
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Rational secret sharing

Zhang, Yun

2012

Zhang, Y. (2012). Rational secret sharing. Doctoral thesis, Nanyang Technological
University, Singapore.

https://hdl.handle.net/10356/48667

https://doi.org/10.32657/10356/48667

Downloaded on 09 Apr 2024 10:45:52 SGT

RATIONAL SECRET SHARING

YUN ZHANG

SCHOOL OF PHYSICAL & MATHEMATICAL SCIENCES

2012

RATIONAL SECRET SHARING

YUN ZHANG

School of Physical & Mathematical Sciences

A thesis submitted to the Nanyang Technological University

in partial fulfillment of the requirement for the degree of

Doctor of Philosophy

2012

ACKNOWLEDGEMENTS

First of all, I would like to show my warm gratitude to my supervisor, Prof. Huaxiong Wang, for his

devoted guidance and support. His deep intuition and insightful comments regarding the problems

I worked on influenced me a lot. Secondly, many thanks to my co-supervisor, Prof. Guohua Wu,

from whose devoted teaching and enlightening lectures I have benefited a lot. Thanks to Prof.

Chaoping Xing. I benefit quite a lot from the courses he taught. I benefit even more from his

teaching style, which is extremely clear and illuminating. Thanks to Prof. Axel Poschmann, and

Prof. Frederique Elise Oggier for giving me many enlightenments and much constructive advice.

Besides, thanks to Dr. Christophe Tartary, one of my coauthors, for his generous help when I

consult with him about details of research problems. The discussions have benefited me in many

ways and also greatly improved my writing. Thanks to Jian Guo and Yeo Sze Ling for their

constructive comments on this thesis. Thanks to all the colleagues with whom I shared various

discussions during my research studies. Thanks to all my friends, lecturers and also secretaries in

the division of mathematical sciences for all the help during the four years. Finally, thanks to the

School of Physical and Mathematics Sciences for the funding support for my research assistantship

and conference travels.

Papers Related to this Thesis

1. C. Tartary, H. Wang, and Y. Zhang. An efficient and information theoretically secure ratio-

nal secret sharing scheme based on symmetric bivariate polynomials. International Journal

of Foundations of Computer, Pages: 1395-1416, 2011. (main contribution)

2. Y. Zhang, C. Tartary, and H. Wang. An efficient rational secret sharing scheme based on

the Chinese Remainder Theorem. In Proceedings of the 16th Astralasian Conference on In-

formation Security and Privacy, Pages: 259-275, 2011. (main contribution)

3. Y. Zhang, and H. Wang. Transformations from any linear secret sharing scheme to a rational

secret sharing scheme. To be submitted. (main contribution)

Notation

R − The set of all real numbers

Z − The set of all integers

F − A finite field

GF(q) − The finite field with q elements

Pi − The ith player

n − The number of players

P − The set contains n players P1, . . . , Pn

2P − The power set of P

|A| − The size of the set A

s − A secret in secret sharing schemes

R − The domain of random strings

S − The domain of the secrets in secret sharing schemes

Si − The share domain of Pi
⊕

− The operation of bitwise XOR

〈α, β〉 − The inner product of α and β

α[i] − The ith coordinate of α

D − The dealer in secret sharing schemes

Π − A secret sharing scheme

Π(s, r)i − The share of Pi generated with the secret s and a random string r in the secret

sharing scheme Π

Π(s, r)A − The shares of players in A generated with the secret s and a random string r

in the secret sharing scheme Π

A − An adversary structure

Γ − An access structure

A⊥ − The dual adversary structure of A

Γ⊥ − The dual access structure of Γ

M − A monotone span program

M⊥ − A dual monotone span program ofM

LSSS − Linear secret sharing scheme

RSSS − Rational secret sharing scheme

MSP − Monotone span program

MPC − Multiparty computation

C − A block code

C⊥ − The dual code of C

Γ(C) − The admissible distance of a block code C

∆(C) − The forbidden distance of a block code C

rank(M) − The rank of a matrix M

span(M) − The vector space spanned by the row vectors in M

MT − The transpose of the matrix M

ker(M) − The solution space of the linear equation system M ·X = 0

(α|M) − The matrix containing the columns of M along with an additional column α

(a, β) − The vector containing the elements of β along with an additional element a

t − The size of each minimal authorized set in a threshold access structure

t∗ − The size of active players in the secret reconstruction process

k − A security parameter

G − A game

CONTENTS

1. Introduction . 9

2. Classical Secret Sharing . 15

2.1 Communication Channels . 15

2.2 Basic Definitions on Secret Sharing . 17

2.3 Constructions of Secret Sharing Schemes for General Access Structures 23

2.3.1 Ito, Saito and Nishizeki’s Construction . 23

2.3.2 The Monotone Formulae Construction . 23

2.4 Linear Secret Sharing Schemes and Monotone Span Programs 26

2.5 Verifiable Secret Sharing . 29

2.6 A t-out-of-n Verifiable Secret Sharing Scheme Based on the Asmuth-Bloom Secret

Sharing Scheme . 31

2.6.1 Range Proof Techniques . 31

2.6.2 The Scheme . 32

2.7 Proactive Secret Sharing . 33

2.7.1 An Unconditionally Secure Proactive t-out-of-n Secret Sharing Scheme . . . 34

3. Linear Secret Sharing Schemes and Linear Block Codes 39

3.1 Linear Block Codes Associated to Linear Secret Sharing Schemes 40

3.2 A-Error Correctable Linear Secret Sharing Schemes 42

3.3 A-Error Detectable Linear Secret Sharing Schemes 52

4. Game Theoretic Definitions . 55

4.1 Normal Form Games . 55

4.2 Mixed Extension of a Normal Form Game and Mixed Strategy Nash Equilibrium . 58

4.3 Extensive Games with Perfect Information . 60

2 Contents

4.4 More Equilibria . 62

5. History of Rational Secret Sharing . 67

5.1 The Basic Idea behind Previous Work . 69

5.2 Previous Work on Rational Secret Sharing . 70

6. An Unconditionally Secure Rational Secret Sharing Scheme Based on Symmetric Bivariate

Polynomials . 81

6.1 Our Protocol for t-out-of-n Rational Secret Sharing Secure against a Single Player’s

Deviation . 81

6.1.1 Overview of the Reconstruction Phase . 82

6.1.2 Our Construction . 83

6.2 Security of our Rational Secret Sharing Scheme . 88

6.3 Round Complexity . 98

6.4 Remark on the Case When t Is Odd . 100

6.5 Discussion . 100

6.6 Conclusion . 102

7. An Efficient Rational Secret Sharing Scheme Based on the Chinese Remainder Theorem 103

7.1 Initial Share Distribution Phase . 104

7.2 Secret Reconstruction Phase . 106

7.2.1 Share Update Phase . 106

7.2.2 Combiner Phase . 110

7.2.3 Overview of the Reconstruction Phase. 111

7.2.4 Secret Reconstruction Phase . 111

7.3 Security of our Rational Secret Sharing Scheme . 112

7.4 Conclusion . 121

8. Transformations from Any Linear Secret Sharing Scheme to a Rational Secret Sharing

Scheme . 123

8.1 Motivation . 124

8.2 Transformations from an LSSS to an RSSS . 125

8.2.1 Transformation for Any LSSS with an Arbitrary Adversary Structure . . . 125

Contents 3

8.2.2 Transformation for Any LSSS with a Q2 Access Structure 128

8.2.3 Transformation for Any LSSS with a Q3 Access Structure 134

8.3 Conclusion . 137

9. General Conclusion and Open Questions . 139

4 Contents

ABSTRACT

Cryptography and game theory are both fields dedicated to modeling and facilitating human in-

teractions in real life. In order to produce more robust protocols that allow for a variety of player

types and develop more realistic models of, and protocols for, interactions of mutual mistrust,

several researchers recently have attempted to bridge the fields of cryptography and game theory.

Analyzing the cryptographic protocols using game theoretic methodologies serves to better inter-

pret the behavior of today’s systems. One particular problem that has been studied considerably

is that of rational secret sharing. Although there are a number of efficient and elegant secret shar-

ing schemes that work in the cryptographic model, it is observed that designing a rational secret

sharing protocol which works in the game theoretic model is a little bit challenging.

This thesis contains three main contributions as follows.

First, we observe that most of the previous constructions on rational secret sharing rely on some

existing computational-based cryptographic primitives, which make them susceptible to backward

induction, since the cryptographic primitives used at the beginning of those protocols can surely

be broken after an exponential number of rounds. The first contribution of this thesis is to design

a protocol for rational secret sharing that removes this limitation. We borrow the idea from the

proactive secret sharing scheme proposed by Arco and Stinson to renew the shares periodically

by the interaction between players. In this way, our construction does not need an online dealer.

Here the secret s is masked using a one-time pad, which provides information-theoretic security

and makes our construction immune to backward induction mentioned previously. Our scheme

is based on symmetric bivariate polynomials. Although this technique has already been applied

before for multiparty computation protocols, to the best of our knowledge, it is the first time that

it has been used in rational cryptography. Our protocol is efficient in terms of round execution

(as the dealer will not be needed except during the initial share distribution phase), share size and

computations. And it guarantees that all players learn the secret at a Nash equilibrium surviving

the iterated elimination of weakly dominated strategies. As in most of the prior work, we need a

6 Abstract

simultaneous broadcast channel and pairwise secure channels. However, our contribution does not

address the scenario where coalitions of multiple players are present.

The second contribution of this thesis is the proposal of an efficient protocol for t-out-of-n

rational secret sharing based on the Chinese Remainder Theorem. Under some computational

assumptions related to the discrete logarithm problem and RSA, this construction leads to a

(t− 1)-resilient computational strict Nash equilibrium that is stable with respect to trembles. Our

protocol does not rely on simultaneous channels. Instead, it only requires a synchronous broadcast

channel and pairwise secure channels. As compared to the protocol proposed by Fuchsbauer

et al. that works in almost the same model as ours, our protocol has smaller share size even

when (t − 1)-resilience to coalitions is required. Our shares are O(k) bits long while theirs need

(n − t + 1) (2n|s| + O(k)) bits. The latter share length leads to practical efficiency issues when

n− t+ 1 is large or when their technique is used as a building block within more general rational

multiparty computation protocols.

It is clear that every rational secret sharing scheme is itself a classical secret sharing scheme, but

the converse is not true. The third line of research in this thesis is to demonstrate transformations

from any (classical) linear secret sharing scheme to a rational secret sharing scheme with a mediator.

The rational secret sharing scheme obtained induces a Nash equilibrium surviving iterated deletion

of weakly dominated strategies with resilience to any subset in the adversary structure, relies on

no cryptographic assumption and provides information-theoretic security. The first transformation

works for any linear secret sharing scheme with an arbitrary adversary structure and the resulting

rational secret sharing scheme has expected round complexity relying on participants’ utilities. The

second transformation works for any linear secret sharing scheme with a Q2 adversary structure and

the resulting rational secret sharing scheme has expected round complexity O(1). Both of these two

transformations require knowledge of the participants’ utilities. The third transformation works

for any linear secret sharing scheme with a Q3 adversary structure but requires no knowledge of

participants’ utilities. The rational secret sharing scheme obtained has expected round complexity

O(1). While the first transformation requires pairwise secure channels along with a simultaneous

broadcast channel, the second and the last transformations only require pairwise secure channels.

Moreover, if the underlying linear secret sharing scheme is A-detectable, the rational secret sharing

schemes obtained from the second and the last transformations induce a strict Nash equilibrium. To

the best of our knowledge, this research marks the first instance that the problem on transformation

Abstract 7

from any linear secret sharing scheme to a rational secret sharing scheme is considered, and the

first time that rational secret sharing schemes for non-threshold access structures are constructed.

8 Abstract

1. INTRODUCTION

Cryptography and game theory are both fields dedicated to modeling and facilitating human

interactions in real life. Traditional cryptographic models assume that some participants are honest

(that is, they faithfully follow a given protocol) while others are malicious participants (that

is, they act in an arbitrary manner) against whom the honest players must be protected. In

that case, security assurance relies on the assumption that a fraction of the agents follow the

protocol specifications accurately, regardless of whether doing so aligns with their own self-interest.

However, in many real-world applications, a participant may choose to be dishonest if deviating

from the protocol will provide him with some advantage. Game theory can be used to model such a

situation where players are self-interested (i.e., rational), namely, they do everything to maximize

their benefit (or utilities). In order to produce more robust protocols that allow for a variety of

player types, rational cryptography arises. It bridges the fields of cryptography and game theory

and desires to develop more realistic models of, and protocols for, interactions of mutual mistrust.

The rational analysis of the cryptographic protocols serves to better interpret the behavior of

today’s systems, which operate in strategic interaction environments.

One particular problem that has been studied considerably is that of rational secret sharing.

Informally, (classical) secret sharing is a cryptographic primitive, which allows a dealer to distribute

a secret among a set of finitely many players in a way that each authorized subset can later recover

the secret by combining its members’ shares while any unauthorized subset can not. The standard

way to execute the reconstruction is simply for each player in some authorized set to broadcast

his share to all others (in this authorized set). In particular, Shamir’s t-out-of-n secret sharing

scheme [56] specifies a method to split a secret into n values of some polynomial of degree at most

t− 1 among n players in a way that any set containing at least t players can recover the secret by

polynomial interpolation, while any set containing less than t players gets no information about the

secret. We need to emphasize that the goal of the plain secret sharing schemes may not be achieved

without the assumption that the dealer and the players are honest. In the rational setting, in order

10 1. Introduction

to instruct each rational player to broadcast his real share during the reconstruction process, first

it is assumed that each player prefers the outcome in which he learns the secret. This is a necessary

assumption, since without it each rational player has no interest to be involved in the protocol (or

game) at all. Secondly, it is assumed that each player prefers the outcome in which as few others

as possible learn the secret. Indeed, this assumption is reasonable, especially when knowledge

is power, and it reflects players’ selfishness. Note that the utilities of the players depend only

on who learns and who does not learn the secret. We would like to stress that in the rational

model, under these two assumptions on players’ preferences on outcomes, classical secret sharing

schemes will fail completely, since broadcasting one’s share during the secret reconstruction phase

is not rational. To understand this, we might take Shamir’s t-out-of-n secret sharing scheme as

an example. Suppose that t players Pi1 , . . . , Pit are involved in the reconstruction phase and they

are required to broadcast their shares simultaneously. For each Pij , 1 ≤ j ≤ t, there are two

possibilities. Case 1: all the others broadcast their shares. Then, if Pij keeps silent, he will be

the only one that learns the secret; while if he broadcasts his share, he will learn the secret with

the others. Case 2: some of the others do not broadcast their shares. Then no matter what Pij

does, no one will learn the secret. Obviously, in either cases, not broadcasting one’s share during

the secret reconstruction phase can never bring less to him and sometimes can bring more to him

no matter what the others do, that is, the rational behavior in the above naive reconstruction

procedure is for each player not to broadcast his share. As for the scenario where participants are

creating coalitions with size at most t − 1 against other honest participants, exactly by the same

argument one can see that it is rational for each coalition player not to broadcast his share.

This fact motivates the notion of rational secret sharing, which was first proposed by Halpern

and Teague in 2004 [31]. Here, the aim is to construct a protocol so that participants have

incentive to cooperate and provide their shares in the reconstruction phase, even if each participant

prefers to be the only one that learns the secret. In other words, we need to design a strategy

for each player during the secret reconstruction phase such that under those two assumptions

on preferences on outcomes mentioned previously, each rational player has an interest to follow

his strategy no matter what other players do, and when all of them follow their strategies, the

secret is open to all. However, due to players’ conflicting self interests, this requirement is so

stringent that it is pretty hard to be satisfied. Thus, in the literature of rational secret sharing,

the main goal is to design protocols for participants such that on one hand, every participant

11

has motivation not to deviate from his strategy, provided that all the other participants stick

to theirs, and on the other hand, if each participant sticks to his strategy, the secret will be

revealed to all participants. To retell it in game-theoretic terminology [49], designing rational

secret sharing protocols essentially amounts to designing a recommended strategy for each player

along with the dealer (who is assumed to be honest). Each player’s strategy set is defined to be

all possible deviations from his recommended strategy. Players’ utility functions are supposed to

satisfy those two assumptions on preferences on outcomes mentioned previously. The goal is that

the tuple of recommended strategies induces a Nash equilibrium or one of its variants, in which

each player learns the secret. There are several criteria to measure a rational protocol, such as

channel models, coalition-resilience abilities, equilibrium types achieved, utility dependence and

efficiencies (including expected round complexity, computational complexity and share bitsize).

In Chapter 2, we will provide an overview on classical secret sharing, including related defi-

nitions along with some general constructions for arbitrary access structures. In particular, we

focus on linear secret sharing schemes, monotone span programs and linear block codes. It is

well known that the first two objects are closely related. Besides this fact, Nikov and Nikova [45]

further explored the properties of a monotone span program and the corresponding linear block

code C. Briefly, letM = (F,M, ε, ψ) be a monotone span program computing an access structure

Γ, where without loss of generality, the columns of M are assumed to be linearly independent.

Let C be the linear code generated by MT , the transpose of M . Let MPi
denote the matrix

whose rows are those assigned to player Pi via ψ. Without loss of generality, we can assume that

MT = ((MP1)
T , . . . , (MPn

)T). Let C be the linear code generated by MT . Note that here we

can partition the entries of each codeword of C into n blocks in the same way as we split MT

into n blocks ((MP1)
T , . . . , (MPn

)T). Thus, we can index the blocks of the resulting vector by

{P1, . . . , Pn}. In this sense, C can be considered as a block code and each codeword X can be

written uniquely as X = (XP1 , . . . , XPn
). Let Γ(C) := {B| there exists a nonzero codeword X ∈

C such that supp(X) ⊆ B}, where supp(X) := {Pi : XPi
6= 0}. Let ∆(C) := 2P \ Γ(C). Γ(C)

is called the set of admissible distances of C and ∆(C) is called the set of forbidden distances of

C. Let E be an error vector. supp(E) is called the error pattern of E. They demonstrated that

C can correct each error pattern A ∈ A if and only if C satisfies the condition A ⊎ A ⊆ ∆(C),

where A denotes the adversary structure and A⊎A := {B1 ∪B2|B1, B2 ∈ A}. However, it is hard

to check directly fromM whether the condition A ⊎ A ⊆ ∆(C) is satisfied or not. In Chapter 3,

12 1. Introduction

we attempt to go further in this direction by proposing an equivalent condition for the inclusion

relation A ⊎ A ⊆ ∆(C) from the perspective of the matrix M⊥, whose first column is a solution

vector of MT · X = 0, and the remaining columns form a basis of the space ker(MT). Besides,

we demonstrate that C can detect all error patterns in A if and only if A ⊆ ∆(C) and give an

equivalent condition from the perspective of M⊥.

In Chapter 4, we introduce basic notions and definitions from game theory [27, 49] that will

be needed to develop and understand rational cryptography. More explicitly, we introduce two

types of games: normal form games and extensive games with perfect information, along with

some solution concepts: Nash equilibrium and its variants.

In Chapter 5, we present a brief survey on rational secret sharing. Specifically, we summarize

the main ideas behind rational secret sharing schemes and the common approach used to design

them. Furthermore, we provide comparisons among these protocols based on their channel models,

coalition-resilience abilities, equilibrium types achieved, utility dependence and efficiency (including

expected round complexity, computational complexity and share bitsize).

In Chapter 6, we propose a protocol for threshold rational secret sharing. Unlike most of the

previous protocols, our construction neither requires an online dealer or any trusted parties (the

mediator for example), nor relies on secure multiparty computation to redistribute the shares of

the secret. Instead, we borrow the idea from proactive secret sharing schemes [20] to renew the

shares merely by the interactions between players. A notable difference in our construction as com-

pared to the constructions quoted in Chapter 5 is that on one hand, the secret s is masked by a

one-time pad, and on the other hand, the participants may correct a single error using the decoder

for generalized Reed-Solomon codes. This provides information-theoretic security and makes our

construction immune to backward induction. Our scheme is based on symmetric bivariate polyno-

mials. Although this technique has been employed previously for multiparty computation protocols

[17], to the best of our knowledge, it is the first time that it has been used in rational cryptography.

Our protocol is efficient in terms of round execution (as the dealer will not be needed), share size

and computation and it guarantees that all players learn the secret at a Nash equilibrium whose

strategy survives the iterated elimination of weakly dominated strategies. As in most of the prior

work, we need a simultaneous broadcast channel and pairwise secure channels.

At TCC’10 [27], Fuchsbauer et al. introduced two variants of Nash equilibrium: computational

version of strict Nash equilibrium, which offers a computational relaxation of traditional game

13

theory equilibria, and stability with respect to trembles, which models the tiny uncertainty on the

expectation about the other players’ actions. Using trapdoor permutations, they constructed a

t-out-of-n rational secret sharing scheme satisfying these new security models. Their construction

only requires standard communication networks, but the share bitsize is 2n|s|+ O(k) for security

against a single player’s deviation, and raises to (n−t+1)·(2n|s|+O(k)) to achieve (t−1)-resilience,

where k is a security parameter and |s| denotes the bit length of s. This leads to practical efficiency

issues when n − t + 1 is large or when Fuchsbauer et al.’s technique is used as a building block

within more general rational multiparty computation protocols.

In Chapter 7, we propose an efficient protocol for rational t-out-of-n secret sharing based on

the Chinese Remainder Theorem with share bitsize O(k). Under some computational assumptions

related to the discrete logarithm problem and RSA, this construction leads to a (t − 1)-resilient

computational strict Nash equilibrium that is stable with respect to trembles. Our protocol does

not rely on simultaneous channels. Instead, it only requires a synchronous broadcast channel and

pairwise secure channels.

It is well-known that for any given monotone access structure Γ, there always exists a linear

secret sharing scheme (LSSS for short) realizing it. Besides, any rational secret sharing scheme

(RSSS for short) itself is a classical secret sharing scheme, but the converse is not true. Hence, it is

interesting to consider how to transform a classical linear secret sharing scheme to a rational secret

sharing scheme. A useful way to realize this transformation is to introduce a mediator, who is a

trusted third party. Following Forges [26], we may view a mediator as a communication device:

each participant sends a message (input) and the mediator computes a function of all the messages

ever obtained and sends each participant some information (output).

In Chapter 8, we propose three transformations from a classical linear secret sharing scheme to

a rational secret sharing scheme with a mediator. The RSSS obtained induces an A-resilient Nash

equilibrium surviving iterated deletion of weakly dominated strategies, relies on no cryptographic

assumption, provides information theoretical security and hence is automatically immune against

backward induction. The first transformation works for any LSSS with an arbitrary adversary

structure A and the resulting RSSS has expected round complexity relying on the participants’

utilities. The second transformation works for any LSSS with a Q2 adversary structure A and the

resulting RSSS has expected round complexity O(1). Both of these two transformations require

that knowledge of the participants’ utilities be public. The third transformation works for any

14 1. Introduction

LSSS with a Q3 adversary structure, requires no knowledge of participants’ utilities, and the

RSSS obtained has expected round complexity O(1). While the first transformation requires

pairwise secure channels along with a simultaneous broadcast channel, the second and the last

transformations only require pairwise secure channels. Moreover, if the underlying linear secret

sharing scheme is A-detectable, the rational secret sharing schemes obtained from the second and

the last transformations induce a strict Nash equilibrium. To the best of our knowledge, this

research marks the first instance that the problem on transformations from any LSSS to an RSSS

is considered and the first time that RSSSs for non-threshold access structures are constructed.

As an independent interest, our constructions generalize and improve some of the results proposed

by Abraham et al. in [1], where they proposed RSSSs over t-out-of-n threshold access structures,

which induce a (t−1)-resilient Nash equilibrium surviving iterated elimination of weakly dominated

strategies. In addition, their constructions make use of digital signature or Rabin’s information

checking protocol [52] in the initial share distribution phase while ours do not need any verification

data in the initial share distribution phase.

Finally, we conclude this thesis with a general conclusion and some open problems in

Chapter 9.

2. CLASSICAL SECRET SHARING

The proposals of secret sharing can be dated back to 1979 and they were motivated as a response

to the problem of secure information storage. Briefly, secret sharing is a method by which a dealer

splits a secret into several shares and distributes them among players in a way that each authorized

subset can later reconstruct the secret by combining its members’ shares, while each unauthorized

set can not. Ever since it was proposed by Shamir [56] and Blakley [9] independently in 1979,

secret sharing has been a major building block for cryptographic primitives, particularly in the

area of distributed computing, such asmultiparty computation (MPC for short) [6,14,18], Byzantine

agreement [51], threshold cryptography [21], access control [44], attribute-based encryption [30] and

generalized oblivious transfer [59].

2.1 Communication Channels

In real life, people have many ways to communicate with one another, such as face to face, on the

phone, by email or through letters, each of which has different properties. However, in crypto-

graphic applications, we can only model the various means of communication by networks. Here-

inafter, all the channels are assumed to be secure, that is, they provides privacy and authentication.

In this section, we give informal definitions [55] for different communication channels, which enable

us to discuss and compare the relative strengths and weaknesses of them.

• A broadcast channel is a network among n participants, through which each participant Pi

can send a message in a way that each other player will eventually receive the same message

as the one sent by Pi. Intuitively, the broadcast channel models a player standing in a room

together with all the other players and making an announcement.

• A simultaneous broadcast channel is a network among n participants, through which all

participants can send messages in a way that for each 1 ≤ i ≤ n, players other than Pi will

receive the same message as the one sent by Pi. Moreover, all other players know this message

16 2. Classical Secret Sharing

is from Pi and all the messages are received simultaneously. Here by simultaneously, we mean

that all participants can simultaneously receive messages and so no participant can see what

the others broadcast before sending his own message. Intuitively, this channel models each

participant independently putting his message into an envelope marked with his name and

a trusted party opening all of the envelopes for all participants.

• A synchronous broadcast channel is a broadcast channel among n participants, who are syn-

chronized with respect to a global clock. It does not require participants receive messages

simultaneously. Instead, each participant is allowed to broadcast his message after he has

received some messages from other participants. Intuitively, this channel models each partic-

ipant putting his message into an envelope marked with his name, possibly after observing

some messages from the other participants and then a trusted party opening his envelope to

all participants.

• A secure channel between two players P and P ′ is a channel, through which P (P ′ resp.)

can send a message to P ′ (P resp.) in a way that P ′ (P resp.) will eventually receive the

same message as the one sent by P (P ′ resp.) Intuitively, this channel models a player P (P ′

resp.) writing his message on a note and passing it to P ′ (P resp.) out of sight of all other

players.

• An envelope channel allows each player P to seal a secret message into a specially marked

envelope in plain view and pass it across the table to another player P ′ in plain view. Later,

P ′ can open this envelope in such a way that everyone knows he opens it and only he can see

the data inside. Obviously, an envelope channel can be implemented only if all the players

rendezvous. However, in most cases, this requirement can not be satisfied.

We say that communication channel A is at least as strong as communication channel B if A can

be used to simulate B. The stronger a channel is, the more difficult it can be implemented in

practice. Clearly, the hierarchy of those channels related to strength is: an envelope channel > a

simultaneous broadcast channel > a synchronous broadcast channel > pairwise secure channels.

2.2. Basic Definitions on Secret Sharing 17

2.2 Basic Definitions on Secret Sharing

Suppose that n participants P1, . . . , Pn want to share a secret key in a way that only specific

subsets of these participants can reconstruct the secret. Each of these subsets of participants is

called an authorized subset and the set of all authorized subsets is called an access structure, which

is denoted by Γ. It is easy to understand that if a set A of participants can recover the secret, then

any superset of A can also recover the secret, namely, if A ∈ Γ and B ⊇ A, then B ∈ Γ. Conversely,

any collection of subsets satisfying the above property can be an access structure. Formally,

Definition 2.2.1. Let P := {P1, . . . , Pn} be a finite set of participants. A collection Γ ⊆ 2P is

monotone increasing if B ∈ Γ whenever A ⊆ B for some A ∈ Γ. An access structure is a monotone

increasing nonempty collection Γ(⊆ 2P) of non-empty subsets of P . Each set in Γ is called an

authorized subset and any set not in Γ is called an unauthorized subset. A := 2P \ Γ is called the

adversary structure (corresponding to Γ). The minimal access structure Γmin of Γ is defined to

be the set {A ∈ Γ : any proper subset of A is not in Γ}. Clearly, Γ uniquely determines Γmin and

vice versa. A is Q2 if P \ A ∈ Γ for any A ∈ A; A is Q3 if P \ (A ∪ B) ∈ Γ for any A,B ∈ A.

Given an access structure Γ, Γ⊥ := {A ⊆ P|Ac /∈ Γ}, where Ac denotes the complement of A, is

called the dual access structure of Γ and the corresponding adversary structure is denoted by A⊥,

which equals 2P \ Γ⊥.

Example 2.2.2. For any 1 ≤ t ≤ n, let Γ := {A ⊆ P : |A| ≥ t}. Γ is called the t-out-of-n threshold

access structure. The corresponding minimal access structure is Γmin = {A ⊆ P : |A| = t} and the

adversary structure is A = {A ⊆ P : |A| < t}. Obviously, A is Q2 if and only if n ≥ 2t−1, and A is

Q3 if and only if n ≥ 3t−1. Besides, it is not difficult to check that Γ⊥ = {A ⊆ P : |A| ≥ n− t+1}

and A⊥ = {A ⊆ P : |A| ≤ n− t}.

Definition 2.2.3. [5] Let S be a finite set of secrets, where |S| ≥ 2. A perfect secret sharing scheme

with domain of secrets S is specified by a pair Σ = (Π, µ), where µ is a probability distribution on

some finite set R (called the set of random strings) and Π, which is called a distribution function, is

a mapping from S×R to a set of n-tuples ×ni=1Si. Here Si is called the share domain of participant

Pi, 1 ≤ i ≤ n. (In most of the cases, µ is the uniform distribution and can be omitted.) A secret

s ∈ S is shared among n participants of P according to Σ by first sampling a random string r ∈ R

via µ, computing a vector of shares Π(s, r) = (s1, . . . , sn) ∈ ×ni=1Si and then sending the share

si to participant Pi secretly for 1 ≤ i ≤ n. We say that Σ realizes an access structure Γ if the

18 2. Classical Secret Sharing

following two requirements are satisfied:

Correctness. Each authorized subset can reconstruct the secret s. Formally, for any A ∈ Γ, say

A = {Pi1 , . . . , Pi|A|
}, there exists a reconstruction function ReconA : Si1 × · · · × Si|A|

−→ S such

that for every s ∈ S and for every r ∈ R chosen according to the distribution µ, the following

equation holds:

ReconA(Π(s, r)A) = s,

where Π(s, r)A denotes the restriction of Π(s, r) on A. 1

Privacy. Each unauthorized subset learns nothing about the secret (in the information-theoretic

sense) from their shares. Formally, for any unauthorized subset B 6∈ Γ, for every two secrets s and

s′ in S, and for every possible |B|-tuple of shares (si)Pi∈B, it holds that

Pr[Π(s, r)B = (si)Pi∈B] = Pr[Π(s′, r)B = (si)Pi∈B].

For simplicity, we can assume that
∑

is executed by a trusted third party D, called the

dealer, who also sends each share si to Pi through a secure channel that provides privacy and

authentication. Definition 2.2.3 requires correctness with probability 1 and perfect privacy without

relying on any computational assumption. Hence it is called a perfect secret sharing scheme.

Example 2.2.4. Shamir’s t-out-of-n Secret Sharing Scheme [56]

Let Γ = {A ⊆ P : |A| ≥ t} be a threshold access structure. Shamir [56] constructed a simple and

elegant scheme realizing Γ. In this scheme, the domain of the secrets is a finite field F = GF(q)

for some prime power q > n. To share a secret s ∈ F, the dealer chooses n distinct non-zero

elements α1, . . . , αn from F, which are known to all parties. Then he chooses t − 1 random

elements a1, . . . , at−1 uniformly and independently from F. Let f(x) = s+ a1x+ · · ·+ at−1x
t−1 be

a polynomial with degree at most t− 1. Let R = Ft−1, S1 = · · · = Sn = F. Then the distribution

function Π is defined as follows.

Π : S ×R → S1 × · · · × Sn

which maps (s, a1, . . . , at−1) to (f(α1), . . . , f(αn)). The share for player Pi is si = f(αi).

Roughly speaking, the correctness and privacy conditions of Shamir’s scheme follow from the

1 Hereinafter, Π(s, r)A denotes the shares of player Pi in A generated via Π with the secret s and a random string
r. Π(s, r)i denotes the shares of player Pi generated via Π with the secret s and a random string r.

2.2. Basic Definitions on Secret Sharing 19

Lagrange’s interpolation theorem: For every finite field, any t distinct field elements x1, . . . , xt,

and any t field elements y1, . . . , yt, there exists a unique polynomial Q of degree at most t− 1 over

this field such that Q(xi) = yi for 1 ≤ i ≤ t.

To verify the correctness condition of Shamir’s scheme formally, notice that every subset A

of size t holds t points of the polynomial f(x) and hence f(x) can be reconstructed by using

Lagrange’s interpolation, from which the secret s = f(0) can be recovered. More explicitly, a set

A = {Pi1 , . . . , Pit} computes a polynomial

g(x) =
t∑

l=1

sil
∏

1≤j≤t,j 6=l

αij − x
αij − αil

.

Notice that g(αil) = f(αil) for 1 ≤ l ≤ t, namely, f and g are polynomials of degree at most t− 1

that agree on t points. As a result, f = g and in particular, f(0) = g(0) = s. In this way, the

participants in A can recover s by computing

s = g(0) =

t∑

l=1

sil
∏

1≤j≤t,j 6=l

αij
αij − αil

.

Observe that s is the linear combination of the shares of the participants in A, for any A ∈

Γmin, where the coefficients depend only on the set A but are independent of the secret s and

(a1, . . . , at−1), the random string chosen for distributing shares for s.

Now we proceed to demonstrate the privacy condition. It suffices to show that any unauthorized

set B of size t − 1 gets no information about the secret s. However, since any unauthorized set

B = {Pi1 , . . . , Pit−1} of size t − 1 together with every possible secret a ∈ F (a can be regarded as

a value of some polynomial evaluated at the point 0) determines a unique polynomial fa of degree

at most t− 1, we have

Pr[Π(a, r)B = (sil)1≤l≤t−1] =
1

qt−1
.

In other words, the probability is the same for every a ∈ F, which completes the proof.

In Definition 2.2.3, we require correctness with probability 1 and perfect privacy: for every two

secrets s and s′, for any unauthorized subset B, the distributions of Π(s, r)B and Π(s′, r)B are

identical. It is well known that in a perfect secret sharing scheme, the bitsize of each share is at

least that of the secret, namely, log|Si| ≥ log|S| for 1 ≤ i ≤ n. However, in practice, it may be

20 2. Classical Secret Sharing

desirable for the size of the shares to be small, since it is more difficult and more expensive for

participants to store shares with larger bitsize. Hence, it makes sense to relax these requirements by

requiring that the correctness holds with high probability and that the statistical distance between

Π(s, r)B and Π(s′, r)B is sufficiently small.

Let I be an index set and Xi, i ∈ I, be a random variable. {Xi}i∈I is called a sequence of

random variables. In most of the cases that we consider, I = N, the set of natural numbers and

the corresponding sequence of random variables is {Xi}i∈N, where Xi is a random variable on

{0, 1}poly(i) for some specific polynomial poly.

Definition 2.2.5. Let ǫ : N → [0,∞) be a function. We say ǫ is negligible if for every positive

polynomial p(·), there exists an integer Np(·) > 0 such that for all l > Np(·), it holds that ǫ(l) <
1
p(l) .

We say that ǫ is noticeable if there exists a positive polynomial p(·) and an integer Mp(·) such that

ǫ(l) > 1
p(l) for any l > Mp(·).

Definition 2.2.6. Let {Xi}i∈N and {Yi}i∈N be two sequences of random variables. {Xi}i∈N and

{Yi}i∈N are said to be perfectly indistinguishable (i.e., identical) if for each i ∈ N and for each

ai ∈ {0, 1}poly(i), it holds that Pr[Xi = ai] = Pr[Yi = ai].

Definition 2.2.7. Let {Xi}i∈N and {Yi}i∈N be two sequences of random variables. {Xi}i∈N and

{Yi}i∈N are said to be statistically indistinguishable if

d(i) :=
1

2

∑

ai∈{0,1}poly(i)

|Pr[Xi = ai]− Pr[Yi = ai]|

is a negligible function.

Definition 2.2.8. Let {Xi}i∈N and {Yi}i∈N be two sequences of random variables. {Xi}i∈N and

{Yi}i∈N are said to be computationally indistinguishable (i.e., polynomial time indistinguishable) if

for any probabilistic polynomial time distinguisher T ,

t(i) := |Pr[T (Xi) = 1]− Pr[T (Yi) = 1]|

is a negligible function. Here t(i) represents the probability that T can distinguish Xi from Yi.

