DSC-MoM method and the

commercial software, respectively. However, the hybrid RUDSC-MoM method is not

as fast as the hybrid DSC-MoM method, but it is two times faster than the commercial

software. Numerical experiments have been conducted to study the computational and

storing complexity of the hybrid RUDSC-MoM method, and numerically estimated

complexity result agrees well with the theoretical analysis. The hybrid RUDSC-MoM

method substantially reduces the memory requirement of RC modeling, and it extends
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RC modeling to higher frequencies.

In summary, the hybrid DSC-MoM method developed in Chapters 3 and 4 greatly

accelerates the RC analysis, and the hybrid RUDSC-MoM method presented in Chap-

ter 5 substantially reduces the memory requirement of RC analysis. Both methods

are more efficient compared to a commercial software. The former can be used for fast

analysis of RCs at low frequencies, and the latter should be adopted for RC modeling

at higher frequencies.

6.2 Recommendations for Further Research

The hybrid RUDSC-MoM can be further improved in the following aspects. First,

because of the local property of curl operators in Maxwell’s equations, the RU method

is naturally parallel. Hence, parallel computing can be easily used to accelerate the RU

method. Second, since the hybrid RUDSC-MoM requires low memory, the graphics

processing unit (GPU) can be used to reduce the computational burden. Third, if

the memory usage of the hybrid RUDSC-MoM is beyond the capability of a GPU,

CPU and GPU can be used simultaneously to conduct the computation. Most data

will be stored in the main memory, and data required by GPU are stored in the video

memory. In this way, one can utilize both the fast speed of GPU and the large memory

of CPU.

Meanwhile, for wide-band analysis, time-domain methods are desired because

wide-band information can be obtained using a single simulation. Hence, it is mean-

ingful to extend the proposed hybrid technique to time-domain. The main challenge

of developing time-domain hybridization of the DSC method and MoM is the sta-

bility, because the time-domain integral equation (TDIE) suffers from the late time
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instability when marching on in time (MOT) method is used [114]. The MOT method

adopts sub-sectional basis to describe temporal behavior of a signal. It leads to explicit

marching scheme and does not need to solve matrix equation, which makes the MOT

method efficient. However, when the signal decays very slowly, the MOT method

needs a large number of marching steps and the TDIE becomes instable. Though

there are many invariants of TDIE with improved stability [115–117], these methods

usually need much more computational effort. The averaging technique introduces

the least extra computational cost. However, it was found that the averaging tech-

nique postponed instead of eliminating the late time instability [118]. The marching

on in degree (MOD) method eliminates the late time instability [119,120]. It utilizes

global time-domain basis functions which decay to zero as time goes to infinity. This

ensures the stability of the time-domain solution. Nevertheless, it requires solving

matrix equation, which incurs heavy computational load in modeling the cavity of

an RC [121]. In this case, one can use MOD and MOT for integral equation and

differential equation, respectively. The hybridization of MOD and MOT may over-

come the late time instability of TDIE and retain low computational load in modeling

the cavity. Another possible way is to hybridize time-domain DSC (TDDSC) with

frequency-domain MoM, which is similar to the hybrid FDTD-MoM [122]. In both

hybrid MOD-MOT and hybrid TDDSC-MoM methods, iterations are required and

convergence needs careful investigation.

Finally, there is usually a platform to support the EUT in practical RC measure-

ments. In many cases, the platform is a wooden table, which greatly influences the

field distribution in an RC [23]. Meanwhile, the chamber may be loaded in practice.

Both the platform and the lossy loading are inhomogeneous media inside the cavity,

and the hierarchical implicit derivative matching method [123] can be used together

with the DSC method to deal with such inhomogeneous media. In order to make sim-
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ulation comparable with measurement, the effect of the platform and loading should

be taken into account, which may also be an important topic of further research.
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Appendix A

Definition of Differentiation

Matrices

This Appendix first takes the example of differentiation matrix Ax in (3.14a) to de-

scribe how the differentiation matrix is calculated. Explicit expression of all other

differentiation matrices is then presented. Since the differentiation matrix is sparse,

only non-zero elements are defined.

A.1 2-D TM Case

Take matrix Ax as an example to illustrate how to fill differentiation matrix. Ax

arises from the differential operator ∂Ez

∂y
calculated at the position of Hx. Figure A.1

shows Yee’s grid of Ez and Hx for a 2-D TM cavity. Grid points of Hx are indexed

using ihx and jhx along x- and y-directions, respectively, where ihx ∈ [1, NHx
x ] and

jhx ∈ [1, NHx
y ]. NHx

x and NHx
y denote the number of Hx grid points along x- and

y-directions, respectively. Grid points of Ez are indexed using iz and jz along x-

and y-directions, respectively, where iz ∈ [1, NEz
x ] and jz ∈ [1, NEz

y ]. NEz
x and NEz

y

represent the number of Ez grid points in x- and y-directions, respectively. Ez is first
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Figure A.1: Yee’s Grid for Ez and Hx. Four edges of the rectangle are conducting

walls of a cavity. NHx
ξ and NEz

ξ denote the number of Hx and Ez grid points along
ξ-direction. iz and jz are global index of Ez grid points along x- and y-directions,
respectively. ihx and jhx denote global index of Hx grid points in x- and y-directions.

expanded using the regularized Lagrange interpolation basis. ∂Ez

∂y
is calculated at a

Hx grid point. From Figure A.1, one can see that only LM,j (y) is needed to expand

Ez at a Hx grid point, i.e.

Ez |ihx ,jhx
=

M∑
j=−M+1

LM,j (y0.5) Eihx ,jhx−1+j
z , (A.1)

where |ihx ,jhx
means the value of Ez is calculated at Hx grid point (ihx , jhx), and j is

the local index of Ez grid points, as illustrated in Figure A.2. LM,j (y0.5) means the

regularized Lagrange interpolation basis is calculated at a point 0.5hy away from two

grid points, as shown in Figure A.2. Hence,

∂Ez

∂y
|ihx ,jhx

=
M∑

j=−M+1

L′M,j(y0.5)E
ihx ,jhx−1+j
z . (A.2)

(A.2) is valid if (jhx − 1 + j) ∈ (0, NEz
y ]. Therefore, if (jhx − 1 + j) ∈ (0, NEz

y ],

Ax (m,n) = L′M,j (y0.5), where m = ihx + (jhx − 1) NHx
x , n = ihx + (j′ − 1) NEz

x , and
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Figure A.2: Point y′ is 0.5hy away from two neighboring grid points. hy is the grid
size in y-direction.

Figure A.3: Anti-symmetric extension of Ez near a perfect electric conductor.

j′ = jhx − 1 + j. When (jhx − 1 + j) is 0 or NEz
y +1, the value of E

ihx ,jhx−1+j
z is 0,

and it will not contribute to the summation in (A.2). If (jhx − 1 + j) > NEz
y + 1,

anti-symmetric extension can be used to calculate the summation in (A.2). Figure

A.3 shows how anti-symmetric extension relates Ez beyond NEz
y (on the right of the

perfect electric conductor) to Ez within NEz
y (on the left of the perfect electric con-

ductor). The theoretical basis of anti-symmetric extension is image theory. Similarly,

one can use anti-symmetric extension to calculate (A.2) if (jhx − 1 + j) < 0. With the

anti-symmetric extension and from the summation in (A.2), one can have Ax (m,n) =

Ax (m,n) − L′M,j (y0.5), where m = ihx + (jhx − 1) NHx
x , n = ihx + (j′ − 1) NEz

L . j′

equals 1 − jhx − j and 2NEz
y − (jhx − 3 + j) for the case of (jhx − 1 + j) < 0 and

(jhx − 1 + j) > NEz
y + 1, respectively. In summary,

Ax (m,n) =




L′M,j (y0.5) if (jhx − 1 + j) ∈ (0, NEz
y ]

Ax (m,n)− L′M,j (y0.5) if (jhx − 1 + j) /∈ [0, NEz
y + 1]


 , (A.3)
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Figure A.4: Symmetric extension of Hx near a perfect electric conductor.

where m = ihx + (jhx − 1) NHx
x , n = ihx + (j′ − 1) NEz

x , −M + 1 ≤ j ≤ M and

j′ =




1− jhx − j if (jhx − 1 + j) < 0

2NEz
y − (jhx − 3 + j) if (jhx − 1 + j) > NEz

y + 1

jhx − 1 + j if (jhx − 1 + j) ∈ (0, NEz
y ]




.

If uniform grid is used, L′M,j (y0.5) (−M + 1 ≤ j ≤ M) only needs calculating once

using the grid configuration in Figure A.2.

Matrices Ay, Bx and By can be filled following the way described in the first

paragraph of this section. It should be mentioned that when the global index in ξ-

direction is abnormal for tangential magnetic field (i.e. less than one or larger than

the number of grid points in ξ-direction), symmetric extension is used to recalculate

the global index. Figure A.4 shows how symmetric extension works in the case of

Hx. Symmetric extension is also based on the image theory. Since the derivation of

expression for matrices Ay, Bx and By is similar to that for matrix Ax, only final

expression of these matrices are given and the detailed derivation is omitted.

Equations (A.4) to (A.6) present the expression of differentiation matrices Ay,

Bx and By. In these equations, the subscript ’0.5’ means L′ is calculated at a point

which is 0.5hξ away from two neighboring grid points. i and j are local indexes of grid
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points, and they range from −M + 1 to M . N
Hy
x is the number of Hy grid points in

x-direction. ihy and jhy are global indexes of Hy in x- and y-directions, respectively.

Ay (m,n) =




L′M,i (x0.5) if
(
ihy − 1 + i

) ∈ (0, NEz
x ]

Ay (m,n) = Ay (m,n)− L′M,i (x0.5) if
(
ihy − 1 + i

)
/∈ [0, NEz

x + 1]


 ,

(A.4)

where m = ihy +
(
jhy − 1

)
N

Hy
x , n = i′ +

(
jhy − 1

)
NEz

x , and

i′ =




1− ihy − i if
(
ihy − 1 + i

)
< 0

2NEz
x − (

ihy − 3 + i
)

if
(
ihy − 1 + i

)
> NEz

x + 1

ihy − 1 + i if
(
ihy − 1 + i

) ∈ (0, NEz
x ]




.

Bx (m,n) =




−L′M,j (y0.5) if (jz + j) ∈ (0, NHx
y ]

Bx (m,n)− L′M,j (y0.5) otherwise


 , (A.5)

where m = iz + (jz − 1) NEz
x , n = iz + (j′ − 1) NHx

x , and

j′ =




1− jz − j if (jz + j) ≤ 0

2NHx
y − (jz − 1 + j) if (jz + j) ≥ NHx

y + 1

jz + j if (jz + j) ∈ (0, NHx
y ]




.

By (m,n) =




L′M,i (x0.5) if (iz + i) ∈ (0, N
Hy
x ]

By (m,n) + L′M,i (x0.5) otherwise


 , (A.6)
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where m = iz + (jz − 1) NEz
x , n = i′ + (jz − 1) N

Hy
x , and

i′ =




1− iz − i if (iz + i) ≤ 0

2N
Hy
x − (iz − 1 + i) if (iz + i) ≥ N

Hy
x + 1

iz + i if (iz + i) ∈ (0, N
Hy
x ]




.

A.2 Matrix D in Equation (4.14)

The scalar form of ∇×∇× ~EDSC in (4.11) is




− ∂2

∂y2 − ∂2

∂z2
∂2

∂x∂y
∂2

∂x∂z

∂2

∂x∂y
− ∂2

∂x2 − ∂2

∂z2
∂2

∂y∂z

∂2

∂x∂z
∂2

∂y∂z
− ∂2

∂x2 − ∂2

∂y2







Ex
DSC(~r)

Ey
DSC(~r)

Ez
DSC(~r)




. (A.7)

Therefore, matrix D can be written as

D =




Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz




. (A.8)

The nine sub-matrices of matrix D are defined in Tables A.1 to A.18. In all these

tables, i, j, and k denote local index of grid points in x-, y-, and z-directions, and they

range from −M + 1 to M . Figure A.2 illustrates how the local index is defined. i′, j′,

and k′ are global counterpart of i, j, and k, respectively. N
Eζ

ξ represents the number

of Eζ grid points in ξ-direction. iξ, jξ, and kξ are global index of Eξ grid points in x-,

y-, and z-directions, respectively. iξ ∈ (0, N
Eξ
x ], jξ ∈ (0, N

Eξ
y ], and kξ ∈ (0, N

Eξ
z ]. ξ0.5

means the function value is calculated at a point 0.5hξ away from two neighboring
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Figure A.5: Point ξ′ is a grid point. hξ is the grid size in ξ-direction.

Table A.1: Definition of Dxx (m,n). m = ix + (jx − 1)NEx
x + (kx − 1)NEx

x NEx
y and

n = ix + (j′ − 1)NEx
x + (k′ − 1)NEx

x NEx
y . j′ and k′ are defined in Table A.2

Dxx (m,n) = −L
′′
M,j(y0) if k = 0, j 6= 0 and (jx + j) ∈ (0, NEx

y ]

Dxx (m,n) = Dxx (m,n) + L
′′
M,j(y0) if k = 0, j 6= 0 and (jx + j) /∈ [0, NEx

y +1]

Dxx (m,n) = −L
′′
M,k(z0) if j = 0, k 6= 0 and (kx + k) ∈ (0, NEx

z ]

Dxx (m,n) = Dxx (m,n) + L
′′
M,k(z0) if j = 0, k 6= 0 and (kx + k) /∈ [0, NEx

z +1]

Dxx (m,n) = −L
′′
M,j(y0)− L

′′
M,k(z0) if k = 0 and j = 0

grid points, where hξ is the grid size in ξ-direction. An example of y0.5 is shown in

Figure A.2. Meanwhile, ξ0 means the function value is computed at a grid point, as

shown in Figure A.5.

If global index of Eζ grid points in ξ-direction is less than one or exceeds N
Eζ

ξ ,

symmetric or anti-symmetric extension can be utilized to recalculate the global index.

For normal and tangential electric fields, symmetric and anti-symmetric extension

should be used, respectively. Once the nine sub-matrices are assembled using Tables

A.1 to A.18, they are put together to obtain matrix D as shown in (A.8).

Table A.2: Definition of j′ and k′ for Dxx (m,n)

Condition for j′ Value of j′ Condition for k′ Value of k′

if (jx + j) ∈
(0, NEx

y ]
jx + j if (kx + k) ∈ (0, NEx

z ] kx + k

if (jx + j) < 0 −(jx + j) if (kx + k) < 0 −(kx + k)

if (jx + j) >
NEx

y + 1
2NEx

y −jx−j +2 if (kx + k) > NEx
z +1 2NEx

z −kx−k+2
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Table A.3: Definition of Dxy (m,n). m = ix + (jx − 1)NEx
x + (kx − 1)NEx

x NEx
y and

n = i′ + (j′ − 1)N
Ey
x + (kx − 1)N

Ey
x N

Ey
y . i′ and j′ are defined in Table A.4

Dxy (m,n) =
L′M,i (x0.5) L′M,j (y0.5)

if (ix − 1 + i) ∈ (0, N
Ey
x ] and (jx + j) ∈ (0, N

Ey
y ]

Dxy (m,n) = Dxy (m,n) +
L′M,i(x0.5)L

′
M,j(y0.5)

if (ix − 1 + i) ∈ (0, N
Ey
x ] and (jx + j) /∈ (0, N

Ey
y ]

Dxy (m,n) = Dxy (m,n)−
L′M,i(x0.5)L

′
M,j(y0.5)

if (ix − 1 + i) < 0 or (ix − 1 + i) > N
Ey
x + 1

Table A.4: Definition of i′ and j′ for Dxy (m,n)

Condition for i′ Value of i′ Condition for j′ Value of j′

if (ix − 1 + i) ∈
(0, N

Ey
x ]

ix + i− 1 if (jx + j) ∈ (0, N
Ey
y ] jx + j

if (ix − 1 + i) < 0 1− ix − i if (jx + j) ≤ 0 1− jx − j

if (ix − 1 + i) >

N
Ey
x + 1

2N
Ey
x −(ix+i−3) if (jx + j) > N

Ey
y 2N

Ey
y +1−jx−j

Table A.5: Definition of Dxz (m,n). m = ix + (jx − 1)NEx
x + (kx − 1)NEx

x NEx
y and

n = i′ + (jx − 1)NEz
x + (k′ − 1)NEz

x NEz
y . i′ and k′ are defined in Table A.6

Dxz (m,n) =
L′M,i (x0.5) L′M,k (z0.5)

if (ix − 1 + i) ∈ (0, NEz
x ] and (kx + k) ∈ (0, NEz

z ]

Dxz (m,n) = Dxz (m,n) +
L′M,i(x0.5)L

′
M,k(z0.5)

if (ix − 1 + i) ∈ (0, NEz
x ] and (kx + k) /∈ (0, NEz

z ]

Dxz (m,n) = Dxz (m,n)−
L′M,i(x0.5)L

′
M,k(z0.5)

if (ix − 1 + i) < 0 or (ix − 1 + i) > NEz
x + 1

Table A.6: Definition of i′ and k′ for Dxz (m,n)

Condition for i′ Value of i′ Condition for j′ Value of j′

if (ix − 1 + i) ∈
(0, NEz

x ]
ix + i− 1 if (kx + k) ∈ (0, NEz

z ] kx + k

if (ix − 1 + i) < 0 1− ix − i if (kx + k) ≤ 0 1− kx − k

if (ix − 1 + i) >
NEz

x + 1
2NEz

x −(ix+i−3) if (kx + k) > NEz
z 2NEz

z +1−kx−k
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Table A.7: Definition of Dyy (m,n). m = iy + (jy − 1)N
Ey
x + (ky − 1)N