In Definition 2.2.3, the privacy condition requires that {Π(s, r)B} and {Π(s′, r)B} are perfectly

indistinguishable, for any s, s′ in the domain of the secrets and for any B /∈ Γ. Observe that the

2.2. Basic Definitions on Secret Sharing 21

sequences of random variables {Π(s, r)B} and {Π(s′, r)B} may vary when the length of the secret

or the number of participants varies. Hence, for simplicity, here we insert a security parameter

k, which may depend on the domain of the secrets and the number of participants, and the

corresponding sequence of random variables is denoted by {Π(s, r, k)B}. W are now well prepared

to give the following definitions.

Definition 2.2.9. Given an access structure Γ, a perfect secret sharing scheme realizing Γ is

specified by a distribution function Π : S ×R → S1 × · · · × Sn satisfying the following conditions:

• Correctness. ∀A ∈ Γ, ∀k ∈ N, there exists a set of reconstruction functions {ReconA :

(S1 × · · · × Sn)|A → S} such that for every s ∈ S,

Pr[ReconA(Π(s, r, k)A) = s] = 1.

• Perfect Privacy. For any B /∈ Γ, for every two secrets s, s′ ∈ S, Π(s, r, k)B and Π(s′, r, k)B

are perfectly indistinguishable.

Definition 2.2.10. Given an access structure Γ, a statistical secret sharing scheme realizing Γ is

specified by a distribution function Π : S ×R → S1 × · · · × Sn satisfying the following conditions:

• Correctness. ∀A ∈ Γ, ∀k ∈ N, there exists a set of reconstruction functions {ReconA :

(S1 × · · · × Sn)|A → S} such that for every s ∈ S,

Pr[ReconA(Π(s, r, k)A) = s] > 1− negl(k),

where negl(·) denotes a negligible function.

• Privacy. For any B /∈ Γ, for every two secrets s, s′ ∈ S, Π(s, r, k)B and Π(s′, r, k)B are

statistically indistinguishable.

Definition 2.2.11. Given an access structure Γ, a computational secret sharing scheme realizing Γ

is specified by a distribution function Π : S×R → S1×· · ·×Sn satisfying the following conditions:

• Correctness. ∀A ∈ Γ, ∀k ∈ N, there exists a set of probabilistic polynomial time computable

reconstruction functions {ReconA : (S1 × · · · × Sn)|A → S} such that for every s ∈ S,

Pr[ReconA(Π(s, r, k)A) = s] > 1− negl(k),

22 2. Classical Secret Sharing

where negl(·) denotes a negligible function.

• Privacy. For any B /∈ Γ, for every two secrets s, s′ ∈ S, Π(s, r, k)B and Π(s′, r, k)B are

computationally indistinguishable.

It is worth noticing that the privacy requirements in the three types of secret sharing schemes

defined above differ. With regard to the correctness condition, we emphasize that the recon-

struction functions for a computational secret sharing scheme should be computationally efficient

compared with perfect secret sharing schemes, and the correctness requirement for statistical (or

computational) secret sharing schemes is relaxed by allowing a negligible error probability. How-

ever, in practice it is always required that the reconstruction functions be computationally efficient.

The main advantage of computational secret sharing schemes over perfect secret sharing schemes

is that in the former, it is likely that log|Si| is strictly less than log|S|, that is, the share bitsize can

be less than the secret bitsize. This property is critical for some practical applications. Schemes

that satisfy these relaxed requirements are designed in [4, 8, 39].

Example 2.2.12. [3] The Asmuth-Bloom secret sharing scheme based on the Chinese Remainder

Theorem. Here Γ is a t-out-of-n threshold access structure.

• Share distribution phase:

– To share a secret s, the dealer D chooses a set of pairwise relatively prime integers

p0 < p1 < · · · < pn of bit length at least k, where k is a security parameter, s < p0 and

t∏

i=1

pi > p0

t−1∏

i=1

pn−i+1.

– D computes y = s+ a · p0, where a is a positive integer generated randomly subject to

the condition that

0 ≤ y <
t∏

i=1

pi.

– The share for Pi is yi := y mod pi.

• Secret reconstruction phase: any group of t players can recover s by using the Chinese

Remainder Theorem to solve a linear equation system consisting of t congruence expressions.

As pointed out in [3], the correctness of the preceding scheme holds with probability 1; however,

the privacy is not perfect, since from the perspective of any t − 1 players, for any s′, s′′ from the

2.3. Constructions of Secret Sharing Schemes for General Access Structures 23

domain of the secret, Pr[s = s′] and Pr[s = s′′] asymptotically equal. Indeed, a larger value of

p0 will inevitably lead to a smaller difference between these two probabilities and this difference

approaches to zero when p0 approaches to infinity. More precisely, |Pr[s = s′]−Pr[s = s′′]| = O(1
p20
).

2.3 Constructions of Secret Sharing Schemes for General Access Structures

2.3.1 Ito, Saito and Nishizeki’s Construction

Ito, Saito, and Nishizeki [33] defined secret sharing schemes for general access structures and

proposed a general construction for any monotone access structure. Let Γ be any monotone access

structure. The dealer shares the secret independently among each minimal authorized set A ∈ Γ.

More explicitly, to share a secret s ∈ {0, 1}, for every A = {Pi1 , . . . , Pil} ∈ Γmin, the dealer

• chooses l − 1 bits r1, . . . , rl−1 uniformly at random;

• computes rl = s
⊕
r1
⊕ · · ·⊕ rl−1, and

• gives rj to pij secretly.

Note that for each A ∈ Γ, the random bits are chosen independently. It is easy to check the

correctness and privacy conditions. We would like to emphasize that the number of bits that Pj

gets is the number of minimal authorized sets that contain Pj . As a consequence, the scheme is

highly inefficient for access structures in which the number of minimal authorized sets is big. Take

the t-out-of-n threshold access structure as an example. The number of bits that each participant

gets is
(
n
t−1

)
, which is Θ(2n/

√
n) when t = n

2 . It is far larger than the number of bits each

participant receives in Shamir’s secret sharing scheme, which is the same as the size of the secret.

2.3.2 The Monotone Formulae Construction

Benaloh and Leichter [7] proposed a construction of secret sharing schemes using monotone for-

mulae, which generalizes the construction in [33].

The basic idea behind their construction is to use a recursive approach: it begins with schemes

for simple access structures, from which a scheme for a composition of those simple access structures

is obtained. More explicitly, let Γ1 and Γ2 be two access structures on the same set of participants

P = {P1, . . . , Pn}, from which two new access structures Γ1 ∨ Γ2 and Γ1 ∧ Γ2 are defined as

follows: Γ1 ∨ Γ2 := {A|A ∈ Γ1 or A ∈ Γ2} and Γ1 ∧ Γ2 := {A|A ∈ Γ1 and A ∈ Γ2}. Let

24 2. Classical Secret Sharing

Πi : S × Ri → S(i)1 × · · · × S
(i)
n be a scheme realizing Γi, i = 1, 2, where the common domain of

secrets is S.

First, a secret sharing scheme realizing Γ1 ∨ Γ2 is constructed as follows. Let s be the secret

to be shared. Let Π1(s, r1) = (s11, . . . , s1n) and Π2(s, r2) = (s21, . . . , s2n), where ri is chosen

uniformly and independently from Ri, i = 1, 2. Now let

Π∨ : S ×R1 ×R2 → S(1)1 × · · · × S(1)n × S(2)1 × · · · × S(2)n

(s, r1, r2) 7→ (s11, . . . , s1n, s21, . . . , s2n),

where the share domain for player Pi is S(1)i ×S
(2)
i and the pair (s1i, s2i) is given to Pi as his share,

for 1 ≤ i ≤ n.

It is not difficult to prove that Π∨ is a perfect (statistical or computational, respectively) secret

sharing scheme computing Γ1 ∨ Γ2 provided that Πi is a perfect (statistical or computational,

respectively) secret sharing scheme computing Γi, i = 1, 2.

Second, a secret sharing scheme realizing Γ1 ∧ Γ2 is constructed below. As before, let s be

the secret to be shared. Choose s1 and s2 randomly from S conditioned on s1 + s2 = s and

then distribute shares for si using Πi, i = 1, 2. More explicitly, let Π(s1, r
′
1) = (s′11, . . . , s

′
1n) and

Π(s2, r
′
2) = (s′21, . . . , s

′
2n), where r

′
i is chosen uniformly and independently from Ri, i = 1, 2. Let

Π∧ : S ×R1 ×R2 → S(1)1 × · · · × S(1)n × S(2)1 × · · · × S(2)n

(s, r′1, r
′
2) 7→ (s′11, . . . , s

′
1n, s

′
21, . . . , s

′
2n),

where the share domain for player Pi is S(1)i ×S
(2)
i and the pair (s′1i, s

′
2i) is given to Pi as his share,

for 1 ≤ i ≤ n.

Once again, it can be proved that Π∧ is a perfect (statistical or computational, respectively)

secret sharing scheme realizing Γ1 ∧ Γ2 provided that Πi is a perfect (statistical or computational,

respectively) secret sharing scheme realizing Γi, i = 1, 2.

Now for any access structure Γ = {A1, . . . , Al}, it is theoretically possible to construct a

secret sharing scheme realizing it by using the method demonstrated above recursively, since Γ =

{A1}∨· · ·∨{Al} and there is Shamir’s |Ai|-out-of-|Ai| secret sharing scheme for each {Ai}, 1 ≤ i ≤ l.

As mentioned before, the construction of [7] generalizes that of [33]. To justify this, suppose

2.3. Constructions of Secret Sharing Schemes for General Access Structures 25

Γmin = {A1, . . . , Ah} and let Γi := {A1, . . . , Ai}, 1 ≤ i ≤ h. Clearly, Γi = Γi−1 ∨ {Ai} and for

each 1 ≤ i ≤ h, the Ito-Saito-Nishizeki scheme realizes {Ai} with the domain of secrets {0, 1},

where each player in Ai receives a one-bit share. Now the Ito-Saito-Nishizeki scheme realizing Γ

follows directly by applying the Benaloh-Leichter scheme recursively. To characterize the access

structures that can be efficiently computed by the construction of Benaloh and Leichter, we need

to view each access structure as a function as follows. First we identify each set A ⊆ P with it’s

characteristic vector ϑA ∈ {0, 1}n, where the ith entry ϑA[j] equals 1 if and only if Pj ∈ A. On

the other hand, for an access structure Γ, we associate the function fΓ : {0, 1}n → {0, 1}, where

fΓ(ϑB) = 1 if and only if B ∈ Γ. In this way, fΓ and Γ are uniquely determined by each other, that

is, fΓ completely describes Γ and vice versa. The Boolean function fΓ is monotone increasing since

Γ is. Furthermore, fΓ1 ∨fΓ2 = fΓ1∨Γ2 and fΓ1 ∧fΓ2 = fΓ1∧Γ2 . Hence, if an access structure can be

described by a small monotone formula, which is defined to be a formula with OR and AND gates

but without NEGATION gates and without negated variables, it can be efficiently computed by

the construction of Benaloh and Leichter. Here by small, we mean that the size of such formula,

which is defined to be the number of leaves in the tree describing the formula, is small.

Proposition 2.3.1. [7] Let Γ be an access structure and assume that fΓ can be computed by a

monotone formula in which the variable xj appears aj times in the formula. Then the share bit

size of Benaloh-Leichter scheme realizing Γ is the product of max1≤j≤naj and the bit size of the

secret.

Since any monotone Boolean function with n variables can be computed by a monotone formula,

any access structure can be computed by the Benaloh-Leichter scheme. The bad news is that for

most monotone Boolean functions, the sizes of the smallest monotone formula computing them are

exponential in n, that is, in the resulting scheme, the bit length of the shares is exponential in the

number of participants even for a one-bit secret. In all, their construction is not efficient in most

of the cases. Actually, it remains open whether there exist efficient schemes for any given access

structure, or whether there exists an access structure that does not have efficient schemes. As far

as these problems are concerned, Beimel gave the following conjecture:

Conjecture 2.3.2. [5] There exists an ǫ > 0 such that for every positive integer n there is an

access structure with n parties, for which every secret sharing scheme realizing it distributes shares

of length exponential in n, that is 2ǫn.

26 2. Classical Secret Sharing

Ever since this conjecture was proposed, proving or disproving it has been one of the most

important open questions concerning secret sharing. The best lower bound that is known so far

is given by Csirmaz [19], who constructed for each positive integer n, an explicit access structure

with n players, for which the sum of the bit sizes of the shares in every secret sharing scheme is the

product of Ω(n2/logn) and the bit size of the secret (for each secret domain that is finite). Since

the focus of our research is not on the efficiency of secret sharing schemes, we do not go further in

this direction.

2.4 Linear Secret Sharing Schemes and Monotone Span Programs

Most of the existing secret sharing schemes, such as [3, 7, 8, 12, 56], belong to a class of schemes

which are known as linear secret sharing schemes. Informally, a linear secret sharing scheme is

defined over a finite field F and the secret to be shared is an element in F. Each player receives

from the dealer a share consisting of one or more field elements and each share is computed as a

fixed linear function of the secret along with some randomly chosen field elements. Formally,

Definition 2.4.1. Given an access structure Γ, a linear secret sharing scheme realizing Γ is

specified by a distribution function Π : S × R → S1 × · · · × Sn and the corresponding set of

reconstruction functions {ReconA : (S1 × · · · × Sn)|A → S|A ∈ Γmin} that satisfy the following

conditions:

• S is a finite field, say F, and each Si, 1 ≤ i ≤ n, as well as R, is a finite dimensional vector

space over F, that is, ∀1 ≤ i ≤ n, Si = Fdi for some positive integer di and R = Fl for some

positive integer l.

• Each reconstruction function is linear. More explicitly, for any A ∈ Γmin, there exists a set

of constants {aij ∈ F : Pi ∈ A, 1 ≤ j ≤ di} such that for any s ∈ S, r ∈ R, it holds that

s =
∑

Pi∈A

∑di
j=1 aijΠij(s, r), where

Π(s, r) = (Π11(s, r), . . . ,Π1d1(s, r), . . . ,Πn1(s, r), . . . ,Πndn(s, r))

is an element in Fd1 × · · · × Fdn and the tuple (Πi1(s, r), . . . ,Πidi(s, r)) is Pi’s share, for

1 ≤ i ≤ n. Note that here the set of constants {aij ∈ F : Pi ∈ A, 1 ≤ j ≤ di} is independent

of both s and r, instead, it only depends on A.

2.4. Linear Secret Sharing Schemes and Monotone Span Programs 27

• Privacy: For any B /∈ Γ, B can not get any information about the secret s.

In the above definition, the requirement for security (or privacy) is in the information-theoretic

sense, which however is not a restriction since it has been proved in [41] that every linear secret

sharing scheme is perfect.

In 1989, Brickell [11] first defined monotone span programs, in which ψ is assumed to be

bijective. Later in 1993, Karchmer and Wigderson [35] explicitly defined span programs and

monotone span programs in general case.

Definition 2.4.2. [35] A monotone span program M is a quadruple (F,M, ε, ψ), where F is a

finite field, M is an m × e matrix, ψ : {1, . . . ,m} → {P1, . . . , Pn} is a surjective function and

ε = (1, 0, . . . , 0) ∈ Fe is a fixed vector called the target vector. 2

ψ labels each row with a participant from {P1, . . . , Pn}, so we can regard each participant as

being the ”owner” of one or more rows. Hereinafter, without loss of generality, we can assume

that the columns of M are linearly independent. In the following, MA denotes M restricted to

those rows assigned via ψ to the players in A and span(MA) denotes the vector space spanned by

the rows of MA, where A is any subset of P . We denote M{Pi} as MPi
for simplicity. M yields a

linear secret sharing in the following way: to distribute a secret s ∈ F, the dealer chooses a random

vector ρ ∈ Fe−1 and writes θ = (s, ρ). For each 1 ≤ i ≤ n, MPi
· θT is given to Pi as his share.

The following proposition was proved by Brickell [11], Brickell and Davenport [12] and Karchmer

and Wigderson [35]. It implies that the resulting linear secret sharing scheme has access structure

Γ = {A ⊆ P : ε ∈ span(MA)}.

Proposition 2.4.3. [11, 12, 35] Given an access structure Γ, if (F,M, ε, ψ) is constructed such

that: ε ∈ span(MA) if and only if A ∈ Γ, then the resulting linear secret sharing scheme realizes Γ

and in this case we say that (F,M, ε, ψ) computes Γ.

Proof. First, we show that every authorized subset A ∈ Γ can reconstruct the secret. By assump-

tion, ε ∈ span(MA), that is, there exists some vector ϑ such that ε = ϑ ·MA. Thus, the participants

in A can recover the secret s by computing

ϑ · (MA · θT) = (ϑ ·MA) · θT = ε · θT = 〈ε, θ〉 = s,

2 Any nonzero vector in Fe can be a target vector.

28 2. Classical Secret Sharing

where 〈·, ·〉 denotes the scalar product of two vectors. Note that MA · θT is available to A, since

its entries are exactly the shares of the participants in A.

Next we prove the privacy condition. For any B /∈ Γ, it holds that ε /∈ span(MB). Thus

rank(MB) < rank(
(
MB

ε

)
), where

(
MB

ε

)
is the matrix containing the rows of MB along with an

additional row ε. It follows that there is a vector ω ∈ Fe whose first coordinate is 1 (namely, the

scalar product 〈ε, ω〉 equals 1) such that MB · ωT = 0. Without loss of generality, we assume that

(s1, . . . , s|B|) is the tuple of shares of participants in B when the secret is s. Now for any s′ ∈ F,

let µ = θ + (s′ − s)ω. Note that the first coordinate of µ is s′, since the first coordinate of ω is 1

and the first coordinate of θ is s. Since MB · µT =MB · θT + (s′ − s)(MB · ωT) = (s1, . . . , s|B|)
T ,

s1, . . . , s|B| are also the shares of participants in B when the secret is s′. Thus, for every s ∈ F,

the number of random strings that generate the shares s1, . . . , s|B| for participants in B when the

secret is s is the same as the number of random strings that generate those shares when the secret

is s′. This completes the proof for privacy.

Example 2.4.4. Let P = {P1, . . . , P6} be a set of players. Consider the access structure Γ over

P defined by

Γmin = {{P1, P2}, {P3, P4}, {P5, P6}, {P1, P5}, {P1, P6}, {P2, P6}, {P2, P5}, {P3, P6}, {P4, P5}}

Define the matrix M over F = GF(2) with the labeling map ψ such that

MP1 =




1 0 1 0 0

0 0 0 1 0

0 0 0 0 1




MP2 =




0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




MP3 =




1 1 0 0 0

0 0 0 0 1




2.5. Verifiable Secret Sharing 29

MP4 =




0 1 0 0 0

0 0 0 1 0




MP5 =




1 1 1 0 0

1 0 0 1 0




MP6 =




0 1 1 0 0

1 0 0 0 1




It can be easily checked thatM = (F,M, ψ, ε) computes Γ.

Karchmer and Wigderson [35] showed that monotone span programs imply linear secret shar-

ing schemes. Beimel [5] proved the converse direction. Thus, linear secret sharing schemes are

equivalent to monotone span programs. Hence, we do not distinguish between a monotone span

program and the corresponding linear secret sharing scheme.

2.5 Verifiable Secret Sharing

We would like to emphasize that the correctness and privacy of the constructions in the plain

secret sharing schemes described above cannot be guaranteed without the assumption that each

player as well as the dealer is honest, namely, he always follows the prescribed steps. However,

in practice, this assumption cannot be guaranteed automatically. Instead, the participants are

supposed to be partitioned into two categories: honest participants and malicious participants.

Here by malicious participants, we mean that they can act in an arbitrary manner in order to

disrupt the protocol. Besides, as malicious parties may communicate with each other to form

secret coalitions (here secret means that each honest player has no idea about who is malicious

and who is not), all the malicious parties are often modeled as being controlled by a single entity

called an adversary, who can be the dealer, some participant or some outsider. With regard

to the adversary, one can consider semi-honest (or passive) adversaries (who follow the protocol

honestly but try to learn more than they should) or malicious (or active) adversaries (who act

in an arbitrary manner). In addition, an adversary may be limited to polynomial-time (yielding

the computational setting) or unbounded (yielding the information-theoretic setting). Finally, the

adversary may be static (meaning that the set of corrupted parties is fixed before the protocol

30 2. Classical Secret Sharing

begins) or adaptive (meaning that the adversary can adaptively choose which participants to

corrupt during the execution of the protocol). Most of the constructions we have introduced so far

fail in this adversary model. Take Shamir’s t-out-of-n secret sharing scheme [56] as an example.

In the process of secret reconstruction, if a single player broadcasts a fake share while the other

t − 1 players act honestly, then he will be the only one learning the real secret. This motivates

the primitive of verifiable secret sharing [6, 14, 25, 28, 42, 52, 53, 60], which allows each player to

check the consistency of the shares distributed by the dealer when the dealer is corrupted and

allows each player to check the validity of other players’ shares during the secret reconstruction

phase. Besides, the privacy and correctness requirements of a verifiable secret sharing scheme can

be achieved even when some percentage of the participants (including the dealer) are controlled by

the adversary. Due to these properties, it has turned out to be a useful building block for secure

multiparty computation.

Tompa and Woll [60] and McEliece and Sarwate [42] first considered schemes with faulty

participants and gave practical solutions for that problem. In their scheme, the dealer is always

assumed to be honest. Chor et al. [16] first defined the complete notion of verifiable secret sharing

and gave a construction based on some cryptographic assumptions. There are many papers which

have discussed verifiable secret sharing recently. Most schemes use zero-knowledge proofs, such

as [6, 14, 25, 28, 52, 53]. Others use cryptographic assumptions such as the hardness of discrete

logarithm [24, 50]. It was shown in [6] that (in the active adversary model) in any unconditional

secure t-out-of-n verifiable secret sharing scheme, it holds that t < n
3 . This result implies that any

verifiable secret sharing scheme (resilient to an active adversary) with t ≥ n
3 will inevitably rely

on some cryptographic assumptions. On the other side, in the passive adversary model, in any

unconditional secure t-out-of-n verifiable secret sharing scheme, it holds that t < n
2 .

Verifiable secret sharing can be classified into two groups: interactive verifiable secret sharing -

interactions between the players (may include the dealer) are needed in order to verify the shares

and non-interactive verifiable secret sharing - no interaction between the players is needed for

the verification of shares. Obviously, the latter is easier to be implemented in practice and we

have more interest in it. In such a scheme only the dealer is allowed to send messages and in

particular, the players can not communicate with each other or with the dealer during the process

of verification. There are two famous non-interactive secret sharing schemes in the history, both

of which rely on the computational assumption that computing discrete logarithm is hard. One

2.6. A t-out-of-n Verifiable Secret Sharing Scheme Based on the Asmuth-Bloom Secret Sharing Scheme 31

is given by Pedersen in [50], where no information about the secret is revealed but the dealer can

succeed in distributing inconsistent shares with a negligible probability. The other is given by

Feldman in [24], where each single player can recover the secret with a negligible probability but

even an infinitely powerful dealer can never succeed in distributing inconsistent shares. As pointed

out by Pederson [50], it is impossible to construct a non-interactive verifiable secret sharing scheme

in which no information about the secret is revealed and even a dealer with unlimited computing

power can not succeeding in distributing inconsistent shares. In this sense, these two schemes

complement each other.

Here we would like to introduce the non-interactive verifiable secret sharing scheme based on

the Chinese Remainder Theorem [36], merely for the reason that we will use it (with some necessary

modifications for our needs) as a building block for our construction in Chapter 7.

2.6 A t-out-of-n Verifiable Secret Sharing Scheme Based on the Asmuth-Bloom

Secret Sharing Scheme

In order to allow players successfully detect inconsistent shares from a dishonest dealer, Kaya and

Selcuk used a range proof technique originally proposed by Boudot [10] and later modified by Cao

et al.[13] to prove that a committed number lies within some interval. We are going to introduce

this technique in the following subsection.

2.6.1 Range Proof Techniques

Boudot [10] proposed an efficient and non-interactive technique to prove that a committed number

lies within an interval. Cao et al. [13] applied the same proof technique with a different commitment

scheme to obtain shorter range proofs: the commitment of a number y is computed as

E = E(y) = gy mod N,

where g is an element in Z∗
N and the factorization of N is not known. We refer the readers to

[13] for further details. Throughout this section, we will use RngPrf(E(y),M) to denote the range

proof that a secret integer y committed with E(y) is in the interval [0,M) and we will use it as a

black box.

32 2. Classical Secret Sharing

2.6.2 The Scheme

Share Distribution Phase

1. Parameters Setup

To share a secret s, the dealer chooses p0(> s) and publishes it.

1. The dealer chooses and publishes a set of prime integers p1, . . . , pn of bit length at least k

(a security parameter) such that the following requirements are satisfied:

(a) p0 < p1 < · · · < pn;

(b)
∏t
i=1 pi > p0

∏t−1
i=1 pn−i+1;

(c) qj = 2pj + 1 is prime for any 1 ≤ j ≤ n.

2. For any 1 ≤ i ≤ n, let Gi be a subgroup of Z∗
qi

of order pi and gi be a generator of Gi. Let

Q =
∏n
i=1 qi. He computes g = (

∑n
i=1 gi ·Q′

i · Qqi) mod Q, where Q′
i denotes the inverse of

Q
qi

in Z∗
qi
. The dealer publishes g.

3. The dealer chooses and publishes an RSA modulus N whose factorization is unknown to

any of the n players.

2. Share Distribution

To share a secret s ∈ Zp0 among a group of n players {P1, . . . , Pn}, the dealer executes the

following steps.

1. He sets M :=
∏t
i=1 pi. He computes y = s+A0 · p0 for some positive integer A0 generated

randomly subject to the condition that 0 < y < M , calculates yi = y mod pi and finally

sends the share yi to player Pi secretly, for 1 ≤ i ≤ n.

2. He computes E(y) := gy mod QN and broadcasts E(y) and RngPrf(E(y),M).

3. Each player Pi checks whether g
yi
i ≡ E(y) mod qi to verify yi = y mod pi. Then he checks

the validity of the range proof to verify y < M . If either of the two check procedures fails,

Pi broadcasts a complain about the dealer.

4. If at least t players complain, the dealer is disqualified.

2.7. Proactive Secret Sharing 33

Secret Reconstruction Phase

Let U be a coalition of at least 2t− 1 players.

1. The share yi of player Pi can be verified by the other players in U with the verification

equality gyii ≡ E(y) mod qi.

2. If all shares are valid, the players can obtain the secret s by using the reconstruction proce-

dure described in the Asmuth-Bloom Secret Sharing Scheme [3]. Otherwise, the corrupted

players are disqualified and the remaining players recover the secret by ignoring the cor-

rupted shares.

Theorem 2.6.1. [36] When the dealer and the players are honest, any coalition of t players can

recover the secret s. On the other hand, under the assumptions related to discrete logarithm problem

and RSA, for a passive adversary who obtains t−1 shares, every candidate for the secret is equally

likely, i.e., the probabilities Pr[s = s′] and Pr[s = s′′] are approximately equal for all s′, s′′ ∈ Zp0

provided that p0 is large enough.

Theorem 2.6.2. [36] Under the assumptions related to discrete logarithm problem and RSA, a

corrupted dealer cannot cheat in this VSS scheme without being detected except with negligible

probability. In other words, if the shares are inconsistent with the secret s, then at least one

verification equation does not hold except with negligible probability in the security parameter k.

Theorem 2.6.3. [36] Under the assumptions related to discrete logarithm problem and RSA, no

player can cheat in this VSS scheme without being detected.

2.7 Proactive Secret Sharing

Secret sharing schemes protect secrets by splitting them among a set of players. In particular, in

t-out-of-n threshold schemes, security (privacy) is guaranteed if throughout the entire life-time of

the secret, the adversary is restricted to compromise less than t players. However, for long-lived

and sensitive secrets, this protection may be insufficient, since the adversary has the entire life-time

34 2. Classical Secret Sharing

of the secret to corrupt players one by one. This limitation motivated the primitive of proactive

secret sharing, which was first proposed by Herzberg, Jarecki, Krawczyk and Yung [32]. Proactive

security refers to security and correctness in the presence of a mobile adversary, who is able to

attack all the players over a long period of time and in any time period there are only a subset

of players that are corrupted. Here time is divided into time periods which are determined by a

common global clock (e.g., a day, a week, etc.). Hence, in a proactive secret sharing scheme, in

order to periodically renew their shares without changing and revealing the secret, players need

to execute a share update protocol merely by interactions among themselves in such a way that

any information learned by the adversary during each period becomes obsolete after the shares are

renewed, and as a result, the adversary has to start a new attack from scratch during each time

period. At the beginning of each time period, the players engage in an interactive update protocol

and at the end of an updated phase, the players hold new shares of the secret s. The adversary

can corrupt players at any moment during a time period. If a player is corrupted during an update

phase, he is regarded as being corrupted during both periods adjacent to that update phase. Note

that once a player is corrupted, the adversary learns the internal state of the player, which consists

of the complete history of that player, and takes full control of that player and can make him

deviate from the protocol in any desired manner. There is much research on this topic [20,32,57].

However, in the rest of this section, we would like to introduce the proactive secret sharing scheme

proposed by Arco and Stinson [20], since the basic idea behind it will be used in our protocol in

Chapter 6.

2.7.1 An Unconditionally Secure Proactive t-out-of-n Secret Sharing Scheme

This scheme was proposed by Arco and Stinson in [20], where they slightly modified the version

of the scheme proposed by Stinson and Wei in [57]. There is an adversary who can corrupt up

to b players including the dealer. Here n ≥ t + 3b and t > b + 1. We assume that all players are

connected by pairwise secure channels and have access to a broadcast channel. Let F = GF(q) be

a finite field, of which ω is a primitive element. In the following protocol, all the computations are

in the field F.

2.7. Proactive Secret Sharing 35

Share Distribution Phase

• To share a secret s among n participants, the dealer chooses a symmetric polynomial

f(x, y) =

t−1∑

i=0

t−1∑

j=0

aij x
i yj ,

where a00 = s and aij(= aji) are chosen randomly and independently from F for all i, j.

Then for each l, he sends hl(x) = f(x, ωl) to player Pl through a secure channel. Besides,

for each i, Pi generates and sends to every player Pl (l 6= i) a random value ril ∈ F through

pairwise secure channels.

• After receiving hl(x) and r1l, . . . , rnl, each player Pl broadcasts the value hl(ω
u)+ rlu+ rul,

for each u 6= l.

• Each player Pi computes the maximum subset G ⊆ {1, . . . , n} such that any ordered pair

(u, l) is consistent, that is, hl(ω
u) + rlu + rul = hu(ω

l) + rul + rlu. If |G| > n− t, then Pi
outputs ACCEPT. Otherwise, Pi outputs REJECT.

• If at least n− b of the players output ACCEPT, then the dealer erases all the information

about the scheme on his end. Otherwise, the dealer reboots the whole system and initializes

the system again.

Remark 2.7.1. Note that here every honest participant computes the same subset G at the

end of the share distribution phase. We like to emphasize that the adversary could provide correct

information during the share distribution phase but wrong information in the reconstruction phase.

Secret Reconstruction Phase

• Each player Pi sends hi(0) to each Pl, where i ∈ G, the set of good players after the share

distribution phase.

• After receiving the hi(0)s, Pl computes a polynomial fl(0, y) such that fl(0, ωi) = hi(0) for

at least n− 2b of the data he has received. This operation can be done efficiently by using

error correction techniques for Reed-Solomon Codes [54].

• Player Pl computes and outputs s′ = fl(0, 0).

The following steps allow players to update their shares related to the original secret s without

revealing any information about s. Besides, after this process, the previous shares become obsolete.

36 2. Classical Secret Sharing

Share Renewal Phase

• Each player Pl selects a random symmetric polynomial rl(x, y) =
t−2∑
i=0

t−2∑
j=0

rlij x
i yj , where

rlij = rlji for all i, j.

• Pl sends hlu(x) = rl(x, ωu) to Pu for u ∈ {1, . . . , n} \ {l} by pairwise secure channels.

Share Renewal Phase, cont.

• After receiving hlu(x), Pu computes and sends the value hlu(ω
v) to Pv, for v ∈ {1, . . . , n}\{u}

by pairwise privacy channel.

• Pv checks whether hlv(ω
u) = hlu(ω

v) for u = 1, . . . , n. If the equation is not true for more

than b values of u, then Pv broadcasts an accusation of Pl.

• If Pl is accused by at most b players, then he can defend himself as follows: for those Pi he

is accused by, Pl broadcasts h
l
i(x). Then, player Pu checks whether hli(ω

u) = hlu(ω
i) and

broadcasts ”yes” or ”no” accordingly. If, for every broadcasted hli(x), there are at least

n − b − 2 players broadcasting yes, then Pl is not a bad player. In this case, if Pi has an

hli(x) different from the one that Pl has broadcasted, then he stores the broadcasted one.

• Pv updates the list G of good players (namely, the players found bad in the previous step

are not in G) and updates his share as

hv(x)← hv(x) + (x + ωv)h∗v(x),

where h∗v(x) =
∑

l∈G h
l
v(x).

During each time period, the players need to check if some of them have been corrupted by the

adversary and those corrupted players should be rebooted to recover their secret shares in order

to recover a correct secret. The following steps enable the detection of corrupted players and the

recovering of good shares, once the corrupted players have been rebooted.

2.7. Proactive Secret Sharing 37

Detection Phase

• Pl computes and sends hl(ω
u) to Pu for u = 1, . . . , n by pairwise secure channels.

• Pu checks whether hl(ω
u) = hu(ω

l). Then he broadcasts an accusation listu which contains

those l such that hl(ω
u) 6= hu(ω

l) or hl(ω
u) was not received.

• Each good player updates the list G so that it does not contain those l accused by at least

b+ 1 players of the system.

Rebooting Phase

• For each l /∈ G, every good player Pi computes and sends hi(ω
l) to Pl.

• Upon receiving the data, Pl computes the polynomial hl(x) that agrees with the majority

of the values hl(ω
u) he has received. Pl sets hl(x) as his new share.

38 2. Classical Secret Sharing

3. LINEAR SECRET SHARING SCHEMES AND LINEAR BLOCK CODES

In this chapter, we introduce the notion of linear block codes associated to linear secret sharing

schemes, which was proposed by Nikova and Nikov [45]. Let P = {P1, . . . , Pn} be a set of players

and Γ be an access structure over P . Let M = (F,M, ε, ψ) be a monotone span program (MSP

for short) computing Γ, where without loss of generality, we assume that the columns of M are

linearly independent and ψ preserves ordering, that is, ψ(i) ≤ ψ(j) whenever i < j. (Here the

ordering on the set of players is defined to be: P1 < · · · < Pn). Let C be the linear code generated

byMT . As a classical code, C can correct v errors if and only if 2v+1 ≤ d, where d is the minimal

distance of C. Let mi be the number of rows assigned to Pi via ψ, for 1 ≤ i ≤ n. In this chapter,

we regard C as a linear block code by splitting each codeword of C into n parts such that it is an

element of Fm1 × · · · × Fmn and define the set of admissible distances of C, denoted by Γ(C), and

the set of forbidden distances of C, denoted by ∆(C), which plays a role as Hamming distance does

in classical codes, since we may measure the error-set correcting ability of the linear block code

C by ∆(C). Nikova and Nikov [45] demonstrated that C can correct each error pattern A ∈ A

if and only if C satisfies the condition A ⊎ A ⊆ ∆(C), where A denotes the adversary structure

and A ⊎ A = {B1 ∪ B2 : B1, B2 ∈ A}. However, it is hard to check directly fromM whether the

condition A⊎A ⊆ ∆(C) is satisfied or not. In this chapter, we make an attempt to partially solve

this problem by proposing an equivalent condition for A ⊎A ⊆ ∆(C) from the perspective of the

matrix M⊥, whose first column is a solution vector of MT · X = 0 and the remaining columns

form a basis of the space ker(MT). Besides, we demonstrate that C can detect all error patterns

in A if and only if A ⊆ ∆(C) and give an equivalent condition from the perspective of M⊥.

40 3. Linear Secret Sharing Schemes and Linear Block Codes

3.1 Linear Block Codes Associated to Linear Secret Sharing Schemes

Let M = (F,M, ε, ψ) be a monotone span program computing Γ, where M has size m × e. Let

Lsss : (F,Fe−1) → Fm be a function defined below:

Lsss(s, ρ) = (s, ρ) ·MT ,

where s is the secret to be shared and ρ is a random vector chosen from Fe−1 when sharing s.

Definition 3.1.1. An [m, e] linear code C over a finite field F is an e-dimensional subspace of Fm,

where m denotes the length of the vectors in C. Each vector c in C is called a codeword of C and

each vector in Fm is called a word.