Ey
x N

Ey
y and

n = i′ + (jy − 1)N
Ey
x + (k′ − 1)N

Ey
x N

Ey
y . i′ and k′ are defined in Table A.8

Dyy (m,n) = −L
′′
M,i(x0) if k = 0, i 6= 0 and (iy + i) ∈ (0, N

Ey
x ]

Dyy (m,n) = Dyy (m,n) + L
′′
M,i(x0) if k = 0, i 6= 0 and (iy + i) /∈ [0, N

Ey
x + 1]

Dyy (m,n) = −L
′′
M,k(z0) if i = 0, k 6= 0 and (ky + k) ∈ (0, N

Ey
z ]

Dyy (m,n) = Dyy (m,n) + L
′′
M,k(z0) if i = 0, k 6= 0 and (ky + k) /∈ [0, N

Ey
z +1]

Dyy (m,n) = −L
′′
M,i(x0)− L

′′
M,k(z0) if k = 0 and i = 0

Table A.8: Definition of i′ and k′ for Dyy (m,n)

Condition for i′ Value of i′ Condition for k′ Value of k′

if
(iy + i) ∈ (0, N

Ey
x ]

iy + i if (ky + k) ∈ (0, N
Ey
z ] ky + k

if (iy + i) < 0 −(iy + i) if (ky + k) < 0 −(ky + k)

if (iy + i) >

N
Ey
x + 1

2N
Ey
x − iy− i+2 if (ky + k) > N

Ey
z + 1 2N

Ey
z −ky−k+2

Table A.9: Definition of Dyx (m,n). m = iy + (jy − 1)N
Ey
x + (ky − 1)N

Ey
x N

Ey
y and

n = i′ + (j′ − 1)NEx
x + (ky − 1)NEx

x NEx
y . i′ and j′ are defined in Table A.10

Dyx (m,n) =
L′M,i (x0.5) L′M,j (y0.5)

if (jy − 1 + j) ∈ (0, NEx
y ] and (iy + i) ∈ (0, NEx

x ]

Dyx (m,n) = Dyx (m,n) +
L′M,i(x0.5)L

′
M,j(y0.5)

if (jy − 1 + j) ∈ (0, NEx
y ] and (iy + i) /∈ (0, NEx

x ]

Dyx (m,n) = Dyx (m,n)−
L′M,i(x0.5)L

′
M,j(y0.5)

if (jy − 1 + j) < 0 or (jy − 1 + j) > NEx
y + 1

Table A.10: Definition of i′ and j′ for Dyx (m,n)

Condition for
i′

Value of i′ Condition for j′ Value of j′

if (iy + i) ∈
(0, NEx

x ]
iy + i if (jy − 1 + j) ∈ (0, NEx

y ] jy + j − 1

if (iy + i) ≤ 0 1− iy − i if (jy + j − 1) < 0 1− jy − j

if
(iy + i) > NEx

x

2NEx
x −(iy+i−1) if (jy + j − 1) > NEx

y + 1 2NEx
y +3−jy−j

129



Table A.11: Definition of Dyz (m,n). m = iy + (jy − 1)N
Ey
x + (ky − 1)N

Ey
x N

Ey
y and

n = iy + (j′ − 1)NEz
x + (k′ − 1)NEz

x NEz
y . j′ and k′ are defined in Table A.12

Dyz (m,n) =
L′M,j (y0.5) L′M,k (z0.5)

if (jy − 1 + j) ∈ (0, NEz
y ] and (ky + k) ∈ (0, NEz

z ]

Dyz (m,n) = Dyz (m,n) +
L′M,j(y0.5)L

′
M,k(z0.5)

if (jy − 1 + j) ∈ (0, NEz
y ] and (ky + k) /∈ (0, NEz

z ]

Dyz (m,n) = Dyz (m,n)−
L′M,j(y0.5)L

′
M,k(z0.5)

if (jy − 1 + j) < 0 or (jy − 1 + j) > NEz
y + 1

Table A.12: Definition of j′ and k′ for Dyz (m,n)

Condition for j′ Value of j′ Condition for k′ Value of k′

if (jy − 1 + j) ∈
(0, NEz

y ]
jy + j − 1 if (ky + k) ∈ (0, NEz

z ] ky + k

if
(jy − 1 + j) < 0

1− jy − j if (ky + k) ≤ 0 1− ky − k

if (jy − 1 + j) >
NEz

y + 1
2NEz

y − (jy + j−
3)

if (ky + k) > NEz
z 2NEz

z +1−ky−k

Table A.13: Definition of Dzz (m,n). m = iz + (jz − 1)NEz
x + (kz − 1)NEz

x NEz
y and

n = i′ + (j′ − 1)NEz
x + (kz − 1)NEz

x NEz
y . i′ and j′ are defined in Table A.14

Dzz (m,n) = −L
′′
M,i(x0) if j = 0, i 6= 0 and (iz + i) ∈ (0, NEz

x ]

Dzz (m,n) = Dzz (m,n) + L
′′
M,i(x0) if j = 0, i 6= 0 and (iz + i) /∈ [0, NEz

x + 1]

Dzz (m,n) = −L
′′
M,j(y0) if i = 0, j 6= 0 and (jz + j) ∈ (0, NEz

y ]

Dzz (m,n) = Dzz (m,n) + L
′′
M,j(y0) if i = 0, j 6= 0 and (jz + j) /∈ [0, NEz

y +1]

Dzz (m,n) = −L
′′
M,i(x0)− L

′′
M,j(y0) if i = 0 and j = 0

Table A.14: Definition of i′ and j′ for Dzz (m,n)

Condition for i′ Value of i′ Condition for j′ Value of j′

if (iz + i) ∈
(0, NEz

x ]
iz + i if (jz + j) ∈ (0, NEz

y ] jz + j

if (iz + i) < 0 −(iz + i) if (jz + j) < 0 −(jz + j)

if (iz + i) >
NEz

x + 1
2NEz

x − iz− i+2 if (jz + j) > NEz
y + 1 2NEz

y −jz−j+2
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Table A.15: Definition of Dzx (m,n). m = iz + (jz − 1)NEz
x + (kz − 1)NEz

x NEz
y and

n = i′ + (jz − 1)NEx
x + (k′ − 1)NEx

x NEx
y . i′ and k′ are defined in Table A.16

Dzx (m,n) =
L′M,i (x0.5) L′M,k (z0.5)

if (iz + i) ∈ (0, NEx
x ] and (kx − 1 + k) ∈ (0, NEx

z ]

Dzx (m,n) = Dzx (m,n) +
L′M,i(x0.5)L

′
M,k(z0.5)

if (iz + i) /∈ (0, NEx
x ] and (kz − 1 + k) ∈ (0, NEx

z ]

Dzx (m,n) = Dzx (m,n)−
L′M,i(x0.5)L

′
M,k(z0.5)

if (kz − 1 + k) < 0 or (kz − 1 + k) > NEx
z + 1

Table A.16: Definition of i′ and k′ for Dzx (m,n)

Condition for i′ Value of i′ Condition for j′ Value of j′

if (iz + i) ∈
(0, NEx

x ]
iz + i if (kz − 1 + k) ∈

(0, NEx
z ]

kz + k − 1

if (iz + i) ≤ 0 1− iz − i if (kz − 1 + k) < 0 1− kz − k

if (iz + i) > NEx
x 2NEx

x −(iz+i−1) if (kz − 1 + k) >
NEz

z + 1
2NEz

z +3−kx−k

A.3 Matrix De in Equation (4.31)

The scalar form of (4.10a) is

1

C2




0 − ∂
∂z

∂
∂y

∂
∂z

0 − ∂
∂x

− ∂
∂y

∂
∂x

0







Ex
DSC

Ey
DSC

Ez
DSC




=




Hx
DSC

Hy
DSC

Hz
DSC




, (A.9)

Therefore, matrix De has the form

De =




0 Dxy
e Dxz

e

Dyx
e 0 Dyz

e

Dzx
e Dzy

e 0




, (A.10)

where the six sub-matrices are defined in equations (A.11) to (A.16).
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Table A.17: Definition of Dzy (m,n). m = iz + (jz − 1)NEz
x + (kz − 1)NEz

x NEz
y and

n = iz + (j′ − 1)N
Ey
x + (k′ − 1)N

Ey
x N

Ey
y . j′ and k′ are defined in Table A.18

Dzy (m,n) =
L′M,j (y0.5) L′M,k (z0.5)

if (kz − 1 + k) ∈ (0, N
Ey
z ] and (jz + j) ∈ (0, N

Ey
y ]

Dzy (m,n) = Dzy (m,n) +
L′M,j(y0.5)L

′
M,k(z0.5)

if (kz − 1 + k) ∈ (0, N
Ey
z ] and (jz + j) /∈ (0, N

Ey
y ]