As before, let M = (F,M, ε, ψ) be an MSP computing an access structure Γ, where without

loss of generality we assume that the columns of M are linearly independent. Let G =MT , where

T denotes transposition of matrices. Then G has full rank e, since M has rank e. Let C be the

subspace spanned by the rows of G. Clearly, C is an [m, e] linear code and Lsss(s, ρ) = (s1, . . . , sm)

is a codeword of C, that is, the sequence of all the shares, when rearranged properly, is a codeword

of C. In the following, without loss of generality, we always assume that ψ preserves ordering, i.e.,

ψ(i) ≤ ψ(j) whenever i < j, where it is assumed that P1 < · · · < Pn. Let mi = |{j : ψ(j) = Pi}|,

that is, mi is the number of rows assigned to Pi, 1 ≤ i ≤ n. Let λi = m1 + · · ·+mi for 1 ≤ i ≤ n

and λ0 = 0. Then for any 1 ≤ i ≤ n, Si = (sλi−1+1, . . . , sλi−1+mi
) is the share for Pi. It is quite

natural to regard (S1, . . . , Sn) as an n-tuple that belongs to Fm1 × · · · × Fmn . Hereinafter, for

each codeword ω ∈ C, we regard it as a tuple in Fm1 × · · · × Fmn . In this way, each codeword

ω ∈ Fm1 × · · · × Fmn is called a block codeword and C(⊆ Fm1 × · · · × Fmn) is called a block code.

For each vector in Fm1 × · · · × Fmn , we index the ith block by Pi.

Definition 3.1.2. Let ν = (VP1 , . . . , VPn
) ∈ Fm1 × · · · × Fmn . supp(ν) := {Pi : VPi

6= 0} is called

the block support of the block vector ν.1

If an MSP M = (F,M, ε, ψ) computing a given access structure Γ has size n, that is, ε is

injective, then each P ′
is share is a field element. As a result, the bitsize of each share equals the

bitsize of the secret. In this case, the corresponding linear block code C is a classical linear code,

1 Each block support is a subset of players. In this thesis, we only consider block support and we call it support
for simplicity.

3.1. Linear Block Codes Associated to Linear Secret Sharing Schemes 41

which is a subspace of Fn. The Hamming sphere Br(X) of radius r centered around a vector

X ∈ Fn is defined as Br(X) = {Y ∈ Fn : d(X,Y) ≤ r}, where d(X,Y) := | supp (X − Y)|

is called the Hamming distance between X and Y . Given a code C, the minimal distance of

C, denoted by d, is the smallest of all distances between different codewords in C, namely, d =

min w1,w2∈C,w1 6=w2d(w1, w2). One of the basic coding theory problems is the so-called Sphere

Packing Problem: given n and r, what is the maximal number of non-intersecting spheres of radius

r that can be placed in Fn, the n-dimensional Hamming space. Note that the distance between

any two distinct centers of these pairwise disjoint spheres is at least 2r+1. Suppose one codeword

of C is transmitted and at most ⌊d−1
2 ⌋ errors occur during the transmission due to channel noise.

To decode the received message, namely, to determine which codeword was actually transmitted,

we can compute the Hamming distance between the received message and each of the codewords

of C. Observe that all the spheres with radius ⌊d−1
2 ⌋ centered at the codewords of C are pairwise

disjoint. Since at most ⌊d−1
2 ⌋ errors occur, the transmitted codeword will be the (unique) nearest

codeword to the received vector. In this way, all errors can be corrected. It follows that a code

(not necessarily linear) with minimal distance d can correct at most ⌊d−1
2 ⌋ errors. Obviously, the

minimal distance of a classical code measures its error-correcting ability: the larger the minimal

distance is, the larger the number of errors that it can correct. However, in the model of secret

sharing, we assume that all the communication channels are secure, and hence there is no channel

noise. Instead, an adversary may corrupt some subset A ∈ A of players by forcing them to send

fake shares in the secret reconstruction process. In this situation, the error positions are not totally

random, but instead, they form a set which belongs to A, the adversary structure. More explicitly,

let S = (SP1 , · · · , SPn
) be a block codeword, where SPi

is Pi’s share from the dealer. In the

reconstruction phase, each player broadcasts his share. For 1 ≤ i ≤ n, let Si be the tuple of the

messages Pi collected. It is likely that Si 6= S and in this case, S − Si is called an error vector.

However, what we are certain is that supp(S − Si) ∈ A. An error vector is called an A-error if its

support is in A. Nikov et al. [46, 47] made a first step to characterize the error-correcting ability

of any linear block code by its forbidden distances, where each possible error vector is supposed to

be an A-error.

42 3. Linear Secret Sharing Schemes and Linear Block Codes

3.2 A-Error Correctable Linear Secret Sharing Schemes

First, we briefly recall some definitions and observations. The following operation for monotone

decreasing sets, which is called element-wise union, was introduced in [23, 47].

Definition 3.2.1. [23,47] The operation ⊎ for any two monotone decreasing sets A1,A2 is defined

as follows: A1 ⊎ A2 = {A1 ∪A2 : A1 ∈ A1, A2 ∈ A2}.

For any two vectors X = (XP1 , . . . , XPn
) and Y = (YP1 , . . . , YPn

), where XPi
, YPi

∈ Fmi and

m = m1+ · · ·+mn, we define δm(X,Y) := {Pi|XPi
6= YPi

}. Clearly, δm(X,Y) =supp(X−Y) ⊆ P .

In [23], Fehr and Maurer pointed out that δm(X,Y) behaves like a metric, since for all vectors

X,Y, Z ∈ Fm1 × · · · × Fmn , it holds that

1. δm(X,X) = ∅.

2. δm(X,Y) = δm(Y,X).

3. δm(X,Z) ⊆ (δm(X,Y)
⋃
δm(Y, Z)).

In the remainder of this chapter, we use δm(X,Y) instead of Hamming distance to describe the

properties of the so defined space as in [23].

Given an access structure Γ, as before, let A denote the corresponding adversary structure,

that is, A = 2P \ Γ. Note that A is a monotone decreasing collection of subsets of players. Then

BA(X), the A-neighborhood of pseudo-radii in A centered around the vector X ,2 is defined as

follows:

BA(X) = {Y ∈ Fm1 × · · · × Fmn : δm(X,Y) ∈ A}.

When Γ is the t-out-of-n threshold access structure, BA(X) coincides with the Hamming sphere

Bt−1(X). The generalized sphere packing problem is described as follows:

Generalized Sphere Packing Problem: Given m = m1 + · · · +mn and A, what is the maximal

number of non-intersecting A-neighborhoods that can be placed in the m-dimensional space with

metric δm?

Let C ⊆ Fm1 × · · · × Fmn be a block code. The set of admissible distances, denoted by Γ(C),

2 This notation can be defined for any monotone decreasing collection of subsets of players.

3.2. A-Error Correctable Linear Secret Sharing Schemes 43

is defined by

Γ(C) = {A : there exist X,Y ∈ C with X 6= Y such that δm(X,Y) ⊆ A}

The set of forbidden distances, denoted by ∆(C), is defined as the complement of Γ(C), that is,

∆(C) := 2P \Γ(C). Observe that Γ(C) is monotone increasing and ∆(C) is monotone decreasing.

In particular, when C is a linear block code, the set of admissible distances is

Γ(C) = {A : there exists a nonzero codeword X ∈ C such that supp(X) ⊆ A}.

As mentioned previously, a classical code is v-error-correcting (if the minimal distance decoding

rule is used) if and only if its minimal distance is at least 2v + 1. Moreover, in coding theory, any

subset of coordinates is equally likely to be in error due to noise during transmission. In the secret

sharing model, in order to recover the secret, each player needs to send his share to all the others

through a secure channel that provides privacy and authentication. However, some players may

send fake shares. In this setting, only some particular subsets (those in A) of coordinates can

be in error. Let E be an error vector occurring during the secret reconstruction process. Then

supp(E) ∈ A is called the error pattern of E. With regard to those error patterns in A, Nikov and

Nikova [45] proposed and proved the following proposition, which indicates that block codes have

similar error-correcting capabilities as the classical codes.

Proposition 3.2.2. [45] A block code C with the set of forbidden distances ∆(C) can correct

each error pattern in A if and only if A ⊎ A ⊆ ∆(C). If it is the case, M is said to be A-error

correctable.3

Proof. Suppose that A ⊎ A ⊆ ∆(C). Let X be the block codeword sent and Y be block word

received with δm(X,Y) ∈ A. We claim that there is no block codeword X ′ other than X such that

δm(X ′, Y) ∈ A. Suppose not. Then by the triangle inequality, we have δm(X,X ′) ⊆ δm(X,Y) ∪

δm(Y,X ′), which implies that δm(X,Y) ∪ δm(Y,X ′) ∈ Γ(C), since δm(X,X ′) ∈ Γ(C) and Γ(C) is

monotone increasing. On the other hand, δm(X,Y) ∪ δm(Y,X ′) ∈ ∆(C) since A ⊎ A ⊆ ∆(C). A

contradiction arises. Thus Y can be decoded correctly and uniquely to X in this way.

3 We may replace the adversary structure A by any monotone decreasing set of subset of players while preserving
the correctness of this proposition. Besides, C can be nonlinear.

44 3. Linear Secret Sharing Schemes and Linear Block Codes

Now it remains to show the converse is also true. Suppose that C can correct all the errors

in A, that is, for any block codeword X and any block word Y conditioned on δm(X,Y) ∈ A,

there is no block codeword X ′ other than X such that δm(X ′, Y) ∈ A. Suppose by contradiction

that A ⊎ A ⊆ ∆(C) does not hold. Then, there exist A,B ∈ A such that A ∪ B ∈ Γ(C). We can

further assume that A ∩ B = ∅, since A is monotone decreasing. Thus, there exist two distinct

block codewords W and V such that δm(W − V) = A ∪ B. After a suitable permutation, we can

assume that W = (WA,WB ,WA∪B) and V = (VA, VB ,WA∪B). Now let Z = (WA, VB,WA∪B).

Clearly, δm(W,Z) = B ∈ A and δm(V, Z) = A ∈ A, which contradicts with our assumption. This

completes the proof.

Example 3.2.3. In the case of Shamir’s t-out-of-n secret sharing scheme, the corresponding linear

code C is the generalized Reed-Solomon code with parameters [n, t, n − t + 1], where n − t + 1

is the minimal distance of C. Here A = {B ⊆ P : |B| ≤ t − 1} and BA(X) = Bt−1(X). It

follows that A ⊎ A = {B : |B| ≤ 2(t − 1)}. Since C is an MDS (maximal distance separable)

code, it can be checked easily that Γ(C) = {A ⊆ P : |A| ≥ n− t + 1}, which further implies that

∆(C) = {A ⊆ P : |A| ≤ n− t}. It is well known in coding theory that C can correct all the errors

in A, that is, it can correct at most t − 1 errors, if and only if n − t + 1 ≥ 2(t − 1) + 1, namely,

n ≥ 3t− 2. In fact, this classical conclusion can also be deduced from Proposition 3.1.2 as follows:

C can correct all errors with Hamming weight no larger than t− 1

⇔ C can correct all errors in A

⇔ A⊎A ⊆ ∆(C)

⇔ 2(t− 1) ≤ n− t

⇔ n ≥ 3t− 2

⇔ the minimal distance of C, which is n− t+ 1, is at least 2(t− 1) + 1.

Remark 3.2.4. Let Γ be any given access structure and A be the corresponding adversary struc-

ture. Let M be an MSP computing Γ and the corresponding linear block code be C. Let

S = (SP1 , . . . , SPn
) be the block codeword, where SPi

is player Pi’s share obtained from the

dealer. During the reconstruction phase, some coalition A ∈ A may be corrupted and send fake

shares to the non-coalition players. Let Si denote the block word whose entries are the data Pi

receives in the reconstruction phase. Thus δm(S, Si) ∈ A. Suppose A⊎A ⊆ ∆(C). To decode the

3.2. A-Error Correctable Linear Secret Sharing Schemes 45

received message Si, Pi needs to compute the A-neighborhood BA(S
i) and decode Si to the unique

codeword lying in this A-neighborhood. In this way, each Pi can correct all the error patterns in

A and thus can recover the real secret even if players in some coalition A ∈ A cheat about their

shares.

At this point, several questions arise:

1. With regard to error patterns in A, is there any efficient decoding algorithm to execute the

decoding process mentioned in Remark 3.2.4?

2. Perhaps, it is not hard to compute A ⊎ A. Can we compute ∆(C) without listing all the

codewords of C?

3. Can we give an equivalent (or merely a sufficient) condition for A ⊎ A ⊆ ∆(C) by merely

characterizing the particular properties that M and A should satisfy?

4. For any given Γ, does there exist an MSP computing it such that the corresponding linear

block code satisfies A⊎A ⊆ ∆(C)? If the answer is negative, can we identify or classify the

access structures Γ that satisfy this property?

Before we give a partial answer to question 2 and question 3, we first need to explore some

properties for ∆(C).

As before, let M = (F,M, ε, ψ) be an MSP computing Γ and let C be the linear block code

generated by MT . Denote C̃ ⊆ F × Fm1 × · · · × Fmn the linear block code generated by G̃ :=

(εT |MT), where G̃ is the matrix containing the columns of MT along with an additional column

εT . Note that here we index the first block of each block codeword of C̃ by the dealer D and index

the ith block by player Pi, 1 ≤ i ≤ n. C̃ can be regarded as an extended block code of C, since each

block codeword of C̃ after removing the first block becomes a block codeword of C and conversely,

each block codeword of C can be obtained by removing the first block from some codeword of C̃.

Nikov et.al [45] gave a formula for ∆(C̃) as described below.

Lemma 3.2.5 (Lemma 2. [45]). ∆(C̃) = A⊥ ⊎ {D}, where D denotes the dealer and A⊥ denotes

the dual adversary structure.

By the definition of ∆(C̃), we know that it is monotone decreasing, but A⊥ ⊎ {D} is not

monotone decreasing. This contradiction suffices to demonstrate that ∆(C̃) 6= A⊥ ⊎{D}. In other

46 3. Linear Secret Sharing Schemes and Linear Block Codes

words, this lemma is incorrect. In the following, we will prove that ∆(C̃) = A⊥ ⊎ {D, ∅} provided

that there exists an A⊥-non-redundant MSPM⊥ = (F,M⊥, ε, ψ) computing Γ⊥, the dual access

structure of Γ, such that the linear code C̃ generated by G̃ and the linear code C̃⊥ generated by

G̃⊥ := (εT |(M⊥)T) are dual. (Note that here the two ε’s are the target vectors of the corresponding

MSPs and they may have different lengths.)

Definition 3.2.6. [45] An MSP M = (F,M, ε, ψ) computing Γ is called A-non-redundant if on

one hand for each B ∈ A, the rows of MB are linearly independent, and on the other hand, for

each B ∈ Γ, the rows of MB are linearly dependent.

In the following, we fix an MSPM = (F,M, ε, ψ) computing a given Γ. LetM⊥ = (F,M⊥, ε, ψ)

be an MSP computing Γ⊥ with the property that the linear code C̃ generated by G̃ and the linear

code C̃⊥ generated by G̃⊥ are dual. In particular, givenM, we can constructM⊥ in the following

way. Suppose that M has size m × e as before. Let α1, . . . , αm−e be a basis of the vector space

ker(MT) and let α0 be a solution vector of MT · X = εT , where ε is the target vector for M.

Let M⊥ := (−α0, α1, . . . , αm−e). Clearly, M⊥ has size e × (m − e + 1) and the columns of M⊥

are linearly independent. It is proved in [22] thatM⊥ = (F,M⊥, ε, ψ) is an MSP computing Γ⊥.

Furthermore, one can check by direct computations that G̃ · (G̃⊥)T = 0. Note that the size of G̃

(respectively, G̃⊥) is e× (m+ 1) (respectively, (m− e+ 1)× (m+ 1)). Hence, the code C̃ and the

code C̃⊥ are indeed dual when considered as classical linear codes.

On the other hand, suppose that M⊥ = (F,M⊥, ε, ψ) is an MSP computing Γ⊥ with the

additional property that the linear code C̃ generated by G̃ and the linear code C̃⊥ generated by

G̃⊥ are dual. It follows that G̃·(G̃⊥)T = 0 and the size of G̃⊥ is (m−e+1)×(m+1). Consequently,

MT ·M⊥ = E, where E is a zero matrix except for the entry in the upper left corner which is

−1. We write M⊥ as (β0, β1, . . . , βm−e), where βi is the ith column of M⊥, for 0 ≤ i ≤ m − e.

Clearly, β0, β1, . . . , βm−e are linearly independent. Besides, (−εT ,0, . . . ,0) = E = MT ·M⊥ =

MT · (β0, β1, . . . , βm−e) = (MT ·β0,MT ·β1, . . . ,MT ·βm−e). In other words,MT · (−β0) = εT and

MT · βi = 0, 1 ≤ i ≤ m− e, where 0 denotes a zero vector of suitable length. Thus, β1, . . . , βm−e

is a basis of the space ker(MT) and −β0 is a solution vector of MT ·X = εT .

Let DUAL be the collection of all the matricesM⊥ appearing in those MSPsM⊥ = (F,M⊥, ε, ψ)

(computing Γ⊥) with the property that the code C̃ generated by G̃ and the code C̃⊥ generated by

3.2. A-Error Correctable Linear Secret Sharing Schemes 47

G̃⊥ are dual. It follows from the argument above that

DUAL = {(−α0, α1, . . . , αm−e) : (α1, . . . , αm−e) is a basis of ker(MT) and MT · α0 = εT }.

For any two distinctM⊥
1 ,M

⊥
2 ∈DUAL, sayM⊥

1 = (−α0, α1, . . . , αm−e),M
⊥
2 = (−β0, β1, . . . , βm−e),

there exists a vector v = (k1, . . . , km−e) ∈ Fm−e such that β0 = α0 + k1α1 + · · ·+ km−eαm−e. Be-

sides, since both β1, . . . , βm−e and α1, . . . , αm−e are two basis of the same vector space ker(MT),

there exists an invertible matrix H such that (β1, . . . , βm−e)= (α1, . . . , αm−e) · H . Thus, M⊥
2 =

M⊥
1 · H , where H =




1 0

−vT H


 is invertible too. Therefore, ∀w ∈ Fm, w · (M⊥

1) = 0 if and

only if w · (M⊥
2) = 0. In particular, it follows that if the collection DUAL contains one matrix such

that M⊥ is A⊥-non-redundant, then all the matrices in this collection are A⊥-non-redundant. In

other words, the A⊥-non-redundant property is independent of the choices of M⊥ (from DUAL),

instead, it essentially depends only on M . Due to this, hereafter we can can choose an arbitrary

M⊥ from DUAL and fix it.

We are preceding to give a formula for ∆(C̃) in the special case whenM⊥ is A⊥-non-redundant,

from which we can explore some properties for ∆(C). More explicitly, we will demonstrate that

∆(C̃) = A⊥ ⊎ {D, ∅} if and only if M⊥ is A⊥-non-redundant.

Lemma 3.2.7. If ∆(C̃) = A⊥ ⊎ {D, ∅}, then M⊥ is A⊥-non-redundant.

Proof. First we prove that for any B ⊆ P , if B ∈ A⊥, then the rows of (M⊥)B are linearly

independent. In fact, if B ∈ A⊥, then B ∈ ∆(C̃) by the assumption. Now suppose that the rows

of (M⊥)B are linearly dependent. Then there exists a vector w such that w·M⊥ = 0 and supp(w) ⊆

B. Thus, (0, w), the concatenation of 0 and w, is a codeword of C̃, since G̃⊥ = (εT |(M⊥)T) is

a parity check matrix for C̃. As a result, B ∈ Γ(C̃), which contradicts with the conclusion that

B ∈ ∆(C̃).

Now we prove that for each B ∈ Γ⊥, the rows of (M⊥)B are linearly dependent. In fact,

since B ∈ Γ⊥ and ∆(C̃) = A⊥ ⊎ {D, ∅}, B /∈ ∆(C̃). Equivalently, B ∈ Γ(C̃). As a result, there

exists a block codeword v ∈ C̃ such that supp(v) ⊆ B. In other words, (εT |(M⊥)T) · vT = 0 and

supp(v) ⊆ B, which indeed implies that the rows of (M⊥)B are linearly dependent.

Remark 3.2.8. In the first paragraph of the proof above, we specifically proved that under the

assumption that ∆(C̃) ⊇ A⊥⊎{∅,D}, ifB ∈ A⊥, then the rows ofM⊥
B are linearly independent. On

48 3. Linear Secret Sharing Schemes and Linear Block Codes

the other hand, in the second paragraph, we considered the assumption that ∆(C̃) ⊆ A⊥ ⊎ {∅,D}

and proved that if B ∈ Γ⊥, then the rows of M⊥
B are linearly dependent.

Lemma 3.2.9. If M⊥ is A⊥-non-redundant, then ∆(C̃) = A⊥ ⊎ {D, ∅}.

Proof. We begin by proving that ∆(C̃) ⊇ A⊥ ⊎ {∅,D}. Suppose not. Then there exists some B

in A⊥ such that either (B ∪ {D}) ∈ Γ(C̃) or B ∈ Γ(C̃). In either of the two cases, there exists a

codeword w of C̃ such that supp(w) ⊆ B ∪ {D}. Since A⊥ is monotone decreasing, we can always

assume that either supp(w) = B ∪ {D} or supp(w) = B. However, if supp(w) = B ∪ {D}, then

ε is a linear combination of the rows of (M⊥)B, since G̃
⊥ = (εT |(M⊥)T) is a parity check matrix

for C̃. Consequently, B ∈ Γ⊥, which contradicts with the prerequisite that B ∈ A⊥. On the other

hand, if supp(w) = B, then the rows of (M⊥)B are linearly dependent, which contradicts to our

assumption thatM⊥ is A⊥-non-redundant. Therefore, ∆(C̃) ⊇ A⊥ ⊎ {∅,D}.

Now we prove that ∆(C̃) ⊆ A⊥ ⊎ {∅,D}. Suppose not. Then there exists an element X in

∆(C̃) such that X /∈ A⊥ and X /∈ A⊥ ⊎ {D}. There are two possibilities. Case 1: D ∈ X . Then

X = Y ∪ {D} for some Y ∈ Γ⊥. It follows that ε is a linear combination of the rows of (M⊥)Y .

Hence, there exists a vector u such that (εT |(M⊥)T) · uT = 0 and supp(u) ⊆ X . Thus u ∈ C̃ and

supp(u) ⊆ X . Consequently, X ∈ Γ(C̃), which is impossible since X ∈ ∆(C̃). Case 2: D /∈ X .

Then X ∈ Γ⊥ and as a result, the rows of (M⊥)X are linearly dependent, since it is assumed that

M⊥ is A⊥-non-redundant. Hence, by a similar argument as in Case 1, we have X ∈ Γ(C̃), which

contradicts with the assumption that X ∈ ∆(C̃). This completes the proof.

Remark 3.2.10. In the first paragraph of the proof above, we specifically proved that if the

rows of (M⊥)B are linearly independent whenever B ∈ A⊥, then ∆(C̃) ⊇ A⊥ ⊎ {∅,D}. On the

other hand, we proved in the second paragraph that if the rows of (M⊥)B are linearly dependent

whenever B ∈ Γ⊥, then ∆(C̃) ⊆ A⊥ ⊎ {∅,D}.

The following corollary is a direct consequence of Remark 3.2.8 and 3.2.10.

Corollary 3.2.11. ∆(C̃) ⊇ A⊥⊎{∅,D} if and only if it holds that the rows of (M⊥)B are linearly

independent whenever B ∈ A⊥. On the other side, ∆(C̃) ⊆ A⊥ ⊎{∅,D} if and only if it holds that

the rows of (M⊥)B are linearly dependent whenever B ∈ Γ⊥.

Theorem 3.2.12. ∆(C̃) = A⊥ ⊎ {D, ∅} if and only if M⊥ is A⊥-non-redundant.

Proof. The proof follows directly from Lemma 3.2.7 and 3.2.9.

3.2. A-Error Correctable Linear Secret Sharing Schemes 49

Now we are well prepared to further explore from ∆(C̃) some properties for ∆(C). First, we

need to explore a connection between C and C̃, from which we can dig out a relation between Γ(C)

and Γ(C̃) and consequently, a relation between ∆(C) and ∆(C̃).

Recall that the block code C̃ is generated by G̃ = (εT |MT) and that C is the block code

generated by G =MT . Thus, C can be obtained from C̃ by deleting the first coordinate from each

codeword in C̃, that is,

C = {(XP1 , . . . , XPn
) : there exists some XD ∈ F such that (XD, XP1 , . . . , XPn

) ∈ C̃}.

It is easy to see that Γ(C) = {A \ {D}|A ∈ Γ(C̃)}, since Γ(C) is the collection of all the supersets

of supp(ω), where ω runs over all the nonzero block codewords of C, while Γ(C̃) is the collection

of all the supersets of supp(ν), where ν runs over all the nonzero block codewords of C̃.

The following lemma describes a relation between ∆(C) and ∆(C̃).

Lemma 3.2.13. {A \ {D} : A ∈ ∆(C̃) and D ∈ A} ⊆ ∆(C) ⊆ {A \ {D} : A ∈ ∆(C̃)}.

Proof. First we prove that ∆(C) ⊆ {A \ {D} : A ∈ ∆(C̃)}. For any B ∈ ∆(C), B /∈ Γ(C). Hence,

for each B ∈ ∆(C), it holds for any A ∈ Γ(C̃) that B 6= A\{D}, since Γ(C) = {A\{D} : A ∈ Γ(C̃)}.

Now the equality B = B \ {D} implies that B ∈ ∆(C̃). Thus, ∆(C) ⊆ {A \ {D} : A ∈ ∆(C̃)}.

It remains to prove that {A \ {D} : A ∈ ∆(C̃) and D ∈ A} ⊆ ∆(C). Suppose not. There exists

A ∈ ∆(C̃) with D ∈ A such that A \ {D} ∈ Γ(C). Then A \ {D} = B \ {D} for some B ∈ Γ(C̃),

since Γ(C) = {A \ {D} : A ∈ Γ(C̃)}. If D ∈ B, then A = B ∈ Γ(C̃), which leads to a contradiction

since A ∈ ∆(C̃). If D /∈ B, then A = B ∪ {D} ∈ Γ(C̃), since B ∈ Γ(C̃) and Γ(C̃) is monotone

increasing, which also introduces a contradiction. This completes the proof.

It can be checked directly from Example 3.2.3 that for Shamir’s t-out-of-n secret sharing scheme,

∆(C) = A⊥ and Γ(C) = Γ⊥. However, the following lemmas indicate that these two equalities do

not hold in general case.

Lemma 3.2.14. {A∪{D} : A ∈ Γ⊥} ⊆ Γ(C̃). As a result, Γ⊥ ⊆ Γ(C). Equivalently, ∆(C) ⊆ A⊥.

Proof. For any A ∈ Γ⊥, ε is a linear combination of the rows of (M⊥)A, that is, there exists a

vector w such that (εT |(M⊥)T)·wT = 0 and {D} ⊆ supp(w) ⊆ (A∪{D}). Hence (A∪{D}) ∈ Γ(C̃).

Therefore, {A ∪ {D} : A ∈ Γ⊥} ⊆ Γ(C̃). Now the relation Γ⊥ ⊆ Γ(C) follows directly from the

equality that Γ(C) = {A \ {D} : A ∈ Γ(C̃)}.

50 3. Linear Secret Sharing Schemes and Linear Block Codes

Lemma 3.2.15. A⊥ ⊆ ∆(C) (equivalently, Γ(C) ⊆ Γ⊥) if and only if the rows of (M⊥)B are

linearly independent for any B ∈ A⊥.

Proof. From Corollary 3.2.11, we know that A⊥ ⊎{∅,D} ⊆ ∆(C̃) if and only if the rows of (M⊥)B

are linearly independent for any B ∈ A⊥. Hence,

∀B ∈ A⊥, the rows of (M⊥)B are linearly independent

⇒ A⊥ ⊎ {∅,D} ⊆ ∆(C̃)

⇒ A⊥ ⊆ ∆(C)

⇒ ∀B ∈ A⊥, the rows of(M⊥)B are linearly independent

where the second ”⇒” is due to Lemma 3.2.13. The last ”⇒” holds because otherwise, there exists

a vector w such that (εT |(M⊥)T) · wT = 0 and supp(w) ⊆ B, i.e., w is a codeword of C̃ and

supp(w) ⊆ B. Hence, B ∈ Γ(C̃), which implies that B = B \ {D} ∈ Γ(C). Thus B /∈ ∆(C), which

further implies that B /∈ A⊥, since A⊥ ⊆ ∆(C). However, this is impossible, since B ∈ A⊥. This

contradiction completes the proof.

Proposition 3.2.16. ∆(C) = A⊥ (equivalently, Γ(C) = Γ⊥) if and only if the rows of (M⊥)B

are linearly independent for any B ∈ A.

Proof. The proof follows immediately from Lemmas 3.2.14 and 3.2.15.

At this point, we are ready for proposing an equivalent condition for A ⊎ A ⊆ ∆(C) merely

from the perspective of M⊥ and A.

Theorem 3.2.17. A ⊎ A ⊆ ∆(C) if and only if A is Q3 and for any B ∈ A ⊎ A, the rows of

(M⊥)B are linearly independent.

Proof. Suppose that A ⊎A ⊆ ∆(C). First, we prove that A is Q3.

A ⊎A ⊆ ∆(C)

⇒ A⊎A ⊆ A⊥ by Lemma 3.2.14

⇔ ∀B1, B2 ∈ A, (B1 ∪B2) ∈ A⊥

⇔ ∀B1, B2 ∈ A, (B1 ∪B2) /∈ Γ⊥

⇔ ∀B1, B2 ∈ A, (B1 ∪B2)
c ∈ Γ

⇔ A is Q3.

3.2. A-Error Correctable Linear Secret Sharing Schemes 51

Now we prove that for any B ∈ A⊎A, the rows of (M⊥)B are linearly independent. Suppose not.

Then the rows of (M⊥)B are linearly dependent, for some B ∈ A ⊎ A ⊆ ∆(C). Thus, there exists

some vector ω such that ω ·M⊥ = 0 and supp(ω) ⊆ B. It follows that (εT |(M⊥)T) · (0, ω)T = 0,

namely, (0, ω) is a codeword of C̃, which further implies that ω ∈ C. As a result, B ∈ Γ(C), which

contradicts the assumption that B ∈ ∆(C).

Conversely, suppose that A is Q3 and for any B ∈ A ⊎ A, the rows of (M⊥)B are linearly

independent. Assume that the inclusion relation A ⊎A ⊆ ∆(C) does not hold. Then there exists

some B ∈ A⊎A such that B ∈ Γ(C). Hence, there exists a codeword υ ∈ C such that supp(υ) ⊆ B.

On the other hand, the argument above indicates that A ⊎ A ⊆ A⊥, since A is Q3. As a result,

B ∈ A⊥. Now due to the relation between C and C̃, there is an element a ∈ F such that (a, υ) is

a codeword of C̃, that is, (εT |(M⊥)T) · (a, υ)T = 0. We claim that a = 0. Suppose not. Then ε

is a linear combination of the rows of (M⊥)B , that is, B ∈ Γ⊥, which is not true, since B ∈ A⊥.

Consequently, (εT |(M⊥)T) · (0, υ)T = 0, which indicates that the rows of (M⊥)B are linearly

dependent. This contradiction completes the proof.

Remark 3.2.18. Theorem 3.2.17 indicates thatM can correct all error patterns in A if and only

if A is Q3 and for any B ∈ A ⊎ A, the rows of (M⊥)B are linearly independent. Thus, for any

Q3 adversary structure A, in order to construct an MSP computing Γ such that it can correct all

error patterns in A, a possible strategy is to construct an MSP for Γ⊥ with the property that the

rows of (M⊥)B are linearly independent for any B ∈ A ⊎ A. However, whether we can always

succeed (in constructing such an MSP for Γ⊥) or how we can ascertain this desired property

except by trial and error remains open. On the other hand, suppose for any given Γ, we have

already constructed an MSP computing it such that the condition A ⊎ A ⊆ ∆(C) is satisfied. If

we can find an efficient algorithm to execute the decoding process mentioned in Remark 3.2.4,

then we can use this technique to construct non-interactive verifiable secret sharing schemes as

well as unconditionally secure multiparty computation protocols. Besides, we can construct an

efficient one-round protocol for perfectly secure message transmission tolerating any Q3 adversary

structure.

52 3. Linear Secret Sharing Schemes and Linear Block Codes

3.3 A-Error Detectable Linear Secret Sharing Schemes

We begin with a famous result from coding theory. Let C be a classical code with minimal distance

d. Suppose that a codeword W is transmitted and W ′ is received. Here W can be different from

W ′ due to channel noise, which can inject errors to some random chosen positions of W . If the

hamming weight ofW ′ is less than d, thenW ′ can not be a codeword and consequently, some errors

must have occurred during the process of transmission. In this sense, we say that C can detect d−1

errors. Obviously, the minimal distance of a classical code measures its error detecting-ability: the

larger the minimal distance, the larger the number of errors it can detect. However, as mentioned

in the previous section, in the model of secret sharing, we assume that all the communication

channels are authenticated and hence there is no noise. Instead, an adversary may corrupt some

subset A ∈ A of players by requiring them to send fake shares in the secret reconstruction phase.

In this situation, the error positions are not totally random but instead, the index set of error

positions can only be in A. In this section, we make an attempt to characterize the error-detecting

ability of any linear block code by its set of forbidden distances.

Definition 3.3.1. Let Γ be an access structure and M = (F,M, ε, ψ) be an MSP computing

Γ. Let C be the linear block code generated by MT . We say that M is A-error detectable if C

is A-error detectable (or C can detect all error patterns in A), that is, for any nonzero vector

W = (WP1 , . . . ,WPn
) ∈ Fm1 × · · · × Fmn with supp(W) ∈ A, ω can not be a block codeword of C.

Remark 3.3.2. Due to the relation between Shamir’s secret sharing schemes and generalized

Reed-Solomon codes, Shamir’s t-out-of-n secret sharing scheme is A-error detectable, whenever

n ≥ 2t− 1 (that is, whenever the corresponding adversary structure is Q2.)

As before, let M = (F,M, ε, ψ) be an MSP computing Γ and C be the linear block code

generated by MT . Recall that we regard each codeword in C as a block codeword, namely,

as a tuple in Fm1 × · · · × Fmn , where mi = |ψ−1(Pi)| for 1 ≤ i ≤ n. In addition, for any

W = (WP1 , . . . ,WPn
) ∈ Fm1×· · ·×Fmn , supp(W) := {Pi|WPi

6= 0}. Let Γ(C)min := {B ⊆ P|B =

supp(W) for some nonzero codeword W ∈ C}.

In the remainder of this section, we are dedicated to exploring equivalent conditions for an

MSP M to be A-error detectable. First, we give an equivalent condition from the perspective of

∆(C), the set of all forbidden distances of C.

Proposition 3.3.3. M is A-error detectable if and only if A ⊆ ∆(C).

3.3. A-Error Detectable Linear Secret Sharing Schemes 53

Proof. First we show that if M is A-error detectable, then A ⊆ ∆(C). By assumption, for each

nonempty B ∈ A and for any W = (WP1 , . . . ,WPn
) ∈ Fm1 × · · ·×Fmn with supp(W) = B, W can

not be a codeword of C. In other words, for each B ∈ A, B 6∈ Γ(C)min. Suppose that B ∈ Γ(C).

By definition, there exists B′ ⊆ B such that B′ = supp(V), for some 0 6= V ∈ C, which contradicts

with the assumption thatM is A-error detectable, since B′ ∈ A. Hence, A ⊆ ∆(C).

Conversely, the inclusion relation A ⊆ ∆(C) implies that A ∩ Γ(C) = ∅, which further implies

that A ∩ Γ(C)min = ∅. Consequently,M is A-error detectable.

Now we are going to present an equivalent condition for an MSPM = (F,M, ψ, ε) computing

Γ to be A-error detectable merely from the perspective of M⊥ and A.

Proposition 3.3.4. If M is A-error detectable, then A is Q2 and for any B ∈ A, the rows of

(M⊥)B are linearly independent.

Proof. If M is A-error detectable, then A ⊆ ∆(C) by Proposition 3.3.3. On the other hand,

∆(C) ⊆ A⊥ by Lemma 3.2.14. As a result, A ⊆ A⊥. Now, the statement that A is Q2 follows

directly from the inclusion relation A ⊆ A⊥.

We proceed to show that for any B ∈ A, the rows of (M⊥)B are linearly independent. Suppose

that the rows of (M⊥)B are linearly dependent for some B ∈ A. Then, there exists some ω such

that ω ·M⊥ = 0 and supp(ω) ⊆ B. It follows that (εT |(M⊥)T) · (0, ω)T = 0, namely, (0, ω) is a

codeword of C̃, which further implies that ω ∈ C. As a result, B ∈ Γ(C), which contradicts the

assumption that B ∈ A ⊆ ∆(C). This completes the proof.

Proposition 3.3.5. If A is Q2 and for each B ∈ A, the rows of (M⊥)B are linearly independent,

then M is A-error detectable.