Dzy (m,n) = Dzy (m,n)−
L′M,j(y0.5)L

′
M,k(z0.5)

if (kz − 1 + k) < 0 or (kz − 1 + k) > N
Ey
z + 1

Table A.18: Definition of j′ and k′ for Dzy (m,n)

Condition for
j′

Value of j′ Condition for k′ Value of k′

if (jz + j) ∈
(0, N

Ey
y ]

jz + j if (kz − 1 + k) ∈ (0, N
Ey
z ] kz + k − 1

if
(jz + j) ≤ 0

1− jz − j if (kz − 1 + k) < 0 1− kz − k

if (jz + j) >

N
Ey
y

2N
Ey
y −(jz +j−1) if (kz − 1 + k) > N

Ey
z + 1 2N

Ey
z +3−kz−k

In equations (A.11) to (A.16), N
Hζ

ξ is the number of Hζ grid points in ξ-direction.

ihξ
, jhξ

, and khξ
are global index of Hξ grid points in x-, y-, and z-directions, respec-

tively. ihξ
∈ (0, N

Hξ
x ], jhξ

∈ (0, N
Hξ
y ], and khξ

∈ (0, N
Hξ
z ]. i, j, and k are local index of

grid points involved in calculating the differential (as shown in Figure A.2), and they

all range from −M + 1 to M . i′, j′, and k′ are the global counterpart of i, j, and k,

respectively. N
Eζ

ξ denote the number of Eζ grid points in ξ-direction. ξ0.5 means the

differential is calculated at a point 0.5hξ away from two neighboring grid points (as

illustrated in Figure A.2).

If the global index of Eζ grid points in ξ-direction is less than one or it exceeds

the number of Eζ grid points in ξ-direction, the global index should be recalculated

by symmetric and anti-symmetric extension for normal and tangential electric field,

respectively.
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Using equations (A.11) to (A.16), the six sub-matrices of matrix De can be assem-

bled. By putting these sub-matrices together as shown in equation (A.10), one can

obtain matrix De.

Dxy
e (m,n) =




−L′M,k (z0.5) if (khx − 1 + k) ∈ (0, N
Ey
z ]

Dxy
e (m,n) + L′M,k (z0.5) if (khx − 1 + k) /∈ [0, N

Ey
z + 1]


 , (A.11)

where m = ihx + (jhx − 1) NHx
x + (khx − 1) NHx

x NHx
y , n = ihx + (jhx − 1) N

Ey
x +

(k′ − 1) N
Ey
x N

Ey
y , and

k′ =




khx − 1 + k if (khx − 1 + k) ∈ (0, N
Ey
z ]

1− khx − k if (khx − 1 + k) < 0

2N
Ey
z − (khx − 3 + k) if (khx − 1 + k) > N

Ey
z + 1




.

Dxz
e (m,n) =




L′M,j (y0.5) if (jhx − 1 + j) ∈ (0, NEz
y ]

Dxz
e (m,n)− L′M,j (y0.5) if (jhx − 1 + j) /∈ [0, NEz

y + 1]


 , (A.12)

where m = ihx +(jhx − 1) NHx
x +(khx − 1) NHx

x NHx
y , n = ihx +(j′ − 1) NEz

x +(khx − 1)

NEz
x NEz

y , and

j′ =




jhx − 1 + j if (jhx − 1 + j) ∈ (0, NEz
y ]

1− jhx − j if (jhx − 1 + j) < 0

2NEz
y − (jhx − 3 + j) if (jhx − 1 + j) > NEz

y + 1




.
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Dyx
e (m,n) =




L′M,k (z0.5) if
(
khy − 1 + k

) ∈ (0, NEx
z ]

Dyx
e (m,n)− L′M,k (z0.5) if

(
khy − 1 + k

)
/∈ [0, NEx

z + 1]


 , (A.13)

where m = ihy +
(
jhy − 1

)
N

Hy
x +

(
khy − 1

)
N

Hy
x N

Hy
y , n = ihy +

(
jhy − 1

)
NEx

x +

(k′ − 1) NEx
x NEx

y , and

k′ =




khy − 1 + k if
(
khy − 1 + k

) ∈ (0, NEx
z ]

1− khy − k if
(
khy − 1 + k

)
< 0

2NEx
z − (

khy − 3 + k
)

if
(
khy − 1 + k

)
> NEx

z + 1




.

Dyz
e (m,n) =




−L′M,i (x0.5) if
(
ihy − 1 + i

) ∈ (0, NEz
x ]

Dyz
e (m,n) + L′M,i (x0.5) if

(
ihy − 1 + i

)
/∈ [0, NEz

x + 1]


 , (A.14)

where m = ihy +
(
jhy − 1

)
N

Hy
x +

(
khy − 1

)
N

Hy
x N

Hy
y , n = i′+

(
jhy − 1

)
NEz

x +
(
khy − 1

)

NEz
x NEz

y , and

i′ =




ihy − 1 + i if
(
ihy − 1 + i

) ∈ (0, NEz
x ]

1− ihy − i if
(
ihy − 1 + i

)
< 0

2NEz
x − (

ihy − 3 + i
)

if
(
ihy − 1 + i

)
> NEz

x + 1




.

Dzx
e (m,n) =




−L′M,j (y) if (jhz − 1 + j) ∈ (0, NEx
y ]

Dzx
e (m,n) + L′M,j (y) if (jhz − 1 + j) /∈ [0, NEx

y + 1]


 , (A.15)

where m = ihz +(jhz − 1) NHz
x +(khz − 1) NHz

x NHz
y , n = ihz +(j′ − 1) NEx

x +(khz − 1)
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NEx
x NEx

y , and

j′ =




jhz − 1 + j if (jhz − 1 + j) ∈ (0, NEx
y ]

1− jhz − j if (jhz − 1 + j) < 0

2NEx
y − (jhz − 3 + j) if (jhz − 1 + j) > NEx

y + 1




.

Dzy
e (m,n) =




L′M,i (x0.5) if (ihz − 1 + i) ∈ (0, N
Ey
x ]

Dzy
e (m,n)− L′M,i (x0.5) if (ihz − 1 + i) ∈ [0, N

Ey
x + 1]


 , (A.16)

where m = ihz +(jhz − 1) NHz
x +(khz − 1) NHz

x NHz
y , n = i′+(jhz − 1) N

Ey
x +(khz − 1)

N
Ey
x N

Ey
y , and

i′ =




ihz − 1 + i if (ihz − 1 + i) ∈ (0, N
Ey
x ]

1− ihz − i if (ihz − 1 + i) < 0

2N
Ey
x − (ihz − 3 + i) if (ihz − 1 + i) > N

Ey
x + 1




.
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Appendix B

Expression of Interpolation

Matrices

This Appendix first demonstrates the derivation of interpolation matrices using in-

terpolation matrix Wx for Hx in the 2-D TM case. Expression of other interpolation

matrices is then summarized. It should be noted that only non-zero elements of an

interpolation matrix are defined in this Appendix.

B.1 2-D TM Case

Take matrix Wx as an example to describe how interpolation matrix is calculated.

Wx is used for interpolation of Hx. Using the regularized Lagrange interpolation

basis, Hx (x, y) can be expanded

Hx (x, y) =
M∑

i=−M+1

M∑
j=−M+1

LHx
M,i(x)LHx

M,j(y)H i,j
x , (B.1)

where i and j are local indexes of Hx grid points in x- and y-directions, respectively.

The superscript Hx means the interpolation function is calculated on Hx grids. The
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grid point with i = 0 and j = 0 has the global indexes i0, and j0, where i0 =

int
(

x
hx

)
, j0 = int

(
y+0.5hy

hy

)
. The symbol ’int’ means taking the integer part of a

number. hξ is the grid size in ξ-direction, where ξ can be x or y. Denote the number

of Hx grid points in ξ-direction by NHx
ξ . If i0 + i ∈ (0, NHx

x ], and j0 + j ∈ (0, NHx
y ],

Wx (m,n) = LHx
M,i(xm)LHx

M,j(ym), (B.2)

where m is the index of the pulse basis on Huygens’ box, n = i′ + (j′ − 1)NHx
x ,

i′ = i0 + i, and j′ = j0 + j. If (i0 + i) equals NHx
x + 1 or 0, the grid point falls on a y-

directed conducting wall and the value of H i,j
x is zero. In that case, H i,j

x doesn’t make

contribution to the summation in (B.1). If (i0 + i) is larger than NHx
x + 1 or less than

0, anti-symmetric extension can be used to calculate (B.1). Furthermore, symmetric

extension is applied when (j0 + j) is larger than NHx
y or less than 1. Therefore,

Wx (m,n) = Wx (m,n)− LHx
M,i(xm)LHx

M,j(ym), (B.3)

if (i0 + i) < 0 or (i0 + i) > NHx
x + 1, and

Wx (m,n) = Wx (m,n) + LHx
M,i(xm)LHx

M,j(ym), (B.4)

if (i0 + i) ∈ (0, NHx
x ] and (j0 + j) /∈ (0, NHx

y ], where n = i′ + (j′ − 1)NHx
x ,

i′ =




− (i0 + i) if (i0 + i) < 0

2NHx
x − (i0 + i− 2) if (i0 + i) > NHx

x + 1


 ,

j′ =




1− (j0 + j) if (j0 + j) ≤ 0

2NHx
y − (j0 + j − 1) if (j0 + j) > NHx

y


 .
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Table B.1: Expression of Wy (m,n). n = i′ + (j′ − 1)N
Hy
x . i′ and j′ are defined in

Table B.2
L

Hy

M,i(xm)L
Hy

M,j(ym) if (i0 + i) ∈ (0, N
Hy
x ] and (j0 + j) ∈ (0, N

Hy
y ]

Wy(m,n) + L
Hy

M,i(xm)L
Hy

M,j(ym) if (j0 + j) /∈ [0, N
Hy
y + 1]

Wy(m,n)− L
Hy

M,i(xm)L
Hy

M,j(ym) if (i0 + i) /∈ (0, N
Hy
x ] and (j0 + j) ∈ (0, N

Hy
y ]

Table B.2: i′ and j′ for Wy (m,n), i0 = int
(

xm+0.5hx

hx

)
and j0 = int

(
ym

hy

)

Condition for i′ Value of i′ Condition for j′ Value of j′

(i0 + i) ∈ (0, N
Hy
x ] i0 + i (j0 + j) ∈ (0, N

Hy
y ] j0 + j

(i0 + i) ≤ 0 1− (i0 + i) (j0 + j) < 0 − (j0 + j)

(i0 + i) ≥ N
Hy
x + 1 2N

Hy
x −

(i0 + i− 1)
(j0 + j) > N

Hy
y + 1 2N

Hy
y −

(j0 + j − 2)

Following a similar way, Hy interpolation matrix Wy and Ez interpolation matrix

Wz can be derived. It should be mentioned that tangential and normal magnetic field

components are symmetric and anti-symmetric along a conducting wall. Therefore,

an abnormal global index of Hy grid points is dealt with using anti-symmetric and

symmetric extension in y- and x-directions, respectively. ’Abnormal’ means the index

in ξ-direction exceeds the number of grid points along ξ-direction or the index is less

than one. Meanwhile, a conducting wall of the cavity is an anti-symmetric plane for

tangential electric field component. Hence, anti-symmetric extension is used to deal

with an abnormal global index of Ez in x- or y- direction. Tables B.1 to B.4 present

the expression of Wy and Wz. In these Tables, N
Hy

ξ and NEz
ξ respectively denote the

number of Hy and Ez grid points in ξ-direction, where ξ represents x or y.

Table B.3: Expression of Wz (m,n). n = i′ + (j′ − 1)NEz
x . i′ and j′ are defined in

Table B.4
LEz

M,i (xm) LEz
M,j (ym) if (i0 + i) ∈ (0, NEz

x ] and (j0 + j) ∈ (0, NEz
y ]

Wz (m,n) + LEz
M,i (xm) LEz

M,j (ym) if (i0 + i) /∈ [0, NEz
x +1] and (j0 + j) /∈ [0, NEz

y +1]

Wz (m,n)− LEz
M,i (xm) LEz

M,j (ym) 1. if (i0 + i) /∈ [0, NEz
x + 1] and (j0 + j) ∈

(0, NEz
y ]; 2. if (j0 + j) /∈ [0, NEz

y + 1] and
(i0 + i) ∈ (0, NEz

x ]
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Table B.4: i′ and j′ for Wz (m,n), i0 = int
(

xm

hx

)
and j0 = int

(
ym

hy

)

Condition for i′ Value of i′ Condition for j′ Value of j′

(i0 + i) ∈ (0, NEz
x ] i0 + i (j0 + j) ∈ (0, NEz

y ] j0 + j

(i0 + i) < 0 − (i0 + i) (j0 + j) < 0 − (j0 + j)

(i0 + i) > NEz
x + 1 2NEz

x −
(i0 + i− 2)

(j0 + j) > NEz
y + 1 2NEz

y −
(j0 + j − 2)

Table B.5: Definition of W e
x (m,n), m is the index of RWG basis function on Huygens’

box, and n = i′+(j′−1)NEx
x +(k′−1)NEx

x NEx
y . i′, j′, and k′ are defined in Table B.6

W e
x (m,n) =

LEx
M,i (xm) LEx

M,j (ym) LEx
M,k (zm)

if (i0 + i) ∈ (0, NEx
x ], (j0 + j) ∈ (0, NEx

y ], (k0 + k) ∈
(0, NEx

z ]

W e
x (m,n) = W e

x (m,n) +
LEx

M,i (xm) LEx
M,j (ym) LEx

M,k (zm)
1. if (i0 + i) /∈ (0, NEx

x ], (j0 + j) ∈ (0, NEx
y ] and

(k0 + k) ∈ (0, NEx
z ]; 2. if (j0 + j) /∈ [0, NEx

y + 1]
and (k0 + k) /∈ [0, NEx

z + 1]

W e
x (m,n) = W e

x (m,n)−
LEx

M,i (xm) LEx
M,j (ym) LEx

M,k (zm)
1. if (j0 + j) /∈ [0, NEx

y + 1] and (k0 + k) ∈ (0, NEx
z ];

2. if (k0 + k) /∈ [0, NEx
z + 1] and (j0 + j) ∈ (0, NEx

y ]

B.2 Matrix We for Interpolation of Electric Field

The matrix We for the interpolation of electric field has the form of

We =




We
x 0 0

0 We
y 0

0 0 We
z




,

where sub-matrices We
x, We

y, and We
z are interpolation matrices for Ex, Ey, and Ez,

respectively. Expression for these three sub-matrices is given in Tables B.5-B.10. In

these tables, N
Eζ

ξ represents the number of Eζ grid points in ζ-direction. hζ denotes

the grid size in ζ-direction. i, j, k are local indexes of grid points along x-, y- and

z-directions, respectively, and they all range from −M + 1 to M .

Tables B.5 and B.6 give the expression for We
x, the interpolation matrix for Ex. In
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Table B.6: i′, j′, and k′ for W e
x (m,n), i0 = int

(
xm+0.5hx

hx

)
, j0 = int

(
ym

hy

)
and k0 =

int
(

zm

hz

)

Condition
for i′

Value of i′ Condition
for j′

Value of j′ Condition
for k′

Value of k′

(i0 + i) ∈
(0, NEx

x ]
i0 + i (j0 + j) ∈

(0, NEx
y ]

j0 + j (k0 + k) ∈
(0, NEx

z ]
k0 + k

(i0 + i) ≤
0

1− (i0 + i) (j0 + j) <
0

− (j0 + j) (k0 + k) <
0

− (k0 + k)

(i0 + i) ≥
NEx

x + 1
2NEx

x −
(i0 + i− 1)

(j0 + j) >
NEx

y + 1
2NEx

y −
(j0 + j − 2)

(k0 + k) >
NEx

z + 1
2NEx

z −
(k0 + k − 2)

Table B.7: Definition of W e
y (m,n). n = i′ + (j′− 1)N

Ey
x + (k′− 1)N

Ey
x N

Ey
y . i′, j′, and

k′ are defined in Table B.8
W e

y (m,n) =

L
Ey

M,i (xm) L
Ey

M,j (ym) L
Ey

M,k (zm)

if (i0 + i) ∈ (0, N
Ey
x ], (j0 + j) ∈ (0, N

Ey
y ], (k0 + k) ∈

(0, N
Ey
z ]

W e
y (m,n) = W e

y (m,n) +

L
Ey

M,i (xm) L
Ey

M,j (ym) L
Ey

M,k (zm)

1. if (j0 + j) /∈ (0, N
Ey
y ], (i0 + i) ∈ (0, N

Ey
x ] and

(k0 + k) ∈ (0, N
Ey
z ]; 2. if (i0 + i) /∈ [0, N

Ey
x + 1] and

(k0 + k) /∈ [0, N
Ey
z + 1]

W e
y (m,n) = W e

y (m,n)−
L

Ey

M,i (xm) L
Ey

M,j (ym) L
Ey

M,k (zm)

1. if (i0 + i) /∈ [0, N
Ey
x + 1] and (k0 + k) ∈ (0, N

Ey
z ];

2. if (k0 + k) /∈ [0, N
Ey
z + 1] and (i0 + i) ∈ (0, N

Ey
x ]

deriving tables B.5 and B.6, anti-symmetric extension is used to deal with abnormal

global index in y- or z-directions, and symmetric extension is used for abnormal global

index in x-direction. The term ’abnormal’ means the global index in ξ-direction is

less than one or it exceeds the number of grid points in ξ-direction.