Proof. Suppose not, that is, there exists some B ∈ A such that B ∈ Γ(C). Thus, there exists a

codeword ω of C such that supp(ω) ⊆ B. In other words, (εT |(M⊥)T) ·ωT = 0 and supp(ω) ⊆ B ,

which in fact indicates that the rows of (M⊥)B are linearly dependent. This contradicts with the

prerequisite of this proposition.

We consolidate the above results in the next theorem, whose proof is immediate.

Theorem 3.3.6. Let M be an LSSS with adversary structure A. Then M is A-error detectable

if and only if A is Q2 and the rows of (M⊥)B are linearly independent for any B ∈ A.

54 3. Linear Secret Sharing Schemes and Linear Block Codes

Remark 3.3.7. Theorem 3.3.6 indicates thatM can detect all error patterns in A if and only if

A is Q2 and for any B ∈ A, the rows of (M⊥)B are linearly independent. Thus, for any Q2 access

structure Γ, in order to construct an MSP for it such that it can detect all error patterns in A,

a possible strategy is to construct an MSP for Γ⊥ with the property that the rows of (M⊥)B are

linearly independent for any B ∈ A. However, whether we can always succeed (in constructing

such an MSP for Γ⊥) or how we can ascertain this desired property except by trial and error

remains open.

4. GAME THEORETIC DEFINITIONS

In this chapter, we will introduce basic notions and definitions from game theory that will be needed

to develop and understand rational cryptography. Briefly, we will describe two categories of games:

normal form games and extensive games with perfect information, as well as the definitions for Nash

equilibrium and its variants. Besides, some examples are demonstrated to make those definitions

more pellucid. Most of the definitions are based on [49] and the readers can refer to this book for

further details.

4.1 Normal Form Games

A normal form game is a model of decision-making in which each player chooses his action once

and for all in such a way that these choices are made simultaneously and independently. Here by

simultaneously, we mean that each player must choose his action without seeing the others’ actions.

This model consists of a set P := {P1, . . . , Pn} of finitely many players, and for each player Pi, a

set Ai of actions along with a utility function that represents his preference on action profiles (or

outcomes). Here an action profile (ai)Pi∈P , where ai ∈ Ai, is regarded as an outcome of the game.

The formal definition is as follows.

Definition 4.1.1. [49] An n-player game G = (P , {A1, . . . , An}, {U1, . . . , Un}), presented in nor-

mal/standard form, is determined by specifying for each player Pi, a set of possible actions or

strategies Ai and a utility function Ui : A1×· · ·×An → R. Any tuple of actions a := (a1, . . . , an) ∈

A1 × · · · ×An is called an outcome or an action profile.

The game G is played as follows: each player Pi chooses an action ai ∈ Ai independently and

simultaneously and all players play their actions simultaneously. The payoff (or utility) to Pi from

the outcome (a1, . . . , an) is the value given by his utility function: Ui(a1, . . . , an). Observe that

each player’s utility function essentially expresses his preferred choices over outcomes. The goal of

each participant of the game is to maximize his payoff.

56 4. Game Theoretic Definitions

Definition 4.1.2. [49] A player Pi prefers (respectively, weakly prefers) outcome a to a′ if and

only if Ui(a) > Ui(a
′) (respectively, Ui(a) ≥ Ui(a′)).

A normal form game in which there are two players can be described in a table as the one

shown in Figure 4.1.2, where the rows are indexed by one player’s possible actions, (this player

is called the row player accordingly) and the columns are indexed by the other player’s possible

actions (this player is called the column player accordingly). The two numbers in the box indexed

by row r and column c represent the players’ payoffs when the row player chooses r and the column

player chooses c, where the first component denotes the payoff of the row player and the second

component denotes the payoff of the column player. Thus in the game in Figure 4.1.2, the set of

actions of the row player is {U,D} and that of the column player is {L,M,R}. For example, the

row player’s payoff from the outcome {U,L} is b1 and the column player’s payoff is b2.

L M R

U b1, b2 c1, c2 d1, d2

D x1, x2 y1, y2 z1, z2

Figure 4.1.2

Remark 4.1.3. A normal form game models an event that occurs only once. The details of the

game and the fact that all the players are rational are public knowledge. Each player has no idea

about the choices being made by other players when making his own choice, since they are required

to choose their actions simultaneously and independently.

Given a game G, a solution concept is essentially a way of predicting how G will be played.

The most commonly used solution concept in game theory is Nash Equilibrium, which captures a

steady state of the play of a normal form game in which each player holds some belief about the

other players’ behavior and acts rationally.

Definition 4.1.4. [49] A Nash equilibrium of a normal form game G = (P , {A1, . . . , An},

{U1,. . . , Un}) is an action profile a = (a1, . . . , an) ∈ A1 × · · · × An with the property that for

every player P , it holds that

Ui(a) ≥ Ui(a′i, a−i) for all a′i ∈ Ai,

4.1. Normal Form Games 57

where a−i = (a1, . . . , ai−1, ai+1, . . . , an) denotes a tuple consisting of each player’s action in a

excluding that of player Pi.

Remark 4.1.5. Intuitively, Definition 4.1.4 indicates that each Pi can maximize his utility by

choosing ai, provided that others will play a−i. In other words, each Pi has no incentive to deviate

from ai as long as the remaining participants follow a−i (for all i ∈ {1, . . . , n}). The essential

intuition behind a Nash equilibrium is that it may prevent a single player’s deviations in the

following situation: if all players are told which Nash equilibrium is being played and assuming

that all other players stick to their prescribed strategies, it will be irrational for a single player to

play anything other than his prescribed strategy. However, the notion of Nash equilibrium tells

nothing about how the players agree on the particular equilibrium to play. This is problematic

when a game has more than one equilibrium, since each player can not predict for certain which

of them will be played. Take a game with only two players as an example. If player P1 believes

that an equilibrium (a1, a2) will be played, while player P2 believes (a′1, a
′
2), then it is likely that

the action profile ultimately played is (a1, a
′
2), which needs not to be an equilibrium at all.

Example 4.1.6. A trusted party shares a secret s between two players P1, P2 by splitting s into

two parts: s = s1 + s2, where si is given to Pi secretly as his share. For simplicity, here we assume

that each share carries with a verification message, which can be used to verify the correctness of

it whenever it is broadcast. Thus, we do not distinguish the action Keep silent from the action

Broadcast a fake share. Now suppose that the two players want to play a game to recover the

secret s. Assume that they are selfish and the main concern of each player is to gain the secret

while preventing the other from gaining it. In this situation, for each Pi, i = 1, 2, the set of actions

is {Broadcast, Keep silent}. Representing the individuals’ preferences by payoff functions, we can

describe the game as in Figure 4.1.6, where u−i < ui < u+i , i = 1, 2.

Broadcast Keep silent

Broadcast u1, u2 u−1 , u
+
2

Keep silent u+1 , u
−
2 u−1 , u

−
2

Figure 4.1.6

Obviously, in this game, P1 prefers the outcome (Keep silent, Broadcast) while P2 prefers the

outcome (Broadcast, Keep silent). However, the two preferences are conflict: neither of them can

58 4. Game Theoretic Definitions

make both players satisfied. On the other hand, this game has a unique Nash equilibrium (Keep

silent, Keep silent), which leads to the bad outcome in which nobody learns the secret.

Example 4.1.7. [49] Matching Pennies Each of two players chooses either Head or Tail. If the

choices differ, P1 pays P2 one dollar; otherwise, P2 pays P1 one dollar. Each person cares only

about the money he receives. A game that models this situation is shown in Figure 4.1.7 illustrated

below.

Head Tail

Head 1,−1 −1, 1

Tail −1, 1 1,−1

Figure 4.1.7

It can be checked directly that this game has no Nash equilibrium.

4.2 Mixed Extension of a Normal Form Game and Mixed Strategy Nash

Equilibrium

In order to obtain stable strategies (that is, Nash equilibria), some randomization in the choice of

strategies (or actions) is needed. In this section, we introduce the concept of mixed strategy Nash

equilibrium in which the players’ actions are not deterministic. In fact, this notion is proposed to

model a steady state of a game in which players’ choices are regulated by probabilistic distributions.

• Each player Pi chooses his action ai ∈ Ai using a distribution σi over Ai.

• We are interested in the expected utilities for each player.

Definition 4.2.1. [49] The mixed extension of a normal form game G = (P ,

{A1, . . . , An}, {U1, . . . , Un}) is the strategic game G̃ = (P , {∇(A1), . . . ,∇(An)}, {u1, . . . , un}),

where ∇(Ai) is the set of probability distributions over Ai, and ui : ×Pj∈P∇(Aj) → R assigns to

each σ = (σ1, . . . , σn) ∈ ×Pj∈P∇(Aj) the expected value under Ui over A that is induced by σ as

follows:

ui(σ) =
∑

a∈A

(
∏

Pj∈P

σj(aj))Ui(a),

where A is assumed to be a finite set and σj(aj) denotes the probability that σj assigns to aj ∈ Aj .

Each σi ∈ ∇(Ai) is called a strategy of player Pi, 1 ≤ i ≤ n. In the special case that σi assigns

4.2. Mixed Extension of a Normal Form Game and Mixed Strategy Nash Equilibrium 59

probability 1 to some single action, σi is called a pure strategy; otherwise, it is called a mixed

strategy. (Note that we regard each action in a normal form game as a pure strategy.) A tuple of

strategies σ = (σ1, . . . , σn) is called a strategy profile.

Definition 4.2.2. [49] Let G̃ = (P , {∇(A1), . . . ,∇(An)}, {u1, . . . , un}) be the mixed extension of

a normal form game. Consider a strategy profile σ = (σ1, . . . , σn). σi is a best response of Pi to

σ−i if it maximizes ui(σi, σ−i), where σ−i represents the (n − 1)-tuple of strategies played by the

remaining players.

Definition 4.2.3. [49] Let G̃ = (P , {∇(A1), . . . ,∇(An)}, {u1, . . . , un}) be a mixed extension of a

normal form game G and let σi ∈ ∇(Ai) be a distribution over Ai. A tuple σ = (σ1, . . . , σn) is a

mixed strategy Nash equilibrium of G if it is a Nash equilibrium of its mixed extension G̃, that is,

for each Pi ∈ P and every distribution σ′
i ∈ ∇(Ai), we have:

ui(σ
′
i, σ−i) ≤ ui(σi, σ−i),

that is, for each i ∈ {1, . . . , n}, σi is a best response to σ−i.

Remark 4.2.4. The notion of mixed strategy Nash equilibrium is designed to model a steady

state of a game in which the players’ choices are not determined but are regulated by some prob-

abilistic rules. In other words, in a mixed strategy Nash equilibrium, the players’ actions are

not deterministic and this notion captures a steady state of the play in which each player holds

the correct expectation about the other players’ behavior and acts rationally. A mixed strategy

σ = (σ1, . . . , σn) is said to be degenerate if each σi assigns probability 1 to some single action;

otherwise, it is non-degenerate. In this sense, each Nash equilibrium of a normal form game can

be regarded as a degenerate mixed strategy Nash equilibrium or a pure strategy Nash equilibrium.

Theorem 4.2.5. [49] Any game with a finite set of players and a finite set of strategies has a

mixed strategy Nash equilibrium.

Proposition 4.2.6. [49] Let G̃ = (P , {∇(A1), . . . ,∇(An)}, {u1, . . . , un}) be a mixed extension

of a normal form game G. Then σ = (σ1, . . . , σn) ∈ ×i∈{1,...,n}∇(Ai) is a mixed strategy Nash

equilibrium if and only if for every i ∈ {1, . . . , n} every pure strategy in the support of σi is a

best response to σ−i. Here the support of σi is defined to be the set of actions ai ∈ Ai for which

σi(ai) > 0, and each action in Ai is regarded as a pure strategy automatically, 1 ≤ i ≤ n.

60 4. Game Theoretic Definitions

Example 4.2.7. [49] As mentioned previously that the game in Example 4.1.7 has no pure strategy

Nash equilibrium. However, it has at least one mixed strategy Nash equilibrium by Theorem 4.2.5.

Now we attempt to find all mixed strategy Nash equilibria. Suppose that (σ1, σ2) is a mixed

strategy Nash equilibrium. Denote Head as H and Tail as T for simplicity. Since this game has

no (pure strategy) Nash equilibrium, 0 < σ1(H) < 1. By Proposition 4.2.6, player P1’s actions H

and T are both best responses to σ2. Thus, 1 − 2σ2(H) = 2σ2(H) − 1, since P ′
1s expected utility

by executing H is σ2(H) · 1 + σ2(T) · (−1) = σ2(H) + (1 − σ2(H)) · (−1) = 2σ2(H) − 1 and his

expected utility by executing T is σ2(H) · (−1)+ σ2(T) · 1 = −σ2(H) + (1− σ2(H)) = 1− 2σ2(H).

As a result, σ2(H) = 1
2 = σ2(T). By a similar argument, we can derive that σ1(H) = 1

2 = σ1(T).

Thus, the only mixed strategy Nash equilibrium of the game is (σ1, σ2), where σi(H) = 1
2 = σi(T),

i = 1, 2. For simplicity, we can denote this mixed strategy Nash equilibrium by ((12 ,
1
2), (

1
2 ,

1
2)).

4.3 Extensive Games with Perfect Information

As mentioned previously, in a normal form game, each player makes his action independently and

simultaneously and no player is informed of the choice of any other player prior to making his

own decision. On the other hand, an extensive game is a detailed description of the sequential

structure of the decision problems encountered by the players in a game. An extensive game with

perfect information is a game in which players take turns to choose their actions and the outcome

of the game is determined only after all of the actions are chosen. Here, by perfect information,

we mean that each player is aware of all the actions that have occurred prior to his own move. In

our definition, we allow each player to make a move at every discrete point in time. Formally,

Definition 4.3.1. [49] An extensive game with perfect information is specified by the following

components.

• A finite set P of n players.

A history is a sequence of vectors, where the components of each vector aL are the actions of

players at time L. Each history represents a state that may occur during the procession of the

game play.

• A set H of histories (finite or infinite) satisfying the following three properties.

– The empty sequence ∅ is a member of H .

4.3. Extensive Games with Perfect Information 61

– If a history (a1, . . . , aK) ∈ H , then for any L < K, (a1, . . . , aL) ∈ H .

– If an infinite sequence (a1, a2, . . .) satisfies (a1, . . . , aL) ∈ H for every positive integer L,

then (a1, a2, . . .) ∈ H.

A history (a1, . . . , aK) ∈ H is terminal if it is infinite or if there is no aK+1 such that (a1, . . . , aK ,

aK+1) ∈ H . The set of terminal histories is denoted by Z. A game is over when a terminal history

is reached.

• For each 1 ≤ i ≤ n, a payoff function ui which maps a terminal history to a real number

representing player Pi’s utility: ui : Z → R.

• A function P that assigns to each nonterminal history a member of P . Here P is called the

player function and P (h) denotes the player who takes an action after the history h.

In order to play an extensive game, each player must know the actions available to him at each

discrete time L. The only way for a player to learn his action from the extensive game is to search

through H for valid histories of length L + 1 that contain the current history as a subsequence.

However, this process may take time exponential in the length of the game. In order to simplify

this problem, we have the following definition.

Definition 4.3.2. [49] A strategy of player Pi ∈ P in an extensive game with perfect information

< P , H, P, (ui) > is a function σi that assigns an action in A(h) to each nonterminal history

h ∈ H \ Z for which P (h) = Pi, where A(h) := {a : (h, a) ∈ H}.

A strategy of a player in an extensive game with perfect information is an instruction that

allocates the action chosen by him for every history after which it is his turn to move. An extensive

form game with perfect information is played as follows: each player Pi independently selects the

action σi(∅). Each player is then informed of the current history h. If h is terminal, each player

receives utility ui(h). If h is non-terminal and P (h) = Pi, for some 1 ≤ i ≤ n, then player Pi selects

the action σi(h) and the process repeats. Note that it is possible for an extensive form game to be

infinite. A game is infinite if and only if it has at least one branch that does not terminate in any

finite number of steps.

Definition 4.3.3. [49] A Nash equilibrium of an extensive game with perfect information

62 4. Game Theoretic Definitions

< P , H, P, (ui) > is a strategy profile σ such that for every player Pi, we have

ui(σi, σ−i) ≥ ui(σ′
i, σ−i), for every strategy σ′

i of player Pi.

A variation of extensive games with perfect information defined above are extensive games with

imperfect information, in which players may not be aware of the actions other players take before

he chooses his action. Here we do not give details for this kind of game, since we only focus on

extensive games with perfect information.

4.4 More Equilibria

Given a game < P , H, P, (ui) >, denote by Ωi the set of all the possible strategies for Pi, 1 ≤

i ≤ n. Note that for normal form games, Ωi = Ai while for the mixed extensions of normal form

games, Ωi = ∇(Ai). Now we define the remaining equilibria only for extensive games with perfect

information. But it should be clear that all equilibria apply to normal form games and the mixed

extension of normal form games as well.

Definition 4.4.1. [49] Given < P , H, P, (ui) >, we say that a strategy σ′
i ∈ Ωi is weakly dominated

with respect to Ω−i(= ×
j 6=i

Ωj) if there exists a strategy σi ∈ Ωi such that:

1. ∀α−i ∈ Ω−i : ui(σi, α−i) ≥ ui(σ′
i, α−i),

2. ∃α−i ∈ Ω−i : ui(σi, α−i) > ui(σ
′
i, α−i).

It means that Pi can never improve his utility by playing σ′
i and sometimes improve it by not

playing σ′
i.
1

As mentioned previously, the notion of Nash equilibrium is fundamental in game theory. Since

no rational player will choose weakly dominated strategies, any Nash equilibrium involving such a

strategy will not occur in practice. As a consequence, in our cryptographic setting, we can purge

those strategies out.

Definition 4.4.2. [49] Let < P , H, P, (ui) > be an extensive form game with perfect information.

For any Ω̂ ⊆ Ω = Ω1 × · · · × Ωn, let DOMi(Ω̂) denote the set of strategies in Ω̂i that are weakly

1 A strategy σ′

i
is strictly dominated if player Pi can always improve his utility by not playing σ′

i
.

4.4. More Equilibria 63

dominated with respect to Ω̂−i(= ×
j 6=i

Ω̂j). Set:

Ω∞
i :=

⋂

l≥1

Ωli where Ωli := Ωl−1
i \DOM i(Ω

l−1), for l ≥ 1.

A Nash equilibrium σ = (σ1, . . . , σn) of G survives iterated deletion of weakly dominated strategies

if σi ∈ Ω∞
i for all i ∈ {1, . . . , n}.

As pointed out by Kol and Naor [38], in the setting of rational secret sharing, the solution

concept Nash equilibrium surviving iterated deletion of weakly dominated strategies is not strong

enough that some bad strategies still survive this deletion process. Now, we proceed to introduce

a stronger one.

Definition 4.4.3. [49] A tuple σ = (σ1, . . . , σn) is a strict Nash equilibrium if for all i and every

strategy σ′
i ∈ Ωi other than σi, we have: ui(σ

′
i, σ−i) < ui(σi, σ−i).

Remark 4.4.4. Intuitively, Definition 4.4.3 means that each Pi has an incentive not to deviate

from σi as long as the remaining participants follow σ−i (for all i ∈ {1, . . . , n}), since any single

deviation will cause a strict decrease in utility. It is obvious that the solution concept strict Nash

equilibrium is strictly stronger than Nash equilibrium in the following sense: provided that the

remaining players follow their strategies, deviations of a single player cannot increase his utility in

a Nash equilibrium while any deviation of a single player will lead to a decrease in his utility in a

strict Nash equilibrium. Furthermore, the notion of a strict Nash equilibrium is stronger than that

of Nash equilibrium surviving iterated deletion of weakly dominated strategies, since in a strict

Nash equilibrium, no strategy is weakly dominated.

However, like Nash equilibria, any strict Nash equilibrium can never prevent the deviation of a

single player without the assumption that all players agree on which strict Nash equilibrium will be

played and that each player holds the belief that all the other players indeed follow their prescribed

strategies. In this sense, they are far away from being sufficiently strong. A much stronger solution

concept is dominant solvability. Informally, a game is called dominant solvable, if after the process

of iterated deletion of weakly dominant strategies, there is only one strategy left for each player

Pi, say σi, 1 ≤ i ≤ n. In this case, (σ1, . . . , σn) is a very strong prediction for the way in which

the game will be rationally played.

The strongest possible notion of equilibrium is dominant strategy equilibrium, which yields the

64 4. Game Theoretic Definitions

best possible outcome to each player no matter what other players do. Formally,

Definition 4.4.5. [49] A strategy profile σ = (σ1, . . . , σn) is a dominant strategy if for any Pi ∈ P ,

σi is a best response for Pi no matter which strategies the other players may use, that is,

ui(σi, α−i) ≥ ui(αi, α−i) for any α ∈ Ω.

Remark 4.4.6. Not all games admit dominant-strategy solutions. If a dominant strategy σ =

(σ1, . . . , σn) does exist, it will be best for each rational player Pi to choose σi. Besides, in choosing

σi, each rational Pi neither needs to rely on his belief that each other player Pj , (j 6= i) will choose

σj nor needs to rely on the rationality of the other players. Thus, predicting that each Pi will play

σi is indeed the strongest form of prediction of the game.

Traditional results in game theory mostly consider the equilibrium notions such as Nash equi-

librium that only tolerate deviations of a single player. From the cryptographic perspective, these

solution concepts are only partially meaningful as they are stated from the perspective of individ-

ual players and disregarding collusion altogether. However, in practice as well as in cryptographic

applications, players can form coalitions. It can be the case that if several players form a coalition

and they all deviate from their strategies then each of them could gain more. Now we will proceed

to give the definitions of equilibria that tolerate deviations of coalitions containing multiple players.

Definition 4.4.7. [1] A strategy profile σ induces an r-resilient Nash equilibrium if for any coalition

C of at most r players and for any strategy profile σ′, it holds that:

ui(σ
′
C , σ−C) ≤ ui(σC , σ−C) for any Pi ∈ C.

More generally, a strategy profile σ induces an A-resilient Nash equilibrium if for any coalition

C ∈ A and for any strategy profile σ′, it holds that:

ui(σ
′
C , σ−C) ≤ ui(σC , σ−C) for any Pi ∈ C,

where A is a monotone decreasing set (which means B ∈ A whenever B ⊆ B′ for some B′ ∈ A)

whose elements are subsets of P .

It is a general fact that many cryptographic protocols rely on the hardness of some problems

4.4. More Equilibria 65

such as discrete logarithm. However, these hard problems can be solved with negligible probability

on the security parameter k. In order to use these cryptographic protocols as building blocks in

the game-theoretic model, a slightly weaker variation of the Nash equilibrium, namely, the ǫ-Nash

equilibrium, which is useful for implementing games using standard cryptographic computational

assumptions, was proposed. Intuitively, this equilibrium guarantees that no player will gain more

than ǫ by deviating from his prescribed strategy provided that all the remaining players stick to

theirs. Here each player is regarded as a probabilistic polynomial-time (PPT) Turing machine and

each utility function is considered as a polynomial of some security parameter k.

Definition 4.4.8. [27] A strategy profile σ induces an r-resilient computational Nash equilibrium

if for any coalition C of at most r players and for any probabilistic polynomial-time strategy profile

σ′, it holds that:

ui(k, σ
′
C , σ−C) ≤ ui(k, σC , σ−C) + ǫ(k) for any Pi ∈ C,

where ǫ is a negligible function. More generally, a strategy profile σ induces an A-resilient com-

putational Nash equilibrium if for any coalition C ∈ A and for any probabilistic polynomial-time

strategy profile σ′, it holds that:

ui(k, σ
′
C , σ−C) ≤ ui(k, σC , σ−C) + ǫ(k) for any Pi ∈ C,

where A is a monotone decreasing set whose elements are subsets of P .

Remark 4.4.9. The definition for computational Nash equilibrium can be derived directly from

Definition 4.4.8 by letting r = 1. In a computational setting, we only consider probabilistic

polynomial-time deviations.

66 4. Game Theoretic Definitions

5. HISTORY OF RATIONAL SECRET SHARING

Traditional cryptographic models assume that some parties are honest (i.e., they faithfully follow

a given protocol) while others are malicious participants against whom the honest players must be

protected. However, in many real-world applications, a participant may choose to be dishonest if

deviating from the protocol will provide him with some advantage. Game theory can be used to

model such a situation where players are self-interested (that is, rational). In other words, they do

everything to maximize their utilities based on their beliefs about the actions of the other players.

Under this new model, first it is assumed that each player prefers the outcomes in which he learns

the secret. Hereinafter, learning a secret means outputting a correct secret. Note that this is the

most basic assumption, since without it, no player has any interest to be involved in the protocol

at all. Second, it is assumed that each player prefers the outcomes in which the number of players

who learn the secret is minimum. This assumption sounds reasonable, especially when knowledge

is power. We would like to emphasize that the utilities of the players depend only on who learns

and who does not learn the secret. Suppose that t∗ players are involved in the game for recovering

the secret and σ = (σ1, . . . , σt∗) denotes a strategy profile. Let o(σ) = (o1(σ), . . . , ot∗(σ)) be the

outcome of the execution of σ, where oi(σ) = 1 if and only if Pi learns the secret during the

execution of σ. Let σ′ be any strategy profile. Those assumptions on the preferences on outcomes

mentioned above are described formally below:

• if o(σ) = o(σ′), then ui(σ) = ui(σ
′),

• if oi(σ) = 1 and oi(σ
′) = 0, then ui(σ) > ui(σ

′),

• if oi(σ) = oi(σ
′) and w(o(σ)) < w(o(σ′)), then ui(σ) > ui(σ

′),

where ui denotes Pi’s utility function and w(x) denotes the Hamming weight of the binary vector

x.

Under these assumptions, classical secret sharing schemes fail completely in the game-theoretic

setting due to players’ conflicting self interests, that is, it is rational not to broadcast one’s share

68 5. History of Rational Secret Sharing

during the secret reconstruction phase. To understand this, we might take Shamir’s t-out-of-

n secret sharing scheme as an example. Suppose that t players Pi1 , . . . , Pit are involved in the

reconstruction phase. For each Pij , 1 ≤ j ≤ t, there are two cases. Case 1: all the others broadcast

their shares. Then, if Pij keeps silent, he will be the only one that learns the secret; otherwise,

he will learn the secret with the others. Case 2: some of the others do not broadcast their shares.

Then no matter what Pij does, no one will learn the secret. This suggests that regardless of the

actions of the other players, a player will hardly be worse off at all (and perhaps, may even gain

some benefit at times) by remaining silent, that is, remaining silent is a weak dominant strategy

which will definitely be chosen by a rational player.

This problem motivated the study of rational secret sharing, which was first proposed by

Halpern and Teague [31] in 2004. Roughly speaking, under those assumptions on preferences on

outcomes mentioned previously, the main goal of a rational secret sharing is to design a recom-

mended strategy for each participant along with the dealer with the requirement that on one hand,

every participant has a motivation to follow his recommended strategy and on the other hand, if

each participant sticks to his recommended strategy, the secret will be revealed to all. However,

due to players’ conflicting self interests, this requirement is so stringent that it is pretty hard to be

satisfied. Thus, in the literature of rational secret sharing, the main goal is to design protocols for

participants (including the dealer) such that on one hand, every participant in some coalition has

motivation not to deviate from his strategy provided that all the non-coalition participants stick to

theirs and on the other hand, if each participant sticks to his strategy, the secret will be revealed

to all. To retell it in game-theoretic terminology, designing rational secret sharing protocols essen-

tially amounts to designing a recommended strategy for each player along with the dealer. Each

player’s strategy set is defined to be all the possible deviations from his recommended strategy.

The requirement is that the tuple of recommended strategies induces a Nash equilibrium or one of

its variants, in which each player learns the secret. The stronger the equilibrium, the better the

protocol.

In this chapter, we present a brief survey on rational secret sharing. Specifically, we summarize

the main ideas behind rational secret sharing schemes and the common approach used to design

them. Further, we provide comparisons among these protocols based on their channel models,

utility independence, equilibrium types and efficiencies.

5.1. The Basic Idea behind Previous Work 69

5.1 The Basic Idea behind Previous Work

Roughly speaking, designing a rational secret sharing scheme essentially amounts to designing a

recommended strategy for each player: regard the secret reconstruction phase as a game among

all active players, where each player’s strategy set contains all possible deviations from his recom-

mended strategy. The objective is that when the game is rationally played, the property that all

the players will learn the secret holds. Here by rational, we mean that all players try to maximize

their utilities. The desired protocols for rational secret sharing always consists of several rounds,

among which only the last round is the real round, since the real shares are broadcasted only

in the last round. If some player keeps silent at some round except the last round, the protocol

will terminate prematurely (as a punishment) and consequently, each player loses the chance to

discover the secret forever, which is not what he desires. Thus, the main obstacle in designing such

a protocol is players’ desire to keep silent in the last round, if they can identify it, since they no

longer fear future punishments. Therefore, the key idea behind all the existing protocols is that in

any given round, the players (even if they form an unauthorized coalition) cannot distinguish in

advance whether the current round is going to be the last round, or whether it is just a test round

designed to catch cheaters. More explicitly, the basic idea behind most of the previous schemes is

as follows.

• Regard the scheme as a game (more precisely, regard the secret reconstruction process as a

game), which proceeds with several iterations; Punish players for detectable deviations, that

is, the game stops once some deviations are detected. In each iteration:

• The dealer D distributes shares for either

– the valid (real) secret with some probability α

– or an invalid (fake) secret.

• Players broadcast their shares.

– If a player’s deviation is detected, the game stops;

– Otherwise, if an invalid secret is reconstructed, all the players proceed to the next

iteration.

– The game stops once the real secret is recovered.

70 5. History of Rational Secret Sharing

Here each player can identify whether the recovered value is the real secret or not.

• To maximize his utility by cheating, a player has to guess the real iteration; thus provided

that α is properly set, it is rational to stick to the protocol.

• Online dealer is not always necessary. In fact, he can be removed by using secure multiparty

computation or by other techniques.

5.2 Previous Work on Rational Secret Sharing

Halpern and Teague [31] were the first to introduce the idea of rational secret sharing and design

a protocol for it under the previous assumptions on players preference on outcomes. Their work,

as well as the subsequent work of Gordon and Katz [29] and Abraham, Dolev, Gonen and Halpern

[1], used simultaneous broadcast and pairwise secure channels. One of Halpern and Teague’s main

contributions [31] is to identify rational secret sharing as a functionality, which provides much

enlightenment into combining the cryptographic and the game-theoretic realms. Besides, they

contributed two technical results concerning rational secret sharing.

First, they proved that there does not exist any protocol for rational secret sharing that has a

fixed number of rounds and uses simultaneous broadcast communication channels. More precisely,

they demonstrated that there does not exist a rational secret sharing scheme that satisfies the

following properties:

• There is a commonly known upper-bound on the number of rounds in the protocol.

• The tuple of prescribed strategies induces a variant of Nash equilibrium that is at least as

strong as Nash equilibrium surviving iterated deletion of weakly dominated strategies.

• The channels used by the players during the secret reconstruction phase are not stronger

than simultaneous broadcast channels and pairwise secure channels.

The basic idea behind the proof of this impossibility result is described as follows:

• We stress that all the arguments are based on those assumptions on players’ preferences on

outcomes. They claimed that broadcasting valid information during the last round of the

protocol is weakly dominated by keeping silent. Here is the argument to justify this claim:

– Suppose t is the threshold.

5.2. Previous Work on Rational Secret Sharing 71

– We consider player Pi’s situation: either t−1 other players broadcast their share or not.

– If they do, then player Pi will recover the secret; otherwise, he can not.

– Whether or not he broadcasts his share or not does not affect the others’ actions (since

all the broadcasts are assumed to happen simultaneously).

– Furthermore, if only t − 1 other players broadcast their shares, then broadcasting his

share will enable others to gain the secret. And if he does not send his share, then he

will be the only one that gains the secret. In all, broadcasting his share will not increase

his utility.

• Because all strategies in which players broadcast valid information in the last round are

weakly dominated, every player knows that each rational player will keep silent in the last

round. Therefore, the second last round essentially becomes the last round.

• In this way, every round of iterated deletion of weakly dominated strategies removes those

strategies in which information is broadcast during the last round, and as a result, effectively

removes the last round itself. After many rounds of iterated deletion of weakly dominated

strategies, the only remaining strategy for any player will be to keep silent in any round,

which obviously leads to the outcome in which no player reconstructs the secret.

Second, they proposed a randomized t-out-of-n rational secret sharing scheme for any n ≥ t ≥ 2,

which relies on an on-line dealer. The sketch of their protocol is summarized below. They described

a 3-out-of-3 rational secret sharing protocol, based on which they created a t-out-of-n protocol with

t ≥ 3 by dividing the players into 3 groups and choosing one player from each group as a group

leader. All players in each group use pairwise secure channels to send their shares to the group

leader. The three group leaders then execute the reconstruction phase of the previous 3-out-of-3

rational secret sharing protocol. Finally, the group leaders broadcast their secret obtained during

the previous step and consequently, all players learn the secret. The 3-out-of-3 rational secret

sharing scheme proceeds in several rounds and at the beginning of each round, the three players

receive three valid secret shares signed by the dealer. (Note that this is different from most of

the existing protocols in which the players carry valid shares only during the last round.) During

the process of secret reconstruction, a player opens his shares to others only if some probabilistic

event happens. Thus, with some probability, the shares opened are sufficient to recover the secret.

72 5. History of Rational Secret Sharing

If the secret is not recovered in a given round due to insufficient opened shares, and no deviation

has been detected so far, the dealer must distribute new secret shares and a new round begins.

Whenever any derivation is detected, the game ends. Their protocol induces a Nash equilibrium

surviving iterated elimination of weakly dominated strategies. However, their protocol has some

limitations that are listed below.

First, their protocol relies on an on-line dealer, which is not always available in practice. Second,

in order to allow each player to verify other players’ shares during the reconstruction phase, digital

signatures are used. However, the usage of digital signatures makes their protocol vulnerable to

backward induction, since as pointed out in [37], unlike standard cryptographic protocols, this

protocol may run for an exponential number of rounds, at least with some negligible probability.

If it happens to be this case, the key problem is that there is a critical integer b such that after b

rounds, any player can break the cryptographic primitives used and as a result, either reveals the

other players’ shares encoded by them or sends some fake shares without being detected. Therefore,

the bth round is essentially the last, and the players have no incentive to cooperate once it has

reached, since they no longer fear any future punishment. Consequently, the (b−1)th round is now

essentially the last round and the players deviate for the same reason. Finally, the protocol induces

a Nash equilibrium surviving iterated elimination of weakly dominated strategies. However, it is

not resilient to any coalition consisting of multiple players. To justify this claim, recall that in

their t-out-of-n rational secret sharing scheme, the players are divided into three groups, and each

player sends his share to his group leader. Consider what would happen if any two of the three

group leaders were in coalition. Clearly, once they have t shares, they could simply execute the

protocol entirely and reconstruct the secret without giving it to any of the other players.

In order to remove the first two limitations, we propose a t-out-of-n rational secret sharing

scheme which requires the involvement of the dealer only during the initial share distribution

phase. Our construction is information theoretically secure and it is immune against backward

induction. Our protocol leads to a Nash equilibrium surviving the iterated deletion of weakly

dominated strategies for t ≥ 3. The reader can refer to Chapter 6 for further details.

Following the work of Halpern and Teague [31], Gordon and Katz [29] demonstrated that a

2-out-of-2 rational secret sharing protocol is possible despite Halpern and Teague’s apparent proof

to the contrary. Indeed, they described a significantly simplified t-out-of-n rational protocol in

simultaneous channels model that has stronger properties than that of Halpern and Teague’s.

5.2. Previous Work on Rational Secret Sharing 73

Under the assumption that the secret s lies in a commonly known subset G of some finite field

F, in each round, the on-line dealer distributes shares of s ∈ G with probability β using Shamir’s

secret sharing scheme; and with probability 1− β, he distributes shares of some s′ ∈ F \G. Each

share is signed by a digital signature, which is assumed to be unforgeable. In each round, every

player broadcasts the share he receives during the current round. If at least t correct shares are

broadcasted, each player reconstructs a value. If this value lies in G, everyone realizes that this

revealed value is the secret and the protocol ends; otherwise, the protocol repeats from scratch.

Note that as usual, the game stops whenever any deviation is detected. The equilibrium it provides

is a Nash equilibrium surviving iterated elimination of weakly dominated strategies. Furthermore,

it is resilient to coalitions of size at most t− 1, although they did not mention this in their paper.

In addition, Gordon and Katz noticed that dealer’s periodic involvement during the reconstruction

phase is illogical. To solve this problem, they suggested replacing him with a secure function

evaluation (SFE) protocol. This SFE protocol takes the true shares as inputs and, with probability

β, re-shares the secret and with probability 1−β shares some s′ not inG. It also signs the new shares

appropriately. However, because the function being computed by these protocols is complicated,

it is unclear whether it is computationally efficient.