Sub-matrix We
y for interpolation of Ey is defined in Tables B.7 and B.8. In

deriving matrix We
y, abnormal global index in z or x-direction is dealt with using

anti-symmetric extension, and abnormal global index in y-direction is treated using

symmetric extension.

Expression of Ez interpolation matrix We
z is presented in Tables B.9 and B.10.
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Table B.8: i′, j′, and k′ for W e
y (m,n), i0 = int

(
xm

hx

)
, j0 = int

(
ym+0.5hy

hy

)
and k0 =

int
(

zm

hz

)

Condition
for i′

Value of i′ Condition
for j′

Value of j′ Condition
for k′

Value of k′

(i0 + i) ∈
(0, N

Ey
x ]

i0 + i (j0 + j) ∈
(0, N

Ey
y ]

j0 + j (k0 + k) ∈
(0, N

Ey
z ]

k0 + k

(i0 + i) <
0

− (i0 + i) (j0 + j) ≤
0

1− (j0 + j) (k0 + k) <
0

− (k0 + k)

(i0 + i) >

N
Ey
x + 1

2N
Ey
x −

(i0 + i− 2)
(j0 + j) ≥
N

Ey
y + 1

2N
Ey
y −

(j0 + j − 1)
(k0 + k) >

N
Ey
z + 1

2N
Ey
z −

(k0 + k − 2)

Table B.9: Definition of W e
z (m,n). n = i′ + (j′− 1)NEz

x + (k′− 1)NEz
x NEz

y . i′, j′, and
k′ are defined in Table B.10

W e
z (m,n) =

LEz
M,i (xm) LEz

M,j (ym) LEz
M,k (zm)

if (i0 + i) ∈ (0, NEz
x ], (j0 + j) ∈ (0, NEz

y ], (k0 + k) ∈
(0, NEz

z ]

W e
z (m,n) = W e

z (m,n) +
LEz

M,i (xm) LEz
M,j (ym) LEz

M,k (zm)
1. if (k0 + k) /∈ (0, NEz

z ], (j0 + j) ∈ (0, NEz
y ] and

(i0 + i) ∈ (0, NEz
x ]; 2. if (i0 + i) /∈ [0, NEz

x + 1] and
(k0 + k) /∈ [0, NEz

z + 1]

W e
z (m,n) = W e

z (m,n)−
LEz

M,i (xm) LEz
M,j (ym) LEz

M,k (zm)
1. if (i0 + i) /∈ [0, NEz

x + 1] and (j0 + j) ∈ (0, NEz
y ];

2. if (j0 + j) /∈ [0, NEz
y + 1] and (i0 + i) ∈ (0, NEz

x ]

Table B.10: i′, j′, and k′ for W e
z (m,n), i0 = int

(
xm

hx

)
, j0 = int

(
ym

hy

)
and k0 =

int
(

zm+0.5hz

hz

)

Condition
for i′

Value of i′ Condition
for j′

Value of j′ Condition
for k′

Value of k′

(i0 + i) ∈
(0, NEz

x ]
i0 + i (j0 + j) ∈

(0, NEz
y ]

j0 + j (k0 + k) ∈
(0, NEz

z ]
k0 + k

(i0 + i) <
0

1− (i0 + i) (j0 + j) <
0

− (j0 + j) (k0 + k) ≤
0

1−(k0 + k)

(i0 + i) >
NEz

x + 1
2NEz

x −
(i0 + i− 2)

(j0 + j) >
NEz

y + 1
2NEz

y −
(j0 + j − 2)

(k0 + k) ≥
NEz

z + 1
2NEz

z −
(k0 + k − 1)
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Table B.11: Definition of W h
x (m,n). n = i′ + (j′ − 1)NHx

x + (k′ − 1)NHx
x NHx

y . i′, j′,
and k′ are defined in Table B.12

W h
x (m,n) =

LHx
M,i (xm) LHx

M,j (ym) LHx
M,k (zm)

if (i0 + i) ∈ (0, NHx
x ], (j0 + j) ∈ (0, NHx

y ], (k0 + k) ∈
(0, NHx

z ]

W h
x (m,n) = W h

x (m,n) +
LHx

M,i (xm) LHx
M,j (ym) LHx

M,k (zm)
1. if (i0 + i) ∈ (0, NHx

x ] and (j0 + j) /∈ (0, NHx
y ]; 2. if

(i0 + i) ∈ (0, NHx
x ] and (k0 + k) /∈ (0, NHx

z ];

W h
x (m,n) = W h

x (m,n)−
LHx

M,i (xm) LHx
M,j (ym) LHx

M,k (zm)
if (i0 + i) /∈ [0, NHx

x + 1]

During the derivation of matrix We
z, anti-symmetric extension is used to treat abnor-

mal global index in y- or x-direction, and symmetric extension is used for abnormal

global index in z-direction.

For numerical calculation, one may first assemble these three sub-matrices We
x,

We
y, and We

z, and then put them together to obtain We.

B.3 Matrix Wh for Interpolation of Magnetic Field

The magnetic field interpolation matrix Wh has the same form as We, and it can be

written as

Wh =




Wh
x 0 0

0 Wh
y 0

0 0 Wh
z




,

where sub-matrices Wh
x, Wh

y and Wh
z are interpolation matrices for Hx, Hy, and Hz,

respectively. These three sub-matrices are defined in Tables B.11 to B.16, where hξ is

the grid size along ξ-direction and N
Hζ

ξ is the number of Hζ grid points in ξ-direction.

i, j, k represent local indexes of grid points along x-, y-, and z-directions, respectively.

Tables B.11 and B.12 present the expression of Hx interpolation matrix Wh
x. Based
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Table B.12: i′, j′, and k′ for W h
x (m,n), i0 = int

(
xm

hx

)
, j0 = int

(
ym+0.5hy

hy

)
and

k0 = int
(

zm+0.5hz

hz

)

Condition
for i′

Value of i′ Condition
for j′

Value of j′ Condition
for k′

Value of k′

(i0 + i) ∈
(0, NHx

x ]
i0 + i (j0 + j) ∈

(0, NHx
y ]

j0 + j (k0 + k) ∈
(0, NHx

z ]
k0 + k

(i0 + i) <
0

− (i0 + i) (j0 + j) ≤
0

1− (j0 + j) (k0 + k) ≤
0

1−(k0 + k)

(i0 + i) >
NHx

x + 1
2NHx

x −
(i0 + i− 2)

(j0 + j) ≥
NHx

y + 1
2NHx

y −
(j0 + j − 1)

(k0 + k) ≥
NHx

z + 1
2NHx

z −
(k0 + k − 1)

Table B.13: Definition of W h
y (m,n). n = i′ + (j′ − 1)N

Hy
x + (k′ − 1)N

Hy
x N

Hy
y . i′, j′,

and k′ are defined in Table B.14
W h

y (m,n) =

L
Hy

M,i (xm) L
Hy

M,j (ym) L
Hy

M,k (zm)

if (i0 + i) ∈ (0, N
Hy
x ], (j0 + j) ∈ (0, N

Hy
y ], (k0 + k) ∈

(0, N
Hy
z ]

W h
y (m,n) = W h

y (m,n) +

L
Hy

M,i (xm) L
Hy

M,j (ym) L
Hy

M,k (zm)

1. if (j0 + j) ∈ (0, N
Hy
y ] and (i0 + i) /∈ (0, N

Hy
x ]; 2. if

(j0 + j) ∈ (0, N
Hy
y ] and (k0 + k) /∈ (0, N

Hy
z ]

W h
y (m,n) = W h

y (m,n)−
L

Hy

M,i (xm) L
Hy

M,j (ym) L
Hy

M,k (zm)

if (j0 + j) /∈ [0, N
Hy
y + 1]

on image theory, a conducting wall of the cavity is an anti-symmetric and symmetric

plane for normal and tangential components of magnetic field, respectively. Hx is

normal to y-z plane and parallel with x-y and x-z planes. Hence, symmetric extension

is used when global indexes of grid points are abnormal in z- and y-directions, and

anti-symmetric extension is utilized if the global index is abnormal in x-direction. The

global index in ξ-direction is considered as abnormal when it becomes less than one

or exceeds the number of grid points along ξ-direction. By using anti-symmetric or

symmetric extension, one can change an abnormal index to a normal one.