Later, Abraham, Dolev, Gonen and Halpern published their paper [1], in which they first consid-

ered tolerance of coalitions and proposed the notion of r-resilient Nash equilibrium. Besides, they

introduced the notion of ǫ-Nash equilibrium and proposed three protocols for t-out-of-n rational

secret sharing with a trusted mediator, who distributes at the beginning of each round the shares

for 0 with probability 1−α and for the real secret with probability α. Here, it is assumed that the

secret s 6= 0 and this is known to all participants. Each protocol induces a (t − 1)-resilient Nash

equilibrium surviving iterated elimination of weakly dominated strategies. Finally, they described

in detail how to remove the online mediator by using computationally secure function evaluations.

The first protocol is designed for arbitrary t and n with t ≤ n. Just as the protocols mentioned

previously, this protocol relies on knowledge on players’ utilities (or at least some bounds on them).

Since precise knowledge about the players’ utilities may not be available or too expensive to collect,

the resulting protocol will inevitably be better if less knowledge is required. The second protocol

uses an information checking protocol to allow each player to check the correctness of the shares

sent by other players, and so each player can identify fake shares with high probability (as long as

the size of the underlying field is big enough). It also relies on the assumption that the mediator

74 5. History of Rational Secret Sharing

knows the information about players’ utilities and works only when n ≥ 2t − 1 players are active

in the secret reconstruction phase. However, the advantage it has over the first one is its con-

stant round complexity. The third protocol makes use of the error-correcting ability of generalized

Reed-Solomon code to correct all possible fake shares during the secret reconstruction process. It

works only when n ≥ 3t−1 players are involved in the secret reconstruction phase. The good news

is that it has constant round complexity and there is no need for the mediator to know anything

about the utilities. Here we only describe the sketch of the first protocol as follows, from which

one can get the basic idea behind their constructions.

1. The dealer distributes digitally signed shares of s using Shamir’s secret sharing scheme.

2. In the 0th round, each player sends his share of the secret to the mediator.

3. If the mediator does not receive all the appropriate messages from all players, it stops playing.

Otherwise,

4. In the rth (r > 0) round, with probability α the mediator re-shares the secret. Otherwise, it

distributes shares for 0. Then all the players are required to broadcast their shares. Here α

depends on the players’ utilities.

5. If at least t correct shares were broadcast, each player can reconstruct a value. If it’s nonzero,

then everyone gains the true secret and the protocol stops.

6. If all shares were correctly broadcast but the reconstructed secret is 0, then each player sends

an acknowledgement to the mediator and they switch to step 4. Otherwise the protocol stops.

This protocol is resilient to coalitions of size at most t− 1 and runs in time linear in 1
α
.

At this point, it is worthwhile to summarize that all the protocols we have described so far

share the following limitations:

• They either need an on-line dealer (or mediator) or replace the on-line dealer by secure

multi-party computations which may make the protocols quite inefficient.

• They assume simultaneous broadcast channels which are expensive to be implemented in

practice.

5.2. Previous Work on Rational Secret Sharing 75

• Almost all of them are vulnerable to backward induction due to the usage of computational

based cryptographic primitives such as digital signatures.

• The equilibrium provided is a Nash equilibrium surviving iterated deletion of weakly domi-

nated strategies, which is not sufficiently strong since it may not be the only Nash equilibrium

in the game. Therefore, there is no guarantee that rational players will not deviate and it is

likely that the game ends in a different equilibrium, in which not all the active players learn

about the secret, or does not end in an equilibrium at all.

Kol and Naor [37] also noticed the weakness of the previous iterated admissibility (surviving

iterated elimination of weakly dominated strategies) and they argued that this criterion used to

evaluate such protocols is problematic, since it is possible that some equilibrium surviving iterated

elimination of weakly dominated strategies is still a bad one. As a remedy, they suggested a

stronger notion: strict Nash equilibrium. On the other hand, although it seems that susceptibility

to backward induction is an inherent property of every computational based rational protocols,

they demonstrated that it is not the case by proposing a protocol that is immune to backward

induction. Roughly speaking, the main idea behind it is to ensure that no iteration except the

last one contains any information about the players’ private values (in the information-theoretic

sense). More explicitly, they constructed a new cryptographic tool called meaningful/meaningless

encryption with the following property: some public keys yield ciphertexts that cannot be decrypted

(even by infinitely powerful players) and in this sense they are called meaningless keys, while

the other keys are called meaningful keys which provide semantic security. One can distinguish

meaningful keys from meaningless ones easily only when she (or he) obtains the private keys.

However, in this scheme, the shares of the parties have unbounded lengths. More explicitly, the

expected length of the parties’ shares in their 2-out-of-2 scheme is O(β−1(|s|+k)), where |s| denotes

the bitsize of s, k is a security parameter, and β, which can be very small, is determined by players’

utilities.

In another work of Kol and Naor [38], they pointed out that previous schemes (mostly crypto-

graphic) either relied on computational assumptions, which makes them susceptible to backward

induction, or used stronger communication channels (such as envelope and ballot box [34]). As

a solution, they produced a scheme with unbounded shares which is non-cryptographic, immune

to backward induction, relies on simultaneous broadcast channels and induces a strict Nash equi-

76 5. History of Rational Secret Sharing

librium. Furthermore, they demonstrated that their protocol can also be used to construct an

ǫ-Nash equilibrium secret sharing scheme on the non-simultaneous broadcast channel model. The

innovation of their protocol is that the share assigned to each player is actually a list of possible

secrets. We consider the scenario of two players as an example. One party receives a list of elements

of length l (the short party), and the other part a list of length l + d (correspondingly, the long

party). The short list is a strict prefix of the long one. The integer l and d are chosen by the dealer

according to the geometric distribution with parameter β, which depends on the utility functions

of the players. The real secret is located at the (l + 1)th position in the long list, while all the

other elements in the two lists are randomly chosen. Thus, the (l+1)th round is the real round. In

addition to the two lists, the dealer selects an independent random permutation for every round

to determine the order in which the parties send their list elements in this round. The long list

along with the those permutations are given to the party who sends his message first in the real

round, while the short list along with those permutations are given to the other party. The key

point here is that neither party knows whether he is the short or long party. The parties proceed

round by round to reconstruct the secret: in the ith round, each party is required to send the ith

element in his list in the order determined by the permutation corresponding to this round. At

the (l + 1)th round, the long party is the first to send his share. Since the list of the short party

is finished, there is no more element to send, so he keeps silent in this round. Thus, at the end of

this round, both parties realize that the message sent in this round is the real secret. Note that

the expected round complexity for t-out-of-n case is O(β−1t), where β can be very small.

In order to make an attempt to reduce the share length as well as the expected round complex-

ity, Fuchsbauer, Katz and Naccache [27] proposed a simple and efficient methodology for rational

secret sharing leading to various instantiations without the dealer’s involvement during the recon-

struction process. Their protocols do not require physical assumptions such as envelope channels

or simultaneous channels and can even be run over asynchronous, point-to-point networks. In

their protocol (we only describe the 2-out-of-2 case), during the reconstruction process, the dealer

chooses an integer i∗ as the round number according to an appropriate distribution with param-

eter β. Then he generates the key pairs (vk1, sk1), (vk2, sk2) and (vk′1, sk
′
1), (vk

′
2, sk

′
2) for two

verifiable random functions (VRF) Eval and Eval’, where vk represents a verification key and sk

represents a secret key. Denote by Evalsk(x) the evaluation of Eval on the input x using the

secret key sk. The dealer gives the verification keys to both parties and gives skj to player Pj ,

5.2. Previous Work on Rational Secret Sharing 77

j = 1, 2. He also gives share1 = s
⊕

Evalsk2(i
∗) along with signal1 =Eval’sk′2(i

∗ + 1) to player

P1, and correspondingly, share2 = s
⊕

Evalsk1(i
∗) along with signal2 =Eval’sk′1(i

∗ + 1) to player

P2. Each round consists of one message from each player: in the ith round, player Pj , j = 1, 2,

sends Evalskj (i) and Eval’sk′
j
(i) to the other player. In this way, in a fake round nothing about the

secret is revealed (in a computational sense). Besides, neither party can identify the real round

in advance. when signal1 =Eval’sk′2(i + 1), player P1 knows that the real round is the ith round

and outputs the secret s = share1
⊕

Evalsk2(i). It is similar for player P2. This protocol induces a

computational strict Nash equilibrium that is stable with respect to trembles. (Intuitively, stability

with respect to trembles models players’ uncertainty about other players’ behavior, and guarantees

that even if a player believes that other players might play some arbitrary strategy with a small

probability, there is still no better strategy for him than to follow the protocol. Please refer to

Section 7.3.) Notice that in this protocol, as in the previous protocols, each player’s deviation bear

the risk of causing the protocol to terminate prematurely, unless he is sure that he deviates during

the real round. However, the difference now is that once a party realizes that the real round has

occurred, the real round is over, and all parties can reconstruct the secret. In this way, the need for

simultaneous channels is removed at the cost of adding only a single round. Although this protocol

does not share most of the drawbacks mentioned above, for the t-out-of-n case, the share bit size

is 2n|s|+ O(k) for security against a single deviation, and raises to (n− t+ 1) · (2n|s|+O(k)) to

achieve (t−1)-resilience, where k is a security parameter. The latter share length leads to practical

efficiency issues when n− t+ 1 is large or when their technique is used as a building block within

more general rational multiparty computation protocols. Motivated by this essential drawback, we

propose a protocol with share length O(k) based on the Chinese Remainder Theorem. One can

refer to Chapter 7 for more details.

Another line of work was pursued by Izmalkov, Lepinski and Micali [34]. Roughly speaking, they

proposed fair, rational secure multiparty computation protocols which are resilient to coalitions.

However, the hardware requirements needed for these operations, including envelope channels and

ballot boxes, are very expensive to be executed in practice. Moreover, we have no idea about

whether they can or how they can be implemented for distant participants. Now we would like

to mention an interesting protocol presented recently by Ong, Parkes, Rosen and Vadhan [48]. It

works in quite a different model. On one side, it does not require any special channels (it relies on

ordinary broadcast channels rather than simultaneous broadcast channels). On the other side, it

78 5. History of Rational Secret Sharing

relies on the honesty of a few players.

At this point, we stress that almost all the protocols we have described so far share the common

limitation: the designer should know the actual utility values of the players or at least some bounds

on them. This assumption is problematic, since the utilities of the players are not necessarily public

knowledge. The basic question regarding utility independence was proposed in [31]. Briefly, by

utility independence, we mean that the protocol works for all possible values of utilities satisfying

the aforementioned assumptions on players’ preferences on outcomes. The first partial answer to

this question was given by [1], where it is showed that with an online mediator, utility independence

is possible for t-out-of-n secret sharing provided that t < n/3 and that all n players are involved

in the reconstruction protocol. Asharov and Lindell [2] first proved that in the case of two parties,

there does not exist a utility independent rational secret sharing scheme in either simultaneous or

non-simultaneous channels model. On the positive side, they constructed a utility independent t-

out-of-n rational protocol with an on-line dealer. Their protocol has an expected round complexity

O(1) and induces a (⌈ t2⌉ − 1)-resilient Nash equilibrium surviving iterated deletions of weakly

dominated strategies. Furthermore, they showed that it is optimal in the sense that there does not

exist a rational secret sharing protocol that is ⌈ t2⌉-resilient while preserving utility independence.

Finally, we would like to introduce the paper written by Micali and Shelat [43]. In this work,

they pointed out that the quality of a rational protocol depends crucially on the solution concept

it induced: the stronger the solution concept adopted, the better the underlying protocol. Thus, it

is amazingly significant if the game has dominant strategy solution, since in this case, each rational

player will definitely choose his prescribed strategy, no matter what the others do and consequently,

the secret will be revealed to each player. However, it has only very limited significance if the game

induces a Nash equilibrium or one of its variants. Besides, even if each player is guaranteed to

learn the secret at each of the possible Nash equilibria of the game, such limited meaningfulness

persists as long as the underlying game has multiple Nash equilibria, since it is likely that the

game will not end in any equilibrium at all due to mismatched beliefs on players’ prediction on

which Nash equilibrium will be played. Consequently, it can not guarantee that all rational players

learn the secret when the game stops. This argument suggests that all the protocols described so

far have only very limited significance. The second quality measure for a rational protocol is the

amount of knowledge about the players’ utilities required in the design of the protocol, since this

knowledge may not be available or too expensive to collect. Roughly speaking, a better protocol

5.2. Previous Work on Rational Secret Sharing 79

is attained if the knowledge required is minimal. However, these two measures are not all that

one needs to consider when designing a game. Indeed, another quality measure is the strength

of the communication models needed during the process of the game. Clearly, a protocol which

requires a stronger communication channel is inferior to the one that works with a weaker channel.

Besides, the security requirement, that is, whether the protocol achieves information-theoretic

security or computational security, is another important quality measure. The final and crucial

point concerning the quality of a rational secret sharing protocol is its efficiency, including expected

round complexity, computational complexity and space complexity. Here by the space complexity,

we mean the amount of space needed to store public information and the amount of space needed

to store secret information. In most cases, we care more about the latter. In particular, the

smaller the share bitsize, the better the scheme. According to the first two criteria, all the existing

protocols fall short. Hence, there is a pretty long way to go in the development of rational secret

sharing. One possible and meaningful direction is to explore stronger solution concepts (than Nash

equilibrium or its variants) and design protocols achieving them.

80 5. History of Rational Secret Sharing

6. AN UNCONDITIONALLY SECURE RATIONAL SECRET SHARING

SCHEME BASED ON SYMMETRIC BIVARIATE POLYNOMIALS

In this chapter, we propose an unconditional secure protocol for rational threshold secret sharing,

which neither assumes an online dealer or any trusted parties (a mediator for example), nor relies

on complicated secure multiparty computation to redistribute the shares of the secret in each

round. (Only the operation XOR is needed for the MPC used in our protocol). Instead, we borrow

the idea from the proactive secret sharing scheme [20] to renew the shares merely by interactions

between players. Unlike constructions quoted in the previous chapter, the secret s is masked

by a one-time pad. This provides information theoretical security and makes our construction

immune to backward induction mentioned previously. Our scheme is based on symmetric bivariate

polynomials. Even if this technique has already been applied before for multiparty computation

protocols, to the best of our knowledge, it is the first time that it has been used in rational

cryptography. Our protocol is efficient in terms of round execution (as the dealer will not be

needed), share size and computation, and it guarantees that all players learn the secret at a Nash

equilibrium surviving the iterated elimination of weakly dominated strategies. As in most of the

prior work, we need a simultaneous broadcast channel and pairwise privacy channels. We need to

point out that what we demonstrate in this chapter is a full version of the publication [58], which

is a joint work with C. Tartary and H. Wang.

6.1 Our Protocol for t-out-of-n Rational Secret Sharing Secure against a Single

Player’s Deviation

In order for the reader to get an easier understanding of our protocol, we first give a general view

of our secret reconstruction phase. The full description of our scheme is in Sect. 6.1.2.

82 6. An Unconditionally Secure Rational Secret Sharing Scheme Based on Symmetric Bivariate Polynomials

6.1.1 Overview of the Reconstruction Phase

Our scheme relies on the masking of the secret s by one-time pad. Such an approach already

appeared in [27]. However, Fuchsbauer et al. used a verifiable random function (VRF) which is a

cryptographic primitive and the existence of which is based on some computational assumption.

In order to provide information theoretical security, the dealer will first use a one-time pad

r over the secret s. He will also mask r in a similar way with another random element r′ and

publish r + r′ to a register accessible to all players. In order to recover s, the players will need to

obtain both r and r′. That is why the second task of the dealer is to distribute r and r′ amongst

the n players using two independent instances of Shamir’s scheme [56] with threshold t. Note

that the public value r + r′ will be used by the participants to check the consistency of the two

reconstructions. The third task of the dealer consists of sharing s+ r using a bivariate polynomial

with degree t− 2 in each of its two unknowns.

Assume that t∗(≥ t) players want to participate in the secret reconstruction process. We first

consider the case when t is even. A similar construction holds when t is odd (see Sect. 6.4). Note

that this differentiation ”t is even/odd” has no influence on the dealer’s job when initially sharing s.

The reconstruction phase proceeds in three stages. During the first two stages, the goal of the t∗

players is to recover the pad r (using r′ and r+r′). The third stage is a sequence of invalid and valid

iterations which is a frequently used technique for rational secret sharing schemes. During each

of these iterations, the broadcast shares correspond to s + r. Those iterations have the following

properties:

• each player opens his share to others only when some probabilistic event happens.

• invalid iteration: no information about s is revealed since the number of broadcast shares

related to s+ r is less than the threshold value t− 1. At the end of such an iteration, shares

are renewed.

• valid iteration: every player recovers s under the assumption that every player follows the

protocol.

The key in this process is the fact that nobody knows in advance whether the next iteration will

6.1. Our Protocol for t-out-of-n Rational Secret Sharing Secure against a Single Player’s Deviation 83

be valid.

During any iteration of the third stage, each of the t∗ participating players Pij chooses a bit

bij such that bij = 1 with probability α depending on the utilities of the n players. Then, all

t∗ players commonly run a simple multiparty computation protocol to compute the parity value

p := bi1 ⊕ bi2 ⊕ · · · ⊕ bit∗ . Our multiparty computation protocol is an extension of what was done

in [31] in the case of three players.

If p = 0 then the t∗ players are asked to repeat the previous iteration. Otherwise, each Pij

broadcasts his share to the t∗ − 1 other members if bij = 1.

When the protocol did not abort before this point, we have two possibilities:

1. Pij has at most t− 2 shares (for some j): the players run a check phase to catch potential

cheaters. If the shares are correct, then the t∗ players renew their shares of s using a technique

from proactive secret sharing scheme [20] and they start over by choosing a new random bit.

2. All players have at least t− 1 shares: the set of t∗ players attempt to reconstruct s+ r using

polynomial interpolation or error-correcting techniques (refer to Sect. 6.1.2 for details). Once

they obtain s+ r, they can deduce s since they got r at the end of the second stage.

6.1.2 Our Construction

Our computations will be done in the finite field F = GF(q) for which ω is a primitive element. As

before, we denote P := {P1, . . . , Pn} the set of participants and the secret value to be distributed

is s ∈ F. As said in the previous section, we consider the case when the threshold value t is even.

During the secret reconstruction phase, we assume the existence of a simultaneous broadcast

channel for all participating players and the presence of secure channels between any pair of these

players. All these channels are authenticated. The protocol stops once some player aborts.

84 6. An Unconditionally Secure Rational Secret Sharing Scheme Based on Symmetric Bivariate Polynomials

For each i ∈ {1, . . . , n}, denote ui (respectively, u+i) the minimal (respectively, maximal) payoff

of Pi when he retrieves the secret and denote u−i his maximal payoff when Pi does not recover

s. As usually assumed in the rational cryptographic context, we consider: u+i > ui > u−i for all

i ∈ {1, . . . , n}.

Initial Share Phase

This is the only phase where the dealer is active. His goal is to distribute s over P .

1. The dealer chooses two independent random values r and r′ uniformly distributed over

GF(q), and publishes the value r + r′ in a public register.

2. The dealer shares r into (r1, . . . , rn) and r
′ into (r′1, . . . , r

′
n) using two independent instances

of Shamir’s t-out-of-n secret sharing scheme. He distributes through a secure channel the

pair (ri, r
′
i) to Pi for all i ∈ {1, . . . , n}.

3. Denote v := s + r. The dealer constructs a symmetric bivariate polynomial f(x, y) =
t−2∑
i=0

t−2∑
j=0

aij x
i yj where a00 = v and aij = aji for all 0 ≤ i, j ≤ t − 1. For each i, the dealer

sends the univariate polynomial hi(x) := f(x, ωi) to Pi through a secure channel.

Remark 6.1.1. Due to the symmetry of f , we have hj(ω
i) = hi(ω

j) for any pair (i, j). This

property is fundamental in our work.

Remark 6.1.2. During the initial share phase, the dealer uses a symmetric polynomial f to

distribute the shares of v. We would like to emphasize why the degree of f in each of these two

variable is t− 2 rather than t− 1. Since those shares are not authenticated by any cryptographic

primitive, in order to verify the consistency of the data sent by a given Pi we require all remaining

t∗ − 1(≥ t− 1) participants to run the following check phase .

Check Phase

The goal of this phase is to check the consistency of the share λ broadcasted by Pi. This task is

done by the players participating in the secret reconstruction process – except Pi.

1. Each participating player Pj (j 6= i) broadcasts his check value hj(ω
i).

2. Each of these players computes, using polynomial interpolation, a polynomial and checks

whether it’s constant term equals λ.

6.1. Our Protocol for t-out-of-n Rational Secret Sharing Secure against a Single Player’s Deviation 85

Share Renewal Phase

As the check phase, share renewal is done by the players participating in the secret reconstruction

process. We assume that there are t∗(≥ t) such players. For ease of description, we can assume

without loss of generality that those players are P1, . . . , Pt∗ . In this phase, each participating Pi

plays a similar role to the dealer’s (initial share phase) to renew his share for v.

1. Each Pi selects a random symmetric polynomial δi(x, y) of degree at most t − 3 (with

respect to either variable). He sends δi,j(x) := δi(x, ω
j) to Pj over a secure channel (for all

j ∈ {1, . . . , t∗} \ {i}).

2. After receiving δi,j(x), Pj computes and sends the value δi,j(ω
l) to Pl, for l ∈ {1, . . . , t∗} \

{j}, over a privacy channel.

3. Pl checks whether δi,j(ω
l) = δi,l(ω

j), for j = 1, . . . , t∗.

4. If one of these equalities is not satisfied for some pair (i, j), then Pl aborts the whole

protocol. Otherwise, each Pl updates his share as: hl(x)← hl(x) + (x+ ωl)
t∗∑
i=1

δi,l(x).

Remark 6.1.3. After the renewal phase, we have the following relation for the new shares:

hj(ω
l) = hl(ω

j) for any 1 ≤ j, l ≤ t∗.

We assume that t∗(≥ t) players participate in the secret reconstruction. As before, we can as-

sume that they are P1, . . . , Pt∗ . Our reconstruction protocol contains three stages for each of these

t∗ players. The first stage is dedicated to the recovery of the random value r used by the dealer

as a pad over the secret s. The complete reconstruction protocol is described in the next two pages.

Remark 6.1.4. When the t∗ players reach Stage 3, we have: ∀i ∈ {1, . . . , t∗}, pi = 1. Note

that t − 1 (odd number) is the minimum number of shares that a participant needs to uniquely

determine a polynomial of degree t− 2. Requiring that all the pi’s be equal to 1 means that each

participant is holding an odd number of shares. This requirement is essential to guarantee that

players who broadcast their shares can recover the secret whenever players who keep silent can

recover it, where each of the latter obtains one more share.

86 6. An Unconditionally Secure Rational Secret Sharing Scheme Based on Symmetric Bivariate Polynomials

Secret Reconstruction Phase

Stage 1

1. Each Pi broadcasts his pair (ri, r
′
i). If some player Pj obtains less than t∗ pairs (including

his own), then Pj aborts the whole protocol.

2. Each Pi constructs two sets of shares. The first one Si,r consists of all the first components of

those t∗ pairs (namely, all the ri) and the second set Si,r′ contains all the second components

of the pairs (namely, all the r′i). Player Pi checks if each of these sets can be interpolated

by a polynomial of degree at most t − 1. If this checking process is unsuccessful for some

Pj , then Pj stops the protocol.

3. For each i ∈ {1, . . . , n}, we denote Ri (respectively R′
i) the constant term of the polyno-

mial reconstructed by Pi corresponding to the set Si,r (respectively Si,r′). Each Pi checks

whether the sum Ri +R′
i is equal to the public value r + r′.

• If the verification is unsuccessful for some Pj , then he aborts the protocol.

• Otherwise, all participants proceed to Stage 2.

The remaining two stages are used to recover v. Note that the threshold now is t− 1 rather than

t since the symmetric bivariate polynomial f has degree t− 2 in each of its variables.

Stage 2

1. Each Pi chooses a bit bi with Pr(bi = 1) = α as well as a uniformly distributed random bit

b′i.

2. Denote di := bi ⊕ b′i. Let i+ denote i+ 1 except that (t∗)+ is 1. Similarly i− denotes i− 1

except that 1− is t∗. Each Pi sends b′i to player Pi+ and di to player Pi− using secure

channels. If some Pj does not send data to both neighbors Pj− and Pj+ , then the protocol

aborts.

3. Each Pi computes and broadcasts b′
i−
⊕ di+ . If some Pj does not receive the bits as

prescribed, then the protocol aborts. Otherwise, denote ∆1,i, . . . ,∆t∗,i the t∗ elements

collected by Pi during this broadcast including his own. Each Pi computes pi =
t∗

⊕
j=1

∆j,i.

4. If pj = 0 for some Pj , then the whole protocol goes back to the first step of Stage 2.

Otherwise, all participants proceed to Stage 3.

6.1. Our Protocol for t-out-of-n Rational Secret Sharing Secure against a Single Player’s Deviation 87

Secret Reconstruction Phase, Cont.

Stage 3

1. Each Pi broadcasts his share hi(0) if bi = 1. Denote li the number of shares that Pi received

during the previous broadcast (including his own if bi = 1).

2. If li < t− 1 for at least t∗ − 1 players Pi, then:

(a) If li is even for at least t∗ − 1 players Pi, then the protocol stops.

(b) Otherwise, all t∗ active players participate in the check phase. If some Pj does not

broadcast hj(ω
i) as required or some check fails then the protocol aborts. Otherwise,

all players go to the renewal phase and then they proceed to the beginning of Stage 2.

3. If li ∈ {t − 1, t} for at least t∗ − 1 players Pi, then each of these players Pi interpolates

the shares into a polynomial fi(0, y). If the degree of fi(0, y) is t − 1 then Pi aborts the

protocol. Otherwise, he outputs fi(0, y) +Ri, where Ri was computed at the third step of

Stage 1. After this computation, the protocol ends.

4. If li ≥ t+ 1 for at least t∗ − 1 players Pi, then each of these players Pi chooses any (t+ 1)-

subset hi,1, . . . , hi,t+1 from his li values. Each Pi forms a (t + 1)-vector (hi,1, · · · , hi,t+1)

which is decoded using a [t+1, t− 1, 3] generalized Reed-Solomon (GRS) decoder. Finally,

each Pi extracts the secret value s using the previous corrected codeword and Ri and the

protocol ends.

Remark 6.1.5. Our choice of li at step 1 of Stage 3 is to insure that all participants following

the protocol’s instructions will obtain the same value li = l. This value l represents the number of

elements which were broadcast in stage 3.

Remark 6.1.6. The goal of the check phase played at step 2 of Stage 3 is to punish a single

deviating player since, in such a case, the protocol would abort and no one would learn s. Since we

use a simultaneous broadcast channel to send data (step 1 of Stage 3), no player knows whether

the next iteration will correspond to step 2 or step 3/4 – called invalid-valid in Sect. 7.2.3 – before

data transmission. Furthermore, step 2.b does not reveal anything about v since the check phase

run to check the consistency of at most t− 2 values.

88 6. An Unconditionally Secure Rational Secret Sharing Scheme Based on Symmetric Bivariate Polynomials

Remark 6.1.7. Since t 6= q − 1 (in fact, we have q > n), we cannot use Reed-Solomon codes [54]

but we have to work with their generalized form.

Remark 6.1.8. The use of a generalized Reed-Solomon decoder at step 4 of Stage 3 is due to the

fact that (h1(0), . . . , hn(0)) can be interpreted as a sharing of s+ r using Shamir’s technique with

threshold parameter t − 1 and the well-known relation between Shamir’s secret sharing scheme

and generalized Reed-Solomon codes [54]. Note that we cannot use the Lagrange interpolation

technique directly, since we need to ensure correct secret reconstruction in the presence of (at

most) one deviating player (see proof of Theorem 6.2.1 (Stage 3)).

Remark 6.1.9. Our protocol requires t ≥ 3. Indeed, consider t∗ = t = 2 and two participating

players P1 and P2. If P1 always remains silent at step 1 of Stage 3 (even if b1 = 1) then P2 is

forced to permanently run step 2.b. Since P2 follows the protocol faithfully, at some iteration, his

share is to be broadcasted to P1 (who will still be silent). Thus, P1 will recover s and P2 will not.

To prevent a player from choosing such a strategy, we need t− 1 > 1, that is t ≥ 3.

Now in order to make it easy to follow our protocol, we provide a graphic representation of the

information flow of our protocol on the next page.

6.2 Security of our Rational Secret Sharing Scheme

We introduce the following notations:

• The secret reconstruction protocol is denoted as Π(α).

• As said at the beginning of Sect. 6.1.2, for each i ∈ {1, . . . , n}, denote ui (respectively, u+i)

the minimal (respectively, maximal) payoff of Pi when he gains the secret and denote u−i his

maximal payoff when Pi does not recover s. As usually assumed in the rational context, we

assume that u+i > ui > u−i for all i ∈ {1, . . . , n}.

The following theorem shows the consistency of our scheme in a rational environment.

Theorem 6.2.1. Assume that t ≥ 4. There exists an α∗ such that for any α ≤ α∗, Π(α) induces

a Nash equilibrium surviving iterated deletion of weakly dominated strategies.

6.2. Security of our Rational Secret Sharing Scheme 89

Pi chooses a bit bi

p = 0 p = 1

execute the check phase recover s+ r

renew their shares jointly output s and stop the game

each Pi with bi = 1 opens his share

li < t− 1 for at least t∗ − 1 players Pi li ≥ t− 1 for at least t∗ − 1 players Pi

all players jointly compute p = b1
⊕ · · ·⊕ bt∗

Proof. We first show that the recommended protocol Π(α) is a Nash equilibrium.

Without loss of generality, we can assume that the active players are P1, . . . , Pt∗ . If one of

the t∗ players does not broadcast anything during step 1 of Stage 1, then the protocol would

terminate with nobody recovering s. This would result in a lower payoff for everybody including

the deviating player. Thus, any rational player is to broadcast a value during that step. Suppose

that some Pi broadcasts a fake couple (r̂i, r̂
′
i) while the others follow the prescribed strategy. In

order for the protocol not to abort, this forgery must lead to a couple of values (R̂, R̂′) such that:

R̂+ R̂′ = r + r′ (random element uniformly distributed over F). In other words, the deviation of

Pi is successful if (r̂i, r̂
′
i) corresponds to one of the q− 1 couples (R̂, R̂′) consistent with r+ r′ and

with r̂i 6= ri.

Remark 6.2.2. We stress that the values R̂ and R̂′ are common to all t∗ − 1 honest players.

Since we use simultaneous broadcast channels, deviating Pi must input (r̂i, r̂
′
i) (with r̂i 6= ri)

before receiving any information about the shares of the honest players. As a consequence, the

90 6. An Unconditionally Secure Rational Secret Sharing Scheme Based on Symmetric Bivariate Polynomials

result of the polynomial reconstructions appears uniformly distributed to Pi. Thus, the value

R̂ + R̂′ appears uniformly distributed over F = GF(q). Therefore, the expected payoff of Pi by

performing this deviation is:

1

q
u+i +

(
1− 1

q

)
u−i

Thus, Pi does not deviate if:

1

q
u+i +

(
1− 1

q

)
u−i < ui (6.1)

Now, we have to discuss an important fact. Inequality (6.1) is not a restriction to our scheme.

Indeed, this relation corresponds to the fact that it is more valuable for Pi to participate in the

secret reconstruction process than to abort the protocol and to toss a coin to decide the value of the

secret s since this selfish strategy is successful with probability 1
q
. As said in [27] about Fuchsbauer

et al.’s value Urandom, if Inequality (6.1) does not hold, then Pi has no incentive in cooperating

at all and this player is better out of the group of participants. Thus, it can be assumed without

loss of generality that Inequality (6.1) does hold for all n players. As a consequence, any rational

player is to follow all instructions in Stage 1.

Assume that player Pi wants to cheat during Stage 2. In order for the protocol not to be

terminated abruptly, Pi is to send data to Pi+ and Pi− at step 1 and to all other (t∗ − 1) players

at step 3. A necessary condition for a successful cheating is to have:

p1 = p2 = · · · = pi− = pi+ = · · · = pt∗ = 1

Denote d̃i, b̃′i and
˜di+ ⊕ b′i− the values sent by the deviating Pi during Stage 2. Let j be any value

in {1, . . . , t∗} \ {i}. We first study pj . Following the protocol’s instructions, Pj computes the bit

pj as:

pj = (b′i−− ⊕ d̃i)︸ ︷︷ ︸
from P

i−

⊕ (˜di+ ⊕ b′i−)︸ ︷︷ ︸
from Pi

⊕ (b̃′i ⊕ di++)︸ ︷︷ ︸
from P

i+

⊕ [
t∗

⊕
l = 1

l 6= i−, i, i+

(b′l− ⊕ dl+)]

︸ ︷︷ ︸
from remaining players including Pj

= (b′i+ ⊕ di−)⊕ (d̃i ⊕ b̃′i)⊕ (˜di+ ⊕ b′i−)⊕ [
t∗

⊕
l = 1

l 6= i−, i, i+

bl]

6.2. Security of our Rational Secret Sharing Scheme 91

We notice that the value of pj does not depend on the index j. Therefore, we rename this common

value as p. It can be simplified as follows:

p = (di+ ⊕ b′i−)︸ ︷︷ ︸
known to Pi

⊕ (d̃i ⊕ b̃′i)⊕ (˜di+ ⊕ b′i−)︸ ︷︷ ︸
chosen by Pi

⊕[
t∗

⊕
l = 1

l 6= i

bl] (6.2)

Denote wi the Hamming weight of the vector (b1, . . . , bi− , bi+ , . . . , bt∗). We have two cases to

consider:

1. d̃i, b̃′i and
˜di+ ⊕ b′i− are such that p = 1⊕ [

t∗

⊕
l = 1

l 6= i

bl].

2. d̃i, b̃′i and
˜di+ ⊕ b′i− are such that p =

t∗

⊕
l = 1

l 6= i

bl.

Case 1. p = 1 and wi is even. If the number of honest participating players to send their shares at

step 1 of Stage 3 is either at most t− 4 or at least t, then Pi does not gain anything by deviating.

Pi only benefits from not following the protocol’s instructions when there are exactly t− 2 honest

participating players. In this case, Pi’s expected payoff is u+i .

Case 2. p = 1 and wi is odd. If the number of honest participating players to send their shares

at step 1 of Stage 3 is either at most t − 3 or at least t + 1, then Pi does not gain anything by

deviating. Pi only benefits from not following the protocol’s instructions when there are exactly

t− 1 honest participating players. Then, Pi’s expected payoff is u+i .

Reaching this point in our reasoning, we need to reflect upon Pi’s strategy. We showed that he

only has an incentive to deviate in two specific subcases of Case 2 (assuming that p = 1): wi = t−2

and wi = t − 1. However, if Pi follows the instructions at Stage 2, then each of the remaining

(t∗ − 1) players would get:

p =
t∗

⊕
l=1
bl (6.3)

So, Pi would obtain the same benefit in cheating at step 1 of Stage 3 as in the subcases above

where the role of (di+ ⊕ b′
i−
) ⊕ (d̃i ⊕ b̃′i) ⊕ (˜di+ ⊕ b′i−) from Eq. (6.2) would be played by bi in

92 6. An Unconditionally Secure Rational Secret Sharing Scheme Based on Symmetric Bivariate Polynomials

Eq. (6.3). Therefore, Pi has no incentive in sending different values than those prescribed by the

protocol during Stage 2.

We now focus on potential deviations of Pi during Stage 3. There are three possibilities for Pi

to cheat at step 1 of Stage 3 (where p = 1):

1. Pi broadcasts some value despite bi = 0.

2. Pi does not broadcast anything despite bi = 1.

3. Pi broadcasts a fake share when bi = 1.

Case 1. The protocol will terminate during this iteration of Stage 3 since the value lj will be even

for j 6= i (step 2.b cannot be accessed). In this situation, Pi is better sending a fake share value.

Since p = 1, wi is odd. We are in the same situation as in Case 2 of Stage 2 where Pi sends a fake

share.

As said above, if wi ≤ t− 3 then no player learns s and Pi’s expected payoff is u−i .

If wi ≥ t+ 1 then everybody recovers s:

• Pi interpolates t− 2 of the wi shares he got from the other players (he runs step 3).

• Each Pj (j 6= i) is to execute step 4. Since there is at most one incorrect value amongst the

(t + 1) elements he chooses, this potential error is to be corrected by the GRS decoder and

Pj recovers s.

In this situation, the expected payoff of the cheating Pi is ui.

If wi = t− 1, then only Pi will recover s, since the remaining players will reconstruct an incorrect

polynomial at step 3. In such a situation, Pi gets at most u+i . We need to compute the following

three probabilities:

Pr[wi ≥ t+ 1|{p = 1} ∩ {bi = 0}]

Pr[wi = t− 1|{p = 1} ∩ {bi = 0}]

Pr[wi ≤ t− 3|{p = 1} ∩ {bi = 0}]

6.2. Security of our Rational Secret Sharing Scheme 93

Let λ be any element of {0, . . . , t∗ − 1}.