For Hy interpolation matrix Wh
y defined in Tables B.13 and B.14, symmetric ex-

tension is used if the global index in z- or x-direction is abnormal, and anti-symmetric

extension is applied when the global index in y−direction is abnormal.
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Table B.14: i′, j′, and k′ for W h
y (m,n), i0 = int

(
xm+0.5hx

hx

)
, j0 = int

(
ym

hy

)
and

k0 = int
(

zm+0.5hz

hz

)

Condition
for i′

Value of i′ Condition
for j′

Value of j′ Condition
for k′

Value of k′

(i0 + i) ∈
(0, N

Hy
x ]

i0 + i (j0 + j) ∈
(0, N

Hy
y ]

j0 + j (k0 + k) ∈
(0, N

Hy
z ]

k0 + k

(i0 + i) ≤
0

1− (i0 + i) (j0 + j) <
0

− (j0 + j) (k0 + k) ≤
0

1−(k0 + k)

(i0 + i) ≥
N

Hy
x + 1

2N
Hy
x −

(i0 + i− 1)
(j0 + j) >

N
Hy
y + 1

2N
Hy
y −

(j0 + j − 2)
(k0 + k) ≥
N

Hy
z + 1

2N
Hy
z −

(k0 + k − 1)

Table B.15: Definition of W h
z (m,n). n = i′ + (j′ − 1)NHz

x + (k′ − 1)NHz
x NHz

y . i′, j′,
and k′ are defined in Table B.16

W h
z (m,n) =

LHz
M,i (xm) LHz

M,j (ym) LHz
M,k (zm)

if (i0 + i) ∈ (0, NHz
x ], (j0 + j) ∈ (0, NHz

y ], (k0 + k) ∈
(0, NHz

z ]

W h
z (m,n) = W h

z (m,n) +
LHz

M,i (xm) LHz
M,j (ym) LHz

M,k (zm)
1. if (k0 + k) ∈ (0, NHz

z ] and (i0 + i) /∈ (0, NHz
x ]; 2.

if (k0 + k) ∈ (0, NHz
z ] and (j0 + j) /∈ (0, NHz

y ]

W h
z (m,n) = W h

z (m,n)−
LHz

M,i (xm) LHz
M,j (ym) LHz

M,k (zm)
if (k0 + k) /∈ [0, NHz

z + 1]

Table B.16: i′, j′, and k′ for W h
z (m,n), i0 = int

(
xm+0.5hx

hx

)
, j0 = int

(
ym+0.5hy

hy

)
and

k0 = int
(

zm

hz

)

Condition
for i′

Value of i′ Condition
for j′

Value of j′ Condition
for k′

Value of k′

(i0 + i) ∈
(0, NHz

x ]
i0 + i (j0 + j) ∈

(0, NHz
y ]

j0 + j (k0 + k) ∈
(0, NHz

z ]
k0 + k

(i0 + i) ≤
0

1− (i0 + i) (j0 + j) ≤
0

1− (j0 + j) (k0 + k) <
0

− (k0 + k)

(i0 + i) ≥
NHz

x + 1
2NHz

x −
(i0 + i− 1)

(j0 + j) ≥
NHz

y + 1
2NHz

y −
(j0 + j − 1)

(k0 + k) >
NHz

z + 1
2NHz

z −
(k0 + k − 2)
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The expression of Hz interpolation matrix Wh
z is given in Tables B.15 and B.16.

If global index of Hz grid points is abnormal in x- or y-direction, symmetric extension

is used to change it to a normal index. If it is abnormal in z-direction, anti-symmetric

extension is applied.
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Appendix C

Numerical Calculation of Integrals

in (4.7) to (4.9)

Gaussian quadrature is first described in this appendix, and numerical calculation of

Ze
mn, Zc

mn, and Zmn is then detailed.

C.1 Gaussian Quadrature Rule for Triangle

In this work, M -point Gaussian quadrature is utilized to compute integral over a

triangle. Consider the following integral,

IT =

∫ ∫

T

f (~r) d~r, (C.1)

where f (~r) denotes a function, T is a triangle, and ~r is a point on T . Using M-point

Gaussian quadrature, IT is computed as

IT = AT

M∑
p=1

wpf (~rp) , (C.2)
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where AT is the area of the triangle T , wp is the weight, and ~rp is the integration

point. The formula for computing ~rp is

~rp = αp~v1 + βp~v2 + γp~v3, (C.3)

where ~v1, ~v2 and ~v3 are vertices of triangle T . αp, βp, and γp are pre-computed variables

for choosing integration points. Table C.1 presents the 4-point Gaussian quadrature

rule, which is used throughout this thesis.

C.2 Numerical calculation of Ze
mn

Substituting (4.4) and (4.5) into (4.7) and applying M -point Gaussian quadrature,

Ze
mn can be calculated as

Ze
mn = Ze++

mn + Ze+−
mn + Ze−+

mn + Ze−−
mn , (C.4)

where

Ze++
mn = Cmnb

M∑
p=1

M∑
qb=1

Wpqb

[
(~v+

m − ~rp) · (~vb+
n − ~r′qb

)

4
− 1

k2

]
, ~rp ∈ S+

m and ~r′qb
∈ Sn+

b ,

Ze+−
mn = Cmnb

M∑
p=1

M∑
qb=1

Wpqb

[
(~v+

m − ~rp) · (~r′qb
− ~vb−

n )

4
+

1

k2

]
, ~rp ∈ S+

m and ~r′qb
∈ Sn−

b ,

Table C.1: Four-point Gaussian Quadrature Rule

p αp βp γp wp

1 0.33333333 0.33333333 0.33333333 -0.56250000

2 0.60000000 0.20000000 0.20000000 0.52083333

3 0.20000000 0.60000000 0.20000000 0.52083333

4 0.20000000 0.20000000 0.60000000 0.52083333
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Ze−+
mn = Cmnb

M∑
p=1

M∑
qb=1

Wpqb

[
(~rp − ~v−m) · (~vb+

n − ~r′qb
)

4
+

1

k2

]
, ~rp ∈ S−m and ~r′qb

∈ Sn+
b ,

Ze−−
mn = Cmnb

M∑
p=1

M∑
qb=1

Wpqb

[
(~rp − ~v−m) · (~r′qb

− ~vb−
n )

4
− 1

k2

]
, ~rp ∈ S−m and ~r′qb

∈ Sn−
b ,

Cmnb
= −jωµlmlnb

4π
,

Wpqb
= wpwqb

e−jkRpqb

Rpqb

.

~rp and ~r′qb
denote vector positions of the pth Gaussian integration point in Sm and

the qbth Gaussian integration point in Sn
b , respectively. Rpqb

is the distance between

~rp and ~r′qb
. wp and wqb

are weights at ~rp and ~r′qb
, respectively. lm is length of the

mth triangle edge on the stirrer, and lnb
denote length of the nth triangle edge on the

Huygens’ box. S+
m and S−m are triangles sharing edge m on the stirrer. Sn+

b and Sn−
b

are triangles sharing edge n on the Huygens’ box. ~v±m denote the vertex of S±m opposite

edge m on the stirrer, and ~vb±
n is the vertex of Sn±

b opposite edge n on Huygens’ box.

C.3 Numerical calculation of Zc
mn

Since ∇× (G~f) = G∇× ~f + (∇G)× ~f , and ∇× ~f(~r′) = 0, (4.8) can be rewritten as

Zc
mn = −

∫ ∫

Sm

~fm (~r) ·
∫ ∫

Sn
b

[
∇G (~r, ~r′)× ~fn (~r′) d~r′

]
d~r, (C.5)

where ∇G (~r, ~r′) = − 1
R

(
1
R

+ jk
)
G (~r, ~r′) (~r − ~r′) . Therefore, applying M -point Gaus-

sian quadrature and substituting (4.4) and (4.5) into (C.5), Zc
mn can be calculated

as

Zc
mn = Zc++

mn + Zc+−
mn + Zc−+

mn + Zc−−
mn , (C.6)
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where

Zc++
mn = Cc

mnb

M∑
p=1

M∑
qb=1

W c
pqb

(~v+
m − ~rp) ·

[
~Rpqb

× (
~vb+

n − ~r′qb

)]
, ~rp ∈ S+

m and ~r′qb
∈ Sn+

b ,

Zc+−
mn = Cc

mnb

M∑
p=1

M∑
qb=1

W c
pqb

(~v+
m − ~rp) ·

[
~Rpqb

× (
~r′qb
− ~vb−

n

)]
, ~rp ∈ S+

m and ~r′qb
∈ Sn−

b ,

Zc−+
mn = Cc

mnb

M∑
p=1

M∑
qb=1

W c
pqb

(~rp − ~v−m) ·
[
~Rpqb

× (
~vb+

n − ~r′qb

)]
, ~rp ∈ S−m and ~r′qb

∈ Sn+
b ,

Zc−−
mn = Cc

mnb

M∑
p=1

M∑
qb=1

W c
pqb

(~rp − ~v−m) ·
[
~Rpqb

× (
~r′qb
− ~vb−

n

)]
, ~rp ∈ S−m and ~r′qb

∈ Sn−
b ,

Cc
mnb

=
lmlnb

16π
,

W c
pqb

= wpwqb

e−jkRpqb

R2
pqb

(
1

Rpqb

+ jk

)
,

~Rpqb
= ~rp − ~r′qb

.

C.4 Numerical calculation of Zmn

If the distance between Sm is far away from Sn, the calculation of Zmn is simply

Zmn = Z++
mn + Z+−

mn + Z−+
mn + Z−−

mn , (C.7)

where

Z++
mn = Cmn

M∑
p=1

M∑
q=1

Wpq

[
(~v+

m − ~rp) ·
(
~v+

n − ~r′q
)

4
− 1

k2

]
, ~rp ∈ S+

m and ~r′q ∈ S+
n ,

Z+−
mn = Cmn

M∑
p=1

M∑
q=1

Wpq

[
(~v+

m − ~rp) ·
(
~r′q − v−n

)

4
+

1

k2

]
, ~rp ∈ S+

m and ~r′q ∈ S−n ,
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Z−+
mn = Cmn

M∑
p=1

M∑
q=1

Wpq

[
(~rp − ~v−m) · (~v+

n − ~r′q
)

4
+

1

k2

]
, ~rp ∈ S−m and ~r′q ∈ S+

n ,

Z−−
mn = Cmn

M∑
p=1

M∑
q=1

Wpq

[
(~rp − ~v−m) · (~r′q − ~v−n

)

4
− 1

k2

]
, ~rp ∈ S−m and ~r′q ∈ S−n ,

Cmn =
jωµlmln

4π
,

Wpq = wpwq
e−jkRpq

Rpq

.

ln denotes length of the mth triangle edge on the stirrer. ~rp is the pth Gaussian

integration point on Sm, ~r′q is the qth Gaussian integration point on Sn, and Rpq =|
~rp − ~r′q |. wp and wq are weights at ~rp and ~r′q, respectively. S+

n and S−n are a pair of

triangles sharing edge n on the stirrer. ~v±n denotes vertex of S±n opposite edge n.

If Sm is near to Sn, Rpq may be very small and the problem of singularity may

occur when evaluating Zmn. In that case, the numerical and analytical integration

method described in Section 7.3.2.2 of [98] is utilized to deal with the singularity.

Green’s function may be written as

G (~r, ~r′) =
e−jkR − 1

4πR
+

1

4πR
. (C.8)

The first term in (C.8) is free of singularity as

lim
R→0

e−jkR − 1

4πR
=
−jk

4π
. (C.9)

Therefore, Zmn can be calculated as the sum of two terms

Zmn = ZI
mn + ZII

mn, (C.10)
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where

ZI
mn = jωµ

∫ ∫

Sm

~fm (~r) ·
[∫ ∫

Sn

~fn (~r′)
e−jkR − 1

4πR
d~r′

]
d~r

+
1

jωε

∫ ∫

Sm

∇ · ~fm (~r)

[∫ ∫

Sn

∇′ · ~fn (~r′)
e−jkR − 1

4πR
d~r′

]
d~r, (C.11)

and

ZII
mn = jωµ

∫ ∫

Sm

~fm (~r) ·
[∫ ∫

Sn

~fn (~r′)
1

4πR
d~r′

]
d~r

+
1

jωε

∫ ∫

Sm

∇ · ~fm (~r)

[∫ ∫

Sn

∇′ · ~fn (~r′)
1

4πR
d~r′

]
d~r. (C.12)

ZI
mn is free of singularity, and it can be numerically calculated using M -point Gaussian

quadrature. The formula for computing ZI
mn is

ZI
mn = ZI++

mn + ZI+−
mn + ZI−+

mn + ZI−−
mn , (C.13)

ZI++
mn = Cmn

M∑
p=1

M∑
q=1

W ′
pq

[
(~v+

m − ~rp) ·
(
~v+

n − ~r′q
)

4
− 1

k2

]
, ~rp ∈ S+

m and ~r′q ∈ S+
n ,

ZI+−
mn = Cmn

M∑
p=1

M∑
q=1

W ′
pq

[
(~v+

m − ~rp) ·
(
~r′q − v−n

)

4
+

1

k2

]
, ~rp ∈ S+

m and ~r′q ∈ S−n ,

ZI−+
mn = Cmn

M∑
p=1

M∑
q=1

W ′
pq

[
(~rp − ~v−m) · (~v+

n − ~r′q
)

4
+

1

k2

]
, ~rp ∈ S−m and ~r′q ∈ S+

n ,

ZI−−
mn = Cmn

M∑
p=1

M∑
q=1

W ′
pq

[
(~rp − ~v−m) · (~r′q − ~v−n

)

4
− 1

k2

]
, ~rp ∈ S−m and ~r′q ∈ S−n ,

W ′
pq = wpwq

e−jkRpq − 1

Rpq

.

It should be noted that (C.9) can be used to calculate W ′
pq if Rpq is below a user-defined

tolerance τR (it is set to 1× 10−6 in this work).
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Applying M -point Gaussian quadrature to the outermost integral of (C.12), ZII
mn

can be calculated as

ZII
mn = ZII+

mn + ZII−
mn , (C.14)

ZII+
mn =

jωµlm
4π

M∑
p=1

wp

[
(~v+

m − ~rp)

2
· ~Ip +

1

k2
I ′p

]
,

ZII−
mn =

jωµlm
4π

M∑
p=1

wp

[
(~rp − ~v−m)

2
· ~Ip − 1

k2
I ′p

]
,

where

~Ip =

∫ ∫

Sn

~fn(~r′)
1

Rp

d~r′, (C.15)

I ′p =

∫ ∫

Sn

∇′ · ~fn(~r′)
1

Rp

~r′, (C.16)

Rp =| ~rp − ~r′ |. Substituting (4.4) into (C.15),

~Ip =
ln

2A+
n

[∫ ∫

S+
n

(
~v+

n − ~r′
) 1

Rp

d~r′
]

+
ln

2A−
n

[∫ ∫

S−n

(
~r′ − ~v−n

) 1

Rp

d~r′
]

, (C.17)

Since ~v+
n − ~r′ = ~v+

n − ~rp + ~rp − ~r′, and ~r′ − ~v−n = ~r′ − ~rp + ~rp − ~v−n ,

~Ip =
ln

2A+
n

[∫ ∫

S+
n

(~rp − ~r′)
1

Rp

d~r′ +
(
~v+

n − ~rp

) ∫ ∫

S+
n

1

Rp

d~r′
]

+ (C.18)

ln
2A−

n

[(
~rp − ~v−n

) ∫ ∫

S−n

1

Rp

d~r′ +
∫ ∫

S−n
(~r′ − ~rp)

1

Rp

d~r′
]

.

Using (4.5), (C.16) becomes
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Figure C.1: A triangle T over which integrals (C.20) and (C.21) are to be calculated.
~r−i and ~r+

i are position vectors of the nodes of the ith edge. Edges of the triangle are
numbered anticlockwisely. n̂ is unit vector normal to T and it can be calculated as(
~r+

1 − ~r−1
)× (

~r+
2 − ~r−2

)
/ | (~r+

1 − ~r−1
)× (

~r+
2 − ~r−2

) |.

I ′p =
ln
A−

n

∫ ∫

S−n

1

Rp

~r′ − ln
A+

n

∫ ∫

S+
n

1

Rp

~r′. (C.19)

In equations (C.18) and (C.19), there are two kinds of integrals, i.e.

~Ia =

∫ ∫

T

~r′ − ~r

R
d~r′, (C.20)

~Ib =

∫ ∫

T

1

R
d~r′, (C.21)

where T represents a triangle, ~r′ is the position vector of a point on T , ~r is a constant

vector, and R =| ~r−~r′ |. Following [124], integrals (C.20) and (C.21) can be calculated

analytically. Figure C.1 shows a triangle T . Edges of the triangle are numbered

anticlockwisely. ~r+
i and ~r−i denote position vectors of nodes of edge i. According

to [124], ~Ia and Ib can be calculated as

~Ia =
1

2

3∑
i=1

ûi

[(
R0

i

)2
lg

R+
i + l+i

R−
i + l−i

+ l+i R+
i − l−i R−

i

]
, (C.22a)

Ib =
3∑

i=1

P̂ 0
i · ûi

[
P 0

i lg
R+

i + l+i
R−

i + l−i
− | d | Yi

]
, (C.22b)
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where

Yi = arctan
P 0

i l+i
(R0

i )
2
+ | d | R+

i

− arctan
P 0

i l−i
(R0

i )
2
+ | d | R−

i

,

l±i =
(
~ρ±i − ~ρ

) · l̂i,

l̂i =
~ρ+

i − ~ρ

| ρ+
i − ~ρ | ,

~ρ±i = ~r±i − n̂
(
n̂ · ~r±i

)
,

~ρ = ~r − n̂ (n̂ · ~r) ,

ûi = l̂i × n̂,

P 0
i =| (~ρ±i − ~ρ

) · ûi |,

P±
i =| (~ρ±i − ~ρ

) |,

P̂ 0
i =

(
~ρ+

i − ~ρ
)− l+i l̂i

P 0
i

,

R0
i =

√
(P 0

i )
2
+ d2,

R±
i =

√(
P±

i

)2
+ d2,

d = n̂ · (~r − ~r+
1 ).

Using (C.22a) and (C.22b), ~Ip and I ′p can be calculated accordingly.
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