Pr[wi = λ|{p = 1} ∩ {bi = 0}] =
Pr({wi = λ} ∩ {

t∗

⊕
l=1
bl = 1} ∩ {bi = 0})

Pr[{
t∗

⊕
l=1
bl = 1} ∩ {bi = 0}]

=
Pr[{wi = λ} ∩ {wi is odd}]

Pr[wi is odd]

=





0 if λ is even

Pr[wi=λ]
Pr[wi is odd] if λ is odd

We can now compute the probabilistic values we need using the fact that t is even.

Pr[wi ≥ t− 1|{p = 1} ∩ {bi = 0}] =

t
∗
−1∑

λ = t+ 1, λ odd

Pr[wi = λ]

Pr[wi is odd]

Pr[wi ≤ t− 3|{p = 1} ∩ {bi = 0}] =

t−3∑

λ = 0, λ odd

Pr(wi = λ)

Pr[wi is odd]

Based on this analysis, Pi is not to cheat if:

u+i Pr[wi = t− 1] + ui

t∗−1∑

λ = t+ 1, λ odd

Pr[wi = λ] + u−i

t−3∑

λ = 0, λ odd

Pr[wi = λ] ≤ ui Pr[wi is odd]

The previous inequality is equivalent to:

u+i α
t−1 (1− α)t

∗−t

(
t∗ − 1

t− 1

)
+ u−i

t−3∑

λ = 0

λ odd

αλ (1− α)t
∗−(λ+1)

(
t∗ − 1

λ

)

≤

ui

t−1∑

λ = 0

λ odd

αλ (1− α)t
∗−(λ+1)

(
t∗ − 1

λ

)

94 6. An Unconditionally Secure Rational Secret Sharing Scheme Based on Symmetric Bivariate Polynomials

Since t is even, the sum on the right hand side ends when λ = t− 3. We get:

(u+
i − ui)α

t−1 (1− α)t
∗
−t

(
t∗ − 1

t− 1

)
≤ (ui − u

−

i)

t−3∑

λ = 0

λ odd

α
λ (1− α)t

∗
−(λ+1)

(
t∗ − 1

λ

)

We divide both sides of the previous inequality by αt−1 (1 − α)t
∗−t

(ui − u−i). Defining Λ := 1−α
α

,

we obtain:

u+i − ui
ui − u−i

(
t∗ − 1

t− 1

)
≤

t−3∑

λ = 0

λ odd

(
t∗ − 1

λ

)
Λt−(λ+1) (6.4)

The right hand side of Inequality (6.4) is a polynomial of degree t− 2 in Λ with a positive leading

coefficient as soon as t − 3 ≥ 1 (i.e. t ≥ 4). Since Λ −−−−→
α→0+

+∞, we deduce that there exists a

value αi,1 such that for all α ≤ αi,1, Inequality (6.4) does hold. In such a situation, Pi does not

cheat as indicated in Case 1.

Case 2. As in Case 1, the protocol will terminate during this iteration of Stage 3. In this case,

both t and wi are even. We are in the same situation as in Case 1 of Stage 2 where Pi remains

silent.

If wi ≤ t− 4 then no player learns s and Pi’s expected payoff is u−i . If wi ≥ t then everybody runs

step 3 and recovers s since all the shares are genuine. The expected payoff of the cheating Pi is ui.

When wi ≤ t− 2, Pi will be the only player to recover s since all other participants will run step

2.a. In this situation, Pi gets at most u+i . We are interested in the following three probabilities:

Pr[wi ≥ t|{p = 1} ∩ {bi = 1}]

Pr[wi = t− 2|{p = 1} ∩ {bi = 1}]

Pr[wi ≤ t− 4|{p = 1} ∩ {bi = 1}]

6.2. Security of our Rational Secret Sharing Scheme 95

Let λ be any element of {0, . . . , t∗}.

Pr[wi = λ|{p = 1} ∩ {bi = 1}] =
Pr[{wi = λ} ∩ {

t∗

⊕
l=1
bl = 1} ∩ {bi = 1}]

Pr[{
t∗

⊕
l=1
bl = 1} ∩ {bi = 1}]

=
Pr[{wi = λ} ∩ {wi is even}]

Pr[wi is even]

=





0 if λ is odd

Pr[{wi=λ}]
Pr[wi is even] if λ is even

We can now compute the probabilistic values we need.

Pr[wi ≥ t|{p = 1} ∩ {bi = 1}] =

t
∗
−1∑

λ = t, λ even

Pr[wi = λ]

Pr[wi is even]

Pr[wi ≤ t− 4|{p = 1} ∩ {bi = 1}] =

t−4∑

λ = 0, λ even

Pr[wi = λ]

Pr[wi is even]

Based on this analysis, Pi is not to cheat if:

u+i Pr[wi = t− 2] + ui

t∗−1∑

λ = t

λ even

Pr[wi = λ] + u−i

t−4∑

λ = 0

λ even

Pr[wi = λ]

≤

ui Pr[wi is even]

The previous inequality is equivalent to:

u+i α
t−2 (1− α)t

∗−(t−1)

(
t∗ − 1

t− 2

)
+ u−i

t−4∑

λ = 0, λ even

αλ (1− α)t
∗−(λ+1)

(
t∗ − 1

λ

)

≤

ui

t−1∑

λ = 0, λ even

αλ (1− α)t
∗−(λ+1)

(
t∗ − 1

λ

)

96 6. An Unconditionally Secure Rational Secret Sharing Scheme Based on Symmetric Bivariate Polynomials

Since t is even, the sum on the right hand side ends when λ = t− 2. We get:

(u+
i − ui)α

t−2 (1− α)t
∗
−(t−1)

(
t∗ − 1

t− 2

)
≤ (ui − u

−

i)
t−4∑

λ = 0

λ even

α
λ (1− α)t

∗
−(λ+1)

(
t∗ − 1

λ

)

We divide both sides of the previous inequality by αt−2 (1− α)t
∗−(t−1)

(ui − u−i) . Since Λ = 1−α
α

,

we obtain:

u+i − ui
ui − u−i

(
t∗ − 1

t− 2

)
≤

t−4∑

λ = 0

λ even

(
t∗ − 1

λ

)
Λt−(λ+2) (6.5)

The right hand side of Inequality (6.5) is a polynomial of degree t− 2 in Λ with a positive leading

coefficient. Since Λ −−−−→
α→0+

+∞, we deduce that there exists a value αi,2 such that for all α ≤ αi,2,

Inequality (6.5) hold. In such a situation, Pi does not cheat as indicated in Case 2.

Case 3. The current case corresponds to Case 1 of Stage 2 where Pi sends a fake share. We are

essentially in the same situation as in Case 2. Given t is even, we have: wi ≥ t (everybody recovers

s) or wi ≤ t− 4 (nobody recovers s) or wi = t− 2. In the latter subcase, Pi will recover s while the

other players will get a wrong value with large probability. The expected payoff of Pi is at most

u+i in that specific subcase. As a consequence, if Inequality (6.5) holds (i.e. we set αi,3 := αi,2)

then Pi does not cheat as indicated in Case 3.

At this point of our proof, we showed that for any α ≤ α∗
i := min(αi,1, αi,2), player Pi will

follow the protocol’s instructions until step 1 of Stage 3 is included. Since steps 2.a, 3 and 4 of

Stage 3 are run independently by each player, the only remaining way for Pi to deviate would

occur when step 2.b is executed. In the check phase, each single deviation will cause the protocol

to stop without anybody learning the secret while, in the renewal phase, a single deviation either

may cause every player to recover a wrong secret or may cause the protocol to stop with nobody

learning s. Hence, in both cases, no single rational player Pi has any incentive to deviate during

step 2.b.

As a consequence, for any α ≤ α∗ := min(α∗
1, . . . , α

∗
n), Π(α) is a Nash equilibrium. Using the

same argument as the proof in Theorem 3.2 from [31], we could demonstrate that Π(α) survives

6.2. Security of our Rational Secret Sharing Scheme 97

iterated deletion of weakly-dominated strategies.

Explicitly computing the largest possible value for α∗ is not trivial. Fortunately, we can obtain an

explicit bound more easily. We define the values β := max
i=1,...,n

u+i − ui
ui − u−i

and α̃ :=
[
(t∗

t−3 − 1)
√
β + 1

]−1

.

Theorem 6.2.3. Assume that t ≥ 4. For any α ≤ α̃, Π(α) induces a Nash equilibrium surviving

iterated deletion of weakly dominated strategies.

Proof. Assume that t ≥ 4. Consider α ≤ α̃. This inequality implies:

β

(
t∗ − t+ 3

t− 3

)2

≤ Λ2 (6.6)

This inequality leads to:

β
(t∗ − t+ 2) (t∗ − t+ 1)

(t− 1) (t− 2)
≤ Λ2.

Therefore, we get: β
(
t∗−1
t−1

)
≤
(
t∗−1
t−3

)
Λ2 and we deduce:

u+i − ui
ui − u−i

(
t∗ − 1

t− 1

)
≤

t−3∑

λ = 0

λ odd

(
t∗ − 1

λ

)
Λt−(λ+1),

which means that Inequality (6.4) is verified.

Let’s start from Inequality (6.6) again. It also implies:

β
(t∗ − t+ 3) (t∗ − t+ 2)

(t− 2) (t− 3)
≤ Λ2

Therefore, we get: β
(
t∗−1
t−2

)
≤
(
t∗−1
t−4

)
Λ2 and we further deduce:

u+i − ui
ui − u−i

(
t∗ − 1

t− 2

)
≤

t−4∑

λ = 0

λ even

(
t∗ − 1

λ

)
Λt−(λ+2),

which means that Inequality (6.5) is verified. It ends our demonstration since this result is valid

for every player Pi (i ∈ {1, . . . , n}).

98 6. An Unconditionally Secure Rational Secret Sharing Scheme Based on Symmetric Bivariate Polynomials

6.3 Round Complexity

We use the same notations as in the previous section. The following result gives an upper bound

on the round complexity of our protocol.

Theorem 6.3.1 (Upper bound). Assume that t ≥ 4. Let α∗ be as in Theorem 6.2.1. For any

α ≤ α∗, the expected round complexity of Π(α) is:

1

⌈ t∗

2 ⌉∑

j= t
2

α2j−1(1 − α)t∗−(2j−1)

(
t∗

2j − 1

) ,

which is O(α
−t∗

t∗
).

Proof. Since α ≤ α∗, all t∗ active players follow the protocol’s instructions. As in the proof of

Theorem 6.2.1, we assume that the active players are P1, . . . , Pt∗ .

Based on Eq. (6.3), the secret s is to be recovered when p = 1 and at least t− 1 of the bi’s are

equal to 1. Denote w the Hamming weight of (b1, . . . , bt∗). Since the bi’s are chosen uniformly at

random and independently, we have:

Pr[s is recovered] =

t∗∑

λ=t−1

Pr[{p = 1} ∩ {w = λ}]

=

t∗∑

λ = t− 1

λ odd

Pr[w = λ]

=

t∗∑

λ = t− 1

λ odd

αλ (1 − α)t
∗−λ

(
t∗

λ

)
.

Since Π(α) is a Nash equilibrium for small values of α, we can assume: α ≤ 1
2 . Thus, 1 − α ≥ α

and we get the lower bound:

Pr(s is recovered) ≥
t∗∑

λ = t− 1

λ odd

αt
∗

(
t∗

λ

)
≥ t∗ αt∗ .

6.3. Round Complexity 99

In other words, the expected round complexity is O(α
−t∗

t∗
).

We now show a lower bound on the round complexity of our protocol. The demonstration of

the following theorem relies on the Chernoff’s bound on the tail of the binomial distribution [15].

Theorem 6.3.2 (Lower bound). Assume that t ≥ 4. For any α ≤ min(α∗, t−2
t∗−1), the expected

round complexity of Π(α) is:

Ω

((
t− 2

t∗ − 1
α−1

)t−2
eα(t

∗−1)−t+2

1− α

)
.

Proof. In order to bound the value Pr[s is recovered], we expand this expression as follows.

Pr[s is recovered] =
t∗∑

λ = t− 1

λ odd

αλ (1− α)t
∗−λ

[(
t∗ − 1

λ

)
+

(
t∗ − 1

λ− 1

)]

= (1− α)
t∗−1∑

λ = t− 1

λ odd

αλ (1− α)t
∗−1−λ

(
t∗ − 1

λ

)

+

α
t∗−1∑

λ = t− 2

λ even

αλ (1 − α)t
∗−1−λ

(
t∗ − 1

λ

)
.

Since t is even, the indices for both sums can start from t− 2.

Pr[s is recovered] = (1 − α)
t∗−1∑

λ = t− 2

λ odd

αλ (1− α)t
∗−1−λ

(
t∗ − 1

λ

)

+

α
t∗−1∑

λ = t− 2

λ even

αλ (1− α)t
∗−1−λ

(
t∗ − 1

λ

)
.

100 6. An Unconditionally Secure Rational Secret Sharing Scheme Based on Symmetric Bivariate Polynomials

Consider the following values:

∀ℓ ∈ N ∀u{0, . . . , ℓ} ∀θ ∈ [0, 1] B(u, ℓ, θ) :=
ℓ∑

λ=u

θ (1 − θ)ℓ−λ
(
ℓ

λ

)
.

As said before, we can always assume that α ≤ 1
2 . We get the following bounds:

α B(t− 2, t∗ − 1, α) ≤ Pr[s is recovered] ≤ (1 − α)B(t− 2, t∗ − 1, α).

As recalled in [61], since α ≤ t−2
t∗−1 , we have the Chernoff bound:

B(t− 2, t∗ − 1, α) ≤
(
α (t∗ − 1)

t− 2

)t−2

et−2−α(t∗−1),

which leads to the claimed lower bound on the expected round complexity.

6.4 Remark on the Case When t Is Odd

Since the beginning of Sect. 6.1, we only considered the case when t is even. When the threshold

t is odd, we can essentially use the same protocol with the exception of step 4 in Stage 2 and step

2.a in Stage 3 which become:

Stage 2 (update)

4. If pj = 1 for some Pj , then the whole protocol goes back to the first step of Stage 2.

Otherwise, all participants proceed to Stage 3.

Stage 3 (update)

2.a. If li is odd for at least t∗ − 1 players Pi, then the protocol stops.

Similar security and efficiency theorems to those presented in the past two sections hold. The only

analytical difference lies in the fact that we now have p = 0.

6.5 Discussion

Equilibrium. Our solution concept is based on Nash equilibria surviving iterated deletions of

weakly dominated strategies. We are aware that the notion of iterated deletion exhibits several

problems [38] and that several new concepts have been proposed (mainly using computational

6.5. Discussion 101

versions of Nash equilibria [27, 38]). The purpose of this construction is not to advocate in favor

of a specific type of equilibrium. Its primary goal is to present a new construction combining the

advantages of several schemes for a model widely studied in the literature.

Communication Channels. Our rational protocol requires the presence of simultaneous broad-

cast channels which is a commonly-used model for rational SSS. In [38], Kol and Naor manage to

remove the need of simultaneity for the broadcast channels. However, this is at the expense of

increasing the round complexity by a multiplicative t and the removal is based on permutations to

relocate the meaningful encryption key. Thus, this process is related to the use of their meaning-

ful/meaningless encryption primitive. In [27], Fuchsbauer et al. only use point-to-point channels.

However, authentication needs to use the verifiable random functions, which are computational

primitives.

Share Consistency. We use an error-correcting code to check the consistency of the shares. An-

other possibility would have been to use information theoretically secure MACs. The issue is that

these MACs encounter a small authentication error probability while our coding-based approach

does not.

Computation Efficiency. Several rational protocols (such as [31]) require the dealer to partic-

ipate in every round of the secret reconstruction phase. This is a bottleneck for the efficiency of

those constructions. Like [27, 38], our scheme does not require the presence of an online dealer.

Furthermore, our share renewal process does not rely on either complex MPC protocols (contrary

to [1, 2, 29]) or complicated hardware such as envelopes and ballot boxes (contrary to [34, 43]).

Backward Induction Attack. In [38], Kol and Naor emphasized that techniques from [1,29,31]

were susceptible to backward induction attacks resulting in all players remaining silent from the

beginning of the secret reconstruction process. This attack requires an exponential number of

rounds to succeed. Such a large running time only occurs with negligible probability. Nonetheless,

our scheme is immune against this threat since we only use information theoretical tools (one-

time pads) to authenticate data. In particular, our immunity does not require the existence of

any additional cryptographic primitive contrary to [38] where meaningful/meaningless encryption

102 6. An Unconditionally Secure Rational Secret Sharing Scheme Based on Symmetric Bivariate Polynomials

schemes were used.

6.6 Conclusion

In this chapter, we have presented a new protocol for rational threshold secret sharing based on

symmetric polynomials. To the best of our knowledge, it is the first time that such polynomials

have been used for rational secret sharing. Our protocol requires simultaneous broadcast channels

and works for any t ≥ 4. This construction does not require the presence of the dealer during the

share reconstruction phase and it provides information theoretical security. It is immune against

the backward induction attack and it leads to a Nash equilibrium surviving the iterated deletion

of weakly dominated strategies.

On the negative side, our scheme is only secure against single strategy deviations. One line to

follow for our future research is to extend this scheme to handle the case of coalition of enemies

(c-resilience for c ≥ 2). Using bivariate polynomials of degree t− 2 c is a possible approach as the

corresponding GRS codes can correct up to c errors. It is not hard to see that the information

theoretical security provided by the one-time pads still holds (for any coalition of size at most t−1
2).

Furthermore, the check phase would still be consistent as every player Pj (testing the validity of

λ sent by Pi) would get t∗ − c ≥ t− 2 c+ 1 correct broadcast elements at the end of step 1. The

tricky point with this approach is to perform the probabilistic analysis of a group of c cheaters.

Indeed, the probabilistic formulas exposed in the security proof cannot be simplified as easily since

we have to handle a set of c bits which may not have been chosen by the cheaters as stated in the

algorithm. In the case c = 1, we obtained simple conditional probabilities. This is no longer the

case for coalitions of size c ≥ 2 as some cheaters may choose their bit as they feel best for themselves.

As said in Sect. 6.5, our solution concept is based on Nash equilibria surviving iterated deletions

of weakly dominated strategies and several others approaches in designing rational protocols have

recently been proposed. Since the cryptographic community is still in search of a proper framework

for rational protocols, it would be interesting to study the benefits of our approach in different

equilibrium contexts.

7. AN EFFICIENT RATIONAL SECRET SHARING SCHEME BASED ON

THE CHINESE REMAINDER THEOREM

In this chapter, we propose an efficient protocol for rational t-out-of-n secret sharing based on the

Chinese Remainder Theorem without an on-line dealer. Instead, we borrow the idea from Joint

Random Secret Sharing to allow active players to jointly form his ”one-time” share related to a

random element at the beginning of each iteration, merely by interactions among the group of

t∗(t∗ ≥ t) participants. Under some computational assumptions related to the discrete logarithm

problem and RSA, this construction leads to a (t−1)-resilient computational strict Nash equilibrium

that is stable with respect to trembles. Our protocol does not rely on a simultaneous channel,

instead, it only requires a synchronous broadcast channel and pairwise secure channels. Compared

with the protocol in [27] that works in almost the same model as ours, our protocol has smaller

share size even when (t−1)-resilience to coalitions is required. More explicitly, our shares are O(k)

bits long while those from [27] need (n− t+ 1) (2n|s|+ O(k)) bits. In fact, what we demonstrate

in this chapter is an updated version of the publication [62], which is a joint work with C. Tartary

and H. Wang. The main idea of our construction is described as follows.

In the share distribution phase, the dealer uses the modified version of the Asmuth-Bloom

Secret Sharing Scheme [3] proposed by Kaya and Selçuk [36] (with further modification which is

necessary for our needs) to generate n shares for the secret s. Suppose that there are t∗ players

active in the reconstruction phase, say P1, . . . , Pt∗ . This phase proceeds with several rounds. At the

beginning of each iteration, the ”one-time” shares for (s+ d) mod p0 are generated (jointly by the

active players) using the technique from Joint Random Secret Sharing, where d = d(1) + · · ·+ d(t
∗)

and each d(i) is chosen by player Pi independently and uniformly at random from Zp0 , the domain

of the secret. If d ≡ 0 mod p0, then all the ”one-time” shares are valid for recovering s, and

in this sense, the current iteration is called the valid iteration. Otherwise, the current iteration

is invalid, which is designed only for catching possible cheaters. Each communicated message

carries a commitment that is perfect binding and computational hiding (under the computational

104 7. An Efficient Rational Secret Sharing Scheme Based on the Chinese Remainder Theorem

assumption on the hardness of computing discrete logarithm). Thus, at every point of our protocol,

there is a unique legal message that each player can send (except with negligible probability).

Then, all the active players are required to open their ”one-time” shares related to a random

element (s + d) mod p0. After each player Pi has received the ”one-time” shares from all the

other active players, he is required to open hy
(i)

mod Q, which provides a unique way for the

participants to jointly identify whether d ≡ 0 mod p0 and consequently identify the valid iteration.

If the current iteration is invalid, all the players are asked to restart a new iteration; otherwise,

the secret s is recovered and the protocol terminates immediately after this iteration. In this way,

no player can identify the valid iteration before he opens his ”one-time” share. Furthermore, each

player can identify the valid iteration only after it has occurred, that is, once a player learns that

the current iteration is valid, each player has already got the real secret. Due to this, we do not

need simultaneous broadcast channels. Our protocol is efficient in that the round complexity and

computation complexity are both polynomial (in the security parameter k). However, our protocol

relies on the assumption that no player knows auxiliary information about the secret s, which has

been proved to be inherent in the non-simultaneous channels model [2].

Like classical secret sharing protocols, our protocol contains two phases: share distribution

phase and secret reconstruction phase. The dealer is available only in the initial share distribution

phase, during which he is assumed to be honest. We assume the existence of synchronous (but non-

simultaneous) broadcast channels for all participating players and the presence of secure channels

between any pair of these players and the dealer. We stress that all n players are assumed to

be computationally bounded and we only consider probabilistic polynomial time (PPT for short)

deviations. In the following, let k be a security parameter.

7.1 Initial Share Distribution Phase

This is the only phase in which the dealer is active. His goal is to distribute s over P := {P1, . . . , Pn}

using the the Asmuth-Bloom Secret Sharing Scheme with threshold t. As mentioned above, we

adopt the modified version of the Asmuth-Bloom Secret Sharing Scheme proposed by Kaya and

Selçuk [36] and make further modifications (mainly on the parameters settings) to meet our needs.

This initial share phase is comprised of two stages.

7.1. Initial Share Distribution Phase 105

Initial Share Phase

1. Parameters Setup

To share a secret s, the dealer chooses p0(> s) and publishes it. This value p0 should also be

lower bounded by a value depending on players’ utilities and discussed later in this chapter.

1. The dealer chooses and publishes a set of prime integers p1, . . . , pn of bit length at least k

(here k is a security parameter) such that the following requirements are satisfied:

(a) p0 < p1 < · · · < pn ;

(b)
∏t
i=1 pi > (n+ 1)p20

∏t−1
i=1 pn−i+1;

(c) qj = 2pj + 1 is prime for any 1 ≤ j ≤ n.

2. For any 1 ≤ i ≤ n, let Gi be a subgroup of Z∗
qi

of order pi and denote gi a generator

of Gi. Let Q =
∏n
i=1 qi. He computes g = (

∑n
i=1 gi · Q′

i · Qqi) mod Q along with x =

(
∑t

i=1 gi ·Q′
i · Qqi) mod Q, where Q′

i is the inverse of Q
qi

in Z∗
qi
, for 1 ≤ i ≤ n. Let e be the

order of x in Z∗
Q. Then

∏t
i=1 pi divides e. Let h := x

e∏t
i=1

pi ∈ Z∗
Q. Then the order of h is

∏t
i=1 pi. The dealer publishes g, h along with a sorted list {hi·p0 mod Q|1 ≤ i ≤ ⌊

∏t
j=1 pj

p0
⌋}.

3. The dealer chooses and publishes an RSA modulus N of length at least k whose factorization

is unknown to any of the n players.

2. Share Distribution Phase

To share a secret s ∈ Zp0 among a group of n players {P1, . . . , Pn}, the dealer executes the

following steps.

1. He setsM :=
⌊∏t

i=1 pi
n+1

⌋
. He computes y = s+A0 ·p0 for some positive integer A0 generated

randomly subject to the condition that 0 < y < M , calculates yi = y mod pi and finally

sends the share yi to player Pi secretly, for 1 ≤ i ≤ n.

2. He computes E(y) := gy mod QN and broadcasts E(y).

Remark 7.1.1. The value g is the unique integer in ZQ satisfying gi ≡ g mod qi, for all 1 ≤ i ≤ n.

Besides, the order of g in Z∗
QN is at least

∏n
j=1 pj and for each 1 ≤ i ≤ n, we have:

E(y) mod qi = (gy mod QN) mod qi = gy mod qi = gyii mod qi

106 7. An Efficient Rational Secret Sharing Scheme Based on the Chinese Remainder Theorem

Hence, during the whole protocol, we use (E(y) mod qi) as a commitment to yi, which is perfect

binding but is computational hiding. In other words, the committer cannot commit himself to two

values yi and y
′
i by the same commitment value, and under the assumption that computing discrete

logarithm is intractable in Zqi , no PPT player learns yi from E(y) mod qi except with negligible

probability in k. This allows players to check the consistency of the received data. Since the dealer

is assumed to be honest, E(y) is only used to detect the players’ possible malicious behavior during

the reconstruction process described in the next section.

7.2 Secret Reconstruction Phase

We assume that t∗(≥ t) players participate in the secret reconstruction phase. For ease of de-

scription, we can assume without loss of generality that those players are P1, . . . , Pt∗ . The recon-

struction phase proceeds in a series of iterations, each of which consists of multiple communication

rounds among those players. First we propose two sub-protocols to be called upon within the

reconstruction phase.

7.2.1 Share Update Phase

This is done by the players participating in the secret reconstruction process, namely, by P1, . . . , Pt∗ .

In this phase, each participating Pi (sorted in index increasing order) plays a similar role to the

dealer’s (initial share phase) to share a random element d(i) ∈ Zp0 and finally get his ”one-time”

share for (s+ d(1) + · · ·+ d(t
∗)) mod p0.

In [36], in order to prevent the dealer from distributing inconsistent shares, the range-proof

technique proposed in [13] is used to allow the dealer to convince each player that some committed

integer lies in a particular interval. This range proof is statistically zero-knowledge in the random-

oracle model. Besides, under some computational assumptions related to the discrete logarithm

problem and RSA, a cheating dealer can only succeed with negligible probability (in k). We refer

to [13, 36] for further details.

Here, in order to prevent each player Pi from distributing inconsistent shares for his random

chosen d(i), we need to apply this range-proof technique. Throughout this chapter, we will use

RngPrf(E(y),M) to denote the Cao-Liu’s non-interactive range proof that a secret integer y com-

mitted with E(y) lies in the interval [0,M) [13]. In the following share update phase, we will use

7.2. Secret Reconstruction Phase 107

RngPrf(E(y),M) as a black box and we refer to [13] for additional information.

Share Update Phase

1. Each Pi selects a random element d(i) ∈ Zp0 uniformly and independently. He computes

y(i) = Ai ·p0+d(i), where Ai is a positive integer chosen randomly conditioned on 0 < y(i) <

M . Then he computes y
(i)
j := y(i) mod pj along with E(y(i)) := gy

(i)

mod QN , and he

finally sends y
(i)
j to player Pj secretly through a secure channel for each j 6= i. In addition,

Pi broadcasts E(hy
(i)

mod Q) := g(h
y(i) mod Q) mod QN , E(y(i)) and RngPrf(E(y(i)),M).

2. If player Pi only receives partial messages (hereinafter, partial messages including the case of

no message at all), then he outputs a random guess of the secret and terminates the protocol.

Otherwise, he checks whether g
y
(j)
i

i ≡ E(y(j)) mod qi and he checks the correctness of

RngPrf(E(yj),M) for 1 ≤ j 6= i ≤ t∗. If all the checks are successful, then Pi computes

di =
∑t∗

l=1 y
(l)
i mod pi. Otherwise, he outputs a random guess of the secret and stops the

protocol.

Let d := d(1) + · · ·+ d(t
∗). Note that d1, . . . , dt∗ are the shares for d mod p0.

3. Each Pi computes ỹi := (yi + di) mod pi as his ”one-time” share for the current iteration.

The commitment for ỹi is E(ỹi) := E(y)
∏t∗

l=1E(y(l)) mod qi, which can be locally computed

by each player.

Proposition 7.2.1. Let Y := y+ y(1)+ · · ·+ y(t∗) = (s+d)+ (A0 + · · ·+At∗) ·p0. After the share

update phase, {ỹ1, . . . , ỹt∗} are valid shares for (s+ d) mod p0 as long as all the players follow the

protocol honestly. In addition, all the commitments are correctly checked.

Proof. First we prove the correctness of our scheme, namely, any t players can recover the correct

secret. It is easy to see that Y <
∏t
i=1 pi, since y < M , each y(i) < M,m ≤ n and M =

⌊∏t
i=1 pi
n+1

⌋
.

(Hence the motivation of setting the parameter M =
⌊∏t

i=1 pi
n+1

⌋
is to guarantee that Y <

∏t
i=1 pi,

which is necessary for the correctness of the Asmuth-Bloom’s secret sharing scheme on which

our secret sharing scheme is based). Now, since yi = y mod pi and y
(l)
i = y(l) mod pi, for each

108 7. An Efficient Rational Secret Sharing Scheme Based on the Chinese Remainder Theorem

1 ≤ i, l ≤ t∗, it follows that

ỹi = (yi + di) mod pi

= (yi +

t∗∑

l=1

y
(l)
i) mod pi

= Y mod pi

In other words, each ỹi satisfies ỹi = Y mod pi and Y <
∏t
j=1 pj . Hence, Y and consequently

(s + d) mod p0 can be reconstructed from t shares by the Chinese Remainder Theorem (or by

executing the combine phase). With respect to the correctness of the verification data, it suffices

to observe that

E(y)
t∗∏

l=1

E(y(l)) mod qi = gy
t∗∏

l=1

gy
(l)

mod QN mod qi

= gyi

t∗∏

l=1

gy
(l)

i mod qi

= gyii

t∗∏

l=1

g
y
(l)
i

i mod qi

= g
(yi+

∑t∗

l=1 y
(l)
i)

i mod qi

= gỹii mod qi

Now we are proceeding to prove that any coalition C of t−1 players almost learns no information

about (s+d) mod p0, that is, when the players in C share all the information they collect during the

share update phase, every candidate for (s+d) mod p0 is approximately equally likely. Remember

that all the ”one-time” shares are obtained when each player Pi shares his random-chosen d(i).

Let MC =
∏
Pi∈C

pi, y
(0) = y and d(0) = s. It suffices to prove that for any 0 ≤ i ≤ t∗, for

any candidate d′(i) ∈ Zp0 , the probability of the event d(i) = d′(i) is approximately equals 1
p0
.

Let y′(i) be the unique solution for y(i) in ZMC
, that is y′(i) ≡ y

(i)
j mod pj for all Pj ∈ C. Since

M =
⌊∏t

l=1 pl
n+1

⌋
and

∏t
l=1 pl > (n+ 1)p20

∏t−1
l=1 pn−l+1, the value of the ratio

M

MC

>
M

∏t−1
l=1 pn−l+1

≈
∏t
l=1 pl

(n+ 1)
∏t−1
l=1 pn−l+1

7.2. Secret Reconstruction Phase 109

is greater than p20. Hence y
′(i)+jMC is smaller thanM for all j < p0. Besides, since gcd(p0,MC) =

1, all the y′(i) + jMC mod p0 are pairwise distinct for 0 ≤ j < p0, and so cover all the integers

between 0 and p0 − 1. For each value of d′(i), there are either
⌊

M
p0MC

⌋
or
⌊

M
p0MC

⌋
+ 1 possible

candidate y(i) consistent with d′(i) (that is, there are either
⌊

M
p0MC

⌋
or
⌊

M
p0MC

⌋
+ 1 many j’s

such that y′(i) + jMC ≡ d′(i) mod p0 and y′(i) + jMC < M), depending on the value of d′(i). In

other words, from the perspective of players in C, for any two different integers u, v in Zp0 , the

probabilities Pr[d(i) = u] and Pr[d(i) = v] approximately equal. Since M
p0MC

> p0, all the candidate

for d(i) are approximately equally likely when p0 is large enough.

Aside from those t−1 shares for d(i), the only additional information the coalition C can obtain

are E(y(i)), E(hy
i

mod Q), and RngPrf(E(y(i)),M). However, since the underlying commitment

scheme is computationally hiding and the range-proof technique is statistically zero knowledge, the

coalition learns no information about each y(i) (and so each d(i)) in the computational sense. Hence

the PPT coalition C knows nothing about (s+ d(1) + · · ·+ d(t
∗)) mod p0 = (s+ d) mod p0.

Remark 7.2.2. This proposition means that every subset of at least t players uniquely determines

(s+d) mod p0 (Correctness), while for any subset of t−1 players, every candidate for s or for each

d(i) is (approximately) equally likely, and consequently each candidate for each (s+ d) mod p0 is

(approximately) equally likely (Privacy).

Proposition 7.2.3. [36] During the share update phase, any player Pi can not distribute incon-

sistent shares for d(i) without being detected except with probability negligible in k. In other words,

if all checks are successful, then each of the shares y
(i)
1 , . . . , y

(i)
t∗ is a residue of some integer less

than M except with negligible probability which is introduced by the error probability of RngPrf.

Proof. Suppose that Pi distributes inconsistent shares, that is, there exist two subsets V and U

with |U |, |V | = t such that,

(
∑

j∈U

y
(i)
j M ′

U,jMU\{j}) mod MU 6= (
∑

j∈V

y
(i)
j M ′

V,jMV \{j}) mod MV ,

where MU\{j} =
∏
l∈U−{j} pl and M ′

U,j is the inverse of MU\{j} in Z∗
pj
. Similarly, MV \{j} =

∏
l∈V−{j} pl and M

′
V,j is the inverse of MV \{j} in Z∗

pj
. Hence,

y(i) = [(

t∑

j=1

y
(i)
j M ′

[t],jM[t]\{j}) mod M[t]] > M,

110 7. An Efficient Rational Secret Sharing Scheme Based on the Chinese Remainder Theorem

where [t] := {1, . . . , t}. Therefore Pi can not provide a valid range proof RngPrf(E(y(i),M) except

with negligible probability. On the other hand, if Pi tries to use a different y′(i) 6= y(i) in the

commitment E(y′(i)) and generates a valid proof RngPrf(E(y′(i)),M), then E(y′(i)) mod qj 6=

g
y
(i)
j

j mod qj for some j.

Remark 7.2.4. Let T = y(1) + · · ·+ y(t
∗). Since the ”one-time” shares ỹ1, . . . , ỹt∗ are the shares

for (s + d) mod p0, they are the shares for s if and only if d ≡ 0 mod p0. This is equivalent to

T ≡ 0 mod p0. In this sense, the iteration in which T ≡ 0 mod p0 is called the valid iteration. It

is called an invalid iteration otherwise.

Remark 7.2.5. The goals of the Share Update Phase are twofold. On one hand, it makes our

protocol proceed with several iterations: all except the last one are invalid iterations, which are

designed to catch possible cheaters. During the valid iteration, all active players get the real

secret. In addition, no one will know in advance whether the current iteration is going to be the

last iteration. On the other hand, since during each iteration all the ”one-time” shares are revealed,

if the current round is invalid, the players should proceed to the next round with totally new shares,

which are provided by the share update phase. Hence, ”one-time” shares are shares used only once

(that is, used only in the current iteration) and they become obsolete in later iterations.

7.2.2 Combiner Phase

In this phase, each player Pi uses the reconstruction algorithm from the the Asmuth-Bloom Secret

Sharing Scheme to recover (s+ d) mod p0.

Combiner Phase

1. Let U be a collection of t shares that player Pi chooses in the reconstruction phase and

let V be the corresponding collection of the indices of the players to whom those t shares

belong. Let MV denote
∏
j∈V pj .

2. LetMV \{j} denote
∏
ℓ∈V,ℓ 6=j pℓ and letM ′

V,j be the multiplicative inverse ofMV \{j} in Z∗
pj
.

Player Pi computes Y (i) :=
∑

j∈V ỹj ·M ′
V,j ·MV \{j} mod MV . Finally, let S

(i) := Y (i) mod

p0.

7.2. Secret Reconstruction Phase 111

7.2.3 Overview of the Reconstruction Phase.

In order for the reader to get an easier understanding of the reconstruction phase, we first give its

general view. The full description is in Sect. 7.2.4.

The reconstruction phase proceeds with a sequence of invalid/valid iterations such that the last

iteration is valid and each iteration has two stages. During the first stage, players first interact to

get their ”one-time” shares for (s+ d) mod p0, where d = d(1) + · · ·+ d(t
∗) and each d(i) is chosen

randomly by Pi in Stage 1. During Stage 2, each player Pi is required to open the value hy
(i)

mod Q,

where yi is chosen by Pi in Stage 1. Thus, the players can jointly identify the status of the current

iteration since d(i) = y(i) mod p0: if d mod p0 6= 0, that is, if (
∏m
j=1(h

y(j) mod Q)) mod Q does

not appear in the sorted list published by the dealer, then the current iteration is invalid and all

the players are asked to restart a new iteration; otherwise, it is valid, the secret s is recovered and

the protocol terminates immediately after this iteration.

The iterations have the following properties:

• invalid iteration: no information about s is revealed since all the revealed shares are the

shares for (s+ d) mod p0, a random value other than s. At the beginning of the subsequent

iteration, all the shares are updated, which guarantees that the ”one-time”’shares revealed

in the current iteration are useless for the next iteration.

• valid iteration: every player recovers s provided that every participant follows the protocol.

The key in this process is the fact that nobody knows before the opening of the ”one-time” shares

whether the current iteration will be valid. Furthermore, when a given player realizes that the

valid iteration occurs, each other player can compute the secret as well. That is why we do not

need simultaneous channels.

7.2.4 Secret Reconstruction Phase

Our reconstruction protocol proceeds with multiple iterations, each of which contains two stages

for each of these t∗ players. It is assumed without lost of generality that in each step, each Pi

executes his strategy in index increasing order. For each of these t∗ participants Pi, his strategy

σi is as follows.

112 7. An Efficient Rational Secret Sharing Scheme Based on the Chinese Remainder Theorem

Secret Reconstruction Phase

Stage 1.

1. Player Pi executes the share update phase to get his ”one-time” share ỹi for the value

(s + d) mod p0, where d = d(1) + · · · + d(t
∗) and each d(i) is chosen independently and

uniformly at random by Pi .

2. Player Pi broadcasts his ”one-time” share ỹi obtained at the previous step. If Pi does not

receive t∗ shares (including his own), or if he detects that g
ỹj
j mod qj 6= E(ỹj) mod qj for

some j, he outputs a random guess of the secret and aborts the protocol abruptly.

3. Otherwise, Pi chooses randomly t data from {ỹ1, . . . , ỹt∗} and executes the Combiner Phase.

The second stage is used to identify the status (valid/invalid) of the current round since

{ỹ1, · · · , ỹt∗} are the shares for s if and only if hy
(1)+···+y(t

∗)

mod Q appears in the sorted list

published by the dealer.

Stage 2.

1. Player Pi broadcasts h
y(i) mod Q. If he does not receive t∗ messages (including his own),

or if he detects that g(h
y(j) mod Q) mod QN 6= E(hy

(j)

mod Q) for some j, Pi outputs S
(i)

he obtains in the Combiner Phase and aborts the whole protocol.

2. Otherwise, Pi checks by binary search whether (
∏m
j=1(h

y(j) mod Q)) mod Q =

hy
(1)+···+y(t

∗)

mod Q appears in the sorted list published by the dealer. If yes, he out-

puts S(i) and stops the whole protocol; Otherwise, Pi goes back to Stage 1 and starts

another iteration.

7.3 Security of our Rational Secret Sharing Scheme

Before we demonstrate the security proofs, we need to give several definitions of some variants of

Nash equilibrium that our protocol is supposed to achieve. In the following, each player is regarded

as a polynomial-time probabilistic Turning (PPT) machine and each utility function is considered

as a polynomial of the security parameter k .

First we define what it means for two strategies to be equivalent by recalling the corresponding

definitions in [27]. We assume that t∗ players P1, . . . , Pt∗ are involved in the game. Let C be subset

of {1, . . . , t∗}. As often carried out in multiparty computation, security will be demonstrated by

7.3. Security of our Rational Secret Sharing Scheme 113

simulating the views of the different participants.

Definition 7.3.1. [27] Let PC := {Pi : i ∈ C}, P−C := {Pi : i ∈ {1, . . . , t∗} \ C} and the strategy

vector of the t∗ players be σ = (σ1, . . . , σt∗). Define the random variable Viewσ−C as follows:

Let Trans denote the messages sent by PC not including any message sent by PC after they

write to their output tapes. Viewσ−C includes the information given by the dealer to P−C , the

random coins of P−C and the (partial) transcript Trans.

Fix a strategy ρC and an algorithm T . Define the random variable View
T,ρC
−C as follows:

When the t∗ players interact, PC follows ρC and P−C follows σ−C . Let Trans denote the

messages sent by PC . Algorithm T , given the entire view of PC , outputs an arbitrary trunca-

tion Trans′ of Trans (defining a cut-off point and deleting any messages sent after that point).

View
T,ρC
−C includes the information given by the dealer to P−C , the random coins of P−C , and

the (partial) transcript Trans′.

Strategy ρC yields an equivalent play with respect to σ, denoted ρC ≈ σ, if there exists a PPT

algorithm T such that for all PPT distinguishers D:

∣∣∣Pr[D(1k,ViewT,ρC−C) = 1]− Pr[D(1k,Viewσ−C) = 1]
∣∣∣ ≤ ǫ(k)

where ǫ(·) is a negligible function.

Definition 7.3.2. [27] A strategy σ is said to be an r-resilient computational strict Nash equilib-

rium, if:

1. σ induces an r-resilient computational Nash equilibrium.

2. For any coalition C of size at most r and for any probabilistic polynomial time strat-

egy σ′
C with σ′

C 6≈ σ, there is a positive polynomial p(·) such that for any i ∈ C, it

holds that Ui(k, σC , σ−C) ≥ Ui(k, σ
′
C , σ−C) +

1
p(k) for infinitely many values of k, namely,

Ui(k, σC , σ−C)− Ui(k, σ′
C , σ−C) is non-negligible.

Definition 7.3.3. [27] For any coalition C, strategy ρC is δ-close to strategy σC if ρC is as follows:

114 7. An Efficient Rational Secret Sharing Scheme Based on the Chinese Remainder Theorem

ρC :
With probability 1− δ, players in C play according to σC .

With probability δ, players in C follow an arbitrary (possibly correlated)

PPT strategy σ′
C (called the residual strategy of ρC).

Definition 7.3.4. [27] σ induces an r-resilient computational Nash equilibrium that is stable with

respect to trembles if:

1. σ induces an r-resilient computational Nash equilibrium;

2. There is a noticeable function δ such that for any coalition C with size at most r, and any

vector of PPT strategies ρ−C that is δ-close to σ−C , any PPT strategy ρC , there exists a PPT

strategy σ′
C ≈ σ such that Ui(k, ρC , ρ−C) ≤ Ui(k, σ′

C , ρ−C) + ǫ(k), where ǫ(·) is negligible.

Remark 7.3.5. Intuitively, the strategy profile (σC , σ−C) is stable with respect to trembles if σC

remains a best response even if P−C plays any PPT strategies other than σ−C with some small

but noticeable probability δ.

Let U ri (k) := 1
|S| · U

+
i (k) + (1 − 1

|S|) · U
−
i (k), which is player Pi’s expected utility obtained

by outputting a random guess for the secret (assuming that the other players abort without any

outputs, or with wrong outputs). Let U∗
i (k) :=

1
p0
· U+

i (k) + (1− 1
p0
) · U ri (k), 1 ≤ i ≤ n. Based on

the security requirements of [13], we make the following assumption:

Λ:
The discrete logarithm problem over finite fields is intractable.

The RSA modulus N is hard to factor; the resulting RSA encryption

scheme and Schnorr signature is secure.

Now we are well prepared to demonstrate the security proofs.

Theorem 7.3.6. Assuming that Λ holds, σ induces a (t− 1)-resilient computational Nash equilib-

rium as long as Ui(k)− U∗
i (k) is non-negligible, for 1 ≤ i ≤ n.

Proof. By Proposition 7.2.1, our protocol is a valid secret sharing scheme. All the active players

will be expected to recover the real secret in 1
Pr[d≡0 mod p0]

= p0 iterations, as long as they stick to

σ.

Now we prove that σ induces a (t − 1)-resilient computational Nash equilibrium. Let C be

any coalition of size at most t − 1. Assume that all the players not in C stick to their prescribed

strategies. We focus on PPT deviations of players in C. There are several possible cases: (1) some

player Pi in C deviates during the share update phase; (2) some player Pi in C lies about his

7.3. Security of our Rational Secret Sharing Scheme 115

”one-time” share or only sends partial messages in Stage 1 - Step 2; (3) some player Pi in C either

opens a fake hy
(i)

mod Q or broadcasts nothing in Stage 2.

Suppose that (1) happens. There are two possible deviations. Case 1. Pi only sends (or

broadcasts) partial messages in Stage 2 of the share update phase. However, this will be detected

and cause the protocol to terminate. In this case, the only profitable thing he can do is to output

a random guess of the secret, which will earn him at most U ri (k). Obviously, it is a worse outcome

to Pi, since U
r
i (k) < Ui(k). Hence, Pi will send all data, fake or real, as required. Case 2. Pi

distributes inconsistent shares for his randomly chosen d(i) to some player Pj not in C. Under the

assumption Λ, no cheating Pi can convince any other Pj to accept RngPrf(E(y(i),M) except with

negligible probability ǫ′(k). Once RngPrf(E(y(i),M) is rejected, which happens with probability

1 − ǫ′(k), the protocol terminates immediately and the best that player Pi can do is to output

a random guess of the secret. Thus, the expected utility Pi can get by distributing inconsistent

shares is at most ǫ′(k) ·U+
i (k)+(1− ǫ′(k)) ·U ri (k) = ǫ′(k) · (U+

i (k)−U ri (k))+U ri (k) < ǫ(k)+Ui(k),

where ǫ(k) = ǫ′(k) (U+
i (k) − U ri (k)) is a negligible function in k, since we assume that U1, . . . , Un

are polynomials in k. In other words, using this type of deviation, Pi can only increase his payoff

by a negligible amount (if at all). Thus, given our computational setting, no rational player Pi is

to deviate by distributing inconsistent shares.

Now we consider the possible deviations in Step 2 of Stage 1. There are two possible cases.

Case 1. Pi does not broadcast anything at all. Case 2. Pi cheats about his ”one-time” share.

However, either of these deviations will be detected and cause the protocol to terminate. Hence,

we do not distinguish between these two cases. If (d mod p0) = 0 (i.e., the current iteration is

valid), which happens with probability 1
p0
, then all the players in C will output the real secret and

hence Pi will get at most U+
i (k). If (d mod p0) 6= 0 (i.e., the current iteration is invalid), which

happens with probability 1− 1
p0
, then the best thing Pi can do is to output a random guess of the

secret earning at most U ri (k). Thus, the expected payoff of Pi with this type of deviation is at

most 1
p0
· U+

i (k) + (1 − 1
p0
) · U ri (k) = U∗

i (k). It is less than Ui(k) by our assumption. Hence, as a

rational player, Pi will not deviate in Step 2 of Stage 1.

Finally, we study what happens if some player in C does not broadcast anything at all or

broadcasts a fake value in Stage 2. Either deviation will be detected and cause the protocol to

terminate abruptly. Since we assume that players execute every step of the protocol in ascending

order, we can assume without loss of generality that C = {Pt∗−t+2, . . . , Pt∗}. Since all the players

116 7. An Efficient Rational Secret Sharing Scheme Based on the Chinese Remainder Theorem

in C share their information, for any t∗−t+2 ≤ i ≤ t∗, after receiving the message from the players

not in C, Pi can first check whether hy
(1)+···+y(t

∗)

mod Q appears in the sorted list published by the

dealer (from which he knows nothing about d except whether d mod p0 = 0) to identify whether

the current round is valid or not, then determines what to do in this stage. Note that we have

proved that in the computational and rational setting, any player will execute the reconstruction

phase honestly up to the end of Stage 1. Therefore, if the current iteration is valid, each S(j)

obtained by Pj in the Combiner Phase is indeed the real secret. In this case, regardless of what Pi

will do, each player will output the real secret, which will earn Ui(k) to Pi. On the other hand, if

the current round is invalid, no one has recovered the real secret yet and either type of deviations

will cause the protocol to terminate abruptly resulting in a payoff at most U ri (k) to Pi. Hence, Pi

is never better off by this deviations.

Theorem 7.3.7. Assuming that Λ holds, σ induces a (t − 1)-resilient computational strict Nash

equilibrium provided that Ui(k)− U∗
i (k) is non-negligible, for 1 ≤ i ≤ n.

Proof. Suppose that C is any subset of {1, . . . , t∗} of size at most t− 1. Let PC := {Pi|i ∈ C} and

P−C := {Pi|i ∈ {1, . . . , t∗} \ C}. Since all the players in PC act in unison, we can regard PC as

a whole. By Theorem 7.3.6, it is sufficient to prove that for any PPT strategy ρC 6≈ σ, there is

a positive polynomial p(·) such that for any i ∈ C, Ui(k, σ) ≥ Ui(k, ρC , σ−C) +
1

p(k) for infinitely

many values of k, that is, Ui(k, σ) − Ui(k, ρC , σ−C) is positive and non-negligible.

Let Deviate be the event that PC deviates from σC before he can compute his output, that is,

before entering the Stage 2 of the valid iteration. Since ρC 6≈ σ, Pr[Deviate] is non-negligible by

definition. Now, consider the interaction of ρC with σ−C . Let Valid be the event that PC deviates

from σC before entering Stage 2 during the valid iteration and let Invalid be the event that PC

deviates from σC during an invalid iteration. Let Caught be the event that PC is caught cheating.

Then, for each i ∈ C, we have:

Ui(k, ρC , σ−C)

≤ U+
i (k) · Pr[Valid] + U+

i (k) · Pr[Invalid ∧ Caught]

+U ri (k) · Pr[Invalid ∧ Caught] + Ui(k) · Pr[Deviate]

7.3. Security of our Rational Secret Sharing Scheme 117

= U+
i (k) · (Pr[Valid|Deviate] + Pr[Caught|Invalid] · Pr[Invalid|Deviate]) · Pr[Deviate]

+U ri (k) · Pr[Caught|Invalid] · Pr[Invalid|Deviate] · Pr[Deviate] + (1− Pr[Deviate])Ui(k)

= U+
i (k) ·

[
1

p0
+ ǫ(k)(1− 1

p0
)

]
· Pr[Deviate]

+U ri (k) · (1− ǫ(k)) · (1−
1

p0
) · Pr[Deviate] + Ui(k)− Ui(k) · Pr[Deviate]

= Ui(k) + (U∗
i (k)− Ui(k)) · Pr[Deviate] + η(k)

where η(k) = ǫ(k) · (1 − 1
p0
) · (U+

i (k)− U ri (k)) · Pr[Deviate] is negligible. It follows that

Ui(k, σ) = Ui(k) ≥ Ui(k, ρC , σ−C) + (Ui(k)− U∗
i (k)) · Pr[Deviate]− η(k).

Since both Ui(k)−U∗
i (k) and Pr[Deviate] are positive and non-negligible, Ui(k, σ)−Ui(k, ρC , σ−C)

is positive and non-negligible, which completes this proof.

Remark 7.3.8. In the proof for Theorem 7.3.7, it is shown that for any PPT strategy ρC , we

have:

Ui(k, σ) = Ui(k) ≥ Ui(k, ρC , σ−C) + (Ui(k)− U∗
i (k)) · Pr[Deviate]− η(k),

where η(·) is a negligible function.

Theorem 7.3.9. Assuming that Λ holds, σ induces a computational Nash equilibrium that is stable

with respect to trembles provided that Ui(k)− U∗
i (k) is non-negligible, for 1 ≤ i ≤ n.

Proof. This proof is based on [27]. Let δ be a parameter which we will specify at the end of

the proof. Note that δ may depend on k. Since we assume that players execute every step of

the protocol in an index increasing order, we can assume without loss of generality that C =

{t∗− t+2, . . . , t∗}. It is sufficient to show that for any i ∈ C, for any vector of PPT strategies ρ−C

that is δ-close to σ−C , and any PPT strategy ρC , there exists a PPT strategy σ′
C ≈ σ such that

Ui(k, ρC , ρ−C) ≤ Ui(k, σ
′
C , ρ−C) + ǫ(k), where ǫ(·) is negligible. As before, let PC = {Pi|i ∈ C}

and P−C = {Pi|i ∈ ({1, . . . , t∗} \ C)}. First, we construct a strategy σ′
C for the players in PC as

follows.

118 7. An Efficient Rational Secret Sharing Scheme Based on the Chinese Remainder Theorem

1. Set Detect:=0.

2. In each iteration:

(a) Receive the messages from P−C in each possible step. If PC detects that some player Pj in

P−C has deviated from σj , set Detect:= 1.

(b) If Detect= 1, execute the remaining steps according to ρC ; otherwise σC .

3. If Detect= 0, determine the output according to σC , otherwise, output whatever ρC outputs.

Observe that when σ′
C interacts with σ−C , Detect is never set to be 1. Hence σ′

C ≈ σ

and Ui(k, σ
′
C , σ−C) = Ui(k, σC , σ−C) = Ui(k) for any i ∈ C. Now, we want to show that

Ui(k, ρC , ρ−C) ≤ Ui(k, σ
′
C , ρ−C) + η(k) for any i ∈ C, where η(·) is negligible. Let ρ̃−C de-

note the residual strategy of ρ−C . In an interaction where PC follows strategy ρC , let Detected

be the event that PC is detected deviating from σC before entering stage 2 of the valid iteration

while no player in P−C is detected cheating so far. Also, let PrDetected(α) be the probability of

Detected when P−C follows strategy α. Since no player in P−C will be detected cheating when

P−C execute σ−C , PrDetected(σ−C) equals the probability of PC being detected deviating from σC

before entering Stage 2 of the valid iteration.

Claim 1. Pr[Deviate]=PrDetected(σ−C) + ǫ(k) · Pr[Deviate], for some negligible function ǫ.

Proof. Since the players in C will never be detected deviating from σC if they follow σC , and any

deviation from σC can be detected except with negligible probability ǫ(k),

Prdetected(σ−C) = Pr[deviate ∧ caught]

= Pr[caught|deviate] · Pr[deviate]

= (1− ǫ(k)) · Pr[deviate].

Claim 2. For any i ∈ C,

Ui(k, ρC , ρ̃−C)− Ui(k, σ
′

C , ρ̃−C) ≤ PrDetected(ρ̃−C) · (U
+
i (k)− U

r

i (k)) + ǫ(k),

7.3. Security of our Rational Secret Sharing Scheme 119

where ǫ(·) is negligible.

Proof. Consider the interaction of σ′
C with ρ̃−C. If no player in P−C is detected cheating, then

σ′
C = ρC . In this case, Ui(k, ρC , ρ̃−C) − Ui(k, σ′

C , ρ̃−C) = 0. However, if some player in PC is

detected cheating, then detected is well defined in the interaction of σ′
C with ρ̃−C , since σ

′
C runs

a copy of ρC as a sub-routine. When detected does not happen, there are two possibilities:

• Neither the players in PC nor the players in P−C has being detected cheating before entering

stage 2 of the valid iteration. In this case, σ′
C = ρC = σC except with negligible probability.

Hence, the output of each player is unchanged whether PC is running σ′
C or ρC except with

negligible probability ǫ′(k). In this case, Ui(k, ρC , ρ̃−C) − Ui(k, σ′
C , ρ̃−C) ≤ ǫ′(k) · (U+

i (k) −

U ri (k)).

• Some player in P−C , say Pj , is the first one to be detected cheating before entering in stage 2

of the valid iteration. However, this implies that before Pj is detected cheating, PC actually

executes σC except with negligible probability. Since σ′
C ”switches” to ρC immediately

after Pj is detected cheating, the outputs of each player are identical whether PC runs

σ′
C or ρC except with negligible probability ǫ′′(k). Thus Ui(k, ρC , ρ̃−C) − Ui(k, σ′

C , ρ̃−C) ≤

ǫ′′(k) · (U+
i (k)− U ri (k)).

When detected happens, the maximum difference in the utilities is (U+
i (k) − U ri (k)). It

completes the proof of the claim since all the utilities are polynomial in k.

Claim 3. PrDetected(ρ̃−C) ≤ PrDetected(σ−C) + ǫ(k) for some ǫ(·) negligible.

Proof. Suppose that detected happens when interacting with ρ̃−C . Consider all the view of PC

obtained before detected happens. Since any deviation from σC will be detected except with

negligible probability, the entire view is the same as the one obtained before PC deviates from

σC except with negligible probability. On the other hand, since PC is detected cheating first and

in every communication round, any deviation (from σ−C) will be detected except with negligible

probability, the initial segment of ρ̃−C(containing all the steps before PC deviates from σC)

coincides with the initial segment of σ−C except with negligible probability. Therefore, except with

negligible probability ǫ(k), PC will also deviate (from σC) and consequently be detected deviating

120 7. An Efficient Rational Secret Sharing Scheme Based on the Chinese Remainder Theorem

when interacting with σ−C , where nobody in P−C will deviate. That is, Prdetected(σ−C) + ǫ(k) ≥

Prdetected(ρ̃−C), for some negligible function ǫ(·).

By Remark 7.3.8, we know that for any PPT strategy ρC ,

Ui(k, σ) = Ui(k) ≥ Ui(k, ρC , σ−C) + (Ui(k)− U∗
i (k)) · Pr[Deviate]− η(k),

where η(·) is a negligible function. Now, we get:

Ui(k, ρC , ρ−C) = (1− δ) · Ui(k, ρC , σ−C) + δ · Ui(k, ρC , ρ̃−C)

≤ (1− δ) · [Ui(k) + (U∗

i (k)− Ui(k)) · Pr[Deviate] + η(k)]

+δ · Ui(k, ρC , ρ̃−C)

Besides,

Ui(k, σ
′

C , ρ−C) = (1− δ) · Ui(k, σ
′

C , σ−C) + δ · Ui(k, σ
′

C , ρ̃−C)

= (1− δ) · Ui(k) + δ · Ui(k, σ
′

C , ρ̃−C)

It follows that

Ui(k, ρC , ρ−C)− Ui(k, σ
′

C , ρ−C)

≤ (1− δ) · (U∗

i (k)− Ui(k)) · Pr[Deviate] + δ · [Ui(k, ρi, ρ̃−C)− Ui(k, σ
′

C , ρ̃−C] + η(k)

by Claim 2
≤ (1− δ) · (U∗

i (k)− Ui(k)) · Pr[Deviate]

+δ · PrDetected(ρ̃−C) · (U
+
i (k)− U

r

i (k)) + δ · ǫ(k) + η(k)

by Claim 1
= (1− δ) · (U∗

i (k)− Ui(k)) · (PrDetected(σ−C) + ǫ
′(k) · Pr[Deviate])

+δ · (U+
i (k)− U

r

i (k)) · PrDetected(ρ̃−C) + δ · ǫ(k) + η(k)

by Claim 3
≤ (1− δ) · (U∗

i (k)− Ui(k)) · PrDetected(ρ̃−C)

+δ · (U+
i (k)− U

r

i (k)) · PrDetected(ρ̃−C) + η
′(k),

where η′(·) is some negligible function. Hence, there exists δ > 0 (may depend on k) such that the

above expression is negligible in k for each i ∈ C.

Efficiency. The expected number of iterations of our protocol is p0. Note that the requirements

7.4. Conclusion 121

for p0 are that p0 >
2[U+

i (k)−Ur
i (k)]

Ui(k)−Ur
i (k)

, for 1 ≤ i ≤ n. Since all the utility functions are polynomial

in k and Ui(k) − U ri (k) is assumed to be non-negligible, p0 can be chosen to be a prime less than

some polynomial in k. Since all the computations are based on modular arithmetic, they can be

executed in polynomial time. Besides, RngPrf can also be verified in polynomial time. All these

considerations imply that our protocol is efficient.

Comparison to Fuchsbauer et al.’s Scheme. The protocol from [27] provides good point of

comparison to ours since both techniques have similar features:

• Both of them induce a (t − 1)-resilient computational strict Nash equilibrium that is stable

with respect to trembles.

• Neither of them relies on simultaneous channels.

• Both of them assume that no player knows any auxiliary information about the secret s.

This property has been proved to be inherent to the non-simultaneous channels model [2].

• Both protocols run in time polynomial in k (security parameter) and they have almost the

same round complexity.

However, our protocol has smaller share size even when (t− 1)-resilience to coalitions is required.

Our shares are O(k) bits long while those from [27] need (n− t+1) (2n|s|+O(k)) bits. The latter

share length leads to practical efficiency issues when n− t+ 1 is large or when Fuchsbauer et al.’s

technique is used as a building block within more general rational MPC protocols.

7.4 Conclusion

In this chapter, we have presented an efficient protocol for t-out-of-n rational secret sharing based

on the Chinese Remainder Theorem in non-simultaneous channels. Our technique leads to a (t−1)-

resilient computational strict Nash equilibrium that is stable with respect to trembles while having

much smaller share size than the protocol proposed by Fuchsbauer et al. [27]. Our protocol is

efficient since on one hand the expected round complexity is a polynomial in k, on the other hand,

all the computations can be executed in polynomial time in k.

122 7. An Efficient Rational Secret Sharing Scheme Based on the Chinese Remainder Theorem

8. TRANSFORMATIONS FROM ANY LINEAR SECRET SHARING SCHEME

TO A RATIONAL SECRET SHARING SCHEME

In this chapter, we propose three transformations from any classical linear secret sharing (LSSS for

short) to a rational secret sharing scheme (RSSS for short) with a mediator. The RSSS obtained

induces an A-resilient Nash equilibrium surviving iterated deletion of weakly dominated strategies,

relies on no cryptographic assumption, provides information theoretical security and hence is auto-

matically immune against backward induction. The first transformation works for any LSSS with

an arbitrary adversary structure A and the resulting RSSS has expected round complexity relying

on participants’ utilities. The second transformation works for any LSSS with a Q2 adversary

structure A and the resulting RSSS has expected round complexity O(1). In both of the above

cases, we assume that knowledge of participants’ utilities is public. The third transformation works

for any LSSS with a Q3 adversary structure and requires no knowledge of participants’ utilities.

The RSSS obtained has expected round complexity O(1). The first transformation requires pair-

wise secure channels along with a simultaneous broadcast channel, while the second and the last

transformations only require pairwise secure channels and if the LSSS to be transformed is A-error

detectable, the resulting RSSS induces an A-resilient strict Nash equilibrium.

To the best of our knowledge, this research marks the first instance that the problem on trans-

formation from any linear secret sharing scheme to a rational secret sharing scheme is considered

and the first time that rational secret sharing schemes for non-threshold access structures are con-

structed. As an independent interest, our constructions generalize and improve some of the results

proposed by Abraham et.al. in [1], where they proposed RSSSs over t-out-of-n threshold access

structures, which induce (t− 1)-resilient Nash equilibrium surviving iterated elimination of weakly

dominated strategies. However, their constructions make use of digital signatures, which makes

them suspectable to backward induction. As a comparison, our constructions are unconditionally

secure.

124 8. Transformations from Any Linear Secret Sharing Scheme to a Rational Secret Sharing Scheme

8.1 Motivation

It is well-known that for any given access structure Γ, there always exists an LSSS realizing it.

Suppose that a dealer shares a secret s among n participants via some LSSS and wishes to ensure

that every subset A ∈ Γ can later recover the secret s while any subset not in Γ get no information

about the secret s. The dealer is no longer available after the process of share distribution. If

all the participants were honest, the dealer’s goal could be trivially achieved. Unfortunately, it

can be the case that some participants will choose to be dishonest if deviating from the protocol

will provide them with some advantage. For example, if the secret is the key of a safe containing

treasures, it is reasonable to assume that each participant firstly prefers to be the only one learning

s and secondly prefers to learn s with as few other participants as possible. In this situation, some

participants may form a coalition and cheat about their shares in the secret reconstruction process,

which may prevent the non-coalition participants from learning the secret. As a result, the dealer’s

goal can not be achieved. To partially solve this problem, we attempt to transform the original

LSSS to an RSSS that, when rationally played, yields the secret to all participants at a Nash

equilibrium or one of its variants.

A useful way to realize this transformation is to involve a mediator, which is a trusted third

party, and then design a strategy for each participant along with the mediator such that on one

hand every participant has no motivation to deviate from his strategy provided that all the others

stick to theirs, and on the other hand, if each participant sticks to his strategy, the secret will

be revealed to all participants. The purpose of the mediator is to distribute round r shares for

each active participant at the beginning of the rth round, which makes the reconstruction phase

proceed with several rounds. Following Forges [26], we may view a mediator as a communication

device: each participant sends a message (input) and the mediator computes a function of all the

messages ever obtained and sends each participant some information (output).

In this chapter, we use the notations u+i , u
−
i , and ui which were first defined in Chapter 6.

(Please refer to P 86.) Besides, we consider coalitions in A and assume for simplicity that during

the process of share reconstruction phase, there is at most one coalition which contains a subset

of active players and all the players in this coalition share all information they jointly have. Thus,

all the players in some coalition are assumed to share a single output.

8.2. Transformations from an LSSS to an RSSS 125

8.2 Transformations from an LSSS to an RSSS

In the following, without loss of generality, we assume that s 6= 0 and this assumption is known

to all participants. For ease of exposition, we assume that the secret is equally likely to be any

nonzero field element. For any given monotone access structure Γ over P = {P1, . . . , Pn}, we fix an

MSPM = (F,M, ε, ψ) computing Γ, where F = GF(q),M has sizem×e and the columns ofM are

assumed to be linearly independent. Let A denotes the corresponding adversary structure. As in

Chapter 3, in the following, without loss of generality, we always assume that ψ preserves order, i.e.,

ψ(i) ≤ ψ(j) whenever i < j, where it is assumed that P1 < · · · < Pn. Let mi = |{j : ψ(j) = Pi}|,

that is, mi is the number of rows assigned to Pi, 1 ≤ i ≤ n. Let λi = m1 + · · ·+mi for 1 ≤ i ≤ n

and λ0 = 0. Then for any 1 ≤ i ≤ n, S0
i = (s0λi−1+1, . . . , s

0
λi−1+mi

) is the share for Pi. It is quite

natural to regard (S0
1 , . . . , S

0
n) as an n-tuple that belongs to Fm1 × · · · × Fmn . Let C be the linear

block code generated by MT as in Chapter 3.

In this section, we are dedicated to transformingM to an RSSS that, when rationally played,

opens the secret to all the participants in anA-resilient Nash equilibrium surviving iterated deletion

of weakly dominated strategies. Note that in a rational model, each participant is self-interested,

i.e., he does nothing other than maximizing his utility, which solely depends on who outputs

the secret and who does not. The initial share distribution phase is given by M. While in

the reconstruction phase of our protocol, we view the interactions among the subset of active

participants as a game augmented with a mediator. Let σ = (σ1, . . . , σn) denote the recommended

joint strategy of participants, where σi is participant Pi’s recommended strategy, 1 ≤ i ≤ n. The

reconstruction phase proceeds with several rounds, among which only the last round is the valid

round, since only in the last round the shares are distributed for the secret s while in any other

round the shares are distributed for 0. And the key point is that no participant can tell in advance

which round is going to be the last round.

8.2.1 Transformation for Any LSSS with an Arbitrary Adversary Structure

In this subsection, we construct a transformation for any LSSS with an arbitrary access structure.

We require pairwise secure channels along with a simultaneous broadcast channel. As in Chapter

5, by simultaneous broadcast channel, we mean that all participants can simultaneously send

messages and so no participant can see what the others broadcast before sending his own message.

126 8. Transformations from Any Linear Secret Sharing Scheme to a Rational Secret Sharing Scheme

They are necessary to guarantee that no participant can tell whether the current round is the

last round before sending his own message, which further guarantees that coalition members can

never output the secret while preventing non-coalition members from outputing it. Assume that

an authorized subset of participants want to recover the secret by playing a game. For ease of

description, we can assume without loss of generality that those participants are P1, . . . , Pt∗ . Now

we describe a strategy for the mediator, who is a trusted third party, and a recommended strategy

for each participant as follows. The game stops if the mediator or at least one player aborts.

The Mediator’s Strategy

1. In the 0th round, it collects the share from each participant Pi, 1 ≤ i ≤ t∗. If it does

not receive an appropriate message from some participant, it aborts abruptly. Otherwise,

let ϑ = (S̃0
1 , . . . , S̃

0
t∗) be the sequence of all the information it received. It checks whether

there exists a vector η ∈ Fe such that η · (Mψ−1(Pi))
T = S̃0

i for 1 ≤ i ≤ t∗. If not, it aborts

abruptly; otherwise, it proceeds to the next round.

2. In the rth(r > 0) round, it chooses a random binary variable cr with Pr[cr = 1] = α

along with a random column vector ωr ∈ Fe whose first coordinate is zero, computes

Sri := cr · S̃0
i + ωr · (Mψ−1(Pi))

T and sends to each participant Pi his round r share Sri ,

for 1 ≤ i ≤ t∗. Note that if cr = 0, Sr1 , . . . , S
r
t∗ are the shares for 0; otherwise, if ϑ =

(S̃0
1 , . . . , S̃

0
t∗) = (S0

1 , . . . , S
0
t∗), S

r
1 , . . . , S

r
t∗ are also the shares for s.

Participant Pi’s Recommended Strategy σi

1. In the 0th round, send his initial share S0
i to the mediator.

2. In the rth(r > 0) round, broadcast Sri simultaneously. If he fails to receive complete

information from some participant Pj , abort abruptly with no output; otherwise, check

whether there exists a vector ξ ∈ Fe such that:

ξ · (Mψ−1(Pi))
T = S̃ri , for 1 ≤ i ≤ t∗, (8.1)

where {S̃r1 , . . . , S̃rt∗} denotes the set of all the messages he received in the previous step,

including his own. If not, abort immediately; otherwise, reconstruct a value, denoted as

Y ri . If Y
r
i 6= 0, output it and abort; otherwise, proceed to the next round.

We are to show that (σ1, . . . , σt∗) induces an A-resilient Nash equilibrium surviving iterated

deletion of weakly dominated strategies provided that α is suitably chosen.

8.2. Transformations from an LSSS to an RSSS 127

Theorem 8.2.1. If α ≤ min1≤i≤n
ui−u

−
i

u
+
i −ui

, then (σ1, . . . , σt∗) induces an A-resilient Nash equilib-

rium which survives iterated deletion of weakly dominated strategies. It has expected running time

O(1
α
).

Proof. It is obvious that if every participant follows his strategy, with probability 1 everyone will

eventually learn (and thus output) the secret and this is expected to happen in O(1
α
) rounds.

Consider what happens if some coalition A ∈ A of participants deviates from σA. There are

two cases. Case 1: some participants in A either lie about or do not send their initial shares at all

to the mediator in the 0th round. Case 2: some participants in A either lie or do not broadcast

their round r shares (received from the mediator in the rth round for some r > 0). Now we are

going to prove that under our assumption on α, each of these deviations would never bring to any

participant in A more utility provided that the non-coalition participants stick to their strategy

σ−A, that is, σ induces an A-resilient Nash equilibrium.

If some participant Pi ∈ A sends nothing to the mediator in the 0th round, the game stops and

nobody outputs the secret, which obviously results in a worse outcome for participant Pi. If some

participant Pi ∈ A cheats about his initial share, we distinguish between two cases as follows. If

there does not exist a vector η ∈ Fe such that η · (Mψ−1(Pj))
T = S0

i for each 1 ≤ j ≤ t∗. Then the

game stops with no participant outputting the secret, which obviously is a worse outcome for Pi;

otherwise, we can reduce this case to the situation where some coalition participant Pi lies about

his round r share for some r > 0, which will be discussed below.

Now suppose that some Pi ∈ A does not send his round r share to some participant not in A, for

some r > 0. If cr = 0, which happens with probability 1−α, the game will terminate immediately

and nobody may output the secret. However, if cr = 1, which happens with probability α, the

best outcome participant Pi can expect is to gain u+i . Thus, Pi gains from sending nothing only if

αu+i + (1− α)u−i > ui, which is not the case by our assumption.

Suppose the participants in A send X = {S̃ri : Pi ∈ A} instead of {Sri : Pi ∈ A} in the rth

round, for some r > 0. We say that X is a compatible response if there exists a vector ζ ∈ Fe

whose first coordinate is cr · s such that

ζ · (Mψ−1(Pi))
T =





S̃ri , Pi ∈ A;

Sri , Pi ∈ {P1, . . . , Pt∗} \A.

128 8. Transformations from Any Linear Secret Sharing Scheme to a Rational Secret Sharing Scheme

Now we consider two subcases.

• X is a compatible response. Then sending X has the same result as sending {Sri : Pi ∈ A}.

In fact, in this case, {S̃ri : Pi ∈ A}⋃{Sri : Pi 6∈ A} are also the shares for cr · s, that is,

either with probability α all active participants output the secret, or with probability 1− α

all active participants recover 0 as the secret and the game continues to the next stage.

• X is not a compatible response. If cr = 1, which happens with probability α, each participant

Pi in the coalition A outputs the secret and gains at most u+i . If c
r = 0, which happens with

probability 1 − α, no participant in A outputs the secret so far and the game stops. To see

why the game stops, we observe that any participant Pj 6∈ A will check whether the equality

(8.1) satisfies: if it satisfies, then the first coordinate should be nonzero (since now X is not

a compatible response), that is, Pj recovers a nonzero value and so the game stops; if it

does not satisfy, then Pj aborts according to his strategy and so the game stops. Therefore,

Pi ∈ A gains from sending an incompatible response only if αu+i + (1− α)u−i > ui, which is

not the case by our assumption.

Finally, the statement that (σ1, . . . , σt∗) survives iterated deletion of weakly dominated strate-

gies follows directly from the sufficient condition given by Halpern and Teague [31] for a randomized

protocol with unbounded running time to survive the iterated deletion process. This completes

the proof.

Remark 8.2.2. This transformation works for any linear secret sharing scheme over any access

structure. However, the expected round complexity of the resulting rational secret sharing scheme

relies on participants’ utilities or at least some bounds on them. It can be large for some particular

choices of utilities. In addition, the obtained RSSS relies on a simultaneous broadcast channel,

which is expensive to be implemented in practice. However, if we begin with an LSSS with a Q2

adversary structure, we can remove these two limitations at the cost of requiring all n players are

involved in the secret reconstruction process.

8.2.2 Transformation for Any LSSS with a Q2 Access Structure

Observe that if A is Q2, then the non-coalition participants have enough shares from which they

can reconstruct the secret even if the coalition participants do not send their round r shares for

some r > 0. However, if the coalition participants send incorrect values, then for the non-coalition

8.2. Transformations from an LSSS to an RSSS 129

participants, there may be multiple subsets of shares from which multiple values can be recovered.

This problem can be avoided if the mediator sends each participant some extra information he can

use to verify the truth of the value sent by any other participant and hence can locate the possible

errors. Hereinafter, we assume all participants in P are involved in the secret reconstruction phase,

which is typically the case for rational multiparty computation. And in this subsection, we are

dedicated to extending any LSSS with a Q2 access structure to an RSSS, in which the verification

process uses Rabin and Ben-Or’s information checking protocol (ICP) [53]. Only pairwise secure

channels are required in this subsection.

Beginning with any LSSS with aQ2 access structure, we obtain a rational secret sharing scheme,

which is described in the next page.

Remark 8.2.3. Observe that if Pi modifies the value of srl to s̃
r
l , for some λi−1+1 ≤ l ≤ λi, r > 0,

he must also modify the value yrl,j to ỹ
r
l,j such that crl,j = brl,j s̃

r
l + ỹrl,j ; otherwise, Pi will be caught

cheating. And the probability of being able to guess an appropriate ỹrl,j is less than β.

Remark 8.2.4. From the above protocol, we can see why we do not need a simultaneous channel

in this construction. Once coalition members can tell in advance whether the current round, say

the rth round, is the last round before sending their round r shares, it will be rational for them

to keep silent or send incorrect round r shares. However, this can never prevent non-coalition

members from learning the secret except with probability less than β, since non-coalition members

form an authorized subset.

Recall that ϑ = (S̃0
1 , . . . , S̃

0
n) is the tuple consisting of the messages the mediator received in

the 0th round. It can be different from µ = (S0
1 , . . . , S

0
n), the tuple of the original shares for s

given by the dealer. As in Chapter 3, let C be the linear block code generated by MT over F. The

following lemma suggests a sufficient condition for ϑ = (S̃0
1 , . . . , S̃

0
n) to be the shares for s.

Lemma 8.2.5. Let e := (e1, . . . , en) = ϑ − µ, where ei = S̃0
i − S0

i , 1 ≤ i ≤ n. If e is a block

codeword of C and supp(e) := {Pi|ei 6= 0} ∈ A, then S̃0
1 , . . . , S̃

0
n are also the shares for the secret

s.

130 8. Transformations from Any Linear Secret Sharing Scheme to a Rational Secret Sharing Scheme

The Mediator’s Strategy

1. Choose a field F′ = GF(qh) for some integer h such that qh is larger than 1
β
, where β is a

security parameter determined below.

2. In the 0th round, collect the initial share from each participant Pi, 1 ≤ i ≤ n. If it does not

receive an appropriate message from some participants, abort abruptly; otherwise, check

whether ϑ is a codeword of C, where ϑ = (S̃0
1 , . . . , S̃

0
n) be the sequence of all the information

it collects. If not, abort abruptly; otherwise, proceed to the next round.

3. In the rth round with r > 0,

(a) Choose a random binary variable cr with Pr[cr = 1] = 1
2 along with a random vector

ωr ∈ Fe such that the first entry of ωr is 0.

(b) For 1 ≤ i ≤ n, compute Sri := (srλi−1+1, . . . , s
r
λi
) = cr · S̃0

i + ωr · (Mψ−1(Pi))
T and

send to Pi his round r share Sri . Note that if cr = 0, Sr1 , . . . , S
r
n are the shares for 0;

otherwise, if ϑ = (S̃0
1 , . . . , S̃

0
n) is a codeword of the block code C generated by MT ,

Sr1 , . . . , S
r
n are the shares for s by Lemma 8.2.5.

(c) For 1 ≤ i ≤ n, send to Pi random sequences (yrλi−1+1,j , . . . , y
r
λi,j

) of elements in F′,

j ∈ {1, . . . , n} \ {i}. Besides, for each j ∈ {1, . . . , n} \ {i}, send to Pj mi pairs

(brλi−1+1,j, c
r
λi−1+1,j), . . . , (b

r
λi,j

, crλi,j
) of elements in F′ such that crl,j = brl,js

r
l +y

r
l,j and

brl,j 6= 0 for all λi−1 + 1 ≤ l ≤ λi.

Participant Pi’s Recommended Strategy σ′
i

1. In the 0th round, send his initial share S0
i to the mediator.

2. In the rth round with r > 0,

(a) Receive the round r messages from the mediator.

(b) For 1 ≤ j 6= i ≤ n, send the sequence (yrλi−1+1,j , . . . , y
r
λi,j

) along with his round r

share Sri = (srλi−1+1, . . . , s
r
λi−1+pi

) to participant Pj .

(c) Verify the truth of the data from any other participants and reconstruct a value, say

Y ri , by ignoring those round r shares that fail the verifications. Note that here if some

participant Pj sends nothing or incomplete data to Pi, Pi may discard all the data

from him and in this case, we say Pj fails the verification.

(d) If Y ri 6= 0, output Y ri and abort. In the case that Y ri = 0, if all the verifications in

previous step success, proceed to the next round; otherwise, abort with no output.

8.2. Transformations from an LSSS to an RSSS 131

Proof. It suffices to show that e1, . . . , en are the shares for 0, since the underlying secret sharing

scheme is linear. Since e ∈ C, e1, . . . , en are reasonable shares for some element, say a, in F. Let

O = {Pi|ei = 0}, where 0 denotes zero vector of proper length. Since A is Q2 and supp(e) ∈ A,

we have O ∈ Γ. Obviously, the value recovered by using the those shares from participants in O is

0, that is, a = 0.

Theorem 8.2.6. Assume that β < min1≤i≤n
ui−u

−
i

2u+
i −ui−u

−
i

and A is Q2, then (σ′
1, . . . , σ

′
n) induces

an A-resilient Nash equilibrium surviving iterated deletion of weakly dominated strategies. It has

expected round complexity O(1).

Proof. It is obvious that if every participant follows his strategy, with probability 1 everyone will

eventually learn (and thus output) the secret and this may be expected to happen in 2 rounds.

Consider what happens if some coalition A ∈ A of participants deviates from the recommended

strategy. There are two cases. Case 1: some participants in A either lie about or do not send their

initial shares at all to the mediator in the 0th round. Case 2: some participants in A either lie or

send incomplete round r messages to some non-coalition participants. We proceed to prove that

each of these deviations would never bring to coalition participants more utilities provided that

the non-coalition participants stick to their recommended strategies.

If some participants in A send nothing to the mediator in the 0th round, the game stops and

nobody outputs the secret, which obviously results in a worse outcome for all participants, including

those in A. If some participants in A cheat about their initial share, we distinguish between two

cases as follows. Case 1: ϑ 6∈ C. Then the game stops with no participant outputting the secret,

which obviously is a worse outcome for all participants, including those in A. Case 2: ϑ ∈ C.

It follows immediately from Lemma 8.2.5 that the entries of ϑ are shares for s too. As a result,

sending ϑ has the same result as sending µ, whose entries are the original shares obtained from

the dealer. That is, this deviation can never increase coalition players’ utilities.

Now suppose that some player Pi ∈ A sends incomplete round r messages to some non-coalition

participants, for some r > 0. If cr = 0, which happens with probability 1
2 , the game terminates at

the rth round and nobody has gained the secret so far. However, if cr = 1, which happens with

probability 1
2 , each participant outputs the real secret, since each Pj 6∈ A can recover the secret by

ignoring those round r shares from participants in A. Thus, Pi may get less from sending partial

messages since 1
2u

−
i + 1

2ui < ui. In other words, Pi has an incentive to send all of his round r

132 8. Transformations from Any Linear Secret Sharing Scheme to a Rational Secret Sharing Scheme

messages, fake or not, to each participant not in A in the rth round for any r > 0.

Finally, suppose that some Pi ∈ A cheats about his round r share. When cr = 1, the non-

coalition participants will output the secret unless some coalition A ⊆ A lie about their round

r shares and not all of the lies are detected. However, the probability that a single lie is not

detected is β and the probability that it is detected is 1− β; if there are more lies, the probability

of detecting at least one of them is even greater. In fact, suppose that there are altogether l lies

for some integer l. Then the probability of detecting at least one lie is 1 − βl and the probability

of detecting all the lies is (1 − β)l. Thus, when cr = 1, with probability 1− (1 − β)l, each Pi ∈ A

gains at most u+i , and with probability (1−β)l, Pi gains ui. When cr = 0, with probability 1−βl,

at least one lie will be detected and the game will stop at the rth round with no one learning the

secret. If none of the lies is detected, which happens with probability βl, the game will continue

to the next stage and the most that Pi can hope to get is u+i . Thus, Pi’s expected utility from

being a member of a coalition A ∈ A is at most

1

2
((1− (1 − β)l)u+i + (1− β)lui + βlu+i + (1− βl)u−i)

=
1

2
[(1− (1− β)l + βl)u+i + (1− β)lui + (1− βl)u−i]

<
1

2
[2βu+i + (1− β)ui + u−i],

where the inequality is due to the fact that 1−(1−β)l+βl ≤ 2β, since 1−(1−β)l+βl is monotone

decreasing with respect to l provided that β ≤ 1
2 . So Pi would prefer it’s coalition not to lie if

2βu+i + (1 − β)ui + u−i < 2ui, that is, if β <
ui−u

−
i

2u+
i −ui−u

−
i

. This completes the proof.

The rational secret sharing scheme obtained from either of the two transformations induces an

A-resilient Nash equilibrium surviving iterated deletion of weakly dominated strategies. However,

as pointed by Kol and Naor [38], the solution concept Nash equilibrium surviving iterated deletion

of weakly dominated strategies is not sufficiently strong, since some bad strategies may survive this

deletion process. Take the RSSS obtained from the second transformation as an example. If some

coalition A ∈ A sent fake initial shares to the mediator in the 0th round in a way that ϑ is still a

codeword of C, then this deviation would not be detected and would not decrease any participant’s

utility. To put it in another way, for any A ∈ A the following bad strategy σ̃′
A: coalition members

follow their strategy σ′
A in the rth round for each r > 0 but deviate in 0th round in the particular

8.2. Transformations from an LSSS to an RSSS 133

way described above, while any non-coalition participant Pj sticks to his strategy σ′
j , can never

be a weakly dominated strategy and consequently survives iterated deletion of weakly dominated

strategies. However, if we required the existence of on-line dealer, it is easy to see from the proof of

Theorem 8.2.6 that σ′ induces an A-resilient strict Nash equilibrium. Now we would like to claim

that even in the case that the dealer is not available after the share distribution phase (which is the

case in our model), the obtained RSSS still induces an A-resilient strict Nash equilibrium provided

that A is Q2 and the LSSS to be transformed is A-error detectable. Note that as mentioned in

Chapter 4, the solution concept strict Nash equilibrium is stronger than Nash equilibrium surviving

iterated deletion of weakly dominated strategies. In particular, the bad strategy (σ̃′
A, σ

′
−A) is not

an A-resilient strict Nash equilibrium while it is an A-resilient Nash equilibrium surviving iterated

deletion of weakly dominated strategies.

Let Γ be an access structure and letM = (F,M, ε, ψ) be an MSP computing Γ. As in Chapter

3, let C be the linear block code generated by MT . As before, C is called the linear block code

corresponding to thisM. Recall that we say thatM isA-error detectable if C isA-error detectable,

that is, for any nonzero word ω = (w1, . . . ,wn) ∈ Fm1 × · · · ×Fmn with supp(ω) := {Pi|wi 6= 0} ∈

A, ω can not be a block codeword of C. Here mi = |ψ−1(Pi)|, 1 ≤ i ≤ n.

Proposition 8.2.7. (σ′
1, . . . , σ

′
n) induces an A-resilient strict Nash equilibrium provided that M

is A-error detectable.

Proof. The assumption that M is A-error detectable directly implies that if ϑ 6= µ, then ϑ can

not be a codeword of C. Hence, any modification about the original shares sent to the mediator

in the 0th round may be detected and hence cause the protocol to abort immediately with nobody

outputting the secret, which is clearly a worse outcome for each participant in some coalition.

As showed in the proof for Theorem 8.2.6, any other possible deviation from the participants in

some coalition may also result in a decrease in each coalition member’s utility, which completes

the proof.

Remark 8.2.8. Let M be an MSP computing Γ, where the adversary structure is denoted by

A. By Theorem 3.3.6,M is A-error detectable if and only if A is Q2 and the rows of (M⊥)B are

linearly independent for any B ∈ A. Thus, our protocol induces a strict Nash equilibrium provided

that rows of (M⊥)B are linearly independent for any B ∈ A.

134 8. Transformations from Any Linear Secret Sharing Scheme to a Rational Secret Sharing Scheme

8.2.3 Transformation for Any LSSS with a Q3 Access Structure

Now we would like to point out that the obtained RSSS from either of the two transformations

we have proposed so far assumes that knowledge of participants’ utilities (or at least some bounds

on them) is public. However, this assumption may be problematic, since in reality a player does

not necessarily know his utility, let alone let others know. Furthermore, even if he knows, it is

unclear how others can know it. Actually, all the existing rational secret sharing schemes without a

mediator share this limitation. Under the assumption of the existence of the mediator, Abraham et

al. [1] proposed a utility independent rational protocol for any Q3 threshold access structure. Here,

by utility independence, we mean that the protocol works for all possible values of utilities satisfying

the aforementioned learning preference assumptions: ui > u−i , 1 ≤ i ≤ n. In this subsection, we

demonstrate how to transform any LSSS with a Q3 access structure to a utility independent RSSS

with expected round complexity O(1). We borrow the technique proposed by Kurosawa [40]. For

notation simplicity, we only deal with the case when m = n and ψ(i) = Pi for i = 1, . . . , n and our

construction can be extended directly to general case.

The Mediator’s Strategy

1. In the 0th round, collect the initial share from each participant Pi, 1 ≤ i ≤ n. If it does

not receive an appropriate message from some participant, abort abruptly; otherwise check

whether ϑ is a codeword of C, where ϑ = (S̃0
1 , . . . , S̃

0
n) be the sequence of all the information

it collects. If not, abort abruptly; otherwise, proceed to the next round.

2. In the rth round with r > 0,

(a) Choose a random binary variable cr with Pr[cr = 1] = 1
2 along with a random vector

ωr ∈ Fe such that the first entry of ωr is 0.

(b) For 1 ≤ i ≤ n, compute Sri := (cr ·ϑ+ωr)·(Mψ−1(Pi))
T . Note that if cr = 0, Sr1 , . . . , S

r
n

are the shares for 0; otherwise, if ϑ = (S̃0
1 , . . . , S̃

0
n) is a codeword of C, Sr1 , . . . , S

r
n are

the shares for s.

(c) For each 1 ≤ i ≤ n, redistribute Sri among all participants: choose a random vector

ρri ∈ Fe−1, compute (sri,1, . . . , s
r
i,n) := (Sri , ρ

r
i) ·MT , and send (Sri , ρ

r
i) along with sri,i

to Pi, while send sri,j to Pj , 1 ≤ j 6= i ≤ n.

8.2. Transformations from an LSSS to an RSSS 135

Participant Pi’s Recommended Strategy δi

1. In the 0th round, send his initial share S0
i to the mediator.

2. In the rth round with r > 0,

(a) Receive the round r messages (Sri , ρ
r
i) and s

r
l,i, 1 ≤ l ≤ n, from the mediator.

(b) For 1 ≤ j 6= i ≤ n, send (Sri , ρ
r
i) along with srl,i, 1 ≤ l ≤ n, to Pj .

(c) Let Indexri := {j : Pi collects complete data from Pj at the rth round }. Note that

i ∈ Indexri . Let {(S̃rj , ρ̃rj), s̃r1,j , . . . , s̃rn,j} be the messages he collects from Pj , j ∈

Indexri , during the previous step and let Xr
j := (s̃rj,1, . . . , s̃

r
j,n), where s̃

r
j,l can be the

special symbol ⊥ if j 6∈ Indexri and in this case Pj ∈ supp(Xr
j − (S̃rj , ρ̃

r) ·MT).

(d) For each j ∈ Indexri , if supp(X
r
j − (S̃rj , r̃

r) ·MT) ∈ A, set sharerj := S̃rj ; otherwise, set

sharerj := ⊥.

(e) Reconstruct a value, say Y ri , by using those shares from

{sharerj : j ∈ Indexri and sharerj 6= ⊥}.

(f) If Y ri 6= 0, output Y ri and abort. In the case Y ri = 0, if Indexri = {1, . . . , n} and

Xr
j = (S̃rj , r̃

r) ·MT for all 1 ≤ j ≤ n, proceed to the next round; otherwise, abort with

no output.

Kurosawa first proposed and proved the following result in [40], which is essential for the proof

of Theorem 8.2.10.

Lemma 8.2.9 ([40] Lemma 4.1). Suppose that A is Q3. For 1 ≤ j ≤ n, for each r > 0 such that

the participants are still playing in the rth round, either sharerj = Srj or sharerj = ⊥. Furthermore,

share
r
j = Srj if Pj follows his recommended strategy honestly.

Theorem 8.2.10. Suppose that A is Q3. δ = (δ1, . . . , δn) induces an A-resilient Nash equilibrium

surviving iterated deletion of weakly dominated strategies. It has expected round complexity O(1).

Proof. It is obvious that if every participant follows his strategy, with probability 1 everyone will

eventually learn (and thus output) the secret s and this will be expected to happen in 2 rounds.

The argument for A-resiliency proceeds much as that for Theorem 8.2.6. We will only focus

on case 2. Suppose that some coalition participants only send part of their round r messages to

136 8. Transformations from Any Linear Secret Sharing Scheme to a Rational Secret Sharing Scheme

some non-coalition participants, for some r > 0. If cr = 0, which happens with probability 1
2 , the

game terminates at the rth round and nobody may output the secret. However, if cr = 1, which

happens with probability 1
2 , each participant will output the real secret, since each Pj 6∈ A can

recover the secret by ignoring those round r shares from participants in A. Thus, by this deviation

each Pi ∈ A may gain 1
2u

−
i + 1

2ui, which is strictly less than ui. Thus, Pi will send all of his round

r messages, fake or not, to each non-coalition participant in the rth round for any r > 0. Now

we continue to consider what happens if some coalition participants send fake round r messages

to some non-coalition participant, for some r > 0. However, we claim that this kind of deviation

can never bring more utility to any participant Pi in A. To show this, we distinguish between

two cases as follows. When cr 6= 0, every participant outputs the secret by Lemma 8.2.9. When

cr = 0, if Indexri = {1, . . . , n} and Xr
j = (S̃rj , ρ̃

r) ·MT for all 1 ≤ j ≤ n, the game proceeds to

the next round; otherwise, it terminates at the rth round with no one outputting the secret. In

all, these deviations can never increase coalition players’ utilities, that is, δ induces an A-resilient

Nash equilibrium.

Remark 8.2.11. The main advantage of the RSSSs obtained from the third transformation is

that they do not rely on knowledge of participants’ utilities, i.e., they are utility independent. In

other words, the obtained RSSSs work for all choices of numerical utility as long as the participants

do not strictly prefer not learning the secret to learning the secret.

We would like to stress that we can do better if the the underlying LSSS with a Q3 adversary

structure A is A-error detectable.

Proposition 8.2.12. LetM be a monotone span program computing Γ. IfM is A-error detectable

and A is Q3, then δ induces an A-resilient strict Nash equilibrium.

Proof. Suppose thatM is A-error detectable. On one hand, ϑ is a codeword in C only if ϑ = µ,

i.e., any modification to the shares sent to the mediator in 0th round can be detected and cause the

game to abort and no one outputs the secret, which is a worse outcome to the participants in some

coalition A ∈ A. On the other hand, if Xr
j = (s̃rj,1, . . . , s̃

r
j,n) = (S̃rj , ρ̃

r) ·MT for each 1 ≤ j ≤ n,

then (s̃rj,1, . . . , s̃
r
j,n) = (srj,1, . . . , s

r
j,n) and (S̃rj , ρ̃

r) = (Srj , ρ
r), since (s̃rj,1, . . . , s̃

r
j,n) − (srj1, . . . , s

r
jn)

is a codeword of C and its support is in A. Consequently, any fake information sent in the rth

round with r > 0 can eventually be detected. Now suppose some participants in a coalition A ∈ A

8.3. Conclusion 137

send incomplete or fake messages in the rth round for some r > 0. If cr = 0, which happens with

probability 1
2 , the game stops at the rth round and no one outputs the secret; if cr = 1, which

happens with probability 1
2 , everyone outputs the secret by Lemma 8.2.9. Hence, the expected

utility any participant Pi in some coalition may gain by sending fake information is 1
2u

−
i + 1

2ui,

which is strictly less than ui. The rest of the proof follows directly from the proof in Theorem

8.2.10.

8.3 Conclusion

In this chapter, we propose three transformations from a traditional LSSS to an RSSS with a

mediator. The RSSS obtained induces an A-resilient Nash equilibrium surviving iterated deletion

of weakly dominated strategies, relies on no cryptographic assumption, provides information the-

oretical security and hence is immune against backward induction attacks. If we begin with an

A-error detectable LSSS with a Q3 adversary structure, the RSSS obtained induces an A-resilient

strict Nash equilibrium. Those transformations assume the existence of an online mediator. It

should be interesting to consider whether it is possible to remove the online mediator and how to

remove it if it is possible at all. In particular, if we begin with any A-error correctable LSSS and

provided that there is an efficient decoding algorithm, then we can obtain a utility independent

RSSS without a mediator.

138 8. Transformations from Any Linear Secret Sharing Scheme to a Rational Secret Sharing Scheme

9. GENERAL CONCLUSION AND OPEN QUESTIONS

This thesis talked about two related cryptographic primitives: (classical) secret sharing and rational

secret sharing. Secret sharing was introduced in order to facilitate the distributed storage of private

data in an unreliable environment. Secret sharing schemes allow a dealer to distribute a secret

among a set of finite players in a way that each authorized set can later recover the secret by

combining their shares, while any unauthorized set can not. This purpose can be achieved for

certain only under the assumption that each player is honest. However, in reality (as in game

theory), players are self-interested, that is, they may choose to be dishonest if deviating from the

protocol will provide them more benefit. One approach to bridging game theory and secret sharing

is to use tools from game theory to design secret sharing schemes such that rational players will be

motivated to follow. The resulting schemes are called rational secret sharing schemes. There are

several criteria to evaluate a rational protocol, such as security models (unconditionally secure or

computationally secure), channel models, coalition-resilience abilities, equilibrium types achieved,

utility dependence and efficiencies (including expected round complexity, computational complexity

and share bitsize).

In this thesis we proposed two rational secret sharing protocols. The first one uses the tech-

niques of proactive secret sharing scheme and one-time pad. The main advantage is that it is

unconditionally secure. It induces a Nash equilibrium surviving iterated deletion of weakly domi-

nated strategies in the simultaneous broadcast channels model. Since the cryptographic community

is still in search of a proper framework for rational protocols, it would be interesting to study the

benefits of our approach in different equilibrium contexts. The second one is based on the Chinese

Remainder Theorem and it induces a (t− 1)-resilient computational strict Nash equilibrium that

is stable with respect to trembles in the non-simultaneous broadcast channels model. The trade

off is that its security relies on some computational assumptions related to discrete logarithm and

RSA.

On one hand, these two schemes share with almost all of the existing rational protocols the

140 9. General Conclusion and Open Questions

common limitation: the solution concept it induces is not sufficiently strong, especially when

there are multiple strict Nash equilibria that are stable with respect to trembles or multiple Nash

equilibria surviving iterated deletion of weakly dominated strategies, and consequently the game

may not end in a Nash equilibrium at all. Micali and Shelat [43] proposed a protocol, which

induces a solution concept stronger than strict Nash equilibrium and Nash equilibrium surviving

iterated deletion of weakly dominated strategies, since in their protocol after the process of iterated

deletion of weakly dominated strategies, surviving strategy of each player in their protocol is unique.

However, the security of their construction relies on special communication channels like ordinary

envelopes (as a way of temporarily and perfectly hiding a secret value), which may be quite

expensive to be implemented in practice. Hence, it should be interesting to construct rational

protocols which induce a stronger (than Nash equilibrium and its variants) solution concept in

standard communication networks.

On the other hand, most of the existing rational protocols including ours relies on the assump-

tion that knowledge on players’ utilities (or at least some bounds on them) is public. However, as

mentioned previously, this assumption may be problematic in practice. Thus, it makes sense to

consider the problem of designing utility independent rational protocol. In the literature of rational

secret sharing, there are two utility independent protocols for threshold access structures, both of

which require an on-line trusted party (a dealer or a mediator) and digital signatures. It should

be not hard to remove an online trusted party. As far as computational security is concerned, it is

inherent for utility independent rational protocols, that is, there does not exist an unconditional

secure rational secret sharing protocol while preserving utility independence. Hence, in order to

achieve information-theoretic security, the requirement for utility independence should be relaxed

in a reasonable way.

In addition, we proposed three transformations from a traditional LSSS to an RSSS with a me-

diator. The RSSS obtained induces an A-resilient Nash equilibrium surviving iterated deletion of

weakly dominated strategies, relies on no cryptographic assumption, provides information theoreti-

cal security and hence is immune against backward induction attacks. All of those transformations

assume the existence of an online mediator. It should be interesting to consider whether it is

possible to remove the online mediator and how to remove it if it is possible at all. In particular,

if we begin with any A-error correctable LSSS with a Q3 adversary structure and provided that

there is an efficient decoding algorithm, then we can obtain a utility independent RSSS without a

141

mediator. However, we have no idea about whether there exists and how can we find an efficient

decoding algorithm for a particular LSSS over an arbitrary monotone access structure.

142 9. General Conclusion and Open Questions

BIBLIOGRAPHY

[1] I. Abraham, D. Dolev, R. Gonen, and J. Halpern. Distributed computing meets game theory:

robust mechanisms for rational secret sharing and multiparty computation. In Proceedings of

the 25th ACM Symposium on Principles of Distributed Computing, pages 53–62, 2006.

[2] G. Asharov and Y. Lindell. Utility dependence in correct and fair rational secret sharing. In

Advances in Cryptology-CRYPTO 2009, pages 559–576, 2009.

[3] C. Asmuth and J. Bloom. A modular approach to key safeguarding. IEEE Transactions on

Information Theory, 29(2):208–210, 1983.

[4] P. Béguin and A. Cresti. General short computational secret sharing schemes. In Advances

in Cryptology-EUROCRYPT 1995, pages 194–208, 1995.

[5] A. Beimel. Secure schemes for secret sharing and key distribution. PhD thesis, Department

of Computer Science, Technion, 1996.

[6] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic

fault-tolerant distributed computations. In Proceedings of the 20th Annual ACM Symposium

on the Theory of Computing, pages 1–10, 1998.

[7] J. Benaloh and J. Leichter. Generalized secret sharing and monotone functions. In Advances

in Cryptolog-CRYPTO 1988, pages 27–36, 1988.

[8] M. Bertilsson and I. Ingemarsson. A construction of practical secret sharing schemes using

linear block codes. In Advances in Cryptology-AUSCRYPT 1992, pages 67–79, 1992.

[9] G. R. Blakley. Safeguarding cryptographic keys. In American Federation of Information

Processing Societies, 1979 National Computer Conference, pages 313–317, 1979.

[10] F. Boudot. Efficient proofs that a committed number lies in an interval. In Advances in

Cryptology-EUROCRYPT 2000, pages 431–444, 2000.

144 Bibliography

[11] E. F. Brickell. Some ideal secret sharing schemes. Journal of Combinatorial Mathematics and

Combinatorial Computing, 6:105–113, 1989.

[12] E. F. Brickell and D. M. Davenport. On the classification of ideal secret sharing schemes.

Journal of Cryptology, 4(2):123–134, 1991.

[13] Zhengjun Cao and Lihua Liu. Boudot’s range-bounded commitment scheme revised. In

Proceedings of the 9th International Conference on Information and Communications Security,

pages 230–238, 2007.

[14] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure protocols. In

Proceedings of the 20th AnnualACM Symposium on the Theory of Computing, pages 11–19,

1998.

[15] H. Chernoff. A measure of asymptotic efficiency for tests of a hypotheisis based on the sum

of observations. The Annals of Mathematical Statistics, 23(4):493–507, 1952.

[16] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and achieving

simultaneity in the presence of faults (extended abstract). In Proceedings of the 26th Annual

Symposium on the Foundations of Computer Science, pages 383–395, 1985.

[17] R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty compu-

tations secure against an adaptive adversary. In Advances in Cryptology-EUROCRYPT 1999,

pages 311–326, 1999.

[18] R. Cramer, I. Damg̊ard, and U. M. Maurer. General secure multi-party computation from any

linear secret-sharing scheme. In Advances in Cryptology-EUROCRYPT 2000, pages 316–334,

2000.

[19] L. Csirmaz. The size of a share must be large. In Advances in Cryptology-EUROCRYPT

1994, pages 13–22, 1994.

[20] P. D’Arco and D. R. Stinson. On unconditionally secure robust distributed key distribution

centers. In Advances in Cryptology-ASIACRYPT 2002, pages 346–363, 2002.

[21] Y. Desmedt and Y. Frankel. Shared generation of authenticators and signatures (extended

abstract). In Advances in Cryptology-CRYPTO 1991, pages 457–469, 1991.

Bibliography 145

[22] S. Fehr. Efficient construction of dual span program. In Manuscript, 1999.

[23] S. Fehr and U. Maurer. Linear vss and distributed commitments based on secret sharing and

pairwise checks. In Advances in Cryptology-CRYPTO 2002, pages 565–580, 2002.

[24] P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In Proceedings

of the 28th IEEE Symposium on Foundations of Computer Science, pages 427–437, 1987.

[25] P. Feldman and S. Micali. An optimal probabilistic algorithm for synchronous byzantine

agreement. In Proceedings of the 16th International Colloquium on Automata, Languages and

Programming, pages 341–378, 1989.

[26] F. M. Forges. An approach to communication equilibria. Econometrica, 54(6):1375–1385,

1986.

[27] G. Fuchsbauer, J. Katz, and D. Naccache. Efficient rational secret sharing in standard com-

munication networks. In Proceedings of the 7th IACR Theory of Cryptography Conference,

pages 419–436, 2010.

[28] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity for

all languages in np have zero-knowledge proof systems. Journal of the ACM, 38(3):691–729,

1991.

[29] S. D. Gordon and J. Katz. Rational secret ssharing, revisited. In Proceedings of the 5th

Conference on Security and Cryptography for Networks, pages 229–241, 2006.

[30] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained

access control of encrypted data. In Proceedings of the 13rd ACM Conference on Computer

and Communications Security, pages 89–98, 2006.

[31] J. Y. Halpern and V. Teague. Rational secret sharing and multiparty computation: extended

abstract. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pages

623–632, 2004.

[32] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing or: how to cope

with perpetual leakage. In Advances in Cryptology-CRYPTO 1995, pages 339–352, 1995.

146 Bibliography

[33] M. Ito, A. Saito, and T. Nishizek. Secret sharing schemes realizing general access structure.

In Proceedings of the IEEE Global Telecommunication conf., pages 99–102, 1987.

[34] S. Izmalkov, S. Micali, and M. Lepinski. Rational secure computation and ideal mechanism

design. In Proceedings of the 46th IEEE Symposium on Foundations of Computer Science,

pages 585–595, 2005.

[35] M. Karchmer and A. Wigderson. On span programs. In Proceedings of the 8th Structure in

Complexity Theory Conference, pages 102–111, 1993.

[36] K. Kaya and A. A. Selçuk. Secret sharing extensions based on the chinese remainder theorem.

In eprint.iacr.org/2010/096, 2010.

[37] G. Kol and M. Naor. Cryptography and game theory: designing protocols for exchanging

information. In Proceedings of the 5th Theory of Cryptography Conference, pages 320–339,

2008.

[38] G. Kol and M. Naor. Games for exchanging information. In Proceedings of the 40th Annual

ACM Symposium on Theory of Computing, pages 423–432, 2008.

[39] H. Krawczyk and D. R. Stinson. Secret sharing made short. In Advances in Cryptology-

CRYPTO 1993, pages 136–146, 1993.

[40] K. Kurosawa. General error decodable secret sharing scheme and its application. IACR

Cryptology ePrint Archive, page 263, 2009.

[41] M. Liu and Z. F. Zhang. Secret sharing schemes and secure multiparty computation. Publishing

House of Electronics Industry, 2008.

[42] R. J. McEliece and D. V. Sarwate. On sharing secrets and reed-solomon codes. Communica-

tions of the ACM, 24(9):583–584, 1981.

[43] S. Micali and A. Shelat. Purely rational secret sharing (extended abstract). In Proceedings of

the 6th Theory of Cryptography Conference, pages 54–71, 2009.

[44] M. Naor and A. Wool. Access control and signatures via quorum secret sharing. IEEE

Transactions on Parallel and Distributed Systems, 9(9):909–922, 1998.

Bibliography 147

[45] V. Nikov and S. Nikova. On a relation between verifiable secret sharing schemes and a class of

error-correcting codes. In Proceedings of International Workshop on Coding and Cryptography,

pages 275–290, 2005.

[46] V. Nikov, S. Nikova, and B. Preneel. On the size of monotone span programs. In Proceedings

of the 4th Conference on Security in Communication Networks, pages 249–262, 2004.

[47] V. Nikov, S. Nikova, B. Preneel, and J. Vandewalle. Applying general access structure to

proactive secret sharing schemes. In Proceedings of the 23rd Symposium on Information Theory

in the Benelux, pages 197–206, 2002.

[48] S. J. Ong, D. Parkes, A. Rosen, and S. Vadhan. Fairness with an honest minority and a

rational majority. In Proceedings of the 6th Theory of Cryptography Conference, pages 36–53,

2009.

[49] M. J. Osborne and A. Rubinstein. A course in game theory. MIT Press, 1994.

[50] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In

Advances in Cryptology-CRYPTO 1991, pages 129–140, 1991.

[51] M. O. Rabin. Randomized byzantine generals. In Proceedings of the 24th Annual Symposium

on Foundations of Computer Science, pages 403–409, 1983.

[52] T. Rabin. Robust sharing of secrets when the dealer is honest or cheating. Journal of the

ACM, 41(6):1089–1109, 1994.

[53] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest

majority (extended abstract). In Proceedings of the 21st Annual ACM Symposium on Theory

of Computing, pages 73–85, 1989.

[54] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of Society for

Industrial and Applied Mathematics, 8(2):300–304, 1960.

[55] A. N. Reyzin. Rational secret sharing. 2007.

[56] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

148 Bibliography

[57] D. R. Stinson and R. Wei. Unconditionally secure proactive secret sharing scheme with com-

binatorial structures. In Proceedings of the 6th Annual International Conference on selected

Area in Cryptography, pages 200–214, 1999.

[58] C. Tartary, H. Wang, and Y. Zhang. An efficient and information theoretically secure rational

secret sharing scheme based on symmetric bivariate polynomials. International Journal of

Foundations of Computer, pages 1395–1416, 2011.

[59] T. Tassa. Generalized oblivious transfer by secret sharing. Design Codes and Cryptography,

58(1):11–21, 2011.

[60] M. Tompa and H. Woll. How to share a secret with cheaters. Journal of Cryptology, 1(2):133–

138, 1988.

[61] T. Worsch. Lower bounds for (sums of) binomial coefficients. In Technical Report 31/94,

Universität für, Informatik, 1994.

[62] Y. Zhang, C. Tartary, and H. Wang. An efficient rational secret sharing scheme based on the

chinese remainder theorem. In Proceedings of the 16th Australasian Conference on Information

Security and Privacy, pages 259–275, 2011.

